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Multi-stability in visual perception and eye movements :

does action control perception or vice-versa?

Dans cette thèse, nous cherchons à étudier les relations d'inter-dépendence entre l'action oculomotrice et le système perceptuel, dans le contexte de la multi-stabilité perceptuelle. Les questions centrales de recherche sont les suivantes : est-il possible d'inférer les percepts à partir des mouvements oculaires, et si oui, comment se constituent les relations (hierarchiques) entre les systèmes perceptuel et oculomoteur ? Tout d'abord, nous avons étudié les micro-mouvements oculaires fixationnels, que nous avons détecté dans une tâche d'exploration d'un stimulus bi-stable en mouvement. Nous proposons de classifier ceux-ci en tant que micro-poursuite, une classe de mouvements oculaires fixationnels, corrélant avec des trajectoires lisses, prévisibles et de faibles amplitudes du stimulus en mouvement. Nous avons reproduit ces résultats dans une tâche de poursuite explicite, accompagnée d'une tâche de détection de changement de la luminance, mais uniquement lorsque l'objet était la cible, et pas lorsqu'il était un distracteur. L'analyse inter-expérience suggère que la manipulation des tâches, du mouvement du stimulus, et du niveau d'ambigüité du stimulus, influe la génération de micro-poursuite: un résultat qui indique que la perception bi-stable pourrait jouer un rôle dans la décision oculomotrice de porter son attention sur la croix de fixation, ou l'objet en mouvement.

Nous avons modélisé ce comportement à l'aide d'un modèle prédictif, basé sur un champ d'énergie potentielle, dans lequel le centre du regard est représenté par ix la dynamique d'une masse unitaire. Nous avons ensuite étendu ce modèle pour qu'il rende compte de la multi-stabilité perceptuelle. Une exploration des capacités du modèle à reproduire les mouvements oculaires fixationnels -en considérant micro-saccades, micro-poursuites et fixations stables -est présentée.

Afin d'étudier davantage les liens entre multi-stabilité perceptuelle et contrôle oculomoteur, nous nous sommes servis d'un stimulus : le plaid en mouvement, composé de deux grilles transparentes se déplaçant dans différentes directions et observées au travers d'un trou circulaire, ce qui engendre une tri-stabilité vis-à-vis de la direction du mouvement perçue. Nous examinons comment l'ambigüité du plaid peut être manipulée au niveau de chaque sujet, en utilisant un modèle probabiliste et un protocole pour en estimer ses paramètres. Ainsi, les points d'ambigüité maximale peuvent être identifiés pour chaque observateur.rice, en manipulant la transparence des grilles. Enfin, nous avons aussi regardé comment manipuler les mouvements oculaires avec le plaid en mouvement, et nous donnons un bref aperçu sur l'application d'un paradigme, sans rapport explicite de la perception, qui a pour but d'inférer cette dernière à partir de la dynamique oculomotrice. Cette exploration cherche avant tout à proposer une feuille de route, afin de poursuivre les questions de recherche autour du couplage entre les systèmes oculomoteur et perceptif, lorsqu'il y a multi-stabilité, et d'ouvrir vers l'utilisation de techniques de neuro-imagerie, appliquées à cette thématique.

Enfin, le travail présenté dans cette thèse pose des questions sur les liens entre les différents régimes de stabilité -tel que la mono-, multi-, ou méta-stabilité -et quel est le rôle des processus ascendants et descendants sur ceux-ci.

Manuscript architecture

The manuscript is composed an introductory chapter, a chapter with results for eye movement research, a chapter with exploratory works on theoretical approaches, a chapter with results for ambiguous visual perception research and a perspective chapter. The decision to follow such a narrative patterns was made to provide the building blocks towards the work and ideas presented in the final chapter.

Ambiguity for the human visual system 1 " The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together. Information distilled over 4 billion years of biological evolution. Incidentally, all the organisms on the Earth are made essentially of that stuff. An eyedropper full of that liquid could be used to make a caterpillar or a petunia if only we knew how to put the components together.

-Carl Sagan "Cosmos: A Personal Voyage". Documentary (1990 Update). Episode 5: "Blues For a Red Planet", 1990.

Visual experience has fascinated thinkers and scientists as far as written records exist. As one of humans' richest sensory modality, vision has driven many forms in arts, but it also has driven physicists to develop methods in optics to observe and study the stars, and now the cosmos. But what are the mechanisms proper to human vision? And how does our brain handle such amounts of information, and combines it with actions? A general review of what is known on perception, and more specifically visual perception, shall be given. More specifically, we will then delve into vision and how the multi-stable phenomenon arises in it, as well as the experimental methods used in the scientific literature. Finally, the motivations for studying multi-stability will be presented and the gaps in the literature will be identified.

Reading instructions.

A brief look at some basics of visual perception

Importantly, the visual system is complex and processes light information in such a way that it provides a rich reconstruction of the world.

Human vision has key features such as heterogeneous sensors with its retina coverage being unequal across the visual field it receives light from [START_REF] Curcio | Topography of ganglion cells in human retina[END_REF]. It also has multiple pathways to relay the sensory information to the occipital cortex. Visual information is projected in a retinotopic fashion in the cortex and neural signals encoding it, are processed through layers and fed forward to other areas of the brain [START_REF] Wandell | Foundations of Human Vision[END_REF][START_REF] Palmer | Vision science: Photons to phenomenology[END_REF]. For more details, read Appendix A.2.

When we become visually aware of a perceptual object, its information flows in multiple networks ranging from the frontal to the parietal cortex. This process is not instantaneous-and though it may vary depending on the complexity of the stimulus, observer habituation and more factors-, to become quasi-fully conscious1 of a perceived object, the process may take at least 200 milliseconds (ms) [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Visual illusion, phenomena in which the visual system's expectation are tricked into building an incoherent representation of the stimulus, have been used in vision science to identify the processes as inferences, and more specifically as predictive coding [START_REF] Friston | Predictive coding under the free-energy principle[END_REF]. Moreover, illusions, such as multistable perception, are being used to uncover the neural correlates of consciousness and perception [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF].

The visual system is typically considered as a hierarchical structure of networks processing the information flowing in one global direction, that is upwards-namely from the retina to higher cognitive functions in the brain. Vision scientists consider the biological systems' inputs, the eyes, the lower level of this model, and the consciously experienced qualias-a proposed term to refer to a granular unit of conscious subjective experience, analogous to the quantas in physics [START_REF] Dennett | Consciousness explained[END_REF][START_REF] Chalmers | The hard problem of consciousness[END_REF]-, the higher level of the system. The eyes and their movements are key properties of visual perception. Indeed, though our eyes could be considered as poor sensors, from an engineering perspective, we move them to capture information from different areas of the visual field, and to process it efficiently. Eye movements are typically broken down in three categories, when studied in the context of cognitive tasks: saccade, pursuit and fixation (Liversedge et al., 2011). However, they never remain still, and during fixations, micro-saccades, drifts and tremors can be observed [START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF].

These eye movements create changes of the visual input on the photoreceptor cells of the retina by shifting the retinal projection constantly. But the visual system likely evolved with this constraint, and is thought to exploit these noisy features to increase its capabilities (Hicheur et al., 2013;[START_REF] Rucci | The unsteady eye: an information-processing stage, not a bug[END_REF].

A growing view in the field of cognitive sciences requires that the body and action be considered as part of cognition-in embodied or enactive cognition (Varela, 1996a). Linking oculomotor action to visual perception is becoming increasingly evident as eye movements show potential to be physiological markers of internal cognitive states [START_REF] Kagan | Active vision: microsaccades direct the eye to where it matters most[END_REF][START_REF] Spering | Acting without seeing: eye movements reveal visual processing without awareness[END_REF][START_REF] Shaikh | Eye movement research in the twenty-first century-a window to the brain, mind, and more[END_REF]; whether it be attention [START_REF] Kuhn | You look where I look! Effect of gaze cues on overt and covert attention in misdirection[END_REF]Orquin and Loose, 2013;[START_REF] Denison | Directing voluntary temporal attention increases fixational stability[END_REF], perception [START_REF] Gold | The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands[END_REF][START_REF] Hafed | Ongoing eye movements constrain visual perception[END_REF]Schütz, D. I. Braun, and Gegenfurtner, 2011;[START_REF] Boi | Consequences of the oculomotor cycle for the dynamics of perception[END_REF][START_REF] Kagan | Active Vision: Dynamic Reformatting of Visual Information by the Saccade-Drift Cycle[END_REF], learning and development [START_REF] Eckstein | Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development?[END_REF], language processing [START_REF] Engelmann | A framework for modeling the interaction of syntactic processing and eye movement control[END_REF], and reading [START_REF] Kliegl | Length, frequency, and predictability effects of words on eye movements in reading[END_REF]. Though the lower parts of the visual system are starting to be well understood, the higher one goes along the visual hierarchy, the less clear network architectures and causal relationships become.

In fact, the visual system is full of asynchronous feedback mechanisms that make deciphering its workings a very complex task. For instance, parts of the visual signals are fed, as they go through the lateral geniculate nucleus (LGN), to the superior colliculus (SC) which has been correlated to oculomotor programming with other cortical areas such as the frontal eye field (FEF) and the lateral intra-parietal (LIP) cortex (Krauzlis, 2004;Hafed, Goffart, et al., 2009;Taouali et al., 2015;Peel et al., 2016;Krauzlis et al., 2017). But the two later areas are also tightly correlated to attention, a higher cognitive process than oculomotor programming (Astrand et al., 2015). In fact, these two functions may share efference copies, a set of copies of the information for motor programming enabling the system to have different levels of engagement with its action2 [START_REF] Jeannerod | Action monitoring and forward control of movements[END_REF]. Note that other theories, such as referent control of perception, may also explain the link between motor action and perception [START_REF] Feldman | Active sensing without efference copy: referent control of perception[END_REF].

These points raise a series of questions. How is action and perception related? What tools can be used to simplify and understand such complex and intertwined interactions in between the motor and perceptual systems? How do these systems relate to conscious experience of the world?

These questions linking the body's actions to its internal cognitive states may give insights and leads for some of the problems introduced in Appendix A.1 on the origins of consciousness, perceptual experience and its evolution. Our attempt to contribute relies on a trans-disciplinary approach, using a combination of methods from empirical sciences-namely psychophysics and neurosciences-and theoretical research-namely signal processing and computational modelling. In this work, we focused on a visual phenomenon in particular, multi-stable perception, as it allows to study changes of internal perceptual states while the stimulation remains stationary from a physical perspective, but is changed by the eyes' constant movements. Moreover, multi-stability occurs in different modalities (Schwartz et al., 2012) and relates to the coordination of sub-systems in complex systems dynamics [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. Therefore, theoretical approaches to bi-stability might give key insights relating the questions asked here (Moreno-Bote, Knill, et al., 2011).

Eye movements

The eyes move; in other words they are dynamic and active. Their motion has one major consequence: it shifts the visual content of the retinal projection, and therefore the visual input flow changes. The eyes are located in spherical sockets that allow them to rotate on themselves. The movements are controlled by six strong and precise extraocular muscles. In fact, the oculomotor system, that controls the extraocular muscles enabling eye movements, can be very dynamic and shows various behaviours ranging from stationary fixations to ballistic and highly dynamic saccades.

The oculomotor system's main functions allows the visual system to fixate a point in space in order to accumulate information, or to track a target by keeping it in the foveal location on the retina as it moves across the visual field.

Oculomotor dynamics can vary extensively depending on the tasks and actions of the observer as shown in Fig. 1.1 (Yarbus, 1967). The eye movements are captured in a bi-variate signal called gaze that situates the foveal position on the visual field over time. It is characterised by fixations during which the gaze is stable and the retinal image motion is small, and punctuated by saccades, a class of rapid and ballistic movements for static stimulation-i.e., a still image. When stimulation is dynamic-i.e., a video display-the oculomotor system produces fixations and saccades, but also in some cases smooth pursuit eye movements. These pursuits are used to track a target object moving across the visual field. Eye movements have been studied in close relation to visual perception and provide key information on the retinal image variations as well as insight on visual attention (Liversedge et al., 2011;Kowler, 2011). They can also be physiological marker of internal cognitive states, and more precisely of motion perception [START_REF] Just | Eye fixations and cognitive processes[END_REF][START_REF] Spering | Tracking without perceiving: a dissociation between eye movements and motion perception[END_REF][START_REF] Shaikh | Eye movement research in the twenty-first century-a window to the brain, mind, and more[END_REF][START_REF] Boccignone | Advanced statistical methods for eye movement analysis and modelling: a gentle introduction[END_REF].

Eye & head movements.

Though eye movements are often coupled with head motion in ecological conditions-i.e., experimental conditions that are closer to everyday life, with less control and restrictions-in this work, we do not consider the latter and its interaction because it adds another set of degrees of liberty, thus increasing the complexity of scientific investigation. We focus our review on eye movements that are considered independently from head movements and with experimental setups where these head movements are restrained. Yarbus (1967) showing the variation of the spatio-temporal dynamics of gaze for one stimulus. Different tasks were given and are reported bellow the 2D gaze traces.

Saccades: the rapid and ballistic movements

Saccades are fast, ballistic eye movements shifting rapidly the locus of the fovea on the visual field-diagram of a saccade shown on Fig. 1.2. They allow humans to explore, scan and search their environment by displacing the fovea, where the precise conic photoreceptor cells are located, to the area of interest. Saccades are also an energy efficient method to explore a scene (Liversedge et al., 2011) and are often used over other actions for humans, such as head or body movements. They allow the gaze to move from a spatial position to another in a scene. The oculomotor event lasts between 150 ms and 200 ms for planning and execution.

Visual perception

Saccades are characterised in terms of duration, amplitudes and velocities by the main sequence3 , a relationship that links the velocity and amplitude of a saccade to the time it takes to plan it (Bahill et al., 1975;[START_REF] Harris | The main sequence of saccades optimizes speed-accuracy trade-off[END_REF]. The velocity of the gaze is very high relative to all other eye movements: within 30 ms, the eyes can reach a speed up to 900 visual degrees per second (deg.s -1 ) [START_REF] Goldberg | The ocular motor system. Principles of Neural Science[END_REF]. Saccades are typically defined by displacement, velocity and acceleration thresholds-above 0.15 deg, above 30 deg.s -1 and above 9500 deg.s -2 , respectively. However other algorithms for detection exist based on adaptive methods and glissade 4 detection (Nyström and Holmqvist, 2010;Behrens et al., 2010) or Bayesian classification in which an algorithm learns and adapts probability functions related to motion properties of the gaze for saccade detection [START_REF] Tafaj | Online classification of eye tracking data for automated analysis of traffic hazard perception[END_REF]Mihali et al., 2017). As you are reading this text, you are in fact doing a series of saccades, moving across words and sentences.

Although we know we can move the eyes, interestingly, our conscious visual flow seems unaffected by the movements. By moving the eye, and thus the retinal image, saccades should generate blurry moments in the visual experience. However, it is not the case as the brain applies mechanisms that guarantee visual constancy (S. Palmer, 1999). This is referred to as saccadic suppression and though it is highly effective in ecological conditions, some experiments have shown that transsaccadic perception can occur [START_REF] Burr | Contrast sensitivity at high velocities[END_REF]Castet and G. S. Masson, 2000). Though saccades are generally direct movements, there are experimental paradigms and associated phenomena5 that show that it is not always so.

Smooth eye pursuits: the target tracking movements

Smooth pursuits are slower eye movements that have been studied in the context of visual tracking of an object. Therefore, the function of pursuit is to maintain the tracked target on the fovea by matching the spatio-temporal properties of the target's displacement with the eyes. As a consequence, pursuits are defined as an oculomotor phenomenon with two phases: (1) a catch-up saccade followed by (2) a target pursuit or maintenance phase [START_REF] Lisberger | Visual motion processing and sensory-motor integration for smooth pursuit eye movements[END_REF]. Unlike saccades, pursuits are considered as smooth as they do not show high acceleration and jerky movements in the maintenance phase. If the tracked target has erratic motion, the oculomotor system will not track it as it becomes unpredictable and saccadic. Therefore, pursuits are slow oculomotor behaviours, comparatively, with velocities being restrained to a range of 20 to 90 deg.s -1 (Komogortsev and Karpov, 2013;Krauzlis, 2004) and latencies dependent on the catch-up saccade properties.

Moreover, smooth pursuit movements are dependent on visual stimulation as they attempt to fixate a moving target on the fovea by moving the eyes [START_REF] Rashbass | The relationship between saccadic and smooth tracking eye movements[END_REF][START_REF] Robinson | The mechanics of human smooth pursuit eye movement[END_REF]Liversedge et al., 2011). Thus, they also require constant visual feedback so that gaze can be adjusted and its position or velocity updated. Though pursuits are mostly studied with a clear and explicit target, research has shown that the phenomenon can be applied to more stimuli: random-dot kinematogram (RDK)6 (Heinen and Watamaniuk, 1998), illusory perceptual motion (Madelain and Krauzlis, 2003) or even motion after-effect (MAE) motion (D. Braun et al., 2006). Since smooth pursuits have mostly been studied in explicit dot tracking experiments, this has constrained the development of explicit measurement and detection of the oculomotor event.

The functional role of the pursuit as an oculomotor process is to maintain a target of interest on the high acuity foveal region of the retina (Spering and Montagnini, 2011).

Interestingly, its properties are linked to its definition's two phases of initiation and maintenance. For instance, detection of pursuits is based on the measurement of particular properties for the initiation phase (catch-up saccade); by looking at latencies between 80 to 120 ms (Krauzlis, 2004;[START_REF] Carl | Human smooth pursuit: stimulus-dependent responses[END_REF] and retinal positioning at the centre of the fovea. Therefore, this phase has a temporal constraint that depends on saccade properties; a ballistic motion of gaze with high velocity-linked to amplitude by the main sequence relationship from (Bahill et al., 1975)-and the retinal position's change of location for the region of interest in the stimulus.

For the maintenance phase, measures of gaze and retinal errors and retinal slip7 are used to verify that position, and velocity, of the gaze and target are matched, respectively (more details on pursuit measurement in the box below). Human observers typically track targets up to a speed of 100 deg.s -1 (Spering and Montagnini, 2011), though pursuits are mostly considered to be smooth and precise at speeds inferior to 30 deg.s -1 . It is noteworthy that the upper range leads to corruption of the pursuit epochs with catch-up saccades when velocity of target is high (De Brouwer et al., 2002). The maintenance phase, in which retinal image is stabilised, is interpreted to rely on a feedback loop where the oculomotor system must estimate and correct a velocity matching error between gaze and target.

Pursuit measurement.

Measuring the quality of tracking has been done by computing gain as a result of modelling the smooth pursuit system as closed-loop system [START_REF] St-Cyr | Nonlinearities of the human oculomotor system: gain[END_REF]. This measure is effective in the experimental protocols in which a target appears on screen and participants are tasked to follow its motion. Pursuit is mostly studied for tracking a single point on a uniform background, however, other stimuli in motion can lead to pursuit movements [START_REF] Heywood | Eye movements and the afterimage-i. tracking the afterimage[END_REF]Heywood and Churcher, 1972). These other stimuli can lead to pursuit phenomenon in conditions-i.e., RDK (Heinen and Watamaniuk, 1998), line figures (G. [START_REF] Masson | From following edges to pursuing objects[END_REF], illusory perceptual motion (Madelain and Krauzlis, 2003) or MAE (D. Braun et al., 2006)-that are less coherent with the two phases structure described in the previous paragraphs, making it harder to detect them with these measures. The measure of gain and the models associated have been questioned for tasks where a percept is pursued, rather than a dot (Leland S Stone et al., 2000).

Fixations: the stationary state of visual accumulation

When the eyes are not moving-in between saccades and pursuits-they are stabilised in fixations. A period or epoch of the gaze signal is classified as a fixation if it cannot be classified in a type of movement and when the amplitude of displacement is smaller than 1 deg [START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF]. However, the eyes never stay still. The study of fixations and fixational eye movements (FEM) have grown in the recent decades as increasingly affordable measurement equipment have facilitated this growth (Rolfs, 2009). During a fixation, information is accumulated for the visual system as the region of observation is treated by the highly sensitive and precise foveal region of the retina. Hence, during a scene exploration or search task, human observers tend to scan the visual field with saccade-fixation combinations also known as scanpaths (Noton and Stark, 1971a;Noton and Stark, 1971b). They are visible in Fig. 1.1 and characterise the spatio-temporal properties of an observer's oculomotor behaviour when facing a given task. In most of these tasks, the fixations tend to last on average 300 ms, though they may be much longer in other tasks.

FEM have different dynamics and are classified as micro-saccades, drifts or tremors [START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF]. The dichotomy separating FEM from larger, macro, eye movements can possibly be explained by methodological constraints related to task choice, measurement equipment (Appendix A.3), analyses and classification. A possible explanation is that the reported small amplitude eye movements are miniature versions of the more studied smooth pursuits and saccades, and thus, they may have the same functional role to cognition and vision. In fact, theories that link FEM to active vision have been developed, in which the visual system uses the noisy properties of the FEM to enhance its capabilities and enable the detection of subtle orientation changes (Hicheur et al., 2013) or reach hyper-acuity [START_REF] Poletti | Microscopic eye movements compensate for nonhomogeneous vision within the fovea[END_REF][START_REF] Rucci | Miniature eye movements enhance fine spatial detail[END_REF]i.e., human vision shows capacities to detect changes at smaller resolutions than their cone mosaic should allow (Appendix A.2), if no signal processing was carried out by the brain in higher parts of the visual system. However, the identification and classification of FEM, and more largely eye movements, are still debated and unsettled (Rolfs, 2009;[START_REF] Hessels | Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers[END_REF].

Micro-saccades & small amplitude saccades

Micro-saccades have varying definitions and the algorithms used to detect them have changed over the years. Given that the majority of algorithms are based on thresholds, either on speed or acceleration, only threshold based algorithms will be discussed in this paper-one can refer to [START_REF] Hoppe | End-to-end eye movement detection using convolutional neural networks[END_REF] for alternative approaches. Thresholds used in these algorithms are not absolute (as used for saccade detection and definition): velocity thresholds are defined with respect to the median velocity for every trial (Poletti and Rucci, 2016;Krauzlis et al., 2017),

1.1 Visual perception
or by absolute deviation of the velocity distribution within the fixation combined with a binocularity criterion [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF], or even a Bayesian classifier with priors on velocity and magnitude (Mihali et al., 2017).

Once micro-saccades are detected and classified as events, it is possible to extract oculomotor drift as the complementary epochs in the signal. It is also worth noting that, though the function of micro-saccades has been, in the past, the subject of controversy, the literature now agrees that they are a small amplitude eye movement strategy used for visual exploration and acuity (Martinez-Conde, Macknik, and D. Hubel, 2004;[START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]Rolfs, 2009;Kowler, 2011;Hicheur et al., 2013;[START_REF] Poletti | Microscopic eye movements compensate for nonhomogeneous vision within the fovea[END_REF]. Therefore, they can be considered to have a dependency on the visual signals. And if they can be used as an exploration strategy, they might have some level of volition involved in the process. The use of volition as a criterion for oculomotor event definition and classification is unreliable, as it has been shown that dissociating voluntary oculomotor control and awareness is not straightforward (Poletti and Rucci, 2016). For instance, saccades are often produced without explicit awareness though they serve a voluntary task to find visual information.

Recent research results and reviews tend to minimise the debated multiple roles of micro-saccades, and interpret them as small amplitude saccades (Poletti and Rucci, 2016;Sinn and Engbert, 2016). Therefore, in this consideration of eye movements, micro-saccades help readjust the preferred foveal area against the stimulus' area of interest, hence having a similar functional role as saccades.

Oculomotor drifts & tremors

Once micro-saccades are detected and classified as events, it is possible to extract oculomotor drift as the complementary epochs in the signal (Cornsweet, 1956). Drifts are defined as the low frequency and large amplitude8 component of FEM activity that lead to long term (relative to the fixation time) exploration of the area of fixation, also referred to as persistence (Engbert and Kliegl, 2004;Engbert, Mergenthaler, et al., 2011), which is a term used to describe a signal that has high correlation between its observation and its lag. Ocular drift is thought to be due to the viscosity of the medium in which the eyes rest in the socket; when fixation starts after a saccade, the eyes still have momentum in the same or opposite direction to the saccade. Hubel (2004).

Tremors are also notably not well studied as they remain difficult to measure and distinguish from measurement noise (Martinez-Conde, Macknik, and D. Hubel, 2004;Krauzlis et al., 2017). They represent the small amplitude oscillations in the signal (see Fig. 1.3), which can be confused with measurement noise. However, tremors are thought to originate in the noisy components of the extra-ocular muscles nervous control system. They can be characterised as a mechanism that reduces the gaze motion due to drift and keeps the locus of fovea persistently in the same area; this is often analogous to Brownian motion and random walks (Engbert, Mergenthaler, et al., 2011).

Historically, FEM are considered as noise in the oculomotor system, although this view is gradually being contested with recent evidence that they may help to relocate a preferential locus of the fovea [START_REF] Putnam | The locus of fixation and the foveal cone mosaic[END_REF] on the scene in order to give hyper-acuity to humans for instance [START_REF] Rucci | Fixational instability and natural image statistics: implications for early visual representations[END_REF][START_REF] Rucci | Miniature eye movements enhance fine spatial detail[END_REF][START_REF] Zozor | Does eye tremor provide the hyperacuity phenomenon?[END_REF][START_REF] Rucci | The unsteady eye: an information-processing stage, not a bug[END_REF].

Visual perception

Other movements: vergence, vestibular & optokinetic.

More types of eye movements exist though they will not be covered in details in this work. Vergence movements are used when a tracked target approaches the observer by having the eyes move in a disconjugate manner-in smooth pursuit movements, when the target moves along a plane, like a computer screen, the eyes move in a conjugate fashion. Vestibular movements, i.e., the vestibulo-ocular reflex (VOR), correspond to compensatory eye movements, when the head moves, in order to stabilise a target on the fovea. Finally, the oculo-following reflex (OFR) occurs when a large portion of the visual field has a uniform motion across the retina (Michalski et al., 1977;Quaia et al., 2012)-e.g., when looking outside through the window while being inside a moving train. The opto-kinetic nystagmus (OKN) is a composite gaze pattern in which an object is followed by smooth pursuit until the object leaves the visual field. The eyes will maintain an object on the fovea in the slow phase until it is not possible, and find a new object to stabilise in a fast phase.

Eye movements classification

The classification of all these eye movements is a key methodological topic of the research field because other fields, such as vision science, use oculomotor events as signals giving information on the observer's task at hand and the stimulus. The definition of each category or class plays an important role on the output. Though eye movements have been studied for many decades, the variety of their dynamics and the quality of measured signals make it difficult for the research field to agree on definitions [START_REF] Hessels | Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers[END_REF]. Indeed, eye movement signal classification is approached with different methods [START_REF] Coutrot | Scanpath modeling and classification with hidden Markov models[END_REF], with consequences on their interpretation (see Fig. 1.4 for an overview of methods).

The traditional approach has been to look at the parameters of eye movements which gives interpretability but often reduces spatial and mostly temporal information. For instance, one can look at (i) fixations' durations, numbers, dispersion or clusters, (ii) saccades' amplitude, velocity, direction, duration or latency, (iii) blinks' frequency or duration, or (iv) pupil size. Another approach is to use the spatial distribution of the oculomotor signal in order to derive bottom-up distribution-based metrics such as Kullback-Leibler divergence (KLD), correlation coefficient (CC), similarity (SIM) or earth moving distance (EMD) [START_REF] Rajashekar | Point-of-gaze analysis reveals visual search strategies[END_REF][START_REF] Meur | Methods for comparing scanpaths and saliency maps: strengths and weaknesses[END_REF][START_REF] Toet | Computational versus psychophysical bottom-up image saliency: A comparative evaluation study[END_REF][START_REF] Judd | A benchmark of computational models of saliency to predict human fixations[END_REF]. Alternatively one can use location-based metrics such as the area under the curve, normalised scanpath saliency, percentage of fixation or information gain [START_REF] Riche | Saliency and human fixations: State-of-the-art and study of comparison metrics[END_REF][START_REF] Bylinskii | What do different evaluation metrics tell us about saliency models?[END_REF]. An approach, driven by web-based experimental work, where the stimulus is divided into sections, has focused on string-based, common scanpath and geometric comparisons of gaze signals [START_REF] Meur | Methods for comparing scanpaths and saliency maps: strengths and weaknesses[END_REF]N. Anderson et al., 2015). Finally,
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Chapter 1 Ambiguity for the human visual system the probabilistic approaches use transitions matrices, graphs, Markov processes, Fisher vectors, Gaussian mixture model or spatial point processes [START_REF] Galdi | Eye movement analysis for human authentication: a critical survey[END_REF][START_REF] Boccignone | Advanced statistical methods for eye movement analysis and modelling: a gentle introduction[END_REF].

The diversity of methodologies presented here (Fig. 1.4) can be explained by the multitude of contexts in which eye movements are studied and by the multi-variate aspect of the signals extracted in eye movement studies.

Eye tracking.

For further information on eye tracking signals and apparatus, Appendix A.3 provides a review.

Now that we have covered the foundations of eye movements' scientific literature, one can go back towards the visual information processing in the brain, while considering that the sensory input is subject to variation with eye movements.

Visual perception as an inference mechanism

In the next paragraphs, we look at how vision is an active inference process, where sensory information is mixed with prior information, to reconstruct a rich perceptual world, from an incomplete, and sometimes poor, sensory world.

Visual inferences

Vision is often considered as a feed-forward process that progressively extract features based on the statistics of the retinal image. Also, the system keeps a map of the visual space across the different stages of the visual system-V1, V2, V3, etc. Neural network models, for instance, are inspired by our knowledge of the human visual system, capable of achieving very high performances in detection, recognition and classification tasks [START_REF] Castelluccio | Land use classification in remote sensing images by convolutional neural networks[END_REF]Gide, Karam, et al., 2017). However, this hierarchical, feed-forward view is still too simple to reflect natural cognition and perception 9 . Visual perception involves more functions and capacities than passive observation and classification of scenes or objects. Perception in humans and other mammals is an active process and interacts with many other systems and may have evolved in only a few hundred thousand years from simple light detector to a complex system capable of scene decomposition, driving actions, three dimensional ,c) is a list of string-based and geometric approaches for signal comparisons and d) regroups probabilistic approaches to eye movement analysis. The table at the bottom gives a qualitative appreciation and requirements for each cluster of method listed above.

For more details on all these methods, please refer to [START_REF] Coutrot | Scanpath modeling and classification with hidden Markov models[END_REF].
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Chapter 1 Ambiguity for the human visual system environment mental representations, etc [START_REF] Nilsson | A pessimistic estimate of the time required for an eye to evolve[END_REF][START_REF] Lewicki | Scene analysis in the natural environment[END_REF].

Action is an important component to consider for vision [START_REF] Aloimonos | Active vision[END_REF]; so much so that the sensors, the eyes, never stop being active in information retrieval [START_REF] Rucci | Fixational instability and natural image statistics: implications for early visual representations[END_REF][START_REF] Kagan | Active vision: microsaccades direct the eye to where it matters most[END_REF], and action is driven by goals, behavioural states and memory.

In classical feed-forward models, the information collapses towards a decision, but here one can consider an intermediate level in which goals can intervene in an inferential process [START_REF] Knill | Perception as Bayesian inference[END_REF][START_REF] Kersten | Bayesian models of object perception[END_REF][START_REF] Kersten | Object perception as Bayesian inference[END_REF][START_REF] Shams | Causal inference in perception[END_REF]Moreno-Bote, Knill, et al., 2011;Moreno-Bote and Drugowitsch, 2015). The properties of the environment are not captured by the sensors; shape, motion, texture, colour, identity, and the many other features that humans systematically use to describe and interact with objects are inferred. These properties are entangled in spatio-temporal visual patterns.

Inference as a core mechanism of perception is key to understand how the visual experience, for instance, suppress the visual interference of the blood vessels in the eye in front of the retina, the hole made by the optical nerve in the retina, or even the fact that internal representations are three dimensional while the retinal image is two dimensional. In fact, most known visual illusion emerge from exploiting the inferential system such that it has to solve a problem in a metameric 10 fashion or to give an experience that is incoherent with the physical world-i.e., such as in multi-stable perception-see Fig. 1.5 for a schematic representation of the illusory phenomena [START_REF] Mamassian | Métamères perceptifs et perception bistable[END_REF].

Visual illusions as stimuli for vision science

Visual illusions have been a source of fascination for thinkers all the way back to Aristotle [START_REF] Eagleman | Visual illusions and neurobiology[END_REF]. In psychology, the rise of Gestalt theory brought illusory stimuli to the research community as phenomena that could be used to study the mechanisms of the brain [START_REF] Köhler | Gestalt psychology[END_REF][START_REF] Wertheimer | Gestalt theory[END_REF][START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF][START_REF] Bach | Optical illusions[END_REF]. Since then, visual illusions have been used as stimuli to study and gain empirical knowledge on contour [START_REF] Anstis | The perception of apparent movement[END_REF], surface filling-in [START_REF] Pinna | The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms[END_REF], adaptation [START_REF] Anstis | The motion aftereffect[END_REF], motion 10 Perceptual metameres are phenomena in which two distinct physical objects or properties are merged into one perceptual object. This is studied, for instance, in colour perception [START_REF] Hardin | Color for philosophers: Unweaving the rainbow[END_REF][START_REF] Wandell | Foundations of Human Vision[END_REF] or cross modal fusion [START_REF] Hillis | Combining sensory information: mandatory fusion within, but not between, senses[END_REF].

1.1 Visual perception perception [START_REF] Anstis | The perception of apparent movement[END_REF] and perceptual decision (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF], for instance11 . Visual illusions support the theory that perception is an inferential process. The brain reconstructs and represents the environment internally so that actions and decision can be made.

Inferential problems are linked to incompleteness of information and past knowledge. In more formal terms, such as in the Bayesian framework, we refer to these as the probability of observing the data and prior information. In fact, a growing trend in cognitive sciences, using visual illusory phenomena, is oriented on predictive coding, an approach where vision is considered as an inference on visual information, other modalities and memory [START_REF] Friston | Predictive coding under the free-energy principle[END_REF][START_REF] Shams | Causal inference in perception[END_REF]. To summarise, the brain is seen as a system that attempts to predict efficiently an interpretation of the neural sensory information. Visual illusions then correspond to situations, or conditions, in which the perceptual system mistakenly ignores differences in the physical world, for metameres. Or on the other hand, they may lead to a curious experience; the seemingly spontaneous change of a perceptual object into another one, while the physical stimulus remains unchanged, in the case of multi-stability.

Illusions like multi-stable perception or binocular rivalry have recently been used to gain insight on the neural correlates of visual awareness [START_REF] Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF]. They are of interest as they feature a change of state of the perceptual system when the stimulation remains constant-see Fig. 1.5 for a schematic representation of the problem. Hence it is possible, with sufficient temporal resolution neuro-imaging methods-e.g., electro-encephalography (EEG), magneto-encephalography (MEG)-, to decode how perceptual change can occur in stable and controlled presentation condition [START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF]Kornmeier and Bach, 2014). Alternatively, research has also focused on the location of percept coding in the brain by identifying the neural correlates during the duration of a quasi-stable percept. Using methods with high spatial resolution-e.g., functional magnetic resonance imaging (fMRI)-, researchers have identified multiple cortical areas, ranging from cortex areas V1 to middle temporal (MT) and depending on the stimulus used, in which the illusion changes seem to occur [START_REF] Sterzer | The neural bases of multistable perception[END_REF]. 

Vision & ambiguity: how does the brain handle it?

In this section, we delve more deeply in the behaviour of our visual system when facing ambiguity. Ambiguity is a universal term, used in a variety of context, and relates to the uncertainty associated with the interpretation of given information. This means that multiple interpretations are probable, and none of them clearly dominate the other ones. It differs from vagueness as the latter is evoked when having any interpretation is difficult given the information presented. Ambiguity can be used in reference to character's personality or motives in arts, such as the Caterpillar in Lewis Caroll's Alice's adventures in Wonderland12 or Hamlet in Shakespeare's Hamlet13 . Artists like Escher have exploited ambiguity in its visual manifestation to create fascinating visual works (for an example, see Fig. 1.6). In vision sciences, the classical example for ambiguity is the Necker cube [START_REF] Necker | LXI. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid[END_REF], shown in Fig. 1.7. Even when the figure is hand drawn on paper, this simple stimulus clearly shows to an observer that its orientation's perception will change over time. This phenomenon has been defined as bi-stability, and it is the type of visual illusion of interest, in this thesis, from empirical and theoretical perspectives.

One key phenomenon, within the domain of visual illusions, is multi-stable perception: when perception changes over the time of observation but the physical stimulus remains constant (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF]. Multi-stable perception refers to the emergence of multi-stability, here, in visual perception. Multi-stability occurs when complex systems, with multiple sub-systems within, such as a brain, create multiple preferred states rather than one14 [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. This is not exclusive to the brain and can be observed in other domains such as physics [START_REF] Hamedi | Optical bistability and multi-stability in a four-level atomic scheme[END_REF], biology [START_REF] Gonze | Multi-stability and the origin of microbial community types[END_REF], computational networks [START_REF] Mao | Stability switches, bifurcation, and multi-stability of coupled networks with time delays[END_REF], climate science [START_REF] Mitra | An integrative quantifier of multistability in complex systems based on ecological resilience[END_REF], and more. However, the phenomenon has been investigated for over two centuries in vision sciences, since [START_REF] Necker | LXI. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid[END_REF], a chemist, first reported the illusion formally (Fig. 1.7). In fact, there are different paradigms in experimental psychology to generate such illusions: binocular rivalry, in which two separate images are presented independently to each eye of the observer through an experimental setup, ambiguous figures, in which the stimulus is a static image (presented to both eyes simultaneously) too ambiguous for a single interpretation, or percept [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF], or ambiguous videos, where image motion will be ambiguous and generate alternation of percepts.

Multi-stable perception has been characterised by the following properties, common to many ambiguous stimuli:

• Irrepressible-an observer cannot avoid perceptual change over prolonged observation of a multi-stable stimulus.

• Mutual exclusivity-the percepts, i.e., the interpretations an observer will have of the stimulus, can only be experienced once at a time.

• Unpredictability-perceptual changes cannot be predicted [START_REF] Lehky | Binocular rivalry is not chaotic[END_REF], at the time of writing, and seem to be stochastic, or at least are modelled as such.

• Percept duration distribution-tailed distribution such as Gamma and Log-Normal distribution are used to model reported percept durations [START_REF] Levelt | Note on the distribution of dominance times in binocular rivalry[END_REF].

• First percept-the longest percept in duration, it has an idiosyncratic bias, and it may provide information on the continuous viewing empirical probabilities of perception [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF][START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF].

Multi-stable perception properties.

The properties listed above are further described and expanded upon in Appendix A.4. In most studies, the simplest form of multi-stability is studied, namely bi-stability, in which there are variation between two quasistable states, here percepts.

Bi-stability: stimuli & phenomenon description

Visual bi-stability occurs in binocular rivalry and for most ambiguous figures-such as the classics, e.g., the Necker cube [START_REF] Necker | LXI. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid[END_REF]), Rubin's vase/face illusion [START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF] or the rabbit/duck illusion [START_REF] Mcmanus | Science in the making: Right hand, left hand. II: The duck-rabbit figure[END_REF], presented in Fig. 1.9. And bi-stability appears also in some artists' work, like for instance, Salvador Dali (Fig. 1.8) or Mauritis Cornelis Escher (Fig. 1.6), who exploited the visual phenomenon in various forms. In bi-stability, two states of perception, or percepts, are alternatively experienced by human observers. In binocular rivalry, where two different images are presented to each eye independently, Levelt (1966) presented four propositions to describe the dynamics:

(i) Stimulus dominance-the ratio of time duration of a percept over the otherdepends on the strength of the stimulus; the strength can be modulated by controlling luminance and contrast.

(ii) Increasing the strength of the stimulus in one eye reduces the phase time of the stimulus in the other eye.

(iii) Reversal speed increases as a consequence of proposition 2. (iv) Increasing contrast of the images in both eyes reduces the time phases, and thus increases the reversal speed, however stimulus dominance remains unaffected. This was already observed by [START_REF] Breese | Inhibition[END_REF] and suggests independence between reversal and percept suppression in binocular rivalry.

These principles have been extended to some ambiguous figures in some studies [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF][START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF] however the second proposition is not always valid when contrast values go beyond a certain range (Jan W [START_REF] Brascamp | The time course of binocular rivalry reveals a fundamental role of noise[END_REF]. The hypothesis of independence between reversal and suppression suggests that two different mechanisms are at work which reflect such behaviour; one that maintains while another reverses.

Experimental paradigms of multi-stability

As mentioned above, multi-stable perception can be achieved, experimentally, in a variety of ways, and with various stimuli. We will now look at the main experimental paradigms in which the phenomenon has been studied, and their associated results. Top: different ambiguous figures of the categories perspective reversal: (i) the Necker Cube, (ii) the Mach book, and (iii) Schröder's staircase (taken from [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF]).

Below: an example of figure-ground bi-stability with (iv) Rubin's face/vase, and semantic rivalry with (v) the duck/rabbit illusion and the (vi) the old/young woman illusion (taken from [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF]).
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Binocular rivalry

Researchers have developed sophisticated paradigms and experimental setups to study bi-stability in human perception. As such, binocular rivalry is an experimental paradigm that has been extensively used to investigate bi-stability.

Binocular rivalry consists in showing two different images or stimulus to each eye independently at the same retinal location-for a review we refer to [START_REF] Blake | Binocular rivalry[END_REF]. Fig. 1.10 shows different experimental setups used for binocular rivalry. The independence of stimulus presentation for each eye can be achieved, for instance, using a set of mirrors or polarised glasses. As a consequence of the setup, visual perception of the observers will alternate between the two images presented. First reports of binocular rivalry date back to as far as the 16 th century [START_REF] Wade | Early studies of eye dominances[END_REF].

Though the setup might suggest that bi-stability is driven by specialised inter-ocular inhibitory processes rather than by competition of higher stimulus representations, there is compelling evidence that it is not the case and that binocular rivalry bistability might occur just in the visual cortex (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF]. Note that the angular size of the stimulus can lead to different behavioural patterns. Indeed, the size of the stimulus will have an impact on what receptive fields and their associated neuronal networks code for the percept in the retinotopic visual cortex.

Evidence suggests that the size of the minimal unit of such neuronal populations do not exceed 0.1 deg [START_REF] Blake | Spatial zones of binocular rivalry in central and peripheral vision[END_REF].

Monocular rivalry

Monocular rivalry has a similar experimental setup to binocular rivalry but the same image is shown to both eyes; however, the stimulus can be a mixture, i.e., a superposition of two images, or a grating. In this instance, bi-stability will occur though after a longer fused initial interpretation. When comparing binocular and monocular rivalry, many similarities were reported, such as gamma distributed percept durations. Monocular rivalry is also called pattern rivalry and is considered closer to ambiguous figures in the range of bi-stable phenomena [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF].

Ambiguous figures

Ambiguous figures (Fig. 1.9) are images that do not contain sufficient information in order for the brain to stabilise itself on a single interpretation and which leads it to the experience of multi-stable alternations. Some of them have gained popularity as they produce the phenomenon with no need for sophisticated viewing setup, and as most observers share and experience the illusion. Most ambiguous figures lead to bi-stability with two interpretations possible, though it is usually possible to consider an additional one: the meaningless drawing, a hidden third percept of bistability. For instance, the Necker cube can be perceived with two three-dimensional interpretations, however the third percept, in this case, refers to the "flat" two dimensional drawing of the cube. One should note that most studies do not record or take into account this third hidden percept, as its observation occurs after long exposure to the stimulus [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF].

Ambiguous figures can be distinguished in different categories due to the nature of the competition that operates and due to the computational properties involved in decoding the traits that determine the interpretations. However, in all cases, the physical stimulus remains unchanged while the observer's subjective experience alternates. Perspective reversing figures refers to images where a two dimensional drawing provides insufficient information for its three dimensional interpretation to be unique. Usual properties involved in this type of figure are symmetry and low semantic content, with both interpretations being very similar.

The most famous one is the Necker cube (Fig. 1.7) [START_REF] Necker | LXI. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid[END_REF] and can also be extended to a lattice of Necker cubes (see Fig. 1.11, from Kornmeier and Bach
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Chapter 1 Ambiguity for the human visual system (2012)). The Schröder staircase-Fig. 1.9-iii [START_REF] Schröder | Ueber eine optische Inversion bei Betrachtung verkehrter, durch optische Vorrichtung entworfener, physischer Bilder[END_REF]-is also an insightful example. Finally the Mach book (Fig. 1.9-ii) is yet another simple drawing that leads to perspective reversing bi-stability [START_REF] Mach | Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt[END_REF]. Figure-ground reversing stimuli are related to Gestalt psychology, with their interpretations alternating between a foreground figure and a background shape standing out in an observer's consciousness, while the other is suppressed. The Rubin vase/faces (Fig. 1.9-iv) is also a popular example. Content reversal stimuli are characterised by the switch being due to the nature of the content observed in the subjective experience, not its perspective or figure-ground contrast. Examples such as the duck/rabbit and the old/young woman figures (Fig. 1.9-v,vi) were first published in non-scientific domains and were later adapted as stimuli for the study of perception.

Videos: dynamic bi-stable stimuli

Furthermore, bi-stable illusions can emerge in video stimuli; they are called structurefrom-motion [START_REF] Fang | Stabilized structure from motion without disparity induces disparity adaptation[END_REF][START_REF] Brouwer | Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics[END_REF]. They are related to visual kinetic depth effects [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF]. The literature reports many results on the rotating sphere15 and rotating cylinder stimuli-see Fig. 1.12. Apparent motion quartets16 are also used to induce bi-stability, where the interpretations vary in the orientation of an inferred motion from dots blinks. Moving plaids can be used to produce a rivalry of direction too (Pressnitzer and Hupé, 2006). Finally, motion-induced blindness17 has been shown to have temporal dynamics similar to ambiguous figure perception [START_REF] Bonneh | Motion induced blindness[END_REF], though its link to bi-stability remains less obvious. Ambiguous figures also allow studying the interaction of specialised and distant neural networks known to code or operate decisions on certain types of information such as movement, face recognition, colour, perspective, and more. Thus, it is important to keep in mind that some ambiguous figures can lead to switches in perception within a category of cognitive function, i.e., intra-categorical competition, and across different cognitive functions, i.e., cross-categorical competition [START_REF] Ishizu | Varieties of perceptual instability and their neural correlates[END_REF].

Paradigm comparisons

Binocular rivalry and ambiguous figures are the two dominant paradigms used to study bi-stable perception; researchers have found many similarities and some differences in terms of observed dynamics and data fitting to models. One of the key aspects of bi-stability, the Gamma distribution of percept durations, has been reported, with similar results to binocular rivalry, for the Necker cube (Jan [START_REF] Brascamp | Distributions of alternation rates in various forms of bistable perception[END_REF], orientation rivalry (L. v. [START_REF] Dam | The role of (micro) saccades and blinks in perceptual bi-stability from slant rivalry[END_REF], auditory bistability [START_REF] Pressnitzer | Is auditory streaming a bistable percept[END_REF]Pressnitzer and Hupé, 2006), monocular rivalry, motion-induced blindness [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF], or rivalry between moving gratings known as the moving plaid stimulus [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Pressnitzer and Hupé, 2006;[START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF]Moreno-Bote, Shpiro, et al., 2010)-see Fig. 1.13 for a schematic explanation. The moving plaid stimulus is described in details, and a literature review of results related to it will be provided and discussed later, in Chapter 4. Another key property, the independence of phase durations and there unpredictability, has been reported for plaids [START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF], auditory bi-stability (Pressnitzer and Hupé, 2006) and many ambiguous figures.

Moreover, differences in mean percept duration can be found for rivalry, orientation rivalry and moving plaids, where percept durations are found to be much longer than in binocular rivalry [START_REF] Ee | Voluntary control and the dynamics of perceptual bi-stability[END_REF][START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF]. Studies have found that voluntary control and observer strategy are more effective on the Necker cube as opposed to rivalry (Ee, Van Dam, et al., 2005;[START_REF] Meng | Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures[END_REF]. Finally, mutual exclusivity of interpretations is a property that relates to ambiguous figures more accurately than rivalry as observers report having fused percepts in the latter. It is worth noting that trans-magnetic stimulation (TMS) of the visual cortex has been shown to affect binocular rivalry but not ambiguous figure bi-stability, strongly suggesting that the conflicts in perception do not occur for the same neuronal populations in these paradigms, though the phenomena are closely linked [START_REF] Pearson | The effects of transcranial magnetic stimulation on visual rivalry[END_REF].

State of the art for subjective reports

Before covering the topic, it is important to consider that, in an experimental setup where perception changes, the reversal can be of two nature: (i) endogenous reversals refer to changes of perception caused by internal processes in the visual system, and the brain, while (ii) exogenous reversals refer to changes of perception caused by external modification of the stimulation, in the physical display of the experimental setup.

The simplest form of experimental paradigm18 is based on presenting the stimulus and asking for the observer to explicitly report perception. This is usually done by using assigned keys on a keyboard that correspond to a percept. Participants can be asked to either report changes in perception by a brief key press, or to keep the key pressed as long as a percept is perceived. For both cases, motor programming has to be considered as part of the response, as it introduces variable latencies. This time may vary greatly from one participant to another, and from one trial to another, from one perceptual change to another. In fact this issue is amplified when high temporal resolution neuro-imaging techniques are applied to study multi-stability, as it becomes difficult to estimate the precise moment of endogenous reversal and have an onset for perception change [START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Overall, one can assume that the motor response may take between 200 ms and 600 ms, but as shown in Fig. 1.14, multiple internal motor processes are involved before measure acquisition, and each can add variability on the time stamp. As most experiment in the literature use key press reporting, these caveats apply to most results [START_REF] Ballanger | EMG as a key tool to assess motor lateralization and hand reaction time asymmetries[END_REF].

Experimental paradigms review

Two approaches have been explored by researchers: (i) continuous viewing during which the stimulus remains stationary and participants report their perceptual dynamics as it changes, and (ii) discontinuous viewing during which the experiment provides temporal windows during which the observers may report their perception. 

Continuous viewing.

Researchers have used the continuous viewing paradigm for empirical research in multi-stable perception because what sets the phenomenon apart from other visual illusions, is the mid-term19 dynamics of perception. Indeed, most perceptual tasks in vision science use short trials to study the visual system, during which a stimulus will be presented for a duration smaller than 5 seconds, typically. This allows experimenters to control presentation condition and accumulate a large sample of trials per condition. However, multi-stable stimuli have varying mean percept durations with most being over 3 seconds: in fact this is why the percept is considered to be stable for a period of time. Note that static stimuli such as the Necker cube tend to have shorter percept durations [START_REF] Zhou | Perceptual dominance time distributions in multistable visual perception[END_REF][START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF] than dynamic stimuli like the moving plaid [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004;[START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF].

As a consequence, trial durations tend to be larger, though they vary greatly from one experiment to another, ranging between 20 seconds and 3 minutes. Trial duration quickly becomes a pragmatic trade-off to consider when designing experiments as observers will experience fatigue over prolonged stationary stimulation and reactivity to perceptual changes may vary more. For neurosciences, continuous viewing protocol have been used successfully in fMRI studies with results showing percept coding in the visual cortex and some other cortical areas [START_REF] Sterzer | The neural bases of multistable perception[END_REF], but also present difficulties to estimate the precise time at which the perceptual reversal occurs and to synchronise signals for event relate potential (ERP) and time-frequency (TF) analyses in MEG and EEG studies [START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF].

Discrete viewing. To solve synchronisation issues raised in the previous paragraphs, some researchers have tried to exploit a known aspect of bi-stability: when visual presentation is interrupted by a mask also referred to as the inter-stimulus-interval (ISI), percept reversal rates 20 can be manipulated such that perception is quasistabilised for one percept (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF][START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF].

We refer to this approach as the discrete viewing paradigm, also known as discontinuous presentation protocols. Defenders of this approach argue that given the flow inputted to the visual system is ecologically interrupted by eye blinks, the system is used to treat discontinuities and that multi-stable perception is fundamentally discontinuous [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Furthermore, ERP and TF analyses are greatly improved as temporal noise, i.e., phase shift, is reduced since the protocol forces the observer to respond at a given time, after the stimulus and the ISI were displayed (see Fig. 1.15) and an onset can be estimated [START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. However, the issue cannot be as simply solved. Visual awareness is experienced as continuous but input feed interruption such as blinks are endogenously generated and do not influence the system with the same power as an exogenous ISI as shown by the variation of mean phase duration depending on ISI (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF]. Indeed the impact of eye blinks on bi-stable perception has been shown to be minimal and indirect; in fact, L. v. [START_REF] Dam | The role of (micro) saccades and blinks in perceptual bi-stability from slant rivalry[END_REF] discuss that blinking rates are impacted and decrease when key press motor programming occurs. Such issues reorient questions on the impact of key press on perception. Their results support the idea that given blinks are endogenous events, the visual system is given the information of their occurrence and adapts to the task events.

In fact, [START_REF] Brascamp | Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations[END_REF] showed that perceptual changes occur on larger time scales when using a discrete presentation protocol with ISI. They further argued that perceptual memory may play a role in the dynamics of multi-stable perception, by having similar dynamics at larger temporal scales. Furthermore, when looking at the dynamics in a probabilistic way, such as the one proposed by [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF], the impact of blanks on survival probabilities 21 is evident, as the temporal dynamics suggest that subjects have high perceptual biases on their first percept, with the system having mechanisms to stabilise near equi-probability. 20 Reversal rates or perceptual change speed is a measure used to estimate based on data in a trial how quickly perceptual changes occur. It is typically expressed as reversals per seconds and gives an interpretation and value on the dynamics of perception. One can compute it simply with: r = nX /tT with r the reversal rate, nX the number of perceptual changes and tT the trial duration in seconds. 21 Survival probability refers to a probability value given to the dominant percept that indicates the chance that it will remain dominant in the next iteration.
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Known interference effects linked to key press reports

Motor response is used in subjective report experiments in the form of mostly key press on a computer keyboard, but also mouse click or even oral report. For instance, it is established that motor response performances are dependent on task difficulty or workload [START_REF] Veltman | Physiological workload reactions to increasing levels of task difficulty[END_REF]. Furthermore, motor responses are not equivalent; saccades can be generated with much faster latencies, in just 100 milliseconds for natural scene tasks, compared to around 300 milliseconds when using button press [START_REF] Crouzet | Fast saccades toward faces: face detection in just 100 ms[END_REF][START_REF] Guyader | Do low spatial frequencies explain the extremely fast saccades towards human faces?[END_REF]. The motor response implies attentional shifts and thus can affect the visual decoding and spatial frequency appearances of the stimulus for the observer [START_REF] Yeshurun | Attention improves or impairs visual performance by enhancing spatial resolution[END_REF][START_REF] Barbot | Attention modifies spatial resolution according to task demands[END_REF]Barbot, S. Liu, et al., 2018). In fact, the effects of attention on multi-stable perception are not negligible.

In binocular rivalry, changes in attention can explain the dynamics of bi-stability [START_REF] Dieter | Does visual attention drive the dynamics of bistable perception?[END_REF][START_REF] Li | Attention model of binocular rivalry[END_REF], but this is not as clear for ambiguous figures. However, a review of motor control and learning with regards to attention exposed the conclusion that as participants get accustomed to the task, their attention is not distributed in the same manner as at the end of the experience [START_REF] Song | The role of attention in motor control and learning[END_REF]. This in turn affects perceptual performance for the visual system. Furthermore, motor response is known to introduce unwanted neural activity in neuro-imaging experiment as programming the response activates neural networks dedicated and not involved in visual perception as per say [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF].

Overall, little is known on the direct contribution of key press responses on the dynamics of multi-stable perception besides its impact on attention and eye movements (L. v. [START_REF] Dam | The role of (micro) saccades and blinks in perceptual bi-stability from slant rivalry[END_REF].

To further study the contribution of indirectly related motor action, researchers need to develop, before hand, methods that can be enable perception decoding without relying on key press, so that the conditions can be contrasted.

State of the art for objective reports

Objective report experimental protocols aim to use other methods to measure perceptual changes, without being entirely dependent on the observers' explicit responses.

Difficulties related to subjective report paradigms have been presented above, but other approaches are being developed. They rely on finding physiological markers or signatures of multi-stable perception that can be measured on participants during the task. These markers can be estimated by building up on subjective report protocols, during which data can be labelled by observers, considering them as ground truthnote that given some of the arguments mentioned above on motor and attentional interference, this notion should not be considered as absolute. As these signals may have some level of variability, this type of approach heavily relies on signal processing and modelling. In fact, this type of problems can be approached by machine learning methods, in which the signatures can be learned by an algorithm, to detect the markers of a percept or of perceptual changes. A model of signatures needs to be established either by theoretical works or by data-driven techniques, so that it can be applied to scan data and detect matches. The data can be of many kinds; for instance, one can use physiological data such as muscle activity measurement with EMG, or neural activity with EEG, MEG, electro-physiology, or blood activity with fMRI, or even eye movements using eye trackers. In the following paragraphs, we review attempts across the literature to identify perceptual dynamics in visual multi-stability, with an emphasis on eye movement studies.

Eye movements

Studying the dynamics of eye behaviour provides a mean to understand how forces external to the visual system may influence perceptual reversals. Or in other words, this approach can provide a characterisation of system noise coming from eye movements, fixations and blinks that may lead to switching. Necker himself had already described the influence of fixating certain aspects of the cube [START_REF] Necker | LXI. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid[END_REF]. Thus, the question of whether the percept, at a given time in bi-stable perception, is due to eye movement or whether the movement is a consequence of perceptual reversal has been an important source of investigation (L. C. v. Dam and Ee, 2006a). Eye tracking devices allow researchers to have quantitative and precise measurements, providing information on the impact of different events that are featured in human vision: fixations, saccades, smooth pursuit, blinks, pupil dilatation and micro-movements.

Observers of the multi-stable stimuli, and more specifically with the Necker cube, often report finding strategies to control their perception by fixating different features of the cube. Indeed, up to a certain extent, subjects can control the rate of perceptual reversals, though they can never fully stop the reversals (Ee, Van Dam, et al., 2005). Some studies have aimed to pinpoint the role of fixations and gaze position in ambiguous vision; for instance, it has been shown that eye position and percept dynamics of the Necker cube in a free viewing paradigm are closely linked [START_REF] Einhäuser | Are switches in perception of the Necker cube related to eye position?[END_REF]. However this finding has been contested [START_REF] Long | Enduring interest in perceptual ambiguity: alternating views of reversible figures[END_REF]L. v. Dam and Ee, 2005). As most scientists are interested in the markers that correlate or are causally linked to the reversal of perception, a series of studies have looked at eye movements and their implication in multi-stability.

Saccades and micro-saccades. Studying the impact of saccades, and other eye movements, on bi-stable perception is crucial in understanding the impact of shifting the visual input, along different neural populations, on the subsequent perceptual dynamics. In an attempt to quantitatively characterise eye movement related strategies operated by subjects in free viewing perceptual rivalry, no positive correlation was reported between saccades and perceptual changes (L. C. v. Dam and Ee, 2006a). Thus, it seems unlikely that participants use eye movements to stabilise or accelerate reversal rhythms. Furthermore, some interesting differences were highlighted: for instance, for ambiguous figures, no or weak correlations were observed between saccadic movements and reversals, though strong correlations were found in binocular rivalry (L. C. v. Dam and Ee, 2006a). And correlation between micro-saccadic eye movements and the following percept was shown. Hence, researchers have 1. 2 Vision & ambiguity: how does the brain handle it?

attempted to differentiate the impact of eye movement from retinal image shifts on perception.

Retinal image shifts. In this perspective, retinal-and more specifically fovealimage change has been shown to be the factor linked to perception reversals in binocular rivalry by investigating the impact of stimulus motion on a saccade-less observation [START_REF] Blake | Visual motion retards alternations between conflicting perceptual interpretations[END_REF]L. C. v. Dam and Ee, 2006a). Using stimulus motion to excite changing populations of neurons, based on retinotopic mapping, and coding of the percept, in V1, it was expected that, in theory, the effects of neural adaptation22 , would be minimised. Blake and colleagues showed that stimulus motion speed, in subjects' visual field, had an effect on the average reversal speed for binocular rivalry. However, their data were collected on very few subjects, making generalisation questionable given the high inter-individual variability observed in multi-stability.

Pursuits & opto-kinetic nystagmus

There have been attempts to use OKN on binocular rivalry to infer perceptual dynamics without depending on subjective reports [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF]. The authors used a typical OKN generating stimulus and presented it separately to the two eyes and asked participants to report using key presses in one condition, and no-report in the other. In the latter, they analysed the gaze signal dynamics to infer the perceptual dynamics. This allowed them to then contrast neural correlates of multi-stable perception using fMRI. But their method was in fact improved by another team, using the same psychophysical setup, without the fMRI, but focusing on gaze signal processing and data interpretation to solve signal interruptions and displacement due to blinks and saccades [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. They proposed a method to estimate the cumulative smooth pursuit by identifying smooth pursuit epochs in the signal and interpolating the signal over unwanted other epochs. These are, to the author's knowledge, the first convincing attempts at applying objective measures of perceptual dynamics using eye movements, featuring experiments with blind no-report conditions. However, no such results have been reproduced yet on ambiguous figures.

Eye blinks. There has been little investigation of the impact of blinks on multi-stable dynamics though their role could theoretically be linked to studies of intermittent presentation of ambiguous stimuli. Indeed, blinks should act as blank periods where the stimulus is not being fed to the visual system. Thus, results observed when manipulating and controlling discontinuous presentation times should offer insights on how blinks affect bi-stability. Researchers have shown that by setting the blank period, i.e., the ISI, to longer durations (above mean phase time), it is possible to stabilise the perception of an ambiguous stimulus, while short blanks will lead to high probabilities of reversals (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF]. However, when examining data around blinks, in free viewing conditions, no positive correlation was found between blinks and reversal dynamics (L. v. [START_REF] Dam | The role of (micro) saccades and blinks in perceptual bi-stability from slant rivalry[END_REF]. This suggests that the blank created by a blink could be profoundly different from a stimulus removal, with perceptual memory23 playing a part in the dynamics of multistability. Indeed, scientists have shown that using intermittent presentation can be misleading and lead to perceptual alternation cycle with specific characteristics and dependencies [START_REF] Brascamp | Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations[END_REF]. When looking at the dynamics in a probabilistic way, such as the one proposed by [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF], the impact of blanks on percept survival probabilities tends to create a bias towards the first percept.

Pupilometry. Pupil dynamics can be recorded and analysed through eye tracking data and can be used in vision sciences. Attempts to link pupilometry and perceptual changes have been proposed [START_REF] Einhäuser | Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry[END_REF], however, the proposed correlations have been shown to reflect the planning of the motor response over the endogenous experience of reversal of perception [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF]. Moreover, pupilometry has been shown to be a less effective means to measure higher cognitive functions such as attention or work memory [START_REF] Meghanathan | Fixation duration surpasses pupil size as a measure of memory load in free viewing[END_REF].

Neuro-imaging results review.

A review of neuroscience results on multi-stable perception, which also provide objective report methods, can be read at Appendix A.5. It is not essential to understand the results presented in Chapters 2 to 4 as the planned EEG experiment could not be carried out.

To synthesise, finding oculomotor markers of perceptual changes, when the human visual system faces an ambiguous stimulus, is not trivial, as the many studies covered in the paragraphs above show. Although some empirical results show that oculomotor events-e.g., micro-saccades, OKN or retinal image shifts-can provide information on the perceptual dynamics, eye movements remain difficult to control, since they also depend on attentional and intentional factors. Finally, objective report methods require advanced signal processing to decode systematically signatures of percepts, or perceptual change, in oculomotor, physiological or neuroimaging data. Such constraints require researchers to consider modelling the phenomenon in order to predict the investigated and searched markers.

Explanatory models of multi-stable perception

Historically, the scientific community modelling multi-stable perception was divided by two opposing approaches. .4), emerged. This division was maintained as both sides found evidence backing their type of models [START_REF] Wernery | Bistable perception of the Necker cube: In the context of cognition & personality[END_REF]. Furthermore, bi-modal experimentation has shown that a centralised hypothesis seems less likely than a distributed competition in unconscious perceptual decision making [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF]. Quantitative models have been proposed, by different research groups, to provide a theoretical and computational tools to understand multi-stable perception. They can be classified with two main approaches: oscillators and attractors.

Oscillators

Oscillator models are based on noisy oscillator circuits with adaptation being the main driving force dictating reversal temporal dynamics. A comparison of four oscillator models based on cross-inhibition for binocular rivalry showed that, with different parameters and gain functions, dynamics followed Levelt's Proposition IV of monotonic decrease of phase durations with the increase of the stimulus' strength [START_REF] Shpiro | Dynamical characteristics common to neuronal competition models[END_REF]. Oscillators have been used to account for adaptation, an internal theoretical force thought to explain the choice of percepts, their duration and Levelt's Proposition IV (Moreno-Bote, Rinzel, et al., 2007). It applies a slow negative feedback that gives models an oscillatory characteristic; as the system enters percept A (P A ), adaptation slowly reduces the probability of maintaining P A over its competitor, percept B (P B ). As shown in Fig. 1.16aA, the Right: the consequence on alternation dynamics when the strength of noise and adaptation vary, with two extreme example points where the alternative force is absent and the models is either noise-driven or adaptation-driven. This diagram shows how noise provides the characteristic tailed distribution of dominance durations, while adaptation impacts the mean of that distribution. Taken from Shpiro, Moreno-Bote, et al. (2009). dynamics of the system act as a deterministic 24 oscillator. The period in each percept becomes regular and the system's state changes has periodicity that can be estimated and defined (Fig. 1.16b).

Adaptation is interpreted in physiological and neuronal terms as due to synaptic depression and spike rate or frequency adaptation [START_REF] Shpiro | Dynamical characteristics common to neuronal competition models[END_REF].

When neurons are pushed in a response regime over a prolonged period 25 , the neurons gradually decrease in excitation for a constant input and adapt. This is in fact understood and modelled at the level of membrane current and action potential propagation dynamics [START_REF] Dayan | Theoretical neuroscience: computational and mathematical modeling of neural systems[END_REF]. It is observed and pervasive in many neural systems of human cognition and relates to the change of the system's response over time although the input remains the same. For instance, other visual illusions, such as MAE, are linked to neuronal adaptation [START_REF] Anstis | The motion aftereffect[END_REF].

In the context of perceptual multi-stability, it is thought that adaptation occurs over populations or networks of neurons coding for one percept over its alternative (Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Knill, et al., 2011;[START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF]. Hence, it acts as a suppression or inhibitive mechanism that provides oscillations in the perceptual time discourse [START_REF] Hupé | Two paradigms of bistable plaid motion reveal independent mutual inhibition processes[END_REF]. However, the dynamics of perception have been shown to be unpredictable, and therefore, adaptation and oscillation are not sufficient to explain the empirical data [START_REF] Lehky | Binocular rivalry is not chaotic[END_REF][START_REF] Shpiro | Dynamical characteristics common to neuronal competition models[END_REF], and some form of stochastic process should be considered.

Attractors

Attractor models (Fig. 1.16A) propose that noise acts as the main component that directs perceptual reversal in time and adaptation only modulates the process. With such an approach, the system is modelled as a particle in landscape following a random walk [START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF] and gradient descent [START_REF] Kelley | Iterative methods for optimization[END_REF]). An attractor for each percept (P A & P B ) is set in an energy landscape. Noise, which remains poorly defined and characterised, is the driving force that helps overcome energy barriers between attractors and lead to percept reversals (Moreno-Bote, Rinzel, et al., 2007).

It may refer to a variety of negligible interactions with other systems, thought not 24 Determinism refers to the absence of noise on the system in the parameter space described. 25 Depending on the neurons, it may vary from a few seconds to a few minutes to adapt.
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Chapter 1 Ambiguity for the human visual system to be of crucial importance for perception, or it may also refer to neuronal noise as modelled in leaky integrate-and-fire neurons [START_REF] Moreno-Bote | Simple model neurons with AMPA and NMDA filters: role of synaptic time scales[END_REF].

Consequently, models based on adaptation will showcase stable periodicity if the noise is removed, whereas noise-driven models will have no reversals of perceptual states (Shpiro, Moreno-Bote, et al., 2009). Moreover, if adaptation is removed from attractor models, the distribution of phase times would become Exponential, not Log-Normal or Gamma. Hence, a combination of these structures seems to be necessary as an exclusively attractor-based or oscillator-based model is not realistic given the arguments cited and the defining features of bi-stability (for an illustration, see Fig. 1.16 & Fig. 1.16b). For instance, an attractor model, with weak adaptation, has been implemented, and studied, with firing rate mean-field and in spiking cellbased neural networks (Moreno-Bote, Rinzel, et al., 2007). In Moreno-Bote, Knill, et al. (2011), the authors showed that when viewing ambiguous gratings motion with a moving plaid bi-stable stimulus, the fractions of dominance26 of each percept depending on a cue manipulation (speed or wavelength) follow a multiplicative rule (see Fig. 1.17a). In fact, they showed that this is a key aspect of Bayesian sampling, thus suggesting that the visual system may act as such a sampler. They further showed that an attractor neural network can sample probability distributions in a Bayesian way (Fig. 1.17b), hence reinforcing the proposed idea.

Forces

The models described above operate through the dynamics of a particle in an energy landscape, corresponding to its parametric space. Different forces are applied to the system and result in dynamical changes of its position in its parametric space. These forces are interpreted to be related to the input strength, adaptation and noise.

Input strength. Because multi-stability focuses on having the input kept constant and observing the states of the system vary, input strength is rarely manipulated, and often omitted from models. However, some models can be expressed with an input variable such as the one shown in Fig. 1.16b. Input strength relates to Levelt's propositions (Levelt, 1966;[START_REF] Levelt | Note on the distribution of dominance times in binocular rivalry[END_REF] for binocular rivalry, where the variable can be easily controlled by increasing luminance or contrast in the display of one eye over the other, for instance. In most multi-stable perception stimuli, such as ambiguous figures, we consider the input to remain constant throughout the Knill, et al. (2011) observation time. Input strength can be seen to directly affect the probability of observing a percept, and in attractor models, it corresponds to the minimum level of energy for an attractor.

