
HAL Id: tel-03118108
https://theses.hal.science/tel-03118108v2

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tractable Reliable Communication in Compromised
Networks

Giovanni Farina

To cite this version:
Giovanni Farina. Tractable Reliable Communication in Compromised Networks. Distributed, Parallel,
and Cluster Computing [cs.DC]. Sorbonne Université; Università degli studi La Sapienza (Rome), 2020.
English. �NNT : 2020SORUS310�. �tel-03118108v2�

https://theses.hal.science/tel-03118108v2
https://hal.archives-ouvertes.fr

Sorbonne Université
Sapienza Università di Roma

Écoles doctorales: ED130, Ecole Doctorale Informatique, Télécommunications et
Electronique, EDITE de Paris et PhD school in engineering in computer science at

Sapienza Università di Roma

Laboratoires : LIP6, Equipe NPA et Dipartimento di Ingegneria Informatica,
Automatica e Gestionale (DIAG) “Antonio Ruberti”

Tractable Reliable Communication in
Compromised Networks

Par Giovanni Farina

Thèse de doctorat de informatique, télécommunications et electronique et
engineering in computer science.

Dirigée par Prof. Silvia Bonomi et Prof. Sébastien Tixeuil

Présentée et soutenue publiquement le 21 décembre 2020
Devant un jury composé de :

M. Luca Becchetti
Mme. Maria Potop-Butucaru
M. Pierre Sens
M. Andrea Vitaletti
M. Xavier Défago
M. Roy Friedman
Mme. Silvia Bonomi
M. Sébastien Tixeuil

Professeur
Professeur
Professeur
Professeur
Professeur
Professeur
Professeur
Professeur

Examinateur
Examinateur
Examinateur
Examinateur
Rapporteur
Rapporteur
Co-directeur de thèse
Co-directeur de thèse

2

Abstract

Reliable communication is a fundamental primitive in distributed systems prone
to Byzantine (i.e. arbitrary, and possibly malicious) failures to guarantee integrity,
delivery, and authorship of messages exchanged between processes. Its practical
adoption strongly depends on the system assumptions. Several solutions have
been proposed so far in the literature implementing such a primitive, but some
lack in scalability and/or demands topological network conditions computationally
hard to be verified.

This thesis aims to investigate and address some of the open problems and chal-
lenges implementing such a communication primitive. Specifically, we analyze how
a reliable communication primitive can be implemented in 1) a static distributed
system where a subset of processes is compromised, 2) a dynamic distributed sys-
tem where part of the processes is Byzantine faulty, and 3) a static distributed
system where every process can be compromised and recover. We define several
more efficient protocols and we characterize alternative network conditions guar-
anteeing their correctness.

3

4

Contents

List of Symbols and Acronyms 9

1 Introduction 11

2 State-of-the-art 17

3 System Model 21

4 The Reliable Communication Problem 27

4.1 Reliable communication problem specification 27
4.2 Naming clarifications . 28
4.3 Performance evaluation metrics . 28

5 Definitions and Recalls on Graphs 29

5.1 Static graph definitions and recalls . 29
5.1.1 Graph topologies . 32

5.2 Time Varying Graph definitions and recalls 34

6 Related Works 39

6.1 Dolev protocol for unknown network, DolevU 39
6.1.1 DolevU correctness analysis 39
6.1.2 DolevU performance analysis 42

6.2 Dolev protocol for routed networks, DolevR 43
6.2.1 DolevR correctness analysis 44
6.2.2 DolevR performance analysis 44
6.2.3 DolevR optimality . 45

6.3 Certified Propagation Algorithm (CPA) 46
6.3.1 CPA correctness analysis . 47
6.3.2 CPA performance evaluation . 47

6.4 MTD protocol . 48
6.4.1 MTD correctness analysis . 49
6.4.2 MTD performance analysis . 50

5

6 CONTENTS

Part I Static Faults, Static Network 51

7 Reliable Communication in Static Networks: Motivations and Chal-
lenges 53

8 Modified Dolev Protocol (BFT) 55
8.1 System model . 55
8.2 Digging into the verification algorithm 55
8.3 Digging into the message format . 56
8.4 BFT protocol . 56
8.5 Partial quiescency . 60
8.6 Selection policies . 61
8.7 BFT performance analysis . 63
8.8 Limitations . 72
8.9 Conclusion . 73

9 CombineBFT 75
9.1 System model . 75
9.2 The topology reconstruction problem 75
9.3 Explorer [63] . 76
9.4 Explorer2 . 77
9.5 Explorer2 analysis . 80
9.6 Fault-free disjoint path solution . 81
9.7 CombinedRC, an optimal reliable communication protocol 85

9.7.1 CombinedRC correctness analysis 86
9.7.2 CombinedRC analysis . 86

9.8 Conclusion . 88

10 Cryptographic Reliable Communication Protocols 89
10.1AuthRC, an authenticated reliable communication protocol [60] 90

10.1.1System model . 90
10.1.2AuthRC . 90
10.1.3AuthRC correctness analysis 90
10.1.4AuthRC performance analysis 91

10.2CryptoRC, a cryptographic reliable communication protocol 91
10.2.1System model . 91
10.2.2CryptoRC . 91
10.2.3CryptoRC correctness analysis 92
10.2.4CryptoRC performance analysis 92

10.3Optimizing CryptoRC: CryptoCombinedRC 92
10.3.1System model . 93
10.3.2CryptoCombinedRC . 93
10.3.3CryptoCombinedRC correctness analysis 93
10.3.4CryptoCombinedRC performance analysis 94
10.3.5Comparison between CombinedRC, CryptoRC and

CombinedCryptoRC . 94
10.4Conclusion . 95

CONTENTS 7

Part II Static Faults, Dynamic Network 97

11 Reliable Communication in Dynamic Networks: Motivations and Chal-
lenges 99

12 Reliable Communication with Globally Bounded Byzantine Failures 103
12.1System model . 103
12.2Any-to-any reliable communication solvability 103

13 Reliable Communication with Locally Bounded Byzantine Failures,
DynCPA 107
13.1System model . 107
13.2DynCPA . 107
13.3DynCPA correctness analysis . 108
13.4DynCPA performance analysis . 110
13.5Recurrent dynamic networks . 111
13.61-interval dynamic networks . 113
13.7Conclusion . 114

Part III Dynamic Faults, Static Networks 115

14 Reliable Communication with Mobile Byzantine Faults 117
14.1System model . 117
14.2Reliable communication with MBF specification 117
14.3Reliable communication in asynchronous systems 118
14.4Reliable communication in synchronous systems 120

14.4.1RC-Sasaki-et-al. protocol [71] 120
14.4.2RCMB protocol . 121
14.4.3Reliable communication correctness conditions 123

14.5Conclusion . 129

15 Conclusion 133

8 CONTENTS

List of Symbols and Acronyms

Symbols

t instant;

n number of processes;

pi process with identifier i;

P set of all processes;

P protocol executed by processes;

G communication network (static case), dynamic network footprint (dynamic
case);

G communication network (dynamic);

V vertex set of a graph G;

E edge set of a graph G;

∆ bound on the processing delay;

δ bound on the transmission delay;

f bound (global or local) on the number faulty processes;

λ roaming pace of mobile agents;

Γ(vi) neighborhood of node vi ;

Πi,j disjoint path solution between nodes vi , vj;

Km complete graph of size m;

Cl cycle graph of size l;

Wm,l generalized wheel graph;

MCk,l multipartite cycle;

9

10 List of Symbols and Acronyms

Acronyms

UL Unicast Link;

BL Broadcast Link;

TVG Time Varying Graph;

KLO K-Level Ordering;

MKLO Minimum K-Level Ordering;

TMKLO Temporal Minimum K-Level Ordering;

Chapter 1

Introduction

Communication is “a process by which information is exchanged between individ-
uals through a common system of symbols, signs, or behaviors” [1]. Our lives are
ruled by information exchanges: our knowledge has been handed down and has
been growing for millennia, our daily decisions, habits, and actions depend on the
information we receive; we check the weather forecast, we make calls, we exchange
documents, we read the news, we watch television, we interact in social networks,
and so on. Information exchanges expand the knowledge available to individuals
with respect to the local observation, enabling them to solve increasingly complex
problems. Furthermore, communication may not only occur directly among enti-
ties, namely between a sender and a receiver through a medium, but it may also
take place indirectly via intermediates, namely entities as well that take care of
relaying information from one sender to a receiver. Non-direct communication fur-
ther increases the potential interactions between entities, both speeding-up their
information exchanges or allowing connections not possible otherwise. All the in-
teractions that may occur between a set of entities define a communication network.

Given the countless advantages obtainable from information exchanges, for
several decades we have been providing communication abilities (and computation
capabilities) to as many devices as possible. We are setting up every day new
networks of objects able to communicate, react, and cooperate: sensor networks,
smart grids, healthcare systems, vehicular networks, smart cities, etc. We are
additionally aiming to interconnect as many distinct networks as possible, again
targeting to solve more complex problems.

Although there are innumerable tasks realizable through communication, it all
depends on the “quality” of the information exchanged. There are at least three
assumptions indeed we take for granted (or at least we would like to) in most
communications: the integrity, the authenticity, and the delivery of the information
exchanged. When we are on the phone, we would like to be able to clearly speak
with who is on the other side and to be sure of his/her identity; when we receive
a document, we want to be certain that its content has been sent by its claimed
sender; when we listen to the news on tv, we would appreciate if they report exactly
what really happened. More precisely, for most of the information we receive, we
would like to be sure about its sender, and that it has not been alternated during

11

12 CHAPTER 1. INTRODUCTION

the exchange. Such properties, integrity, authenticity, and delivery are generally
desired both in communications between humans and equally, if not more so,
between devices, given that most of our interactions and businesses currently take
place through them. An information exchange guaranteeing all of these three
properties is commonly referred to as reliable communication.

An example of (generally) reliable communication is the face-to-face speaking
between people: while talking with a person, we have visual confirmation of the
identity of the speaker and we are certain that what is said is exactly what the
speaker wanted to communicate (at least with respect to the words he/she said).
When this form of communication is not available, we rely on other means trying
to obtain the same guarantees: in a phone call, we associate a personal number
to each person and we rely on the telephone network; in postal voting, citizens
receive a ballot and then they return it relying on the mail service; in social media,
we access the feed of an user and retrieve the information he/she shared, etc.

An example of unreliable communication can be found in social networks, such
as Facebook or Twitter, because the enforcement of the authenticity and integrity
of the information exchanged is partially (and implicitly) demanded to the users:
every participant may easily and directly access to the exact information spread by
every user navigating its profile (containing the set of all the information he/she
shared), but in the meanwhile, other users may spread rumors, namely information
associated to a specific peer but never diffused by it; every participant may rely only
on the information directly retrievable from the profile of an user or it may accept
the rumors coming from some thirds as valid.

One of the most famous computer science problems, the Byzantine Gener-
als [52], provides an example of the challenges and possible solutions providing
reliable communication between parties, depending on the set of assumptions con-
sidered. The problem is about a set of generals surrounding a city that have to agree
on whether or not to attack it, and to make a decision, they need to communicate.
As previously motivated, one of the most reliable communication between people
is the face-to-face speaking, but in this scenario generals may be unable to move
from their position and therefore they may need to rely on messengers (intermedi-
ates) to communicate with each other. Unfortunately, a messenger can be a traitor
and report orders different from the one given by the generals. A possible counter-
measure could be to write the orders on letters and to seal them with a personal
marker, owned by each general: every general will be able to verify the opinions of
the others. The only potential obstacle left could be that messengers may simply
destroy the letters, that could be addressed by making multiple letters to entrust
to several messengers (and hopefully they will not all betray the generals!).

The described issues may occur in several communication networks: partici-
pants may need to rely on intermediates to communicate, but the integrity, au-
thenticity, and delivery of the information exchanged could be lost when part of the
peers are not correct.

This thesis investigates the reliable communication problem in a network of
devices where some of its components could be compromised. More precisely, it
aims to examine and propose solutions enabling processes (i.e. units, devices) of a
distributed system (a set of independent units performing computation and coop-

13

erating between each other to pursue a common goal) to exchange messages (units
of information) guaranteeing their integrity, authenticity, and delivery despite the
presence of a subset of processes having an arbitrary behavior (Byzantine faults).

The correct functioning of a distributed system depends, most of the time, on
the correct message exchanges between processes. The difficulty of guaranteeing
reliable communication in a distributed system mostly depends on its features
and assumed hypotheses: it is relatively simple to provide in case all processes
can directly exchange messages between them, whereas it is more challenging
when some peers need to relay on intermediates to communicate, and way more
challenging if they could be incorrect and misbehave maliciously. Unfortunately,
this last scenario is the most common in networks of devices, in fact, messages
exchanged inside a system may travel over several nodes between a sender and a
receiver, and the greater the number of devices composing a system, the higher the
probability that some of them may experience failures or be compromised.

The literature provides several solutions to the reliable communication problem
in distributed systems, that can be mainly partitioned among the ones based on
digital signatures and others based on the information redundancy and how it is
propagated in the system. Both approaches have some weaknesses.
The former requires all processes to be able to digitally sign their messages (a digital
signature guarantees authenticity and integrity of a message) and to verify the
digital signatures of all other peers; this generally requires either a third party that
generates and distributes the cryptographic keys, supporting a digital signature
scheme, or that such keys are already known by all processes.
The latter is more general and based on the hypothesis of reliable and authenticated
communication channels between processes, namely that all the peers capable to
communicate without intermediates can exchange messages guaranteeing their
integrity, authorship, and delivery. Unluckily, those solutions may mandate a
huge amount of messages to be diffused and may require very high computational
power to the nodes. Furthermore, they generally require “more densely connected”
networks to be employed with respect to the firsts.

This thesis aims to design and examine protocols enabling all the participants
of a communication network to exchange information guaranteeing their integrity,
authorship, and delivery. Moreover, we target this problem in one of the most gen-
eral and challenging scenarios in which it is solvable: an unknown network with
part of the participants arbitrary faulty. The challenges in this setting are several.
The lack of knowledge of the network, specifically of its structure (topology), com-
mends the entities to act opportunistically, namely to blindly rely on information
to whatever peer they are able to communicate with, resulting in a high amount
of redundant information diffusing in the network. Arbitrarily faulty participants
(commonly referred with Byzantine) introduce additional difficulties. In fact, they
are free to spread whatever information inside the network or block its propagation.

Solutions enabling reliable communication between all processes of a dis-
tributed system allow to transparently employ most solutions defined for fully con-
nected systems, such as register abstraction and agreement protocol, on general
communication networks.

The work presented in this thesis starts from reviewing the non-cryptographic

14 CHAPTER 1. INTRODUCTION

(i.e. not based on digitally signed messages) solutions available in the literature. All
the solutions currently available have some drawbacks: some do not scale, others
require complete knowledge on the network topology, and the correctness of several
ones cannot be easily verified. Subsequently, the thesis develops in three parts:
the first considers a static distributed system, whose communication network does
not vary over time, where a subset of processes could be arbitrarily faulty; the
second still consider a fixed subset of compromised processes while assuming a
communication network evolving over time (therefore processes may be able to
communicate with different nodes over time); the third supposes a static commu-
nication network where failures are dynamic and all processes can potentially fail
over time. In detail:

� in Chapter 2 we provide a survey on the Byzantine tolerant reliable commu-
nication problem, and related other problems;

� in Chapter 3 we define all the system model assumptions we consider in this
thesis;

� in Chapter 4, we state the specification of the problem variants under inves-
tigation in this thesis;

� in Chapter 5, we recall some definitions and results in static and dynamic
graph theory;

� in Chapter 6, a more detailed analysis of the available reliable communication
solutions for the system models we consider is provided;

� in Chapter 7, we highlight the open problems and challenges available ad-
dressing the reliable communication problem in static distributed systems;

� in Chapter 8, we define and analyze a solution to the reliable communication
problem for static distributed systems that improves the state-of-art with
respect to the number of messages exchanged;

� in Chapter 9, we show that considering some additional assumptions with
respect to the minimum required, it is possible to design an optimal reliable
communication protocol in static distributed systems, with respect both to
the total number of messages exchanged, to the computational complexity in
verifying authenticity and integrity of messages, and to the time required by
two processes to communicate;

� in Chapter 10, we define and analyze the prototype of a cryptographic reli-
able communication protocol, that is suitable for a computationally bounded
adversary;

� in Chapter 11, we detail the open problems and challenges available address-
ing the reliable communication problem in dynamic distributed systems;

� in Chapters 12 and 13, we identify additional network conditions enabling
reliable communication in dynamic distributed systems;

15

� in Chapter 14, we examine the reliable communication problem in static
distributed systems affected by dynamic failures;

� in Chapter 15, we draw conclusions and perspectives.

The work presented in this thesis is based on the following publications:

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzan-
tine reliable broadcast made practical. In 8th Latin-American Symposium on
Dependable Computing, LADC 2018, pages 155–160. IEEE.

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Reliable broadcast
in dynamic networks with locally bounded byzantine failures. In Stabiliza-
tion, Safety, and Security of Distributed Systems - 20th International Sympo-
sium, SSS 2018, volume 11201 of Lecture Notes in Computer Science, pages
170–185. Springer.

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzantine
reliable broadcast with honest dealer made practical. J. Braz. Comput. Soc.,
25(1):9:1–9:23, 2019.

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Une méthode efficace
pour éviter la propagation des fake news. In ALGOTEL 2020–22èmes Rencon-
tres Francophones sur les Aspects Algorithmiques des Télécommunications.

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Broadcasting infor-
mation in multi-hop networks prone to mobile byzantine faults. In Networked
Systems - 8th International Conference, NETYS 2020, Lecture Notes in Com-
puter Science (to appear).

� Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Boosting the effi-
ciency of byzantine-tolerant reliable communication. In Stabilization, Safety,
and Security of Distributed Systems - 22nd International Symposium, SSS
2020, Lecture Notes in Computer Science (to appear).

16 CHAPTER 1. INTRODUCTION

Chapter 2

State-of-the-art

Byzantine fault tolerance was considered since the early studies in distributed sys-
tems, handling part of processes with arbitrary behavior. The Byzantine/arbitrary
fault is the hardest kind of failure to address but also the most general one, able to
capture most of the misbehaviors happening in a system. Several distributed sys-
tem problems were defined and investigated considering Byzantine participants,
such us Byzantine Reliable Broadcast [22], Byzantine Agreement, Register Abstrac-
tions, etc.. Nonetheless, most of the Byzantine faults tolerant solutions proposed
so far in the literature assumed a reliable communication primitive, namely that all
processes in the system are able to exchange messages between them guaranteeing
their integrity, authorship, and delivery.

The reliable communication problem investigation was implicitly initiated in
complete networks, thus in distributed systems where all processes can directly
exchange messages between each other, through the definition of links, i.e. com-
munication primitive enabling message exchanges between pairs of processes sat-
isfying certain properties [24].

The reliable communication problem was then studied assuming a general com-
munication network (i.e., not fully connected). Several sets of assumptions were
considered: about the kind of failures (omissions, crash, arbitrary, etc.), about
their distribution (deterministic or probabilistic), whether they concern links [66],
processes, or both. Considering only arbitrary process failures (i.e. Byzantine
faulty processes), the seminal contribution in general networks was provided by
Dolev [30, 31], who identified the necessary and sufficient conditions to solve the
reliable communication problem in a general communication network consisting
of reliable and authenticated links, assuming an upper bound on the number of
faulty processes present in the system. Dolev proposed two protocols working
with different assumptions on the knowledge of the network topology by partic-
ipating processes. More precisely, the lack of topology knowledge impacts both
the message complexity (i.e., the number of messages exchanged in the system
during a reliable communication instance) and the delivery complexity (i.e., the
computational complexity of the procedure used to validate a message) of the pro-
tocol. Subsequently, more constrained process failure distributions were studied.
Koo [50] analyzed the reliable communication problem assuming that only a frac-

17

18 CHAPTER 2. STATE-OF-THE-ART

tion of nodes can be compromised in the neighborhood of every process in a radio
network. Pelc and Peleg [67] later generalized his results, characterizing a failure
model where an upper bound on the number of faulty processes in the neighbor-
hood over every node is assumed, and defining a simple and efficient solution,
CPA (Certified Propagation Algorithm), solving the reliable communication prob-
lem in the defined failure model. Despite the proposed model and solution were
relatively simple, the correctness conditions enabling reliable communication were
not immediately identified. Pelc and Peleg initially identified both necessary and
a sufficient conditions characterizing networks where the reliable communication
problem is solvable. Several works followed [43], providing alternative sufficient
network conditions till the identification of the necessary and sufficient ones in di-
rected [75] and undirected [54] networks. After that, Pagourtzis et al. [65] further
generalized the model of Pelc and Peleg, assuming non-homogeneous local bounds
on the number of faulty processes in the neighborhood of every node (namely sup-
posing every process able to estimate an upper bound on the number of potentially
faulty peers it is connected to), they showed how the knowledge on the network
topology increases, in that specific failure model, the number of tolerable faulty
processes, and how such a failure model can be specialized assuming specific
sets of processes potentially faulty (general adversary model). A recent CPA re-
lated contribution [74] analyzes its employment considering a hybrid failure model
(where both processes and links could be faulty), random geometric networks, and
defining a weaker reliable communication primitive with lower latency. Finally,
the possibility of differentiating the processes of the system in compromisable and
uncompromisable sets was investigated [76]. This distinction provides several ad-
ditional benefits: a higher number of tolerable faults and lower latency.
Most of the solutions to the reliable communication problem rely on redundancy
mechanisms and thus require highly connected networks to be employed. For
this reason, several works investigated weaker Byzantine tolerant reliable commu-
nication primitives in loosely connected networks, either accepting that a small
minority of correct nodes may deliver invalid messages or allowing that a small
minority of correct peers may not deliver genuine messages [56,58,59].

Dynamic distributed systems models and analysis were raised in the last two
decades thanks to the introduction of computational and communication abilities
to more and more devices (e.g. IoT networks). The static distributed system mod-
els mainly consider changes as failures, namely processes not participating in the
computation, or link unavailability have been assumed to be unexpected events
one must tolerate. In dynamic distributed systems the evolution of the communi-
cation network is the main focus. For these reasons, there has been a great effort in
defining new protocols solving many fundamental problems in dynamic distributed
systems.
Most of the dynamic distributed system models proposed so far can be catego-
rized either as open or closed. The former considers new processes continuously
entering and leaving the system (i.e. churn), whereas the latter assumes a fixed
set of processes whose links may change over time. The research in closed dy-
namic distributed systems mainly focused on solutions to fundamental problems
in completely correct systems, such as simple broadcast, leader election, token

19

dissemination, spanning trees, etc. [25]. Open dynamic distributed system contri-
butions gave higher attention to fault-tolerant solutions, targeting several agree-
ment problems. Related to the Byzantine tolerant reliable communication problem
in dynamic networks, Maurer et al. [60] identified the necessary and sufficient
conditions to solve the problem considering a subset of arbitrary faulty processes.

Another change that occurred in the last decade was the diversification of the
kind of failures occurring in distributed systems. The assumptions of faulty par-
ticipants, unreliable links, etc. properly model internal malfunction indeed. Nev-
ertheless, more and more frequently distributed systems are subject also to ex-
ternal attackers, whose aim is to penetrate and compromise them, starting from
some weaker machines and then moving in the system till reaching their targets.
In complete communication networks, non-static Byzantine faulty processes were
considered by Reischuk [68] who proposed an algorithm solving the Byzantine
agreement in the case of f malicious agents that remain stationary on f processes
only for a given period of time. Later, Ostrovsky and Yung [64] introduced the no-
tion of an adversary that can inject and distribute faults in the system at a constant
rate, and they proposed solutions (mixing randomization and self-stabilization) for
tolerating the attacks of mobile viruses. Then, Garay [39] considered processes
proceeding in synchronous rounds composed of three phases (send, receive, and
computation), and Byzantine mobile agents able to move between one process
to another during the lifetime of the system. Several subsequent works later
specialized his model, making additional hypotheses about the unawareness of
processes of being faulty [71], assuming correct processes sending non-equivocal
messages [10], channels delays [70], decoupling the system evolution from the
agents movements [19], etc.. All aforementioned works for the mobile attacker
model addressed either the Byzantine agreement, the approximate Byzantine agree-
ment [21], or the register abstraction [18] problems in complete networks. The only
work that considered the reliable communication problem (while solving the mobile
Byzantine agreement) in the mobile Byzantine failure model was given by Sasaki
et al. [71].

The Byzantine tolerant reliable communication can also be achieved employing
cryptography (e.g., digital signatures) [27, 35] that enable all nodes to exchange
messages guaranteeing authentication and integrity. The main advantage of cryp-
tographic protocols is that they allow solving the problem with simpler solutions
and weaker conditions (in terms of connectivity requirements). However, on the
negative side, the correctness of the protocols is bounded to the crypto-system.
Let us note that a common assumption considered by Byzantine tolerant reliable
communication protocols is to use authenticated point-to-point channels, which
prevents a process from impersonating several others (Sybil attack) [34]. The real
difference between cryptographic (authenticated) and non-cryptographic (unau-
thenticated) protocols for reliable communication is how cryptographic primitives
are employed: non-cryptographic protocols may use digital signatures just within
neighbors for authentication purposes, whereas cryptographic protocols make use
of cryptographic primitives to enable the message verification even between non-
directly connected nodes. Let us finally remark that implementing an authenti-
cated channel not necessarily require the use of cryptography [78].

20 CHAPTER 2. STATE-OF-THE-ART

The Byzantine reliable broadcast [22] and Byzantine consensus [52] problems
are related to the reliable communication problem with increasing complexity. In
the reliable communication problem, if a process delivers a message m, then m
was sent by its sender process, and if m was sent by a correct process, then it can
be delivered by any correct process. Nonetheless, if a message m is sent by a faulty
process, then its delivery is not guaranteed by any correct process. Precisely, a re-
liable communication primitive does not prevent faulty processes from equivocate,
namely from sending conflicting messages to different neighbors. A solution to the
Byzantine reliable broadcast problem [22] addresses this issue, guaranteeing that
all correct processes eventually deliver the same set of messages. The Byzantine
reliable broadcast problem can be solved in a distributed system if both a reliable
communication primitive is available and at most one-third of the processes is
Byzantine faulty. Finally, in Byzantine consensus problem specifications, all cor-
rect processes initially send a messagemi , and they all output the same messagem
among the various mi . To solve this problem, a reliable communication primitive,
at most one-third of Byzantine faulty processes, and a synchronous systems are
required.

Chapter 3

System Model

We provide in this chapter details on all the system model assumptions that are
considered in this thesis. Since slightly different hypotheses are made among the
contributions, this chapter aims to give a complete overview of all the alternative
assumptions that we consider. Every contribution specific system model will be
characterized inside their related chapter.

Time

We measure the passage of time by a fictional global clock that spans the set of
positive natural numbers N0. We refer with t to a specific instant, namely t ∈ N0.

Processes

A process is an independent unit performing computation in a distributed system
[24]. We consider a system composed of a fixed set of n processes. Each process is
associated with a unique integer identifier i distinguishing it from the others. We
use pi to refer the process whose identifier is i and P := {p1, p2, . . . pn} denotes the
set of all processes. Each correct process executes a distributed protocol P, stored
in a read-only tamper-proof memory.

Links

Processes can communicate by exchanging messages with a subset of their peers
through links, representing the network components of a distributed system [24].
We either consider Unicast Links (UL), interconnecting pairs of processes pi , pj,
or Broadcast Links (BL) [7, 8, 48], attaching single processes pi to several others
{pa , pb, pc . . . }. Notice that local broadcast links prevent processes from equivocat-
ing, namely transmitting conflicting messages over different links. All links are
assumed bidirectional, meaning that given any two processes connected with a
link, any of them can send messages to the other.

21

22 CHAPTER 3. SYSTEM MODEL

Processes and links actions

The are three main actions that can be triggered by processes, send(pj, m),
receive(pi , m) and deliver(pi , m), and one associated to links, deliver. The send ac-
tion is triggered by a process pi (referred with sender) to transmit a message m
through a link toward process pj. A link delivers a message m if it accomplishes
its transmission from a process pi to another pj. The receive action is triggered by
a process pj (referred with receiver) when a message m is delivered by a link to pj
from process pi . A processes that successfully validates a message m with respect
to a certain specification delivers (or accepts) such a message.

Communication network

The set of processes P and all of their adjacent links constitute the communication
network. A communication network can be either static or dynamic, namely the
links in the system can either be always available (perpetually allowing their as-
sociated processes to exchange messages) or be accessible only at some instants
t1, t2.

We abstract a static communication network using an undirected graph G :=
(V, E), where the set of nodes V corresponds to the set of processes P, and the set
of edges E contains an element {pi , pj} for each link connecting processes pi and pj.

We model a dynamic communication network through a Time Varying Graph
(TVG) [25,26], that is a tuple G := (V, E,T , ρ, ζ) such that:

� V is the set of nodes, corresponding to the of processes of the system (V = P);

� E ⊆ V × V is the set of edges, coinciding with the links of the system;

� T is the lifetime of the network, i.e. a time domain T;

� ρ : E × T → {0,1}, called presence function, indicates if a given edge is
available at a given time;

� ζ : E × T → T, called latency function, indicates the time it takes to cross
a given edge at a given start time (in our case, the time a message takes to
cross the link).

For simplicity and consistency, we consider dynamic communication networks
evolving in discrete time, identifiable with natural integer numbers, namely T = N0.
We assume processes instantaneously detecting the presence of a link in case of a
dynamic communication network, meaning that if the edge between two nodes is
present at t in, then any of the related processes can start the transmission of a
message (i.e. each such process can execute the send action at t).

Given the bond we set between the communication network and its models
G or G, between processes and nodes of a graph, and between links and edges
of a graph, we interchangeably refer respectively with graph and communication
network, with processes and nodes, and with links and edges.

