
HAL Id: tel-03118382
https://theses.hal.science/tel-03118382

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigation of a framework for seasonal time series
forecasting
Colin Leverger

To cite this version:
Colin Leverger. Investigation of a framework for seasonal time series forecasting. Machine Learning
[cs.LG]. Université de Rennes, 2020. English. �NNT : 2020REN1S033�. �tel-03118382�

https://theses.hal.science/tel-03118382
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Colin LEVERGER »

« Investigation of a framework for
seasonal time series forecasting »

Thèse présentée et soutenue à « IRISA Rennes », le « 16 novembre 2020 »
Unité de recherche : UMR 6074 IRISA
Thèse No :

Rapporteurs avant soutenance :

Anthony BAGNALL Professeur, University of East Anglia
Antoine CORNUEJOLS Professeur, AgroParisTech

Composition du Jury :
Président : Béatrice DUVAL Professeure, Université d’Angers
Examinateurs : Usue MORI Maître de Conférences, Université Basque

Themis PALPANAS Professeur, Université de Paris
Simon MALINOWSKI Maître de Conférences, Université de Rennes 1
Thomas GUYET Maître de Conférences, Institut Agro/IRISA Rennes

Dir. de thèse : Alexandre TERMIER Professeur, Université de Rennes 1

Invité(s) :
Laurence ROZÉ Maître de Conférences, INSA Rennes
Vincent LEMAIRE Chercheur, Orange Labs Lannion
Alexis BONDU Chercheur, Orange Labs Paris
Régis MARGUERIE Manager technique, Orange

REMERCIEMENTS

Cela fait six ans que je travaille chez Orange. J’ai débuté comme apprenti ingénieur logiciel et à la fin
de mon cursus, lorsque le monde commençait à être habitué à l’intelligence artificielle, j’ai eu l’opportunité
de continuer mon expérience avec cette thèse en Data Science, dont voici le manuscrit. Trois années
mouvementées où j’ai eu l’occasion d’apprendre la recherche, le machine learning et tant d’autres choses
encore. Ce qui est sûr, c’est que j’étais loin de me douter de ce qui m’attendait lors de ces trois années ;
cette expérience, riche, mais intense, n’aurait pas été possible sans l’aide de différentes personnes et sur
différents plans (techniques comme personnels). Ces quatre pages de remerciements leur sont dédiées. Pour
entrer directement dans le vif du sujet de ma thèse, je vous invite à aller à la page 21 pour l’introduction.

Tout d’abord, je remercie l’entreprise Orange pour l’opportunité donnée lors de cette thèse : confier
un projet de recherche de cette envergure à un apprenti non formé à la recherche était un pari risqué, que
j’ai eu le plaisir de relever en étant bien accompagné. Je remercie Régis MARGUERIE pour avoir cru
en moi lors de la création du sujet et pour toute l’aide apportée lors de ces trois années, pour chaque
réunion mensuelle et chaque point de synchronisation. Je remercie Frédéric JAY pour la gestion du projet
PerForecast et pour son aide lors des deux dernières années de la thèse, ainsi que l’équipe des métrologues
et des experts pour ces six années de bonne ambiance et de formation continue et bienveillante. Vous
allez me manquer (Stéphane avec son légendaire optimisme, David avec ses coding games, Laurence avec
ses bons conseils, Bello pour son enthousiasme et sa grande gentillesse. . . et tout le monde !).

Lors de la thèse, j’ai eu la chance de pouvoir profiter d’une mobilité internationale en officiant comme
chercheur détaché pendant trois mois à Tokyo au Japon. Cette expérience n’aurait pas été possible
sans l’aide de Régine ANGOUJARD MIET (Orange), Jean-Luc TAGLIAMONTE (Orange), Caroline
SURQUAIN (INRIA), que je remercie très chaleureusement. Nous en avons passé des heures, à nous
battre avec le NDA. . . mais nous avons réussi ! Par la même occasion, je remercie l’Institut National
d’Informatique (NII) à Tokyo pour leur accueil, ainsi que Ryota KOBAYASHI : thank you very much
for your support and welcoming for those three perfect months at NII labs at Tokyo—hope to see you
soon. Je remercie aussi l’Université de Bretagne Loire-Atlantique et le Conseil Régional de Bretagne pour
l’obtention d’une bourse de mobilité qui m’a permis de financer ce séjour de recherche. Enfin, je remercie
chaleureusement Sawako TERMIER pour son aide lors de l’apprentissage du japonais : dans un laps de
temps aussi court, avec mes recherches en parallèle, j’ai été capable grâce à toi de lire quelques Kanjis et
de me présenter en japonais. Avec du recul, mon programme d’apprentissage de la langue était très (trop)
ambitieux. . . mais c’était un plaisir de préparer ce séjour avec ton aide.

Je remercie Vincent LEMAIRE d’avoir su m’orienter lors des questions techniques de recherche et
bien sûr pour toutes les réunions mensuelles et les idées que tu as pu me suggérer en temps opportuns. Tu
te plais à dire que tu n’as été qu’un « aiguilleur et donneur d’avis » lors de cette expérience, je te confirme

3

que ton rôle est allé bien au-delà. Par ailleurs, je te remercie d’avoir rendu possible mon intégration
ponctuelle dans une équipe de Data Scientistes à Orange Gardens, qui m’a clairement permis de faire de
belles rencontres et de collaborer avec des talents du groupe pour ma recherche, c’était un atout pour
l’avancement des travaux (merci à Bruno KAUFFMANN et ses équipes pour l’accueil !).

Je remercie tout particulièrement Alexis BONDU (Orange) pour son accompagnement lors de
l’établissement de l’état de l’art et dans ma recherche d’une direction. Ta participation et ton aide
à ce moment charnière dans la thèse ont été comme une bouée de sauvetage pour moi, qui était dans le
brouillard le plus profond à ce moment précis 1. Tu m’as réellement aidé à construire un projet de recherche
concret sur lequel expérimenter, me lancer, et cela nous a permis ensuite de faire deux publications (et une
troisième à venir) avec un contenu de recherche intéressant et de surcroît avec de bons résultats. Cette
aide a énormément compté pour moi et je t’en remercie encore. Par ailleurs, c’est toujours un réel plaisir
de collaborer avec toi — au plaisir de continuer dans le futur :-)

Ces trois années de thèse ont été l’occasion pour moi de découvrir le monde de la recherche, notamment
en étant immergé la majeure partie du temps au laboratoire IRISA/INRIA dans l’équipe LACODAM. J’ai
partagé mon bureau avec Kevin, Yichang et Raphael, que je remercie pour la bonne ambiance et pour
leur sympathie. Nos sujets étaient tous différents, mais nos discussions techniques ont pu faire émerger
de nouvelles idées et aider la correction de certains problèmes. Je remercie également affectueusement
l’équipe des doctorants (dans l’ordre d’apparition à LACODAM : Yann, Clément, Mael[s], Alban, Johanne,
Heng, Grégory, Camille, Josie, Julien) ainsi que Luis (qui s’est infiltré dans la « team des jeunes » assez
rapidement à son arrivée ;-)) — nous avons pu nous soutenir lors des moments difficiles, prendre des
cafés et faire des soirées pour fêter les papiers, aller en conférence ensemble. . . et ce ne sont que de
supers souvenirs. Évidemment, je remercie l’équipe LACODAM plus largement (en incluant la « team
des vieux ») pour tous les conseils, la bienveillance et la bonne ambiance. Nous avons la chance d’être
dans une équipe dynamique, avec plein d’horizons différents et avec toujours de bonnes discussions — à
la fois en recherche, mais aussi dans un cadre plus détendu à TAHITI par exemple. Merci à tous et au
plaisir de collaborer dans le futur pour continuer de faire vivre la recherche ensemble. Je remercie plus
particulièrement Gaelle, pour m’avoir aidé à organiser mes séjours de conférence, ainsi que la soutenance
de thèse : ton aide était indispensable pour aborder ces événements sereinement.

Pour faire ma recherche, j’ai été accompagné par de super encadrants le long de ces trois ans. Tout
d’abord, merci à Alexandre TERMIER, directeur de la thèse, pour ton support. C’était un plaisir de
partager avec toi toutes les réunions mensuelles (avec ces fameuses illustrations corporate dont tu es
si empreint), c’était aussi très enrichissant d’apprendre à ton contact à mener la recherche, trouver de
nouvelles pistes et à penser stratégie. Tu m’as aussi permis d’organiser le séjour au Japon (je me souviens
encore du deuxième jour de ma thèse ou je suis allé te voir en te demandant comment on pouvait travailler
pour ce séjour, que j’avais planifié avant même le début de la thèse), cela a rendu l’expérience de thèse
encore plus forte. Je remercie chaudement Laurence ROZE, pour ta participation à toutes les réunions
hebdomadaires. Tu as toujours été très positive et rassurante lors de cette expérience et cela m’a permis
plus d’une fois de reprendre confiance lors des moments difficiles, merci. Je remercie chaleureusement

1. . . . Engagez-vous, qu’y disaient. . . M’enfin, les six premiers mois d’une thèse, quelle aventure, vraiment !

4

Simon MALINOWSKI, pour le suivi plus technique des algorithmes en R et bien sûr pour l’encadrement
de la thèse. Je me souviens particulièrement de notre soirée à Nice où nous avons pu profiter de bonnes
bières avant le séminaire séries temporelles à Orange (bien que le déroulement même de la soirée me semble
encore aujourd’hui assez flou) ; ta patience, ta pédagogie et ton calme placide m’ont inspiré dans mon
apprentissage d’une posture plus posée, merci pour cela. Un énorme merci pour Thomas GUYET pour la
gestion de la majorité de la thèse (sur le plan organisationnel, administratif, recherche, développement).
C’est sûr, sans ton aide, je ne serai pas arrivé aussi loin. Merci de m’avoir répété 15 fois de générer des
données (la quinzième fois fut la bonne), de m’avoir donné tant de conseils sur les présentations et sur les
objectifs de telle ou telle piste, de m’avoir soutenu lors de mes moments difficiles pour mes problèmes de
santé, et merci d’avoir massivement contribué à la qualité du code de recherche pour la dernière année.
Nous avons tous deux appris à travailler ensemble ces trois dernières années et cela commence à devenir
bien huilé — dommage que ça se termine si tôt (?!) ;-). Évidemment, je remercie mes quatre encadrants
pour l’aide à la rédaction d’articles, pour la structuration et rédaction de la thèse et pour leurs remarques
qui ont toutes eu leur importance.

Je remercie Dominique GAY ainsi que Themis PALPANAS pour leur participation au comité de
suivi de thèse. Je remercie le jury de la thèse pour leur participation à la soutenance et à la relecture du
manuscrit, ainsi que pour les échanges que nous avons pu avoir avant, pendant ou après la soutenance
(Anthony BAGNALL, Antoine CORNUEJOLS, Béatrice DUVAL, Usue MORI, Themis PALPANAS).

Ma thèse s’est inscrite dans un moment charnière de ma vie : je venais de terminer mes études
d’ingénieur, je me demandais quelle voie suivre pour ma carrière et je venais en plus de me découvrir
une condition de santé relativement compliquée à gérer, spécialement lors d’un travail de recherche aussi
intense qu’une thèse. Pour affronter ces moments parfois difficiles, mes proches et ma famille ont étés
particulièrement importants pour moi. Je remercie tout d’abord Djo et Mel, pour toutes ces soirées et
repas organisés rue de la pinterie, où il fait décidément bon vivre (« Quelle vue, les gars ! »). Djo, ton
rôle a été primordial, notre amitié et notre projet musical commun m’ont vraiment aidé à souffler et à
prendre l’air au long de ces années. Cela a certainement insufflé de nouvelles idées et directions pour toute
ma recherche : encore merci et pourvu que notre projet continue de grandir tel qu’il le fait déjà. Merci à
Ladjez de nous avoir rejoints dans l’aventure musicale, perfectionnant encore cette soupape d’évacuation
de la pression qu’était la musique. Merci à Joss, Lilie, Victor, Elé, Paulo, Marie, Fanch, pour votre écoute
et pour votre franche camaraderie, pour toutes nos soirées passées à siroter de la liqueur en refaisant le
monde : là encore un exutoire nécessaire pour continuer ma recherche sereinement.

Merci à Ninon et Léonie, mes très chères sœurs, pour votre soutien durant ces trois années. Nous
sommes tous trois à nouveau diplômés au cours de ces quelques années passées, je suis fier de nous :-)
Big up particulier à Ninon et Ivan pour leur accueil à Birmingham lors de ma conférence IDEAL2019,
c’était un plaisir de voir comment vous vivez de l’autre côté de la Manche. Merci à Valérie, pour ton
soutien inconditionnel et pour ton aide pour mettre au clair mes idées dans les temps difficiles ; tu as su
me donner ton goût du travail bien fait et tu as su sincèrement et réellement supporter chacune de mes
décisions depuis toutes ces années (bonnes ou mauvaises — après tout, l’expérience est une lanterne qui
n’éclaire que le chemin parcouru. . .), et je t’en remercie encore mille fois. Ce cheminement et ces 8 années

5

d’études n’auraient pas étés possibles sans ton soutien. Merci à Jean-Louis, pour le soutien, les discussions
stratégiques sur les tenants et les aboutissants de telles ou telles décisions, pour m’avoir transmis ton
talent de vulgarisateur qui m’a été de grandes utilités ces derniers temps, pour les merveilleux petits plats
du dimanche midi en famille, mais aussi pour le bricolage étiopathique que tu as su me prodiguer tout
au long de la thèse et depuis l’émergence de mes soucis de santé. Sans toi, c’est sûr, je serai encore en
train de boiter, sourd comme un pot, et ma recherche aurait sans aucun doute été plus difficile encore à
mener. . . Mille mercis (et encore plus) pour tout cet amour familial qui m’a toujours porté vers l’avant.

Je remercie du fond du cœur Ketsia, qui partage ma vie depuis le début de mes études supérieures. La
période de la thèse n’était pas la plus simple pour toi : tu as du supporter mes changements d’humeurs
liés à une recherche si imprévisible. La seconde année de la thèse ayant vraiment été difficile, tu as du
mérite, de m’avoir supporté – et de m’avoir aidé à continuer d’y croire. Merci, pour tous tes conseils, pour
toutes les répétitions de présentation auxquelles tu as gentiment participé, pour toutes les relectures, pour
ton accueil à Paris pendant la moitié de la thèse. Merci aussi d’avoir été là pour me soutenir lors des
moments incertains et d’avoir été là pour célébrer les moments de joie. Merci, pour tous les petits plats
de chef que nous avons partagé, confinés que nous étions, lors de la rédaction de la thèse. Et merci de
m’avoir appris à réfléchir autrement, à remettre en question les choses, à prendre du recul. . . et pour tant
d’autre chose encore ! Je te dois beaucoup pour tout cela.

Last but not least, je dédie cette thèse à mes grands-parents Papé et Mamé, qui m’ont accompagné,
tout au long de ma vie, mais aussi lors de la rédaction finale du manuscrit — la dernière semaine passée à
Brett’, bercé par les vagues, a permis à bien des tournures de phrases de se conclure et à la rédaction
de la thèse de se terminer (. . . enfin ! après ces 9 semaines de rédaction intenses !). Merci pour votre
enthousiasme sur mon sujet, pour votre fierté d’avoir un docteur dans la famille et pour la quantité
impressionnante de gentillesse distillée çà et là au grès de ma vie : cette thèse, elle résulte de tout cela,
vous en êtes aussi les auteurs, car vous m’avez aidé à devenir la personne que je suis aujourd’hui.

6

«La prédiction est un art difficile, surtout lorsqu’elle concerne l’avenir.»
– Jean-Louis, citant Pierre DAC

7

RÉSUMÉ EN FRANÇAIS

Les logiciels et les applications web font partie intégrante de notre vie quotidienne. Il est en effet
difficile d’imaginer un monde sans Internet : nous vivons à une époque connectée, où même les services
essentiels (tels que les systèmes de santé, les systèmes gouvernementaux, les systèmes militaires et de
sécurité, les systèmes financiers, etc.) sont hébergés sur des milliers de serveurs à travers le monde. Par
exemple, il est estimé que l’entreprise Google dispose d’environ 1 million de serveurs pour supporter ses
services. 2 Si les serveurs viennent à manquer, les applications deviennent lentes et difficiles à utiliser.
Au contraire, s’ils sont trop nombreux, les performances sont meilleures, mais les coûts induits 3 pour la
gestion des serveurs superflus ne sont pas négligeables et devraient être réduits dans le meilleur des cas. La
maintenance des infrastructures, assurée par les entreprises ou les institutions, n’est pas une tâche aisée.
Les serveurs informatiques sont nombreux, les applications de plus en plus complexes, les technologies
évoluent rapidement et le nombre d’utilisateurs est en constante augmentation. Le défi consiste à offrir le
meilleur service au public à tout moment et en toutes circonstances.

Pour répondre au défi de la gestion des infrastructures, il est nécessaire de planifier les capacités
requises à leur bon fonctionnement. Le planning capacitaire représente la façon dont une entreprise gère,
met à jour, ajoute ou retire des serveurs physiques et virtualisés de son infrastructure. Un bon planning
capacitaire réduit les coûts opérationnels et améliore la qualité des services fournis. Ses tâches et ses
objectifs dépendent fortement du type d’infrastructure (baies de serveurs, ou infrastructure cloud), du type
d’application hébergée (applications critiques ou avec moins de contraintes), des objectifs de l’entreprise
et du budget alloué.

Les différents services proposés par Orange (accès internet grand public, réseau 4G, applications entre
entreprises, etc.) sont hébergés sur des milliers de serveurs et la qualité du service est primordiale pour
proposer la meilleure expérience aux clients. Cet opérateur téléphonique français historique est l’une des
marques internationales majeures dans le domaine des télécommunications. Le groupe Orange est présent
dans 29 pays à travers le monde et concentre ses activités sur la téléphonie et la vente d’accès à Internet –
avec pour objectif principal d’offrir une qualité de service sans faille.

Au sein d’Orange, les infrastructures sont gérées par des gestionnaires de projet et des experts, via des
directives de planification des capacités majoritairement manuelles. Cette approche est dispendieuse pour
l’entreprise : afin d’éviter les interruptions d’activité, elle tend à surestimer les besoins. Elle est également
coûteuse en maintenance : plus le système est complexe, plus il est difficile de le gérer manuellement.
Ainsi, le développement d’outils aidant les ingénieurs à anticiper les besoins futurs est en pleine expansion.
Bodik et al. [Bod+09] montrent que l’analyse de données d’indicateurs de performance des infrastructures
(comme le nombre d’utilisateurs, l’utilisation du CPU ou de la RAM) peut être utilisée pour améliorer la
planification des capacités. En effet, les données générées par les serveurs, sous forme de série temporelle
(données numériques ordonnées dans le temps), pourraient être de précieuses sources d’information. Chez

2. Voir estimation: https://www.quora.com/How-many-servers-does-Google-have-1
3. En termes d’argent dépensé, mais aussi d’énergie utilisée, etc.

9

https://www.quora.com/How-many-servers-does-Google-have-1

Orange, les données fonctionnelles peuvent concerner l’utilisation des services, ou des problématiques
financières, comme l’illustre la Fig. 1.

−2

−1

0

1

2

180 185 190 195
Days

Tr
an

sa
ct

io
ns

 p
er

 Q
ua

rt
er

 (
T

P
Q

)

Figure 1: Exemple de métriques fonctionnelles, transactions financières par quinzaine de minutes
pour un projet Orange (Orange Money).

Un des enjeux majeurs de l’analyse est de prévoir l’évolution des données dans le temps. L’anticipation
du comportement futur des consommateurs est une application importante en matière de marketing,
mais aussi pour la gestion des serveurs. Plus les prévisions sont précises, plus les décisions concernant la
planification des capacités seront éclairées : des calculs fiables permettent par exemple de décider quel
système mettre à niveau. Les prévisions de séries temporelles sont particulièrement utiles lorsque l’on
dispose de peu de connaissances sur le processus de génération des données, ou lorsqu’il n’existe pas de
modèle explicatif satisfaisant qui relie la variable à prédire à d’autres variables explicatives [Zha03]. Les
approches statistiques les plus populaires sont les processus autorégressifs [Aka98], les modèles ARIMA
[Box+15] ou le lissage exponentiel type Holt-Winters [Win60].

De nombreuses séries temporelles, notamment celles liées aux activités humaines ou aux phénomènes
naturels, présentent un caractère saisonnier : leurs valeurs sont périodiques et régulières. Les comporte-
ments liés à l’activité humaine présentent souvent une saisonnalité quotidienne et hebdomadaire. C’est
particulièrement vrai pour les ensembles de données de planification des capacités Orange. Sur la Fig. 1
ci-dessus, la saison quotidienne est très nette. Elle est due à l’objectif de l’application, qui est de transférer
de l’argent entre les utilisateurs, et il y a naturellement plus de transferts le jour que la nuit, les transferts
ayant lieu entre des populations situées sur les mêmes fuseaux horaires.

Il est essentiel de connaître le caractère saisonnier d’une série, car cela peut restreindre l’espace
de recherche de son modèle mathématique. STL [Cle+90] est l’approche classique pour traiter de la
saisonnalité ; elle construit un modèle en tenant compte de trois composantes : la saisonnalité, la tendance
(évolution à long terme de la série temporelle : augmentation ou diminution) et les résidus (écart par
rapport aux tendances et à la saisonnalité). Il est alors supposé que la série temporelle ne présente qu’un
seul comportement périodique (ex : périodicité quotidienne des températures). Les modèles Holt-Winters
et ARIMA ont été étendus pour traiter de la saisonnalité, sous condition d’un comportement périodique
unique et clair. Cependant, cette hypothèse est en pratique peu fréquemment vérifiée. Considérons la

10

Figure 2: Exemple de série temporelle saisonnière (source: [Hyn11]). Deux semaines de données
sur le trafic internet (en bits) provenant d’un fournisseur d’accès privé ayant des centres dans
11 villes européennes. L’ensemble des données correspond à une liaison transatlantique et a été
collecté de 6 h 57 le 7 juin à 11 h 17 le 31 juillet 2005. La série temporelle est évidemment
saisonnière, mais l’hypothèse d’un schéma périodique unique ne semble pas appropriée dans ce
cas.

série temporelle de la Fig. 2, qui montre une mesure du trafic Internet pendant deux semaines. S’il existe
effectivement une périodicité quotidienne, il existe également deux types de comportements quotidiens :
les comportements en semaine et les comportements en week-end. Le cadre de la STL et les méthodes
statistiques associées ne permettent pas de bien saisir ces caractéristiques.

Cette thèse étudie ce problème de prévision des séries temporelles saisonnières dans le contexte de la
planification des capacités à Orange. Techniquement parlant, les séries temporelles vont être découpées,
groupées, puis il va s’agir de s’aider des séries temporelles et des groupes pour apprendre à prédire le
groupe de la saison suivante. Enfin, une série temporelle représentant au mieux le groupe prédit va être
utilisée pour produire la prévision.

Un framework de prévisions de séries saisonnières
Dans cette thèse, un framework consacré aux séries temporelles saisonnières est proposé. Ce framework

est basé sur la combinaison d’algorithmes de clustering et de classification pour produire des prévisions
déterministes et probabilistes. Trois instanciations en seront étudiées.

La Fig. 3 explicite les différents blocs qui composent le framework. Les séries temporelles sont d’abord
séparées en un ensemble d’apprentissage et un ensemble de test, et les saisons composant les séries sont
extraites (la longueur d’une saison peut être connue de l’utilisateur ou trouvée automatiquement par un
algorithme). Ensuite, les différentes saisons composant l’ensemble d’apprentissage sont groupées selon
leurs ressemblances – à l’aide d’un algorithme de clustering ou de coclustering. L’étape suivante consiste
en l’apprentissage du type de groupe de la saison à venir grâce aux données d’une ou de plusieurs saisons
précédentes – à l’aide d’un classifieur par exemple. Enfin, le classifieur et les informations des saisons de
l’ensemble de test sont utilisés pour effectuer les prédictions. Ces dernières sont créées en utilisant une
combinaison d’une ou plusieurs séries temporelles représentatives des groupes prédits.

11

GROUPER
SAISONS

(clustering ou
coclustering)

APPRENDRE
GROUPE
SAISON

SUIVANTE
(classification)

PRÉDICTION

GROUPES DE
SAISONS

PRÉDICTEUR
DE SAISON
SUIVANTE

Série
temporelle

85%

15%

PRÉDIRE LA
PROCHAINE

SAISON

MODÈLE

Figure 3: Vue simplifie du framework proposé, avec en gris l’apprentissage du modèle, et en bleu
l’utilisation du modèle pour créer les prévisions.

Contributions et organisation du manuscrit
Les contributions de cette thèse sont les suivantes.

— Le premier chapitre présente le contexte dans lequel cette thèse s’inscrit. Plus particulièrement,
les notions de performances, de planification des capacités et de prévisions de séries temporelles
pour la planification des capacités sont abordées ;

— Le second chapitre donne un état de l’art de la prévision des séries temporelles et introduit les
définitions formelles nécessaires pour aborder le reste de la thèse ;

— Le troisième chapitre présente un framework de prévisions de séries temporelles saisonnières.
Seuls les concepts, la formalisation et les idées générales sont introduits. Toutes les notions utilisées
avec le framework sont définies, car les trois instanciations proposées suivent toutes les mêmes
principes et le même formalisme ;

— Ensuite, trois instanciations du framework sont présentées.

— Le quatrième chapitre présente une première implémentation déterministe. Il utilise le
clustering K-means ainsi que des Chaines de Markov pour créer des prévisions déterministes.
Le choix des K-means et des modèles de Markov est naturel, car ils sont tous deux bien connus
de la communauté des chercheurs et constituent des étalons, ce qui est utile pour évaluer les
hypothèses. Cette première implémentation a été introduite dans la publication [Lev+18].

— Le cinquième chapitre introduit la seconde implémentation déterministe. Le framework
de référence est élargi grâce à l’utilisation de plusieurs algorithmes de clustering (K-means,
K-shape, GAK et MODL), et les chaînes de Markov sont remplacées par des classifieurs

12

(classifieurs naïfs bayésiens, arbres de décisions, forêt aléatoire et régression logistique). Cette
seconde implémentation a été introduite dans la publication [Lev+19].

— Le sixième chapitre présente une dernière implémentation basée sur le coclustering et la
classification probabiliste pour produire des prévisions probabilistes. L’expérimentation avec
divers algorithmes et diverses combinaisons était primordiale, en particulier pour introduire
un framework en portfolio qui s’adapterait à chaque topologie de données, de manière à
avoir des algorithmes pilotés par les données. Les prévisions probabilistes sont en principe
intéressantes dans un contexte où l’incertitude est grande, comme dans les problèmes de
planning capacitaire.

— L’utilisation pratique du framework est illustrée sur un cas d’utilisation concret dans le septième
chapitre, en utilisant un ensemble de données fourni par la société Orange issue de l’application
Orange Money. Ce cas d’utilisation est utile pour explorer les résultats des différentes parties du
framework (e.g. clustering, prévisions, etc.).

Expérimentations
Le Tableau 1 explicite comment le framework peut être instancié en fonction des paradigmes choisis.

Globalement, les deux différences fondamentales entre l’implémentation déterministe et l’implémentation
probabiliste résident dans l’utilisation du clustering ou du coclustering pour créer les groupes de jours, et
dans l’utilisation des centroïdes/medoïdes ou des densités pour créer les prévisions.

Dans l’étape A) (Clustering), différents algorithmes de clustering peuvent être utilisés, notamment
K-means, K-shape, GAK et MODL. Dans l’étape B) (Classification), différents algorithmes de classification
peuvent être utilisés, tant qu’ils sont capables de donner des prévisions probabilistes, notamment classifieurs
naïf bayésiens, arbres de décisions, forêt aléatoire et régression logistique. Différentes combinaisons de ces
algorithmes de clustering et de classification sont testées lors des expériences menées dans cette thèse.

Table 1: Configuration du framework proposé.

Forecasts déterministes Forecasts probabilistes
Processus A) Clustering Clustering Coclustering

d’apprentissage B) Classifieur Classification
Processus C) Prototypes Centroïde ou medoïde Densité

de prévision D) Prévision Hard ou Soft

Lors des expériences, l’erreur de prédiction est quantifiée en calculant la Mean Absolute Error (MAE)
entre les valeurs prédites et les valeurs réelles. Chaque série temporelle est divisée chronologiquement en
trois parties : 70% des données sont utilisées comme données d’entraînement, 15% comme données de
validation et 15% comme données de test. Les données utilisées pour les expérimentations sont présentées
de manière exhaustive dans un tableau en annexe 7.2. Notez que les ensembles de données présentés sont
utilisés tout au long de la thèse pour toutes les expérimentations. Il y a 49 séries temporelles utilisées au
moment des expérimentations, provenant de diverses sources telles que la bibliothèque TSDL [Hyn11], deux
ensembles de données proviennent des projets Orange Money (ceux-ci seront étudiés plus en profondeur

13

dans le dernier chapitre de cette thèse), des villes de Porto ou Melbourne, etc. Naturellement, les séries
temporelles utilisées dans cette thèse ont été sélectionnées pour leur saisonnalité évidente.

Enfin, l’ensemble du code du framework a été développé en Python 3.5. Pour le développement des
algorithmes de clustering, la bibliothèque tslearn [Tav+20] a été utilisée. Elle constitue un ensemble
d’outils utiles pour le traitement des données temporelles. Pour développer la classification, la bibliothèque
sklearn [Ped+11] a été utilisée. Pour le développement de l’algorithme de coclustering, Khiops [Bou16] a
été utilisé.

Résultats principaux
Le framework proposé est implémenté en trois versions. Deux versions produisent des prévisions

déterministes (voir Chap. 4 et Chap. 5), une version produit des prévisions probabilistes (voir Chap. 6).
Les performances des trois versions du framework sont comparées aux performances d’opposants de l’état
de l’art. En résumé,

— Les performances de la première base déterministe FC2M présentée dans le Chap. 4 sont satisfaisantes
contre des opposants non spécialisés dans les séries temporelles saisonnières (ARIMA, AR, Holt
Winters), mais en dessous d’une méthode purement saisonnière (SARIMA) – voir Fig. 4.

— Les performances de la seconde version déterministe F2C présentée dans le Chap. 5 sont meilleures
que tous les opposants déterministes utilisés pour les comparaisons – voir Fig. 5. L’influence du
nombre de saisons utilisé lors de l’apprentissage des classifieur (paramètre γ) est étudiée et utiliser
plus d’historique permet d’avoir de meilleures prévisions.

— Les performances de la version probabiliste présentée dans le Chap. 6 sont satisfaisantes: la création
de prévisions probabilistes visuellement intéressante (e.g. qui suivent bien les vraies données – voir
Fig. 6) est constatée, et la méthode PF2C utilisée en portfolio arrive en troisième position – voir
Fig. 5.

2 3 4 5

CD

SARIMA

MEAN

FC2M

HOLTWINTERS

ARIMA

AR

Figure 4: Classement global pour la méthode FC2M contre quatre opposants (AR, ARIMA,
SARIMA, Holt Winters) et une méthode baseline (MEAN) en utilisant la MAE.

14

3 4 5 6 7 8

CD

F2C_2
SARIMA

PORTFOLIO PF2C_1
PF2C_1

MEAN

HOLTWINTERS
PROPHET
FC2M_1
ARIMA
AR

Figure 5: Classement global des différentes approches de prédiction pour différentes valeurs de
γ ∈[1,2] (ex: F2C_γ)

0 50 100 150 200 250 300 350

2

1

0

1

2

3

4

5

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00
DAY 1 DAY 2 DAY 3 DAY 4

time (forecasted)

v
a
l

5

Figure 6: Un exemple de prévision probabiliste. En bleu, les trois jours utilisés pour alimenter le
classificateur, en rouge la distribution de probabilités associée. Dans ce cas particulier, la plupart
des valeurs bleues se trouvent dans les zones ayant de fortes valeurs de probabilités.