Adaptation. Adaptation represents a force that affects the relative depth of the attractors by providing a slow negative feedback. When the system particle is located in an attractor, its depth is reduced, thus increasing the probability of the competing attractor-illustrated by the grey arrow in Fig. 1.17bB, Moreno-Bote, Knill, et al. (2011). If adaptation is the only force applied to the system, one obtains a periodical dynamic of perception as shown by Fig. 1.16bB (Shpiro, Moreno-Bote, et al., 2009). Adaptation has a variety of interpretations in the literature [START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF], but it corresponds, in theory, to a slow negative feedback loop. It is sometimes explained by referring to neural adaptation27 , a phenomenon that occurs when neurons are constantly stimulated over a period, their firing rate threshold adapts and shifts. Adaptation can lead, for instance, to visual illusions such as motion after effect [START_REF] Anstis | The motion aftereffect[END_REF]. However, adaptation can be also explained by mutual inhibition mechanisms, in which the activation of a population of neurons coding for a percept leads to its competitor gradually inhibiting the current percept [START_REF] Hupé | Two paradigms of bistable plaid motion reveal independent mutual inhibition processes[END_REF]. This leads to the same periodic observations, if only adaptation is the driving force in the system. Whatever the interpretation and biological plausibility, adaptation, in models, refers to a deterministic force or mechanism that provides oscillatory behaviours. It is then mixed with a stochastic component to obtain dynamics similar to bi-stable perception.

Noise. Neural noise is present in biophysical systems and corresponds to the intrinsic electrical fluctuations in the neural signals that do not code the information processed by a neural network [START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF]. However, more generally, noise can refer to stochastic processes that impact a system. In multi-stability modelling, it is an essential component to explain unpredictable percept durations, however, experimental observations or characterisations are scarce. In the attractor model family, noise has been shown to be necessary to reproduce the percept duration distributions observed in multi-stable perception [START_REF] Shpiro | Dynamical characteristics common to neuronal competition models[END_REF]Shpiro, Moreno-Bote, et al., 2009). In fact, it is necessary to have both adaptation and noise's strength balanced to reproduce empirical observations, as both forces seem to be involved in alternations such that the system must operate near the boundary between being driven by adaptation or noise.

Bi-stable models thus use adaptation to change the likelihood of a percept being chosen, by increasing the probability of the competing alternative percept. However, this is not sufficient: noise will provide the necessary energy to pass over the energy barrier remaining. Hence noise drives the moment of alternation, and adaptation which state is chosen.

If the noise enables the exploration of the multiple states, stochastic resonance is said to occur (Gammaitoni et al., 1998). Stochastic resonance is a phenomenon known to occur in biological systems in which a system takes advantage of its internal noise to enhance its performances [START_REF] Mcdonnell | What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology[END_REF]. Some works have shown how stochastic resonance might take place in the visual system (Kim et al., 2006;[START_REF] Funke | Noise-improved signal detection in cat primary visual cortex via a well-balanced stochastic resonance-like procedure[END_REF].
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This section provides some arguments motivating the study of multi-stable perception stimuli. Indeed, as reviewed in previous sections of this chapter, multi-stability is an illusion that occurs when visual inference cannot find a single stable interpretation to perceive. Cognitive systems, functions and research themes linked to this phenomenon include attention, decision making and complex system dynamics. Relevant results from these research fields are reported for a contextual understanding of this thesis' work.

Premotor theory of attention

Attention is a cognitive process that allows an individual to select an object or a feature and to focus on its processing over the rest of the stimulation. For instance, it allows to enhance our perceptual capacities on a part of the visual stimulation [START_REF] Yeshurun | Attention improves or impairs visual performance by enhancing spatial resolution[END_REF]. As [START_REF] James | The principles of psychology[END_REF] originally wrote:

" [Attention] is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalisation, concentration, of consciousness are of its essence."

In vision sciences, spatial attention has been extensively studied, and numerous experimental paradigms28 have been developed and investigated, giving insights and observations [START_REF] Rizzolatti | Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention[END_REF][START_REF] Posner | The attention system of the human brain[END_REF][START_REF] Posner | Attentional networks[END_REF][START_REF] Rizzolatti | Spatial attention: Mechanisms and theories[END_REF][START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF]. In fact, vision and attention have been studied closely together, and attention has become a necessary consideration for theoretical work (Gide, Karam, et al., 2017), in a wide range of model families:

• bottom-up approaches including feature integration [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF], spectral residual analysis (Hou and L. Zhang, 2007), superpixel segmentation (Z. [START_REF] Liu | Superpixel-based saliency detection[END_REF] or proto-objects [START_REF] Yanulevskaya | A proto-object-based computational model for visual saliency[END_REF], and more29 ,

• deep learning approaches including deep neural networks, sparse deep learning and Boltzmann machines (Gide, Karam, et al., 2017),

• and top-down approaches using the known features of higher visual processing mechanisms such as facial detection [START_REF] Cerf | Predicting human gaze using low-level saliency combined with face detection[END_REF]Gide, Karam, et al., 2017).

Classical theory of attention relies on a supramodal control mechanism that orients the information processing of the visual scene in the brain to enhance performance [START_REF] Posner | Attentional networks[END_REF]. This suggests that a dedicated neural network, anatomically and functionally, orients attention; this cognitivist conceptualisation has often linked attention and consciousness studies [START_REF] Wyart | Neural dissociation between visual awareness and spatial attention[END_REF]. But connexionist approaches have shown that there is no need for a dedicated system and that it may be a distributed phenomenon [START_REF] Rizzolatti | Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention[END_REF]. The latter is known as the premotor theory of attention and explains the control mechanisms of attention as being dependant on weaker activation in a series of fronto-parietal networks [START_REF] Desimone | Neural mechanisms of selective visual attention[END_REF][START_REF] Rizzolatti | Spatial attention: Mechanisms and theories[END_REF]. The study of attention has shown links to oculomotor dynamics as these networks are highly correlated and dependant to both attention and eye movement programming [START_REF] Posner | Orienting of attention[END_REF][START_REF] Hoffman | The role of visual attention in saccadic eye movements[END_REF][START_REF] Kuhn | You look where I look! Effect of gaze cues on overt and covert attention in misdirection[END_REF][START_REF] Engbert | Spatial statistics and attentional dynamics in scene viewing[END_REF][START_REF] Kalogeropoulou | Saccadic eye movements do not disrupt the deployment of feature-based attention[END_REF][START_REF] Meyberg | Revising the link between microsaccades and the spatial cueing of voluntary attention[END_REF].

Evidence from psychology studies

Using the Posner experimental paradigm, Rizzolatti, Riggio, Boris [START_REF] Rizzolatti | Space and selective attention[END_REF] showed the meridian effect: a delay in response time when participants have to respond in the contra-lateral side with respect to the hemifield where the cue is. Thus attention was located. The meridian effect is a strong argument in favour of premotor theory of attention as it can be explained by how eye movements are executed: when a cue indicates the position of the expected stimulus, the observer prepares a saccade towards this expected position. If the expected target does not appear in the cued location, the brain has to reprogram a saccade, which adds a delay in the reaction time. If the target appears at the location cued, the saccade is carried out more efficiently, as the premotor programming corresponds to an attentional boost in performance. This can be observed, especially in eye movements, with saccade deviations-see Fig. 1.18 (B. [START_REF] Sheliga | Spatial attention and eye movements[END_REF]. In fact, this has been causally demonstrated by restraining eye movements, attention was affected such that detection performances dropped hence showing that oculomotor programming and attention are intrinsically linked [START_REF] Craighero | Peripheral oculomotor palsy affects orienting of visuospatial attention[END_REF][START_REF] Craighero | Peripheral oculomotor palsy affects orienting of visuospatial attention[END_REF]. 

Evidence from neuro-imaging & neuro-physiology studies

Neuro-imaging studies further showed that the cortical neuronal networks used for eye movement and visuo-spatial attention are shared in parietal, frontal and temporal lobes [START_REF] Corbetta | A common network of functional areas for attention and eye movements[END_REF][START_REF] Nobre | Covert visual spatial orienting and saccades: overlapping neural systems[END_REF]. The networks reported in these studies are analogous, for humans, to the monkeys' FEF and LIP areas, both known for voluntary control of eye movements (Astrand et al., 2015). Moreover, event-related fMRI data on blind individuals reinforce the idea that attention and eye movements share the same neural circuitry in FEF [START_REF] Garg | Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans[END_REF].

Invasive neuro-physiology data also show activity of neurons recorded in monkey's SC, a core neural network for oculomotor programming [START_REF] Kustov | Shared neural control of attentional shifts and eye movements[END_REF]. Neurons in SC increased their excitability when attention was paid to the location it needed to make eye movements to, for the task. In fact, some researchers have shown that it is possible to enhance spatial perception by changing the oculomotor signals inside the brain [START_REF] Moore | Control of eye movements and spatial attention[END_REF]. Two monkeys had to make a manual response when detecting a transient dimming of a peripheral visual target while experimenters micro-stimulated the FEF cortical area. The authors reported that sub-threshold stimulation of a specific area of FEF led to a decrease for the psychophysical detection threshold of the stimulus, hence improving performance, when the target was positioned in the motor field corresponding to the stimulated neurons. Such evidence argues for a causal relationship between eye movement control and allocation of spatial attention. These results have since been replicated and investigated further, showing that when stimulating sub-regions of the FEF, visual and oculomotor performances can be improved [START_REF] Moore | Selective gating of visual signals by microstimulation of frontal cortex[END_REF][START_REF] Ekstrom | Bottom-up dependent gating of frontal signals in early visual cortex[END_REF]. Furthermore, these results have been causally replicated on human subjects using TMS-fMRI by showing stimulating human FEF leads to systematic effects on fMRI signals in the early visual cortex V1 [START_REF] Ruff | Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex[END_REF].

Attention & intention for action & perception

Premotor theory of attention makes attention intrinsic to motor commands and thus, action. Indeed, more specifically, eye movements, attention and visual perception are highly inter-linked phenomena [START_REF] Posner | Orienting of attention[END_REF][START_REF] Hoffman | The role of visual attention in saccadic eye movements[END_REF][START_REF] Kuhn | You look where I look! Effect of gaze cues on overt and covert attention in misdirection[END_REF][START_REF] Engbert | Spatial statistics and attentional dynamics in scene viewing[END_REF][START_REF] Kalogeropoulou | Saccadic eye movements do not disrupt the deployment of feature-based attention[END_REF][START_REF] Meyberg | Revising the link between microsaccades and the spatial cueing of voluntary attention[END_REF] as the first changes the input, the second orients the former and the latter processes the information. In fact, attention and intention are closely linked during visual tasks [START_REF] Kohler | Deciding what to see: The role of intention and attention in the perception of apparent motion[END_REF], notably longer ones during which attention may vary and fluctuate over time [START_REF] Esterman | Models of sustained attention[END_REF].

On the other hand, intention can be controlled with relatively more constancy by means of task design and instructions [START_REF] Firestone | Cognition does not affect perception: Evaluating the evidence for "top-down" effects[END_REF]. While attention often refers to bottom-up driven changes in behaviour (e.g., eye movements) and thus in perception, intention is often conceived as a top-down signal driving motor commands and affecting sensory inputs. Premotor theory offers a distributed mechanism in neural networks whereby the attention is not driven by an external supra-modal function, but by preactivation or sub-threshold levels of neural excitation in the action or perception related networks. Therefore, in this theoretical approach, attention is placed as an intrinsic component modulating both action and perception, but also provide a commonality and is shared across both systems.

This consequence is a key aspect that shall be exploited in this thesis' theoretical work, and provides a pathway to bridge our understanding of eye movements and multi-stable visual perception [START_REF] Rolfs | Attention in active vision: A perspective on perceptual continuity across saccades[END_REF][START_REF] Li | Attention model of binocular rivalry[END_REF][START_REF] Mirza | Introducing a Bayesian model of selective attention based on active inference[END_REF][START_REF] Song | The role of attention in motor control and learning[END_REF]-but see [START_REF] Parr | Attention or salience?[END_REF] for a critic of the premotor theoretical approach.

Perceptual decision over time

When the visual system infers a perceptual representation of the sensory inputs, it takes many unconscious decisions, referred to as perceptual decisions. 

Percepts as options for perceptual decisions

Perception reduces the sensory information into interpreted perceptual objects in a mental space, as presented in Section 1.1.3. The process uses inferential mechanisms to generate percepts, and this requires the brain to make perceptual decisions. Decision making is a phenomenon that occurs in many cognitive functions and can be linked to neural network architecture reducing the input into a restrained set of outputs [START_REF] Hérault | Réseaux neuronaux et traitement du signal[END_REF]. In fact, in a recent computational study, Moreno-Bote and Drugowitsch (2015) showed that spiking network models can solve high dimensional causal inference problems. Using spiking network models in numerical simulations, they looked at the network's behaviour for hard discrimination classical problems, complex mixture identification problems and closest component problems (Fig. 1.19). This type of operation follows the accumulation of evidence from sensory input which is associated to a cost function [START_REF] Drugowitsch | The cost of accumulating evidence in perceptual decision making[END_REF]. In the latter study, the authors used a RDK on a diffusion model and observers and obtains similar reaction time distributions and could identify a contribution they interpreted as the urgency signal which was independent of stimulus strength (i.e., difficulty). These studies suggest that perceptual decision operates at fast time scales with neural populations accumulating evidence towards an inference (i.e., a percept), and are able to take a hard decision to classify, but also to identify the proportions of the input leading to the outcome. When no class exist for a stimulation, the network can converge towards the closest state. Empirical studies using continuous tracking methods such as track pads over decision making provide data showing similar drift to those engaged by the models [START_REF] Zeljko | Temporal dynamics of a perceptual decision[END_REF].

Inference mechanisms

The states of decision making show parallelism to the attractors in multi-stable models and the Bayesian framework is used in both cases to explain the system's dynamics (Moreno-Bote, Knill, et al., 2011). Moreover, some researchers have shown that these attractors, in the network's parametric space, are not static and may evolve over time, with neuronal plasticity being a key feature to enable that [START_REF] Malhotra | Overcoming indecision by changing the decision boundary[END_REF]. By combining an ideal observer model and a noisy judgement task in which observers had to trade off accuracy (i.e., the accumulation of evidence) and speed (i.e., more rewards), the authors showed that participants can modulate their internal decision boundary, though they did so in a sub-optimal way. Therefore, key theoretical bridges exist between findings in perceptual decision making and multistable perception. In the latter, the processes for accumulation of evidence continues over time and the suppressed percept ends up re-emerging, thus suggesting that the visual system is constantly inferring perceptual objects.

Multi-stability as a regime of stability in complex systems dynamics

The theory of predictive coding (Fig. 1.20a) with the free energy principle (Fig. 1.20b) proposes that the brain computes sets of prediction errors based on established and learned priors [START_REF] Friston | Predictive coding under the free-energy principle[END_REF][START_REF] Friston | The free-energy principle: a unified brain theory?[END_REF]. The theory is based on the assumption that the brain is Bayesian [START_REF] Chater | Probabilistic models of cognition: Conceptual foundations[END_REF], namely its computations attempt to solve the following generic equation, corresponding to Bayes' theorem:

p(Θ|X) = p(X|Θ)p(Θ) p(X) (1.1)
where X is a set of data (i.e., sensory information) and Θ is a set of parameters. p(Θ) is the prior which corresponds to the probability that the brain have such a state, independent of the sensory information. p(X|Θ) is the conditional probability of observing the sensory inputs given the current state of the system, also referred to as the likelihood. p(X) is the marginal probability that normalises the p(Θ|X) posterior distribution. The latter corresponds to the probability of the brain being in a state, defined by Θ, given the sensory input. The posterior is the probability law that is investigated in cognitive studies as it reflects behaviour based on the mixing of prior and likelihood distributions. The inference computation in the context of active vision can be interpreted using the schematic models described in Fig. 1.20. A consequence of the Bayesian foundations is that multiple systems can
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Chapter 1 Ambiguity for the human visual system (a) Diagram depicting the loop for perceptual inference, in which an agent interacts with its environment by capturing an estimation of the environment's state through sensations, that modify its internal states, causing the agent to act, which in turn, affects the external states.

(b) The free energy principle postulates that the system is driven by surprise, i.e., when expectations are not met, and can act on its actions to minimise prediction errors or on its perceptual computations to optimise predictions and inferences. Diagrams are reproduced from [START_REF] Friston | The free-energy principle: a unified brain theory?[END_REF].

be integrated in hierarchical models with forward propagation of inference errors being a bottom-up coupling of systems, and backwards propagation being top-down influences.

The theory also considers that as complex systems, the neural networks learn to form attractors which encode what is being perceived, while neural activity itself encodes where the attractors are located in the network's parametric space. When considering such types of organisations for complex systems, multi-stability can be seen as a regime of stability, in which a complex system may settle for a time [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. However, other regimes such as mono-stability and meta-stability exist-for an illustration see Fig. 1.21-and a system's regime depends on its history (i.e., what is has learned). Visual multi-stability occurs on highly trained visual systems-for instance, there is evidence that uninformed children are not capable of experiencing perceptual reversal on ambiguous figure [START_REF] Mitroff | Reversing how to think about ambiguous figure reversals: Spontaneous alternating by uninformed observers[END_REF]-and one can assume that priors are well established for adult participants and attractors are unlikely to vary. Hence, ambiguous stimuli reveal how the visual system, a mature and complex one, may enter a regime of multi-stability where the brain re-evaluates its predictive errors on sensory information, and operates perceptual decisions based on accumulated evidence and noise. Furthermore, similarities between the error backpropagation algorithm used for predictive coding learning and synapse's Hebbian plasticity have been shown [START_REF] Whittington | An approximation of the error backpropagation algorithm in a predictive coding network with local Hebbian synaptic plasticity[END_REF], suggesting it is a good model to study how the brain may learn preferred states (i.e., attractors) for a certain type of problems and their boundaries may evolve.

Studying the brain as a complex system, composed of a multitude of inter-connected networks, requires to look at how these components interact: i.e., what is the level of integration or segregation of sub-systems? Though the task is not trivial as billions of neurons are involved with a much larger number of connections, researchers have tried to propose metrics to quantify and estimate such complexity, based on the theory of information, by looking at mutual information between sub-systems [START_REF] Tononi | A measure for brain complexity: relating functional segregation and integration in the nervous system[END_REF], for instance. This type of measure is difficult to apply to neuro-physiological data as they are in essence, largely incomplete, but it is useful when working with complex computational models. Indeed, this provides tools to investigate the relative coupling and synergies between sub-systems over computational visual processing for instance. (c) Meta-stability in which no attractor or repellor exist, with a system effectively using sub-system coordination, though no stable state can be found.

(d) Uncoupled dynamics where no sub-system coordination are present.

(e) The system's parameter space marked with areas corresponding to the described regimes and arrows showing possible transitions as the system's parameters and its coupling vary-b/a is a coupling parameter, internal to the system, while δω represent the observed coordinated dynamics.

State of the art synthesis

In this section, a synthesis of the Chapter 1 is given by providing the gaps identified in the literature for visual multi-stability with eye movements and EEG studies. The content is split such that these gaps are specified for theoretical and computational models on one hand, and empirical studies on the other. Following this summary, the aspects that are addressed in this thesis are specified, thus providing the motivation for the rest of this manuscript.

Identified gaps

Theoretical and computational models

In theoretical works, the key gaps identified are (1) the lack of generalisation from bi-stable to multi-stable models, ( 2) the lack of consensus on the interpretation of the adaptation force in models, (3) the lack of studies on noise characterisation, ( 4) not many models implementing active vision processes for multi-stable phenomena and (5) the perspective of addressing the problem as dynamical complex systems coupling for multi-stable perception.

Bi-stable models, but little on multi-stable models. As reviewed in Section 1.2.4, research on computational models of multi-stable perception has focused on bi-stable phenomena. Attractor models composed of a deterministic component, adaptation, and a stochastic one, noise, are able to generate perceptual dynamics similar to observations measured on human participants in experiments. This is particularly true for replication of percept durations distribution. However, the focus has been primarily on the simpler case of a system with two attractors, or states. Few studies have approached problems with three or more states, though some attempts have been reported [START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF].

In fact, generalisation to tri-stable perception provides new problems and may lead to further insights on the mechanistic properties of perceptual inference: for instance, understanding whether percepts interact hierarchically can be valuable to identify the temporal and serial aspects of inferential processes in the brain.

Furthermore, bi-stability models rely on adaptation and noise, but does tri-stability require new components? Or does it clarify the controversial interpretation for adaptation?

Adaptation's interpretation is still debated. Adaptation is a force in theoretical models of bi-stable perception that has generated disagreements within the literature.

It is defined as a deterministic slow negative feedback that allows oscillatory changes of perception if all other forces are removed (Shpiro, Moreno-Bote, et al., 2009). However, its interpretation, namely its physiological basis, is not clear. Some authors refer to neural adaptation (Pastukhov and J. Braun, 2013), often experienced in visual phenomena-e.g., in motion after effect [START_REF] Anstis | The motion aftereffect[END_REF], or in colour perception-but is often explained by low-level bottom-up processes, where neurons adapt to a saturated state in order to provide sensitivity again after at least 20 seconds. This mechanism can be implemented by synaptic depression or spikefrequency adaption. An alternative view is that the slow negative feedback occurs in the brain by means of mutual inhibition connections between networks coding for the competing percepts [START_REF] Hupé | Two paradigms of bistable plaid motion reveal independent mutual inhibition processes[END_REF]. Further investigation on the physiological nature of this deterministic force in bi-stable models is thus still needed.

Noise's interpretation is elusive. Multi-stable perception dynamics have been shown to be replicated best when adding a stochastic process, in theoretical works (Shpiro, Moreno-Bote, et al., 2009). In fact, there is some evidence that bi-stable visual perception for binocular rivalry is not chaotic, and that given one perceptual duration, it is not possible to predict systematically the length of the next duration [START_REF] Lehky | Binocular rivalry is not chaotic[END_REF]. Furthermore, noise is an elusive notion that can be referred to for all processes that are not explained. Hence, identifying what might act as noise in the inference of an ambiguous stimulus for the visual system is a challenging and less addressed issue. But the role noise plays is not necessarily detrimental; for instance, stochastic resonance, in which the noise brings the energy for a change of the system's state (Gammaitoni et al., 1998), might provide an interesting explanation for multi-stable perception (Kim et al., 2006). Indeed, this could bring evidence towards showing that the brain has evolved to have optimal and preferred states to which it converges to, when doing perceptual inference, but also has a stochastic mechanism to allow it to explore new possibilities, thus improving its capacities to evolve and adapt [START_REF] Mcdonnell | What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology[END_REF].

State of the art synthesis

Addressing multi-stable perception as an active vision process. Some research has been carried out on trying to identify correlations between eye movements and visual multi-stability. However, from a modelling perspective, models have been focused on perception exclusively, and no model, to the author's knowledge, have provided a mechanistic interaction between the oculomotor system and the perceptual one (Fig. 1.22). In fact, investigating such coupling in the paradigm of active vision may provide key results on the identification of stochastic processes in perceptual inference. Results on hyper-acuity have shown for instance that fixational eye movements provide changes to the visual signal that are exploited by the brain to enhance its performances [START_REF] Rucci | The unsteady eye: an information-processing stage, not a bug[END_REF]. Thus, the noise, when decoding perceptual ambiguous stimuli, may be linked to variations operated in the motor system driving the changes in the visual flow: the oculomotor system.

The field may benefit from propositions giving computational models that can take into account gaze dynamics, that can be objectively measured, and perceptual subjective dynamics.

Such propositions may be done in the form of a theoretical framework in which models can be developed in both spaces with their interactions; they would allow, if generative, the possibility of making quantified predictions, through computational simulations and the generation of synthetic data, that can be tested in empirical studies. Such perspectives would lead the community in theoretical studies of multistable perception to investigate the phenomenon by studying how these systems are coupled and their synergy.

Developing the study of multi-stable perception as complex system coupling problem. Visual multi-stability is linked to the inferential process that occurs in decoding visual information. As reviewed in Section 1.1 and Appendix A.2, many layers of processing are involved. Information is gradually interpreted into perceptual objects through parallel operations. This implies that many sub-systems are involved and that the signals are combined and re-combined asynchronously, though perceptual experience is known to flow continuously. A recent article has proposed and sketched out a framework for considering how all these sub-systems involved might be treated as a complex larger system and may be studied as such [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. It focuses in considering the coupling of these sub-systems by observing whether they are in a synergistic regime or whether they tend towards segregation. Moreover, these considerations should be done with dynamical processes.

In the framework proposed by Kelso (2012), multi-stability becomes a regime of stability for complex dynamic systems, and there-fore, a larger context is provided to understand how multi-stable perception might be a marker of an evolving visual system's coupling states.

This might help formulate hypotheses on the longer temporal dynamics of visual multi-stability, and may help understand why it seems to be absent in children of young age and some patients with neuropathologies.

Eye movements & multi-stable perception

For empirical studies, key identified gaps related to this thesis are as follows;

(1) some oculomotor markers of multi-stable perception have been identified, (2) high temporal resolution neuro-imaging techniques combined with eye-tracking could provide further knowledge on the processes occurring at the moment of reversal, (3) many issues remain with continuous viewing paradigms, more so with neuroimaging techniques and ( 4) further development of no-report protocols are needed to remove subjective and attentional shift biases.

Oculomotor markers of multi-stable perception. Though studies have been carried out in attempts to find eye movement correlates of bi-stable perception, these have often been done with multiple and varied stimuli, and more importantly, with an empirical and exploratory approach. In other words, most studies investigated whether saccadic dynamics or fixation location might be correlated with perceptual events, but clear evidence of such relationships are sparse.

An alternative approach can be formulated as follows: given a chosen stimulus and associated models for eye movements and perception, one can establish specific hypotheses and predict gaze markers linked to perceptual changes and the stimulus dynamics.

This type of approach have been attempted successfully in recent works using binocular rivalry and OKN eye movements [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF]. The markers allowed the authors to investigate neural correlates of perceptual changes and with recent methodological improvements, this type of research can be further investigated [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF].

State of the art synthesis

Joint gaze and neuro-imaging investigations. Eye movement and neuro-imaging research on visual multi-stable perception have produced many results, independently. Moreover, methods combining both recordings have sprung in the past two decades, enabling researchers to look at interaction between physiological and neural dynamics. In addition to oculomotor markers of perceptual change in multi-stable perception, reviewed in this chapter, neural dynamics can be used to decode internal events (see Appendix A.5). This can be done by looking in TF analysis for Gamma band energy periods at percept reversals and Alpha band energy during percept duration [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. MEG and EEG, especially, should provide adequate data to investigate the processes that occur around perceptual reversal.

Improve continuous viewing paradigms. Multi-stable perception is characterised by changes of perception over a continued period of observation. This differs from most cognitive experiments for which trials tend to be short and thus, tasks and attention tend be relatively controlled. A key challenge here, on the other hand, is that participants will observe the stimulus and report spontaneous perceptual changes over periods typically beyond 20 seconds, and will do so in a repetitive manner. This tends to introduce variability in participants' behaviours. Some researchers have reported methods that can provide a relative compensation for these fall outs, using discontinued stimulus presentation with blank intervals and the report task being deported to the end of the trial [START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF], or by sampling the perception at periods over long observation times by giving an auditory cue to report [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF].

Beyond attentional control, key press report requires motor commands and impacts attention and perception.

Thus, no-report experimental protocols are a step towards improving continuous viewing protocols.

Extend no report methods for neural correlates of consciousness research. Noreport protocols rely on inferring the content of conscious perception based on implicit physiological markers. Such markers may be eye movements or neural dynamics for instance. This approach provides a bridge with the emerging literature on neural correlates of consciousness (NCC). The results from NCC can provide insights on identifying neural markers for perceptual changes in multi-stability. The contrary is true as well, the development of methods on multi-stable stimuli can help drive research on NCC and provide a methodological basis to develop the field. In this thesis, we approach multi-stability with models and experiments. We also focus on the relationship with relationship between oculomotor control and perception, defined as active vision, i.e., vision being coupled to the body's action to operate. The stimulus chosen for most of the study is the moving plaid, featuring tri-stable ambiguity on perceived motion direction and depth ordering. Diagram composed of figures from the literature (Engbert, Mergenthaler, et al., 2011;Moreno-Bote, Knill, et al., 2011;J. Zhang and Sclaroff, 2013;[START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF].

Gaps addressed in this work

In this work, we do not address all the gaps but we focus on some by following an approached based on theoretical models developed. To address the problem more simply, first, linking the field of eye movements and multi-stable perception is necessary. In fact, investigating oculomotor dynamics by looking at eye movement classification, and providing a model, that can join both phenomena, is key to predict observation that relate perceptual multi-stability and oculomotricity.

In Chapter 2, we provide a definition and evidence of micro-pursuits, fixational eye movement dynamics showing similarity with a stimulus' motion. We look at how micro-pursuit may relate to other FEM, like micro-saccades, and propose metrics to measure them, based on spatio-temporal similarity of bi-variate signals.

In Chapter 3, a set of models based on gravitational energy fields provides a framework for a theoretical understanding of active vision in the context of multi-stable perception. It also explains all eye movement dynamics using the motion of attractors, which can be linked to perceptual attractors, modulated by attentional and intentional forces. Experimental work of this manuscript focuses on a particular tri-stable stimulus: the moving plaid.

In Chapter 4, contributions on the manipulation of its ambiguity using the gratings' transparency parameters, and the perceptual inference from gaze data based on its motion ambiguity. The latter is a test to apply theoretical and empirical understanding of the moving plaid and eye movements in order to investigate the role of eye movements in perceptual decision when stimulation is ambiguous.

In Chapter 5, a synthesis of the body of work presented in the thesis are presented, as well as some preliminary works on oculomotor control in the moving plaid and no-report paradigm, and perspectives are discussed.

Micro-pursuits: a class of fixational eye movements 2 " Consciousness is only possible through change; change is only possible through movement.

-Aldous Huxley "The Art of Seeing".

Human vision and eye movements are intrinsically linked as the latter change the visual input projected on the retina. Though our visual representation is stable, the eyes never truly stay still and generate small amplitude FEM that can be interesting markers of cognitive states. Research in the field of FEM has been extensive on micro-saccades, but less is known about drift and slow movements. Drift and slow movements tend to be considered as independent from visual stimulation, since larger eye movements are typically used to explore the visual field. However, we have detected small amplitude (fixational), slow movements when the task comprised a visual target with a highly predictable trajectory. In addition, the gaze showed high similarity with the target trajectory, measured through maximally projected correlation. Individual and group analyses gave significant results both in an implicit (Necker) and an explicit (Cross) pursuit task experiment, but not in a secondary implicit (Square) pursuit task experiment. The inter-experiment analysis results suggest that the manipulation of task, stimulus target motion, and the complexity of the stimulus may play a role in the generation of micro-pursuits.

Publication.

The work presented in this chapter had been accepted for publication to the Journal of Vision, as an article under the title Micro-pursuit: a class of fixational eye movements correlating with smooth, predictable, small-scale target trajectories, Kevin Parisot, Steeve Zozor, Anne Guérin-Dugué, Ronald Phlypo, & Alan Chauvin, and has been revised since this thesis' first review. CAUTION: the micro-saccade analysis was corrected following the defence's discussion, in which an error in the analysis was pointed out by the examiners Laurent Madelain. The discussion was significantly modified as no secondary main sequence were detected in the corrected analysis. The Journal of Vision article has been accepted for publication and the reader should refer to the version in Appendix C rather than the following content, which was left as a trace of the defence's discussion.

Introduction

The main function of eye movements is to orient the gaze towards parts of a visual scene (Yarbus, 1967;[START_REF] Palmer | Vision science: Photons to phenomenology[END_REF]Liversedge et al., 2011). To accomplish this goal, the human oculomotor system has the capacity to generate a wide variety of movements that can be categorised based on their spatio-temporal dynamics: amplitude, velocity, and acceleration.

Rapid and ballistic eye movements (saccades): classified based on displacement, speed, and acceleration thresholds, e.g., displacement above 0.15 degrees (deg), velocity above 30 deg.s -1 , acceleration above 9500 deg.s -2 , though other detection criteria exist (Nyström and Holmqvist, 2010;Behrens et al., 2010;Mihali et al., 2017). These criteria have become their definition. But, absolute threshold criteria have been criticised for their lack of functional, physiological or formal justifications. For example: the clear dichotomy between fixations and saccades has been loosened (Ko, Poletti, et al., 2010).

Slow eye movements (smooth eye pursuits, slow oculomotor control):

classified based on a simple velocity criterion, e.g. smooth pursuit ranges from 20 to 90 or 20 to 100 deg.s -1 (Krauzlis, 2004;Komogortsev and Karpov, 2013;Spering and Montagnini, 2011), though pursuits are considered smooth and precise only at speeds up to 30 deg.s -1 . If target velocity is too high for the pursuit system, catch-up saccades can compensate for the accumulated position error created by the difference between target and gaze velocities, also known as the retinal slip (De Brouwer et al., 2002).

Eye fixations: usually defined as any eye movement with an amplitude below 1 deg.

They specifically include FEM which form a generic class of small-amplitude eye movements (ocular drift, tremor and micro-saccades) sharing dynamic characteristics with regular (macro) eye-movements at smaller scale (Otero-Millan et al., 2013;Krauzlis et al., 2017).

The aim of this chapter is to focus on FEM and more specifically the subclass of slow FEM, which we term micro-pursuit eye movements. We provide evidence of micro-pursuit eye movements, providing an adapted metric that reveals their existence in three different experiments. Thus, we will describe the different class of slow eye movements, with their functions and metrics.

Introduction

Notation used.

Throughout the chapter, subscripts R, G, and S will respectively refer to the retinal image, the gaze, and the stimulus. We will use q G and qG to define the gaze position (in deg) and velocity (in deg.s -1 ), respectively (analogously for q R and qR or q S and qS ). The bold notation indicates that we deal with a 2D column vector of coordinate (and a 2 × 2 matrix when a capital letter is used), the over-lined notation • refers to the mean over a set of trials and let the tilde notation • refers to the median over a set of trials, for all metrics. The ± sign precedes standard deviation values associated with mean values, while for median values we report mean absolute deviation (mad).

Slow eye movements: different kinds of motion

The functional role of (smooth) pursuit is to maintain a-usually moving-target of interest on the high acuity foveal region of the retina (Spering and Montagnini, 2011). Tracking is believed to be controlled by retinal errors, the difference between gaze and target positions, or retinal slip, i.e. q R =q G -q S , the difference between gaze and target velocities or speed vectors of the gaze and of the target stimulus, i.e., qR = qG -qS . According to Orban de Xivry and colleagues (Orban de [START_REF] Xivry | Saccades and pursuit: two outcomes of a single sensorimotor process[END_REF], pursuit relies mostly on reducing retinal slip and is modulated, in a smaller way, by position and acceleration errors.

In order to detect and measure the quality of slow eye movements, metrics have been defined that associate gaze with the target stimulus position. For smooth pursuit, tracking quality is measured through gain (see Section 2.2 section for more details). This measure has shown its effectiveness in experimental protocols where a target appears on screen and participants are tasked to follow its motion. Pursuit is mostly studied for tracking a single point on a uniform background, although other stimuli in motion also lead to pursuit movements, for instance, random-dot kinematograms (Heinen and Watamaniuk, 1998), line figures (G. [START_REF] Masson | From following edges to pursuing objects[END_REF], illusory perceptual motion (Madelain and Krauzlis, 2003), or after-effect motion (D. Braun et al., 2006). In tasks where a percept is pursued, rather than a stimulus, the measure of gain and the associated models have been questioned [START_REF] Stone | Visual motion integration for perception and pursuit[END_REF].

Among the slow eye movements, we also find reflexive movements such as the VOR, the OFR, or the OKN. The VOR is a reflex eye movement that compensates head motion in order to maintain a stable retinal image. Though the VOR expression may be similar to pursuit, it is only generated when the head is free to move. The OFR is a reflexive eye movement in response to a sudden change of a wide-field image (Michalski et al., 1977;Quaia et al., 2012). The reflex is mainly attributed to the tracking of motion in peripheral vision (Ilg, 1997). The OKN is a composite gaze pattern in which an object is followed by smooth pursuit until the object leaves the visual field. At this point, the gaze returns to the object's initial position (fast saccadic response) at the starting position of the pursuit. VOR, OFR and OKN are eye movements solicited in specific visual stimulation and experimental contexts, which require the manipulation of a large part of the visual field, not a smaller perceptual target, as with pursuit.

To summarise, pursuits have been studied as large-scale eye movements with amplitudes exceeding 1 deg (60 min-arc) in which a percept with motion is tracked by the gaze, such that the retinal slip is minimised. The metric used to measure pursuit has been velocity gain since it has been shown that the oculomotor system uses motion information for movement control and closed-loop feedback models have been proposed to explain observed data.

Do small amplitude pursuits exist?

Fixational eye movements

We have just described the three principal classes of eye movements, where saccades and pursuits are distinguished from fixations based on the amplitudes and velocities involved. In fact, it is well known that during the fixation the eye never stands still (Ditchburn and Ginsborg, 1953) and continuously produces FEM subdividing fixations into the following sub-classes (Kowler, 2011): micro-saccades, composed of ballistic small amplitude and fast gaze shifts (Rolfs, 2009;Poletti and Rucci, 2016); slow drifts, small velocity (< 0.5 deg.s -1 ) displacements of the gaze (Nachmias, 1961;Yarbus, 1967); and tremors (or physiological nystagmus), aperiodic highfrequency oscillations of the eye (30-80 Hz and amplitudes of up to 50 sec of arc) (Nachmias, 1961;[START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF]. Some of these phenomena, like micro-saccades, have been studied extensively over the past decades-see Fig. 2 in (Rolfs, 2009)-and consensus has emerged on the functional and neurological similarities between large-scale saccades and micro-saccades (Ko, Poletti, et al., 2010;Sinn and Engbert, 2016). Research has also been conducted on tremor, but due to their small amplitude and high frequency it is impossible to distinguish them from noise using video-based eye-trackers (Ko, Snodderly, et al., 2016). Therefore, tremors will not be considered in our study. The class of slow drifts, and more particular small-amplitude pursuits, seems less covered in the literature, which can be explained by the technical difficulties associated with eye-tracker precision, especially video-based ones, at such small scales (Wyatt, 2010;Choe et al., 2016). As we want to focus on the latter, we will give a detailed review of literature on slow drifts small-amplitude movements.

Ocular drift: a simple random process or stimulus-dependent?

These slow and small movements are the consequence of a slow control system of eye position [START_REF] Cunitz | Relationship between slow drift and smooth pursuit eye movements[END_REF] described in literature as a mere drift of the eye (Dodge, 1907), OFR (C.-Y. Chen and Hafed, 2013), or-more recently-as small amplitude pursuits (Skinner et al., 2018).

In early studies of FEM, when subjects had to fixate a static dot, eyes drifted slowly with an upper velocity limit at 0.5 deg.s -1 and mean velocity of 5 min-arc.s -1 (Yarbus, 1967). Their trajectories were considered as random and involuntary processes since they showed dynamics similar to Brownian random walks (Ratliff and Riggs, 1950;Engbert and Kliegl, 2004) as well as independence between the two eyes (Cornsweet, 1956). However, Ditchburn and Ginsborg's work (Ditchburn and Ginsborg, 1953) provided evidence that direction of eye movement is not completely random during drift; it is idiosyncratic. Nachmias (Nachmias, 1961) replicated this finding in an experiment where a fixation target was switched on and off during 3 seconds cycles. He found that each of the 2 subjects have preferred drifting direction but this preferred direction can be modified by changing the visual environment. The author interpreted the idiosyncratic direction preference as specific to muscular response and reasserted that nonrandom ocular drifts occur in fixations while providing evidence that drift direction can be modulated by the visual environment. More recently, a variety of experiments have shown that drift can take properties and characteristics close to other known oculomotor phenomena [START_REF] Poletti | Stability of the visual world during eye drift[END_REF][START_REF] Chen | Postmicrosaccadic enhancement of slow eye movements[END_REF]Skinner et al., 2018;[START_REF] Watanabe | Ocular drift reflects volitional action preparation[END_REF].

As mentioned, drift can be viewed as part of a slow control system, enabling gaze to capture a target, whether static or dynamic. Here, we will discuss two studies that show evidence of slow eye movements correlating with the target stimulus, and as such related to our proposition of adding a subclass to the FEM: that of micro-pursuits. [START_REF] Chen | Postmicrosaccadic enhancement of slow eye movements[END_REF] studied the impact of micro-saccades on visual perception and investigated the relationship between micro-saccades and drift. Their experiment contained two major tasks. The first task required two monkeys to stare at a fixation dot where a change in luminance of the dot or a peripheral white flash was introduced to induce a higher probability of micro-saccade generation. Drift velocity was analysed before and after the micro-saccades using either direct velocity measurements or spatial dispersion (by spatial binning and box counts). Both measures showed an increase in drift velocity post-micro-saccadic movements with respect to pre-micro-saccadic movements or baseline movements. They also showed that eye drift mainly occurs in the direction opposite to the micro-saccade, which is interpreted as corrective slow control of the gaze position. The second task consisted of a sinusoidal grating that started moving at predefined delays after the onset of a micro-saccade (or after 500 ms if no micro-saccade was detected). The authors analysed the speed and direction of early drift of the eye, namely the OFR, according to the direction of the grating and the time of grating onset based on micro-saccade detection. Indeed, they reported that (i) the drift directions were in the opposite directions of the micro-saccades and (ii) the eye velocity was reduced when the grating's motion was initiated during micro-saccade and was enhanced when the motion was initiated after micro-saccade. The OFR being an indicator of "the sensitivity of early motion processing to retinal-image slip after a micro-saccade", the OFR, and thus motion perception, are suppressed during the saccade and enhanced after. Their overall findings suggest that there is a single slow gaze control system that control both fixation and eye movement position in the presence of a fixed target or a slow moving background linked to the motion perception system. Conclusions suggesting a subtle coupling between microsaccades and drifts are also reinforce by previous reports (Engbert and Mergenthaler, 2006).

Part of this idea had already put forward by Murphy and colleagues (Murphy et al., 1975). In their experiment, they asked participants to maintain their gaze on a present or absent fixation dot while a grating in the background moved horizontally at velocity ranging from 0.08 deg.s -1 to 8 deg.s -1 . In a second condition, the participants had to follow the grating. Eye movement velocities were analysed for trials without saccades. The study shows that when participants have to stare at the fixation dot (i) they have an ability to keep gaze fixed when the fixation dot was present, and (ii) an OFR --a smooth displacement of the eye in the direction of the grating's movement but with smaller velocities-is detected when the fixation dot was absent. In contrast, when the task was to follow the grating, participants showed clear smooth, slow movement in the direction of motion with velocity as low as 0.08 deg.s -1 .

Both these studies confirm the existence of a slow movement within a fixation that track a slow velocity target or counteract the displacement of a micro-saccade. These 2.1 Introduction slow movement of pursuit or fixation stabilisation are thought to be under a same slow control system, although the tracking mechanism seems not to be triggered when the movement is initiated during a micro-saccade.

Ocular drift and slow motor control

Drift has been linked to slow control of the eyes during fixation in the context of investigating links between visual stimulation and drift motion.

In a series of experiments, Kowler and Steinman (Kowler and Steinman, 1979a;[START_REF] Kowler | The effect of expectations on slow oculomotor control-ii. single target displacements[END_REF] have investigated how expectation, over a stimulus and task, can induce anticipatory smooth and slow eye movements. The authors implemented a task in which participants had to track a dot moving by steps (with three frequencies: 0.25, 0.375 or 0.5 Hz) along a horizontal segment of 3.3 deg amplitude. They showed that eye movements' direction and latency depend on predictability of target displacement. Furthermore, they showed this effect to remain even when the level of predictability was manipulated and when a distracting secondary task was imposed [START_REF] Kowler | The effect of expectations on slow oculomotor control-iii. guessing unpredictable target displacements[END_REF]. In fact, they provided evidence that anticipatory eye movements-which they also named involuntary drifts in the direction of future target motion-depended on the history of prior target motions (Kowler, Martins, et al., 1984). To understand whether the slow control of ocular drift is driven by position or velocity signals, they carried out an experiment in which they manipulated drift by changing the configuration of reference points, thus varying the difficulty of fixation of a central point (Epelboim and Kowler, 1993). Their analyses used gaze position data and bi-variate contour ellipse area (BCEA) computation for quantification of gaze dispersion. As such, they provided evidence that the oculomotor system does not rely on visual position signals, but rather on retinal image slip, in order to implement slow motor control. This creates a parallel with the known models for smooth eye pursuit described above.

In addition, in a recent paper, Watanabe and colleagues (M. Watanabe et al., 2019) reported a study that links ocular drift, micro-saccades, and pupil area on voluntary eye movements preparation. They observed anticipatory drifts prior to stimulus appearance and they argue that these anticipatory eye movement may reflect volitional action preparation. Interestingly, the authors provide a replication of previous results on anticipatory drift with a video-based eye tracker while applying correction to their gaze signals for pupil deformation.

Overall, these studies show that slow eye movements are present during fixation. These movements can control for a fixation position, can track large target and depend on expectation. Authors have postulated that all these behaviours are under control of a unique system.

Small amplitude pursuits

As mentioned higher, smooth pursuits are large-scale eye movements with amplitudes exceeding 1 deg (60 min-arc). A small set of studies found eye movements within a fixation that share characteristics with smooth pursuits, except for their amplitude. Though there are references to smooth pursuits of small amplitude as far as in Yarbus' book (Yarbus, 1967), most papers in the literature have reported the phenomenon in an indirect manner.

In a study on drift in the absence of visual stimulation or with afterimages, horizontal smooth drifts were reported [START_REF] Heywood | Eye movements and the afterimage-i. tracking the afterimage[END_REF]. Although their description corresponds to pursuit dynamics, they did not define the observed movements as such. The authors published a follow-up paper showing that, depending on the eccentricity of the afterimage, oculomotor dynamics are more or less smooth and show low velocities, hence could be interpreted as pursuits (Heywood and Churcher, 1972). Further, while attempting to study oculomotor control capacities when presenting a moving grating background with a fixation point, Murphy and colleagues (Murphy et al., 1975) reported eye movements that correspond to small amplitude pursuits. When investigating the lack of compensation of the VOR when the head was free, Martins, Kowler and Palmer (Martins et al., 1985) studied whether a smooth pursuit system might interact with the VOR. Their data provided a qualitative description that small amplitude pursuits are related to the velocity of target motion. The following finding was reported: foremost, the effectiveness of smooth pursuits varied with target velocities. At the lowest average velocities of a tracked point1 (0.0025-0.125 deg.s -1 ), smooth pursuit was the most effective, i.e., retinal-image speed during smooth pursuit was about the same as retinal-image speed during low target velocities. At higher target velocities (0.25-1 deg.s -1 ), smooth pursuit was less effective for retinal image stabilisation and at the highest velocities (1.5-2.5 deg.s -1 ), smooth pursuit was totally ineffective.

More recently, small amplitude pursuits have been reported again, in very different contexts. In a study of eye drift and its relationship to retinal image motioninvestigating whether the latter drives the former through retinal or extra-retinal information-Poletti and colleagues [START_REF] Poletti | Stability of the visual world during eye drift[END_REF] declared the following observation: "small pursuit-like eye movement with amplitudes comparable to those of fixational drifts are under precise control of the oculomotor system". Finally, a precise characterisation of rhesus macaque oculomotor control for rectilinear sinusoidal motion of a target with amplitudes inferior to 0.5 deg and velocities below 2.5 deg.s -1 was recently reported (Skinner et al., 2018). The amplitude and frequency of the sinusoidal motion was modulated and gaze signals were analysed using gain and compared to filter responses; filters are, here, used as models to show how the oculomotor system could display different behaviours based on input frequencies-on gaze position and velocity. Furthermore, they showed that the gaze signals had eye velocity spectrum with peaks at target frequency and that pursuit gain was highest at 1 deg.s -1 .

Overall, pursuits have been observed for a range of velocities (0.05-2 deg.s -1 ) and amplitudes (1.9-30 min-of-arc) which qualifies them as FEM. Given the classification in the FEM research field-in which only micro-saccades, drifts, and tremors are considered-these observations raise questions on the nature and potential definition of micro-pursuits or fixational pursuits.

This chapter focuses on the presentation of micro-pursuits in three contexts: (i) presentation of metrics that fit the theoretical requirements to detect micro-pursuit, (ii) detection of the oculomotor phenomenon in (a) a dual task experiment (Necker) in which its elicitation was not explicitly made to participants, and (b) an explicit tracking experiment (Cross) and an implicit distractor setup (Square). Our hypothesis was that if the perceptual system has to detect a change in a moving stimulus with a predictable trajectory, the oculomotor system is likely to follow the target even if the participant is instructed not to do so (fixation task). But, since the fixation task inhibits large deviations, only small amplitude pursuit eye movements are generated. Furthermore, a computational model of pursuit eye movements based on gravitational energy fields is presented in Chapter 3 that accounts for the two contrasting objectives (fixation vs. pursuit). In our data analyses, we made use of a measure of inertia for gaze dispersion and maximally projected correlation (MPC) for similarity, since they are simple methods that showcase clear advantages in our context. The latter also offers a metric that can be physically interpreted as it is able to capture similarity between two trajectories of different scales and spatial offsets.

Micro-pursuits 2.2.1 Quantifying pursuit movements (metrics)

To propose a definition of micro-pursuit movements, existing metrics for ocular movements will be discussed, since they will orient our choices for proposing metrics and hence our working definition.

Classical smooth pursuit is measured by velocity-or retinal slip-gain (gain = qG qS with qG the gaze velocity and qS the stimulus velocity), which is consistent with its closed-loop modelling (Liversedge et al., 2011). Position gain is also used-although to a lesser extent,-for instance, when dealing with catch-up saccades (Orban de [START_REF] Xivry | Saccades and pursuit: two outcomes of a single sensorimotor process[END_REF]. For the various drift phenomena described in the previous section, a variety of metrics have been used to study FEM dynamics (e.g. gaze position, velocity, acceleration, gain, and BCEA). For instance, gain measurement was used for analysis in the case of the small amplitude pursuits of monkeys on uni-variate sinusoidal motion (Skinner et al., 2018). But the authors went further and provided a spectral analysis using Fourier transform on eye signals to identify the fundamental frequency and harmonics with the expected target frequencies. However, gain is a uni-variate metric which does not extend to multi-variate problems. Thus, it can be used adequately only for pursuit of a target moving on a line, rather than a plane, like the visual field. Fourier analysis shares the same issue as it looks for a frequency in a uni-variate movement, typically horizontal.

In studies of ocular drift (Epelboim and Kowler, 1993), BCEA2 was used to quantify the spatial variance-inertia, or spread-of the gaze. The authors obtain orientation preferences through the inferred relative anisotropy of the ellipse. Though this metric is clearly conceived for bi-variate signals, it does not provide spatio-temporal correlation between gaze and a target signal in the way gain does. Meanwhile, the box-count method used in more recent studies permits to compute dispersion of the gaze data over time, though it may suffer, like gain, from measurement noise, especially with video-based eye tracker (Engbert and Mergenthaler, 2006;[START_REF] Chen | Postmicrosaccadic enhancement of slow eye movements[END_REF]. To summarise, (i) some metrics, e.g. BCEA, box count, inertia, can be used as quantifiers for the spread of a bi-variate gaze signal during an epoch, and these metrics are useful descriptors for drift and slow movements, and (ii) other metrics, e.g. gain, Fourier analysis, correlation, can be used to quantify similarity between two bi-variate signals, to quantify the quality of a pursuit between gaze and a stimulus in motion. Each metric presents a trade-off that should be considered based on a theoretical definition and prediction.

Micro-pursuits: a working definition

Given the reported observations of small amplitude pursuits, the following constraints need to be considered to define a micro-pursuit.

Amplitude as indicated by the prefix of its name, and as an analogy to microsaccades, the micro-pursuit must be of small amplitude, within the range of fixational eye movements; typically below 1 deg.

Velocity ; micro-pursuit should consist of slow zye movements, similarly to drift, or smooth pursuit but at a smaller scale, with velocities below 2 deg.s -1 .

Tracking ; micro-pursuits occur when a percept with motion across the observer's visual field is tracked. But, as pursuit involves matching the motion of a target by that of an observer in real time, micro-pursuit measurement of tracking should reflect the spatio-temporal interaction between the dynamics of two bivariate signals. Hence, similarity between gaze dynamics should be evaluated.

Because the eye movement amplitude is within the fovea's size, deformation may occur in the tracking of predictable bi-variate signals. Therefore, any similarity metric should exhibit both scale and translation invariances-spatial offset invariance may also be beneficial for measures from eye-trackers with lower precision and accuracy.

Duration ; the phenomenon of tracking a moving target requires by definition that it is done over a sufficiently long epoch. Thus, micro-pursuit should not occur over brief epochs such as saccades and micro-saccades.

We propose that gaze signal epochs satisfying the above description be considered as micro-pursuits. As this is a proposed working definition, micro-pursuits may correspond to entire eye fixation periods, making it possible for micro-pursuit to be punctuated by other FEM. Once its properties are defined more precisely than above and detection algorithms can be developed, it will be possible discriminating micro-pursuits from other FEM, like micro-saccades.

Descriptive statistics for the classification of micro-pursuits

Choosing an adequate metric for analysis was key, given the constraints presented in the previous section and our experimental setup. Two metrics, inertia and maximally projected correlation (MPC), are used in this work; they provide complementary information about the data. The first is a measure of the spatial dispersion of the gaze within a fixation to investigate the marginal dynamics of the gaze during FEM. The second metric gives a quantification of similarity-and hence interactionbetween the gaze and a target. Compared to works in the literature with similar observations (Martins et al., 1985;Skinner et al., 2018), an essential aspect was to have a metric that could reflect similarity with noise robustness, as well as scale and translation invariance. Moreover, this was needed in the context of movements in the plane, rather than rectilinear ones for which uni-variate measures are sufficient. A benefit from such considerations is to propose a generalised metric for micro-pursuit that could be applied to track perceived motion in the two-dimensional visual field projected on the retina. MPC offers a method to quantify spatio-temporal similarity between two bi-variate signals. Furthermore, inertia and MPC can both be applied on the gaze signals in fixation epochs detected by video-based eye-tracker algorithm. Their mathematical relationship is detailed more in-depth in Appendix B.1.

Measuring gaze dispersion with inertia

The dispersion of gaze within a fixation was computed using a measure of inertia, a metric used to quantify the spread of a cloud of data points with respect to a fixed point, usually its empirical mean. Here, we used a similar, but generalised formula based on the mean quadratic distance from an arbitrary reference point. As such, in the case of stimulus motion, we can compute inertia with respect to the stimulus' centre of gravity. Let q U 1 N N i=1 q i U be the empirical mean of a signal whose samples (i = 1, . . . , N ) are given by q i U = x i U , y i U . We will use U = G for the observed gaze and U = S for the coordinates of the stimulus' ( centre of gravity). Gaze inertia I was computed over the stimulus trajectories over a trial as follows:

I = 1 N N i=1 q i G -q i O q i G -q i O = 1 N N i=1 q i G -q i O 2 (2.1)
where N represents the total number of frames in the trial, q G = [x G , y G ] the measured monocular bi-variate gaze signal coordinates and q O = [x O , y O ] the origin reference point coordinates in the screen plane-however, one can compute inertia with respect to other points in space, e.g., stimulus centre of gravity or the fixation's 2.2 Micro-pursuits mean gaze position. Inertia quantifies gaze displacement as does BCEA (Epelboim and Kowler, 1993) and box-count measures (Engbert and Mergenthaler, 2006). Its key advantage over the former two is that inertia is a more intuitive measure of spatial displacement over a fixation period. The box-count metric is simple and provides similar insight in gaze dispersion over an epoch, it is dependent on the size of the box in space and time used for analysis. Hence, it corresponds to a down sampling measurement of inertia over a fixed time window. Finally, inertia provides the advantage of being a metric relative to a chosen origin or reference point-box count being independent of the origin-and thus it can be used to look at spatial displacement in the following three contexts: (1) absolute inertia (I screen ) is obtained by choosing the centre of screen as a reference (absolute, like box count; 2) relative retinal image instability (I stimulus ) by choosing the stimulus' centre of gravity (for pursuit; q O = q S = [x S , y S ] ), and (3) general relative FEM instability (I fixation ) by referring to the fixation centre of gravity (obtained by choosing

q O = [0, 0] ), (
q O = q G = [x G , y G ]
with q G , the empirical mean of the gaze for a N samples fixation epoch).

Measuring gaze-stimulus similarity with MPC

Though humans can intuitively express a qualitative judgement of similarity between two trajectories, obtaining a quantified and objective value for any two bi-variate signals is not as trivial as one might suppose. Gain, of gaze velocity over stimulus velocity, has been used as a metric in pursuit data analysis (Skinner et al., 2018), though the stimulus moved in a uni-variate context: either horizontal or vertical.

In bi-variate signals, however, a gain will be obtained for each dimension of the signal, and hence some form of projection to obtain a scalar metric is required.

Although similarities between the stimulus and gaze trajectories can be quantified with a diversity of metrics, we will here focus on a measure based on multi-variate statistical theory (T. Anderson, 2003;Muirhead, 2009), quantifying the interaction between the stimulus (q S ) and gaze (q G ), in order to infer on the similarity of their trajectories during fixations. We choose to determine the direction of the plane for which correlation between gaze and target within a fixation are maximised, and report the such obtained correlation value, which we call MPC. Our metric hence inherits the ease of interpretability from (Pearson) correlation values and has low computational costs (just as gain). In addition, for unidirectional motion (see, e.g., (Skinner et al., 2018)), this exactly corresponds to Pearson's correlation coefficient between the two time-series.

Let Σ SG 1 N N i=1 q i S q i G -q S q G the empirical (variance-)covariance matrix between stimulus (S) and gaze (G). We then write ρ * as the maximal absolute empirical correlation that can be obtained under simultaneous projections onto a one-dimensional space, i.e.,

ρ * max w ρ(w) where ρ(w) w Σ SG w w Σ SS w w Σ GG w (2.2)
and w represents the coordinates of the vector onto which both the gaze and the stimulus signal are projected. This method projects the data in a new space, and provides a quantity bounded between -1 and 1, where 1 shows perfect correlation and -1 perfect anti-correlation. By construction, MPC is invariant with respect to scale and to a translation of either or both of the signals.

To summarise this section, in this work, inertia with respect to screen (I screen ) was used as a measure of gaze displacement. Inertia with respect to stimulus (I stimulus ) was used as a measure of retinal image displacement. Inertia with respect to fixation (I fixation ) was used as a measure of FEM displacement. And finally, MPC (ρ * ) was used as a measure of similarity between gaze and stimulus trajectory, during a fixation.

2.2 Micro-pursuits

Main Experiment: Necker cube

Micro-pursuits were observed and systematically detected at first in an experiment in which a moving ambiguous Necker cube stimulus was presented and participants had to report their perceived orientation. They were instructed to keep their gaze fixed on a static fixation cross at the centre of the screen and report which side of the cube was perceived at the front; either lower-left or upper-right square. The main objectives of the experiment was to manipulate the rate of reversal by imposing different motion to the cube. In this chapter, we focus solely on the oculomotor analysis of this data set, because the manipulation failed to induce any change in the reversal rate between the percept nor any observable percept modulation.

Methods

Apparatus

The display used was a 40 cm by 30 cm (20 inches) VisionMaster Pro 513 screen of resolution 1024 by 768 pixels and a 75 Hz refresh rate, located 57 cm from the participants, with mean grey luminance at 68 cd.m -2 . Eye movements were recorded using the Eyelink 1000 (SR Research, Ottawa, Ontario, Canada). Both eyes were tracked with a 1000 Hz sampling rate. The head was stabilised using a chin rest. A nine-point calibration routine was carried out at the beginning of each task and was repeated at the beginning of each block (every 15 trials) or when drift correction, performed every 5 trials, reported a mean error superior to 0.5 deg.

Experimental paradigm & Participants

We imposed three type of motion to an ambiguous Necker cube of 2.6 by 2.5 deg (Fig. 2.1-A): (1) 'FX' the control condition with no motion, (2) 'RW' an unpredictable motion condition with a random walk and (3) 'LJ' the predictable motion condition where the cube moved along Lissajous trajectories (see Fig. of 10 pix (0.329 deg) with respect to the centre of the screen was implemented so that a step that would exceed the limit would have its orientation reversed such that the step would bounce back towards the centre. Lissajous trajectories in the LJ condition were defined by x(t) = A sin(cθt) and y(t) = B sin(dθt + φ) with, in our setup, A = B = 14 pix (0.5497 deg) and φ = 0 rad. The Lissajous ratio between signal frequencies randomly (uniformly) chosen across trials so that (c , d) ∈ (2, 3), (3, 2), (-2, 3), (-3, 2) andθ = 2π (30/2 Stimulus spatial displacement due to movement was controlled across motion conditions. Indeed their inertia with respect to screen distribution were similar, with RW and LJ generating displacement of the same order of magnitude on average over trials (I

RW screen = 0.2995 ± 0.1988, I LJ screen = 0.2747 ± 0.1372).
23 healthy adults participated in the experiment (15 females and 8 males; age range = 20-71 years, µ = 28.35 ± 10.93 years, whose tasks were two-fold:

• fixate a fixation cross at the centre of the screen for a random interval between 100 and 500 ms (uniform distribution);

• report percept reversals of an ambiguous Necker cube by pressing the arrows of a keyboard when perceptual changes occurred.

The experiment followed a continuous viewing paradigm in which trials had variable (random) durations (µ = 34.00 ± 13.26 sec, see Fig. The experiment was programmed using the PsychToolBox in MATLAB (Brainard, 1997). All participants gave their informed written consent before participating in the study, which was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans and as approved by the ethics' committee of University Grenoble Alpes.

Data analysis

Data pre-processing: in our data analysis, only fixations of sufficient duration (> 80 ms) were considered. The duration threshold was set based on (1) the lack of significant fixations of interest in shorter time windows and ( 2) the necessity for the MPC metric to have a sufficient number of samples (see Appendix B.1). Gaze signals were first passed through a corrective process to adjust for pupil area deformation as described in Choe and colleague's work (Choe et al., 2016). As the gaze and stimulus signals were systematically compared and computed together, we then applied a Butterworth filter (second order low-pass filter with a cut-off frequency of f c = 35 Hz) to smooth the gaze data and down-sampled the gaze signal at the same frequency as the refresh rate of the stimulus (75Hz). Thus, all analyses are done with data down sampled from 1000 Hz to 75 Hz. Fixations generating inertia with respect to screen values beyond two standard deviation from the mean or NaN (due to missing samples) were considered as samples with faulty or jittery gaze recording and were removed from analyses. Data for Fig. 2.3 and statistical tests had fixations with micro-saccades, detected-by the algorithm proposed by Engbert and Kliegl [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF] without the binocularity criterion, that uses relative thresholds based on median absolute deviation of the eye velocity, here over a fixation-and removed, while data for Fig. 2.2 and Fig. 2.5 was visualised with micro-saccades. Outliers were defined as data points3 beyond two standard deviation from the mean, and were systematically removed from analyses. The results presented do not show these outliers, for better readability, but we also conduct the analyses with the outlier and found the same effects for all tests and experiences.

Statistical methods: statistical tests were conduct to assess difference between motion condition both within subjects (group analysis) and at the subject level (individual analysis). For both levels, we applied non parametric tests, since we did not have any priors on the data distribution for inertia and MPC. For group analysis, statistical tests were conducted using 10000 permutations on non parametric approximate (Monte Carlo) Friedman test for inertia, and if significant differences were inferred, approximate (Monte Carlo) Wilcoxon signed-rank tests were used for pairwise comparisons between conditions (with a decision criterion at p = 0.05/3 = 0.017). For MPC, a Wilcoxon signed-rank test was carried out All these tests were delivered using bootstraps based on 10000 permutations conditional on subjects for every experiments (Necker, Cross and Square) and metrics (I stimulus , I fixation and MPC) using the packages coin (Hothorn, Hornik, Van De Wiel, et al., 2006) and rstatix (Kassambara, 2020). Effect size were computed from the χ 2 statistics and using the transformation described by [START_REF] Tomczak | The need to report effect size estimates revisited. an overview of some recommended measures of effect size[END_REF] to get a Kendall W, that vary between 0 and 1, with 1 the maximum effect size: Additional analyses. Two analyses were conducted (after submission) and are presented here to provide further depth and insight on the data. First, we looked at MPC on the signals' velocities to verify that we replicated the results found on positions. Analyses were identical to position MPC, and the velocity was obtained by using the method proposed by [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF], for the Engber-Kliegl (EK) algorithm, by computing a moving average of velocities over 5 data samples, in order to reduce noise. The second addition analysis consisted in looking at the similarity between the two eyes' position signals, to verify whether the gaze data was conjugated or not. MPC scores were computed for each fixation between the directing and the non-directing eye, with the former acting as the reference, and statistical analysis was carried out, using the same procedure as for inertia, over all conditions.

W = χ 2 N (k -1) . ( 2 

Results-Corrected in Appendix C

When fixations with detected micro-saccades were kept, data pre-processing led to the removal of 12.32% of fixations for the Necker experiment based on fixation duration and outlier removal for inertia with respect to screen. When fixations with detected micro-saccades were removed, data pre-processing led to the removal of 54.53% of fixations. Results presented in this section were computed on the fixations without micro-saccades, however when doing these analyses with fixations with micro-saccades, results led to the same conclusions.

Main sequence (and secondary sequence)

In the first column of Fig. 2.2, we described detected micro-saccades (n = 27101), using the algorithm from Engbert and Kliegl's work [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF], by amplitudes, peak velocities and rates. When plotting micro-saccades' amplitudes versus peak velocities, we observed two main sequences (Bahill et al., 1975) with a second main sequence with low velocity micro-saccades. The second main sequence appeared more in the LJ condition than in the RW. Furthermore, when using the MPC score, one can observe that the slow micro-saccades are mostly detected in fixations with gaze patterns highly similar to the stimulus', namely micro-pursuits, which is indicated by the dominance of yellow dots. Micro-saccade rates also seem to suggest that the LJ condition has more occurrences, over all amplitudes. This will be further analysed with the evaluation of dispersion of FEM and the similarity of their trajectories with the stimulus.

Inertia & MPC

We looked at the impact of the cube motion on eye movement and retinal image displacement. The former is made explicit through the inertia of gaze with respect to its average position within a fixation, see Fig. 2.3-B, whereas the latter is given by the inertia of the gaze with respect to the stimulus' centre of gravity, see Fig. 2.3-A.

Descriptive statistics and statistical tests' summary are given in Table 2.1.

Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fixation position (I fixation ; see Fig. 2.3-C) differed with motion condition (χ 2 = 36.261; p < 0.0001; W = 0.788). Paired comparisons of I fixation showed differences between FX, RW and LJ (Z F X-RW = -5.9052, p < 0.0001; Z RW -LJ = -5.9052, p < 0.0001 and Z F X-LJ = -5.9052; p < 0.0001). Thus, when computing retinal image displacement, we found that the median inertia differed across cube motion conditions (see Fig. 2.3-A). Indeed, we find a difference in inertia computed with respect to the centre of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 28.783; p < 0.0001; W = 0.626). Median inertia differed in the conditions where the stimulus was in motion (Z F X-RW = 2.890, p = 0.0032; Z F X-LJ = 2.890, p = 0.0028 and Z LJ-RW = 5.9052, p < 0.0001). When considering that stimulus inertia was equivalent for both motion conditions (I RW screen = 0.2995 ± 0.1988,I LJ screen = 0.2747 ± 0.1372), the results suggest that both types of motion applied on the stimulus generated different effects on eye movements. Indeed, eye trajectories were more similar in the predictable LJ motion condition (ρ * LJ = 0.869 ± 0.081) than in the unpredictable RW motion condition (ρ * RW = 0.477 ± 0.035) with significant differences (χ 2 = 23; p < 0.0001; W = 1 and Z RW -LJ = -5.9052; p < 0.0001). The data is reported in Fig. 2.3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 2.3-B-D-F) that will be described in more details later. 

Binocularity & velocity

To confirm the MPC results on position signals, we proceeded to the same analysis with velocities. In fact, as for the position analysis, LJ's predictable motion (ρ * LJ = 0.784 ± 0.087) led to velocities more similar between the eyes and the target than for RW's unpredictable motion (ρ * RW = 0.207 ± 0.042) with significant differences (χ 2 = 23; p < 0.0001; W = 1 and Z RW -LJ = -5.9052; p < 0.0001). The data is reported in Fig. 2.4-C, along with analyses for each participants Fig. 2.4-D.

We also looked at the similarity of gaze between the directing and non-directing eye, to look at how conjugated the eyes were. We found overall differences across conditions (χ 2 = 39.39; p < 0.0001; W = 0.856). Paired comparisons of eye versus eye similarity showed differences between FX, RW and LJ (Z F X-LJ = -5.9052, p < 0.0001; Z F X-RW = -5.9052, p < 0.0001 and Z LJ-RW = -5.9052, p < 0.0001). Results are reported in Fig. 

Intermediary discussion

Micro-pursuits. When looking at our descriptive statistics (Table 2.1 and Fig. 2.3, A-B-C), participants' median similarity based on MPC is centred on values of high correlation in the predictable motion condition (LJ) compared to the other motion condition (RW). This means that FEM gaze trajectories were, for most subjects, highly similar to that of the stimulus moving on screen. On the other hand, the unpredictable motion condition (RW) led to much lower similarity measurements; an observation that can be explained by the incapacity of the oculomotor system to predict the motion of the Necker cube as motion followed random walk dynamics.

(Un)attended motion. Therefore, globally, participants' gaze was influenced by the cube motion significantly more in LJ, where motion was predictable, than in RW, where motion was unpredictable, even though the oculomotor instructions were to fixate the cross in the middle of the screen for both. Moreover, the gaze in LJ showed similarity with the stimulus trajectories. All these measures were gathered on gaze data within fixation events and the difference between LJ and RW conditions show that oculomotor drift alone, as defined above, within FEM cannot account for this similarity. The oculomotor system would have to integrate visual information in order to quasi-systematically track the stimulus. We therefore refer to these detected FEM as micro-pursuits, in an effort to keep the analogy with the micro-saccades, while respecting the definition and metrics given above. Given the non-dedicated and unpredicted observation of the oculomotor phenomenon in the Necker experiment, we carried out a second set of experiments to replicate the generation of micropursuit using a simpler stimulus, and to verify that the phenomenon is not caused by the presence of a bi-stable stimulus-namely the Necker cube.