We refer with static or dynamic distributed systems based on the type of com-
munication network assumed.

23

Messages

Every message exchanged in the system is associated with its author, using the
identifier of the process that generated it. Precisely, all messages exchanged have
format m := 〈authorID, content〉.

Timing assumptions

We either assume a synchronous or an asynchronous distributed system [24].
A synchronous distributed system guarantees:

� synchronous computation, namely that there is a known upper bound ∆ on
the processing delay (the time it takes a process to execute a computation
step), known by all processes;

� synchronous communication, namely that there is a known upper bound δ
on the message transmission delay (the period between the instant when a
message is sent by a process and the moment when it is delivered by the
employed link, also known as link latency), known by all processes.

An asynchronous distributed system provides none of the aforementioned proper-
ties, therefore both process local computations and message exchanges may take
an unpredictable amount of time.

We consider several specialized models for synchronous and asynchronous sys-
tems:

� Static_Async: an asynchronous system with a static communication network.

� Static_Sync: a synchronous system with a static communication network
evolving in synchronous rounds; every round is divided into three phases:
(i) send where processes send messages through their links for the current
round, (ii) receive where processes receive all messages sent at the beginning
of the current round, and (iii) computation where processes execute local
computation and generate messages to be sent during the subsequent round.
Every round lasts exactly one time instant.

� Dynamic_Async: an asynchronous system with a dynamic communication
network.

� Dynamic_FullSync: a synchronous system with a dynamic communication
network. The link latency is always assumed equal to one time instant,
namely ∀e ∈ E,∀t ∈ T , ζ (e, t) = 1. The processing delay is negligible and
assumed equal to 0. The computation evolves in synchronous rounds; every
round is divided into three phases: (i) send where processes send messages
through their links for the current round, (ii) receive where processes receive
all messages sent at the beginning of the current round, and (iii) computation
where processes execute local computation and generate the messages to
be sent during the subsequent round. Every round lasts exactly one time
instant and the dynamic communication network evolves only during the
computation phase, whereas it is stable during the send and receive phases.

24 CHAPTER 3. SYSTEM MODEL

� Dynamic_CompSync: a dynamic distributed system guaranteeing syn-
chronous computation, specifically it is assumed negligible and equal to 0.

All links in the defined synchronous models are assumed having unbounded ca-
pacity, meaning that their transmission delay is supposed independent from the
number of messages that are concurrently transmitted and it only depends on the
time t their transmission began. In other words, if the transmission latency of
a link is bounded by δ at t, then whatever the number of messages they are all
delivered by the specific link in a period lasting at most δ.

Adversary and failure models

We assume an omniscient adversary able to control several processes in the system.
Precisely, it can turn them into Byzantine faulty. A Byzantine faulty process may
have a arbitrary behavior, ruled by the adversary. It means that a faulty process
may not properly participate in the accomplishment of the goal of the system, not
sending messages and/or diffusing invalid or conflicting ones. Notice that the
Byzantine fault model is the most general process failure: it includes all others
such as crashes, omissions, or eavesdropping [24].

We consider three alternative failures distributions:

� Global (globally bounded): up to f processes in the system may permanently
(i.e. at every instant t) be Byzantine faulty;

� Local (locally bounded): every process in the system may have at most f links
toward permanently (i.e. at every instant t) Byzantine faulty processes.

� Mobile (mobile globally bounded): at every instant t, there are up to f pro-
cesses in the system that are Byzantine faulty, and the set of faulty processes
may change over time.

The mobile globally bounded failure distribution results from Mobile Byzantine
Faults (MBF) [10, 23, 39, 71]. Specifically, the MBF results from f mobile agents
present in the system and controlled by the adversary. They are initially placed
on f distinct processes and able to move on other peers during the lifetime of the
system. Whenever an agent is on a process pi , it forces pi to behave as Byzantine
faulty. An agent can move from a process pi to a peer pj only if there exists a link
interconnecting them. The movement of an agent is characterized by the roaming
pace λ, which is the minimum period between two displacements of an agent.
Every process reverts back to correct and executes the protocol P right after an
agent moved away. We refer with cured process to a correct peer at time t that was
Byzantine faulty at t − 1. We consider cured processes either aware or unaware of
having been faulty in the precedent instant.

A subset of processes F ⊂ V satisfying a failure distribution is referred as a
corruption set. Every subset F ⊂ V, |F | ≤ f is a valid corruption set for the globally
bounded and mobile globally bounded failure model. Every subset F ⊂ V satisfying
the locally bounded constraint is referred as a f -local set [67].

Every process that is not (currently or permanently) faulty is correct and it
executes the distributed protocol P.

25

Link assumptions

We consider perfect reliable and authenticated links [24], providing the following
features:

� reliable delivery: if a correct process pi sends a message m to a correct process
pj, then pj eventually receives m;

� no duplication: no message is received by a correct process more than once;

� authenticity: if some correct process pj receives a message m from sender pi
and process pj is correct, then m was previously sent by pi to pj.

Process knowledge

We assume processes know the value of the upper bound f for the global, local, or
mobile failure model but are unaware of the identity of the faulty processes.

We suppose processes do not know the topology of the communication network,
namely they do not have knowledge of G or G.

We consider the alternative scenarios where processes are aware (Know Neigh-
borhood assumption, KN) or unaware (Unknown Neighborhood assumption, UN)
about the set of peers they have a link with. In the latter case, the send link
primitive allows a process to send messages to all of its neighbors.

In case of a mobile failure distribution, we alternatively consider processes
aware [71] or unaware [39] of a mobile agent having affected them. Specifically, in
the former case, a process knows when a mobile agent is moving away from it, in
the latter it cannot detect the previous presence of an agent.

System models nomenclature

For sake of conciseness, we employ and combine the labels we defined charac-
terizing the timing and failure models assumptions to briefly declare the essential
parts of the system model we consider. For example, the label Static_Async_Global
refers to a static distributed system where the globally bounded failure model is
assumed.

26 CHAPTER 3. SYSTEM MODEL

Chapter 4

The Reliable Communication
Problem

The reliable communication problem is the topic under investigation in this thesis.
We define in this chapter its specification. We additionally provide the definition of
some of the metrics commonly employed in the performance evaluation of reliable
communication protocols.

4.1 Reliable communication problem specification

Let us consider processes in a distributed system exchanging contents. Let us refer
as source a process ps that sends a content, and as target pt the peer such a content
is addressed to. A solution to the reliable communication problem guarantees:

� safety: if pt is a correct process and it delivers a content c from ps, then ps
previously sent c;

� liveness: if ps is a correct process and it sends a content c to a correct process
pt , then pt eventually delivers c from ps.

The reliable communication problem specification can be specialized through the
following versions:

� one-to-one: a defined process ps aims to reliably communicate with a specific
target process pt ;

� one-to-all: a defined process ps aims to reliably communicate with every other
process;

� any-to-any: any process aims to reliably communicate with any other pro-
cess.

A solution to the reliable communication problem enables content exchanges
between correct processes that are not connected by a link, guaranteeing their
authorship, integrity, and delivery. A content that has not been sent by its author
is referred to with spurious content, and any message that cannot be sent in an

27

28 CHAPTER 4. THE RELIABLE COMMUNICATION PROBLEM

execution involving only correct processes is indicated as spurious message. A
solution to the reliable communication problem prevents every correct process
from delivering any spurious content.

We say that a solution solves the reliable communication problem at time t if it
succeeds assuming the source sends its content at time t.

4.2 Naming clarifications

The specifications of distributed system problems based on message exchanges
commonly refer as “message” to the information exchanged between processes (i.e.
the payload of their communication). Nevertheless, several distributed system
protocols (including the ones presented in this thesis) rely on mechanisms that
leverage redundancy, and specifically they diffuse many copies of the same message
to pursue their goals.

For this reason, for ease of exposition and aiming to avoid potential ambigu-
ity, we refer with content to the information exchanged between processes (i.e.
the payload), whereas we refer with message to the union of the content and the
protocol-specific overhead.

4.3 Performance evaluation metrics

We employ the following metrics to evaluate and compare the protocols presented
in this thesis.

Definition 1 [message complexity]. The message complexity of a distributed pro-
tocol is the number of messages that are exchanged in the system to accomplish a
certain task.

Definition 2 [delivery complexity]. The delivery complexity of a reliable communi-
cation protocol is the computational complexity of the procedure locally executed
by a process to validate a content.

Definition 3 [communication latency]. The communication latency is the amount
of time required to accomplish reliable communication, namely the length of the
period between the moment when the source sends a content, and the instant
when such a content is delivered by the target process.

Notice that, given the absence of timing guarantees in asynchronous systems,
the communication latency can only be evaluated in synchronous ones.

Chapter 5

Definitions and Recalls on Graphs

We recall in this chapter some fundamental definitions and known results in graph
theory and time varying graph theory that will be employed and leveraged in the
subsequent chapters 1.

5.1 Static graph definitions and recalls

A graph is a pair G := (V, E) of sets V, E such that E ⊆ V ×V ; the elements of V are
referred with vertices (or nodes) of the graph, whereas the elements of E are called
edges [28]. The graph thus defined is said undirected. The value n := |V | is known
as order of the graph. A vertex vi is incident with the edge {vi , vj} if it is contained
therein.

Definition 4 [neighbors, neighborhood]. Two nodes vi , vj ∈ V are said neighbors
(or adjacent) if the edge {vi , vj} exists in E. Given a node vi ∈ V , the set of nodes
Γ(vi) =: {vj ∈ V | {vi , vj} ∈ E} is referred as the neighborhood of vi .

A graph G is complete if there exists an edge between any two vertices vi , vj ∈ V ,
namely G = (V, V × V).

Definition 5 [path]. A path π is a sequence of nodes with no repetition,
(v1, v2, . . . , vm), vi ∈ V , such that for each pair of consecutive elements vi , vi+1,
the edge {vi , vi+1} exists in E (a path can alternatively be defined as a sequence of
edges joining a sequence of distinct vertices).

The first and last elements of a path are referred as endpoints, the others as internal
nodes. The length of a path π is the value |π| − 1.
Notice that, in an undirected graph, if there exists a path π in G, then also its
reverse ←−π , obtained ordering the sequence π from the last of its elements to the
first, is a valid path in G.
The distance d(G, vi , vj) between two vertices vi and vj is the length of a shortest
path connecting them. The diameter d(G) is the greatest distance between any pair
of vertices of the graph.

1Basic set theory notations and concepts are assumed as known, the reader can refer to any set
theory book for details [45]

29

30 CHAPTER 5. DEFINITIONS AND RECALLS ON GRAPHS

Definition 6 [connected nodes and graph]. A pair of nodes vi , vj ∈ V is connected if
there exists a path in G with endpoints vi , vj , it is disconnected otherwise. A graph
is connected if there exists a path between any pair of vertices, it is disconnected
otherwise.

A subgraph G′ of a graph G = (V, E) is a graph whose vertex set and edge set
are subsets of those of G, namely G′ = (S ⊂ V, {{vi , vj} ∈ E | vi , vj ∈ S}). Given a
subset of nodes S ⊂ V , let us define with GŜ the sub-graph of G resulting from the
removal of all nodes vi ∈ F from G, namely GŜ := (V \ S, {{vi , vj} ∈ E | vi , vj < S}).

A k-clique is a complete subgraph of a graph G of k nodes. Two k-cliques are
considered adjacent if they share k − 1 nodes.

Definition 7 [vertex cut]. A subset of nodes S ⊂ V is a vertex cut for a pair of
vertices vi , vj ∈ V − S if the removal of S from G disconnects vi from vj in the
resulting graph (namely vi and vj are disconnected in GŜ).

Definition 8 [local node connectivity]. The local node connectivity κi,j between two
nodes vi , vj ∈ V is the minimum number of nodes that has to be removed from G
to disconnect vi from vj.

Definition 9 [node connectivity]. The node connectivity of a graph is the minimum
value k for the local node connectivity κi,j.

A graph having node connectivity greater than or equals to k is referred with
k-connected graph.

Definition 10 [node disjoint paths]. Many paths between two nodes are node
disjoint if they share no vertex except for their endpoints.

Definition 11 [disjoint path solution]. A disjoint paths solution Πi,j between two
nodes vi , vj is a collection of node disjoint paths between vi and vj.

Theorem 1 [Menger’s theorem [61]]. The local node connectivity between two
nodes is equal to the maximum number of disjoint paths that exist between them.

Remark 1. It is possible to compute a disjoint paths solution Πi,j between two
nodes vi , vj ∈ V of maximum size (namely κi,j) with a deterministic algorithm with
computational complexity polynomial in the size of the graph [29,36].

Given two nodes vi , vj ∈ V , the metric Dl(vi , vj) denotes the maximum number of
disjoint paths joining vi and vj whose length does not exceed l. Analogously, the
value of Cl(vi , vj) indicates the minimum number of vertices in G (except vi and vj)
whose removal destroys all paths joining vi and vj that do not exceed l in length.

Remark 2. The relation between the metrics Dl(vi , vj) and Cl(vi , vj) is the following:
Cl(vi , vj) ≥ Dl(vi , vj) (see Figure 5.1). The equality between the two metrics occurs
when no constrains are considered for the path length, namely l = |V | − 1 (Menger
Theorem [61]) [2,55]. Furthermore, it is a NP-Complete problem to compute both
Dl(vi , vj) and Cl(vi , vj) with l < |V | − 1 2 [3,41,44].

5.1. STATIC GRAPH DEFINITIONS AND RECALLS 31

e

d

g

b ca

u v

f

Figure 5.1: A graph where Dl(vi , vj) , Cl(vi , vj): D5(u, v) = 1 and C5(u, v) = 2. In
detail, at least two nodes must be removed from the graph to disconnect nodes u
and v while considering only paths of length at most 5, whereas no two disjoint
paths exist assuming the same constraint.

Definition 12 [wide diameter [77]]. Given a k-connected graph G, the wide-
diameter dk(G) is the maximum number l for which there exist k disjoint paths in
G of length at most l for any two distinct vertices vi and vj in G.

The computation of the wide diameter dk(G) of a graph in a NP-complete problem
[42].

Remark 3. Let G be a k-connected graph with k ≥ 2. Then 2 ≤ dk(G) ≤ |V | − k.
Furthermore, both the upper and the lower bounds are best possible [77].

Definition 13 [Minimum K Level Ordering (MKLO) [54]]. The minimum k-level
ordering Lk(G, vs) of a graph G = (V, E) from a given node vs ∈ V is the partitioning
of V into subsets Li , called levels, such that:

vi ∈ L0 if vi = vs

vi ∈ L1 if vi ∈ Γ(vs)

vi ∈ Lz>1 if vi ∈ V \ (
z−1⋃
j=0
Lj) and |Γ(vi) ∩ (

z−1⋃
j=0
Lj)| ≥ k

Definition 14 [Distance-based K Level Ordering (DKLO)]. The distance-bases k-
level ordering Dk(G, vs) of a graph G = (V, E) from a given node vs ∈ V is the
partitioning of V into subsets Li , called levels, such that:vi ∈ L0 if vi = vs

vi ∈ Lj if d(G, vs, vi) = j and |Γ(vi) ∩ Lj−i | ≥ k

Intuitively, a MKLO is the arrangement of the nodes of a graph into disjoint levels,
with respect to a selected vertex, such that every node has at least k neighbors
in the previous levels and belongs to the minimum level for which this property is
satisfied for this node. A DKLO is a MKLO with the additional property that every
node (except the one adjacent to the selected node) has at least k neighbors in the
level that precedes it. A graphical example is provided in Figure 5.2a.

2Dl(vi , vj) is polynomially computable, with respect to the size of the graph, for l ≤ 3 [44].

32 CHAPTER 5. DEFINITIONS AND RECALLS ON GRAPHS

Vs

(a) L5(G, vs)

Vs

(b) D5(G, vs)

Figure 5.2: Example of a MKLO and DKLO with respect to a node vs with k = 5.

Definition 15 [parameter ji(G) [54]]. For a given graph G = (V, E) and node vi ∈ V

ji(G) := max {k ∈ N | ∃ Lk(G, vi)}

Definition 16 [parameter j(G)]. Given a graph G = (V, E)

j(G) := min
vi ∈ V

ji(G)

Definition 17 [f -local set [67]]. A subset of nodes F ⊂ V is a f -local set if
∀vi ∈ V, Γ(vi) ∩ F ≤ f .

Definition 18 [parameter hi(G) [54]]. Given a graph G = (V, E), node vi ∈ V

hi(G) := max {f ∈ N | ∀ f-local set F, hi(GF̂) > f + 1}

Definition 19 [parameter h(G)]. Given a graph G = (V, E)

h(G) := min
vi ∈ V

hi(G)

Definition 20 [parameter x(G) [67]]. For every pair of nodes vi , vj ∈ V , the param-
eter x(i, j) denotes the number of nodes vy ∈ Γ(i) that are closer to j than i; the
parameter x(G) is defined as the minimum x(i, j) between any pair of not incident
nodes, namely

x(G) := min{x(i, j)| vi , vj ∈ V, {vi , vj} < E}

.

5.1.1 Graph topologies

A cycle graph Cl is a graph of l nodes connected in a closed chain.

Definition 21 [generalized wheel [77]]. A generalized wheel , denoted by Wm,l , is a
graph of order m + l obtained from the disjoint union of a complete graph Km and
a cycle graph Cl (l ≥ 3) by adding edges joining each of vertices of Km to all nodes
of Cl (See Figure 5.3).

5.1. STATIC GRAPH DEFINITIONS AND RECALLS 33

(a) W1,8 (b) W3,8

Figure 5.3: Generalized wheel topologies.

Definition 22 [multipartite cycle]. A multipartite cycle, denoted by MCk,l is a con-
nected graph composed by l sets of k non adjacent nodes, such that each set is
part of exactly two complete bypartite subgraphs of 2k nodes (See Figure 5.4).

(a) MC2,4 (b) MC3,8

Figure 5.4: Multipartite cycle topologies.

Definition 23 [random regular graph [9, 49, 73]]. A graph G is d-regular if the
size of the neighborhood of every node is exactly d, namely ∀vi ∈ V, |Γ(vi)| = d. Let
R(n, d) be the set of all d-regular graphs on a set V of n vertices, a random regular
graph is obtained by sampling with respect to the uniform distribution from R(n, d)
(see Figure 5.5a).

Definition 24 [Barabási-Albert graph [5,6]]. A Barabási-Albert graph is a random
one generated using the Barabási–Albert preferential attachment model. Its gen-
eration is ruled by two parameters, n and m: the former is the order of the graph,
the latter corresponds to the initial number of incident edges a node has when
connected to the rest of the graph (see Figure 5.5b).

34 CHAPTER 5. DEFINITIONS AND RECALLS ON GRAPHS

(a) 3-regular random graph of 20 nodes. (b) Barabási-Albert graph with n = 20, m = 3.

Figure 5.5: Random regular and Barabási-Albert topologies.

Definition 25 [k-clique community graph]. A k-clique community is a graph com-
posed by the union of k-cliques that can be reached from each other through a
series of adjacent k-cliques (see Figure 5.6).

Figure 5.6: 5-clique community graph.

K-pasted-tree and k-diamond [4] are logarithmic harary graphs [46], i.e.
k-connected topologies, having logarithmic diameter and ensuring link minimality
3. A graphical representation of their structure is provided in Figure 5.7, whereas
their definition is given in [4].

Definition 26 [G(α, �) graphs [71]]. G(α, �) is the set of graphs where all pairs of
nodes are connected by α disjoint paths of length at most �.

5.2 Time Varying Graph definitions and recalls

The Time Varying Graph (TVG) [25,26] is a formalism to model dynamic networks.
It is defined by the tuple G := (V, E,T , ρ, ζ) such that:

� V is the set of entities (nodes);

� E ⊆ V × V is the set of relations (edges);
3the removal of any link will reduce the node connectivity of the graph.

5.2. TIME VARYING GRAPH DEFINITIONS AND RECALLS 35

(a) 3-pasted tree graph example. (b) 3-diamond graph example.

Figure 5.7: Examples of k-pasted three and k-diamond graphs.

� T is the lifetime of the network, being a subset of N (discrete) or R+ (contin-
uous), and more generally some time domain T;

� ρ : E × T → {0,1}, called presence function, indicates if a given edge is
available at a given time;

� ζ : E × T → T, called latency function, indicates the time it takes to cross
a given edge at a given start time (the latency of an edge could itself vary in
time).

A subgraph of a time varying graph can be defined in several ways. One is
obtained restricting the lifetime of the TVG to a given subinterval [ta , tb] ⊆ T , spe-
cializing the TVG functions to this new domain without otherwise changing their
behavior. Thus, G[ta ,tb] is the temporal subgraph of G that restricts the lifetime of
the graph to the period [ta , tb].
Another subgraph definition extends the one for a static graph to TVG, considering
a subset S ⊂ V of the nodes. Precisely, subgraph G′ of a TVG G = (V, E,T , ρ, ζ) is
a TVG whose vertex set and edge set are subsets of those of G, namely G′ = (S ⊂
V, {{vi , vj} ∈ E | vi , vj ∈ S},T , ρ, ζ) where the domains of the ρ and ζ functions are
specialized considering the new vertex and edge set. Accordingly, given a subset of
nodes S ⊂ V , let us define with GŜ the TVG subgraph of G resulting from the re-
moval of all nodes vi ∈ S fromG, namelyGŜ := (V − S, {{vi , vj} ∈ E | vi , vj < S},T , ρ, ζ)
where the domains of the ρ and ζ functions are specialized considering the new
vertex and edge set.

Given a time varying graph G = (V, E,T , ρ, ζ), the graph G := (V, E) is identified
with underline graph, whereas the graph Gt := (V, {e ∈ E | ρ(e, t) = 1}) is referred
with the snapshot of G at time t.

The journeys are the analogue of paths in TVG.

Definition 27 [journey [25, 26]]. Given a TVG G := (V, E,T , ρ, ζ), a journey
is a sequence of ordered pairs J := ((e1, t1), (e2, t2), . . . , (em , tm)), such that

36 CHAPTER 5. DEFINITIONS AND RECALLS ON GRAPHS

(e1, e2, . . . , em) is a path 4, ρ(ei , ti) = 1, and ti + 1 > ti 5. A journey from a node vi
to another vj is commonly referred with vi vj.

Notice that, differently from a path, a journey is not reversible, namely arranging
it from the last of its elements to the first the resulting sequence is not a journey,
due to the requirement of increasing times.

The disjoint journeys and the dynamic cut are respectively the TVG extensions
of the disjoint paths and vertex cut notions in graphs.

Definition 28 [disjoint journeys]. Given a TVG G := (V, E,T , ρ, ζ) and two nodes
vi , vj ∈ V , a collection of journeys from vi to vj are disjoint if they share no node
except for their first and last elements.

Definition 29 [dynamic cut]. Given a TVG G := (V, E,T , ρ, ζ) and two nodes vi , vj ∈
V , a set of nodes S ⊂ V − {vi , vj} is a dynamic cut from vi to vj if after their removal
from G no journey exists from vi to vj in the resulting TVG subgraph.

Accordingly, the parameters maximum disjoint paths and minimum vertex cut can
also be extended to TVG.

Definition 30 [maximum disjoint journeys]. Given a TVG G := (V, E,T , ρ, ζ) and
two nodes vi , vj ∈ V , the maximum disjoint journeys from vi to vj is the maximum
number of journeys that exist from vi to vj sharing no node except for their first
and last elements.

Definition 31 [dynamic minimum cut]. Given a TVG G := (V, E,T , ρ, ζ) and two
nodes vi , vj ∈ V , the dynamic minimum cut from vi to vj is the minimum number of
nodes that must be removed from G so that no journey exists from vi to vj in the
resulting TVG subgraph.

Notice that, since the journeys are not reversible, the dynamic minimum cut and
the maximum disjoint journeys from a node vi to another vj are not necessar-
ily equivalent to their respective values from vj to vi . Furthermore, the equality
between maximum disjoint paths and minimum vertex cut proved in the Menger
theorem does not extend to dynamic networks.

Remark 4. Given a TVG G := (V, E,T , ρ, ζ) and two nodes vi , vj ∈ V , the dynamic
minimum cut from vi to vj is greater then or equal to dynamic maximum disjoint
journeys between the same vertices (see Figure 5.8).

Remark 5. Given a TVG and two of is nodes vi , vj ∈ V , it is NP-Hard to decide
whether the dynamic minimum cut from vi to vj is at most equal to a certain value
x [47] 6.

4The definition in [25,26] assumes a walk as base for a journey instead of a path (i.e a sequence
of vertices with repetitions). Walks are not useful to our purposes, so we specialize journey definition
to extend a path in a graph.

5Specifically, this is the definition of strict journey that implicitly assumes non-zero edge latency.

5.2. TIME VARYING GRAPH DEFINITIONS AND RECALLS 37

u b v

a c

1

2

2 5 6

4 3

Figure 5.8: An example of a dynamic network where the dynamic minimum cut is
higher than the maximum disjoint journeys between two nodes. Let us consider
the TVG here depicted, where the edges are present only at the times written above
them and that the latency function is always equal to 1 for every edge at every time.
It can be noticed that, considering all possible journeys from node u to v, at least 2
nodes must be removed from the topology to guarantee that no journey exists from
u to v. On the other hand, there do not exist two journeys from u to v sharing no
node except for their endpoints.

Remark 6. Given a TVG and two of is nodes vi , vj ∈ V , it is NP-complete to decide
whether there exist two disjoint journey from vi to vj [47] 6.

The evolving graph [37] is an alternative model for dynamic networks, charac-
terized by a sequence of graphs. Precisely, in discrete time domains an evolving
graph is a sequence G := (G1, G2, . . . Gm) where each graph Gt (snapshot) is com-
posed by all the edges that are present at time t, whereas the graph G is obtained
merging all the snapshots into a single graph called underline graph. It follow that
every TVG defined in a discrete time domain T can be expressed as an evolving
graph where ∀t ∈ T, Gt = (V, {e ∈ E | ρ(e, t) = 1}) (additionally keeping the latency
function).

In the same way types of graph have been defined in graph theory (trees, planar
graphs, grids, complete graphs, etc.), several classes of dynamic graphs have been
characterized in the literature. Specifically, a class of dynamic graphs groups all
the ones that satisfy a specific set of properties.

Definition 32 [Class TC (Temporal Connectivity) [26]]. ∀vi , vj ∈ V ; vi vj (the
class of TVG where every node can reach all the others through a journey).

Definition 33 [Class TCR (Recurrent temporal connectivity) [26]]. ∀t ∈ T , G[t;∗) ∈

TC (the class of TVG where, for every time t ∈ T , the temporal subgraph G[t;∗)
satisfies temporal connectivity).

Definition 34 [Class C∗ (always-connected snapshots or 1-interval connectivity
[26])]. ∀Gt ∈ G, Gt is a connected graph (the class of TVG where every snapshot is
a connected graph).

6The result of the remark consider a TVG where every edge appears only once. It can be extended
to our setting.

38 CHAPTER 5. DEFINITIONS AND RECALLS ON GRAPHS

Definition 35 [Class ER (Recurrent Edges) [26]]. ∀e ∈ E,∀t ∈ T ,∃t′ > t, ρ(e, t′) = 1
(the class of TVG where every edge is present infinitely often).

Definition 36 [Class ER (Bounded edge recurrence) [26]]. ∃δmax ∈ N,∀e ∈ E,∀t ∈
T ,∃t′ ∈ [t, t+δmax], ρ(e, t′) = 1 (the class of TVG where every edge re-appears within
bounded time).

Chapter 6

Related Works

We present and detail in this section the main solutions available in the literature
solving the reliable communication problem in the system models we consider in
this thesis.

6.1 Dolev protocol for unknown network, DolevU

Dolev [30] provided the seminal contribution to the Byzantine tolerant reliable com-
munication problem, identifying the necessary and sufficient condition to solve the
problem in a static distributed system assuming the globally bounded Byzantine
failure model, and providing two solutions.

Dolev defined a flooding algorithm whose aim is to spread the content of a
source while collecting the identifier of traversed processes. More in detail, the
protocol diffuses every content inside messages with a list data structure gathering
the identifier of the traversed peers, and such messages are relayed to any node not
yet included in the list. A process delivers every content it succeeds in identifying
f + 1 node disjoint paths among the ones it traversed. We report the complete
pseudo-code in Algorithm 1, and we refer to this solution with DolevU in the sequel.

For ease of explanation, a graphical execution of the DolevU protocol is pro-
vided in Figures 6.1 and 6.2.

6.1.1 DolevU correctness analysis

Dolev identified the necessary and sufficient conditions to solve the any-to-any
reliable communication problem in an asynchronous static distributed system as-
suming a globally bounded Byzantine failure model.

Remark 7. The any-to-any reliable communication problem can be solved in
Static_Async_Global if and only if the node connectivity of the graph G modeling
the communication network is (strictly) greater than twice the maximum number
of assumed faults, namely k > 2f [30,31].

Remark 8. The DolevU protocol solves the any-to-any reliable communication
problem in the minimal setting characterized in Remark 7 [30].

39

40 CHAPTER 6. RELATED WORKS

6

7

1

4

2

3

5

8

()

6

7

1

4

2

3

5

8

(1)

6

7

1

4

2

3

5

8

(1)

6

7

1

4

2

3

5

8

(1, 2)

(1, 3)

(1, 2)

(1, 4)

(1, 3)

(1, 4)

6

7

1

4

2

3

5

8

(1, 2)

(1, 3)

(1, 2)

(1, 4)(1, 3)

(1, 4)

6

7

1

4

2

3

5

8

(1, 2, 5) (1, 3, 5)

(1, 2, 6)

(1, 3, 7)(1, 4, 7)

(1, 4, 6)

Figure 6.1: Example of content propagation with DolevU (only part of the gener-
ated messages are shown).

