
HAL Id: tel-03118420
https://theses.hal.science/tel-03118420

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization and parallelization methods for
software-defined radio

Adrien Cassagne

To cite this version:
Adrien Cassagne. Optimization and parallelization methods for software-defined radio. Networking
and Internet Architecture [cs.NI]. Université de Bordeaux, 2020. English. �NNT : 2020BORD0231�.
�tel-03118420�

https://theses.hal.science/tel-03118420
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE
POUR OBTENIR LE GRADE DE

DOCTEUR DE
L’UNIVERSITÉ DE BORDEAUX

École Doctorale Mathématiques et informatique
Spécialité : Informatique

par Adrien Cassagne

Méthodes d’optimisation et de
parallélisation pour la radio logicielle

Co-directeurs de thèse : Denis Barthou
Christophe Jégo

Co-encadrants de thèse : Olivier Aumage
Camille Leroux

préparée au Centre de Recherche Inria Bordeaux - Sud-Ouest et
au Laboratoire de l’Intégration du Matériau au Système (IMS)

soutenue le 8 décembre 2020

Jury :

Lionel Lacassagne - Professeur des Universités - Sorbonne Université Rapporteur
Matthieu Gautier - Maître de Conférences, HDR - Université de Rennes 1 Rapporteur
Michel Jezequel - Professeur des Universités - IMT Atlantique Président
Cédric Bastoul - Directeur Scientifique, HDR - Huawei Paris Examinateur
Camille Leroux - Maître de Conférences - Bordeaux INP Examinateur
Olivier Aumage - Chargé de Recherche, HDR - Inria Examinateur
Christophe Jégo - Professeur des Universités - Bordeaux INP Co-directeur
Denis Barthou - Professeur des Universités - Bordeaux INP Co-directeur

Thèse réalisée au Centre de Recherche Inria Bordeaux - Sud-Ouest,
au sein de l’équipe projet STORM.

Université de Bordeaux
Centre de Recherche Inria Bordeaux - Sud-Ouest

200 Avenue de la Vieille Tour
33405 Talence

Thèse réalisée au Laboratoire de l’Intégration du Matériau au Système (IMS)
de Bordeaux, au sein de l’équipe CSN du groupe Conception.

Université de Bordeaux, Laboratoire IMS
UMR 5218 CNRS - Bordeaux INP

351 Cours de la Libération
Bâtiment A31

33405 Talence Cedex

Remerciements
Je tiens en premier lieu à remercier les membres du jury pour l’intérêt qu’ils ont porté à

ces travaux. Je remercie donc chaleureusement Monsieur Lionel Lacassagne, professeur de
l’Université de Sorbonne et Monsieur Matthieu Gautier, maître de conférences de l’Université
de Rennes de m’avoir fait l’honneur de rapporter ce travail de thèse. Je remercie aussi Monsieur
Michel Jezequel, professeur de l’Institut Mines-Télecom Atlantique d’avoir présidé le jury ainsi
que Monsieur Cédric Bastoul, directeur scientifique chez Huawei, d’avoir accepté d’examiner
ma thèse.

Je remercie sincèrement mes encadrants qui ont été exceptionnels, chacun sur des aspects
différents. Camille, merci pour tes explications claires et imagées, pour ta croyance sans faille
dans le projet, et bien sûr pour les moments passés en dehors. Olivier, merci pour ton expertise
précieuse, ton soutient lors des changements de direction et pour ta patience et ton aide lors
des phases de rédaction. Christophe, merci de m’avoir toujours soutenu, en commençant par le
réagencement de notre espace de travail jusqu’au soutient infaillible dans le projet. Dans ces
conditions il était naturel de pouvoir évoluer sereinement. Denis, merci de m’avoir fait confiance
et de m’avoir donné l’opportunité de pouvoir intégrer le monde de la recherche. Merci d’avoir su
me guider dans ce projet, ton recul et tes conseils avisés m’ont beaucoup apporté.

Merci à tous mes collègues de l’équipe CSN d’avoir contribué à l’excellente ambiance de travail.
Je pense à Baptiste, Bertrand, Camilo, Dominique, Guillaume B., Guillaume D., Imen, Jérémie,
Jonathan, Logan, Malek, Mathieu, Olivier, Thibaud, Vincent, Yann et Yassine.

Et, pour les mêmes raisons, aussi un grand merci à tous mes collègues de l’équipe STORM.
Je pense à Alexis, Amina, Baptiste, Célia, Chiheb, Corentin, Emmanuelle, Hugo, Jean-Marie,
Kun, Léo, Maël, Marie-Christine, Mariem, Mehdi, Nathalie, PAW, Philippe, Pierre, Raymond,
Romain, Sabrina, Samuel et Yanis.

Je tiens à remercier tout particulièrement le noyau dur de l’équipe AFF3CT avec qui nous
avons partagé des moments forts. Romain, merci pour tes nombreuses explications, ta motivation
sans faille et tes qualités humaines, ça a été un réel plaisir de pouvoir travailler avec toi. Olivier,
merci d’avoir autant accroché au projet, d’avoir toujours su proposer des nouvelles idées et de
m’avoir supporté. Tu es incontestablement un des plus grand contributeur et une personne avec
qui j’ai adoré travailler. Mathieu, que dire, merci d’avoir toujours cru au projet, de l’avoir adopté
et d’avoir été le premier doctorant à prouver qu’il était possible d’en tirer parti et de l’enrichir.
Je suis aussi extrêmement fier du travail accompli ensemble.

Pour terminer, je veux dire un mot à tous les gens qui me sont chers en dehors du travail et
qui se reconnaîtront. Vous avez joué un rôle déterminant dans le bon déroulement de cette thèse,
à différents moments et à différents niveaux. Pour cela je vous remercie infiniment et j’espère
avoir la chance de vous avoir à mes côtés encore longtemps.

i

Résumé
Une radio logicielle (en anglais Software-Defined Radio ou SDR) est un système de com-

munications numériques reconfigurable utilisant des techniques de traitement du signal sur des
architectures numériques programmables. Avec l’émergence de nouveaux standards de communi-
cations complexes et la puissance de calcul grandissante des processeurs généralistes, il devient
intéressant d’échanger l’efficacité énergétique des architectures dédiées contre la souplesse et la
facilité d’implémentation sur processeurs généralistes.

Même lorsque l’implémentation d’un traitement numérique est finalement faite sur une puce
dédiée, une version logicielle de ce traitement s’avère nécessaire en amont pour s’assurer des bonnes
propriétés de la fonctionnalité. Cela est généralement réalisé via la simulation. Les simulations
sont cependant souvent coûteuses en temps de calcul. Il n’est pas rare de devoir attendre plusieurs
jours voire plusieurs semaines pour évaluer les performances du modèle fonctionnel d’un système.

Dans ce contexte, cette thèse propose d’étudier les algorithmes les plus coûteux en temps
de calcul dans les chaînes de communication numériques actuelles. Ces algorithmes sont le plus
souvent présents dans des décodeurs de codes correcteurs d’erreurs au niveau récepteur. Le rôle
du codage canal est d’accroître la robustesse vis à vis des erreurs qui peuvent apparaître lorsque
l’information transite au travers d’un canal de transmission. Trois grandes familles de codes
correcteurs d’erreurs sont étudiées dans nos travaux, à savoir les codes LDPC, les codes polaires
et les turbo codes. Ces trois familles de codes sont présentes dans la plupart des standards de
communication actuels comme le Wi-Fi, l’Ethernet, les réseaux mobiles 3G, 4G et 5G, la télévision
numérique, etc. Les décodeurs qui en découlent proposent le meilleur compromis entre la résistance
aux erreurs et la vitesse de décodage. Chacune de ces familles repose sur des algorithmes de
décodage spécifiques. Un des enjeux principal de cette thèse est de proposer des implémentations
logicielles optimisées pour chacune des trois familles. Des réponses sont apportées de façon
spécifique puis des stratégies d’optimisation plus générales sont discutées. L’idée est d’abstraire
des stratégies d’optimisation possibles en étudiant un sous-ensemble représentatif de décodeurs.

Enfin, la dernière partie de cette thèse propose la mise en œuvre d’un système de communica-
tions numériques complet à l’aide de la radio logicielle. En s’appuyant sur les implémentations
rapides de décodeurs proposées, un émetteur et un récepteur compatibles avec le standard DVB-S2
sont implémentés. Ce standard est typiquement utilisé pour la diffusion de contenu multimédia
par satellite. À cette occasion, un langage dédié à la radio logicielle est développé pour tirer
parti de l’architecture parallèle des processeurs généralistes actuels. Le système atteint des débits
suffisants pour être déployé en condition opérationnelle.

Les différentes contributions des travaux de thèse ont été faites dans une dynamique d’ouverture,
de partage et de réutilisabilité. Il en résulte une bibliothèque à code source ouvert nommée AFF3CT
pour A Fast Forward Error Correction Toolbox. Ainsi, tous les résultats proposés dans cette thèse
peuvent aisément être reproduits et étendus. Cette philosophie est détaillée dans un chapitre
spécifique du manuscrit de thèse.

Mots clefs : Radio logicielle, Simulation fonctionnelle, Codes correcteurs d’erreurs, Implémen-
tation logicielle, Optimisation, Parallélisation, Code source ouvert

ii

Abstract
A software-defined radio is a radio communication system where components traditionally

implemented in hardware are instead implemented by means of software. With the growing
number of complex digital communication standards and the general purpose processors increasing
power, it becomes interesting to trade the energy efficiency of the dedicated architectures for the
flexibility and the reduced time to market on general purpose processors.

Even if the resulting implementation of a signal processing is made on an application-specific
integrated circuit, the software version of this processing is necessary to evaluate and verify the
correct properties of the functionality. This is generally the role of the simulation. Simulations
are often expensive in terms of computational time. To evaluate the global performance of a
communication system can require from few days to few weeks.

In this context, this thesis proposes to study the most time consuming algorithms in today’s
digital communication chains. These algorithms often are the channel decoders located on the
receivers. The role of the channel coding is to improve the error resilience of the system. Indeed,
errors can occur at the channel level during the transmission between the transmitter and the
receiver. Three main channel coding families are then presented: the LDPC codes, the polar
codes and the turbo codes. These three code families are used in most of the current digital
communication standards like the Wi-Fi, the Ethernet, the 3G, 4G and 5G mobile networks, the
digital television, etc. The resulting decoders offer the best compromise between error resistance
and decoding speed known to date. Each of these families comes with specific decoding algorithms.
One of the main challenge of this thesis is to propose optimized software implementations for each
of them. Specific efficient implementations are proposed as well as more general optimization
strategies. The idea is to extract the generic optimization strategies from a representative subset
of decoders.

The last part of the thesis focuses on the implementation of a complete digital communication
system in software. Thanks to the efficient decoding implementations proposed before, a full
transceiver, compatible with the DVB-S2 standard, is implemented. This standard is typically
used for broadcasting multimedia contents via satellite. To this purpose, an embedded domain
specific language targeting the software-defined radio is introduced. The main objective of this
language is to take advantage of the parallel architecture of the current general purpose processors.
The results show that the system achieves sufficient throughputs to be deployed in real-world
conditions.

These contributions have been made in a dynamic of openness, sharing and reusability, it
results in an open source library named AFF3CT for A Fast Forward Error Correction Toolbox.
Thus, all the results proposed in this thesis can easily be reproduced and extended. This philosophy
is detailed in a specific chapter of the thesis manuscript.

Keywords: Software-Defined Radio, Functional Simulation, Error Correcting Codes, Software
Implementation, Optimization, Parallelization, Open Source Code

iii

Résumé étendu

Chapitre 1 - Contexte et objectifs

Organisation

Ce chapitre présente le contexte des systèmes de communications numériques. Il a pour but
de définir les notions qui seront réutilisées dans le manuscrit et de donner une vue globale. Il
définit aussi les principaux objectifs de cette thèse. La première partie présente le principe des
systèmes de communications numériques avec ses différentes composantes : l’émetteur, le canal et
le récepteur. Les métriques les plus couramment utilisées dans les communications numériques
sont présentées avec notamment la définition du taux d’erreur binaire (Bit Error Rate, BER) et
du taux d’erreur trame (Frame Error Rate, FER). La deuxième partie détaille le modèle de canal
qui correspond à un ajout d’un bruit blanc gaussien (Additive White Gaussian Noise, AWGN) et
la modulation numérique binaire par changement de phase (Binary Phase-Shift Keying, BPSK)
utilisés tout au long du manuscrit. Une caractérisation du rapport signal sur bruit (Signal-to-Noise
Ratio, SNR) est donnée ainsi que la notion de probabilité à la sortie du canal et du démodulateur.
La troisième partie présente les familles de code correcteur d’erreurs considérées dans ce manuscrit,
à savoir les codes LDPC, les codes polaires et les turbo-codes. Les traitements de codage (situé au
niveau de l’émetteur) et de décodage (situé au niveau du récepteur) correspondants sont détaillés
pour chaque famille de code. Ces familles de code sont utilisées dans la plupart des standards de
télécommunication actuels et engendrent une complexité calculatoire élevée. Par conséquent, ce
sont de bons candidats d’étude. Dans la dernière partie, deux contextes applicatifs majeurs sont
détaillés pour les familles de code considérées. La “simulation fonctionnelle” permet la conception
et la validation d’un schéma de codage. La “radio logicielle” (Software-Defined Radio, SDR) est un
système de communication radio où tous les composants sont implémentés avec des blocs logiciels
(par opposition à des implémentations matérielles plus couramment utilisées dans ce domaine).

Objectifs de la thèse

À l’aube de la cinquième génération des standards pour la téléphonie mobile (5G), le défi
consiste maintenant à concevoir des systèmes de communication capables de transmettre une
grande quantité de données en peu de temps, à un faible coût énergétique et dans des environne-
ments très variés. Les chercheurs s’efforcent d’affiner encore les schémas de codage existants, afin
d’obtenir de faibles taux d’erreur résiduels grâce à des processus de décodage rapides, souples et
aussi peu complexe que possible.

Simulation fonctionnelle La validation d’un système de codage nécessite d’estimer son taux
d’erreur. En général, il n’existe pas de modèle mathématique simple pour décrire ce type de
performance. La seule solution pratique consiste à effectuer une simulation de type Monte Carlo
de l’ensemble de la chaîne de transmission. Cela signifie que certaines données sont générées,

iv

Résumé étendu (Extended Abstract in French)

encodées, modulées, bruitées, décodées de manière aléatoire, et que les performances sont ensuite
estimées en mesurant le taux d’erreur binaire (BER) et le taux d’erreur trame (FER) à la fin
de la chaîne de communication (après décision du décodeur). Ce processus a l’avantage d’être
universel mais il entraîne également trois problèmes principaux :

1. Temps de simulation : ∼ 100 trames erronées doivent être simulées pour estimer avec
précision les BER/FER. Ainsi, la mesure d’un FER de 10−7 nécessite la simulation de
la transmission de ∼ 100 × 107 = 109 trames. En supposant une trame de 1000 bits, le
simulateur doit alors traiter la transmission de 1012 bits. En gardant à l’esprit que la
complexité de calcul de l’algorithme de décodage peut être importante, plusieurs semaines
voire plusieurs mois peuvent être nécessaires pour estimer avec précision les BER/FER
d’un schéma de codage (en particulier si le taux d’erreur est faible).

2. Hétérogénéité algorithmique : un grand nombre de codes correcteurs d’erreurs ont été
conçus au fil des années. Pour chaque famille de code, plusieurs configurations de décodage
sont possibles. Si il est simple de décrire un schéma de codage unique, il est plus difficile
d’avoir une description logicielle unifiée qui prenne en charge tous les schémas de codage
et les algorithmes de décodage associés. Cette difficulté provient de l’hétérogénéité des
structures de données nécessaires pour décrire les différents schémas de codage canal : les
turbo-codes sont basés sur des treillis, les codes LDPC sont bien définis par des graphes
bipartis et les codes polaires sont décodés efficacement à l’aide d’arbres binaires.

3. Reproductibilité : il est généralement fastidieux de reproduire des résultats issus de
la littérature. Cela peut s’expliquer par la grande quantité de paramètres empiriques
nécessaires pour définir un système de communication, et par le fait que tous ne sont
pas toujours rapportés dans les publications. En outre, le code source des simulateurs est
rarement accessible au public. Par conséquent, beaucoup de temps est passé à “réinventer
la roue” juste pour pouvoir comparer de nouveaux résultats avec l’état de l’art.

Radio logicielle Le paradigme de la radio logicielle (Software-Defined Radio, SDR) est dé-
sormais considéré pour des systèmes de communications numériques réels. Pour répondre aux
contraintes posées par les systèmes temps réel, voici les principaux défis à relever :

1. Haut débit : les nouvelles applications comme le streaming vidéo, peuvent être très
gourmandes en données. Par conséquent, les tâches de calcul intensif au sein de l’émetteur
et du récepteur doivent être bien optimisées pour atteindre des niveaux de performance
comparables à des implémentation matérielles.