Replication Experiments: Square & Cross

The experimental protocol is similar to the previous one (Necker experiment) except that the Necker cube is replaced by a grey square and subjects have to report changes in luminance in either the fixation cross (Cross experiment) or the square (Square experiment). In the Cross experiment, we set the participants' tasks and stimuli such that they had to follow a moving cross and detect changes of luminance on it. In the Square experiment, the setup aimed to investigate whether a complete reproduction of the Necker experiment, with a square instead of the Necker cube would still lead to the observation of micro-pursuits.

Methods

Material and stimuli were identical to the previous experiment unless specified.

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 57 cm from the participants, with white luminance at 70.89 cd.m -2 , black at 0.09 cd.m -2 and mean grey at 15 cd.m -2 . Eye tracking was done using an EyeLink 1000+ (SR Research). Calibration was applied using a 5 points procedure between each block and if drift correction failed. Drift correction was applied between each trial. Participants had their head stabilised by sitting and resting their chin on a rest and their forehead against a bar.

Experimental paradigm & Participants

As in Experiment 1, we replicated the three motion conditions (FX, RW, & LJ) using the same parameters with balanced mean inertia. Trials lasted 34 seconds (the mean time duration of Experiment 1: Necker Cube) in which the same fixation cross was presented, and a moving object followed its trajectories depending on the condition (see Fig. 2.1-A).

The participants had to fixate a fixation cross surrounded by a square (2.5 deg by 2.5 deg), displayed in Fig. 2.1-A. They also had a perceptual task in which they had to report luminance changes using the same keys of the keyboard as in the Necker

Experiment. However, here the alternations were randomly selected among 5 levels of luminance (levels at 30%, 40%, 50%, 60% and 70% of white) and duration of a level was selected using a log-normal probability law Log-N ∼ (µ = 1, σ = 1) seconds (see Fig. 2.1-C for a schematic representation of luminance over time). Two conditions were contrasted:

1. Implicit pursuit -Square Attended: fixate the fixation cross at the centre of screen, and report changes in luminance of the surrounding square moving with the three types of motions.

2. Explicit pursuit -Cross Attended: fixate the fixation cross and report changes in luminance of the fixation cross moving with the three types of motions. Do not pay attention to the surrounding square.

The 19 participants (17 females and 2 males; age range = 18-30 years, µ = 20.63 ± 2.61 years) were randomly oriented in one of the two experiments (Cross; n = 9, and Square; n = 10). We estimated the number of participants to be included in the protocol based on a power analysis using g*power (Faul et al., 2009) with α = 0.05 and 1 -β = 0.95. We found that we needed a minimum sample size of 9 participants (with 45 trials) to replicate the observations with a power of 0.95.

Data analysis

Data analyses were identical to the previous experiment.

Results-Corrected in Appendix C

The data was analysed by applying the same signal processing procedures and statistical methods as in the Necker experiment for inertia or MPC. When fixations with micro-saccades were kept, data pre-processing led to the removal of 8.79% and 9.23% of fixations for the Cross and Square experiments, respectively, based on fixation duration and outlier removal for inertia with respect to screen. When fixations with micro-saccades were removed as well, data pre-processing led to the removal of 52.88% and 52.59% of the data, in Cross and Square, respectively. Results presented in this section were computed on the fixations without microsaccades, however when doing these analyses with fixations with micro-saccades, results led to the same conclusions.

Cross experiment: explicit micro-pursuits

When participants had to explicitly follow the fixation cross, on which the motion and luminance signals were applied, similar patterns to the Necker experiment were found for inertia of gaze. Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fixation position (I fixation ; see Fig. 2.3-C) differed with motion condition (χ 2 = 9.556; p = 0.0071; W = 0.531). Moreover, paired comparisons revealed differences between FX, RW and LJ (Z F X-RW = -3.7236, p < 0.0001; Z RW -LJ = -3.7236; p < 0.0001 and Z F X-LJ = -3.7236; p < 0.0001). Retinal image displacement differed with cube motion (see Fig. 2.3-A). We also found a difference in inertia computed with respect to the centre of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 12.667; p = 0.0005; W = 0.704). All pairwise comparisons showed differences too (Z F X-RW = -3.576, p < 0.0001; Z F X-LJ = -3.576, p < 0.0001 and Z RW -LJ = -3.7236, p < 0.0001).

Given the fact that stimulus inertia was equivalent for both motion conditions, this suggests that motion of the stimulus generated different effects on eye movements. Indeed, eye trajectories were more similar in the predictable LJ motion condition (ρ * LJ = 0.830±0.064) than in the unpredictable RW motion condition (ρ * RW = 0.535± 0.056) with significant differences (χ 2 = 9; p = 0.0039; W = 1 and Z RW -LJ = -3.7236; p < 0.0001). The data is visualised in Fig. 2.3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 2.3-F).

Square experiment: implicit micro-pursuits

Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fixation position (I fixation ; see Fig. 2.3-C) did not differ with motion condition (χ 2 = 5.6; p = 0.0659; W = 0.28). But retinal image displacement differed with cube motion (see Fig. 2.3-A). Indeed, we find a difference in inertia computed with respect to the centre of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 7.2; p = 0.03; W = 0.36). Pairwise comparisons had a difference only between the motion conditions RW and LJ (Z F X-RW = 1.8666, p = 0.0654; Z F X-LJ = 1.8666; p = 0.0645 and Z RW -LJ = 3.9199, p < 0.0001).

Given the fact that stimulus inertia was equivalent for both motion conditions, this suggests that motion of the stimulus did not generate different effects on eye movements. Unlike in the other experiments, eye trajectories were not more similar to stimulus trajectories in the predictable LJ motion condition (ρ * LJ = 0.569 ± 0.129)

or in the unpredictable RW motion condition (ρ * RW = 0.519 ± 0.039) with no inferred statistical difference (χ 2 = 1.6; p = 0.345; W = 0.16). The data is visualised in Fig. 2.3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 2.3-F).

Individual analyses

We conducted the same analysis on every subject and results are displayed for the three experiments and three motion conditions in figure (Fig. 2.3-B-D-F). For every subject, we plotted the χ 2 or Z score statistics for the approximate Kruskal-Wallis and Wilcoxon-Mann-Whitney tests against their overall rank according to these statistics. For all subject we observed a main effect of inertia with reference to the stimulus (I stimulus , with identical inertia between LJ and RW compare to FX. When looking at retinal displacement, we find the same pattern of result, i.e. a main effect of motion, with inertia with reference to the fixation (I fixation ) similar for FW and RW but lower to LJ for Necker and Cross experiments. For the Square experiment results were mixed within subject suggesting idiosyncratic behaviours. Finally, we observe more similar gaze pattern (high MPC) for the LJ condition both in the Necker and Cross experiments for every subject (except one out of nine in Cross) but mixed results for the square experiment. Thus individual analyses show that results observed at the group level are replicated at the subject level.

Binocularity & velocity

To confirm the MPC results on position signals, we proceeded to the same analysis with velocities. For the Cross experiment, LJ's predictable motion (ρ * LJ = 0.623 ± 0.146) led to velocities more similar between the eyes and the target than for RW's unpredictable motion (ρ * RW = 0.264 ± 0.032) with significant differences (χ 2 = 5.44; p = 0.0434; W = 0.605 and Z RW -LJ = -3.7236; p < 0.0001). For the Square experiment, LJ's predictable motion (ρ * LJ = 0.335 ± 0.068) led to velocities more similar between the eyes and the target than for RW's unpredictable motion (ρ * RW = 0.216 ± 0.027) with significant differences (χ 2 = 6.4; p = 0.0227; W = 0.64 and Z RW -LJ = -3.9199; p < 0.0001). The data is reported in Fig. 2.4-C, along with analyses for each participants Fig. 2.4-D.

We also looked at the similarity of gaze between the directing and non-directing eye, to look at how conjugated the eyes were. Group median values and median absolute deviations for FX (0.77 ± 0.048), RW (0.794 ± 0.041) and LJ (0.927 ± 0.048) describe the most binocular similarity, in fixations, in LJ. We found overall differences across conditions for the Cross experiment (χ 2 = 14.889; p < 0.0001; W = 0.827). Paired comparisons of eye versus eye similarity showed differences between FX, RW and LJ (Z F X-LJ = -3.723, p < 0.0001; Z F X-RW = -3.723, p < 0.0001 and Z LJ-RW = -3.723, p < 0.0001). We did not find overall differences across conditions for the Square experiment (χ 2 = 5.6; p = 0.0709; W = 0.28). Results are reported in Fig. 2.4-A, along with analyses for each participants Fig. 2.4-B.

Comparing Necker, Cross and Square experiments-Corrected in Appendix C

To summarise, descriptive statistics of detected micro-saccades in terms of main sequences (amplitude, peak velocity and MPC; see Fig. 2.2-A) and micro-saccade rates (Fig. 2.2-B) in all three experiments show similar patterns under the condition LJ for both Necker and Cross. The Square condition seems to exhibit a different behavior. More specifically, the secondary, slower-in terms of peak velocity-main sequence observed in LJ-Necker and LJ-Cross is less present in LJ-Square and all RW conditions. The micro-saccade rates also seem to be higher in LJ-Necker and LJ-Cross, over other conditions and experiments. These aspect of the detected micro-saccades over all experiments suggest that the predictable LJ condition under Necker and Cross led to a slow, small amplitude, oculomotor phenomenon. Fig. 2.5 provides a focus on MPC for fixations in all data sets, as well as for some selected signals that showcase some typical examples of gaze-stimulus pairs for different values of MPC. Since one cannot track the RW movements, the distribution of MPC under this condition serves as a baseline or null hypothesis control distribution. It can be seen that under RW, the empirically observed MPC distributions for all three experiments are confounded, indicating independence of MPC with respect to the experiment. Furthermore, it is also possible to observe a bias-the distribution is skewed toward the maximum value of 1-introduced by (i) the maximisation of the correlation through the projection of the data into another coordinate system, and (ii) the RW movement being low-pass filtered by the observer, hence there exists a correlation at longer time scales. Indeed, the distribution under RW is not symmetric about 0 as would be the case for mere correlation between variables of multivariate independent Gaussian processes. On the other hand, under the LJ condition the distribution skews even further to one, resulting in a high probability for MPC values near one, specifically in Necker and Cross. This is less so in Square.

When we removed fixations with detected micro-saccades and carried out inertia and MPC analyses, we found a difference for MPC in the LJ condition across experiments (χ 2 = 19.078; p < 0.0001). When looking at pairwise comparisons (subscripts N for Necker, C for Cross, and S for Square), no significant differences were found between Necker and Cross (Z N -C = -1.572; p = 0.121), but Square differed from the other two (Z S-C = 2.939; p < 0.0025 and Z N -S = 4.113; p < 0.0001).

For RW inter-experiment comparisons, we found an overall difference (χ 2 = 10.617; p = 0.0036). Paired comparisons showed a difference between Necker and the two other experiments (Z N -C = 2.955; p = 0.0020 and Z N -S = -2.076; p = 0.0350) but none for Square versus Cross (Z S-C = 1.061; p = 0.3114).

Finally, results for individual analyses show that most participants in the Square experiment had no significant differences between MPC in RW and LJ, while on the contrary, all 23 participants in the Necker and 8 out 9 participants in Cross do.

Overall, these results indicate that Cross did replicate the micropursuit phenomenon observed in the Necker experiment even with a smaller sample size, while Square did not.

Median inertia with respect to the stimulus' centre of gravity (I stimulus ) differed with motion conditions suggesting that the nature of stimulus motion, manipulated in each condition (fixed, unpredictable, and predictable) affects global spatio-temporal dynamics of FEM. Median inertia with respect to the fixation's mean gaze position (I fixation ) showed the emerging pattern of a common oculomotor phenomenon occurring in Necker and Cross, where differences across conditions were measured. Again, this was not the case in Square (see . When looking at similarity between stimulus and gaze trajectories, integrated over fixation events using MPC, we found that the predictable motion condition (LJ) generated highly similar gaze trajectories in the Necker and Cross experiments, with large effect sizes. But we did not observe the same pattern for the Square experiment (see Fig. 2

.3-E).

The contrast given by diverging results (Necker-LJ and Cross-LJ being different from Square-LJ) is interesting as it gives us a graduation of how likely, the same predictable motion (LJ) can make observers generates micro-pursuit. It also suggests that a coupling between the oculomotor and cognitive systems in the occurrence of micro-pursuits, which could be predicted and interpreted by a modelling framework we proposed when encountering the original observations. To go further, we propose a model, in Chapter 3, that can describe all FEM in a single mechanism and can take into account the competition between multiple stimuli. 2.6 Discussion-Corrected in Appendix C

Micro-pursuits

The proposed working definition of micro-pursuits in this chapter, is based on a class of fixations. Moreover, the MPC metric proposed can be applied directly to measure a fixation's similarity between gaze and stimulus, because it features scale, translation, and spatial offset invariances. Therefore, the results presented are based on entire fixations, rejecting those for which micro-saccades were detected. It is noteworthy that even when fixations containing micro-saccades are kept for analysis, our main results and trends, especially with respect to MPC are still valid at all three levels: individual, group and inter-experiment analyses. This can be partially observed from Fig. 2.5, where the MPC is obtained over all fixations, whether they contain microsaccades or not. Indeed, we observe a clear difference between MPC distributions in LJ versus RW. The trends in these observed differences were systematically obtained with (i) entire data including detected micro-saccades, (ii) when gaze samples of the detected micro-saccades were removed, or (iii) when considering only the fixations without detected micro-saccades-the reported data for analyses and Fig. 2.3 being the most conservative. In this work we thus focused on a proof of micro-pusuits' existence through the results obtained from the Necker experiment as well as results from the replication experiments (Cross or Square).

The additional analyses on binocular similarity and velocity similarity also provide more information on micro-pursuits. The former's results suggest that micro-pursuits tend to feature conjugated dynamics between both eyes since the LJ condition, in they were measured, showed more eye-to-eye similarity, in particular in the two data set where micro-pursuit are systematically measured (Fig. A limitation of this data resides in the granularity of the working definition. Indeed, micro-pursuits should theoretically be treated as a class of FEM, at the same level as micro-saccades and drifts. However, to link the theoretical definition to our working definition, the experimental data would need to be recorded with more precise and more accurate systems than video-based eye-trackers (Wyatt, 2010;Choe et al., 2016). Hence, it is an invitation to research further into this oculomotor phenomenon. We provide a basic field guide to pursue investigation and characterisation of such a phenomenon, by providing a key metric, namely MPC which measures similarity of the gaze trajectory with respect to that of a target.

Eye movement research is gradually considering an oculomotor continuum. For instance, it is becoming less and less credible to consider a hard separation between micro-saccades and saccades because of their common neural origins in oculomotor programming (Krauzlis et al., 2017), their common properties, and mathematical models that can account for both (Sinn and Engbert, 2016). One may thus also consider that large amplitude smooth-pursuits share physical properties as well as neural correlates with micro-pursuits. Further work is needed to discriminate them from other FEM, like micro-saccades, and to develop detection algorithms, which will need to cleverly combine physical characteristics with a robust estimation of similarity between gaze and target based on very short episodes.

Micro-saccades define a main sequence

Micro-saccades, a class of FEM, have been characterised by (i) their ballistic properties-like saccades,-(ii) their small amplitudes, and (iii) the relationship between their peak velocity and amplitude. This resulted in the definition of a main sequence (Bahill et al., 1975). The latter stipulates that as micro-saccades have larger amplitudes, their associated, measured peak velocity will increase, and this relationship is linear. Indeed, this can be explained by the fast, ballistic nature of the micro-saccade, which, in essence, re-positions the fovea in the context of visual perception (Rolfs, 2009;Ko, Poletti, et al., 2010;Poletti and Rucci, 2016;Sinn and Engbert, 2016), similar to saccades at larger scales (i.e., not contained within FEM).

The execution of this rapid movement is typically over a short period, under 80 ms.

The physical properties of the oculomotor system constrain these ballistic motions of the eye to exhibit the linear velocity-amplitude relationship, characteristic of the classic main sequence.

The main sequence has been very reproducible, and appears in over decades of eye movement research (Rolfs, 2009;Hicheur et al., 2013). It has been used to develop robust micro-saccade detection algorithms such as the one proposed by Engbert and Kliegl [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF], which is the one also used in this work. Their detection is based on a lower relative velocity threshold computed from a sliding window-such that the detection threshold is dependent on the contextual oculomotor activity. Using this detection method, our data presented in Fig. 2.2 shows a clear secondary main sequence under the predictable motion condition (LJ) in both Necker and Cross experiments.

The detection of slow micro-saccades in our data set with this algorithm can be explained by the dependency of the detection algorithm on the fixations' mean velocities, and the adaptive threshold based thereupon. The conditions created by the use of small amplitude predictable Lissajous trajectories on an ambiguous Necker Cube on one hand (Necker), and an explicit pursuit task on the other hand (Cross), could explain the detection of slow micro-saccades.

This interpretation suggests that the classic main sequence can be composed of erratic micro-saccades such as under FX or act as catch-up micro-saccades for a micro-pursuit movement just as we might have at a macroscopic scale with smooth pursuit movements. For further understanding of this phenomenon, a more detailed break down of FEM data into gaze before and after micro-saccades is needed, which we consider outside the scope of this work.
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Micro-pursuits might define a secondary sequence

Our graphical results in Fig. 2.2 suggest that we do have a secondary sequence under the LJ condition in both the Necker and Cross experiments. Moreover, detected micro-saccades that give high MPC scores are mainly associated with the secondary sequence and vice versa (see Fig. 2.2-A). Under the RW condition, however, the secondary sequence is less pronounced. Thus, a contrast can be observed between predictable and unpredictable motion conditions, suggesting that detected microsaccades in FEM are more diverse than initially assumed. We propose to focus on this secondary sequence, i.e. the slow main sequence.

The differences in rate shown in Fig. 2.2-B also suggest that the secondary sequence may represent detected micro-saccades of different nature than those contained in the classical main sequence. Given the recent and older observations of small amplitude pursuit in monkey (Skinner et al., 2018) and human data [START_REF] Heywood | Eye movements and the afterimage-i. tracking the afterimage[END_REF]Heywood and Churcher, 1972;Martins et al., 1985;[START_REF] Poletti | Microscopic eye movements compensate for nonhomogeneous vision within the fovea[END_REF], as well as the contrast between unpredictable (RW) and predictable (LJ) stimulus motion in our experiments, a credible hypothesis is that the secondary sequence mainly covers an additional class of FEM, namely micropursuits. Alternative hypotheses might classify these as ocular drift (C.-Y. Chen and Hafed, 2013;[START_REF] Watanabe | Ocular drift reflects volitional action preparation[END_REF] or slow motor control (Kowler and Steinman, 1979a;[START_REF] Kowler | The effect of expectations on slow oculomotor control-ii. single target displacements[END_REF][START_REF] Kowler | The effect of expectations on slow oculomotor control-iii. guessing unpredictable target displacements[END_REF]Kowler, Martins, et al., 1984;Epelboim and Kowler, 1993), although these do not track on a target (stimulus) and would thus contradict with the aforementioned correlation observed between membership of the secondary sequence and high MPC scores.

Micro-pursuits could be detected through similarity with a target

The MPC measure proposed to quantify similarity between two multi-variate signalssuch as the bi-variate gaze and stimulus trajectories in the context of pursuit and micro-pursuit,-can be subjected to a finer analysis. It features robustness with respect to (i) additive noise degradation, (ii) scale, and (iii) spatial offset and translation, making it convenient for a study of similarity. It's limitation resides mostly in its variance and thus the number of (temporally correlated) samples needed to accurately measure similarity. This is illustrated through Fig. B.1 in Appendix B.1. While on the one hand, physical properties (amplitude, peak velocity, see discussion on the secondary sequence) can be used to discriminate micro-pursuits from micro-saccades, on the other hand, functional characterisation will help provide discrimination between drift, slow motor control, and micro-pursuit. Indeed, the first two may be slow FEM, but have no requirement for target tracking, like pursuit, whereas the latter does (Martins et al., 1985;Spering and Montagnini, 2011). Furthermore, its link to visual perception remains speculative, though interpreting our data suggests that attention may lead to a tentative explanation (Spering and Montagnini, 2011).

Influence of attentional context on target locking

The three experiments (Necker, Cross and Square) presented show three different contexts of tasks and stimuli. In the Necker experiment, the ambiguous Necker cube was subject to motion and participants had to report how they perceived the cube's orientation while fixing a central cross. The context was challenging as perceptual changes were endogenous. The two tasks-oculomotor and perceptual-required a split of attention as one had to focus gaze on a central fixation while observing a moving, ambiguous cube [START_REF] Vanrullen | Visual search and dual tasks reveal two distinct attentional resources[END_REF]. We consider this a difficult attentional context, which forces the observer to split attention between to elements, or perceptual objects, of the visual field, that can thus be considered competing (attentional) attractors. There have been previous reports showing that an ambiguous stimulus can reveal attentional modulations [START_REF] Kohler | Deciding what to see: The role of intention and attention in the perception of apparent motion[END_REF].

In the Cross experiment, we created an explicit context, where the fixation cross was moving as it underwent illumination changes. Participants were asked to fixate the cross, while a static, unchanging square remained in the background. One can consider that participants had to focus all their attention on the cross, and as it was moving in a predictable, tractable fashion (LJ), the cross induced micro-pursuits. In the Square experiment, the attention had to be split, like in the Necker experiment. However, the square was unambiguous, and its changes required less attention to detect. Thus, one can consider the Square experiment to have attention split between two attractors, as well, but given the results obtain (Fig. 2.3-E-F) and the lack of observed micro-pursuits, one can interpret the competition between attractors as unbalanced. This approach considers attention qualitatively, based on the manipulation of tasks and stimulus motion, but a more quantitative approach would provide a better view on the possible interactions-e.g. by means of an efference copy (Astrand et al., 2015)-of the oculomotor and attentional systems for micro-pursuits.
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Modelling attention to generate gaze patterns

A first step towards a quantitative characterisation of how attention may influence oculomotor dynamics is proposed in Chapter 3, by a competing attractor model based on gravitational-like field model. The model simplifies the visual stimulation by considering perceptual objects as gravitational attractors with dynamically varying masses modelling the attention whereas gaze position is modelled through a unit-mass particle evolving in time subject to the gravitational field, and subject to additive velocity noise (Langevin dynamics). By manipulating the attractor's positions, masses, and the curvature of their energy potential, it is possible to generate (micro-)saccades, (micro-)pursuits, fixations, and drift. This mathematical model offers a quantitative method that may be interpreted in terms of spatial attentional loads with respect to oculomotor programming and execution. It is an extension of some models already proposed in the field of FEM modelling based on energy potential (Engbert, Mergenthaler, et al., 2011;[START_REF] Herrmann | A self-avoiding walk with neural delays as a model of fixational eye movements[END_REF] as well as modelling work on bi-stable perception and processes (Moreno-Bote, Rinzel, et al., 2007;Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Knill, et al., 2011;Moreno-Bote and Drugowitsch, 2015), to incorporate the influence of, e.g., ambiguous figures like the Necker cube.

Future works

Further studies based on quantitative approaches to spatial attention [START_REF] Corbetta | A common network of functional areas for attention and eye movements[END_REF][START_REF] Cavanagh | Tracking multiple targets with multifocal attention[END_REF][START_REF] Engbert | Spatial statistics and attentional dynamics in scene viewing[END_REF]Gide, Karam, et al., 2017;[START_REF] Esterman | Models of sustained attention[END_REF], combined with the use of MPC on the gaze and salient points of the stimulus-rather than the simpler centre of gravity -, should constitute promising methods to investigate the relationship between attention and micro-pursuits.

Our model, as well as existing and competing models, feature stochastic processes (Gammaitoni et al., 1998;Kim et al., 2006;Engbert and Kliegl, 2004; J. Braun and Mattia, 2010) which could provide insights to further understand how FEM act as noise. The question remains on how that noise might impact perception, such as through hyper-acuity phenomenon [START_REF] Rucci | Miniature eye movements enhance fine spatial detail[END_REF][START_REF] Zozor | Does eye tremor provide the hyperacuity phenomenon?[END_REF][START_REF] Rucci | The unsteady eye: an information-processing stage, not a bug[END_REF]. An extension of the presented modelling approach in Chapter 3 incorporating additional, competing attractors living in a complex, possibly high-dimensional, perceptual space coupled with the already existing oculomotor model, constitute a framework to study the interaction between oculomotor, attentional, and visual systems in a goal-oriented complex system like the brain [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]Schwartz et al., 2012).

108

Chapter 2 Micro-pursuits: a class of fixational eye movements

Conclusion

In this work, micro-pursuits are proposed as a type of FEM occurring at small amplitude, within a fixation, as the gaze follows a target. We proposed two metrics: inertia and MPC to measure gaze displacement within a fixation and to quantify gaze-target trajectory similarity, respectively. When searching for micro-saccades, our data showed the presence of a secondary sequence, contrasting with the wellknown main sequence exhibited by micro-saccades. Detected micro-saccades that belonged to this secondary sequence showed lower peak velocities as well as higher similarity with the target, which has led us to classify these movements as micropursuits. Upon further inspection of the data, both the Necker experiment and the Cross experiment showed fixations with high similarity values under predictable target trajectories. Micro-pursuit here is presented as a class of fixation, but further research is needed to identify the physical properties and distinguish it from other FEM. Moreover, this work calls for further investigation on the functional role of micro-pursuits, and how the oculomotor and perceptual systems interact during such movements.

Conclusion

Modelling eye movements & multi-stable perception 3 " Between my consciousness and my body as I experience it, between the phenomenal body of mine and that of another as I see it from the outside, there exists an internal relation which causes the other to appear as the completion of the system. The possibility of another person's being self-evident is owed to the fact that I am not transparent for myself, and that my subjectivity draws its body in its wake.

-Maurice Merleau-Ponty "Phenomenology of Perception" 1945.

Eye movements and multi-stable perception have been further understood and deciphered with the study of mathematical models capable to produce analogous behaviours. Models, however, offer a key advantage: they can be manipulated and understood in fine details through theoretical studies and numerical simulations.

In this thesis, we proposed a model based on gravitational energy potentials to generate eye movements. This approach is described in this chapter by presenting numerical empirical results. Furthermore, perceptual tri-stability was studied in order to begin an investigation of how one can expand some of the results found for bi-stability, and generalise them for multi-stability. The proposed framework is a first step towards the construction of formal models that bind perception and action; here, in particular, ambiguous perception and oculomotricity. 

Gravitational fixational eye movements

Models come in a variety of forms, depending on the mathematical framework used to formalise and compute their mechanics. Two main families can be differentiated: descriptive statistical and generative mechanistic models. Here, we focus on the latter. The motivation is the following: generative models can produce simulated and synthetic results that can be compared to observed empirical data. The model can then be studied and decomposed such that each internal force can be characterised, and their functional role in creating the analogous behaviour can be investigated. All together, models remain key to understand a phenomenon and make predictions for empirical and experimental work. We focused here on FEM in an attempt to explain and understand the data observed and reported in Chapter 2. Eye movements are modelled by various techniques.

Probabilistic modelling -scan-paths

For instance, gaze data in scene exploration task, also known as scan paths, have been studied through probabilistic models of spatio-temporal dynamics [START_REF] Marat | Modelling spatio-temporal saliency to predict gaze direction for short videos[END_REF][START_REF] Ho-Phuoc | A Computational Saliency Model Integrating Saccade Programming[END_REF]Tatler et al., 2011). These models are often based on saliency maps, which draw the empirical two dimensional distribution of fixation location convoluted with a spread function (Gide, Karam, et al., 2017), and have provided researchers with a better understanding of natural image's statistics for the perceptual, oculomotor and attentional systems. Scan path models add a temporal dependency to saliency maps, and allow the generation of synthetic gaze patterns linked to an image or video's observation. However, they often neglect the role of intention and task (see Fig. 1.1 in Chapter 1), as they are estimated bottom-up from gathered data.

Accumulation processes -saccade generation

Another known approach is derived from the field studying decision making in which, the cognitive system is considered to accumulate evidence or information up to a threshold. When the threshold is reached, a decision is made. For eye movements, the decision is materialised by the execution of a saccade, for instance (Orquin and Loose, 2013). Accumulation processes are implemented by drift diffusion models, in which, a particle influenced by a deterministic force, e.g., the evidence, and a stochastic force, e.g., the internal noise, drifts in a space until a threshold is reached. This type of models are also close to integrate and fire neuronal models, in which information is accumulated, in weights that correspond to dendrites, until a threshold is reached and synaptic spiking occurs [START_REF] Gerstner | Neuronal dynamics: From single neurons to networks and models of cognition[END_REF]. This approach is effective to understand how intentions can be linked to a decision, and subsequently to an action. However, they often neglect the role of attention and the stimulus' statistical properties.

Energy potential models

Some research teams have attempted to merge both paradigms by proposing models using energy potential models. In fact, FEM phenomenology offers an interesting perspective for such unification because FEM have historically been considered as unconscious ocular events linked to the visual stimulus on the fovea [START_REF] Thaler | What is the best fixation target? The effect of target shape on stability of fixational eye movements[END_REF], but is also known to reflect conscious perception, attention and expectation (Kowler, Martins, et al., 1984;[START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF]. Recently, Engbert and colleagues (Engbert, Mergenthaler, et al., 2011) proposed a generative model that could reproduce the statistical properties of FEM stationary displacement, namely the short term persistence and long term anti-persistence of drift and tremors. They used a self-avoiding walk (Freund and Grassberger, 1992) in a discretised quadratic energy potential: at each iteration, the gaze, represented by a particle in the energy potential landscape, can either go left, right, up or down. The walker will choose the slot with the lowest energy. Once a step is made, the slot of the previous iteration is set to a high energy value, and the entire energy landscape follows a linear relaxation law. Hence, FEM bottom-up dynamics can be reproduced. Furthermore, the model also proposed to integrate micro-saccade generation by a threshold rule: when the particle is surrounded by options with energy higher than the threshold, it jumps to the global minimum of the energy landscape. Here, the authors provide an accumulation process linked to a global integration of the oculomotor field.

The integrated FEM model described above is a key foundation to bridge the oculomotor modelling communities and accounts for multiple FEM phenomena (e.g., drift displacement, micro-saccade, spatial orientation biases). However, it did not possess a mechanism to account for micro-pursuit, as these are hardly studied and reported. The observation of micro-pursuits presented in Chapter 2 implies that the dynamics of the gaze within a fixation can be affected and attracted by motion of a perceptual object in or nearby the foveal field. Therefore, we propose modelling approach, gravitational fixational eye movements (GraFEM), inspired by gravitational energy field theory to model motion of eye movements [START_REF] Parisot | A multistable gravitational potential approach to fixational eye movements[END_REF]Parisot, Chauvin, Phlypo, et al., 2018) and derived from the work on integrating FEM in energy potential models (Engbert, Mergenthaler, et al., 2011).

Gravitational potential energy field modelling

Integrated and generative FEM models make use of energy potentials to generate self-avoiding walks, constrain the walks and replicate oculomotor biases (Engbert, Mergenthaler, et al., 2011). In fact, the latter is used to constrain the pseudo random walk's spatial horizon. Furthermore, it can be considered as an attractor of the energy landscape. Thus, the use of the particle in an energy potential framework can be adjusted to provide biases of the stimulus on the FEM generation. Combining attractors in the energy fields, that increase the probabilities of having the gaze at some spatial coordinates, and adding stochasticity to the movement of the particle can provide a simple mechanism for FEM generation.

Attractors.

Attractors in energy landscape are local minimums into which a particle will roll by gradient descend, i.e., gravity. However, if one considers the problem from a probabilistic point of view, energy landscape correspond to negative inverted probability distributions, with minimums corresponding to modes with higher probabilities. The advantage of considering the gaze dynamics as a physics problem is that it offers an intuition of the dynamics when the attractors' masses and positions are known, since humans all have an intuitive understanding of Newtonian gravity by experiencing life on earth.

Model description

The attractors' properties can be manipulated over time to affect the energy field and thus dynamics of the FEM generated. The energy field that is mapped to the visual field can be populated by an arbitrary number of n attractors of varying strength (see Fig. 3.1a). Inspired by the formalism of gravitational fields, one can generate fields with the following equations. Let Φ i represent the field generated by the i th attractor given by:

Φ i (q, t) = - 1 q(t) -a i (t) 2β i (t) + δ i (t) (3.1)
with q and a i corresponding to the spatial x-y coordinates (at time t) of the observer's gaze position and the i th attractor, respectively. The potential landscape can be fine tuned according to assumptions on attentional attributes of the stimulus and the tasks. First, it is necessary to set how many attractors are present and give them 3.1 Gravitational fixational eye movements spatial coordinates in the plane over time. Secondly, it is possible to handle the mass of those attractors and their subsequent force of attraction and distortion of the field by tuning two parameters; δ for the depth of the well and β for the concavity of its slope. Summation and normalisation of the field allow for the fusion of the multiple attractors.

Φ(q, t) = n i=1 Φ i (q, t) (3.2)
A logarithmic attenuation is added to allow the possibilities of exploring high energy areas of the visual/foveal field, giving the energy E:

E = -ln(-Φ) (3.3)
Memory of attractor motion (Fig. 3.1b) are modelled by adding a moving average (MA) process [START_REF] Hannan | Multiple time series[END_REF] on the field at a given time t:

E F EM (q, t) = E(q, t) + K k=1 λ k + 1 E(q, t -k∆t) (3.4)
where K is the temporal parameter limiting how far in time will the fields be summed over and with λ the relaxation rate parameter and ∆t is the temporal step size. It is also possible to set the impact of memory and anticipation through parameters that define the iteration window over which the field is deformed using traces of the attractor in the past of a given current iteration and the rate λ at which the deformation affects for a given lag.

A particle of position (q) with negligible mass (or with very high friction) is dropped in the field and is disturbed by noisy force, in order to generate and simulate gaze dynamics. Therefore, given the fundamental relation for dynamics, where the accelerating second order component is neglected, the gaze particle's motion is derived by the Langevin equation (Langevin, 1908), in which mq is equal to the sum of forces applied to the particle, and can be rewritten as follows:

mq = -γ q -∇E F EM (q, t) + ξ(t) (3.5)
with m the negligible mass, γ the friction and where ξ is an external force, here an oculomotor noise (η) applied to the gaze, such that η(t) = ξ(t) γ . With the assumption of low mass and after normalisation1 , such that E F EM = E F EM γ , the dynamics can be expressed as: The evolution of the gaze particle's dynamics can be computed by making the problem a discrete one using the Euler-Maruyama method (Kloeden and Platen, 2013), for instance.

q = -∇E F EM (q, t) + η(t) (3.

Model simulations: what are the parameters corresponding to ocular events & interpretation?

Fixations of 3.5 seconds, with a discretisation Euler-Maruyama step ∆t = 13 ms equal to the time step, were simulated using the GraFEM model with two attractors, a cross corresponding to the attractor of a fixation cross at the centre and a stim , the attractor representing the stimulus, with a Lissajous motion: a stim = (sin(2t), sin(3t)). Only the slope and depth parameters were manipulated: β stim ∈ [0; 15] and δ stim ∈ [0; 500]. All other parameters were kept constant with the other attractor position at a cross = (0, 0) with β cross = 1 and δ cross = 100, the relaxation rate parameter λ = 0.9, the memory temporal limit K = 5 and noise ξ ∼ U[-0.5; 0.5]. These

3.1 Gravitational fixational eye movements simulated fixations were then analysed using the measures presented in this article, namely, inertia, MPC and micro-saccade detection using the EK algorithm based on relative velocity thresholds [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]. Fig. 3.3a shows that higher inertia follows a diagonal region along the {β stim , δ stim } space. When looking at Fig. 3.3b, one can see that the same area in the parameter space has systematically high MPC. Finally, the EK algorithm was applied (without the binocularity criterion) to measure detected micro-saccades, and summed over the time of a fixation. The results (Fig. 3.3c) show that micro-saccades are detected when concavity is high due to a larger β stim parameter.

Discussion and perspectives: attentional, oculomotor and perceptual multi-stability

The simulation results presented above show:

• Fixations' dynamics can be modelled including a variety of FEM such as drift, tremors, micro-saccades and micro-pursuits.

• Attractor dynamics can be intuitively manipulated by two parameters that control their slope and depth, hence imposing, by gravity, faster or slower dynamics on the gaze-particle.

• Generalisation to more complex stimuli or tasks can be manoeuvred by such a model as attractors can be multiplied, if necessary.

However, this work remains preliminary and calls for further investigation. Such perspectives are discussed in the following paragraphs.

Model interpretation for eye movements

The GraFEM model proposed in this paper is capable of generating micro-saccade, drift and tremor FEM (see Fig. parameters, but the work on parameter inference should be addressed in a near future in more details.

Given the observed data and the proposed model to account for it, questions and perspectives can be redefined with a novel angle for interpretation of fixational eye movements. Inversion and a full analysis of a model, like GraFEM, with multiple free parameters is a complex task out of the scope of this thesis but should be tackled and reported in a near future.

The model presented here gives a mathematical framework in which eye movement phenomena can be generated and interpreted. Attractors are interesting as tools to explain and interpret cognitive and physiological behaviours as they allow an intuitive understanding of the evolution of dynamical systems (T. Watanabe et al., 2014;[START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. Furthermore, complex learning systems-i.e., neural networksare known to develop such properties as the parameters of their processes tend to learn the statistics of the environment by creating attractors in the parameter space (Moreno-Bote, Rinzel, et al., 2007;Shpiro, Moreno-Bote, et al., 2009; Moreno-
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Bote, Knill, et al., 2011;Moreno-Bote and Drugowitsch, 2015). With this modelling framework, the FEM classification of the literature can be described and interpreted in terms of attractor spatio-temporal dynamics (Fig. 3.3 & 3.4).

A stable fixation (Fig. 3.2a) in the GraFEM model corresponds to a stabilisation of an attractor with the energy landscape having little change. The gaze-particle is stuck and only the noise affecting its position may lead to small random movements of the eyes, as in other generative FEM models (Engbert, Mergenthaler, et al., 2011;[START_REF] Herrmann | A self-avoiding walk with neural delays as a model of fixational eye movements[END_REF]. In these models, constraints to the energy field of the fixation are used in an analogous fashion to reflect the higher probabilities of having FEM in horizontal and vertical directions. A fixation attractor can thus be predicted by the task or the stimulus controlled by the experiments, and its parameters can be inferred by a priori information and data. Hence, the model gives predictive capabilities that can be tested and requires assimilation of data to constrain its range of possibilities.

Micro-saccades (Fig. 3.2c) correspond to sudden changes in the energy depth of attractors, with a new one emerging or deepening while the attractor of fixation has suddenly disappeared. They are likely to emerge as the gaze-particle rushes down a gradient to the centre of an attractor, giving it sufficient velocity. The depth and slope of the attractor can be manipulated (following the dynamics described in Fig. 3.4), thus making it possible to infer, based on observed velocities and amplitudes, the saliency of that attractor. The GraFEM model does not use an explicit and separated mechanism for micro-saccade generation-as the model presented in Engbert, Mergenthaler, et al. (2011)-though it is not incompatible.

Drifts correspond to a stability of the gaze-particle with respect to the attractor by which it is transported. However, the attractor might itself slowly drift away in the visual space (independently from the target motion) or alternatively, the shape of the well might get larger (by manipulating the parameter β), allowing for the noisy gaze-particle to explore further. These are two hypotheses that could be tested, in future work, by inferring the model parameters given sufficient data. These FEM are known to help reduce visual redundancy and extract features in complex visual stimuli (Kuang et al., 2012) but are mostly considered to be consequences of the eye muscles and their neural control properties. Therefore, they have mostly been considered as independent processes from the visual stimulus presented. The micro-pursuits detected and described in Chapter 2 could be interpreted as a form of stimulus related drift, as its signal dynamics place it in similar ranges, and is capture by the proposed metric; namely MPC. Consequently, this argues in favour of our proposition that drifts are composed of two categories-stimulus independent 122

Chapter 3 Modelling eye movements & multi-stable perception and dependent-and micro-pursuits logically fall within visually dependent ocular drifts. This dependency can be interpreted as the interference of bottom-up salient elements interrupting the top-down task of fixation.

Micro-pursuits (Fig. 3.2b) are therefore close to drifts in the energy landscape dynamics.

Model mechanics

The model sets the gaze as a particle in an evolving gravitational energy potential field. When the system has no dynamics added to the potentials' landscapes, the particle will fall into its nearest local minimum. In this implementation, at each iteration-here a discrete time step using Equation (3.6) -, the first derivative is computed to update the position of the particle in the plane, corresponding to the screen. Noise is then added to the deterministic dynamics and can drive fixational oculomotor decision-making with respect to attractors if its amplitude is sufficiently large (Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Rinzel, et al., 2007). This mechanism is similar to bi-stable energy potential models, though it extends on the dimensions of the system. In a set of simulations reported in Fig. 3.3, we show that through two continuous parameters applied to a target attractor, it is possible to generate and interpret oculomotor dynamics observed in FEM. However, here, there is no prior requiring the existence of different systems for each class of movements observed (Liversedge et al., 2011). FEM dynamics can be reproduced through a unique mechanism as shown by the simulated examples in Fig. 3.2.

Top-down intention processes can be tested and simulated, given the context of a task, by applying changes in the model's β and δ parameters. Fig. 3.4 can be used as a road map of the oculomotor dynamics and regimes expected, depending on parameter values. Moreover, bottom-up attentional effects can also be taken into account. This can be done with simpler assumptions, such as the ones presented here for the task used in Chapter 2, but can be more complex if using natural scene tasks, for instance. An interesting and practical perspective in this context lays in investigating how salience models, which derive probability distribution based on the statistics of images or videos, can be integrated such that only attractors are fed into a GraFEM oculomotor execution system.
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Anatomically, oculomotor programming has been shown to be highly correlated and linked to a network of areas involving neural activity in the SC, the FEF and the LIP cortex (Hafed, Goffart, et al., 2009;Krauzlis, 2004;[START_REF] Krauzlis | The control of voluntary eye movements: new perspectives[END_REF]Krauzlis et al., 2017;Astrand et al., 2015;Peel et al., 2016;Taouali et al., 2015). There are inter-individual differences in anatomy and behaviour for fixational eye movements measuring and observed dynamics. For instance, it has been shown that not only oculomotor behaviour between trained and untrained participants vary a lot, but that drift accounts for more fixation correction motion than micro-saccades (Cherici et al., 2012). The observations of micro-pursuits presented in Chapter 2 suggest that the dynamics of the gaze within a fixation can be affected and attracted by motion of an object in or nearby the foveal field.

However, rather than having an attractor with a pseudo-random displacement, its motion follows a deterministic and predictable trajectory, that can be computed and estimated by the oculomotor system. Moreover, that attractor is, given our observations so far, only related to a target motion. This could, for instance, be implemented in the brain by the means of an efference copy (Astrand et al., 2015), though this idea remains speculative and further modelling and neuro-physiological research is needed. The low energy attributed to a decoded and perceived object moving across space encourages the oculomotor system to track it as it tries to minimise the energy of the gaze-particle. Finally, tremors are generated and explained by the noise given to the particle over all FEM events. This model complements the eye movement field of research with the possibility to program intentions, salience, and their effects on the gaze dynamics by simply using attractors and setting out their dynamics in terms of motion on the visual field, depth and memory. For instance, the model can predict the different dynamics reported based on the eccentricity of an attractor corresponding to an afterimage, as observed in (Heywood and Churcher, 1972). Thus, one can use the model to generate statistical predictions of eye movement dynamics. Given an understanding of the visual attention effects of their stimulus and take into account all the associated intentions to the tasks that participants are required to be operated during a trial, it is possible to use this modelling to generate quantitative predictions on the oculomotor dynamics. Moreover, the generative properties makes it possible to work on simulated data and extract dynamics' statistics in terms of eye movements, and this is possible using the traditional algorithms for eye movements classification. Inversely, obtaining the parameters of the model that replicate the dynamics of 124 Chapter 3 Modelling eye movements & multi-stable perception observations could help understand better the internal processes that drive eye movements.

Perspectives: towards oculomotor multi-stability.

A key aspect of this family of models is that it showcases multi-stability regarding their attractors. This phenomenon can emerge in many complex biological systems and is present in many cognitive processes (Schwartz et al., 2012). It is linked to coordination dynamics between sub-systems which have varying levels of coupling, leading to mono-stable, multi-stable or meta-stable dynamics [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. The consequent interpretation is that the oculomotor system could have multi-stable dynamics with respect to visual attractors. In this case, the oculomotor dynamics are likely driven by noisy signals (J. Braun and Mattia, 2010) representing other interfering systems, such as perception, attention, and other cognitive systems. This framework connects to the growing body of studies linking perceptual decisions and multi-stable system dynamics. It also creates a link for motor systems to studies of noise as a component that helps a perceptual system operate through stochastic resonance 2 (Gammaitoni et al., 1998;Patel and Kosko, 2005;Kim et al., 2006).

2 Stochastic resonance refers to phenomena in which a system is able to detect a weak signal because noise boosts it, by providing the energy needed for the signal's frequencies to resonate mutually.
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Multi-stable perception

As suggested by the conclusion of the previous section, the GraFEM models can be interpreted as multi-stable oculomotor models. One of the aims of this thesis was to propose a framework in which both action and perception can be linked, in order to investigate how visual perception, when stimulation is ambiguous, is dependent and constrained by active oculomotor behaviour. Moreover, works on modelling multi-stable perception has been extensively investigated for two state systems, e.g., bi-stability, [START_REF] Shpiro | Dynamical characteristics common to neuronal competition models[END_REF]Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Knill, et al., 2011) but less is known for states with three or more quasi-stable states. This section uses the framework and model developed above to look at perceptual multi-stability.

Extension for multi-stability

An advantage of the GraFEM model's formalism is that it can gain in dimension for its energy space and the number of attractors quite easily. Indeed, Equation (3.1) can be summed and normalised over n attractors in a two-dimensional space. But if q and a i , the coordinates vector of the particle and the i th attractor, respectively, are considered as two-dimensional vectors with (x, y) coordinates on the screen plane for GraFEM, it can be extended to p-dimensional vectors in the perceptual space. We then have, for (q, a i ) ∈ R p , for n attractors and by computing the l-norm3 :

Φ i (q, t) = - 1 q(t) -a i (t) 2β i (t) p + δ i (t) (3.7)
Therefore, the model extends the classic bi-stable model (Gammaitoni et al., 1998). However, the larger p-dimensional space remains abstract and symbolic, as computing such a model with a realistic level of complexity comparable to the human visual system would formulate the computations in a highly dimensional space-see Appendix A.1.2. The perceptual model also integrates all attractors' energy fields by summation and normalisation, and the logarithmic attenuation is applied such that: However, unlike the GraFEM model, we do not apply the MA process as attractors did not move in our simulations and no perceptual phenomenon, to the author's knowledge, justifies for now, adding this computational cost. Finally, as for GraFEM, the particle's gradient was computed by iterations and a noise (η) was forced upon its first order derivative: q = -∇V (q, t) + η(t) (3.9)

V (q, t) = -ln - n i=1 Φ i (q, t) (3.8)
Particle trajectories in the perceptual energy space then need to be processed and interpreted as percepts.

Simulation methods

We simulated 100 bi-stable systems in R 2 with attractors a 1 -a 2 = 22.06 (arbitrary units) over 40 seconds per simulation, with a Euler-Maruyama time step of 1 ms. Attractors did not move in the energy space. The following parameters, kept constant over time and simulations, were used; β = (3, 3), δ = (0.01, 0.01). Noise samples were drawn from a Gaussian distribution with mean µ = 0 and standard deviation σ = 1 and samples were then multiplied by a noise amplitude value that varied across simulations. Only noise amplitude varied over simulations ranging from 0.45% to 13.6% as a ratio of attractor distance a 1 -a 2 . The particle was initiated outside the two attractors at a distance of a(0) -q(0) = 8.7633. The generated 3.2 Multi-stable perception particle trajectories were processed to interpret them as percepts. First, noise was removed using a 100 th order median filter (see Fig. 3.7). The signals were then interpreted into percepts p associated with each attractor, by finding the attractor with closest distance over each iteration (Fig. 3.6) using the following rule:

p i = arg min i=1,n a i -q(t) (3.10)
over n the total number of attractors.

The obtained time series were then analysed using the following procedure. A first order derivative was used to find moments of simulated perceptual change-the first and last 50 iterations were removed to avoid boundary effects. Percept durations were thus extracted and normalised as fractions of the total simulation time (40s). They were then fed to the default MATLAB function estimating parameters to fit Gamma and a Log-normal distributions, using maximum likelihood. We used Kolmogorov-Smirnov goodness-of-fit tests [START_REF] Massey | The Kolmogorov-Smirnov test for goodness of fit[END_REF], which quantifies the distance between empirical distribution function of the sample and the cumulative distribution function of the referred distribution, at α = 0.05 to determine whether the estimated Gamma and Log-Normal distributions could be considered as adequate for analysis. One test was done for the Gamma distribution as reference, and one
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Chapter 3 Modelling eye movements & multi-stable perception test was applied with the Log-Normal distribution as reference. Noise amplitude varied across all 100 simulated bi-stable systems.

The same analysis was carried for tri-stability, i.e., 3 attractors, with constant parameter values identical to the bi-stable case described above. The third attractor was placed in a equi-distant manner (Fig. 3.5) and simulations were initiated in that attractor to reflect first percept biases of the moving plaid stimulus-see Chapter 1 and Section 4.1 in Chapter 4 for more details on the stimulus. The results are visualised together with bi-stability in order to facilitate comparison.

Bi-stability

The simulations presented show how the model can change its regime of stability: the system may become unstable, even after the interpretation step, or it can show only one stable state, i.e., mono-stability, or it can have two stable states, i.e., bistability. Hence, multi-stability is not the only regime. In Fig. 3.8, one can see how, for low noise levels, the system displays detected changes only at initiation, or at the end (suggesting a boundary effect) and can be considered as mono-stable. The particle is stuck in the first attractor it dives into and remains so. On the other hand, when noise is high, the system becomes so unstable that the percept decoder cannot interpret stable states. This is represented by the decoder's erratic trajectory in the bottom part of Fig. 3.8, where the system enters an unstable regime. In between, however, we do observe bi-stability, with number of switches observed increasing as noise increases in the system.

Because we are interested in multi-stable behaviour, we report Gamma and Lognormal distribution fits only on the simulations for noise amplitude levels of 1.91% to 5.61%-the others are considered mono-stable or unstable simulations. As described in the literature (reviewed in Chapter 1 and Appendix A.4), the percept durations observed in the experimental data can fit to Gamma and Log-Normal distribution functions-however, further goodness of fit tests need to be applied to solidify these results-, as these distribution are typically used in the multi-stability literature (see Chapter 1). Fig. 3.10-bottom reports the spread of the estimated distribution parameters, while Fig. 3.10-middle shows the computed log-likelihood and the number of switches as noise in the system increases. Both functions seem to perform similarly to describe the simulated data, based on the log-likelihood values reported and none of the analysed simulation were rejected by the Kolmogorov-Smirnov goodness-of-fit tests for both Gamma and Log-Normal estimations. As expected, higher system noise amplitude leads to an increase in the system's number of 
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Chapter 3 Modelling eye movements & multi-stable perception switches (Fig. 3.10-middle), thus replicating the observations from previous studies on the role of noise in bi-stable systems. This appears to be also correlated to less performing distribution fits (see Fig. 3.10-middle).

Tri-stability

Here as well as in bi-stability, we observe a reproduction of system stability regimes, shown in Fig. 3.9. For tri-stability, the particle was initiated in the coherency attractor. Again, when noise is high, the system becomes so unstable that the percept decoder cannot interpret stable states. This is represented by the decoder's erratic trajectory in the bottom part of Fig. 3.9, where the system enters an unstable regime. In between, however, we do observe tri-stability, with number of switches observed increasing as noise increases in the system.

Because we are interested in multi-stable behaviour, we report Gamma and Log-Normal distribution fits only on the simulations for noise amplitude levels of 1.91% to 5.61%-the others are considered mono-stable or unstable simulations. Fig. 3.10bottom reports the spread of the estimated distribution parameters and the evolution of computed log-likelihood and the number of switches as noise in the system increases. Gamma and Log-Normal distribution fit the tri-stable data similarly, across noise levels, alike to bi-stable simulations (Fig. 3.10-middle). However, 14.82% of estimations were rejected by the Kolmogorov-Smirnov test for the Log-Normal distribution across the considered noise interval, while no rejections were observed for the Gamma distribution. Moreover, higher system noise amplitude appears to be correlated to a large increase in the system's number of switches (Fig. 3.10-middle), thus generalising the observations from previous studies on the role of noise in bi-stable systems to tri-stability.

Discussion

With these simulations we have provided:

• A description of empirical computational works on a multi-stable model based on gravitational energy potentials.

• A generalisation from bi-stable models to multi-stable models, with a showcase of tri-stability simulations as a first step.

3.2 Multi-stable perception • A framework based on oculomotor modelling that can be applied to perceptual ambiguity.

Differences between bi-stability and tri-stability.

The simulations presented above provide a computational view of the differences that may arise in multi-stable systems, going bi-stability to tri-stability. Both Gamma and Log-Normal fitted parameters are concentrated in small sub-spaces in tri-stability and bi-stability (Fig. 3.10). Also, while both Gamma and Log-Normal described the data in a similar fashion in the bi-stable system, we observed a difference between the two functions' performance for tri-stable system, with the Log-Normal distribution estimations being rejected by a Kolmogorov-Smirnov goodness-of-fit test for 14% of the considered simulations. Finally, the tri-stable system, for the same noise levels, goes through more perceptual changes than the bi-stable system, thus suggesting that as the number of attractors increases, residual durations in attractors decrease and system changes are more frequent.

In fact, this last point raises question on the view proposed by [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]) that mono-stability is a regime in the region between multi-stability and meta-stability (see Fig. 1.21 in Chapter 1). If meta-stability typically produces unstable behaviours, our study links it to noise amplitude in the system; i.e., for both bi-stability and tri-stability, the models produced highly unstable behaviours as noise took over the gradient force and allowed the particle to roam (see dynamics presented in the bottom half of the visualisation matrix in Figs. 3.8 and 3.9), regardless of the slope in the energy field. Furthermore, given the results for numbers of detected perceptual changes shown in Fig. 3.10-top, one can expect that increasing the number of attractors in a multi-stable system will generate less stable observations. However, these would differ from instability driven solely by noise, as we can expect short term dynamics to show persistence, and longer ones anti-persistence.

Model fusion and predictions

The last point links back to the data and model proposed for FEM that inspired our framework (Engbert, Mergenthaler, et al., 2011). Indeed, an aim of this work has been to propose a methodology that can combine eye movements and perception.

If an agent's next oculomotor action can be motivated by top-down intentional (decision making) and bottom-up salient (attention) processes, multi-stable perception provides an interesting paradigm to study how such interactions emerge and 3.2 Multi-stable perception operate. In fact, the data observed in the Necker experiment (Chapter 2) suggested such interactions too. Here, both models were studied separately, but a future work would consist in investigating how motion attractors in the oculomotor space can act as perceptual attractors. For instance, this can be done with motion based multi-stable stimuli such as the moving plaid, where perceived motion directions alternate (Moreno-Bote, [START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF]. Interestingly, works have shown that energy potential bi-stable systems provide an elegant mechanism to simulate Bayesian sampling (Moreno-Bote, Knill, et al., 2011). And this argument has been investigated with the moving plaid stimulus, strictly from a perceptual viewpoint. A promising perspective is to formulate such a problem as an active vision one.

Perspectives: investigating the role of adaptation

Lastly, a force often described in bi-stable perception model is adaptation. However its meaning is somewhat unclear, and sometimes it is referred as synaptic depression for percept competition, at other times, it is linked to neural adaptation. Nevertheless, it gives a system a deterministic force related to the current state, namely the attractor, the system is in. In this work, adaptation was not manipulated and only the noise's role was considered. But an interesting future work would be to test how, depending on the defined adaptation function applied on the attractors' depths, the results vary. And furthermore, the presented model provides a method to investigate adaptation's extension and generalisation to multi-stability. This form of computational investigation could derive key insight on the role of adaptation in multi-stable perception.
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Synthesis

In this chapter, we have looked at computational methods for eye movements, in particular FEM, and for perceptual multi-stability. Models based on the same framework, gravitational energy potential fields, have been use to generate and study both eye movement and perceptual dynamics. Thus, an active vision modelling of multi-stable perception taking into account oculomotor dynamics can be rendered and studied. While the data presented in Chapter 2 suggested that oculomotor dynamics can produce multi-stable behaviours, the work presented in Chapter 4 aims to investigate this experimentally, based on the theoretical understanding and gains from this chapter's work.

Synthesis

Multi-stability: manipulating perceptual ambiguity

4

" Many people would accept that we do not really have knowledge of the world; we have knowledge only of our representations of the world. Yet we seem condemned by our constitution to treat these representations as if they were the world, for our everyday experience feels as if it were of a given and immediate world.

-Francisco Varela The Embodied Mind, 1991.

In this chapter, the results of multiple experiments are presented. The ideas and design are driven from the models proposed in Chapter 3, and aim to investigate the multi-stable dynamics of perception with the moving plaid stimulus on one hand, and the dynamics of the oculomotor system on the other. The emergence of multi-stability is the result of combining a stimulus with specific signal properties and competing inferences for the visual system. It is possible to stabilise or bias these perceptions by changing the stimulus through expectations or task manipulation or also by modifying the oculomotor dynamics. The perceptual and oculomotor systems being interlinked, acting on one of them has an impact on the other. This principle will be shown and described empirically in this chapter (and the next), with two experiments in which ambiguity is manipulated. The aim being to reach a situation where it is possible to show that motor control can be a physiological marker of perceptual content, in a no-report paradigm. The aim of this chapter is also to show that the models and theoretical ideas covered in Chapter 3 can be transcribed into an empirical and experimental investigation.

Hypotheses

In this section, we present the reasoning and rationale making possible the derivation of the major hypotheses.

Using the theoretical and computational frameworks developed in this thesis (Chapter 3), namely the gravitational energy field models for eye movements and perception, and by applying them to the moving plaid, an experimental design is conceived and proposed. Its aim is to investigate how active vision theories can be applied to link oculomotor and perceptual dynamics for the moving plaid.

The experimental design is driven from theoretical work, inspired from premotor theories of attention [START_REF] Rizzolatti | Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention[END_REF][START_REF] Rizzolatti | Spatial attention: Mechanisms and theories[END_REF], linking motor control, attention, and visual perception as three interacting spaces using attractor models.

Building a framework combining theoretical and experimental methods

Eye movements expected: (micro-)pursuits and (micro-)saccades

In Chapter 3, the model for multi-stable perception extended on current bi-stable models based on a particle in an energy potential framework (Moreno-Bote, Rinzel, et al., 2007;Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Knill, et al., 2011;Engbert, Mergenthaler, et al., 2011). Furthermore, the proposed GraFEM model has multi-stable dynamics with respect to attractors in the visual fields. The oculomotor and perceptual models, are similar in dynamics and mechanisms, however, they differ in terms of interpretation and physiology. While the first model remains a large simplification of a highly multi-dimensional neuronal space in which a conscious percept is coded for the visual system, the latter could relate to efference copies in the SC, the FEF or the LIP cortex [START_REF] Keating | Frontal eye field lesions impair predictive and visually-guided pursuit eye movements[END_REF][START_REF] Krauzlis | The control of voluntary eye movements: new perspectives[END_REF]Krauzlis, 2004;Hafed, Goffart, et al., 2009;Astrand et al., 2015;Krauzlis et al., 2017). In the context of enacted and embodied cognition, the markers of perception could be detected and interpreted in the active mechanisms of the observer. Therefore, eye movements could partly reflect the internal state of perception.

The GraFEM model can reproduce pursuit mechanisms by having an attentional attractor, implemented on a gravitational energy field, draw the gaze particle, as described in Chapter 3. If combined with a multi-stable stimulus in which the percepts are related to ambiguous motion decoding, a simple hypothesis drawn from an enacted cognition view (see Appendix A.1) can be formulated such that an attractor in the observable eye movement space corresponds to an attractor in the less accessible space of perception. The main hypothesis in this work can be formulated as follows:

Eye movements dynamics are driven by underlying visual multistability over plausible and competing motion percepts. Thus, eye movements may reflect, at times, the content of perception.

In this framework, the above statement translates in the merging of the interpretations of attractors in the perceptual and the visual spaces. In other words, when one perceives a motion1 , one's gaze dynamics are highly influenced by its corresponding visual attractor, thus leading to oculomotor dynamics correlated to the motion. Hence, the detection of pursuits and micro-pursuits could be linked to the detection of motion perception. As seen in Chapter 3, when a visual attractor becomes more influential with by generating a deeper field or widening its read, changes will be applied to the observed gaze dynamics; one can expect switching between attractors to produce saccades and pursuits, based on the properties of the attractors. Furthermore, pursuits can be associated with catch-up saccades and micro-saccades, as the former precedes the latter in tasks where gaze should remain at the centre of screen and visual motion is displayed. They could be predictors of changes in dynamics (L. C. v. Dam and Ee, 2006b;L. v. Dam and Ee, 2005;[START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF]Rolfs, 2009;Spering and Montagnini, 2011;[START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]Hicheur et al., 2013) and these eye movements would be considered as physiological and active markers of the internal state of perception [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Einhäuser | Using binocular rivalry to tag foreground sounds: Towards an objective visual measure for auditory multistability[END_REF].

Moreover, our hypothesis was that eye movements will be marked by maximal perceptual information at the moment of perceptual reversal, and in the moments that follow up. Based on the description and explanation of the oculomotor model given in Chapter 3, one can predict that a change of oculomotor attractor (e.g., moving in a different direction) brings about new motion for the gaze for an epoch.

Another possibility is that the switch of attractor will generate a saccade as the gaze particle is rushed to the new attractor. With the hypothesis given above, the same applies to perceptual attractors as they are merged with the oculomotor ones. As the perceptual state particle reaches rapidly a new perceptual attractor, the inhibition of competing perception is at its maximum.

Finally, though this approach showcases an association between the oculomotor and the perceptual spaces, it is possible, through experimental manipulation, to observe the influence of one system on the other.

Therefore, the following precise hypotheses can be derived:

1. Percepts: in visual multi-stability, they correspond to stable states of the perceptual system compete for dominance, i.e., perceived motion direction, for instance, and they thus act as perceptual attractors;

2. Ambiguity: perceptual attractors can be manipulated by controlling the stimulus' parameters and thus the dynamics of visual multi-stable perception can be influenced [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF][START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF];

3. Eye movements: markers such as pursuits followed by corrective saccades can be detected to infer perceptual dynamics;

In the context of visual ambiguity leading to multi-stable perception, one can manipulate the visual properties of the stimulus to bias a percept over another, and observe whether the changes in oculomotor dynamics correspond to the associated predictions. Alternatively, it should theoretically be possible to manipulate the oculomotor dynamics and measure how this affects the perceptual dynamics.

Investigating causal links and temporal correlations between the oculomotor and perceptual sub-systems and their respective attractors also raises question regarding organisation and hierarchy.

Overall, the framework proposed and applied here, gives an understanding of visual multi-stability as a multi-system phenomenon, here involving eye movements and perception. Its characterisation will be done by identifying the interactions and dynamics between sub-systems as well as those between the attractors within each sub-system. In this work, the focus is on the oculomotor system and the perceptual system, when facing a physically stationary ambiguous stimulus that leads to perceptual shifts. Among the possible known stimuli from the literature, one particularly fits the criteria needed to implement this framework: the moving plaid.

The multi-stable moving plaid stimulus

Among the variety of multi-stable stimuli studied in psychology and neurosciences (presented in Chapter 1), the moving plaid (Fig. 4.1a), a stimulus consisting of two superimposed gratings with different angular orientation moving in opposite directions presented through an aperture, presents many features that can be exploited in our framework. Here, the motion ambiguity and its link to perception shall be presented, followed by a description of the moving plaid's parameters and finally, empirical results, specific to it, from psycho-physics, neurosciences and eye movement studies are reported.

Motion ambiguity

The ambiguity of the moving plaid stimulus is related to motion perception, segmentation and integration [START_REF] Welch | The perception of moving plaids reveals two motion-processing stages[END_REF][START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004;[START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF][START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF]. Essentially the direction (Hupé and Rubin, 2004) and the depth ordering (Moreno-Bote, [START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF] of the scene cannot be clearly interpreted by the visual system-illustrated in Fig. 4.1b; figure taken from [START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF].

Because the observer cannot see the edges of the gratings' bar move (see Fig. 4.1a), its perceived motion is ambiguous. All the dashed arrows in Fig. 4.1b show the possible interpretations for a real physical motion shown by the continuous arrow (which can also be perceived). This motion ambiguity is further mixed with a depth ordering ambiguity dictated by the gratings' bar transparency properties. Depending on how the parameters are set for the stimulus, it is possible to generate more or less stable states of perception. For example, the grating with higher spatial frequency will be mostly likely perceived as behind, and the same goes for the grating with the smaller duty cycle (Moreno-Bote, [START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF]. If the gratings have different velocities, the faster one will tend to be more perceived as behind too.

The percepts are defined and usually reported by the participants using keys from the keyboard referring to each percept. [START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF].

The bi-stable dynamics of the moving plaid have been deeply studied (castelo2000neural hupe2003dynamics; [START_REF] Stone | Effect of contrast on the perceived direction of a moving plaid[END_REF][START_REF] Stoner | Neural correlates of perceptual motion coherence[END_REF][START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF] and is mostly generated when the relative angle is relatively small (less than 45°or π 4 radians) or with non square wave gratings.

The moving plaid has also been studied for its tri-stability in which the two transparency percepts are present. The third percept is named coherency and is experienced as the fusion of the two gratings into a single grid, typically moving upwards.

Tri-stability also raises questions on hierarchy of competition-more details on hierarchy of percepts in the box below.

More generally its direction is the sum of the motion vectors of the transparency percepts [START_REF] Welch | The perception of moving plaids reveals two motion-processing stages[END_REF][START_REF] Gorea | Directional performances with moving plaids: component-related and plaid-related processing modes coexist[END_REF]. More formally, one can consider the problem to be defined as follows. The perception is a random variable X, that can become one of the three percepts of coherency (c), transparency left (l) and right (r)-i.e., X = x with x ∈ {c, l, r}.

Hypotheses

Is there a hierarchy for percepts? And for spaces?

Supposing that oculomotor and perceptual attractors are tightly linked, in an enactive or embodied approach to cognition context for instance, the perceptual and oculomotor manipulation can provide insights on the relationships between percepts in their respective spaces. The question arises when moving beyond bi-stability to multi-stability. A hierarchy of percepts implies that the emerging percepts do not compete within the same neural network or the same visual decoding process. The question has been of interest in the literature [START_REF] Friston | Predictive coding under the free-energy principle[END_REF][START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF][START_REF] Megumi | Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception[END_REF][START_REF] Hupé | Two paradigms of bistable plaid motion reveal independent mutual inhibition processes[END_REF]. The approach presented in this chapter addresses this issue by measuring asymmetrical relationships between perceptual dynamics-i.e., a percept acts as a systematic transition, or can never be suppressed by stimulus manipulation, etc. Or, on the contrary, if the data collected can be modelled with attractors of identical properties, this would form a body of evidence against a hierarchical view. A more neutral and less biased conceptualisation is to consider that attractors can be considered to influence each other directly, in a unique neural network, with no hierarchical organisation. On the other hand, an indirect relationship would suggest that the percepts can be coded over multiple networks interlinked by relatively reduced interdependent connections. The consequence is that these networks could be seen to synergetic or competitive behaviours. The more isolated and specialised the networks, the more likely they are to generate a hierarchical organisation.

Parameters description

The moving plaid relies on the aperture problem to generate ambiguity [START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF]. The gratings are composed of transparent square waves (Fig. 4.2).

It is composed of two grids, generated as gratings stimuli-the one moving leftwards (G L ) and rightwards (G R ) from the observer's perspective, respectively-with a relative angle θ diff computed from the difference of orientation of these gratings

(θ L , θ R ∈ [-180; 180] 2 in degrees or ∈ [-π; π] 2 in radians) so that θ diff = θ L -θ R .
The luminance of the gratings is set by parameters L L , L R but are eventually modified by manipulating their transparency. The gratings also have levels of transparency (α L , α R ∈ [0; 1] 2 ) that generate further ambiguity on depth ordering of the objects and change the physically observed luminance and contrasts. The perception changes are based on the direction of the structure of perceived movements. The motions of the gratings have velocities (v L , v R ). Other aspects that can be controlled are the spatial frequencies of the grating (f L = 1/λ L , f R = 1/λ R with λ L , λ R the wavelengths) and the associated duty cycles (D L =, D R ). The aperture radius r A can also be manipulated, as well as the fixation circle area's radius r F . Background and aperture luminances can also be controlled with L BG and L A , respectively. The parameters described here, are summarised in Tab. 4.1 and Fig. 4.2 with further information on their values for our experiments.

There are a number of reasons why the moving plaid was chosen as a stimulus to investigate the links between perceptual and oculomotor multi-stability. First, this stimulus has a high number of parameters that can be manipulated. This gives more possibilities to control ambiguity and experimental conditions over more classical complex images such as the rabbit/duck, old/young women or Rubin's Vase (Chapter 1). But it also make parameter space exploration a problem with high complexity due to the high number of possible combinations. Unlike these cited stimuli where the bi-stability seems to occur at higher abstraction level of interpretation (for more details, read the box below), the ambiguity in the moving plaid is generated in visual signals that are simple, straightforward and not dependent on semantic competition, but on motion vectors that can be identified in time and space. The stimulus can be manipulated in subtle fashion, by tweaking the difference of grating orientations (θ diff ) or the transparency of the gratings (α). The moving plaid can also be manipulated to generate multiple states of perception, notably a tri-stability that has been studied [START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF]. Fig. 4.3 shows a schematic view of the percepts presented in [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF].