6.1. DOLEV PROTOCOL FOR UNKNOWN NETWORK, DOLEVU 41

Algorithm 1 DolevU

1: upon DolevU_send(c) do
2: for j ∈ Γ(i) do
3: send(〈i, ∗, c, ∅〉, j)

4: upon receive(〈s, ∗, c, path〉, j) do
5: path ← path ∪ {j}
6: Paths〈s,c〉 ← Paths〈s,c〉 ∪ {path}
7: for j ∈ Γ(i) do
8: if j < path then
9: send(〈s, c, path〉, j)

10: upon max_disjoint_paths(Paths〈s,c〉) > f do
11: DolevU_deliver(〈s, c〉)

6

7

1

4

2

3

5

8

(1, 2, 5) (1, 3, 5)

(1, 2, 6)

(1, 3, 7)(1, 4, 7)

(1, 4, 6)

Figure 6.2: Example of content delivery with DolevU.

42 CHAPTER 6. RELATED WORKS

The DolevU protocol directly solves a more complex problem, the Byzantine
reliable broadcast [24] one, when local broadcast link are assumed. Briefly, it is
guaranteed that all processes eventually deliver the same set of contents.

Theorem 2. Let DolevU solve the reliable communication problem in
Static_Async_Global assuming local broadcast links. Then, a content m is deliv-
ered by every correct process if it is delivered by any correct one, namely DolevU
solves the Byzantine reliable broadcast problem.

Proof. When the reliable communication necessary correctness condition is met
(Remark 7), the DolevU protocol guarantees that if the source ps of a content c
is correct, then any correct target eventually delivers c (Remark 8). This is not
guaranteed in case of a faulty source: it may diverge from the protocol and it
may prevent some targets from delivering its contents. The local broadcast links
provide an additional guarantee: every message a process sends is received by all
its neighbors. A correct source ps multicasts message 〈s, c, ∅〉 to all of its neighbors
in DolevU. It follows that if a correct process delivered 〈s, c〉, then message 〈s, c, ∅〉
has been sent to all neighbors of ps, given the local broadcast links, and the claim
follows.

6.1.2 DolevU performance analysis

Message complexity. A source process executing DolevU floods its content over
the system, starting from diffusing it to all of its neighbors. Every process that
receives a content appends the identifier of its sender (neighbor) and then relays
the message to all of its neighbors whose label has not been included yet. Such a
procedure generates one message for each path in the graph between the source
with every other node. Considering that the number of such paths may grow
factorially in the size of the network and that the number of paths between two
nodes in a complete graph Kn is equal to

∑n−2
k=0

(n−2)!
k! [69], it follows that a factorial

number of messages can be generate solving reliable communication with DolevU
in the worst-case scenario.

Remark 9. The DolevU protocol achieves reliable communication with a factorial
message complexity in the size of the system, either considering a synchronous or
an asynchronous distributed system.

Delivery complexity. A process executing DolevU needs to analyze the paths
traversed by a content. Specifically, it has to verify if the content passed through
at least f + 1 disjoint paths in the network to be delivered, satisfying the safety
property. No details are provided in [30] about how to count the number of dis-
joint paths traversed by a content. The topology of the communication system is
unknown to the peers and Byzantine faulty nodes are potentially present in the
network diffusing spurious messages, potentially containing non-existing paths of
G. Consequently, processes cannot leverage algorithms defined on graphs, hav-
ing polynomial computational complexity (Remark 1) to identify disjoint paths over
a set of many ones, because spurious messages may contain non-existing paths

6.2. DOLEV PROTOCOL FOR ROUTED NETWORKS, DOLEVR 43

invalidating the calculus. To the best of our knowledge, the only methodology avail-
able to calculate the maximum number of disjoint paths in this setting is to convert
such paths (discarding their first endpoint) into sets and to solve the corresponding
set problem: set packing. The set packing problem considers an universe set of
elements U, a set of subsets S := {S1, S2, . . . Sn}, Si ⊂ U and a positive integer
k, and the aim is to check whether S contains at least k mutually disjoint sets
(i.e. a collection of k sets with no common element). The set packing problem is
NP-Complete [40]. Therefore, a process verifying a content with DolevU needs to
convert the paths traversed by contents into sets and to compute their set packing;
if a process succeeds in solving the set packing problem for k ≥ f + 1, then the
associated content can be safely delivered. It follows that an NP-Complete problem
has to be solved by addressing reliable communication with DolevU. To the best of
our knowledge, no alternative Byzantine tolerant methodology exists verifying the
maximum number of disjoint paths traversed by a process in an unknown network.

Remark 10. The DolevU protocol achieves reliable communication with a NP-
Complete delivery complexity, either considering a synchronous or an asyn-
chronous distributed system.

Communication latency. Assuming a Static_Sync_Global system, the commu-
nication latency of DolevU is influenced by the topology of the network (more
specifically, by its wide diameter) and by the placement of the faulty processes.
The available bounds on the wide diameter (Remark 3) provide an upper bound to
the communication latency of the protocol.

While spreading a content, DolevU generates a message for every possible path
available in the network, and it produces them incrementally and synchronously
with respect to their length. Specifically, if a source process triggers reliable com-
munication with DolevU at t, it sends the content to all of its neighbors at t + 1,
generating all paths of length one between itself all of its adjacent nodes. All mes-
sages are received at time t + 1 and then relayed to all the nodes adjacent to the
neighbors of the source at time t+2. It follows that a content requires an amount of
time bounded by the wide diameter of the network to traverse f + 1 disjoint paths.
Therefore, the communication latency is over bounded by the size of the network
n in the worst-case scenario.

Remark 11. The communication latency of DolevU is O(n) in Static_Sync_Global
systems.

6.2 Dolev protocol for routed networks, DolevR

Dolev [30,31] defined an alternative and more efficient solution to the reliable
communication problem, in Static_Async_Global systems, considering the addi-
tional assumption of a routed communication network, i.e. a distributed system
where messages are relayed only through fixed and known routes (i.e. fixed paths):
for every pair of processes pi , pj, there is a defined set of paths {π1, π2, . . . πm} to-
ward which all messages exchanged between pi and pj are relayed. More in detail,

44 CHAPTER 6. RELATED WORKS

Dolev assumed every process knowing a disjoint path solution Πi,j of size 2f + 1 (all
processes share the same solutions Πi,j) between every pair of processes pi , pj.

Informally, whenever a process pi aims to reliably communicate with a peer pj
with the protocol defined by Dolev, it routes the content over Πi,j. Every process
that receives a message over a specific path checks whether the inner content has
been relayed over one of the routes in Πi,j between its source pi and target pj:
in the positive case it forwards the message to the subsequent hop in the route,
otherwise it discards the message. Every process pj delivers every content from pi
that is received over f + 1 paths in Πi,j. The complete pseudo-code of the protocol
is reported in Algorithm 2. We refer to this solution with DolevR in the following.

Algorithm 2 DolevR

1: upon DolevR_send(t, c) do
2: for π ∈ Πi,t do
3: send(〈i, t, c, π〉, π[1])

4: upon receive(〈s, t, c, π〉, j) do
5: if ∃π ∈ Πs,t , ∃m ∈ N0, π[m − 1] = j, π[m] = i then
6: if |π| = m then
7: Paths〈s,c〉 ← Paths〈s,c〉 ∪ π
8: else
9: send(〈s, t, c, π〉, π[m + 1])

10: upon |Paths〈s,c〉| > f do
11: DolevU_deliver(〈s, c〉)

6.2.1 DolevR correctness analysis

The DolevR protocol assumes a routed network instead of an unknown one as
DolevU. Nevertheless, no stronger connectivity requirement needs to be assumed
to guarantee the correctness of DolevR as a solution to the reliable communication
problem.

Remark 12. The DolevR protocol solves the any-to-any reliable communication
problem in a routed communication network in the setting characterized in Remark
7 [30].

6.2.2 DolevR performance analysis

Message complexity. A source process pi executing the DolevR protocol sends
its content to a target process pj inside messages that are forwarded over 2f + 1
disjoint routes Πi,j. A content relayed over a set of disjoint routes between two
peers may traverse every process of the system at most once. Precisely, the source
sends one message to 2f + 1 neighbors and all other processes in Πi,j but pi and pj

6.2. DOLEV PROTOCOL FOR ROUTED NETWORKS, DOLEVR 45

transmit one message. Considered the upped bound on the wide diameter (Remark
3), the message complexity of DolevR is linear in the number of processes.

Remark 13. The DolevR protocol achieves one-to-one reliable communication with
a message complexity O(n), either considering a synchronous or an asynchronous
distributed system.

Delivery complexity. Executing DolevR, processes relay only the contents that
are exchanged over the fixed routes Πs,t between the source ps and target pt of a
reliable communication instance. The target process pt has to wait for messages
carrying the content from f + 1 distinct routes among the one in Πs,t , i.e. pt
stands by for f + 1 copies of the content arriving from distinct neighbors which
precede the process in Πs,t . It follows that a target process executes a procedure
having constant computational complexity as many times as the maximum number
assumed faults f with DolevR.

Remark 14. The DolevR protocol achieves reliable communication with a delivery
complexity O(f), either considering a synchronous or an asynchronous distributed
system.

Communication latency. Assuming a Static_Sync_Global system, the communi-
cation latency of the DolevR protocol is influenced by the length of the longest path
π ∈ Πs,t defined between a source ps and a target pt . Given the upper bound on the
wide-diameter (Remark 3), It follows that the communication latency of DolevR is
linear in the number of processes in the worst-case scenario.

Remark 15. The communication latency of DolevR is O(n) in Static_Sync_Global
systems.

6.2.3 DolevR optimality

We prove that the DolevR protocol is asymptotically optimal solving the reli-
able communication problem, in static distributed systems with globally bounded
Byzantine failures, for all evaluation metrics we considered, namely that no other
algorithm can solve the reliable communication problem under the same system
assumptions with an asymptotically lower message complexity, delivery complex-
ity, or communication latency.

Theorem 3. The DolevR protocol solves the reliable communication problem in
static distributed systems, organized in a routed communication network, and as-
suming the globally bounded Byzantine failure model, with asymptotically optimal
message complexity, delivery complexity, and communication latency.

Proof. The DolevR protocol achieves one-to-one reliable communication in a
routed static communication network with message complexity O(n), delivery com-
plexity O(f) and communication latency O(n) (Remarks 13,14,15). We show that
no algorithm is asymptotically more efficient solving the problem for the evaluation
metrics we considered.

46 CHAPTER 6. RELATED WORKS

pj

pi

Figure 6.3: Supporting example for Theorem 3: generalized wheel W (3,8), pi and
pj are respectively source and target of a reliable communication instance, the
sun-shaped nodes are the ones in K3.

Let us consider two processes pi and pj, not connected by a link, respectively
as the source and target of a reliable communication instance.

The target process relies on the messages it receives from its neighbors to
deliver a content. Nevertheless, up to f of its neighbors could be Byzantine faulty
and process pj cannot identify them. Thus, a O(f) procedure is required.

Given that pi and pj are not linked, a content must be relayed over fault-
free paths (i.e. not including any faulty process) to achieve liveness of reliable
communication. In the worst-case scenario, the length of the longest fault-free
path is n − k. A graphical example is provided in Figure 6.3.

6.3 Certified Propagation Algorithm (CPA)

The Certified Propagation Algorithm (CPA) [50,67] is a solution to the reliable com-
munication problem in Static_Async systems where the locally bounded Byzantine
failure model is assumed.
It is a simple but efficient protocol defined by the following three rules:

� the source process delivers its content and sends it to all of its neighbors;

� a process delivers every content received directly (through a link) from its
source and relays it to all of its neighbors;

� a process delivers every content received from f + 1 distinct neighbors and
relays it to all of its neighbors.

6.3. CERTIFIED PROPAGATION ALGORITHM (CPA) 47

6.3.1 CPA correctness analysis

Several graph metrics [43,54,65,67,75] have been defined in the literature charac-
terizing the correctness of CPA as a solution to the reliable communication problem
in Static_Async_Local systems.
We recall the ones based on the minimum k-level ordering metric.

Remark 16. The one-to-all reliable communication problem can be solved in
Static_Async_Local, considering process pi as source, if and only if hi(G) > f [54].

Remark 17. The one-to-all reliable communication problem can be solved in
Static_Async_Local, considering process pi as source, if ji > 2f [54].

More in detail, the parameter hi provides a 2-approximation on the maximum num-
ber of f local failures a Static_Async_Local system can tolerate assuming process
pi as the source. It has to be noticed that the computation of the two parameters
hi(G) and ji(G) has a different complexity: ji can be calculated with an algorithm
having computational complexity polynomial in the size of the graph, whereas the
computation of hi has been proven to be equivalent to an NP-Hard problem [43].
The conditions recalled in Remarks 16,17 can be generalized to character-
ize the network requirements enabling any-to-any reliable communication in
Static_Async_Local.

Corollary 1. The any-to-any reliable communication problem can be solved in
Static_Async_Local if and only if h(G) > f .

Proof. The any-to-any specification requires every process to succeed in reliable
communication toward every peer. The claim follows from Remark 16 and from the
definition of h(G).

Corollary 2. The any-to-any reliable communication problem can be solved in
Static_Async_Local if j(G) > 2f .

Proof. The any-to-any specification requires every process to succeed in reliable
communication toward every peer. The claim follows from Remark 17 and from the
definition of j(G).

It has to be noted that both the parameters hi and h are NP-Hard to compute
[43,65].

6.3.2 CPA performance evaluation

Message complexity. Every process relays every content it delivers to all of its
neighbors only once. It follows that the message complexity of CPA is O(E).

Delivery complexity. Every process waits for f + 1 copies of the same content
from distinct neighbors to deliver it. It follows that the delivery complexity of CPA
is O(f).

Communication Latency. Assuming a Static_Sync_Local system, the communi-
cation latency of CPA is influenced by the topology of the network (more specifically,

48 CHAPTER 6. RELATED WORKS

by the parameters j(G) and h(G)) and by the actual placement of the faulty pro-
cesses.

Theorem 4. Given any source process pi and any target process pj in a
Static_Sync_Local system, let x be the level order index of Lx in a MKLO Lk(G, pi)
where pj is included (i.e. pj ∈ Lx), let tf +1 be the value of x in Lf +1(G, pi), let t2f +1 be
the value of x inL2f +1(G, pi), and let t∗f +1 be the minimum value of x inLf +1(GF̂ , pi)
for every possible f -local set F . The communication latency CL of CPA solving the
any-to-any reliable communication problem is bounded as follows:

d(G) ≤ tf +1 ≤ CL ≤ t∗f +1 ≤ t2f +1

Proof. A MKLO from a source process pi models the spreading of a content sent by pi
with CPA assuming specific sets of processes C and F (C ⊂ P, F ⊂ P, C∪F = P, C∩F =

∅) respectively as correct and faulty. In detail, Lf +1(G, pi) exactly characterizes
the content spreading from pi in a Static_Sync system assuming C = P. Indeed,
pi computes the content at t, and it is sent to, received by and delivered by all
neighbors of pi at time t + 1 according to CPA and the system assumptions; all
neighbors of pi are placed in L1 of Lf +1(G, pi). Subsequently, all processes in L1
send the content to all of their neighbors at t + 2, and all the one that received it
from at least f + 1 nodes in L1 delivers it according to CPA. Again, these nodes are
exactly the one in L2 of Lf +1(G, pi), and the reasoning extends to all other processes
in the system, thus proving the lower bound tf +1 ≤ CL.

The MKLO L2f +1(G, pi) assumes every processes having at least 2f + 1 edges
toward nodes in the previous level. A corruption set F containing exactly f nodes
of every level Li,i>0 in L2f +1(G, pi) is not guaranteed to be f -local, thus proving the
upper bound CL ≤ t∗f +1 ≤ t2f +1.

6.4 MTD protocol

Maurer et al. [60] analyzed the reliable communication problem in
Dynamic_CompSync_Global, namely in dynamic distributed systems assuming the
globally bounded failure model. Their work is a complete extension to the seminal
contribution of Dolev [30] that identifies the necessary and sufficient condition en-
abling one-to-one reliable communication and it provides a solution adapting and
improving DolevU protocol.

The reliable communication protocol proposed by Maurer et al. inherits the
diffusion mechanism defined in DolevU, namely the contents are flooded over
the system while collecting the label of the traversed processes: every process
forwards every received message containing a content to all of its neighbors not
yet included. Differently from DolevU: i) it employs a set data structure to collect
the label of the processes that are traversed by a content, ii) it adopts a verification
algorithm that verifies the size of the minimum vertex cut of the set of processes a
content traversed (instead of the maximum number of disjoint paths), iii) and every
process relays every received message to all of it neighbors not yet included in the
data structure every time that its neighborhood changes. We report the complete

6.4. MTD PROTOCOL 49

pseudo-code of the protocol in Algorithm 3 and we refer to this solution with MTD
in the following.

Algorithm 3 MTD

1: upon MTD_send(c) do
2: M ← M ∪ {〈i, ∗, c, ∅〉}

3: upon receive(〈s, ∗, c, visited〉, j) do
4: visited ← visited ∪ {j}
5: Visited〈s,c〉 ← Visited〈s,c〉 ∪ {visited}
6: M ← M ∪ {〈s, ∗, c, visited〉}

7: upon minimum_cut(Visited〈s,c〉) > f do
8: MTD_deliver(〈s, c〉)

9: upon local topology Γ(i) changes do
10: for 〈s, ∗, c, visited〉 ∈ M do
11: for j ∈ Γ(i) do
12: if j < visited then
13: send(〈s, ∗, c, visited〉, j)

Notice that MTD can directly be employed also in Static_Async_Global, in fact, a
static network can be seen simply as a dynamic network that does not change. It
guarantees reliable communication in all Static_Async_Global systems where the
conditions stated in Remark 7 are satisfied.

6.4.1 MTD correctness analysis

Maurer et al. [60] identified the necessary and sufficient conditions to solve the
one-to-one reliable communication problem in Dynamic_CompSync_Global.

Remark 18. The one-to-one reliable communication problem can be solved from a
process pi to a process pj at t in Dynamic_CompSync_Global if and only if dynamic
minimum cut in G[t,∞) from pi to pj is (strictly) greater than 2f [60].

Differently from the conditions identified for Static_Async_Global and
Static_Async_Local (Remark 7 and Corollaries 1,2), the one defined by Mau-
rer et al. [60] satisfies the solvability condition of a single one-to-one reliable
communication instance. It follows that, while the other conditions defined
for static networks guarantee the solvability of infinite instances of the reliable
communication problem, in this setting the correctness conditions need to be
verified for every content sent at time t. Furthermore, the verification of the
condition defined in Remark 18 is an NP-Hard problem to solve: given an evolving
graph where each edge of it footprint appears exactly one, Kempe et al. [47] proved
that it is NP-Hard to compute the dynamic minimum cut between any two nodes.
The result extends to general TVGs.

50 CHAPTER 6. RELATED WORKS

6.4.2 MTD performance analysis

Message complexity. MTD employs the same mechanism of DolevU to diffuse
contents, thus inheriting its inefficiency in message complexity. Although MTD
improves with respect to DolevU, generating one message for all journeys crossing
the same group of processes in the best-case scenario, the number of messages that
can be generated in a reliable communication instance may still grow factorially
with respect to the size of the system.

Remark 19. The message complexity of MTD is factorial in the size of the system.

Delivery complexity. MTD verified the minimum vertex cut of the collection of sets
of processes a content has traversed over the system. The only Byzantine fault-
tolerant methodology currently available verifying such a metric is the reduction
to a hitting set problem instance. More in detail, the hitting set problem takes as
input a collection C of subsets of a set S and a positive integer x, x ≤ |S|, and it
verifies whether a subset S′ ⊆ S, |S′| ≤ x, such that S′ contains at least one element
for each subset in C, exits. The hitting set is an NP-Complete problem [40].

Remark 20. MTD achieves reliable communication with a NP-Complete delivery
complexity.

Communication latency. The communication latency of MTD strongly depends on
the evolution of the dynamic graph. Assuming process ps and pt are respectively
the source and target of a reliable communication instance that starts at t′, let
Gt′,t′′ be the temporal subgraph of G where t′′ is the minimum t ∈ T such that
there exist a set of journeys from ps to pt whose dynamic minimum cut is greater
than 2f . The communication latency is upper bounded by the value t′′ − t′.

Part I

Static Faults, Static Network

51

Chapter 7

Reliable Communication in Static
Networks: Motivations and
Challenges

We detail in this chapter some of the challenges and open problems left in the liter-
ature addressing the reliable communication problem in static distributed systems
with static Byzantine faults.

DolevR, DolevU, and MTD are the solutions available in the literature to the
problem in static distributed systems assuming a globally bounded failure model.
They are all optimal in terms of the number of tolerated faults, indeed they all solve
the reliable communication model under the weakest possible system assumptions
(Remark 7). Nevertheless, both DolevU and MTD do not scale, due to their high
message complexity and delivery complexity (Remarks 9, 10, 19, 20), and there-
fore they may not be practically employed on real distributed systems. On the
other hand, DolevR shows that additionally assuming processes (partially) know-
ing the topology of the communication network is possible to obtain an optimal
solution in terms of message complexity, delivery complexity, and communication
latency. This opens to several questions: is it possible to efficiently achieve reliable
communication in case the topology (the routes) of the communication network is
unknown to the processes? It is possible to define a solution with lower message
complexity and/or delivery complexity with respect to DolevU and MTD?

Open problems

Considered the analysis provided in Chapter 6 on protocols solving the reliable
communication problem in static distributed systems, it is possible to deduce that
there exists a solution, CPA, efficiently solving the reliable communication prob-
lem, in the locally bounded Byzantine failure model, on distributed systems with
unknown network topology.

On the other hand, there is DolevR which is asymptotically optimal solving the
problem in the globally bounded failure model, for all the performance metrics we

53

54 CHAPTER 7. CHALLENGES IN STATIC NETWORKS

evaluate, but it assumes a partial knowledge on the communication network given
to the processes (the defined routes), and DolevU and MTD that work in unknown
networks instead but they are quite unrealistic to employ, given the high message
and delivery complexities.

Despite the two failure distributions differ, one can include the other: a globally
bounded distribution of f failures in a network is also a locally bounded distribu-
tion: f faulty processes arbitrarily spread in the system cannot aggregate being
more than f in the neighborhood of any node. What prevents one from directly use
CPA as reliable communication protocol in unknown networks are its topological
correctness conditions. We saw that CPA requires the existence of certain MKLOs
to ensure reliable communication, and to verify whether the problem can be solved
with CPA assuming a certain amount of failures f may be equivalent to solve an
NP-Complete problem (Section 6.3.1). The network conditions required by DolevU
to solve the reliable communication problem are generally weaker with respect the
one of CPA (j(G) > 2f implies node connectivity greater than 2f), and they are
testable with a polynomial algorithm (Remark 1). A graphics comparison between
the two topological conditions is provided in Figure 7.1.

Figure 7.1: Comparative example among the correctness conditions of DolevU
and CPA. Assuming a single Byzantine faulty process present in the system, the
network on the left supports reliable communication with DolevU but CPA does
not; the network on the right allows reliable communication with both DolevU and
CPA.

Contributions

In Chapter 8, we analyze and optimize the DolevU protocol, aiming to improve its
message complexity and delivery complexity.
In Chapter 9, we combine a reliable communication protocol with a topology recon-
struction procedure, aiming to define an optimal reliable communication primitive
in unknown networks.
In Chapter 10, we define a prototype of a cryptographic reliable communication
protocol.

Chapter 8

Modified Dolev Protocol (BFT)

In this chapter, we define and analyze a modified version of the DolevU protocol,
seeking for a practically employable solution to the reliable communication prob-
lem, in the globally bounded failure model, without introducing further assump-
tions with respect to the necessary one identified by Dolev (Remark 7). Specifically,
we take as base the DolevU protocol as it is and we further dig inside several of
its aspects, aiming to design a more efficient solution.

The results presented in this chapter were published in [12,15,17].

8.1 System model

We consider either a Static_Async_Global or Static_Sync_Global system, where the
node connectivity k of the communication network G is assumed greater than twice
the maximum number f of faulty processes (in order to enable reliable communi-
cation, Remark 7 in the globally bounded failure model), i.e. k > 2f .

8.2 Digging into the verification algorithm

We saw in Section 6.1.2 that no fault-tolerant solution besides solving the NP-
Complete set packing problem is available at the moment verifying a content with
DolevU. MTD employs an alternative verification procedure that computes the min-
imum cut of the paths (precisely, sets of processes) traversed by a content. As
shown in Section 6.4.2, on the delivery complexity point of view, the two verifica-
tion procedures are asymptotically equivalent: they both require a reduction to a
NP-Complete problem to be solved. On the other hand, we recalled in Remark 2
that, given a pair of nodes in a graph and assuming an upper bound to the length
of the paths, the local node connectivity may be greater than or equal to the maxi-
mum number of disjoint paths available between the vertices. It is possible to take
advantage of this graph property designing a more efficient protocol with respect to
the message complexity and communication latency. For these reasons, we adopt
as verification algorithm the one of MTD.

55

56 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

pa

pc

pd

pb

a, c, d
a, b, d
a, b, c, d
a, c, b, d

Figure 8.1: Example of a Static_Sync_Global system where the propagation algo-
rithm of MTD allows to save messages with respect to DolevU. Assuming a source
process pa sending a content at t, process pd receives the first two paths in Figure
at time t + 2 and the others at t + 3. Process pd relays to its neighbors only one
among the former two with MTD, all paths are forwarded with DolevU otherwise.

8.3 Digging into the message format

DolevU and MTD slightly differ in the message format: the latter employs a set data
structure, whereas a list one is used in the former to collect the identifier of the
processes traversed by a content. However, the information on the order in which
the processes are traversed is neglected while verifying a content in both protocols:
both verification algorithms take as input a collection of sets validating a content.
Moreover, the discarding of the traversing order information enables further saving
in message complexity: several paths on the same processes are captured with a
single set data structure in the best-case scenario. A clarifying example is provided
in Figure 8.1.

For the reasons we listed, we adopt a set data structure to collect the identifier
of processes traversed by a content.

8.4 BFT protocol

We propose modifications to the DolevU (MTD) protocol aiming to reduce its mes-
sage complexity achieving reliable communication.

Modification 1. If a process pt receives a content c directly from its source ps (i.e.,
the source and the sender of a received content coincide), specifically if pt receives
a message 〈s, c, ∅〉 from ps, then pt delivers 〈s, c〉 [60,67].

Modification 2. If a process pt delivers a content c from ps, then pt discards all the
visited sets it received associated to 〈s, c〉 and it relays 〈s, c〉 to all of its neighbors
with an empty visited, namely it multicasts 〈s, c, ∅〉 [63].

8.4. BFT PROTOCOL 57

Modification 3. A process pi relays messages associated to 〈s, c〉 only to the neigh-
bors that have not yet delivered 〈s, c〉.

Modification 4. A process pi stops relaying further messages associated to 〈s, c〉
after it has delivered 〈s, c〉 and relayed 〈s, c, ∅〉.

We define the BFT protocol having

� the message format of MTD;

� the propagation algorithm of DolevU;

� the verification algorithm of MTD;

� the Modifications 1-4 employed.

For ease of exposition, let us refer with α-BFT to the BFT protocol where Mod-
ifications 1-4 are not adopted.

We detail the effects the Modifications 1-4 have on α-BFT and we prove the
correctness of BFT in Staticd_Async_Global, namely that it solves the reliable com-
munication under the weakest assumption identified by Dolev.

The α-BFT protocol correctly solves the reliable communication problem in
Static_Async_Global.

Corollary 3. The α-BFT protocol solves the reliable communication problem in
Static_Async_Global.

Proof. The α-BFT protocol generates one visited for every possible path traversable
from the source toward every other process. Given the assumption on the node
connectivity, every correct process will eventually receive a collection of visited
related to a content such that their minimum cut is at least 2f + 1 − f .

Starting from the claim in Corollary 3, we plug the defined Modifications into
α-BFT, proving they preserve the correctness of the protocol in the assumed system
model.

Modification 1 adds another delivery policy to the protocol: the neighbors of
a source can directly deliver its contents at their reception over the dedicated
links. This modification results in a speed-up solving the reliable communication
problem: the neighbors of a source directly deliver its content without waiting for
messages carrying further visited collections. A clarifying example is provided in
Figure 8.2.

Lemma 1. The α-BFT protocol solves the reliable communication problem in
Static_Async_Global while adopting Modification 1.

Proof. The Modification 1 only affects the verification algorithm of α-BFT, intro-
ducing an additional delivery policy. It follows that only the safety property of
reliable communication has to be verified for the investigated protocol.

The Static_Async_Global system model considers reliable and authenticated
channels. If a process pt received message 〈s, c, ∅〉 from ps it had been sent by ps,
given the properties guaranteed by the links, and the claim follows.

58 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

6

7

1

4

2

3

5

8

Figure 8.2: Speed-up introduced in α-BFT by Modification 1: assuming node 1
as source and f = 1, process p3 can deliver a content from p1 when it receives
the content over the directed link with pi , without waiting for further copies over
(1,2,5) and (1,4,7).

Modifications 2 and 3 aim to reduce the message complexity of α-BFT: while all
possible visited sets in G are generated by α-BFT, these two Modifications prevent
from generating many of them.

Lemma 2. The α-BFT protocol solves the reliable communication problem in
Static_Async_Global while adopting Modification 2.

Proof. The information about the processes that relayed a content c is used by a
peer pi to decide whether such a content can safely be accepted. Once that c is
delivered by pi , the information about all the visited sets it received associated to c
is not useful to any other process, because c has been already verified as safe.

Modification 2 provides also a transparent way to get the neighbors of a process pi
know that a content c has been delivered by pi . Indeed, a content is relayed with
an empty visited set only by the processes that delivered it.