2. Faible latence : atteindre un débit élevé n’est pas toujours la contrainte majeure, par
exemple, dans les applications d’audio-conférence, il est inconfortable de percevoir un
retard lorsque les gens parlent.

3. Flexibilité : les implémentations logicielles doivent pouvoir s’adapter à diverses configu-
rations. Par exemple, lorsque le rapport signal sur bruit (SNR) change, le décodeur doit
être capable se s’adapter “à la volée” à de nouveaux taux de codage.

4. Portabilité : les solutions proposées peuvent être déployées sur des serveurs haut de
gamme ainsi que dans des systèmes embarqués à faible consommation énergétique. De plus,
de nombreux systèmes d’exploitation coexistent et il est important de pouvoir supporter
les plus communs comme Windows, macOS et Linux.

v

Résumé étendu (Extended Abstract in French)

Chapitre 2 - Stratégies d’optimisation

Organisation

Ce chapitre se concentre sur les stratégies d’optimisation dédiées aux algorithmes de commu-
nications numériques. Nos contributions sont divisées en deux parties : 1) les stratégies génériques
et 2) les optimisations spécifiques. La première partie décrit les stratégies génériques que nous
avons proposées pour optimiser les algorithmes présents dans les récepteurs de systèmes de
communications numériques. Il s’avère que la vectorisation est une des clefs pour implémenter
des solutions logicielles efficaces. Une bibliothèque dédiée ainsi que des niveaux de parallélisme
génériques sont proposés. La seconde partie est consacrée à l’implémentation logicielle efficace
d’un sous-ensemble représentatif de décodeurs pour les trois grandes familles de code abordées
plus tôt, à savoir : les codes LDPC, les codes polaires et les turbo-codes.

Principaux résultats

En premier lieu, des stratégies génériques pour l’implémentation efficace d’algorithmes sur
processeurs généralistes (CPUs) sont présentées. Une contribution majeure dans ce chapitre est
la proposition de MIPP : une bibliothèque qui encapsule les instructions vectorielles. L’idée est
d’abstraire les types de données et les multiples jeux d’instructions vectoriels existants afin de
proposer des implémentations logicielles “universelles” et efficaces des algorithmes présents dans
les récepteurs de systèmes de communications numériques. Nous montrons que MIPP n’introduit
presque pas de surcoût par rapport aux fonctions intrinsèques (ou du code assembleur). MIPP
fonctionne aussi bien sur des représentations en virgule flottante et que sur des représentations en
virgule fixe. Pour les algorithmes présents dans les récepteurs de systèmes de communications
numériques, les représentations en virgule fixe sont très intéressantes car elles permettent de
traiter un plus grand nombre d’éléments dans les registres vectoriels, avec un impact modéré sur
les performances de décodage. Pour résumer, MIPP améliore la flexibilité et la portabilité
du code source tout en conservant un même niveau de performance. Notez que la
bibliothèque MIPP a été valorisée suite à une publication dans une conférence scientifique
internationale [7].

Dans une deuxième partie, deux grandes stratégies de vectorisation sont explicitement définies
et présentées. La stratégie intra-trame fonctionne sur une seule trame en s’appuyant sur le
parallélisme inhérent à l’algorithme. La stratégie inter-trames fonctionne quant à elle sur plusieurs
trames en même temps. La stratégie intra-trame peut à la fois augmenter le débit et diminuer
la latence. Au contraire, la stratégie inter-trames n’améliore pas la latence. Elle s’accompagne
cependant d’une efficacité vectorielle potentiellement plus élevée et peut conduire à des débits
très élevés. Ces deux stratégies peuvent être appliquées à tous les blocs de traitement des chaînes
de communications numériques. Les stratégies intra-trame et inter-trames constituent
donc un point clé pour résoudre le problème de l’hétérogénéité algorithmique.

Les dernières parties du chapitre se concentrent sur la conception d’implémentations logicielles
efficaces des algorithmes de décodage présentés dans le chapitre précédent. Les décodeurs LDPC, les
décodeurs polaires et le turbo-décodeur sont compatibles avec la stratégie inter-trames, tandis que
les décodeurs polaires sont aussi compatibles avec la stratégie intra-trame. En fonction des familles
de codes, nous nous concentrons sur différentes contraintes. Les décodeurs LDPC ont été mis
en œuvre pour prendre en charge de nombreuses variantes et donc pour maximiser
la flexibilité au prix de débits plus faibles et de latences plus élevées par rapport à d’autres

vi

Résumé étendu (Extended Abstract in French)

travaux. Ce choix permet d’évaluer les performances de décodage de nombreuses combinaisons
algorithmiques. Dans les décodeurs polaires, la flexibilité ainsi que des optimisations
agressives sont considérées et comparées. Ces dernières permettent d’atteindre de
très faibles latences. Enfin, le turbo-décodeur se concentre sur l’obtention de débits
les plus élevés possibles. Certaines spécialisations sont faites pour le standard LTE. Il est à
noter que la plupart des implémentations logicielles proposées ont fait l’objet de publications
dans des conférences et des revues scientifiques internationales [2, 3, 4, 5, 6].

Chapitre 3 - AFF3CT : une boîte à outils pour le codage canal

Organisation

Ce chapitre est consacré à la présentation de notre boîte à outils open-source nommée AFF3CT.
La première partie décrit les principaux prérequis en fonction de quatre objectifs : l’implémentation
d’un logiciel hautement performant, la prise en charge de l’hétérogénéité algorithmique, la
portabilité et la reproductibilité. Dans la deuxième partie, AFF3CT est comparé aux autres
bibliothèques logicielles de codage canal C/C++ existantes. La troisième partie présente AFF3CT
comme une bibliothèque dédiée aux algorithmes de communications numériques. L’architecture et
les fonctionnalités du logiciel sont décrites. Ensuite, des exemples d’utilisation de la bibliothèque
sont donnés en C++ et en MATLAB®. La quatrième partie se concentre sur le simulateur
AFF3CT qui est livré dans la boîte à outils. Un aperçu des explorations possibles est donné
et notre comparateur de BER/FER est présenté. À la fin, la stratégie de test d’AFF3CT est
expliquée. Une dernière partie est consacrée à l’impact d’AFF3CT dans les contextes industriels
et universitaires. Une revue des publications scientifiques qui ont utilisé AFF3CT est donnée.

Principaux résultats

Tout d’abord, l’accent est mis sur la bibliothèque AFF3CT qui vient avec une architec-
ture logicielle qui permet l’hétérogénéité algorithmique. De nombreuses familles de code
correcteur d’erreurs sont supportées comme les codes LDPC, les codes polaires, les turbo-codes, les
turbo-codes produit, les codes convolutifs, les codes BCH, les codes Reed-Solomon, etc. À notre
connaissance, AFF3CT est la bibliothèque qui offre le support le plus complet pour
les algorithmes associés au codage canal. AFF3CT est également livré avec de multiples
modèles de canaux (AWGN, Rayleigh, BEC, BSC, etc.) et différents schémas de modulation
numérique (PSK, QAM, PAM, OOK, CPM, SCMA, etc.). Toutes ces implémentations logicielles
efficaces d’algorithmes peuvent être utilisées à partir d’interfaces. Des exemples d’utilisation de
la bibliothèque sont donnés en C++ natif ou en utilisant l’encapsulation MATLAB®. La boîte
à outils AFF3CT a fait l’objet de publications dans une conférence et une revue scientifique
internationale [8, 1].

AFF3CT est également fourni avec un simulateur fonctionnel de BER/FER.
Toutes les caractéristiques précédemment énumérées peuvent être simulées sur différents pa-
ramètres. Sa capacité à explorer une grande variété de paramètres est démontrée. De
nombreux paramètres peuvent être modifiés comme le nombre d’itérations de décodage, les
approximations dans l’implémentation des algorithmes, la quantification des données dans les
décodeurs, etc. Certains de ces paramètres sont présentés pour les décodeurs introduits dans les
chapitres précédents. Ce sujet a été valorisé par un article dans une conférence nationale [9].

vii

Résumé étendu (Extended Abstract in French)

AFF3CT est conçu pour permettre la reproductibilité des résultats scientifiques.
Un outil de comparaison des performances de décodage (BER/FER) a été ajouté pour permettre
une recherche facile dans une base de données d’environ 500 références pré-simulées. Toutes ces
références sont des résultats simulés avec AFF3CT qui peuvent être aisément reproduits. À cette
fin, une suite de tests a été mis en place. Chaque fois qu’il y a une modification du code source,
la base de données des références est rejouée pour éviter des problèmes de régression. Ces tests
sont également effectués sur plusieurs architectures (x86 et ARM®) et systèmes d’exploitation
(Windows, macOS et Linux) afin de garantir que la portabilité soit toujours conservée.

La dernière partie du chapitre traite de l’impact d’AFF3CT dans la communauté. Il est
montré que de plus en plus d’utilisateurs adoptent la boîte à outils AFF3CT aussi
bien dans l’industrie que dans les milieux académiques. Les contextes applicatifs sont
variés et vont de la validation des performances de décodage à l’utilisation de sous-parties
spécifiques de la bibliothèque. Les contributions externes sont cependant encore rares.

Chapitre 4 - Évaluation et comparaison des performances

Organisation

Ce chapitre propose d’évaluer les différentes contributions exposées dans les chapitres précé-
dents. Les trois premières parties se concentrent sur les implémentations logicielles efficaces de
décodeurs LDPC, de décodeurs polaires et d’un turbo-décodeur. Le débit, la latence et l’efficacité
énergétique sont étudiés et comparés avec d’autres travaux de la littérature. La quatrième partie
résume les implémentations de décodeurs logiciels les plus efficaces que nous avons trouvées
dans la littérature. Cet état de l’art est décomposé en trois catégories distinctes : une pour les
décodeurs LDPC, une pour les décodeurs polaires et une pour les turbo-décodeurs. Certaines
métriques sont spécifiées afin de faciliter la comparaison entre les différentes publications. La
dernière partie est consacrée à une analyse des performances du simulateur AFF3CT. Une chaîne
de communications numériques représentative est définie et évaluée en séquentiel et en parallèle.
Cette chaîne utilise un décodeur polaire rapide évalué plus tôt dans le chapitre.

Principaux résultats

Pour les décodeurs LDPC et les turbo-décodeurs, la stratégie inter-trames a été appliquée.
Elle permet d’obtenir des débits comparables aux meilleurs travaux de la littérature. Toutefois, les
latences ne sont pas compétitives avec les meilleures implémentations de type intra-trame que l’on
trouve dans la littérature. L’implémentation inter-trames proposée est alors davantage orientée
vers la simulation ou vers des applications en temps réel qui ne nécessitent pas une faible latence
comme le streaming vidéo, par exemple. Pour les décodeurs polaires, les stratégies inter-trames
et intra-trame ont été implémentées. Il en résulte un framework complet qui peut s’adapter à
de nombreux contextes applicatifs. Les décodeurs proposés sont parmi les plus rapides
de la littérature. Ils peuvent également être très flexibles avec les implémentations
dynamiques ou spécialisés pour des performances maximales avec la technique de
génération de code source. Pour tous les décodeurs proposés (code LDPC, code polaire et turbo-
code), le niveau de généricité est l’une de nos principales contributions. Les implémentations
sont capables de s’adapter à différentes architectures de CPU ainsi que de supporter
de nombreuses variantes algorithmiques. De plus, chacune des implémentations présentées
est capable de travailler à un niveau proche des performances de décodage de référence. La

viii

Résumé étendu (Extended Abstract in French)

plupart des résultats obtenus ont été publiés dans des conférences et des revues scientifiques
internationales [2, 3, 4, 5, 6].

Les “Temples de la renommée” (Hall of Fames, HoFs) des décodeurs logiciels sont ensuite
présentés. Ces HoFs représentent des états de l’art complets de chaque famille de code correcteur
d’erreurs. Les implémentations de décodeur proposées dans la thèse sont comparées avec les
autres travaux de la littérature. Ces HoFs permettent de comparer les implémentations CPU et
GPU. Certaines mesures telles que le débit normalisé, le TNDC et la consommation d’énergie
sont définies. Les résultats montrent que ces dernières années, les implémentations CPU sont plus
efficaces que les implémentations GPU en termes de débit, de latence et d’efficacité énergétique.
L’un des principaux problèmes des implémentations basées sur GPU est le temps de transfert
nécessaire entre le CPU et le GPU. Un autre problème majeur vient de l’architecture intrinsèque
des GPUs qui nécessite un parallélisme très élevé pour être efficace. Il n’est pas toujours possible
de tirer parti de ce niveau élevé de parallélisme dans les algorithmes de décodage de code
correcteur d’erreurs. Par conséquent, en général, les CPUs sont plus adaptés pour des
implémentations logicielles à faible latence que les GPUs.

La dernière partie de ce chapitre est consacrée aux performances du simulateur AFF3CT. Une
chaîne de communications numériques entièrement vectorisée est proposée pour l’évaluation. Des
performances sur un seul cœur de calcul CPU sont d’abord présentées. Il en résulte qu’AFF3CT
fonctionne le plus rapidement sur les derniers processeurs Intel® Gold qui supportent le jeu
d’instructions vectorielles “AVX-512”. Ensuite, les performances sur plusieurs cœurs de calcul
sont mises à l’épreuve. Dans ce cadre, les processeurs AMD® EPYC s’avèrent être les plus
performants : le débit utile de la chaîne atteint 11 Gb/s. Même si les processeurs AMD® EPYC
ne prennent en charge que les instructions de type “AVX”, il semble que l’architecture Zen 2
soit bien équilibrée entre la puissance de calcul et la vitesse de la mémoire. Enfin, la capacité
multi-nœuds du simulateur AFF3CT est testée et une accélération linéaire est observée sur 32
nœuds. Le débit de pointe en multi-nœuds est de 32 Gb/s. Ces débits élevés permettent
l’exploration de nombreuses combinaisons à un niveau de taux d’erreur très faible.
Une partie de ces résultats ont été publiés dans une revue scientifique internationale [1]. À
l’heure actuelle et à notre connaissance, AFF3CT est l’un des simulateurs de codes
correcteurs d’erreurs le plus rapide.

Chapitre 5 - Langage embarqué et dédié à la radio logicielle

Organisation

Ce chapitre présente un nouveau langage embarqué et dédié (embedded Domain Specific
Language, eDSL) à la radio logicielle (SDR). La première partie décrit les modèles et solutions
existants. Elle motive également le besoin d’un nouveau langage dédié à la radio logicielle. Dans
une deuxième partie, une description de l’eDSL proposé est donnée et détaillée en deux sous-parties.
Dans un premier temps, les composants élémentaires sont présentés, puis, dans un second temps,
les composants parallèles sont décrits. La troisième partie se concentre sur l’implémentation des
composants présentés précédemment. Entre autres, la technique de duplication des séquences
et l’implémentation du pipeline sont discutées. Enfin, la dernière partie présente un cas concret
d’utilisation de l’eDSL sur un standard bien répandu dans les communications numériques : la
norme DVB-S2. Un émetteur-récepteur entièrement numérique a été conçu en logiciel. La norme
DVB-S2 est présentée d’un point de vue applicatif (émetteur et récepteur) et est ensuite évaluée
sur une cible CPU spécifique.

ix

Résumé étendu (Extended Abstract in French)

Principaux résultats

Les principaux composants de l’eDSL ont été conçus pour répondre aux besoins de la SDR en
termes 1) d’expressivité avec des séquences, des tâches et des boucles ; 2) de performance avec la
technique de duplication de séquences et la stratégie de pipeline. Nous avons évalué l’eDSL proposé
dans un contexte applicatif : l’implémentation logicielle de la norme DVB-S2. Les résultats
démontrent l’efficacité de l’eDSL d’AFF3CT. En effet, la solution proposée répond
aux contraintes de temps réel des satellites (30 ∼ 50 Mb/s). Ceci est la conséquence de
deux facteurs principaux : 1) les optimisations au niveau des tâches, par exemple un décodeur
LDPC rapide a été utilisé ; 2) l’eDSL a un très faible surcoût à l’utilisation. Cela est notamment
possible grâce à une implémentation efficace de la technique du pipeline.

x

Contents
Acknowledgments in French i

Abstracts ii

Extended Abstract in French iv

List of Figures xiv

List of Tables xvi

List of Algorithms and Source Codes xvii

List of Acronyms xviii

Introduction 1

1 Context and Objectives 5
1.1 Digital Communication Systems . 6
1.2 Channel Model . 7
1.3 Channel Codes . 8

1.3.1 Prerequisites . 9
1.3.2 Low-density Parity-check Codes . 9
1.3.3 Polar Codes . 12
1.3.4 Turbo Codes . 17

1.4 Applicative Contexts . 22
1.4.1 Functional Simulation . 22
1.4.2 Software-defined Radio . 25
1.4.3 Sparse Code Multiple Access . 26

1.5 Problematics . 29

2 Optimization Strategies 31
2.1 MIPP: A C++ Wrapper for SIMD Instructions . 32

2.1.1 Low Level Interface . 32
2.1.2 Medium Level Interface . 33
2.1.3 Software Implementation Details . 34
2.1.4 Related Works . 35