Where does bi-stable competition occur in the visual system?

The level in visual processing at which the bi-stable competition is thought to occur is at later stages of the visual pathways. This can be explained by the semantic competition of the percepts. In fact, cross-modal studies of bi-stability have shown how giving a cue in audio on a visual rivalry can modulate the perceptual dynamics, thus suggesting that for complex and semantic perceptual objects, the brain accumulates evidence from different sensory inputs and binds them (Y.-C. [START_REF] Chen | Crossmodal constraints on human perceptual awareness: auditory semantic modulation of binocular rivalry[END_REF]. A review of perceptual binding and cross-modal work on multi-stable perception can be read for further details (Schwartz et al., 2012).

The moving plaid has been studied extensively in the context of perceptual bistability [START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF]. [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF] showed that the duration of the first percept can be linked to the relative dominance coherency perception over time, in a first experiment-see comparison between both measures in Fig. 4.4A. Their results were obtained for a bi-stability task, where transparency (t) and coherency (c) percepts were reported. They provided three key observations: (i) over time, the distribution of percept durations are stable, (ii) coherency (c) was systematically the first percept, and (iii) the first percept was considerably longer than the other ones. In fact, in a first experiment, they showed that the first percept's log-duration ln (RTransp) was linearly correlated to the trials' empirical dominance of coherency C/[C + T ]-where C is the sum of durations in which coherency Figure taken from [START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF].

was perceived, without counting the first percept duration, and T the same for the transparency percept.

Based on this method, they showed, in a second experiment, that the difference of angles between the gratings (θ diff ) impacts the dominance of the coherency; the smaller θ diff , the more the transparency percepts dominate (Fig. 4.4B left). Likewise, when manipulating both gratings' velocities (v), they showed the following effect: coherency dominance decreased as velocity increases, though the effect was weaker than for angles (Fig. 4.4B right). Finally they manipulated both duty cycles (D) simultaneously and showed a reinforcement of coherency dominance as duty cycle tends towards 0.5 (Fig. 4.4B bottom). In their third experiment, spatial frequency (f ) and the wave functions-e.g., square, sinusoidal or rectangular wave pattern for the gratings-were investigated as control parameters on perception, and f was reported to impact the intercept of the monotonic decrease function for the rate of coherency dominance along the θ diff variations while the wave shape changed the rate of decrease (Fig. 4.4C).

In a subsequent study, Hupé and Rubin (2004) showed that simultaneous direction changes of the gratings' motion led to percepts' motion direction changes as shown in Fig. 4.5. Furthermore, the relationship between coherency dominance and θ diff was replicated while investigating the global motion orientation changes. The plaid's depth order for transparency was characterised in a series of experiments that focused on disassociating the parameter values for each grating (Moreno-Bote, [START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF]. The authors showed that the grating most likely to appear behind was the one with (i) the higher spatial frequency, (ii) the smaller duty cycle, and (iii) the higher velocity. As depth ordering was studied, the tri-stability of the moving plaid was demonstrated (Moreno-Bote, [START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF]. The authors showed a moving plaid on one hand in binocular rivalry and on the other hand as an ambiguous dynamic figure with two competitions; coherency vs transparency and depth ordering within transparency-e.g., transparency left vs right-and showed that perceptual reversal velocity is maximised at equi-dominance for all three bistability. They also showed that this feature was predictable by double well bi-stable models.

Furthermore, an argument for choosing the moving plaid to study multi-stability with eye-tracking methods is that these percepts are based on perceived motion. And as motion can be tracked by the eyes in the form of pursuit eye movements, the moving plaid provides an interesting setup to investigate both oculomotor and perceptual multi-stability. A review of works on oculomotor studies with the moving plaid stimulus is provided in Appendix A.6.

Finally, the moving plaid stimulus has been studied in the context of energy potential models (Moreno-Bote, [START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF]Moreno-Bote, Knill, et al., 2011), a theoretical approach also used in our modelling work (Chapter 3). The authors also used fraction of time dominance-similar to the percept dominance discussed above-for each percepts, which they interpreted as a measure of "percept strength", to study the dynamics binocular rivalry, plaids (coherency C vs transparency T ) and depth reversals (right transparency r vs left transparency l). They also compared their results to double well energy models and neural competition models with crossinhibition and input normalisation, and showed that equi-dominance-i.e., percept equi-probability, when each percept occur over time as much as the other-led to maximum changes of percepts. Furthermore, the perceptual change rate against dominance results showed symmetry around the equi-dominance point. Although they provide perspectives for generalisation to multi-stability beyond bi-stability, the expected symmetry around the equi-dominance point(s) and the relationship between perceptual switch rate and perceptual dominance is less clear.

Choosing a control parameter: the transparency of gratings

As described at the beginning of this chapter, many parameters can be used to control the properties of the moving plaid stimulus. Thus, it is necessary to isolate a restrained number of parameters that can manipulate perceptual dynamics efficiently, in order to minimise the number of manipulated variables.

The approach undertaken in this work was to focus on the gratings' transparency parameters (α = [α L , α G ]) and to verify that all percepts can be biased in order to control ambiguity levels (Castelo-Branco et al., 2000). Transparency was chosen as it does not affect the geometry of the stimulus, unlike the orientation. It also does not impact the spatio-temporal dynamics and remains subtle.

The luminance and contrast are however affected, though the global mean luminance of the stimulus can be modelled and compensated by augmenting the background luminance for instance-we provide a solution in Section 4.2.2. The transparency parameters are normalised and their values can vary in the following space: α ∈

[0; 1] 2 .
The aim, in the manipulation of a visual parameter of the stimulus, is to contrast conditions in which trials are considered ambiguous and non-ambiguous for the observer. This has been done with Necker cube lattices [START_REF] Ehm | Ambiguous figures and binding: EEG frequency modulations during multistable perception[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]Kornmeier and Bach, 2014) where the authors could contrast:

• endogenous perceptual reversals, in which the observer changes perception through internal cognitive processes and,

• exogenous perceptual reversals, in which changes of perception is induced by controlled experimental manipulation.

The manipulation of the transparency of a grating changes the contrast between gratings and therefore, the probability of seeing that grating's motion. It can be interpreted as a manipulation of percept strength, as is done in binocular rivalry (Levelt, 1966;[START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF], especially for the transparency rivalry l vs. r, as demonstrated in Moreno-Bote, [START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF]. Indeed, as transparency impacts the luminance of each grating, it impacts the strength of the percept.

Hypotheses & experimental protocol designs for perceptual and oculomotor investigation of multi-stability

In Chapter 3, the models proposed for eye movements and perception are based on gravitational energy fields and the phenomena are dependent on attractors' dynamics and noise. A first simple prediction to test is whether perception leaves markers in oculomotor dynamics. This corresponds to having a direct link between spaces of oculomotor programming and perception. A minimal set of predictions can be articulated as follows:

• perceptual changes generate oculomotor markers-as perception changes, the saliency of features related to the new percept will drive attentional focus and thus, the active visual system will generate eye movements linked to the perceived motion (here pursuits or micro-saccades),

• oculomotor dynamics lead to perceptual changes-if gaze dynamics follows a visual attractor, it will accumulate evidence for a percept, and gaze dynamics will precede a perceptual change.

The approach to test these predictions was to design an experiment (presented further in Appendix A.8) in which different conditions are applied:

• ambiguity (A) versus non-ambiguity (A)-manipulate the transparency parameters to bias the level ambiguity so that we maximise ambiguity in one condition and bias a chosen percept in the other; this will allow to test the impact of perceptual changes on eye movements,

• oculomotor control (F ) versus free oculomotor dynamics (F )-vary the oculomotor restriction so as to manipulate eye movements implicitly; this will allow to test the impact of oculomotor dynamics changes on multi-stable perception;

4.1 Hypotheses

• fixation (F ) versus no fixation (F )-vary the oculomotor task so that participants restrict their eye movements or let them be free to follow their percepts, to test the scale of oculomotor influences on ambiguity;

• report (R) versus no report (R)-vary the perceptual task so that participants are asked to report their subjective perception using key press or not, to test the impact of motor action on perception and eye movement dynamics; the goal here is to be able to predict perception when there are no key presses.

Four pilot experiments (in this chapter, only the first two are presented, the latter two are presented in Chapter 5) were carried out to test each condition and hypothesis:

• the Percepts experiment to verify that all three percepts could be identified with transparency manipulation,

• the Ambiguity experiment for ambiguity control using transparency,

• the Eye Movements experiment (Chapter 5) to verify that oculomotor dynamics can be influenced implicitly and,

• the Noisy Motor Events experiment (Chapter 5) to verify that perceptual dynamics can be inferred from oculomotor dynamics.

The diagram Fig. 4.6 shows an overview of the experiments, the studied systems and the observed phenomena.

The methods developed to estimate the maximal level of ambiguity and ambiguity control will be described in details in the Ambiguity experiment. The methods detecting changes in the oculomotor dynamics and thus allowing the inference of perception with eye movement data will be presented in the Eye Movements and Noisy Motor Events experiments. The complete experiment was designed to combine these separate investigation, with the addition of EEG recording for neural correlates exploration-the experimental design is presented in Appendix A.8.

Overall, based on the models proposed in this work (Chapter 3) and our proposed interpretations, a set of hypotheses, defining a relationship between eye movements and visual signal motion, were applied on the multi-stable moving plaid stimulus. This approach enabled the conception and design of an experimental protocol that will provide data that may characterise the relationships between perception and action. 

Note.

In this chapter, only the Percepts and Ambiguity experiments are reported because the analyses for the other experiments did not yield clear results and further investigation is needed. However, some preliminary results from the Eye Movements and Noisy Motor Events experiments are discussed in Chapter 5.

Percepts experiment: identifying the motion percepts

The basis of the empirical investigation was to identify the percepts of the moving plaid by finding recurrent states of perceived motion. For that stimulus, it has been studied in depth as a bi-stability problem, but few studies have investigated its tri-stable features.

Our main hypothesis for this experiment was that three stable states of perceived motion could be controlled, for the first percept, by manipulating the transparency of the gratings.

If the visual motion can be easily characterised because it is controlled by the experiment, the perceived motion should be estimated as an elementary step before further manipulation can be applied.

Publication.

This section's work and results were published in a GRETSI conference paper in 2019, in french: Modélisation de l'ambiguïté d'une multi-stabilité visuelle., Kevin Parisot, Alan Chauvin, Ronald Phlypo, & Steeve Zozor, GRETSI, 2019 [START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF]. The results presented here, however, expand on this publication.

Motivation

The moving plaid stimulus is known to be ambiguous in terms of motion direction perceived [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004). However, as discussed in the previous section, the ambiguity emerging from an aperture problem may lead to an infinite number of directions being interpreted by the visual system [START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF]. This first experiment's aim was to collect data showing that the percepts experienced are stable across participants. Another aspect was to verify that the link to the keys used on the keyboard in the literature could be justified in the case of a tri-stable plaid and subjective reporting task. Finally, a third element was to investigate the transparency parameter manipulation, for each grating.

As introduced in Section 4.1, motion ambiguity arises when the most salient points, based on contrast, of a moving object are made hidden, thus reducing the capacities of the brain to infer direction of movement. In Fig. 4.7, the problem of motion ambiguity and motion direction inference in the context of the moving plaid stimulus is presented in more details. The visual system decodes a perceptual object's motion direction by using that object's higher contrast points' motion to infer overall motion direction. For the bars composing the gratings of the moving plaid stimulus, these are the corners shown by the continuous arrows of Fig. 4.7a, but they remain hidden when the bars are viewed through an aperture, as shown by Fig. 4.7b. In the latter case, the possible inferred directions are based on the wave front, and they are numerous and link direction and velocity. Moreover, when two gratings are overlaid, as shown in Fig. 4.7c, the expected perceived motion directions are dependent on perceptual organisation: if two grids are perceived, each have the most likely direction, namely the direction orthogonal to the wave front, and if one grid is perceived, the perceived motion direction vectors are summed. This is the expected tri-stability with the left (l) and right (r) transparency percepts on one hand, and the coherency (c) percept on the other.

Thus our hypothesis for this experiment is that we can find three regular states in the observers' responses to perceived motion direction that follow the rules listed above. And furthermore, these states' probabilities of being perceived at stimulus onset can be manipulated by the gratings' transparencies as they impact the luminance and contrast of the visual stimulus.

Finally, the first percept of the moving plaid stimulus is known to have particular dynamics [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]. The coherency percept (c) is known to be more likely to be perceived at stimulus onset. However, it cannot dominate when the α of a grating is too low and the grating nearly disappears. Also, Hupé and Rubin (2004) showed that overall motion orientation affects the dominance of coherency in what they called the oblique plaid effect. Moreover, orientation preferences or biases in the visual processing of motion are also known to exist [START_REF] Werkhoven | Effects of element orientation on apparent motion perception[END_REF]. Thus overall motion orientation of the moving plaid should be considered to verify that reported perceived motion are not due to biases.

The transparency of both gratings is controlled by the parameters (α L , α R ), each corresponding to the level of transparency (or alternatively of opacity) for the objects generated using the PsychToolBox in MATLAB (Brainard, 1997). The subscripts refer to the leftward and rightward moving gratings, respectively. When varying their value between 0 and 1, one can make the grating fully transparent and opaque, respectively (see Fig. 4.8). The manipulation of transparency can be defined in the following parameter space: α = (α L , α R ) ∈ [0; 1] 2 . Our hypothesis is the following; it is possible to control and bias each of the three percepts (c, l, r) by varying only the transparency parameters. However, the total luminance and contrast should be maintained constant across the screen of stimulus presentation. Indeed, this is essential as the strength of the visual signal is known to be linked to the perceptual (1) if the system infers two distinct grating objects, the system will infer motion going along the wave front with the lowest velocity as it will be the most present and central vector in the inference problem, and

(2) if the system infers a single uniform grid object, the addition of the two transparent grating vectors will provide a unique displacement vector with higher velocity. dynamics (Levelt, 1966;[START_REF] Levelt | Note on the distribution of dominance times in binocular rivalry[END_REF]. Hence, as the luminance relates directly to the strength of the visual signal and transparency affects the final luminance, the latter is a parameter for perceptual strength manipulation.

A key bias that requires verification is linked to the keys chosen to be used for subjective perceptual reports in the literature. This is linked to the absolute orientation of the stimulus and the motion. In most studies, the configuration used is the following; the gratings are set to move with constant velocities of v L = 1.5 deg.s -1 and v R = -1.5 deg.s -1 along the orthogonal directions of the square wave fronts (see dashed arrows in Fig. 4.7c.). Meanwhile the orientation of each gratings (θ L , θ R ) are usually set between 0°and ±45°in a symmetric fashion about the vertical axis2 (for more details on gratings' orientations, read the box below, in the Methods.

To summarise, in this experiment, the following two hypotheses were tested: (i) the α parameters control the first percept such that a tri-stability can be observed, and (ii) overall motion orientation of the moving plaid setup does not affect the observation of a tristable perception.

Methods

Stimulus

The stimulus, the moving plaid, was generated using the PsychToolBox on MAT-LAB (Brainard, 1997), with a code produced and developed by the author, from scratch. The values of the parameters for the two gratings were kept constant (provided in Tab. 4.1) except for transparency (α) which was the controlled variable and gratings' orientations (θ). To explore the entire α parameter space-in practice, we did not pick very low values for α as this would translate into imperceptible gratings -, their values were selected from a uniform distribution independently for each trial:

α L ∼ U(0.1; 1) α R ∼ U(0.1; 1)
Therefore, some trials had very contrasted gratings, such as the ones shown on the extreme left and right examples of Fig. 4.8.

Luminance and contrast control

For reminders, we refer to luminance L as the amount of light-as a numeric value of the screen's candela output for a surface area (cd.m -2 )-generated by the screen at a spatial location, namely a pixel. Contrast C is the spatial difference between two points.

Because the manipulation of α leads to variations in luminance and given there were no relationship between α L and α R to keep an equilibrium, an algorithm was implemented to compute the total luminance of the stimulus and was used to compensate the manipulation on the gratings by adjusting the luminance of the background (L BG ) and contrast. The area for each structure of the stimulus were computed. Given a pair of α values, we can define the sum of the vector as: S = α L + α R and product of the vector as: P = α L α R . Hence, the global luminance L all was computed as follows:

L all = L BG + D(P × D -S)(L BG -L G )
with L G a vector of the grating mean luminance3 , L BG the luminance value for the background and D the duty cycle of the grating square wave. Contrast (C) was then estimated using the geometrical properties of each object of the stimulus. The various contrast components computed are defined as follows:

C G = D 2 (1 + P -S)L BG + (S -P )L G 2 C LR = (1 -D)D L BG + α L (L G -L BG 2 + L BG + α R (L G -L BG ) 2 C BG = (1 -D) 2 L BG -L all
with C G corresponding to the gratings' contributions, C LR the areas of intersections' contributions and C BG the background contribution. These are all compounded in the following equation.

C all = C G + C LR + C BG (4.1)
The luminance and contrast values (L all , C all ) are then fed into an equalising function with reference values (L ref , C ref ):

Γ = C ref /C all (4.2)
that is applied to the background to compensate the variations on mean stimulus global contrast by manipulating transparency. A luminance offset (Ω) is also obtained with:

Ω = L ref -ΓL all (4.
3)

The new luminance values for the two gratings and the moving plaid background are calculated using the relationship:

L = ΓL + Ω (4.4)
Though the local contrasts varied, the global luminance and contrast generated remained the same in the aperture. The foreground, the fixation disk at the centre, the mouse response circle, the fixation dot and the mouse dot were kept constant.

The other variable manipulated was the orientation offset (θ offset ). The offset was thus also selected from a uniform distribution for each trial:

θ offset ∼ U[-π; π]
Given the changes of absolute orientation due to the variability of the offset value over each trial (see the box below for more details), the use of the keyboard was rendered impracticable to collect fine data on motion direct. Therefore, a circle was added on the periphery of the stimulus (as shown in Fig. 4.9) where the participants had to click to respond.

4.2 Percepts experiment: identifying the motion percepts

Gratings' orientations.

We choose θ L ∈ [0; 45] degrees as orientation shifts applied on the gratings. Therefore, we define relationship of the orientation of the gratings to be symmetric such that:

θ L = -θ R (4.5)
Therefore we can define the gratings' orientation difference θ diff as follows:

θ diff = θ L -θ R = 2 θ L (4.6)
where 0°is set on the vertical axis in the direction of the top of the screen for simplicity of interpretation. The absolute overall orientation of the moving plaid system can be manipulated by computing the relative angles (θ diff ) from the gratings' angles (θ L , θ R ) by adding an arbitrary polar offset:

θ abs = θ diff + θ offset (4.7)
which can also be expressed as follows.

θ L,abs = θ L + θ offset θ R,abs = θ R + θ offset

Procedure

Participants were asked to click with the mouse's left button in the circle area at the location in which they saw the perceived motion going, as soon as they were confident. The experiment was composed of 10 blocks of 50 trials restricted to the first percept, giving us 500 data points per participants in the α space. Participants had up to 5 seconds (s) to respond on their first percept and stimulus presentation ended once the mouse button was pressed. The moving plaid stimulus appeared after an interval in which, only the central fixation area was presented and which lasted between 900 ms and 1300 ms (Fig. 4.9). This interval was established using a random distribution (in seconds):

t fix ∼ U[0.9; 1.3]
The mouse's location on screen was displayed as a dot and reset at the beginning of trial in the centre of the screen (see Fig. 4.9). The experiment was carried out on 11 participants (6 naive, 5 women, mean age 33.27 years old with standard deviation 9.89 years), with 500 trials each. Between blocks, participants were given short breaks to rest. 

Analysis

The mouse key press responses were pre-processed such that their coordinates in the screen plane were recovered and the angular component extracted. The random orientation offset θ offset introduced was then subtracted. A Rayleigh test was carried out and if rejected, a three Von Mises distribution mixture was estimated for the data. The data was then fitted to a mixture of Von Mises distribution mix using an expectation maximisation method (Agostinelli and Lund, 2017; Bee, 2020):

f (x µ, κ) = 3 k=1 β k e κ k cos (x-µ k ) 2πI 0 (κ k ) (4.8)
with I 0 (κ) the modified Bessel function of order 0, µ k the parameter relating to the k distribution's location, κ k the parameter relating to the dispersion of the distribution, and β k ∈ [0; 1] the weight of each Von Mises in the mixture such that k β k = 1. We used the following criteria to stop the algorithm: a maximum of 10 5 iterations or a maximum difference in log-likelihood between successive iterations of 10 -6 . We imposed the algorithm to search for a mixture of three Von Mises distributions as expected from a tri-stable motion perception. We call estimated threshold values the approximate angular direction where two estimated Von Mises function meet.

For group data, we carried statistical tests on the estimated Von Mises mean parameters by grouping them along their orientation with respect to the vertical axis of the screen: left (l), centre (c) and right (r). We conducted a non-parametric approximate (Monte Carlo) Friedman test using a bootstrap method with 10000

4.2 Percepts experiment: identifying the motion percepts permutations. We also computed approximate (Monte Carlo) Wilcoxon signed rank tests for pairwise comparisons (with a decision criterion at α = 0.05/3 = 0.017).

Expectation maximisation algorithm.

We consider a sample of x = (x 1 , ..., x n ) of n independent observations, following a probability density function f (x i , Θ), with Θ its unknown parameters. The aim is to determine the values of Θ by using the maximum log-likelihood given by:

L(x; Θ) = n i=1 ln f (x i , Θ)
Based on the assumption that an unknown data vector z = (z 1 , ..., z n ) exists, we can define the complete log-likelihood as:

L((x, z); Θ) = n i=1 ln f (z i x i , Θ) + ln f (x i , Θ)
and thus,

L(x; Θ) = L((x, z); Θ) - n i=1 ln f (z i x i , Θ)
Then, the expectation maximisation algorithm is an iterative procedure based on the updated completed data with a current parameter set Θ c and can be written as:

E L(x; Θ) Θ c = E L((x, z); Θ) Θ c -E n i=1 ln f (z i x i , Θ) Θ c
The maximisation is operated as follows:

Θ c+1 = arg max Θ E L((x, z); Θ) Θ c
The expectation maximisation algorithm is often used in data classification, machine learning or artificial vision problems, for instance, where latent variables are the labels of the classes.

Results

The mouse tracking responses were analysed in terms of direction of the mouse button press with respect to the centre of screen and stimulus. A participant's response signals are shown as an example in Fig. 4.10 where one can see the trajectories of the mouse over the trial until button press before (Fig. 4.10a) and after (Fig. 4.10b) correction for θ off . Interestingly, the data shows that some paths to response were highly deviated by other motion components perceived.
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Von Mises density estimation

A Rayleigh test of circular uniformity was carried out and the null hypothesis was rejected (T = 0.8436; p < 0.0001). The estimation was done for a mixture of three Von Mises distributions (Fig. 4.11b) and we obtained the following estimated Von Mises parameters4 : (µ 1 = 55.62°; κ 1 = 30.823; β 1 = 0.166), (µ 2 = -0.72°; κ 2 = 40.799; β 2 = 0.666) and (µ 3 = -55.62°; κ 3 = 14.751; β 3 = 0.168). Therefore, the Von Mises mixture fit from the expectation maximisation algorithm provides a good estimation of the data in terms of how many functions are mixed and whether the use of a mixture of Von Mises distributions is justified.

Thresholds between percepts were inferred by using the relative probability density of percepts; i.e., finding the points in Fig. 4.11a where the probability densities are equal for two neighbouring percepts. Here we found the transitions-once shifted by -90°-to be at 25.56°, 142.38°and -22.50°.

A clear result that was expected and is present in this data set, is the dominance of the coherency percept: β 2 = 0.666 which is associated to the Von Mises near 0°( µ = -0.72°) weights more that the other two. Another key result is the measured direction of motion perceived for the transparency percepts. Though the physical motion is horizontal in the implementation, the aperture driven ambiguity impedes any possibility to infer the true direction of motion. However, the visual system interprets this motion's direction at -55.62°, -0.72°and 55.62°, which corresponds to a quasi perpendicular shift from the direction orientations (θ = [-30, 30]) for the transparency percepts, corresponding to the shortest line of motion in Fig. 4.7b. Meanwhile, coherency corresponds to the sum of motion vectors for both transparency percepts (longest arrow in Fig. 4.7c).

Individual & group data

We also looked at individual's data; Von Mises estimated parameters, estimated thresholds between distributions and Rayleigh tests are reported in Tab. 4.2. All participants showed non-uniform responses, based on Rayleigh tests results. However, the Von Mises estimation varied across participants with S10 reporting responses so centred near 0°that fitting three Von Mises distributions with our method led to asymmetric means, and for S11, the algorithm did not find an adequate mixture. Specifically, S11 had responses that were centred around 0°, and did not have other mode. In fact, when doing the estimation for one Von Mises distribution, the algorithm yielded the following estimated parameters: µ = -0.43°; κ = 45.39. S10's data had a similar uni-modal aspect and when applying the estimation for one Von Mises distribution, the estimation yielded the following parameters: µ = -3.42°; κ = 11.42.

When averaging 5 participant's estimated Von Mises parameters (µ r , µ c , µ l correspond to the mode on the right, centre and left of the vertical axis), the group had more variance over the non vertical upwards (r and l): µ r = -49.6 ± 18.4, µ c = -1.37 ± 1.41 and µ l = 65.77±44.54. In fact, we carried out an approximate Friedman Test and found differences (χ 2 = 16; p < 0.0001) when grouping the data according to clusters corresponding to the expected percepts. More specifically, approximate Wilcoxon-Mann-Whitney tests showed differences for all contrasts (Z lr = 3.3607; p < 0.0001, Z cr = 3.3607; p = 0.0002, Z lc = 3.3607; p < 0.0001).

Overall, group data shows, on a small sample (N = 8), three different modes can be estimated, even though some participants showed unexpected responses (S10 and S11). 

Perceived motion with respect to gratings' transparencies

The relationship to the manipulated variables, gratings' transparencies (α = [α L , α R ]), is shown in Fig. 4.12a. The mouse button presses for each trial are represented as coloured dots-with the colour variation giving the angular direction of the perceived motion-in the transparencies (α L , α R ) space. One can observe three clear plateau (i.e., clusters) corresponding to the three percepts. More interestingly, the response orientation data seems to vary little in the α L = α R projection line but greatly in the α L + α R = 1 projection line. Therefore, the perceptual manipulation dynamics may be simplified to reduce this redundancy. Reaction times were homogeneous across the data set, with strictly positive tailed distribution.

In this data set, three clusters were identified for response orientations based on perceived motion directions. This data was projected on a sub-space of α ∈ [0; 1] 2 such that α L + α R = 1, and is presented in Fig. 4.12b (read the box for more details).

The data in proj(α L ) is still organised in three clusters, suggesting that the reduced space can be investigated and manipulated to generate tri-stability. The distance between the clusters in the response orientation dimension shows that motion perception changes and stabilises in another state.
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Data projection.

The projection is computed by finding the closest point on a line L on which a data point b will be projected. In this case, we consider L to be the diagonal in the α space that satisfies α L + α R = 1. Its associated vector, considered is a = (-1, 1) and as such, a shift on b is operated such that b s = b + (-1, 0). To find the projected coordinates, one needs to find the point in span a closest to b. This is computationally achieved by finding the projected p s = bs•a a•a • a. Finally, the projected point is set back into the euclidean space to obtain p = p s -(-1, 0).

Discussion

To summarise, with this experiment:

• We confirmed that the tri-stability in the moving plaid can be linked to motion perception at 55.62°for left transparency (l), -0.72°for coherency (c) and -55.62°for right transparency (r)-Fig. 4.11-which could be fit to a mixture of three Von Mises density functions, thus providing inferred relevant boundaries at 25.56°and -22.50°.

• We showed that the transparency parameters α can generate the three percepts, as the almost entire (α L , α R ) space was uniformly explored (Fig. 4.12a).

Coherency, the more stable percept

This experiment shows that three percepts exist for motion direction perception in the moving plaid. Hence it is tri-stable when manipulating gratings' transparencies. However, individual data showed that two participants (S10 and S11) perceived motion in conditions that explained by a simpler uni-modal fit. Furthermore, estimated threshold were, for some participants (S5, S6, 10) less symmetrical along the vertical axis than for the others. This suggests that the direction of the transparency percepts (r and l) may vary more than for the coherency (c) percept. Indeed, we see similar results when looking at the standard deviations of estimate Von Mises means (µ r , µ c , µ l ) with little variance for the centre direction, corresponding to the coherency percept.

From two alphas to one alpha Fig. 4.11 confirmed the presence of the three percepts and the physical basis. However, the interesting result here is the invariance described along the α L = α R direction in Fig. 4.12. Indeed, the aim of this experiment was to confirm that the tri-stable nature of the percepts are linked to perceived motion. Also, it aimed to investigate whether visual manipulation of the stimulus could be controlled by the transparencies parameters α, in order to impact perception. The results showed that α manipulation could be reduced to one of its component, e.g., α L , while keeping the following relationship in order to remain in a reduced sub-space. The following equation can be used to reduce control parameter exploration:

α L + α R = 1 (4.9)
This means that given a picked α L , we obtain its counterpart with α R = 1 -α L . The practical consequences of these findings imply that it is possible to manipulate the first perception of the multi-stable moving plaid stimulus using α. Studies in the literature have shown that the duration of the first percept can give information about the dynamics on longer presentations [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004;[START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF][START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF]. Therefore, one can expect the results of this experiment to be correlated to the evolution of perceptual dynamics, given changes to the transparencies of the gratings. The generalisation of first percept measures to continuous viewing paradigm and multi-stable perceptual dynamics was further investigated in the Ambiguity experiment, presented in Section 4.3.

Conclusion

To synthesise, this experiment aimed at, (i) finding the physical basis of the perceived motion, and (ii) investigate the manipulation of transparency and its effects on the first percept. Both of these goals were achieved and besides, a redundancy in the relationship between gratings' transparencies and percepts were found, showing a potential for simplification of the control variable in the following experiments.

Mouse tracking was used to obtain data to answer the first point. The stimulus was implemented with luminance and contrast mechanisms to balance viewing conditions across trials, for the second point. The next step was therefore to investigate this simplified relationship between α and perception. Furthermore, this experiment focused on the first percept but many questions remained about its generalisation to longer observation dynamics, which are the main interest in the phenomenon of perceptual multi-stability.

Ambiguity experiment: percept probabilities w.r.t. transparency

The Percepts experiment investigated the first percept but did not give answers about the dynamics over time, in a continuous viewing paradigm.

Hence the question: how are the perceptual dynamics affected by this stimulus manipulation over a continuous viewing of the moving plaid?

The Ambiguity experiment also aimed at estimating the inter-individual differences regarding ambiguity in order to reduce potential variability that could be introduced by this manipulation. The experiment was organised in two phases6 : a first one that reproduces the results of the Percepts experiment using key press, and a second one that uses the phase 1 data to model the observer in order to investigate the generalisation to continuous viewing paradigms. The section is presented following this structure for readability purposes.

Publication.

This section's work and results were published in a GRETSI conference paper in 2019, in french: Modélisation de l'ambiguïté d'une multi-stabilité visuelle., Kevin Parisot, Alan Chauvin, Ronald Phlypo, & Steeve Zozor, GRETSI, 2019 [START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF]. The results presented here, however, expand on this publication.

Investigating the reduced parameter space

In this second experiment, the focus was on the manipulation and modulation of the moving plaid's ambiguity. Though percepts were defined and identified in the Percepts experiment-presented in Section 4.2-the reduction of control parameters was key such that the number of trials and the amount of time needed to complete the experiment could be kept to bearable levels for participants. If the entire gratings' transparency parameter space was to be explored, the experiment would require at least double the time. In the Percepts experiment, three clusters were identified for response orientations based on perceived motion directions.

Perceived state changes have been studied by psycho-physics research [START_REF] Green | Signal detection theory and psychophysics[END_REF][START_REF] Palmer | Vision science: Photons to phenomenology[END_REF]. Logistic functions, also known as Sigmoid functions, have been used for decades to model this type of phenomenon in perceptual studies.

Their general formal expression is as follows:

f (x) = L 1 + e -k(x-x 0 ) (4.10)
where e is the natural logarithm base, x 0 the x-value of the Sigmoid's midpoint, L the curve's maximum value and k the logistic growth rate [START_REF] Verhulst | Correspondance mathématique et physique[END_REF]. However, for the moving plaid, there are not two, but three categories. With some modifications to the Equation (4.10), it is possible to account for that aspect of the problem-this is described in more details in this section's methods. The logistic function models classification of visual input into perceptual objects, and here as possible percepts of tri-stability. In fact, these categories can be recorded using the keys of a computer keyboard to simplify perceptual report and measuring.

Key press report for multi-stable perception.

In the literature [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF], participants are typically asked to report their perception by using keyboard keys, thus applying hard discretisation on the measure7 . However, this enables participants to report perceptual dynamics over continuous viewing of the stimulus, hence enabling multi-stable perception (see Chapter 1 for a detailed review). Methods may vary on the instruction given to participants for key press use: some research teams use the key press as an impulse variation to report perceptual change [START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF] others require the observers to keep the key pressed as long as percepts are visible (Hupé and Rubin, 2004). The latter method is typically used in longer procedures as it keeps participants' motor commands active, thus this approach was considered over the former, which tends to be used in discontinuous viewing paradigms.

The results in the Percepts experiment concerned only the first percept, as a result of observation time constraints imposed by the protocol itself. The first percept is known to showcase special properties and be subject to strong biases, making it more predictable and reliable than the rest of the perceptual discourse [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004;[START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF][START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF][START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF][START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF]. In particular, [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF] showed that the duration of the first percept is a predictor of the empirical probabilities in continuous viewing paradigms (by a logarithmic relationship) and that it is an indicator of idiosyncratic differences and biases. In this experiment, an aim was to validate that the data obtained in short trials in the Percepts experiment, and more specifically the apparent thresholds, could be generalised to the longer viewing dynamics. This meant that, given a set of α values, it is possible to estimate the empirical probability of the percepts p(X = x α). So even if the percepts change in continuous viewing, on the long run, the perceptual durations relative to the observation time reflect the psycho-physical probabilities estimated. This implied developing a psycho-physical observer model, based on the Bayesian framework (see box for more details) and using a set of rules to infer the probabilities of each percept (l, c, r) given a chosen α L . The parameters Θ of a model must then be estimated by a data-driven procedure, and the computation of p(α X, Θ). That procedure should also be subject to a constraint of small duration (a few minutes), as it may be merely a step to estimate the profile of a participant in order to manipulate ambiguity in a larger protocol (presented in Section 4.1).

Building a model of the tri-stable perception relative to the transparency parameter is a powerful tool to gain quantitative insight on the characteristics of a participant. Indeed, the model can then be used to reduce uncontrolled perceptual dynamics variability in the data set that could be introduced by the use of α values to bias for a percept, without accounting for potential individual internal biases. This type of approach is analogous to step wise procedures that estimate an adapted level of difficulty in psycho-physics task [START_REF] Green | Signal detection theory and psychophysics[END_REF][START_REF] Palmer | Vision science: Photons to phenomenology[END_REF]. The aim is therefore to develop a custom procedure to adapt stimulus parameters to inter-individual differences, since the essential variable that requires manipulation is the level of ambiguity. This type of work has been done in psycho-physics also with Bayesian methods, though they often require a large number trials, are not tested on their generalisation to longer viewing times and tasks, and consider two category problems [START_REF] Watson | QUEST: A Bayesian adaptive psychometric method[END_REF][START_REF] Watson | QUEST+: A general multidimensional Bayesian adaptive psychometric method[END_REF].

Aims and hypotheses

To synthesise, the Ambiguity experiment aimed to (i) verify that tri-stability could be obtained using a reduced α space by using key press report, (ii) model the level of ambiguity through probabilistic methods and (iii) investigate the models' extensions and validity in longer observation durations.

The hypothesis driving this work was the following: ambiguity when observing the moving plaid stimulus over continuous viewing paradigm can be estimated and manipulated through probabilities. To investigate the ideas described above, a two phase experimental protocol was designed and carried out, as well as a probabilistic model. First the experimental protocol will be described, followed by the model construction and the methods for parameters' estimation.

Methods

The experiment was composed of two phases that contrasted the continuous and discontinuous observation paradigms. While phase 1 was built upon the Percepts experiment's protocol, with the introduction of key press reporting, phase 2 featured long trials. Furthermore, a probabilistic model was studied to infer maximal ambiguity in the control varibale space.

Psycho-physical observer model

The model is constructed on the measures of percept duration in a continuous viewing trial. For a given α L , constant across a trial, one can measure the durations (sometimes also known as perceptual residence) that participants spent reporting the perception of each percept: t l , t c , t r . These durations can be normalised so that the empirical probability of a percept (w.r.t. total reported perceptual time8 ), as a marginalisation of t: (4.11) This equation can be used for all percepts' empirical probability measurement in a given trial. The model construction will be illustrated with the left transparency percept (l) as a basis as it can be used as an growing function with respect to α L . Thus, the model aims to characterise p(X = l α L ), the probability of observing the grating moving to the left as the closest object, given a set of grating transparency values. A first hypothesis of symmetry was introduced in the model: given the stimulus is symmetric along the vertical axis (α L = 0.5), and given the method for selection α such that it follows α L + α R = 1. Therefore, the opposite left transparency percept can be linked to the right transparency as follows:

p(X = l α L ) = t l t l + t c + t r
p(X = r α L ) = p(X = l 1 -α L ) (4.
12)

The remaining coherency percept can then be inferred by doing the second hypothesis of the percepts being complementary, due to the tri-stability reducing the problem to only three states and them being mutually exclusive [START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF].

The following expression shows the complete inter-dependency of the percepts:

p(X = l α L ) + p(X = c α L ) + p(X = r α L ) = 1 (4.13)
Hence, it is possible to obtain all probabilities starting with the right transparency percept's one and by following the hypotheses that the transparency percepts are symmetric and all are complementary. The left transparency can be modelled using the Sigmoid function, a classic in psychometrics (further justified by the data in the results section when showing p(α X)):

p(X = l α L , Θ) = 1 1 + e -Θ 1 (α L -1 2 )+Θ 2 (4.14)
where Θ = (Θ 1 , Θ 2 ), with Θ 1 can be interpreted as the slope of the Sigmoid curve and Θ 2 the intercept-like parameter. Thus, we can derive the probability functions for the other percepts, with right transparency (r):

p(X = r α L , Θ) = 1 1 + e Θ 1 (α L -1 2 )+Θ 2 (4.15)
and for coherency (c), by combining Equations (4.13) to (4.15):

p(X = c α L , Θ) = e 2Θ 2 -1 1 + 2e Θ 2 cosh Θ 1 (α L -1 2 ) + e 2Θ 2 (4.16) 
For simpler reading, we will use the following notation in the paragraphs below: p l ≡ p(X = l α L , Θ), p c ≡ p(X = c α L , Θ) and p r ≡ p(X = r α L , Θ).

The following constraints apply for the probabilities p(X α L , Θ) ∈ [0; 1] and α L ∈ [0; 1]. Because Equation (4.14) provides a relationship between a percept's probability and transparency, which ultimately affects luminance, we can assume that the Sigmoid function of the probability of left transparency (l) must increase with α L and vice-versa for the right transparency (r). Thus, on can say that, for physical reasons, Θ 1 ≥ 0, since Θ 1 dictates the slope of the psycho-physics function.

Also, we need p c ≥ 0. That is achieved when e 2Θ 2 ≥ 1, i.e., Θ 2 ≥ 0.

Furthermore, p c ≤ 1, and therefore, e At the centre, the model when adding the X = r percept using the hypothesis of symmetry between transparency percepts. On the right, the full model when adding the X = c percept using the hypothesis of complementarity of the 3 percepts.

2Θ 2 -1 ≤ 1 + 2e Θ 2 cosh Θ 1 (α L -1 2 ) + e 2Θ 2 , i.e., e Θ 2 cosh Θ 1 (α L -1 2 ) ≥ -1,

Maximal ambiguity

If we look for the α L such that p l (α L ) = p c (α L ) = p r (α L ) = 1 3 , then, using the symmetry property, having p l (α L ) = p r (α L ) requires that α L = 1 2 . And hence, e Θ 2 = 2, which is possible if and only if Θ 2 = ln 2.

However, having one point of equi-probability is a very restrictive case and, in practice, never truly occurs. Therefore, a solution is to impose only that p c (α L ) = 1 3 , and by symmetry, we will find α ± = (α + , α -) the symmetric points around 1 2 . If we randomly choose between (α + , α -) with probabilities Π + = 1 2 and Π -= 1 2 , then we obtain pc = 1 2 p c (α + ) + 1 2 p c (α -) = 1 3 . And also, pl = 1 2 p l (α

+ ) + 1 2 p l (α -) = 1 2 p l (α + ) + 1 2 p l (1 -α + ) = 1 2 p r (1 -α + ) + 1 2 p r (α + ) = pr
, which means that pl = pr = 1 3 . In this more realistic case, solving for coherency p c (α L ) = 1 3 (Equation (4.16)), we obtain the two points:

α ± = 1 2 ± cosh -1 (e Θ 2 -2e -Θ 2 ) Θ 1 (4.17)
Which exist if, and only if, e Θ 2 -2e -Θ 2 ≥ 1, i.e., Θ 2 ≥ ln 2. Moreover, due to the constraint α ± ∈ [0; 1], we must have cosh -1 (e Θ 2 -2e -Θ 2 )

Θ 1 ≤ 1 2 , which imposes:

Θ 2 ≤ ln cosh Θ 1 2 + cosh Θ 1 2 2 +8 2
. For a visualisation, see Fig. 4.14.

The α ± are thus considered as the maximal ambiguity points α amb such that α ± = α amb = (α + , α -). At such points, we expect to observe tri-stable equiprobability when the (α + , α -) are picked randomly with probabilities Π + = Π -= 1 2 , respectively. 

Θ 1 Θ 2 ln 2 Θ 2 = ln     cosh Θ1 2 + cosh Θ1 2 2 + 8 2    

Participants

The experiment was carried out on 16 participants (12 naive, 11 females, mean age of 27.4 years old with standard deviation of 9.6 years) and participants were given a resting break between the two phases. All the naive participants signed a written form that follow the guidelines of the Declaration of Helsinki.

Stimulus

The stimulus used was the moving plaid, presented without any global orientation offset manipulation, unlike the first experiment (see Section 4.2), i.e., θ offset = 0 over all trails. Thus, the coherency percept was aligned in the vertical axishere considered as 0°, to simplify data interpretation-, with motion of the percept towards the top of the screen. The percepts were associated to the arrow keys on a keyboard, with the left, up and right arrows corresponding to the left transparency (l), coherency (c) and right transparency (r) percepts, respectively. X is the random variable with its space of realisation {c, l, r}, measured by the key presses. The transparency parameters were manipulated with α L ∈ [0; 1] and its counterpart being defined by the relation of Equation (4.9): α L + α R = 1. All the other moving plaid parameters had the same values as in the Percepts experiment (described in Section 4.1 and Section 4.2).

Protocol

Phase 1: short trials. Participants were asked to report their first percept in trials similar to those of the Percepts experiment (see Fig. 4.15A). A jittered fixation interval was displayed before the moving plaid's appearance and participants were asked to keep their eyes fixed on the dot at the screen's centre. Trials ended when participants pressed a response key press using one of the three arrows of the keyboard designated. The transparency parameters of the gratings (α) were randomly selected, using a uniform distribution ranging from 0 to 1:

α L ∼ U[0; 1]
and the symmetric grating's (G R ) transparency was set by α R = 1 -α L . The phase was composed of a 200 trials block, with participants being free to rest their eyes between trials, if needed, but remained seated on a chin rest.

Phase 2: long trials. The second phase was composed of 10 trials that lasted 120 seconds, in which participants were asked to continuously report their perception using the same arrows of the key board as in phase 1, and by maintaining the key pressed while the percepts lasted (see Fig. 4.15B). Participants chose when to launch the trials, giving them the possibility to rest in between, if needed. A jittered fixation interval remained, as in phase 1, and participants were asked to keep their eyes fixed on the dot at the screen's centre. α values were constant over the trial duration and were still chosen using the α L + α R = 1 relationship, but α L was picked using ambiguity parameters inferred using the model. This is detailed further down in the model section.

Parameter estimation

In phase 1, we considered Bayes law (see the box below, Equation (4.24)) to justify the choice of using a Sigmoid function (Equation (4.14)), given the empirical observation can be linked to the theoretical probability law of the percept by f (α L X) ∝ p(X α L ), since here, the uniform sorting meant p(α L ) = 1. f (α L X) is estimated by a mixture of truncated Gaussian distributions described further down. Therefore, at the end of the phase, we estimated the Θ parameters using a maximum likelihood estimator.

To estimate the model's parameters given a data set x = (x 1 , ..., x n ) of n = 200 independent observations from a participant, we used a maximum log-likelihood estimator. The method consists in finding the set of parameters Θ that yield the maximum log-likelihood, given the first percept observations x with their associated picked α L,i for first percept response trials (phase 1: n = 200). Here, we fed 200 observations of (α L,i , x i ) into:

L(x; Θ) = n i=1 ln p(X = x i α L,i , Θ) (4.18) 
Finding the log-likelihood function's (L) maximum then becomes an optimisation problem with:

Θ M L = arg max Θ L(x; Θ) (4.19)
In phase 2, however, as participants had continuous viewing of the stimulus with a constant α L control variable, but provided key press responses reporting the duration of perception, we extracted fractions of dominance as defined by Equation (4.11). Thus, for each trial, three pairs associating α L,i , p(x i α L,i ) were fed to the maximum likelihood estimator to update the model such that α L,i+1 ≈ α amb . We chose the parametric family by the functions for empirical observations to be defined by a multinomial9 function.

p(x α, Θ) = T ! t l !t c !t r ! p(x i = l α L,i , Θ) t l p(x i = c α L,i , Θ) tc p(x i = r α L,i , Θ)
tr (4.20) t l , t c , t r correspond to the fraction of dominance (i.e., the number of realisation, if we assume independence) for each first percept, in phase 2 trials of duration T . Thus, a psycho-physical observer model and an associated method for estimating its parameters were implemented in the protocol. This required that the procedure be divided in a sampling phase for inference, and a testing phase to verify the generalisation.

Maximum likelihood estimation.

The maximum likelihood estimation aims at inferring the parameters that best explain a set of samples, more precisely the joint probability distribution of random variables {y 1 , y 2 , ...}, which are not necessarily independent and identically distributed-in our case, we have sample independence, but they are not identically distributed. A unique vector ϑ = [ϑ 1 , ϑ 2 , ..., ϑ k ] T of parameters that index the probability distribution within a parametric family f (.; ϑ) ϑ ∈ O -where O is the parameter space, a finite-dimensional subset of Euclidean space-is associated with each distribution. One can evaluate the joint density for an observed set of data samples: y = y 1 , y 2 , ..., y n . A real-valued function, called the likelihood function, can then be obtained as:

L n ( θ) = L n (ϑ; y) = f n (y; ϑ) (4.21)
For the maximum likelihood estimation, the aim is to find the values of the model parameters that maximise this likelihood function over the parameter space. Formally, this can be written as:

L n ( θ; y) = sup ϑ∈O L n (ϑ; y) (4.22)

Online use of the model

Here, using the Bayesian framework (read the box below for a reminder), parameter estimation was done at the end of phase 1, with the entire data set of first percept observations x. Each data entry had a unitary weight in the estimation procedure input. But for phase 2, the estimation was carried out using p(X = x α L ), and for one trial, one probability per percept was fed, making the observation weighted by their observed probabilities10 . The model updating was implemented by adding the likelihood with currently estimated parameters at a given trial in phase 2, which provided a prior. The Bayesian update can be expressed as:

p(X = x α L )p(α L ) = f (X = x, α L ) = f (α L X = x)p(X = x) (4.23)
where in phase 1, we read the equation from right to left, and in phase 2, from left to right. We can say that f (α L X = x) ∝ p(X = x α L ) provides a justification for choosing the Sigmoid function family in our model.

Phase 1. First, f (α L X = x) is estimated using a truncated Gaussian kernel, as the probability function for f (α L ) is uniform over [0; 1]. Given that p(X = x) is a normalisation term, we can derive the probability p(X = x α L ).

Phase 2. Now if we take Π(α L ) as a mixture of two Gaussian functions (µ = α ± ; σ = 0.05; approximating a Dirac on α + or α -chosen randomly with Π + = Π -= 1/2) centred each on α + and α -, and chose α L according to this probability function, we can observe the observers' response over time X t = x. Thus, by repeating the process, and by considering the law of large numbers, we obtain an estimation of p(X = x α L ), here by using the faction of dominance of percepts (Equation (4.11)).

Therefore, if we also setup the family of laws as p(X = x α L , Θ) and f (α L X = x, Θ), as well as Π(α L Θ), we obtain a model that can be updated with data from first percept (phase 1) and continuous viewing (phase 2) responses.

Bayesian models.

As a reminder of Chapter 1, Bayes' rule stipulates that

p(Θ|X) = p(X|Θ)p(Θ) p(X) (4.24)
where X is a set of data (i.e., sensory information) and Θ is a set of parameters, here considered as random variables. p(Θ) is the prior which corresponds to the probability that the brain have such a state, independent of the sensory information. p(X|Θ) is the conditional probability, i.e., the sensory evidence, of observing the sensory inputs given the current state of the system, also referred to as the likelihood or sampling distribution. p(X) is the marginal probability that normalises p(Θ|X), the posterior distribution which corresponds to the probability of the brain being in a state, defined by a set of combinations of Θ, given the sensory input.

Analyses

For the analyses listed below, the parameter estimations for the models were done offline, with a nonlinear programming solver from MATLAB which can address multidimensional unconstrained minimisation problems more efficiently than the optimisation process we applied to our original, experiment maximum likelihood estimator. It is based on the simplex method for function minimisation proposed by [START_REF] Nelder | A simplex method for function minimization[END_REF]. In the results, when the data was analysed using the model estimation with this optimisation method, it will be referred to as post-hoc. However, in the experiment, for the online estimation in phase 2, a Newton-Raphson method was used.

Empirical probability density estimation. We represent the histogram of obtained responses for each percepts by estimating a probability density using a density kernel.

Because the data is in a bounded interval [0; 1], it is not possible to do a convolution of Gaussian distributions. However, to obtain these probability densities, we used a mixture of truncated Gaussian laws centred on the samples with weights 1/n for each of the n samples. The only free parameters is the standard deviation of the Gaussian laws σ. Thus, we applied a truncated Gaussian law centred on α L,i with standard deviation σ = 0.2, also defined as

f Gauss (X α L,i , σ = 0.2)/p(X ∈ [0; 1] X) ≈ f Gauss (; α L,i , σ = 0.2)).
The resulting visualisation is analogous to a box histogram.

First percept model cross-validation. The models inferred at the end of phase 1 (short trials) are evaluated using a cross-validation with 50% of the phase 1 data being randomly picked and used for training, and the rest for test. The log-likelihood-Equation (4.18)-was used on both training, testing, and a null hypothesis set (in which percept labels were randomly sorted). Approximate Wilcoxon-Mann-Whitney tests using a bootstrap method with 10000 permutations was carried out using the coin package on R [START_REF] Hothorn | Implementing a class of permutation tests: The coin package[END_REF]. This test was chosen as it is non-parametric (the log-likelihood cannot be positive) and it allows to compare two samples' medians for nominal categories with non-normal quantitative measures. Thus, the estimation of the model's parameters can be validated if the median log-likelihood value for the train and test data sets are closer to 0 than the null hypothesis (H0).

First percept model to continuous viewing model cross-validation.

For the analysis of continuous viewing perceptual durations, all epochs with no key pressed, two or more keys pressed were removed. Thus, empirical probabilities for percepts were computed based on Equation (4.11).

To validate whether the model was relevant in phase 2 trials, when stimulus observation was long and continuous, the Kullback-Leibler divergence (D KL ) between theoretical probabilities issued by the model p(X α = [ αL , αR ]; Θ) and the observed empirical probabilities p(X α = [ αL , αR ]; Θ) was computed. The divergence between the two distributions can be expressed as:

D KL = - 3 x=1 p(x i α) ln p(x i α; Θ) p(x i α) (4.25)
The divergence was computed for the each subject's phase 2 trial values, and averaged for group comparisons. For the null hypothesis (H0), all 6 combinations of percept label permutation for p(x i α; Θ) were used for each trial. Approximate Wilcoxon-Mann-Whitney tests using a bootstrap method with 10 5 permutations was carried out using the coin package on R. This test was chosen as it is non-parametric (the divergence cannot be negative) and it allows to compare two samples' medians for nominal categories with non-normal quantitative measures. Hence, to validate the model, the computed Kullback-Leibler divergence would need be lower than for the null hypoethsis (H0).

Continuous viewing trials. We used the empirical probabilities to compute the models' entropy over trials, in phase 2, to investigate the stability and convergence of the method, towards a maximally ambiguous perceptual phenomenon. Shannon entropy was computed using the following classic form:

H = - 3 i=1 p(X = x i α) ln p(X = x i α) (4.26)
with H the computed entropy, x i the percept's observations for the i th percept out of 3. If equi-probability over the 10 long trials was to be achieved, participants would showcase behaviours that would generate empirical probabilities such that the entropy H = -ln (3) = 1.10, the maximal entropy for a three state system such as in tri-stable perception. Mean entropy values and standard deviations are reported in a table in the results section and provide a description of individual behaviours and their models' relative ambiguity control.

Results

Short trial data description

Empirical probability were estimated based on the continuous histogram method using Gaussian kernels above. The data was fed into the model to infer a set of Θ parameter for an observer, and probability density function are displayed. Fig. 4.16 shows an example of such computation for participant S1, with dashed line representing the empirical density function. Data points collected in phase 1 are displayed below. Qualitatively, the sigmoidal model densities, issued by the simplex method maximum log-likelihood estimation, proposes an interesting fit to the empirical data-note that the Gaussian mixture, as it is constructed is biased towards the centre of the α L space. Here, the empirical density function suggested that p(α L X) = p(X α L )p(α L ) and thus p(α L X) ∝ p(X α L ). It further provides clear threshold values, with rapid drops. In fact, this differed from the Newton-Raphson optimisation algorithm used and report in Parisot, Chauvin, Phlypo, et al.

(2019)-a comparison is given below in Tab. 4.3. In this older work, the optimisation algorithm was more susceptible to remain stuck in a local log-likelihood maximum and thus, the parameters estimated showed less steep Sigmoid slopes (Θ 1 ).

Fig. 4.17 shows empirical and theoretical densities for all participants and Tab. 4.3 provides maximal ambiguity points α amb associated to the parameters estimated using the post-hoc and the original methods. S1 only had complex solutions for

N = 16

Post-hoc Post-hoc [START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF][START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF] Participant α amb , while S19's parameters do not respect the constraints described above in the methods section. Overall, the post-hoc method finds solutions with much higher Θ 1 values, meaning that the slopes in the probabilistic models are steeper, and that the optimisation algorithm finds higher log-likelihood maximums11 .

α amb = (α + , α -) Θ = (Θ 1 , Θ 2 ) α amb = (α + , α -) Θ = (Θ 1 , Θ 2 ) S1 ∅ (

Cross-validation of first percept models

Cross-validation, for models based on phase 1 data, was done by splitting the 200 first percept responses in two equal parts, with data points being selected randomly in the set. Log-likelihood values were computed on training, testing and randomly mixed labels (H0) sets and are reported in Fig. 4.18a. Approximate Wilcoxon-Mann-Whitney tests showed no difference between train and test data sets over all participants (Z = -1.4707; p = 0.1514), while differences between train and H0 were significant (Z = -3.5311; p < 0.0001). Differences between test and H0 were also significant (Z = -3.5932; p < 0.0001). These results validate the stability of the models for phase 1 data sets. 

Cross-validation of model generalisation to continuous viewing

An aim of the experiment was to investigate whether first percept data, when used to infer the parameters of a probabilistic model, would generalise to longer viewing conditions. To verify whether this worked in our data set, we computed the Kullback-Leibler divergence on observed data in phase 2 and on model distribution inferred on phase 1 data, using the post-hoc optimisation method. We compared these values to divergence when the model probabilities were randomly shuffled; a null hypothesis condition. An approximate Wilcoxon-Mann-Whitney test was carried out to verify if group medians differed and revealed a significant difference between data and H0 (Z = -3.6228; p < 0.0001). The data is shown in Fig. 4.18b.

Continuous viewing data description

Entropy was computed on the empirical probabilities for percepts in the phase 2 data set. The α values were selected based on the models' probabilities and the derived maximal ambiguity points α amb , using a truncated Gaussian distribution centred on the latter. The computed entropy for each participants provides a quantitative measure of the distance to equi-probability, where H = ln (3) = 1.1 can be expected, and are reported in Tab. 4.4. Group mean entropy was at 0.53 with mean standard deviation at 0.21. The data shows that the procedure led to very different perceptual dynamics across the observer population. S11 and S19 displayed bi-stable behaviour and remained stuck as far from equi-probable tri-stability as possible. Moreover, the empirical mean entropy derivative is reported in Tab. 4.4, giving information on the evolution of entropy over phase 2. Most participants had positive slopes and finished with higher entropy than at the start of the phase.

Discussion

To summarise, in this experiment:

• We showed that the manipulation of ambiguity and tri-stability can be achieved efficiently by using the α L + α R = 1 sub-space of the α by replicating the results from the Percepts experiment with a key press method.

• We proposed a probabilistic model to account for individual differences and infer the points of maximal ambiguity in the α L space. The model parameters were estimated using maximum likelihood and cross-validation tests for both phase 1 and phase 2 data sets provided evidence of stability and coherency.
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Chapter 4 Multi-stability: manipulating perceptual ambiguity reported. For reference, the maximal entropy expected for a tri-stable system is ln (3) = 1.1. The mean entropy derivative over phase 2 trials is also reported under µ(∆H) and mean perceptual fraction of dominance for l, c and r are reported under µ(p l ), µ(p c ) and µ(p r ).

• We investigated the relationship between first percept (short trials) and continuous viewing (long trials) dynamics, and we provided quantified results of observers' and models' stability in the continuous multi-stable perception.

Results interpretation

In this Ambiguity experiment, the manipulation of the moving plaid's transparencies α to generate a tri-stable perceptual phenomenon, as described in the Percepts experiment, was replicated with the phase 1 short trial protocol, using key press as a reporting method. In fact, the manipulation of the α parameters was simplified to the manipulation one of the gratings' transparency, and deriving the other grating's one by symmetry using: α L + α R = 1. Moreover, a psycho-physical observer model was proposed to account for and quantify observers' perception in a Bayesian framework, and to estimate the point of maximal ambiguity in the transparency space. More precisely, this work shows that when using first percept responses (phase 1), which can be obtained in a quick procedure with short trials, one can infer and estimate observers' parameters that are consistent with the continuous viewing of a multistable stimulus (phase 2). This was validated by two cross-validation analyses. This is a complementary result to previous reports that the first percept's duration was a predictor of the tri-stable percepts' empirical probabilities in a continuous viewing trial [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]. This result opens perspectives for the calibration of ambiguity in a tri-stable stimulus like the moving plaid. It also raises questions on how to choose the next control variables' values when the model is running online and what are its limitations. These points are discussed below.

Stimulus calibration

The diversity in the individuals' profiles in the collected data set solidify the need for quantitative tools to adapt the stimulus in order to reduce inter-individual variance. Finding a set of stimulus parameters generating true ambiguity for all participants is not trivial as inter-individual biases exist, especially in a tri-stable example like the moving plaid used here. In a bi-stable example, one can envision taking central values (α = 0.5), however, here, given the histograms presented in Fig. 4.17, one can see that this choice would heavily bias the likelihood of observing coherency percept reports. Therefore, given that the estimation is relatively stable (see Tab. 4.4) and that the 200 short trials of phase 1 took approximately 10 minutes to be completed, it is possible to use phase 1 as a calibration procedure. This calibration can optimise the parameters associated with ambiguity manipulation in 4.3 Ambiguity experiment: percept probabilities w.r.t. transparency order to generate ambiguous and non-ambiguous trials (as presented in Section 4.1).

The post-hoc method also shows much better performances than the method used for this work in [START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF] with higher log-likelihood values, and efficient exploration of the parameter space, given the data. It is noteworthy that results remained consistent across the use of both methods.

Limitations

This calibration is dependent on the model proposed here, which, as shown by Tab. 4.4 is not systematically adaptable to all observers, though it fits a large majority of profiles. However, the procedure could be used to select participants that could be confidently manipulated with regards to visual ambiguity in the moving plaid stimulus. Indeed, participants showing contradictory responses would disqualify in the calibration procedure, in an analogous manner to those that cannot be calibrated with the eye-tracker, as their ambiguity manipulation would not be guaranteed.

For such a procedure, it is however important to make the procedure short and efficient to estimate a participant's profile. The model proposed here is specific to the phenomenon and characteristics of the multi-stable moving plaid. Further work could be carried out on varying the formal description of the probability function with less constraints and a higher potential for generalisation. It is also dependent on the optimisation algorithm used to estimate the maximum likelihood and infer the parameters for an observer.

A part of this work which has not received sufficient attention and needs addressing is around the definition of the model with respect to time. This would provide a function that can be used to link in a balanced fashion the data from first percept and continuous viewing trials. Here, however, the weights between the two data sets is highly unequal as the former has 200 data points of unitary weight while the latter is only composed of 30 data points, which are weighted by the empirical probabilities.

A key perspective for improvement would consist in finding a relationship that can set a weight on first percept observation, for instance, by taking into account reaction time. However, it is unsure how reaction may relate to perceptual time and further studies need to investigate this relationship. An alternative path would be to consider a method to weight empirical probabilities based on a sliding window over time. But here, a potential obstacle is the risk of turning first percept responses as impulse samples while the rest becomes large masses over time. Indeed, this is due to the difference of use of the key press for perceptual report sampling, and solving such an issue may offer a bridge between continuous and discontinuous viewing paradigms.

Adaptive experimental designs

The online use of the model was done here to verify whether observers would tend towards equi-probability if phase 2 trial α were sampled near the α amb values inferred. However, the arbitrary choice of using a truncated Gaussian distribution centred on one of the randomly chosen α amb could be further investigated. If the model is fed live data, and that an ambiguous and non-ambiguous contrast exist in a protocol, it may be useful to sample the non-ambiguous α couple in a way such that it maximises the information fed into the model by the Bayesian procedure. For instance, looking at the Sigmoid's inflexion points might provide more information to maximum likelihood estimator and reduce sampling redundancy.

Adaptive experimental approaches have been developed over the past decades, notably in tasks where the difficulty level needs to be adapted for each participants. Classical approaches use stair case procedures in which the controlled parameter is gradually increased with regards to a performance measure. However, this has some inconveniences; stair case procedures are, for instance, sensitive to hysteresis [START_REF] Green | Signal detection theory and psychophysics[END_REF][START_REF] Treutwein | Adaptive psychophysical procedures[END_REF][START_REF] García-Pérez | Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties[END_REF]. Other methods (QUEST or ZEST) have been developed, using the Bayesian framework for instance, to estimate the internal threshold of a participants [START_REF] Watson | QUEST: A Bayesian adaptive psychometric method[END_REF][START_REF] Watson | QUEST+: A general multidimensional Bayesian adaptive psychometric method[END_REF][START_REF] Bak | Adaptive stimulus selection for multialternative psychometric functions with lapses[END_REF]. Though they are mostly conceived for 2-alternatives forced choice (2AFC), they show versatility to many psychology problems.

The more recent works by [START_REF] Bak | Adaptive stimulus selection for multialternative psychometric functions with lapses[END_REF] is, to the author's knowledge, a first attempt to extend the problem to more than two categories. The fact that this work was published after the Ambiguity experiment was designed and carried out is unfortunate. Their approach uses an information theory criterion computed by Markov-chain Monte Carlo (MCMC) and combined with a Bayesian inference of a psycho-metric observer model. Though the simulated tasks are based on the 2AFC paradigm, they report and show that considering omissions as a third type of response is important to estimate the model properly. This work shows similarities to the methods presented here. But the approach reported in [START_REF] Bak | Adaptive stimulus selection for multialternative psychometric functions with lapses[END_REF] does not relate to specific stimulus parameters, but rather to performance or detection tasks from psycho-physics. Adaptive experiments still need to address limitations around the speed at which it adapts to an observer leaving a stationary behaviour, in which case, the model has over fitted the data and may be stuck in a local minimum of its parameter space, unable to account for unexpected new behaviour. In Bayesian framework, this is manifested by the weight of prior distribution on the learning and model updating process.

Conclusion

In this experiment, a method for adapting the ambiguity control parameter α to individual participants was presented. It relies on implementing a probabilistic pscyho-physical observer model for tri-stability. Inferring its parameters was carried out using the maximum likelihood approach. The methods were tested in an experimental protocol that featured two phases; the first with many short trials for an initial estimation, the second with long trials to test and update online the estimation. Results showed that the estimation was effective within a short time, and that it remained robust to longer trial generalisation. However, many features could be enhanced as discussed, allowing to account for participants with incoherent behaviours, optimising the procedure and the possibility to generalise the methods.

Overall, the experiment shows satisfactory results to select participants and calibrate the stimulus to reduce inter-individual variability.

This work provides results on the moving plaids' multi-stability: it is possible to manipulate ambiguity, in a quantitative and individual manner, based on observers' first percept's choice responses.

Conclusion

The work presented in this chapter provide further empirical insight on the moving plaid stimulus' multi-stable dynamics. In particular, the role of the gratings' transparency parameters was investigated. The Percepts experiment described the ground truth of a tri-stable perception being linked to motion perception. The Ambiguity experiment showed that this tri-stability can be manipulated and controlled in a sub-space of the transparency parameters. Furthermore, the development of a probabilistic model provides quantified inferred information on the maximal ambiguity level for each observer, making ambiguity control possible with the moving plaid. These results can be used to build up more complex experiments, in order to investigate the relationship between oculomotor and perceptual systems when facing ambiguous stimulation.

Conclusion

Multi-stability as a probe of synergy between action and perception?

5

" Perception is never passive. We are not only receivers of the world; we also actively produce it.

There is a hallucinatory quality to all perception, and illusions are easy to create.

-Siri Hustvedt "The Summer Without Men" 2011.

This chapter reflects on the works presented in this thesis. Its aim is to synthesise and provide perspectives. Data and analyses from partially completed experiments, will be presented to illustrate and provide insights on this thesis' conclusions. In Chapter 2, we reported the systematic measurement of FEM that we propose to call micro-pursuits. The task in which micro-pursuit behaviour emerged was linked to the bi-stable perception of an ambiguous Necker cube. This prompted the investigation of oculomotor and perceptual multi-stable models, presented in Chapter 3.

Hypotheses were derived from this theoretical framework in order to investigate multi-stability in perception and eye movement in experimental work in the moving plaid stimulus. Results on the manipulation of ambiguity for the moving plaid were reported in Chapter 4. However, the investigation of oculomotor manipulation, in the context of moving plaid multi-stability, remains incomplete and is discussed in the following pages. Finally, new paths for investigation are proposed, inviting the reader to think beyond multi-stability and consider it as a complex system's regime of behaviours. 
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Synthesis of contributions

The following paragraphs summarise the results presented in the previous chapters.

Micro-pursuits reveal bi-stability in the oculomotor dynamics

Human vision and eye movements are intrinsically linked as the latter change the visual input projected on the retina. Though our visual representation is stable, the eyes never truly stay still and generate small amplitude FEM that can be interesting markers of cognitive states. Research in the field of FEM has been extensive on microsaccades, but less is known about drift and slow movements. When searching for micro-saccades, our data showed the presence of a secondary sequence, contrasting with the well-known main sequence exhibited by micro-saccades. Detected microsaccades that belonged to this secondary sequence showed lower peak velocities as well as higher similarity with the target, which has led us to classify these movements as micro-pursuits.

Micro-pursuits are proposed as a type of FEM occurring at small amplitude, within a fixation, as the gaze follows a target while being constrained to a fixation, for instance. Drift and slow movements tend to be considered as independent from visual stimulation, since larger eye movements are typically used to explore the visual field. In addition, the gaze showed high similarity with the target trajectory, measured through maximally projected correlation. Individual and group analyses gave significant results both in an implicit (Necker) and an explicit (Cross) pursuit task experiment, but not in a secondary implicit (Square) pursuit task experiment. The inter-experiment analysis results suggest that the manipulation of task, stimulus target motion, and the complexity of the stimulus may play a role in the generation of micro-pursuits.

Micro-pursuit here is presented as a class of fixation, but further research is needed to identify the physical properties and distinguish it from other FEM. Moreover, this work calls for further investigation on the functional role of micro-pursuits, and how the oculomotor and perceptual systems interact during such movements.

Indeed, the data suggested a link between perceptual and oculomotor multi-stability as micro-pursuits were observed in an ambiguous bi-stable perception condition (Necker) and an explicit pursuit task (Cross), but not in an implicit pursuit task (Square). We interpreted this result as a sign of competition between parts of the stimulus to attend to: the fixation cross or the target object (Necker cube or square).

Micro-pursuits.

The work is presented in detail in Chapter 2 and has been accepted for publication to the Journal of Vision, as an article under the title Micro-pursuit: a class of fixational eye movements correlating with smooth, predictable, small-scale target trajectories, Kevin Parisot, Steeve Zozor, Anne Guérin-Dugué, Ronald Phlypo, & Alan Chauvin, and is excepted to be published shortly after the time of writing this manuscript.

Energy field attractors reproduce oculomotor and perceptual dynamics

Eye movements and multi-stable perception have been further understood and deciphered with the study of predictive models capable of producing analogous behaviours. Models, however, offer a key advantage: they can be manipulated and understood in fine details through theoretical studies and numerical simulations.

We proposed a model based on gravitational energy potentials to generate eye movements. Perceptual tri-stability was studied in order to investigate the generalisation results found for bi-stability and how they fit multi-stability. The proposed framework provides tools and results towards the construction of formal models that bind perception and action.

The models gave explanations on how the oculomotor system might produce micro-pursuits and other eye movements. It also provided a framework in which active vision processes can be generated, for the moving plaid stimulus for instance, and thus, predictions could be made to drive the experimental investigation.