Lemma 3. The α-BFT protocol solves the reliable communication problem in
Static_Async_Global while adopting Modifications 2 and 3.

Proof. Modification 3 acts only on the propagation algorithm of α-BFT, thus only
the liveness of reliable communication needs to be proved.

Let us consider three processes px , py and pz interconnected by the links {px , py}
and {py, pz}, among the other processes and links of the system. Let us assume
that process py delivered a content c whereas px and pz did not, and that process
px has a messege m carrying c to relay. Message m is not useful to process py,
because it already delivered c. It follows that the only reason to relay m from px to
py is to enable a third process pz to accept c. Modification 2 imposes process py to
relay the content with an empty visited to all of its neighbors after its delivery. It
follows that any visited set coming from a process px will not increase the minimum
cut of all the visited related to c received by process pz with respect to the empty

8.4. BFT PROTOCOL 59

visited forwarded by py, and the claim follows. A graphical example is provided in
Figure 8.3.

px py pz

{ .., x} { .., x, y}

{ y }

Figure 8.3: Supporting example for Lemma 3.

6

7

1

4

2

3

5

8

()

6

7

1

4

2

3

5

8

()

6

7

1

4

2

3

5

8

()

Figure 8.4: Example of content propagation with BFT.

Modification 4 is a sort of specular version of Modification 3 that introduces a
halting condition for a process in relaying messages related to a content (that is,
after its delivery).

Lemma 4. The α-BFT protocol solves the reliable communication problem in
Static_Async_Global while adopting Modifications 2 and 4.

60 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

Proof. Modification 4 affects only the propagation algorithm of α-BFT, thus only
the liveness property of reliable communication must be proved.

Let us assume two processes pi and pj connected by a link {i, j}, such that the
former has delivered a content c while the latter has not and let us suppose, for the
ease of contradiction, that pj never delivers c. Modification 2 imposes process pi to
send the message 〈s, c, ∅〉 to pj. It has to be noted that any further message related
to c sent by pi would contain at least one element in visited. It implies that any
further message relayed by pi will not increase the minimum cut of all visited sets
received by pj related to c. It follows that process pj do not deliver c with α-BFT
with Modification 2, but this contradicts Lemma 2, and the claim follows.

For ease of completeness, the pseudo-code of BFT is provided in Algorithm 4,
whereas a graphical execution can be found in Figure 8.4.

Algorithm 4 BFT

1: function deliver_and_relay(〈s, c〉)
2: Delivered ← Delivered ∪ {〈s, c〉}
3: BFT_deliver(〈s, c〉)
4: for k ∈ Γ(i) do
5: if {k} < Visited〈s,c〉 then
6: send(〈s, c, ∅〉, k)

7: function BFT_send(c)
8: for k ∈ Γ(i) do
9: send(〈i, ∗, c, ∅〉, k)

10: upon receive(〈s, ∗, c, visited〉, j) do
11: if 〈s, c〉 < Delivered then
12: visited ← visited ∪ {j}
13: Visited〈s,c〉 ← Visited〈s,c〉 ∪ {visited}
14: if j = s then
15: deliver_and_relay(〈s, c〉)
16: else
17: for k ∈ Γ(i) do
18: if k < visited and {k} < Visited〈s,c〉 then
19: send(〈s, c, visited〉, k)

20: upon minimum_cut(Visited〈s,c〉) > f do
21: deliver_and_relay(〈s, c〉)

8.5 Partial quiescency

One would expect any reliable communication protocol to eventually stop sending
messages related to a content. We refer to a Byzantine tolerant reliable communica-

8.6. SELECTION POLICIES 61

tion solution that guarantees such a property with quiescent protocol. Notice that
a quiescent protocol slightly differs from one that terminates (i.e. that guarantees
the liveness property): the latter ensures that the task is accomplished eventually,
but messages may continue to circulate in the system.

In [30] Dolev assumed processes knowing the identifier of all peers in the sys-
tem while solving the reliable communication (and Byzantine agreement) problem.
Such an assumption enables any source process to target its contents to specific
processes, namely, it allows any source to send specific contents to definite target
processes. But mainly, it makes the DolevU protocol quiescent. Indeed, for every
content diffused in the system, at most all possible visited sets (the power set of P)
can be generated and diffused: the Byzantine processes cannot introduce further
visited sets beyond those for every diffused content.

BFT is a not quiescent protocol in the system model we assumed: faulty pro-
cesses may diffuse infinite messages related to spurious contents (because they
are never accepted by the correct processes and the participant in the system are
unknown). Nevertheless, it is more robust with respect to DolevU against certain
Byzantine misbehavior, assuming processes not knowing the peers of the system:
BFT guarantees that processes eventually stop sending the messages related to
contents diffused by correct source, due to Modification 4. We refer to a protocol
with such a guarantee with partial quiescent.

An additional assumption, weaker than the knowledge on the participants in
the system, is probably required to define a quiescent solution, e.g. bounded
namespace for the identifiers.

8.6 Selection policies

The main aim of the Modifications introduced in BFT is to reduce the message
complexity of the state-of-art protocols, DolevU and MTD, solving the reliable com-
munication in Static_Async_Global. However, not all possible visited sets that BFT
may produce are required to a process in the system for delivering a specific con-
tent, as pointed out in the following example.
Let us consider a synchronous distributed system organized as in Figure 8.5: a
multipartite cycle topologyMC8,3 (the network is 6-connected network, thus up to 2
faulty processes are tolerated). Let us suppose process p1 as source of a content c
generated at round r0, processes p4 and p22 as Byzantine faulty and let us focus on
the processes in L4 as potential targets of the content. Assuming faulty processes
simply relaying no message, it can be noticed that at round r1 all correct processes
in L1 and L7 delivers c with DolevU or BFT, and they forward it respectively to all
processes in L2 and L6. At round r2 no process in L2 or L6 is able to deliver the
content, because the minimum cut associated to messages carrying c is f . Thus,
all visited sets associated to the content received by such processes are forwarded
to the subsequent levels L5 and L3. Also, processes in these levels are not able to
deliver c, and they relay all the received visited sets to processes in L4. Looking at
the generated visited sets, it can be noticed that they grew exponentially in both
sides of the cycle: initially, two messages were received by every process in L6

62 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

2

1

0

8 7 6

12

13

14

18 19 20

L0

L1

L2

L3

L4

L5

L6

L7

Figure 8.5: Example motivating Selection Policies (Section 8.6)

or L2, then each of them relayed both to every process in the subsequent level,
generating 23 visited per side, then again all visited received by processes in L5
or L3 are forwarded to all processes in L4, generating (23) ∗ 3 messages per side.
From the point of view of processes in L4, many not useful visited are received,
because they all contain one label of a process either in L7 or L1. For example, the
visited sets {21,18,15}, {23,20,17}, {3,6,9}, {5,8,12} would have been enough to
any process in L4 to deliver c. However, no other Modification has been identified
yet to further reduce the number of generated messages while guaranteeing the
liveness of reliable communication.

Nonetheless, BFT solves the problem in an asynchronous system and messages
may be relayed with an unpredictable delay. It implies that a process can poten-
tially wait before forwarding all the visited sets it has received related to a content.
Specifically, it may relay a bounded number of visited sets in a time window,
namely fixing the rate of visited sets to relay per round. It follows that processes
may adopt specific policies relaying their content, giving priority to certain visited
sets.

We propose two forwarding policies, namely, we define two alternative proce-
dures that iteratively select a bounded number of visited per content to relay. They
are named multi-random and multi-shortest, and they are detailed in Algorithm 5.
The difference between the two policies is on how messages are selected among the
ones to relay: the multi-random randomly picks a candite visited set to relay, the
multi-shortest gives priority to the smallest sets. A process pi executing BFT relays
a message 〈s, c, visited〉 to all of its neighbors pj such that j < visited: they are the
only ones that potentally allows a process pj to deliver. Therefore, the forwarding
policies select one visited set (randomly or one of the shortest) and check if it is
useful to some of it neighbors that have not delivered yet the related content. This

8.7. BFT PERFORMANCE ANALYSIS 63

selection contiues till either i) at least one useful visited has been selected for every
neighbor pi , or ii) a fixed threshold has been reached.

Notice that these selection policies additionally mitigate Byzantine faulty pro-
cesses flooding the system: although spurious contents are never delivered by
correct processes, messages carrying them can still circulate being relayed by all
processes. The selection policies reduce in some sense the number of spurious
messages Byzantine processes may diffuse.

Algorithm 5 Selection Policies

1: function get_neighbors_delivered(〈s, c〉)
2: for k ∈ Γ(i) do
3: if {k} ∈ Visited〈s,c〉 then
4: Neighbors_delivered ← Neighbors_delivered ∪ {k}

return Neighbors_delivered

5: function send(〈s, c, visited〉, k)
6: ToRelay〈s,c〉 ← ToRelay〈s,c〉 ∪ visited

7: function Select_Messages(〈s, c〉)
8: if multirandom_policy then
9: ToRelay_list〈s,c〉 ← shuffle(list(ToRelay〈s,c〉))

10: else if multishortest_policy then
11: ToRelay_list〈s,c〉 ← sort(list(ToRelay〈s,c〉)) . order visited by their size
12: Nodes_to_relay ← Γ(i) − get_neighbors_delivered(〈s, c〉)
13: for visited ∈ ToRelay_list〈s,c〉 do
14: number_missing ← |Nodes_to_relay|
15: if number_missing = 0 or |Selected_visited〈s,c〉| = threshold then
16: break
17: Nodes_to_relay ← Nodes_to_relay ∩ visited
18: if |Nodes_to_relay| , number_missing then
19: Selected_visited〈s,c〉 ← Selected_visited〈s,c〉 ∪ visited
20: ToRelay〈s,c〉 ← Selected_visited〈s,c〉 \ ToRelay〈s,c〉

return Selected_visited〈s,c〉

8.7 BFT performance analysis

We simulate executions of BFT in a Static_Sync_Global in order to evaluate its
performances and to have a comparison with the state-of-art solutions.

We consider the following parameters to setup our simulations:

� n, i.e. the size of the network considered;

� k, i.e. the vertex connectivity of the network considered;

� topology, i.e. the topology of network considered;

64 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

� channel capacity, i.e. the maximum number of messages related to a content
that a process can send in a link per round;

� selection policy, i.e. one among multi-shortest and multi-random.

In order to carry an analysis as complete as possible, we consider the following
network topologies:

� k-regular k-connected random graph [73];

� k-pasted-tree [4];

� k-diamond [4];

� multipartite cycle;

� Barabási-Albert graph [5].

We execute our simulations either considering the maximum number of tolera-
ble faulty processes, thus for every k-connected network we assume f = b(k−1)/2c
failures (Remark 7), or we test all possible values for f between 0 and b(k − 1)/2c.
In any case, processes deliver a content only when the related visited have a mini-
mum vertex cut greater than b(k − 1)/2c.
We move from considering the scenario where all processes are correct to the case
in which f Byzantine processes act as crash failures. We made use of the imple-
mentation provided by Gainer-Dewar and Vera-Licona [38] for the algorithm defined
by Murakami and Uno [62] to solve the minimum cut reduction to the hitting set
problem.
We consider two configurations for the channel capacity: bounded and unbounded.
The former constrains processes to send a limited number of messages per link in
every round, the latter imposes no restriction. For the bounded case, we assume
a bound for the channel capacity equal to f + 1 messages. We simulate one-to-all
reliable communication instances where the source and the faulty processes are
randomly selected.

For all the results we present, we directly plot all the measures we got as points
(except for Figures 8.6,8.12 where the mean of the measures is shown) in order to
show their distributions, and we accordingly increase the size of the points with
higher density.

The source code of the simulations is available in [14].

Comparison with the state-of-art

We start comparing the message complexity of the state-of-art solutions with BFT.
We consider k-regular k-connected random graphs, we assume the node connec-
tivity k either equal to 3 or 5 and we simulate DolevU, MTD and BFT supposing
unbounded channels and all correct processes and we vary the size of the network
from n = 6 to n = 20.

8.7. BFT PERFORMANCE ANALYSIS 65

10 15 20
Network Size

101

102

103

104

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(a)

10 15 20
Network Size

101

102

103

104

105

106

107

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(b)

DolevU MTD BFT

Figure 8.6: State-of-art protocols VS BFT, message complexity. Random regular
graphs, unbounded channel capacity, f = 0. (a) k = 3, (b) k = 5.

We already remarked about the lack in the state-of-art protocols of a halting
condition, in fact, they generate all source-to-all paths/visited in every execution.
It can be noticed in Figure 8.6 that the modifications we defined have a remarkable
impact on the message complexity even in a small and all-correct scenario. It can
also be noticed the advantages gained by choosing a set data structure to collect
the label of the traversed processes with respect to a list one (the former employed
in MTD, the latter in DolevU).

Multi-random VS multi-shortest

We proposed as a countermeasure against the capability of Byzantine faulty pro-
cesses to flood the network a constraint on the channel capacity, limiting the
number of messages that every process can send over a link per round, and we set
this bound equal to f + 1 for each content. We then defined two forwarding policies
to select which visited relay in the actual round. Assuming bounded channels,
we compare the multi-random and multi-shortest policies, considering networks of
size n = 100, random regular graphs, multipartite wheel, k-diamond and k-pasted-
tree, and f Byzantine failures. The results are presented in Figures 8.7 and 8.8
(notice that the scale of the graphics in Figure 8.7 is logarithmic). Starting with
the multi-random policy, it can be seen in Figure 8.7 that, while for some graphs
the multi-random policy acts smoothly, the random regular, the multipartite wheel
graphs and the k-diamond, there exist topologies where the communication la-
tency and message complexity may conspicuously increase (k-pasted-tree). This
leads us to discard such a policy to be one generally employable. Contrarily, the
performance achieved by adopting the multi-shortest policy appears to not suf-
fer from such a weakness (Figures 8.8). Therefore, we further investigate such a
selection policy while increasing the size of the network.

66 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

Figure 8.7: Multi-Random selection policy, message complexity and commu-
nication latency. Bounded channel capacity, n = 100, f =b(k − 1)/2c.

Multi-shortest selection policy evaluation

We carry further tests on BFT with the multi-shortest selection policy. We con-
sider bounded channel capacity5, topologies random regular, multipartite wheel,
k-diamond and k-pasted-tree of size n = 150 and n = 200, and f Byzantine failures.

First results are presented in Figures 8.9 and 8.10. It is possible to see that the
trends of the message complexity and broadcast latency keep defined employing
our protocol joined with the multi-shortest policy while increasing the size of the
network. Specifically, the message complexity keeps always close to or below the
n2 boundary. It can also be deduced that a regular network does not necessarily
results in optimal performances employing our protocol, indeed there are notable
differences in the results obtained considering different regular topologies.

8.7. BFT PERFORMANCE ANALYSIS 67

Figure 8.8: Multi-Shortest selection policy, message complexity and commu-
nication latency, n = 100. Bounded channel capacity, f =b(k − 1)/2c.

68 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

Figure 8.9: Multi-Shortest selection policy, message complexity and commu-
nication latency, n = 150. Bounded channel capacity, f =b(k − 1)/2c.

8.7. BFT PERFORMANCE ANALYSIS 69

Figure 8.10: Multi-Shortest selection policy, message complexity and commu-
nication latency, n = 200. Bounded channel capacity, f =b(k − 1)/2c.

It can also be noticed from the distribution of the measures that there are sev-

70 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

eral topologies (k-pasted-tree, k-diamond, and especially multipartite cycle) where
the placement of the source and the Byzantine failures plays a remarkable impact
on the message complexity.

In order to evaluate the effects of the multi-shortest selection policy on the com-
munication latency of the protocol, we evaluate BFT both considering a bounded
and unbounded channel capacity. The obtained results are depicted in Figure
8.11, where it can be deduced that the policy we defined introduces a negligible
additional delay.

3 10 15 20 25
3

4

5

6

7

8

3 10 15 20 25

5

10

15

20

3 10 15 20 25
2

4

6

8

10

12

3 10 15 20 25
2

4

6

8

10

3 10 15 20 25
3

4

5

6

7

8

3 10 15 20 25

5

10

15

20

3 10 15 20 25
2

4

6

8

10

12

3 10 15 20 25
2

4

6

8

10

Figure 8.11: Communication Latency, Multi-Shorted selection policy with
bounded capacity VS no selection policy with unbounded capacity. X-axis:
network connectivity; Y-axis: broadcast latency; first row: Multi-Shortest bounded
channel; second row: unbounded channel. n = 50, f = b(k − 1)/2c.

Varying the number of failures

We evaluate how the message complexity of BFT evolves when the number of faulty
processes is not maximal.

We consider random regular, multipartite cycle, k-pasted-tree, and k-diamond
graphs. We suppose different values for the network connectivity k, ranging from
3 to 50, testing all possible values for f from 0 to b(k − 1)/2c while imposing every
process to deliver a content only when the associated minimum cut is greater than
b(k − 1)/2c.

We report the results we obtained in Figure 8.12. It is possible to deduce the
number of faults effectively present in a network differently impacts the message
complexity of the protocol depending on the considered topology. There are settings
where the message complexity remains constant independently from the number
of actual failures (random regular and k-pasted-tree) or even slightly reduces (in
k-diamond, due to the lower graph density). Whereas on multipartite cycle graphs,

8.7. BFT PERFORMANCE ANALYSIS 71

it has a relevant impact in lower connected instances that reduces while increasing
the node connectivity.

0 10 20
Number of Failures

0

2000

4000

6000

8000

10000

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(a): Random Regular

0 10 20
Number of Failures

0

2000

4000

6000

8000

10000

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(b): Multipartite Cycle

0 10 20
Number of Failures

2000

4000

6000

8000

10000

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(c): K-Pasted-Tree

0 10 20
Number of Failures

2000

4000

6000

8000

10000

M
e
ss

a
g
e
 C

o
m

p
le

xi
ty

(d): K-Diamond

Figure 8.12: Multi-Shortest selection policy, varying the number of actual
faults, message complexity. n = 100.

Barabási-Albert graph

We separately evaluate BFT in a Barabási-Albert graph while varying the attach-
ment parameter m, in order to analyze our protocol on a topology having different
degree distribution with respect to the previously analyzed. The results are re-
ported in Figure 8.13. The BFT protocol and the multi-shortest selection policy
keep performing in the same manner as previous scenarios. In order to have a
comparison with the topologies analyzed before, we plot in Figure 8.14 the relation
between the attachment parameter m and the network node connectivity.

72 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

Figure 8.13: Multi-shortest selection policy, Barababasi-Albert graph, message
complexity and communication latency. f =b(k − 1)/2c, bounded channel ca-
pacity, n = 100,150,200 (a) message complexity, (b,c,d) communication latency.

8.8 Limitations

We showed through simulations that the BFT protocol and the multi-shortest se-
lection policy allow to significantly reduce the message complexity of the state-of-
art protocols solving the reliable communication problem in unknown networks
assuming the globally bounded Byzantine failure model. Such simulations consid-
ered a synchronous system, which by construction guarantees a timed evolution
of the executed distributed protocol. Despite the proposed modifications do not
generate more messages that the best performing state-of-art MTD, they may lose
efficiency moving to an asynchronous system. In fact, the Modifications we intro-
duced leverage process deliveries to reduce the amount of generated messages. In
an asynchronous system, processes and links may introduce unbounded delays in
the computations and message transmissions. Specifically, in the scenario where
some of the peers are very slow, preventing any process from delivering the con-
tent, the message complexity may continue to increase till new nodes accept the
content.

8.9. CONCLUSION 73

0 20 40 60 80 100
m

10

20

30

40

Ne
tw

or
k

Co
nn

ec
tiv

ity

Figure 8.14: Barababasi-Albert Network, relation between the attachment pa-
rameter m and the network connectivity.

8.9 Conclusion

We revisited the available solutions to the reliable communication problem in gen-
eral networks hit by up to f arbitrarily distributed Byzantine failures and proposed
modifications following performance-related observations. Although the delivery
complexity of our protocol remains unchanged with respect to the state-of-art so-
lutions, our experiments show that it is possible to drastically reduce the message
complexity (from factorial to polynomial in the size of the network), practically
enabling reliable communication in larger systems assuming only the required as-
sumptions identified by Dolev (Remark 7) There are several open problems that
may follow: is it possible to define a solution to the hitting set problem suited
for the specific input generated by our protocol? Is it possible to remove from
the system the contents generated by Byzantine processes? And under which
assumption? Which are the graph parameters that govern the message complex-
ity of our protocol? Nevertheless, the obtained gain in performance may be lost
when assuming an asynchronous system experiencing delays. It remains an open
problem the possibility of defining an efficient reliable communication protocol for
Static_Async_Global under the strict assumptions identified by Dolev. The answer
to this question will provide several insights on the reliable communication problem
in dynamic distributed systems.

74 CHAPTER 8. MODIFIED DOLEV PROTOCOL (BFT)

Chapter 9

CombineBFT

We show in this chapter that considering some additional assumptions further than
necessary ones identified by Dolev (Remark 7), it is possible to efficiently solve
the reliable communication problem in Static_Async_Global having an unknown
network with optimal message complexity and optimal delivery complexity (Section
6.2.3). Specifically, we show how to combine Byzantine fault-tolerant topology
reconstruction with a reliable communication primitive to make it efficient, and we
characterize the set of assumptions that makes such an objective achievable.

The results presented in this Chapter were published in [11].

9.1 System model

We assume a Static_Async_Global system in this chapter, where the node con-
nectivity k of the communication network G is greater than twice the maximum
number f of faulty processes (in order to enable reliable communication, Remark
7 in the globally bounded failure model), i.e. k > 2f .
We alternatively consider unicast (UL) or local broadcast (LBL) links.
We either suppose the known neighborhood assumption (KN) or the unknown neigh-
borhood assumption (UN).

9.2 The topology reconstruction problem

Given a distributed system of correct and Byzantine faulty processes intercon-
nected by an unknown communication network G, the aim of a distributed protocol
addressing the topology reconstruction problem is to enable all correct processes pi
to reconstruct a subset of the topology of the communication network, namely to
output a subgraph Gi of G.

The Byzantine fault-tolerant topology reconstruction problem has been ana-
lyzed by Nesterenko and Tixeuil [63] in Static_Async_Global systems. Then, tran-
sient faults (that occur for a bounded period) have been considered by Dolev et al.,
defining a self-stabilizing Byzantine-tolerant solution [32,33].

A topology reconstruction Gi is expected to be as close as possible to the actual
topology of G. In order to characterize its accuracy with respect to the real network,

75

76 CHAPTER 9. COMBINEBFT

let us note that the nodes (processes) of the communication network G can be
partitioned in correct and faulty, and its edges in correct, one-faulty and two-faulty,
respectively interconnecting two correct processes, a correct processes and a faulty
one, and two Byzantine processes. Likewise, the nodes and edges of a topology
reconstruction Gi can either be real or spurious, respectively mapping or not nodes
and edges in G.

9.3 Explorer [63]

Nesterenko and Tixeuil [63] analyzed the Byzantine fault-tolerant topology re-
construction problem and they provided a solution, Explorer, assuming a
Static_Async_Global system, the known neighborhood assumption and unicast
links.

Among the results they identified in [63], the following ones hold for any solution
to the Byzantine fault-tolerant topology reconstruction problem.

Remark 21. No algorithm can decide whether a two-faulty edge exists [63].

Comment: the only processes aware of a link {pi , pj} are only its endpoints in an
unknown network. It follows that, in case they are both faulty, they can arbitrarily
decide whether to declare it or not to the others.

Remark 22. No algorithm can compute a reconstruction of only real nodes and
edges while including both all correct and all one-faulty edges [63].

Comment: in unknown networks, the only process aware about a link are its end-
points. The two may claim the opposite about it, namely that it exists or not
between them and there is no way to decide which is lying.

The Explorer protocol they defined is specified by the following two proce-
dures:

� every process pi broadcasts its neighborhood Γ(i) (namely it broadcasts the
identifier of processes it has a link with);

� every process pi stores all neighborhoods Γ(j) delivered with a reliable com-
munication primitive in a dictionary data structure cTopi :=

⋃
〈 j,Γ(j) 〉.

Every process pi then infers a reconstruction Gi of G from cTop (there are alter-
native ways to do it). Nevertheless, the topology reconstructions computed with
Explorer on different processes pi can differ among each others, mainly due the
assumption of unicast link allowing faulty processes to equivocate.

Nesterenko and Tixeuil briefly envisioned a potential extension to their proto-
col to the unknown neighborhood scenario. Nonetheless, such solution was not
formally stated and verified in their work [63]. Furthermore, it has been later
shown [53] that the reliable communication protocol adopted in Explorer fails in
guaranteeing the liveness property.

9.4. EXPLORER2 77

9.4 Explorer2

We define a revised version of the Explorer protocol, naming it Explorer2.
Such a protocol:

� it employs BFT as reliable communication primitive;

� it handles the weaker scenario in which processes are initially unaware about
the peers they have a link with (unknown neighborhood assumption);

� it implicitly introduces a failure detector that enable all correct processes to
eventually output the same topology reconstruction under certain assump-
tions.

The unknown neighborhood scenario is coped by a simple neighborhood discov-
ery procedure, defined by the following actions:

� every process pi multicasts a HELLO message at the beginning of the execu-
tion (basically a message with no payload);

� every process that receives a HELLO message adds the identifier of its sender
to its neighborhood Γ(i).

It has to be noticed that in the system model we assumed processes are unaware
about the number of peers they may have a link with; they only know that each of
them will receive at least f + 1 HELLO message for distinct neighbors (due to the
node connectivity assumption). It follows that the set variable Γ(i) collecting the
identifier of the neighbors of a process pi may grow over time.
Consequently, the Explorer protocol must be updated to handle such evolving
Γ(i). Specifically, in Explorer2:

� every process pi broadcasts with BFT its neighborhood Γ(i) every time that it
grows;

� every process pi that delivers Γ(j)′ from pj with a reliable communication
primitive substitutes the entry 〈 j,Γ(j) 〉 ∈ cTopi with 〈 j,Γ(j)′ 〉 if Γ(j) ⊂ Γ(j)′.

Notice that the neighborhood Γ(i) broadcast by a correct processes only grows
over time. Furthermore, every process pi may broadcast many neighborhood
Γ(i)1,Γ(i)2, . . . ,Γ(i)n−1 such that for every pair of Γ(i)x ,Γ(i)y either Γ(i)x ⊂ Γ(i)y
or Γ(i)y ⊂ Γ(i)x . Such evolution of the Γ(i) can be leveraged to prevent certain
Byzantine misbehavior and to enable all correct processes to eventually output the
same reconstruction.

We stated in Theorem 2 that DolevU (and thus BFT) solves the Byzantine
reliable broadcast problem in Static_Async_Global if local broadcast links are as-
sumed.
We additionally adopt in Explore2 the following procedure that acts as failure
detector in case local broadcast links are assumed:

78 CHAPTER 9. COMBINEBFT

� every process pi that delivers two neighborhoods Γ(j) and Γ(j)′ from pj, such
that Γ(j)′ 1 (Γ(j) ∈ cTopi) and (Γ(j) ∈ cTopi) 1 Γ(j)′, do not consider node j for
the reconstruction Gi .

The topology reconstruction Gi(Vi , Ei) is computed in Explorer2 by every pro-
cess pi as follows:

1. ∀〈u,Γ(u)〉 ∈ cTopi ⇒ ∃u ∈ Vi ;

2. ∀v ∈ Γ(u), 〈u,Γ(u)〉 ∈ cTop : X ←
⋃
u, |X | > f ⇒ ∃v ∈ Vi .

3. ∀〈v,Γ(v)〉 ∈ cTopi , u ∈ Γ(v), u ∈ Vi ⇒ ∃(v, u) ∈ Ei .

In other words: a node v is inserted in Vi if 1) the related entry is in cTopi or 2) v is
declared as neighbor by at least f + 1 nodes; 3) an edge {v, u} is added in Ei if both
nodes are in Vi and v declares u in its neighborhood.

Notice that a reconstruction Gi(Vi , Ei) can be computed from pi in alternative
ways. For example, rule 3 can strengthened adding an edge {u, v} in Ei only if the
related link is declared both in Γ(v) and Γ(u), or rule 2 may ignore processes that do
not declare their neighborhood (thus faulty). Nonetheless, the proposed procedure
aims to maximize the number of real one-faulty edges detected, and thus the node
connectivity of the subgraph of Gi composed only by real edges. This fact will be
later leveraged defining an efficient reliable communication primitive.

Every topology reconstruction Gi computed with Explorer2 guarantees the
following properties.

Property 1. ∀pj ∈ P, pj ∈ Correct ⇒ j ∈ Vi ; ∀{j, k} ∈ E, pj, pk ∈ Correct ⇒ ∃{j, k} ∈ Ei
(all correct processes and all correct edges are eventually contained in Gi).

Proof. All sets of assumptions considered enable process pi to reconstruct a topol-
ogy Gi that contains all correct nodes and edges. In the weakest scenario of UL and
UN assumptions, every correct process pj is eventually included in the Γ(k) of all of
its correct neighbors pk. Subsequently, such Γ(k) are broadcast through a reliable
communication primitive, and thus it is delivered by pi and all of its included edges
will be added due to rule 2.

Property 2. pj < P ⇒ j < Vi (Gi contains no non-real node).

Proof. Explorer2 relies on a reliable communication primitive (BFT) to exchange
the Γ(i). A node j can be included in Vi either because the associated process pj has
broadcast, with a reliable communication primitive, its Γ(j) or it has been included
in least f +1 Γ(k) of distinct processes pk. In the former case, the neighborhood Γ(j)
associated with a not existing process pj can initially be diffused only by Byzantine
faulty processes; it follows that, due to the safety property guaranteed by any reli-
able communication primitive, no correct process delivers the Γ(j) of a not existing
process. In the latter case, the identifier of a not existing process must be included
in more then f Γ(k). No correct process pk adds the identifier of a not existing
process inside its Γ(k), due to the authenticated link.