TABLE OF CONTENTS

Introduction 21

1 Data driven capacity planning 25
1.1 Context . 25

1.1.1 Problems of infrastructure maintenance . 25
1.1.2 Performances and tests . 27
1.1.3 Wrap up . 28

1.2 Capacity planning . 29
1.2.1 Definition . 29
1.2.2 Capacity planning for two types of infrastructure 29
1.2.3 Wrap up . 30

1.3 Toward data-driven capacity planning tool . 30
1.3.1 Industrial problem and datasets . 31
1.3.2 Data exploration . 32
1.3.3 Nature of the data and hypothesis . 34

1.4 Data driven algorithms . 35
1.4.1 Forecasts and capacity planning . 35
1.4.2 What could be done? . 36
1.4.3 Wrap up . 38

1.5 Wrap up and objectives . 39

2 Time series and forecasting models 41
2.1 Time series . 41

2.1.1 Definitions . 42
2.1.2 Machine learning tasks for time series . 45

2.2 Deterministic vs probabilistic forecast . 48
2.3 Deterministic forecasting . 48

2.3.1 Autoregressive models . 49
2.3.2 Seasonal models . 51
2.3.3 Neural networks models . 52
2.3.4 Ensemble and combination models . 52

2.4 Probabilistic forecasting . 53
2.4.1 Interval forecasts . 54
2.4.2 Density forecasts . 54

2.5 Exogenous data . 54
2.6 Wrap up and perspectives . 55

17

TABLE OF CONTENTS

3 Conceptual view of the framework 57
3.1 Problem statement . 57
3.2 Model for seasonal time series . 59
3.3 Framework for seasonal TS forecasting . 61

3.3.1 Learning process . 61
3.3.2 Forecasting process . 62

3.4 Data used for experiments . 63
3.5 Metrics and performances assessment . 63

3.5.1 Typical setup for performance assessment . 64
3.5.2 Metrics for deterministic forecasts: MSE, MAE . 64
3.5.3 Metric for probabilistic forecasting: CRPS . 65
3.5.4 Critical diagram . 66
3.5.5 Win lose diagram . 67

3.6 Wrap up . 67

4 Baseline deterministic approach 69
4.1 The FC2M implementation . 69

4.1.1 Learning process . 69
4.1.2 Forecasting process . 71

4.2 Experiments . 71
4.2.1 Opponents . 72
4.2.2 Results . 72

4.3 Discussion . 73
4.4 Wrap up . 74

5 Deterministic approach 75
5.1 The F2C implementation . 75

5.1.1 Learning process . 75
5.1.2 Forecasting process . 78

5.2 Experiments . 78
5.2.1 Best parameters for F2C method . 79
5.2.2 Comparison against competitors . 81
5.2.3 Results with various γ . 82

5.3 Wrap up . 82

6 Probabilistic approach 85
6.1 Probabilistic seasonal time series forecasting . 85

6.1.1 The stakes of probabilistic time series forecasting 85
6.1.2 Coclustering of time series: a probabilistic model 86

6.2 The PF2C Framework . 88
6.2.1 Learning process . 89
6.2.2 Forecasting process . 89

6.3 Portfolio framework instance . 89

18

TABLE OF CONTENTS

6.4 Experiments . 90
6.4.1 Protocol . 90
6.4.2 Experiments with synthetic datasets . 90
6.4.3 Best parameters for PF2C method . 94
6.4.4 PF2C vs opponents . 95
6.4.5 Portfolio approach . 96

6.5 Wrap up . 96

7 Orange Money Transactions per Quarter Use Case 99
7.1 Case study on Orange Money dataset . 99

7.1.1 Orange Money TPQ dataset . 99
7.1.2 Relevance of using seasons for forecasting . 101
7.1.3 Forecast study: examples of deterministic vs probabilistic forecasts 102

7.2 Wrap up . 102

Conclusion 105

Bibliography 109

Appendix 129

19

INTRODUCTION

Undoubtedly, computing, software and web applications are part of our everyday life. It is hard to
imagine a world without the Internet: we live in a hyper-connected era, full of social networks, shopping
websites, and even critical services (such as health care systems, government systems, military and security
systems, finance systems, etc.) are hosted on thousands of servers across the globe. For example, it is
estimated that the Google company has approximately 1 million servers to support its services. 4 If there
is not enough severs deployed, the applications become slow and difficult to use. On the contrary, if there
are too many servers, performances are better, but the costs incurred 5 for managing superfluous servers
are not negligible and should be reduced in the best-case scenario. The maintenance of the infrastructure is
done by companies or institutions providing digital services, and is not an easy task. Servers are numerous,
applications more and more complex, technologies are evolving fast and, furthermore, the number of users
is constantly increasing. The challenge is to offer the best service for the public at any time and under
any circumstances.

Capacity planning is a major preoccupation for companies of the digital economy in order to address
this challenge. Capacity planning is the way an IT service manages, updates, adds or removes physical/vir-
tualised servers from its infrastructure. A well-made capacity planning helps to reduce operational costs,
and improves the quality of provided services. Capacity planning tasks and objectives highly depend on
the type of infrastructure (e.g. bare metal servers or cloud-enabled infrastructure), the type of application
hosted (e.g. critical applications or more relaxed environment), the goals of the company and the budget
allocated. In this thesis, we are not directly interested in optimising resource usage but on forecasting the
demand to have more time to deploy in advance an optimal infrastructure.

The various services offered by Orange (e.g. general public internet access, 4G network, business to
business applications, etc.) are hosted on thousands of servers, and the quality of service is paramount for
proposing the best experience to the clients. This historic French telephone operator is one of the major
brands in the telecommunications field. In 2019, it was the thirteenth-largest company in the world in
this field, with a global turnover of 43.7 billion euros. Orange Group operates in 29 countries around the
world and focuses its business on telephony and on the sale of internet access – with a big concern on the
quality of the services offered.

At Orange, project owners, managers and experts often apply manual capacity planning guidelines to
manage their infrastructure. This approach is cumbersome and to prevent from any business interruptions,
the server capacity is often overestimated. The more complex the system, the more difficult for engineers
to set it up manually. Thus, there are more and more interest in developing tools to support engineers on
part of the capacity planning problem. Bodik et al. [Bod+09] show that data analytics on datacenters Key
Performance Indicators (KPI, e.g., capacity planning, number of users, RAM) may be used to improve
capacity planning. Indeed, the data generated by servers or user activity could be valuable sources of

4. See estimate: https://www.quora.com/How-many-servers-does-Google-have-1
5. In terms of money spent and in terms of energy used, for example.

21

https://www.quora.com/How-many-servers-does-Google-have-1

Introduction

information. The KPI data is often collected in the form of time series datasets (numerical data ordered
by time). KPI are classified in two categories: the functional KPI measures the level of activity of service;
they depend on hosted services and user behaviour (the number of people on a given website) but is not
related to hardware, whereas the technical KPI measure resource consumption in the infrastructure itself
(evolution of CPU use). An example of a functional KPI may be found in Fig. 7: each wave represents
one day in the activity of the Orange Money project.

−2

−1

0

1

2

180 185 190 195
Days

Tr
an

sa
ct

io
ns

 p
er

 Q
ua

rt
er

 (
T

P
Q

)

Figure 7: Example of functional metric transactions per quarter for one Orange project (Orange
Money).

One particular data analytic task that may help resource managers in the daily activity is to forecast
the evolution of the KPI. Having a view on the future evolution of a system could be very valuable for
systems managers. Important applications are to forecast future consumer behaviour in marketing, as
well as also servers load for popular applications. The more accurate are forecasted the KPI, the more
informed will be the management decisions regarding capacity planning. The objective is to provide
accurate pieces of information to anticipate resources needs. Reliable forecasts enable for example to take
decision of which system to upgrade, in order to seamlessly operate the maintenance.

Forecasting the evolution of a temporal process is a critical research topic with many challenging
applications. This modelling approach is particularly useful when little knowledge is available on the
underlying data generating process or when there is no satisfactory explanatory model that relates the
prediction variable to other explanatory variables [Zha03]. In addition, having information on future
evolution of a given system is important for making useful decisions at the right time, regardless of the
application studied.

The most popular time series forecasting methods come from statistics, and are the following:
Autoregressive [Aka98], ARIMA [Box+15] or Holt-Winters [Win60]. These methods build a mathematical
model of time series. This model is then applied on new time series to predict future values. Recently, in
many approaches coming from machine learning [BTL12], new methods emerged. Neural networks have
for example been used extensively [ZQ05], often in conjunction with ARIMA statistical models [Zha03].
Some probabilistic forecasting toolsets have also been proposed (Prophet [TL18] or GluonTS [Ale+19])
and they often propose a way of configuring complex models more automatically.

22

Introduction

Figure 8: Seasonal time series example borrowed from [Hyn11]. Two weeks of the internet traffic
data (in bits) from a private ISP with centres in 11 European cities. The whole data corresponds
to a transatlantic link and was collected from 6:57 a.m. on 7 June to 11:17 on 31 July 2005.
The time series is obviously seasonal, but the assumption of having one unique periodic pattern
seems not suitable in this case.

Many time series, especially those related to human activities or natural phenomena, exhibit seasonality.
This means that there is some periodic regularity in the values of time series. Human activity behaviours
often exhibit daily and weekly seasonality. This is particularly true in Orange capacity planning datasets.
As seen in Fig. 7 above, the daily season is very clear: every day, the activity grows up until noon and
then it decreases. It is due to the application purpose, which is to transfer money between users, and there
are naturally more transfers at daytime than at night-time. Most transfers are made between populations
at the same time zones.

Knowing or discovering that a time series is seasonal is a valuable information for forecasts, as it can
restrict the search space for the mathematical model of the time series. The classical approach to deal
with seasonality is called STL [Cle+90], it builds a model while taking into account three components:
seasonality, trends (long-term evolution of the time series: increase or decrease) and residual (deviation
from trends and seasonality). It assumes that the time series exhibits a single periodic behaviour (ex:
daily periodicity of temperatures).

Using time series seasonality in the capacity planning process could enable the study of the seasons (e.g.
detecting several season types such as ‘normal season’ or ‘season that will cause a problem’). Then, being
able to forecast several future seasons of a time series and discovering that one of them is a problematic
season can allow managers to act proactively and to anticipate the problem.

Holt-Winters and ARIMA models have been extended to deal with seasonality. But they also assume
a single and clear periodic behaviour. We distinguish here periodicity and seasonality. One concern with
the method concerning periodic behaviour is that it is often violated in practical cases. Consider the time
series in Fig. 8, which shows an internet traffic measurement for two weeks. While there is indeed a daily
periodicity, there are two types of daily patterns: weekday patterns and weekend patterns. This cannot
be well captured by the STL framework and the associated statistical methods.

This thesis studies this problem of seasonal time series forecasting in the context of capacity planning
at Orange. The objective is to exploit the idea of having different types of season to make the forecast
accurate. Technically speaking, time series are split in multiple seasons, similar seasons are grouped
together in order to identify typical seasons, and then the time series and groups are used to learn how to
predict the next season’s group. Finally, a time series that best represents the predicted groups yields the

23

Introduction

forecast. This original way of doing tie series forecasting is the sketch of the generic framework investigated
in this thesis to state whether it can help to improve capacity planning procedures.

Contributions and outlines
In this thesis, a framework dedicated to seasonal time series is proposed. The framework is based

on the combination of clustering and classification algorithms for producing both deterministic and
probabilistic forecasts, and three instantiations of the framework are studied.

The contributions of this thesis are the following.

— Chap. 1 introduces the context in which this thesis will take place. More especially, the notions of
performances, capacity planning and time series forecasts for capacity planning are discussed.

— Chap. 2 gives a state of the art of time series forecasting and all the formal definitions needed to
approach the rest of the thesis.

— Chap. 3 introduces a framework for seasonal time series forecasting. The framework proposed
aims at producing the seasonal forecast in only one shot for the entire season. Only concepts,
formalisation and general ideas are introduced. All the notions used with the framework are defined,
because the three implementations proposed all follow the same principles and same formalism. The
Chap. 3 first formalises the problem of seasonal time series forecasting, then presents the learning
steps of the model, then the forecasting step and finally introduces the experimental setup followed
during the entire thesis.

— Then, three implementations of the framework are depicted.

— Chap. 4 introduces the baseline deterministic implementation. It uses K-means clustering
algorithms alongside with Markov Chains for creating deterministic forecasts. The choice of
K-means and Markov Models is natural because they are both well known by the research
community and can give a first assessment on the interest of the approach. This first
implementation was introduced in the publication [Lev+18].

— Chap. 5 introduces the second deterministic implementation. The baseline framework is
extended with the use of several clustering algorithms (K-means, K-shape, GAK and MODL),
and the Markov Chains are replaced by classifiers (logistic regression, naive-bayes, decision
trees and random forests). This second implementation was introduced in the publication
[Lev+19].

— Chap. 6 introduces a last implementation based on probabilistic coclustering and classifiers
for producing probabilistic forecasts. Experimenting with various algorithms and various
combinations is paramount, especially to introduce a portfolio framework that would adapt
to each data topology in a data-driven way. Probabilistic forecasting is interesting to handle
uncertainty, like in capacity planning problems.

— The practical use of those frameworks is illustrated on one main use case in Chap. 7, using one
dataset provided by Orange company, collected on servers deployed for the Orange Money project.
This use case is used to evaluate qualitatively the various parts of the framework (e.g. clustering,
forecasting, etc.)

24

Chapter 1

DATA DRIVEN CAPACITY PLANNING

Applications, and more especially online services, are often under pressure while more and more people
are adopting them. The performances of servers and infrastructure are closely related to the workload.
The more people using a service, the more requests and computations for the infrastructure, thus the
higher the workload. The workload is not only related to CPU usage, but also to other technical features
such as RAM usage, network capacity or IO access, etc. There is a complex relation between the number
of people using a service and the overall use of servers. This relation is not straightforward and managing
infrastructure efficiently according to the load is not an easy problem. The management of servers is made
using capacity planning techniques, that help infrastructure managers in the decision-making process.

In this chapter, the goal is to clarify the technical and industrial notions used in this thesis, and to
motivate choices made for a focused research direction. Concepts such as performances, capacity planning
and forecasting algorithm are introduced.

Section 1.1 explicits the problems behind infrastructure maintenance, and why it is necessary to have
good capacity plans for a company. Capacity planning is introduced in the Sec. 1.2, which also exhibits
the main challenges of capacity planning and gives details about the technical challenges of such solutions.
Section 1.3 motivates the data driven approach introduced in the thesis. Section 1.4 finally gives an
overview of lots of possible solutions that could have been explored during the thesis and exhibits the
selected direction.

1.1 Context
In this section, the problems faced and solutions adopted by companies while dealing with a massive

infrastructure are introduced. Sec. 1.1.1 gives an idea of some major problems common in infrastructure
management. Then, Sec. 1.1.2 gives an overview of how the performances of infrastructure are assessed
with tests. Test data may also be used to configure the capacity of infrastructure, and therefore are
useable for capacity planning tasks.

1.1.1 Problems of infrastructure maintenance

During its lifecycle, an application will hopefully meet a certain success and the number of users will
gradually increase over time. Servers and infrastructure are configured to support a maximum number of
users simultaneously, and may show long response time or even crash over this limit. When a service
is under a high workload, it is important to ensure that there will be no operating problems (such as
machines overutilized, or not enough machines to answer user requests, etc.) [All08].

25

Chapter 1 – Data driven capacity planning

Problems for consumers

As an example, think about the Christmas period, where a lot of people would like to buy presents
on the internet. Imagine you are one of these buyers. And imagine that, after hours of browsing and
seeking on your favourite website, you have found the best gift card for your old aunt. It is now time
to pay, you have finally entered the three security digits of your faithful credit card, and suddenly: the
website is not answering anymore. After a while, a pop-up eventually appears, showing that the website is
currently under maintenance, due to an unpredicted number of people using it at the same time (well,
it’s Christmas for everyone...). You still have questions on your mind: is your payment finalised? Will
you receive this gift – will Aunty be happy at Christmas Day? Those unanswered questions mostly cause
frustration and anxiety, which can make you churn (change of website/provider). Meanwhile, all engineers
are working on the rush to re-establish the services: infrastructure has to be fixed, the sooner the better.
Those kinds of situations are often stressful for technical crews, and technicians only wished to have taken
their holidays right before Christmas...

Now imagine that you are a fan of the famous ‘Game of Thrones’ series. Imagine that a website is
actually providing a VOD service which includes access to ‘Game of Thrones’. As you know, this show is
very popular, and because you love it, you are eager to watch the new episodes as soon as possible so
you can debrief with your friends and colleagues the next day at a coffee break. If all of your (many)
friends and a fortiori all the fans of this show think this way, and if there is only one provider for the
show at the television, there will be a massive peak of people that will connect at the very same moment
using their TV and laptops to watch the episode. And if the infrastructure is not well calibrated, it could
have consequences on the quality of the diffusion. As a fan, you will probably not be happy with lags
and outages occurring between two crucial scenes! Ultimately, you could even show your unhappiness on
social networks of any kind. The project owner does not like such a bad buzz about his project on the
internet. It is known that it can be long and costly to order, install and configure new servers (several
months and thousands of dollars). This is why she/he may be interested to have a more precise idea of
when to buy new servers – when is the next season of ‘Game of Thrones’?

Problems for companies

Undeniably, for the manager of operational teams and its infrastructure engineers, one of the worst
scenarios that could append is a problem that would put the service down. It could have dramatic impacts
on any company. Indeed, people are not buying things on websites that are down. In many companies,
the cost of one hour of downtime is estimated and it is often more than hundreds of thousands dollars.
For example, during the famous Amazon Prime Days in 2018, the shopping website was down for more
than one hour and it has cost to the company several millions 1.

Always having oversized servers could be a good solution. Although, companies usually don’t make
this kind of bet, because larger and faster servers are more expensive. Every resource not consumed
because of a low activity is wasted and that waste has a cost. P. Bodik models peaks and workload in
[Bod+10] and uses the analogy between high user peaks and earthquakes to show that it is not reasonable
to systematically over estimate capacity: it is way too expensive to have very strong buildings ready to

1. See: https://bit.ly/2lIIhBI, a webpage from Businessinsider that agues that the one-hour downtime cost
100 million USD to Amazon.

26

https://bit.ly/2lIIhBI

1.1. Context

face every situation (even the one pretty improbable, say, disastrous earthquakes in a non-volcanic area),
in analogy with huge, oversized servers, ready to welcome thousands of users. But serving a website with
too few servers, which are not powerful enough to answer in a reasonable delay to user requests, is not a
good scenario either. Users are not inclined to wait too long until results to their queries are shown. As
stated in [Nie94], a user starts noticing delays after 1 second waiting time and lose attention after more
than 10 secondes. Competition is hard and buyers can change their mind (and their providers) in no time.

Some cloud management softwares are able to automatically balance the use of servers so that there is
less underused servers. The applications hosted are automatically transferred to unused servers depending
on the needs. It allows doing some overallocation of resources [XSC12] where the software hypervisor
takes profit of inactivity in some applications to reduce the overall number of servers used. Although, it
can be dangerous if all the applications become very active at the same moment.

Using cloud infrastructure is more flexible: resources might be adjusted on demand, sometimes even
automatically. But even if using cloud infrastructure allows to automatically adjust the architecture of an
application by making its resources growing at peaks, it cannot grow indefinitely, and it has an impact on
the application price. In theory, companies can pay as they grow, as long as they are able to afford costs
induced by improvements.

1.1.2 Performances and tests

Computers, smartphones and tablets with an internet connection are becoming cheaper day after day,
and every aspect of the customers modern lives is web-connected. It means that there are more devices
browsing web services. This revolution of use has started more than a decade ago. Internet giants have
then been developing technologies to cope with the always-increasing number of online consumers. Their
goal is to maintain good performances. This section is dedicated to the presentation of the infrastructure
testing and the various techniques used.

What is infrastructure performance?

Tech leaders have a great interest in the performances of applications. There exists several ways of
assessing them. One of them is to test the applications and infrastructure. Infrastructure is being tested
to ensure that it is correctly calibrated, to check the quality and robustness of the application. The goal
is to validate that it could be deployed to the real world in front of real people.

Testers are specialists who bench and stress the infrastructure to ensure that they behave as expected
under pressure. They use tools to simulate users browsing a website, create complex test scenarios to
ensure that servers can handle in typical conditions. Tests are usually executed on a complete replica of
the infrastructure, because it is not recommended to stress the production servers as they will suffer and
might crash during tests, causing an unwanted unavailability. Test data is often gathered and analysed
offline, because test procedures are to be distinguished of monitoring activities. In the latest, the aim is
to fix problems in real time rather than preparing the infrastructure for any situation.

The load tests give the light on what can be addressed on the application infrastructure, regarding
the customers’ usage. With limit tests, testers try to find the limits (in terms of data flow, number of
users, etc.) of the application. Testers could also benchmark the platforms during hours with long tests,
to assess whether infrastructure can last long when stressed.

27

Chapter 1 – Data driven capacity planning

Part of the tester’s job is to define test scenarios. Plausible situations which can occur in real life are
simulated. Behaviour of potential customers that browse the website in a very specific way is modelled,
reproduced and ultimately replayed. Scenarios can be very long and complex, can be randomised to
introduce variability in the process, and are run using sometimes thousands of users at the same time. Of
course, being exhaustive in scenarios is not possible: some users will find a way to use the website not
exactly as planned.

One of the first indicators studied during analysis of tests results is the response time. It represents
the time spent by the servers and infrastructure to reply to a user’s query and to send responses (which
can be HTML, or of any other type). At a second hand, the overall availability of the servers represents
the duration where the servers operate normally. System with a high availability label will theoretically be
up 99.99% of the time [GS91]. The robustness of a server represents the capacity of the server not to bug
and not to lose data. Finally, the scalability of the systems defines how well the servers and infrastructure
react to a sudden rise of activity, and specifies the response times for different numbers of users.

How to achieve good performances?

First of all, it is important that the infrastructure containing the application is well dimensioned
[Tia09]. Dimensions of infrastructure is linked both to the number of servers available (that is highly
dependant on the architecture and use of the application), but also to the quality of the servers available
(servers with lots of CPUs and RAM are more efficient).

Secondly, the configuration of the servers is very important, as a bad configuration can dramatically
impact the behaviour of servers under high load [Eil+06]. A well-dimensioned infrastructure but with a poor
configuration is sometimes unable to handle several users simultaneously, because of the overconsumption
of resources that are being wasted. On the other hand, the reverse is also true, and a small infrastructure
but very well tuned/configured may handle more load.

Finally, data flows between servers play an important role [Bal+11]. Indeed, the footprint of data
is huge: network links have to be adapted in the infrastructure, servers have to be ready to process the
massive incoming data flows (for storage, running algorithms, etc.). Data centre architects should also
take into account that data flows might change over time, according to many factors (for example, launch
of a new product, sudden increase in the interest of one item, etc.).

1.1.3 Wrap up

The necessity of having the best infrastructure management systems to prevent problems on services
is not to be proven. Such systems will be able to ensure that servers are enough and well calibrated,
that users don’t experience any latency, that networks are operating fine... And any problem will rise
notifications which will help infrastructure managers to fix problems, proactively if possible. A good start
for configuring infrastructure is performance testing, which is useful to configure brand new servers before
production.

28

1.2. Capacity planning

1.2 Capacity planning
Capacity planning is the way servers are managed once they are on set. The goal is to maintain

performances on the long term and not to ensure at one given instant in time that performances are
sufficient.

In this section, the definition of capacity planning is given on Sec. 1.2.1. A view on how capacity
planning may be applied on two different infrastructure architectures is depicted on Sec. 1.2.2.

1.2.1 Definition

Capacity Planning (CP) consists in managing running infrastructure and servers for the purpose of
reducing latency, enhancing the overall service quality and avoiding problems on servers during production.
The goal is to determine the production capacity needed to meet changing demands. Some concrete
examples of CP tasks are to find the right number of servers for an application, to find the size of some
network links, to detect poor configuration on servers, etc.

Data from tests is often used to grade capacity models. For example, tests can reveal that systems
cannot go above 10 transactions per seconds and 10 people connected to the database is the maximum.
That information is to be used to enhance capacity plans. Those two processes are independent but
infrastructure is often tested before creating capacity plans.

CP relies on the study of a particular set of monitored information. They assess the global health of a
given system at a certain instant in time. Capacity is a very wide concept: network bandwidth, hard
drive or CPU use, number of transactions per seconds, etc. CP can be done in various ways, depending
on the target infrastructure and whether it is cloud enabled or not.

1.2.2 Capacity planning for two types of infrastructure

Bare metal and legacy infrastructure

In the early ages of computer science, services were deployed on huge bare metal servers [Moo+05].
Systems maintenance was mainly manual as the servers had to be ordered and installed by humans. If a
threshold of users browsing a service was reached, it was difficult to react rapidly and anticipation was an
important asset to ensure the stability of a service. On another hand, fewer people were browsing services
at this time, which made the scaling process less dangerous.

CP analysts were collecting data, sometimes manually on legacy monitoring systems, and taking
actions about anticipated flaws. They were asking questions such as ‘will my system support the load for
the next month?’ and answering them by manipulating the datasets and creating experts models [Sne02].

Models were condensed of human expertise, mostly because applications managers knew very well
their behaviour. Experts were aware that every year, during certain religious events, people traditionally
has a different use of the application. For example, it is known that people tend to buy more goods than
usual during a few weeks before Christmas. It has to be anticipated for systems hosting merchant websites
not to crash.

Finally, capacity reports were produced every day/week to keep a track of every action and decision
and have an overall view of the system health.

29

Chapter 1 – Data driven capacity planning

Legacy infrastructure and systems are still present in companies, for different reasons. At Orange,
some critical systems have been up and running for decades, and are sometimes too critical to be shut
down. For systems that run telecommunications services, it is indeed tricky to even think about a possible
downtime. Those servers are proof-tested, and some mainframes used to host those old (but critical)
applications sometimes could cost thousands or even millions of euros.

Cloud infrastructure

Nowadays, a lot of companies are using fully cloud-enabled infrastructure. The management of those
is easier. Adding or deleting new machines is doable in minutes from a web interface for most cloud
providers, whereas it could take months with traditional servers that should be installed manually by
human operators. It is simple to reduce the anticipation time needed to scale up a service, and decisions
can be taken in real time. There is less focus on the solid infrastructure than before, because cloud
infrastructure is offering numerous interesting properties by design (e.g. replicated services, automatic
virtual machines backups, etc. – see [MG+11]).

The maintenance of the real infrastructure is often on the cloud provider side, which is not necessarily
the one deploying the application. More broadly, the objective of capacity planners is still to anticipate
the future activity of servers and application but the horizon is shorter because everything goes faster.

Some advanced CP software sometimes manage the infrastructure in autonomy, by using some
mechanisms such as auto scaling [MH11]. This technique allows the software that manages the cloud
hardware to pop new virtual machines automatically if it feels that the performances are too low, based
on some parameters defined by engineers. It also enables the optimisation of the number of servers in real
time: if one server is not used at all for a certain amount of time, it could be removed and re-created
when the need arises [DWS12].

Migrating legacy solutions to the cloud can take a lot of resources. The transition is not always fast.
Orange already owns many bare metal infrastructure that are easier to exploit than clouds infrastructure.
Teams are already trained and used to those paradigms, and more efficient. Therefore, most of the cloud
CP techniques (auto scalability, real-time placement of virtual machines, etc.) are easier to implement in
companies that are less dependant to massive, already in place bare metal infrastructure.

1.2.3 Wrap up

In this section, the concept of CP has been introduced, and its application to two different types of
infrastructure explained (namely bare metal and cloud infrastructure). For those two types of infrastructure,
the challenge is to anticipate the need for more resources in order to ease their management.

This thesis aims in developing some machine learning (ML) algorithms for improving the CP at
Orange. A special interest is shown about forecasting algorithms. Next Sec. 1.3 gives a view on a possible
data-driven CP tool for Orange needs.

1.3 Toward data-driven capacity planning tool
The solution to a fully automated and complete infrastructure management software is certainly not

straightforward. Many different directions might be followed in the path of improving the CP toolset at

30

1.3. Toward data-driven capacity planning tool

Orange, and more especially for the OM project. CP solutions are usually focused on the management of
servers (auto-scaling, technical management of infrastructure, real time peak detection, etc.). Although,
the use of time series and particularly forecasted values is a real support that can be used with CP tools to
improve their accuracy and even their scope of application. That is why this thesis focus will be entirely
on the TS forecasting and its data science aspects. Less emphasis will therefore be made on technical
tools. An industrial use of the forecasting framework introduced in the thesis is mentioned in the ultimate
Chap. 7 which is dedicated to a use case for the OM project.

In this section, the interest of Orange for developing data driven CP tools is shown. In a first
Sec. 1.3.1, the industrial problem and the datasets that will be used for case study are presented. Then,
an exploration of the data is made in Sec. 1.3.2. The hypothesis made on the datasets manipulated are
shown in Sec. 1.3.3. The interest of data driven algorithms for CP task is explained in next Sec. 1.4.

1.3.1 Industrial problem and datasets

For this thesis, data from a fast-growing Orange asset was provided: Orange Money project (OM). 2

This latest was established in late 2008. It aims in providing an easy access to bank transfers for African
customers. The bank exchange system is hosts by a large Orange infrastructure and is used by more than
31 million customers across all of Africa and Europe.

Technically speaking, the application is present on 14 African countries, and 162 servers were in place
between 2014 and mid-2018; some of them were hosted in France and others directly on the targeted
countries in Africa.

The datasets were collected from this infrastructure using Nagios supervisor [Bar08]. It collected
technical and operational metrics every five minutes:

— Technical data: data concerning the server’s performance such as percentages of CPU/memory use
across all servers,

— Functional data: data concerning users browsing the service; number of financial transactions every
minute, number of people on a website, etc.

Examples of the data collected on (OM) servers can be found in Fig. 1.1. OM is providing various
datasets, coming from multiple sources: technical sources (practical field reality such as evolution of
servers’ technical Key Performance Indicators - KPIs - over time: CPU, MEM, ...) or operational sources
(evolution of business KPIs over time, often in relation with money and/or users).

For the OM project, the need of having a very well-made capacity plan is important. Indeed, this
application is crucial as it concerns money transfers between individuals. Also, the application knows a
very high growth rate, which means that more people are adopting it every day and it impacts the server’s
usage. Finally, the relatively long-term forecast required by CP applications is challenging. It is more
useful to have a view on the long-term evolution of OM applications rather than one unique point forecast
for next day maximum value.

Until now, the raw data was used by OM managers to feed massive excel spreadsheets, where the data
was displayed and handmade forecasts being computed. Those tasks were time consuming: the growth
rate (workload and augmentations of this latest) of two countries is always different, and some rules had
to be inferred by experts to create models that were more suited. This method was also less resilient to

2. See: https://orangemoney.orange.fr/

31

https://orangemoney.orange.fr/

Chapter 1 – Data driven capacity planning

Figure 1.1: Examples on how OM project uses the raw data coming from servers to visualise
with dashboards the good health of systems. This data shows the number of people using the
service on a daily basis on four different African countries. Upper right graph exhibits one data
peak. Lower right graph exhibits one increasing trend.

fast change in the trends, because models were updated weekly. Such approach is mostly ad hoc, and do
not scale to a growing number of deployment countries and use cases.

Because of those limitations and prior to this thesis, project managers decided to create a tool to
support them by forecasting the evolution of some variables of interest in the data (transaction per
quarters, CPU usage, RAM usage, etc.). This tool is called PerForecast [LML18]. It consists in an
interface that allows users to upload data then to process the data using some state-of-the-art forecasting
models and finally selects the best model, all automatically. This approach enables the use of complex
models for non-initiate and non-statistician managers for the conception of capacity plans.

1.3.2 Data exploration

Prior to the experiments with the framework, an analysis of the data at hand was conducted. Two of
the most emblematic pieces of data manipulated for the experiments are the Transactions Per Quarters
(TPQ: transactions every fifteen minutes) and the CPU datasets. In Fig. 1.2 are provided graphs and
analysis about one particular TPQ metric, which is an aggregation of all the TPQ metric monitored on
all the 162 servers.

The methodology presented is a classic of TS analysis. It aims at verifying if the TS at hand is
stationary, seasonal, shows a trend, etc. The analysis is conducted on the last 1000 points of the TS.
There are 96 points per day. The methodology followed on this particular TPQ TS was repeated as many
times as necessary for further analysis of other TS of the dataset.

— The Subfig. (a) displays the raw data in blue and a smoothed version of it in red. The blue line
below the data is the trend observed, which in this case is practically non-existent, and stable.

32

1.3. Toward data-driven capacity planning tool

— The Subfig. (b) displays the autocorrelation graph. The latest show a very clear, almost perfectly
sinusoidal correlation patterns between points, which suggest a strong seasonality; it makes sense
with the plot of the data and also with the a priori knowledge of OM application which is driven
by the daily human activity. Two upper peaks of the sinusoid are separated by approximately 96
points in the autocorrelation graph.

— The Subfig. (c) displays the partial autocorrelation graph. It gives the partial correlation of the TS
with its own lagged values. The stabilisation of the plot is observed at lag 5.

— The Subfig. (d) is a QQ plot [GW68]. The QQ plot, or quantile-quantile plot, is a graphical tool to
help us assess if a set of data plausibly came from some theoretical distribution such as a Normal or
exponential [For15]. This QQ plot is light-tailed, meaning that the data is not generated by a fully
Gaussian process.

— The Subfig. (e) is a histogram which displays the repartition of the values observed in the raw TS.
Consistency might be found between the QQ plot and this histogram in the extremities of the two
plots. There is a regular distribution of the points for medium values but a rather low number of
extreme values.

Aggregated TPQ in all Africa

(a)

(b)

(d)

(c)

(e)

Figure 1.2: Analysis of TS at hand: the situation for the aggregated metric ‘Aggregated TPQ in
all Africa’.

33

Chapter 1 – Data driven capacity planning

0:00 12:00 24:00 0:00 12:00 24:00 0:00 12:00 24:00 0:00 12:00 24:00
t ttt

v v v v

Figure 1.3: Analysis of transactions per second TS: display clusters found by a K-means clustering
algorithms with 4 clusters. t is time, v is values.