Models were based on the same framework, gravitational energy potential fields, and were used to generate and study both eye movement and perceptual dynamics. Differences in the perceptual durations generated by bi-stable and tri-stable models were described, suggesting that noise plays a crucial role in model stability, but the number of attractors may also explain rapidly changing behaviours. An interpretation worth researching lays in considering the context of multi-stability and how this regime might interact with other stability regimes (e.g., mono-stability, meta-stability, instability).
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Gravitational potential energy models.

The predictive models are presented in detail in Chapter 3 and served to design the experiments in Chapter 4. However, this work could be extended by inferring parameters given data for both models, and combining both oculomotor and perceptual models into a fused model of active perception.

Ambiguity manipulation of a tri-stable moving plaid

The ideas and design were driven from the models proposed in Chapter 3, and aimed to investigate the multi-stable dynamics of perception with the moving plaid stimulus on one hand, and the dynamics of the oculomotor system on the other. The emergence of multi-stability is the result of combining a stimulus with specific signal properties and contradictory inferences for the visual system. It is possible to stabilise or bias these perceptions by changing the stimulus through expectations or task manipulation or also by modifying the oculomotor dynamics. The perceptual and oculomotor systems being interlinked, acting on one of them has impact on the other.

We provided further empirical insight on the moving plaid stimulus' multi-stable dynamics. In particular, the role of the gratings' transparency parameters was investigated.

The Percepts experiment described the observer's perceived direction of a tri-stable perception being linked to motion perception. The Ambiguity experiment showed that this tri-stability can be manipulated and controlled in a sub-space of the transparency parameters. Furthermore, the development of a probabilistic model provides quantified inferred information on the maximal ambiguity level for each observer by controlling gratings' transparencies simultaneously.

These results can be used to build up more complex experiments, in order to investigate the relationship between oculomotor and perceptual systems when facing ambiguous stimulation. The aim was to reach a situation where it is possible to show that motor control is a physiological marker of perceptual content, in a no-report paradigm.

However methods to control oculomotor dynamics need further investigation and validation. Some have been explored and are presented in the following section.

Synthesis of contributions

Multi-stable moving plaid experiments.

This work is presented in detail in Chapter 4 and some of the results were published in a GRETSI conference paper in 2019, in french: Modélisation de l'ambiguïté d'une multi-stabilité visuelle., Kevin Parisot, Alan Chauvin, Ronald Phlypo, & Steeve Zozor, GRETSI, 2019[START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF]. The results presented there, however, expand on this publication.

Influencing gaze control with random dot kinematograms

Eye Movements experiment.

In this section, we cover our attempts to manipulate the oculomotor behaviour of the observers by manipulating the moving plaid stimulus. Some results are presented in Appendix B.2, though they remain preliminary. They may still provide some insights for the reader. Here, only a summary is provided.

The Eye Movements experiment focused on the central disk of the stimulus that is used to generate the gaze fixation point. Given our understanding of the GraFEM model (see Chapter 3) and if the attractors in the perceptual and oculomotor spaces are merged as hypothesised in Section 4.1, one can expect the attractors to move in direction of the motion perceived, as identified in the Percepts experiment (Section 4.2). We know from our simulations on GraFEM that the motion of an attractor can lead to the generation of spatio-temporal patterns for the gaze signals that can be interpreted and classified as pursuits or saccades. It is however possible that a perceptual attractor is not strong enough, i.e., its parameters make it relatively shallow and wide enough to detach the gaze particle from the attractor linked to the fixation point. Competition between attractors is key in driving the dynamics of the model, therefore the predictions will depend on their relative strength. The aim in this experiment was to test whether a visual stimulus can be added to the moving plaid, so that the strength of attraction of the motion perceived are manipulated in an excitatory or inhibitory way.

One method to induce oculomotor biases was to use a RDK at the centre of the stimulus. Our aim was to establish a coherence ratio that would generate implicit micro-pursuit movements in the same direction as the signal and corrective microsaccades in the opposite direction.

Hypothesis: there exist some interaction between the direction of induced eye movements by a RDK, and the moving plaid percepts' durations, i.e., one can influence percept durations by manipulating the RDK. If true, one could then deduce that a bottom-up process explains the perceptual dynamic, partially. If no interactions are measured, one can only conclude that eye movements induced by the RDK cannot influence percepts' durations.

The relationship was not expected to be necessarily symmetrical; indeed inhibition should be less powerful as excitation.

Influencing gaze control with random dot kinematograms

A RDK is a set of points that have random movements in a defined area. Different implementations exist [START_REF] Scase | What is noise for the motion system?[END_REF] with the three main noise methods combined with two dot signal selection methods (see Fig. 5.1).

• Random position-when a dot is selected as noise, its next position will be chosen using a random distribution-mostly a uniform distribution over an area, but not necessarily-and it will be relocated at that position at the next iteration.

• Random walk-when a dot is selected as noise, it will follow a random walk, also known as Brownian motion [START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF], in which the dot's direction and amplitude are randomly picked over each iteration.

• Random direction-when a dot is selected as noise, it will have a fixed motion direction which is drawn once for its entire life time, at birth.

• Same-when a dot is selected as noise, it remains so for its entire life time.

• Different-dots are selected as noise at each iteration.

These methods generate different spatio-temporal dynamics, visually and perceptively, and the coherence ratio-e.g., the percentage of dots that are associated to the signal-affects visual decoding with varying degrees of efficacy [START_REF] Scase | What is noise for the motion system?[END_REF][START_REF] Pilly | What a difference a parameter makes: A psychophysical comparison of random dot motion algorithms[END_REF].

In other words, the threshold for the correct detection of the signal's direction varies across RDK methods. Moreover, it has been reported that the smooth pursuit latency and early eye acceleration are not affected by the type of RDK, but late eye acceleration, pursuit gain and perceived velocity were dependent on RDK type (Schütz, D. I. Braun, Movshon, et al., 2010). Perception and pursuit performance also showed correlated dynamics. The authors interpreted their results as the pursuit system showing a capacity to integrate across directions of the RDK's signal, but not velocity.

The Eye Movements experiment used a RDK to verify whether oculomotor dynamics could be manipulated over a continuous observation trial of a multi-stable moving plaid stimulus. The experiment explored the combination of RDK with and without the moving plaid, a variety of orientations for the RDK signal direction, different proportions of RDK dots being attributed to the manipulated signal, and control trials without RDK and full noise RDK. The experiment, for now, does not find empirical evidence that a RDK based on same random direction, 10% or 20% of dots moving in a coherent direction and presented in the gaze fixation circle area at the centre of screen, and in the fovea, will influence oculomotor dynamics. In fact, when presented with the moving plaid, these dynamics seemed to be dominated by the multi-stable perceptual changes. In other words, the use of RDK was not effective enough for oculomotor modulation, such that excitatory and inhibitory behaviours' impact on perceptual dynamics may be tested in our Gaze-EEG experiment (more details on the design in Appendix A.8). However, the algorithm developed to analyse gaze data, in the context of RDK or moving plaid influences, can be used for further investigation of the impact of eye movements in multi-stable perception.

To provide answers to the hypothesis given above, we would need to carry another version of this experiment with less RDK orientation conditions (e.g., a minimum of three directions: -60°, 0°, and 60°) and with at least two conditions for RDK amplitude values (e.g., presence vs absence of RDK). Based on this initial exploration, the size, or spatial location, of the RDK should also be investigated: pursuit movement, OKN, or OFR eye movements are best generated when affecting peripheral vision, rather than central vision, as is the case in the presented setup. Disentangling eye movements produced by the moving plaids from an additional oculomotor manipulation is not a trivial task, from an experimental perspective. It is however crucial to strike a controlled balance between the percepts and a oculomotor manipulation, so as to investigate the influence of the latter on the former.

5.2

Influencing gaze control with random dot kinematograms

Eye movements as objective markers in ambiguous perception

Noisy Motor Events experiment.

In this section, we cover a first attempt at implementing a no-report paradigm for the experimental investigation of the moving plaid. This work was carried out in the context of Eva April's internship, in which she carried out most of the experimental work, which had to be finished in a reduced time frame. This is why, some of the methods developed in Chapter 4 (e.g., the probabilistic observer model) were not applied in the protocol. The presented analyses were carried out after the internship. The results presented here remain preliminary but may provide insights for the reader.

An experiment to test the blind condition, proposed in Section 4.1, was carried out to verify that perceptual dynamics could be inferred based on indirect, objective, and physiological markers. Few attempts have managed to achieve this feature, and dependency on subjective report remains a large scientific gap in the study of multistable perception. The aim of this experiment was to show that perceptual dynamics could be inferred from gaze signals. We contrasted trials in which participants were asked to report their perception, and those in which they simply had to observe the moving plaid stimulus. Furthermore, we evaluated whether removing the gaze fixation task constraint would enable to have more powerful effects in the oculomotor signals, or not. An algorithm to detect micro-pursuits and pursuits tracking moving percepts is presented and was used to estimate perceptual epochs in our data.

Motivation

Bi-stability, eye movements and no-reporting literature review

Neural correlates of consciousness.

The no-reporting research field is related to research for NCC, in which the former is often a methodological basis for the investigation of the latter. A short review of this growing area of cognitive research is provided in Appendix A.7.

Attempts on inferring perceptual dynamics based on pupil dynamics have been reported [START_REF] Einhäuser | Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry[END_REF] though they have also been contested [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF]. A more successful approach has been based on exploiting the OKN associated with motion perceived on a large part of the visual field in a binocular rivalry setting [START_REF] Naber | Perceptual rivalry: reflexes reveal the gradual nature of visual awareness[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. The motion of gaze is directly associated to the illusory percept (Madelain and Krauzlis, 2003) and is used to interpret the oculomotor data to estimate the perceptual temporal series (see Fig. 5.2, taken from [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]).

Key press and motor programming

As presented briefly in Chapter 1, multi-stable perception relies almost entirely on key press subjective report to obtain perceptual dynamics. This is specially true for the moving plaid stimulus [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]Hupé and Rubin, 2004;[START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF][START_REF] Moreno-Bote | Bi-stable depth ordering of superimposed moving gratings[END_REF][START_REF] Moreno-Bote | Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance[END_REF][START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF][START_REF] Hupé | Two paradigms of bistable plaid motion reveal independent mutual inhibition processes[END_REF]. Key press report require the observer to engage in motor programming and in cognitive processes that transfer the perceptual representation experienced into the mapping on the keyboard and the necessary associated action. This process can be cognitively expensive, depending on the participant's habituation [START_REF] Ballanger | EMG as a key tool to assess motor lateralization and hand reaction time asymmetries[END_REF], and is subject to variability in learning performances across individuals [START_REF] Veltman | Physiological workload reactions to increasing levels of task difficulty[END_REF].

Eye movements as objective markers in ambiguous perception

Given the results provided in [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF], we know that the motor response is highly variable in the case of disambiguated bi-stable stimuli such as the Necker Cube. This variability affects the precision of the measurement method of key press for perceptual time series. In turn, if other phenomena are studied jointly with multi-stability, correlations are hard to estimate. To the author's knowledge, though there have been attempts to measure multi-stable perception by other means than key press [START_REF] Naber | Perceptual rivalry: reflexes reveal the gradual nature of visual awareness[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]-and these have focused on using eye movements, but see [START_REF] Rees | Neural correlates of the contents of visual awareness in humans[END_REF] and [START_REF] Sterzer | The neural bases of multistable perception[END_REF] for attempts at decoding bi-stability with neural signals-these studies have not tried to estimate the reliability of key press report. However, some studies have looked at the issue from a neuroscience methodology point of view, in order to reduce issues with signal synchronisation [START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF], but questions remain as to whether their solutions give rise to a phenomenon equivalent to multi-stable perception [START_REF] Vanrullen | Is perception discrete or continuous?[END_REF][START_REF] Vanrullen | Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability[END_REF]. Another interesting approach has also been oriented on taking advantage of multi-sensory binding to manipulate perception across modalities (Schwartz et al., 2012).

The aim of replacing key press and motor programming is to reduce the attentional shifts that are linked to such actions, as explained in Section 4.1. Attention is known to affect the dynamics of multi-stable perception [START_REF] Kohler | Deciding what to see: The role of intention and attention in the perception of apparent motion[END_REF][START_REF] Li | Attention model of binocular rivalry[END_REF], though its effects differ between binocular rivalry and ambiguous figures [START_REF] Dieter | Does visual attention drive the dynamics of bistable perception?[END_REF]. Attention is also known to have an impact on motor action and learning [START_REF] Song | The role of attention in motor control and learning[END_REF].

Other ways to report perception: eye movement

Recent results and methods using a combination of moving gratings in a binocular rivalry setup has shown that a no-report experimental setup is possible to study multi-stability using eye movements, and more specifically OKN, a reflexive type of pursuit [START_REF] Naber | Perceptual rivalry: reflexes reveal the gradual nature of visual awareness[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF], but other types of eye movements seem to provide information on perception (Ee, Van Dam, et al., 2005;[START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF]. In fact, in [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF], the oculomotor analysis to detect pursuits for perceptual dynamics inference is improved using an algorithm (see Fig. 5.3) that (1) removes unwanted oculomotor events-e.g., blinks, saccades and fixations-and retain pursuit epochs, ( 2) shifts the signal's position to compensate the introduced offsets due to these events and obtain a CSP and (3) obtain velocities to estimate changes of direction of the CSP. This method allows to obtain epochs that can then be classified as linked to one of the competing percepts, based on velocity's direction and velocity.

The similarities between the moving plaid stimulus, used in our experiments, and the binocular rivalry stimulus used in [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF] are advantageous. Indeed, the moving plaid stimulus has perceived movements with same directional properties in the case of the transparent percept, as established in Section 4.2. Only a class for the coherent upward moving percept needs to be added. Therefore, this approach shows great potential to be applied in our experimental setup, in order to have a technique to infer perceptual dynamics based on the oculomotor signals. Questions remained however on whether the oculomotor fixation task given to reduce retinal image variations across the trials is not a factor that can reduce the pursuit effect expected to be exploited. Interestingly, the micro-pursuits defined in Chapter 2 may be a key type of oculomotor events to interpret perceptual dynamics for the moving plaid, when the oculomotor fixation task applies.

For this experiment, our hypotheses were the following:

• Oculomotor markers of perception exist and can be detected in order to investigate perceptual dynamics in a no-report paradigm;

• The oculomotor task plays a role in amplifying the oculomotor markers;

• Key press and exogenous (non-ambiguous) changes show latencies (> 200 ms) larger than those observed for oculomotor markers [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF].

Noisy Motor Events experiment

The Noisy Motor Events experiment's methods and preliminary results are presented in Appendix B.3.

Expected results

Based on the preliminary results and exploration of the data collected in the Noisy Motor Events experiment, we will present some of the expected, and necessary, results required to achieve a reliable no-report paradigm for the study of multi-stable perception with the moving plaid.

5.3

Eye movements as objective markers in ambiguous perception 

Perceptual inference based on eye movements

To achieve a reliable no-report paradigm, we need to have signal processing and percept inference algorithms, based on eye movement data, that provide results highly similar to the reported perceptual changes, in the report condition. For that purpose, the metric, used to compute the similarity between reported subjective perceptual timelines and the timelines inferred from physiological markers, needs to be chosen adequately. For instance, we can expect eye movement percept reversal to precede key press, as the former is associated to lower latencies, around 100 ms, while the latter tends to be closer to 400 ms. In fact, this was observed in some of our data, in qualitative manner, and is coherent with the results reported by [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF].

Given good perceptual inference results could be achieved, we would be able to contrast perceptual dynamics, based on objective markers, and compare latencies, percept duration distributions and investigate how the key press motor effort may affect the perceptual (and oculomotor) dynamics. For instance, our theoretical prediction predicts that pressing a keyboard key requires some level of attentional shift (see Section 1.3 in Chapter 1), which should in turn, introduce noise in the perceptual system, thus increasing the probability of perceptual change. This could be analysed by looking at how often rapid consecutive changes, i.e., short consecutive percept durations, occur in report versus no-report conditions. Such a result would provide further evidence for the Premotor theory of attention, and the necessity to consider its consequences in continuous viewing paradigms with subject motor report.

A last non negligible point is the following: not all three moving plaid's percepts are equal. Our preliminary analysis and the results presented in Section 4.2 in Chapter 4 show that transparency percepts are harder to discriminate, based on perceived motion direction. Indeed, unlike for coherency where the entire stimulus moves in one direction, the transparency percepts have two direction of motion, and the competition relies on depth ordering. This may lead to observer reporting one transparency percept, e.g., left transparency, but tracking with the eyes the grating perceived at the back moving rightwards. Furthermore, as explained in Section 4.1 in Chapter 4, the ambiguity rising from the aperture problem leads to slower perceived motion in the direction that is orthogonal to the bars' square wave front. This may pose problems if pursuit is selected as a physiological marker, since pursuit operates best in a restraint target velocity interval. For instance, participants may track the transparency percepts' motion, while moving gaze along the bar, thus creating elliptical motion in space and over time.

Eye movements as objective markers in ambiguous perception

Choosing an oculomotor task

Intention, or top-down processes, also play a role in trials lasting over 20 seconds. In the Noisy Motor Events experiment (presented in Appendix B.3), we tried to manipulate the oculomotor task given to participants by having blocks where participants had to fixate a static dot at the centre of the stimulus, and blocks in which, participants could explore the stimulus freely. We expected to observe more percept pursuits and micro-pursuits in the latter condition, which would provide clearer perceptual signature to decipher perception blindly. However, manipulating the oculomotor task makes controlling the visual input on the retinal projection much harder. Even though fixation tasks are hardly immune to FEM, they greatly reduce the variations on the retinal projection, hence giving more certainty on the interpretation of the perceptual behaviours observed.

A third possible oculomotor task, which was not investigated here, would consist in asking the participants to explicitly track, with their eyes, their percepts. With such a task, decoding perception would be easier, as pursuit suppression would be expected to be less present; for instance, the OKN is a powerful oculomotor phenomenon hardly suppressed. Another argument for this approach can be derived from the results observed in the explicit micro-pursuit task's results, reported in Chapter 2. These results suggested that intentional pursuit can be detected more efficiently, when the task is to explicitly follow a target, than for a distractor target. In future works, this third oculomotor task should be explored, and we expect to observe better pursuits, and thus, better perceptual inference.

Ambiguity manipulation

As explored in Section 4.3 in Chapter 4, manipulating the ambiguity of the moving plaid can be achieved by controlling the gratings' transparencies, and improved when a probabilistic model allows to compute the points of maximal ambiguity. In the Noisy Motor Events experiment, unfortunately, we could not implement this method, and brutal exogenous changes to the stimulus were carried out. These trials provide a third time series to compare with the key press and the eye movement time series. This part of the data can be useful to characterise the differences between report and no-report conditions; for instance, for latency, i.e., reaction time, with exogenous changes, one can access a precise onset. Finally, the non-ambiguous data is key to infer neural correlates and signatures, using neuro-imaging techniques, such as presented and designed for the Gaze-EEG experiment, presented in Appendix A.8.

Synthesis & perspectives

This last experiment shows that moving towards no-report paradigms in on a tristable moving plaid stimulus is a complex procedure. Unlike the bi-stable stimulus used in [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF] which generated OKN reflex eye movements, here the role of attention and top-down processes may be more important, making eye movement behaviour less systematic. A change in the oculomotor task phrasing might be an interesting path to improve such an approach and have more confidence in the data processing, such that data in the no-report condition can be analysed and interpreted. Finally, the data processing methods may be improved, as in Appendix B.2, by the use of model library (such as the GraFEM model from Chapter 3) in order to make links between formally understood model parameters and observed data. This may be achieved by comparing measured gaze trajectories to a library of simulated gaze trajectories, using, for instance, the similarity metric of MPC presented in Chapter 2, or also by computing the probability that the data has been generated by a model given fixed parameters such as the one presented in Chapter 3. Another interesting perspective would consist in finding characteristics in the Fourier domain of the gaze signals. Quaternion Fourier analysis has been recently applied to different bi-variate signal problems [START_REF] Flamant | A general approach for the analysis and filtering of bivariate signals[END_REF] and exploring the gaze's elliptic properties through such analyses could offer new insights.

What does stability mean for perception?

In this thesis, we have looked at multi-stability, a regime of stability where multiple stable exist for a system. We have looked at it in eye movements, in perception and in models. Here we reflect on the larger context, and how this regime might relate to other regimes of stability (e.g., instability).

Oculomotor multi-stability

The work presented in Chapter 2 on micro-pursuit, combined with the GraFEM model simulations, presented in Chapter 3, provides a view of eye movements as a multi-stable process, in the experimental conditions where a fixation target and a perceived target co-exist. This approach provides a way to read oculomotor dynamics, such as the ones presented by Yarbus (1967) (see Chapter 1), as driven by a system that has multiple stable attractors, in the visual field. These attractors may be due to bottom-up processes (e.g., salience, attention) or top-down signals (e.g., task, intention). The measured and observed gaze dynamics thus live in multi-stable regime, where multiple varying and dynamical attractors co-exist and compete for eye movement programming.

The framework proposed allows to reproduce all FEM (and possibly macro eye movements) as shown in Chapter 3, and provides a theoretical tool that can be interpreted intuitively-the gravitational basis of the model is understood by most who experience gravity on earth-and formally, as it has been a extensively researched and documented family of models in Physics. Furthermore, this type of approach could be adapted to more ecological contexts as the number of attractors may increase, and attractors may represent aggregated features, in a similar way as perceptual objects are aggregation of visual features, interpreted by the brain.

Going beyond eye movements, one may look at integrating them with neural correlates, by making joint neuro-imaging measurements. Indeed, this is something that motivated the experiments presented in Chapter 4, Appendix B.2 and Section 5.3. Though a design is proposed in Appendix A.8, based on the results presented in the thesis and the theoretical analysis conducted in Section 4.1, many challenges remain to be solved, before having sufficiently robust methods to investigate the NCC of multi-stable perception. To summarise them, one should (i) further develop an oculomotor manipulation method on the stimulus, (ii) enhance perceptual inference and detection algorithms, based on eye movements, (iii) anticipate issues with temporal synchronisation using EEG (or MEG), and (iv) find practical solution to solve attention variation in continuous viewing paradigms, especially with multiple measurement instruments interacting on participants.

Model extension

In Chapter 3, an oculomotor model and a perceptual model were presented, and briefly studied for the goals of the experiments presented in Section 4.1 (Chapter 4). But a lot of work remains to be done on such models. The GraFEM, oculomotor, model has been used to reproduce only FEM, but simulating other oculomotor phenomena (e.g., saccade deviation, anti-saccade, scene exploration, reading, visual search, etc) should be feasible. Interpreting the model's parameter for each phenomenon may provide a holistic vision of oculomotricity and how these observations relate to one another. Each phenomenon would require to inverse the model, a considerable theoretical work, which far exceeded the scope of this thesis, but would probably provide a lot of predictions that could be tested experimentally.

As such, the perceptual model studied in Chapter 3, based on GraFEM, was also studied in a very limited way here. More theoretical work on the role of the deterministic force, namely adaptation, is needed to understand its relationship perceptual dynamics, and provide predictions for experimental work. Indeed, as mentioned in Chapter 1, this point remains unclear to the research community, in particular on how it may be implemented in the brain. Though this model may not provide direct answers, it could be a tool to model multi-stable perception beyond bi-stability. By investigating the phenomenon with more states, the properties of adaptation, or mutual inhibition between percepts, may be exposed further since it is the force that chooses the percept.

One of the proposed framework's strength is its flexibility to provide models for perception and eye movements. Although these have been shown separately in Chapter 3, model fusion was not investigated, unfortunately. Indeed, an interesting perspective lays in the possibility of looking at both models simultaneously, and proposing different architectures, i.e., hierarchies, to study an enacted multi-stable perception, and to test and identify the best fitting models that explain the data. This approach could provide insights on how the oculomotor and perceptual system are coupled together when facing motion ambiguity. This research question further extends to understanding whether multi-stability is a regime of stability linked to system coupling, and what this regime means for the studied system; the brain. Similar approaches exist for data analysis of neural activity. For instance, T. Watanabe et al. (2014) investigated macro dynamics of fMRI activity using methods based on energy potential modelling, where attractors provide stable states for the system. Hence they were able to interpret activation over various anatomical structure in the brain to individual's bi-stable behaviour (see Fig. 5.4 for a schematic illustration).

Meta-, mono-, & multi-stability

A higher level of abstraction and investigation consists of placing multi-stability in its context of behaviour regimes. As mentioned in Chapter 1 and Chapter 3, theoretical research are investing questions underlying how, in the brain, system interact and couple their processes. In this context, multi-stability can be interpreted as a behavioural marker of system's synergy and degeneracy1 state [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. It provides information on how complementary sub-systems of the visual one are, and invites researchers in the field to learn new tools of analysis. One of these new tools is the bifurcation analysis proposed by Henri Poincaré in 1885 [START_REF] Poincaré | Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation[END_REF], where the changes on the topological structure of the integrated curves of a family of vector fields is studied by finding the solutions of a family of differential equations.

For instance, bifurcation theory has been applied to bi-stable models to isolate the role of the system's internal noise on the observed dynamics [START_REF] Pisarchik | Critical slowing down and noise-induced intermittency in bistable perception: bifurcation analysis[END_REF][START_REF] Magallón-Garcıa | Study of multistable visual perception by stochastic modulation using a synergetic model[END_REF]. This method was also applied to investigate the impact of attention on binocular rivalry by combining, and comparing, model and experimental data [START_REF] Li | Attention model of binocular rivalry[END_REF]. This study provided a complete demonstration of how attention is necessary for binocular rivalry to occur, and what regimes drive the changes; namely, equal activity, oscillation or winner-take-all. These regimes depended on percepts' mutual inhibition and attentional modulation.

Further research is still needed to compare meta-stable, mono-stable and multi-stable phenomena. Investigating such different regimes experimentally, while keeping some level of control to compare data set may be challenging. However, multimodal investigation of multi-stable perception research have shown promising potential (Schwartz et al., 2012). Studies coupling bi-stable auditory and visual stimuli provide evidence that sensory modality binding occurs such that the brain infers the most coherent interpretation of the stimulation. If methods to quantify and control maximal ambiguity in a modality, such as the ones presented in the Ambiguity experiment in Chapter 4, while a mono-stable or meta-stable stimulus is presented in another modality, one could contrast stability regimes and ambiguity interactions. Hence, such an approach may provide a first step towards empirical and experimental characterisation of stability regimes with regards to multi-stable perception.

5.4

What does stability mean for perception?

Conclusion

The works presented in this thesis show results from a trans-disciplinary approach to visual multi-stable perception and eye movement research. By combining methods from the signal processing, psychology and physics communities, we showed that the oculomotor system can provide micro-pursuit eye movements in an explicit and implicit context, with the latter being linked to bi-stable perception (Chapter 2).

We proposed an energy field particle model for eye movements and multi-stable perception, thus providing a theory for how the two systems might be coupled, and by using a formalism that allows the study of more than two state multi-stability (Chapter 3). In a series of experiments, we laid ground work for the design of an experimental design that can investigate the link between oculomotor and perceptual system in the context of multi-stability, e.g., the moving plaid stimulus (Chapters 4 and 5). This approach featured the use of Bayesian methods on an observers' probabilistic model of ambiguity, investigation of stimulus manipulation for the inhibition or excitation of eye movements correlated with perceived motion, and a first approach at a no-report protocol for the moving plaid. Overall, this thesis aimed to provide a fresh look at a fascinating phenomenon that has been studied over centuries. One of the most promising perspectives is to start looking beyond multi-stability to study it. Understanding the context in which such a phenomenon emerges, to identify contrasts with other complex dynamic systems' regimes should provide fundamental, and radically, new observations and understanding.

GraFEM gravitational fixational eye movements. 114,[117][118][119][120][121][122][123]126,127,141,203,[213][214][215]41,45,284,290,303 IT infero-temporal. 294

LGN lateral geniculate nucleus. 27,39,42,66,214,278,280,289,291,292,298,300,301 MPC maximally projected correlation. 78,[81][82][83][87][88][89][90][91][92][93][94]96,98,[100][101][102][103]105,107,109,118,120,122,213,306,307 Before diving into the puzzling and complex mysteries of visual perception, one should step back to see where does this phenomenology stand in our current scientific culture. The study of visual phenomena has been linked to many disciplines covering physics, philosophy, biology, cognitive psychology, neurosciences, applied mathematics, signal processing, and more. This work is inscribed in this transdisciplinary tradition, now referred to as Cognitive Sciences, and aims to address how visual ambiguity is treated and processed in the human brain by combining methods from signal processing, physics, psychology and neuro-imaging, to research original approaches. Therefore, covering the context and background of this research work is essential to give light to the reader, regarding the inspiration it draws from, but also its potential application perspectives.

A brief review of how perception fits into the evolutionary process of living organism's complexity will be presented, followed by a more specific picture of the current understanding of perception in the larger study of the brain and intelligence.

A.1.1 Evolution of natural complex systems with perception

First and foremost, it is important to remind the reader that cognitive sciences relate to the study of cognitive systems, and in this work, we focus on biological, living systems, more precisely human cognition. It is necessary to first define what science considers and defines as living.

"A living thing, or a self, is a part of the universe that sustains itself and makes more of its kind."

The definition proposed above by Ruiz-Mirazo et al. ( 2004) is a recent and universal attempt to constrain the systems of study. In that work, the authors propose requirements around the boundaries of a living organism, the energy transduction apparatus, and the presence of functionally interdependent macro-molecular components. Another aspect discussed lies in the relationship between the organism and its environment, as one needs to interact with it in order to grow and replicate. More simply, though there is no formal consensus and a unifying theory of biology, a system is considered as living when it tends to be complex, organised and with behavioural dynamics. Therefore, living organisms tend to develop and feature perceptual capacities and mechanisms to draw information from their environment, from which they can obtain the energy needed to grow and reproduce.

Sensing the environment

Perception has been intensely studied and theorised by philosophers for centuries, and even more so with the rise of psychology as a science as it poses many problems linked to the notions of reality, awareness or consciousness (T. Crane and C. French, 2017). The definition of perception as a phenomenon of study has evolved since Aristotle, Ptolemy and Ibn al-Haytham's intro-mission and extra-mission theories [START_REF] Hatfield | Perception: History of the concept[END_REF]. Indeed, with the advent of modern science, and with increased knowledge drawn from psycho-physics, the phenomenon has been centred around the relationship between a manipulable parameter in a physical stimulus and the associated cognitive performance for detection, awareness, representation and inference. As defined in the Oxford English Dictionary:

Perception: the neuro-physiological processes, including memory, by which an organism becomes aware of and interprets external stimuli.

To perceive, organisms need to interact with their physical environment and process sensation signals. The physical properties are extracted and converted into information through encoding processes. Perception can be described as a three component phenomenon [START_REF] Delorme | Perception et réalité: Introduction à la psychologie des perceptions[END_REF]:

1. physical stimulation, 2. physiological sensing,

psychological and cognitive representation.

Essentially, information on the physics of one's environment varies. These variations are captured through different modes or channels, and the information is fused and interpreted by the brain in order to be used for other cognitive tasks, such as decision making for instance. Sensory information can be acquired in a variety of ways

The evolutionary origins of sensations.

From an evolutionary perspective, the emergence of cognitive capacities to sense the environment can be explain through random mutation and natural selection of the most adapted behaviours. Most complex living organisms have evolved to process information about their environment in order to find and extract energy from it, in order to grow and reproduce. But some species-i.e., the Trichoplax-do not need to make decisions to move and use random motion to get food (C. L. [START_REF] Smith | Coordinated feeding behavior in Trichoplax, an animal without synapses[END_REF]. Thus, developing a sense of a self, in contrast with the environment, can positively help make a moving living organism take a decision on its next movement. In the study of consciousness and perception, this is an elementary step to guarantee the survival of species with complex behaviours. In fact, the neuro-physiologic mechanisms on which conscious cognitive tasks are based use many evolutionary ancient neuro-biological structures that can also be found in early points of vertebrate brain evolution [START_REF] Mashour | Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia[END_REF]. This suggests that the development of neural capacities to represent a self is at least intertwined to, or precedes, the development of perception. This view might differ from the traditional and popular narrative in which consciousness is often placed as higher in an often unjustified hierarchy of cognitive functions. As we shall see, we will argue that the emergence of perception and consciousness are interlinked and complementary. The capacity to determine a self and process one's internal state, in other words to be self-conscious, can be seen in the example of the Dugesia Tigrina worm. It shows simple behaviours: it can sense its internal state of hunger, and if it is not hungry, it rests while if it is, it starts sensing its environment in search of food [START_REF] Sheiman | Regulation of the feeding behavior of the planarian Dugesia (Girardia) tigrina[END_REF]. Hence, perception serves a purpose for dynamic organisms; it allows them to sense the world around them when in search of food, but also many other behaviours as their perceptual capacities grow.

From sensation to perception

Why do living organisms perceive? Fundamentally, perception can be considered as a means for active and dynamic organisms to obtain and process information of their environment and themselves, in order to make decisions. In the evolutionary context, perception can be thought as a plural and complex phenomenon that has emerged in most, if not all, living species, and facilitates the task of finding new energy sources for reproduction and survival. It is also linked to having a sense of self and thus consciousness [START_REF] Feinberg | The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago[END_REF][START_REF] Mashour | Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia[END_REF]. For instance, with the rise of vision as a modality, distant information can be captured, thus making it possible for beings to distinguish their organism from their environment. The multi-modal aspect of perception and its necessity to constrain the information of its inputs generates percepts. These percepts are representations of the world that can be held in the brain and manipulated. Once theses representations are held, the phenomenon of memory arises as percepts need to be remembered to be manipulated and exploited [START_REF] Klein | Decisions and the evolution of memory: multiple systems, multiple functions[END_REF]. This is linked to the notion of object permanence introduced by [START_REF] Piaget | The origins of intelligence in children[END_REF] as a marker of percepts being maintained beyond the sensory information flow and raises many questions regarding how the brain and perception operate this. Furthermore, developmental studies show that perception is actually a learned phenomenon. Indeed, human children, for instance, seem to fine tune their perceptual systems before showcasing further complex cognitive capacities [START_REF] Tomasello | First steps toward a usage-based theory of language acquisition[END_REF][START_REF] Gervain | Speech perception and language acquisition in the first year of life[END_REF][START_REF] Ullman | Theory learning as stochastic search in the language of thought[END_REF].

To synthesise, perception can be seen as a complex information processing phenomenon that enables a living organism to make decision based on its sensing of itself and its environment. As perceptual modalities diversified, in the evolution of species, their cognitive systems adapted and developed novel cognitive functionse.g., memory, learning, language, consciousness, meta-cognition, etc-as perception became more complex.

Perception for building a mental representation of the world

In cognitive sciences, the direction of the information flow is essential in order to attempt to break down and understand the processes. This leads to representations of the process and phenomenon with simplified pathways and general views such as top-down and bottom-up approaches to sensory signal processing. The implied hierarchical view of perception suggests that at the bottom of the process, sensory information is captured through the variety of physiological receptors present in a living organism. At the higher end, cognitive functions (i.e., memory, learning, consciousness, etc) aggregate information from lower processes to make decisions.

This paradigm is mostly inherited from the cognitivist approach to cognition [START_REF] Fodor | Connectionism and cognitive architecture: A critical analysis[END_REF][START_REF] Turing | Computing machinery and intelligence[END_REF], where the brain operates in an essentially modular fashion. Hence information can be driven upwards, from sensory to perception, and further so, the living organism can understand its environment and interact with it. Philosophers have also proposed alternative paradigms that affect the very definition of perception and how it can be conceived, and modelled.

In the connexionist approach (Rumelhart and McClelland, 1986;[START_REF] Smolensky | On the proper treatment of connectionism[END_REF][START_REF] Andler | Connexionnisme et cognition: à la recherche des bonnes questions[END_REF], cognitive functions are considered as emerging phenomena from highly inter-connected complex networks of neurons and synapses. Though this view keeps a notion of sensory input being driven by physiological receptors, but the processing of information is much less modular in the later stages. Thus remains a notion of direction of information flow, with the nuance that it breaks down once

A.1 Theoretical context
it reaches the cortex. In this paradigm, cognitive function are not considered to be separated and independent, especially spatially, but are driven by the biological and information processing properties of neurons and their inter-connections.

Finally, a more recent approach has been proposed, the embodied or enacted cognition (Varela, 1996a;[START_REF] Glenberg | The body's contribution to language[END_REF]M. L. Anderson, 2003), in which cognitive functions are considered as emerging phenomena as well, but the distinction that removed sensory receptors from consideration is removed. Thus, the properties and constraints of the physiological sensors are considered in the modelling and understanding of the studied cognitive functions. In other words, cognitive functions are profoundly active, with abstract and multi-modal representation of the world being driven and moulded by physiological characteristics. Overall, these approaches have a common view of perception as an information processing phenomenon in living organism where sensory information is captured and processed into representations, which can be used to make behavioural decisions.

In other words, cognitivists, connexionists and embodied cognition fields do not differ on the fundamental reasons that justify the presence of perception, however they vastly disagree on its implementation and conceptualisation1 . Biological systems tend to do so in an energy efficient manner, as opposed to artificial systems [START_REF] Friston | The free-energy principle: a unified brain theory?[END_REF][START_REF] Glasgow | Minimal Selfhood and the Origins of Consciousness[END_REF]. This can be justified by the evolutionary origins of such phenomena. Indeed, an efficient approach for a system with high energy constraints is to extract information from sensory inputs and maintain it in its working space by doing inferences [START_REF] Delorme | Perception et réalité: Introduction à la psychologie des perceptions[END_REF]. Perception is, as of today, widely acknowledged as an inference mechanism, and therefore, opens up many questions regarding the computational methods associated to it. In fact, perception is an interpretation of the captured information, a form of encoding in which information is abstracted and transformed to be used to orient an organism's purpose [START_REF] Wandell | Foundations of Human Vision[END_REF].

The work presented in this thesis is fundamentally derived from an active cognition perspective, where cognition is embodied or enacted and highly interlinked to physiological sensors that capture the visual information and the perceptual phenomena. The focus, here, is on how ambiguity arises for the perceptual system, and how is it dealt with. When considering the inferential mechanisms that can fit the observed behaviours, ambiguity might emerge from insufficiently clear sensory information and when competitive interpretations are present.

A.1.2 Perception as a cognitive process of information

Information flows in perception

Neuronal systems treat the information flow in the brain when perceiving. These biological systems are characterised by their diversity and multi-morphism [START_REF] Eccles | Cerebral synaptic mechanisms[END_REF], but also by their plasticity [START_REF] Conel | The Cortex of the Twenty-four-month Child[END_REF][START_REF] Fentress | The organization of behaviour revisited[END_REF]Brown and P. M. Milner, 2003). An estimated 10 12 neurons lay in the brain and they vary in terms of connectivity, size, shape, organisation, architectures, etc. In other words, there is a high diversity of types of neurons. Neurons are connected to other neurons through synapses which, depending on neurons, can vary between 1 000 and 10 000 synapses for a neuron. It is through these synapses that the information is transferred in the brain. Neurons react to the level of excitation at its dendrites, its inputs, and activate its own output through an electric discharge in its axon. The information is coded in spike rates and trains of incoming electric signals [START_REF] Gabbiani | Principles of spike train analysis[END_REF].

Neurons and their synaptic connections form large complex networks that are able to produce many operations on the information flowing through them. As information is manipulated by the operations of neurons and their synaptic connections, the network applies a variety of filters, classifications, error correction, generalisation processes and more [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF]. The networks of neurons and their synaptic inter-connection lead to a variety of structures known to have different functional roles. For instance, in the olfactory system, the structure makes the sensory information converge and diverge, while also showcasing diverse inhibitory processes and a centralised control of the emerging percept [START_REF] Hérault | Réseaux neuronaux et traitement du signal[END_REF]. Another example, the visual system, shows a layer based structure with columnar organisation of the information flow, a parallel dispatch of the information content, and matrices of columns coding for the orientation of the visual information (D. H. Hubel and Wiesel, 1962;D. H. Hubel and Wiesel, 1968;[START_REF] Hérault | Vision: Images, signals and neural networks: Models of neural processing in visual perception[END_REF]. The difference of organisations and architectures of neural networks in the brain gives some of these networks specific functional roles, most notably near the sensory input. However, once the information is spread in the neo-cortex, the signals' processing is extremely vast, done in parallel and asynchronously. It is probably for that reason that complex behaviour and processes emerge.

are vast and the phenomenon is hard to study as it is deeply linked to introspection and methodological constraints [START_REF] Dennett | Consciousness explained[END_REF]Varela, 1996b;[START_REF] Chalmers | The hard problem of consciousness[END_REF], and many thinkers have proposed creative and wide paradigms-e.g., the absence of consciousness in Behaviourism, the presence of consciousness in all things in Pan-Psychism, consciousness as the interpretation of quantum gravity derived from Gödel's uncertainty theorem [START_REF] Penrose | The emperor's new mind: Concerning computers, minds, and the laws of physics[END_REF] or consciousness as a cultural construct [START_REF] Jaynes | The origin of consciousness in the breakdown of the bicameral mind[END_REF].

The link between perception and consciousness is important in this thesis' work, as the phenomenon studied historically has relied on conscious subjective reports of dynamics experienced by a subject. Therefore, the methodological problems addressed in consciousness research are related to those faced in conscious perceptual dynamics studies.

Of the philosophical frameworks presented in this section, one is particularly capable to provide researchers with solutions to these methodological issues: embodied cognition. It conceives cognition and perception as deeply dependant and intertwined with the agent's body. Though its premises might be found in the study of metaphors in languages [START_REF] Glenberg | The body's contribution to language[END_REF][START_REF] Lakoff | Metaphors we live by[END_REF], embodied cognition can be defined more generally. The framework mostly considers the following notions.

• Constraints from the agent's body, as the sensory inputs to perception and cognition are parts of the body, their nature and features will mould how cognitive processes develop.

• Distribution of the agent's cognitive processes in the body: it implies that not all cognitive computations are done in the central neural system, the brain, but also some is done in other organs-e.g., the heart [START_REF] Park | Spontaneous fluctuations in neural responses to heartbeats predict visual detection[END_REF].

• Regulation of the agent's cognitive processes by the body's state: meaning that action and energy from the body is needed to ensure cognitive processes.

To illustrate these general aspects, in the case of vision, the information that enters the eyes can be greatly affected by the dynamics of the eyes themselves. In Appendix A.2, it will also become evident to the reader, as we review our current understanding of human vision, that given the physiological properties and capacities of the sensors, the perceptual processes were likely developed to adapt to those. For instance, visual percepts may fade out if their image on the retina is stabilised for a period until the eyes move again [START_REF] Riggs | The disappearance of steadily fixated visual test objects[END_REF]Yarbus, 1967;[START_REF] Blakemore | Perceptual fading of a stabilized cortical image[END_REF][START_REF] Cohen | Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus[END_REF][START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF].

Hence, it is in the context of the embodied and enacted cognition paradigm that the works presented in this thesis should be interpreted-though not necessarily incompatible with the other paradigms. It allows the consideration of the body and action as parts of the cognitive processes, and more specifically, in our case, we may look at the links between eye movements and visual perception. However, how is visual consciousness or awareness approached for research? In order to address this type of question, it is necessary to define conscious information, and to review what is considered as visual perception. This step is needed as the first relates to subjective experience and introspection, while the scientific method aims to model, predict and measure phenomena as objectively as possible.

The distinction has mostly been drawn through contrasting methods developed over the decades in psychology and neurosciences. For instance, differences between a subjective experienced of a perception being reported consciously versus unconscious perceptions [START_REF] Baars | A cognitive theory of consciousness[END_REF]. This approach must be reproducible even though it may have variability from one trial to another, or from one individual to another.

One approach is to work on the masking of a stimulus so that it can be either be perceived consciously or not in a task, and see how behavioural performance or neural correlates are affected (Dehaene and Naccache, 2001;Dehaene, Naccache, et al., 2001). Another approach is to study phenomena where the conscious state of perception changes, or alternatively, the lack of conscious changes while the physical stimulus varies (D. A. [START_REF] Leopold | Brain mechanisms of visual awareness[END_REF][START_REF] Mamassian | Métamères perceptifs et perception bistable[END_REF][START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF].

In this section, we have looked at how cognitive behaviours from increasingly complex organisms have led to the emergence of perception and consciousness. In the next section (Appendix A.2), we shall focus and present the visual modality of perception in humans, from photons to percepts.

A.1 Theoretical context

A.2 From the eyes to the brain

This section offers an introduction to visual perception. It develops into how the brain, with the eyes, reconstructs a rich representation of the world, starting at the physics of light to the neural pathways that feed the visual cortex.

Terminology.

The terminology of vision provides a structure to phenomenon, based on the information flow and its processing. We shall refer to low-level vision, as is common in the literature, for the early stages of visual processing (e.g., the eyes, the retina, photoreceptors, lateral geniculate nucleus, etc). And high-level vision will refer to the perceptual experience and the processes associated to it in the brain.

The physics of vision

Vision relates to the act of sensing the light of one's environment. The field in physics that studies light is known as optics and has provided a strong understanding of the phenomenon over centuries of scientific research. It is known that light is composed of photons which act as quantas-i.e., minimal and granular units of energy-and behave like waves and particles. Photons are mostly considered to have particle behaviours in vision science (except for colour science) and will be considered as such in this work. In physics, photons are known to have their source in hot bodies (e.g., the sun, stars, fire, etc) and to radiate away from their origin. As small particles, they travel through the air in quasi-straight lines at high speeds (more on photon displacement in the box below). However, photons rarely hit the eyes directly: they are usually reflected on many parts of the environment, which correspond to the illumination of objects. In vision science, we refer to luminance for the physical quantity that corresponds to the amount of visible light, i.e., the number of photons, falling on a surface over time (S. Palmer, 1999) and it is expressed in candela per squared meters-abbreviated to cd.m -2 -(BIPM, 2006). It may be linked to a more familiar notion, brightness, though it is not done so in a straightforward manner.

It is also worth noting that the photons captured can be considered as the ones converging towards the eyes. The converging flow of photons represents the available visual information for an observer and is named the ambient optic array (AOA) [START_REF] Gibson | The ecological approach to visual perception: classic edition[END_REF]. The AOA means that vision is possible because at a point of observation, the light converges and thus, environmental objects can be sensed, and given the properties of photons, the light provides, in most cases, a straight forward image of the environment-i.e., photons move directly to that point and have consistent behaviours. When adding a time component, we obtain a dynamic AOA which correspond to the optic flow of photons arriving at a point of observation. Thus, at such a point of observation, an image of the environment, based on the array, will provide visual information for a sensing entity, like a human being. There are two important considerations that are derived from this notion:

1. the observer has a point of view because he has an incomplete access to the visual information present in the environment and, 2. vision is based on an image of the environment at the sensors' position, namely the eyes' retinas.

The image is often named the retinal image and contains the visual information that will be treated by the visual system. That image is merely a projection of the optical flow available on a surface, the retina. Thus, the environmental objects perceived are considered as stimuli that can either be distal2 or proximal3 . The notions presented here mean that, in vision science, we will consider and specify the size of a stimulus-e.g., an object-as a visual angle. Visual angles are computed using the following equation and are measured in visual degrees (deg) or degrees of arc [START_REF] Kaiser | The Joy of visual perception [: a Web book[END_REF].

V = 2 arctan S 2D (A.1)
where V is the visual angle, S the frontal extent of the object in the environment and D the distance between the eyes and the object (see Fig. A.3). This corresponds to the size of the object as a proximal stimulus at the point of observation, given an AOA; in other words, the size on the retinal image for an observer.

The retinal image is two dimensional though we experience the world as three dimensional. Perception therefore goes beyond sensing; it is also an inverse problem. The brain reconstructs the observer's environment based on observations, but also what it has learned in the past. This is where one of the key characteristics of visual perception intervenes; it is an inferential process.

The eye, a biological light sensor

Our understanding of what the eyes are composed of and how they work has evolved since Plato's emanation theory 4 . But the contemporary understanding of the eyes is founded in Alhazen's idea that conceived the eye as a pinhole camera (S. Palmer, 1999). As physicists progressed in their understanding of lenses, the derived physics of light impacted the understanding of how the eyes might work. Johannes Kepler combined these understandings to propose the first modern theory of physiological optics.

Anatomically, the eyes are composed of different biological tissues that allow light to be directed through the aqueous and vitreous humour to the retina (see Fig. A.4). This is where the retinal image is captured with photoreceptors -cells that can transform photonic information into neural information -and the visual information is sent to the visual cortex via the optic nerve. Photons enter the pupil, whose diameter is controlled by the ciliary muscles, in the iris through the pupil's cornea and through a lens that focuses the optic flow on the fovea. The fovea is the central region of the retina where the density of photoreceptors.

The retina. The retina is the region of interest in the eye as it is where the physical light is projected and captured by a dense heterogeneous lattice of photoreceptors5 . The latter convert the light into neural activity, i.e., visual information, that is sent to the visual cortex and beyond. The retina's exposure to light is controlled by the iris and the pupil as physiological aperture controllers. In other words, if high quantities of light shine on to the retina, the pupil will constrict, and vice versa, it will dilate as luminance decreases. However, pupil dilation also depends on internal psychological factors and is known to be linked to emotional arousal [START_REF] Hess | Pupil size as related to interest value of visual stimuli[END_REF] or concentrations (Hess and Polt, 1964). Though the pupil acts as an aperture hole, the cornea focuses the retinal image so that it is sharp 6 . These components of the But, how do these photoreceptors transform a physical quantity of light, such as photons, into a neural signals? With a process called transduction [START_REF] Corbett | Chapter 20 -The Visual System[END_REF]. Rods and cones have a similar structure, with an inner segment containing the nucleus and other cellular components, and the outer segment where billions of light-sensitive pigment molecules reside. These molecules are called rhodopsin in rods and are embedded in the membranes of the outer segment. They are responsible for transforming optical information, light, into electro-chemical energy that can be transferred in neural networks. They absorb photons as these strike them, thus changing the electric current flowing in and around the pigment molecule. The outcome is the production of an electrical change in the outer membrane of the receptor, which gets propagated to the synaptic part of the photoreceptor. From there on, chemical transmitters relay the charge to the next neuron.

Neural basics.

As the gateway of neural networks for visual perception, the retina is linked to neurons, the elementary unit of the brain and cognition. Neurons are composed of three parts (see Fig. A.6) that play different roles in its main function: the transmission of neural activity, an electric charge. The neuron is often presented in the direction of information flow, and its input are the dendrites. There are usually many dendrites deployed for a single neuron and they are sensitive to a graded potential, which correspond to the electrical difference between the inside and the outside of the dendrite. The central part, the cell body has the nucleus and integrates the potentials across the dendrites. If the graded potentials surpass a threshold, the body will execute an all-or-nothing reaction, thus activating the action potential-it may also be referred to as the nerve impulses or spikes. This has for consequence to activate the final part of the neuron, the axon, the thin, long and myelin sheathed-the myelin sheath speeds up the conduction of the action potential throughout the axon and is composed of Schwann cells interlinked by nodes of Ranvier-part of the cell. Information wise, the strength of the integrated signal at the dendrites and body is encoded in the frequency of axonal activity, i.e., the firing rate, which corresponds to the number of spikes per seconds. Finally, at the end of the axon, the electrical signal is transformed into a chemical signal by neurotransmitters situated on the terminals. These are connected to other neurons, thus propagating the neural signal on-wards. This region in between the terminal of a neuron and the dendrites of the next neuron, where the neurotransmitters flow, is called the synapse.

In the eyes, the photoreceptors act as the front-end of the neural visual network.

Once the visual information is converted into neural activity, it is passed on by applying a first set of information processing in retinal neurons-e.g., horizontal, bipolar, macrine and ganglion cells. The information is integrated, encoded, concentrated and sent in a highway to the visual cortex through the optic nerve. Interestingly, the optic nerve is so dense with axons of ganglion cells that no photoreceptors are present at its location, thus generating an area, almost as large as the fovea, with no so when the eyes move. Finally, an important counter intuitive properties of the lower visual system is in the dynamics of neural response to light stimulation of photoreceptors. One may expect the latter to increase synaptic output as more light is presented, but the opposite was shown for the receptors of vertebrates8 : the flashing of a light on the eyes of Necturus maculosus and Gekkos showed a decrease in synaptic activity response [START_REF] Toyoda | Light-induced resistance changes in single photoreceptors of Necturus and Gekko[END_REF]. This dynamic is however recorded in a positive fashion at the next layer of synapses (S. Palmer, 1999).

Visual information pathways to the brain. Once the information has left the eye, through the axons of the ganglion cells in the optic fibre, it is crossed in the optic chiasm. The content on the right eye goes to the left hemisphere of the brain, and the left eye content goes the right one. Part of the information goes first through the SC, a nucleus in the brain stem, while the rest goes through the LGN of the thalamus.

Following the LGN, the information reaches the occipital cortex (or primary visual cortex), a brain area at the back of the skull, from where it spreads further after to other cortical areas. The information that goes through the SC is smaller in quantity and most of the information flows towards the visual cortex.

Before moving to describe the ways the brain handle visual information and perception, it is necessary to review and look at how the visual sensors, the eyes, interact with the environment (in Section 1.1.2). Indeed, so far, we have described the motion of information through the low-levels of vision, but that the eyes are not static and passive components simply treating the visual flow. They are active and can move to interact with their environment, hence affecting and changing the retinal flow, and thus the visual content processed.

A.2.1 Visual information in the cortex

The human cortex refers to the convoluted and folded biological tissue in the brain.

It is composed of high concentrations of neurons, often organised in layers, and structured in two hemispheres that are approximately symmetrical and split along the neck to nose axis. Research on damaged brains9 has shown that, though the brain is a set of highly parallel neural networks, some areas of the cortex are systematically used for some cognitive functions. For instance, the occipital lobe was discovered to be essential for visual decoding, as it receives the visual information from the LGN for initial processing before transferring it to other parts of the cortex [START_REF] Glickstein | The discovery of the visual cortex[END_REF].

In fact, the other sensory modalities have similar dedicated area-e.g., temporal for audition, parietal for motor control; see Fig . A.8 for a visual representation of the brain.

Primary visual cortex

The occipital cortex has been extensively studied with a lot of data on mammals, and more specifically macaque rhesus monkeys which have very close visual performances to humans (D. H. Hubel and Wiesel, 1959;D. H. Hubel and Wiesel, 1962;D. H. Hubel and Wiesel, 1968;R. Tootell et al., 1988;[START_REF] Tootell | Functional anatomy of macaque striate cortex. V. Spatial frequency[END_REF].

Invasive studies on animals have allowed researchers to probe on cells as the information flows during tasks on which the animals are trained. Hence, insights on the functionality, combined with anatomy studies, are used to improve the literature's models of the human visual cortex. We know now that once the information has left the LGN, it reaches the striate cortex, or primary visual cortex, or even called V1, in which the information is crossed10 as shown in Fig.

A.11b. The information is therefore divided across the two hemispheres, but is also connected by the corpus calosum, a large fibre tract that permits information transfer from one hemisphere to the other. Moreover, the visual information is mapped topographically in the striate cortex, with respect to the retinal image, an aspect referred to as retinotopic projection (more details in the box below). The visual cortex can then be separated into functional areas addressing separate areas of the visual fields. 

Retinotopic projection.

The projection is relatively distorted though it keeps a higher sensitivity for the central foveal area over the periphery. This is called the cortical magnification factor and is coherent with the much higher quantities of conic photoreceptors at the centre of the retinal image. However, once again, perception is not distorted, meaning that the brain operates computations to build a coherent and stable representation.

Receptive fields

Receptive fields in V1 correspond to areas in the cortex that treat visual information from an area of the visual field systematically. We know this since the pioneering work from D. H. Hubel and Wiesel (1959) in which the authors showed that a cat's occipital neurons responded specifically to the orientations of a bar stimulus, thus playing a role in detecting contour and orientation in the visual field. The receptive fields, each composed of multiple neurons, are connected to each other with some

A.2.2 From visual perception to consciousness

The visual pathways

Once the visual information has been processed by the primary visual cortex in the occipital lobe, the information is disseminated in other cortical areas towards the temporal, parietal and frontal lobes. The visual system is thought to be composed of further areas (V2, V3, V4 and V5) spreading towards the temporal and parietal lobes [START_REF] Remington | Chapter 13 -Visual Pathway[END_REF].

The visual stream is then divided in two into the ventral and dorsal pathways [START_REF] Mishkin | Object vision and spatial vision: two cortical pathways[END_REF]. The ventral pathway, often described as the what system is mostly involved in perceptual object identification and involves areas that reach the temporal lobe. Meanwhile, the dorsal pathway is also considered as the where system, involving areas situated towards the parietal cortex, and that contribute to locating perceptual object.

However, the reader should be aware that interactions over each pathway remain, and that the information is not processed in a straightforward fashion-see the diagrams [START_REF] Goodale | Separate visual pathways for perception and action[END_REF], in which the visual information is considered in the action-perception dichotomy (A. Milner and M. Goodale, 1995;[START_REF] Milner | Two visual systems re-viewed[END_REF]. Hence, the visual system is highly interlinked with interactions with most specialised cortical areas as has been shown by patients with visual agnosia11 (S. Palmer, 1999). Another body of evidence that supports this view of the visual system comes from unilateral neglect, a syndrome in which patients are hemi-negligent when one side of their parietal lobe is damaged. In other words, they are unable to localise or interact with objects present on one side of their visual field [START_REF] Sacks | The man who mistook his wifefor a hat[END_REF].

Overall, though neuro-imaging techniques such fMRI, EEG, MEG, positron emission tomography (PET) or electro-physiology exist, data from brain lesion often provide stronger conclusions with some level of causality12 . These curious phenomena suggest that the brain handles many visual decoding operations unconsciously, and that visual awareness or consciousness is not systematic.

Recurrent processing.

Recurrent, or feedback, processing relates to feedback mechanisms in which the processed information cycles back through a core network and is updated by the various spread functions of the brain (Dehaene and Naccache, 2001). This differs from feedforward processes such as the ones described in the visual system so far, where the information is assumed to go in a unique direction, from the bottom to the top. Recurrent processing is thought to be necessary for conscious experience as it engenders conditions that satisfy Hebb's rule (Donald Olding Hebb and D. Hebb, 1949) of pre-synaptic and post-synaptic simultaneous activation leading to plasticity processes activation and providing the neural basis of leaning [START_REF] Lamme | Towards a true neural stance on consciousness[END_REF].

In the case of visual perception, we will consider consciousness as visual awareness (D. A. [START_REF] Leopold | Brain mechanisms of visual awareness[END_REF]. In other words, when a perceptual object can be subjectively reported on by an observer; this corresponds to the behaviour and introspective approach, and has helped develop the masking paradigm (Dehaene, Naccache, et al., 2001;[START_REF] Breitmeyer | Visual masking: Time slices through conscious and unconscious vision[END_REF]. These experimental protocols make it possible to estimate the degree of consciousness at which a stimulus is processed by inserting it in a series of frames and masking it, so that the time of exposition can be estimated to process it consciously. Thus, a contrast between consciously perceived and unconsciously perceived stimuli can be made. When combined with neuro-imaging techniques, neural correlates of consciousness can be identified. But the search for NCC has led scientists to take distances from introspection, and to base the detection of consciousness based on the detection recurrent processing network activation [START_REF] Lamme | Towards a true neural stance on consciousness[END_REF].

Using neuro-imaging techniques, a body of works have contributed to show that a fronto-parietal network is activated when visual awareness occurs [START_REF] Williams | Parietal activity and the perceived direction of ambiguous apparent motion[END_REF][START_REF] Windmann | Role of the prefrontal cortex in attentional control over bistable vision[END_REF][START_REF] Rees | Neural correlates of the contents of visual awareness in humans[END_REF][START_REF] Sterzer | The neural bases of multistable perception[END_REF][START_REF] Kanai | Human parietal cortex structure predicts individual differences in perceptual rivalry[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Tsuchiya | No-report paradigms: extracting the true neural correlates of consciousness[END_REF][START_REF] Michel | Minority Reports: Consciousness and the Prefrontal Cortex[END_REF]. Such results were obtained using a key paradigm for visual awareness changes, binocular rivalry, in which conscious perception changes over time though the two stimuli exposed to each eye separately remain constant. However, the fronto-parietal network is not the only active area; the visual cortex is necessarily active during visual decoding (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF][START_REF] Brouwer | Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics[END_REF][START_REF] Haynes | Predicting the stream of consciousness from activity in human visual cortex[END_REF][START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF][START_REF] Van Vugt | The threshold for conscious report: Signal loss and response bias in visual and frontal cortex[END_REF].

Overall, the literature proposes that once the visual information has been encoded through the visual system, frontal cortical areas, involved in attention, and parietal cortical areas, involved in decision making, play a key role in the emergence of a new conscious representation for a perceptual object. Finally, EEG and MEG studies have shown long-distance cortico-cortical synchronisation of Beta and Gamma band oscillations, as well as the large scale activation in the fronto-parietal network (Strüber

A.3 Tracking the eyes

Eye tracking signals

Eye movement signals are multi-variate, which means that for a time series, there multiple dimensions associated to each sample. At the time of writing, the most studied signal is the bi-variate gaze, composed of the estimated foveal position on the screen in the horizontal and vertical spatial dimensions. Some video-based eye trackers now provide the gaze signal for each eye, when the binocular recording option is active. Moreover, the pupil diameter can be recorded, thus giving information on the state of pupil dilation and making it possible to combine gaze analysis with pupil analysis. This may also be applied to both eyes in modern high-end video eye trackers. Pupil size remains a difficult signal to use in cognitive studies as its dynamics is highly dependent on luminance; it is adjusted to reduce or increase the amount of light that reaches the retina. However studies have started characterising and contrasting the signatures in pupil dynamics of luminance adjustments and cognitive tasks [START_REF] Knapen | Cognitive and ocular factors jointly determine pupil responses under equiluminance[END_REF]White and R. M. French, 2017). Pupil dynamics are highly affected by blinks and eye movements, and their processing is challenging since these events become artefacts that degrade dramatically the signal over epochs [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF].

Eye tracking signals are subject to artefacts, notably, eye blinks during which the eye lids cover completely or partially the eye. These events are usually detected by eye trackers as they have signatures that identify them accurately. However, blinks generate gaps in the temporal series, during which the visual information flow is physically interrupted, and so is the gaze position measurement, but visual experience is not necessarily. Our visual experience seems continuous most of the time though blinks are carried out. Blinks are a relatively less studied oculomotor phenomenon; they are linked to fatigue as their rates increase over time in a task [START_REF] Stern | Blink rate: a possible measure of fatigue[END_REF] and they are also known to be dependent on cognitive tasks [START_REF] Bentivoglio | Analysis of blink rate patterns in normal subjects[END_REF]. Finally, the signals used to study eye movements are dependent on the technology and apparatus used.

Apparatus and technology

Eye movements can be measured with different techniques and the history of their development has affected how research has been carried out. The first systems were developed at the beginning of the 19 th century, and since the methods developed

A.4 Multi-stable perception detailed description

Properties, common to all multi-stable phenomena, are described in the following paragraphs.

A.4.1 Irrepressible

Multi-stable perception can, up to a certain extent, feel like it is voluntarily controlled. However results on continuous free viewing of stimuli show reversal always eventually occurs, giving the phenomenon its irrepressible property. Nevertheless, it is possible to stabilise such ambiguous perceptions by adjusting stimuli presentation time and ISI (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF] or by biasing the stimulus. Beyond given durations of presentation and ISI, which vary given the multi-stable stimuli used and the observer, reversals will be experienced; thus stimulus presentation does not need to be continuous, it only needs to be beyond a certain duration threshold. This characteristic is valid given the observer has perceived more than one interpretation of the stimuli in ambiguous figures but it has been showed that children, uninformed about the possible interpretations, between 3 and 4 years old, do not switch and that only 35% of uninformed children between 5 and 10 years old only experience reversals [START_REF] Mitroff | Reversing how to think about ambiguous figure reversals: Spontaneous alternating by uninformed observers[END_REF].

A.4.2 Mutual exclusivity

Mutual exclusivity of perception is clearly valid for ambiguous figures; however it is less clear in the case binocular rivalry. Indeed, in the latter experimental paradigm, subjects report their initial perception as an intertwined mixture of the two different images presented. The literature reports that alternations in binocular rivalry are progressive and spread along the visual receptive fields in a wave-like motion (Fig. A.12) invariant of stimuli visual angle size [START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF]. Thus, the following interpretation has been put forward: rivalry emerges from local coding competitions that have an impact on neighbouring neural populations, thus spreading the reversal. Hence, mutual exclusivity operates at a much more localised level in binocular rivalry. 

A.4.3 Unpredictable

Multi-stability is characterised by the unpredictability of its perceptual reversals. Indeed, percept durations are thought to be independent from one to another (Fig. A.13) as it has been showed that one cannot predict the duration of a percept based on the previous one's duration. However, the unpredictability does not signify that multi-stability is random as it could be deterministic, more specifically chaotic. [START_REF] Lehky | Binocular rivalry is not chaotic[END_REF] showed that binocular rivalry is stochastic rather than chaotic by using a method where percept durations data is separated in two blocks and where the first block of data is used to attempt to predict the second one. This method works in chaotic physical systems but fails for multi-stability. However, one should note that this has not be tried and reported yet on ambiguous figures [START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF].

A.4.4 Percept durations distribution

A property that has been found across multi-stable phenomena is related to the density distribution of percept durations [START_REF] Levelt | Note on the distribution of dominance times in binocular rivalry[END_REF][START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF]. For a long time, this aspect of the data was not examined into more details and the scientific community agreed that Gamma distributions modelled all bi-stable percept durations distribution (Fig. A.14). However, recently, it has been shown that Log-Normal distribution can sometimes fit the data more precisely-especially for the Necker Cube, rotating sphere and orientation rivalry stimuli [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF][START_REF] Pressnitzer | Is auditory streaming a bistable percept[END_REF][START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF]. Furthermore, looking at reversal speeds14 gives better results for Gamma distribution fitting (Jan [START_REF] Brascamp | Distributions of alternation rates in various forms of bistable perception[END_REF]. Hence, reversal speeds have empirically been found to be modelled by a Gamma distribution while percept durations are better modelled by a log-normal distribution. applying signal processing through backward averaging damages the endogenous ERP.

A.5.2 EEG: results from discrete viewing paradigms

Another recent approach, the stimulus onset paradigm, consisting in having a discontinuous presentation of the stimulus with control of the ISI, has allowed researchers to address the issues mentioned above [START_REF] Kornmeier | Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]Kornmeier and Bach, 2014). The stimulus is presented for a period and the participants report whether they have experienced a reversal in the following ISI. It offers the possibility to manipulate the stimulus presentation time, the ISI and the ambiguity of the stimulus. Thus, four types of ERP can be identified:

• Endogenous perceptual reversals (ambiguous stimulus)

• Endogenous perceptual stability (ambiguous stimulus)

• Exogenous perceptual reversals (unambiguous stimulus)

• Exogenous perceptual stability (unambiguous stimulus)

By subtracting reversal condition to stability condition data, one can extract the differential event related potentials (dERP) and characterise the signatures specific to endogenous reversals of ambiguous figures. Hence, a reversal positivity 130 ms after onset has been reported with better precision than in the manual response paradigm (see Fig. A.15). Moreover, early alpha modulations that start around 130 milliseconds after onset, are restricted to endogenous reversals, have an opposite sign as the subsequent components, and lasts for approximately 60 ms (see Fig. A.16). Kornmeier and Bach offered the following interpretation: reversal positivity could be an indicator of the visual system's detection of ambiguity while the alpha modulation could be the disambiguation or stabilisation process. In both endogenous and exogenous reversals, a reversal negativity is reported followed by fronto-polar and parietal positivities (Fig. A.15). The authors proposed that the fronto-polar positivity might indicate a role of working memory related to the delayed response in the subsequent ISI while the parietal positivity might be an indicator of attentional and cognitive processes during perceptual reversal and be a signature of the conscious recognition of the switch. Time frequency analysis showed Beta and Gamma band modulations have been measured in both exogenous and endogenous conditions with high similarities (Fig. A.16). Thus, these results provide 

A.5.4 fMRI: percepts in early visual cortex

Neuro-imaging observations of the extrastriate visual cortex in binocular rivalry and ambiguous figures show a closer correlation with conscious perception 15 . Depending on the nature of the ambiguous figure and the features that initiate the bi-stability, BOLD activity in specialised areas such as the fusiform face area (FFA) is greater in Rubin's face-vase illusion [START_REF] Sterzer | The neural bases of multistable perception[END_REF]. The lateral occipital complex (LOC) had higher BOLD activity when the conflict was centred on elements being perceived as grouped or randomly arranged. Alternatively, some studies have focused on neural activity in perceptual reversal events rather than perceptual states in multistability. Activity in extrastriate areas is correlated to these changes; for instance FFA goes through higher excitation before reversal to a face percept following a grating percept [START_REF] Sterzer | The neural bases of multistable perception[END_REF]. Furthermore, ambiguous figures have been classified in two categories-intra-categorical type and cross-categorical type-and fMRI data has been analysed and contrasted to identify whether all the stimuli share a common reversal-related neural network [START_REF] Ishizu | Varieties of perceptual instability and their neural correlates[END_REF]. This has been investigated and could be explained by the presence of coded information of multiple past percepts in a time window preceding the switch that has been described as a form of perceptual memory [START_REF] Pearson | Sensory memory for ambiguous vision[END_REF], which seems to play a role in how perceptual conflicts are resolved in ambiguous vision.

A.5.5 fMRI: blind decoding of percepts

Though it is possible to read the content of conscious perception using neuroimaging techniques, the mechanisms involved in resolving conflict in the sensory inputs remain elusive. These mechanisms relate to unconscious inference processes that are characteristic to human vision. Studying reversals is more appropriate in understanding the reconstructions that lead to visual awareness than perceptual states. When contrasting ambiguous and unambiguous vision, it is mostly activations in the parietal and prefrontal cortex that stand out [START_REF] Lumer | Neural correlates of perceptual rivalry in the human brain[END_REF]D. Leopold and Logothetis, 1999). Thus, it seems that top-down cognitive processes and networks seem to be highly involved in multi-stability and might operate through feedback mechanisms. These areas are typically engaged in cognitive functions such as working memory, attention and decision making. The feedback process could serve as a restabilisation of perception following sensory destabilisation [START_REF] Sterzer | The neural bases of multistable perception[END_REF] and take part in the inferential mechanisms. However fMRI studies have shown their limits in studying the reversal processes due to their low temporal resolution.