2.2 Vectorization Strategies . 39
2.2.1 Intra-frame SIMD Strategy . 39
2.2.2 Inter-frame SIMD Strategy . 40
2.2.3 Intra-/inter-frame SIMD Strategy . 41

2.3 Efficient Functional Simulations . 41
2.3.1 Box-Muller Transform . 42
2.3.2 Quantizer . 43

xi

Contents

2.4 LDPC Decoders . 45
2.4.1 Generic Belief Propagation Implementation 45
2.4.2 Specialized Belief Propagation Implementation 47

2.5 Polar Decoders . 47
2.5.1 Tree Pruning Strategy . 48
2.5.2 Polar Application Programming Interface 51
2.5.3 Successive Cancellation Decoders . 52
2.5.4 Successive Cancellation List Decoders . 56

2.6 Turbo Decoders . 59
2.6.1 Inter-frame Parallelism on Multi-core CPUs 60
2.6.2 Software Implementation of the Turbo Decoder 61

2.7 SCMA Demodulators . 63
2.7.1 Flattening Matrices to Reduce Cache Misses and Branch Misses 63
2.7.2 Adapting the Algorithms to Improve Data-level Parallelism 63

2.8 Conclusion . 67

3 AFF3CT: A Fast Forward Error Correction Toolbox 69
3.1 Prerequisites . 70

3.1.1 High Performance Implementations . 70
3.1.2 Support for Algorithmic Heterogeneity . 70
3.1.3 Portability . 71
3.1.4 Reproducibility . 71

3.2 Related Works . 71
3.3 Library of Digital Communication Algorithms . 72

3.3.1 Software Architecture . 72
3.3.2 Examples of Library Use . 74
3.3.3 MATLAB® Wrapper . 76
3.3.4 Software Functionalities . 77

3.4 Simulation of Digital Communication Algorithms 79
3.4.1 A Simulator Application on Top of the Library 79
3.4.2 In-depth Parameter Exploration . 80
3.4.3 BER/FER Comparator and Pre-simulated Results 83
3.4.4 Continuous Integration and Continuous Delivery 84

3.5 Impact and Community . 84
3.6 Conclusion . 85

4 Performance Evaluations and Comparisons 86
4.1 LDPC Decoders . 87

4.1.1 Experimentation Platforms . 87
4.1.2 Throughput and Latency Performance on Multi-core CPUs 87
4.1.3 Comparison with State-of-the-art BP Decoders. 89

4.2 Polar Decoders . 90
4.2.1 Successive Cancellation Decoders . 90
4.2.2 Successive Cancellation List Decoders . 97

4.3 Turbo Decoders . 99
4.3.1 Experimentation Platforms . 100
4.3.2 Throughput Performance on Multi-core CPUs 100
4.3.3 Energy Efficiency on a Multi-core CPU 101
4.3.4 Comparison with State-of-the-art Turbo Decoders 101

xii

Contents

4.4 FEC Software Decoders Hall of Fame . 102
4.5 SCMA Demodulators . 107

4.5.1 Experimentation Platforms . 107
4.5.2 Throughput, Latency and Energy Efficiency on Multi-core CPUs 107

4.6 Analysis of the Simulator Performance . 109
4.6.1 Experimentation Platforms . 110
4.6.2 Mono-threaded Performances . 110
4.6.3 Multi-threaded and Multi-node Performances 111

4.7 Conclusion . 113

5 Embedded Domain Specific Language for the Software-defined Radio 114
5.1 Related Works . 115

5.1.1 Dataflow Model . 115
5.1.2 Dedicated Languages . 115
5.1.3 GNU Radio . 116

5.2 Description of the Proposed Embedded Domain Specific Language 116
5.2.1 Elementary Components . 116
5.2.2 Parallel Components . 119

5.3 Implementation Strategies . 120
5.3.1 Implicit Rules . 120
5.3.2 Sequence Duplication . 120
5.3.3 Processes . 120
5.3.4 Pipeline . 121

5.4 Application on the DVB-S2 Standard . 124
5.4.1 Transmitter Software Implementation . 124
5.4.2 Receiver Software Implementation . 125
5.4.3 Evaluation . 127
5.4.4 Related Works . 131

5.5 Conclusion . 131

Conclusions and Perspectives 133

Bibliography 137

Personal Publications 155

xiii

List of Figures
1.1 Digital communication chain. 6
1.2 Representation of the C0 parity-check constraint on a Tanner graph. 10
1.3 Parity-check constraints of an LDPC code on a Tanner graph. 10
1.4 Illustration of the belief propagation algorithm on a Tanner graph. 11
1.5 Polar encoding process for N ∈ {2, 4, 8} and R = 1/2. 13
1.6 Systematic polar encoder for N = 8 and R = 1/2. 13
1.7 Tree representation of a polar encoder for N = 8 and R = 1/2. 14
1.8 Full SC decoding tree (N = 16). 14
1.9 Example of polar tree pruning on a small binary tree (N = 8). 17
1.10 Different representations of a recursive and systematic convolutional code (R = 1/2). 18
1.11 Turbo code (R = 1/3) with two convolutional sub-encoders and a Π interleaver. . 19
1.12 Information exchanges in turbo decoding process. 19
1.13 Turbo LTE encoder and its associated 8-state trellis. 20
1.14 Description of a digital communication system simulation. 23
1.15 BER and FER simulation results on various code families. 24
1.16 Base stations evolution in mobile networks. 25
1.17 SCMA system model, encoding and decoding schemes. 27

2.1 Speedups over the Mandelbrot naive auto-vectorized implementation. 38
2.2 Frame reordering operation before and after an inter-frame SIMD process. 40
2.3 MIPP implementation of the SIMD frame reordering process for pSIMD = 4. . . . 41
2.4 Polar sub-tree rewriting rules for processing specialization. 48
2.5 Throughput of the SSC decoder depending on the different optimizations. 49
2.6 Impact of the specialized nodes on the SSCL coded throughput. 50
2.7 Effects of the SPC4+ nodes on the CA-SSCL decoder @ 10−5 FER 51
2.8 Pruned polar decoding tree representation without and with compression. 55
2.9 Throughput of the SSCL decoder depending on the partial sums management. . . 58
2.10 MPA vectorized complex norm computations. 64
2.11 MPA vectorized exponentials. 65
2.12 MPA vectorized computations of final beliefs. 66

3.1 Simulation of a digital communication chain using the AFF3CT library. 74
3.2 Decoding performance of the LDPC BP algorithm depending on the update rules. 80
3.3 Decoding performance of the LDPC BP algorithm depending on the scheduling. . 81
3.4 FER and throughput of the polar fully and partially adaptive SSCL decoders. . . 82
3.5 FER of the turbo decoder for K = 6144 (6 iterations) and R = 1/3. 82
3.6 FER evaluation of the SCMA MPA and E-MPA demodulators. 83
3.7 AFF3CT continuous integration and continuous delivery pipeline. 84

4.1 LDPC decoder throughput and latency depending on the number of cores (WiMAX). 88
4.2 LDPC decoder throughput and latency depending on the number of cores (DVB-S2). 88
4.3 SC variation of the energy-per-bit for different frame sizes and implementations. . 92

xiv

List of Figures

4.4 SC variation of the energy-per-bit depending on the cluster frequency. 93
4.5 SC evolution of the energy-per-bit depending on the code rate. 93
4.6 SC ranking of intra-/inter-frame SIMD approaches along 5 metrics. 94
4.7 Generated SC decoder binary sizes depending on the frame size (R = 1/2). 95
4.8 SC performance comparison between two code rates (intra-frame vectorization). . 96
4.9 SC performance comparison between several code rates (inter-frame vectorization). 97
4.10 Information throughput of the turbo decoder depending on K. 100
4.11 Turbo decoder energy-per-bit depending on the number of cores. 101
4.12 AFF3CT simulator chain. 109
4.13 AFF3CT simulation results of a (2048,1723) Polar code, FA-SSCL decoder L = 32. 112

5.1 Example of sequences. 117
5.2 Example of a sequence of tasks with a loop. 118
5.3 Nested loops. 118
5.4 Sequence duplication for multi-threaded execution. 119
5.5 Example of a pipeline description and the associate transformation with adaptors. 121
5.6 DVB-S2 transmitter software implementation. 124
5.7 DVB-S2 receiver software implementation. 125
5.8 DVB-S2 BER and FER decoding performance. 127
5.9 Comparison of the two pipeline implementations in the receiver. 129

xv

List of Tables
1.1 Elementary operations in GF2 (logical exclusive or and logical and). 9

2.1 Comparison of various SIMD wrappers: General Information and Features. 36
2.2 Comparison of various SIMD wrappers: Supported ISA and Data Type. 36
2.3 Specifications of the target processors for the MIPP experiments. 37
2.4 AWGN channel throughputs and speedups of the MIPP implementation. 43
2.5 Quantizer throughputs and speedups of the MIPP implementation. 44
2.6 Polar decoders memory complexity. 59

3.1 C/C++ open source channel coding simulators/libraries. 72
3.2 List of the channel codes (codecs) supported in AFF3CT. 77
3.3 List of the modulations/demodulations (modems) supported in AFF3CT. 78
3.4 List of the channel models supported in AFF3CT. 78

4.1 Specifications of the target processors for the LPDC decoder experiments. 87
4.2 Comparison of the proposed BP decoder with the state-of-art. 89
4.3 Specification of the x86 platforms for the polar decoders experiments. 90
4.4 Specification of the ARM® platforms for the polar decoders experiments. 90
4.5 Throughput, latency and energy-per-bit of the dynamic SC decoders. 91
4.6 Binary code size (in KB) of the generated SC decoders. 95
4.7 Comparison of 8-bit fixed-point dynamic SC decoders (intra-frame SIMD). 96
4.8 Comparing SC generated software decoder with the state-of-art (intra-frame SIMD). 96
4.9 Throughput comparisons between floating-point and fixed-point A-SSCL decoders. 98
4.10 Throughput and latency comparisons with state-of-the-art SCL decoders. 99
4.11 Specifications of the target processors for the turbo decoder experiments. 100
4.12 Comparison of the proposed turbo decoder with the state-of-art. 101
4.13 LDPC Software Decoders Hall of Fame. 103
4.14 Polar Software Decoders Hall of Fame. 104
4.15 Turbo Software Decoders Hall of Fame. 105
4.16 Specifications of the target processors for the SCMA demodulators experiments. . 107
4.17 MPA throughput, latency, power and energy characteristics. 108
4.18 Specifications of the target processors for the AFF3CT simulator experiments. . . 110
4.19 Average throughput and latency performance per simulated task (single-threaded). 110
4.20 AFF3CT multi-node speedups (single node: 2×Xeon™ E5-2680 v3). 112

5.1 Selected DVB-S2 configurations (MODCOD). 124
5.2 Tasks sequential throughputs and latencies of the DVB-S2 receiver. 128
5.3 Throughput performance depending of the selected DVB-S2 configuration. 130

xvi

List of Algorithms and Source Codes
1.1 SCL decoding algorithm. 16
1.2 Pseudo-code of the BCJR decoding algorithm. 20

2.1 MIPP medium level interface encapsulation. 33
2.2 Box-Muller Transform SIMD kernel with MIPP. 42
2.3 Sequential implementation of the quantizer. 43
2.4 SIMD implementation of the quantizer with MIPP. 44
2.5 LDPC BP-HL scheduling implementation. 46
2.6 LDPC MS update rules implementation. 46
2.7 Example of a C++ SIMD polar API (f, g and h functions are implemented). . . . 52
2.8 Generated polar SC decoder source code. 54
2.1 Loop fusion BCJR implementation. 60
2.9 Generic implementation of the BCJR αk computations. 62
2.10 Unrolled implementation of the BCJR αk computations. 62

3.1 Example of modules allocation with the AFF3CT library. 75
3.2 Example of sockets binding with the AFF3CT library. 75
3.3 Example of tasks execution with the AFF3CT library. 75
3.4 Example of the AFF3CT MATLAB® wrapper. 76
3.5 Example of an AFF3CT simulator command. 79
3.6 Example of an AFF3CT simulator output. 79

5.1 AFF3CT C++ eDSL source code of the pipeline described in Figure 5.5. 122

xvii

List of Acronyms
3G Third Generation of Mobile Phone Networks
4G Fourth Generation of Mobile Phone Networks
5G Fifth Generation of Mobile Phone Networks
A-SCL Adaptive SCL
A-SSCL Adaptive SSCL
AFF3CT A Fast Forward Error Correction Toolbox
AGC Automatic Gain Control
AMS Approximate Min-star
AoS Array of Structures
API Application Programming Interface
AR Augmented Reality
ASIC Application-Specific Integrated Circuits
AVX Advanced Vector Extensions
AVX-512 Advanced Vector Extensions (512-bit)
AWGN Additive White Gaussian Noise
BCJR Bahl, Cocke, Jelinek & Raviv Decoding Algorithm
BB Base Band
BCH Bose, Ray-Chaudhuri & Hocquenghem Channel Codes Family
BE Bit Error
BEC Binary Erasure Channel
BER Bit Error Rate
BP Belief Propagation
BP-F BP with Flooding Scheduling
BP-HL BP with Horizontal Layered Scheduling
BP-VL BP with Vertical Layered Scheduling
BPSK Binary Phase-shift Keying
BSC Binary Symmetric Channel
C-RAN Cloud Radio Access Network
CA-SCL CRC-aided SCL
CA-SSCL CRC-aided SSCL
CCSDS Consultative Committee for Space Data Systems
CD Continuous Delivery
CI Continuous Integration
CPM Continuous Phase Modulation
CPU Central Process Unit
CRC Cyclic Redundancy Check
DSL Domain Specific Language
DSP Digital Signal Processor
DVB-RCS Digital Video Broadcasting - Return Channel via Satellite
DVB-S2 Digital Video Broadcasting for Satellite (Second Generation)
E-MPA Estimated-MPA

xviii

List of Acronyms

ECC Error Correcting Code
eDSL Embedded Domain Specific Language
EML-MAP Enhanced ML-MAP
FA-SCL Fully Adaptive SCL
FA-SSCL Fully Adaptive SSCL
FE Frame Error
FEC Forward Error Correction
FER Frame Error Rate
FPGA Field Programmable Gate Arrays
GA Gaussian Approximation
GCC GNU C Compiler
GNU GNU’s Not UNIX
GPP General Purpose Processor
GPU Graphical Process Unit
HIHO Hard Input Hard Output
HoF Hall of Fame
HPC High Performance Computing
ICPC Intel® C++ Compiler
IEEE Institute of Electrical and Electronics Engineers
IoMCT Internet of Mission Critical Things
IoT Internet of Things
ISA Instruction Set Architecture
KNC Knights Corner
KNCI Knights Corner Instructions
KNL Knights Landing
LDPC Low Density Parity Check Channel Codes Family
LLC Last Level Cache
LLR Log Likelihood Ratio
LTE Long Term Evolution
MAP Maximum a Posteriori
MIPP My Intrinsics Plus Plus
ML Maximum Likelihood
ML-MAP Max-log-MAP
MODCOD Modulation and Coding
MPA Message Passing Algorithm
MPI Message Passing Interface
MS Min-sum
MSVC Microsoft® Visual Compiler
MT19937 Mersenne Twister 19937
NMS Normalized Min-sum
NOMA Non-orthogonal Multiple Access
NUMA Non Uniform Memory Access
OFDM Orthogonal Frequency-division Multiplexing
OMS Offset Min-sum
OOK On-off Keying
OOP Object-oriented Programming
P-EDGE Polar ECC Decoder Generation Environment
PA-SCL Partially Adaptive SCL
PA-SSCL Partially Adaptive SSCL

xix

List of Acronyms

PAM Pulse Amplitude Modulation
PLH Pay Load Headers
PRNG Pseudo Random Number Generator
PSK Phase-shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-shift Keying
R0 Rate 0
R1 Rate 1
RAM Random Access Memory
REP Repetition
RF Radio Frequency
RS Reed & Solomon Channel Codes Family
RSC Recursive Systemactic Convolutionnal
SC Successive Cancellation
SCL Successive Cancellation List
SCMA Sparse Code Multiple Access
SDR Software-defined Radio
SIMD Single Instruction Multiple Data
SISO Soft Input Soft Output
SMT Simultaneous Multi-threading
SNR Signal-to-noise Ratio
SoA Structure of Arrays
SoC System on a Chip
SPA Sum-product Algorithm
SPC Single Parity Check
SPMD Single Program Multiple Data
SSC Simplified SC
SSCL Simplified SCL
SSE Streaming SIMD Extensions
TDP Thermal Design Power
TNDC Throughput under Normalized Decoding Cost
TPC Turbo Product Codes
TTA Transport Triggered Architecture
USRP Universal Software Radio Peripheral
VLIW Very Long Instruction Word
Wi-Fi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WRAN Wireless Regional Area Networks
XOR Exclusive Or

xx

Introduction

Digital Communications

Man has sought to communicate from time immemorial. Since then, man has always been
seeking for more efficient ways to extend his communication possibilities. Nowadays, with the
advent of the Internet, the digital communications represent the last technology advances to
communicate world-wide. For instance, digital communications enable both live video trans-
mission and the use of a messaging system. With the growing number of users and needs, the
digital communication systems are the subject of an important area of research. New digital
communication systems have to be able to match high throughput and low latency constraints as
well as acceptable energy consumption levels.