A second step of this analysis was to assess the diversity of clusters in the data. For this task, one
K-means clustering algorithms with four clusters was applied to the seasons that have been previously
split from each other. Fig. 1.3 exhibits the results and 4 different types of days are clearly identified.
First cluster at the left of the figure represents the low activity day. Even at noon there is not that much
activity and the maximum value is around 30. On the other side, second cluster and last cluster represent
the high activity days; the last cluster is filled with very few days, most probably because it represents the
very exceptional days that did not occur often on the learning data. Finally, the third cluster represents
the average day, and is filled with more TS than other clusters.

1.3.3 Nature of the data and hypothesis

The analysis of the data in the previous section exhibits some interesting characteristics: seasonality,
correlation between points, etc. In all the remaining of this thesis, several hypotheses are made on the
datasets found in the CP problematic. They are important because they frame the scope of the developed
algorithms. The hypotheses made on the data are listed below.

— H0: time series are regularly sampled, there is no missing data and the data collection process is
reliable;

— H1: time series are diverse by nature and many different types of data coexist;

— H2: time series are seasonal;

— H3: there are no trends in the time series;

— H4: season length is known by the forecaster prior to forecasting;

— H5: there exists different types of season, each type being different from each other and representing
a collection of similar seasons;

— H6: it is possible to guess one season type based on the knowledge of the few past seasons observed,
because there is a correlation between successive types of seasons.

Hypothesis H1 is important in the context of CP because sources of data are multiple: they can for
example be technical or functional, those two data types being fundamentally different. Also, most of the
CP datasets at hand are seasonal, thus the Hypothesis H2. Hypothesis H3 is weak because it is easy to
remove trends from time series (see Sec. 2.1.1). Finally, in the CP datasets, it has often been observed

34

1.4. Data driven algorithms

two low-profile days occurring after five normal days (the occurrence of weekends being a probable cause).
Generalising this observation led to the Hypothesis H6 that introduces the correlations between successive
types of seasons.

1.4 Data driven algorithms
Sec. 1.3.1 showed that the sources of data for the OM project are quite diverse: money transfer

information as well as server status data. Data driven algorithms are interesting because they mostly rely
on the data itself, and do not require complex parameter setting. It means that their configuration is
easier and also that they can be applied on various data types seamlessly. This is why they are particularly
interesting for CP tasks, where the data is extremely diverse by nature and where the need to have
automatic and reliable algorithms is strong.

Sec. 1.4.1 explains how forecasting algorithms might be used by capacity planners to manage infras-
tructure. After that, a diagram that exhibits research directions considered for this thesis is shown, and
choices explained in Sec. 1.4.2.

1.4.1 Forecasts and capacity planning

Forecasting algorithms are common in the ML field. They are used to predict the future values taken
by one given data source. It is interesting in the context of CP. The study of data coming from the servers,
and estimations on how they can evolve could give infrastructure manager crucial information about
potential evolution of systems, and thus help to proactively maintain them.

Forecasts have for example been used to maintain the internet backbone traffic [Pap+05b]. Authors
use a linear TS models (ARIMA) to predict when and where link additions/upgrades have to take place
in an Internet protocol backbone network. The identification of the long-term trend was important in this
work and authors used the wavelet multiresolution analysis to do so.

Still in the context of network capacity, [Pap+05a] use spectrum analysis and linear models (ARIMA)
for creating short-term forecasts of the WiFi use in a campus. Authors insist that short-term forecasting
(e.g., next minute) can assist in designing more energy-efficient clients, whereas long-term forecasting is
essential for CP and understanding the evolution of the wireless traffic and networks.

More recently and to manage cloud infrastructure in a better way, linear models have been used by
[RDG11; VKJ15] as a support for enhancing auto-scaling tools, where the need to predict future workload
based on a limited horizon for adjusting resources allocated to users ahead-of-time is paramount. [CDM10]
use some pattern matching to identifying resource usage patterns that have occurred in the past, and to
forecast what pattern will be next.

Having an exhaustive view on how can evolve one unique data source is a challenge. Taking into
account several sources of data (e.g. CPU, RAM, disk, etc.) in one unique forecasting algorithm is another
yet harder challenge, addressed by [Ye+14] where authors propose a multivariate prediction model for
quality of service. However, many bare metal servers are still in use at Orange, and most of them are
monitored by capacity planners that often rely on the study of one unique technical metric (such as CPUs
or Memory). Then, there exist an interest in forecasting each variable independently for improving CP
algorithms.

35

Chapter 1 – Data driven capacity planning

KPI
Qualification

Management
of virtual
machines

Visualisation,
dashboards

Pattern Mining

user KPIs (TPS...)

KB

Automation
(if problem

known)

Decision Maker

Data Analyst

: models

: core of PerForecast

: business units

: connexion with Database

: communication flux

: models inputs

Examples

Business
knowledge

Alerting

Root cause
analysis

Action
on alert

Thresholds
tunning

Online

Offline

Machine Learning
& Forecasts
models fit

Business owner

if not known

recommendations

Anomaly
Detection

Ruptures
 detection

Forecasts

Predictions

Supervised analysis

: linked fields

Correlation
Analysis

Unsupervised analysis

Predictions

Data Scientist

technical KPIs

Figure 1.4: Functional diagram of one hypothetical and ideal ML toolkit for improving CP.

The configuration of forecasting algorithm is not a trivial task and data scientists are often required
to find good parameters. Bad parameters could lead to wrong forecasts, and the latest are not very useful.
The need for more out-of-the-box, automatic forecasting models for CP is explicit. A state of the art
about forecasting algorithm will be proposed in Chap. 2.

1.4.2 What could be done?

Fig. 1.4 shows a big picture of all the systems entangled together in one hypothetical, ideal and
complete data science tool for enhancing CP. It explicit inputs and possible outputs. A detailed explanation
of this figure is given below.

This figure is decomposed in various boxes which represent some data science techniques that could be
used for improving CP toolbox. They are spread in two categories which are ‘offline’ and ‘online’. ‘Online’
treatments are done with data which is continuously incoming from the sensors. ‘Offline’ treatments are
done with data already collected.

36

1.4. Data driven algorithms

Inputs

The input sources, that may be found in the left of the figure in light grey and light green, are at the
basis of every data science project. Obviously, the data collected directly on servers and infrastructure is
the first source to be used.

Human actors, represented with people in the figure, can also have relations with ML models by
configuring parameters and giving insights about business knowledge. Indeed, those insights are not
necessarily shown in a comprehensive way on the raw dataset.

Finally, some ML models might output results that will be used by other algorithms. The orange box
‘Machine learning & Forecasts models fit’ in the upper, offline section of the figure is linked to the orange
‘Forecast’ box in the online section. Indeed, models might be trained offline and used afterward online.

A knowledge database (KB) is represented in the centre of the figure, fed by all the algorithms in place
in the system. It can be used to optimise servers, tune configurations, but also to store the computations
and use them afterwards.

Offline and online paradigms

Two main categories for algorithms are represented: the ones that are trained offline, and the ones
that are trained and then used online.

Offline
Offline algorithms are designed to be trained with complete datasets and reused afterwards once

trained. Once trained, models can be used instantly.
In the offline section which is at the upper part of the figure, the three following models have been

identified:

— Pattern Mining models: used to extract patterns from the data, to find relevant pieces of TS that
can be used to trigger alarms, predict system failure on the basis of pattern succession... Real world
TS often exhibits patterns that may be useable for modelling. Pattern mining methods discover
those patterns, often by using past data in an offline mode. A pattern could be repeating peaks on
the data, strange behaviours of customers, etc. [IOB09] gives an overview of some pattern mining
algorithms used for production planning.

— Correlation analysis: in some technical TS, variables are correlated: percentages of CPU use vs
memory RAM use, two or more functional transactions, etc. The sudden rise of RAM use on one
server could be correlated to a later rise in CPU use, and this could lead to a problematic situation
to be detected – and avoided. Correlations analysis of the multiple series that compose the learning
ensemble could reveal unknown links between variables that may affect the performances.

— Forecast models fit: known data is used to train forecasting models. They are used after hand for
forecasting purpose. Models can then be used online in real time, or offline and trained periodically
(updated every night, for example). It is worth noticing that forecasting is the most difficult task
but being able to accurately forecast answer the two other objectives.

Online
Online algorithms are characterised by real-time data processing using continuous streams. The data

does not need to be ‘complete’ for the analysis to begin. Those methods are particularly adapted in the
context of massive data analysis when results of computations are needed fast.

37

Chapter 1 – Data driven capacity planning

Algorithms can be trained offline and used online. They can also be trained only online while being
used. Those models can adapt to new situations and are always evolving.

In the online section which is on the lower part of the figure, the three following models have been
identified:

— Predictions: this thesis distinguishes prediction tasks and forecast tasks. Predictions are made to
answer a binary question: ‘is my infrastructure well dimensioned?’, ‘will my servers crash tomorrow?’.
Forecasts are more suited if the need is to have a view of the overall evolution of KPIs, using
dashboards, for example.

— Anomaly detection: finding anomalies in huge data streams enable faster reaction to problems.
This is especially useful when applied online, to react before the problems. Anomaly analysis could
also be done retrospectively but CP usually focus on real-time usage. Peaks are notable anomalies
that should be detected because they represent unusual situations that could be dangerous for the
quality of the services.

— Forecasts: this box is used jointly with models fitted offline. Models fitted are used and they
produce the forecasts to be consumed by the end user.

Business goals and outputs

Creating a fully automated CP ML toolbox is a fairly complex task. A tool used by humans (project
owners and managers) to enhance existing CP processes is a more reasonable goal for this thesis. This
section identifies four major business goals. They are represented in light blue rectangles in the figure.

— Root cause analysis: models could help in the root cause analysis. This information is the holy
grail, as knowing which elements have failed in complex infrastructure could accelerate next similar
maintenance operations, or even problem resolution.

— Automatic virtual machine placement: because CP can also concern virtual machines, a module
which takes care of their automatic management inside a complex data centre could be intended.

— Alerting: raising alerts at a right time is also something of interest. Those are good indicators of
incoming problems and can be used to take rapid actions.

— Visualisation: (in light orange) the visualisation of the knowledge inferred by models is a major
goal. It can be displayed graphically, in a nice and understandable way for non-technical users (ex:
managers in charge of maintenance of data centres). Such visualisation includes technical graphs
with maximum value not to exceed, peak detection... One visualisation example can be found on
the Fig. 1.1.

1.4.3 Wrap up

Developing all the elements depicted in Fig. 1.4 is a challenge, because each individual functionality
introduced (e.g. anomaly detection, root cause analysis, etc) is a complex subject on its own and all
subjects might be studied in several independent theses.

In this thesis, the goal is to provide a tool that will help to improve the capacity planning toolset at
Orange. Forecasting is seen a support for better decisions-making, in the management of the infrastructure.

38

1.5. Wrap up and objectives

Therefore, key aspects that will be studied in this work are shown by orange-coloured elements in the
figure.

— The development of offline machine learning algorithms (upper part of the figure in the offline
section);

— The offline machine learning algorithms are then used to generate forecasts (lower part of the figure
in the online section);

— The results of the forecasts are provided using a visualisation tool at the end.

1.5 Wrap up and objectives
For this thesis, certain choices had to be made to narrow down the possible research directions. The

focus will be made on one core aspect of the Fig. 1.4, that is the forecasting of time series.
Many challenges arise with the use of time series forecasting algorithms for capacity planning. More

precisely, this thesis first aims at proposing a unique algorithm that is adapted to many types of incoming
time series: technical ones, such as CPU or RAM use, or business ones, such as the number of people
browsing a service at a certain time of the day, etc. It makes sense to tackle the high diversity of data
available for capacity planning problematic in relation with the hypothesis H1.

Secondly, this thesis aims at proposing a data-driven algorithm that requires less human inputs
as possible. The algorithm and forecasts should be easy to manipulate, both for expert data scientist
but also for end users that are less used to technical aspects. It makes sense because users of capacity
planning algorithms are not necessarily data scientists, and not always able to find parameters for complex
algorithms.

Finally, this thesis aims at creating a forecasting algorithm able to foresee several points in one
forecasting batch. It makes sense because the more information about the future available for capacity
planning, the more precise will be the planning. The state of the art of forecasting algorithms in Chap. 2
shows that most of the methods are rather built for sequential point by point forecasting, or the forecast
of a usually low and limited number of points.

For creating a framework that is adapted to time series, and especially in the context of capacity
planning, the hypothesis depicted in Sec. 1.3.3 will be paramount because they shape the needs and create
constraints. They will therefore be used as guidelines for the entire thesis.

Next Chap. 2 is dedicated to a state of the art about those time series, and more precisely about time
series forecasting algorithms.

39

Chapter 2

TIME SERIES AND FORECASTING

MODELS

As explained in Sec. 1.4, time series forecasting is an important asset for supporting good capacity
planning. Indeed, having reliable forecasts facilitates anticipation, enables faster decision-making, and
makes processes of infrastructure maintenance easier. Time series forecasting is an old research interest:
the ‘Journal of Forecasting’ was for example set in 1982 [DH06], long before the emergence of ‘big data’.
Furthermore, weather forecasts [Bul01] or even financial forecasts [Wor27] were already common at
the beginning of the 20th century. This field of research is relatively mature and has proposed several
approaches, all adapted to various types of data and having different requirements.

During the state of the art, a certain number of examples to support the
definitions or concepts will be given. It is a golden thread that will concern
one fictional infrastructure composed of one or several servers, with several
indicators (CPU, RAM, etc.). Those examples will be emphasised in this type
of grey box. This fictional infrastructure is nonetheless close to the real one
which is studied in Chap. 7.

Leading example

In this chapter, a view on the state of the art of time series forecasting algorithms is presented.
Sec. 2.1 is dedicated to the presentation of time series. In Sec. 2.2, differences between deterministic and
probabilistic forecasting are explained. It is useful to understand those for a better understanding of the
next sections of this thesis. Some major deterministic models are listed and presented in the Sec. 2.3.
Some major probabilistic models are listed and presented in the Sec. 2.4. Sec. 2.5 gives some details
about exogenous data and their importance for time series forecasting. Finally, some limits of time series
forecasting algorithms are shown in the concluding Sec. 2.6.

2.1 Time series
Time series (TS) are sequences of time-ordered values. Usually, values are numerical (real numbers).

Some classical examples of numerical TS can be the evolution of the temperature at a given place, the
number of heart beat per minute for a human, or the index value of companies over time in the exchange
markets. TS represent the evolution of continuous processes over time. The study of TS is particularly

41

Chapter 2 – Time series and forecasting models

Figure 2.1: Monthly max, min and average temperatures for Rennes City for the past 11
years. Image borrowed from the following website: https://www.worldweatheronline.com/
rennes-weather-history/bretagne/fr.aspx.

useful to model the temporal evolution of variables, or to understand the underlying processes. In this
thesis, a focus on the forecasting of numerical TS is made.

For this work, the TS of interest are seasonal: they model processes that exhibit seasonal repetition
over time. A classical example of seasonal TS is the measurement of temperature at a given location for
several years: a lower temperature will naturally be observed at night-time, higher temperature at day
time, but also higher temperatures during summer. An example of such TS might be found in Fig. 2.1,
where variations between summer and winter temperatures are explicit. This type of TS is interesting
because they are often found in Capacity Planning (CP) datasets due to the users daily consumption
habits.

Sec. 2.1.1 below aims at giving formal definitions, which will be used afterward in the remaining of
this thesis. Seasonal TS will be defined in this section. Sec. 2.1.2 gives some examples of use cases and
machine learning tasks that may be applied on TS. One of which is the forecasting of TS, and will be
described in further details in the next section because of its major role in the algorithms introduced in
this work.

2.1.1 Definitions

First, a general definition of TS is given.

Definition 1. Time series
A TS {(t1,~y1), ...,(tn,~yn)} is a sequence of couples (ti,~yi) with ti the time at instant i, ~yi the value at
instant i and n the length of the TS.

In this thesis, it is reminded that hypothesis H0 given in Sec. 1.3.3 states that points are regularly
sampled, and that TS have no missing values. Thus, the ti can be removed from the definitions below.

42

https://www.worldweatheronline.com/rennes-weather-history/bretagne/fr.aspx
https://www.worldweatheronline.com/rennes-weather-history/bretagne/fr.aspx

2.1. Time series

Moreover, a TS that describes the variation over time of one unique indicator is said to be univariate, as
stated by the following definition.

Definition 2. Univariate time series
A univariate TS Y is a temporal sequence of values Y = {y1, . . . ,yn}, where yi ∈ R is the value of Y at
time i and n denotes the length of the TS.

An example of univariate TS could be the monitoring of the evolution of available RAM for a given
computer.

Sometimes, multiple indicators are monitored over time. For example, one could be interested in both
following the evolution of RAM use and CPU use with the same timescales. Those TS are said to be
multivariate.

Definition 3. Multivariate time series
A multivariate TS is a vector of values Y = 〈~y1, . . . ,~yn〉 of length n. For all i ∈ [1,n], ~Yi ∈ Rp, where p
denotes the dimensionality of ~Y .

Some TS models are only able to deal with TS that are stationary over time. As stated in [Tab13]:

Definition 4. Stationary time series
The properties of the stationary TS do not depend on the time at which the series is observed [WMH98].
For a stochastic process to be stationary, the mean value and the variance do not depend on time [Har93].
Stationary TS are not seasonal and do not have trends. Non-stationary TS can have nonconstant means,
time-varying variances, or all of these properties occurring simultaneously. Trendy, seasonal and cyclical
TS are types of non-stationary TS [Wei06].

As stated in [MS96], it is more difficult to treat data where correlation between points is high, with
high trends or even seasonality. Most of TS theory applies only to stationary variables.

Fig. 2.2 gives an example of a stationary TS (left) and a non-stationary TS (right). It is possible to
make TS stationary. The objective is often to isolate the non-stationary part and remove it from the original
signal. Among those techniques are the detrending [Raf94], deseasonalising [Nel+99], differencing [DP87]
and log transforming [LX12] of TS.

Autocorrelograms are often used to find out if TS are stationary, or if there is some seasonality.
They measure the linear relationship between lagged values of a TS. Lagged valued are constructed by
repeating the TS with a slight delay for comparison purposes. A strong correlation between lagged points
results in the graph shown in Fig. 2.3. Without seasonality and thus less correlation, the values of the
autocorrelogram would quickly be close to 0.

Some TS contain a periodic pattern that repeats over periods. It is particularly the case for TS that
are related to human activities or natural phenomena (for instance the average monthly temperature
measured at some location on earth follows somewhat the same cycle every year). This kind of series can
be denoted periodic.

Definition 5. Season
Let s be the seasonal periodicity of the considered univariate TS. A season is a TS Ỹ = {ỹ1, ỹ2, . . . , ỹs} of
length s.

43

Chapter 2 – Time series and forecasting models

1959-01-01 1959-02-20 1959-04-11 1959-05-31 1959-07-20 1959-09-08 1959-10-28 1959-12-17
Date

30

40

50

60

70

Births

(a) Stationary TS

1949-01 1950-09 1952-05 1954-01 1955-09 1957-05 1959-01 1960-09
Month

100

200

300

400

500

600

Passengers

(b) Non-stationary TS

Figure 2.2: Comparison between (a) stationary and (b) non-stationary TS. Subfig. (a) is the
Daily Female Births dataset, Subfig. (b) is the Airline Passengers dataset, which shows both
trend and seasonal components.

As expected, a seasonal TS is composed of one or more season that repeats over time.

Definition 6. Seasonal time series
Let Y = {ỹ1..k} be a collection of k typical seasons, then a seasonal TS Y = {y1,y2, . . . ,yn} is a univariate
TS of length n= k×s such that:

yi = ỹ
kσ(i)
i−s×σ(i) + ε, ∀i ∈ [1..n]

where σ(i) = b isc is the season index of the i-th timestamp of the series, ki is type of i-th typical
seasonal TS and ε∼N (0,1) is a Gaussian noise.

Often, TS exhibit more complex structures than just a pattern that periodically repeats. A TS might
contain different repetitive patterns that do not always occur with the same regularity.

For instance, in a TS representing the number of people browsing a given service,
week days and weekends can often be considered as two different patterns. Week
day seasonality is of length 5, whereas weekend seasonality is of length 2.

Week days vs weekends

Finding seasons in TS data is challenging. Seasonality can be multiple and an accurate detection is
the key to better forecasts. One of the oldest methods for handling seasonality in TS is to extract them
using a seasonal decomposition such as the X-11 method [DH06; LQ12] and its many variants [Fin+98;

44

2.1. Time series

1981-01-01 1982-05-16 1983-09-28 1985-02-10 1986-06-25 1987-11-07 1989-03-22 1990-08-04
Date

0

5

10

15

20

25

Temp

(a) Minimum daily temperature dataset
0 5 10 15 20 25 30 35

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

(b) Autocorrelation plot

Figure 2.3: Open source seasonal TS (a). This dataset describes the minimum daily temperatures
over 10 years (1981-1990) in the city of Melbourne, Australia. The units are in degrees Celsius
and there are 3650 observations. The source of the data is credited as the Australian Bureau of
Meteorology. Autocorrelogram associated (b), first 50 points.

Dag78]. Seasonal unit root tests are also a key for discovering seasons in a TS [DHF84]. Some methods
are natively adapted to seasonal TS. It is the case of the nonparametric method STL [Cle+90], which
automatically estimates trends, seasonal and remainder components of a TS for better forecasting. It is
a simple yet efficient model based on the decomposition of the TS. [Ahd+05] propose a robust testing
procedure for finding periodic sequences in multiple TS data. For long TS, it suggests the use of the
Fisher’s g-statistics [WFS04] for the detection of periodic patterns.

Some TS may exhibit not only one but several seasons. For example, sells might be influenced both
by weekly rhythms (more sales during the week end), but also by a monthly rhythm (payday at the end
of the month) and finally by the annual rate of national holidays. Recent work [Bor+17] copes with this
problem by using several AR and MA models (presented below in Sec. 2.3.1) together for different time
resolution of the TS. If the data is seasonal for a given resolution, AR models are used, if not MA models
are used. [Gou+08] uses state-space models to model both hourly and daily patterns.

2.1.2 Machine learning tasks for time series

TS analysis [BDC02] has become a recent challenge since more and more sensors collect data with high
rates. There are many attempts in the data science research community to apply modern techniques to
tackle TS analysis. This section outlines non-exhaustively four of the more common machine learning (ML)
problems faced by data scientists for technical TS analysis: anomaly detection, classification, clustering,
forecasting.

45

Chapter 2 – Time series and forecasting models

Anomaly detection

Anomalies represent unusual and sometimes undesirable events that could be caused by problems
in the systems monitored (in a computing infrastructure context or even when using sensor data on
industrial machines), by unpredicted events (in the context of software security where attacks are not
easily predictable) or simply on the unexpected nature of some particular datasets (anomalies in genomic
data could represent some mutations) [CBK10]. Anomalies can be detected offline with datasets that
are no longer evolving. The stakes here are a better understanding of the data. Anomalies can also be
detected online if the need to react fast arises [Wan+11].

Classification

Generally speaking, classification algorithms aim to assign labels to given data. TS classification
differs from traditional classification, mainly because TS data is ordered. The relations between features
are thus different, which adds information. Nevertheless, the use cases are fairly similar: the goal is to
assign a class to a given TS.

In supervised cases, labels are known, and usually represent one characteristic of the data. For
example, daily temperatures could be classified as ‘very cold’, ’cold’, ‘normal’ or ‘hot’, depending on the
type of variations of the TS.

Classification is made using a classifier: the data is used at learning time, with labelled examples.
Classifiers are then used with unlabelled data and predict their classes, sometimes with a relative degree
of certainty for probabilistic classifiers.

In some recent work [Lar+19], authors compare the performances of two dictionary-based classifiers
for TS classification. In [DBC15], authors study a specific problem that is early classification of TS, where
the goal is to classify TS as early as possible in continuously incoming data. A detailed analysis of most of
the current TS classification algorithms and their performances may be found in [Bag+17], where authors
reimplemented most of the classifications algorithms published in the last decade and made extensive
experiments.

Clustering

Clustering algorithms aim at identifying groups of TS that are similar in a given ensemble of TS.
More formally, and as stated in [ASW15]:

Definition 7. Given a dataset of n TS data D = {Y1,Y2, . . . ,Yn}, TS clustering is the process of
unsupervised partitioning of D into C = {C1,C2, . . . ,Ck}, in such a way that similar TS are grouped
together. Ci is called a cluster, where ∀i ∈ [1,n]⊂ i⊆ {Y1, ...,Yn},D = ∪ki=1Ci and Ci∩Cj = ∅ for i 6= j.

Clustering algorithms are unsupervised, and the ground truth about clusters composition is unknown
a priori. One problematic that quickly arises is the question of distance between two TS. Such distance
might indeed be computed in various ways. It is a challenging task because of the noisiness of TS and the
presence of outliers [Lin+04]. There exists several distances. Two of the most widely used TS distance
metrics are the Euclidean distance [FRM94] and the Dynamic Time Warping distance [SC78].

46

2.1. Time series

Figure 2.4: Difference between Euclidean and DTW measures. Image borrowed from [Cas+12].

— Euclidean distance consists in computing the square root of squared pairwise difference (point
by point) for two TS of same length. For two TS Y and Z of length n: Y = {y1, . . . ,yn} and
Z = {z1, . . . ,zn}, the Euclidean distance ED is equal to:

ED(Y,Z)≡

√√√√ n∑
i=1

(yi−zi)2

— DTW is a method that calculates an optimal match between two given TS by computing their
optimal alignment. The latest should minimise the Euclidean distance between aligned points.
DTW is useful when the need is to compare two TS where very similar events happened but not
simultaneously (see grey box example below). Fig. 2.4 shows visually the difference between DTW
and Euclidean distance.

Data peaks that happened on the launch of a new product on two different time
zone might be comparable but they do not happen on the same time scale. The
use of Euclidean distance with two peaks in two timescales not synchronised
will dramatically increase the error. Although, there is a need to detect those
two TS as similar, through the use of DTW for instance.

Product launch, timezones and DTW

47

Chapter 2 – Time series and forecasting models

Forecasting

TS forecasting consists in predicting future values for one or several given TS. It relies on the study of
the data already known, and possibly of exogenous data, to infer possible evolution and make predictions.

The first question that the forecaster naturally faces is to know the desired term for the forecast. The
horizon is linked to the number of points forecasted. To state the obvious, the further away are the points
forecasted, the more uncertain is becoming the forecast.

2.2 Deterministic vs probabilistic forecast
This thesis goal is to provide a reliable mid term to long-term forecasting algorithms for seasonal TS.

In this work, TS are assumed to be regularly sampled and univariate.

Definition 8. With Y a TS of length n, forecasting up to the horizon h is the task which consists in
predicting the h next points such as Ŷ = ŷn+1, ..., ŷn+h.

There exists several forms of forecasting and several paradigms for TS forecasting. Experimentations
have been conducted using the two following paradigms: (1) deterministic and (2) probabilistic forecasting.
The concepts for those two different paradigms are illustrated with the Fig. 2.5, and detailed respectively
in the next two Sec. 2.3 and 2.4.

Those two methodologies achieve two different goals.

— In the deterministic paradigm (also known as point forecast [Gne11]), the aim is to obtain a
numerical estimation of the future values that the TS will exhibit.

— In the probabilistic paradigm, the aim is also to predict future values, but forecasts are obtained in
the form of probability distributions of the value of the TS at a given instant in time, rather than
plain deterministic values.

Most of the algorithms of the state-of-the-art are adapted for a short term forecasting that either
consists in forecasting the next few points of a TS or some points not too far from the last observed point.
It is easy to imagine that longer forecasts are also more difficult to produce, because the uncertainty
rises with broader horizons and the error can quickly accumulate [Sor+07]. More factors that cannot be
foreseen nor controllable are engaged when the horizon is larger.

Multi-step forecasting is a concept which is closely linked to long-term forecasting. Indeed, one often
needs to predict several points in time in the future for retrieving a long-term horizon. But multi-step ahead
forecasting tasks are more difficult [TT94], since they have to deal with various additional complications
like accumulation of errors, reduced accuracy, and increased uncertainty [Wei18; Sor+07; Tai+12]. The
oldest and most intuitive multi-step strategy is the recursive strategy [Tai+12], where forecasted values
are fed back to the algorithm in order to predict the future values. It is risky if one of the forecasted
values is wrong because the error will propagate quickly.

2.3 Deterministic forecasting
A TS forecast is considered deterministic [Zam+14] when it provides numerical values for the next

points to appear in the future. More formally, a deterministic forecast can be defined as follows:

48

2.3. Deterministic forecasting

6

5

4

3

2

1
0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

DAY 1 DAY 2 DAY 3 DAY 4
(predicted)

tr
an

sa
ct

io
ns

p
er

 q
ua

rt
er

time

(6)

(a) Deterministic forecast

6

5

4

3

2

1
0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

DAY 1 DAY 2 DAY 3 DAY 4
(predicted)

time

tr
an

sa
ct

io
ns

p
er

 q
ua

rt
er

(b) Probabilistic forecast

Figure 2.5: Comparison between (a) deterministic and (b) probabilistic forecast. Historical values
are in black and forecasts are in blue. In Subfig. (b), the blue line is the expected value, and
blue regions are probabilistic intervals. The darker the region, the more likely the values.

Definition 9. Deterministic time series forecasting
With Y = {y1, . . . ,yn} a TS of length n, forecasting the future of Y up to horizon h consists in giving
numerical values estimations such as Y = {ŷn+1, . . . , ŷn+h}.

Future values at time n+h for each forecasting horizon h can be formalised as follows: ŷn+h =
gh(y1, ...,yn) + εt+h where gh is a forecasting model specific of the horizon h and εt+h denotes the model
error. At this point, gh is a single-valued forecasting model.

As an example of a deterministic forecast, if the problem is to forecast data
centres performances, forecast could say that tomorrow’s maximum use of the
RAM will be 32,760 MO, or that the maximum number of people browsing will
be 752 at the end of the day.

Data centre performance

The remaining of this section is dedicated to several deterministic methodologies. The well-known
autoregressive models is first introduced in Sec. 2.3.1, then Sec. 2.3.2 focus on seasonal TS forecasting
algorithms, Sec. 2.3.3 presents neural networks methods and finally Sec. 2.3.4 makes a focus on ensemble
models for TS forecasting.

2.3.1 Autoregressive models

Autoregressive forecasting models are often state of the art for many applications, from finance to
weather forecasts. Models are numerous and each has specific assumptions about data shape and format.

49

Chapter 2 – Time series and forecasting models

They can be seasonal or not, adapted to short or long forecasts, can be used for one step ahead forecast
or multistep forecasts, etc.

The list below gives an overview of some major linear models. Those are ordered by increasing
complexity. The first one on that list is among the simplest and easiest models to create TS forecasts.

— Simple average/mean forecast: this is the most naive method, where future point ŷn+1 is equal
to the mean of all the past points present in y. Then,

ŷn+1 = 1
n

n∑
j=1

yj

— Autoregressive model (AR): introduced in [Aka70; Aka98], AR makes the assumption that
there is a linear relationship between the output variable and the past values of the TS. The
parameters can be learnt while minimising least squares error. AR model is not always stationary
as it may contain a unit root. The order of an AR model is noted p, such as:

yt = c+
p∑
i=1

ϕiYt−i+εt

where ϕ1, . . . ,ϕp are the parameters of the model, c is a constant, and εt is white noise. The
advantages of those models are the model simplicity, the computational efficiency during the
training phase and the handling of the noise. AR models might also be combined. [CHB07] use a
sum of two AR models for creating forecasts in a capacity planning purpose, with manufactures
data, which can be highly seasonal and thus similar to the type of data processed. Note that AR
forecasting is more precise when it deals with non-seasonal datasets.

— Moving Average (MA): this method assumes that less recent points may have less importance
than the most recent ones. The order of a MA model is noted q, such as:

Yt = µ+εt+θ1εt−1 + · · ·+θqεt−q

where µ is the mean of the series, the θ1, . . . ,θq are the parameters of the model and the
εt,εt−1, . . . ,εt−q are error terms.

— ARMA: an ARMA model is obtained by combining one autoregressive model along with a moving
average model. One ARMA model of order (p,q) is a discrete temporal process (Yt, t ∈ N) such as

Yt = εt+
p∑
i=1

ϕiYt−i+
q∑
i=1

θiεt−i

where ϕi and θi are the model parameters and εi error.

— An AR model AR(p) is actually an ARMA(p,0)

— A MA model MA(q) is actually an ARMA (0, q)

— ARIMA [Box+15]: Including an integrated part of an ARMA model results in ARIMA model.
The integrated part of the ARIMA model aims at transforming any non-stationary data to stationary

50

2.3. Deterministic forecasting

data by differencing raw observations; data values are replaced by the difference between the data
values and the previous values.
There are three parameters to set: p, for the order of the autoregressive model, d for the degree
of differencing, and q for the order of the moving-average model. Those parameters may be set
following the Box and Jenkins’s methodology [MH97]. Grid search methods are able to find the
best combination of (p,d,q) parameters in a defined range. It allows using fine-tuned ARIMA
models without a deep knowledge of the Box and Jenkins’s methodology. In [JAS11], authors
use several ARIMA models to predict day-ahead electricity prices. Kavasseri et al. [KS09] use
fractional-ARIMA to generate a day-ahead and two days ahead wind forecasts.

2.3.2 Seasonal models

The seasonal TS deterministic forecasting is a forecasting of a seasonal TS at a horizon h= s, i.e.,
the prediction of the TS values for the whole next season ahead. One season is necessarily composed of
several points.