A.5.6 Electro-physiology

Furthermore, invasive single neurons monitoring of monkeys in visual rivalry have been studied with probes in the striate visual cortex (V1), the extrastriate visual cortex (V2, V4), the MT area, the medial superior temporal (MST) sulcus, the infero-temporal (IT) cortex and the upper and lower bank of the superior temporal sulcus (STS). This revealed that even though the retinal image remained the same, some neurons in the observed visual information pathway described above were consistently modulated by the monkeys' perceptual changes. However, some neural populations' activity (V4, MT, MST) was more correlated to perceptual switches than others (V1, V2). Furthermore, neurons' activity patterns in IT and STS were closely matched to perceptual reporting while activity in the LGN showed no correlation. This suggests that conflicts in multi-stable perception are solved in higher cognitive processes. Lesion studies have shown that only patients with unilateral frontal lesions have an impairment in experiencing switches of subjective perception, while patients with posterior brain damages, including visual areas, did not have significantly different behaviours from control subjects.

A.6 Eye movements & the plaid

An aim of this work is to link motion ambiguity to eye movements. Indeed, these are physiological dynamics when measuring the gaze's motion, that can be linked to the perceptual multi-stability (García-Pérez, 1989). When perceiving motion, the visual system may lead the oculomotor system to program different types of eye movements such as saccades [START_REF] Sabrin | Microsaccadic eye movements and binocular rivalry[END_REF]L. v. Dam and Ee, 2005;L. C. v. Dam and Ee, 2006a), pursuits [START_REF] Beutter | Human motion perception and smooth eye movements slow similar directional biases for elongated apertures[END_REF]Madelain and Krauzlis, 2003), FEM [START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF], pupilometry [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF] and OKN [START_REF] Einhäuser | Using binocular rivalry to tag foreground sounds: Towards an objective visual measure for auditory multistability[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF].

Saccades were investigated as potential markers of perceptual changes since they operate great changes on the visual input. Studies on binocular rivalry found that saccades and micro-saccades are more likely to occur near reported perceptual changes [START_REF] Sabrin | Microsaccadic eye movements and binocular rivalry[END_REF]L. v. Dam and Ee, 2005). However, further analyses suggested that the retinal shift due to saccadic eye movement was a better criteria (L. C. v. Dam and Ee, 2006a), hence the authors concluded that spatial attention (highly coupled with eye movements) may be the key modulator of perceptual dynamics. These studies used a variety of stimuli in binocular rivalry including, at times, square wave gratings, rather than the more ecological approaches from ambiguous figures. Though saccades may not be the most correlated eye movements to perceptual changes, micro-saccades seem to provide insights on perceptual dynamics. In an ambiguous apparent motion discrimination task, [START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF] reported an inhibition of micro-saccades before perceptual reversals and that orientation of the micro-saccades before stimulus onset biased the subsequent perceptual decision. They interpreted micro-saccadic movements to be used as a cue for the perceptual system when ambiguity is strong, in order to force a perceptual decision. Therefore, micro-saccades may be a key marker to analyse and identify in ambiguous motion perception.

The moving plaid, as a motion ambiguity stimulus, has also sparked investigative work focusing on pursuit eye movements. In a study looking for evidence on whether the a motion-processing system links perception and pursuit, using a plaid stimulus, the authors found shared biases16 in the perceptual and pursuit analyses [START_REF] Beutter | Human motion perception and smooth eye movements slow similar directional biases for elongated apertures[END_REF]. This suggest that both systems share a motion processing stage which may be exploited in order to derive perceptual dynamics in oculomotor signals, by focusing on pursuit analysis. Moreover, Madelain and Krauzlis (2003) showed, using ambiguous apparent motion generated by a series of Kanizsa illusory squares, that pursuit can be a marker of perceived motion since it is highly correlated to motion-based percepts. They showed that humans are more likely to track their current percept and may reverse perceived motion with no need for saccadic eye movements. The motion of this dynamic stimulus has stable velocities within percepts and with directions of percepts being different, thus it is possible to conceive methods to detect changes in the gaze signals. Using OKN as a marker of perceptual states has been used before in binocular rivalry [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF] and similar methods can be applied to other motion based perceptual multi-stability. In these studies, the authors developed gaze analysis method to remove artefacts such as blinks and large saccades, in the eye movement signals, and shifted the slow pursuit components in order to estimate a cumulative smooth pursuit of the motion. They were then able to analyse their data by inferring perceived motion exploiting the accumulated pursuit events.

However, it has been shown that these oculomotor markers are not systematically present, and the responses from the visual and motor systems can be dissociated [START_REF] Spering | Contextual effects on motion perception and smooth pursuit eye movements[END_REF][START_REF] Spering | Tracking without perceiving: a dissociation between eye movements and motion perception[END_REF]. By reviewing many studies investigating whether pursuit is impaired, enhanced or unaffected by stimuli with stationary context, pursuit direction motion context, opposite pursuit direction motion context and velocity perturbations contexts, the authors showed that when no orthogonal context perturbations are manipulated, experiments may generate no effects on pursuit.

But the results shown in these papers were obtained in short viewing paradigm with the stimulus being presented for less than 500 ms, and without multi-stable dynamics.

Another existing approach has been based on pupil size, though its main results link most of the pupil changes preceding key press and thus perceptual reversal report have been linked to the motor programming rather than the endogenous change [START_REF] Hupé | Bistability for audiovisual stimuli: Perceptual decision is modality specific[END_REF]. Such results remind us that key press bias remains a factor present in most multi-stability experiment and may pose challenges to the interpretation of results.

Overall, one can expect to observe markers that show perceptual reversals and indicate which percept just appeared to the observer's visual awareness. A combination of methods detecting oculomotor markers predicting perceptual reversals, such as micro-saccades, and markers correlated to a percept, such as pursuit for motion based stimuli like the moving plaid, are needed to adequately infer perceptual dynamics in eye movement signals.

A.7 Can we remove subjective reports on the moving plaid?

Recent studies have attempted to remove subjective key press reports to find more objective physiological measures of perceptual dynamics [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Einhäuser | Using binocular rivalry to tag foreground sounds: Towards an objective visual measure for auditory multistability[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. If one considers also the decoding methods reported when combining multiple neural measures and machine learning classification methods on EEG and MEG signals, by focusing on detecting markers of perceptual changes [START_REF] Cosmelli | Waves of consciousness: ongoing cortical patterns during binocular rivalry[END_REF]M. Smith et al., 2006;[START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF] or in fMRI signals, by focusing on detecting markers of perceptual states [START_REF] Rees | Neural correlates of the contents of visual awareness in humans[END_REF][START_REF] Sterzer | The neural bases of multistable perception[END_REF]-for a summary of important neurosciences results for the moving plaid, read Appendix A.8. Moreover, participants tend to report attentional shifts associated with the motor action of using the keyboard to report their perception [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF]. Similarly, observers tend to report perceptual switches linked to blinking (L. v. [START_REF] Dam | The role of (micro) saccades and blinks in perceptual bi-stability from slant rivalry[END_REF]. In other psychology paradigms, such as masking based on Signal Detection Theory [START_REF] Green | Signal detection theory and psychophysics[END_REF], the development of methods, that make the measures more objective has been addressed extensively [START_REF] King | A model of subjective report and objective discrimination as categorical decisions in a vast representational space[END_REF]. The expected advantages of removing key press reports are the following:

• perceptual noise reduction-motor programming and attentional shift may act as large noisy signals in the perceptual systems as interpreted by the models presented in Chapter 1 & 3 (Moreno-Bote, Rinzel, et al., 2007;Shpiro, Moreno-Bote, et al., 2009;Moreno-Bote, Knill, et al., 2011);

• neural correlates studies-no report paradigm are being developed and used to explore the neural bases of conscious experience in consciousness research [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Michel | Minority Reports: Consciousness and the Prefrontal Cortex[END_REF];

• evidence of an active perception-the methods of such an approach impose the necessity to show a strong correlation link between physiological markers and perceptual events [START_REF] Laubrock | Fixational eye movements predict the perceived direction of ambiguous apparent motion[END_REF][START_REF] Einhäuser | Using binocular rivalry to tag foreground sounds: Towards an objective visual measure for auditory multistability[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF].

Using the theoretical framework presented in Chapter 3, it is possible to derive hypotheses and associate predictions on perceptual and oculomotor dynamics in coupled systems.

A.8 Gaze-EEG experimental design

Note.

The following sub-section provides insight on the Gaze-EEG experiment that was designed and motivated all the other experiments reported in this chapter. Unfortunately, due to administration delay-e.g., French "comités de protection des personnes" (CPP) procedureand the COVID-19 sanitary crisis, the experiment has only been launched on one participant at the time of writing. This part aims to provide further details on the experimental design that motivated the following experiments described in Chapters 4 and 5. It is recommended to read these chapters before reading this section as some of their results are referred to.

A.8.1 Neurosciences and the plaid

Another set of data that can be investigated are the neural correlates of multi-stability. These can be obtained with techniques from neurosciences such as electro-physiology, EEG, MEG or fMRI.

Activity in the middle and higher levels of the visual system pathway has been correlated to motion perceptual processing, notably in the middle temporal (MT or V5) area of the cortex [START_REF] Stoner | Neural correlates of perceptual motion coherence[END_REF][START_REF] Ferrera | Neuronal responses in visual areas MT and MST during smooth pursuit target selection[END_REF][START_REF] Born | Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements[END_REF][START_REF] Castelo-Branco | Neural synchrony correlates with surface segregation rules[END_REF][START_REF] Thiele | Neural correlates of contrast detection at threshold[END_REF][START_REF] Williams | Parietal activity and the perceived direction of ambiguous apparent motion[END_REF]. This cortex area is in fact sensitive for motion perception as lesions in monkey primates has been shown to degrade significantly performances for direction detection tasks [START_REF] Newsome | A selective impairment of motion perception following lesions of the middle temporal visual area (MT)[END_REF]. One can therefore expect to observe changes in activity patterns as the direction of perception changes for an observer, using neuro-imaging techniques with high temporal resolutions-e.g., EEG, invasive electro-physiology or MEG.

Perceptual changes can also be expected to generate the P300 component in ERP analysis as it is associated to a measurement surprise effects and can be reliably detected [START_REF] Donchin | Surprise!. . . surprise?[END_REF][START_REF] Cecotti | A robust sensor-selection method for P300 brain-computer interfaces[END_REF]. Surprise here is referred to a revision of internal models. An extensive study of EEG components for a bi-stable lattice of Necker cubes has reported fronto-polar positivity a little over 300 ms after onset, in a non-continuous viewing paradigm [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. This approach is supported by arguments proposing that perception's continuous appearance is an illusion in itself, in which brain or neural rhythmics play a role in attention and perceptual processing (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF][START_REF] Vanrullen | Is perception discrete or continuous?[END_REF][START_REF] Vanrullen | Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability[END_REF]VanRullen and Dubois, 2011;[START_REF] Dubois | Visual trails: do the doors of perception open periodically?[END_REF]. The use of oscillatory brain activity has been used to relate percepts to spatial frequencies (M. [START_REF] Smith | Perceptual moments of conscious visual experience inferred from oscillatory brain activity[END_REF] and to decode percepts by means of frequency method for its parameters' estimation. Using an experimental protocol focusing on the first percept, we could gather many data points in a relatively short amount of time for estimation. In a second phase, we verified that the maximal ambiguity point(s) could be established, given the parameters estimated, and whether longer trials at such points would lead to empirical perceptual equi-probability. Therefore, for the Gaze-EEG experiment, the aim is to implement the methods of the Ambiguity experiment such that the stimulus can be calibrated using a procedure composed of first-percept short trials. These data points can be fed to the estimation algorithm and a psycho-physical observer profiles of the participants can be used to control ambiguity.

Oculomotor control based on the Eye Movements experiment's results

In the Eye Movements experiment (Appendix B.2), we aimed to manipulate oculomotor dynamics, in order to able to generate micro-pursuits that are coherent with a percept motion or micro-saccades in the opposite direction. Using a RDK [START_REF] Scase | What is noise for the motion system?[END_REF], micro-pursuit can be elicited and according to the direction of its signal, trials can either be excitatory or inhibitory with respect to a percept. Alternatively, we expected micro-saccades to be generated as participants would re-centre their gaze on the fixation dot. However, the lack of conclusive results does not guarantee that RDK, as manipulated in the Eye Movements experiment, is sufficiently effective to generated the expected FEM. Hence, not all the relationships from Fig. 4.6 can be investigated; namely, the influence of eye movements on perception cannot be controlled. Therefore, one can only expect micro-pursuits and microsaccades to be generated according to the model's predictions, given in Section 4.1.

The manipulation is still expected to be observed in trials, but it is not possible to directly distinguish the impact of the perceptual system from the oculomotor system-presented in the fusion model of Chapter 3. In other words, even if FEM and oculomotor dynamics cannot be controlled, they are still to be measured in this Gaze-EEG experiment, and their contribution to the phenomenon of multi-stable visual perception can still be studied.

No-report perceptual change detection based on the Noisy Motor Events experiment's results

The Noisy Motor Events experiment (Section 5.3) led to the development of gaze signals analysis algorithm that can detect epochs with dynamics suggesting a micropursuit associated to the emergence of a new percept, following a perceptual reversal.

The algorithm sequences the gaze signal such that periods can be analysed and interpreted in the following manner: changing oculomotor dynamics with similarities to the motion dynamics of one of the percepts reveals changes in perception. Though the results in the Noisy Motor Events experiment shows discordance between key press reports and oculomotor interpretation, such methods are being used to provide alternative approaches for perceptual reports [START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. In fact, report and no-report conditions can be used to contrast and adjust the sensitivity of the algorithm's interpretation. Though a no-report setup exposes the data to have higher uncertainty, subjective reports as reported in Chapter 1 also relies on trusting participants capacity to report their perceptual changes. And the latter is sensitive to variable reaction times due to variability in motor programming for key press. Finally, attention is shifted over key press action [START_REF] Song | The role of attention in motor control and learning[END_REF], hence affecting perceptual dynamics [START_REF] Li | Attention model of binocular rivalry[END_REF]. This uncertainty can however be reduced if neural correlates of perceptual changes are detected jointly with gaze dynamics changes.

Gaze-EEG

The experimental setup in this experiment adds joint EEG measurements. The constraints associated with using a dynamic multi-stable stimulus such as the moving plaid makes the use of a continuous viewing paradigm necessary over discrete presentation methods [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Indeed, interrupting a video in an analogous fashion to blinks, but with exogenous origins, requires a series of additional investigations to answer questions related to issues with this approach.

For instance, it is necessary to estimate how the stimulus should evolved over the ISI period, and whether the valid ISI duration is similar to that of other static bi-stable stimuli (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF].

Moreover, neural correlates of multi-stable perceptual dynamics have been studied (as shown by the literature review above), and can be exploited for no-report blind condition trials to infer perceptual changes. Indeed, changes in perception are expected to be marked by higher Gamma band (30-80 Hz) activity [START_REF] Başar-Eroglu | Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance[END_REF]C. S. Herrmann et al., 2016) and activity has been reported to occur in parietal and prefrontal cortices [START_REF] Kanai | Human parietal cortex structure predicts individual differences in perceptual rivalry[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF]. Another component expected to be detected in endogenous perceptual changes is the P300, as it is an ERP that is detected with precision, so much so that it is exploited in brain computer interfaces [START_REF] Donchin | Surprise!. . . surprise?[END_REF][START_REF] Cecotti | A robust sensor-selection method for P300 brain-computer interfaces[END_REF]. Hence, EEG signals can provide additional information and help give an internal neural understanding of multi-stable perception. Though eye movements can lead to artefact generation in the signals, this is less true for small amplitude movements such as the FEM that are expected to be identified. Moreover, recent algorithms have allowed the development of joint measures Gaze-EEG, using eye movements as onset for ERP analyses with eye fixation related potentials (EfRP) and eye saccade related potentials (EsRP) [START_REF] Devillez | The P300 potential for fixations onto target object when exploring natural scenes during a visual task after denoising overlapped EFRP[END_REF][START_REF] Rivet | Multimodal approach to estimate the ocular movements during EEG recordings: a coupled tensor factorization method[END_REF][START_REF] Kristensen | Estimation of overlapped Eye Fixation Related Potentials: The General Linear Model, a more flexible framework than the ADJAR algorithm[END_REF][START_REF] Kristensen | Méthodologie de traitement conjoint des signaux EEG et oculométriques: applications aux tâches d'exploration visuelle libre[END_REF].

Hypotheses

The main hypothesis was that eye movements are physiological markers of multistable perception. More specifically, with the moving plaid stimulus, we expect perceptual changes to generate oculomotor markers such micro-pursuits in the direction of percept motion and micro-saccades in opposite direction to that. Our theoretical work from Chapter 3 also predicts that oculomotor dynamics lead to perceptual changes, but this aspect will be less controlled given the results of the investigation in the Eye Movements experiment (Appendix B.2). The main two contrasts chosen to obtain results with respect to these hypotheses are the ambiguity and report manipulations. We expect to obtain gaze-EEG markers of perceptual changes using the non-ambiguity and no-report condition and the ambiguous report condition. The non-ambiguity with key press report will act as a control condition where all data is clearly labelled, but stable perception rather than multi-stable perception occurs. The ambiguity no-report, blind condition is the most challenging one, where data will not be labelled but will also have the least attentional and motor programming undesired artefacts. Using the algorithms developed in the Eye movements and Noisy Motor Events experiments (Chapter 5), and with subsequent additional EEG analysis, perceptual dynamics will be inferred.

The inertia I r of the gaze trajectory q G with respect to any fixed point r having screen coordinates (x r , y r ) is

I r = trace (Σ G ) + (m G -r) (m G -r) . (B.3)

Maximally projected correlations

Taking now the simultaneously recorded gaze {q G (t i )} n i=1 and stimulus {q S (t i )} n i=1 signals, and their respective empirical variance-covariance matrices Σ G and Σ S , we denote the inter-covariance matrix by

Σ GS =n -1 n i=1 (q G (t i ) -m G ) (q S (t i ) -m S ) = Σ SG . (B.4)
This matrix is particularly useful when considering the inertia of gaze with respect to the time-changing coordinates of the stimulus. Indeed, after some manipulations, we obtain:

I GS = n -1 n i=1 q G (t i ) -q S (t i ) 2 I GS = trace (Σ G + Σ S -Σ GS -Σ SG ) + m G -m S 2 .
Unfortunately, the inertia does not account for differences in scale, nor for coordinate translation, two characteristics that are typical aspects for pursuits and for which we require an invariance. Indeed, we suppose the stimulus will always be at a constant phase with respect to the gaze, either lacking behind in phase (catching up on the stimulus) or ahead of phase (prediction), the scale difference is our main objective, showing that the stimulus trajectory is reproduced at a smaller scale and, finally, the coordinate translation shows a systematic bias in the trajectories. 

Noise robustness & signal size dependency

B.2 Eye Movements experiment B.2.1 Eye movement manipulations

To align our experiment with most of the past research on the stimulus, we chose to focus on manipulating the central, foveal, part of the stimulus in order to keep the retinal image relatively stable. By opting for an implicit manipulation method, we aimed to generate oculomotor markers of attractor dynamics that would generate FEM. The FEM expected, linked to attractor motion and inhibition levels, can either be, in this context, micro-saccades or micro-pursuits. Micro-saccades are expected to appear when attentional or intentional properties of the energy field, or in other words the parameters of the attractors, have highly unstable dynamics over time, or alternatively, when many attractors are integrated over a stimulus. On the other hand, we expected micro-pursuits to occur when attractors are relatively balanced, but the oculomotor system has sufficient noise to allow the gaze particle to jump into another attractor. After micro-pursuits, we expected that corrective micro-saccades or small amplitude saccades would occur as observers remember to focus on the fixation dot or the central part of the disk (see Fig. B.3). Finally, if the system does not have sufficient noise, we expected the gaze to stay stable in the fixation area with mostly some oculomotor drift and tremors FEM being detected.

B.2 Eye Movements experiment

Possible methods for eye movement manipulation in moving plaid stimulus

In the literature, moving plaid experiments use a disk area at the centre of the stimulus (see Fig. B.3) in which a fixation dot is placed, so that observers may keep their gaze fixated on it. Objects such as crosses, dots and combinations of them, can be used in psycho-physical experiments to help maintain the eyes in a steady position [START_REF] Thaler | What is the best fixation target? The effect of target shape on stability of fixational eye movements[END_REF]. This is mostly done to reduce retinal image shifts and variability in the information flow for the visual system. Furthermore, the size of this disk is typically of 2-3 deg and added to minimise OKN occurrences, which means the gratings are present beyond central vision [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]. This area of the stimulus can be manipulated more or less explicitly: for instance, the fixation dot could have movement that is coherent with percept motion to reinforce its probabilities of being perceived. Alternatively, it should be possible to generate motion in the periphery to increase oculomotor motion probabilities [START_REF] Spering | Contextual effects on motion perception and smooth pursuit eye movements[END_REF]. The difficulty lays in finding a balance between explicit methods that would be prone to top-down biases such as the demand and response biases [START_REF] Firestone | Cognition does not affect perception: Evaluating the evidence for "top-down" effects[END_REF]) and implicit methods with small effect on the oculomotor dynamics, thus a high number of occurrences are needed because of low statistical power. A last argument to keep in mind in approaching such a problem is that in the context of moving plaid perceptual tasks, trials are long (over 30 s) in order to generate endogenous perceptual reversals.

One method to induce oculomotor biases is to use a RDK at the centre of the stimulus.

Our aim was to establish a coherence ratio that would generate implicit micro-pursuit movements in the same direction as the signal and corrective micro-saccades in the opposite direction.

We expected that given the RDK signal has the same direction as one of the percepts, we would observe micro-pursuits in the direction of the signal and a bias with percept time reported for the percept with that same direction. Thus, this condition would be an excitation of that percept by manipulation of oculomotor dynamics. On the contrary, if the RDK signal has the opposite direction1 as one of the percepts, we would observe micro-pursuits in both the direction of the RDK signal and the percept, combined with a bias on lower percept time reported. Here, this condition would be considered as an inhibition of the percept by manipulation of eye movements. 

Stimulus

The moving plaid stimulus was presented in the same orientation setup as in the Ambiguity experiment (Section 4.3 in Chapter 4) with the coherent percept being perceived towards the top of the screen. In the central oculomotor fixation disk of a diameter of 4 deg, a RDK stimulus was implemented using the methods of same random direction (see box on RDK for more details) with the dots keeping the same label over their life time. 100 dots were generated with a life time of 40 s (see Fig. B.3), but they reappeared at new random initial location once they had left the display area of the RDK. The directions of each noise dot j were picked using a uniform random distribution over all angles: θ j ∼ U(-π; π). All dots had the same velocity as the gratings of 1.5 deg.s -1 , perpendicular to the bars.

Protocol

Two levels of coherency (amplitude) for the RDK were used: 10% and 20% of dots being as signal. On the other hand, we varied the direction of the RDK signal by selecting amongst 8 possible levels: 0°, 60°, 90°, 120°, 180°, 240°, 270°and 300°3

ing their consent and data anonymisation in accordance with the Declaration of Helsinki.

Eye movement analysis pre-processing.

In order to verify whether gaze was influenced as expected by the RDK manipulation of amplitude and direction, a method with the following steps of data processing was developed and implemented, based on the work on smooth pursuit analysis and perceptual inference in [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. Data extraction was done using the EDF mex toolbox on MATLAB provided by SR Research Ltd, to extract data from EDF format to MATLAB. The data selected were samples recorded on both eyes at 1000 Hz on the EyeLink1000+. Raw gaze sample data beyond the screen size horizontally and vertically were replaced by not a number (NaN) entries such that the length of the data vector was left unchanged, but interruptions in the data time series were apparent.

Pursuit extraction.

We used the functions from the toolbox provided by [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF] to process the time series such that pursuits were extracted from the data-however, we did not generate cumulative smooth pursuits. The bi-variate signals for right and left eye signals were fed into a forward and a backward low-pass filter that applied convolutions with a 50 ms time kernel. The output signal was computed as the mean between both filters for each sample. Pursuit extraction was applied on the filtered data by selecting parts of the signal below a velocity threshold of 120 deg.s -1 or an acceleration threshold of 471 deg.s -2 , and with durations longer than 50 ms. All parts of the signals above thresholds are replaced as NaN entries. To compute velocities, the removed parts of the vectors were obtained using a linear one-dimensional interpolation function.

The pursuit extraction step replaces eye blinks and saccades with NaN entries. We log these events in a table for signal division into epochs. Micro-saccades are detected, and logged in a table as well, using the EK algorithm-as presented in Chapter 2 [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]. This algorithm uses a relative thresholds based on 6 median absolute deviation of the eye velocity, a minimum duration of 3 ms and verifies that the micro-saccade is detected over both eyes.

Hence an epochs table was extracted with the epochs being the periods preceding micro-saccades, saccades or blinks.

B.2.4 Discussion

Based on the descriptive data presented in Fig. B.5, we concluded that RDK manipulation, in the central fixation circle of the moving plaid stimulus was not efficient as no systematic pursuit were observed across orientation conditions. Moreover, the RDK amplitude (i.e. the percentage of dots having a determined direction) did not influence pursuit detection in both task conditions (Plaid On & Plaid Off).

A curious effect is observed at -90°in the Plaid Off phase, for both amplitude levels, where high pursuit scores were computed. As this direction coincides with the classic Latin language reading direction2 and given the participants were french speaking and reading individuals, an oculomotor bias may exist that triggers (micro-)pursuits more easily in this direction.

In the Plaid On condition, we observed higher pursuit scores in the RDK direction orientations that matched the moving plaid's percepts-e.g., 0°, -60°and 60°. The RDK amplitude did not generated differences on the other hand, and moreover, the control trials where no RDK were displayed had similar pursuit scores to the 0°c ondition with Plaid On.

Therefore, RDK did not seem to create any oculomotor manipulation sufficiently potent to inhibit or excite the effects of perceived moving plaid directions. However, this data suggests that participants followed the moving plaid, providing encouraging evidence that verifies the hypotheses postulated in this thesis (Section 4.1 in Chapter 4). Namely, that perceived motion can be revealed by measuring (micro-)pursuits and interpreting them as active and embodied markers of ambiguous multi-stable perception.

The algorithm developed and used for this work has many restrictive criteria, i.e. many rejection outcomes, which could be a limitation of this work. Or at least, more signal processing methods -for instance approaches using MPC, or Quaternion Fourier transform [START_REF] Flamant | A general approach for the analysis and filtering of bivariate signals[END_REF]-investigation could provide further insight on this data set. However, methods using the MPC measure, presented in Chapter 2, were not discriminant enough and threshold identification in the correlation space was not trivial to determine, whereas the threshold on velocity orientation used here were chosen through simpler hypotheses. Also, comparing the epochs' mean velocity values by computing gain in the Cartesian coordinate space yielded results with less interpretation potential. A promising future work perspective, for this work, would be to have the GraFEM model (presented in Chapter 3) generate a library of trajectories by varying its parameters across and specifying attractor motion, and to then compare and find the parameters set that show the most similarity with the observed data. We could then interpret the data based on the model's matched parameters and have further explanation of what occurs to generate these types of pursuits. shape parameter k = 1 and a scale parameter θ = 5 with the following density function:

f (x; k, θ) = 1 Γ(k)θ k x k-1 e -x θ (B.5)
where Γ(k) is the gamma function. The choice of which exogenous percept to display was done by flipping a coin between the other two percepts, for the following percept duration. Exogenous percepts were displayed as moving plaids with gratings' transparency values for coherency (α L , α R ) = (0.5, 0.5), for left transparency (α L , α R ) = (0.9, 0.1) and right transparency (α L , α R ) = (0.1, 0.9). Changes were done abruptly, from one frame to the other, when a percept duration was consumed.

Participants

19 individuals (17 women and 2 men, with an age mean of µ = 20.11 and standard deviation of σ = 1.14) participated in the experiment after signing declarations regarding their consent and data anonymisation in accordance with the Declaration of Helsinki.

Eye movement analysis pre-processing

In order to verify whether the gaze was influenced as expected by the percepts and to detect to which percept belonged a part of the gaze time series, we used similar signal processing methods to that presented in Appendix B.2. Data extraction was done using the EDF mex toolbox on MATLAB provided by SR Research Ltd, to extract data from EDF format to MATLAB. The data selected were samples recorded on both eyes at 1000 Hz on the EyeLink1000+. Raw gaze sample data beyond the screen overriding smaller ones and (iv) taking a decision on whether to leave remaining rejected epochs as such or to integrate them in inferred percepts. The merger and fusion gives priority to the preceding percept when repetitions are found. Afterwards, the algorithm applies a fusion of repeated percepts in consecutive epochs, thus looking for long percepts. Finally, the algorithm looks at un-classified epochs and takes a decision based on duration, with short epochs (≤ 1000 ms) being fused and the others being kept as periods without percepts.

Percept inference scores

The percept inference process was evaluated by comparing the reported key press data to the inferred eye movement data. To do so, we computed the percentage of time in a reported key press percept, during which, the inferred eye movement percept matched. Scores were then averaged over trials for each percept. We also looked at the non ambiguous condition, during which exogenous, reported key press and eye movement inferred perceptual changes were compared. To do so, we estimated, using a maximum likelihood estimator, the parameters of Gamma and Log-Normal distribution functions in each trial for the exogenous, key press reported and eye movement inferred percept durations.

B.3.2 Preliminary results

As a reminder, the results presented here remain preliminary and further analyses are needed for a better understanding of the data.

Percept inference scores in the condition in which participants reported their percepts with key press were computed by obtaining the percentage of time in a key press percept that was correctly inferred from eye movements by the procedure described above. The results presented in Fig. B.7 show that overall, in the ambiguity contrast and the oculomotor task contrast, similar patterns are visible in the data. In particular, coherent percept detection was correctly detected more often than the other transparency percepts. In fact coherency scores seem to be above chance level-25% as percepts could be either c, l, r or none, though these levels are not necessarily uniform as they depend on the probability of percept observation-but the algorithms' detection seems to agree less with the reported key press data, for the transparency percepts.

We compared estimated Gamma and Log-Normal distribution parameters based on the different data types that could be analysed in this experiment: eye movements B.3 Noisy Motor Events experiment inferred (EM), exogenous changes (EX) in non ambiguous trials and key press reported (KP) in report trials. The trial-level data for both functions are shown in Fig. B.8. In both cases, the estimated parameters form clusters and do not generate similar distributions across data types. This approach shows that the data types provide very different perceptual information, with the key press data showcasing shorter percept durations while the eye movement inferred longer ones, based on the k and µ estimated parameters. It also shows that the ambiguity manipulation in this experiment did not reproduce patterns similar to key press reports.

B.3.3 Discussing preliminary results

In this experiment, we saw a number of exploratory manipulations-e.g., ambiguity, oculomotor task, and perceptual report task-and though the results presented above remain preliminary, they provide interesting insights, useful to the objective of creating a paradigm where perceptual and (oculo-)motor systems can be studied jointly, as presented in Section 4.1 in Chapter 4. Some of these points are discussed in the following paragraphs.

Limitations of EM percept detection: towards a better oculomotor task?

This experiment's data shows that percept detection in eye movement gaze signals is challenging. Though we based our methods for gaze processing on the one developed in Appendix B.2, the reference here were the dynamics percepts, whereas in the former, the reference was a velocity direction, constant across trial duration. The inference process was thus subject to sequencing error and temporal shifts, as key press reports are notoriously late with latencies of approximately 400 ms, whereas eye movements show much faster responses [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF][START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF]. Hence, the score computation is also less trivial than in Appendix B.2 and generates three scores per trial: one per percept. For instance, some participants, at times, do not report all three percepts in a trial, which tends to negatively bias the score.

Furthermore, the results show that the free exploration oculomotor task was not effective as scores did not improve; in fact they are further dispersed for the coherency in the ambiguous free trials-see Fig. B.7. The reduced overall performance on the transparency percepts can be explained by the change of perceived moving objects' size, leading to eye movements in more directions. Indeed, in coherency, one sees diamond patterns moving upwards, creating smaller perceived objects to track. The speed integration also make the motion faster, and potentially more adequate for the pursuit system. In transparency, the entire un-occluded gratings are perceived to move; participants may move along the tracked bars. Hence, this makes our detection algorithm ineffective as it searches for epochs with a velocity direction in an interval surrounding the percept's direction.

Therefore, a perspective would be to test the protocol with a more adequate oculomotor task: "follow the perceived motion". This would be a more adequate first step to gather the needed data to develop a robust percept inference algorithm.

Limitations of brutal ambiguity manipulation

Another limitation of this work resides in the method used to manipulate the stimulus for non ambiguous trials. Because of time constraints and the internship context, the psycho-observer model developed in Chapter 4 was not integrated and a simple, brutal approach was used. The spread in distribution parameters shown in Fig. B.8 provides evidence that the use of an arbitrary Gamma distribution, to generate exogenous percept changes, has critical limitations in reproducing key press reports dynamics. Thus, this data set, and the presented analysis, provides further motivation to estimate an observer's probabilistic model of the moving plaid ambiguity with respect to the transparency parameters. This can allow to infer and identify points of maximal ambiguity and furthermore, to use the points where the model's probabilities are highest for a percept to bias the stimulus towards that percept.

Introduction

Eye movements are typically classified at macroscopic scale as either fixation, pursuit, saccade, or reflexive eye movements. But, even during fixations, eyes never stay still and a variety of fixational eye movements have been observed and studied (Martinez-Conde, Macknik, & Hubel, 2004). As an example, micro-saccades have been defined as small amplitude, ballistic movements, similar to large scale saccades (Rolfs, 2009). Based on the hypothesis that eye movements are consistent observations in an oculomotor continuum (Otero-Millan, Macknik, Langston, & Martinez-Conde, 2013), and in line with microsaccades, one can thus expect to observe small-amplitude pursuits within fixations. Here, we will focus on this subclass of slow fixational eye movements, which we term micro-pursuit eye movements. We provide evidence of micro-pursuit eye movements at a fixation level, with an adapted metric that reveals their existence. Three different experiments are presented, two where micro-pursuit occurs and one where it does not. In what follows, we will first describe the current classes of macro-scale eye movements, with their functions and metrics, to provide a starting point for the oculomotor continuum hypothesis that we defend.

The main function of eye movements is to orient the gaze towards parts of a visual scene (Yarbus, 1967;Palmer, 1999;Liversedge, Gilchrist, & Everling, 2011). To accomplish this goal, the human oculomotor system has the capacity to generate a wide variety of movements that can be categorized based on their spatio-temporal dynamics: amplitude, velocity, and acceleration.

Rapid and ballistic eye movements (saccades): classified

based on displacement, speed, and acceleration thresholds, e.g., displacement above 0.15 degrees (deg), velocity above 30 deg.s -1 , acceleration above 9500 deg.s -2 , though other detection criteria exist (Nyström & Holmqvist, 2010;Behrens, MacKeben, & Schröder-Preikschat, 2010;Mihali, Opheusden, & Ma, 2017). These criteria have become their definition. But, absolute threshold criteria have been criticized for their lack of functional, physiological or formal justifications. For example: the clear dichotomy between fixations and saccades has been loosened (Ko, Poletti, & Rucci, 2010).

Slow eye movements (smooth eye pursuits, slow oculomotor control):

classified based on a simple velocity criterion, e.g., smooth pursuit ranges from 20 to 90 or 20 to 100 deg.s -1 (Krauzlis, 2004;Komogortsev & Karpov, 2013;Spering & Montagnini, 2011), though pursuits are considered smooth and precise only at speeds up to 30 deg.s -1 . If target velocity is too high for the pursuit system, catch-up saccades can compensate for the accumulated position error created by the difference between target and gaze velocities, also known as the retinal slip (De Brouwer, Yuksel, Blohm, Missal, & Lefèvre, 2002).

Eye fixations: usually defined as any eye movement with an amplitude below 1 deg. They specifically include fixational eye movements which form a generic class of smallamplitude eye movements (ocular drift, tremor and microsaccades) sharing dynamic characteristics with regular (macro) eye-movements at smaller scale (Otero-Millan et al., 2013;Krauzlis, Goffart, & Hafed, 2017).

The article is organized as follows: First, slow eye movements are described with associated with their dimension and metrics. Secondly, small-amplitude, slow eye movements and their dependencies on the visual stimulation, the task, and the experimental paradigm are detailed as well as the metrics used for their detection. Then, we introduce a metric for target-dependent eye movement, maximally projected correlation (MPC), a scale-and translation-invariant metric that measures similarity between the gaze and a target 2D motion during small amplitude smooth movement. Finally, we propose three experiments and their results: a first experiment (Necker) that allows for the detection of micro-pursuit and two other experiments (Square and Cross) that have been built to replicate the generation of smooth pursuit with different stimuli and tasks.

Slow eye movements: different kinds of motion

The functional role of (smooth) pursuit is to maintain ausually moving-target of interest on the high acuity foveal region of the retina (Spering & Montagnini, 2011). Tracking is believed to be controlled by retinal errors, the difference between gaze and target positions, or retinal slip 1 , i.e., q R =q G -q S , the difference between gaze and target velocities or speed vectors of the gaze and of the target stimulus, i.e., qR = qG -qS . According to Orban de Xivry and colleagues (Xivry & Lefevre, 2007), pursuit relies mostly on reducing retinal slip and is modulated, in a smaller way, by position and acceleration errors.

In order to detect and measure the quality of slow eye movements, metrics have been defined that associate gaze with the target stimulus position. For smooth pursuit, tracking quality is measured through gain (see Micro-pursuits section for more details). This measure has shown its effectiveness in experimental protocols where a target appears on screen and participants are tasked to follow its motion. Pursuit is mostly studied for tracking a single point on a uniform background, although other stimuli in motion also lead to pursuit movements, for instance, random-dot kinematograms (Heinen & Watamaniuk, 1998), line figures (Masson & Stone, 2002), illusory perceptual motion (Madelain & Krauzlis, 2003), or after-effect motion (D. I. Braun, Pracejus, & Gegenfurtner, 2006). In tasks where a percept is pursued, rather than a stimulus, the measure of gain and the associated models have been questioned (Stone, Beutter, & Lorenceau, 2000).

Among the slow eye movements, we also find reflexive movements such as the vestibulo-ocular reflex (VOR), the oculo-following reflex (OFR), or the opto-kinetic nystagmus (OKN). The VOR is a reflex eye movement that compensates head motion in order to maintain a stable retinal image. Though the VOR expression may be similar to pursuit, it is only generated when the head is free to move. The OFR is a reflexive eye movement in response to a sudden change of a wide-field image (Michalski, Kossut, & Żernicki, 1977;[START_REF] Miles | Short-latency ocular following responses of monkey. i. dependence on temporospatial properties of visual input[END_REF][START_REF] Gellman | Short latency ocularfollowing responses in man[END_REF]Quaia, Sheliga, FitzGibbon, & Optican, 2012). The reflex is mainly attributed to the tracking of motion in peripheral vision (Ilg, 1997). The OKN is a composite gaze pattern in which an object is followed by smooth pursuit until the object leaves the visual field. At this point, the gaze returns to the object's initial position (fast saccadic response) at the starting position of the pursuit. VOR, OFR and OKN are eye movements solicited in specific visual stimulation and experimental contexts, which require the manipulation of a large part of the visual field, not a smaller perceptual target, as with pursuit.

To summarize, pursuits have been studied as large-scale eye movements with amplitudes exceeding 1 deg (60 min-arc) in which a target with motion is tracked by the gaze, such that the retinal slip is minimized. The metric used to measure pursuit has been velocity gain.

Do small amplitude pursuits exist?

Fixational eye movements

We have just described the three principal classes of macroscopic eye movements, where saccades and pursuits are distinguished from fixations based on the amplitudes and velocities involved. However, the fact that during the fixation the eye never stands still (Ditchburn & Ginsborg, 1953) and continuously produces fixational eye movements further subdivides fixations into the following sub-classes (Kowler, 2011): Microsaccades, are ballistic small amplitude and fast gaze shifts (Rolfs, 2009;Poletti & Rucci, 2016). Slow drifts are small velocity (< 0.5 deg.s -1 ) displacements of the gaze (Nachmias, 1961;Yarbus, 1967) and tremors (or physiological nystagmus) are aperiodic high-frequency oscillations of the eye (30-80 Hz and amplitudes of up to 50 seconds of arc) (Nachmias, 1961;Martinez-Conde et al., 2004). Research has also been conducted on tremor, but due to their small amplitude and high frequency it is impossible to distinguish them from noise using video-based eye-trackers (Ko, Snodderly, & Poletti, 2016). Therefore, tremors will not be considered in our study. The class of slow drifts, and more particular small-amplitude pursuits, seems less covered in the literature, which can be explained by the technical difficulties associated with eye-tracker precision, especially video-based ones, at such small scales (Wyatt, 2010;Choe, Blake, & Lee, 2016). As we want to focus on the latter, we will give a detailed review of literature on slow drifts small-amplitude movements.

Micro-saccades

Micro-saccade is a class of fixational eye movements characterized by (i) ballistic properties-like saccades,-(ii) small amplitudes, and (iii) a linear relationship between peak velocity and amplitude, also known as a main sequence (Bahill, Clark, & Stark, 1975). The latter stipulates that as micro-saccades have larger amplitudes, their associated (measured) peak velocity increases, and this relationship is linear. In essence, the fast, ballistic nature of micro-saccades allow to quickly-typically under 80 ms-re-position the fovea in the context of visual perception (Rolfs, 2009;Ko et al., 2010;Poletti & Rucci, 2016;Sinn & Engbert, 2016), similar to saccades at larger scales (i.e., not contained within fixational eye movements). Physical properties of the oculomotor system constrain these ballistic movements of the eye to exhibit the linear peak velocity-amplitude relationship.

The main sequence has been very reproducible, and appears in over decades of eye movement research (Rolfs, 2009;Hicheur, Zozor, Campagne, & Chauvin, 2013). Other than providing insight into the oculomotor control system's properties (Bahill et al., 1975) it also supports the hypothesis of an oculomotor continuum [START_REF] Rolfs | Toward a model of microsaccade generation: The case of microsaccadic inhibition[END_REF]Sinn & Engbert, 2016). In [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF], detection of micro-saccades is based on a lower velocity threshold computed relatively to the overall velocities in an observation window. As such, the detection threshold is dependent on the contextual oculomotor activity. This is combined with a binocularity criterion to avoid spurious detections. This is also the approach we have followed in this work.

Ocular drift: a simple random process or stimulusdependent?

These slow and small movements are the consequence of a slow control system of eye position [START_REF] Cunitz | Relationship between slow drift and smooth pursuit eye movements[END_REF] described in literature as a mere drift of the eye (Dodge, 1907), OFR (Chen & Hafed, 2013), or-more recently-as small amplitude pursuits (Skinner, Buonocore, & Hafed, 2018).

In early studies of fixational eye movements, when subjects had to fixate a static dot, eyes drifted slowly with an upper velocity limit at 0.5 deg.s -1 and mean velocity of 5 min-arc.s -1 (Yarbus, 1967). Their trajectories were considered as random and involuntary processes since they showed dynamics similar to Brownian random walks (Ratliff & Riggs, 1950;Engbert & Kliegl, 2004) as well as independence between the two eyes (Cornsweet, 1956). However, Ditchburn and Ginsborg's work (Ditchburn & Ginsborg, 1953) provided evidence that direction of eye movement is not completely random during drift; it is idiosyncratic. Nachmias (Nachmias, 1961) replicated this finding in an experiment where a fixation target was switched on and off during 3 seconds cycles. He found that each of the 2 subjects have preferred drifting direction but this preferred direction can be modified by changing the visual environment. The author interpreted the idiosyncratic direction preference as specific to muscular response and reasserted that nonrandom ocular drifts occur in fixations while providing evidence that drift direction can be modulated by the visual environment. More recently, a variety of experiments have shown that drift can take properties and charac-teristics close to other known oculomotor phenomena [START_REF] Poletti | Stability of the visual world during eye drift[END_REF]Chen & Hafed, 2013;Skinner et al., 2018;[START_REF] Watanabe | Ocular drift reflects volitional action preparation[END_REF].

As mentioned, drift can be viewed as part of a slow control system, enabling gaze to capture a target, whether static or dynamic. Here, we will discuss two studies that show evidence of slow eye movements correlating with the target stimulus, and as such related to our proposition of adding a subclass to the fixational eye movements: that of micro-pursuits.

Chen and Hafed (Chen & Hafed, 2013) studied the impact of micro-saccades on visual perception and investigated the relationship between micro-saccades and drift. Their experiment contained two major tasks. The first task required two monkeys to stare at a fixation dot where a change in luminance of the dot or a peripheral white flash was introduced to induce a higher probability of micro-saccade generation. Drift velocity was analyzed before and after the micro-saccades using either direct velocity measurements or spatial dispersion (by spatial binning and box counts). Both measures showed an increase in drift velocity post-micro-saccadic movements with respect to pre-micro-saccadic movements or baseline movements. They also showed that eye drift mainly occurs in the direction opposite to the micro-saccade, which is interpreted as corrective slow control of the gaze position. The second task consisted of a sinusoidal grating that started moving at predefined delays after the onset of a micro-saccade (or after 500 ms if no micro-saccade was detected). The authors analyzed the speed and direction of early drift of the eye, namely the OFR, according to the direction of the grating and the time of grating onset based on microsaccade detection. Indeed, they reported that (i) the drift directions were in the opposite directions of the micro-saccades and (ii) the eye velocity was reduced when the grating's motion was initiated during micro-saccade and was enhanced when the motion was initiated after micro-saccade. The OFR being an indicator of "the sensitivity of early motion processing to retinal-image slip after a micro-saccade", the OFR, and thus motion perception, are suppressed during the saccade and enhanced after. Their overall findings suggest that there is a single slow gaze control system that control both fixation and eye movement position in the presence of a fixed target or a slow moving background linked to the motion perception system. Conclusions suggesting a subtle coupling between micro-saccades and drifts are also reinforce by previous reports (Engbert & Mergenthaler, 2006).

Part of this idea had already put forward by Murphy and colleagues (Murphy, Kowler, & Steinman, 1975). In their experiment, they asked participants to maintain their gaze on a present or absent fixation dot while a grating in the background moved horizontally at velocity ranging from 0.08 deg.s -1 to 8 deg.s -1 . In a second condition, the participants had to follow the grating. Eye movement velocities were analyzed for trials without saccades. The study shows that when participants have to stare at the fixation dot (i) they have an ability to keep gaze fixed when the fixation dot was present, and (ii) an OFR--a smooth displacement of the eye in the direction of the grating's movement but with smaller velocities-is detected when the fixation dot was absent. In contrast, when the task was to follow the grating, participants showed clear smooth, slow movement in the direction of motion with velocity as low as 0.08 deg.s -1 .

Both these studies confirm the existence of a slow movement within a fixation that track a slow velocity target or counteract the displacement of a micro-saccade. These slow movement of pursuit or fixation stabilization are thought to be under a same slow control system, although the tracking mechanism seems not to be triggered when the movement is initiated during a micro-saccade.

Ocular drift and slow motor control

Drift has been linked to slow control of the eyes during fixation in the context of investigating links between visual stimulation and drift motion.

In a series of experiments, Kowler and Steinman (Kowler & Steinman, 1979a[START_REF] Kowler | The effect of expectations on slow oculomotor control-ii. single target displacements[END_REF] have investigated how expectation, over a stimulus and task, can induce anticipatory smooth and slow eye movements. The authors implemented a task in which participants had to track a dot moving by steps (with three frequencies: 0.25, 0.375 or 0.5 Hz) along a horizontal segment of 3.3 deg amplitude. They showed that eye movements' direction and latency depend on predictability of target displacement. Furthermore, they showed this effect to remain even when the level of predictability was manipulated and when a distracting secondary task was imposed [START_REF] Kowler | The effect of expectations on slow oculomotor control-iii. guessing unpredictable target displacements[END_REF]. In fact, they provided evidence that anticipatory eye movementswhich they also named involuntary drifts in the direction of future target motion-depended on the history of prior target motions (Kowler, Martins, & Pavel, 1984). To understand whether the slow control of ocular drift is driven by position or velocity signals, they carried out an experiment in which they manipulated drift by changing the configuration of reference points, thus varying the difficulty of fixation of a central point (Epelboim & Kowler, 1993). Their analyses used gaze position data and bivariate contour ellipse area (BCEA) computation for quantification of gaze dispersion. As such, they provided evidence that the oculomotor system does not rely on visual position signals, but rather on retinal image slip, in order to implement slow motor control. This creates a parallel with the known models for smooth eye pursuit described above.

In addition, in a recent paper, Watanabe and colleagues (M. Watanabe et al., 2019) reported a study that links ocular drift, micro-saccades, and pupil area on voluntary eye movements preparation. They observed anticipatory drifts prior to stimulus appearance and they argue that these anticipatory eye movement may reflect volitional action preparation. Interestingly, the authors provide a replication of previous results on anticipatory drift with a video-based eye tracker while applying correction to their gaze signals for pupil deformation.

Overall, these studies show that slow eye movements are present during fixation. These movements can control for a fixation position, can track large target and depend on expectation.

Authors have postulated that all these behaviors are under control of a unique system.

Small amplitude pursuits

As mentioned higher, smooth pursuits are large-scale eye movements with amplitudes exceeding 1 deg (60 min-arc). A small set of studies found eye movements within a fixation that share characteristics with smooth pursuits, except for their amplitude. Though there are references to smooth pursuits of small amplitude as far as in Yarbus' book (Yarbus, 1967), most papers in the literature have reported the phenomenon in an indirect manner.

In a study on drift in the absence of visual stimulation or with afterimages, horizontal smooth drifts were reported [START_REF] Heywood | Eye movements and the afterimage-i. tracking the afterimage[END_REF]. Although their description corresponds to pursuit dynamics, they did not define the observed movements as such. The authors published a follow-up paper showing that, depending on the eccentricity of the afterimage, oculomotor dynamics are more or less smooth and show low velocities, hence could be interpreted as pursuits (Heywood & Churcher, 1972). Further, while attempting to study oculomotor control capacities when presenting a moving grating background with a fixation point, Murphy and colleagues (Murphy et al., 1975) reported eye movements that correspond to small amplitude pursuits. When investigating the lack of compensation of the VOR when the head was free, Martins, Kowler and Palmer (Martins, Kowler, & Palmer, 1985) studied whether a smooth pursuit system might interact with the VOR. Their data provided a qualitative description that small amplitude pursuits are related to the velocity of target motion. The following finding was reported: foremost, the effectiveness of smooth pursuits varied with target velocities. At the lowest average velocities of a tracked point2 (0.0025-0.125 deg.s -1 ), smooth pursuit was the most effective, i.e., retinal-image speed during smooth pursuit was about the same as retinal-image speed during low target velocities. At higher target velocities (0.25-1 deg.s -1 ), smooth pursuit was less effective for retinal image stabilization and at the highest velocities (1.5-2.5 deg.s -1 ), smooth pursuit was totally ineffective.

More recently, small amplitude pursuits have been reported again, in very different contexts. In a study of eye drift and its relationship to retinal image motion-investigating whether the latter drives the former through retinal or extra-retinal information-Poletti and colleagues [START_REF] Poletti | Stability of the visual world during eye drift[END_REF] declared the following observation: "small pursuit-like eye movement with amplitudes comparable to those of fixational drifts are under precise control of the oculomotor system". Finally, a precise characterization of rhesus macaque oculomotor control for rectilinear sinusoidal motion of a target with amplitudes inferior to 0.5 deg and velocities below 2.5 deg.s -1 was recently re-ported (Skinner et al., 2018). The amplitude and frequency of the sinusoidal motion was modulated and gaze signals were analyzed using gain and compared to filter responses; filters are, here, used as models to show how the oculomotor system could display different behaviors based on input frequencies-on gaze position and velocity. Furthermore, they showed that the gaze signals had eye velocity spectrum with peaks at target frequency and that pursuit gain was highest at 1 deg.s -1 .

Overall, pursuits have been observed for a range of velocities (0.05-2 deg.s -1 ) and amplitudes (1.9-30 min-of-arc) which qualifies them as fixational eye movements. Given the classification in the fixational eye movements research field-in which only micro-saccades, drifts, and tremors are considered-these observations raise questions on the nature and potential definition of micro-pursuits or fixational pursuits.

This article focuses on the presentation of micro-pursuits in three contexts: (i) presentation of metrics that fit the theoretical requirements to detect micro-pursuit, (ii) detection of the oculomotor phenomenon in (a) a dual task experiment (Necker) in which its elicitation was not explicitly made to participants, and (b) an explicit tracking experiment (Cross) and an implicit distractor setup (Square). Our hypothesis was that if the perceptual system has to detect a change in a moving stimulus with a predictable trajectory, the oculomotor system is likely to follow the target even if the participant is instructed not to do so (fixation task). But, since the fixation task inhibits large deviations, only small amplitude pursuit eye movements are generated. Furthermore, a computational model of pursuit eye movements based on gravitational energy fields is presented in the supplementary materials (Appendix C) that accounts for the two contrasting objectives (fixation vs. pursuit). In our data analyses, we made use of a measure of inertia for gaze dispersion and MPC for similarity, since they are simple methods that showcase clear advantages in our context. The latter also offers a metric that can be physically interpreted as it is able to capture similarity between two trajectories of different scales and spatial offsets.

Micro-pursuits

The study of micro-pursuit should aim to find consistent characteristics-like the main sequence for the micro-saccadethat can be measured through an adequate metric. Micropursuit being a slow eye movement, exhibiting strong similarity with the target (stimulus) trajectory, we will consider a fixation to be of the class micro-pursuit whenever the above criteria are met. In addition, if the oculomotor continuum holds true, these slow movements potentially alternate with small ballistic movements, called catch-up saccades, as is the case at macroscopic scale. It is clear that a thorough study of micro-pursuits thus needs a full characterization of fixational eye movements (especially micro-saccades) as well as the evaluation of a similarity measure between gaze and target.

Quantifying pursuit movements (metrics)

To propose a definition of micro-pursuit movements, existing metrics for ocular movements will be discussed, since they will orient our choices for proposing metrics and hence our working definition.

Classical smooth pursuit is measured by velocity-or retinal slip-gain (gain = qG qS with qG the gaze velocity and qS the stimulus velocity), which is consistent with its closed-loop modeling (Liversedge et al., 2011). Position gain is also usedalthough to a lesser extent,-for instance, when dealing with catch-up saccades (Xivry & Lefevre, 2007). For the various drift phenomena described in the previous section, a variety of metrics have been used to study fixational eye movement dynamics (e.g., gaze position, velocity, acceleration, gain, and BCEA). For instance, gain measurement was used for analysis in the case of the small amplitude pursuits of monkeys on uni-variate sinusoidal motion (Skinner et al., 2018). But the authors went further and provided a spectral analysis using Fourier transform on eye signals to identify the fundamental frequency and harmonics with the expected target frequencies. However, gain is a univariate metric which does not extend to multi-variate problems. Thus, it can be used adequately only for pursuit of a target moving on a line, rather than a plane, like the visual field. Fourier analysis shares the same issue as it looks for a frequency in a univariate movement, typically horizontal.

In studies of ocular drift (Epelboim & Kowler, 1993), BCEA 3 was used to quantify the spatial variance-inertia, or spreadof the gaze. The authors obtain orientation preferences through the inferred relative anisotropy of the ellipse. Though this metric is clearly conceived for bi-variate signals, it does not provide spatio-temporal correlation between gaze and a target signal in the way gain does. Meanwhile, the box-count method used in more recent studies permits to compute dispersion of the gaze data over time, though it may suffer, like gain, from measurement noise, especially with video-based eye tracker (Engbert & Mergenthaler, 2006;Chen & Hafed, 2013). To summarize, (i) some metrics, e.g., BCEA, box count, inertia, can be used as quantifiers for the spread of a bi-variate gaze signal during an epoch, and these metrics are useful descriptors for drift and slow movements, and (ii) other metrics, e.g., gain, Fourier analysis, correlation, can be used to quantify similarity between two bivariate signals, to quantify the quality of a pursuit between gaze and a stimulus in motion. Each metric presents a trade-off that should be considered based on a theoretical definition and prediction.

Micro-pursuits: a working definition

Given the reported observations of small amplitude pursuits, the following constraints need to be considered to define a micro-pursuit. 3 The surface area of the ellipse such that the data belong to this area with a probability of 68% when a two dimensional Gaussian fits the data; roughly speaking, up to a factor, it is the determinant of the empirical covariance matrix. Amplitude as indicated by the prefix of its name, and as an analogy to micro-saccades, the micro-pursuit must be of small amplitude, within the range of fixational eye movements; typically below 1 deg;

Velocity micro-pursuit should consist of slow eye movements, similarly to drift, or smooth pursuit but at a smaller scale, with velocities below 2 deg.s -1 ;

Tracking micro-pursuits occur when a percept with motion across the observer's visual field is tracked. But, as pursuit involves matching the motion of a target by that of an observer in real time, micro-pursuit measurement of tracking should reflect the spatio-temporal interaction between the dynamics of two bi-variate signals. Hence, similarity between gaze dynamics should be evaluated. Because the eye movement amplitude is within the fovea's size, deformation may occur in the tracking of predictable bi-variate signals. Therefore, any similarity metric should exhibit both scale and translation invariances-spatial offset invariance may also be beneficial for measures from eye-trackers with lower precision and accuracy;

Duration the phenomenon of tracking a moving target requires by definition that it is done over a sufficiently long epoch. Thus, micro-pursuit should not occur over brief epochs such as saccades and micro-saccades;

Binocularity Conjugated movements on both the guiding and the complementary eye can be expected, being a strong indicator of oculomotor planning.

We propose that gaze signal epochs satisfying the above description be considered as micro-pursuits. As this is a proposed working definition, micro-pursuits may correspond to entire eye fixation periods, making it possible for micro-pursuit to be punctuated by other fixational eye movements. Once its properties are defined more precisely than above and detection algorithms can be developed, it will be possible discriminating micro-pursuits from other fixational eye movements, like microsaccades.

Descriptive statistics for the classification of micro-pursuits

Choosing an adequate metric for analysis was key, given the constraints presented in the previous section and our experimental setup. Two metrics, inertia and maximally projected correlation (MPC), are used in this work; they provide complementary information about the data. The first is a measure of the spatial dispersion of the gaze within a fixation to investigate the marginal dynamics of the gaze during fixational eye movements. The second metric gives a quantification of similarity-and hence interaction-between the gaze and a target. Compared to works in the literature with similar observations (Martins et al., 1985;Skinner et al., 2018), an essential aspect was to have a metric that could reflect similarity with noise robustness, as well as scale and translation invariance. Moreover, this was needed in the context of movements in the plane, rather than rectilinear ones for which uni-variate measures are sufficient. A benefit from such considerations is to propose a generalized metric for micro-pursuit that could be applied to track perceived motion in the two-dimensional visual field projected on the retina. MPC offers a method to quantify spatio-temporal similarity between two bi-variate signals. Furthermore, inertia and MPC can both be applied on the gaze signals in fixation epochs detected by video-based eye-tracker algorithm. Their mathematical relationship is detailed more indepth in the Appendix B.

Measuring gaze dispersion with inertia

The dispersion of gaze within a fixation was computed using a measure of inertia, a metric used to quantify the spread of a cloud of data points with respect to a fixed point, usually its empirical mean. Here, we used a similar, but generalized formula based on the mean quadratic distance from an arbitrary reference point. As such, in the case of stimulus motion, we can compute inertia with respect to the stimulus' center of gravity. Let q U . = 1 N N i =1 q i U be the empirical mean of a signal whose samples (i = 1, . . . , N ) are given by q i U = x i U , y i U . We will use U = G for the observed gaze and U = S for the coordinates of the stimulus' (center of gravity). Gaze inertia I was computed over the stimulus trajectories over a trial as follows:

I = 1 N N i =1 q i G -q i O q i G -q i O = 1 N N i =1 q i G -q i O 2
(1)

where N represents the total number of frames in the trial, q G = [x G , y G ] the measured monocular bi-variate gaze signal coordinates and q O = [x O , y O ] the origin reference point coordinates in the screen plane-however, one can compute inertia with respect to other points in space, e.g., stimulus center of gravity or the fixation's mean gaze position. Inertia quantifies gaze displacement as does BCEA (Epelboim & Kowler, 1993) and boxcount measures (Engbert & Mergenthaler, 2006). Its key advantage over the former two is that inertia is a more intuitive measure of spatial displacement over a fixation period. The boxcount metric is simple and provides similar insight in gaze dispersion over an epoch, it is dependent on the size of the box in space and time used for analysis. Hence, it corresponds to a down sampling measurement of inertia over a fixed time window. Finally, inertia provides the advantage of being a metric relative to a chosen origin or reference point-box count being independent of the origin-and thus it can be used to look at spatial displacement in the following three contexts: (1) absolute inertia (I screen ) is obtained by choosing the center of screen as a reference (absolute, like box count; q O = [0, 0] ), ( 2) relative retinal image instability (I stimulus ) by choosing the stimulus' center of gravity (for pursuit; q O = q S = [x S , y S ] ), and (3) general relative fixational eye movement instability (I fixation ) by referring to the fixation center of gravity (obtained by choosing

q O = q G = [x G , y G ]
with q G , the empirical mean of the gaze for a N samples fixation epoch).

Measuring gaze-stimulus similarity with Maximally Projected Correlation (MPC)

Though humans can intuitively express a qualitative judgment of similarity between two trajectories, obtaining a quantified and objective value for any two bi-variate signals is not as trivial as one might suppose. Gain, of gaze velocity over stimulus velocity, has been used as a metric in pursuit data analysis (Skinner et al., 2018), though the stimulus moved in a univariate context: either horizontal or vertical. In bi-variate signals, however, a gain will be obtained for each dimension of the signal, and hence some form of projection to obtain a scalar metric is required. Although similarities between the stimulus and gaze trajectories can be quantified with a diversity of metrics, we will here focus on a measure based on multi-variate statistical theory (Anderson, 2003;Muirhead, 2009), quantifying the interaction between the stimulus (q S ) and gaze (q G ), in order to infer on the similarity of their trajectories during fixations. We choose to determine the direction of the plane for which correlation between gaze and target within a fixation are maximized, and report the such obtained correlation value, which we call MPC. Our metric hence inherits the ease of interpretability from (Pearson) correlation values and has low computational costs (just as gain). In addition, for unidirectional motion (see, e.g., (Skinner et al., 2018)), this exactly corresponds to Pearson's correlation coefficient between the two time-series.

Let Σ SG . = 1 N N i =1 q i S q i G -q S q G the empirical (variance-)covariance matrix between stimulus (S) and gaze (G). We then write ρ * as the maximal absolute empirical correlation that can be obtained under simultaneous projections onto a onedimensional space, i.e.,

ρ * . = max w ρ(w ) where ρ(w ) . = w Σ SG w w Σ SS w w Σ GG w (2)
and w represents the coordinates of the vector onto which both the gaze and the stimulus signal are projected. This method projects the data in a new space, and provides a quantity bounded between -1 and 1, where 1 shows perfect correlation and -1 perfect anti-correlation. By construction, MPC is invariant with respect to scale and to a translation of either or both of the signals.

To summarize this section, in this work, inertia with respect to screen (I screen ) was used as a measure of gaze displacement. Inertia with respect to stimulus (I stimulus ) was used as a measure of retinal image displacement. Inertia with respect to fixation (I fixation ) was used as a measure of fixational eye movement displacement. And finally, MPC (ρ * ) was used as a measure of similarity between gaze and stimulus trajectory, during a fixation.

Main Experiment: Necker cube

Micro-pursuits were observed and systematically detected at first in an experiment in which a moving ambiguous Necker cube stimulus was presented and participants had to report their perceived orientation. They were instructed to keep their gaze fixed on a static fixation cross at the center of the screen and report which side of the cube was perceived at the front; either lower-left or upper-right square. The main objectives of the experiment was to manipulate the rate of reversal by imposing different motion to the cube. In this paper, we focus solely on the oculomotor analysis of this data set, because the manipulation failed to induce any change in the reversal rate between the percept nor any observable percept modulation.

Methods

Apparatus

The display used was a 40 cm by 30 cm (20 inches) Vision-Master Pro 513 screen of resolution 1024 by 768 pixels and a 75 Hz refresh rate, located 57 cm from the participants, with mean gray luminance at 68 cd.m -2 . Eye movements were recorded using the Eyelink 1000 (SR Research, Ottawa, Ontario, Canada). Both eyes were tracked with a 1000 Hz sampling rate. The head was stabilized using a chin rest. A nine-point calibration routine was carried out at the beginning of each task and was repeated at the beginning of each block (every 15 trials) or when drift correction, performed every 5 trials, reported a mean error superior to 0.5 deg.

Stimulus & motion conditions

We imposed three type of motion to an ambiguous Necker cube of 2.6 by 2.5 deg (Fig. 1-A): (1) 'FX' the control condition with no motion, (2) 'RW' an unpredictable motion condition with a random walk and (3) 'LJ' the predictable motion condition where the cube moved along Lissajous trajectories (see Fig. 1-B). Random walk trajectories were implemented by choosing at each time step an amplitude chosen from an exponential-Gaussian distribution and an orientation from a uniform distribution on (-π, π). The exponential-Gaussian distribution was built from the sum of two independent variables, = G +E where G ∼ N (µ = 1.1; σ = 0.2) is the Gaussian component, and E ∼ E (λ = 0.1) is the exponential one-units are in pixels (pix) and the ∼ symbol stands for "distributed according to". A radial limit of 10 pix (0.329 deg) with respect to the center of the screen was implemented so that a step that would exceed the limit would have its orientation reversed such that the step would bounce back towards the center. Lissajous trajectories in the LJ condition were defined by x(t ) = A sin(cθt ) and y(t ) = B sin(d θt + φ) with, in our setup, A = B = 14 pix (0.5497 deg) and φ = 0 rad. The Lissajous ratio between signal frequencies randomly (uniformly) chosen across trials so that (c, d ) ∈ (2, 3), (3, 2), (-2, 3), (-3, 2) and θ = 2π Stimulus spatial displacement due to movement was controlled across motion conditions. Indeed their inertia with respect to screen distribution were similar, with RW and LJ generating displacement of the same order of magnitude on average over trials (I RW screen = 0.2995 ± 0.1988, I L J screen = 0.2747 ± 0.1372).

Tasks & participants

23 adults, with normal or corrected-to-normal vision (selfassessed), participated in the experiment (15 females and 8 males; age range = 20-71 years, µ = 28.35 ± 10.93 years, whose tasks were two-fold:

• fixate a fixation cross at the center of the screen for a random interval between 100 and 500 ms (uniform distribution);

• report percept reversals of an ambiguous Necker cube by pressing the arrows of a keyboard when perceptual changes occurred.

The experiment followed a continuous viewing paradigm in which trials had variable (random) durations (µ = 34.00 ± 13.26 seconds, see Fig. 1-A) and ended based on which of the following condition happened first number completion of a trial-based randomly (uniformly) set integer number (n rev ∼ U (5, 9)) of perceptual reversals on the ambiguous stimulus (see Fig. 1-A);

time-out maximal percept duration of 20 seconds.

The experiment was programmed using the PsychToolBox in MATLAB (Brainard, 1997). All participants gave their informed written consent before participating in the study, which was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans and as approved by the ethics' committee of University Grenoble Alpes.

Data analysis

Data pre-processing: in our data analysis, only fixations of sufficient duration (> 80 ms) were considered. The duration threshold was set based on (1) the lack of significant fixations of interest in shorter time windows and (2) the necessity for the MPC metric to have a sufficient number of samples (see Appendix B). Guiding eye gaze signals were first passed through a corrective process to adjust for pupil area deformation as described in Choe and colleague's work (Choe et al., 2016). As the gaze and stimulus signals were systematically compared and computed together, we then applied a Butterworth filter (second order low-pass filter with a cut-off frequency of f c = 35 Hz) to smooth the gaze data and down-sampled the gaze signal at the same frequency as the refresh rate of the stimulus (75Hz). Thus, all analyses are done with data down sampled from 1000 Hz to 75 Hz. Fixations generating inertia with respect to screen values beyond two standard deviation from the mean or NaN (due to missing samples) were considered as samples with faulty or jittery gaze recording and were removed from analyses. Data for Fig. 3 and statistical tests only consider fixations without microsaccades, where the latter are detected by an algorithm proposed by [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF] based on the binocularity criterion. The algorithm uses relative thresholds based on median absolute deviation of the eye velocity, here over a fixation. Data for Fig. 2 and Fig. 5 are analyzed including fixations containing micro-saccades. Outliers were defined as data points 4 beyond two standard deviation from the mean, and were systematically removed from analyses. The results presented do not show these outliers, for better readability, but we also conduct the analyses with the outlier and found the same effects for all tests and experiences.

Statistical methods: statistical tests were conduct to assess difference between motion condition both within subjects (group analysis) and at the subject level (individual analysis).

For both levels, we applied non parametric tests, since we did not have any priors on the data distribution for inertia and MPC. For group analysis, statistical tests were conducted using 10000 permutations on non parametric approximate (Monte Carlo) Friedman test for inertia, and if significant differences were inferred, approximate (Monte Carlo) Wilcoxon signed-rank tests were used for pairwise comparisons between conditions (with a decision criterion at p = 0.05/3 = 0.017). For MPC, a Wilcoxon signed-rank test was carried out All these tests were delivered using bootstraps based on 10000 permutations conditional on subjects for every experiments (Necker, Cross and Square) and metrics (I stimulus , I fixation and MPC) using the packages coin (Hothorn, Hornik, Van De Wiel, & Zeileis, 2006) and rstatix (Kassambara, 2020). Effect size were computed from the χ 2 statistics and using the transformation described by Tomczak and Tomczak (Tomczak & Tomczak, 2014) to get a Kendall W, that vary between 0 and 1, with 1 the maximum effect size : 

W = χ 2 N (k -1) . ( 3 

Results

Micro-saccades

We described peak velocities, amplitudes, and rate of occurrences of microsaccades detected during fixations (n = 21197, for Necker), using the algorithm from Engbert and Kliegl [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]. Distributions of micro-saccades' peak velocities and amplitudes across conditions and experiments are shown in Fig. 2-A. Detected micro-saccades showed similar main sequences across motion conditions. Moreover, when we add the MPC value of the fixation in which the microsaccade was detected (color scale), we observe (i) a higher prevalence of fixations with high similarity between gaze and predictable motion (LJ) than in the random walk (RW) condition, and (ii) no apparent (qualitative) correlation between MPC and micro-saccadic properties can be established. Micro-saccade rates are described in Fig. 2-B, with bootstrapped 95% confidence intervals.