Traditionally, digital communication transmitters and receivers are implemented in hardware,
on dedicated chips. The required signal processing algorithms are often very specific and repetitive.
Thus, they are good candidates for specialized architectures. However, with the growing number
of use cases and telecommunication standards, these algorithms are evolving and are becoming
more and more heterogeneous. In this context, it becomes interesting to consider software
implementations on generic architectures. This type of programmable architectures is available in
computers and is commonly referred as the Central Process Unit (CPU). The CPUs are General
Purpose Processors (GPP) that can adapt to various types of algorithms.

Computer Architecture

Improving the computational and the energy efficiency of these processors is one of the main
concern in computer science. As they are largely adopted for many use cases, the CPUs take
advantage of the best manufacturing processes. Thanks to their pipelined architecture they are
able to reach very high processing frequencies ranging from 1 to 4 GHz. They also come with
dedicated memory caches that enable efficient spatial and temporal reuse of data. Nowadays,
the computational efficiency of the CPUs relies on two main parallel techniques. The first one
is the multi-core architecture: it consists in duplicating the hardware of the “CPU” in multiple
instances called cores. These cores are mostly independent from each other. They are packaged
together in the same chip (called the CPU) and generally they share a fast memory: the last level
cache. The second parallel technique is the vectorized instructions. These types of instructions
are available in each core and are able to perform the same operation on a chunk of data. This is
also known as the Single Instruction Multiple Data (SIMD) architectural model.

From an energy point of view, it is clear that CPUs are not directly competitive compared
to dedicated architectures. Their large number of instructions enables efficient implementations
of many algorithms but this is also a limitation when targeting specific applications. Many
transistors are unused and consume a non-negligible amount of energy. On the other hand, the
main strength of the GPP architectures comes from their abilities to be used programmatically

1

Introduction

with high level languages. Consequently, the time required to implement new algorithms is much
shorter on GPPs than on dedicated hardwares. However, even with reduced implementation time,
it is still challenging to design algorithms that take effectively advantage of the CPUs parallelism
levels.

Hardware Abstraction and Software

The ever growing complexity of processors motivates new hardware description level abstrac-
tions. Even if it is still possible to write assembly codes, one should agree that this is not adapted
to real-size applications. Moreover, in general the designers of an application are not familiar with
the specificities of the CPU architectures. Thus, it becomes important to propose new models
(or abstractions) on top of the hardware. It enables the efficient use of processors to the largest
number of people. To this purpose, dedicated compilers, languages and libraries are an important
research area in computer science.

In the design of digital communication systems, it is now common to rely on software
implementations for the evaluation and the validation of signal processing algorithms. These
evaluation and validation steps consist in the simulation of the whole communication system.
Generally these type of simulations are implemented by signal processing experts with high level
programing languages like MATLAB® or Python. However, with the growing complexity of
the digital communication systems, these simulations are becoming more and more compute
intensive. Using high level programming languages is a limiting factor because it can lead to
large restitution times (from days to weeks). Thus, high performance implementations based on
lower level programming languages are considered.

Moreover, software implementations are also considered for real-time uses. Their flexibility
and reduced time to market are becoming more and more attractive. Indeed, dedicated hardware
solutions require specific skills and are achieved by electronics specialists. In general, signal
processing experts do not focus on implementing efficient software or hardware solutions. The
dialog between the two communities is not always simple as they have different concerns.

The purpose of this thesis is to ease the overall design of digital communication systems,
from the conception to the implementation. Dedicated tools and interfaces are proposed to help
the signal processing experts to design fast software implementations. In general, this type of
software implementations are a good start to better understand the algorithms hotspots. From
this point, electronics specialists can improve proposed software solutions and, if necessary, design
adapted hardware implementations.

Contributions

In this thesis we propose to study the most time consuming algorithms of digital communication
systems, to adapt and optimize them on General Purpose Processors (GPPs) like the CPUs. Most
of the current digital communication standards require the implementation of such algorithms.
The long simulation times and the real-world application requirements make it desirable to
have portable, flexible, high throughput and low latency implementations. The proposed high
performance implementations are shown to be competitive with the state-of-the-art ones. Contrary
to the previous works, this thesis strives to extract generic methodologies and strategies common
to the majority of the signal processing algorithms. The proposed implementations try to be as
flexible as possible without sacrificing too much the performance.

2

Introduction

The signal processing algorithms come with various characteristics. Thus, it is of interest to
be able to manage this algorithmic heterogeneity. In this work, to enable code reuse, similarities
are identified into this zoo of algorithms. The various implementations have been packaged,
categorized and organized in one single software library, namely AFF3CT. These implementations
cohabit together thanks to well-defined interfaces and an adapted software architecture based on
the Object-Oriented Programming (OOP) paradigm.

Another important concern of this work is the ability to reproduce the scientific results.
Indeed, all the proposed implementations are regrouped in AFF3CT which is an open-source
software. Specific strategies have been operated to minimize the possible regressions based on the
digital communication systems characteristics. These non-regression strategies are automated.
They ensure that the source code remains stable even if many contributors are working together.

These contributions have been the topic of several scientific publications in both the computer
science and the signal processing communities. They are listed at the end of the manuscript in
the “Personal Publications” section. As a convention in the document, the numeric citations are
contributions of this thesis while the alphabetic citations refer to other works in the literature.

Dissertation Organization

This dissertation is organized in five chapters. The first chapter describes the context and
details the objectives. The next chapters present our contributions.

In Chapter 1, the digital communication systems are detailed. Then, the most time consuming
part of these systems is presented, namely the channel decoders. After that, the applicative
contexts of this thesis are defined. The two main ones are the functional simulation and the
Software-Defined Radio (SDR). The functional simulation enables the evaluation and the validation
of different digital communication systems while the SDR corresponds to the real-time execution
of these systems in software. Finally, the main problematics are exposed.

In Chapter 2, new efficient implementations of the decoders are proposed. First, an overall
portable methodology is detailed to meet the high throughput constraint required by both the
simulations and the real-time systems. This methodology is based on the Single Instruction
Multiple Data (SIMD) model implemented in most of the current CPUs. Depending on how the
CPU SIMD instructions are used, it is possible to maximize the throughput or the latency of
the implemented decoding algorithms. Then, specific optimized implementations are detailed
for each decoding algorithm. These implementations focus on maximizing the flexibility, high
throughput and low latency. Depending on the implementations, some compromises have to be
made and some of these characteristics can be maximized unbeknownst to others.

In Chapter 3, AFF3CT, our toolbox dedicated to the forward error correction (FEC) algo-
rithms is presented. AFF3CT is unique in the domain and it is composed by many algorithm
implementations (including those presented in Chapter 2). AFF3CT is the software that en-
ables the signal processing algorithms heterogeneity thanks to a robust software architecture
based on well-defined and coherent interfaces. It enables reproducibility of the results as it is
open-source and extensively tested. AFF3CT also contains a parallel functional simulator and
enables extensive exploration/validation of existing or new algorithms on a large combination of
parameters.

3

Introduction

In Chapter 4, the efficient algorithm implementations proposed in Chapter 2 are evaluated
and compared with the state-of-the-art. The FEC software decoders hall of fame is introduced to
summarize and to compare the proposed contributions with previous works in the literature. Some
metrics are defined for ease of comparison. These metrics focus on normalized throughput, proper
use of hardware and energy efficiency. Finally, the AFF3CT simulator efficiency is demonstrated
on various multi-core CPUs and on a multi-node cluster.

In Chapter 5, a new embedded Domain Specific Language (eDSL) for the SDR is presented.
The AFF3CT software suite is enriched with new blocks dedicated to the efficient implementation
of real-time digital communication systems on multi-core CPUs. These blocks enable automatic
parallelism. As an example of use, a full physical layer of the DVB-S2 standard has been
implemented. All the digital processing are performed with AFF3CT while the radio frequency
communications is achieved with Universal Software Radio Peripherals (USRPs). The results
match the satellite real-time constraints.

4

1 Context and Objectives

This chapter introduces the context of digital communication systems. Its purpose is to define
notions that will be reused in the manuscript and to give a general view and defines the main
objectives of this thesis. The first section presents the principle of the digital communication
systems with its different parts: transmitter, channel and receiver. The most common metrics
used in digital communications are also introduced. The second section details the channel model
and the digital modulation used all along the manuscript. A characterization of the signal-to-noise
ratio is given as well as the notion of probability at the output of the channel and the demodulator.
The third section introduces the channel codes considered in this manuscript: namely the LDPC,
the polar and the turbo codes. The corresponding encoding and decoding processing are detailed
for each channel code family. In the fourth section, three applicative contexts are detailed for the
considered channel codes. The functional simulation enables the design and the validation of a
coding scheme. The software-defined radio is a radio communication system where components
are implemented by means of software. Then, the sparse code multiple access mechanism is
presented as it is a promising solution for massive connectivity in future mobile networks. The
fifth section gives the main problematics of the thesis.

1.1 Digital Communication Systems . 6
1.2 Channel Model . 7
1.3 Channel Codes . 8

1.3.1 Prerequisites . 9
1.3.2 Low-density Parity-check Codes . 9
1.3.3 Polar Codes . 12
1.3.4 Turbo Codes . 17

1.4 Applicative Contexts . 22
1.4.1 Functional Simulation . 22
1.4.2 Software-defined Radio . 25
1.4.3 Sparse Code Multiple Access . 26

1.5 Problematics . 29

5

1.1. Digital Communication Systems

Source Channel
Encoder

Digital
Modulator

Channel

Digital
Demodulator

Channel
DecoderSink

Transmitter

Receiver

u c x

ylû

Figure 1.1 – Digital communication chain.

1.1 Digital Communication Systems

It is now commonplace to state that Humanity has entered the era of communication. By
2025, there should be more than 5 billion smart-phones in circulation worldwide. Moreover, all
kinds of objects will increasingly use communication technology, to exchange information in the
Internet of Things (IoT), for instance. Despite their heterogeneity, all communication systems are
based on a common abstract model proposed by Claude Shannon. In his seminal paper [Sha48],
he proposed to model a communication system with five major components: an information
source, a transmitter, a channel, a receiver and a destination. This model was later refined as
shown in Figure 1.1. The source produces a digital message u to be transmitted (sequence of bits).
The channel encoder transforms it in a codeword c to make it more robust to errors. In order to
make possible the information transmission through the channel, it is necessary to shape the data
stream. For instance, in the case of wireless communication, this stream must be represented by
a high-frequency signal in order to be transmitted by a reasonably sized antenna. This is the
role of the digital modulator which produces a vector of symbols x. The channel alters the signal
with some noise and distortions (y). On the receiver side, the components perform the inverse
operations to retrieve the decoded message û. If no errors occurred during the transmission or if
there is errors but they have been corrected, û = u.

In the next sections and chapters, we will focus on channel coding because it comes with
algorithms that have the highest computational complexity in the digital communication systems.
In channel coding, also known as forward error correction (FEC), K information bits are encoded
in the transmitter. It results in a codeword c of N bits. P = N− K is the number of redundancy
bits added as additional information and R = K/N is the code rate. The higher the code rate R is,
the lower the number of bits P is. The performance of this scheme is measured by estimating the
residual error rate at the sink. It is possible to observe two different rates: 1) the Bit Error Rate
(BER); 2) the Frame Error Rate (FER). The BER is calculated considering the K information
bits independently, for instance a 10−3 BER means that there is an average of one binary error
per thousand information bits transmitted. The FER is computed considering the entire frame, if
there is at least one wrong bit in the current frame, it will be counted as one erroneous frame.
A 10−2 FER means that there is an average of one frame error per hundred frame transmitted.
These rates depend on many factors: the noise of the channel, the modulation type, the code
type, the code rate R, etc. The lower the bit and frame error rates are, the higher the correction
power of the system is.

6

1.2. Channel Model

1.2 Channel Model

In this thesis, only causal transmission channels without memory effect and stationary are
considered. In other words, the output of the channel at time t only depends on its input at time
t. In order to describe the disturbance applied to the message x passing through the transmission
channel, different models can be used. However, in the literature, the selected model is often
the Additive White Gaussian Noise (AWGN) channel. In particular, this channel well models
the thermal noise which is one of the sources of noise that is always present on the receiver side.
This section presents the AWGN channel concepts and introduces the Binary Phase-Shift Keying
modulation/demodulation that is employed all along the manuscript.

In the AWGN channel, the law binding the yi output to its xi input is of the form yi = xi+ni
with Nchn an independent and identically distributed variable according to a normal (or Gaussian)
law centered in zero and of variance σ2 = N0/2. So, we have Nchn ' N(0, σ2) and:

P(yi|xi) =
1√
2πσ

exp
(
−

(yi − xi)
2

2σ2

)
. (1.1)

To estimate the correction power of a channel code it is very common to vary the Signal-to-
Noise Ratio (SNR). On the AWGN channel the SNR is generally given by Eb/N0 (in dB). Eb
corresponds to the average energy per information bit. It can also be given by Es/N0 (in dB)
where Es corresponds to the average energy per transmitted symbol. A symbol is a binary or a
non-binary quantity, so it can be represented by one or more bits. Es/N0 can be deduced from
Eb/N0 as follows:

Es

N0
=
Eb
N0

+ 10. log (R.bS), (1.2)

where R is the code rate and bS is the number of bits per transmitted symbol xn. bS depends on
the modulation order. If a binary modulation is used, then bS = 1. The channel variance is:

σ =

√
1

2× 10
Es
N0
/10

. (1.3)

An important characteristic of a channel is its capacity [Sha48]. The capacity represents the
maximal quantity of information that the canal can transport. In other words, it is impossible
to find a coding scheme that transports more information than the channel capacity. From this
capacity it is possible to deduce Shannon’s limit. This limit is the asymptotic SNR in Eb/N0

(dB) which cannot be improved with any channel code. When R tends towards zero it can be
shown that Shannon’s limit is −1.59 dB. This means that, for an AWGN channel, no system can
reliably transmit information at an SNR of less than −1.59 dB.

In the next chapters of the manuscript, the AWGN channel will mainly be associated with a
Binary Phase-Shift Keying (BPSK) modulation (bS = 1). With this modulation, each binary
value ci ∈ {0, 1} is associated to a real value xi ∈ {1,−1}. The l outputs estimated by the digital
demodulator can be given in the form of a Log Likelihood Ratio (LLR). Their sign determines
for each channel output data yi ∈ y the most likely binary input ci ∈ c. The absolute value

7

1.3. Channel Codes

corresponds to the degree of reliability of the information. The mathematical expression of li is:

li = log
(
P(yi|ci = 0)
P(yi|ci = 1)

)
.

1.3 Channel Codes

After Shannon’s work, researchers have designed new coding/decoding schemes to approach
Shannon’s theoretical limit increasingly closer. Indeed, recent progresses managed to design
practical codes performing very close to that limit. These codes are already integrated in current
communication systems. They are usually classified in two main families: block codes and
convolutional codes. The block codes generate the redundancy by packets of data while the
convolutional codes compute the redundancy bit by bit on the data stream. The purpose of this
section is to introduce the most used channel code families.

The convolutional codes have been introduced by Peter Elias in 1955 [Eli55]. The objective was
to propose an alternative to the block codes in term of codeword length flexibility: theoretically
the length of a convolutional code is infinite. The coding scheme is made in a way that the output
depends on the current input and on the inputs before. This type of code has been used by the
NASA for satellite communications for instance.

The Raj Bose, D. K. Ray-Chaudhuri and Alexis Hocquenghem (BCH) codes are block codes
discovered in the late 1950s [Hoc59, BR60]. They are algebraic codes built from a polynomial.
This results in low complexity decoding algorithms. These codes are used in the CDs, DVDs
and SSDs. In modern coding schemes, they are often concatenated to other codes in order to
improve their correction powers especially when there are erroneous frames with a small number
of erroneous bits. This is the case in the DVB-S2 standard for instance.

The Irving S. Reed and Gustave Solomon (RS) codes have been proposed in 1960 [RS60].
Like the BCH codes they are algebraic codes. But unlike the BCH codes, the RS codes are based
on symbols instead of bits (non-binary codes). The RS codes are used in many standards (CD,
DVD, Blu-ray, ADSL, DVB-T, etc.).

The Low-Density Parity-Check (LDPC) codes are linear block codes. They have been
discovered by Robert G. Gallager in 1962 [Gal62]. Unfortunately, at the time of their discovery,
the computational power available in the transceivers was not sufficient to decode them. Later,
in 1995, the LDPC codes have been re-discovered by David MacKay [MN95]. Nowadays, they
are used in many digital communication standards such as Wi-Fi, WiMAX, WRAN, 10Gbps
Ethernet, DVB-S2, CCSDS, 5G data transport, etc.