ARIMA expects data that is either not seasonal or has the seasonal component removed, e.g. seasonally
adjusted via methods such as seasonal differencing [Box+15]. The SARIMA model [GET06] extends the
autoregressive model to deal with seasonality. It is an ARIMA model that can deal with seasonal aspects
in TS.

In [CS12], SARIMA is being used for forecasting the daily peak electricity in South Africa. Electricity
forecasting is one big interest in the forecasting community [IM05; KM06; CPB09; Koo+13; CPM10;
JAS11].

It is possible to use seasons with SARIMA models, that are based on the ARIMA models. In SARIMA,
values that are far away back in time have a limited impact on the forecasting, whereas each and every
season is valued with the same interest for producing forecasts in this thesis framework. It is also possible
to enrich SARIMA models with exogenous data, like in [Xie+13] for a study on the electrical market in
Sweden.

In [Esp+05], authors developed a Periodic Autoregression (PAR) model to deal with highly seasonal
data: electricity grid data in Belgium, monitored for 5 years. They create a short-term forecasting
algorithms which rely on the PAR model to take into account multiple seasonality (weekly, monthly,
etc.). They also use it to identify multiple ‘daily profiles’ and use clustering in the goal of diminishing
dimensions.

The difficulty of producing reliable forecasts arises when multiple seasonality enters into play.

In massive infrastructure and TS related to the use of the servers, it is often
observed that TS data depends on the weekly habits of the consumers (e.g. less
activity during the weekend for an application linked to work for employees); it
is easy to imagine that monthly events such as paydays will also impact the
systems. Finally, yearly events such as national holidays are also important.

Weekly, monthly and yearly data

51

Chapter 2 – Time series and forecasting models

In [DHS11], authors use exponential smoothing for leveraging this multiple seasonality problematic.
Their framework, which relies on maximum likelihood, was successfully tested on various TS datasets,
both linear and non-linear. Adding exogenous and empirical data is also possible.

2.3.3 Neural networks models

In the ML communities, one of the objectives is to create data analytic tools that would require
fewer modelling efforts from data scientists. Neural networks models can be efficient for forecasting
tasks, especially when the data is more complex and when the process is non-linear. They can be seen
as nonparametric data driven approaches which can capture nonlinear data structures without prior
assumptions about the underlying relationship in a particular problem [ZPH01]. One drawback of those
models is their tendency to over-fit [Zha03], which may cause lower performances. Interested readers
may find more specific and detailed information about neural network applied for TS forecasting in the
following [HOR96; AE17].

Feedforward networks are the simplest neural network available. In the latest, data flows from one
point of the network to another with no retropropagation. They are for example used in [KHM05] for
forecasting lynx population, in [BS12; Saâ17; An+13; Dud16; Cat+07] for electricity forecasting matters.

Long Short Term Memory (LSTM) neural network [GSC99] is a classical architecture used for TS
forecasting, but not dedicated to seasonal TS. The interest of LSTM is that they benefit from feedback
connections between neuron, which gives them some memory of the past. LSTM are largely used, with
various applications: forecasting petroleum production [SK19], financial forecasts [ZXZ17; CLL19; Sel+17;
SWW18], electricity price and demand [Zhe+17; Kum+18], etc.

Finally, neural networks are used in conjunction with autoregressive models, linear part of the data
being modelled by the latest. Examples of hybrid cohabitation between neural networks and ARIMA
models might be found in [Zha03; Far10; TYT02; KB11; KAV15; WM12].

2.3.4 Ensemble and combination models

Ensemble forecasting methods and hybrid models are created from several state of the art, independent
models, that are mixed to create more complex chains. This strategy is the one proposed in the Arbitrated
Dynamic Ensemble [Cer+17]. This metalearning method combines different models, regarding to their
specifies against target datasets. In [PL05], authors use both ARIMA and SVMs models to forecast stock
prices problem, and to tackle the non-linearity of some datasets.

Ensemble methods take advantage of several forecasting algorithms for creating better forecasts.
Indeed, each algorithm may be more precise with certain types of datasets, or in certain identified
situations. These hybrid models are created from several state of the art, independent models, that are
mixed to create more complex chains. They are able to take advantage of each model specificities to yield
better forecasts. The general idea is to select which algorithm to apply to which data (or even to which
portion of the data) in a transparent way for the user. It does not require manual settings. In [WS10],
many methods are being used for crafting forecasts: neural networks, auto regressive models, GARCH,
Monte Carlo, wavelets.

52

2.4. Probabilistic forecasting

2.4 Probabilistic forecasting
The popularity of probabilistic forecasting algorithms is increasing over the past few years. In 2014,

a worldwide probabilistic forecasting (GEFCom 2014) competition took place and started to drive the
attention to probabilistic forecasting for international data scientists. The organisers provided electricity
and weather information to the contestant with the goal of producing rolling energy forecasts over several
weeks of contest.

A TS forecast is considered probabilistic when it provides a probability distribution over several future
possible values instead of one unique value but a probability for each possible output value.

Definition 10. Probabilistic time series forecasting
With Y = {y1, . . . ,yn} a TS of length n, forecasting the future of Y consists for h in N in predicting a
random variable ŷn+h with an explicit density distribution : P (ŷn+h ≤ y|Y).

A general introduction to probabilistic forecasting might be found in the book [Gne08].
In the early 2000, probabilistic forecast was mainly used for weather forecasts [GRG04; SGR10;

Pin+07; TG10; Dob+08; BRG07] (mostly for wind speed forecasting). Despite the public familiarity with
probabilistic forecasts mainly due to its generalised public used for weather forecasts, this research field is
only recently driving the attention of the forecaster community.

[GGN16] were the grand winner of the GEFCom forecasting competition of 2014 mentioned above,
and proposed a model called quantile generalised additive model (quantGAM). It relies on the forecast
of the temperature in the future - it is easy to imagine that more energy is required during winter for
heating houses and thus it has an impact on the overall energy consumption.

A lot of methods presented in this competition also rely on two major elements to produce good
forecasts.

— First, human expertise is required for configuring those very complex models. Being knowledgeable
of one specific field is useful after all, and experts are really able to make a difference for tuning
parameters and algorithms perfectly.

— Second, the volume and availability of exogenous data are paramount: weather data are exogenous
to electricity consumption curves, but mandatory in those methods for producing good forecasts.
The choice of exogenous data to be included in the learning process is not trivial. Picking data
which is not adapted would probably not improve the performances and could even lower them.

In this family of forecasting methods can also be found quantile estimators [GWK89], Prediction
Intervals for Regression [Sti85], Fuzzy Prediction Interval Models [Sáe+14].

Some methods already cited above natively provide intervals in their forecasts: SARIMA [Zho+06]
(here for electricity price forecasting), or even Prophet [TL18].

53

Chapter 2 – Time series and forecasting models

In an huge infrastructure, it is possible to forecast three different scenarios for
the incoming day: one scenario with a low use of CPU sc1, a scenario with a high
but sustainable use of CPU sc2 or a catastrophe scenario sc3 - the one that will
put the service down for sure. Probabilistic forecasting algorithms then attach
probabilities to each of the cases (for instance Psc1 = 0.32,Psc2 = 0.08,Psc3 =
0.60). With those prognosis engaged, tomorrow has a high probability of being
messy and decisions could be taken in advance for preparing the servers. This
is a simple case of probabilistic forecasting where the predicted probability
distribution is non-zero only at three places (sc1,sc2 and sc3).

Data centre performance with probabilistic forecasts

2.4.1 Interval forecasts

One major approach is interval forecasts [GWK89; Cha93]. The principle is to forecast an interval
in which the future data points may lay, with a certain probability (a confidence score). For instance,
the prediction for a TS at the horizon h will be [γ,ω] to state that the value ŷn+h ∈ [γ,ω]. As stated
in [Wer14], a prediction interval is associated with a random variable (e.g. electricity price) that is yet to
be observed, while a confidence interval is a specific case for an interval forecast.

One second common use of probabilistic forecast is to follow the evolution of the population [KPH02;
Alh99; Kei01]. Note that interval forecasts are carrying more information and thus are more subject
to interpretation. Indeed, according to [GÖT10], a well-configured interval forecast (around 85% of
confidence) will help the decision makers in a production planning problematic, but a too high or too low
confidence interval rather complicate the decision-making process.

GluonTS [Ale+19] is a TS probabilistic forecasting framework based on neural networks. This
framework has several pre-trained models that can be used as-is or retrain, depending on the users’ needs.

2.4.2 Density forecasts

Density forecasts are more complete than interval forecasts because they provide the entire distribution
and probabilities of the possible future values. It is especially useful for forecasts that do not follow
the normal distribution [DH06]. It is a more complex task, both in terms of realisation and in terms
of interpretation for the end user. To the best of my knowledge, the literature is rather sparse on this
specific type of probabilistic forecast. Interested readers might find more information in the survey [TW00].
Cumulative Distribution Functions (CDF) (see Sec. 3.5.3) are sometimes used to represent density forecasts.

2.5 Exogenous data
Exogenous data are not included in the raw TS. They represent any information that might add new

knowledge to the studied problem. This information comes from external sources sometimes not directly
related to the problem studied. Those can be used to improve forecasts.

54

2.6. Wrap up and perspectives

For example, in the case of a TS of transactions per seconds on a given web
service, it could be interesting to know that some days in the learning sets
are holidays or that one religious event that will dramatically change the user
behaviour will happen. The latest is often happening with OM application with
the Aïd event in Africa which has different dates every year. That information
is not included in the original raw TS but could enrich the model at learning
time.

Exogenous data for an application

Most of the time, using exogenous data is not easy, as the analyst has to configure the models for
including them. [TL18] introduces a decomposable TS model (called Prophet) that uses the holiday period
(exogenous data), trend and seasons for providing seasonal interval forecasts. Similar to a generalised
additive model (GAM [Has17]), with time as a regressor, Prophet fits several linear and non-linear
functions of time as components. This algorithm is largely impacted by the quality and number of
exogenous data available at training time. It follows the ‘analyst-in-the-loop’ paradigm, which implies
that a human intervention is highly desirable for tuning the models and improving results in testing. With
less information and with less expertise from the data scientist tuning the model, the performances might
dramatically drop.

2.6 Wrap up and perspectives
As seen in this chapter, there exists many different forecasting algorithms for TS. They are all adapted

to some situations but also all have some specific limitations. This thesis will especially focus on the
study of seasonal TS forecasting algorithms, both for deterministic and probabilistic paradigms. The three
major limitations this work aims to tackle are listed below.

As seen in the Sec. 2.2, multi-step forecasting is usually not the most precise way of producing reliable
midterm forecasts for seasonal TS. Due to the sequential nature of those forecasts, the link between
forecasted values may be too strong. If an error is made on the first point forecasted, all the future values
might inherit of this mistake and be biased. The longer the forecast horizon, the more the process repeats.
The error then grows faster. Also, the longer the horizon, the more time step to be forecasted. It means
that the risk to produce wrong forecasts is also more important.

A second limit of this kind of forecasting algorithm is the way models are set up. Most of the time,
human intervention and expertise is needed to configure the models. There are some parameters to tune,
which may be set with the knowledge of the data, that could be acquired with data scientists task such
as data exploratory analysis. Those tasks are tedious and not necessarily easy to handle by automated
scripts. Human interpretation is often key for setting useful parameters and therefore, to obtain good
forecasts.

Finally, most of the state-of-the-art algorithms are unable to take into consideration multiple seasonal-
ities in an easy way. This is something that is easier for us, because higher-level seasonal variations might
be included in the low-level split seasons and learning is made with this bias.

55

Chapter 2 – Time series and forecasting models

Next Chap. 3 presents the general framework proposed during this thesis in an attempt to remove
those limitations.

56

Chapter 3

CONCEPTUAL VIEW OF THE FRAMEWORK

This chapter presents a conceptual view of the framework proposed during this thesis. Abstractions
and ideas behind the algorithms are introduced. Different concrete implementations 1 will be depicted
in the next chapters Chap. 4, 5, and 6. The proposed framework aims to provide reliable medium to
long-term forecasts for seasonal time series.

Theoretically, this framework is suited to seasons of any length and aims at being as generic as
possible in order to be useable for any type of data (under hypothesis Hyp. H1 in Sec. 1.3.3 page 34).
The framework also aims at being easy to use for non-expert users. It requires only one parameter
(season length known in advance, according to Hyp. H4 in Sec. 1.3.3), except the internal hyperparameter
optimisations that the end user will not deal with. Seasonality is paramount for this methodology, and the
entire framework is built upon their automatic extraction. The notion of season will be specified below in
Sec. 3.2, and the hypothesis on the data clarified.

The framework is composed of two learning steps and one forecasting step, as depicted in Fig. 3.1.
First, it groups similar seasons of a given time series into homogeneous groups. Groups may be built with
clustering or with coclustering algorithms. Then, the groups are used to learn to predict the most probable
groups of the next season. This can be done using information from the past seasons. Once the model is
learned, next season forecast is created by using the groups and trained next season predictors.

In this chapter, Sec. 3.1 first formalises the problem solved by the aforementioned framework. Sec. 3.2
then synthetises the main motivation in the development of a new seasonal forecasting framework. The
different parts of the framework are then presented in Sec. 3.3. Details about the data used in all
experiments are given in Sec. 3.4. Measurements, evaluation strategies and protocols that will be used in
this thesis for assessing the quality of the forecasting algorithm will be presented in the Sec. 3.5.

3.1 Problem statement
In addition to the hypothesis depicted in Sec. 1.3.3 in page 34 which only concerned the data at hand,

two additional hypotheses are formalised below. They aim to give an intuition about the mechanisms that
will be used in the framework. More especially:

— H7: knowing H5, a clustering algorithm can be useful to groups similar type of seasons contained
in time series;

— H8: knowing H6, a classification algorithm can be used to learn links between various season types
contained in time series, in order to model the occurrence of season types.

1. In this context, implementation is analogous to instantiation, e.g. technical development of the conceptual
framework.

57

Chapter 3 – Conceptual view of the framework

GROUP

SEASONS

(clustering or

coclustering)
LEARN NEXT

SEASON

GROUP

(classification)

FORECASTS

SEASONS

GROUPS

NEXT

SEASON

PREDICTOR

TS

85%

15%

FORECAST

NEXT SEASON

MODEL

Figure 3.1: Simplified view of the learning (in grey) and forecasting (in blue).

Given Y = {y1, . . . ,yn} a seasonal TS and s ∈ N∗ its season length (see Sec. 1.3.2 for an example of
seasonal TS data in the context of capacity planning (CP)), it is interesting to forecast the next season
of Y , i.e. computing ŷn+1, . . . , ŷn+s that represents the prediction of the s values in the next season of
Y . It is recalled that multi-step forecasting is a challenge (see Sec. 2.2) and existing solutions such as a
recursive strategy are not always satisfactory. Forecasting an entire season at once is a way to limit the
error propagation.

These predictions are made using the history of Y (values 1 to n). Computing the prediction of the
value of Y at time instant n+ i can be written as:

ŷn+i = Fn+i(y1, . . . ,yn),∀ i ∈ [1,s],

where Fn+i is a model that needs y1, . . . ,yn as input to predict ŷn+i. In the case where Fn+i(y1, . . . ,yn)∈R,
the prediction is said to be deterministic. The model predicts the value of the time series. A visual
example of a deterministic forecast is given in the left part of Figure 3.2 and more explanations may be
found in Sec. 2.3.

This framework also proposes on another kind of forecasting : probabilistic forecasting. In this case,
the model predicts a probability distribution of the domain of TS values. In this case, Fn+i(y1, . . . ,yn) is
no more a real value. It is a function that represents a probability distribution. Fn+i(y1, . . .yn) represents
the probability distribution P(yn+i = x |y1, . . . ,yn),x ∈ R.

A visual example of a probabilistic forecast is given in the right part of Figure 3.2 and more explanations
may be found in Sec. 2.4.

58

3.2. Model for seasonal time series

6

5

4

3

2

1
0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

DAY 1 DAY 2 DAY 3 DAY 4
(predicted)

tr
an

sa
ct

io
ns

p
er

 q
ua

rt
er

time

(6)

(a) Deterministic forecast

6

5

4

3

2

1
0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

DAY 1 DAY 2 DAY 3 DAY 4
(predicted)

time

tr
an

sa
ct

io
ns

p
er

 q
ua

rt
er

(b) Probabilistic forecast

Figure 3.2: Presentation of (a) deterministic and (b) probabilistic forecast. Historical values are
in black and forecasts are in blue. In Subfig. (b), the blue line is the expected value, and blue
regions are probabilistic intervals. The darker the region, the more likely the values.

3.2 Model for seasonal time series
Sec. 1.3 has shown that some TS exhibit clear seasonal behaviour (see Hyp. H2 in Sec. 1.3.3), and

that the behaviour is not exactly the same from one season to another (see Hyp. H5 in Sec. 1.3.3). Many
seasonal TS exhibit various recurring seasons types. It is common to find several recurring season types
in long TS. For a weekly dataset, some specific days could show similar user behaviours. For example,
in a financial context, non-working days like Saturdays and Sundays might exhibit a higher activity for
shoppers that tend to go shopping on their free time. In contrast, certain areas like business districts,
that are usually busy during weekdays, might exhibit a much lower activity level during the weekend.
Recurrences are not necessarily as simple as this working day/holiday example. The overall activity for a
given day is a mix between shoppers that are in free time (more likely during the weekend) and shoppers
that have shifted days off.

The Def. 11 introduces the model of seasonal TS.

Definition 11. Model for season and seasonal time series
A season is assumed to have a fixed length s. Without loss of generality, it is assumed that the length of
Y is a multiple of s (n=m×s). Thus, Y can also be written Y = {D1, . . . ,Dm} where ∀ i ∈ [1,m], Di is
a subsequence of Y (of length s) that represents the ith season of Y , i.e. Di = y(i−1)×s+1,yi×s.

Y is said to be seasonal (with season length s) if there exists S = {S1, . . . ,Sp} a finite collection of p
sub-series (of length s) called typical seasons such that

∀ i ∈ [1,m], Di =
p∑
j=1

σi,jS
j + εi,

59

Chapter 3 – Conceptual view of the framework

where εi represents a s−dimensional vector of noise samples and where
∑
j σi,j = 1. In other words, it

means that every season in a seasonal TS Y is a weighted linear combination of typical seasons plus some
noise.

Intuitively, (σi,j) give the proportions of the combination of type j in the i-th season of the TS. If
Sj is seen as an individual behaviour, then σi,j can be seen as a proportion of individuals of type j that
contribute to cumulative value Di. Alternatively, it can be seen as a probability of having the individual
behaviour and Di the esperance of the individual behaviour.

Fig. 3.3 illustrates a seasonal TS with six seasons of length 3. Two typical seasons can be found
in this TS (blue and orange), and one season (green) is a mix of the two others (50% of each). Here,
σ1,1 = 1, σ1,2 = 0, σ2,1 = 0, σ2,2 = 1, σ3,1 = 0, σ3,2 = 1, σ4,1 = 1, σ4,2 = 0, σ5,1 = 0.5, σ5,2 = 0.5, σ6,1 = 0.5,
σ6,2 = 0.5.

According to the above definition, this TS is seasonal as it is the succession of typical seasons, but it
is not periodic as the season is not always the same. Note that seasonal TS has to be distinguished from
cyclical TS. Cyclic patterns exist when data exhibit rises and falls that are not of fixed period, unlike the
seasons that are necessary of fixed and known length. 2

v

t

S S S S S S

1

-1

S

v

v

t

t

1

-1

1

Typical seasons

S1

S2

Figure 3.3: Examples of seasonal TS with two different typical seasons (illustrated on the left)
and one mixed season. Each season is repeated twice, but not always in the same order.

The intuition is that extracting seasons and studying their occurrence patterns could help create a
forecasting algorithm more versatile and able to cope with several identified seasons. It is one strong
assumption on the informativeness of those patterns. More precisely, TS could mainly be driven by a
two-order temporal process. It is worth noticing that if the TS is stationary, it is assumed that only the
σi,j are changing in time.

For daily datasets, the circadian scale drives the daily evolution of the TS (first order) but, at the
second order, this daily behaviour is itself driven by some hidden rules. The evolution within a week

2. See https://robjhyndman.com/hyndsight/cyclicts/.

60

3.3. Framework for seasonal TS forecasting

could be considered. During the weekdays (from Monday to Friday) TS have a daily behaviour which is
different from the weekend daily behaviour. The same reasoning can be applied for any size of seasons
and nested seasons of smaller size.

It has been shown in Def. 11 above (and in Hyp. H5 in Sec. 1.3.3) that in the TS of interest, several
types of seasons coexist and they are different enough to be gathered in several different groups (two
seasons that would not be different enough to be easily differentiated can be seen as the same season,
their differences are then considered as noise). Such groups are called typical seasons.

Fig. 3.3 exhibits a sequence of 6 seasons with 3 typical seasons, but some longer TS could show longer
sequences with more seasons. Still in Fig. 3.3, it can for instance be learned simply by observing the figure
that there is 50% of chances to see a yellow season and 50% of chances to see a green season after a blue
season. This example is generalisable using more season types and with more data while using a classifier.

3.3 Framework for seasonal TS forecasting
This section introduces the general framework proposed for seasonal TS forecasting. For the sake of

clarity, deterministic forecasting is the only paradigm considered. The aim is to predict the next season of
Y , i.e. {ŷn+1, . . . , ŷn+s}.

The general sketch of the approach is composed of two classical data driven processes: a learning
process (see Fig. 3.4) and a forecasting process (see Fig. 3.5). The learning process learns a forecasting
model made of a clusterer and a classifier. This model is used for predicting future TS values during the
forecasting process.

The method proposed is to use the seasonal behaviour of the TS by defining some typical seasons
denoted {S1, . . . ,Sp} in Def. 11 and thus to detect second-order behaviours by analysing sequences of
typical seasons.

Some technical details about these two processes are given in the next two subsections.

3.3.1 Learning process

The learning process first identifies typical seasons in the TS using clustering. Classifiers are then used
to learn the next season type. The combination of clustering and classification for learning the group’s
appearance probability based on the seasons themselves is intuitive – if the hypothesis H5 about the
presence of various and well-defined seasons in the data is respected.

The learning process is composed of three steps (see Fig. 3.4):

1. Data splitting: The data splitting step simply extracts, from Y = {y1, . . . ,ym×s}, a set of m
seasons D = {D1, . . . , Dx, . . . ,Dm}, where Dx represents the subseries of length s corresponding to
the xth season in Y .

2. Season grouping: The m elements of D are given to a clustering algorithm that gathers similar
seasons into p clusters of TS named {C1, . . . ,Cp}. Each cluster is hence composed of similar TS.
They each may be summarised using a prototype (i.e. a representative TS for a given cluster).
Centroids or medoids could be chosen as prototypes.

— The centroid is the mean of all the seasons present in the cluster. It does not necessarily
represent a real-TS found in the set.

61

Chapter 3 – Conceptual view of the framework

29 Interne Orange

(i) Data splitting
• Input:

• D a TS, D = {y1, … ,ym⨉s}
• s size of the seasons

• Output: {D 1, … , Dx, … , Dm}
Dx={y (x-1)s+1, … , yx⨉s}

(ii) Clustering of the seasons
• Input:

• {D 1, … , Dm}
• p the required number

of clusters
• Output: {C1, … , Cp} a set of

clusters

(iii) Training a classifier model
• Input:

• γ is a given number of preceding
contiguous seasons (below, γ= 3)

• Train:
• Dx-γ+1, … , Dx

• Kx+1 (target), cluster index of
season x+1

• Output: trained probabilistic classifier

{C1, …, Cp}

C1 C2 Cp…

… TARGET

Dx-2, Dx-1, Dx

…

1

2

P

1

…

classifier

{D 1, …, Dx, …, Dm}

…

D

s

Figure 3.4: Illustration of the learning process (see text for explanation).

— The medoid is the most representative season (TS) of a cluster. It is a real, tangible TS and
it could enhance interpretability.

These prototypes represent typical seasons, they will be called {Ŝ1, . . . , Ŝp}.

3. Next-season group learning: A classifier is then trained. The input of this classifier contains
the values of γ consecutive seasons in Y (i.e. Di, i ∈ [x−γ+ 1,x]).

Once learned, the model may be applied several times for several forecasts without the need of training
it again. It should be noted that only the first 85% of the data are used for learning in the experimental
setup.

3.3.2 Forecasting process

Once a couple (clusterer,classifier) has been learned, it can be used to make forecasts from the last
γ seasons.

First, a single prototype per cluster is computed (see above in Sec. 3.3.1 for more details). To predict
season x+ 1, prototypes are needed together with the γ previous seasons (i.e. Di, i ∈ [x−γ+ 1,x]).

The prediction of the next season is generated from both these prototypes and the vector of probability.
The forecasting process is composed of three steps (see Fig. 3.5):

1. Classifier feeding: The last Di, i ∈ [x−γ+ 1,x] are given to the classifier.

2. Next-season group estimating: Two paradigm may be followed: hard method and soft method.

— Hard method: the output of this classifier is the typical season K̂x+1 (an integer between 1
and p) of the next season (i.e. the one that occurs right after the γ consecutive seasons of the
input vector).

62

3.4. Data used for experiments

30 Interne Orange

Dx-2, Dx-1, Dx

(i) Predict
• Input:

• γ is a given number of previous seasons (γ = 3 below)
• Dx-γ+1, … , Dx

• Output:
estimated probability vector ��x+1 of the period Dx+1

��x+1 = (�� 1, … , �� p) where �� i is the probability of Dx+1 to be in cluster i

(ii) Forecast
• Input: ��x+1 of the period Dx+1

• Output: forecast �����
����� = (���×
��, … , �� ��� ×
)

using prototype or grid

�����

��1

��2

��p

��x+1

…

classifier

Figure 3.5: Illustration of the forecasting process (see text for explanation). γ equals 3.

— Soft method: classifier with probabilistic outputs may be used. In other words, rather than
just predicting K̂x+1, the classifier outputs a vector of probabilities π̂x+1 = {π̂1, . . . , π̂p}, where
π̂i represents the probability that the season x+ 1 is in cluster Ci given the input data.

3. Forecast computing: compute D̂x+1 the predicted season using the set {Ŝ1, . . . , Ŝp} of prototypes
and π̂x+1.

— For hard methodology: D̂x+1 = ŜK̂x+1

— For soft methodology: D̂x+1 =
∑p
i=1 π̂i ∗ Ŝi

Depending on the kind of algorithm used for clustering, the kinds of prototypes and the classifier, the
framework leads to different forecasting solutions.

3.4 Data used for experiments
The data used for experimentations is presented exhaustively in a table in Appendix 7.2. Note that

the datasets presented are used along the entire thesis for all experimentations. There are 49 TS used at
testing time, from various sources such as the time-series data library [Hyn11], two datasets from Orange
Money projects (those will be studied more in depth in the last chapter of this thesis in Chap. 7), from
the cities of Porto or Melbourne, etc. Obviously, the TS used in this thesis have been selected because
seasonality was identified, and several number of points per seasons were used. The Fisher test presented
in Sec. 2.1.1 is used to validate the size of the seasons used at learning time. Each TS is normalised using
a z-normalisation prior to data splitting, in order to have comparable results.

3.5 Metrics and performances assessment
For any algorithm, once the forecast is generated, the forecaster need to assess the quality of predictions.

Assessing the performances of algorithms is interesting: it allows one to select the most accurate model for
a given task, by comparing performances of all the tested models during hyperparameter tuning. Metrics

63

Chapter 3 – Conceptual view of the framework

are also important for the end users to see how reliable is a forecasting algorithm before starting to use it.
It is not because such algorithm is better than all other ones for one particular task that the results are
necessarily useable, because the performances might still be too low regarding to the needs and standards
associated. For some application (e.g. spaceship landing or plane trajectory, etc.), it is required to have a
very low error because of their critical aspect, for others having a biased trend for the data is sufficient.

This section first presents typical setups and methodologies used by data scientists to assess quality of
forecasts, in Sec. 3.5.1. Then, the two metrics used for deterministic forecasting are presented 3.5.2. The
metric used for probabilistic forecasting is presented in Sec. 3.5.3. One diagram used for comparing ranks
of methods is presented in Sec. 3.5.4. Finally, win/lose diagrams used for comparing two given methods
side by side using an arbitrary numerical metric are presented in Sec. 3.5.5.

3.5.1 Typical setup for performance assessment

The first step for computing model performance is to optimise its hyperparameters. Bad parameters
settings can lead to bad forecasts and thus bad performances. For ARIMA, the main parameters are only
three (p, d, q), but for some other, more complex models, they can be numerous: sometimes thousands, or
even millions for very complex neural networks.

One classical way to find the best hyperparameters (that will be used in the experiments of this thesis)
is to split the TS at hand into several ensembles.

— One training ensemble will be used to train the algorithm and usually represents 70% of the data.

— One validation ensemble will be used in the process of parameter tuning, before actual tests, and
usually represent 15% of the data. Models are trained with the training data, forecasts are made on
the validation data, and forecasts are compared to known values.

— One test ensemble is finally used in the actual performance review process, and usually represents
15% of the data. When hyperparameters are optimised, it could be interesting to broaden the
learning ensemble by mixing the train and validation ensembles, in order to create a training
ensemble of size 85% of the data.

If performances at testing time are acceptable, the tested algorithm may be used ‘in the real world’
with 100% of the data for training, and forecasts made for the actual future. In this case, it is obviously
only possible to compute performances when the real data becomes available. If the performances are
bad, one could attempt to improve hyperparameters or to check in the data if something has changed
that could cause the forecasts to be biased.

In some cases, it is interesting to shuffle the data for less biased learning. It mostly depends on the
underlying task. In the case of TS forecasting and because of the strong correlation between temporal
values, it is not necessarily relevant, as it is important to learn the relations between contiguous values
and the shuffle would remove those relations.

3.5.2 Metrics for deterministic forecasts: MSE, MAE

Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics are the most standard metrics
available. They are not specific to the TS prediction problematic. They are both fairly easy to understand
and to compute, and are really used for lots of machine learning applications.

64

3.5. Metrics and performances assessment

The MSE measures the average of the squared prediction errors. Let y = y1, . . . ,yp be a vector of
ground truth values and ŷ = ŷ1, . . . , ŷp the corresponding prediction vector. The MSE between y and ŷ is
defined as

MSE(y, ŷ) = 1
p
×

p∑
j=1

(yj− ŷj)2

The MAE between y and ŷ is defined as

MAE(y, ŷ) = 1
p
×

p∑
j=1
|yj− ŷj |

As these two measures represent prediction errors, the lower they are, the more accurate the predictions.
If the need to compare performances between two different datasets arises, it is judicious to normalise

the data with the same function because MSE and MAE are highly dependant on the real value carried
by the TS.

The MAE will be preferred for performance comparisons in this thesis, because it will facilitate the
comparisons with probabilistic algorithms (see CRPS metric in Sec. 3.5.3 just below).

3.5.3 Metric for probabilistic forecasting: CRPS

Continuous Ranked Probability Score (CRPS) is often used for probabilistic forecasts assessment. For
computing the CRPS, the notion of Cumulative Distribution Function (CDF) must be recalled. It is the
probability that the studied variable takes a value less than or equal to a given threshold x. An example
of a CDF could be observed on Fig. 3.6.

Figure 3.6: Probability Density Function vs Cumulative Distribution Function.

In the probabilistic model, ∀i ∈ [1, . . . ,h], ŷn+i is a probability distribution, i.e.: ŷi : R→ [0, . . . ,1]. Let
Fi be the cumulative distribution function (CDF) of ŷn+i and x the observation:

Fi(x) = P [ŷn+i ≤ x]

65

Chapter 3 – Conceptual view of the framework

The CRPS metric for a cumulative function is

CRPS(Fi,x) =
∫ ∞
−∞

(Fi(t)−1(t−x))2 dt

where 1 is the Heaviside step function and denotes a step function along the real line that reaches the
value of 1 if the real argument is positive or zero, the value of 0 otherwise.

The metric for the prediction of the whole TS ŷ = (ŷn+1, . . . , ŷn+h) is

CRPS(Fi, ŷ) =
h∑
j=1

CRPS(Fi, ŷn+j)∗
1
h

As CRPS represents prediction errors, the lower they are, the more accurate the predictions. Note
that the CRPS is equivalent to the MAE [Her00] for deterministic forecasts.

3.5.4 Critical diagram

Critical diagrams (CD) [Dem06] have been introduced to compare method on several independent
datasets in terms of ranks. It is useful to compare several methods where it is meaningless to mean the
metric results because of the use of different scales for different datasets.

It is based on Nemenyi tests. An example might be found in Fig. 3.7. They compare on a graduated
scale the average ranks obtained by several competing methods. The value of the evaluation criterion is
not explicitly taken into account, but the rank (such as podium places) obtained for each method and for
each dataset. Then, the ranks obtained over all datasets are averaged and displayed on the scale.

The critical diagram is displayed along with the critical difference in rank. Critical diagram is the
minimum rank difference that allows to state that two approaches have significantly different performances.
The critical difference is calculated and depends in particular on the number of datasets. This critical
difference is used on the critical diagram to link together approaches that are not statistically discernible
(hence the horizontal lines below the graduated scale). In the Fig. 3.7, results for method 1, 2 and 3 are
not statistically different, but the performances of method 4 are definitely poor.