When fixations with detected micro-saccades were kept, data pre-processing led to the removal of 12.32% of fixations for the Necker experiment based on fixation duration and outlier removal based on inertia with respect to screen. When fixations with detected micro-saccades were removed, data preprocessing led to the removal of 63.39% of fixations. Results presented next were computed on fixations not containing microsaccades, as they describe the purest form of micro-pursuits. However, when including fixations containing micro-saccades, results led to the exact same conclusions.

Inertia & MPC

We looked at the impact of the cube motion on eye movement and retinal image displacement. The former is made explicit through the inertia of gaze with respect to its average position within a fixation, see Fig. 3-B, whereas the latter is given by the inertia of the gaze with respect to the stimulus' center of gravity, see Fig. 3-A. Descriptive statistics and statistical tests' summary are given in Table 1.

Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fixation position (I fixation ; see Fig. 3-C) differed with motion condition (χ 2 = 37.130; p < 0.0001;W = 0.807). Paired comparisons of I fixation showed differences between FX, RW and LJ (Z F X -RW = -2.4027, p = 0.016; Z RW -L J = -4.1973, p < 0.0001 and Z F X -L J = -4.1973; p < 0.0001). Thus, when computing retinal image displacement, we found that the median inertia differed across cube motion conditions (see Fig. 3-A). Indeed, we find a difference in inertia computed with respect to the center of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 23.565; p < 0.0001;W = 0.512). Median inertia differed in the conditions where the stimulus was in motion (Z F X -RW = -3.9844, p < 0.0001; Z F X -L J = -3.9539, p < 0.0001 and Z RW -L J = 0.09124, p = 0.9445).

When considering that stimulus inertia was equivalent for both motion conditions (I RW screen = 0.2995 ± 0.1988,I L J screen = 0.2747 ± 0.1372), the results suggest that both types of motion applied on the stimulus generated different effects on eye movements. Indeed, eye trajectories were more similar in the predictable LJ motion condition ( ρ * L J = 0.921 ± 0.047) than in the unpredictable RW motion condition ( ρ * RW = 0.509 ± 0.048) with significant differences (χ 2 = 23; p < 0.0001;W = 1 and Z RW -L J = -4.1972; p < 0.0001). The data is reported in Fig. 3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 3-B-D-F) that will be described in more details later.

Binocularity & velocity

As binocularity is an important criteria than can discriminate between erratic noisy movement and conjugate and functional movement [START_REF] Fang | Monocular microsaccades: Do they really occur?[END_REF], we also looked at the similarity of gaze between the directing and nondirecting eye, to look at how conjugated the eyes were. We found overall differences across conditions (χ 2 = 37.130; p < 0.0001;W = 0.807). Paired comparisons of eye versus eye similarity showed differences between FX, RW and LJ (Z F X -L J = -4.1973, p < 0.0001; Z F X -RW = -2.2202, p = 0.023 and Z RW -L J = -4.1973, p < 0.0001). Results are reported in Fig. 4-A, along with analyses for each participants Fig. 4-B.

To further investigate the pursuit description, we computed the MPC on the velocity signals, calculated on the position signals, down-sampled at 75 Hz, over 6 samples. In fact, as for the position analysis, LJ's predictable motion ( ρ * L J = 0.798 ± 0.096) led to higher velocity similarity between the eyes and the target than for RW's unpredictable motion ( ρ * RW = 0.246 ± 0.052) with significant differences (χ 2 = 23; p < 0.0001;W = 1 and Z RW -L J = -4.1973; p < 0.0001). The data is reported in Fig. 4-C, along with analyses for each participant in Fig. 4-D.

Intermediary discussion

When looking at our descriptive statistics (Table 1 and Fig. 3, A-B-C), participants' median similarity based on MPC is centered on values of high correlation in the predictable motion condition (LJ) compared to the other motion condition (RW). This means that fixational eye movement gaze trajectories were, for most subjects, highly similar to that of the stimulus moving on screen. On the other hand, the unpredictable motion condition (RW) led to much lower similarity measurements; an observation that can be explained by the incapacity of the oculomotor system to predict the motion of the Necker cube as motion followed random walk dynamics.

Therefore, globally, participants' gaze was influenced by the cube motion significantly more in LJ, where motion was predictable, than in RW, where motion was unpredictable, even though the oculomotor instructions were to fixate the cross in the middle of the screen for both. Moreover, the gaze in LJ showed similarity with the stimulus trajectories. All these measures were gathered on gaze data within fixation events and the difference between LJ and RW conditions show that oculomotor drift alone, as defined above, within fixational eye movements cannot account for this similarity. The oculomotor system would have to integrate visual information in order to quasisystematically track the stimulus. We therefore refer to these detected fixational eye movements as micro-pursuits, in an effort to keep the analogy with the micro-saccades, while respect- ing the definition and metrics given above. Given the nondedicated and unpredicted observation of the oculomotor phenomenon in the Necker experiment, we carried out a second set of experiments to replicate the generation of micro-pursuit using a simpler stimulus, and to verify that the phenomenon is not caused by the presence of a bi-stable stimulus-namely the Necker cube.

Replication Experiments: Square & Cross

The experimental protocol is similar to the previous one (Necker experiment) except that the Necker cube is replaced by a gray square and subjects have to report changes in luminance in either the fixation cross (Cross experiment) or the square (Square experiment). In the Cross experiment, we set the participants' tasks and stimuli such that they had to follow a moving cross and detect changes of luminance on it. In the Square experiment, the setup aimed to investigate whether a complete reproduction of the Necker experiment, with a square instead of the Necker cube would still lead to the observation of micro-pursuits.

Methods

Material and stimuli were identical to the previous experiment unless specified.

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 57 cm from the participants, with white luminance at 70.89 cd.m -2 , black at 0.09 cd.m -2 and mean gray at 15 cd.m -2 . Eye tracking was done using an EyeLink 1000+ (SRT Research). Calibration was applied using a 5 points procedure between each block and if drift correction failed. Drift correction was applied between each trial. Participants had their head stabilized by sitting and resting their chin on a rest and their forehead against a bar.

Stimulus & motion conditions

As in Experiment 1, we replicated the three motion conditions (FX, RW, & LJ) using the same parameters with balanced mean inertia. Trials lasted 34 seconds (the mean time duration of Experiment 1: Necker Cube) in which the same fixation cross was presented, and a moving object followed its trajectories depending on the condition (see Fig. 1-A).

Tasks & participants

The participants had to fixate a fixation cross surrounded by a square (2.5 deg by 2.5 deg), displayed in Fig. 1-A. They also had a perceptual task in which they had to report luminance changes using the same keys of the keyboard as in the Necker Experiment. However, here the alternations were randomly selected among 5 levels of luminance (levels at 30%, 40%, 50%, 60% and 70% of white) and duration of a level was selected using a log-normal probability law Log-N ∼ (µ = 1, σ = 1) seconds (see Fig. 1-C for a schematic representation of luminance over time). Two conditions were contrasted:

1. Implicit pursuit -moving Square luminance change detection: fixate the fixation cross at the center of screen, and report changes in luminance of the surrounding square moving with the three types of motions.

2. Explicit pursuit -moving Cross luminance change detection: fixate the fixation cross and report changes in luminance of the fixation cross moving with the three types of motions.

The 19 participants (17 females and 2 males; age range = 18-30 years, µ = 20.63 ± 2.61 years), with normal or corrected-tonormal vision, were randomly oriented in one of the two experiments (Cross; n = 9, and Square; n = 10) and provided their informed written consent before participating in the study, which was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans and approved by the ethics' committee of University Grenoble Alpes. We estimated the number of participants to be included in the protocol based on a power analysis using g*power (Faul, Erdfelder, Buchner, & Lang, 2009) with α = 0.05 and 1β = 0.95. We found that we needed a minimum sample size of 9 participants (with 45 trials) to replicate the observations with a power of 0.95.

Data analysis

Data analyses were identical to the previous experiment.

Results

The data was analyzed by applying the same signal processing procedures and statistical methods as in the Necker experiment for inertia or MPC. When fixations with micro-saccades were kept, data pre-processing led to the removal of 8.79% and 9.23% of fixations for the Cross and Square experiments, respectively, based on fixation duration and outlier removal for inertia with respect to screen. Micro-saccade analysis (Fig. 2) led to the extraction of main-sequences with patterns showing no apparent qualitative differences between experiments (Necker, Cross and Square) for amplitude and peak velocity, across motion conditions (FX, RW and LJ).

When fixations with micro-saccades were removed as well, data pre-processing led to the removal of 65.43% and 72.73% of the data, in Cross and Square, respectively. Results presented in this section were computed on the fixations without microsaccades, however when doing these analyses with fixations with micro-saccades, results led to the same conclusions.

Cross experiment: explicit micro-pursuits

When participants had to explicitly follow the fixation cross, on which the motion and luminance signals were applied, similar patterns to the Necker experiment were found for inertia of gaze. Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fixation position (I fixation ; see Fig. 3-C) differed with motion condition (χ 2 = 8.667; p = 0.0096;W = 0.481). Moreover, paired comparisons revealed differences between FX, RW and LJ (Z F X -RW = -2.403, p = 0.016; Z RW -L J = -2.5471; p = 0.0083 and Z F X -L J = -2.5471; p = 0.0085). Retinal image displacement differed with cube motion (see Fig. 3-A). We also found no significant difference in inertia computed with respect to the center of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 4.667; p = 0.103;W = 0.704).

Given the fact that stimulus inertia was equivalent for both motion conditions, this suggests that motion of the stimulus generated different effects on eye movements. Indeed, eye trajectories were more similar in the predictable LJ motion condition ( ρ * L J = 0.880 ± 0.050) than in the unpredictable RW motion condition ( ρ * RW = 0.545 ± 0.032) with significant differences (χ 2 = 9; p = 0.0039;W = 1 and Z RW -L J = -2.6656; p = 0.0043). The data is visualized in Fig. 3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 3-F).

Square experiment: implicit micro-pursuits

Dispersion of eye movements around the fixation, computed with median inertia of the eye with respect to mean fix-ation position (I fixation ; see Fig. 3-C) differed with motion condition (χ 2 = 8.6; p = 0.0109;W = 0.43). Moreover, paired comparisons revealed a difference between RW and LJ (Z RW -L J = -2.3953; p = 0.0126) but not with FX (Z F X -RW = 0.866, p = 0.4321 and Z F X -L J = -1.8857; p = 0.0609). But retinal image displacement differed with cube motion (see Fig. 3-A). Indeed, we did not find a difference in inertia computed with respect to the center of gravity of the stimulus (I stimulus ) with motion condition (χ 2 = 2.4; p = 0.3621;W = 0.12).

Given the fact that stimulus inertia was equivalent for both motion conditions, this suggests that motion of the stimulus did not generate different effects on eye movements. Unlike in the other experiments, eye trajectories were not more similar to stimulus trajectories in the predictable LJ motion condition ( ρ * L J = 0.637 ± 0.097) or in the unpredictable RW motion condition ( ρ * RW = 0.573 ± 0.044) with no inferred statistical difference (χ 2 = 1.6; p = 0.3384;W = 0.16). The data is visualized in Fig. 3-E. We evaluated the effect of the cube motion for every subject and found similar results (Fig. 3-F).

Individual analyses

We conducted the same analysis on every subject and results are displayed for the three experiments and three motion conditions in figure (Fig. 3-B-D-F). For every subject, we plotted the χ 2 or Z score statistics for the approximate Kruskal-Wallis and Wilcoxon-Mann-Whitney tests against their overall rank according to these statistics. For all subject we observed a main effect of inertia with reference to the stimulus (I stimulus , with identical inertia between LJ and RW compare to FX. When looking at retinal displacement, we find the same pattern of result, i.e., a main effect of motion, with inertia with reference to the fixation (I fixation ) similar for FW and RW but lower to LJ for Necker and Cross experiments. For the Square experiment results were mixed within subject suggesting idiosyncratic behaviors. Finally, we observe more similar gaze pattern (high MPC) for the LJ condition both in the Necker and Cross experiments for every subject (except one out of nine in Cross) but mixed results for the square experiment. Thus individual analyses show that results observed at the group level are replicated at the subject level.

Comparing Necker, Cross, & Square experiments

To summarize, descriptive statistics of detected microsaccades in terms of main sequences (amplitude and peak velocity; see Fig. 2-A) and micro-saccade rates (Fig. 2-B) show that overall, micro-saccades are consistent across Necker, Cross and Square, for all motion conditions. However, the Cross and Necker predictable (LJ) condition data seem to exhibit a different behavior than the other conditions and experiments when looking at gaze-target similarity (MPC). The micro-saccades' fixation MPC display many high correlation values, in contrast to the other conditions, and unlike the LJ condition in the Square experiment.

Fig. 5 provides a focus on MPC for fixations in all data sets, as well as for some selected signals that showcase some typical examples of gaze-stimulus pairs for different values of MPC. Since one cannot track the RW movements, the distribution of MPC under this condition serves as a baseline or null hypothesis control distribution. It can be seen that under RW, the empirically observed MPC distributions for all three experiments are confounded, indicating independence of MPC with respect to the experiment. Furthermore, it is also possible to observe a bias-the distribution is skewed toward the maximum value of 1-introduced by (i) the maximization of the correlation through the projection of the data into another coordinate system, and (ii) the RW movement being low-pass filtered by the observer, hence there exists a correlation at longer time scales. Indeed, the distribution under RW is not symmetric about 0 as would be the case for mere correlation between variables of multivariate independent Gaussian processes. On the other hand, under the LJ condition the distribution skews even further to one, resulting in a high probability for MPC values near one, specifically in Necker and Cross. This is less so in Square.

When we removed fixations with detected micro-saccades and carried out inertia and MPC analyses, we found a difference for MPC in the LJ condition across experiments (χ 2 = 20.876; p < 0.0001). When looking at pairwise comparisons (subscripts N for Necker, C for Cross, and S for Square), no significant differences were found between Necker and Cross (Z N -C = -1.6136; p = 0.106), but Square differed from the other two (Z S-C = 3.4293; p = 0.0002 and Z N -S = 4.1915; p < 0.0001).

For RW inter-experiment comparisons, we found an overall difference (χ 2 = 10.617; p = 0.0036). Paired comparisons showed a difference between Necker and the two other experiments (Z N -C = 2.955; p = 0.0020 and Z N -S = -2.076; p = 0.0350) but none for Square versus Cross (Z S-C = 1.061; p = 0.3114).

Finally, results for individual analyses show that most participants in the Square experiment had no significant differences between MPC in RW and LJ, while on the contrary, all 23 participants in the Necker and 8 out 9 participants in Cross do.

Overall, these results indicate that Cross did replicate the micro-pursuit phenomenon observed in the Necker experiment even with a smaller sample size, while Square did not.

Median inertia with respect to the stimulus' center of gravity (I stimulus ) differed with motion conditions suggesting that the nature of stimulus motion, manipulated in each condition (fixed, unpredictable, and predictable) affects global spatiotemporal dynamics of fixational eye movements. Median inertia with respect to the fixation's mean gaze position (I fixation ) showed the emerging pattern of a common oculomotor phenomenon occurring in Necker and Cross, where differences across conditions were measured. Again, this was not the case in Square (see Fig. 3-C). When looking at similarity between stimulus and gaze trajectories, integrated over fixation events using MPC, we found that the predictable motion condition (LJ) generated highly similar gaze trajectories in the Necker and Cross experiments, with large effect sizes. But we did not observe the same pattern for the Square experiment (see Fig. 3-E).

The contrast given by diverging results (Necker-LJ and Cross-LJ being different from Square-LJ) is interesting as it gives us a graduation of how likely, the same predictable motion (LJ) can make observers generates micro-pursuit. It also suggests that a coupling between the oculomotor and cognitive systems in the occurrence of micro-pursuits, which could be predicted and interpreted by a modeling framework we proposed when encountering the original observations. To go further, we propose a model, in Appendix C, that can describe all fixational eye movements in a single mechanism and can take into account the competition between multiple stimuli.

Discussion

Micro-pursuits

Given our definition of micro-pursuits (see section Micropursuits) which was based on an extrapolation of results available from the literature and our hypothesis of an oculomotor continuum, we have now gathered sufficient evidence to validate-at least, partially-our proposed working definition. We believe that the following characteristics are elementary building blocks in defining micro-pursuits as a class of oculomotor movements or fixational eye movements:

Tracking or similarity with target Probably the most prominent characteristic of micro-pursuits. When measuring similarity between the stimulus and gaze along the direction of maximum similarity using the MPC, we are able to categorize fixations as micro-pursuits, whether or not they contain micro-saccades. In addition, our proposed measure of similarity is invariant to scale, translation, and uncorrelated additive noise, compensating respectively for competition between fixation and tracking of a moving target as well as for instrumental or oculomotor drift and for acquisition noise. When the subject's gaze stays localized within the fixation (Square, all conditions), MPC indeed indicates that Square-LJ does no longer has gaze following up on the target motion contrary to Necker-LJ and Cross-LJ (see Fig. 3).

Velocity and acceleration

Based on the literature review (Martins et al., 1985;Skinner et al., 2018) all velocities of our stimuli were kept below 2 deg.s -1 . At these velocities we have detected potential candidates of micro-pursuits, especially when the acceleration was moderate (LJ) Fig. 3 (MPC; Necker & Cross). When the acceleration was too high (RW 5 ), micro-pursuits are no longer produced Fig. 3 (MPC; Necker, Cross, & Square). This advocates for the inclusion of both velocity and acceleration into the definition.

Binocularity Binocular conjugacy is an essential ingredient if 5 Acceleration is due to rapid changes both in the direction as in the magnitude of the velocity vector, due to additive white Gaussian perturbations of the latter.

micro-pursuit is to be interpreted as an expression of a central control over the oculomotor system. Our results show that micro-pursuits in our experiments appear as conjugated both at the group and at the individual level (see Fig. 4).

In contrast to the above, the following elements of our working definition are no longer retained in our final proposition for a definition of micro-pursuits: Amplitude Given we focus solely on fixational eye movements, we found that there exists a category of movements that follow the below characteristics whilst staying under 1 deg in amplitude. However, if the oculomotor continuum holds, amplitude should no longer be a characteristic trait of (micro-)pursuit.

Duration Although initially thought to be a defining characteristic of micro-pursuits, duration is a mere operational limitation. Indeed, the oculomotor system exhibits mechanical inertia and is thus intrinsically limited in its velocity and acceleration, resulting in trajectories with long autocorrelation times. Hence, for short observation periods, one has insufficient variability to accurately estimate similarity, independent of the method used.

In this work we focused on a proof of micro-pursuits' existence through the results obtained from the Necker experiment as well as through results from the replication experiments (Cross or Square).

Although the above results are obtained retaining only fixations that do not contain any micro-saccades-as such being maximally conservative,-our conclusions generalize when we include fixations with micro-saccades. As far as the microsaccades are concerned, our data (presented in Fig. 2) show main sequences that are invariant with respect to conditions and experiments. Furthermore, when looking at their marginal amplitude and peak velocity distributions, no clear differences can be observed across conditions and experiments. A similar observation can be made regarding their rate of occurrence. Also, micro-saccades within fixations that show pursuit behavior (high MPC values) show similar characteristics as those that are found in other fixations, since the MPC statistic does correlate with neither the peak velocity, nor amplitude of the microsaccade under study. This provides evidence about the fact that slow fixational eye movements-tagged micro-pursuits in our work-can indeed be punctuated by micro-saccadic movements within a single fixation, and these do not interfere with the overall trend of the micro-pursuit movement. If the oculomotor continuum hypothesis indeed holds true, these micro-saccades could be associated with catch-up saccades. Unfortunately, due to our limited spatial resolution (video-based gaze tracker), we can not provide any further evidence for these.

Indeed, eye movement research is gradually considering an oculomotor continuum. For instance, it is becoming less and less credible to consider a hard separation between microsaccades and saccades because of their common neural origins Finally, micro-pursuit's link to visual perception remains speculative, though interpreting our data suggests that the designation of the observed object, for perceptual report, and its associated motion (static, unpredictable or predictable)-related to the distribution of cognitive capacities between perceptual and oculomotor tasks-may lead to a tentative explanation (Spering & Montagnini, 2011).

Influence of oculomotor and perceptual tasks on target locking

In our two replication experiments, we have manipulated the task and target properties. In the Cross experiment, the task was to follow the moving object (cross) and to report its changes in illumination, while a static square was present in the background. In the Square experiment, the task was to fix a central fixation cross and report changes on the moving square object. Both have a similar relative movement of the cross with respect to the square object. In the first experiment, one can consider that participants had to focus on the cross. Whenever the latter was moving in a predictable, tractable fashion (LJ), the cross induced micro-pursuits. In the Square experiment, the competition between the perceptual and oculomotor tasks remained. Thus, one can consider the Square experiment to provide a competition between two attractors at the level of the oculomotor control, but given the reduced number of observed micro-pursuits (Fig. 3-E-F), one can interpret the competition between its attractors as unbalanced, where the fixation is more prominent than the follow-up on the moving target.

A first step towards a quantitative characterization of how a task may influence oculomotor dynamics is proposed in Appendix C. The proposed model is based on a competing attractor model inspired by gravitational field models. The model links the visual stimulation to perceptual objects modeled as gravitational attractors with dynamically varying masses, as such coping with the attention whereas gaze position is modeled through a unit-mass particle subject to the gravitational field evolving in time. To account for perturbations and noise, velocity is subject to additive white Gaussian noise (Langevin dynamics). By manipulating the attractor's positions, masses, and the curvature of their energy potential, it is possible to generate (micro-)saccades, (micro-)pursuits, fixations, and drift. This mathematical model offers a quantitative method that may be interpreted in terms of spatial attentional loads, saliency, or intention, with respect to oculomotor programming and execution. It is an extension of some models already proposed in the field of fixational eye movements modeling based on energy potential (Engbert, Mergenthaler, Sinn, & Pikovsky, 2011;Herrmann, Metzler, & Engbert, 2017) as well as modeling work on bi-stable perception and processes (Moreno-Bote, Rinzel, & Rubin, 2007;Shpiro, Moreno-Bote, Rubin, & Rinzel, 2009;Moreno-Bote, Knill, & Pouget, 2011;Moreno-Bote & Drugowitsch, 2015), to incorporate the influence of, e.g., ambiguous figures like the Necker cube.

Future work

We proposed to use a set of metrics to detect micro-pursuit, but we need further experimental work to define the limits, the functional role, and the specificity of micro-pursuit with respect to other fixational eye movements.

First, discrimination between OFR and micro-pursuit can be assessed by contrasting stimuli with a variety of targets and backgrounds, e.g., gratings [START_REF] Gellman | Short latency ocularfollowing responses in man[END_REF]. One may contrast pursuit capacity between tracked motion applied to a background texture and a target in the foreground.

Second, interaction between saccade and pursuit needs to be further studied. This can be done by varying speed and predictability of the target trajectory. When increasing velocity of the target, and under the oculomotor continuum hypothesis, pursuit movements will get interleaved with catch-up saccades that compensate for the accumulated retinal error (drift). Beyond a certain speed limit, a sequence of saccades and erratic movements-similar to those observed in our random walk condition or in the proposed simulation model-should be observed, indicating that micro-pursuits falters beyond an upper bound velocity. However, we here attain the limits of our apparatus and more precise and accurate eye-tracking methods are needed to determine whether specific catch-up micro-saccades do occur in micro-pursuit, and in discriminating them from more generic micro-saccades.

Third, decreasing the predictability of the trajectories (increasing acceleration) will also lead to a transition from micropursuit over micro-pursuit interleaved with micro-saccades, to erratic movement. One possibility is to tune noise and inertia (mass) for a stimulus position driven by Langevin dynamics as for the particle in our model.

Furthermore, manipulating the scale of the motion could provide insight into micro-pursuit's link to large amplitude smooth pursuit characteristics, and may provide hints on its functional role.

Finally, the link between perception and oculomotor control of smooth pursuits have to be studied, e.g., by varying the relative difficulty of the task (i.e., report changes) or the difficulty of the tracking. This might help in explaining the absence of positive results with respect to smooth pursuits within the Square experiment.

Conclusion

In this work, micro-pursuits are proposed as a type of fixational eye movement occurring at small amplitude, within a fixation, as the gaze follows a target. We proposed two metrics: inertia and MPC to measure gaze displacement within a fixation and to quantify gaze-target trajectory similarity, respectively. We observed fixations in a predictable motion condition with higher gaze displacement, and more specifically, for both the Necker and Cross experiment data-sets, fixations with high gaze-stimulus similarity values under predictable target trajectories for position and velocity analyses. Binocular conjuga-tion of the reported observations also provided evidence supporting the existence of micro-pursuit fixational eye movements. Micro-pursuit here is presented as a class of fixation, but further research is needed to identify the physical properties and distinguish it from other fixational eye movements. Moreover, this article calls for further investigation on the functional role of micro-pursuits, and how the oculomotor and perceptual systems interact during such movements. an attempt to explain and understand the data observed and reported in the article. Generative eye movement models use different approaches including, for instance, probabilistic models (Tatler, Hayhoe, Land, & Ballard, 2011;Gide, Karam, et al., 2017), accumulation process models (Orquin & Loose, 2013), or energy potential models (Engbert et al., 2011). Here we focus on the latter approach.

Recently, Engbert and colleagues (Engbert et al., 2011) proposed a generative model that could reproduce the statistical properties of fixational eye movements stationary displacement, namely the short term persistence and long term antipersistence of drift and tremors. They used a self-avoiding walk (Freund & Grassberger, 1992) in a discretized quadratic energy potential: at each iteration, the gaze, represented by a particle in the energy potential landscape, can either go left, right, up or down. The walker will choose the slot with the lowest energy. Once a step is made, the slot of the previous iteration is set to a high energy value, and the entire energy landscape follows a linear relaxation law. Hence, fixational eye movements bottom-up dynamics can be reproduced. Furthermore, the model also pro-posed to integrate micro-saccade generation by a threshold rule: when the particle is surrounded by options with energy higher than the threshold, it jumps to the global minimum of the energy landscape. Here, the authors provide an accumulation process linked to a global integration of the oculomotor field.

The integrated fixational eye movements model described above is a key foundation to bridge the oculomotor modeling communities and accounts for multiple fixational eye movement phenomena (e.g., drift displacement, micro-saccade, spatial orientation biases). However, it did not posses a mechanism to account for micro-pursuit, as these are hardly studied and reported. The observation of micro-pursuits presented in the article implies that the dynamics of the gaze within a fixation can be affected and attracted by motion of a perceptual object in or nearby the foveal field. Therefore, we propose modeling approach, gravitational fixational eye movements (GraFEM), inspired by gravitational energy field theory to model motion of eye movements and derived from the work on integrating fixational eye movements in energy potential models (Engbert et al., 2011).

Gravitational potential energy field modeling

Integrated and generative fixational eye movements models make use of energy potentials to generate self-avoiding walks, constrain the walks and replicate oculomotor biases (Engbert et al., 2011). In fact, the latter is used to constrain the pseudo random walk's spatial horizon. Furthermore, it can be considered as an attractor of the energy landscape. Thus, the use of the particle in an energy potential framework can be adjusted to provide biases of the stimulus on the fixational eye movement generation. Combining attractors in the energy fields, that increase the probabilities of having the gaze at some spatial coordinates, and adding stochasticity to the movement of the particle can provide a simple mechanism for fixational eye movement generation.

The attractors' properties can be manipulated over time to affect the energy field and thus dynamics of the fixational eye movements generated. The energy field that is mapped to the visual field can be populated by an arbitrary number of n attractors of varying strength (see Fig. 7-A). Inspired by the formalism of gravitational fields, one can generate fields with the following equations. Let Φ i represent the field generated by the i t h attractor given by:

Φ i (q, t ) = - 1 q(t ) -a i (t ) 2β i (t ) + δ i (t ) (4) 
with q and a i corresponding to the spatial x-y coordinates (at time t ) of the observer's gaze position and the i t h attractor, respectively. The potential landscape can be fine tuned according to assumptions on attractive attributes of the stimulus and the tasks. First, it is necessary to set how many attractors are present and give them spatial coordinates in the plane over time. Secondly, it is possible to handle the mass of those attractors and their subsequent force of attraction and distortion of the field by tuning two parameters; δ for the depth of the well and β for the concavity of its slope. Summation and normalization of the field allow for the fusion of the multiple attractors.

Φ(q, t )

= n i =1 Φ i (q, t ) (5) 
A logarithmic attenuation is added to allow the possibilities of exploring high energy areas of the visual/foveal field, giving the energy E : E = -ln(-Φ) (6)

Memory of attractor motion (Fig. 7-B) are modeled by adding a moving average (MA) process [START_REF] Hannan | Multiple time series[END_REF] on the field at a given time t :

E F E M (q, t ) = E (q, t )

+ K k=1 λ k + 1 E (q, t -k∆t ) ( 7 
)
where K is the temporal parameter limiting how far in time will the fields be summed over and with λ the relaxation rate parameter and ∆t is the temporal step size. It is also possible to set the impact of memory and anticipation through parameters that define the iteration window over which the field is deformed using traces of the attractor in the past of a given current iteration and the rate λ at which the deformation affects for a given lag. A particle of position (q) with negligible mass (or with very high friction) is dropped in the field and is disturbed by noisy force, in order to generate and simulate gaze dynamics. Therefore, given the fundamental relation for dynamics, where the accelerating second order component is neglected, the gaze particle's motion is derived by the Langevin equation (Langevin, 1908), in which m q is equal to the sum of forces applied to the particle, and can be rewritten as follows:

m q = -γ q -∇E F E M (q, t ) + ξ(t ) (8)
with m the negligible mass, γ the friction and where ξ is an external force, here an oculomotor noise (η) applied to the gaze, such that η(t ) = ξ(t )

γ . With the assumption of low mass and after normalization7 , such that E F E M = E F E M γ , the dynamics can be expressed as: q = -∇E F E M (q, t ) + η(t ) (9)

The evolution of the gaze particle's dynamics can be computed by making the problem a discrete one using the Euler-Maruyama method (Kloeden & Platen, 2013), for instance.

Model simulations: what are the parameters corresponding to ocular events & interpretation?

Fixations of 1.5 seconds, with a discretization Euler-Maruyama step ∆t = 1 ms equal to the time step, were simulated using the GraFEM model with two attractors, a cross corresponding to the attractor of a fixation cross at the center and a stim , the attractor representing the stimulus, with a Lissajous motion: a stim = (sin(2t ), sin(3t )). Only the slope and depth parameters were manipulated: β stim ∈ [0; 50] and δ stim ∈ [0; 1200]. All other parameters were kept constant with the other attractor position at a cross = (0, 0) with β cross = 1 and δ cross = 100, the relaxation rate parameter λ = 0.9, the memory temporal limit K = 5 and noise ξ ∼ U [-0.5; 0.5]. These simulated fixations were then analyzed using the measures presented in this article, namely, inertia, MPC and micro-saccade detection using the Engbert-Kliegl (EK) algorithm based on relative velocity thresholds [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]. Fig. 9-A shows that higher inertia follows a diagonal region along the {β stim , δ stim } space. When looking at Fig. 9-B, one can see that the same area in the parameter space has systematically high MPC. Finally, the EK algorithm was applied (without the binocularity criterion) to measure detected microsaccades, and summed over the time of a fixation. The results (Fig. 9-C) show that micro-saccades are detected when concavity is high due to a larger β stim parameter. 
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Discussion and perspectives: attractor, oculomotor and perceptual multi-stability

The simulation results presented above show the following three points. First, fixations' dynamics can be modeled includ-ing a variety of fixational eye movements such as drift, tremors, micro-saccades and micro-pursuits. Second, attractor dynamics can be intuitively manipulated by two parameters that control their slope and depth, hence imposing, by gravity, faster or slower dynamics on the gaze-particle. Third, generalization to more complex stimuli or tasks can be maneuvered by such a model as attractors can be multiplied, if necessary. However, this work remains preliminary and calls for further investigation. Such perspectives are discussed in the following paragraphs.

Model interpretation for eye movements

The GraFEM model proposed in this paper is capable of generating micro-saccade, drift and tremor fixational eye movements (see Fig. 8) as classified in the literature (Martinez-Conde et al., 2004) as well as the micro-pursuits presented and detected in the article as reported in Fig. 9 & Fig. 10. By using classified data (observations), the parameters of the model that allow the generation of these fixational eye movements could be inferred, and insights on the mechanics of micro-saccades, micropursuit, drift and tremor generation and their interaction can be studied. The diagrams Fig. 10 already give a useful and overall understanding of the model, with respect to the manipulated parameters, but the work on parameter inference should be addressed in a near future in more details.

Given the observed data and the proposed model to account for it, questions and perspectives can be redefined with a novel angle for interpretation of fixational eye movements. Inversion and a full analysis of a model, like GraFEM, with multiple free parameters is a complex task out of the scope of this thesis but should be tackled and reported in a near future.

The model presented here gives a mathematical framework in which eye movement phenomena can be generated and interpreted. Attractors are interesting as tools to explain and interpret cognitive and physiological behaviors as they allow an intuitive understanding of the evolution of dynamical systems (T. Watanabe, Masuda, Megumi, Kanai, & Rees, 2014;[START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. Furthermore, complex learning systems-i.e., neural networks-are known to develop such properties as the parameters of their processes tend to learn the statistics of the environment by creating attractors in the parameter space (Moreno-Bote et al., 2007;Shpiro et al., 2009;Moreno-Bote et al., 2011;Moreno-Bote & Drugowitsch, 2015).

With this modeling framework, the fixational eye movements classification of the literature can be described and interpreted in terms of attractor spatio-temporal dynamics (Fig. 9 & 10).

A stable fixation (Fig. 8-A) in the GraFEM model corresponds to a stabilization of an attractor with the energy landscape having little change. The gaze-particle is stuck and only the noise affecting its position may lead to small random movements of the eyes, as in other generative fixational eye movement models (Engbert et al., 2011;Herrmann et al., 2017). In these models, constraints to the energy field of the fixation are used in an analogous fashion to reflect the higher probabilities of having fixational eye movements in horizontal and vertical directions. A fixation attractor can thus be predicted by the task or the stimulus controlled by the experiments, and its parameters can be inferred by a priori information and data. Hence, the model gives predictive capabilities that can be tested and requires assimilation of data to constrain its range of possibilities.

Micro-saccades (Fig. 8-C) correspond to sudden changes in the energy depth of attractors, with a new one emerging or deepening while the attractor of fixation has suddenly disappeared. They are likely to emerge as the gaze-particle rushes down a gra-though it extends on the dimensions of the system. In a set of simulations reported in Fig. 9, we show that through two continuous parameters applied to a target attractor, it is possible to generate and interpret oculomotor dynamics observed in fixational eye movements. However, here, there is no prior requiring the existence of different systems for each class of movements observed (Liversedge et al., 2011). fixational eye movement dynamics can be reproduced through a unique mechanism as shown by the simulated examples in Fig. 8.

Top-down intention processes can be tested and simulated, given the context of a task, by applying changes in the model's β and δ parameters. Fig. 10 can be used as a road map of the oculomotor dynamics and regimes expected, depending on parameter values. Moreover, bottom-up saliency or attentional effects can also be taken into account. This can be done with simpler assumptions, such as the ones presented here for the task used in the article, but can be more complex if using natural scene tasks, for instance. An interesting and practical perspective in this context lays in investigating how salience models, which derive probability distribution based on the statistics of images or videos, can be integrated such that only attractors are fed into a GraFEM oculomotor execution system.

How would this be implemented in the brain?

Anatomically, oculomotor programming has been shown to be highly correlated and linked to a network of areas involving neural activity in the superior colliculus (SC), the frontal eye field (FEF) and the lateral intra-parietal (LIP) cortex (Hafed, Goffart, & Krauzlis, 2009;Krauzlis, 2004[START_REF] Krauzlis | The control of voluntary eye movements: new perspectives[END_REF]Krauzlis et al., 2017;Astrand, Ibos, Duhamel, & Hamed, 2015;Peel, Hafed, Dash, Lomber, & Corneil, 2016;Taouali, Goffart, Alexandre, & Rougier, 2015). There are inter-individual differences in anatomy and behavior for fixational eye movements measuring and observed dynamics. For instance, it has been shown that not only oculomotor behavior between trained and untrained participants vary a lot, but that drift accounts for more fixation correction motion than micro-saccades (Cherici, Kuang, Poletti, & Rucci, 2012). The observations of micro-pursuits presented in the article suggest that the dynamics of the gaze within a fixation can be affected and attracted by motion of an object in or nearby the foveal field.

However, rather than having an attractor with a pseudorandom displacement, its motion follows a deterministic and predictable trajectory, that can be computed and estimated by the oculomotor system. Moreover, that attractor is, given our observations so far, only related to a target motion. This could, for instance, be implemented in the brain by the means of an efference copy (Astrand et al., 2015), though this idea remains speculative and further modeling and neuro-physiological research is needed. The low energy attributed to a decoded and perceived object moving across space encourages the oculomotor system to track it as it tries to minimize the energy of the gaze-particle. Finally, tremors are generated and explained by the noise given to the particle over all fixational eye movement events. This model complements the eye movement field of re-search with the possibility to program intentions, salience, and their effects on the gaze dynamics by simply using attractors and setting out their dynamics in terms of motion on the visual field, depth and memory. For instance, the model can predict the different dynamics reported based on the eccentricity of an attractor corresponding to an afterimage, as observed in (Heywood & Churcher, 1972). Thus, one can use the model to generate statistical predictions of eye movement dynamics. Given an understanding of the visual attention or saliency effects of their stimulus and take into account all the associated intentions to the tasks that participants are required to be operated during a trial, it is possible to use this modeling to generate quantitative predictions on the oculomotor dynamics. Moreover, the generative properties makes it possible to work on simulated data and extract dynamics' statistics in terms of eye movements, and this is possible using the traditional algorithms for eye movements classification. Inversely, obtaining the parameters of the model that replicate the dynamics of observations could help understand better the internal processes that drive eye movements.

Perspectives: towards oculomotor multistability.

A key aspect of this family of models is that it showcases multi-stability regarding their attractors. This phenomenon can emerge in many complex biological systems and is present in many cognitive processes (Schwartz, Grimault, Hupé, Moore, & Pressnitzer, 2012). It is linked to coordination dynamics between sub-systems which have varying levels of coupling, leading to mono-stable, multi-stable or meta-stable dynamics [START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF]. The consequent interpretation is that the oculomotor system could have multi-stable dynamics with respect to visual attractors. In this case, the oculomotor dynamics are likely driven by noisy signals (J. Braun & Mattia, 2010) representing other interfering systems, such as perception, attention, intention, and other cognitive systems. This framework connects to the growing body of studies linking perceptual decisions and multi-stable system dynamics. It also creates a link for motor systems to studies of noise as a component that helps a perceptual system operate through stochastic resonance8 (Gammaitoni, Hänggi, Jung, & Marchesoni, 1998;Patel & Kosko, 2005;Kim, Grabowecky, & Suzuki, 2006).
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 11 Figure 1.1. Eye movements & instructions. Figure fromYarbus (1967) showing the variation of the spatio-temporal dynamics of gaze for one stimulus. Different tasks were given and are reported bellow the 2D gaze traces.
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 12 Figure 1.2. Saccade spatial shift. Diagram taken from Bahill et al. (1975) showing at the top the spatial shift due a 10 deg saccade and a proposed nervous signal controller associated to program it, below.

Figure 1 . 3 .

 13 Figure 1.3. Fixational eye movements. Representation of FEM dynamics with ballistic movements corresponding to micro-saccades, low frequency oscillations for drifts and high frequency oscillations for tremor. Figure taken from Martinez-Conde, Macknik, and D. Hubel (2004).
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 14 Figure 1.4. Eye movement signal processing. Overview of eye movement modelling and comparison methods taken and adapted from Coutrot et al. (2018). a) is a list of eye movement events parameters, b) is a list of spatial distribution methods for gaze analysis-i.e., Kullback-Leibler divergence (KLD), correlation coefficient (CC), Similarity (SIM), earth moving distance (EMD)-, c) is a list of string-based and geometric approaches for signal comparisons and d) regroups probabilistic approaches to eye movement analysis. The table at the bottom gives a qualitative appreciation and requirements for each cluster of method listed above. For more details on all these methods, please refer to[START_REF] Coutrot | Scanpath modeling and classification with hidden Markov models[END_REF].
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 15 Figure 1.5. Metamere & Multi-stability. Diagram showing the difference between multistable perception and perception metamere. Reproduced from original diagram in Mamassian (2006).
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 16 Figure 1.6. Circle Limit IV (Heaven and Hell), by M.C. Escher. July 1960, Woodcut, printed from two blocks.
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 17 Figure 1.7. Necker cube: one of the simplest bi-stable stimuli, in which the geometric orientation of the cube is made ambiguous by the lack of perspective, i.e., vanishing lines, or the absence of occlusion of the back side of the cube. The ambiguity of the cube was first documented by Necker (1832).
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 18 Figure 1.8. Slave Market with the Disappearing Bust of Voltaire, by Salvador Dali, 1940. This art piece plays on spatial frequencies to hide two percepts and interpretations of the scene: one being a slave market scene, and with the right distance, one can see a bust of Voltaire appear and fade in the centre.
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 19 Figure 1.9. Ambiguous figures. Top: different ambiguous figures of the categories perspective reversal: (i) the Necker Cube, (ii) the Mach book, and (iii) Schröder's staircase (taken from Wernery (2013)). Below: an example of figure-ground bi-stability with (iv) Rubin's face/vase, and semantic rivalry with (v) the duck/rabbit illusion and the (vi) the old/young woman illusion (taken from Wernery (2013)).
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 110 Figure 1.10. Binocular rivalry setups. A: diagram of a setup using red-blue googles and with competing stimuli being composed only of red or blue colours. B: picture and diagram of a setup using a miror stereoscope to project independent images on each eye. C: Diagram of a setup using prism goggles, where each prism bends light creating an effective barrier between each eye. Diagrams are taken from Carmel et al. (2010).
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 111 Figure 1.11. Necker lattice. Lattice of ambiguous bi-stable Necker cubes drawn, provided by J. Kornmeier.
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 112 Figure 1.12. Structure from motion. Diagram showing the bi-stable illusion of structure from motion, that can be generated when randomly spaced dots within, a cylinder for instance, move according to, a horizontal sinus wave for example, and create the illusion of a rotating cylinder. Perception of the direction of rotation spontaneously changes for observers, creating the bi-stable perception phenomenon. Diagram taken from Fang and He (2004).
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 113 Figure 1.13. Moving plaid. A: Diagram of the moving plaid stimulus and its two motion percepts with orange arrows. B: A third percept can be introduced if observers are asked to differentiate the depth order of the two gratings for the transparency percept. Below, the timeline of perceptual dynamics are shown, with perceptual changes occurring over time of observation of the stimulus. Diagrams taken from Moreno-Bote, Shpiro, et al. (2008).
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 114 Figure 1.14. Key press. Diagram of the motor programming process for reaction time key press events, estimated from empirical data in electro-myography (EMG) in Ballanger and Boulinguez (2009).
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 115 Figure 1.15. Discrete viewing paradigm. Experimental protocol from Kornmeier and Bach (2012) showing unambiguous (A & B) versus ambiguous (C & D) conditions contrast. Each condition shows examples where a perceptual reversal (A & C) is reported in the ISI, and perceptual stability (B & D) is reported during the ISI.
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 a Diagrams comparing oscillator and attractor models.(b) Bi-stable models.
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 1 Figure 1.16. Bi-stability. (a) Diagrams comparing oscillator and attractor models. A (left): oscillator models have deterministic trajectories between the percepts A and B in the firing rate space (r A , r B ) for a neural population coding the bi-stable perception. This leads to periodic oscillations between A and B. A (Right): an attractor models have two locations in the (r A , r b ) space and when the system is initialised, it falls to the nearest lower energy point or attractor. No change will occur unless noise is added. B: the energy function for percepts A and B in the attractor models, and an example of perceptual time series by computing the difference of firing rates δr(t) = r A -r B . C: the distribution of dominance durations for attractor models with noise. Figure taken from Moreno-Bote, Rinzel, et al. (2007). (b) Bi-stable models. Left: a diagram of the architecture of a bi-stable model with slow negative feedback β and noisy inputs I + n, with I the input and n the noise. The model has slow negative feedback in the form of adaptation (u 1 (t), u 2 (t)).Right: the consequence on alternation dynamics when the strength of noise and adaptation vary, with two extreme example points where the alternative force is absent and the models is either noise-driven or adaptation-driven. This diagram shows how noise provides the characteristic tailed distribution of dominance durations, while adaptation impacts the mean of that distribution. Taken fromShpiro, Moreno-Bote, et al. (2009).
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 a Bi-stable moving plaid. (b) Bi-stable model.
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 1 Figure 1.17. Bi-stability and the moving plaid stimulus. (a) Bi-stable moving plaid. A: a diagram of the bi-stable moving plaid stimulus with transparency, or depth ordering, percept competition and a schematic timeline of perceptual dynamics. B: a diagram showing how the multiplicative rule is applied, schematically, to fractions of dominance with different cues to build the probability distribution of each percept given the cues. (b) Bi-stable model. A: a diagram of competing neural networks coding for a percept each. B: the model's energy function with attractors for each percept as a function of the firing rate difference of the two networks (r = r A -r B ) and an adaptation force (the arrow). C: the rate difference over time, with noisy oscillations, showing residence in each percept. Figures taken from Moreno-Bote,Knill, et al. (2011) 
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 118 Figure 1.18. Spatial attention. Gaze traces from the experiment presented in B. Sheliga et al. (1995), in which the meridian effect in spatial attention is exposed by saccade deviation generated by cues in the contra-lateral side of target location.
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 119 Figure 1.19. Decision models. Figure taken from Moreno-Bote and Drugowitsch (2015)showing the results of simulations for three types of decision problems: classification, mixture identification and closest component.
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 a Predictive coding framework. (b) Free energy principle.
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 120 Figure 1.20. Predictive coding & free energy.(a) Diagram depicting the loop for perceptual inference, in which an agent interacts with its environment by capturing an estimation of the environment's state through sensations, that modify its internal states, causing the agent to act, which in turn, affects the external states.(b) The free energy principle postulates that the system is driven by surprise, i.e., when expectations are not met, and can act on its actions to minimise prediction errors or on its perceptual computations to optimise predictions and inferences. Diagrams are reproduced from Friston (2010).
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 1 Figure 1.21. Mono-, multi-, meta-stability. Diagram taken from[START_REF] Kelso | Multistability and metastability: understanding dynamic coordination in the brain[END_REF] showing the changes of regimes as a dependency of a system's sub-systems' inner coupling. Coordination dynamics have four described regimes.(a) Multi-stability where, here, two stable attractors are represented by the filled circles on the landscape of coordination variable coupling the systems oscillations together, the relative phase parameter φ, and two unstable repellors as unfilled circles.(b) Mono-stability corresponds to a shift of the coordination variable φ such that only one attractor and one repellor remain at φ = 0. (c) Meta-stability in which no attractor or repellor exist, with a system effectively using sub-system coordination, though no stable state can be found.(d) Uncoupled dynamics where no sub-system coordination are present.(e) The system's parameter space marked with areas corresponding to the described regimes and arrows showing possible transitions as the system's parameters and its coupling vary-b/a is a coupling parameter, internal to the system, while δω represent the observed coordinated dynamics.
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 1 Figure 1.22. Synthesis & simplified overview of the literature review. This diagram provides a simplified overview of the state of the art for experimental and modelling research on the processes involved in visual multi-stability.In this thesis, we approach multi-stability with models and experiments. We also focus on the relationship with relationship between oculomotor control and perception, defined as active vision, i.e., vision being coupled to the body's action to operate. The stimulus chosen for most of the study is the moving plaid, featuring tri-stable ambiguity on perceived motion direction and depth ordering. Diagram composed of figures from the literature(Engbert, Mergenthaler, et al., 2011; Moreno-Bote, Knill, et al., 2011; J. Zhang and Sclaroff, 2013;[START_REF] Huguet | Noise and adaptation in multistable perception: Noise drives when to switch, adaptation determines percept choice[END_REF].
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 2 2.1-B).Random walk trajectories were implemented by choosing at each time step an amplitude chosen from an exponential-Gaussian distribution and an orientation from a uniform distribution on (-π, π). The exponential-Gaussian distribution was built from the sum of two independent variables, = G + E where G ∼ N (µ = 1.1; σ = 0.2) is the Gaussian component, and E ∼ E(λ = 0.1) is the exponential one-units are in pixels (pix) and the ∼ symbol stands for "distributed according to". A radial limit 84 Micro-pursuits: a class of fixational eye movements

Figure 2 . 1 .

 21 Figure 2.1. Experimental protocols. A is a timeline of a trial for all three experiments (Necker, Square, Cross). For the Necker experiment, a Necker cube was displayed and the trial finished if the participant had reported a randomly picked number of perceptual reversals. For the Square and Cross experiments, a plain square was displayed and trial lasted approximately 34 seconds. A fixation cross was shown during a randomly chosen interval between 100 and 500 msec. B shows the three different stimulus motion conditions; (1) FX, for the control no-motion condition, (2) RW, for the unpredictable random walk condition, and (3) LJ, for the predictable motion based on Lissajous trajectories. C are representations of the stumuli's luminance. For the Square & Cross experiments, luminance changed randomly between 5 levels in order to provide the participants with a perceptual report task, while the Necker cube always kept a constant luminance.

2

 2 Hz. The parameters' values were chosen empirically through ad hoc tests.

  2.1-A) and ended based on which of the following condition happened first number completion of a trial-based randomly (unifromly) set integer number (n rev ∼ U(5, 9)) of perceptual reversals on the ambiguous stimulus (see Fig. 2.1-A); time-out maximal percept duration of 20 sec.
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 22902 Figure 2.2. Micro-saccade analysis.A shows the main sequences when plotting micro-saccades' amplitudes versus peak velocities for all three experiments (Necker, Cross and Square) and conditions. The colour codes for each the micro-saccade's fixation similarity score (using MPC) in the LJ and RW conditions. The LJ condition in Necker and Cross experiments shows a secondary main sequence correlated to micro-pursuit occurrences. Left side, marginal distributions of peak velocity depending on the experiment and condition are given, while below, marginal distributions for amplitudes are shown. B shows mean micro-saccade rates over experiments and conditions with, in black, 95% confidence intervals computed using bootstrap (n = 200 iterations).
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 23224 Figure 2.3. Micro-pursuit analysis. A is a box plot of I stimulus over the three experiments (Necker, Cross and Square) and three motion condition (FX, RW and LJ). Stars represent significant differences in pairwise comparisons using the Wilcoxon-Mann-Whitney test in a bootstrap. B plots the individual analysis results for I stimulus in all three experiments' participants using an approximate Kruskal-Wallis test in a bootstrap. All the participant have significant (p < 0.05) results. For individual analysis, statistics (Z score or χ 2 ) that fall inside the 95 % confidence interval were drawn with light colour whereas statistics values outside the 95% confidence interval were drawn in plain colour. The grey area defines a conservative confidence interval corrected for multiple comparisons (Bonferroni), i.e. 42 comparisons for the 42 tests computed on each subjects. C is a box plot of I fixation over all experiments and conditions. D plots the individual analysis results for I fixation . The outcome of the statistical test per participant are given through different lightness value, with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter) the opposite. E is a box plot of MPC (ρ * ) over all experiments and the RW and LJ motion conditions. F plots the individual analysis results for ρ * in all participants using an approximate Wilcoxon-Mann-Whitney test.
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 25 Figure 2.5. Focus on MPC results. Histogram of fixations by maximised correlation ρ * (MPC) scores in the Necker Cube experiment. Illustrations of signals for values in some typical score intervals are presented to give a graphical intuition of the computed measure. We picked high similarity near a score of 1, no correlation near 0 and anti-correlation near -1. Dotted trajectories correspond to stimulus signals and continuous trajectories correspond to gaze signals. Temporal discourse is represented by lighter to darker samples.

  2.4-A). Secondly, the replication of the MPC results on position and velocity signals adds weight to the reliability of the measure, with the same trends across experiments being observed (Fig. 2.3-E and Fig. 2.4-C).

  Modelling eye movements & multi-stable perception (a) GraFEM with 3 attractors. (b) GraFEM with 2 attractors.

Figure 3 . 1 .

 31 Figure 3.1. Examples of energy landscape surface plots setup using the GraFEM model for: (a) 3 attractors (n = 3) with all attractors i having no motion and the following parameters: β = 2; δ = 1; K = 5; λ = 0.9. (b) 2 attractors (n = 2) with all attractors i having the following parameters: β 1 = 2; β 2 = 4; δ 1 = δ 2 = 1; K = 15; λ = 0.9 and attractor motion computed with the following arbitrary sinusoidal motion: a 1 (t) = (0, 0); a 2 (t) = a 2 (0) + (-5 sin (2t), 5 sin (3t)), with a time step of ∆t = 13 ms. The figure is extracted from on the 75 th time step corresponding to the 975 ms into the simulation. The motion of a 2 is shown in white, with a 2 (0) = (0, 0). Though the model has many parameters, those manipulated in this work's results are exclusively the depth δ (or mass) of the attractors and the slope β by affecting the concavity of the attractors' field. White spots between attractors are rendering errors by the visualisation method.

Chapter 3

 3 3.2) as classified in the literature[START_REF] Martinez-Conde | The role of fixational eye movements in visual perception[END_REF] as well as the micro-pursuits presented and detected in Chapter 2 as reported inFig. 3.3 & Fig. 3.4. By using classified data (observations), the parameters of the model that allow the generation of these FEM could be inferred, and insights on the mechanics of micro-saccades, micro-pursuit, drift and tremor generation and their interaction can be studied. The diagram Fig. 3.4 already gives a useful and overall understanding of the model, with respect to the manipulated 118 Modelling eye movements & multi-stable perception (a) Example of a simulated fixation with GraFEM. (b) Example of a simulated micro-pursuit with GraFEM. (c) Example of a simulated micro-saccade with GraFEM.

Figure 3 . 2 .

 32 Figure 3.2. Simulation examples generated with the GraFEM model. Simulations of fixations of 3.5 seconds with Euler-Maruyama time steps of ∆t = 13 ms, with variable fixation dynamics generated through by manipulating of δ stim and β stim parameters. Constant parameters of the model were: number of attractors n = 2, with one for the fixation cross a cross = (0, 0) and another for the motion of the stimulus following a Lissajous trajectories with the same parameters as in the three experiments from Chapter 2; a stim (t) = sin(2t), sin(3t) . The relaxation rate parameter λ = 0.9, memory temporal limit parameter K = 5 and noise ξ ∼ U[-0.5; 0.5] were used. (a) A simulated fixation with stable fixation dynamics with δ cross = 100; δ stim = 100; β cross = 1; β stim = 1. (b) A simulated fixation with micro-pursuit dynamics with δ cross = 100; δ stim = 25; β cross = 1; β stim = 1. (c) A simulated fixation with micro-saccade dynamics with δ cross = 100; δ stim = 25; β cross = 1; β stim = 12 and detected using the EK algorithm for microsaccade detection.
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 33 Figure 3.3. Simulations and analyses of the GraFEM model. Simulations of fixations of 3.5 seconds with Euler-Maruyama time steps of ∆t = 13 ms, with variable fixation dynamics generated through the variation of δ stim ∈ [0; 500] and β stim ∈ [0; 15] parameters. Constant parameters of the model were: number of attractors n = 2, with one for the fixation cross (a cross = [0, 0]) and another for the motion of the stimulus following Lissajous trajectories with the same parameters as in the Necker cube experiment (Chapter 2): a stim (t) = sin(2t), sin(3t) . The relaxation rate parameter λ = 0.9, memory temporal limit parameter K = 5 and noise ξ ∼ U[-0.5; 0.5] were used. (a) Behaviour of inertia over the parameter space of the GraFEM model. (b) Behaviour of the similarity between stimulus and simulated fixation motion using the MPC ρ 1 . (c) Number of micro-saccades detected by the EK micro-saccade detection algorithm.

Figure 3 . 4 .

 34 Figure 3.4. GraFEM oculomotor interpretation. Schematic interpretation of oculomotor dynamics generated in the parameter space of the GraFEM model with manipulation of the δ and β parameters of the stimulus attractor, while keeping all other parameters constant.

Figure 3

 3 Figure 3.5. Tri-stable perception space. Visualisation of the simulated tri-stable perceptual space with three equi-distant attractors. Note that the white forms are due to errors in the visualisation method.

Figure 3

 3 Figure 3.6. Tri-stable perception interpreter. Example the tri-stable interpreter based on finding the minimal distance between the particle's samples of the filtered trajectories. In colour, distances to the three simulated moving plaid percept (for more details on the stimulus, please refer to Section 4.1) are plotted and in black the interpreter's time series with 0 for coherency (coh), 0.5 for right transparency (tr) and -0.5 for left transparency (tl).

Figure 3 . 7 .

 37 Figure 3.7. Figures are both rotated 90°anti-clockwise. Bi-stable perception simulation. Example of bi-stable simulation of 40000 iterations, with β = (3, 3), δ = (0.01, 0.01) and noise amplitude of 2.72% of attractor distance. In black, the raw signals from particle simulation and in red, the signal filtered by a 100 th order median filter. Tri-stable perception simulation. Example of tri-stable simulation of 40000 iterations, with β = (3, 3, 3), δ = (0.01, 0.01, 0.01) and noise amplitude of 2.9166% of attractor distance. In black, the raw signals from particle simulation and in red, the signal filtered by a 100 th order median filter.
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 38 Figure 3.8. Bi-stability simulations. Figure is rotated by 90°anti-clockwise. The arrows show the direction, when rotated, of increasing noise levels along lines and down columns, respectively (read like a matrix)). All 100 simulation results, after interpretation of percepts. This figure shows (qualitatively) how noise impacts the model, with simulations with lowest (top-left, when rotating) to highest (corner bottom-right, when rotating) noise amplitudes.

Figure 3 . 9 .

 39 Figure 3.9. Tri-stability simulations. Figure is rotated by 90°anti-clockwise. The arrowsshow the direction, when rotated, of increasing noise levels along lines and down columns, respectively (read like a matrix)). All 100 simulation results (some low noise simulations did not vary enough to yield interpretations), after interpretation of percepts. This figure shows (qualitatively) how noise impacts the model, with simulations with lowest (top-left, when rotating) to highest (corner bottom-right, when rotating) noise amplitudes.
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 33 Figure 3.10. Figure is rotated by 90°anti-clockwise. Bi-stability analysis. Top: Number of perceptual switches as a function of noise level in the system. Middle: Computed log-likelihood values for estimated distributions as a function of noise level in the system, for the Gamma (red) and Log-Normal (blue) distributions. Bottom: Scatter of estimated parameters for Log-Normal and Gamma distribution fits. Kolmogorov-Smirnov goodness of fit tests were computed and estimations rejected at α = 0.05 are not displayed; here 0% of the data for both Gamma and Log-Normal. Tri-stability simulations. Top: Number of perceptual switches as a function of noise level in the system. Middle: Computed log-likelihood values for estimated distributions as a function of noise level in the system. Bottom: Scatter of estimated parameters for Log-Normal and Gamma distribution fits. Kolmogorov-Smirnov goodness of fit tests were computed and estimations rejected at α = 0.05 are not displayed; here 0% of the data for Gamma and 14.82% for Log-Normal.
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 1444 The depth ordering competition corresponds to the transparency percepts, in which the gratings are seen as two different objects moving in opposite direction, with one being on closer to the observer than the other. When the grating moving rightward is perceived as closer, the percept is said to be transparency right. And when it is moving leftward, the percept is called transparency left. Multi-stability: manipulating perceptual ambiguity (a) Moving plaid. (b) Motion ambiguity.

Figure 4 . 1 .

 41 Figure 4.1. Motion ambiguity in the moving plaid. (a) Static image of the moving plaid, showing the superimposed gratings displayed behind an aperture. (b) Diagram of the relationship between the direction of motion and the interpreted sensations of motion for the aperture problem. Figure taken from ([START_REF] Wuerger | On the visually perceived direction of motion" by Hans Wallach: 60 years later[END_REF].

Figure 4 . 2 .

 42 Figure 4.2. Moving plaid parameters. Left: diagram of a moving plaid stimulus with parameter visualisation for the parameters from Tab. 4.1. Luminances L and transparencies α are not represented spatially as they refer to pixel brightness. The three continuous arrows represent the three percept of moving plaid's tri-stability. The gratings' orientation θ are shown relative to the vertical axis. The gratings' motion velocity is shown as the horizontal dashed lines v L and v R . Finally, duty cycle D L is shown as well as spatial frequencies' wavelengths λ L . Right: the moving plaid, when presented is occluded by a layer with an aperture hole, such that the bars' edges are not visible, thus creating an ambiguous motion. r A and r F define the radius for the aperture and the fixation area, respectively.

Figure 4 . 3 .

 43 Figure 4.3. Moving plaid perception. Diagrams presenting the perceptual dynamics of the multi-stable moving plaid stimulus. A: diagram showing the two different perceptual interpretation considered in the case of the bi-stable plaid. B: diagram showing a schematic example of the temporal discourse of perception.Figure taken from[START_REF] Rubin | Dynamics of perceptual bistability: Plaids and binocular rivalry compared[END_REF].

Figure 4 . 4 .

 44 Figure 4.4. Moving plaid literature results.A: the relative dominance of coherency (C/[C + T ] with C and T the coherency and transparency percepts' total durations over a trial, respectively) follows the same dynamics as the logarithm of the first percept duration (RTransp) over variations of relative orientation differences-here named Alpha, but referred to as θ diff in this thesis, not to be confused with the transparency parameters.B left shows the decrease of RTransp over Alpha (θ diff ) for three groups of participants tested over different plaid parameter values, while right shows the effect of grating velocity, referred to as velocity v in this thesis. Bottom, shows how dominance of coherency increases gradually as duty cycle tends towards 0.5. C: provides the results for different spatial frequencies (SF here, but f in this thesis) as Alpha (θ diff ) is manipulated, while below illustrations of the plaid with different function patterns are given. Figures were taken from[START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF].
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 45 Figure 4.5. Motion orientation in the moving plaid. Polar plot showing the coherency dominance (C/[C + T ]) as a function of orientations (0°, 45°, 90°, 135°, 180°, 225°, 270°and 315°). Examples of perceived directions at orientations (45°, 180°and 270°) are shown, with global motion direction being shifted. Taken from Hupé and Rubin (2004).
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 46 Figure 4.6. Active multi-stable perception. Diagram showing a simplified representation of the motor and perceptual systems, and their interactions for visual perception. The experiments listed are placed as they test specific interactions when observing a multi-stable moving plaid stimulus.

( a )

 a Bar motion. (b) Bar motion with aperture.(c) Gratings' motion.

Figure 4 . 7 .

 47 Figure 4.7. Grating motion. For all these figures, dashed lines show physical motion and full lines show perceived motion. (a) Diagram showing the motion of a bar, horizontally as shown by the dashed arrow, over three time steps δ. The continuous black arrows show how the visual system will identify the corners as the most salient points, based on contrast, and will track their motion to infer the perceptual object's motion. (b) Diagram showing the motion of a bar implemented in the experimental code, as shown by the dashed arrow, over one iteration. A circular hole is drawn to describe the aperture problem: when the visual system has no information on the hidden corners of the bar, it uses the square wave front, as it is the most contrasted area of the stimulus, to estimate and infer motion direction. However, as shown by the multiple arrows at the central point, without the corners, the brain can infer multiple directions, with velocity of perceived motion varying depending on the direction. Note that this occurs along the entire wave front. (c) Diagram showing the physical motion of two gratings, with different directions as shown by the dashed arrows, over one iteration. Here the most salient points, based on contrast, are the edges of the diamonds formed at the relatively transparent gratings. Two types of motion can be predicted based on perceptual depth organisation:(1) if the system infers two distinct grating objects, the system will infer motion going along the wave front with the lowest velocity as it will be the most present and central vector in the inference problem, and(2) if the system infers a single uniform grid object, the addition of the two transparent grating vectors will provide a unique displacement vector with higher velocity.

Figure 4 . 8 .

 48 Figure 4.8. Moving plaids over α. Examples of plaids generated with varying values for transparencies: α L = [1, 0.75, 0.5, 0.25, 0] and α R = 1 -α L .

Figure 4 . 9 .

 49 Figure 4.9. Protocol. Experimental trial protocol structure for the Percepts experiment. The arrow represents the direction of time.

( a )

 a Raw mouse responses (S1). (b) Corrected mouse responses (S1).

Figure 4 . 10 .

 410 Figure 4.10. Mouse responses. (a) Plot of all raw mouse tracking responses for S1, showing the dispersion over all orientation due to the uniform random sampling of θ offset . (b) Plot of all the mouse tracking responses for S1 once θ offset is compensated.We can see that the responses concentrate in the upper part of the screen, with three main paths being systematically taken.
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 4 • correspond to means and numbers following ± correspond to standard deviations.166 Multi-stability: manipulating perceptual ambiguity (a) Angular histogram of all participants' data. (b) Estimated Von Mises density functions.

Figure 4 .

 4 Figure 4.11. Von Mises estimation. (a) Histogram of participants' responses' orientations (count for 9 participants with 500 trials each) with respect to the centre of screen. Angles have been corrected of the randomly picked orientation offsets θ offset . (b) Von Mises functions estimated (no units) using the expectation maximisation algorithm with estimated parameters (µ 1 = 55.62°; κ 1 = 30.823), (µ 2 = -0.72°; κ 2 = 40.799) and (µ 3 = -55.62°; κ 3 = 14.751).

( a )

 a Responses over entire space. (b) Transparency sub-space projection.

Figure 4 . 12 .

 412 Figure 4.12. Response orientation as a function of α. (a) Direction of mouse responses' orientations, with respect to screen centre, depending on the randomly picked α = [α L , α R ] values during all trials. Data has been corrected so that 0°corresponds to the top of the screen, vertically. (b) Data projected on the line in the α space that satisfies α L + α R = 1.

Figure 4 . 13 .

 413 Figure 4.13. Model construction. Diagram showing the composition of the psychoobserver model. On the left, the Sigmoid function for the X = l percept, see Equation (4.14).At the centre, the model when adding the X = r percept using the hypothesis of symmetry between transparency percepts. On the right, the full model when adding the X = c percept using the hypothesis of complementarity of the 3 percepts.

Figure 4 . 14 .

 414 Figure 4.14. Maximal ambiguity space. Domain (Θ 1 , Θ 2 ) allowing to derive α ± as specified in the text.

Figure 4 .

 4 Figure 4.15. Protocol. A: Phase 1 short trial timeline of stimulus presentation. B: Phase 2 long trial timeline of stimulus presentation.

Figure 4 .

 4 Figure 4.16. Empirical data & model example. Density functions are displayed in this figure. It shows an example resulting empirical f (α L X) density estimation using a bounded convoluted Gaussian kernel and the theoretical probability densities p(X α L ) computed, based on the parameters estimated from phase 1 data using maximum log-likelihood, for participant S15. Dashed lines represent the empirical density functions, while the continuous lines represent the estimated model's probability densities. And the dotted black lines represent the inferred α + and α -points of maximal ambiguity α amb . Data points collected in phase 1 are displayed below.

Figure 4 . 17 .

 417 Figure 4.17. Empirical data & model. Left column, the p(α L X) (normalised) densities using the empirical probability density estimation method. Right column, the p(X α L ) using the observer model after estimating Θ for each participant over the 200 short trial data set, using the post-hoc approach. Subject numbers are listed on each row.

( a )

 a Log-likelihood cross-validation. (b) Kullback-Leibler divergence cross-validation.

Figure 4 .

 4 Figure 4.18. Cross-validation. (a) Box-plot of log-likelihood computed over train, test, and H0 data sets show the stability of the model over phase 1 data. Individual data points are shown as points. (b) Box-plot of Kullback-Leibler divergences (D KL ) computed over the data and H0 show the stability of the model over phase 2 data and phase 1 estimation. Individual data points are shown as points.
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 51 Figure 5.1. Random-dot kinematogram. Schematic illustration of the six types of signal/noise display generated by the rules described in the text. The figure shows examples with 50% coherence and rightward signal motion in each case. Dots designated as signal dots for the following displacement are shown as open circles, those designated as noise dots are solid circles. In the random-position case, the displacement vectors shown join each noise dot to its new position selected by the plotting algorithm; for the visual system, these are not necessarily the most effective pairings for generating motion signals. Figure taken from Scase et al. (1996).
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 52 Figure 5.2. No-report perceptual inference example. A: Cumulative smooth pursuit (CSP) over time in an example trial showing the temporal dynamics of OKN eye movements for a binocular rivalry. The arrows show that ocular response is faster than key press report. B: Violin plots showing the distribution of latencies for ocular responses and key press report, thus confirming the tendency for faster perceptual change reports using eye movements. C: Violin plots of the latencies relative to key press, showing yet again, that ocular response is systematically faster than key press volitional report. Figures taken from Aleshin et al. (2019).
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 53 Figure 5.3. Cumulative smooth pursuit algorithm. Diagrams explaining the different steps of gaze analysis presented in Aleshin et al. (2019) by using an example temporal series. A: Plot showing the original data (grey) and the detection of smooth pursuit epochs (red) and rejected parts of the signal. B: Plot showing the effect of the cumulative smooth pursuit shift (blue) such that spatial offsets introduced by saccades and blinks are compensated. C: Plot showing the first order derivative, velocity, of the gaze signal in green with shades for ±95% confidence intervals, with the inferred percepts in red, the threshold area used in the algorithm for perceptual inference in grey, detected and rejected perceptual switches marked by dots on the time series. Below, snap shots of C showcasing I a remain in percept scenario, II an extended and prolonged transition from one percept to the other with rejected threshold crossings within, and III a clear transition from one percept to another.
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 54 Figure 5.4. fMRI activity in multi-stable energy landscapes. Schematic illustration of the methods used to analyse fMRI data during a bi-stable perception. As different regions of the brain display changing fMRI activity pattern, the activation is considered as a system in its parametric space, where attractor states exist. The energy landscape provides probabilistic information on the system's behaviour patterns. Figure taken from T. Watanabe et al. (2014).