The turbo codes have been discovered by Claude Berrou in 1993 [BGT93] and have been
used in many digital wireless communication standards since (3G, 4G, DVB-RCS2, CCSDS, etc.).
The particularity of the turbo codes is to be composed by two convolutional sub-codes. In other
terms, the turbo codes are a parallel concatenation of two convolutional codes.

The Turbo Product Codes (TPC) are block codes, they have been invented by Peter Elias
in 1954 [Eli54] while the first efficient decoding algorithm has been discovered later in 1994 by
Ramesh Pyndiah [Pyn+94]. A TPC is a form of serial concatenation of two block codes, it results
in a matrix where one code can be read from the columns and the other one from the rows. The
TPC are notably used in the WiMAX standard and also in some optical communication systems.

8

1.3. Channel Codes

The polar codes are linear block codes like the LDPC. They have been invented by Arıkan
in 2009 [Arı09]. For the first time, they are present in the 5G standard (control channels). The
particularity of these codes is that they are the only ones for which it has been mathematically
demonstrated that they reach Shannon’s limit (considering an infinite codeword length).

Many other codes exist like Hamming codes, Plotkin codes, Gilbert codes, Golay codes,
Reed-Muller codes [Mul54, Ree54], the raptor codes [Sho04], etc. The purpose of this section is
not to be exhaustive but to give a representative overview of the FEC domain. This thesis will
focus on a subset of these codes, namely the LDPC codes, the polar codes and the turbo codes.
These codes have been selected because they are known to be channel capacity-approaching and
well-spread in the current digital communication standards. Moreover, these code families lead to
high computational complexity decoders that are challenging to implement.

1.3.1 Prerequisites

Table 1.1 – Elementary operations in GF2 (logical exclusive or and logical and).

a b a⊕ b ab

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In all the presented coding schemes, only binary codes are considered. In this case, a bit
can be represented in a Galois field of two elements {0, 1} denoted as GF2. A block code is an
application g of GFK2 in GFN2 with K < N. There are 2K codewords c. The two operations used
to generate a codeword are the addition and the multiplication. In GF2, the addition is equivalent
to a logical exclusive or (⊕) and the multiplication is equivalent to a logical and (see Table 1.1).

In this chapter, all the decoding algorithms are working on soft information. This means
that the decoding input is a vector of N likelihoods in the form of LLRs. Each LLR is a real
value. Depending on the implementation it can be a floating-point or a fixed-point number. It
results in more complex operations than for the encoding process. On the decoding side and in
the logarithmic domain, the ⊕ operator can become the � operator, it is defined as follow:

la � lb = 2 tanh−1
(
tanh (

la

2
). tanh (

lb
2
)
)
. (1.4)

This is the main reason why, in channel coding, the decoders are systematically more compute
intensive than the encoders. In the logarithmic domain, the multiplication becomes a simple
addition.

1.3.2 Low-density Parity-check Codes

1.3.2.1 Coding Scheme

A parity-check constraint is an equation that links a set of bits: when all the bits of a
parity-check constraint are added together the result has to be zero. For instance, if we consider
a message u = [u0, u1, u2, u3] (K = 4), then it is possible to encode the information message u in
a codeword c of size N = K + 1 = 5: c = [u0, u1, u2, u3, p0]. The parity-check constraint C0 is

9

1.3. Channel Codes

then: u0 ⊕ u1 ⊕ u2 ⊕ u3 ⊕ p0 = 0 (C0) with p0 the parity bit (P = N − K = 1). To encode the
message u and produce the codeword c, a generator matrix G (or a linear application) has to be
defined like this: c = u× G with

G =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 .

u × G = [u0, u1, u2, u3, u0 ⊕ u1 ⊕ u2 ⊕ u3] = c, so p0 = u0 ⊕ u1 ⊕ u2 ⊕ u3 as defined by the
parity-check constraint C0. The proposed generator matrix G is composed by the identity matrix
on the four first columns and by the parity-check constraint in the last column. The consequence of
the presence of the identity matrix is that the generated codeword contains the initial information
bits u0, u1, u2, and u3. In this case, the encoding process is systematic.

u0 u1 u2 u3 p0

Codeword c

C0

Figure 1.2 – Representation of the C0 parity-check constraint on a Tanner graph.

One can note that a parity-check constraint can also be represented with a Tanner graph as
shown in Figure 1.2. It is also possible to define a matrix of parity-check constraints namely H.
In this case, there is only one constraint (C0), so H is a one-dimension matrix (or a vector) of
size N: H =

[
1 1 1 1 1

]
. An important property of the H matrix is that it must satisfy:

G×HT = 0.

0 1 2 3 4 5 6 7

Variable nodes (VN)

a b c d

Check nodes (CN)

Figure 1.3 – Parity-check constraints of an LDPC code on a Tanner graph.

The construction of a Low-Density Parity-Check (LDPC) code is based on the combination
of several parity-check nodes. Figure 1.3 is an example of a LDPC code with four parity-check
constraints denoted as a, b, c and d. The parity-check constraints are also known as the check
nodes (CN). The variable nodes (VN) are the bits of the LDPC codeword. The parity-check
matrix corresponding to the Figure 1.3 Tanner graph is:

H =

1 0 0 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0

 .

10

1.3. Channel Codes

The H parity matrix of an LDPC code has to be a low-density matrix. The example shown
in Figure 1.3 is here to help the comprehension and is not a real LDPC code: indeed, the
corresponding H matrix is not sparse.

1.3.2.2 Belief Propagation Decoding Algorithm

The bit ûn corresponding to the input LLR ln of a parity-check code can be decoded as
follow: ûn = hd

(
ln +

∑
j6=n

lj

)
, with hd the hard decision function that returns 0 if the LLR

is positive and 1 otherwise. For instance, considering the parity-check code in Figure 1.2,
û0 = hd

(
l0 + (l1 � l2 � l3 � l4)

)
, û1 = hd

(
l1 + (l0 � l2 � l3 � l4)

)
, etc.

In LDPC codes, there is more than one parity-check node. It is then possible to compute all the
check nodes connected to a variable node and to store the result in a vector v. Each LLR vn ∈ v
corresponds to one variable node. For instance, considering Figure 1.3, V0 is connected to Ca and
Cc. So its LLR value can be computed as follow: v0 = e0+e1 = (l3�l4�l6�l7)+(l2�l5�l7), where
e0 and e1 are the extrinsic informations computed from Ca and Cc, respectively. The decoded
bits can be decided from the channel and the variable node LLR values: ûn = hd (ln + vn).

In the Belief Propagation (BP) decoding algorithm, there are many iterations (5 to 100)
between the variable nodes and the check nodes, before to decide the decoded bits û. In the first
iteration, the a priori information a sent to the check nodes is directly the channel values l. But,
in the next iterations, the a priori information a is updated with the variable nodes values v. To
avoid direct auto-confirmation issues, the up-coming extrinsic LLR is systematically subtracted
from the propagated message.

l0 l1 l2 l3 l4 l5 l6 l7

v0 v1 v2 v3 v4 v5 v6 v7

Input LLRs

Variable nodes

Ca Cb Cc Cd

Check nodes

a0
a

a3
a a4

a

a6
a

a7
a

(a) Check nodes update.

l0 l1 l2 l3 l4 l5 l6 l7

v0 v1 v2 v3 v4 v5 v6 v7

Input LLRs

Variable nodes

Ca Cb Cc Cd

Check nodes

e0
a

e0
c

(b) Variable nodes update.

Figure 1.4 – Illustration of the belief propagation algorithm on a Tanner graph.

Figure 1.4 illustrates a single BP iteration. First, the check nodes are computed from the
messages mij where i is the index of the variable nodes and j is the index of the check nodes. In
the example, the Ca check node computes a0a � a3a � a4a � a6a � a7a, where a0a = l0 + v0 − e

0
a,

a3a = l3 + v3 − e
3
a, etc. During the first iteration v and e are initialized to 0. Then, when all

the check nodes have been computed, it is possible to estimate the new values of the vn variable
nodes from the sum of the incoming extrinsic messages enj . In the example, v0 = e0a + e0c, where
e0a = a3a�a

4
a�a

6
a�a

7
a and e0c = a2c�a5c�m7

c. When all the variable nodes have been updated,
it is then possible to update the check nodes and so on.

11

1.3. Channel Codes

There are many variants of the BP algorithm. In the previous explanation, during an iteration,
all the check nodes are computed first. Then, all the variable nodes are updated. This is called
flooding (BP-F) scheduling of the computations [MN95]. However it is possible to schedule the
computations differently. In the horizontal layered (BP-HL) scheduling [Yeo+01], when a check
node is evaluated, all the connected variable nodes are updated without waiting the computation
of all the check nodes. In the vertical layered (BP-VL) scheduling [ZF02], the check nodes
corresponding to a variable node are evaluated and the current variable node is updated. The
vertical layered scheduling traverses the variable nodes first while the horizontal layered scheduling
processes the check nodes first. In general, the layered scheduling (vertical and horizontal) enables
to converge faster (in less iterations than the flooding) to a valid codeword.

In the previous example, the rules to update the variable nodes are based on the � operation.
In the literature, this type of update rules is called the Sum-Product Algorithm (SPA) and was
first introduced by Gallager in 1962 [Gal62]. The SPA results in very good BER/FER decoding
performance. However, this comes at the cost of a high computational complexity. To reduce the
computational complexity on the � operator it is possible to approximate it as follow:

la � lb = 2 tanh−1
(
tanh (

la

2
). tanh (

lb
2
)
)
≈ sign(la.lb). min(|la|, |lb|). (1.5)

This variant is called the Min-Sum (MS) [FMI99]. The costly tanh functions are replaced by
efficient sign and min operations. However, MS computations negatively affect the correction
performance. To compensate the performance loss, the optimized Offset Min-Sum (OMS) and
Normalized Min-Sum (NMS) approximations have been proposed in [CF02]:

la � lb = 2 tanh−1
(
tanh (

la

2
). tanh (

lb
2
)
)
≈ α×

(
sign(la.lb). min(|la|, |lb|) + λ

)
, (1.6)

where α is a normalization factor of the NMS update rules and λ is an offset of the OMS update
rules.

1.3.3 Polar Codes

1.3.3.1 Coding Scheme

A polar code (N,K) is a linear block code of size N = 2m, with N the first natural number
higher than K. The G generator matrix of a polar code can recursively be defined by the mth

Kronecker power of K =

[
1 0
1 1

]
, denoted as G = K⊗m =

[
K⊗m−1 0m−1

K⊗m−1 K⊗m−1

]
, composed by

N rows and N columns. Unlike for the LDPC codes, the u input message cannot be directly
multiplied by G. Indeed, G is a square matrix of dimension N. So, the polar coding scheme defines
an F function that adds zeros in u until its size reaches N bits (v = F(u)). If we suppose a (8, 4)
polar code, u = [u0, u1, u2, u3] is composed of 4 information bits. Lets apply the F function on
u: F(u) = [0, 0, 0, u0, 0, u1, u2, u3] = v. There is N output bits in v. The extra zeros are called
the frozen bits. Their positions in v are selected to be on the less reliable indexes. In other terms,
the information bits occupy the most reliable positions in v. The frozen bits represent the P
parity bits. In this thesis, the Gaussian Approximation (GA) method is used to determine the
position of the frozen bits [Tri12]. To summarize, the polar encoding process can be defined as
follow: c = F(u)× G = v× G.

12

1.3. Channel Codes

GN=2 =

[
1 0
1 1

]
0 = v0

u0 = v1

c0 = v0 ⊕ v1

c1 = v1 = u0

GN=4 =

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

0 = v0

0 = v1

u0 = v2

u1 = v3

c0 = v0 ⊕ v1 ⊕ v2 ⊕ v3

c1 = v1 ⊕ v3

c2 = v2 ⊕ v3

c3 = v3 = u1

GN=8 =

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

0 = v0

0 = v1

0 = v2

u0 = v3

0 = v4

u1 = v5

u2 = v6

u3 = v7

c0 = v0 ⊕ v1 ⊕ ...⊕ v6 ⊕ v7

c1 = v1 ⊕ v3 ⊕ v5 ⊕ v7

c2 = v2 ⊕ v3 ⊕ v6 ⊕ v7

c3 = v3 ⊕ v7

c4 = v4 ⊕ v5 ⊕ v6 ⊕ v7

c5 = v5 ⊕ v7

c6 = v6 ⊕ v7

c7 = v7 = u3

Figure 1.5 – Polar encoding process for N ∈ {2, 4, 8} and R = 1/2.

Figure 1.5 presents G generator matrices depending on N and their associate encoding schemes
described with factor graphs. The recursive structure of the polar codes is represented by the
dashed rectangles in the factor graphs. For instance, when N = 8, the encoder is composed of
two N = 4 sub-encoders. Each N = 4 sub-encoder is itself composed of two N = 2 sub-encoders.
The polar code are not necessarily systematic.

0 = v0

0 = v1

0 = v2

u0 = v3

0 = v4

u1 = v5

u2 = v6

u3 = v7

0
0
0

0

c0

c1

c2

c3 = u0

c4

c5 = u1

c6 = u2

c7 = u3

Figure 1.6 – Systematic polar encoder for N = 8 and R = 1/2.

In 2011, Arıkan proposed a systematic coding scheme for the polar codes [Arı11]. The idea
is to apply a pre-encoding step before the Kronecker transformations. Figure 1.6 shows the
systematic polar encoder for N = 8. The systematic encoding scheme can be expressed as:
c = F ′

(
F(u)×G

)
×G, with F ′ the function that reinitializes the frozen bits to zero after the first

encoding. The systematic encoding is possible because of the characteristics of the G generator
polar matrices: G × G = I. In other terms, G is invertible and its inverse is itself. A direct
consequence of this property is that one can encode from left to right or from right to left: the
generated codeword c will be the same. This is why the factor graphs proposed in Figure 1.5 and
Figure 1.6 are not directed.

It is also possible to represent the polar encoding process with a binary tree structure.
Figure 1.7 shows the binary tree representation of an (8, 4) polar encoder. The leaf nodes
represent the initial bits from the v vector. The bits in black are the information bits u and the

13

1.3. Channel Codes

0 = v0

0 = v1

0 = v2

u0 = v3

0 = v4

u1 = v5

u2 = v6

u3 = v7

v0

v1

v2

v3

v4

v5

v6

v7

n2
0

n2
1

n2
2

n2
3

n1
0

n1
1

n0
0

Figure 1.7 – Tree representation of a polar encoder for N = 8 and R = 1/2.

white bits are the frozen bits. Two by two the initial bits are bound to a father node n2x where x
is the index of the node in the layer 2. In general, a node is denoted by ndx where d is the depth
(or layer) in the binary tree. The blue nodes compute the sub-graphs delimited by the solid blue
rectangles (one XOR per node). The green nodes compute the sub-graphs delimited by the solid
green rectangles (two XORs per node). The red node computes the sub-graph delimited by the
solid red rectangle (four XORs per node).

1.3.3.2 Successive Cancellation Decoding Algorithm

41 (LLR, ŝ)

3•2 (LLR, ŝ)

f g

•

f g

•

f g

•

f g

•

f g

•

f g

•

f g

•

f g

2•4 (LLR, ŝ)

f g

•

f g

•

f g

•

f g

1•8 (LLR, ŝ)

f gh h

•

f gh h

0•16 (LLR, ŝ)

f gh h

L
ay
er

(t
re
e
de

pt
h)

Figure 1.8 – Full SC decoding tree (N = 16).

A first decoding algorithm, called the Successive Cancellation (SC) decoding algorithm, has
been introduced by Arıkan [Arı09]. It can be seen as the traversal of a binary tree starting from
the root node. For a code length N = 2m, the corresponding tree thus includes m + 1 node
layers, indexed from d = 0 (root node layer) down to d = m (leaf nodes layers). As the tree is
initially full, each layer d contains 2d nodes, each node of that layer d containing 2m−d LLRs (λ)
and 2m−d binary values denoted as partial sums (ŝ). At the decoder initialization, LLR values
received from the channel (l) are stored in the root node. Then, the decoding process performs a
pre-order traversal of the tree. When a node is visited in the downward direction, LLRs of the
node are updated. In the upward direction, partial sums are updated. Figure 1.8 summarizes the

14

1.3. Channel Codes

computations performed in both directions. The update functions are:

λc = f(λa, λb) = λa � λb ≈ sign(λa.λb). min(|λa|, |λb|)
λc = g(λa, λb, ŝ) = (1− 2ŝ)λa + λb
(ŝc, ŝd) = h(ŝa, ŝb) = (ŝa ⊕ ŝb, ŝb).

(1.7)

The f and g functions both generate a single LLR. The h function provides a couple of partial sums.
The f function is the Min-Sum approximation of the � operation described in Equation 1.5. In
Polar decoding using an MS approximation does not significantly impact the decoding performance.
Thus, the MS approximation is widely applied.