2 3

CD

Method1

Method2

Method3

Method4

Figure 3.7: An example of a critical diagram. It compares the average ranks of the different
methods (from Method1 to Method4).

66

3.6. Wrap up

3.5.5 Win lose diagram

The critical diagrams presented just above are interesting to compare ranks of methods but they
are not used directly to visualise the numerical performances. For this purpose, the ‘win lose’ diagrams
are introduced. An example is provided in Fig. 3.8. The goal is to make pairwise comparison of the
performances of methods. In the case of Fig. 3.8, the two methods compared are method 1 and method 2.
The metric used (MAE here) of the two selected methods is plotted against each other for each dataset.
A line which separates the graph in two is shown. Therefore, each point plotted below the line is in favour
of method 1, each point plotted above in favour of method 2, one point representing the results on one
given dataset. This type of diagram enables a visual analysis of the results, and plot real performances
(not only rank), which is complementary from the analysis conducted with CD. On those plot is also
shown the p-value. It represents the significance of the difference between the two compared methods.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
Method 2

M
et

ho
d

1

 in terms of MAE error.Method 1 vs Method 2

Method 1 win: 10
Method 2 win: 38
p-value=2.56e-06

Figure 3.8: Win/lose graph that shows the number of times method 1 won against method 2.

3.6 Wrap up
This chapter presented the framework developed in this thesis. This framework is composed of one

learning step and one forecasting step. The learning step is itself composed of three steps, and rely on
clustering and classification algorithms. The forecasting step is also composed of three steps that use the
groups of the season created during learning time.

The assumption of seasonality in the time series makes the framework intuitive. More especially,
grouping seasons using clustering is a non-supervised way of discovering several seasons types, and this
information may be used later on at prediction time by training classifiers.

This framework might be implemented with various clustering algorithms and various classification
algorithms. This chapter did not give any details about possible approaches, because the next chapters
are dedicated to this task. Three different implementations will be assessed in the next three chapters.

67

Chapter 4

BASELINE DETERMINISTIC APPROACH

In this chapter, a first baseline of the framework presented in Chap. 3 is studied. It combines the use
of K-means clustering algorithms (that will create groups of seasons) and Markov Models (that will model
the temporal relation between seasons and act as a classifier). The choice of the two aforementioned
algorithms is natural for developing a baseline because they are widely used. This baseline allows validating
some assumptions introduced in Sec. 1.3.3 about the data and the problem itself.

The baseline implementation details are given in Sec. 4.1. The interest of this first framework
implementation is demonstrated with experimentations in Sec. 4.2. The performances of the method are
compared against another baseline (mean season) and four state-of-the-art methods (autoregressive model,
ARIMA, SARIMA and Holt Winters), on a collection of open source datasets. Sec. 4.3 finally concludes
and explicits some of the limits in the method, then gives an idea of possible enhancements of the baseline
that will be developed in next chapters. This baseline has been published in the AALTD workshop at
ECML 2018, Dublin [Lev+18]. Experiments have been extended for the thesis.

4.1 The FC2M implementation
The version of the framework presented in this chapter is called ‘Forecasting with Clustering and

Markov Models’ (FC2M). For extracting knowledge about the various seasons, a solution is to use clustering
algorithms. One of the most used clustering algorithms is K-means and it is appropriate for a baseline.
For learning sequences and understand how those seasons are chained in time, a solution is to use Markov
Chains [KS76]. The intuition is that there is an underlying structure in the sequences of the σi introduced
in Def. 11, and thus that σi+1 ∼ f(σj , j < i). The Markov Chain is a simple linear model of the sequential
relation between the types of seasons. The Markov Models are then a straightforward solution to model
these sequences. They can be used in replacement of the classifier depicted in Chap. 3 for a simple learning.
This section presents the approach to produce one-season-ahead TS forecasting using K-means and a first
order Markov Models.

This approach is an instantiation of the framework presented in Chap. 3. Therefore, Sec. 3.3 and
Fig. 3.4 and 3.5 (respectively for learning and forecasting steps) are used for explanations, the specific
implementation is exhibited below.

4.1.1 Learning process

The learning of the framework is depicted in Fig. 3.4.

1. Data splitting: First, the seasons are split. The splitting is straightforward and compliant with
the original framework presentation.

69

Chapter 4 – Baseline deterministic approach

Figure 4.1: Encoding a seasonal TS using the cluster occurrences of the seasons.

2. Season grouping: The elements of D are then given to a clustering algorithm. In this case, the
multidimensional K-means based on the Euclidean distance is used. The prototypes used in this
baseline are the centroids. They are denoted {S1, . . . ,Sp}. They correspond to typical seasons. The
choice of the number p of clusters will be discussed in Sec. 4.2.

3. Next-season group learning: Here, the classifier originally depicted in Sec. 3.3 is implemented
by a first-order Markov Model. The set D is encoded into K1, . . . ,Km, where Ki ∈ [1,p] corresponds
to the index of the cluster that contains the season Di (as seen in the Figure 4.1). This sequence
is modelled by a Markov Model of transition matrix Π = (πi,j), where πi,j is the probability that
the next season belongs to cluster j given that the current season belongs to cluster i. As seen in
Fig. 4.2, this Markov Model enables the estimate of the most probable cluster to which will belong
TS next season.

This first baseline aims at verifying the assumptions about the interest of the seasons, and more
especially the interest of modelling seasons chronological sequences. Thus, the only information required is
the labels attributed by clustering algorithms and no numerical information about the TS itself. Markov
Chains are then more indicated for this need to learn seasons occurrence. Numerical information such as
TS values will be added to the models in next versions of the framework.

70

4.2. Experiments

1

2

3

4

1 2 3 4
0

0.8

1.6

2.4

3.2

4

Figure 4.2: Matrix which depicts the probabilities linked to one real Markov Model. The lighter
the colour, the more probable to jump from one cluster type (left) to another cluster type (down)
for incoming season. For example, reading this graph indicates that the probability to jump from
cluster 3 to cluster 4 is pretty high, as well to jump from cluster 4 to cluster 3. However, there is
practically no chance to go from season 2 to season 1.

4.1.2 Forecasting process

This forecasting step (described in Fig. 3.5) uses the model learned above to predict the next season
measurements (D̂x+1) given the current season measurements (Dx).

1. Markov Model feeding: First, the index of the closest cluster to Dx is computed, and denoted
Kx.

2. Next-season group estimating: The most probable cluster for the next season is estimated
using the transition matrix Π : K̂x+1 = arg max

j∈1,...,p
πKx,j .

3. Forecast computing: Finally, the forecasting of the next season is given by the centroid ŜK̂x+1 .

4.2 Experiments
In this section, results obtained with the FC2M methodology are commented. It is reminded that

Sec. 3.4 of previous Chap. 3 introduces some preliminary details about the protocol followed for experiments
for all versions of the framework presented in this thesis.

The entire code of the framework was developed in Python 3.5. For developing the K-means clustering,
the library tslearn [Tav+20] was used. The Markov Models were handcrafted. The only hyperparameter
optimised during learning was p (number of clusters). The validation dataset is used to select the best
number of clusters p (ranging from 2 to 200) based on the MAE retrieved from the forecast itself.

71

Chapter 4 – Baseline deterministic approach

4.2.1 Opponents

This study has been conducted using univariate TS (presented in Sec. 3.4, datasets listed in Ap-
pendix 7.2), where the next season is forecasted using only past data from current TS. The performance
of the approach gives indication about the two-order temporal scale of the TS.

In this chapter, one baseline (mean season) and four classical forecasting techniques (autoregressive
model, ARIMA, SARIMA and Holt Winters) are used to compare the quality of the forecasts given by
the approach:

Mean season Mean season is a simple baseline mean season calculation: all season present in learning
ensemble D are used to compute the average season. This latest is then given as a forecast result
for next season. Whatever the history, their method always predicts the same season.

Autoregressive (AR) model [Llo82] [Aka69] AR model is a representation of a random process that
can be used to describe some TS.

(S)ARIMA [Box+15] ARIMA and its seasonal counterpart SARIMA. An ARIMA or SARIMA model
is trained with the training set, and this model is applied to forecast the seasons of the test set
(given the past). Models are fitted using the auto.arima method that selects the models that best
fit the training data according to an information criterion.

Holt Winters (HW) [Win60] Holt Winters Triple Exponential Smoothing is a rule of thumb technique
for predicting TS data. It extends the Holt’s method to capture seasonality.

4.2.2 Results

Fig. 4.3 shows the Critical Diagram (CD) for the MAE for all the methods cited in Sec. 4.2.1. CD
have been presented in Sec. 3.5.4 and show the mean rank of the methods. It is noticeable that the FC2M
method outperforms three opponents that are Holt Winters, ARIMA and AR method (although not by
a significant margin). It can be explained by a weak adequacy of these last methods to the task. AR,
ARIMA and HW are more used to forecast next few points of the TS while this task requires to forecast
the TS for the entire season (several points). Fig. 4.4 confirms the good performances of FC2M against
AR and its bad performances against both MEAN and SARIMA. A point above the segment means good
performances for FC2M method.

It is also interesting to observe that the mean season baseline was able to outperform AR, ARIMA,
Holt Winters and FC2M. It can be explained by the fact that mean seasons are representative enough of
the next season to come so that the MAE is effectively low compared to methods that are not adapted to
seasonal data (e.g. AR, ARIMA and Holt Winters) or methods that make more clear-cut decisions about
the next type of season to come (e.g. FC2M), which could cause greater errors in case of bad next season
type prediction.

Finally, the good performances of SARIMA model are shown. This method is state-of-the-art for
seasonal TS forecasts and is the opponent to beat for next implementations of the proposed framework.
Next Sec. 4.3 discusses how FC2M could be improved to do so.

72

4.3. Discussion

2 3 4 5

CD

SARIMA

MEAN

FC2M

HOLTWINTERS

ARIMA

AR

Figure 4.3: Global ranks for the FC2M framework against four opponents (AR, ARIMA, SARIMA,
Holt Winters) and one baseline (MEAN) using the MAE metric.

FC2M win: 38

ar win: 10

p−value=2.569e−06

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
FC2M

ar

FC2M vs ar in terms of MAE error.

(a) FC2M vs AR

FC2M win: 20

mean win: 28

p−value=0.2774

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
FC2M

m
ea

n

FC2M vs mean in terms of MAE error.

(b) FC2M vs MEAN

FC2M win: 10

sarima win: 38

p−value=1.247e−05

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
FC2M

sa
rim

a

FC2M vs sarima in terms of MAE error.

(c) FC2M vs SARIMA

Figure 4.4: Win/lose graphs that show the number of times FC2M won against three selected
opponents ordered by performances: AR, MEAN and SARIMA.

4.3 Discussion
Experimental results show that the approach performs better than three of the state-of-the-art

methodologies used for comparisons (AR, ARIMA and Holt Winters) on 49 real dataset (see Appendix
7.2), but it is an early proposal that has some limitations and weaknesses.

It would be interesting to know which of the learning steps described on the Fig. 3.4 is lowering forecast
performances. This could help in improving the chain by tuning well-identified steps and parameters. In
the first stage of the model, seasonal TS are clustered. Enhancing the quality of clustering could be a key
to better results.

— For this first version of the framework, experiments have been made with the K-means algorithm
with a Euclidean distance. In practice, if detecting temporally aligned data peaks is something of
interest, this distance is to be privileged. But if the goal is to detect peaks in a season without
precise information about their timings, DTW [Nie04] is a better candidate. There is not a unique
good choice but some choices that fit the data characteristics like Douzal-Chouakria et Amblard
[DA12] suggest it for a classification task.

73

Chapter 4 – Baseline deterministic approach

— In addition, the clustering strategy could also be evaluated. One of the weaknesses of the current
approach using a K-means algorithm is the critical choice of p. In this study, the optimal number of
clusters is found using the validation set. Various K-means sizes are tested on the training dataset,
and select the one which helps the algorithm in having a lower MSE. Fewer empirical techniques
such as David et Bouldin criteria [DB79] or even Silhouette [Rou87] could help to select a priori the
best number of clusters with a lower computational cost.

In the second stage of the model, guessing the next season cluster type accurately is paramount
for generating good forecasts. A more accurate solution than Markov models can enhance the centroid
selection at forecasting time.

— In this chapter, a Markov model takes only into account the season before the one to predict. This
simple model has been preferred to higher order Markov models because of the required quantity of
training data. With 7 different seasons, transition matrix of size 49 are to learn in this case, but of
size 343 for a 2-order Markov model. This requires long sequences of seasons to accurately estimate
them. All the datasets at hand are not long enough to perform this kind of computation. This
raises the question of the number of seasons to take into account at learning time, thus the question
of the importance of the γ parameter (see Sec. 3.3 for more details about γ).

— It is also noticeable that despite the label of the group of next day, no numerical data coming
from the TS itself is used at learning time. It seems logical to think that having this knowledge is
crucial for guessing next season type, as in TS, the next values are often influenced by past values.
Replacing the Markov Chains used in this baseline implementation with classifiers that are able to
take more data at learning time (including the data from the TS itself) could also be interesting for
better performances.

4.4 Wrap up
In this chapter was presented FC2M, the first implementation of the framework which addresses a

specific forecasting problem, i.e. the forecast of the evolution of seasonal time series indicators a season
ahead.

The method proposed is a time series forecasting framework that is based on the assumption that
the time series are implicitly structured as a sequence of typical seasons. The experiments comparing
baseline approaches and classical time series forecasting methods to the FC2M framework show that this
assumption is verified by most of the time series of the dataset. The FC2M methodology is better than 3
out of 5 opponents when comparing mean ranks using the MAE metric.

Although, the proposed method may benefit from improvements in the two main stages: the clustering
of time series and the next type of day prediction. Markov models may be improved by some more recent
works on sequence prediction [BV18], or by their replacement with classification algorithms. This latest
point is the subject of the next Chap. 5.

74

Chapter 5

DETERMINISTIC APPROACH

This chapter aims to enhance the first implementation of the framework proposed (FC2M), and
to introduce a second version of it. In particular, the performance of various clustering algorithms for
grouping seasons in input time series will be assessed. To address the first limitation of the framework’s
initial implementation presented, i.e. the lack of options concerning the way groups of seasons are created.
Experiments have only been made using K-means. It is the most widely used clustering algorithm,
consequently a first choice for a baseline. But the problem of grouping time series is complex and many
other methods have been proposed. It would be interesting to adapt the grouping method to the dataset
considered for having the best measure of similarity. Experimenting with non-Euclidean based algorithms
and also with time series-specific algorithms would help to strengthen the grouping process.

One second limitation is the relative simplicity of the Markov Chains for modelling the occurrence
of types of seasons. Indeed, it only takes into account clustering labels of the seasons and nothing more.
Once again, this simplicity was an asset for developing a baseline but it has clear limits. Adding more
information about the season’s composition might bring knowledge and make the forecasts of next days
more accurate. This improvement is possible when using classifiers that are able to deal with those
new sources of data. The specific problem of seasonal time series forecasting could then be framed as a
classification problem. Therefore, Markov Chains will be replaced by classifiers for learning the sequence
of days.

First Sec. 5.1 presents the framework new implementation. The various elements used in the framework
(clustering algorithms and classifiers) are introduced. Sec. 5.2 shows the experiments conducted to assess
this new approach. Comparisons between various parameter combinations are made, along with opponents
comparisons. Final Sec. 5.3 concludes on the advantages of the framework, its flaws, and gives clues about
next studies that will be conducted in last chapters. This version of the framework has been published in
the IDEAL conference 2019, Manchester [Lev+19]. Experiments have been extended for the thesis.

5.1 The F2C implementation
The deterministic framework presented in this chapter is called ‘Forecasting with Clustering and

Classification’ (F2C). The general sketch of this second approach is analogous to the one presented in
Chap. 3. Therefore, Fig. 3.4 and 3.5 (respectively for learning and forecasting steps) originally found in
Sec. 3.3 are used. The specific implementation is shown below.

5.1.1 Learning process

The learning stage is composed of three steps (see Fig. 3.4):

75

Chapter 5 – Deterministic approach

1. Data splitting: The data splitting step consists in constructing a set of m seasons. It is assumed
that observations of D are independent. This step is unchanged compared to Chap. 3.

2. Season grouping: The m elements (seasons) of D are given to a clustering algorithm that gathers
similar seasons into p groups of typical seasonal TS. In this implementation, four algorithms have
been assessed: K-Means, K-Shape, GAK and MODL. Also, two prototypes have been used: medoids
and centroids. More details are given in Sec. 5.1.1 page 76 below.

3. Next-season group learning: A classifier is then trained to estimate, using the knowledge of
the TS, the expected group of the next season. In this implementation, the number of past and
known seasons used for learning the classifier is γ = 1 and a unique season Dx is being used. Also,
four classifiers have been tested: naive-bayes, decision trees, random forests and logistic regression.
More details are given in Sec. 5.1.1 page 77 below.

Clustering step: details and algorithms

In this step, a clustering algorithm is used to group the m seasons of D into p groups. The choice
of p will be discussed at the end of this section; in the following, p is given. A representative series is
computed inside each group. These series represent typical seasons that occur in the dataset. Hence, at
the end of this step, every season of D can be assigned a label (that represents in which group it has been
clustered) and p typical seasons are computed. In this chapter, four different clustering algorithms are
studied: K-means, K-shape, GAK and MODL.

K-Means for TS [Llo82] K-means algorithm aims at creating a partitioning of the data by minimising
the intra-cluster variance. The use of K-means implies the use of a distance measure between
two TS. Two of the major distance measures available for TS are Euclidean, and Dynamic Time
Warping (DTW) [PKG11]. The Euclidean distance is used for experiments. K-means is essential
in the clustering literature and including it in the experiments was natural, even if it is not fully
dedicated to TS clustering. K-means was the clusterer used in the FC2M implementation of the
framework presented in Chap. 4.

K-Shape for TS [PG15] K-Shape algorithm uses a distance measure based on a normalised version of
the cross correlation (invariant to TS scale or shifting). It can be seen as a K-means algorithm but
that uses a shape-based similarity measure. It is finally important to note that this algorithm is
notably known for being dedicated to TS clustering, thus the choice of adding it to the experiments.

Global Alignment Kernel K-means (GAK) [Cut11] Kernel K-means is a version of K-means that
computes the similarity between TS by using kernels. It identifies clusters that are not linearly
separable in the input space. The Global Alignment Kernel is a modified version of DTW. This
clustering algorithm was included because it does not use Euclidean distance, and also because it is
dedicated to TS clustering. Experimenting with various cluster similarity measure is important,
especially because Euclidean distance have some limits, especially when the TS at hand shows some
slight offsets (see Sec. 2.1.2 for more details about distance measures for clustering).

Clustering with MODL [Bou12] MODL is a nonparametric method that uses a piecewise constant
density estimation to group similar TS. TS are partitioned into clusters and the TS values are
discretised into intervals. The cross-product of these discretisation is an estimation of the joint

76

5.1. The F2C implementation

density of the TS and points. This clustering algorithm was picked because of its innovative distance
measure based on TS density, and also because the choice of number of clusters p is fully data
driven, and there is no need for the user to provide p. For now, MODL is used as a clustering
algorithm. Coclustering aspects will be introduced in next Chap. 6, in Sec. 6.1.2.

The choice of the number of clusters is of particular importance. A tuning approach is used: for each
candidate number of clusters, the training set is used to build the overall model. This model is then used
to predict the seasons of the validation set. The number of clusters that leads to the lowest error on the
validation set is selected.

For K-means, K-shape and GAK algorithms, candidates number of cluster are systematically chosen
in a pre-defined range [2,300]. Partitions with empty clusters are discarded. On the other hand, MODL
coclustering estimates in a nonparametric way the best number of clusters for each input TS. The number
of cluster finding procedure is regularised. This estimated number then usually leads to the best description
of input TS, regarding to the coclustering task. However, this model can be simplified to reduce the
number of clusters. From now on, the procedure is similar: different numbers of clusters are evaluated
and the overall model that leads to the lowest error on the validation set is kept.

Predicting the cluster index of the next season

A classifier is then trained to predict, using the knowledge of the current season Dx, the expected
group of the next season. To train this classifier, index of groups created at learning time as described
above are used. A learning set is then created to feed the classifier: each line of the learning set corresponds
to TS values of a season Dx (explanatory variables) and a target variable which corresponds to the group
of the next season (the group of season Dx+1). Including more data in the classifier would probably be
beneficial: data about past few days, and not only the last one, data about national holidays, and maybe
other exogenous data related to the problem at hand.

In the Fig. 3.5, π̂x+1 denotes a vector of probabilities (i.e {π̂1, . . . , π̂p}). Four different types of
classifiers are investigated: naive-bayes classifier, decision trees, random forests and logistic regression.

Naive-bayes [Ris+01] First introduced in the early 60ies in [Mar61], naive-bayes classifiers make the
assumption that the features of the data are totally independent. Although independence is generally
a poor assumption, in practice naive-bayes often competes well with more sophisticated classifiers.

Decision tree [SL91] Decision trees process the data in the form of trees which are composed of leaves
and nodes. The data is described with binary statements and the path created by answering those
binary questions while traversing the tree is followed to find most probable outcomes.

Random forest classifiers [Ho95] Random forest are an ensemble technique that creates different
random trees to improve the overall accuracy. They combine tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same distribution
for all trees in the forest [Bre01].

Logistic regression [Kle+02] Logistic Regression is a linear classification model which is the counter-
part of linear regression. The aim is to determine how a set of numerical properties (numbers) can
be associated with one of the classes under consideration.

Those four classifiers were selected because they are standard in the community, widely used and are
also able to provide probabilities vectors to appear in each class. Due to the various sizes of TS processed,

77

Chapter 5 – Deterministic approach

a minimum size of learning for classifier cannot be guaranteed. Therefore, the use of neural networks
classifiers, which would require a massive amount of data for training, was not implemented.

5.1.2 Forecasting process

To forecast the next season, the classifier learned to predict the group index of the next season plays
a central role. It uses the knowledge of the current season and of representative series of the different
groups to generate the prediction of the next season.

The forecasting of the next season is done in three steps (see Fig. 3.5).

1. Classifier feeding: First, the current season (Dx with γ = 1) is given to the classifier.

2. Next-season groups estimating: Then, this classifier computes the probabilities π̂x+1 of the
next season to belong to each group ({π̂1, . . . , π̂p}).

3. Forecast computing: Finally, next season is predicted. Two paradigms are studied in this chapter:

— Hard method: season x+ 1 is predicted as the prototype of the most probable cluster, i.e. Ŝk

with k = argmax1≤i≤p π̂i.

— Soft method: season x+ 1 is predicted as a weighted combination of the prototypes. The
weights correspond to the probabilities in π̂x+1.

Experiments are being made with centroid and medoid prototypes.

5.2 Experiments
During the experiments were investigated (1) the impact of the choice of both the clustering and

the classification algorithms on the performance of the overall method, (2) the performances against
competitors and (3) the impact of parameters γ.

The entire code of the framework was developed in Python 3.5. For developing the TS clustering,
the library tslearn [Tav+20] was used. It provides access to most of state-of-the-art TS clusterer, and
is, furthermore, a useful toolset for TS processing. For developing the classification, the library sklearn
[Ped+11] was used. For the developing the coclustering algorithm, Khiops [Bou16] was used.

In the learning process, the number p of clusters is found using the validation ensemble, as stated
in Sec. 3.4. All other hyperparameters stayed identical during all the process. The sole optimisation of
the number of clusters was already time consuming. Adding other parameters in the hyperparameter
optimisation process would really increase the learning time. The parameters provided for the clusterers
and classifiers are given below for information. Note that for the sake of reproducibility, a fixed random
seed was used.

TimeSeriesKMeans: the used distance metric is Euclidean.

RandomForestClassifier: the max depth is two and the number of estimators is 100.

DecisionTreeClassifier: the criterion used is gini, the max depth is 96 and min samples by leaf is 5.

LogisticRegression: the solver is ‘lbfgs’ and the classifier multinomial. The maximum number of
iterations is 1000.

78

5.2. Experiments

5.2.1 Best parameters for F2C method

Prototypes and prototype mixing paradigm study

The results shown in this section concern all the possible framework parameters mixed together (e.g.
all the clusterers, all the classifiers, for all found values of p) for the validation ensembles. Those results
are used to find the best parameters overall – for all possible use cases and for all possible clusterer and
classifier combinations. It is recalled that the CD figures compare mean ranks of methods, thus the lower
is the better.

As seen in Sec. 5.1.1, it is possible to use two prototypes for generating predictions out of clusters:
centroids and medoids. The Subfig. 5.1 (a) is a critical diagram which describes the accuracy of the
forecasts generated using those two prototypes. It shows that better results are observed using medoids –
not significantly.

Centroids and medoids are indistinguishable but medoid show slightly better results in average,
therefore, the remaining of this experimental section Sec. 5.2 is written only using those, and all centroid
results are discarded.

As seen in Sec. 5.1.2, it is possible to use two paradigms for mixing prototypes for generating predictions:
hard and soft. The Subfig. 5.1 (b) is a critical diagram which describes the accuracy of the forecasts
generated with both those paradigms. It shows that better results are observed using soft methodology –
not significantly.

Soft and hard paradigms are indistinguishable but soft show slightly better results in average, therefore,
the remaining of this experimental section Sec. 5.2 is written only using soft, and all hard results are
discarded.

1 2

CD

medoid centroid

(a) Performance of the various prototypes for
the F2C method.

1 2

CD

soft hard

(b) Hard methodology VS soft methodology,
performances for the F2C method.

Figure 5.1: Performances of (a) various prototypes, (b) hard and soft methodology, overall for
any combination of clusterer and classifier for the MAE metric. Subfig. (b) generated with
medoid results.

Sixteen possibilities

The F2C framework uses one clustering algorithm along with one classification algorithm. Fig. 5.2
illustrates all possible combinations while using four clusterers and four classifiers. Any clustering algorithm

79

Chapter 5 – Deterministic approach

+

Clusterers Classifiers
MODL

K-Means

K-Shape

GAK

Random forest

Trees

Logistic Regression

Bayes

+4x4 combinations:

Figure 5.2: Illustrations of the four classifiers (rounded rectangles) and four clustering algorithms
(cylinders) combined in the experiments.

and any classifier might be used as long as the classifier provides probabilistic decisions – it means that
the number of possible combination is effectively greater than 16.

Impact of the clustering algorithms choice

Clustering is the first external element used in the chain. The performances of all the clusterers used
during the F2C experiences are compared: K-means, K-shape, GAK and MODL. The experiment is made
with all classifiers to avoid being biased by an especially strong clusterer-classifier combination.

Fig. 5.3 (a) shows that there is not significant differences between K-means and K-shape clusterer, but
K-means is first despite the low statistical significance of the CD bound. Though, MODL is a bad choice
for the extended deterministic F2C framework, despite the data-driven way to find the best number of
cluster which would have been convenient during the learning phase. The relative superiority of K-means
cluster is shown.

Impact of the classification algorithm choice

As explained above, an important part of the method is to predict the group (or cluster) of the next
season. This prediction is made using a classifier. Once the group is predicted, a weighted combination of
different centroids is used to make the forecast.

In this section, a performance comparison of the four considered classifiers (naive-bayes, decision tree,
random forests and logistic regression) is made. For those tests, all clusterers results are used, because the
interest is to assess the classifiers performances only. The critical diagram that compares the performance
of the four classifiers in terms of MAE is given in Fig. 5.3 (b).

The random forests are elected as the more efficient classifier, closely followed by the naive-bayes,
although results are once again not significant.

Wrap up

The sections above shown that the best parameters combination found for the extended F2C method
are the following:

— K-means clusterer,

80

5.2. Experiments

1 2 3 4

CD

TimeSeriesKMeans

KShape

GlobalAlignmentKernelKMeans

MODL

(a) Critical diagram, comparison of the average ranks of the difference clustering algorithms.

2 3

CD

RandomForestClassifier

GaussianNB

LogisticRegression

DecisionTreeClassifier

(b) Critical diagram, comparison of the average ranks of the different classification algorithms.

Figure 5.3: Performances of (a) clusterers, (b) classifiers, Fig. generated with medoid and soft
results.

— medoid prototype,

— soft methodology,

— random forests classifier.

5.2.2 Comparison against competitors

This section aims at comparing the performance of the proposed approach (F2C) with the six following
competitors prediction methods: mean season, autoregressive models (AR), ARIMA, SARIMA, Holt
Winters and FC2M with Markov Model. All the opponents have been presented in Sec. 4.2.1 of previous
Chap. 4. It is recalled that between the baseline (FC2M) presented in Chap. 4 and this version of
the deterministic framework (F2C), the use of medoids and the soft paradigm have been introduced
(respectively in Sec. 5.1.1 and Sec. 5.1.2). Improvements have also be made on the clusterers and the
classifiers. Only the value of γ = 1 stays identical.

Fig. 5.4 in page 83 shows a first CD that exhibits the performance of the F2C methodology with the
same configurations from FC2M (e.g. K-means clusterer, centroid prototype, hard paradigm), despite
the classifier which was not a Markov Model but a naive-bayes. Best opponents (ARIMA and MEAN)
are also shown in the figure – other opponents have been filtered for an enhanced readability. It shows
that having a better classifier is important, as the performances of this non-optimised version of F2C still
outperforms significantly FC2M.

Fig. 5.5 in page 83 compares performances of F2C methodology when it is well configured (F2C_BEST)
with the most optimal parameters found in the selection above in Sec. 5.2.1 (K-means algorithm is used
as the clustering algorithm with a soft way of mixing medoids, in conjunction with logistic regression
classifier), and also when it is bad configured (F2C_WORST) with all the worst parameters possible (by
taking the last parameters found in the critical diagram of Sec. 5.2.1 above, e.g. use of hard methodology,

81

Chapter 5 – Deterministic approach

MODL clusterer with centroids, and gaussian naive-bayes classifier). It shows that having a proper
configuration process is key to better results, and that F2C is sensitive to parameter tuning.

Fig. 5.6 in page 83 shows a CD that demonstrates the performances of the real F2C methodology that
have been properly configured (F2C_BEST), against all the opponents available. The figure shows that
F2C outperforms significantly all the opponents, including and FC2M, and SARIMA – not significantly.

5.2.3 Results with various γ

Fig. 5.7 compares the performances of F2C methodology with a value of γ in [1,2,3,4,6] (F2C_γ).
Despite the low significance of this CD plot, it is interesting to observe that the best value of γ is 2;
however, it is also observed gradual better performances for values of γ of 1, 3, 4, and 6.

This figure is a good sign of the impact of the size of the historic, as results with γ = 1 (with only one
season used for learning the classifier) are the worst observed. Also, it is known that the structure of the
seasons highly depends on each dataset. Therefore, it is observed that a size of γ = 2 enables a better
generalisation and fits a larger number of datasets.

A study of the specific datasets where prediction with a γ = 2 gave better results 1 was conducted but
no common characteristic has been found. At this time, investigations did not identify some global best
parameters for γ. In this case it is recommended to proceed through cross-validation to select the best
parameter value.

5.3 Wrap up
In this chapter was presented F2C, the second implementation of the framework which addresses a

specific problem of seasonal time series forecasting a day ahead. This implementation is still following
the frame introduced in Chap. 3, but differs from the version developed in Chap. 4. More particularly,
Markov Models have been replaced by classifiers and more clusterers have been tested.

A comparison of different clustering, different prototypes and different classifiers has been provided. A
study on the impact of the parameters choices (e.g. choice of clustering algorithms, choice of classification
algorithms) has been made. It shows that a K-means clustering combined with a random forest classifier
gives better results for the deterministic forecasting task. Experiments also show that the proposed
approach is competitive with other TS prediction methods and that SARIMA, the opponent to beat in
last Chap. 4, was outperformed. It has been shown that the impact of γ is true. Furthermore, it should
be noted that using a value of γ = 2 provides better results and appears to help generalisation of the
algorithm for the datasets used in the study.

1. e.g. tide, PT08.S4.NO2, PT08.S3.NOx, NOx.GT, C6H6.GT, Total bike rentals, Electricity Recommended
retail price, Monthly beer production, Quarter-monthly river flow, Lac St-Jean, Mon pax web, Internet traffic data
III, OM CPU – see Appendix 7.2

82

5.3. Wrap up

1 2 3 4

CD

SARIMA

F2C

MEAN

FC2M

Figure 5.4: Critical diagram of the comparisons of the subset of the four best methods. F2C
method configured with K-means clusterer, centroid prototypes, hard paradigm, and naive bayes
classifier (like FC2M), and a γ = 1, in an attempt to make the configurations of F2C and FC2M
comparable.

1 2 3 4

CD

F2C_BEST

SARIMA

MEAN

F2C_WORST

FC2M

Figure 5.5: Critical diagram of the comparisons of the subset of the four best methods, both for
the best combination of parameters found for F2C (F2C_BEST) and for the worst combination
of parameters (F2C_WORST), with γ = 1.

2 3 4 5 6

CD

F2C_BEST
SARIMA

MEAN
FC2M

HOLTWINTERS
ARIMA
AR

Figure 5.6: Critical diagram of the comparison between different prediction approaches for a
value of γ = 1.