9.4. EXPLORER2 79

Property 3. Assuming the unknown neighborhood assumption (UN), Gi may never
include some Byzantine processes.

Proof. In the unknown neighborhood assumption processes are unaware about the
peers they have a link with. It follows that a Byzantine neighbor of a process may
make itself not discoverable, simply remaining silent. Furthermore, it may adopt
such a behavior only with part of its neighbors. It follows that some reconstruction
Gi may never include some Byzantine processes.

Property 4. Assuming the known neighborhood assumption (KN), eventually j ∈
Vi ⇔ pj ∈ P (Property 2 + all real nodes are eventually detected).

Proof. All correct nodes pj broadcast their neighborhood Γ(j) through a reliable
communication primitive. It follows that eventually all correct processes pi deliver
Γ(j) from pj. The degree of every node i in G is greater than 2f , and thus its identifier
is included in the Γ(j) of at least f+1 processes.

Property 5. ∀{u, v} ∈ Ei , {u, v} < E ⇒ u ∈ Byzantine (every spurious edge contains
at least one Byzantine process).

Proof. A spurious edge can only be declared by a Byzantine processes. Indeed,
due to the authenticated channels, correct processes only declare the neighbors
they have a link with. Given that neighborhood information is exchanged through
a reliable communication primitive, only a Byzantine endpoint of a spurious edge
can declared it.

Property 6. Assuming the unknown neighborhood (UN) assumption and
unicast links (UL), ∀{u, v} ∈ E, u ∈ Correct, v ∈ Byzantine 6⇒ ∃{u, v} ∈ Ei and
∀{u, v} ∈ Ei , u ∈ Correct, v ∈ Byzantine 6⇒ ∃{u, v} ∈ E.

Proof. Rule 2 requires a link {u, v} to be declared in at least one among Γ(u),Γ(v) ∈
cTopi to be included in Ei . In the UN-UL scenario, Byzantine processes may not
declare some of their links (i.e. they may not send the HELLO message to some of
their neighbors) or they may declare some spurious links.

Property 7. Assuming the known neighborhood assumption (KN), eventu-
ally ∀{u, v} ∈ E, u ∈ Correct, v ∈ Byzantine ⇒ ∃{u, v} ∈ Ei (all one-faulty edges will
eventually be present in any Gi).

Proof. The rule 2 requires a link {u, v} to be included in one among Γ(u) and Γ(v)
to be included in Ei and the correct endpoint in a one-faulty edge always declare
the link.

Property 8. Assuming local broadcast links (LBL), all one-faulty edges between a
Byzantine process and all of its correct neighbors are eventually either all or none
present in Gi .

Proof. In the weakest scenario of unknown neighborhood, the local broadcast links
guarantee that if a neighbors of a process pi receives a message, then it is received
by all correct neighbors of pi . It follows that if a correct process detects pi (namely it

80 CHAPTER 9. COMBINEBFT

receives the HELLO message from pi), the same occurs also for all the other correct
neighbors of pi .

Property 9. Assuming local broadcast links (LBL), all correct processes eventually
share the same topology reconstruction.

Proof. The BFT protocol solves the Byzantine reliable broadcast problem when local
broadcast links are assumed (Theorem 2). Thus, all correct processes deliver the
same set of messages, even if in a potentially different order. The failure detector
introduced in Explorer2 prevent faulty processes pi from broadcasting many Γ(i)
such that they are not one subset of another: every process either declare many
Γ(i) satisfying inclusion dependency or it is detected as faulty. All correct processes
eventually set the biggest Γ(i) they delivered from pi or do not consider i in Pi . Thus,
all reconstruction Gi eventually coincide.

Property 10. No reconstruction Gi computed assuming local broadcast links (LBL)
will ever contain more real edges than one obtained assuming the know neighbor-
hood assumption (KN).

Proof. It follows from Properties 7 and 8: any reconstruction built assuming KN
eventually includes all correct and one-faulty edges, whereas some one-faulty edges
may miss assuming UN and LBL.

Notice that in case of unicast links and unknown neighborhood, faulty pro-
cesses may equivocate, and therefore send different neighborhood information to
different processes. Such a misbehavior can be prevented solving the Byzantine
reliable broadcast problem (Section 2). Local broadcast links directly enables BFT
solving this problem (Theorem 2), otherwise a Byzantine reliable broadcast solu-
tion [22] can be deployed on top of BFT.

9.5 Explorer2 analysis

Explorer2 relies on a reliable communication primitive to address the topology
reconstruction problem. Therefore, to evaluate its general complexity as distributed
system protocol, we analyze in this section the amount of reliable communication
instances that are executed solving the topology reconstruction problem.

All correct processes pi in Explorer2 broadcast their neighborhood Γ(i). In
case of know neighborhood assumption (KN), every process broadcasts such an
information only once. It follows that Explorer2 requires O(n) reliable communi-
cation executions to enable all correct processes computing Gi . In case of unknown
neighborhood (UN), every process has to perform neighborhood discovery and then
to broadcast its Γ(i). Nonetheless, no process pi knows how many peers have to be
detected before diffusing Γ(i). Thus, they may broadcast their neighborhood many
times, n−f −2 in the worst case scenario (the assumptions on the node connectivity
of G and the failure model guarantee that every process has at least f +1 links with
correct peers). It follows that Explorer2 with neighborhood discovery executes
O(n2) reliable communication instances to address topology reconstruction.

9.6. FAULT-FREE DISJOINT PATH SOLUTION 81

9.6 Fault-free disjoint path solution

The Explorer2 protocol enables processes to partially reconstruct the topology of
the communication network G, and we showed that different sets of assumptions
provide more or less accurate reconstructions (Properties 1-10 of Explorer2).

We reported in Section 6.1.2 the DolevR protocol that leverages known dis-
joint routes, defined between all pairs of processes, to achieve reliable communica-
tion in Static_Async_Global. We showed that the resulting reliable communication
primitive is optimal for all the evalution metrics we considered, namely message
complexity, delivery complexity and communication latency (Theorem 3). We high-
lighted how f Byzantine faulty processes may compromise at most f paths of any
disjoint path solution Πi,j in DolevR, and that the liveness of such a protocol is
guaranteed by the existence of disjoint path solutions of size greater than 2f be-
tween all pairs of processes, where at least f + 1 of paths in every Πi,j cannot be
compromised by faulty processes.

It follows that, if every pair of correct processes pi , pj is able to identify a disjoint
path solution Πi,j interconnecting them where at least f + 1 paths are faults-free
(i.e. they do not include any Byzantine faulty process), real (namely composes only
by real edges) and disjoint (FF_R_D), then they are able to optimally achieve reliable
communication with respect the evaluation metrics we considered.

We analyze several sets of assumptions enabling all pairs of correct processes
pi , pj to compute a disjoint path solutions Πi,j in Gi containing at least f +1 FF_R_D
paths. We start by considering the stronger assumption with respect the node
connectivity of G, subsequently we attempt to weaken such a constraint while
considering more powerful links and knowledge assumptions.

Theorem 5 identifies a sufficient condition on the node connectivity of G that
allows Explorer2 to compute disjoint path solutions between correct nodes that
always contain at least f +1 FF_R_D paths, while considering the weakest assump-
tion for the links and the neighborhood knowledge.

Theorem 5. The assumption k > 3f enables every correct process pi to compute
a disjoint paths solution Πi,j toward any correct process pj that contains at least
f + 1 faults-free, real and disjoint paths.

Proof. Let us consider the weakest setting concerning the link and neighborhood
knowledge, namely UL and UN. Let us assume processes employing Explorer2
and that all messages it generated have been already delivered by the processes.
The unknown neighborhood and unicast links assumptions allow Byzantine faulty
processes to decide which one-faulty and two-faulty edges to declare (Remark 21
and Property 6), thus the local connectivity between any two node i, j in a recon-
structed topology may be reduced by at most f . It follows that any disjoint paths
solution Πi,j computed between correct processes will have size greater than 2f
paths (Property 1). Given that at most f paths of any Πi,j may contain faults the
claim follows.

Theorem 6 shows that the node connectivity assumption identified in Theorem
5 is minimal to achieve the specified target while considering the weakest assump-
tions for the links and the neighborhood knowledge.

82 CHAPTER 9. COMBINEBFT

pjpi pjpi

Figure 9.1: Explanatory example of Theorem 6.

Theorem 6. The assumption k ≤ 3f is not sufficient to enable every correct pro-
cess pi to compute a disjoint paths solution Πi,j toward every correct process pj
containing at least f + 1 faults-free, real and disjoint paths with any protocol.

Proof. Let us consider the weakest setting concerning the link and neighborhood
knowledge, namely UL and UN. The unknown neighborhood assumption and the
unicast links allow faulty processes to decide which one-faulty and two-faulty edges
are detectable by correct processes. It follows that the faulty processes may po-
tentially be able to reduce the local connectivity between some pairs of correct
processes pi , pj by f , i.e. the local connectivity κi,j in Gi may be lower than 2f and
thus a disjoint path solution of size at most 2f − 1 will be identifiable between
pi and pj, whatever algorithm is envisioned for the reconstruction. Then, up to f
paths in Πi,j may include faulty processes and the claim follows.

A clarifying graphical example is provided in Figure 9.1. Let us consider a
W (4,8) generalized wheel (a 6-connected graph, the “sun-shaped” nodes are the
ones in K4) as communication network. Let us suppose that two nodes in K4 are
Byzantine faulty (rose nodes, thus f = 2 and k = 6 ≤ 3f = 6), let us select two not
adjacent processes pi and pj in C8 respectively as source and target of a reliable
communication instance and let us assume that the Byzantine processes hide their
one-faulty edges with pi (dashed edges). Process pi , after reconstructing the entire
W (4,8) topology (except for the dashed edges) with Explorer2, can compute a
solution Πi,j, but it could either be the green one or the violet one depicted in Figure,
and only the former contains f + 1 FF_R_D paths.

Theorem 7 provides an alternative set of sufficient assumptions, with respect
to the one identified in Theorem 5, that enable all correct processes to identify f +1
FF_R_D paths between all pair of correct processes through Explorer2.

Theorem 7. The set of assumptions a) k > 2f + bf/2c and b) local broadcast links
enables every correct process pi to compute a disjoint paths solution Πi,j toward
any correct process pj containing at least f + 1 faults-free, real and disjoint paths.

9.6. FAULT-FREE DISJOINT PATH SOLUTION 83

Proof. Given Property 8 of Explorer2, let us suppose that fd ≤ f Byzantine pro-
cesses decide to be detected by their neighbors and they send the HELLO mes-
sage, whereas f − fd ones do not. Let us assume that all messages exchanged by
Explorer2 have been already delivered and let us consider Πi,j as the disjoint
path solution computed on Gi between a pair of correct processes pi and pj. The
assumption on the node connectivity of G guarantees that at least 2f +bf/2c+1 dis-
joint paths exist between pi and pj in the communication network. The undeclared
Byzantine processes may reduce the local connectivity between pi and pj by f − fd
in Gi . Let us temporarily assume, for the purpose of the proof, that the declared
Byzantine processes behave as correct ones. It follows, from Property 1 and 8 of
Explorer2, that the size of Πi,j would be at least equal to:

2f + bf/2c + 1 −(f − fd) = f + bf/2c + 1 + fd

Specifically, all paths between pi and pj that contain only correct or declared Byzan-
tine processes existing in G would be present in Gi .

Let us now consider the declared Byzantine processes not reporting the edges
existing between them (i.e. the two-faulty edges, Remark 21). It follows that the
paths in G containing two-faulty edges are not present in Gi . Therefore, pairs of
Byzantine processes may cause a reduction to the maximum size of Πi,j: every
couple may decrease by one the number of available disjoint paths in Gi between
pi and pj. It follows that the size of Πi,j would be at most reduced to:

f + bf/2c + 1 + fd−bfd/2c

namely, fd declared Byzantine faulty processes may reduce the local connectivity
between pi and pj in Gi by at most bfd/2c. The fd declared Byzantine processes may
also be selected among the paths in Πi,j. Specifically, in the worst case scenario
fd paths in Πi,j may contain Byzantine processes. It follows that at most fd paths
would not be fault-free, and thus the remaining fault-free ones in Πi,j would be:

f + bf/2c + 1 + fd − bfd/2c−fd = f + 1 + bf/2c − bfd/2c

Therefore, at least f + 1 paths in Πi,j are faults-free, real and disjoint.

Corollary 4. The set of assumptions a) k > 2f + bf/2c and b) known neighborhood
enables every correct process pi to compute a disjoint paths solution Πi,j toward
any correct process pj containing at least f + 1 faults-free, real and disjoint paths.

Proof. It follows from Theorem 7 considering Property 10 of Explorer2.

We conjecture that the set of assumptions identified in Theorem 7 is minimal
to identify a disjoint path solution containing at least f + 1 faults-free, real and
disjoint paths, namely that none of them can be weakened targeting the specified
target.

Conjecture 1. The set of assumptions a) k ≤ 2f + bf/2c and b) known neighborhood
is not sufficient to enable every correct process pi to compute a disjoint paths
solution Πi,j toward every correct process pj containing at least f + 1 faults-free,
real and disjoint paths with any protocol.

84 CHAPTER 9. COMBINEBFT

pjpi pjpi

Figure 9.2: Explanatory example of Conjecture 1.

Argumentation. The claim could be motivated using the same argumentation pro-
vided for Theorem 7: even considering the known neighborhood assumption, the
Byzantine process may not declare the two-faulty edges between them (Remark 21).
It follows that the node connectivity of a topology reconstruct Gi could be reduced
by bf/2c, and thus the maximum size of a disjoint path solution Πi,j could be re-
duced to 2f . Among the path selected for Πi,j, up to f may contain Byzantine faulty
processes. Nevertheless, it is not clear whether a disjoint path solution contain-
ing faulty processes is always returnable by a deterministic algorithm computing
disjoint paths in a network. Taking the example in Figure 9.2, the solution on the
right is never output employing [29, 36] as algorithm, because it always return a
solution minimizing the total number of edges.

Dolev et al. [32] additionally considered in their work the setting in which the
Byzantine faulty processes are spaced between each other. Specifically, they as-
sumed that no pair of Byzantine processes is connected by a link. Such an as-
sumptions ensures that no two-faulty edge exists in G. In turns, it lowers the
node-connectivity requirement enabling correct processes to identify a disjoint path
solution with at least f + 1 faults-free and real paths.

Corollary 5. The set of assumptions a) k > 2f, b) local broadcast links and c)
no two-faulty edge in G enables every correct process pi to eventually compute a
disjoint paths solution Πi,j toward any correct process pj containing at least f + 1
faults-free, real and disjoint paths.

Proof. Following the same argumentation provided for Theorem 7, the Byzantine
faulty processes may decide either to be detected by all of their neighbors or by
none. Let us assume that fd (fd ≤ f) faulty processes decide to declare them self
(sending the HELLO message). The undeclared Byzantine processes may reduce
the local connectivity between two processes pi and pj by f − fd in Gi . All edges with
a declared Byzantine endpoints are eventually present in Gi (Property 8). Given

9.7. COMBINEDRC, AN OPTIMAL RELIABLE COMMUNICATION PROTOCOL 85

that no two-faulty edge is present in G, it follows that Πi,j has size at least equals
to:

2f + 1−(f − fd) = f + 1 + fd

in which at most fd may contain Byzantine processes.

Corollary 6. The set of assumptions a) k > 2f, b) known neighborhood and c)
no two-faulty edge in G enables every correct process pi to eventually compute a
disjoint paths solution Πi,j toward any correct process pj containing at least f + 1
faults-free, real and disjoint paths.

Proof. It follows from Corollary 5 considering Property 10 of Explorer2.

Lastly, we conjecture that also the set of assumption identified in Corollary 5 is
minimal.

Conjecture 2. The set of assumptions k > 2f, b) unicast links, c) unknown neigh-
borhood, and d) no two-faulty edge in G is not sufficient to enable every correct
process pi to eventually compute a disjoint paths solution Πi,j toward every correct
process pj containing at least f + 1 faults-free, real and disjoint paths with any
protocol.

Argumentation. Same of Conjecture 1, considering that no two-faulty edge is
present in G.

9.7 CombinedRC, an optimal reliable communication
protocol

We combine Explorer2, BFT and DolevR protocols to design an efficient reliable
communication primitive. We call such a protocol CombinedRC.

The Explorer2 protocol is used to partially reconstruct the network topology,
and then to enable processes to compute disjoint paths solutions through which
relay contents. The BFT protocol is adopted as reliable communication subprimi-
tive by Explorer2 and CombinedRC during the initialization. Lastly, the DolevR
protocol is employed as actual reliable communication primitive in CombinedRC,
leveraging the routes computed and communicated using Explorer2 and BFT.

We showed in Section 9.6 that Explorer2, under certain conditions, enables
every correct process pi to identify a disjoint paths solution Πi,j interconnecting it
with any other correct process pj, such that at least f + 1 paths in the solution are
faults-free, real and disjoint. It follows that once the solution Πi,j is known to both
of its endpoints pi and pj they can efficiently communicate.

We claimed in Property 9 of Explorer2 that all correct processes eventually
obtain the same topology reconstruction in case local broadcast links are employed.
Thus, under such an assumption, processes pi and pj eventually compute the same
solution Πi,j. Under the weaker setting of unicast links, the reconstructed topology
may differ on distinct processes, thus a source process pi has additionally to reliably
communicate the computed solution Πi,j to a target process pj.

86 CHAPTER 9. COMBINEBFT

Summarizing, in CombinedRC any source process pi routes contents through
the computed Πi,j and any target process pj waits for messages over f + 1 paths
among the ones in Πi,j. The pseudo-code of CombinedRC is presented in Algorithm
6. Every process relays its contents over the computed routes if available, otherwise
they are queued for a subsequent transmission (lines 1-5).
Every process pi attempts to compute a solution Πi,j toward every other process
pj of the system. In case of local broadcast links, the reconstructed topology Gi is
eventually the same on every process. Therefore, a source process has to relay its
contents over the computed disjoint routes every time they change (a finite number
of times). In case of unicast links, once that the local connectivity toward a target pj
reaches a value greater than 2f , the source process pi communicates the computed
solution Πi,j via BFT (lines 6-21).
Every process relays contents or computed disjoint solution following the path
attached to messages (lines 22-33).
Every process that delivers a disjoint paths solution with BFT adopts it to verify
contents (lines 34-35) using DolevR (lines 36-37).

9.7.1 CombinedRC correctness analysis

We prove in this section the correctness of CombinedRC as a solution to the reliable
communication protocol.

Theorem 8. CombinedRC provides safety of reliable communication.

Proof. A process that receives a CNT message checks the identity of its sender
through authenticated link. It follows that any spurious CNT message will contain
in the visited field at least one identifier of the Byzantine processes. It follows
that the faulty processes cannot diffuse CNT messages over more than f disjoint
paths.

Theorem 9. CombinedRC provides liveness of reliable communication in all set-
tings where Explorer2 succeeds in identifying a disjoint path solution between
any two correct processes pi , pj that contains at least f +1 FF_R_D paths (Theorems
5, 7, Corollaries 4, 5, 6).

Proof. Let us assume that all messages exchanged by Explorer2 have been deliv-
ered and that a process pi aims to reliably communicate with a correct process pj.
In case local broadcast links are assumed, processes pi and pj eventually share the
same topology reconstruction, thus also the disjoint path solution Πi,j will even-
tually be the same both on pi and pj. Process pi relays the contents through Πi,j

every time such a solution changes. The assumption of f + 1 FF_R_D paths in Πi,j

guarantees reliable communication. In case of unicast links, the solution Πi,j is
diffused via BFT and contents are then routed over Πi,j. The assumption of f + 1
FF_R_D paths in Πi,j guarantees reliable communication.

9.7.2 CombinedRC analysis

CombinedRC provides reliable communication with optimal message complexity,
delivery complexity and communication latency (Theorem 3). Specifically, it routes

9.7. COMBINEDRC, AN OPTIMAL RELIABLE COMMUNICATION PROTOCOL 87

Algorithm 6 CombinedRC

1: upon RC_send(m, target) do
2: Sent ← Sent ∪ 〈m, target〉
3: if Πi,target , ∅ then
4: for path ∈ Πi,target do
5: send(〈CNT, i, target,m, path〉, path[1])

6: upon Gi changes do
7: for j ∈ Gi such that i , j do
8: if LB then
9: if local_conn(Gi , i, j) > f + bf/2c and disj_paths(Gi , i, j) , |Πi,j | then

10: Πi,j ← disj_paths(Gi , i, j)
11: for path ∈ Πi,j do
12: for 〈m, target〉 ∈ Sent such that j = target do
13: send(〈CNT, i, j, m, path〉, path[1])
14: Πj,i ← disj_paths(Gi , j, i)

15: else if UC then
16: if Πi,j = ∅ and local_conn(Gi , i, j) > 2f then
17: Πi,j ← disj_paths(Gi , i, j)
18: for path ∈ Πi,j do
19: send(〈ROU, i, j,Πi,j, path〉, path[1])
20: for 〈m, target〉 ∈ Sent such that j = target do
21: send(〈CNT, i, j, m, path〉, path[1])

22: upon receive(〈CNT, s, t, m, path〉, j) do
23: if predecessor(path, i) = j then
24: if t = i then
25: Pathscnt[〈m, s〉]← Pathscnt[〈m, s〉] ∪ {path}
26: else
27: send(〈CNT, s, t, m, path〉, successor(path, i))

28: upon receive(〈ROU, s, t,Π, path〉, j) do
29: if predecessor(path, i) = j then
30: if t = i then
31: Pathsrou[〈s,Π〉]← Paths_uRts[〈s,Π〉] ∪ {path}
32: else
33: send(〈ROU, s, t,Π, path〉, successor(path, i))

34: upon DolevU_deliver(Pathsrou[〈s,Π〉], s) do
35: Πs,i ← Π

36: upon DolevR_deliver(Pathscnt[〈m, s〉], s) do
37: RC_deliver(m, s)

88 CHAPTER 9. COMBINEBFT

contents over computed disjoint routes as DolevR, thusO(n) messages per content
are exchanged, an O(f) procedure is executed to verify every content, and the
communication latency is O(n).

CombinedRC requires an initialization phase where the network topology is
partially reconstructed and the solutions containing f + 1 FF_R_D paths are com-
puted between every pair of correct processes. We showed in Section 9.5 that
Explorer2 requires at most O(n2) reliable communication instances to partially
reconstruct the network topology. For every pair of processes pi , pj, assuming local
broadcast links, the same solution Πi,j is eventually computed by both pi and pj
without additional message exchanges, because the topology reconstruction will
eventually be the same on every process and the disjoint paths solutions can com-
puted through a deterministic algorithm. On the other hand, employing unicast
links, every couple of processes pi , pj must agree on a solution Πi,j. Thus, an addi-
tion content exchange (with payload Πi,j) using a reliable communication primitive
has to be performed for each pair of correct processes. It follows that the initializa-
tion phase of CombinedRC requires the execution of O(n2) reliable communication
instances. Notice that, in case of known neighborhood and local broadcast links,
the cost of the initialization phase reduces to O(n) instances, indeed each process
diffuses its neighborhood only once and all correct processes eventually share the
same reconstruction.

9.8 Conclusion

In this chapter, we combined a topology reconstruction protocol with two re-
liable communication solutions, aiming to overcome the potential limitations
imposed by the available solutions to the reliable communication problem
in Static_Async_Global (Chapter 7 and Section 8.8). The designed protocol,
Explorer2, allows to optimally solve the reliable communication problem with
respect all the evaluation metrics we are considering. It requires stronger assump-
tions (Theorems 5, 7, Corollaries 4, 5, 6) with respect to the necessary ones to solve
the problem (Remark 7), and an initialization phase of non optimal reliable commu-
nication instances to setting it up. Therefore, after executing a limited number of
non optimal reliable communication instances (order of O(n2)), unlimited contents
can be exchanged efficiently, whereas the cost of every reliable communication
instance would have been remained always not optimal otherwise.

Chapter 10

Cryptographic Reliable
Communication Protocols

In this chapter, we present an alternative to CombineBFT putting in place an
efficient reliable communication protocol in Static_Async_Global. Applying a known
idea in security and networking, we leverage a reliable communication protocol to
establish cryptographic keys that will be employed to reliably exchange contents 1.

We do not focus on the security aspects that should be taken into account
designing a robust cryptographic solution, such as the chiphering scheme, keys
renewals, etc [72]. We detail instead a high level cryptographic protocol prototype
solving the reliable communication problem in Static_Async_Global. The solution
we propose does not require stronger assumptions on the topology of the com-
munication network, nor on its links, nor on the process a priori knowledge with
respect the minimal one (Remark 7) to be employed. It considers instead a weaker
adversary: all other solutions reviewed or presented so far in this thesis assume an
adversary with unbounded capabilities (on the computational point of view) able to
control part of the processes in the system. In this chapter instead, the adversary
has a bounded computational power and it is unable to compromise the adopted
cryptographic primitives.

We start presenting a simple cryptographic reliable communication protocol,
AuthRC [60], solving the problem in Static_Async_Global where all processes are
able to digitally sign their message and verify signatures [72].
Subsequently, we define CryptoRC that, following the same approach of
CombinedRC, initially leverages a non efficient reliable communication solution
to set up an efficient primitive (cryptographic in this case).
Finally, the topology reconstruction protocol Explorer2 (Chapter 9, Section 9) is
additionally plugged in order to define an optimal primitive, CombinedCryptoRC.

1Recalls on cryptography and digital signature schemes can be found in [72].

89

90 CHAPTER 10. CRYPTOGRAPHIC RELIABLE COMMUNICATION PROTOCOLS

10.1 AuthRC, an authenticated reliable communication
protocol [60]

We analyze in this section an authenticated solution to the reliable communication
problem proposed in [60]. Authenticated protocols leverage digital signature prim-
itives instead of authenticated links to achieve message authenticity and integrity
(and thus safety of reliable communication), namely they assume all processes in
the systems able to digitally sign messages and to verify their signatures 2.

10.1.1 System model

We consider in this section an asynchronous distributed system organized in a
static communication network G of perfect unicast links [24] (i.e. reliable not-
authenticated). We assume the globally bounded Byzantine failure model and a
communication network G having node connectivity greater than the number of
maximum assumed faults, namely κ > f . All processes have access to a digital
signature primitive enabling them to digitally sign contents and to verify signatures.
We assume that no process, included the Byzantine faulty ones, can compromise
the digital signature primitive, namely to generate any spurious content with a
valid digital signature.

Notice that such a system model is minimal solving the reliable communication
model, namely that none of the assumptions considered can be weakened without
making the problem unsolvable: perfect links are required to guarantee that mes-
sages are not lost and the node connectivity is minimal to prevent faulty processes
from being a cut in the communication network.

10.1.2 AuthRC

AuthRC is a simple authenticated reliable communication protocol defined by the
followin procedures:

� the source process ps computes the digital signature sign〈s,c〉 of the content c
and it multicasts the message 〈s, c, sign〈s,c〉〉 to all of its neighbors;

� a process pi relays to all of its neighbors every message 〈s, c, sign〈s,c〉〉 the first
time it is received;

� if a process pi receives message 〈s, c, sign〈s,c〉〉 such that sign〈s,c〉 is valid sig-
nature for the content c with author process ps then it delivers c from ps.

10.1.3 AuthRC correctness analysis

Remark 23. AuthRC ensures safety of reliable communication [60].

2In its original definition [60] AuthRC employs an alternative and equivalent approach verifying
integrity and delivery of the contents based on asymmetric cryptography as well.

10.2. CRYPTORC, A CRYPTOGRAPHIC RELIABLE COMMUNICATION PROTOCOL91

Proof. It follows from the assumption of an adversary with bounded capacity,
specifically from its inability in breaking the digital signature primitive: no pro-
cess can generate a valid digital signature for a content c excepts for its author.

Remark 24. AuthRC ensures liveness of reliable communication if k > f [60].

Proof. Assuming f faulty processes acting as cut in the communication network,
the graph remains connected. It follows that there always exist a path between
every two correct processes and the propagation procedure adopted in AuthRC
guarantees the content forwarding.

10.1.4 AuthRC performance analysis

Delivery Completity. The delivery complexity of the protocol depends on the
adopted digital signature scheme, it is equivalent to the complexity of the procedure
verifying a digital signature of a content indeed, and it is independent from the size
of the system.
Message Complexity. Every process relays a received content to all of its neighbors
only at its first reception. It follows that the message complexity of the proposed
solution is O(E), and thus O(n2) in case of a complete network topology.
Communication Latency. The length of a fault-free path between two processes
can be up to n − f − 1 hops long (given the bound on the wide-diameter, Remark
3). It follows that the communication latency is O(n).

10.2 CryptoRC, a cryptographic reliable communication
protocol

We present in this section a cryptographic protocol solving the reliable communi-
cation problem in Static_Async_Global. The design pattern is similar to the one
adopted for CombinedRC: it leverages a bounded number of non optimal reliable
communication instances to set up an efficient primitive.

10.2.1 System model

We consider in this section a Static_Async_Global system with a communication
network G having node connectivity greater than twice the number of maximum
assumed faults, namely κ > 2f . We assume an adversary with bounded capacity,
unable to break the digital signature primitive, namely that no Byzantine process
can generate any spurious content with a valid digital signature.