Figure A. 3 .

 3 Figure A.3. Retinal image projection. Diagram showing the geometry of retinal image projection and the computation of visual angle.

Figure A. 4 .

 4 Figure A.4. The eye. Diagram of an eye and its structure: the cornea, the iris, the lens, the retina, the fovea, the optic disk and the optic nerve. Figure taken from Wandell (1995).

Figure A. 8 .

 8 Figure A.8. Brain structure. Drawing of a brain showing the convolutions and folds of the cortical tissue. The lobes are localised. Image taken from Wandell (1995).

  Figure A.9. Neurosciences of vision. (a) Diagram of the visual pathways from the retina to the striate cortex, going through the optic nerve and the LGN. Coloured patches show how the image is manipulated to obtain retinotopic projection. Taken from Remington (2012). (b) Vogt's scheme of the fundamental plan of cellular (left) and fibre (right) layering in the cerebral cortex. The cellular layers (I through VI) are those given in the text and Vogt divides them into sub-layers. Taken from E. Jones (2004).

  Fig. A.11 for a simplified model of cortical areas involved in vision. This was shown by the works of Melvyn A Goodale and A David

Figure A. 12 .

 12 Figure A.12. Binocular rivalry. Illustration of the propagation of perceptual alternation in binocular rivalry. Figure taken from Chopin (2012).

Figure A. 13 .

 13 Figure A.13. Percept durations. A & B: The durations of the first seven successive phases are presented for both the auditory modality (A, dark gray) and the visual modality (B, light gray). C & D: The histograms of durations of grouped and split phases are presented, compiled for all participants (n = 23) and percept types (grouped and split). E & F: The duration of a percept is shown as a function of the duration of the previous percept, for all participants (n = 23). Figure taken from Pressnitzer and Hupé (2006).

  Figure A.13. Percept durations. A & B: The durations of the first seven successive phases are presented for both the auditory modality (A, dark gray) and the visual modality (B, light gray). C & D: The histograms of durations of grouped and split phases are presented, compiled for all participants (n = 23) and percept types (grouped and split). E & F: The duration of a percept is shown as a function of the duration of the previous percept, for all participants (n = 23). Figure taken from Pressnitzer and Hupé (2006).
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 14 Figure A.14. Percept duration distribution. Example of histogram of phase duration distribution fitted to a Gamma distribution: φ(t) = t 3 exp -t/6. Taken from Levelt (1967).

Figure A. 16 .

 16 Figure A.16. Time-frequency (TF) analysis. Diagram showing the results over time of TF analysis and sources in the EEG data. On top, the dynamics for the ambiguous Necker lattice. Below, the results for the unambiguous condition. Figure taken from Kornmeier and Bach (2012).

Figure A. 17 .

 17 Figure A.17. Frequency tagging. A: Experimental MEG setup with the Face/Vase frequency tagged stimulus. B: Example of a spectral density at one sensor with peak power on the tagged frequencies. C: Example of a time-frequency analysis plot with energy at the tagged frequency over a reported perceptual change. Figure taken from Parkkonen et al. (2008).

Fig. B. 1

 1 Fig. B.1 shows results of simulations operated on a Lissajous signal degraded noise on the position of the stimulus at different signal to noise ratio (SNR) and for different signal sizes. For signals with more than 167 samples, the behaviour of MPC scores over SNR remains stable and shows quasi-unchanged dynamics.

Figure B. 1 .

 1 Figure B.1. Behaviour of MPC scores over SNR in simulated similarity computations with a Lissajous base signal from LJ.

Figure B. 2 .

 2 Figure B.2. Random-dot kinematogram. Schematic illustration of the six types of signal/noise display generated by the rules described in the text. The figure shows examples with 50% coherence and rightward signal motion in each case. Dots designated as signal dots for the following displacement are shown as open circles, those designated as noise dots are solid circles. In the random-position case, the displacement vectors shown join each noise dot to its new position selected by the plotting algorithm; for the visual system, these are not necessarily the most effective pairings for generating motion signals. Figure taken from Scase et al. (1996).

Figure B. 6 .

 6 Figure B.6. Protocol. Diagram showing trial structure.

  . The parameters' values were chosen empirically through ad hoc tests.

Figure 1 :

 1 Figure 1: Experimental protocols. A is a timeline of a trial for all three experiments (Necker, Square, Cross). For the Necker experiment, a Necker cube was displayed and the trial finished if the participant had reported a randomly picked number of perceptual reversals. For the Square and Cross experiments, a plain square was displayed and trial lasted approximately 34 seconds. A fixation cross was shown during a randomly chosen interval between 100 and 500 ms. B shows the three different stimulus motion conditions; (1) FX, for the control no-motion condition, (2) RW, for the unpredictable random walk condition, and (3) LJ, for the predictable motion based on Lissajous trajectories. C are representations of the stumuli's luminance. For the Square & Cross experiments, luminance changed randomly between 5 levels in order to provide the participants with a perceptual report task, while the Necker cube always kept a constant luminance.

Figure 2 :

 2 Figure2: Micro-saccade analysis. A shows the main sequences when plotting micro-saccades' amplitudes versus peak velocities for all three experiments (Necker, Cross and Square) and conditions (FX, RW, LJ). The color encodes the micro-saccade's fixation similarity score (using MPC) in the LJ and RW conditions. Left side, marginal distributions of peak velocity depending on the experiment and condition are given, while below, marginal distributions for amplitudes are shown. B shows mean micro-saccade rates over experiments and conditions with, in black, 95% confidence intervals computed using bootstrap (n = 200 iterations).

Figure 3 :Figure 4 :

 34 Figure 3: Micro-pursuit analysis. A is a box plot of I stimulus over the three experiments (Necker, Cross and Square) and three motion condition (FX, RW and LJ). Stars represent significant differences in pairwise comparisons using the Wilcoxon-Mann-Whitney test in a bootstrap. B plots the individual analysis results for I stimulus in all three experiments' participants using an approximate Kruskal-Wallis test in a bootstrap. All the participant have significant (p < 0.05) results. For individual analysis, statistics (Z score or χ 2 ) that fall inside the 95 % confidence interval were drawn with light color whereas statistics values outside the 95% confidence interval were drawn in plain color. The gray area defines a conservative confidence interval corrected for multiple comparisons (Bonferroni), i.e., 42 comparisons for the 42 tests computed on each subjects. C is a box plot of I fixation over all experiments and conditions. D plots the individual analysis results for I fixation . The outcome of the statistical test per participant are given through different lightness value, with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter) the opposite. E is a box plot of MPC (ρ * ) over all experiments and the RW and LJ motion conditions. F plots the individual analysis results for ρ * in all participants using an approximate Wilcoxon-Mann-Whitney test.

Figure 6 :

 6 Figure 6: Behavior of MPC scores over signal to noise ratios (SNR) in simulated similarity computations with a Lissajous base signal from LJ, with varying signal sample sizes.

Figure 7 :Figure 8 :

 78 Figure7: Examples of energy landscape surface plots setup using the gravitational fixational eye movements (GraFEM) model for: A shows 3 attractors (n = 3) with all attractors i having no motion and the following parameters: β = 2; δ = 1; τ = 5; λ = 0.9, and B shows 2 attractors (n = 2) with all attractors i having the following parameters: β 1 = 2; β 2 = 4; δ 1 = δ 2 = 1; τ = 15; λ = 0.9 and attractor motion computed with the following arbitrary sinusoidal motion: a 1 (t ) = [0, 0]; a 2 (t ) = a 2 (t = 0)+[-5 sin (2t ), 5 sin (3t )] on the 75 t h iterations. The motion of a 2 is shown in white. Though the model has many parameters, those manipulated in this work's results are exclusively the depth δ (or mass) of the attractors and the slope β by affecting the concavity of the attractors' field.

Figure 9 :

 9 Figure 9: Simulations and analyses of the GRAFEM model. Simulations of fixations of 1.5 seconds with Euler-Muruyama time steps of ∆t = 1 ms, with variable fixation dynamics generated through the variation of δ stim ∈ [0; 1200] and β stim ∈ [0; 50] parameters.Constant parameters of the model were: number of attractors n = 2, with one for the fixation cross (a cross = [0, 0]) and another for the motion of the stimulus following Lissajous trajectories with the same parameters as in the Necker cube experiment: a stim (t ) = sin(2t ), sin(3t ) . The relaxation rate parameter λ = 0.9, memory temporal limit parameter K = 5 and noise ξ ∼ U [-0.5; 0.5] were used. A shows the behavior of inertia over the parameter space of the GraFEM model. B shows the behavior of the similarity between stimulus and simulated fixation motion using the MPC ρ 1 . C shows the number of micro-saccades detected by the EK micro-saccade detection algorithm.

  

  

  

  

  On one hand, a top-down view, supported by the observations of voluntary control, knowledge of reversibility, priming and cognitive load

(see Tab. A.1 in Appendix A.4), was developed. On the other hand, a bottom-up view, driven by the observations of initial adaptation, local adaptation, multiple-figure presentation, reverse-bias, (dis-)continuity of presentation and viewing parameters (see Tab. A.1 in Appendix A

  .3) With W , the Kendall's W value, χ 2 the Friedman test statistic value, N the sample size and k the number of measurements per subject. For each test, we report the χ 2 Friedman test statistic, with the p-value (p) computed with the bootstrap, it's effect size (Kendall W). For individual statistical analyses, we carried out an approximate Kruskal-Wallis test for inertia and an approximate Wilcoxon-Mann & Whitney test for MPC and pairwise comparisons using the same bootstrap package, with 10000

permutations. To compare experiments' data, Kruskal-Wallis tests were used over the three experiments' RW and LJ data, respectively, and Wilcoxon-Mann & Whitney tests were used to infer differences between pairs of experiment data-sets in each condition, with the same packages.

Table 2 .

 2 

	(N = 23)	FX	RW	LJ	χ 2	p	W
	Ĩstimulus	0.458 ± 0.151 194.404 ± 20.301 173.708 ± 12.018 42.348 < 0.0001 0.921
	Ĩfixation	0.018 ± 0.010	0.020 ± 0.012	0.070 ± 0.042	36.261 < 0.0001 0.788
	ρ *	n/a	0.477 ± 0.035	0.869 ± 0.081	23	< 0.0001	1

1. Left, Summary statistics of three measures for the Necker experiments in the FX, RW and LJ motion conditions; inertia w.r.t. stimulus centre of gravity (I stimulus ), inertia w.r.t. fixation centre of gravity (I fixation ), and MPC (ρ * ). For each condition in the Necker experiment, median values over participants' data are given with median absolute deviation (mad) following the ± sign. Right, Approximate Friedman test results (χ 2 ; p) and size effect (W ) are given.
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Table 4 .1. Moving plaid parameters.

 4 Parameters manipulated to generate a single square wave grating. Background (L BG ), gratings' (L L ,L R ) and aperture (L A ) luminances are provided as normalised numerical values which are then translated into physical light emitted by the screen an measured in candela for a surface (cd.m -2 ). Their numerical values change according to computations described in Section 4.2.2. ∅: ratios with no units.

	Formal symbol	Description	Values	Units
	θ	orientation	±30	deg
	L	base-line luminance	0.35	∅
	α	transparency	(0, 1)	∅
	v	velocity	±1.5	deg.s -1
	f	spatial frequency	0.01	Hz.pix -1
	D	duty cycle	0.35	∅
	r A	aperture radius	6.37	deg
	r F	fixation disk radius	1.25	deg

Table 4 .3. Model estimation over short trials

 4 

. The resulting maximal ambiguity points given the estimated Θ parameters for each participant using the post-hoc method and the original method from

[START_REF] Parisot | Modélisation de l'ambiguïté d'une multi-stabilité visuelle[END_REF]

. ∅ corresponds to data sets with no α amb solutions in R.

Table 4 .4. Empirical probability entropy

 4 

	Participant µ(H) σ(H) µ(∆H)	µ(p l ) µ(p c ) µ(p r )
	S1	0.82	0.27	0.0552	0.24	0.31	0.45
	S3	0.43	0.37 -0.0040	0.24	0.19	0.57
	S9	0.80	0.37	0.1119	0.42	0.22	0.37
	S10	0.68	0.34	0.0387	0.2	0.25	0.55
	S11	0	0	0	0.5	0	0.5
	S12	0.62	0.05 -0.0128	0.47	0.34	0.19
	S13	0.98	0.17	0.0626	0.3	0.38	0.33
	S14	0.32	0.26	0	0.46	0.16	0.38
	S15	0.50	0.22	0.0733	0.5	0.26	0.25
	S16	0.43	0.24 -0.0011	0.47	0.33	0.2
	S17	0.48	0.34	0.0719	0.19	0.4	0.41
	S18	0.75	0.26	0.0597	0.36	0.33	0.3
	S19	0.01	0.04	0	0.4	0	0.6
	S20	0.45	0.28	0.0544	0.24	0.45	0.31
	S21	0.58	0.07	0.0208	0.37	0.26	0.36
	S22	0.67	0.15	0.0050	0.31	0.34	0.35

. Phase 2 data observed entropy for all participants, averaged (µ(H)) over all 10 trials, and with standard deviation (σ(H))

)

  With W , the Kendall's W value, χ 2 the Friedman test statistic value, N the sample size and k the number of measurements per subject. For each test, we report the χ 2 Friedman test statistic, with the p-value (p) computed with the bootstrap, it's effect size (Kendall W). For individual statistical analyses, we carried out an approximate Kruskal-Wallis test for inertia and an approximate Wilcoxon-Mann & Whitney test for MPC and pariwise comparisons using the same bootstrap package, with 10000 permutations. To compare experiments' data, Kruskal-Wallis tests were used over the three experiments' RW and LJ data, respectively, and Wilcoxon-Mann & Whitney tests were used to infer differences between pairs of experiment data-sets in each condition, with the same packages.

Table 1 :

 1 Left, Summary statistics of three measures for the Necker experiments in the FX, RW and LJ motion conditions; inertia w.r.t. stimulus center of gravity (I stimulus ), inertia w.r.t. fixation center of gravity (I fixation ), and MPC (ρ * ). For each condition in the Necker experiment, median values over participants' data are given with median absolute deviation (mad) following the ± sign. Right, Approximate Friedman test results (χ 2 ; p) and size effect (W ) are given.

	Necker (N = 23) Ĩstimulus Ĩfixation ρ *	FX 0.488 ± 0.189 0.649 ± 0.190 0.629 ± 0.159 RW LJ 0.019 ± 0.009 0.024 ± 0.015 0.071 ± 0.051 n/a 0.509 ± 0.048 0.921 ± 0.047	χ 2 23.565 < 0.0001 0.512 p W 37.130 < 0.0001 0.807 23 < 0.0001 1

Résumé vulgarisé : La vision nous permet d'acquérir de l'information sur notre environnement, à distance, avec précision. L'oeil n'étant qu'un capteur de photons hétérogène de faible résolution, comparé aux appareils photo, le cerveau doit donc avoir des techniques efficientes cachées. Il utilise les mouvements des yeux pour créer des perceptions riches et ainsi, il est capable de résoudre des problèmes d'ambiguïté visuelle. Nous montrerons comment la multi-stabilité, un type d'illusion où la perception d'une personne change mais le stimulus reste le même, permet de mettre en lien vision et action. Nous présenterons la micro-poursuite : un petit mouvement de suivi d'un objet. Nous utiliserons la gravité pour prédire des liens entre action et perception. Nous manipulerons l'ambiguïté du plaid en mouvement, un stimulus multi-stable, pour évoquer les pistes devant permettre de décoder la perception dans les mouvements des yeux. Finalement, quel est le sens de la notion de stabilité dans la perception ?x

For instance, when a short additional comment might provide useful information to the reader but is not sufficiently developed to fit a box.

This chapter is designed for vision researchers and dives into multi-stable perception. However, readers wishing further context, notes and reviews may be interested to follow the many pointers presented in boxes, for a more complete and introductory understanding of cognition and vision.

1.1 Visual perception

Consciousness is not a quantifiable and measurable property of neural information, at the time of writing. And though we might be aware of some properties of a perceptual object, our conscious representation may neglect more fine details of the object.12Chapter 1 Ambiguity for the human visual system

i.e., one copy may contain the information for a desired action that is not carried out, while a latter one will only keep the neural information for action executed.1.1 Visual perception

A notion taken from astronomy in which, when plotting colour versus brightness, all stars follow a path in that space. In eye movement research, the field hypothesises that evolution has led humans to maintain an advantageous trade off between accuracy and duration of the saccade movement.

Glissades are defined as movements that follow saccades with slight overshoot and when the gaze needs to be readjusted.

i.e., Anti-saccades or saccade deviation.16Chapter 1 Ambiguity for the human visual system

A stimulus made of a cloud of points in which numerous points have Brownian motion while an arbitrary number of them have a coherent motion within the cloud.1.1 Visual perception

Retinal errors: q R = q G -q S , where [q R , q G , q S ] are bi-variate signals of the [x, y] coordinates on the screen plane converted into visual degrees (deg), for the retinal image, the gaze and the stimulus, respectively. Retinal slip: qR = qG -qS , which is same computation, but on the target and the eyes' velocities.

Relative to other FEM components; all these movements are within 1 deg of amplitude.20Chapter 1 Ambiguity for the human visual system

Though there are parallels with cortical anatomy and physiology, on top of behaviour performances, the deep learning models use implausible mechanisms, for instance, back-propagation, to learn the features.1.1 Visual perception

For more on visual illusion, the reader can delve into https://michaelbach.de/ot/ or Martinez-Conde and Macknik (2017).26Chapter 1 Ambiguity for the human visual system

The Caterpillar is ambiguous in his structure, as he is described to have a head that can be viewed as a human male's face or being a caterpillar's end head with legs.

Hamlet is classic example of a protagonist showing moral ambiguity in literature. He has dual objectives as he tries to protect his mother and avenge his father. While Ophelia's death shows he has a human side with emotions, he carries on his vengeance leading to the death of many innocent characters.28Chapter 1 Ambiguity for the human visual system

In which case, the system would be said to be mono-stable.1.2Vision & ambiguity: how does the brain handle it?

1.2 Vision & ambiguity: how does the brain handle it?

For an example, go to http://www.michaelbach.de/ot/col-equilu/index.html.

For an example, go to http://www.michaelbach.de/ot/mot-sam/index.html.1.2Vision & ambiguity: how does the brain handle it?

For an example, go to http://www.michaelbach.de/ot/mot-mib/index.html.

We refer to experimental paradigms as families of protocols and approaches in methodologies that have a common structure and constraints, beyond parameter changes.

By mid-term we mean effects that are in the order of magnitude of a tens of seconds.1.2Vision & ambiguity: how does the brain handle it?

Chapter 1 Ambiguity for the human visual system

more details on adaptation will be given in the review of models, however, for now, adaptation refers to a process that drives a baseline oscillatory behaviour in bi-stability

Perceptual memory refers to short term memory, present in the lower visual cortex, and used in the processes that reconstruct the visual experience[START_REF] Magnussen | The psychophysics of perceptual memory[END_REF].1.2Vision & ambiguity: how does the brain handle it?

The fraction of dominance here corresponds to the empirical probability of a percept PA over total observation time.1.2 Vision & ambiguity: how does the brain handle it?

Spike-frequency adaptation or synaptic depression. 1.2 Vision & ambiguity: how does the brain handle it?

e.g.,Posner, Stroop, etc. 

For a complete and recent review readingGide, Karam, et al. (2017) is recommended.1.3 Why do we study multi-stable perception?

1.3 Why do we study multi-stable perception?

Chapter 1 Ambiguity for the human visual system

1.4 State of the art synthesis

Chapter 2 Micro-pursuits: a class of fixational eye movements

2.1 Introduction

Here, we present the velocities rather than frequencies to provide comparable measures across reviewed articles. However, in most cases, the target signal corresponds to a sinusoidal movement, thus velocity is not constant over a period.

2.1 Introduction

The surface area of the ellipse such that the data belong to this area with a probability of 68% when a two dimensional Gaussian fits the data; roughly speaking, up to a factor, it is the determinant of the empirical covariance matrix.2.2 Micro-pursuits

2.3 Main Experiment: Necker cube

Here, data points refer to a statistic of a fixation period, for a given experiment, subject and condition. We also have outliers subject (71 years old) that is not removed.2.3 Main Experiment: Necker cube

2.4 Replication Experiments: Square & Cross

2.5 Comparing Necker, Cross and Square experiments-Corrected in Appendix C

2.6 Discussion-Corrected in Appendix C

3.1 Gravitational fixational eye movements

Chapter 3 Modelling eye movements & multi-stable perception

Note that in the next equation, we use EF EM with the same notation as above, which is not exact writing though it simplifies reading. We refer to a normalised term by γ in the next equation.

Chapter 3 Modelling eye movements & multi-stable perception

The formalism with the l-norm is presented as such to show the flexibility of such energy potential models such as the one presented here, which could, in theory, allow to approach complexity levels close to the human visual system. However, in the rest of this section, given we have no hypotheses on that complexity, we work on p = 2 and l = 2.126Chapter 3 Modelling eye movements & multi-stable perception

3.2 Multi-stable perception

4.1 Hypotheses

i.e., a perceptual attractor for the visual system 142 Chapter 4 Multi-stability: manipulating perceptual ambiguity

Chapter 4 Multi-stability: manipulating perceptual ambiguity

Chapter 4 Multi-stability: manipulating perceptual ambiguity

4.2 Percepts experiment: identifying the motion percepts

Chapter 4 Multi-stability: manipulating perceptual ambiguity

At θ = ±45°the coherency percept dominates so much that the multi-stability phenomenon disappears for most inexperienced observers. Going beyond the gratings' 45°rotation means that the coherency becomes the mono-stable percept. One can test this with the online moving plaid demo developed by J.M. Hupé: http://www.cerco.ups-tlse.fr/~hupe/plaid_demo/demo_plaids. html 4.2 Percepts experiment: identifying the motion percepts

More precisely, a central value between the light and dark values from the square wave was given, such that the luminance of the dark component of the square was L-= LG -k and the light component was L+ = LG + k. In our experiments, we set k = 0.15 and LG = 0.35 for the normalised luminance values, before the control was applied. 160 Chapter

Multi-stability: manipulating perceptual ambiguity

Values are given in degrees and corrected for the -90°shift, such that 0°corresponds to the top of the vertical axis.4.2Percepts experiment: identifying the motion percepts

In fact, the experiment was composed of three phases, though the third one will not be presented in details as it did not yield any significant or interesting results.172Chapter 4 Multi-stability: manipulating perceptual ambiguity

As a reminder, the orientation responses measured with the mouse key press in the Percepts experiment was also discrete, though its resolution was multiple orders of magnitude higher.4.3Ambiguity experiment: percept probabilities w.r.t. transparency

Note that one can also consider total trial time, which would include key press transition latencies.4.3Ambiguity experiment: percept probabilities w.r.t. transparency

4.3 Ambiguity experiment: percept probabilities w.r.t. transparency

We assume percepts are independent, even though this is unlikely.

Note that this is a bias as phase 1 data will have much more weight than phase 2 data. However, to counter act this, one would need to define p(X αL, t) with t a time duration of observation. Here, we did not carry out such generalisation.4.3 Ambiguity experiment: percept probabilities w.r.t. transparency

Though the implementation searches a minimum on a positive transformation the log-likelihood.

5.1 Synthesis of contributions

Chapter 5 Multi-stability as a probe of synergy between action and perception?

Chapter 5 Multi-stability as a probe of synergy between action and perception?

Chapter 5 Multi-stability as a probe of synergy between action and perception?

5.3 Eye movements as objective markers in ambiguous perception

5.4 What does stability mean for perception?

Degeneracy is value of component independence to generate a function in a complex system.

Chapter 5 Multi-stability as a probe of synergy between action and perception?
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Influential researchers from cognitive sciences are mapped in Fig.A.1 (Núñez et al., 

2019).

Distant from the observer.

The optical image on the retina, at the back of the eye.

A view in which eyes were believed to have an "inner fire" propagating rays towards the perceived objects.A.2 From the eyes to the brain

Over 100 million light-sensitive photoreceptors cover the retina.

The main ophthalmic conditions, e.g., myopia, hyperopia or presbyopia, are due to the focal point of the cornea being placed in front or behind the retina. Note that the cornea is elastic and can adjust the focal point's position depending on whether the observer focuses on distant or close-by objects.

Sensitivity means that the reactivity of the cell is higher. For instance, a rod needs less luminance, less photons, and less time to activate.A.2 From the eyes to the brain

More puzzling, the intuitive relationship actually occurs in invertebrate eyes.

Often due to strokes, head injuries, or brain tissue removal.

The visual information from the left visual field is projected on the right striate cortex, and vice versa.A.2 From the eyes to the brain

When a patient has a visual deficit for a specific task such as face recognition or reading, for instance.

Neuro-imaging techniques mostly provide correlative evidence. But the TMS methods provide non-invasive techniques that permit artificial over-activation or inhibition of specified cortical areas at the surface of the brain.

Percept reversal speed corresponds to the inverse of percept's (x) durations: vx = 1 tx .

Refer to the following paragraph on electro-physiology results for further evidence of this statement.A.5 Multi-stability & neurosciences

Psycho-physical bias measured by how much, observers perceived the plaid motion to be higher or slower than its physical velocity direction. For eye movements, bias was a measure of the difference between processed gaze patterns and the physical velocity directions of the plaid.A.6 Eye movements & the plaid

A.8 Gaze-EEG experimental design

Orthogonality, in retrospective, may be a better option.

As a reminder, our data has the 0°value at the top of the vertical axis of the polar circle.B.2 Eye Movements experiment

For the use of the notations in this manuscript the reader is referred to Appendix A.

Here, we present the velocities rather than frequencies to provide comparable measures across reviewed articles. However, in most cases, the target signal corresponds to a sinusoidal movement, thus velocity is not constant over a period.

Here, data points refer to a statistic of a fixation period, for a given experiment, subject and condition. We also have outliers subject (71 years old) that is not removed.

Indeed, we suppose the stimulus will always be at a constant phase with respect to the gaze, either lacking behind in phase (catching up on the stimulus) or ahead of phase (prediction), the scale difference is our main objective, showing that the stimulus trajectory is reproduced at a smaller scale and, finally, the coordinate translation shows a systematic bias in the trajectories.

Note that in the next equation, we use E F E M with the same notation as above, which is not exact writing though it simplifies reading. We refer to a normalized term by γ in the next equation.

Stochastic resonance refers to phenomena in which a system is able to detect a weak signal because noise boosts it, by providing the energy needed for the signal's frequencies to resonate mutually.

Acknowledgments

We wish to thank Rubén Moreno-Bote, Laurent Madelain and the three anonymous reviewers for their helpful comments on earlier versions of this manuscript as they provided a fresh look for new analyses that led to key findings post-hoc. This research was partially funded by a grant from the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

thèse est non-négligeable. Une thèse se vit dans un contexte

Publication.

The work presented in this chapter is exploratory and partially completed. Its aim is to provide the reader with some understanding of the theoretical framework used to develop the experimental work in the following chapters.

Subj.

(µ r , µ c , µ l ) (deg) (κ r , κ c , κ l ) Est. Thres. (deg) Rayleigh test (T ) S1 (-58.45, -1.74, 57.64) (89.87, 88.02, 60.58) (-30.23, 25.27) 0.778; p < 0.0001 S4 (-52.90, -2.53, 53.05) (43.23, 48.23, 41.73) (-27.09, 24.33) 0.9274; p < 0.0001 S5 (-59.93, 0.53, 49.19) (74.10, 114.61, 3.42) (-85.77, 12.46) 0.7187; p < 0.0001 S6 (-58.56, -3.27, 38.30) (26.07, 12.98, 8.66) (-34.64, 16.97) 0.8659; p < 0.0001 S7 (-45.21, -1.08, 34.97) (25.56, 47.12, 13.56) (-20.48, 13.68) 0.9383; p < 0.0001 S8 (-58.7, 0.81, 60.31) (154.9, 31.67, 145.89) (-39.74, 40.97) 0.825; p < 0.0001 S9 (-57.42, -1.14, 59.22) (91.19, 36.08, 71.71) (-35.95, 33.90) 0.6004; p < 0.0001 S10 (-5.66, -1.85, 173.50) (6.91, 74.12, 36.71 EEG electro-encephalography. 26, 39, 42, 45, 62, 66, 154, 204, 212, 214, 278, 280, 289, 291, 292, 298, 300-304 EfRP eye fixation related potentials. 304 EK Engber- Kliegl. 88,[118][119][120]312,42 ERP event relate potential. 39,40,290,291,300,303,304 EsRP eye saccade related potentials. 304 FEF frontal eye field. 13,55,56,124,141 FEM fixational eye movements. 19-21, 68, 69, 71, 73, 74, 78-83, 89, 94, 101, 103-107, 109, 113-115, 118, 122-124, 135, 137, 197, 199, 212, 214, 215, 295, 302, 304, 307 FFA fusiform face area. 293 fMRI functional magnetic resonance imaging. 27,39,42,44,55,56,215,216,278,289,293,298,300,301 i.e., chemical reaction, acoustical vibrations, photon detection, etc, which are distinguished as modalities of perception; in other words, senses.

Perceiving the world can be achieved via various methods. These are often categorised as modalities or senses. For instance for humans, olfaction relies on chemical reactions to estimate the composition of the air surrounding, while audition is based on the vibration of the eardrums, and for the sense of touch, the signals come from the somatosensory system composed of a variety of receptors (mechanorepectors, thermoreceptors, pain receptors, etc). In the case of vision, light is sensed through photoreceptors in the eye, and more specifically, in the retina. The information from each modality have varying benefits and constraints for the survival of an organism. While touching enables one to gain information on the heat, the texture and the size of an object, it requires one to be close to the object of study. On the other hand, vision for instance enables an organism to obtain information from afar, but is vulnerable to obstruction, when line of sight is lost. Though these modalities vary in terms of the physics of the observed phenomenon and the physiology of their sensors, they are combined to form complex representations of the world that are referred to as percepts.

A.1 Theoretical context A.1 Theoretical context

Complexity in the brain.

The complexity, briefly described above, provides vertebrates' brains their capacities to act and interact with their environment. Complexity, here, is characterised by:

• the number of neural units and their connections,

• the large variability in the biological and chemical composition of these neurons,

• a highly complex metabolism,

• a system that operates at multiple scales (molecular, cellular, network and behavioural),

• and with a variety of architectures.

Other interesting properties lie in the robustness, energy efficiency and performances of the brain as a computing system. Indeed, vertebrates have functioning brains for long life spans, some loss of components does not necessarily degrade performances and mostly, brains show high plasticity and capacities to adapt and learn [START_REF] Dayan | Theoretical neuroscience: computational and mathematical modeling of neural systems[END_REF]. In an evolutionary context, these features have been useful and essential in the survival of species with such complex processing system. The highly diverse, parallel, and complex nature of mammal brains have made them capable to adapt and evolve rapidly to changes in their environment, giving them more chances to survive [START_REF] Adami | Evolution of biological complexity[END_REF][START_REF] Godfrey-Smith | Environmental complexity and the evolution of cognition[END_REF]. Here again, nature offers different layers and methods for the evolution of behaviours-e.g., genetic changes, neural plasticity, social identity, etc. Perception and consciousness are phenomena that give organisms methods to treat information of their environment, and adapt these methods.

From perception to consciousness

Perceptual information can sometimes be experienced by human primates consciously. For instance, you, the reader, can be conscious of the visual information you experience in order to read this manuscript, when considering the text's visual forms (e.g., letters, words, spacing, etc) rather than its semantic meaning. This degree of consciousness is somewhat vague and troublesome to define as, for instance, experienced and efficient readers run through words with no need to consciously process letters individually [START_REF] Rumelhart | An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model[END_REF]. This is not the case for children learning to read who represent an extreme example of readers with little experience in the task [START_REF] Casco | Visual selective attention and reading efficiency are related in children[END_REF][START_REF] Blythe | Visual information capture during fixations in reading for children and adults[END_REF]. The phenomenon of consciousness has remained a mystery to most researchers and intellectuals as far as written history goes ( [START_REF] Gulick | Consciousness[END_REF]. A marking turn in philosophy has been the work of René Descartes, which led to the view of dualism (Descartes et al., 1970). The idea, that conscious thoughts and objects live in a world separated from the physical world, has since been discarded by materialist and scientific approaches [START_REF] Dennett | Consciousness explained[END_REF][START_REF] Damasio | Descartes' error[END_REF]. The range of solutions

Photons.

In vacuum, that speed has been established as the constant c of 299 792 458 meters per seconds (m.s -1 ) and corresponds to a single Planck unit. The Planck units were proposed by Max Planck as the natural constants of physical cosmology because they were defined solely by properties of free spaces and are not of any chosen object or particle. They set the granular limits of the standard model of physics. The other four constants are the gravitational constant (G), the reduced Planck constant ( ), the Coulomb constant (k e ) and the Boltzmann constant (k b ) [START_REF] Penrose | The road to reality: A complete guide to the laws of the universe[END_REF]. However, in the air, the speed of light is affected by the refractive index defined as n = c/v, where v is the velocity of light in the air. Thus, given the refractive index of air (n = 1.0003), the speed of light in air is approximately 299 702 547.2358 m.s -1 .

Light has three main types of interaction with a surface (see Fig. A.2b):

1. transmission, in which the photons go through (and can be refracted), 2. absorption, in which the photons are trapped and, 3. reflection in which photons bounce back in different directions.

Reflection implies that light interacts with a surface and the direction and angle of photon propagation changes. For instance, in visual perception, the properties of reflection help infer on texture properties; a matte surface will be associated to a different type of surface than a specular (see Fig. A.2b). This is due to how the light is reflected-in a diffused fashion for the matte surface, a coherent one for the specular. Surfaces are considered as secondary light sources as they imply an interaction with the original light that can be perceived to infer an object's properties. A.2 From the eyes to the brain eye manage the physiological optics, the front-end of the visual system. Once the photons hit the retina, the information is transformed into neural signals.

From photons to neurons. The photons interact with cells at the back of the eye called photoreceptors, composed of two classes: rods and cones. The former are more numerous (about 120 millions) and are highly sensitive 7 to light and located all across the retina, except at the centre. They are the peripheral photoreceptors and enable the detection of visual information in low luminance levels (also known as scotopic conditions), e.g., in the dark or at night. The latter, the cones, are less present in the retina (about 8 millions) and have lower sensitivity. They are densely positioned at the centre of the retina, in the fovea, with exponentially decreasing concentrations as shown by Fig. A.5 (Wandell, 1995). Cones are the receptors that capture most of our visual experience as they function at medium and high luminance levels (also known as photopic conditions). The fovea, where cones are concentrated, covers a small part of the visual field of approximately 2 degrees, the size of one's thumbnail at arm's length. However, this is where the visual system captures information the most precisely and in colour-i.e., adding more dimensions to light perceived referred to as chrominance. The retinal design is actually full of counter intuitive properties. For instance, the photoreceptors are truly at the back of the eye, and the outer segments and the following cells are placed in front of them, in the direction of the photons' arrival. However, the retinal cells are relatively transparent which allow photons to be still detected. Another aspect is the presence of numerous dark blood vessels irrigating the eye's cells. They are however invisible in perceptual experience. This is explained by the fact that as light enters the eye, the shadow of such vessels is deported over different angles, thus the way more numerous photoreceptors still get light, more

A. 2 From the eyes to the brain level of overlap, thus allowing the detection of contours and of object by using Gabor filter models for signal processing of early cells in V1 (J. P. Jones and L. A. Palmer, 1987b;J. P. Jones and L. A. Palmer, 1987a;Szulborski and L. A. Palmer, 1990;[START_REF] Nishimoto | Receptive field properties of neurons in the early visual cortex revealed by local spectral reverse correlation[END_REF] and by combining receptive fields horizontally, and processing further up the information through a layered architecture vertically [START_REF] Wandell | Foundations of Human Vision[END_REF][START_REF] Breuil | Étude du rôle de la couleur dans la perception visuelle des scènes naturelles[END_REF].

The layers are organised as in most parts of the cortex, with sensory information coming from the magnocellular and parvocellular pathways-two pathways that propagate the visual information at different speeds and spatial frequencies-on layer 6 (see ??) towards the inner layer 1 and further cortical areas [START_REF] Hendry | A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus[END_REF][START_REF] Wandell | Foundations of Human Vision[END_REF]. The visual signals are therefore carried through this series of layers, with a variety of selection based on spatial properties and decoded features. Since there is a retinotopic projection in V1, it acts as the basis before the information is dispatched across the rest of the brain to interact with other neural networks and cognitive functions-for instance, the content of visual awareness can be decoded using neuro-imaging techniques focused on V1 [START_REF] Haynes | Predicting the stream of consciousness from activity in human visual cortex[END_REF][START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF]. One should note that, at this stage, the visual information has already been impacted by feedback mechanisms (in the LGN or SC for example) and will be in the following cortical areas where it spreads. The complexity of understanding human vision arises from these multiple loops and interactions with memory and predictions.

A.2 From the eyes to the brain 

Visual consciousness in the fronto-parietal networks

After tracing back the discourse of information in the visual system, from photons to the brain, going through the retina, the LGN and the visual cortex, we are confronted again with questions and problems linked to consciousness, as approached already at the end of Appendix A.1. Consciousness is considered through multiple definitions across the literature, with criteria that vary across authors. The notion of having a self and its capacity to do meta-cognition on perception for instance, is a key aspect. More precisely, the capacity for a thinking organism to have second-order and beyond thoughts, and from there, to be able to construct a narrative that explains perception and actions, is used to define consciousness. Another criterion is the necessity for conscious information to flow through multiple feedback connections also referred to as recurrent processing [START_REF] Sporns | Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections[END_REF][START_REF] Lamme | Towards a true neural stance on consciousness[END_REF]. Finally some authors refer to consciousness as a rich personal experience that is the qualitative particularities of sensory experience also known as qualia [START_REF] Chalmers | The hard problem of consciousness[END_REF].

A.2 From the eyes to the brain and C. S. [START_REF] Strüber | Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception[END_REF][START_REF] Vanrullen | Is perception discrete or continuous?[END_REF][START_REF] Vanrullen | Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability[END_REF][START_REF] Dubois | Visual trails: do the doors of perception open periodically?[END_REF][START_REF] Dehaene | Experimental and theoretical approaches to conscious processing[END_REF].

Though there is still a lot to uncover around NCC, researchers have started addressing methodological issues to orient data collection towards more objective methods. Visual consciousness shows particularly interesting features such as perceptual reversals when visual information is ambiguous but constant. Such changes are explained by one key property of human's visual system: representations are constructed by applying inference mechanisms.

A.2 From the eyes to the brain at the time were invasive, they were used mostly in medical contexts [START_REF] Dodge | The angular velocity of eye movements[END_REF][START_REF] Huey | The psychology and pedagogy of reading[END_REF]. The systems used contact lenses on the cornea connected to an apparatus where light was projected and thus movement was detected, while other systems used electro-oculography [START_REF] Heywood | Eye movements and the afterimage-i. tracking the afterimage[END_REF]Heywood and Churcher, 1972).

Methodological apparatus evolved gradually but kept cumbersome and invasive constraints up until the 1970s (Yarbus, 1967;Cornsweet and H. D. Crane, 1973;[START_REF] Mele | A psychotechnological review on eyetracking systems: towards user experience[END_REF]. As technology evolved towards digital instruments and with the advent of better cameras and computers in the 1980s, video-based eye trackers became more disseminated and accessible for research, and their accuracy and usability increased.

Eye tracker.

The systems used in this thesis are provided by SR Research and belong to the EyeLink category of eye trackers, more precisely, the EyeLink1000 and the EyeLink1000+. They measure gaze and pupilometry signals by projecting infrared light and detecting its reflection on the cornea. The EyeLink1000+ can sample the data at 2000 Hz when the head is stabilised on a chin-rest apparatus, with an accuracy between 0.25 deg and 0.5 deg and a resolution of 0.01 deg, in binocular recording.

The signals are combined with eye models and calibration data to estimate the position of gaze and the size of the pupils [START_REF] Abramov | Artificial eye for assessing cornealreflection eye trackers[END_REF]. As instruments have become more off-the-shelf and commercial, the data has gained in standardisation. However, differences and imprecision persist at very small amplitude and has been shown to be related to the artificial eye models' noise structure [START_REF] Coey | On the structure of measurement noise in eye-tracking[END_REF][START_REF] Wang | A study of artificial eyes for the measurement of precision in eye-trackers[END_REF]. Researchers have also started adding their hardware and software proposals for digital signal processing systems that can provide fast and accurate real-time gaze position in order to implement gaze contingency 13 at intervals of 10 ms [START_REF] Santini | EyeRIS: a general-purpose system for eye-movement-contingent display control[END_REF]. 13 An experimental paradigm in which the retinal image position is control by feeding back the position of the gaze to the experimental display computer in order to correct the stimulus.

A.3 Tracking the eyes

A.4.5 First percept

The first percept at stimulus onset has been described as somewhat different and special from others [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF]: it is longer and tends to be idiosyncratic, e.g., biased for each subject (Fig. A.13). In binocular rivalry, the first percept has been linked to an ocular preference [START_REF] Chopin | Traitements probabilistes implicites de la perception ambiguë en vision humaine[END_REF] which disappears with the following phases. This has led some teams describe the temporal dynamics and discourse of bi-stable perception as a double regime phenomenon: an initial and a stationary one [START_REF] Mamassian | Temporal dynamics in bistable perception[END_REF]. Thus, using this approach, it is possible to describe bi-stable perception in a Bayesian framework [START_REF] Ee | Bayesian modeling of cue interaction: bistability in stereoscopic slant perception[END_REF] by estimating probabilities a posteriori.

A.4.6 Theories & properties of bi-stable perception

Tab. A.1 provides a synthesis of theories and properties on bi-stable perception driven by empirical observations.

A. 4 Multi-stable perception detailed description

Bottom-up evidence

Description

Initial adaptation

Early trials can be subject to higher number of reversals reported as participants need to get used to the experimental setup.

Local adaptation

When a stimulus is rotated or moved in the visual field of the observer, perceptual reversal rates decrease as shown by [START_REF] Blake | Visual motion retards alternations between conflicting perceptual interpretations[END_REF].

Multiple-figure presentation

Simultaneous observation of two or more bi-stable stimuli is characterised by independent reversals as well as independent adaptation [START_REF] Toppino | Selective adaptation with reversible figures: Don't change that channel[END_REF].

Reverse-bias (priming)

A percept can be positively biased if the observer is exposed in a prolonged fashion to an unambiguous version of a percept [START_REF] Long | Prime time: Fatigue and set effects in the perception of reversible figures[END_REF]. (Dis-)Continuity of presentation Introducing inter-stimulus-interval and making the presentation of the stimulus discontinuous affects reversal rates (D. [START_REF] Leopold | Stable perception of visually ambiguous patterns[END_REF].

Viewing parameters

The stimulus parameters (e.g., size, speed, etc) can influence the distribution of observed percept duration [START_REF] Hupé | The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids[END_REF].

Top-down evidence Description

Voluntary control Volition has been shown to impact the speed of perceptual reversal in Wernery (2013). However it is not possible to prevent perceptual changes altogether, one can only decrease or increase the rates.

Knowledge of reversibility

Completely naive observers with no description of bi-stability are more likely to experience stable perception for long periods of time until the first change is experienced [START_REF] Rock | Further evidence of failure of reversal of ambiguous figures by uninformed subjects[END_REF]. Priming (set effect) Ambiguous perceptual experience can be influenced by presenting a cue that influence observers towards a percept, via binding for instance (Schwartz et al., 2012).

Cognitive load

Diverting attention to a distractor task has been shown to slow down the reversal process for ambiguous figures and binocular rivalry [START_REF] Alais | Attending to auditory signals slows visual alternations in binocular rivalry[END_REF]. 

A.5 Multi-stability & neurosciences

Using fMRI has allowed researchers to identify regions and neural correlates of multi-stable perception. The fMRI studies of the blood oxygenation level dependent (BOLD) signals of V1 have shown that the spatio-temporal dynamics of perceptual alternations in multi-stability has strong effects on the measured activity. Indeed, as previously mentioned, this has allowed teams to predict perceptual states in rivalry based on the BOLD signal measured in V1 by using a multi-voxel pattern analysis [START_REF] Haynes | Predicting the stream of consciousness from activity in human visual cortex[END_REF][START_REF] Rees | Neural correlates of the contents of visual awareness in humans[END_REF]. Studies using MEG [START_REF] Cosmelli | Waves of consciousness: ongoing cortical patterns during binocular rivalry[END_REF][START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF] have also shown that it is possible to read the neural bases of visual consciousness of participants. Interestingly, a team has shown that it is possible to induce perceptual alternations using TMS on V1, suggesting a causal role of the information coded at that level in modulating binocular rivalry [START_REF] Pearson | The effects of transcranial magnetic stimulation on visual rivalry[END_REF]. However, this seems unlikely for ambiguous figures as competition seems to occur in higher cortical areas. Hence, these findings suggest that the early visual areas can be seen as a buffer for visual information and can be modulated by feedback mechanisms from higher-order areas that inhibit features [START_REF] Sterzer | The neural bases of multistable perception[END_REF].

The classic approach is to use a protocol that includes two perceptually equivalent conditions: natural rivalry and a biased-stimulus controlled rivalry (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF]. The data of the two conditions are then subtracted from each other in order to mark out the areas where hemodynamic activity exists in bi-stable rivalry, which involve neural processes resolving conflict of perception, and the other condition, where vision is unambiguous. The results highlight activations in several areas of the frontal and parietal cortices in binocular rivalry, and seem to be systematically lateralised to the right hemisphere of the brain.

A.5.1 EEG: results from continuous viewing paradigms

EEG studies have attempted to characterise perceptual reversals more precisely by observing the time discourse with high temporal resolution. A classical approach is the manual response paradigm in which, a P-300 like parietal positivity, 250 milliseconds before key press has been consistently observed, as well as a decrease of energy in the alpha frequency band and an increase in energy in the gamma frequency band [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Gamma band increase has been interpreted as linked to attention and top-down processes. However, the paradigm shows some limits as the data show high inter and intra-individual variability and arguments that bring together the top-down and bottom-up understandings of multistability. Their integrated theory is founded upon two processes: a destabilisation, that can be initiated from top-down, bottom-up processes or noise over variable and potentially long periods, and a restabilisation or disambiguation, that follows the reversal positivity and that operates within approximately 60 ms to provide a new interpretation to the observer. Finally, following a similar paradigm, researchers have shown that working memory load modulated the observed ERP in reversals of the Necker cube though the behavioural reversal rates remained unchanged [START_REF] Intaitė | Event-related potential responses to perceptual reversals are modulated by working memory load[END_REF]. Hence, this suggests that in discontinuous presentation of ambiguous figures, reversals are influenced by an early mechanism and that the effects of the load on the ERP might correspond to prefrontal cortex outbound top-down processes' impact on visual processing.

A.5.3 EEG & MEG: frequency tagging

An alternative paradigm has been explored in EEG and MEG by using a stimulus' frequency attributes to retrieve its content in cortical oscillations. This method is described as frequency tagging whereby the experimenters will add dynamic noise at two tagged frequencies for each part of the stimulus that corresponds to a percept. For instance, this was done on the Face/Vase stimulus which features a figure-ground ambiguity and percepts can be separated spatially [START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF])-see Fig . A.17. Another method was to tag the motion of the rival stimuli to a frequency in binocular rivalry [START_REF] Cosmelli | Waves of consciousness: ongoing cortical patterns during binocular rivalry[END_REF]. Finally, in a more subtle manner, researchers have shown that when the perceptual competition occurs over spatial frequencies, these can be exploited to retrieve perceptual information in EEG (M. [START_REF] Smith | Perceptual moments of conscious visual experience inferred from oscillatory brain activity[END_REF].

A 

Neural correlates of consciousness.

No-report paradigms in experimental neuroscience profit from a growing interest as more researchers aim to investigate the NCC and this has been made possible by the development of neuro-imaging techniques [START_REF] Crick | Towards a neurobiological theory of consciousness[END_REF]. NCC theories differ and the topic is far from being settled with for instance some authors providing evidence for the Global Work-Space Theory associated to pre-frontal cortex (PFC) activity [START_REF] Baars | An architectural model of conscious and unconscious brain functions: Global Workspace Theory and IDA[END_REF][START_REF] Dehaene | Experimental and theoretical approaches to conscious processing[END_REF]. Higher-Order Theory also view PFC activity as a NCC [START_REF] Lau | The higher-order view does not require consciously self-directed introspection: response to Malach[END_REF]. In opposition, other researchers defend that NCC are situated in posterior parts of the cortex [START_REF] Lamme | Towards a true neural stance on consciousness[END_REF][START_REF] Koch | Neural correlates of consciousness: progress and problems[END_REF]. PFC theories have been criticised as its activity does not correlate with consciousness per se but with cognitive processes that follow perceptual awareness [START_REF] Michel | Minority Reports: Consciousness and the Prefrontal Cortex[END_REF]. This argument emerges from methodological constraint because experiments require participants to report whether they have perceived the phenomenon of study consciously or not.

A solution to such arguments is to develop methods that make it possible for experimenters to infer the consciousness of a percept during a task, or the alteration of an observer's perceptual awareness without relying on explicit report. If this is achieved, observers will not have to introspectively reflect on the content of their consciousness, making them use their meta-cognitive abilities [START_REF] Faivre | Behavioral, modeling, and electrophysiological evidence for supramodality in human metacognition[END_REF][START_REF] Faivre | Sensorimotor conflicts alter metacognitive and action monitoring[END_REF].

To apply such methods, experimenters must find methods in which they can reliably infer conscious perceptual dynamics. Multi-stability offers many advantages for such problems. Indeed, the aspect in which we are interested is perceptual awareness changes; this is different from contrasting conscious versus unconscious perception. Changes in perceptual consciousness may reveal some of the cortical areas necessary to operate perceptual reorganisation (Kawamoto and J. A. [START_REF] Kawamoto | A neural network model of multistable perception[END_REF][START_REF] Baå-Eroglu | Multistable visual perception induces a slow positive EEG wave[END_REF].

The field of consciousness studies, and more specifically NCC, have tried to use binocular rivalry to develop no-report paradigms.

A.7 Can we remove subjective reports on the moving plaid?

tagging and TF analysis in MEG [START_REF] Cosmelli | Waves of consciousness: ongoing cortical patterns during binocular rivalry[END_REF][START_REF] Parkkonen | Early visual brain areas reflect the percept of an ambiguous scene[END_REF]. The Gamma band at 30-80 Hz has been reported to be linked to perceptual changes and in fronto-parietal networks while alpha band energy is reported to be higher in stable perceptual phases [START_REF] Başar-Eroglu | Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance[END_REF][START_REF] Strüber | Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception[END_REF]Strüber and C. S. Herrmann, 2002;[START_REF] Mathes | Voluntary control of Necker cube reversals modulates the EEG delta-and gamma-band response[END_REF][START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF][START_REF] Strüber | Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception[END_REF]C. S. Herrmann et al., 2016).

Experiments in fMRI have also shown that it is possible to predict and decode the perception based on activity in cortical areas [START_REF] Haynes | Predicting the stream of consciousness from activity in human visual cortex[END_REF][START_REF] Brouwer | Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics[END_REF][START_REF] Rees | Neural correlates of the contents of visual awareness in humans[END_REF][START_REF] Sterzer | The neural bases of multistable perception[END_REF][START_REF] Megumi | Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception[END_REF]. The methods presented also showed evidence that the competition in multi-stable perception occurs at different stages of the visual cortex. Motion rivalry is reported to be detected in the MT/V5 area for instance, while figure-ground dynamics are decoded from lower visual area (D. [START_REF] Leopold | Multistable phenomena: changing views in perception[END_REF].

Overall, parietal and prefrontal cortex activity correlates to perceptual changes though frontal activity might be related to meta-cognitive and introspective activities [START_REF] Kanai | Human parietal cortex structure predicts individual differences in perceptual rivalry[END_REF][START_REF] Frässle | Binocular rivalry: frontal activity relates to introspection and action but not to perception[END_REF].

The aims in this experiment are to (1) manipulate ambiguity, (2) manipulate oculomotor dynamics and (3) to be able to infer perception without relying on explicit motor commands, i.e., key presses. Note that this experiment adds EEG measurement to previous experimental setups. An expected challenge from such an experiment is to show that gaze-EEG coupled analysis can be applied on a continuous viewing paradigm [START_REF] Devillez | The P300 potential for fixations onto target object when exploring natural scenes during a visual task after denoising overlapped EFRP[END_REF][START_REF] Kristensen | Méthodologie de traitement conjoint des signaux EEG et oculométriques: applications aux tâches d'exploration visuelle libre[END_REF]. Indeed, the issues for EEG and MEG studies on bi-stable perception studies are centred around temporal synchronisation for signal analysis [START_REF] Kornmeier | Ambiguous figures-what happens in the brain when perception changes but not the stimulus[END_REF]. Since most multistable perception experiments rely on key press reports to relate the dynamics of the subjective perceptual experience, and that the motor response latencies can vary between 200 ms and 600 ms, the signals are hard to align, unlike in classical on-set paradigms.

Ambiguity control based on the Ambiguity experiment's results

The Ambiguity experiment (Section 4.3) led to the development of methods that allow to control the level of ambiguity of the moving plaid stimulus by relying solely on gratings' transparencies (α) as control parameters. We reduced this manipulation to one of the two gratings' transparency by constraining the relationship between α L and α R to (4.9): α L +α R = 1. We introduced a psycho-physical observer model [START_REF] Bak | Adaptive stimulus selection for multialternative psychometric functions with lapses[END_REF] We use • for the transpose operator and trace(•) will denote the trace operator (sum over the diagonal elements of a matrix). The identity matrix in dimension 2 will be denoted by Id 2 .

Variance-covariance and inertia

Let q G (t) = (x G (t), y G (t)) , q S (t) = (x S (t), y S (t)) , and q R = (x R (t), y R (t)) be the screen Cartesian coordinates (column vectors) at time instant t of the Gaze, the stimulus, and the retinal image, respectively. Now, having samples at n discrete times {t i } n i=1 , we estimate the centre of gravity of a gaze trajectory {q G (t i )} n i=1 by its empirical mean m G = n -1 n i=1 q G (t i ). This estimate approaches the true centre of gravity if we sample sufficiently regularly and beyond twice the Nyquist frequency, conditions that are met when working with the EyeLink 1000+, sampling at about 1000 Hz for each eye.

A second-order statistic of interest is the empirical variance-covariance matrix, which gives the inertia of the gaze trajectory defined as

and analogously for the stimulus and retinal image empirical variance-covariance matrix. The inertia about its centre of gravity is then given by

The relationship was not expected to be necessarily symmetrical; indeed inhibition should be less powerful as excitation.

Random-dot kinematogram.

A RDK is a set of points that have random movements in a defined area. Different implementations exist [START_REF] Scase | What is noise for the motion system?[END_REF] with the three main noise methods combined with two dot signal selection methods (see Fig. B.2).

• Random position-when a dot is selected as noise, its next position will be chosen using a random distribution-mostly a uniform distribution over an area, but not necessarily-and it will be relocated at that position at the next iteration.

• Random walk-when a dot is selected as noise, it will follow a random walk, also known as Brownian motion [START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF], in which the dot's direction and amplitude are randomly picked over each iteration.

• Random direction-when a dot is selected as noise, it will have a fixed motion direction which is drawn once for its entire life time, at birth.

• Same-when a dot is selected as noise, it remains so for its entire life time.

• Different-dots are selected as noise at each iteration.

These methods generate different spatio-temporal dynamics, visually and perceptively, and the coherence ratio-e.g., the percentage of dots that are associated to the signal-affects visual decoding with varying degrees of efficacy [START_REF] Scase | What is noise for the motion system?[END_REF][START_REF] Pilly | What a difference a parameter makes: A psychophysical comparison of random dot motion algorithms[END_REF].

In other words, the threshold for the correct detection of the signal's direction varies across RDK methods. Moreover, it has been reported that the smooth pursuit latency and early eye acceleration are not affected by the type of RDK, but late eye acceleration, pursuit gain and perceived velocity were dependent on RDK type (Schütz, D. I. Braun, Movshon, et al., 2010). Perception and pursuit performance also showed correlated dynamics. The authors interpreted their results as the pursuit system showing a capacity to integrate across directions of the RDK's signal, but not velocity.

B.2.2 Methods

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 59 cm from the participants. Eye tracking was done using an EyeLink 1000+ (SR Research). Calibration was applied using a 5 points procedure between each block and if drift correction failed. Drift correction was applied after each trial. ). There was one trial per combination of coherency level and RDK direction, and one control trial with no RDK and instead a simple dot (shown as 0% in the results). This summed up to a total of 18 trials per phase. However, two phases were carried out: one with the moving plaid (with a perceptual reporting task identical to the Ambiguity experiment) and RDK at the centre, the other with only the RDK and a grey empty space instead of the gratings. Phase order was selected randomly, and trials within each phase were shuffled randomly. Hence participants had to go through 36 trials in total, all with eye-tracking measurements.

B.2 Eye Movements experiment

Participants 10 individuals (3 males, 7 females; mean age of 26 years old and standard deviation of 8.52 years) participated in the experiment after signing declarations regard-

B.2 Eye Movements experiment

Circular statistics were carried out on the polar representation of the velocity time series of the gaze using MATLAB's CircStat toolbox [START_REF] Berens | CircStat: a MATLAB toolbox for circular statistics[END_REF]. For each epoch retained, we first tested whether velocity directions of gaze samples were uniform using a Rayleigh test, after smoothing the signal with a Savitzky-Golay filter (Press and Teukolsky, 1990) spanning over 50 ms. If the uniformity test was rejected at α = 0.05, then we computed the mean velocity directions for left and right eye signals and verified that they did not differ by more than π 2 . If velocity directions were conjugated, a one-sample circular t-test for the mean angle compared to the expected value based on the RDK direction was applied. The algorithm is described in Algorithm 1.

Algorithm 1: (Micro-)pursuit direction detection.

Result: Once the (micro-)pursuit direction detection was finished, a pursuit score was obtained by computing the ratio between pursuit duration and the sum of epochs durations in the epochs table. As this work was a pilot experiment and carried out on a small sample with many different conditions, no statistical analyses are presented and only a data description will be given.

B.2.3 Results

The data is visualised in Fig. B.5 where pursuit scores against RDK orientation are displayed, with RDK amplitude levels being discriminated by colours, for the phases with and without the moving plaid task. RDK seems to have generated few (micro-)pursuits in the phase without plaid task, except for the -90°trials in which participants made high pursuit scores. Meanwhile in its counterpart, we measured pursuits in some directions, namely 0°, -60°and 60°, when the plaid perceptual task was active. The effect appears to be irrelevant of RDK amplitudes across orientations and most potent at 0°. These measured pursuits thus occured at the directions coincidental with the perceived directions of the moving plaid percepts-i.e., 0°for coherency, -60°for right transparency and 60°for left transparency, as observed empirically in Section 4.2 in Chapter 4.

B.3 Noisy Motor Events experiment

B.3.1 Methods: no-report and no-fixation protocols with the moving plaid

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 59 cm from the participants. Eye tracking was done using an EyeLink 1000+ (SR Research). Calibration was applied using a 5 points procedure between each block and if drift correction failed. Drift correction was applied between each trial.

Stimulus

The moving plaid stimulus was presented in the same setup as in the Ambiguity experiment with the coherent percept being perceived towards the top of the screen. Presentation time was of 40 seconds.

Protocol

The experiment was composed of two crossed conditions. On one side, we contrasted report versus no-report trials, and on the other, we had an oculomotor restriction task, i.e., fixing the central dot with the gaze, versus free oculomotor exploration of the stimulus. Each of these four conditions were organised in blocks of 12 trials with 2 trials being unambiguous. For each participants, the block order was sorted randomly. The report vs no-report contrast was meant to test the hypothesis on oculomotor markers of perception. The fixation vs free exploration contrast was meant to test the hypothesis on oculomotor marker amplification by manipulating the oculomotor task given to participants. Finally, non-ambiguous stimulus presentations were done in a few trials in order to obtain a contrast to investigate latencies between key press, eye movements and exogenous changes.

In non-ambiguous trials, the gratings' transparencies were dynamically changed based on exogenous percept durations drawn from a Gamma distribution with a B.3 Noisy Motor Events experiment size horizontally and vertically were replaced by NaN entries such that the length of the data vector was left unchanged, but interruptions in the data time series were apparent.

Pursuit extraction

We used the functions from the toolbox provided by [START_REF] Aleshin | Perceptual reversals in binocular rivalry: Improved detection from OKN[END_REF] to process the time series such that pursuits were extracted from the data-however, we did not create cumulative smooth pursuits. The bi-variate signals for right and left eye signals were fed into a forward and a backward low-pass filter that applied convolutions with a 50 ms time kernel. The output signal was computed as the mean between both filters for each sample. Pursuit extraction was applied on the filtered data by selecting parts of the signal below a velocity threshold of 120 deg.s -1 or an acceleration threshold of 471 deg.s -2 , and with durations longer than 50 ms. All parts of the signals above thresholds are replaced as NaN entries. To compute velocities, the removed parts of the vectors were obtained using a linear one-dimensional interpolation function.

The pursuit extraction step replaces eye blinks and saccades with NaN entries. We log these events in a table for signal division into epochs. Micro-saccades are detected, and logged in a table as well, using the EK algorithm-as presented in Chapter 2 [START_REF] Engbert | Microsaccades uncover the orientation of covert attention[END_REF]. This algorithm uses a relative velocity threshold of 6 standard deviations, a minimum duration of 3 ms and verifies that the micro-saccade is detected over both eyes.

Hence an epochs table was extracted with the epochs being the periods preceding micro-saccades, saccades or blinks.

Circular statistics were carried out on the polar representation of the velocity time series of the gaze using MATLAB's CircStat toolbox [START_REF] Berens | CircStat: a MATLAB toolbox for circular statistics[END_REF]. For each epoch retained, we first tested whether velocity directions of gaze samples were uniform using a Rayleigh test, after smoothing the signal with a Savitzky-Golay filter spanning over 50 ms. If the uniformity test was rejected at α = 0.05, then we computed the mean velocity directions for left and right eye signals and verified that they did not differ by more than π 2 . If velocity directions were conjugated, a one-sample circular t-test for the mean angle compared to the expected value based on the possible percept direction (ϑ l = 60°, ϑ c = 0°& ϑ r = -60°, based on

B.3 Noisy Motor Events experiment

Percepts experiment results in Section 4.2) was applied. The algorithm is described in Algorithm 2.

Algorithm 2: (Micro-)pursuit direction detection.

Result: 

Inferred percept epoch table simplification

The epochs table with percepts inferred from eye movements was simplified (3) by (i) merging short identical and consecutive detected percepts, (ii) fusing percepts when the anterior and current match, (iii) identifying potential long percepts and Algorithm 3: Gaze-based percept timeline inference simplification.

Result: in oculomotor programming (Krauzlis et al., 2017), their common properties, and mathematical models that can account for both (Sinn & Engbert, 2016). One may thus also consider that micro-pursuits share physical properties as well as neural correlates with large-amplitude smooth pursuits.

Alternative interpretations might classify fixations showing high inertia (w.r.t. fixation) as ocular drift. However, drift is considered independent from the stimulus, and hence should not showcase high values of MPC as in the Cross-LJ and Necker-LJ conditions.

A limitation of this work is that it does not explicitly contrast experimental stimuli that are known to generate pursuit versus OFR. Indeed, as presented in the introduction, OFR are reflexive eye movements generated using sudden changes of a wide-field image (Quaia et al., 2012) and should thus appear invariantly w.r.t. our experimental settings, but the lack of replication in the Square-LJ condition discredits this hypothesis.

A limitation of our similarity measure MPC resides mostly in its variance and thus the number of (temporally correlated) samples needed to accurately measure similarity. This is illustrated through Fig. 6 in Appendix B. While on the one hand, physical properties (amplitude, peak velocity) can be used to discriminate micro-pursuits from micro-saccades, on the other hand, functional characterization will help provide discrimination between drift, slow motor control, and micro-pursuit. Indeed, the first two may be slow fixational eye movements, but have no requirement for target tracking, like pursuit, whereas the latter does.
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Appendix A: notations used

In this work, we use q and q for the two-dimensional position (in deg) and velocity vectors (in deg•s -1 ). Subscripts R, G, and S will respectively refer to the retinal image, the gaze, and the stimulus. Over-lined notation will refer to the mean over a set of trials and a tilde to the median over a set of trials, for all metrics. Mean values will be reported with their standard deviation and median values with median absolute deviation (mad), for instance ρ = 2.93 ± 0.01 or ρ = 3.01 ± 0.02.

Appendix B: metrics

We use • for the transpose operator and trace(•) will denote the trace operator (sum over the diagonal elements of a matrix). The identity matrix in dimension 2 will be denoted by Id 2 .

Variance-covariance and inertia

Let q G (t ) = x G (t ), y G (t ) , q S (t ) = x S (t ), y S (t ) , and q R = x R (t ), y R (t ) be the screen Cartesian coordinates (column vectors) at time instant t of the Gaze, the stimulus, and the retinal image, respectively. Now, having samples at n discrete times {t i } n i =1 , we estimate the center of gravity of a gaze trajectory {q G (t i )} n i =1 by its empirical mean m G = n -1 n i =1 q G (t i ). This estimate approaches the true center of gravity if we sample sufficiently regularly and beyond twice the Nyquist frequency, conditions that are met when working with the Eyelink 1000(+), sampling at about 1000Hz for each eye.

A second-order statistic of interest is the empirical variance-covariance matrix, which gives the inertia of the gaze trajectory defined as

and analogously for the stimulus and retinal image empirical variance-covariance matrix. The inertia about its center of gravity is then given by I

The inertia I r of the gaze trajectory q G with respect to any fixed point r having screen coordinates (x r , y r ) is

Maximally projected correlations

Taking now the simultaneously recorded gaze q G (t i )

and stimulus q S (t i ) n i =1 signals, and their respective empirical variance-covariance matrices Σ G and Σ S . Denote the intercovariance matrix by

This matrix is particularly useful when considering the inertia of gaze with respect to the time-changing coordinates of the stimulus. Indeed, after some manipulations, we obtain:

Unfortunately, the inertia does not account for differences in scale, nor for coordinate translation, two characteristics that are typical aspects for pursuits and for which we require an invariance 6 .

Noise robustness & signal size dependency

Fig. 6 shows results of simulations operated on a Lissajous signal degraded by noise on the position of the stimulus at different signal to noise ratios (SNR) and for different signal sizes. For signals with more than 167 samples, the behavior of MPC scores over SNR remains stable and shows quasi-unchanged dynamics.

Appendix C: model

Models come in a variety of forms, depending on the mathematical framework used to formalize and compute their mechanics. Two main families can be differentiated: descriptive statistical and generative mechanistic models. Here, we focus on the latter. The motivation is the following: generative models can produce simulated and synthetic results that can be compared to observed empirical data. The model can then be studied and decomposed such that each internal force can be characterized, and their functional role in creating the analogous behavior can be investigated. All together, models remain key to understand a phenomenon and make predictions for empirical and experimental work. We focused here on fixational eye movements in The yellow space provides β and δ values that generate micro-pursuit, the blue pixels show a micro-saccade generation transition space, the dark area shows stable fixation parameters while the red pixels could be interpreted as slow control. B is a schematic interpretation of oculomotor dynamics generated in the parameter space of the GraFEM model with manipulation of the δ stim and β stim parameters of the stimulus attractor, while keeping all other parameters constant. Micro-pursuit can be generate in a restrained subspace (yellow) while micro-saccades are detected in the surrounding space (dark blue). When δ stim values are low, a transition area (light blue) exist where micro-saccades and similarity are high, but inertia is not. Finally, stable fixation sub-space occupy the rest (gray).

dient to the center of an attractor, giving it sufficient velocity. The depth and slope of the attractor can be manipulated (following the dynamics described in Fig. 10), thus making it possible to infer, based on observed velocities and amplitudes, the saliency of that attractor. The GraFEM model does not use an explicit and separated mechanism for micro-saccade generation-as the model presented in (Engbert et al., 2011)-though it is not incompatible.

Drifts correspond to a stability of the gaze-particle with respect to the attractor by which it is transported. However, the attractor might itself slowly drift away in the visual space (independently from the target motion) or alternatively, the shape of the well might get larger (by manipulating the parameter β), allowing for the noisy gaze-particle to explore further. These are two hypotheses that could be tested, in future work, by inferring the model parameters given sufficient data. These fixational eye movements are known to help reduce visual redundancy and extract features in complex visual stimuli (Kuang, Poletti, Victor, & Rucci, 2012) but are mostly considered to be consequences of the eye muscles and their neural control properties. Therefore, they have mostly been considered as independent processes from the visual stimulus presented.

The micro-pursuits detected and described in the article could be interpreted as a form of stimulus related drift, as its signal dynamics place it in similar ranges, and is capture by the proposed metric; namely MPC. Consequently, this argues in favor of our proposition that drifts are composed of two categories -stimulus independent and dependent -and micro-pursuits logically fall within visually dependent ocular drifts. This dependency can be interpreted as the interference of bottomup salient elements interrupting the top-down task of fixation. Micro-pursuits (Fig. 8-B) are therefore close to drifts in the energy landscape dynamics.

Model mechanics

The model sets the gaze as a particle in an evolving gravitational energy potential field. When the system has no dynamics added to the potentials' landscapes, the particle will fall into its nearest local minimum. In this implementation, at each iteration-here a discrete time step using Equation ( 9),-the first derivative is computed to update the position of the particle in the plane, corresponding to the screen. Noise is then added to the deterministic dynamics and can drive fixational oculomotor decision-making with respect to attractors if its amplitude is sufficiently large (Shpiro et al., 2009;Moreno-Bote et al., 2007). This mechanism is similar to bi-stable energy potential models,