Before recursively calling itself on the left node, the algorithm applies the f function, respec-
tively. Before calling itself on the right node the g function is applied. At the end (after the
recursive call on the right node) the h function is applied. The f and g functions operate on the
LLRs (read only mode) from the current node ni in order to produce the new LLR values into
left and right ni+1 nodes, respectively. The h function reads the bits from the left and right ni+1
nodes in order to update the bit values of the ni node. The λ LLRs in the leafs are converted in
the ŝ bits with the hard decision function ŝn = hd(λn).

Leaf nodes are of two kinds: information bit nodes and frozen bit nodes. When a frozen bit
leaf node is reached, its binary value is unconditionally set to zero. Instead, when an information
leaf node is reached, its binary value is set according to the sign of its LLR (0 if LLR is positive,
1 otherwise). Once every node in the tree has been visited in both directions, the algorithm
eventually updates partial sums in the root node and the decoding process is terminated. If the
polar code is not systematic, the decoded bits û are the leaf bits in the tree. Otherwise, if the
polar code is systematic, the decoded bits û can be directly extracted from the root node of the
polar tree in the form of an N-bit partial sum vectors. In this thesis, only the systematic polar
encoding scheme is considered. This construction leads to an improved BER while the decoding
computational complexity remains unchanged.

The SC algorithm is a key to construct the polar codes. A density evolution is performed
over the SC binary tree to determine the efficient position of the frozen bits. The idea is to
construct the polar codes according to the decoder structure. In this manuscript, the Gaussian
Approximation (GA) of the density evolution is used [Tri12].

1.3.3.3 Successive Cancellation List Decoding Algorithm

The Successive Cancellation List (SCL) algorithm is an evolution of the SC [TV11]. The SCL
algorithm is summarized in Algorithm 1.1. Unlike the SC algorithm, the SCL algorithm builds
a list of candidate codewords along the decoding process. At each call of the “updatePaths()”
sub-routine (l.16), 2L candidates are generated. A path metric is then evaluated to keep only
the L best candidates among the 2L paths. The path metrics are calculated as in [BPB15]. At
the end of the decoding process, the candidate codeword with the best path metric is selected in
the “selectBestPath()” sub-routine (l.18). The decoding complexity of the SCL algorithm grows
as O(LN log2N). This linear complexity in L leads to significant improvements in BER/FER
performances compared to the SC decoder, especially for small code lengths.

The authors in [TV11] observed that when a decoding error occurs, the right codeword is
often in the final list, but not with the best path metric. They proposed to concatenate a CRC

15

1.3. Channel Codes

Algorithm 1.1: SCL decoding algorithm.
Data: λ is a 2D buffer ([L][2N]) to store the LLRs.
Data: ŝ is a 2D buffer ([L][N]) to store the bits.

1 Function SCLDecode(N,oλ, oŝ) . oλ and oŝ are offsets in λ and ŝ, resp.
2 N 1

2
← N/2

3 if N > 1 then . not a leaf node
4 for p = 0 to L− 1 do . loop over the L paths
5 for i = 0 to N 1

2
− 1 do . apply the f function

6 λ[p][oλ +N+ i]← f(λ[p][oλ + i], λ[p][oλ +N 1
2
+ i])

7 SCLDecode(N 1
2
, oλ +N,oŝ) ; . recursive call to the decoder

8 for p = 0 to L− 1 do
9 for i = 0 to N 1

2
− 1 do . apply the g function

10 λ[p][oλ +N+ i]← g(λ[p][oλ + i], λ[p][oλ +N 1
2
+ i], ŝ[p][oŝ + i])

11 SCLDecode(N 1
2
, oλ +N,oŝ +N 1

2
) ; . recursive call to the decoder

12 for p = 0 to L− 1 do
13 for i = 0 to N 1

2
− 1 do . update the partial sums (h function)

14 ŝ[p][oŝ + i]← h(ŝ[p][oŝ + i], ŝ[p][oŝ +N 1
2
+ i])

15 else . a leaf node
16 updatePaths() ; . update, create and delete paths

17 SCLDecode(N, 0, 0) ; . launch the decoder
18 selectBestPath()

to the codeword in order to discriminate the candidate codewords at the final stage of the SCL
decoding. Indeed, this technique drastically improves the FER performance of the decoding
process. This algorithm is denoted as the CRC-Aided SCL (CA-SCL). In terms of computational
complexity, the overhead consists in the computation of L CRCs at the end of each decoding.

1.3.3.4 Simplified Successive Cancellation Class of Algorithms

Frozen bits fully define the decoder leaf values. Hence some parts of the traversal can be cut
and its computation avoided, depending on the location of the frozen bits. More generally, the
tree functions can be versioned depending on these bits. In [AK11], a tree pruning technique
called the Simplified SC (SSC) was applied to SC decoding algorithm. An improved version
was proposed in [Sar+14b]. This technique relies on the fact that, depending on the frozen bits
location in the leaves of the tree, the definition of dedicated nodes enables to prune the decoding
tree: Rate-0 nodes (R0) correspond to a sub-tree whose all leaves are frozen bits, Rate-1 nodes
(R1) correspond to a sub-tree in which all leaves are information bits, REPetition (REP) and Single
Parity-Check (SPC) nodes correspond to repetition and SPC codes sub-trees, respectively. These
special nodes, originally defined for SC decoding, can be employed in the case of SCL decoding as
long as some modifications are made in the path metric calculation [Sar+16]. This tree-pruned
version of the algorithm is called Simplified SCL (SSCL) and CA-SSCL when a CRC is used to
discriminate the final candidate codewords. The tree pruning technique can drastically reduce
the amount of computations in the decoding process. The Figure 1.9 shows that more than half
of the tree nodes can be removed for N = 8 and R = 1/2 (this is representative of real-life codes).

16

1.3. Channel Codes

R0 REP REP R1

REP SPC4

?

| | | | | | | |

| | | |

f g

h

REP SPC4

?

f g

h

rep spc

Figure 1.9 – Example of tree pruning on a small binary tree (N = 8). The tree is cut and the
computations are versioned according to the location of the frozen bits.

1.3.3.5 Adaptive Successive Cancellation List Decoding Algorithm

The presence of the CRC can be further used to reduce the decoding time by gradually
increasing L. This variation of SCL is called Adaptive SCL (A-SCL) [LST12]. The first step of
the A-SCL algorithm is to decode the received frame with the SC algorithm. Then, the decoded
polar codeword is checked with a CRC. If the CRC is not valid, the SCL algorithm is applied
with L = 2. If no candidate in the list satisfies the CRC, L is repeatedly doubled until it reaches
the value Lmax. We call this version of the A-SCL decoding the Fully Adaptive SCL (FA-SCL) as
opposed to the Partially Adaptive SCL (PA-SCL), in which the L value is not gradually doubled
but directly increased from 1 (SC) to Lmax. The simplified versions of these algorithms are
denoted PA-SSCL and FA-SSCL. In order to simplify the algorithmic range, in the remainder of
the manuscript, only the simplified versions are considered. The use of either the FA-SSCL or
the PA-SSCL algorithmic improvement introduces no BER or FER performance degradation as
long as the CRC length is adapted to the polar code length. If the CRC length is too short, the
decoding performance may be degraded because of false detections. These adaptive versions of
SSCL can achieve higher throughputs. Indeed, a large proportion of frames can be decoded with
a single SC decoding. This is especially true when the SNR is high.

1.3.4 Turbo Codes

1.3.4.1 Coding Scheme

In this sub-section, the convolutional sub-encoder is presented first and then the turbo
encoding process is detailed. The first convolutional codes have been introduced by Peter Elias in
1955 [Eli55]. The objective was to propose an alternative to block codes in term of codeword
length flexibility: theoretically, the length of a convolutional code is infinite. The coding scheme
output depends on the current input and on the few previous inputs.

For a R = 1/2 encoder, the current pk output parity bit can be expressed as a linear
combination of the ν previous bits of the message: pk =

∑ν
j=0 g

(2)
j uk−j +

∑ν
j=1 g

(1)
j pk−j, where

ν represents the number of elements memorized inside the encoder. The sequence of elements gj
is called the code-generating sequence and is often expressed in octal. Figure 1.10a gives three
representations of a convolutional code of rate R = 1/2 with a memory ν = 2 (D0 and D1 are

17

1.3. Channel Codes

D0 D1

p (c2)

u (c1)

u

(a) Encoder scheme.

S0

S1 S2

S3

1/11

1/10

0/01 0/01

0/00

1/11

1/10

0/00

(b) Finite state machine.

S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4

0/00

0/01

0/0
0

0/0
1

1/11

1/10

1/
11

1/10

(c) Trellis representation.

Figure 1.10 – Different representations of a recursive and systematic convolutional code (R = 1/2).

shift registers). Its two code-generating sequences g(1) = (7)8 and g(2) = (5)8 define the c2 = p
output while c1 = u. In the example, the convolutional code has the particularity to be systematic
because c1 = u and recursive because of the feedback loop before the first shift register D0. In
the literature, this type of coding scheme is called Recursive Systematic Convolutional (RSC).
Only RSC codes are considered in the document. In Figure 1.10, the number of D memories
ν = 2 so, the code can have 2ν = 4 different states. Thus, a convolutional code can be expressed
as a finite-state machine as shown in Figure 1.10b. The initial state S0 corresponds to D0 = 0
and D1 = 0, the state S1 corresponds to D0 = 1 and D1 = 0, the state S2 corresponds to D0 = 0
and D1 = 1 and, finally, the state S3 corresponds to D0 = 1 and D1 = 1. The notation on the
edges is in the form of u/c1c2. For instance, from the state S1, if the input bit u is 1, then the
encoder will output two bits c1 = 1 and c2 = 0 and will go in the state S2. This is denoted by
1/10 below the directed edge between S1 and S2.

Figure 1.10c introduces another convenient representation of convolutional codes: the trellis.
This representation has been used for the first time by Dave Forney in 1973 [For73]. It is especially
useful to facilitate the understanding of the decoding process. Indeed, it enables to see the internal
state of the encoder, its transitions, and the temporal evolution. However, the purpose of this
section is not to detail the decoding process, it will be made in the next section. Considering
the encoder initial state S0, from t = 0 the two next possible states are S0 and S1. At t = 1, the
encoder can be in state S0 or S1, so the next possible states are S0, S1, S2 or S3. One can note
that starting from ν+ 1 time units, the trellis pattern is repeated.

As mentioned before, a turbo code is built from two convolutional codes. Figure 1.11 shows
a generic view of the turbo coding process. In the example, the code rate of the turbo code is

18

1.3. Channel Codes

Π

Encoder RSC 1

Encoder RSC 2

u u (c1)

u ′

p (c2)

p ′ (c3)

Figure 1.11 – Turbo code (R = 1/3) with two convolutional sub-encoders and a Π interleaver.

R = 1/3. This rate is obtained from two convolutional sub-encoders of rate R = 1/2 (like the one
shown in Figure 1.10). The two parity bits p and p ′ are obtained from the c2 outputs of the
convolutional codes while the systematic c1 outputs are ignored. The first sub-encoder encodes
the u input bit while the second one encode the u ′ bit. The u ′ bit is determined from u after a Π
interleaving process. For each uk bit there is a single u ′k associated bit in the K input information
bits. The interleaving process is a key point for the efficiency of a turbo code. The interleaving
process permutes the information bits from their natural (sequential) order into the interleaved
order. The permutation function defines the interleaver type. The K information bits in the
natural order are given to the sub-encoder 1 while the K information bits in the interleaved order
are given to the sub-encoder 2.

1.3.4.2 Turbo Decoding Algorithm

SISO 1
(BCJR)

SISO 2
(BCJR)

ΠΠ

Π−1

L′
s

La:1→2

Le:2→1La:2→1

Le:1→2

Ls

L′
p

Lp

Iterations

Figure 1.12 – Information exchanges in turbo decoding process.

The turbo decoder consists of two component decoders exchanging soft information in terms
of log-likelihood ratio (LLR) for each transmitted information bit through an interleaver and a
deinterleaver. Figure 1.12 illustrates the internal structure of a turbo decoder. Two Soft Input Soft
Output (SISO) decoders are represented with the interleaving process Π and the deinterleaving
process Π−1. In our work, only rate R = 1/3 codewords are considered. K represents the number
of information bits and N is the codeword size: N = K× 3.

19

1.3. Channel Codes

Algorithm Outline Turbo decoding is carried out over several iterations. Each iteration
consists of two component decoding phases. During each phase, a component decoder performs a
maximum a posteriori (MAP) decoding based on the BCJR algorithm [Bah+74], which generates
so-called extrinsic LLRs given the LLRs obtained by the detector and a priori LLRs obtained from
the other component decoder. The BCJR algorithm consists of one forward and one backward
traversal on a trellis, which are defined by the underlying code. Specifically, to decode a codeword
of K information bits, the BCJR algorithm performs the following steps: (i) the branches of
the trellis are weighted from the systematic LLRs (Ls), the parity LLRs (Lp) and the a priori
information (La); (ii) in the forward traversal step, it computes K sets of forward state metrics
for each transmitted information bit; (iii) in the backward traversal step, it computes K sets of
backward state metrics for each transmitted information bit; (iv) to compute the extrinsic LLRs
(Le), the BCJR algorithm then combines the forward and backward state metrics. The Ls, Lp,
L′p vectors of LLRs correspond to the decoder input l split into 3 sub-sets.

Algorithm 1.2: Pseudo-code of the BCJR decoding algorithm.
1 for k = 0; k < K; k = k+ 1 do . (i) parallel loop
2 γk ← computeGamma(Lks , Lkp, Lka)

3 α0 ← initAlpha()
4 for k = 1; k < K; k = k+ 1 do . (ii) sequential loop
5 αk ← computeAlpha(αk−1,γk−1)

6 βK−1 ← initBeta()
7 for k = K− 2; k > 0; k = k− 1 do . (iii) sequential loop
8 βk ← computeBeta(βk+1,γk)

9 for k = 0; k < K; k = k+ 1 do . (iv) parallel loop
10 Lke ← computeExtrinsic(αk,βk,γk, Lks , Lka)

Algorithm 1.2 summarizes the previously enumerated steps in a pseudo-code. γ are the values
of the trellis branches, α are the values of the nodes in the forward traversal of the trellis and β
are the values of the nodes in the backward traversal of the trellis.

D0 D1 D2

p(c2)

u

u (c1)

D ′
0 D ′

1 D ′
2

p ′(c3)
Π

u ′

Sk0

Sk1

Sk2

Sk3

Sk4

Sk5

Sk6

Sk7

Sk+1
0

Sk+1
1

Sk+1
2

Sk+1
3

Sk+1
4

Sk+1
5

Sk+1
6

Sk+1
7

0

1

Figure 1.13 – Turbo LTE encoder and its associated 8-state trellis. g(1) = (13)8, g(2) = (15)8.

In this thesis, we focus on the turbo codes of the LTE standard [ETS13] (3G and 4G mobile

20

1.3. Channel Codes

networks). Figure 1.13 gives the definition of one LTE turbo encoder. This encoder leads to an
8-state trellis. In the next sections and chapters, this LTE trellis is always considered.

Branch-metric Computations Let Sk+1
j be the jth state associated with information bit

k + 1 and j ∈ {0, 7}. There are two incoming branches into state Sk+1
j . Each incoming branch

is associated with values uk and pk, the kth information bit and the parity bit (both ±1),
respectively. The branch metrics associated with states Ski and Sk+1

j are computed as follows:

γ(Ski , S
k+1
j) = 0.5(Lks + L

k
a)u

k + 0.5(Lkpp
k). (1.8)

Lks and Lka are the systematic channel LLR and the a priori LLR for kth trellis step, respectively.
In the BCJR SISO decoder 1, the Ls, Lp and La vectors of LLRs are considered in the natural
domain while in the BCJR SISO decoder 2, the L′s, L′p and L′a LLRs are used instead in the
interleaved domain. However, the computations in the natural and in the interleaved domain are
similar. That is the reason why only the operations in the natural domain are described here.
Note that it is not necessary to evaluate the branch metric γ(sk, sk+1) for all 16 possible branches,
as there are only four different branch metrics: γk0 = 0.5(Lks + Lka + Lkp), γk1 = 0.5(Lks + Lka − Lkp),
−γk0 , and −γk1 .

Forward and Backward State-metric Computations The forward state metrics have to
be computed recursively from trellis step to trellis step. The forward state metrics of step k+ 1
correspond to the vector αk+1 = [αk+1

0 , ..., αk+1
7], where the jth forward state metric αk+1

j only
depends on two forward state metrics of stage k. These state metrics are computed as:

αk+1
j = max*

iεF
(αki + γ(S

k
i , S

k+1
j)), (1.9)

where the set F contains the two indexes of the states in step k connected to state Sk+1
j (as

defined by the trellis). The max* operator can be expressed as follow:

max*(a, b) = max(a, b) + log(1+ exp(−|a− b|)), (1.10)

where log(1+ exp(−|a− b|)) is a correction term. Computations of the backward state metrics
are similar to that of the forward trellis traversal in Equation 1.9. The vector of backward state
metrics, denoted by βk = [βk0 , ..., β

k
7], is computed as:

βkj = max*
iεB

(βk+1
i + γ(Skj , S

k+1
i)), (1.11)

where B is the set containing the indexes of states in step k+ 1 connected to state Skj as defined
by the trellis.