10.2.2 CryptoRC

CryptoRC is a prototype of an authenticated reliable communication protocol. It
is a two phases algorithm that initially execute some non optimal reliable commu-
nication instances to then set-up an efficient primitive. In detail, every process pi
generates its own pair of private and public keys 〈keypubi , keyprii 〉 supporting asym-
metric encryption on which digital signatures are based upon. Subsequently, every

92 CHAPTER 10. CRYPTOGRAPHIC RELIABLE COMMUNICATION PROTOCOLS

process pi distributes with a reliable communication protocol (e.g. BFT) its public
key keypubi , that is associated to its source pi by every process pj that delivers it.
Lastly, the AuthRC protocol is employed as actual reliable communication protocol,
using the generated and distributed cryptographic keys.

10.2.3 CryptoRC correctness analysis

Theorem 10. CryptoRC ensures safety of reliable communication.

Proof. Assuming that no two processes can generate the same pair of
〈keypubi , keyprii 〉 and that the adversary is unable to break the digital signature
scheme, the claim follows from Remark 23.

Theorem 11. CryptoRC ensures liveness of reliable communication if k > f .

Proof. The public keys exchanged during the first phase of the protocol are dif-
fused through a reliable communication solution (BFT correctly works under the
assumption considered), it follows all the keys diffused by correct processes are
eventually delivered by all the correct processes in the system. The claim follows
from Remark 24, given that the link and node connectivity assumption here con-
sidered are stronger.

10.2.4 CryptoRC performance analysis

CryptoRC requires an initialization phase where all processes exchange their pub-
lic key through a reliable communication protocol (like BFT). It follows that O(n)
non optimal reliable communication instances need to be executed to setup the
more efficient authenticated reliable communication primitive.
Delivery Completity. The delivery complexity of the protocol depends on the
adopted digital signature scheme, it is equivalent to the complexity of the procedure
verifying digital signature indeed, and it is independent from the size of the system.

Message Complexity. After the initialization phase, every process relays a received
content to all of its neighbors only at its first reception. It follows that the message
complexity of the proposed solution is O(E), and thus O(n2) in case of complete
network topology.
Communication Latency. The length of a fault-free path between two process can
be up to n − f − 1 hops long (given the bound on the wide-diameter, Remark 3). It
follows that the communication latency is O(n).

10.3 Optimizing CryptoRC: CryptoCombinedRC

We showed in Theorem 3 that DolevR optimally solves the one-to-one reliable com-
munication problem in Static_Async_Global. We reported AuthRC, that achieves
reliable communication with O(n2) message complexity and O(n) communication
latency. It follows that its message complexity is non optimal while fixing a specific
target for a reliable communication instance.

10.3. OPTIMIZING CRYPTORC: CRYPTOCOMBINEDRC 93

In this section, we combine CryptoRC and Explorer2 in order to design an
optimal cryptographic any-to-any reliable communication protocol.

10.3.1 System model

We consider in this section a Static_Async_Global system with a communication
network G having node connectivity greater than twice the number of maximum
assumed faults, namely κ > 2f . We assume an adversary with bounded capacity,
unable to break the digital signature scheme, namely that no Byzantine process
can generate any spurious content with a valid digital signature. We alternatively
consider the known neighborhood and unknown neighborhood assumption.

10.3.2 CryptoCombinedRC

CombinedCryptoRC is obtained from the combination of CryptoRC and
Explorer2. It is a three phase protocol. During the first one, every process
generates its pair of keys 〈keypubi , keyprii 〉 and diffuses keypubi through BFT, setting
up the CryptoRC primitive. At the second phase, processes employs CryptoRC
as reliable communication primitive of Explorer2 to partially reconstruct the
network topology. In the last phase, once that the local node connectivity between
a source and a target processes in the reconstructed topology is greater than f + 1,
a disjoint path solution is computed, and content digitally signed and then routed
over the computed paths.

The Explorer2 protocol enables all correct processes to partially recon-
struct the topology of G existing between only correct processes (Property 1 of
Explorer2). It follows that the local connectivity between every pair of correct
processes in Gi will be greater than f and thus all the correct peers pi , pj can com-
pute a disjoint path solution Πi,j of size at least f + 1. A reconstruction Gi may still
contain spurious edges, but they all include at least one Byzantine endpoint (Prop-
erty 5). Consequently, all correct processes can compute disjoint path solutions
toward all correct peers such that at least one of its paths is fault-free and thus
they can achieve reliable communication between them.

10.3.3 CryptoCombinedRC correctness analysis

Theorem 12. CryptoCombinedRC ensures safety of reliable communication.

Proof. Assuming that no two processes can generate the same pair of
〈keypubi , keyprii 〉 and that the adversary is unable to break the digital signature
scheme, the claim follows from Remark 23.

Theorem 13. CryptoCombinedRC ensures liveness of reliable communication.

Proof. The Explorer2 protocol enables all correct processes to completely recon-
struct the topology of G existing between only correct processes (Property 1 of
Explorer2). It follows that any correct process is eventually able to compute
f + 1 disjoint paths in Gi toward any other. Given that at most f faulty processes
are present in the system, at least one among the computed routes is always
traversable by a content and the claim follows.

94 CHAPTER 10. CRYPTOGRAPHIC RELIABLE COMMUNICATION PROTOCOLS

10.3.4 CryptoCombinedRC performance analysis

CombinedCryptoRC solves the one-to-one reliable communication problem in
Static_Global_Async with asymptotically optimal message complexity and commu-
nication latency (Theorem 3).

CryptoCombinedRC requires an initialization phase where all processes ex-
change they neighborhood and public keys through a reliable communication pro-
tocol (BFT or CryptoRC). Depending on whether the known or unknown neighbor-
hood assumption is considered, O(n) or O(n2) CryptoRC (AuthRC) instances are
required to enable correct processes to partially reconstruct the network topology.
Moreover, every process has to diffuse its generated public key to setup an efficient
reliable communication protocol. Therefore, additional O(n) non optimal reliable
communication instances with BFT are required to initialize CryptoCombinedRC.

Message Complexity. The message complexity of CryptoCombinedRC is optimal
solving the one-to-one reliable communication protocol. Every correct processes
eventually computes f + 1 disjoint routes over the reconstructed topology Gi where
to relay its contents, generating one message per edge.

Delivery Complexity. The delivery complexity of the protocol depends on the
adopted digital signature scheme, it is equivalent to the complexity of the procedure
verifying digital signature indeed, and it is independent from the size of the system.

Communication Latency. The length of a fault-free path between two process can
be up to n − f − 1 hops long (given the bound on the wide-diameter, Remark 3). It
follows that the communication latency is O(n).

10.3.5 Comparison between CombinedRC, CryptoRC and
CombinedCryptoRC

CombinedRC, CryptoRC and CombinedCryptoRC all aim to setup an efficient
reliable communication protocol in Static_Async_Global systems. All require an ini-
tialization phase where a certain number of messages has to be exchanged through
a non efficient reliable communication solution.

On one hand, the number of reliable communication instances required
to initialize CryptoRC is asymptotically either lower than or equal to the
one of CombinedRC and CryptoCombinedRC . Moreover, CryptoRC and
CryptoCombinedRC requires no further system assumption beyond the neces-
sary ones identified by Dolev (Remark 7).

On the other hand CryptoRC and CryptoCombinedRC assumes a weaker
adversary than CombinedRC, namely with bounded computation capabilities
and thus unable to compromised the cryptographic primitive CryptoRC and
CryptoCombinedRC are based upon.

10.4. CONCLUSION 95

10.4 Conclusion

We presented in this section how to set up an efficient (or even optimal) authen-
ticated reliable communication protocol in Static_Async_Global system with un-
known network topology. Differently from CombinedRC, the proposed protocols
CryptoRC and CombinedCryptoRC requires not further assumption with respect
to the necessary ones to be properly employed but assume a weaker adversary with
bounded capacity unable to break the cryptographic pritimive the defined protocol
are based upon.

96 CHAPTER 10. CRYPTOGRAPHIC RELIABLE COMMUNICATION PROTOCOLS

Part II

Static Faults, Dynamic Network

97

Chapter 11

Reliable Communication in
Dynamic Networks: Motivations
and Challenges

We move forward in the analysis of the Byzantine-tolerant reliable communication
problem considering a dynamic network, namely one that changes over time.

Currently, there is only the solution of Maurer et al., MTD, available in the
literature addressing the problem considering a dynamic network. Nevertheless,
several limitations are preventing from its practical employment: i) its message
complexity and delivery complexity does not allow the protocol to scale; ii) the cor-
rectness condition defined for its use applies to single instances occurring between
a pair of processes, assuming the communication starting at a specific time, and
its verification is an NP-Hard problem to solve. This implies that the knowledge
of the complete evolution of the network, namely G, would not help processes to
achieve reliable communication more efficiently, like it happens with DolevR: spe-
cific journeys where to route the contents would be NP-Hard to calculate and would
have to be recalculated for each new content to exchange.

The BFT protocol reduces the message complexity solving the reliable commu-
nication problem in static networks, and actually, such a solution can directly be
adapted and employed rather than MTD. However, as pointed out in Section 8.8, its
efficiency may be lost when a specific scenario arises: as long as no new process
delivers the content, the number of messages may continue to grow.

On static distributed systems, the CPA protocol showed as an efficient solution
to the reliable communication problem against locally bounded Byzantine failures
and also tolerating globally bounded failure considering stronger network assump-
tions. Nevertheless, its employment has not been analyzed yet in dynamic net-
works.

Another aspect that requires further attention on dynamic networks is the as-
sumption of reliable links. Although they are reasonable to assume on static dis-
tributed systems, it is less so on dynamic networks whose nature is the continuous
evolution.

99

100 CHAPTER 11. CHALLENGES IN DYNAMIC NETWORKS

Reliable links in dynamic networks

The protocols previously analyzed in static distributed systems consider perfect re-
liable links, where each message sent by any correct sender is eventually received
by its receiver if correct. Nevertheless, the implementation of a reliable link in
a distributed system may send several “lower level” messages to provide reliable
delivery. In the system model we assumed for dynamic distributed systems, pro-
cesses can instantaneously detect the presence of a communication link but they
have no knowledge about its stability, namely whether it will enable a process to
reliably transmit messages. It follows that several transmissions may occur before
that a message is delivered by a link. Nonetheless, the focus of this thesis is fault-
tolerant reliable communication protocols at a high level, without a detailed focus
on the actual implementation of the assumptions considered. Therefore, as we did
for static protocols analysis, we will count only the messages that are successfully
exchanged by the processes evaluating the message complexity of the solutions.

TVG is a powerful model that properly characterizing the evolution of several
real dynamic networks. Among the aspects it captures, there is the punctual “la-
tency” of its edges. Specifically, TVG allows to characterize the temporal availability
of a connection between its nodes with the presence function ρ, but which can ei-
ther allow or not an interaction at a certain time, ruled by the latency function ζ .
For this reason, given a TVG G = (V, E,T , ρ, ζ), we define the predicate RL(v, u, t̂)
asserting whether the reliable delivery property is achievable by link between two
nodes exchanging a message at certain time t̂.

Definition 37 [Reliable Link Predicate RL(v, u, t̂)]. Let G = (V, E,T , ρ, ζ) be a TVG.
The predicate Reliable Link RL(v, u, t̂) for nodes v, u ∈ V and t̂ ∈ T is defined as
follows:

RL(v, u, t̂) =

true if ∀t ∈ [t̂ , t̂ + ζ (〈v, u〉, t̂)], ρ(〈v, u〉, t) = 1.
false otherwise.

Given that processes are only aware of the availability of a link but they do
not know a priori whether it will allow or not the reliable delivery, to maximize the
possibility of its occurrence they need to relay their messages infinitely often (see
MTD, Section 6.4), hoping for eventual reliable delivery of the messages exchanged.
It follows that we may not evaluate the actual message complexity of a reliable
communication protocol under such assumptions. To overcome this issue, we
additionally assume in our subsequent analysis processes able to detect whether
a message is delivered by a link, and we suppose an additional logical layer acting
between the distributed protocol and the link implementation, limiting the number
of messages relayed by a process, the no-duplication layer.

The no-duplication layer guarantees that, if a process pi sends a message m
to a process pj many times, then such a message is relayed to pj at most once.
Specifically, if a process pi sends a message m to process pj at t̂, the predicate
RL(i, j, t̂) is verified and m was not delivered in by the link {pi , pj} at any t < t̂, then
it is received by pj.

101

Notice that those two additional assumptions are not required to solve the
reliable communication problem in dynamic networks, but they enable to evaluate
the message complexity of solutions. Moreover, in the case predicate RL(i, j, t̂)
is verified for every edge {i, j} present at t̂ we get back the perfect reliable link
assumption.

Contributions

In Chapter 12, we identify alternative dynamic network conditions enabling any-to-
any reliable communication at any time t assuming the globally bounded Byzantine
failure model.

In Chapter 13, we extend the CPA protocol to dynamic distributed systems and
we characterize the dynamic network conditions enabling one-to-all and any-to-any
reliable communication in the locally bounded Byzantine failure model.

102 CHAPTER 11. CHALLENGES IN DYNAMIC NETWORKS

Chapter 12

Reliable Communication with
Globally Bounded Byzantine
Failures

We seek in this chapter for alternative dynamic network conditions enabling reliable
communication in the globally bounded Byzantine failure model.

The characterization currently available in the literature is strict (Remark 18),
namely it identifies all the instances where the problem is solvable from a process
ps to a peer pt at time t, but it is not general, in the sense it does not guarantee
reliable communication infinitely often between every pair of processes, as the
condition identified for static distributed systems (Remark 7). Furthermore, such
a condition is NP-Hard to verify (Section 6.4.1).

We identify the class of TVG where the any-to-any reliable communication prob-
lem is solvable at every time t.

12.1 System model

We alternatively consider a Dynamic_FullSync_Global or a
Dynamic_CompSync_Global distributed system. We assume processes able
to instantaneously detect link presence.

12.2 Any-to-any reliable communication solvability

Given two processes pu , pv, the strict condition enabling reliable communication
from pu to pv at t in the globally bounded failure model requires the existence of
a set of journeys u v in G[t,∞) such that their dynamic cut k is greater than 2f
(Remark 18). We refer to such collection of journeys with u k v.

The class TC of TVG (Definition 32) as been identified has the minimal one
where it is possible to solve any-to-any reliable communication at least once in
Dynamic_CompSync assuming all correct processes [25]. We define the following
sub-class TCk of TC.

103

104 CHAPTER 12. RELIABLE COMMUNICATION IN DYNAMIC GLOBAL

Definition 38 [Class TCk (Temporal k Connectivity)]. ∀u, v ∈ V ; u k v (every
node can reach all the others through journeys with dynamic minimum cut at least
k at least once).

In TCk TVGs every node can accomplish any-to-any reliable communication in
Dynamic_ComplSync_Global at least once if f < k/2.

Class TCR (Definition 33) is a sub-class of TC in which temporal connectivity
occurs infinitely often, thus enabling any-to-any reliable communication in Dy-
namic_CompSync assuming all correct nodes at any time t.
We define the following sub-class TCRk of TCR.

Definition 39 [Class TCRk (Recurrent k Temporal Connectivity)]. ∀t ∈ T ,
G[t; +∞) ∈ TCk (starting from any time t, the TVG is eventually temporally k
connected).

The class TCRk characterizes the TVGs where the any-to-any reliable communica-
tion problem in Dynamic_CompSync_Global is solvable at any time t if f < k/2 by
construction. Furthermore, it is the minimal class of TVGs where it is possible.

Class C∗ (Definition 34) has been identified as a sub-class of TCR where simple
broadcast terminates in O(n) times. Specifically, assuming a Dynamic_FullSync
system of all correct nodes, every any-to-any reliable communication instance ter-
minates in O(n) times [51].
We define the sub-class CK∗k of C∗.

Definition 40 [Class CK∗k (1-interval k-connectivity)]. ∀Gi ∈ G, Gi is a k-
connected graph (the node connectivity of every snapshot is greater or equal than
k).

We prove in the following Theorem 14 that the class CK∗k provides two useful
properties:

� there always exist journeys between every pair of nodes with dynamic mini-
mum cut at least k;

� there always exist journeys between every pair of nodes with dynamic mini-
mum cut at least k in every temporal subgraph defined in [t, t + n − k].

Theorem 14. Given an evolving graph G, if G ∈ CK∗k then G[t, t + n − k] ∈ TCk for
any t ∈ T .

Proof. Let us consider a pair of nodes u, v ∈ V . By definition, the dynamic minimum
cut from node v to u is the minimum number of nodes (besides v and u) that have
to be removed from the network to prevent the existence of a journey from v to
u. It follows that, if it always exists at least one journey from v to u removing
whatever set of k − 1 nodes, then the dynamic minimum cut is at least k. The
removal of whatever set of k − 1 vertices makes the resulting subgraph 1-interval
1-connected (C∗). It has been proven that n − 1 instants are sufficient to traverse
a journey between any two nodes in a 1-interval connected network [51]. The
dynamic network we are considering has size n − (k − 1) nodes after the removal

12.2. ANY-TO-ANY RELIABLE COMMUNICATION SOLVABILITY 105

and it is 1-interval connected. It is possible to conclude that a journey always exists
between every pair of nodes and it can be traversed in at most n− (k−1)−1 = n−k
instants.

Corollary 7. The any-to-any reliable communication problem is always solvable
in Dynamic_FullSync_Global if G ∈ CK∗k and k > 2f . Furthermore, it always
terminates in n − k rounds with MTD.

Proof. It follows from Remark 18 and Theorem 14

Notice that, differently for the condition in Remark 18, give a dynamic network
expresses as evolving graph, 1-interval k-connectivity can be verified polynomially
in the number of nodes and in the lifetime of the system.

106 CHAPTER 12. RELIABLE COMMUNICATION IN DYNAMIC GLOBAL

Chapter 13

Reliable Communication with
Locally Bounded Byzantine
Failures, DynCPA

We investigate in this chapter the potential employment of CPA as a solution to the
reliable communication problem in dynamic distributed systems. We introduce
the required modifications to let CPA work in dynamic networks, defining DynCPA,
and we identify the conditions a dynamic communication network has to satisfy
enabling reliable communication in the locally bounded failure model.

Part of the results presented in this Chapter was published in [13]

13.1 System model

We alternatively consider a Dynamic_CompSync_Local or a Dynamic_FullSync_Local
system. We assume processes able to instantaneously detect the presence of a link.
While evaluating the message complexity of a protocol, we suppose processes being
aware of the message deliveries of their links, thus employing the no-duplication
layer.

13.2 DynCPA

The DynCPA protocol extends CPA to cope with a dynamic environment. In CPA
processes relay all the delivered contents right after their delivery. Differently from
static networks, the neighborhood of processes changes over time in dynamic ones.
Furthermore, the peers are not aware of the processes they eventually have a link
with. Porting CPA to dynamic distributed systems, we adopt the same spreading
policy employed in MTD: diffuse all messages contained in a specific collection every
time that the local neighborhood of a process changes. Specifically, we define the
DynCPA protocol as follows:

� every process sends to all of its neighbors all the contents 〈s, c〉 it delivered
every time its neighborhood changes;

107

108 CHAPTER 13. RELIABLE COMMUNICATION IN DYNAMIC LOCAL

� the source ps delivers its content 〈s, c〉 (acceptance policy 0, AP0);

� a process pi delivers every content 〈s, c〉 received from its source ps
(acceptance policy 1, AP1);

� a process pi delivers every content 〈s, c〉 received from f +1 distinct neighbors
pj , ps (acceptance policy 2, AP2);

13.3 DynCPA correctness analysis

The MKLO (Section 5.1) allows to characterize the instances where the reliable
communication protocol can be solved assuming the locally bounded failure model
in static distributed systems. We extend the concept of MKLO to dynamic graphs,
defining the TMKLO metric, and we use it to define dynamic network conditions
enabling reliable communication.

Definition 41 [Function Ak(v, t)]. Given a TVG G = (V, E,T , ρ, ζ), a node s ∈ V and
a time t̂ ∈ T . The function Ak(v, t) defined for t ≥ t̂ ∈ T for every node v ∈ V as
follows:

Ak(v, t) =



1 if v = s (AK0)
1 for t ≥ t′ + ζ (〈s, v〉, t′) if ∃ t′ ≥ t̂ : RL(s, v, t′) = true (AK1)
1 for t ≥ max(ti + ζ (〈v, vi〉, ti)) if ∃ S ⊂ V, |S| ≥ k :

∀vi ∈ S, Ak(vi , ti) = 1, RL(v, vi , ti) = true (AK2)
0 otherwise

Definition 42 [Temporal Minimum K-Level Ordering (TMKLO)]. The Temporal
Minimum K-Level Ordering Mk(G, s, t̂) of a TVG G = (V, E,T , ρ, ζ) for a given node
s ∈ V and a time t̂ ∈ T is the partitioning of V into subsets Li , called levels, such
that:

v ∈ Lti iff ti = min t ≥ t̂ ∈ T such that Ak(v, ti) = 1

The Function Ak(v, t) and the related TMKLO characterize a specific possible
message propagation pattern in a Dynamic_CommSync systems. In particular,
given a time t̂ ∈ T and s ∈ G, the Function Ak(v, t) is equal to 1 for a node v
at time t if either v = s, or it was possible to establish a reliable link between
v and s at t′ ≥ t̂, or it was possible to establish reliable links between v and k
nodes already having their associated value in the acceptance function equal to
1. Basically, the message propagation patter required by DynCPA to accomplish
reliable communication, assuming specific values for k and f . The TMKLO collects
the minimum times ti when the Ak(vi , t) turns to 1 for every process v ∈ V .

Lemma 5. DynCPA solves the one-to-all reliable communication problem from a
process ps at t̂ in Dynamic_CompSync_Local if all processes are correct and there
exists the TMKLO Mk(G, ps, t̂) with k > f .

13.3. DYNCPA CORRECTNESS ANALYSIS 109

Proof. The TMKLO Mk(G, ps, t̂) characterizes a specific message pattern in a Dy-
namic_CompSync_Local system. We need to prove that such a message pattern
enables one-to-all reliable communication from a process ps at t̂. Every process
is associated to a specific level Lti in Mk(G, ps, t̂) where ti ≥ t̂ ∈ T is the first
instant the acceptance function Ak(v, t) given nodes s and t̂ is equal to 1 for v.
The acceptance function associated with a specific node v turns to 1 due to the
verification of one among the AK0, AK1, and AK2 conditions. Node s satisfies AK0
and the associated process ps sent a content. It follows that it delivered the con-
tent according to acceptance policy 0 of DynCPA. After that, it relays the content
at every time t ≥ t̂ given the assumption of negligible local computation latency.
The predicate RL(v, u, t̄) guarantees the reliable delivery of a message sent from
process pv to pu at t̄. Every process pi inserted inMk(G, ps, t̂) due to AK1 had the
predicate RL(s, i, t̄) verified for t̄ ≥ t̂. It follows that it was possible to establish a
reliable link between processes ps and pi at time t̄. Process ps continuously relay
its content, it follows that every process pi received the content directly from ps and
delivered it according to AP1. Every process pi inserted inMk(G, ps, t̂) due to AK2
had the predicate RL(∗, i, ∗) verified with a set of k processes already in the TMKLO.
At least one of such pi verified RL(∗, i, ∗) with a set of k processes which verified
AK1, and thus delivered the content and continuously relay it. It follows that also
pi delivers the content according to AC2 if k > f . The same reasoning extends to
the other processes verifying AK2 with the predicate RL(∗, i, ∗) with other k nodes
that already verified the acceptance function.

Theorem 15. DynCPA solves the one-to-all reliable communication problem from a
process ps at t̂ in Dynamic_CommSync_Local if there exists the TMKLOMk(G, ps, t̂)
with k > 2f .

Proof. The claim follows from Lemma 5 considering that k > 2f and at most f faulty
processes can be present in the neighborhood over every node over the lifetime of
the network.

Theorem 16. DynCPA solves the one-to-all reliable communication problem from
a process ps at t̂ in Dynamic_CompSync_Local only if there exists the TMKLO
Mk(G, ps, t̂) with k > f .

Proof. It follows from the definition of Ak(v, t) function and the related TMKLO.
In particular, Ak(v, t) models a specific message propagation pattern in Dy-
namic_CompSync systems and TMKLO collects the first times ti when certain con-
ditions verifies.

Specifically, it models the pattern where every process in the temporal minimum
level ordering either is the source, or it had a reliable link available with the source,
or had at least k reliable link available with processes already in the TMKLO. If a
process is not in the partitioning it implies that none of the following conditions
verified, thus either it has not delivered the content or we get a contradiction.

110 CHAPTER 13. RELIABLE COMMUNICATION IN DYNAMIC LOCAL

Theorem 17. DynCPA solves the one-to-all reliable communication problem from
a process ps at t̂ in Dynamic_CompSync_Local if and only if there exists the TMKLO
Mk(GF , ps, t̂) with k > f considering any possible f -local corruption set F .

Proof. It follows from Lemma 5 and Theorem 16 considering that a TMKLO with
k > f exists removing from the network any possible corruption set.

Given a TVG G expressed as evolving graph, a TMKLO Mk(G, s, t̂) can be com-
puted polynomially with respect to the number of nodes n and the lifetime of the
network T .

Theorem 18. Given a TVG G with finite lifetime T expressed as evolving graph, a
TMKLO Mk(G, s, t̂) can be computed polynomially with respect to the size and the
lifetime of the graph, specifically, its computational complexity is O(|V | + |T ||E|).

Proof. Given a TVG G modeled with an evolving graph, a TMKLOMk(G, s, t̂) can be
computed polynomially as follows.

Node s is placed in level Lt̂ of the TMKLO. Then, the snapshots characterizing
the TVG have to be analyzed sequentially from the one at time t̂. In particular, it
has to be verified if the edges with only one endpoint already included in some level
of the TMKLO are up enough to satisfy RL() and if they allow a node j to be part of
the TMKLO according to one of the conditions AK1 and AK2. The algorithm ends
when a TMKLO is found or when all the snapshots have been analyzed (and in the
latter case we can infer that the TMKLO does not exist). Assuming that G spans
over a finite lifetime T , the complexity of this algorithm is:

O(|T ||E) + O(|V | + |E|) = O(|V | + |T ||E|)

It follows that the sufficient condition identified in Theorem 15 can be verified
polynomially for a reliable communication instance from a source ps to a target
pt at time t̂, whereas the exact condition reported in Theorem 17 is NP-Hard to
verify [43].

13.4 DynCPA performance analysis

Message Complexity. Every process executing DynCPA sends all the delivered
content to all of its neighbors every time its neighborhood changes. It follows that
it is not possible in general to overbound the message complexity of DynCPA.

Assuming the no-duplication layer and counting only the succeeding message
transmissions, every messagem from a process pi to a process pj is exchanged only
once. Every process that delivers a content in DynCPA relays only one message
to each of its neighbors (over the time). It follows that the message complexity of
DynCPA is O(n2) under such an assumption.

Delivery Complexity. The delivery complexity of DynCPA is equivalent to CPA,
namely every process either receives a content directly from its source or it waits

13.5. RECURRENT DYNAMIC NETWORKS 111

for f + 1 copies of the same content sent by distinct peers. It follows that the
delivery complexity of DynCPA is O(f).

Communication Latency. The communication latency of DynCPA strongly de-
pends on the evolution of the dynamic communication network and on the place-
ment of the Byzantine processes. The TMKLO, as the MKLO in static networks
(Theorem 4), allows to establish upper and lower bounds on the communication
latency achieving reliable communication with DynCPA.

Theorem 19. Let us consider a source process ps succeeding in one-to-all reliable
communication at t̂ with DynCPA in Dynamic_CompSync_Local. Let tf +1

max be the
time associated to the last level Ltx ofMf +1(G, ps, t̂) = {Lt0 , Lt1 . . . Ltx }. Let t∗f +1

max the
maximum time associated to the last level Ltx of Mf +1(GF , ps, t̂) = {Lt0 , Lt1 . . . Ltx }

considering every f -local set F . Let t2f +1
max be the time associated to the last level Ltx

ofM2f +1(G, ps, t̂) = {Lt0 , Lt1 . . . Ltx } (if it exists). The Communication Latency (CL) is
bounded as follows:

tf +1
max − t̂ ≤ CL ≤ t

∗f +1
max − t̂ ≤ t

2f +1
max − t̂

Proof. Lower Bound: Let us assume by contradiction that CL can be lower than
tf +1
max − t̂. It follows that the last process pi delivering the content does it at a time
ti < t

f +1
max . By definition of TMKLO, a process pi is inserted in a level Ltx at the lowest

time tx one of the following conditions is satisfied: pi = ps, ps, pt can establish a
reliable link, or pi can establish a reliable link with k processes that are already
included in the TMKLO. It follows that if ti < tf +1

max it has delivered the content
without a reliable link with the source or reliable links with f + 1 other processes
that already delivered the content. This is in contradiction with the acceptance
policies AC0,AC1 and AC2 of DynCPA.

Upper Bounds: Let us assume by contradiction that CL can be greater than
t∗f +1
max − t̂. It follows that the last process pi delivering the content does it at a time
ti > t

∗f +1
max . By definition of TMKLO, a process pi is inserted in a level Ltx at the lowest

time tx one of the following conditions is satisfied: pi = ps, ps, pt can establish a
reliable link, or pi can establish a reliable link with k processes that are already
included in the TMKLO; Given that t∗f +1

max is the maximum time associated to a level
in Mf +1(GF , ps, t̂), every possible corruption set has been consider and k > f + 1,
the delivery off all correct processes occurred at t∗f +1

max , leading to a contradiction.
The inequality t∗f +1

max − t̂ ≤ t2f +1
max − t̂ is motivated by the fact a f -local do not

necessarily distribute among all levels in a TMKLO.