2 3 4

CD

F2C_2
F2C_6

F2C_4
F2C_3
F2C_1

Figure 5.7: Critical diagram of the comparison between different prediction approaches for various
values of γ (in [1,2,3,4,6]) only for F2C method.

83

Chapter 6

PROBABILISTIC APPROACH

This chapter introduces a new version of the framework. Up to now, only deterministic forecasts
have been produced with the framework proposed in Chap. 3. However, probabilistic forecasts would be
interesting, particularly in the capacity planning problematic where uncertainty is very usual. Modelling
the probability of having a peak in an incoming season would be useful for anticipation. This is not
something which is possible with deterministic algorithms, where only plain values are provided.

To produce probabilistic forecasts, the need to gather and describe seasons in a probabilistic way
arises. Probabilistic clustering algorithms are mandatory for this purpose. In this chapter, the problem of
seasonal time series forecasting is rephrased in a probabilistic manner while using probabilistic time series
clustering and probabilistic next type of season classification. The use of MODL coclustering algorithms
is chosen for coclustering. This method is able to create probability grids that describe seasons, grids that
may be used afterward for producing probabilistic forecasts.

First Sec. 6.1 explains the interest and the stakes of using time series probabilistic forecasting. Sec. 6.2
presents the probabilistic implementation of the framework and its various parts. Sec. 6.3 introduce a
portfolio approach to the framework. Sec. 6.4 shows the experiments conducted to assess the performances
of this new approach. Comparisons between various parameter combinations are made, and opponents
are being challenged. Sec. 6.5 discusses the results.

6.1 Probabilistic seasonal time series forecasting

6.1.1 The stakes of probabilistic time series forecasting

As stated in Sec. 2.2 which showed the differences between deterministic forecasting and probabilistic
forecasting, a forecast is probabilistic when it provides probability distributions rather than plain deter-
ministic values. Those probability distributions are useful because they bring additional knowledge to
the forecasts, especially in contexts where uncertainty must be dealt with (e.g. in electricity production
forecasting, in capacity planning, etc). The forecasts are richer and can be analysed by specialists and
experts of the domain with more room for interpretation.

The goal of seasonal probabilistic forecasting is to estimate

P (ŷn+1:n+s | y1:n,Φ)

where s is the season length, ŷn+1:n+s are the s next values (next season) of the observed time series y1:n

and Φ the model parameters.
Our framework relies on the assumption that there exists typical seasons in time series (see Hyp. H5

85

Chapter 6 – Probabilistic approach

in Sec. 1.3.3). We remind that S = {S1, . . . ,Sp} denotes the typical seasons in notations introduced in
Def. 11. Here, the number of typical seasons is part of the model parameters Φ.

Assuming that prototypes belonging to S1, . . . ,Sp are conditionally independent events, the law of
total probability ensures that:

P (ŷn+1:n+s | y1:n,Φ) =
∑
S∈S

P (ŷn+1:n+s | S).P (S | y1:n,Φ)

where P (ŷn+1:n+s | S) is the probability of having ŷn+1:n+s known that the season is of type S (and
the observed time series) and P (S | y1:n,Φ) is the probability of having season of type S knowing past
observations.

This expression relates the seasonal probabilistic forecasting to the general principles of the proposed
framework:

— the first term, P (ŷn+1:n+s | S), corresponds to the framework’s clustering step. Estimating these
probabilities (for each cluster S ∈ S) is the inference phase of the clustering. Learning a clustering
model for seasonal time series consists in estimating the parameters ΦS of a clustering model that
maximises the likelihood of P (yk+1:k+s | S,ΦS) for k = 0, . . . , ms . Classical probabilistic clustering
approaches are based on Gaussian Mixture Models [Rey09] or adapting distance based clustering to
a probabilistic approach [Iyi10]. The next section will introduce a probabilistic model based on
time series co-clustering.

— the second term, P (S | y1:n,Φ), corresponds to the classification step of the framework (S is the
type of the season coming after n). Estimating P (S | y1:n,Φ) is a classical supervised learning
problem that can be addressed by many supervised classifiers such as Bayesian Classifiers [WB98].
But the non-probabilistic classifiers introduced in the previous implementation of the framework
can also be used in the probabilistic approach using isotonic calibration [ZE02]. The goal of isotonic
calibration is to obtain actual probabilities using the classifiers, a classifier not calibrated being less
precise – apart from the bayes classifier which is naturally calibrated.

6.1.2 Coclustering of time series: a probabilistic model

In the previous version of the framework, MODL coclustering was introduced as an alternative for
time series clustering. This section goes deeper in the details of this approach that turns out to be a
suitable model for probabilistic clustering of time series.

Coclustering is a particular type of unsupervised algorithm which differs from regular clustering
approaches by creating co-clusters. The objective of the coclustering approaches consists in simultaneously
partitioning the lines and the columns of an input data table. Thus, a co-cluster is defined as a set of
examples belonging to both a group of rows and a group of columns. Coclustering identifies clusters
based on different local similarities (i.e. values for a subinterval of the season). This feature is interesting
and new: traditional clustering algorithms gather TS as a whole (see Subfig. 6.1 (a)) and there is not
subsplitting of the TS following the time interval (see Subfig. 6.1 (b) with a simple example of two
submatches). Hence, coclustering can be used to create groups while matching several subparts of the
time series coming from several clusters.

86

6.1. Probabilistic seasonal time series forecasting

COMPLETE MATCH

(a) Clustering of a TS.

SUBMATCH 1 SUBMATCH 2

(b) Coclustering of a TS.

Figure 6.1: Difference between clustering (a), which matches the entire TS, with coclustering
(b), which is able to match subintervals of the time series of various other time series.

In the literature, coclustering has been applied in the specific case of TS (for example, in [Hea+05] for
gene expression analysis, in [WZK15] for geo-referenced TS, in [Kha+12] for cloud workload analysis).
The usual input data table of a coclustering approach can be either a contingency table of two categorical
variables, or a ‘attributes/examples’ table. There is a need for a more general setting, by processing more
than two variables including numerical variables, in order to make a partition of TS. Indeed, a coclustering
approach able to handle three variables is needed in order to make: i) groups of identifiers of times series
(the categorical variable C); ii) intervals of timestamp values (the variable T encoded as numerical); iii)
intervals of the measurements values of the times series (the variable V also numerical). A co-cluster
gathers TS (group of identifiers) that have distinct values during a certain interval of time. Contrary to
the clustering approach that is based on the entire TS, the coclustering approach uses a local criterion.

In the suggested TS forecasting approach, a tri-clustering (i.e. that extends the coclustering problem
to three variables) is needed to deal with both numerical and categorical variables. Among the approaches
available in the literature, the choice was made on the MODL framework [Bou12] which matches this
need.

The MODL framework makes a constant piecewise assumption (i.e. a 3D histogram) to estimate the
joint distribution P (C,T,V) by jointly discretising the variables T , V and grouping the TS identifiers
of the variable C. The resulting model consists of the Cartesian product 1 of the three partitions of the
variables C, T , V . This model can be represented as a 3D grid (see Fig. 6.2, on the left). In this 3D grid,
if one considers a given group of TS (i.e., a given group of C), the model provides a bivariate discretisation
which estimates P (T,V | C) = P (C,T,V)

P (C) as a 2D grid (see Fig. 6.2, on the right). This 2D grid gives the
probability to have a given range of values during a given interval of time. Therefore knowing that a TS
belongs to a given cluster the corresponding 2D grid may then be used for crafting forecasts (see next
section).

In the MODL approach, finding the best tri-clustering model is turning into a model selection problem.
To do so, a Bayesian approach called Maximum A Posteriori (MAP) is used to select the most probable
model given the data. Details about how this 3D grid model is learned may be found in [Bou12; BBC15].

1. The Cartesian product of the three partitions is used as a constant piecewise estimator – i.e., a 3D histogram.

87

Chapter 6 – Probabilistic approach

Figure 6.2: Illustration of a trivariate coclustering model where a slice referred to ‘grid’ is
extracted. It it this grid that is used for producing probabilistic forecasts.

The main idea could be summarised as finding the grid which maximises the contrast compared to a
grid based on the assumption that T,V and C are independent (i.e. Pgrid3D = P (V,T,C) compared to
PIndependence = P (V)P (T)P (C)). Therefore the estimation of this MAP model outputs: (i) ν intervals
of values Vi = [vli,vui] for i= 1, . . . ,ν, (ii) τ intervals of times Ti = [tli, tui] for i= 1, . . . , τ , (iii) groups of TS.
These groups of time series corresponds to the typical seasons, denoted S in the above model. |S| is the
number of clusters at the finer level that is optimal in the sense of the MODL framework.

In the TS forecasting approach, the right number of (tri-)clusters are chosen regarding to the forecasting
task. This value could differ from |S|. Therefore the MODL coclustering approach allows applying a
hierarchical clustering to the finer level to have a coarse level with a lower number of clusters called C∗,
C∗ < |S|. Then C∗ becomes the retained value considering the global aim. This procedure is similar to
the one described for clustering algorithms: different number of clusters are evaluated and the overall
model that leads to the lowest forecast error on the validation set is kept.

Let us now come back to the formalisation of probabilistic time series forecasting. P (ŷn+1:n+s | S)
can be estimated by the MODL model from the conditional probabilities P (V,T | C = S) where S denotes
one of the time series groups.

In practice, this probability is not interesting to forecast time series. Indeed, an estimate of P (ŷn+i|S)
is made for each i= 1, . . . ,s. As the grid boundaries are the same for each cluster, this means that for
each time instant i= 1, . . . ,s, the probabilistic forecast is a weighted distribution

P (ŷn+i | y1:n,T,Φ) =
∑
S∈S

P (ŷn+i | S,T).P (S | y1:n,Φ)

where P (ŷn+i | S,T) is a piecewise constant distribution given by a slice of the MODL grid. Then,
the forecast itself can be represented as a 2D grid with the boundaries of the MODL model.

6.2 The PF2C Framework
The framework implementation presented in this chapter is called ‘Probabilistic Forecasting with

Clustering and Classifier’ (PF2C). Chap 3 gave an overview of the framework architecture with the Fig. 3.4
and 3.5 (respectively presenting the learning phase and the forecasting phase). In this chapter, there is

88

6.3. Portfolio framework instance

only one clustering algorithms used: MODL coclustering. The classifiers are similar to the ones presented
in Sec. 5.1.1.

6.2.1 Learning process

In this implementation of the framework, MODL coclustering is paramount, since it will be used to
generate probabilistic forecasts. Clustering algorithms used with previous implementations FC2M and
F2C (e.g. K-means, K-shape and GAK) are not useable for that purpose.

Classifiers are also important in this learning process. The classifiers used in the framework (e.g.
naive-bayes classifier, decision trees, random forests and logistic regression) have already been presented
in Sec. 5.1.1.

6.2.2 Forecasting process

Cluster prototypes

As seen in Sec. 3.3.1, the framework first gathers similar seasons into groups by a coclustering algorithm
at learning time. One prototype per cluster (that represents a typical season) is needed to generate the
forecasts at forecasting time.

With coclustering, grids as shown in Fig. 6.2 are used as cluster prototype. A grid represents the joint
probability of the values V at time T for a given cluster C (P (T,V |C)). The darker the cell is, the more
probable it is that the activity lies in this specific cell in the data.

Forecasting paradigms

To forecast the next season (season x+1), the framework makes use of the p prototypes of the p found
clusters and the probabilistic output of the classifier π̂x+1 = {π̂1, . . . , π̂p}.

Two paradigms are studied in this chapter: hard method and soft method, see Sec. 3.3.2. Note that
for F2C, the prediction is a TS, while for PF2C, the prediction is a grid.

6.3 Portfolio framework instance
As always in this thesis, the framework may be instantiated in various ways, depending on which

clustering or classification algorithm is used.
To select the best combination of clusterer and classifier for a given dataset, a portfolio approach

seems appropriate. This approach selects the best combination of both cluterer and classifier using the
validation set, while optimising the number of clusters at the same time. It aims at proposing a complete
data driven approach, the framework being automatically adapted for any time series. More especially,
the difference between the regular mode and the portfolio mode can be described as follows:

— In the regular mode, all the datasets are used to find the best hyper-parameters. More specifically,
all the train and validation ensembles are used for finding the best overall clusterer and classifier
combination, and this choice is applied on every test ensembles to gather results. When hyper-
parameters are found, train and validation ensembles are merged together to make the training set

89

Chapter 6 – Probabilistic approach

bigger at testing time, and thus having more reliable results. The best parameters are found using
all the datasets at hand, and not dataset per dataset. This solution thus requires less computing.

— In the portfolio mode, the best clusterer and classifier combination is selected per dataset. Each
elected combination might then be different for each different dataset. Therefore, this solution is
more fine-grained and specialised to the data and the need.

Performances of the portfolio approach will be studied later in this chapter in Sec. 6.4.5 below.

6.4 Experiments
In this section, experiments to assess the performance of the proposed framework are proposed: F2C

and PF2C methods are compared, as well as other opponents introduced in Sec. 4.2.1.
Sec. 6.4.1 first gives the reader an overview of the setup used for the experiments: datasets, data split,

opponents, etc. Sec. 6.4.2 shows the interest of using a grid for forecasting and validates some assumption,
using generated time series. It also shows an example of probabilistic grid forecasts. Sec. 6.4.3 explicits
the best parameters found for the PF2C implementation. Those parameters are used in next Sec. 6.4.4,
which presents results on extensive experiments and comparisons with state-of-the-art algorithms are
made. Sec. 6.4.5 finally explicits the performances of the portfolio methodology depicted in Sec. 6.3.

6.4.1 Protocol

In this section are introduced the experimental setup used in the experiments. It is first reminded
that the protocol followed for all experimental parts of this thesis is presented in Sec. 3.4. The datasets
are listed in the Appendix 7.2.

Then, it is recalled that opponents have been presented in Sec. 4.2.1. PF2C being a probabilistic
methodology, a new opponent following this paradigm is introduced: Prophet [TL18]. Authors use a
decomposable time series model that uses the holiday period (exogenous data), trend and seasons for
providing seasonal interval forecasts. Similar to a generalised additive model (GAM [Has17]), with time
as a repressor, Prophet fits several linear and non-linear functions of time as components. A model is
learned to use the past data (up to the last season before the one to predict), and this model is used to
predict the next season. No exogenous data has been used for training Prophet. Comparisons will also be
made with the F2C method, presented on Chap. 5, which uses K-means clustering algorithm and random
forest classifiers to learn the structure in the season sequence.

The entire code of the framework was developed in Python 3.5. For developing the TS clustering, the
library tslearn [Tav+20] was used. For developing the classification, the library sklearn [Ped+11] was
used. For the developing the coclustering algorithm, Khiops [Bou16] was used.

6.4.2 Experiments with synthetic datasets

This section shows preliminary probabilistic results with generated data. The goal is to introduce
the probabilistic grid used in PF2C method, and more especially to give intuitions behind probabilistic
forecasting and check hypothesis.

90

6.4. Experiments

The data generated

Generating data is a good strategy for checking assumptions before launching experiments at scale.
Indeed, the shape of the generated data is often simpler, and completely controlled. Experiments may be
executed with various parameters, to plot understandable results and to validate basic expectations.

The seasonal data generated for this section follows some well-established seasonal sequences. Three
different TS patterns are defined for three different seasons of length 10. In the Fig. 6.3, one season
(s1 in orange) with always increasing values is observed, one season (s2 in green) with two peaks is
observed, etc. Those three different seasons are then repeated 50 times in a defined and ad hoc order
(e.g. s1,s1,s0,s2,s1,s1,s2,s0, as observed in Subfig. 6.3 (b) which shows the entire sequence that is being
repeated), and a noise is added to the final TS to make the forecasting process less straightforward.

0 2 4 6 8
time

0

2

4

6

8

10

va
lu

es

3 patterns used for generating the full TS
0
1
2

(a) Three patterns used for generating the TS –
without noise.

0 10 20 30 40 50 60 70 80
time

0

2

4

6

8

v
a
lu

e
s

Generated dataset, 8 seasons (that are repeated 50 times), with normal noise

S1 S1 S0 S2 S1 S1 S2 S0

(b) Generated TS – with normal noise.

Figure 6.3: The sequences of length 10 used for generating the TS are given in Subfig. (a).
Generated TS (b).

91

Chapter 6 – Probabilistic approach

Grid probabilistic forecasts

In the Fig. 6.4, two examples of one season ahead probabilistic grid forecasts are shown. In these
examples, the real values of the predicted TS are shown in blue. Several cells are shown in a red overlay.
The darker the red, the more probable next season ahead lay in this (T ,V) interval. The red overlay
represents the probabilistic grid created by MODL coclustering.

Subfig. 6.4 (a) illustrates a probabilistic forecast with a lot of uncertainty. Indeed, light red cells are
observed in the figure where the data was predicted to lay (with a low probability), and there was no very
dark red cells. In this case, the classifier was unable to predict the next season cluster type accurately
and therefore mixed the three grid prototypes (33% of grid 0, 33% of grid 1 and 33% of grid 2 in this
case). Note that all grids generated (0, 1 and 2) share the same squaring because they were generated
with MODL which necessarily create the same cutting for all dimensions (C, V , T).

Subfig. 6.4 (b) illustrates a good probabilistic forecast. It is observed that the real values (in blue)
often appear in the red boxes where the red is very dark. Furthermore, there is no light red cells shown.
It means that season type was both well described by MODL and well predicted by the classifier.

Learning with various windows size

It is interesting to compare the performances of the two aforementioned forecasts in Fig. 6.4 with
the value of γ (which is the number of historical seasons used for learning the classifier). In the
Subfig. 6.4 (b), γ = 3 and the sequence prior to the one displayed is [s1,s1,s0]. In the given sequence (e.g.
s1,s1,s0,s2,s1,s1,s2,s0 repeated 50 times), it is easy to see that it is impossible to be wrong because
the only possible shape after [s1,s1,s0] or [s2,s1,s1] is s2 and nothing else. But in Subfig. 6.4 (a) and
to predict s1 with a γ of 1 (with the sequence [s0,s2,s1] prior to the data displayed), it is hard to tell
because both s0, s1 and s2 can all be followed by the season type s1. After a s1, it is 50% s1, 25% s0,
25% s2 of chances to be in each of those grids.

50 52 54 56 58 60
time

0

2

4

6

8

va
lu

es

PF2C forecasts for generated TS, gamma=1

Ground truth

(a) Uncertain forecast with many light red
cells.

20 22 24 26 28 30
time

0

1

2

3

4

5

va
lu

es

PF2C forecasts for generated TS, gamma=3

Ground truth

(b) Good forecast with only dark red cells.

Figure 6.4: Two examples of one season ahead grid forecasts for the generated TS. (a) s1 predicted
with some errors, (b) s2 predicted with a high certainty.

92

6.4. Experiments

Quality of the forecast

The grid forecasts shown in Fig. 6.4 describe the season ahead for the generated datasets. This
approach is valuable because creating grids is a good way to learn the seasonal behaviours encountered in
the TS in a data-driven way. Good predictions of next season grid with the classifier hence lead to a good
description of the incoming points distributions. It is then an interesting probabilistic alternative to the
deterministic one presented in the last two chapters.

As explained in Sec. 2.4, it is not possible to compute the MSE nor the MAE, because the predicted
grids cannot be seen as deterministic values. Therefore, the CRPS metric presented in Sec. 3.5 enters
into play. Technically, the steps followed to compute the CRPS are as described in the Algo. 1. The goal
is to compute the integral of one function F composed of combinations of the Cumulative Distribution
Function (CDF) of both the grid and the known values of the TS, for each time step T . The area below
the curve F represents the CRPS. An example is seen in Fig. 6.5.

Data: grid forecast and observed values;
Result: how to compute the CRPS with probabilistic grids;
for each time step Ti for i ∈ 1..h do

CDFg=compute the CDF of predicted grid at Ti;
CDFr=compute the CDF of known value at Ti;
F = (CDFg−CDFr)2;
CRPSi =

∫ +inf
− inf F ;

end
Output: CRPS =mean(CRPS1, ...,CRPSh);

Algorithm 1: How to compute the CRPS for probabilistic grid forecasts.

The two steps that consist in computing the CDF are shown below:

— To compute the CDF of the grid CDFg, it is a matter of using the dimension T in the grid created
in order to extract ‘slices of grid’. Those represent, for one interval Ti with i ∈ N, probability
distribution for the forecast to appear in value intervals [Vlow,Vhigh] for all the value intervals
identified by MODL. Transforming this information in CDF is trivial.

— To compute the CDF of the real observed value CDFr, one simply states that the probability to
have a value below the given value is equal to 100%, thus creating a step-shaped CDF.

In conclusion, computing the CRPS using the grid is upright, because it is natural to translate the grid
itself into a CDF. Also, it is interesting to note that as stated in Sec. 3.5, the CRPS metric is analogous to
MAE for deterministic forecasts. Therefore, comparing MAE measure for deterministic forecasts against
CRPS values for probabilistic forecasts is technically sound.

93

Chapter 6 – Probabilistic approach

0

20

40

60

80

100

-6 -4 -2 0 2 4

%

val6

CRPS computed between blue CDF (predicted values)
 and red CDF (real value, step function)

Figure 6.5: Example of CRPS computation, dotted area below the green curve is the value of
the CRPS computed with the CDF of the prediction (blue) and the CDF of the real value (red).
Reading the blue CDF gives the information that there were 50% of chances to observe values
superior to approx. −3 and 100% of the data superior to −0.8, in the observed data. Reading
the red CDF gives the information that the observed value was 0.

6.4.3 Best parameters for PF2C method

In this section, an analysis of the alternative settings of the PF2C methodology is conducted. The
goal is to find out which is the best way of mixing probabilistic grids (soft vs hard mixing paradigms) and
also which is the best classifier for the PF2C method – overall for all the dataset used. Obviously, there is
no need to find out which is the best clusterer because MODL is the only clustering algorithm able to
produce probabilistic grids for the PF2C methodology. The learning step of the framework is made with
γ = 1.

Fig. 6.6 (a) shows that the best way of mixing grids for producing probabilistic forecasts is the soft
methodology. The classifier is thus chosen with soft decision for the remaining of this section.

Fig. 6.6 (b) shows that decision trees are in first position, but that the difference between all the
other classifiers used is not statistically significant. This last point is enforced by Fig. 6.6 (c) (d) (e),
which shows that decision trees are not systematically better than the other classifiers (pairwise CRPS
performances) and that results are really tight.

In conclusion, this section shows that the best parameters combination found for the PF2C method
are the following:

— MODL coclusters (the only clustering algorithm able to create probabilistic grids),

— Soft methodology with grid prototype,

94

6.4. Experiments

— Decision-trees classifier.

1 2

CD

soft hard

(a) Hard methodology VS soft methodology,
performances for the PF2C method.

2 3

CD

DecisionTreeClassifier

LogisticRegression

RandomForestClassifier

GaussianNB

(b) Performance of the various classifiers for
the PF2C method.

DecisionTreeClassifier win: 21

RandomForestClassifier win: 31

p−value=0.3649

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
DecisionTreeClassifier

R
an

do
m

F
or

es
tC

la
ss

ifi
er

DecisionTreeClassifier vs RandomForestClassifier in terms of CRPS error.

(c) Decision trees vs ran-
dom forests

DecisionTreeClassifier win: 22

LogisticRegression win: 30

p−value=0.7123

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
DecisionTreeClassifier

Lo
gi

st
ic

R
eg

re
ss

io
n

DecisionTreeClassifier vs LogisticRegression in terms of CRPS error.

(d) Decision trees vs logis-
tic regression

DecisionTreeClassifier win: 26

GaussianNB win: 25

p−value=0.8771

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
DecisionTreeClassifier

G
au

ss
ia

nN
B

DecisionTreeClassifier vs GaussianNB in terms of CRPS error.

(e) Decision trees vs naive-
bayes

Figure 6.6: Performances of (a) hard VS soft methodology, (b) various classifiers. (c) (d) (e)
Win/lose graphs that show in first row the number of times decision trees won against the three
other classifiers: logistic regression, random forests and naive-bayes. Comparisons using CRPS.
Subfig. (b) (c) (d) (e) generated with soft results.

6.4.4 PF2C vs opponents

Fig. 6.7 is a critical diagram that assesses the performances of the method using the test ensemble. 2

It shows that rank-wise, PF2C is performing well and is in third position. It is worth noticing that the
rank difference with F2C is not statistically significant. This is confirmed by the Fig. 6.8 which shows the
performance of the method against three selected opponents: ARIMA, Prophet and F2C. One could also
notice the bad performances of Propjet which is ranking 7th out of 9 methods compared. This can be
explained because Prophet heavily relies on exogenous data for producing forecasts, and no exogenous
data was used at all during experiments, in order to have comparable results.

2. The method has been properly configured with the best parameters found in Sec. 6.4.3 using the validation
ensemble.

95

Chapter 6 – Probabilistic approach

6.4.5 Portfolio approach

Fig. 6.9 compares the performances of the regular and portfolio methodologies. The portfolio has
been introduced in Sec. 6.3.

In Subfig. 6.9 (a), it is worth noticing that PF2Cγ=1 outperforms PF2Cγ=3. While using grids and
probabilistic forecasts, it therefore seems more efficient to learn the classifier with only one season in the
historic – in opposition to the previous conclusion drew in Sec. 6.4.2 with generated datasets. The second
thing to observe is that the two portfolios PORTFOLIO PF2Cγ ,γ ∈ [1,3] give better results than their
respective counterparts PF2Cγ . It is encouraging and makes the portfolio approach meaningful.

In Subfig. 6.9 (b), the PF2C methodology has been configured with γ = 1, both for the regular and
the portfolio method (according to best performances observed in Subfig. 6.9 (a)). The F2C methodology
has been configured with γ = 2 (according to Fig. 5.7 page 83). The first thing to see is that the critical
difference shows a significant difference between two groups of methods: the methods introduced in
this thesis (F2C and PF2C) along with SARIMA, and the other methods (mean baseline, Holt Winters,
Prophet, FC2M baseline, ARIMA and AR). Also, as observed in Subfig. (a), the results of the portfolio
PF2C are better than the regular methodology, and they are very close to SARIMA method rank-wise
(non-significantly). Finally, even if the portfolio has better results, it is observed that the regular F2C_2
is still the first method ranking-wise. One explanation is that the CRPS measure is not suitable for
evaluating grid prediction. The grid model is not a probabilistic model centred around the mean. Non-zero
cells represent alternative paths, see grid on Subfig. 6.4 (a). If it first seems intuitively interesting to have
these paths, it penalises the CRPS in this particular case.

6.5 Wrap up
In this chapter, a probabilistic instantiation of the framework introduced in this thesis is proposed.

Experiments with synthetic datasets have first been conducted. The goal was to check assumptions, as
well as presenting the new probabilistic forecasts shaped as a grid. It showed that a probabilistic grid
predicted by the classifier really stick to the real data in Fig. 6.4. It shows the relevance of the grid created
by MODL but also the precision of the classifier which was able to predict with a 100% certainty the type
of next season.

The real performances of the framework have been compared with deterministic opponents already
used in previous chapters, as well as with a probabilistic one (Prophet). Results show that the method is
performing well, especially while using the portfolio methodology introduced in Sec. 6.3 (portfolio method
in third rank against all opponents).

This chapter finally introduced a portfolio methodology, where the aforementioned framework is
algorithmically fine-tuned dataset per dataset, producing a specific parameters combination well fitted for
each precise need and each dataset. The portfolio methodology has been studied for PF2C and accuracy
improvements are noticed. The conclusion is that the portfolio is beneficial for creating better forecasts,
as the parameters are more adapted for each particular datasets.

96

6.5. Wrap up

2 3 4 5 6 7

CD

F2C_2
SARIMA
PF2C_1

MEAN

FC2M_1
HOLTWINTERS
PROPHET
ARIMA
AR

Figure 6.7: Critical diagram of the comparison between different prediction approaches for
different values of γ (1 and 2, e.g. PF2C_γ for example).

PF2C_3 win: 35

arima win: 10

p−value=0.0005681

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
PF2C_3

ar
im

a

PF2C_3 vs arima in terms of MAE error.

(a) PF2C vs ARIMA

PF2C_3 win: 33

prophet win: 12

p−value=0.0002121

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
PF2C_3

pr
op

he
t

PF2C_3 vs prophet in terms of MAE error.

(b) PF2C vs PROPHET

PF2C_1 win: 23

F2C_3 win: 22

p−value=0.8144

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
PF2C_1

F
2C

_3

PF2C_1 vs F2C_3 in terms of MAE error.

(c) PF2C vs F2C

Figure 6.8: Win/lose graphs that show the number of times PF2C won against three selected
opponents ordered by decreasing performances: ARIMA, PROPHET and F2C.

2 3

CD

PORTFOLIO PF2C_1

PORTFOLIO PF2C_3

PF2C_1

PF2C_3

(a) Critical diagram of the comparison between regular and portfolio approach approaches.

3 4 5 6 7 8

CD

F2C_2
SARIMA

PORTFOLIO PF2C_1
PF2C_1

MEAN

HOLTWINTERS
PROPHET
FC2M_1
ARIMA
AR

(b) Critical diagram of the comparison between all methods including PF2C portfolio approach.

Figure 6.9: (a) CD that shows a rank analysis of the portfolio methodology performances. Use
of various values of γ (e.g. PF2C_γ for example). (b) CD that shows ranks of all methodology
including PF2C portfolio approach.

97

Chapter 7

ORANGE MONEY TRANSACTIONS PER

QUARTER USE CASE

Chap. 3 introduced a framework for seasonal time series forecasting, and three different implementations
of it were proposed on Chap. 4, 5 and 6. The performances of all the implementations have been compared
with the use of several state-of-the-art opponents and with various datasets from different sources: nature
information such as river flows, monthly beer production in Australia for several years, or technical time
series from Orange Money project in the context of capacity planning, etc. Appendix 7.2 presented the
datasets, that were numerous and did not only concern the capacity planning problems, because the need
was to develop a data-driven approach that would fit any type of incoming data (as stated in Hyp. H1 in
Sec. 1.3.3).

However, this thesis is dedicated to the improvement of the capacity planning toolset at Orange. This
last chapter studies the interest of the framework in this particular context. The aim is to confirm the
relevance of the approach with a study on capacity planning datasets only.

First, some notable results of the framework presented in Chap. 5 for deterministic forecasts and
Chap. 6 for probabilistic forecasts are shown in Sec. 7.1. More particularly, the dataset used for this
analysis are presented in Sec. 7.1.1. The results of the clustering algorithms are then studied in Sec. 7.1.2,
and more specifically the clusters compositions, both for K-means clustering algorithms and for MODL
coclustering. Some deterministic forecasts of F2C (see Chap. 5) are compared in Sec. 7.1.3 with some
probabilistic grids produced by PF2C (see Chap. 6).

7.1 Case study on Orange Money dataset
The case study is the forecast of server usage that is the backbone of a mobile application. The

application is a mobile banking solution proposed to the African continent’s customers. They carry a
performance problematic, that is to ensure that their infrastructure is well sized and configured. Every day,
the infrastructure has to be adapted to fit the expected demand. The possibility to support decision-making
by forecasting the user activities a day ahead is inspected. The user activity is monitored via the number
of transactions per quarter on the servers’ infrastructure.

7.1.1 Orange Money TPQ dataset

As stated in Sec. 1.1.2, the stakes of OM project to maintain a reliable infrastructure follows three
axes. First, the servers must be well dimensioned – the right number of servers should be up at the right
time for serving all requests without service interruption. Also, the servers must be well configured –

99

Chapter 7 – Orange Money Transactions per Quarter Use Case

flawless connection to the networks, software up to date, etc. Finally, the data flows involved during the
functioning of the servers must be controlled.

To ensure the good performances of the services, load tests and limit tests (introduced in Sec. 1.1.2)
were conducted on the entire infrastructure. The major result of those is the maximum number of
transactions per quarter MaxTPQ that the infrastructure is able to handle. Once MaxTPQ is reached,
the infrastructure is no longer in control and can crash at any moment.

The seasonal forecasting algorithms presented in this thesis enter into play: they allow forecasting the
next day profile, and therefore to check if MaxTPQ is reached in a close future. If it is, several decisions
could be taken: scale up the infrastructure by adding new servers, for example (difficult to do in short
notice especially for a bare metal infrastructure). Reconfigurations of the infrastructure could also be
done more rapidly.

This experimental section is focused on the results of the frameworks for one functional dataset, that
represents the number of people browsing the service: the transactions per quarter (TPQ). It is then a
matter of comparing the TPQ to MaxTPQ and check if TPQ <MaxTPQ stays correct.

The Fig. 7.1 illustrates 15 days of data (1440 points) for one server from day number 180 to day
number 194. The values of the TPQ are z-normalised. This figure shows that the time series is obviously
seasonal and it has been confirmed by the Fisher’s g tests [WFS04] (see Sec. 2.3.2). Nonetheless, there
are at least two different types of days, that may be discriminated by their values in the middle of the
season. Days 180, 187 and 194 have low values around noon, while the others have high values around
noon. Day 186 is in between.

−2

−1

0

1

2

180 185 190 195
Days

Tr
an

sa
ct

io
ns

 p
er

 Q
ua

rt
er

 (
T

P
Q

)

Figure 7.1: Transaction per Quarter (TPQ) dataset for 15 days. One measure per quarter of an
hour. The first day is a Monday.