Extrinsic LLR Computations After the forward and backward recursions have been carried
out, the extrinsic LLRs for the kth bit are computed as follow:

Lke = max*
{Sk,Sk+1}εU1

(
αki + β

k+1
j + γ(Ski , S

k+1
j)

)

− max*
{Sk,Sk+1}εU−1

(
αki + β

k+1
j + γ(Ski , S

k+1
j)

)

−Lks − L
k
a,

(1.12)

21

1.4. Applicative Contexts

where the sets U1 and U−1 designate the set of states connected by paths where uk = 1 and the
set of states connected by paths where uk = −1 (BPSK mapping), respectively.

Approximation of the MAP Operations in the BCJR Decoder The max* operator of
the MAP algorithm is compute intensive, mainly due to the logarithm and exponential functions
in the correction term. It can be approximated as follow: max*(a, b) ≈ max(a, b). The correction
term is simply removed. This approximation is called the max-log-MAP algorithm (ML-MAP).
Its low computational complexity makes efficient software and hardware implementations possible.
However, the ML-MAP algorithm can negatively affect the decoding performance. Yet, it is
possible to partially recover the error-rate performance loss by scaling the extrinsic LLRs in the
turbo decoder by a factor α. This version is called the Enhanced max-log-MAP (EML-MAP)
algorithm [VF00, Stu+11].

1.4 Applicative Contexts

In the previous section, three channel code families have been presented. In this thesis we
focus on software implementations of the previously introduced channel decoders. These decoders
can be used in different applicative contexts such as simulations or in real-time systems for
instance. This section describes the different applicative contexts that will be considered all along
the manuscript.

1.4.1 Functional Simulation

There are many possible coding schemes with different characteristics. The previous section
introduced several families of FEC codes that are present in most of common standards. Before
they were standardized, these codes have been evaluated and compared. The codes can be applied
in a infinity of different ways. For each coding scheme, many different decoding algorithms can be
implemented. It is then mandatory to be able to evaluate and compare the BER/FER decoding
performance of selected decoders with each others before implementing them in real systems. To
this purpose, the channel coding designers use functional simulation. On an AWGN channel,
depending on the channel code, it is possible to predict with varying degrees of computational
effort the BER/FER decoding performance of a digital communication system. For simple channel
codes like BCH, RS and convolutional codes it is possible to analytically evaluate the performance
while for more complex codes like LDPC, turbo and polar codes it becomes more difficult to use
direct methods. The solution is then to resort to a compute intensive Monte Carlo simulation
of the digital communication system. The idea is to evaluate the performance of the system by
generating many random frames and applying random noise samples on these frames, the noisy
frames are decoded and the output sequence of bit û is compared with the initial information bits
u. The error count is then used to update the BER/FER value until they reach a stable value.

Figure 1.14a describes a simulation sequence similar to the digital communication chain
presented in Figure 1.1. The only difference is that the sink block has been replaced by what we
call a monitor. The monitor, unlike the sink, knows the K output information bits from the source
(u). The C, K and N parameters define the type of code/decoder, the number of information
bits and the codeword size, respectively. These parameters have a direct impact on the selection
of the channel encoder and the channel decoder blocks in the simulation. Figure 1.14b shows
the BER output of the resulting simulation. The m, M and s parameters enable to control the

22

1.4. Applicative Contexts

Source Channel
Encoder

Digital
Modulator

Channel

Digital
Demodulator

Channel
DecoderMonitor

K N

NK

C

K

N

m

M

s

C = {Polar,
LDPC, Turbo, ...}

(a) Specification of the simulation chain.

Simulation

C

K

N

m

M

s

Eb/N0

1.0m

2.0

3.0

4.0M

s

BER

9.23 × 10−2

7.05 × 10−2

2.43 × 10−2

2.93 × 10−4

(b) Input simulation parameters and output BER results.

Figure 1.14 – Description of a digital communication system simulation.

AWGN channel noise. m is the minimum SNR value to simulate in the channel, while M is the
maximum SNR value. s is the SNR step between two SNR values.

As an illustration, Figure 1.15 presents BER and FER decoding performances estimated with
Monte Carlo simulations on a large variety of code families and decoding parameters. On each
graphic, the BER is plotted with solid lines while the FER is plotted with dashed lines. Both
the BER and the FER depend on the SNR (Eb/N0). The higher the SNR is, the lower the
noise is and therefore the number of errors. In Figure 1.15a, for instance, on the same LDPC
code (N = 648 and K = 540) and considering a 5.0 dB SNR, the configuration 2 of the decoder
achieves better decoding performance than the configuration 1 because the green curve is below
the orange curve. In other terms, lower is better. When multiple configurations are shown
together, they are ordered by increasing BER/FER performance. This is achieved at the cost of
a higher computational effort during the decoding process compared to the first configuration.
The purpose of Figure 1.15 is not to compare codes with each others but to introduce the typical
BER/FER curves that will be used in the next chapters. It shows that there is a large set of
possible combinations of codes and decoding configurations.

23

1.4. Applicative Contexts

2 2.5 3 3.5 4 4.5 5

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

LDPC (648, 540) BER FER

Dec. Config. 1

Dec. Config. 2

(a) LDPC code (R = 5/6).

0 0.2 0.4 0.6 0.8 1

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

Turbo (18444, 6144) BER FER

Dec. Config. 1

Dec. Config. 2

(b) Turbo code (R ≈ 1/3).

1.5 2 2.5 3 3.5 4 4.5

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

Polar (2048, 1723) BER FER

Dec. Config. 1

Dec. Config. 2

(c) Polar code (R ≈ 0.84).

2.4 2.6 2.8 3 3.2 3.4

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

TPC (16384, 12769) BER FER

Dec. Config. 1

Dec. Config. 2

(d) Turbo product code (R ≈ 0.78).

0 1 2 3 4 5 6 7 8

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

BCH (511, 475) BER FER

Dec. Config. 1

RS (2040, 1896) BER FER

Dec. Config. 1

(e) Algebraic codes (R ≈ 0.93).

0 1 2 3 4 5 6 7 8

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

Eb/N0 (dB)

B
it

an
d

Fr
am

e
E

rr
or

R
at

e

RSC (262,128) BER FER

Dec. Config. 1

RSC (2054,1024) BER FER

Dec. Config. 1

(f) Convolutional codes (R ≈ 1/2).

Figure 1.15 – BER and FER simulation results on various code families and decoder configurations.
Lower is better. The codes are given in the (N,K) form.

24

1.4. Applicative Contexts

1.4.2 Software-defined Radio

A Software-Defined Radio (SDR) is a radio communication system where components tradi-
tionally implemented in hardware are instead implemented by means of software. The concept
was first introduced by Joseph Mitola in 1992 [Mit92, Mit93]. Since then, SDR systems have
been used in various contexts such as military needs or amateur radio for instance. Recently, the
SDR is considered a good candidate for the 5G wireless mobile network and more generally in
cloud radio access networks. This is detailed in the next paragraphs.

A cellular network or mobile network is a communication network where the last link is
wireless. The principle of mobile networks is to divide the territory into zones called “cells”.
Each cell is associated to a base station and a number of frequency channels to communicate
with mobile terminals. Each base station is connected to the networks handling voice calls, text
messages and data transfers. As standards evolve, the structure of mobile networks changes in
order to increase throughput and latency performance and also the number of connected terminals.
The objective is to cope with the exponential growth of terminals.

RF BB

RF BB

RF BB

Base station

(a) Early base station.

RF

BB
RF BB

RF

BB

40 km

BB station

(b) BB and RF processing separation.

RF

RF

RF

BB

Cloud

(c) C-RAN.

Figure 1.16 – Base stations evolution in mobile networks.

In the two first generations of mobile networks (1G and 2G), all the signal processing was
treated in the base station near the antenna (see Figure 1.16a). Since the third generation
of mobile networks (3G) two types of processing have been separated: 1) the radio frequency
(RF) processing on the one side and 2) the base band (BB) processing on the other side. The
RF processing is attached to the antenna while the BB processing is shared among multiple
antennas (see Figure 1.16b). The range of this type of station is approximately 40 kilometers.
The connexions between the antennas and the BB station are made through wired links. The
RF processing mainly converts the analog signal into a digital one (or the other way around)
while the BB station performs all the digital processing including the encoding/decoding and the
digital modulation/demodulation. The purpose of separation of the RF and BB processing is to
be able to put the BB stations near the urban centers and so to reduce their cost of maintenance.

The virtualization of the mobile network is considered by industrial actors [Hua13, Eri15] and
academic ones [Wub+14, Ros+14, Che+15] as a promising evolution. This is also known as the
Cloud Radio Access Network (C-RAN): it is proposed for a part of the processing traditionally
made in the base stations. In this network structure, the computational hardware resources of
the BB processing are shared between multiple antennas (see Figure 1.16c). This enables new
optimizations: 1) better adaptation to non-uniform traffic; 2) energy saving; 3) higher throughput
and lower latency; 4) scalability and maintainability increase [Che+15]. Thus, the computational
BB units have to be virtualized: there should no longer be hardware dedicated to specific antenna.
Contrariwise, the BB computational effort has to be distributed at the cloud level.

25

1.4. Applicative Contexts

From the first to the fourth generation of mobile networks, the BB processing was systematically
made on Application-Specific Integrated Circuits (ASICs or dedicated hardware). However, with
the emergence of the C-RAN more flexible solutions like the software ones are seriously considered.
On the receiver side, the algorithms can be compute intensive (especially the digital demodulation
and the channel decoding). Knowing that, a main challenge is to be able to achieve high
throughput and low latency software implementations as well as flexible ones [Nik15, RG17].

1.4.3 Sparse Code Multiple Access

Non-Orthogonal Multiple Access (NOMA) mechanisms are investigated as means to improve
the fifth-generation mobile communication systems (5G) [Isl+17] to support massive connectivity
and to reduce bit error rates. Sparse Code Multiple Access (SCMA) is a NOMA mechanism
that offers better bit error rate performance and higher spectral efficiency, while the sparsity
of the codebooks ensures a lower complexity of decoding compared to other non-orthogonal
modulations [NB13]. SCMA is a promising candidate for 5G communication systems since it
provides up to 3 times more connectivity by spreading the information of each user’s codebook over
sets of shared Orthogonal Frequency-Division Multiplexing (OFDM) [Alt15a]. According to the
NGMN white paper [NGM15], 5G targets more diverse scenarios compared to 4G. Applications
can be broadband support in dense areas, low latency connectivity for Augmented Reality
(AR) and reliable communication for intelligent industrial controls, Internet of Things (IoT)
or Internet of Mission Critical Things (IoMCT). Unfortunately, the massive connectivity and
spectral efficiency of SCMA come at the cost of high complexity in the decoder, making the
design of high throughput and low complexity decoders a challenge [Lu+15]. In this thesis, we
propose to study the SCMA system as it is usually combined with the channel code families
presented before. It is introduced in this section and revised later in light of the needs of Cloud
Radio Access Networks (C-RANs).

1.4.3.1 Overview of the System Model

In this section, scalar, vector and matrix are presented as x, x, X respectively. The nth

element of a vector denoted by xn and Xn,m is the element of nth row and mth column of matrix
X. Notation diag(x) shows a diagonal matrix where its n’th diagonal element is xn. In addition,
the transpose of a matrix is expressed as XT .

An SCMA encoder with J users (layers) and K physical resources is a function that maps a
binary stream of data to K-dimensional complex constellations f : Blog2(M) → X, x = f(b) where
X ⊂ Ck. The K-dimensional complex codeword x is a sparse vector with N < K non-zero entries.
Each layer j = 1, ..., J has its own codebook to generate the desired codeword according to the
binary input stream. Figure 1.17 shows the SCMA uplink chain with J = 6, K = 4 and N = 2.
SCMA codewords are spread over K physical resources, such as OFDM tones. Figure 1.17a shows
that in the multiplexed scheme of SCMA, all chosen codewords of the J layers are added together
after being multiplied by the channel coefficient hj. Then, the entire uplink chain is shown in
Figure 1.17b. The output of the SCMA encoder is altered by a white additive noise n:

y =

J∑
j=1

diag(hj)xj + n, (1.13)

where xj = (x1, ..., xKj)T and hj = (h1, ..., hKj)T are respectively codeword and channel coefficients

26

1.4. Applicative Contexts

+ + + + + →

h1 h2 h3 h4 h5 h6

Users chosen
codewords

UE1 CB UE2 CB UE3 CB UE4 CB UE5 CB UE6 CB

(a) SCMA encoder with 6 users (layers) and 4 physical resources.

UEJ bit stream

UE2 bit stream

UE1 bit stream

Channel enc.

Channel enc.

Channel enc.

SCMA enc.

SCMA enc.

SCMA enc.

xj

x2

x1

+

n P
R

E
d
em

a
p
p
in

g

S
C

M
A

d
eco

d
er

Channel dec.

Channel dec.

Channel dec.

UEJ bit stream

UE2 bit stream

UE1 bit stream

SCMA encoding SCMA decoding

hj

h2

h1

(b) SCMA uplink chain with channel coding.

UE1

UE2

UE3

UE4

UE5

UE6

RES1

RES2

RES3

RES4

(c) Factor graph repre-
sentation of a decoder.

UE1

UE2

UE3

UE4

UE5

UE6

RES1

RES2

RES3

RES4

(I) UE1

UE2

UE3

UE4

UE5

UE6

RES1

RES2

RES3

RES4

(II) UE1

UE2

UE3

UE4

UE5

UE6

RES1

RES2

RES3

RES4

(III)

(d) Message Passing Algorithm based on Bayesian factor graph:
(I) Resource to user message, (II) Guess swap at each user and user
to resource message, (III) Final guess at each user.

Figure 1.17 – SCMA system model, encoding and decoding schemes.

of layer j. Considering the digital communication chain presented in Figure 1.1 the SCMA encoder
can be seen as a digital modulator and the SCMA decoder can be seen as a digital demodulator.

1.4.3.2 Message Passing Algorithm Decoding Scheme

Exploiting sparsity of the codebooks, Message Passing Algorithm (MPA) decoders were intro-
duced to achieve very good decoding performance with lower complexity [Zha+14a]. Figure 1.17c
shows a Bayesian factor graph representation of an MPA decoder with six users and four physical
resources. Thanks to the sparsity of the codebooks, exactly three users collide in each physical
resource. There are four possible codewords for each of the three connected user’s codebooks,
which gives 64 possible combined codewords in each physical resource.

In the first step of the MPA, the 64 distances between each possible combined codeword and
the actual received codeword are calculated:

dRESβ(m,H) = ||yβ −
∑
hl,mu

xl,mu
||

l⊂ζ,mu∈{1,...,K}
, (1.14)

where ζ is the set of users connected to resource β and the considered codeword is denoted

27

1.4. Applicative Contexts

as m. Assuming perfect channel estimation and Gaussian noise, these Euclidean distances can be
expressed as probabilities using (1.15):

Ψ(dRESβ) = exp

−

d2RESβ

2σ2

. (1.15)

After calculating the residual probability of each codeword with (1.15), iterative MPA starts
exchanging beliefs on possible received codewords among the users and resources nodes of the
factor-graph. According to Figure 1.17d (I), a message from resources to users has been defined
to contain extrinsic information of two other connected users. For instance, a message from
resource 4 to user 2 containing the probability information of codeword i can be expressed as:

µRES4→UE2(i) =
4∑
j=1

4∑
i=1

Ψ

(
dRES4(i, j, k,H)

)
× µUE4→RES4(j)× µUE5→RES4(k). (1.16)

As shown in Figure 1.17d(II) there are only two resources connected to each user. A message
from a user to a resource is a normalized guess swap at the user node:

µUE3→RES1(i) =
µRES3→UE3(i)∑
i µRES3→UE3(i)

. (1.17)

Message passing between users and resources (see (1.16) and (1.17)) will be repeated three to
eight times to reach the desired decoding performance. The final belief at each user B(i) is the
multiplication of all incoming messages as illustrated in Figure 1.17d(III) and (1.18) for UE3 and
codeword i. Finally, (1.19) is used to calculate soft outputs for x̂:

B3(i) = µRES1→UE3(i)× µRES3→UE3(i), (1.18)

x̂ = ln

P(y|bx = 0)
P(y|bx = 1)

 = ln

∑
m Bm(i) when bx=0∑
m Bm(i) when bx=1

. (1.19)

Log-MPA Since calculation of exponentials in (1.15) requires relatively high computational
effort, changing the algorithm to logarithmic domain simplifies (1.16) in:

µRES1→UE5(i) = max

−

d2RES1(i, j, k,H)

2σ2

j,k=1,...,4

+ µUE2→RES1(j) + µUE3→RES1(k), (1.20)

due to elimination of exponential’s high dynamic ranges, there is no need to normalize the guess
swap and µUE3→RES1(i) = µRES3→UE3(i). The rest of the algorithm can be expressed as follows:

B3(i) = µRES3→UE3(i) + µRES1→UE3(i), (1.21)

x̂ = max
i

(Bm(i)) when bx=0 −max
i

(Bm(i)) when bx=1. (1.22)

28

1.5. Problematics

Estimated-MPA (E-MPA) Computation of the exponentials in (1.15) is one of the most
important bottlenecks of the MPA algorithm. It is possible to further accelerate the computation
by using proper estimations. The exact exponential computation is not essential to produce a
satisfying estimation in the MPA algorithms. Considering that (1.15) represents a Gaussian PDF,
it can be replaced by sub-optimal bell-shaped polynomial distributions to model the noise. It will
be shown in Section 4.5.2 that using a polynomial estimation can increase the throughput while
leading to marginal bit error rate degradation after the MPA decoding. However, these estimated
probabilities cause small degradations of the FER performance after the channel decoding. The
proposed PDF must satisfy two conditions to be valid: 1) it must be positive and lower bounded
at zero, 2) its integral over (−∞,∞) must be equal to 1. The following function is suggested to
estimate the exponentials:

Ψ
′
dRESβ

=
2/π

2σ2 + 4d4RESβ
. (1.23)

The computation of Ψ ′ is faster than the original Ψ [Gha+17, 2]. The probabilities produced
using (1.15) and (1.23) are normalized according to (1.17). Furthermore, the numerator 2/π does
not play an important role in MPA and can be uniformly eliminated from all calculations to
reduce the computational effort. Thus,

Ψ
′
dRESβ

≈ 1
2σ2 + 4d4RESβ

, (1.24)

can be used as a systematic replacement to the exponential calculations.