13.5 Recurrent dynamic networks

In this section, we start from a specific class of dynamic networks and we
identify an additional set of assumptions enabling reliable communication in
Dynamic_Async_Local. Specifically, we start from the ER recurrent edges TVG
class (Definition 35), that guarantees every edge present infinitely often over time.
As we highlighted several times, a communication link is useful to processes only
if it allows reliable message delivery. Thus, we further assume that every edge

112 CHAPTER 13. RELIABLE COMMUNICATION IN DYNAMIC LOCAL

infinitely satisfies RL() over time. The model just characterized aims to simulate
a Static_Local_Async system, indeed even if all the communication links do not
provide any latency guarantee, they infinitely ensure reliable delivery. It follows
that we can extend in ER all the correctness conditions defined for CPA (Section
6.3.1).

Theorem 20. DynCPA protocol solves the one-to-all reliable communication prob-
lem from a process ps at any time t in Dynamic_Async_Local if the communication
network G is a ER recurrent edges TVG and the parameter js(G) associated to its
footprint G is greater then twice the value of f .

Theorem 21. DynCPA protocol solves the one-to-all reliable communication prob-
lem from a process ps at any time t in Dynamic_Async_Local if the communication
network G is a ER recurrent edges TVG and the parameter hs(G) associated to its
footprint G is greater then the value of f .

Theorem 22. DynCPA protocol solves the any-to-any reliable communication
problem at any time t in Dynamic_Async_Local if the communication network G is
a ER recurrent edges TVG and the parameter j(G) associated to its footprint G is
greater then twice the value of f .

Theorem 23. DynCPA protocol solves the any-to-any reliable communication
problem at any time t in Dynamic_Async_Local if the communication network G is
a ER recurrent edges TVG and the parameter h(G) associated to its footprint G is
greater then the value of f .

Proof. All the conditions identified in Theorems 20,21,22 and 23 follow from Re-
marks 16 and 17 and from Corollaries 1 and 2 (in Section 6.2.3) considering that
every edge in the footprint infinitely guarantees reliable delivery.

The conditions stated in Theorems 20,21,22 and 23 can also be reinterpreted
from the process perspective. Let us suppose the processes knowing that the
communication network evolves as a recurrent edge TVG (but they ignore their
precise evolution, namely G), and having knowledge only on the topology of the
footprint G. Under such assumptions, processes are able to verify whether the
reliable communication problem is solvable: they can test the conditions defined
for CPA (Section 6.3.1) on G. Their validity in the dynamic contest are guaranteed
by the fact that 1) processes are able to instantaneously detect their neighbors, 2)
they continuously aims to relay delivered contents to all the processes they contact,
and 3) links infinitely provide reliable delivery.

The set of assumptions identified in Theorems 20,21,22 and 23 do not allow
to establish bound to the communication latency. The reason is that there is no
guarantee on the time required for any link to provide reliable delivery. On the
other hand, considering the EB class of TVG (Definition 36), we can characterize
an alternative set of assumptions enabling reliable communication with bounded
communication latency, extending the results of Theorem 4.

Theorem 24. Given a source process ps succeeding in one-to-all reliable commu-
nication at t̂ with DynCPA in Dynamic_CompSync_Local having as communication

13.6. 1-INTERVAL DYNAMIC NETWORKS 113

network a EB TVG with ζmax = max(ζ (e, t)) and δmax as maximum delay between
two consecutive appearances of any edge. Let l∗f +1 the maximum number of levels
associated to the MKLO Lf +1(GF , ps) = {L0, L1 . . . Lx } considering every f -local set
F . Let l2f +1 be the size of the MKLO L2f +1(G, ps) = {L0, L1 . . . Lx } (if it exists). The
Communication Latency (CL) is upper bounded as follows:

CL ≤ l∗f +1(ζmax + δmax) ≤ l2f +1(ζmax + δmax)

Proof. Given the assumptions on the dynamic communication network we know
that every edge reappears in δmax and it guarantees reliable delivery with latency
ζmax . The worst-case scenario with respect to the message propagation in the
system model considered is the one where every node has to wait for δmax to forward
a message. The bound on the communication latency follows from Remarks 16,17
(Section 6.2.3) noting that every node in level Li delivers in at most δmax + ζmax .

13.6 1-interval dynamic networks

We consider in this section a Dynamic_FullSync_Local system in which the latency
function ζ (e, t) of the associated TVG is always equal to 1 for every edge at every
time t. We define two sub-class CJ∗j and CH∗h of C∗, 1-interval dynamic networks
(Definition 34), in order to define alternative dynamic network conditions enabling
reliable communication. The former assumes snapshots having j(Gi) ≥ j, the latter
considers snapshots with h(Gi) ≥ h.

Class CJ∗j (1-interval j snapshots). ∀Gi ∈ G, j(Gi) ≥ j (the j parameter of every
snapshot is greater than or equal to j).

Class CH∗h (1-interval h snapshots). ∀Gi ∈ G, h(Gi) ≥ h (the h parameter of every
snapshot is greater than or equal to h).

Theorem 25. The any-to-any reliable communication problem is always solvable
in Dynamic_FullSync_Local if G ∈ CH∗h and h > f . Furthermore, the communica-
tion latency is upper bounded by n − f − 1.

Proof. The assumption of G ∈ CH∗h guarantees all the snapshots Gi having h(Gi) >
h. It follows that for all the snapshots Gi there exists the Minimum K-Level Ordering
Lk(Gi,F̄ , s) with k = h > f considering any source s and removing any f -local set F
from Gi .

We show that DynCPA succeeds in any-to-any reliable communication problem
under the assumptions considered. Let us assume the nodes of any compromised
set F removed fromG. Let us collect in a set D the processes that delivered a specific
content. When the reliable communication instance is initiated, the source delivers
its content and sends it to all of its neighbors in the subsequent round.
At the successive round, the source has a reliable link available with at least f + 1
processes. Therefore, they all deliver the content of the source. It follows that the
set D contains at the second round the source and at least f + 1 processes.
In the third round, the network may change but it ensures h(Gi) > f . If a node

114 CHAPTER 13. RELIABLE COMMUNICATION IN DYNAMIC LOCAL

v ∈ V, v < D is currently neighbor of the source, it delivers the content and is
inserted in D. If all the current neighbors of the source are in D, all nodes in L2
of Lf +1(G∗,F̄ , s) are currently linked to at least f + 1 nodes that are relaying the
content. Thus, if a process in L2 did not delivered the content yet, it delivers at
that round. If all nodes in L1 and L2 are already in D then every process pi in L3 of
Lf +1(G∗,F̄ , s) not in D has at least f + 1 reliable link with nodes in D, and delivers
the content. The same reason extends till including all nodes in G, noting that at
least 1 node is inserted in D at every round.

Theorem 26. The any-to-any reliable communication problem is always solvable
in Dynamic_FullSync_Local if G ∈ CJ∗j and j > 2f . Furthermore, the communica-
tion latency is upper bounded by n − f − 1.

Proof. It follows from the same reasoning provided in Theorem 25 considering that
at most f faulty processes may be linked to every process during all lifetime of the
network.

13.7 Conclusion

We analyzed in this chapter the reliable communication problem in a dynamic
distributed system assuming the locally bounded failure model. We showed that
the CPA protocol can be extended and properly work in dynamic networks, defining
DynCPA. We provided several dynamic network conditions enabling one-to-all and
any-to-any reliable communication at a specific time t or infinitely often. All of them
either assume a synchronous system or one that guarantees only bounded local
computation latency. It remains open the possibility of defining dynamic network
conditions enabling to solve our problem in an asynchronous dynamic system.

Part III

Dynamic Faults, Static Networks

115

Chapter 14

Reliable Communication with
Mobile Byzantine Faults

We investigate in this chapter the reliable communication problem in static dis-
tributed systems affected by Mobile Byzantine Faults. Given that the reliable com-
munication specification does not consider the state of the processes potentially
changing over time (between correct and faulty), we define a new specification
to the reliable communication problem considering Mobile Byzantine Faults. We
show that the problem so defined cannot be solved in the case of an asynchronous
system when mobile Byzantine agents are present. We, therefore, identify the nec-
essary and several sufficient network conditions enabling reliable communication
in the considered environment.

The results presented in this Chapter were published in [16].

14.1 System model

We consider a static distributed system affected by Mobile Byzantine Faults, re-
sulting from a set of f mobile agents present in the system and capable of moving
between one process to another making them Byzantine faulty. We alternatively as-
sume a synchronous or asynchronous distributed systems. In the former case, we
consider one evolving in synchronous rounds of three phases: send, receive, and
computation. We suppose that every process is equipped with a tamper-proof read-
only memory where the code of the distributed protocol P is stored. We assume
the mobile agents having roaming pace λ = 1 and able to move only in between
the computation and the send phase of two consecutive rounds. We alternatively
consider either an aware or unaware mobile Byzantine failure model. We assume
every cured process wiping all of its local variables at the beginning of the round.

14.2 Reliable communication with MBF specification

The standard specification of the reliable communication problem between a source
process ps and a target process pt requires the following properties to be satisfied:

117

118CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

safety - if a correct process pt delivers a content c from ps, then c has been sent by
ps; liveness: if a correct process ps sends a content c to a correct process pt , then
c is eventually delivered by pt .
In the environment here considered, the failure state of every process may con-
tinuously change over time and no process is permanently correct. Furthermore,
processes can be compromised while they are exchanging messages, namely be-
tween the computation and send phase when contents are generated, enqueued
for the transmission, and then diffused. It follows that every process which aims
to reliably communicate with another peer must remain correct for at least two
consecutive rounds to diffuse any message. Therefore, we define as correct source
a process ps that is correct for two consecutive round rx and rx+1, and computes a
content c at rx .

Another aspect to take into account is that a message may require several
rounds to reach a target process, due to the network topology and to the protocol
employed diffusing it. Nevertheless, the state of every process may change over
time and a target process must be not permanently faulty to deliver a content sent
by a source. Therefore, we say that a process pi is not permanently faulty if for
every round rx there always exists a round ry ≥ rx where pi is correct.

Given the considerations stated above, we define a specification for the reliable
communication problem with Mobile Byzantine Faults.

Reliable communication with MBF specification. Given a correct source process
ps and target process pt , a reliable communication primitive guarantees that:

� safety - if pt is correct at rx and it delivers a content c from ps, then c has
been sent by ps;

� liveness: if a correct source ps sends a content c to a not permanently faulty
process pt , then pt eventually delivers c from ps.

14.3 Reliable communication in asynchronous systems

We show in this section that is impossible to design a protocol P able to solve the
reliable communication problem between a correct source ps and a target pt when
the assumed distributed system is asynchronous and there is only one mobile
Byzantine agent.

When considering an asynchronous system, correct processes still execute a
deterministic distributed protocol P, but there is no known upper bound on the
time demanded for local computation, neither on the time required to deliver a
message through a link.

Theorem 27. There exists no distributed protocol P that is able to solve the re-
liable communication problem specification with Mobile Byzantine Faults in an
asynchronous system even if (i) the source process ps is permanently correct, (ii)
there exists only one mobile Byzantine agent, and (iii) processes are aware of their
failure state.

14.3. RELIABLE COMMUNICATION IN ASYNCHRONOUS SYSTEMS 119

Proof. The reliable communication specification requires both safety and liveness
property to be satisfied. We show that no protocol P can ensure the liveness prop-
erty, even assuming an always correct source, only one mobile Byzantine agent,
and the aware failure model.

The reason is that every reliable link may never guarantee reliable delivery in
the assumed system model. The reliable delivery property of a reliable link is
guaranteed only between correct processes. Given the no constraints supposed
on the link transmission delay, even assuming a permanently correct source con-
tinuously sending messages relative to a content c, such messages may never be
delivered by the links of the source, because any receiver pi may be continuously
and temporarily compromised by a mobile agent during each message transmis-
sion. Thus no process in the system may receive a message from the source, even
being permanently not faulty.

On the other hand, we highlight the solvability of safe communication (i.e.
enforcing only the safety property of reliable communication) in the case of an
asynchronous system. Specifically, it is possible to design a “best-effort” protocol
that ensures safety while trying to maximize the number of delivered contents.

Theorem 28. Safe communication can be achieved with a non-degenerated pro-
tocol in an asynchronous distributed system in the aware mobile Byzantine failure
model.

Proof. We show a “best-effort” solution for the safe communication problem. Let
us assume every process pi having access to a local clock Ti . It is reasonable to
assume that a Byzantine agent which is forcing a process pk to send a message m
must remain on pk till the end of its transmission to guarantee the link message
delivery. Let us consider the following protocol:

� the source process ps continuously sends the message 〈s, t, c〉;

� every process pk stores and continuously relays any message 〈s, t, c〉 received
from ps;

� every process pk stores every message 〈s, t, c〉 received from a process pi , ps
jointly with the timestamp tx

〈s,t,c〉 containing the value of Tk at the reception of
〈s, t, c〉;

� every process pk that stores a set of 2f + 1 tuples
M := [〈〈s, t, c〉, t1

〈s,t,c〉〉, 〈〈s, t, c〉, t
2
〈s,t,c〉〉, . . . , 〈〈s, t, c〉, t

2f +1
〈s,t,c〉〉] received from

distinct neighbors such that ∀x<y, tx〈s,t,c〉 < ty
〈s,t,c〉 and t2f +1

〈s,t,c〉 − t1
〈s,t,c〉 < λ

continuously relays 〈s, t, c〉;

� if process pt relays 〈s, t, c〉 then it delivers c.

We show that the protocol defined above guarantees the safety property of
reliable communication in an asynchronous system. Let us consider a single agent
initially placed on a process p1 , pi , that starts the transmission of a spurious
message 〈s, t, ĉ〉 to a process pi at time tstart1 , and concludes at time tend1 when 〈s, t, ĉ〉

120CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

P1

P2

P3

t1
t2

t3

> ρ≥ ρ

m

m

m

time

Figure 14.1: Graphical execution example of Theorem 28.

is received by pi . Process pi stores 〈s, t, ĉ〉 with the timestamp t1
〈s,t,ĉ〉 obtained by

its local clock at the reception of the message. Subsequently, the Byzantine agent
may move on a different process p2 and start sending another copy of 〈s, t, ĉ〉 to
pi at time tstart2 , that it concludes at time tend2 when the message is received by
pi . Again, process pi stores 〈s, t, ĉ〉 with the timestamp t2

〈s,t,ĉ〉. And once more, the
agent can move another time on a process p3 and iterate again the transmission
of 〈s, t, ĉ〉. According with the absence of link latency guarantees, it could happen
that tendi − tstarti → 0. On the other hand, tx+2

〈s,t,ĉ〉 - tx
〈s,t,ĉ〉 > λ, because a mobile agent

must move twice in order to send a spurious message for three distinct processes.
It follows that assuming f mobile Byzantine agents, if a process pi receives more
than 2f copies of a message m in a time windows shorter than λ, then it can safely
accept the contained content. For ease of explanation, the execution stated above
is depicted in Figure 14.1.

14.4 Reliable communication in synchronous systems

14.4.1 RC-Sasaki-et-al. protocol [71]

Sasaki et al. [71] defined a reliable communication protocol to solve mobile Byzan-
tine agreement in multi-hop routed networks (where messages are relayed over
and only fixed routes). Specifically, it allows all correct processes but 2f (faulty or
cured at transmission time) in round rx to reliably communicate with all correct
processes in round rx+�. The Sasaki et al. protocol is not aimed to enable each
correct process to spread its contents to all eventually correct peers, because only
a certain number of nodes need to reliably communicate to succeed in solving the
agreement. We slightly adapt the protocol they defined to address our reliable com-
munication specification, providing the pseudo-code in Algorithm 2 and referring
to such a protocol with RC-Sasaki-et-al.. In detail, differently from the pro-
tocol defined in [71], we substitute the tamper-proof round counter assumed by

14.4. RELIABLE COMMUNICATION IN SYNCHRONOUS SYSTEMS 121

s t

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

1

2

3

Figure 14.2: Example of execution of RC-Sasaki-et-al. protocol

Sasaki et al. with the safe implementation provided by Bonnet et al. [10], allowing
each process to retrieve the actual round index at the beginning of the computation
phase (the round counter is necessary to the proper execution of the protocol), and
we extend it to diffuse not only a binary value. In RC-Sasaki-et-al., between
every pair of processes ps and pt there exist a disjoint path solution Πs,t , |Πs,t | = α in
which every path has length at most �, Πs,t is known by every peer. Every process
relays messages between ps and pt only in specific rounds, namely every � ones.
Furthermore, every process relays a message m at round rx+1 if m was received
from more than �f neighbors at the round rx : this allows to bound the number of
processes that concurrently may send a spurious message to �f .

Figure 14.2 depicts an example of execution of a reliable communication in-
stance from a source process ps to a target process pt with RC-Sasaki-et-al..
In such an example, f = 1, α = 7 and � = 3. The numbers in black represent
the round when a message from ps to pt is relayed, the ones in red are the rounds
when processes are compromised.

14.4.2 RCMB protocol

We define a new solution addressing the reliable communication problem, RCMB.
Differently from the one proposed by Sasaki et al., it aims to keep the number of
processes that concurrently send spurious contents bounded over time.

Reliable Communication Mobile Byzantines - RCMB:

� the source process ps computes the content c addressed to a target process
pt at round rx and saves message 〈s, t, c〉 in a set variable delivered.

122CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

Algorithm 7 RC-Sasaki-et-al.

Send phase
1: if cured = TRUE then
2: to_send ← ∅
3: C ← ∅
4: for 〈∗, receiver〉 ∈ to_send do
5: SEND(*, receiver)
6: to_send ← ∅

Receive phase
7: receivedmsg ← ∅
8: receivedr ← ∅
9: for RECEIVE(〈CNT, s, t, c〉, q) do

10: receivedmsg ← receivedmsg ∪ 〈〈CNT, s, t, c〉, q〉

11: for RECEIVE(〈RN, r̄〉, q) do
12: receivedr ← receivedr ∪ 〈r̄ , q〉

Computation phase
13: function init
14: to_send ← ∅
15: r ← 0
16: C ← ∅

17: function RC-SEND(c,t)
18: C ← C ∪ 〈c, t〉

19: function RC-DELIVER(c,s)

20: r ← getMajority(receivedr , σ)

21: if r mod � = � − 1 then
22: for 〈c, t〉 ∈ C do
23: for πks,t ∈ Πs,t do
24: to_send ← to_send ∪ 〈〈CNT, s, t, c〉, πks,t[1]〉

25: C ← ∅

26: for 〈〈CNT, s, t, c〉, q〉 ∈ receivedmsg do
27: if πks,t[r mod �] , s or πks,t[(r mod �) + 1] , t then
28: receivedmsg ← receivedmsg \ {〈〈CNT, s, t, c〉, q〉}
29: else if r mod � , � − 1 then
30: to_send ← to_send ∪ 〈〈CNT, s, t, c〉, πks,t[(r mod �) + 2]〉

31: for M〈s,t,c〉 ←
⋃
〈〈CNT, s, t, c〉, ∗〉 ∈ receivedmsg do

32: if |M〈s,t,c〉| > σ then
33: to_send ← to_send ∪ 〈〈CNT, s, t, c〉, q〉
34: if j = t then
35: RC-DELIVER(c, s)

36: for q ∈ Γ(j) do
37: to_send ← to_send ∪ 〈〈RN, r + 1〉, q〉

14.4. RELIABLE COMMUNICATION IN SYNCHRONOUS SYSTEMS 123

� any message 〈s, t, c〉 stored in delivered is removed after τ rounds.

� every process pi queues every message stored in delivered at round rx to be
sent in round rx+1 to itself and to all of its neighbors;

� if a correct process pi receives a message 〈s, t, c〉 from ps at round rx , then pi
saves 〈s, t, c〉 in a set variable delivered, and it delivers c from ps if i = t;

� if a correct process pi receives more than σ copies of a message 〈s, t, c〉 from
distinct neighbors at round rx , then pi saves 〈s, t, c〉 in a set variable delivered,
and it delivers c from ps if i = t;

The parameter σ is a safety threshold: at least σ + 1 copies of the same content
that must concurrently be received to deliver it. The parameter τ allows processes
that were faulty in the unaware failure model to remove the spurious contents that
may have been injected by malicious agents. It can be ignored in the aware failure
model because cured processes directly wipe their local variables. Notice that, in
case of τ = 1, every message stored in delivered at round rx is queued to be sent at
round rx+1 and then dropped.

14.4.3 Reliable communication correctness conditions

We provide several correctness conditions enabling reliable communication with
one of the two protocols presented in the previous subsection. We investigate the
problem solvability in two scenarios: a correct source and a permanently correct
source (that is, a source that is correct in every round rx). The latter case is moti-
vated by the fact that such an additional assumption enables solving the reliable
communication problem in further topologies.

Unaware failure model

Theorem 29. Reliable communication cannot be solved in the unaware mobile
Byzantine failure model with n ≤ 4f .

Proof. The result can be deduced from the lower bound implementing the safe regis-
ter abstraction in the unaware mobile Byzantine failure model [18]. Let us consider
a set of 4f processes connected through a complete communication network. Let
us assume a correct source ps that computes a content c at round r0, that ps sends
it to all other processes at round r1 and that pt and other f −1 processes are faulty
at r1. Thus, pt is faulty while the reliable communication protocol is diffusing c
according to a distributed protocol P. Subsequently, the mobile Byzantine agents
move on process ps and on f − 1 other processes between rounds r1 and r2. It
follows that at round r2 there are 2f processes that share a state that contains c
and 2f processes (f Byzantine faulty at r2 and f that were faulty in r1) that may
share a state injected by the adversary, thus it is not possible to distinguish which
set of processes is storing the content sent by the correct source.

Theorem 30. The RCMB protocol with σ = (τ + 1)f guarantees safety of reliable
communication in the unaware mobile Byzantine failure model.

124CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt delivers a
content ĉ at round rx from ps but ĉ has not been sent by its source (i.e. ĉ is a
spurious content).

The delivery of a content ĉ in the RCMB protocol is independent from the process
local variables and it is only determined by the messages that are currently received
in a round. On the other hand, the messages that are diffused in a round depends
on the content of the delivered variable.

The content ĉ has not been received by a process through a link with the
source process ps according to our hypothesis. It follows that there have been
more than σ = (τ + 1)f processes that sent 〈s, t, ĉ〉 to pt at round rx . The mobile
Byzantine agents can force f processes to send 〈s, t, ĉ〉 at round rx and they can
inject 〈s, t, ĉ〉 in the delivered sent of the processes that were faulty at rx−k , k ∈ [1, τ]
if τ ≥ 1. Thus, at most τf correct processes may potentially relay 〈s, t, ĉ〉 in a round
because they were previously faulty, since after τ rounds 〈s, t, ĉ〉 is dropped from
the delivered set. Every other correct processes process pj , pt sends 〈s, t, ĉ〉 at
ri only if either pj received such a content through a link with process ps, or from
more than (τ+1)f neighbors. It follows that at most (τ+1)f processes in the system
may concurrently send 〈s, t, ĉ〉. Thus content ĉ has been sent by its source. This
leads to a contradiction and the claim follows.

Theorem 31. The RCMB protocol with τ = 1 and σ = (τ + 1)f achieves reliable com-
munication in complete networks of size n > 4f in the unaware mobile Byzantine
failure model.

Proof. We verified the safety property of the RCMB protocol with σ = (τ + 1)f in
the unaware mobile Byzantine failure model in Theorem 30. We need to prove the
liveness property of reliable communication employing the protocol in a complete
network of size n > 4f considering τ = 1.

Let us assume a correct source ps that computes a content c at r0 and sends
it at r1 to itself and to all of its neighbors according to the RCMB algorithm. It
follows that more than 3f processes queue 〈s, t, c〉 to be sent at r2, because it has
been received through a link from its source. At any round rx there are at most
f processes that get faulty and at most f ones that were faulty in rx−1. Thus, all
correct processes receive at least 2f +1 copies of 〈s, t, c〉 from distinct nodes at every
round ry ≥ r2 and they relay it at the subsequent round. It follows that message
〈s, t, c〉 is relayed by at least 2f + 1 > σ processes on avery round ry ≥ r2, and that
process pt delivers c in a round rz ≥ ry it is correct.

Theorem 32. The RCMB protocol with τ = 1 and σ = (τ + 1)f achieves reliable com-
munication in the unaware mobile Byzantine failure model in a k-clique community
network topology with k > 4f + 1.

Proof. We verified the safety property of the RCMB protocol with σ = (τ + 1)f in
the unaware mobile Byzantine failure model in Theorem 30. We need to prove
the liveness property of reliable communication in a k-clique community network
topology with k > 4f + 1 considering τ = 1.

14.4. RELIABLE COMMUNICATION IN SYNCHRONOUS SYSTEMS 125

Let us assume a correct source ps that computes a content c at round r0 and
sends it at round r1. Given a k-clique community network, two processes ps and
pt are either both parts of a k-clique, or they are included in two distinct k-cliques
that are connected through a sequence of adjacent ones.

Let us assume that ps and pt are both parts of a k-clique K0. We showed in
Theorem 31 that all correct processes in a complete network of at least 4f +1 nodes
continuously relay a message 〈s, t, c〉 sent by a correct sender. It follows that pt
delivers c in a round rx ≥ r1 it is correct.

Let us assume that pt is part of a k-clique K1 adjacent to K0. All correct
processes but 2f in K0 sends 〈s, t, c〉 at every round rx ≥ r2 to all of their neighbors.
It follows that pt receives at least 2f + 1 > σ copies of 〈s, t, c〉 on every round rx ≥ r2
because it is connected to at least 4f +1 nodes in K0. Thus, it delivers c in a round
ry ≥ r2 it is correct.

Such an argumentation extends to any process in a k-clique reachable through
a sequence of adjacent k-cliques.

Theorem 33. The RCMB protocol with τ = 2 and σ = (τ + 1)f achieves reliable com-
munication in the unaware mobile Byzantine failure model in a network topology
G where n > 6f and x(G) > 6f .

Proof. The condition x(G) > 6f allows to arrange nodes of a graph G in a DKLO
with k > 6f of two or more levels [L0, · · · Lm] with respect to any vertex. Let us
consider a correct source ps that computes a content c at r0 and sends it at round
r1.

Let us assume that the DKLO with respect to ps is composed of 2 levels. It
follows that all processes have a link with the source and that all the correct ones
receive 〈s, t, c〉 at round r1 directly from the source, thus they save it into their
delivered set and relay it at r2. Subsequently, the mobile Byzantine agents can
move between r1 and r2. At round r2 all correct processes are connected to at least
4f + 1 > σ processes that relays m. It follows they relay 〈s, t, c〉 at round r3 and at
all the subsequent rounds.

Let us assume that the DKLO with respect to ps is composed by 3 or more levels.
At round r1 all correct processes in L1 receive 〈s, t, c〉 directly from the source, thus
they save it into their delivered set and they relay it at r2. Subsequently, the mobile
Byzantine agents can move between r1 and r2, and at round r2 all correct processes
in L1 relay m to all nodes in L2. Every process in L2 has at least 6f + 1 neighbors
in L1 and at least 4f + 1 > σ of them relay 〈s, t, c〉. It follows they all save and relay
〈s, t, c〉 at round r3. Between rounds r2 and r3 the mobile Byzantine agents move
and compromise further f processes. It follows that at round r3 every process in
levels L1, L2 and L3 receives 〈s, t, c〉 from at least 3f +1 > σ processes, because each
of them has at least 6f + 1 neighbors inside the first three levels and at most 3f
processes may have been compromised from the beginning of the transmission. It
follows that all correct processes in the first three levels relay 〈s, t, c〉 at every round
ri ≥ r4. This reasoning extends considering more levels.

126CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

Theorem 34. The RC-Sasaki-et-al. protocol with σ = �f achieves reliable
communication in the unaware mobile Byzantine failure model in networks G(α, �)
where the inequality α > 2�f is satisfied [71].

Proof. Every reliable communication instance between a source process ps and a
destination process pt lasts exactly � rounds in the RC-Sasaki-et-al. protocol.
The inequality α > 2�f guarantees that between every pair of processes there exist
at least 2α + 1 disjoint paths of length at most �. Any process can relay messages
between peers ps and pt at only one defined round every � ones. It follows that the
mobile Byzantine agents can compromise at most �f processes (and thus disjoint
paths) in � rounds, and thus no correct process receives more than σ copies of a
spurious content in a round. The assumption α > 2�f guarantees instead that
there always exist �f + 1 disjoint paths that are not compromised by Byzantine
agents in every communication instance.

Theorem 35. The RCMB protocol with τ = 1 and σ = (τ + 1)f achieves reliable com-
munication from a permanently correct source in the unaware mobile Byzantine
failure model in networks where h(G) > 4f .

Proof. We verified the safety property of the RCMB algorithm with σ = (τ + 1)f in
the unaware mobile Byzantine failure model in Theorem 30. We need to prove the
liveness property of reliable communication employing the protocol in networks
where h(G) > 4f in case of a permanently correct source and τ = 1.

The condition h(G) > 4f allows to arrange the nodes of a network G in a MKLO
with k = 4f + 1 with respect to every vertex of G.

Let us assume that process ps sends a content c employing RCMB to process
pt at round r0. Process pt can either be in L1 or in Lz>1. In the former case it
receives 〈s, t, c〉 through a link from ps starting from round rx ≥ r1 it is correct, and
thus it eventually delivers the content c. In the latter case, all correct processes
in L1 receive 〈s, t, c〉 at every round rx ≥ r1. Thus, they queue 〈s, t, c〉 to be sent
at every round ry ≥ r2. At every round, there are at most f processes that can be
faulty among all levels. It follows that at least 2f + 1 processes in L1 relay 〈s, t, c〉
to processes in L2 at every round ry ≥ r2, because f nodes may have been faulty at
r1 and f ones are faulty at r2. Therefore, all correct processes in L2 relays 〈s, t, c〉
to all of their neighbors at every round rz ≥ r3, and if process pt is in L2 then it
delivers m at rz ≥ r3 when it is correct. The reasoning extends to any other level
given the assumption of h(G) > 4f , and the claim follows.