100

7.1. Case study on Orange Money dataset

7.1.2 Relevance of using seasons for forecasting

In this section, the results of the clustering algorithms (K-means and MODL coclustering) are shown.
It is reminded that in the framework, the number of clusters is chosen by using the result of the forecasting
for the whole chain (clustering and the classification steps). In this study, the random forest classifier
was used, which lead to four clusters for K-means and seven cocluster for MODL coclustering during the
learning process. Note that these numbers of clusters may be different with another classifier.

K-means clustering on TPQ data

The Fig. 7.2 in page 103 shows the clusters found using the K-means clustering algorithms. Table 7.1
gives a precise view of the clusters composition in terms of days of the week. The cluster ck1 , which was
the lowest activity cluster, is composed mainly of Sundays, which could explain the low activity detected.
Most days in clusters ck4 are the end of the week days (Thursdays and Fridays), which could explain the
high activity peaks, probably because people transfer money between each other for enjoying the week
end.

Cluster Mon Tue Wed Thu Fri Sat Sun

ck
1 2 2 0 1 1 7 44
ck

2 18 18 19 18 16 18 3
ck

3 17 18 18 17 16 18 7
ck

4 18 16 18 19 22 12 1

Table 7.1: Number of seasons per weekdays and per K-means cluster.

Finally, the confusions between the weekdays in clusters ck2 to ck4 show that knowing only the weekday
is not sufficient to accurately predict the right type of day (i.e. the cluster). Thus, it justifies the use of a
classifier to predict the type of day based on previous observations.

MODL coclustering on TPQ data

Fig. 7.3 in page 103 shows three clusters out of the seven that have been generated by the MODL
coclustering algorithm with the TPQ at OM datasets. Table 7.2 gives a precise view of the clusters
composition in terms of days of the week.

The three clusters are different, and have been ordered according to the increasing level of activity
observed. Data about types of days in each cluster might be found in Fig. 7.3. First, it is observed that
the first cluster cm1 is really smoother than the others. It is most likely because 38 days out of the 42 in
this cluster are Sundays. In terms of statistics over the 54 weeks present in the data, more than 70% of
the Sundays exhibited the same behaviour and were placed in this cluster.

In clusters cm2 and cm3 , there are several different locations for high activity peaks. In cluster cm2 ,
there is a nearly even distribution of all types of weekdays including weekend but almost no Mondays. In
cluster cm3 , there is only 14% of the days that are weekend days and the rest evenly distributed along
working days. Fig. 7.4 confirms that there is a high activity peak around noon in cluster cm3 .

101

Chapter 7 – Orange Money Transactions per Quarter Use Case

Cluster Mon Tue Wed Thu Fri Sat Sun

cm
1 1 0 0 1 0 2 38
cm

2 4 10 8 10 7 14 10
cm

3 13 14 16 17 14 11 1
cm

4 17 9 10 9 14 7 3
cm

5 14 9 10 3 10 6 0
cm

6 6 12 11 15 10 15 3
cm

7 23 21 21 24 24 22 6

Table 7.2: Number of weekdays per MODL cluster.

Fig. 7.4 exhibits the MODL grids produced for cluster cm1 and cluster cm3 grids. It is interesting to
compare their difference because they both represent two different season topology. When the cluster cm1
represents mostly Sundays, cluster cm3 represents working days. Figure 7.4 (a) shows that the transactions
per quarter are really not high around noon in this particular grid. Figure 7.4 (b) shows that the
transactions per quarter have exhibited a lot of high value in red at around noon, sign of a high activity
at this hour in this given scenario. On another hand, it is shown that there is a low activity on the servers
around 3:00 AM.

7.1.3 Forecast study: examples of deterministic vs probabilistic forecasts

In this section, several forecasts produced by the framework are shown, both for deterministic (F2C)
and probabilistic (PF2C) paradigms.

In Fig. 7.5 (a), a deterministic forecast produced with K-means algorithm in conjunction with random
forest classifier is shown. In orange, the curve for the forecasted hard approach are depicted, in green for
the soft approach, and in blue the real values. It is instantly noticeable that the green curve is smoother
than the orange one. An easy explanation would be that there is only one curve represented in orange
and several weighted curves in green. In this case, the soft method was closer to real data.

Finally, the Fig. 7.5 (b) shows how the grids (see Fig. 7.4) are used for producing one forecast. It is
interesting to see that the real data follows the red path inside the computed MODL grid, sign that the
curves followed an expected scenario. The figure is produced under a soft methodology, meaning that
the seven grids for cluster cm1 and cm7 have been weighted to produce the final grid: the one used for the
forecast.

While comparing the two plots in Subfig. 7.5 (a) and (b), the MODL probabilistic grid is more
precise than the deterministic forecast that are further away from real values. Indeed, the blue curve that
represents the real data really follows the red path described by the probabilistic grid.

7.2 Wrap up
In this chapter, a direct application of the framework elaborated in this thesis was shown on a capacity

planning dataset provided by Orange Money project. More especially, the dataset was functional and

102

7.2. Wrap up

(a) Cluster ck1
with 57 time se-
ries

(b) Cluster ck2
with 110 time se-
ries

(c) Cluster ck3
with 111 time
series

(d) Cluster ck4
with 106 time se-
ries

Figure 7.2: Functional boxplot [SG11] for the seasons detected in Orange Money TPQ dataset
with K-means clustering and random forest classifier. In mauve: the envelope of the 50% central
region; In black: the median curve; In blue: the maximum non-outlying envelope; red dashed
time series are outliers.

(a) Cluster cm1 with 42 time
series

(b) Cluster cm2 with 63
time series

(c) Cluster cm3 with 86 time
series

Figure 7.3: Functional boxplot for the seasons detected in Orange Money TPQ dataset with
MODL clustering and random forest classifier.

0:00 12:00 24:00
time

5

2

-2

v
a
l

(a) Cluster cm1 grid with 42 time series
0:00 12:00 24:00

time

5

2

-2

v
a
l

(b) Cluster cm3 grid with 86 time series

Figure 7.4: Two examples of the MODL probabilistic grid for cluster cm
1 and cm

3 for data TPQ
at Orange Money. The redder the cell, the more likely the activity lay in this cell in the data;
the bluer the cell, the less likely the data lay in this cell.

103

Chapter 7 – Orange Money Transactions per Quarter Use Case

0 50 100 150 200 250 300 350

2

1

0

1

2

3

4

5

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00
DAY 1 DAY 2 DAY 3 DAY 4

time (forecasted)

v
a
l

5

(a) Deterministic forecast produced with
K-means algorithm in conjunction with
random forest classifier for the TPQ
dataset. In dashed blue real values, in
orange is shown hard forecasts, in green
soft forecasts (see Sec. 6.2.2 for more de-
tails).

0 50 100 150 200 250 300 350

2

1

0

1

2

3

4

5

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00
DAY 1 DAY 2 DAY 3 DAY 4

time (forecasted)

v
a
l

5

(b) An example of a grid forecast. In blue
only, the three days used for feeding in the
classifier, in blue with a red overlay the
real values and the associated predicted
grid. Most of the blue values lay in the
predicted grid in this particular case.

Figure 7.5: Examples of deterministic and probabilistic forecasts generated respectively with
F2C and PF2C implementations of the framework presented in Chap. 3.

represented the number of people browsing a service every quarter. Study on the composition of clusters
created by two clustering algorithms (e.g. K-means and MODL) were displayed, and results showed that
the hypothesis H4 introduced in Sec. 1.3.3 (which stated that different types of seasons were present in
capacity planning datasets) seems respected in this case. Two forecasts created by both F2C and PF2C
methodology were shown and the theoretical interest of the grid forecasts demonstrated with this real use
case.

104

CONCLUSION

This thesis studied seasonal time series forecasting, and was motivated by an industrial capacity
planning problem. A framework for seasonal time series prediction is proposed. It involves three steps: the
discovering of typical seasons, the prediction of the type of the next season, and finally the prediction of
next season itself. The initial motivation for introducing such a framework stems from the infrastructure
management context. Indeed, data collected on servers is often seasonal, and reliable forecasts are
paramount for having a view of the future evolution and to improve capacity planning. This generic
framework has been investigated. Three implementations of the framework were proposed. Each of them
has been experimentally studied on a large number of different datasets in order 1) to find the best setting
and 2) to conclude on the prediction accuracy of the method.

Table 7.3 gives a concise overview of the main elements of the deterministic forecast (see Chap. 4 and
Chap. 5) and the probabilistic forecast (see Chap. 6). The deterministic forecast F2C (column 3 of the
table) predicts a single value for all the timestamps. The probabilistic forecast PF2C (column 4 of the
table) predicts a probability distribution for each timestamp. The table exhibits two main differences
between the deterministic and the probabilistic forecast: (1) the way to create the clusters of TS, (2) the
way to define the prototype of a cluster (i.e. the representative of a cluster).

Table 7.3: Possible configurations of the framework proposed.

Deterministic forecast Probabilistic forecast
Learning A) Time series Clustering Clustering Coclustering
process B) Learning Classifier Classification

Forecasting C) Time series Prototypes Centroid or medoid Density
process D) Forecast Hard or Soft

The intensive experiments allow drawing the following conclusion:

— Chap. 4 introduces a deterministic implementation that is based on K-means and Markov models
for learning the framework. Results are encouraging MAE-wise, and better than most of the
deterministic opponents selected (AR, ARIMA, Holt Winters). The only opponent not defeated at
this stage is SARIMA.

— Chap. 5 improves the deterministic baseline previously introduced and proposes the F2C implemen-
tation. It is based on four different clusterers (e.g. K-means, K-shape, GAK and MODL) and four
different classifiers (e.g. naive-bayes classifier, decision trees, random forests and logistic regression).
The performances of each combination of parameters are assessed and the best combination found is
the use of K-means with medoid prototypes, using a soft methodology and random forests. Results
of the F2C methodology properly configured are good MAE-wise and all the opponents including
SARIMA are outperformed. The impact of the number of seasons used for learning the models (γ)
is investigated and it is shown that and a bigger γ can helps to produce better forecasts.

105

— Chap. 6 proposes a probabilistic implementation of the framework: PF2C. This instantiation
takes advantage of MODL coclustering algorithms to create probabilistic grids. Those can be
used both to describe time series and to produce forecasts. The same four classifiers as F2C was
used. Comparisons using the MAE is not possible for probabilistic forecasts, thus the use of CRPS
measure to compare probabilistic forecasts. Results are good CRPS-wise and PF2C ranks at the
third place, behind F2C method introduced in previous chapter and SARIMA model. A portfolio
approach where the best parameters for each dataset are found using the validation set rather than
best overall parameters for all dataset is proposed, and it effectively improves the results. Although,
the bad performances of one probabilistic opponent Prophet which is state of the art for seasonal
forecasting give the intuition that the CRPS is not really adapted as a performance metric for
comparing probabilistic and deterministic forecasts.

One advantage of the framework proposed is that it is able to produce predictions at the horizon of
one season in one shot (i.e., there is no need to build different models for different horizons). The goal is
to fight against the accumulation of error often observed with traditional point forecast methods.

This framework is also a way to frame the forecasting problem as a classification problem. The use of
clustering to mine information about the various seasons of the time series can create knowledge more
easily processed with classification rather than with traditional forecasting algorithms. The study of
seasons relies heavily on the Hyp. H5 in Sec. 1.3.3, which states that there are several types of seasons in
a time series. This hypothesis is verified in Chap. 7 with the study of time series provided by Orange
Money project that shows explicit seasonality with several profiles of days. The use of clustering to extract
seasons is interesting, especially while using the soft paradigm (see Sec. 3.3.2) to mix predicted cluster
prototypes at forecasting time. It naturally helps to extract several seasonality from the data.

The framework proposed finally follows a data-driven approach that only requires few easy-to-set
parameters (such as the length of one season for example). The method is therefore adapted to any type
of incoming data – in the capacity planning problem, but also in other fields. This data-driven nature
allows the integration of the framework in software like PerForecast [LML18], and it is really a plus for
easing the management of complex infrastructure without the hassle of configuring complex algorithms.

Perspectives
Three perspectives are considered for improving the framework: (1) experimenting with exogenous

data, (2) making comparisons with more probabilistic forecasting algorithms and (3) predicting several
seasons at once instead of only one.

Exogenous data

Exogenous data have not been used in any version of the framework. For instance, for daily datasets,
models do not take into account the position of the weekday to make forecasts. However, some observations
suggest that it could improve the prediction accuracy.

For example, the clustering of daily time series set up with 2 clusters could extract two types of
behaviours: a high activity profile (HA) from Mondays to Fridays and a low activity profile (LA) on
Saturdays and Sundays. As a consequence, the trained classifiers will more likely predict a HA day after

106

another HA day (with probability 0.8). This means that every Friday, it will wrongly predict the day
with a HA profile. A model with the weekday information will split the next day prediction rule in two
different rules: High activity from Monday to Thursday leads to a high activity the next day while high
activity on Friday leads to a low activity. It remains interesting to have information about the types of
the days as, in real data, there are several different profiles of days that are not necessarily correlated to
the weekday information.

More generally, using exogenous data requires more user intervention (to find the data sources, include
them in the framework and classifiers, etc.), but this compromise could create less automatic tools with
better forecasts, that will be improved by the new sources of data.

Probabilistic algorithm comparisons

In the future, it is paramount to investigate the relevance of using CRPS for comparison performances
between deterministic and probabilistic method, and to compare the performances of PF2C against other
probabilistic forecasting opponents.

First of all, other metrics should be considered. CRPS is indeed one metric among others: the pinball
loss function, that is a quantile score, is for instance used in major probabilistic forecasting competitions
such as GEFcom 2014 [Hon+16].

Furthermore, it would be interesting to compare PF2C with probabilistic methods such as the one
presented in [GGN16]. The latter is the best probabilistic forecasting proposed in the GEFcom 2014. It
was not implemented in this thesis because it requires a lot of non-trivial configurations, and also a lot of
exogenous data not necessarily available for the datasets we have used.

Finally, only MODL coclustering has been assessed as probabilistic forecasting algorithms for the
PF2C implementation. There exist other paradigms for creating probabilistic groups: fuzzy clustering
introduced in [GK79] (sometimes based on autocorrelation like in [DM09]), or even other types of
coclustering algorithms not based on MODL, such as [IPM09] which shares the parameterless advantage.
It would be beneficial to include them in the framework, in order to follow the path engaged in F2C –
an implementation which used several clustering algorithms selected according to their performances on
given datasets.

Several seasons prediction

The three implementations of the framework proposed in this thesis provide forecasts for one season
ahead. In future work, it would be interesting to forecast several next seasons: the interest for capacity
planning is clear, because the more informed will be engineers about future evolution of the systems, the
more informed will be their decisions about infrastructure update or improvements.

Modifying the framework for this purpose seems doable, by learning sequences of next seasons rather
than one unique next season. It is therefore a matter of modifying the classifier target for learning those
sequences. However, this modification raises several questions: (1) how to create the forecasts from the
sequence predicted, (2) will this new methodology require more data for learning accurately the sequences
and (3) how to make the probabilistic forecasting using MODL grids.

107

BIBLIOGRAPHY

[AE17] Abdulaziz Almalaq and George Edwards, « A review of deep learning methods
applied on load forecasting », in: Proceedings of the international conference on
machine learning and applications (ICMLA), 2017, pp. 511–516.

[Ahd+05] Miika Ahdesmaki, Harri Lahdesmaki, Ron Pearson, Heikki Huttunen, and Olli Yli-
Harja, « Robust detection of periodic time series measured from biological systems »,
in: BMC bioinformatics 6.1 (2005), p. 117.

[Aka69] Hirotugu Akaike, « Fitting autoregressive models for prediction », in: Annals of the
institute of Statistical Mathematics 21.1 (1969), pp. 243–247.

[Aka70] Hirotugu Akaike, « Statistical predictor identification », in: Annals of the Institute
of Statistical Mathematics 22.1 (1970), pp. 203–217.

[Aka98] Hirotugu Akaike, « Autoregressive model fitting for control », in: Selected Papers of
Hirotugu Akaike, 1998, pp. 153–170.

[Ale+19] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin
Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Rangapuram,
David Salinas, Jasper Schulz, et al., « GluonTS: Probabilistic time series models in
python », in: arXiv preprint 1906.05264 (2019).

[Alh99] Juha Alho, « On probabilistic forecasts of population and their uses », in: Bulletin
of the International Statistical Institute 58 (1999).

[All08] John Allspaw, The art of capacity planning: scaling web resources, O’Reilly Media,
Inc., 2008.

[An+13] Ning An, Weigang Zhao, Jianzhou Wang, Duo Shang, and Erdong Zhao, « Using
multi-output feedforward neural network with empirical mode decomposition based
signal filtering for electricity demand forecasting », in: Energy 49 (2013), pp. 279–
288.

[AN07] Arthur Asuncion and David Newman, UCI machine learning repository, 2007.

[ASW15] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah, « Time-series
clustering–a decade review », in: Information Systems 53 (2015), pp. 16–38.

[Bag+17] Anthony Bagnall, Aaron Bostrom, James Large, and Jason Lines, « The great
time series classification bake off: An experimental evaluation of recently proposed
algorithms », in: Springer 1602 (2017).

109

[Bal+11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron, « Towards pre-
dictable datacenter networks », in: Proceedings of the ACM SIGCOMM conference,
2011, pp. 242–253.

[Bar08] Wolfgang Barth, Nagios: System and network monitoring, No Starch Press, 2008.

[BBC15] Alexis Bondu, Marc Boullé, and Antoine Cornuéjols, « Symbolic representation
of time series: A hierarchical coclustering formalization », in: Proceedings of the
International Workshop on Advanced Analysis and Learning on Temporal Data,
(AALTD), 2015, pp. 3–16.

[BDC02] Peter Brockwell, Richard Davis, and Matthew Calder, Introduction to time series
and forecasting, vol. 2, Springer, 2002.

[Bod+09] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael I Jordan, and
David A Patterson, « Automatic exploration of datacenter performance regimes »,
in: Proceedings of the workshop on Automated control for datacenters and clouds,
ACM, 2009, pp. 1–6.

[Bod+10] Peter Bodik, Armando Fox, Michael J Franklin, Michael I Jordan, and David A
Patterson, « Characterizing, modeling, and generating workload spikes for stateful
services », in: Proceedings of the symposium on Cloud computing, 2010, pp. 241–252.

[Bor+17] Kianoosh Boroojeni, Hadi Amini, Shahab Bahrami, SS Iyengar, Arif Sarwat, and
Orkun Karabasoglu, « A novel multi-time-scale modeling for electric power demand
forecasting: From short-term to medium-term horizon », in: Electric Power Systems
Research 142 (2017), pp. 58–73.

[Bou12] Marc Boullé, « Functional data clustering via piecewise constant nonparametric
density estimation », in: Pattern Recognition 45.12 (2012), pp. 4389–4401.

[Bou16] Marc Boullé, « Khiops: Outil d’apprentissage supervisé automatique pour la fouille
de grandes bases de données multi-tables », in: Actes de la conférence Extraction et
Gestion des Connaissances, 2016, pp. 505–510.

[Box+15] George Box, Gwilym Jenkins, Gregory Reinsel, and Greta Ljung, Time series
analysis: forecasting and control, John Wiley & Sons, 2015.

[Bre01] Leo Breiman, « Random forests », in: Machine learning 45.1 (2001), pp. 5–32.

[BRG07] Veronica Berrocal, Adrian Raftery, and Tilmann Gneiting, « Combining spatial
statistical and ensemble information in probabilistic weather forecasts », in: Monthly
Weather Review 135.4 (2007), pp. 1386–1402.

[BS12] Kanna Bhaskar and Sri Niwas Singh, « AWNN-assisted wind power forecasting
using feed-forward neural network », in: transactions on sustainable energy 3.2
(2012), pp. 306–315.

110

[BTL12] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne, « Machine
learning strategies for time series forecasting », in: European business intelligence
summer school, Springer, 2012, pp. 62–77.

[Bul01] Frank Bullen, « Weather Forecasting and its Critics », in: The Leisure hour: an
illustrated magazine for home reading (1901), pp. 223–228.

[BV18] Kailash Budhathoki and Jilles Vreeken, « Causal Inference on Event Sequences », in:
Proceedings of the SIAM International Conference on Data Mining, 2018, pp. 55–63.

[Cas+12] Carmelo Cassisi, Placido Montalto, Marco Aliotta, and Alfredo Pulvirenti, « Similar-
ity measures and dimensionality reduction techniques for time series data mining »,
in: Advances in data mining knowledge discovery and applications (2012), pp. 71–96.

[Cat+07] João Paulo da Silva Catalão, Sílvio José Pinto Simões Mariano, VMF Mendes, and
LAFM Ferreira, « Short-term electricity prices forecasting in a competitive market:
A neural network approach », in: Electric power systems research 77.10 (2007),
pp. 1297–1304.

[CBK10] Varun Chandola, Arindam Banerjee, and Vipin Kumar, « Anomaly detection for
discrete sequences: A survey », in: Transactions on Knowledge and Data Engineering
24.5 (2010), pp. 823–839.

[CDM10] Eddy Caron, Frederic Desprez, and Adrian Muresan, « Forecasting for grid and
cloud computing on-demand resources based on pattern matching », in: Proceedings
of the International Conference on Cloud Computing Technology and Science, 2010,
pp. 456–463.

[Cer+17] Vítor Cerqueira, Luís Torgo, Fábio Pinto, and Carlos Soares, « Arbitrated ensemble
for time series forecasting », in: Proceedings of the Joint European conference on
machine learning and knowledge discovery in databases, 2017, pp. 478–494.

[Cha93] Chris Chatfield, « Calculating interval forecasts », in: Journal of Business & Eco-
nomic Statistics 11.2 (1993), pp. 121–135.

[CHB07] Argon Chen, C-H Hsu, and Jakey Blue, « Demand planning approaches to aggre-
gating and forecasting interrelated demands for safety stock and backup capacity
planning », in: Proceedings of the International Journal of Production Research
45.10 (2007), pp. 2269–2294.

[Cle+90] Robert Cleveland, William Cleveland, Jean McRae, and Irma Terpenning, « STL: A
seasonal-trend decomposition », in: Journal of official statistics 6.1 (1990), pp. 3–73.

[CLL19] Jian Cao, Zhi Li, and Jian Li, « Financial time series forecasting model based on
CEEMDAN and LSTM », in: Physica A: Statistical Mechanics and its Applications
519 (2019), pp. 127–139.

111

[CPB09] Yacine Chakhchoukh, Patrick Panciatici, and Pascal Bondon, « Robust estimation
of SARIMA models: Application to short-term load forecasting », in: Proceedings
of the Workshop on Statistical Signal Processing, 2009, pp. 77–80.

[CPM10] Yacine Chakhchoukh, Patrick Panciatici, and Lamine Mili, « Electric load forecasting
based on statistical robust methods », in: Transactions on Power Systems 26.3
(2010), pp. 982–991.

[CS12] Delson Chikobvu and Caston Sigauke, « Regression-SARIMA modelling of daily
peak electricity demand in South Africa », in: Journal of Energy in Southern Africa
23.3 (2012), pp. 23–30.

[Cut11] Marco Cuturi, « Fast global alignment kernels », in: Proceedings of the 28th inter-
national conference on machine learning (ICML-11), 2011, pp. 929–936.

[DA12] Ahlame Douzal-Chouakria and Cécile Amblard, « Classification trees for time
series », in: Pattern Recognition 45.3 (2012), pp. 1076–1091.

[Dag78] Estela Bee Dagum, « Modelling, forecasting and seasonally adjusting economic time
series with the X-11 ARIMA method », in: Journal of the Royal Statistical Society,
The Statistician 27.3/4 (1978), pp. 203–216.

[DB79] David Davies and Donald Bouldin, « A cluster separation measure », in: Transactions
on Pattern Analysis and Machine Intelligence 1.2 (1979), pp. 224–227.

[DBC15] Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols, « Early classification of
time series as a non myopic sequential decision making problem », in: Proceedings
of the Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, (ECML/KDD), 2015, pp. 433–447.

[Dem06] Janez Demšar, « Statistical comparisons of classifiers over multiple data sets », in:
Journal of Machine learning research 7 (2006), pp. 1–30.

[DH06] Jan De Gooijer and Rob Hyndman, « 25 years of time series forecasting », in:
International journal of forecasting 22.3 (2006), pp. 443–473.

[DHF84] David Dickey, David Hasza, and Wayne Fuller, « Testing for unit roots in seasonal
time series », in: Journal of the American Statistical Association 79.386 (1984),
pp. 355–367.

[DHS11] Alysha De Livera, Rob Hyndman, and Ralph Snyder, « Forecasting time series
with complex seasonal patterns using exponential smoothing », in: Journal of the
American statistical association 106.496 (2011), pp. 1513–1527.

[DM09] Pierpaolo D’Urso and Elizabeth Ann Maharaj, « Autocorrelation-based fuzzy clus-
tering of time series », in: Fuzzy Sets and Systems 160.24 (2009), pp. 3565–3589.

112

[Dob+08] J. Dobschinski, A. Wessel, B. Lange, K. Rohrig, L. von Bremen, and YM Saint-
Drenan, « Estimation of wind power prediction intervals using stochastic methods
and artificial intelligence model ensembles », in: Proceedings of the German Wind
Energy Conference DEWEK, 2008.

[DP87] David Dickey and Sastry Pantula, « Determining the order of differencing in au-
toregressive processes », in: Journal of Business & Economic Statistics 5.4 (1987),
pp. 455–461.

[Dud16] Grzegorz Dudek, « Multilayer perceptron for GEFCom2014 probabilistic electricity
price forecasting », in: International Journal of Forecasting 32.3 (2016), pp. 1057–
1060.

[DWS12] Brian Dougherty, Jules White, and Douglas Schmidt, « Model-driven auto-scaling
of green cloud computing infrastructure », in: Future Generation Computer Systems
28.2 (2012), pp. 371–378.

[Eil+06] Tamar Eilam, Michael Kalantar, Alexander Konstantinou, Giovanni Pacifici, John
Pershing, and Aditya Agrawal, « Managing the configuration complexity of dis-
tributed applications in internet data centers », in: Communications Magazine 44.3
(2006), pp. 166–177.

[Esp+05] Marcelo Espinoza, Caroline Joye, Ronnie Belmans, and Bart De Moor, « Short-term
load forecasting, profile identification, and customer segmentation: a methodology
based on periodic time series », in: Transactions on Power Systems 20.3 (2005),
pp. 1622–1630.

[Far10] Durdu Ömer Faruk, « A hybrid neural network and ARIMA model for water quality
time series prediction », in: Engineering applications of artificial intelligence 23.4
(2010), pp. 586–594.

[Fin+98] David Findley, Brian Monsell, William Bell, Mark Otto, and Bor-Chung Chen,
« New capabilities and methods of the X-12-ARIMA seasonal-adjustment program »,
in: Journal of Business & Economic Statistics 16.2 (1998), pp. 127–152.

[For15] Clay Ford, « Understanding QQ plots », in: (2015), p. 18.

[FRM94] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos, « Fast
subsequence matching in time-series databases », in: Sigmod Record 23.2 (1994),
pp. 419–429.

[GET06] Clive William John Granger, Graham Elliott, and Allan Timmermann, Handbook
of Economic Forecasting, vol. 1, Elsevier, 2006.

113

[GGN16] Pierre Gaillard, Yannig Goude, and Raphaël Nedellec, « Additive models and
robust aggregation for GEFCom2014 probabilistic electric load and electricity price
forecasting », in: International Journal of forecasting 32.3 (2016), pp. 1038–1050.

[GK79] Donald Gustafson and William Kessel, « Fuzzy clustering with a fuzzy covariance
matrix », in: Proceedings of the conference on decision and control, 1979, pp. 761–
766.

[Gne08] Tilmann Gneiting, « Probabilistic forecasting », in: Journal of the Royal Statistical
Society, Statistics in Society (2008), pp. 319–321.

[Gne11] Tilmann Gneiting, « Making and evaluating point forecasts », in: Journal of the
American Statistical Association 106.494 (2011), pp. 746–762.

[GÖT10] Paul Goodwin, Dilek Önkal, and Mary Thomson, « Do forecasts expressed as
prediction intervals improve production planning decisions? », in: European Journal
of Operational Research 205.1 (2010), pp. 195–201.

[Gou+08] Phillip Gould, Anne Koehler, Keith Ord, Ralph Snyder, Rob Hyndman, and Farshid
Vahid-Araghi, « Forecasting time series with multiple seasonal patterns », in: Euro-
pean Journal of Operational Research 191.1 (2008), pp. 207–222.

[GRG04] Yulia Gel, Adrian Raftery, and Tilmann Gneiting, « Calibrated probabilistic mesoscale
weather field forecasting: The geostatistical output perturbation method », in: Jour-
nal of the American Statistical Association 99.467 (2004), pp. 575–583.

[GS91] Jim Gray and Daniel Siewiorek, « High-availability computer systems », in: Com-
puter 24.9 (1991), pp. 39–48.

[GSC99] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins, Learning to forget: Continual
prediction with LSTM, tech. rep., 1999.

[GW68] Ramanathan Gnanadesikan and Martin Wilk, « Probability plotting methods for
the analysis of data », in: Biometrika 55.1 (1968), pp. 1–17.

[GWK89] Clive William John Granger, Halbert White, and Mark Kamstra, « Interval forecast-
ing: an analysis based upon ARCH-quantile estimators », in: Journal of Econometrics
40.1 (1989), pp. 87–96.

[Har93] Andrew Harvey, « Time series models », in: (1993).

[Has17] Trevor Hastie, « Generalized additive models », in: Statistical models in S, Routledge,
2017, pp. 249–307.

[Hea+05] Nicholas Heard, Christopher Holmes, David Stephens, David Hand, and George
Dimopoulos, « Bayesian coclustering of Anopheles gene expression time series: study
of immune defense response to multiple experimental challenges », in: Proceedings
of the National Academy of Sciences 102.47 (2005), pp. 16939–16944.

114

[Her00] Hans Hersbach, « Decomposition of the continuous ranked probability score for
ensemble prediction systems », in: Weather and Forecasting 15.5 (2000), pp. 559–
570.

[Ho95] Tin Kam Ho, « Random decision forests », in: Proceedings of International Confer-
ence on Document Analysis and Recognition, vol. 1, 1995, pp. 278–282.

[Hon+16] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob
Hyndman, Probabilistic energy forecasting: Global energy forecasting competition
2014 and beyond, 2016.

[HOR96] Tim Hill, Marcus O’Connor, and William Remus, « Neural network models for time
series forecasts », in: Management science 42.7 (1996), pp. 1082–1092.

[Hyn11] Rob Hyndman, Time series data library (TSDL), 2011, url: http://robjhyndman.

com/TSDL.

[IM05] Zuhaimy Ismail and Khairil Asmani Mahpol, « SARIMA model for forecasting
Malaysian electricity generated », in: Matematika 21 (2005), pp. 143–152.

[IOB09] Ruhaizan Ismail, Zalinda Othman, and Azuraliza Abu Bakar, « Data mining in
production planning and scheduling: A review », in: Proceedings of the Conference
on Data Mining and Optimization, 2009, pp. 154–159.

[IPM09] Dino Ienco, Ruggero G Pensa, and Rosa Meo, « Parameter-free hierarchical co-
clustering by n-ary splits », in: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 2009, pp. 580–595.

[Iyi10] Cem Iyigun, « Probabilistic distance clustering », in: Wiley Encyclopedia of Opera-
tions Research and Management Science (2010).

[JAS11] Tina Jakaša, Ivan Andročec, and Petar Sprčić, « Electricity price forecasting –
ARIMA model approach », in: Proceedings of the International Conference on the
European Energy Market (EEM), 2011, pp. 222–225.

[KAV15] Ina Khandelwal, Ratnadip Adhikari, and Ghanshyam Verma, « Time series fore-
casting using hybrid ARIMA and ANN models based on DWT decomposition », in:
Procedia Computer Science 48.1 (2015), pp. 173–179.

[KB11] Mehdi Khashei and Mehdi Bijari, « A novel hybridization of artificial neural networks
and ARIMA models for time series forecasting », in: Applied Soft Computing 11.2
(2011), pp. 2664–2675.

[Kei01] Nico Keilman, « Uncertain population forecasts », in: Nature 412.6846 (2001),
pp. 490–491.

115

http://robjhyndman.com/TSDL
http://robjhyndman.com/TSDL

[Kha+12] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis, « Workload characterization
and prediction in the cloud: A multiple time series approach », in: Proceedings of
the Network Operations and Management Symposium, IEEE, 2012, pp. 1287–1294.

[KHM05] Yoshio Kajitani, Keith W Hipel, and A Ian McLeod, « Forecasting nonlinear time
series with feed-forward neural networks: a case study of Canadian lynx data », in:
Journal of Forecasting 24.2 (2005), pp. 105–117.

[Kle+02] David Kleinbaum, Dietz, Gail, Mitchel Klein, and Mitchell Klein, Logistic regression,
Springer, 2002.

[KM06] YH Kareem and Asso Raouf Majeed, « Monthly Peak-load Demand Forecasting
for Sulaimany Governorate Using SARIMA. », in: Proceedings of the International
Conference on Transmission & Distribution Conference and Exposition, 2006, pp. 1–
5.