Aware failure model

Theorem 36. Reliable communication cannot be solved in the aware mobile
Byzantine failure model with n ≤ 3f .

Proof. The result can be deduced from the lower bound implementing the safe reg-
ister abstraction in the aware mobile Byzantine failure model [18]. Let us consider
a set of 3f processes connected through a complete communication network. Let
us assume a correct source ps that computes a content c at round r0, that ps sends
it to all other processes at round r1 and that pt and other f −1 processes are faulty

14.4. RELIABLE COMMUNICATION IN SYNCHRONOUS SYSTEMS 127

at r1. Thus, pt is faulty while the reliable communication protocol is diffusing
〈s, t, c〉 according to a distributed protocol P. Subsequently, the mobile Byzantine
agents moves on process ps and on f − 1 other processes between rounds r1 and
r2. It follows that at round r2 there are f processes that share a state that contains
〈s, t, c〉, f cured processes (i.e. with wiped local variables) and f faulty processes.
Thus, it is not possible to distinguish which set of processes (the f faulty or the f
not cured ones) is storing the content sent by the correct source.

Theorem 37. The RCMB protocol with σ = f guarantees safety of reliable commu-
nication in the aware mobile Byzantine failure model.

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt has delivered
a content ĉ at round rx from ps but ĉ has not been sent by its source (i.e. ĉ is a
spurious content).

The delivery of a content in RCMB is independent from the process local variables
and it is only determined by the messages that are received in a round. The
message 〈s, t, ĉ〉 has been received by no process through a link with the source
process ps according to our hypothesis. It follows there have been more than σ = f
processes that sent 〈s, t, ĉ〉 to pt at round rx . The mobile Byzantine agents can
force f processes to send 〈s, t, ĉ〉 at round rx . The correct processes at rx that were
faulty at rx−1 turn to the cured state, thus they wipe their local variables (and thus
their delivered set) and remove any message previously queued for the submission.
Any correct process pj , pt sends 〈s, t, ĉ〉 at rx only if either pj has received such a
message through a link with process ps, or from more than f neighbors in a round.
It follows that at most f processes in the system may concurrently send 〈s, t, ĉ〉.
Thus content ĉ has been sent by its source. This leads to a contradiction and the
claim follows.

Theorem 38. The RC-Sasaki-et-al. protocol with σ = (�−1)f achieves reliable
communication in the aware mobile Byzantine failure model in networks G(α, �)
where the inequality α > (2� − 1)f is satisfied.

Proof. The cured processes remain silent because they drop every message previ-
ously queued for the submission. In the first round of a reliable communication
instance, only the source is allowed to transmit. It follows that no process can
diffuse spurious messages in such a round. Therefore, spurious contents can only
traverse (�− 1)f disjoint paths in a reliable communication instance. On the other
hand, Byzantine agents can still compromise f processes per round, preventing
peers from receiving and relaying messages, and thus up to �f ones may be com-
promised in every communication instance. The inequality follows considering
that (� − 1)f + 1 copies of a content received in a single round are sufficient to
ensure safety and that at most �f process can be compromised during a reliable
communication instance.

Theorem 39. The RCMB protocol with σ = f achieves reliable communication in
complete networks of size n > 3f in the aware mobile Byzantine failure model.

128CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

Proof. We verified the safety property of the RCMB algorithm with σ = f in the
aware mobile Byzantine failure model in Theorem 37. We need to prove the liveness
property of reliable communication in complete networks of size n > 3f .

Let us assume a correct source ps that computes a content c at r0 and sends
it at r1 to itself and all of its neighbors according to the RCMB algorithm. It follows
that ps and at least 2f processes queue 〈s, t, c〉 to be sent at r2, because 〈s, t, c〉 has
been received through a link from its source. At any round rx there are at most
f processes that are faulty and at most f ones that were faulty in rx−1. Thus, all
correct processes receive at least f + 1 > σ copies of c from distinct nodes at any
round ry ≥ r2 and they relay it in the subsequent round. It follows that message
〈s, t, c〉 is relayed by at least f + 1 processes at any round ry ≥ r2, and that process
pt delivers it in a round rz ≥ r2 it is correct.

Theorem 40. The RCMB protocol with σ = f achieves reliable communication in
the aware mobile Byzantine failure model in i) k-clique community networks with
k > 3f + 1 and ii) in graphs where x(G) > 5f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in the
unaware mobile Byzantine failure model in Theorem 37.

The liveness property in case of k-clique community networks with k > 3f +

1 or networks where x(G) > 5f follows from the same argumentation provided
respectivelly in Theorems 32 and 33 considering that σ is reduced to f .

Theorem 41. The RCMB protocol with σ = f achieves reliable communication
from a permanent correct source in the aware mobile Byzantine failure model in
networks where h(G) > 3f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in Theorem
37.

The liveness property in networks where h(G) > 3f follows from the same
argumentation provided in Theorem 35 considering that σ is reduced to f .

Graph parameters comparison

We provide in this section some examples of the topology where the condition
α > 2�f by Sasaki et al. [71] is not satisfied, but the reliable communication
problem remains solvable.

Theorems 32 and 40 identify the k-clique community as a topology where the re-
liable communication problem is solvable. There exist k-clique community graphs
where α ≤ 2�f but k > 4f + 1, an example is depicted in Figure 14.3a: a 6-clique
community graph. According with Theorem 32, it is possible to provide reliable
communication tolerating one mobile Byzantine agents (f = 1) in such a topology
(indeed, k > 4f + 1 = 5) considering the unaware failure model with RCMB. On
the other hand, in such a graph � = 3 and α = 5, thus the inequality α > 2�f is
not satisfied for f ≥ 1 and the algorithm by Sasaki et al. [71] does not guarantee
reliable communication in such a network.

14.5. CONCLUSION 129

s

p

(a)

0

1

2

3

4

5

6

7
8

(b) (c)

Figure 14.3: (a) 6-clique community example. (b) Ψ(G) = 5, α > 2�f not satisfied
with f > 1. (c) 〈7,14〉-multipartite cycle.

Theorems 35 and 41 identify graphs where the parameter h(G) is greater than
certain values as topologies where the reliable communication problem is solv-
able from a permanent correct source. There exist topologies where α ≤ 2�f but
h(G) > 4f , and an example is depicted in Figure 14.3b. According with Theorem
34, one mobile Byzantine agent (f = 1) cannot be tolerated by the algorithm by
Sasaki et al [71], indeed α = 5 and � = 3. Instead, Ψ(G) > 4f in such an example,
allowing to achieve reliable communication against one mobile Byzantine agent
with algorithm RCMB.

The conditions defined in Theorems 33 and 40 identify new topologies where it
is possible to solve the reliable communication problem. Specifically, there exist
topologies where α ≤ 2�f but x(G) > 6f . An example is depicted in Figure 14.3c:
a 〈7,14〉-multipartite cycle. In such a network, X (G) = 7, α = 14 and � = 7.
According with Theorem 33 it is possible to achieve reliable communication against
one mobile Byzantine agents (indeed, X (G) > 6f) with Algorithm RCMB. On the
other hand the inequality α > 2�f is not satisfied in such a topology, so the
algorithm by Sasaki et al. [71] cannot guarantee reliable communication in such a
setting.

14.5 Conclusion

We analyzed in this chapter the reliable communication problem in static dis-
tributed systems affected by Mobile Byzantine Faults. We highlighted the specific
difficulties that arise when considering mobile malicious agents able to move in the
system and to continuously compromise nodes. We showed that the reliable com-
munication problem arises even in complete communication networks and that it
is not possible to address it in an asynchronous system. Then, starting from the
only solution available in the literature, the one proposed by Sasaki et al. [71],
we identified additional settings where the problem is solvable. Subsequently, we
defined a new solution to the reliable communication protocol, RCMB, and we iden-
tified new multi-hop topologies where reliable communication primitives remain

130CHAPTER 14. RELIABLE COMMUNICATION WITH MOBILE BYZANTINE FAULTS

feasible.
These contributions pave the way toward deeper analyzes of reliable communi-

cation and other related distributed system problems with mobile Byzantine faults
in multi-hop networks. A particularly interesting question is the feasibility of tol-
erating both mobile Byzantine failures and self-stabilization (as in the register con-
struction of Bonomi et al. [20]) for the purpose of reliable communication. To our
knowledge, this problem was only shown solvable by Maurer et al. [57] for the static
Byzantine case.

131

Chapter 15

Conclusion

In this thesis we investigated the Byzantine-tolerant reliable communication prob-
lem. Namely, we sought for distributed solutions enabling correct message ex-
changes between all processes, guaranteeing authorship, integrity, and delivery of
the informations exchanged.

Although several solutions to the problem are available in the literature, some
of them cannot realistically be employed due to the prohibitive amount of mes-
sages they need to spread, others require specific topological condition that are
computationally hard to evaluate.

The contributions of this thesis are threefold. In the static network scenario, we
proposed modifications and improvements to the state-of-art protocol for unknown
networks, DolevU, reducing the amount of messages to exchange solving the re-
liable communication problem, in the globally bounded Byzantine failure model,
from factorial to nearly quadratic in several synchronous systems.
Nevertheless, the achieved performances are partially due to the considered syn-
chrony assumption, guaranteeing progress in the computation. Moreover, the
computational complexity of the procedure that verifies the validity of the contents
exchanged is unmodified with respect to the base protocol DolevU, and requires
the resolution of a NP-Complete problem.
We therefore proposed an alternative approach: leveraging a limited number of
computational expensive reliable communication instances (like BFT) to setup an
efficient primitive. Specifically, we employed a solution to the Byzantine tolerant
topology reconstruction problem to partial infer the structure of the communication
network and then setup an optimal primitive. Also, we defined a cryptographic pro-
totype of an efficient authenticated reliable communication protocol, that initially
enables all processes to generate and distribute cryptographic keys supporting a
digital signature primitive, and then guarantees reliable and efficient content ex-
changes.
In the dynamic network scenario, there was only one contribution in the literature
to the Byzantine tolerant reliable communication problem in dynamic distributed
systems. Despite it precisely characterizes the conditions enabling reliable com-
munication in the globally bounded failure model, the conditions provided are not
“general” and need to be evaluated for every content exchange between two pro-

133

134 CHAPTER 15. CONCLUSION

cesses. We therefore defined an alternative network condition through the exten-
sion of a known class of dynamic networks, the 1-interval connected. The defined
condition enables reliable communication between all processes at any time (i.e.,
it guarantees solvability of the any-to-any reliable communication problem) in a
synchronous dynamic distributed system.
Moreover, we extended the CPA protocol to dynamic distributed systems. In more
details, we considered the locally bounded Byzantine failure model and we de-
fined DynCPA, solving the reliable communication problem in dynamic distributed
systems. We then characterized the necessary and sufficient conditions enabling
one-to-all reliable communication in the assumed failure model, and we provided
alternative network conditions, on 1-interval connected topologies, guaranteeing
the solvability of the any-to-any reliable communication problem with DynCPA.

Finally, the reliable communication problem was analyzed considering the mo-
bile Byzantine failure model in static distributed systems. We provided an alterna-
tive problem specification that considers the potential variable state of all processes
(between correct and faulty), and after demonstrating the impossibility of solving
the problem in an asynchronous system, we characterized the necessary condi-
tions enabling reliable communication in synchronous systems, and we identified
several network topologies where the reliable communication primitive can be im-
plemented.

Following from this work, there are still several open problems that could be
worth investigating in the short term and long term future. Among the former, we
showed the optimality of DolevR in the number of message exchanges solving the
one-to-one reliable communication problem, precisely that is linear in the size n of
the system. Nevertheless, it is still not clear whether the one-to-all reliable com-
munication problem (where a source processes aims to exchange a content with all
others) is only solvable with a protocol having O(n2) message complexity or more
efficient solutions are definable. Moreover, in our analysis of the reliable communi-
cation problem in dynamic distributed systems, we consider synchronous systems
in order to guarantee that some evolutions of the communication network are not
lost by the latency of the processes. It would be interesting to identify network
conditions (if possible) supporting reliable communication even in asynchronous
dynamic systems (further the ones that considers repeated availability of all links).
Finally in the long term, it could be worth addressing the reliable communication
problem even in dynamic distributed system with mobile Byzantine faults. De-
spite the problem may have interesting margin of investigation, given that the both
dynamic networks and dynamic failures require more complex problems to be ad-
dressed, and even stronger network assumptions, it could be worth investigating
the possibility to move to weaker or probabilistic specifications that may better
address the problem despite the high dynamicity of the system.

Bibliography

[1] Communication, https://www.merriam-webster.com/dictionary/
communication.

[2] Jiří Adámek and Václav Koubek. Remarks on flows in network with short
paths. Commentationes Mathematicae Universitatis Carolinae, 12(4):661–667,
1971.

[3] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kol-
man, Ondrej Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded
cuts and flows. ACM Trans. Algorithms, 7(1):4:1–4:27, 2010.

[4] Roberto Baldoni, Silvia Bonomi, Leonardo Querzoni, and Sara Tucci Piergio-
vanni. Investigating the existence and the regularity of logarithmic harary
graphs. Theor. Comput. Sci., 410(21-23):2110–2121, 2009.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. science, 286(5439):509–512, 1999.

[6] Albert-László Barabási et al. Network science. Cambridge university press,
2016.

[7] Vartika Bhandari and Nitin H Vaidya. Implementing a reliable local broad-
cast primitive in wireless ad hoc networks. https://disc.georgetown.
domains/publications/rbcast-tech.pdf.

[8] Vartika Bhandari and Nitin H. Vaidya. On reliable broadcast in a radio net-
work. In Marcos Kawazoe Aguilera and James Aspnes, editors, Proceedings of
the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2005, Las Vegas, NV, USA, July 17-20, 2005, pages 138–147.
ACM, 2005.

[9] Béla Bollobás. Random Graphs, Second Edition, volume 73 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, 2011.

[10] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-
Butucaru. Tight bound on mobile byzantine agreement. Theor. Comput. Sci.,
609:361–373, 2016.

135

https://www.merriam-webster.com/dictionary/communication
https://www.merriam-webster.com/dictionary/communication
https://disc.georgetown.domains/publications/rbcast-tech.pdf
https://disc.georgetown.domains/publications/rbcast-tech.pdf

136 BIBLIOGRAPHY

[11] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Boosting the efficiency
of byzantine-tolerant reliable communication. In Stabilization, Safety, and
Security of Distributed Systems - 22nd International Symposium, SSS 2020,
Austin, USA, November 18-21, 2020, Proceedings, Lecture Notes in Computer
Science (to appear).

[12] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzantine
reliable broadcast made practical. In 8th Latin-American Symposium on De-
pendable Computing, LADC 2018, Foz do Iguaçu, Brazil, October 8-10, 2018,
pages 155–160. IEEE, 2018.

[13] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Reliable broadcast in
dynamic networks with locally bounded byzantine failures. In Taisuke Izumi
and Petr Kuznetsov, editors, Stabilization, Safety, and Security of Distributed
Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November
4-7, 2018, Proceedings, volume 11201 of Lecture Notes in Computer Science,
pages 170–185. Springer, 2018.

[14] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzantine
reliable broadcast made practical simulation code https://github.com/
giovannifarina/BFT-ReliableCommunication, July 2019.

[15] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop byzantine
reliable broadcast with honest dealer made practical. J. Braz. Comput. Soc.,
25(1):9:1–9:23, 2019.

[16] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Broadcasting infor-
mation in multi-hop networks prone to mobile byzantine faults. In Networked
Systems - 8th International Conference, NETYS 2020, Marrakech, Morocco, June
03-05, 2020, Revised Selected Papers, Lecture Notes in Computer Science (to
appear), 2020.

[17] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Une méthode efficace
pour éviter la propagation des fake news. In ALGOTEL 2020–22èmes Ren-
contres Francophones sur les Aspects Algorithmiques des Télécommunications,
2020.

[18] Silvia Bonomi, Antonella Del Pozzo, and Maria Potop-Butucaru. Optimal
self-stabilizing synchronous mobile byzantine-tolerant atomic register. Theor.
Comput. Sci., 709:64–79, 2018.

[19] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Optimal storage under unsynchronized mobile byzantine faults. In
36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong Kong,
Hong Kong, September 26-29, 2017, pages 154–163. IEEE Computer Society,
2017.

[20] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Brief announcement: Optimal self-stabilizing mobile byzantine-
tolerant regular register with bounded timestamps. In Taisuke Izumi and

https://github.com/giovannifarina/BFT-ReliableCommunication
https://github.com/giovannifarina/BFT-ReliableCommunication

BIBLIOGRAPHY 137

Petr Kuznetsov, editors, Stabilization, Safety, and Security of Distributed Sys-
tems - 20th International Symposium, SSS 2018, Tokyo, Japan, November 4-7,
2018, Proceedings, volume 11201 of Lecture Notes in Computer Science, pages
398–403. Springer, 2018.

[21] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Approximate agreement under mobile byzantine faults. Theor. Com-
put. Sci., 758:17–29, 2019.

[22] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput.,
75(2):130–143, 1987.

[23] Harry Buhrman, Juan A. Garay, and Jaap-Henk Hoepman. Optimal resiliency
against mobile faults. In Digest of Papers: FTCS-25, The Twenty-Fifth Inter-
national Symposium on Fault-Tolerant Computing, Pasadena, California, USA,
June 27-30, 1995, pages 83–88. IEEE Computer Society, 1995.

[24] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction
to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011.

[25] Arnaud Casteigts. A Journey through Dynamic Networks (with Excursions).
2018.

[26] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola San-
toro. Time-varying graphs and dynamic networks. Int. J. Parallel Emergent
Distributed Syst., 27(5):387–408, 2012.

[27] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

[28] Reinhard Diestel. Graph Theory. Springer Berlin Heidelberg, 2017.

[29] Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks
with power estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280,
1970.

[30] Danny Dolev. Unanimity in an unknown and unreliable environment. In 22nd
Annual Symposium on Foundations of Computer Science, Nashville, Tennessee,
USA, 28-30 October 1981, pages 159–168. IEEE Computer Society, 1981. DOI:
10.1109/SFCS.1981.53.

[31] Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30,
1982. DOI : 10.1016/0196-6774(82)90004-9.

[32] Shlomi Dolev, Omri Liba, and Elad Michael Schiller. Self-stabilizing byzan-
tine resilient topology discovery and message delivery. CoRR, abs/1208.5620,
2012.

[33] Shlomi Dolev, Omri Liba, and Elad Michael Schiller. Self-stabilizing byzantine
resilient topology discovery and message delivery - (extended abstract). In
Networked Systems - First International Conference, NETYS 2013, Marrakech,
Morocco, May 2-4, 2013, Revised Selected Papers, pages 42–57, 2013.

https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1016/0196-6774(82)90004-9

138 BIBLIOGRAPHY

[34] John R. Douceur. The sybil attack. In Peer-to-Peer Systems, First International
Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised Papers,
pages 251–260, 2002.

[35] Vadim Drabkin, Roy Friedman, and Marc Segal. Efficient byzantine broadcast
in wireless ad-hoc networks. In Dependable Systems and Networks, 2005.
DSN 2005. Proceedings. International Conference on, pages 160–169. IEEE,
2005.

[36] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

[37] Afonso Ferreira. Building a reference combinatorial model for manets. IEEE
Netw., 18(5):24–29, 2004.

[38] Andrew Gainer-Dewar and Paola Vera-Licona. The minimal hitting set genera-
tion problem: Algorithms and computation. SIAM J. Discrete Math., 31(1):63–
100, 2017.

[39] Juan A. Garay. Reaching (and maintaining) agreement in the presence of
mobile faults (extended abstract). In Gerard Tel and Paul M. B. Vitányi, editors,
Distributed Algorithms, 8th International Workshop, WDAG ’94, Terschelling,
The Netherlands, September 29 - October 1, 1994, Proceedings, volume 857 of
Lecture Notes in Computer Science, pages 253–264. Springer, 1994.

[40] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990. ISBN : 0716710455.

[41] Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their
cuts: Parameterized complexity and algorithms. Discret. Optim., 8(1):72–86,
2011.

[42] D Frank Hsu. On container width and length in graphs, groups, and networks–
dedicated to professor paul erdös on the occasion of his 80th birthday–. IEICE
transactions on fundamentals of electronics, communications and computer sci-
ences, 77(4):668–680, 1994.

[43] Akira Ichimura and Maiko Shigeno. A new parameter for a broadcast al-
gorithm with locally bounded byzantine faults. Inf. Process. Lett., 110(12-
13):514–517, 2010.

[44] Alon Itai, Yehoshua Perl, and Yossi Shiloach. The complexity of finding maxi-
mum disjoint paths with length constraints. Networks, 12(3):277–286, 1982.

[45] Thomas Jech. Set theory. Springer Science & Business Media, 2013.

[46] Kate Jenkins and Alan J. Demers. Logarithmic harary graphs. In 21st Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCS 2001
Workshops), 16-19 April 2001, Phoenix, AZ, USA, Proceedings, pages 43–50.
IEEE Computer Society, 2001.

BIBLIOGRAPHY 139

[47] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference
problems for temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002.

[48] Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact
byzantine consensus on undirected graphs under local broadcast model. In
Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, pages 327–336. ACM, 2019.

[49] Jeong Han Kim and Van H. Vu. Generating random regular graphs. Comb.,
26(6):683–708, 2006.

[50] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine adversarial
behavior. In Soma Chaudhuri and Shay Kutten, editors, Proceedings of the
Twenty-Third Annual ACM Symposium on Principles of Distributed Computing,
PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 275–
282. ACM, 2004.

[51] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computa-
tion in dynamic networks. In Leonard J. Schulman, editor, Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 513–522. ACM, 2010.

[52] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[53] Omri Liba. Errata corrige of [63]. http://antares.cs.kent.edu/
~mikhail/Research/topology.errata.html.

[54] Chris Litsas, Aris Pagourtzis, and Dimitris Sakavalas. A graph parameter that
matches the resilience of the certified propagation algorithm. In Jacek Cichon,
Maciej Gebala, and Marek Klonowski, editors, Ad-hoc, Mobile, and Wireless
Network - 12th International Conference, ADHOC-NOW 2013, Wrocław, Poland,
July 8-10, 2013. Proceedings, volume 7960 of Lecture Notes in Computer Sci-
ence, pages 269–280. Springer, 2013.

[55] L. Lovász, V. Neumann-Lara, and M. Plummer. Mengerian theorems for paths
of bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

[56] Alexandre Maurer and Sébastien Tixeuil. Byzantine broadcast with fixed dis-
joint paths. J. Parallel Distributed Comput., 74(11):3153–3160, 2014.

[57] Alexandre Maurer and Sébastien Tixeuil. Self-stabilizing byzantine broad-
cast. In 33rd IEEE International Symposium on Reliable Distributed Systems,
SRDS 2014, Nara, Japan, October 6-9, 2014, pages 152–160. IEEE Computer
Society, 2014.

[58] Alexandre Maurer and Sébastien Tixeuil. Containing byzantine failures with
control zones. IEEE Trans. Parallel Distributed Syst., 26(2):362–370, 2015.

http://antares.cs.kent.edu/~mikhail/Research/topology.errata.html
http://antares.cs.kent.edu/~mikhail/Research/topology.errata.html

140 BIBLIOGRAPHY

[59] Alexandre Maurer and Sébastien Tixeuil. Tolerating random byzantine fail-
ures in an unbounded network. Parallel Process. Lett., 26(1):1650003:1–
1650003:12, 2016.

[60] Alexandre Maurer, Sébastien Tixeuil, and Xavier Défago. Communicating
reliably in multihop dynamic networks despite byzantine failures. In 34th
IEEE Symposium on Reliable Distributed Systems, SRDS 2015, Montreal, QC,
Canada, September 28 - October 1, 2015, pages 238–245. IEEE Computer
Society, 2015.

[61] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927.

[62] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing large-
scale hypergraphs. Discrete Applied Mathematics, 170:83–94, 2014.

[63] Mikhail Nesterenko and Sébastien Tixeuil. Discovering network topology in the
presence of byzantine faults. IEEE Trans. Parallel Distrib. Syst., 20(12):1777–
1789, 2009.

[64] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (ex-
tended abstract). In Luigi Logrippo, editor, Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing, Montreal, Quebec,
Canada, August 19-21, 1991, pages 51–59. ACM, 1991.

[65] Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas. Reliable
broadcast with respect to topology knowledge. Distributed Comput., 30(2):87–
102, 2017.

[66] Andrzej Pelc. Reliable communication in networks with byzantine link failures.
Networks, 22(5):441–459, 1992.

[67] Andrzej Pelc and David Peleg. Broadcasting with locally bounded byzantine
faults. Inf. Process. Lett., 93(3):109–115, 2005.

[68] Rüdiger Reischuk. A new solution for the byzantine generals problem. Infor-
mation and Control, 64(1-3):23–42, 1985.

[69] Ben Roberts and Dirk P. Kroese. Estimating the number of s-t paths in a
graph. J. Graph Algorithms Appl., 11(1):195–214, 2007.

[70] Dimitris Sakavalas and Lewis Tseng. Delivery delay and mobile faults. In 17th
IEEE International Symposium on Network Computing and Applications, NCA
2018, Cambridge, MA, USA, November 1-3, 2018, pages 1–8. IEEE, 2018.

[71] Toru Sasaki, Yukiko Yamauchi, Shuji Kĳima, and Masafumi Yamashita. Mo-
bile byzantine agreement on arbitrary network. In Principles of Distributed
Systems - 17th International Conference, OPODIS 2013, Nice, France, Decem-
ber 16-18, 2013. Proceedings, pages 236–250, 2013.

BIBLIOGRAPHY 141

[72] William Stallings. Cryptography and network security - principles and practice
(3. ed.). Prentice Hall, 2003.

[73] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs
quickly. Comb. Probab. Comput., 8(4):377–396, 1999.

[74] Lewis Tseng. Towards reliable broadcast in practical sensor networks. In Aris
Gkoulalas-Divanis, Miguel P. Correia, and Dimiter R. Avresky, editors, 16th
IEEE International Symposium on Network Computing and Applications, NCA
2017, Cambridge, MA, USA, October 30 - November 1, 2017, pages 45–52. IEEE
Computer Society, 2017.

[75] Lewis Tseng, Nitin H. Vaidya, and Vartika Bhandari. Broadcast using certi-
fied propagation algorithm in presence of byzantine faults. Inf. Process. Lett.,
115(4):512–514, 2015.

[76] Lewis Tseng, Yingjian Wu, Haochen Pan, Moayad Aloqaily, and Azzedine
Boukerche. Reliable broadcast with trusted nodes: Energy reduction, re-
silience, and speed. Computer Networks, 182:107486, 2020.

[77] Junming Xu. Topological structure and analysis of interconnection networks,
volume 7. Springer Science & Business Media, 2013.

[78] Kai Zeng, Kannan Govindan, and Prasant Mohapatra. Non-cryptographic au-
thentication and identification in wireless networks. IEEE Wireless Commun.,
17(5):56–62, 2010.

	List of Symbols and Acronyms
	Introduction
	State-of-the-art
	System Model
	The Reliable Communication Problem
	Reliable communication problem specification
	Naming clarifications
	Performance evaluation metrics

	Definitions and Recalls on Graphs
	Static graph definitions and recalls
	Graph topologies

	Time Varying Graph definitions and recalls

	Related Works
	Dolev protocol for unknown network, DolevU
	DolevU correctness analysis
	DolevU performance analysis

	Dolev protocol for routed networks, DolevR
	DolevR correctness analysis
	DolevR performance analysis
	DolevR optimality

	Certified Propagation Algorithm (CPA)
	CPA correctness analysis
	CPA performance evaluation

	MTD protocol
	MTD correctness analysis
	MTD performance analysis

	Part I Static Faults, Static Network
	Reliable Communication in Static Networks: Motivations and Challenges
	Modified Dolev Protocol (BFT)
	System model
	Digging into the verification algorithm
	Digging into the message format
	BFT protocol
	Partial quiescency
	Selection policies
	BFT performance analysis
	Limitations
	Conclusion

	CombineBFT
	System model
	The topology reconstruction problem
	Explorer DBLP:journals/tpds/NesterenkoT09
	Explorer2
	Explorer2 analysis
	Fault-free disjoint path solution
	CombinedRC, an optimal reliable communication protocol
	CombinedRC correctness analysis
	CombinedRC analysis

	Conclusion

	Cryptographic Reliable Communication Protocols
	AuthRC, an authenticated reliable communication protocol DBLP:conf/srds/MaurerTD15
	System model
	AuthRC
	AuthRC correctness analysis
	AuthRC performance analysis

	CryptoRC, a cryptographic reliable communication protocol
	System model
	CryptoRC
	CryptoRC correctness analysis
	CryptoRC performance analysis

	Optimizing CryptoRC: CryptoCombinedRC
	System model
	CryptoCombinedRC
	CryptoCombinedRC correctness analysis
	CryptoCombinedRC performance analysis
	Comparison between CombinedRC, CryptoRC and CombinedCryptoRC

	Conclusion

	Part II Static Faults, Dynamic Network
	Reliable Communication in Dynamic Networks: Motivations and Challenges
	Reliable Communication with Globally Bounded Byzantine Failures
	System model
	Any-to-any reliable communication solvability

	Reliable Communication with Locally Bounded Byzantine Failures, DynCPA
	System model
	DynCPA
	DynCPA correctness analysis
	DynCPA performance analysis
	Recurrent dynamic networks
	1-interval dynamic networks
	Conclusion

	Part III Dynamic Faults, Static Networks
	Reliable Communication with Mobile Byzantine Faults
	System model
	Reliable communication with MBF specification
	Reliable communication in asynchronous systems
	Reliable communication in synchronous systems
	RC-Sasaki-et-al. protocol DBLP:conf/opodis/SasakiYKY13
	RCMB protocol
	Reliable communication correctness conditions

	Conclusion

	Conclusion