[Koo+13] Bon-Gil Koo, Min-Seok Kim, Kyu-Han Kim, Hee-Tae Lee, June-Ho Park, and Cheol-
Hong Kim, « Short-term electric load forecasting using data mining technique »,
in: Proceedings of the International Conference on Intelligent Systems and Control
(ISCO), 2013, pp. 153–157.

[KPH02] Nico Keilman, Dinh Quang Pham, and Arve Hetland, « Why population forecasts
should be probabilistic-illustrated by the case of Norway », in: Demographic research
6 (2002), pp. 409–454.

[KRA11] Irena Koprinska, Mashud Rana, and Vassilios Agelidis, « Yearly and seasonal models
for electricity load forecasting », in: Proceedings of the International Joint Conference
on Neural Networks, 2011, pp. 1474–1481.

[KS09] Rajesh Kavasseri and Krithika Seetharaman, « Day-ahead wind speed forecasting
using f-ARIMA models », in: Renewable Energy 34.5 (2009), pp. 1388–1393.

[KS76] John Kemeny and Laurie Snell, Markov chains, Springer-Verlag, New York, 1976.

[Kum+18] Sumit Kumar, Lasani Hussain, Sekhar Banarjee, and Motahar Reza, « Energy load
forecasting using deep learning approach-LSTM and GRU in spark cluster », in:
Proceedings of the International Conference on Emerging Applications of Information
Technology (EAIT), 2018, pp. 1–4.

[Lar+19] James Large, Anthony Bagnall, Simon Malinowski, and Romain Tavenard, « On
time series classification with dictionary-based classifiers », in: Proceedings of the
Intelligent Data Analysis 23.5 (2019), pp. 1073–1089.

116

[Lev+18] Colin Leverger, Vincent Lemaire, Simon Malinowski, Thomas Guyet, and Laurence
Roze, « Day-ahead time series forecasting: application to capacity planning », in:
Proceedings of the workshop on Advanced Analytics and Learning of Temporal Data
(AALTD), 2018.

[Lev+19] Colin Leverger, Simon Malinowski, Thomas Guyet, Vincent Lemaire, Alexis Bondu,
and Alexandre Termier, « Toward a framework for seasonal time series forecasting
using clustering », in: Proceedings of the International Conference on Intelligent
Data Engineering and Automated Learning, 2019, pp. 328–340.

[Lin+04] Jessica Lin, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos, « Iterative
incremental clustering of time series », in: International Conference on Extending
Database Technology, 2004, pp. 106–122.

[Llo82] Stuart Lloyd, « Least squares quantization in PCM », in: Transactions on informa-
tion theory 28.2 (1982), pp. 129–137.

[LML18] Colin Leverger, Régis Marguerie, and Vincent Lemaire, « PerForecast : un outil
d’automatisation de planning capacitaire et de prévision de l’évolution de séries
temporelles univariées », in: Conférence Extraction et Gestion des Connaissances
(EGC) Paris, 2018.

[LQ12] Dominique Ladiray and Benoit Quenneville, Seasonal adjustment with the X-11
method, vol. 158, Springer Science & Business Media, 2012.

[LX12] Helmut Lütkepohl and Fang Xu, « The role of the log transformation in forecasting
economic variables », in: Empirical Economics 42.3 (2012), pp. 619–638.

[Mar61] Melvin Earl Maron, « Automatic indexing: an experimental inquiry », in: Journal
of the ACM (JACM) 8.3 (1961), pp. 404–417.

[Mel16] City Of Melbourne, Pedestrian Counting System, 2016, url: http://www.pedestrian.

melbourne.vic.gov.au/.

[MG+11] Peter Mell, Tim Grance, et al., « The NIST definition of cloud computing », in:
(2011).

[MH11] Ming Mao and Marty Humphrey, « Auto-scaling to minimize cost and meet applica-
tion deadlines in cloud workflows », in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[MH97] Spyros Makridakis and Michele Hibon, « ARMA models and the Box–Jenkins
methodology », in: Journal of Forecasting 16.3 (1997), pp. 147–163.

117

http://www.pedestrian.melbourne.vic.gov.au/
http://www.pedestrian.melbourne.vic.gov.au/

[Moo+05] Justin Moore, Jeff Chase, Keith Farkas, and Parthasarathy Ranganathan, « Data
center workload monitoring, analysis, and emulation », in: Proceedings of the work-
shop on computer architecture evaluation using commercial workloads, 2005, pp. 1–
8.

[MS96] Radu Manuca and Robert Savit, « Stationarity and nonstationarity in time series
analysis », in: Physica D: Nonlinear Phenomena 99.2-3 (1996), pp. 134–161.

[Nel+99] Michael Nelson, Tim Hill, William Remus, and Marcus O’Connor, « Time series
forecasting using neural networks: Should the data be deseasonalized first? », in:
Journal of forecasting 18.5 (1999), pp. 359–367.

[Nie04] Ralph Niels, « Dynamic time warping », in: Artificial Intelligence (2004).

[Nie94] Jakob Nielsen, Usability engineering, Elsevier, 1994.

[Pap+05a] Maria Papadopouli, Haipeng Shen, Elias Raftopoulos, Manolis Ploumidis, and
Felix Hernandez-Campos, « Short-term traffic forecasting in a campus-wide wireless
network », in: Proceedings of the International Symposium on Personal, Indoor and
Mobile Radio Communications, vol. 3, 2005, pp. 1446–1452.

[Pap+05b] Konstantina Papagiannaki, Nina Taft, Zhi-Li Zhang, and Christophe Diot, « Long-
term forecasting of Internet backbone traffic », in: transactions on neural networks
16.5 (2005), pp. 1110–1124.

[Ped+11] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al., « Scikit-learn: Machine learning in Python », in: the Journal of
machine Learning research 12 (2011), pp. 2825–2830.

[PG15] John Paparrizos and Luis Gravano, « k-shape: Efficient and accurate clustering of
time series », in: Proceedings of the International Conference on Management of
Data (SIGMOD), 2015, pp. 1855–1870.

[Pin+07] Pierre Pinson, Henrik Aa Nielsen, Jan K Møller, Henrik Madsen, and George
N Kariniotakis, « Non-parametric probabilistic forecasts of wind power: required
properties and evaluation », in: Wind Energy: An International Journal for Progress
and Applications in Wind Power Conversion Technology 10.6 (2007), pp. 497–516.

[PKG11] François Petitjean, Alain Ketterlin, and Pierre Gançarski, « A global averaging
method for dynamic time warping, with applications to clustering », in: Pattern
Recognition 44.3 (2011), pp. 678–693.

[PL05] Ping-Feng Pai and Chih-Sheng Lin, « A hybrid ARIMA and support vector machines
model in stock price forecasting », in: Omega 33.6 (2005), pp. 497–505.

118

[Raf94] Lawrence Raffalovich, « Detrending time series: A cautionary note », in: Sociological
Methods & Research 22.4 (1994), pp. 492–519.

[RDG11] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale, « Efficient autoscaling in
the cloud using predictive models for workload forecasting », in: Proceedings of the
4th International Conference on Cloud Computing, 2011, pp. 500–507.

[Rey09] Douglas Reynolds, « Gaussian Mixture Models. », in: Encyclopedia of biometrics
741 (2009).

[Ris+01] Irina Rish et al., « An empirical study of the naive Bayes classifier », in: Proceedings
of the Workshop on Empirical Methods in Artificial Intelligence, 2001, pp. 41–46.

[Rou87] Peter Rousseeuw, « Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis », in: Journal of Computational and Applied Mathematics 20
(1987), pp. 53–65.

[Saâ17] Foued Saâdaoui, « A seasonal feedforward neural network to forecast electricity
prices », in: Neural Computing and Applications 28.4 (2017), pp. 835–847.

[Sáe+14] Doris Sáez, Fernand Ávila, Daniel Olivares, Claudio Cañizares, and Luis Marín,
« Fuzzy prediction interval models for forecasting renewable resources and loads in
microgrids », in: Transactions on Smart Grid 6.2 (2014), pp. 548–556.

[SC78] Hiroaki Sakoe and Seibi Chiba, « Dynamic programming algorithm optimization for
spoken word recognition », in: IEEE transactions on acoustics, speech, and signal
processing 26.1 (1978), pp. 43–49.

[Sel+17] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon, and
KP Soman, « Stock price prediction using LSTM, RNN and CNN-sliding window
model », in: Proceedings of the international conference on advances in computing,
communications and informatics, IEEE, 2017, pp. 1643–1647.

[SG11] Ying Sun and Marc Genton, « Functional boxplots », in: Journal of Computational
and Graphical Statistics 20.2 (2011), pp. 316–334.

[SGR10] McLean Sloughter, Tilmann Gneiting, and Adrian Raftery, « Probabilistic wind
speed forecasting using ensembles and Bayesian model averaging », in: Journal of
the american statistical association 105.489 (2010), pp. 25–35.

[SK19] Alaa Sagheer and Mostafa Kotb, « Time series forecasting of petroleum production
using deep LSTM recurrent networks », in: Neurocomputing 323 (2019), pp. 203–213.

[SL91] Rasoul Safavian and David Landgrebe, « A survey of decision tree classifier method-
ology », in: transactions on systems, man, and cybernetics 21.3 (1991), pp. 660–
674.

119

[Sne02] Rob Snevely, Enterprise data center design and methodology, Prentice Hall Press,
2002.

[Sor+07] Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji, and Amaury Lendasse,
« Methodology for long-term prediction of time series », in: Neurocomputing 70.16-
18 (2007), pp. 2861–2869.

[Sti85] Robert Stine, « Bootstrap prediction intervals for regression », in: Journal of the
American Statistical Association 80.392 (1985), pp. 1026–1031.

[SWW18] Shaolong Sun, Yunjie Wei, and Shouyang Wang, « Adaboost-lstm ensemble learning
for financial time series forecasting », in: Proceedings of the International Conference
on Computational Science, 2018, pp. 590–597.

[Tab13] Bahman Rostami Tabar, « ARIMA demand forecasting by aggregation », PhD thesis,
2013.

[Tai+12] Souhaib Ben Taieb, Gianluca Bontempi, Amir F Atiya, and Antti Sorjamaa, « A
review and comparison of strategies for multi-step ahead time series forecasting
based on the NN5 forecasting competition », in: Expert systems with applications
39.8 (2012), pp. 7067–7083.

[Tav+20] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz,
Chester Holtz, Marie Payne, Roman Yurchak, Marc Ruswurm, Kushal Kolar, et
al., « Tslearn, A Machine Learning Toolkit for Time Series Data », in: Journal of
Machine Learning Research 21.118 (2020), pp. 1–6.

[TG10] Thordis Thorarinsdottir and Tilmann Gneiting, « Probabilistic forecasts of wind
speed: ensemble model output statistics by using heteroscedastic censored regres-
sion », in: Journal of the Royal Statistical Society: Series A (Statistics in Society)
173.2 (2010), pp. 371–388.

[Tia09] Wenhong Tian, « Adaptive dimensioning of cloud data centers », in: Proceedings
of the International Conference on Dependable, Autonomic and Secure Computing,
2009, pp. 5–10.

[TL18] Sean Taylor and Benjamin Letham, « Forecasting at scale », in: The American
Statistician 72.1 (2018), pp. 37–45.

[TT94] George Tiao and Ruey Tsay, « Some advances in non-linear and adaptive modelling
in time-series », in: Journal of forecasting 13.2 (1994), pp. 109–131.

[TW00] Anthony Tay and Kenneth Wallis, « Density forecasting: a survey », in: Journal of
forecasting 19.4 (2000), pp. 235–254.

120

[TYT02] Fang-Mei Tseng, Hsiao-Cheng Yu, and Gwo-Hsiung Tzeng, « Combining neural net-
work model with seasonal time series ARIMA model », in: Technological Forecasting
and Social Change 69.1 (2002), pp. 71–87.

[VKJ15] Carlos Vazquez, Ram Krishnan, and Eugene John, « Time Series Forecasting of
Cloud Data Center Workloads for Dynamic Resource Provisioning. », in: J. Wirel.
Mob. Networks Ubiquitous Comput. Dependable Appl. 6.3 (2015), pp. 87–110.

[Wan+11] Chengwei Wang, Krishnamurthy Viswanathan, Lakshminarayan Choudur, Vanish
Talwar, Wade Satterfield, and Karsten Schwan, « Statistical techniques for online
anomaly detection in data centers », in: Proceedings of the International Symposium
on Integrated Network Management and Workshops, 2011, pp. 385–392.

[WB98] Christopher Williams and David Barber, « Bayesian classification with Gaussian
processes », in: Transactions on Pattern Analysis and Machine Intelligence 20.12
(1998), pp. 1342–1351.

[Wei06] William WS Wei, « Time series analysis: univariate and multivariate », in: Methods.
Boston, MA: Pearson Addison Wesley (2006).

[Wei18] Andreas Weigend, Time series prediction: forecasting the future and understanding
the past, Routledge, 2018.

[Wer14] Rafał Weron, « Electricity price forecasting: A review of the state-of-the-art with a
look into the future », in: International journal of forecasting 30.4 (2014), pp. 1030–
1081.

[WFS04] Sofia Wichert, Konstantinos Fokianos, and Korbinian Strimmer, « Identifying peri-
odically expressed transcripts in microarray time series data », in: Bioinformatics
20.1 (2004), pp. 5–20.

[Win60] Peter Winters, « Forecasting sales by exponentially weighted moving averages », in:
Management science 6.3 (1960), pp. 324–342.

[WM12] Xiping Wang and Ming Meng, « A Hybrid Neural Network and ARIMA Model for
Energy Consumption Forcasting. », in: JCP (2012), pp. 1184–1190.

[WMH98] Steven Wheelwright, Spyros Makridakis, and Rob Hyndman, Forecasting: methods
and applications, John Wiley & Sons, 1998.

[Wor27] HolbrookWorking, « Forecasting the price of wheat », in: Journal of Farm Economics
9.3 (1927), pp. 273–287.

[WS10] Lei Wu and Mohammad Shahidehpour, « A hybrid model for day-ahead price
forecasting », in: Transactions on Power Systems 25.3 (2010), pp. 1519–1530.

121

[WZK15] Xiaojing Wu, Raul Zurita-Milla, and Menno-Jan Kraak, « Co-clustering geo-referenced
time series: exploring spatio-temporal patterns in Dutch temperature data », in:
International Journal of Geographical Information Science 29.4 (2015), pp. 624–642.

[Xie+13] Mengchen Xie, Claes Sandels, Kun Zhu, and Lars Nordström, « A seasonal ARIMA
model with exogenous variables for elspot electricity prices in Sweden », in: Pro-
ceedings of the International Conference on the European Energy Market (EEM),
2013, pp. 1–4.

[XSC12] Zhen Xiao, Weijia Song, and Qi Chen, « Dynamic resource allocation using virtual
machines for cloud computing environment », in: Transactions on parallel and
distributed systems 24.6 (2012), pp. 1107–1117.

[Ye+14] Zhen Ye, Sajib Mistry, Athman Bouguettaya, and Hai Dong, « Long-term QoS-aware
cloud service composition using multivariate time series analysis », in: Transactions
on Services Computing 9.3 (2014), pp. 382–393.

[Zam+14] Michaël Zamo, Olivier Mestre, Philippe Arbogast, and Olivier Pannekoucke, « A
benchmark of statistical regression methods for short-term forecasting of photovoltaic
electricity production, part I: Deterministic forecast of hourly production », in: Solar
Energy 105 (2014), pp. 792–803.

[ZE02] Bianca Zadrozny and Charles Elkan, « Transforming classifier scores into accurate
multiclass probability estimates », in: Proceedings of the international conference
on Knowledge discovery and data mining (SIGKDD), 2002, pp. 694–699.

[Zha03] Peter Zhang, « Time series forecasting using a hybrid ARIMA and neural network
model », in: Neurocomputing 50 (2003), pp. 159–175.

[Zhe+17] Jian Zheng, Cencen Xu, Ziang Zhang, and Xiaohua Li, « Electric load forecasting
in smart grids using long-short-term-memory based recurrent neural network », in:
Proceedings of the Annual Conference on Information Sciences and Systems (CISS),
2017, pp. 1–6.

[Zho+06] M. Zhou, Z. Yan, YX Ni, G. Li, and Yi Nie, « Electricity price forecasting with
confidence-interval estimation through an extended ARIMA approach », in: Gener-
ation, Transmission and Distribution 153.2 (2006), pp. 187–195.

[ZPH01] Peter Zhang, Eddy Patuwo, and Michael Hu, « A simulation study of artificial
neural networks for nonlinear time-series forecasting », in: Computers & Operations
Research 28.4 (2001), pp. 381–396.

[ZQ05] Peter Zhang and Min Qi, « Neural network forecasting for seasonal and trend time
series », in: European journal of operational research 160.2 (2005), pp. 501–514.

122

[ZXZ17] Qun Zhuge, Lingyu Xu, and Gaowei Zhang, « LSTM Neural Network with Emotional
Analysis for Prediction of Stock Price. », in: Engineering letters 25.2 (2017).

123

PUBLICATIONS

[Lev+18] Colin Leverger, Vincent Lemaire, Simon Malinowski, Thomas Guyet, and Laurence
Roze, « Day-ahead time series forecasting: application to capacity planning », in:
Proceedings of the workshop on Advanced Analytics and Learning of Temporal Data
(AALTD), 2018.

[Lev+19] Colin Leverger, Simon Malinowski, Thomas Guyet, Vincent Lemaire, Alexis Bondu,
and Alexandre Termier, « Toward a framework for seasonal time series forecasting
using clustering », in: Proceedings of the International Conference on Intelligent
Data Engineering and Automated Learning, 2019, pp. 328–340.

[LML18] Colin Leverger, Régis Marguerie, and Vincent Lemaire, « PerForecast : un outil
d’automatisation de planning capacitaire et de prévision de l’évolution de séries
temporelles univariées », in: Conférence Extraction et Gestion des Connaissances
(EGC) Paris, 2018.

124

LIST OF FIGURES

1 Exemple de métriques fonctionnelles à Orange. 10
2 Exemple de série temporelle saisonnière. 11
3 Vue simplifiée du framework proposé. 12
5 Classement global des différentes approches de prédiction pour différentes valeurs de γ. . . 15
7 Example of functional metric at Orange. 22
8 Example of seasonal time series. 23

1.1 Examples of dashboards to visualise infrastructure data at Orange. 32
1.2 TS classical analysis of the data at hand. 33
1.3 Cluster analysis of the data at hand. 34
1.4 Functional diagram of one hypothetical and ideal ML toolkit for improving CP. 36

2.1 Example of a seasonal time series: weather at Rennes. 42
2.2 Comparison between stationary and non-stationary time series. 44
2.3 Open source seasonal time series and its associated autocorrelogram. 45
2.4 Difference between Euclidean and DTW measures. 47
2.5 Comparison between deterministic and probabilistic forecasts. 49

3.1 Simplified view of the proposed framework. 58
3.2 Presentation of deterministic and probabilistic forecast. 59
3.3 Examples of seasonal time series with two different typical seasons. 60
3.4 Framework learning process. 62
3.5 Framework forecasting process. 63
3.7 Example of critical diagram. 66
3.8 Win/lose graph that shows the number of times method 1 won against method 2. 67

4.1 Encoding a seasonal time series using the clustering. 70
4.2 Probability matrix which represents the Markov Models. 71
4.4 Win/lose graphs that show the number of times FC2M won against three selected opponents

ordered by performances: AR, MEAN and SARIMA. 73

5.2 Illustrations of the four classifiers and four clustering algorithms combined in the experiments. 80
5.4 Critical diagram of the comparisons of the subset of the four best methods. 83
5.5 Critical diagram of the comparisons of the subset of the four best methods for F2C

(F2C_BEST) and for F2C (F2C_WORST). 83
5.6 Critical diagram of the comparison between different prediction approaches for γ = 1. . . 83
5.7 Critical diagram of the comparison between different prediction approaches for various

values of γ. 83

125

6.2 Illustration of a trivariate coclustering model. 88
6.5 Example of CRPS computation with two CDFs. 94
6.6 Critical diagrams and win/lose diagrams used to find the best parameters for the PF2C

implementation. 95
6.7 Critical diagram of the comparison between different prediction approaches for different

values of γ. 97
6.8 Win/lose graphs that show the number of times PF2C won against three selected opponents

ordered by decreasing performances: ARIMA, PROPHET and F2C. 97
6.9 Critical diagrams used to assess the performances of the portfolio methodology for PF2C. 97

7.1 Transaction per Quarter (TPQ) dataset for 15 days. 100
7.2 Functional boxplot for the seasons detected in Orange Money TPQ. 103
7.3 Functional boxplot for the seasons detected in Orange Money TPQ dataset with MODL

clustering and random forest classifier. 103
7.4 Two examples of the MODL probabilistic grid for data TPQ at Orange Money. 103

126

LIST OF TABLES

1 Configuration du framework proposé. 13

7.1 Number of seasons per weekdays and per K-means cluster. 101
7.2 Number of weekdays per MODL cluster. 102
7.3 Possible configurations of the framework proposed. 105
7.4 Table which summarise the various datasets used for experimentations. 129

127

APPENDIX

Appendix 1: data used for experiments
The Table below explicits the datasets used for the experimental parts of this thesis.
All the TS have been z-normalised beforehand for comparing different MAE.

Table 7.4: Table which summarise the various datasets used for experimentations.

Dataset Origin Acquisition freq. No.
pt-
s/seas

No.
seas

Orange CPUs Orange 15 mins 96 512
Orange Hits per quarter Orange 15 mins 96 512
Pedestrian Counting System City of Melbourne [Mel16] 1 hour 24 1490
Daily rainfall Melbourne from
from 1981 to 1990

tsdl [Hyn11] 1 day 7 428

No. of Births in Quebec from Jan.
1, 1977 to Dec. 31, 1990

- 1 day 7 428

Daily maximum temperatures in
Melbourne, Australia, 1981-1990

- 1 day 7 470

Internet traffic data I from Jun.
7, 2005 to Jul. 31, 2005

- 1 hour 24 51

Internet traffic data II from Nov.
19, 2004 to Jan. 27, 2005

- 1 hour 24 69

Internet traffic data III from Nov.
19, 2004 to Jan. 27, 2005

- 5 minutes 288 51

Quarter-monthly rainfall, Lac St-
Jean Region, 1953 - 1982

- 4 months 4 30

Quarter-monthly river flow, Lac
St-Jean Region, 1953 - 1982

- 4 months 4 30

Monthly mean discharge in cu-
bic meters per second for the pe-
riod of record, Niagara River at
Queenston, 1860-1990

- yearly 1
month

31

Monthly beer production Aus-
tralia megalitres

- 1 month 12 39

Monthly sunspot Zuerich - 1 month 12 235

129

Table 7.4 continued...

Dataset Origin Acquisition freq. No.
pt-
s/seas

No.
seas

Flow of Jokulsa Eystri river from
Jan. 1, 1972 to Dec. 31, 1974

- 1 day 6 182

Electricity production kaggle 1 1 hour 12 32
Weather Canada kaggle 2 1 hour 24 57
Rossman Sales kaggle 3 1 day 7 82
Currency kaggle 4 1 day 3 100
CO.GT Air quality indicators from

Mar. 10, 2004 to Apr.
04 2005 in an Italian city
[AN07]

1 hour 12 250

PT08.S1.CO - 1 hour 12 250
C6H6.GT - 1 hour 12 250
PT08.S2.NMHC - 1 hour 12 250
NOx.GT - 1 hour 12 250
PT08.S3.NOx - 1 hour 12 250
NO2.GT - 1 hour 24 125
PT08.S4.NO2 - 1 hour 12 250
PT08.S5.O3 - 1 hour 12 250
RH - 1 hour 24 125
Humidity Bike sharing from Jan. 1,

2011 [Cer+17]
1 hour 23 58

Total bike rentals - 1 hour 23 58
Global horizontal radiation Solar radiation monitoring

from Apr. 25, 2016 to Aug.
25, 2016 [Cer+17]

1 hour 14 214

Direct normal radiation - 1 hour 14 214
Diffuse horizontal radiation - 1 hour 14 214
Amial Porto water consumption

from different locations in
the city of Porto from Nov.
11, 2015 to Jan. 11, 2016
[Cer+17]

30 minutes 48 62

Preciosa mar - 30 minutes 48 62

1. See: https://www.kaggle.com/robikscube/hourly-energy-consumption
2. See: https://www.kaggle.com/selfishgene/historical-hourly-weather-data?select=temperature.

csv
3. See: https://www.kaggle.com/c/rossmann-store-sales
4. See: https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python

130

https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/selfishgene/historical-hourly-weather-data?select=temperature.csv
https://www.kaggle.com/selfishgene/historical-hourly-weather-data?select=temperature.csv
https://www.kaggle.com/c/rossmann-store-sales
https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python

Table 7.4 continued...

Dataset Origin Acquisition freq. No.
pt-
s/seas

No.
seas

Electricity total load Hospital energy loads from
Jan. 1, 2016 to Mar. 25,
2016 [Cer+17]

1 hour 24 125

Equipment load - 1 hour 24 125
Gas energy - 1 hour 24 125
Gas heat energy - 1 hour 24 125
Water heater Energy - 1 hour 24 125
Electricity Recommended retail
price

Australian electricity from
Jan. 1, 1999 to Mar. 1,
1999 [KRA11]

30 minutes 6 472

Electricity Total demand - minutes 48 59
tide San Francisco sea level

(source: NOAA 5)
6 minutes 124 112

311SF Number of calls for ‘Graffi-
tis’ cases to the San Fran-
cisco call center (source:
SF Open data 6)

1 hour 24 75

Bidmc Electrocardiogram (ECG)
(source: Physionet 7)

125 Hz 45 69

Traffic New York Traffic Vol-
ume (source: New York
Metropolitan Transporta-
tion Council 8)

1 hour 24 106

Enedis Electricity consumption
(source: Enedis 9)

30 mins 48 143

Mon pax web Adelaide Airport Aircraft
Movements (source: Aus-
tralian Bureau of Infras-
tructure, Transport and
Regional Economics: 10)

monthly 12 114

5. See: https://coastwatch.pfeg.noaa.gov/erddap/
6. See: https://data.sfgov.org/City-Infrastructure/311-Cases/vw6y-z8j6
7. See: https://physionet.org/content/bidmc/1.0.0/
8. See: https://opendata.cityofnewyork.us/
9. See: https://data.enedis.fr

10. See: https://data.gov.au/data/dataset/airport-traffic-data

131

https://coastwatch.pfeg.noaa.gov/erddap/
https://data.sfgov.org/City-Infrastructure/311-Cases/vw6y-z8j6
https://physionet.org/content/bidmc/1.0.0/
https://opendata.cityofnewyork.us/
https://data.enedis.fr
https://data.gov.au/data/dataset/airport-traffic-data

Appendix 2: affiche de thèse
Affiche à visée humouristique, composée par mes collègues doctorants pour annoncer la date de

soutenance de ma thèse.

132

Titre : Investigations sur un framework pour des prévisions de séries temporelles saisonnières

Mot clés : Apprentissage automatique, séries temporelles, saisonnalité, clustering, classification

Résumé : Pour déployer des applications web, l’uti-
lisation de serveurs informatique est primordiale. S’ils
sont peu nombreux, les performances des applications
peuvent se détériorer. En revanche, s’ils sont trop nom-
breux, les ressources sont gaspillées et les coûts argu-
mentés. Dans ce contexte, les ingénieurs utilisent des
outils de planning capacitaire qui leur permettent de
suivre les performances des serveurs, de collecter les
données temporelles générées par les infrastructures et
d’anticiper les futurs besoins. La nécessité de créer des
prévisions fiables apparait évidente. Les données des
infrastructures présentent souvent une saisonnalité fla-
grante. Le cycle d’activité suivi par l’infrastructure est
déterminé par certains cycles saisonniers (par exemple,
le rythme quotidien de l’activité des utilisateurs). Cette
thèse présente un framework pour la prévision de sé-
ries temporelles saisonnières. Ce framework est com-
posé de deux modèles d’apprentissage automatique
(e.g. clustering et classification) et vise à fournir des pré-
visions fiables à moyen terme avec un nombre limité de
paramètres. Trois implémentations du framework sont

présentées : une baseline, une déterministe et une pro-
babiliste. La baseline est constituée d’un algorithme de
clustering K-means et de modèles de Markov. La version
déterministe est constituée de plusieurs algorithmes de
clustering (K-means, K-shape, GAK et MODL) et de plu-
sieurs classifieurs (classifieurs bayésiens, arbres de dé-
cisions, forêt aléatoire et régression logistique). La ver-
sion probabiliste repose sur du coclustering pour créer
des grilles probabilistes de séries temporelles, afin de
décrire les données de manière non supervisée. Les
performances des différentes implémentations du frame-
work sont comparées avec différents modèles de l’état
de l’art, incluant les modèles autorégressifs, les modèles
ARIMA et SARIMA, les modèles Holts Winters, ou en-
core Prophet pour la partie probabiliste. Les résultats
de la baseline sont encourageants, et confirment l’inté-
rêt pour le framework proposé. De bons résultats sont
constatés pour la version déterministe du framework, et
des résultats corrects pour la version probabiliste. Un
cas d’utilisation d’Orange est étudié, et l’intérêt et les li-
mites de la méthodologie sont montrés.

Title: Investigation of a framework for seasonal time series forecasting

Keywords: Machine Learning, time series, seasons, clustering, classification

Abstract: To deploy web applications, using web
servers is paramount. If there is too few of them, appli-
cations performances can quickly deteriorate. However,
if they are too numerous, the resources are wasted and
the cost increased. In this context, engineers use ca-
pacity planning tools to follow the performances of the
servers, to collect time series data and to anticipate fu-
ture needs. The necessity to create reliable forecasts
seems clear. Data generated by the infrastructure of-
ten exhibit seasonality. The activity cycle followed by
the infrastructure is determined by some seasonal cycles
(for example, the user’s daily rhythms). This thesis intro-
duces a framework for seasonal time series forecasting.
This framework is composed of two machine learning
models (e.g. clustering and classification) and aims at
producing reliable midterm forecasts with a limited num-
ber of parameters. Three instantiations of the framework
are presented: one baseline, one deterministic and one

probabilistic. The baseline is composed of K-means clus-
tering algorithms and Markov Models. The deterministic
version is composed of several clustering algorithms (K-
means, K-shape, GAK and MODL) and of several clas-
sifiers (naive-bayes, decision trees, random forests and
logistic regression). The probabilistic version relies on
coclustering to create time series probabilistic grids, that
are used to describe the data in an unsupervised way.
The performances of the various implementations are
compared with several state-of-the-art models, including
the autoregressive models, ARIMA and SARIMA, Holt
Winters, or even Prophet for the probabilistic paradigm.
The results of the baseline are encouraging and confirm
the interest for the framework proposed. Good results
are observed for the deterministic implementation, and
correct results for the probabilistic version. One Orange
use case is studied, and the interest and limits of the
methodology are discussed.

	Introduction
	Data driven capacity planning
	Context
	Problems of infrastructure maintenance
	Performances and tests
	Wrap up

	Capacity planning
	Definition
	Capacity planning for two types of infrastructure
	Wrap up

	Toward data-driven capacity planning tool
	Industrial problem and datasets
	Data exploration
	Nature of the data and hypothesis

	Data driven algorithms
	Forecasts and capacity planning
	What could be done?
	Wrap up

	Wrap up and objectives

	Time series and forecasting models
	Time series
	Definitions
	Machine learning tasks for time series

	Deterministic vs probabilistic forecast
	Deterministic forecasting
	Autoregressive models
	Seasonal models
	Neural networks models
	Ensemble and combination models

	Probabilistic forecasting
	Interval forecasts
	Density forecasts

	Exogenous data
	Wrap up and perspectives

	Conceptual view of the framework
	Problem statement
	Model for seasonal time series
	Framework for seasonal TS forecasting
	Learning process
	Forecasting process

	Data used for experiments
	Metrics and performances assessment
	Typical setup for performance assessment
	Metrics for deterministic forecasts: MSE, MAE
	Metric for probabilistic forecasting: CRPS
	Critical diagram
	Win lose diagram

	Wrap up

	Baseline deterministic approach
	The FC2M implementation
	Learning process
	Forecasting process

	Experiments
	Opponents
	Results

	Discussion
	Wrap up

	Deterministic approach
	The F2C implementation
	Learning process
	Forecasting process

	Experiments
	Best parameters for F2C method
	Comparison against competitors
	Results with various

	Wrap up

	Probabilistic approach
	Probabilistic seasonal time series forecasting
	The stakes of probabilistic time series forecasting
	Coclustering of time series: a probabilistic model

	The PF2C Framework
	Learning process
	Forecasting process

	Portfolio framework instance
	Experiments
	Protocol
	Experiments with synthetic datasets
	Best parameters for PF2C method
	PF2C vs opponents
	Portfolio approach

	Wrap up

	Orange Money Transactions per Quarter Use Case
	Case study on Orange Money dataset
	Orange Money TPQ dataset
	Relevance of using seasons for forecasting
	Forecast study: examples of deterministic vs probabilistic forecasts

	Wrap up

	Conclusion
	Bibliography
	Appendix