1.5 Problematics

On the eve of the 5G mobile communication generation, the challenge is now to design
communication systems able to transmit huge amounts of data in a short time, at a small energy
cost, in a wide variety of environments. Researchers work at refining existing coding schemes
further, to get low residual error rates with fast, flexible, low complexity decoding processes.

Functional Simulation The validation of a coding scheme requires to estimate its error rate
performance. Usually, no simple mathematical model exists to predict such performance. The
only practical solution is to perform a Monte Carlo simulation of the whole chain. It means that
some data are randomly generated, encoded, modulated, noised, decoded, and the performance is
then estimated by measuring the Bit Error Rate (BER) and the Frame Error Rate (FER) at the
sink. This process has the advantage of being universal but it also leads to three main problems:

1. Simulation time: ∼ 100 erroneous frames have to be simulated to accurately estimate the
FER/BER. Thus, measuring a FER of 10−7 requires the simulation of the transmission of
∼ 100× 107 = 109 frames. Assuming a frame of 1000 bits, the simulator must then emulate
the transmission of 1012 bits. Keeping in mind that the decoding algorithm computational
complexity may be significant, several weeks or months may be required to accurately
estimate the FER/BER of a coding scheme (especially at low error rates).

2. Algorithmic heterogeneity: A large number of channel codes have been designed over
time. For each kind of code, several decoding configurations are possible. While it is
straightforward to describe a unique coding scheme, it is more challenging to have a unified

29

1.5. Problematics

software description that supports all the coding schemes and their associated algorithms.
This difficulty comes from the heterogeneity of the data structure necessary to describe a
channel code and the associated decoder: turbo codes are based on trellis schemes, LDPC
codes are well-defined on factor graphs and polar codes are efficiently decoded using binary
trees.

3. Reproducibility: It is usually tedious to reproduce results from the literature. This
can be explained by the large amount of empirical parameters necessary to define one
communication system, and the fact that not all of them are always reported in publications.
Moreover, the simulator source codes are rarely publicly available. Consequently, a large
amount of time is spent “reinventing the wheel” just to be able to compare to the state-of-
the-art results.

Software-defined Radio Moreover, the Software-Defined Radio (SDR) paradigm is now
considered in real communication systems. To match the real-time constraints, here are the main
challenges:

1. High throughput: New applications, like the video streaming, can be very data-intensive.
As a consequence, the compute intensive blocks of the transceiver have to be well optimized
to reach levels of performance comparable with the hardware implementations.

2. Low latency: Reaching high throughput is not always the major constraint, for instance,
in audio-conferencing applications it is uncomfortable to perceive a delay when people are
speaking.

3. Flexibility: The software implementations have to be able to adapt to various configu-
rations. For instance, when the SNR is changing, the code rate R of the decoder can be
switched on the fly.

4. Portability: The proposed solutions can be deployed on high-end servers as well as
on embedded low power systems. Moreover, many operating systems coexist, and it is
important to be able to support the most famous ones like Windows, macOS and Linux.

30

2 Optimization Strategies

This chapter focuses on optimization strategies dedicated to digital communication algorithms.
Our contributions are split in two parts: 1) generic strategies and 2) specific optimizations.
The two first sections describe the generic strategies we proposed to optimize the algorithms
of digital communication receivers. Vectorization is a key of efficient software implementations.
A specific wrapper library as well as a sub-set of generic parallelism levels are proposed. The
sections afterward are dedicated to the efficient software implementation of the algorithms for
digital communication receivers presented in the Chapter 1. In the last section, the proposed
contributions are summarized and discussed.

2.1 MIPP: A C++ Wrapper for SIMD Instructions 32
2.1.1 Low Level Interface . 32
2.1.2 Medium Level Interface . 33
2.1.3 Software Implementation Details . 34
2.1.4 Related Works . 35

2.2 Vectorization Strategies . 39
2.2.1 Intra-frame SIMD Strategy . 39
2.2.2 Inter-frame SIMD Strategy . 40
2.2.3 Intra-/inter-frame SIMD Strategy . 41

2.3 Efficient Functional Simulations . 41
2.3.1 Box-Muller Transform . 42
2.3.2 Quantizer . 43

2.4 LDPC Decoders . 45
2.4.1 Generic Belief Propagation Implementation 45
2.4.2 Specialized Belief Propagation Implementation 47

2.5 Polar Decoders . 47
2.5.1 Tree Pruning Strategy . 48
2.5.2 Polar Application Programming Interface 51
2.5.3 Successive Cancellation Decoders . 52
2.5.4 Successive Cancellation List Decoders 56

2.6 Turbo Decoders . 59
2.6.1 Inter-frame Parallelism on Multi-core CPUs 60
2.6.2 Software Implementation of the Turbo Decoder 61

2.7 SCMA Demodulators . 63
2.7.1 Flattening Matrices to Reduce Cache Misses and Branch Misses 63
2.7.2 Adapting the Algorithms to Improve Data-level Parallelism 63

2.8 Conclusion . 67

31

2.1. MIPP: A C++ Wrapper for SIMD Instructions

2.1 MIPP: A C++ Wrapper for SIMD Instructions

Recent articles have proposed several optimized software decoders, corresponding to different
channel codes: LDPC codes [LJ15, LJ16, LLJ18], polar codes [Gia+16, Sar+16, 4, 5, 3], turbo
codes [Zha+12, Wu+13, 6, LJ19]. All of these works show the possibility to reach a good level
of computing performance by making extensive use of SIMD (Single Instruction Multiple Data)
units. This is often achieved at the price of a reduced flexibility, by resorting to specific intrinsics,
or by making assumptions on the data types. However, these decoders should be implemented
in a single source code, in which the following parameters could be changed at runtime: the
channel code type, the decoding algorithm, the number of decoding iterations, the data format,
etc. Another important aspect is the portability of the source code on different processors (Intel®

x86, Xeon Phi™ KNL and ARM®) and the possibility to use different instruction sets (SSE, AVX,
AVX-512, NEON). These three constraints (performance, flexibility, portability) push towards
the use of a SIMD library that helps in the abstraction of the SIMD instruction sets, while still
allowing a fine grain tuning of performance.

As a foundation of the thesis work, we propose a new C++ SIMD library, covering the needs
in terms of expressiveness and of performance for the algorithms dedicated to channel codes. Our
contributions are:

— A portable and high performance C++ SIMD library called MIPP, for SSE, AVX, AVX-512
and NEON instruction sets;

— A comparison with other state-of-the-art SIMD libraries on a Mandelbrot code, demon-
strating that the code based on MIPP has similar performance as hand-written intrinsics.

In order to let the compiler inline library calls, which is critical for the intended SIMD programming
model purpose, such library are usually header-only. Thus, we refer to them as wrappers instead
of libraries. The MIPP programming model is built on top of intrinsics, enabling a good control
on performance, but still provides an abstraction on the basic types used in vectors (ranging from
double to byte) and complex operations (parametric reductions, log, exponential, ...).

The MyIntrinsics++ library (MIPP) is a portable wrapper for SIMD intrinsics written
in the C++ language. It relies on C++ compile-time template specialization techniques to replace
supported generic functions with inline calls to their intrinsics counterpart, for a given instruction
set. While MIPP is mostly written in C++98, it requires a C++11-compliant compiler due to the
use of convenient features such as the auto and using keywords. MIPP is open-source (under
the MIT license) and available on GitHub 1.

MIPP provides two application programming interface levels. The Low Level Interface (low)
implements a basic thin abstraction layer directly on top of the intrinsics. The medium level
interface (med.), built on top of MIPP low, abstracts away more details to lessen the effort from
the application programmer by relying on object encapsulation and operator overloading.

2.1.1 Low Level Interface

MIPP low is built around a unified mipp::reg type that abstracts vector registers. The
vector register type represents hardware registers independently of the data type of the vector
elements. MIPP uses the longest native vector length available on the architecture. This design
choice preserves programmer flexibility, for instance in situations such as mixing fixed-point
and floating-point operations. MIPP also defines a mask register type mipp::msk, which either

1. MIPP repository: https://github.com/aff3ct/MIPP

32

https://github.com/aff3ct/MIPP

2.1. MIPP: A C++ Wrapper for SIMD Instructions

directly maps to real hardware masks on instruction sets that support it (such as AVX-512), or
to simple vector registers otherwise.

MIPP low defines a set of functions working with mipp::reg and mipp::msk. This set is
organized into eight families: memory accesses, shuffles, bitwise boolean arithmetic, integer
operations, float. operations, mathematical functions, reductions, and mask operations.

In the AVX-512 instruction set, one regular vector operation plus one masking operation can be
performed in a single CPU clock cycle. For instance, the following instruction "m ? a+b : src"
performs an addition and a masking operation:

__m512 _mm512_mask_add_ps(__m512 src, __mmask16 m, __m512 a, __m512 b);

MIPP natively supports such operations with the mipp::mask function. The previous example
becomes in MIPP:

mipp::mask<float,mipp::add<float>>(m, src, a, b);

For instruction sets without masking support, the mipp::mask call is expanded as an operation
and a blend instead.

2.1.2 Medium Level Interface

1 template <typename T>
2 class Reg
3 {
4 // the register type from the MIPP low interface
5 mipp::reg r;
6 // a simple class constructor encapsulates the load instruction
7 Reg(const T *ptr) : r(mipp::load<T>(ptr)) {}
8 // the definition of the 'add' method
9 inline Reg<T> add(const Reg<T> r) const {

10 return mipp::add<T>(r,r.r);
11 }
12 // overriding of the '+' operator using the previously defined 'add' method
13 inline Reg<T> operator+(const Reg<T> r) const {
14 return this->add(r);
15 }
16 /* ... */
17 };

Listing 2.1 – Medium level interface encapsulation.

The MIPP medium level interface (MIPP med.) provides additional expressiveness to the
programmer. mipp::reg and mipp::msk basic types are encapsulated in mipp::Reg<T> and
mipp::Msk<N> objects, respectively. The T and N template parameters correspond to the type
and the number of elements inside the vector register and the mask register, respectively. In
these registers, objects are typed, unlike in the MIPP low register basic type. This avoids to
write the type when a MIPP function is called. The function type can then be directly selected
from the parameter type. Listing 2.1 illustrates the template-based encapsulation, which enables
MIPP to override common arithmetic and comparison operators.

33

2.1. MIPP: A C++ Wrapper for SIMD Instructions

MIPP med. also simplifies register loading and initialization operations. The constructor of
the mipp::Reg object calls the mipp::load function automatically. Thus, a load in MIPP low:

mipp::reg a = mipp::load<float>(aligned_ptr);

can be simplified into:

mipp::Reg<float> a = aligned_ptr;

with MIPP med. level. An initializer list can be used with a MIPP med. vector register:

mipp::Reg<float> a = {1.f, 2.f, 3.f, 4.f};

Likewise, a scalar assigned to a vector sets all elements to this value.

2.1.3 Software Implementation Details

MIPP targets SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, FMA3, KNCI, AVX-512F
and AVX-512BW instruction sets on Intel® x86 and related architectures, as well as NEON,
NEONv2, NEON64 and NEON64v2 on ARM®. It can easily be extended to other instruction
sets. MIPP selects the most recent instruction set available at compile time. For instance, a code
compiled with the -march=avx flag of the GNU GCC compiler uses AVX instructions even if the
architecture supports SSE as well. The vector register size is determined by the instruction set
and the data type. A dedicated function returns the number of elements in a MIPP register:

constexpr int n = mipp::nElmtsPerRegister<T>();

A shortened version of this previous function is also defined as: mipp::N<T>(). Whenever
vectorization takes place in loops, MIPP’s philosophy is to change the stride of the loop from one
to the size of registers. The stride can be statically determined with the mipp::N<T>() function.
If the loop size is not a multiple of the register size, 1) a sequential tail loop can be implemented
to compute the remaining elements, 2) the padding technique can be implemented to force the
loop size to be a multiple of the vector registers. When the instruction set cannot be determined,
MIPP med. falls back on sequential instructions. In this case, MIPP does not use any intrinsic
anymore. However, the compiler vectorizer still remains effective. This mode can also be selected
by the programmer with the MIPP_NO_INTRINSICS macro.

MIPP supports the following data types: double, float, int64_t, int32_t, int16_t and
int8_t. It also supplies an aligned memory allocator, that can be used with types such as the
std::vector<T,A> vector container from the C++ standard library (where T is the vector element
type and A the allocator). The alignment requirements are not guaranteed by the default C++
memory allocator. The MIPP memory allocator can be used as follows:

std::vector<T,mipp::allocator> aligned_data;

and shortened like this: mipp::vector<T> aligned_data.

34

2.1. MIPP: A C++ Wrapper for SIMD Instructions

MIPP comes with a comprehensive unitary test suite to validate new instruction set ports
and new feature implementations. It has successfully been tested with the following minimum
compiler versions: g++-4.8, clang++-3.6, icpc15 and msvc14.0.

MIPP implements a generic reduction operator based on a reduction tree, which would be
tedious to write by the application programmer, due to the sequence of heterogeneous shuffle
instructions it implies. The computational complexity of this algorithm is O(log2(N)), with
N the number of elements in a register. It can operate on mipp::reg, mipp::Reg<T> and
std::vector<T>. It can also work on dynamically allocated arrays. It provides the length of the
array that is a multiple of the vector register size. Since the function passed to the reduction
operator is resolved at the compile time, the code remains efficient. Any function with the
following prototype can be used as the reduction function:

mipp::Reg<T> func(mipp::Reg<T>, mipp::Reg<T>);

E.g., the code below computes the smallest element in a register:

mipp::Reg<float> r = {4.f, 2.f, 1.f, 3.f};
float min = mipp::Reduction<mipp::min>::sapply(r);

The min scalar variable will be assigned 1.f as the result. For convenience, a set of functions is
predefined, based on this generic reduction feature: hadd, hsub, hmul and hdiv.

2.1.4 Related Works

Many SIMD programming solutions to take advantage of conventional instruction sets have
been surveyed in [Poh+16]. The existing alternatives can be decomposed into three main models:
1) intrinsics or assembly code; 2) dedicated language; 3) dedicated library. The intrinsics or
assembly approaches are non-portable. Low-level solutions target specific architectures. They
offer maximum control to take advantage of instruction set specificities, and to fine tune register
usage. However, it is quite difficult to develop and maintain a low-level code in the long run.
Some languages have been designed to provide programmers with SIMD programming constructs.
Many of them are based on general purpose languages extended with some kinds of annotation
mechanism (e.g. pragmas) such as OpenMP [Ope13], Cilk Plus [Rob13] or ispc [PM12]. They
offer higher expressiveness, better portability and generally more readable code, at the expense
of less programmer control, and vectorization performance. More specialized languages, such as
OpenCL [How15], enable the programmer to retain more control, as the counterpart of writing
some more specific code. In our study, the focus is given to the library approach since the main
objectives are to maximize performance, maximize portability and deal with existing C++ codes.

2.1.4.1 C++ SIMD Wrappers

This section and the next one propose to compare different SIMD wrappers of the state-of-the-
art. This comparison has been made in 2018 when we wrote a paper dedicated to MIPP [7]. Be
aware that the features of the other wrappers presented here could have evolved since that time.

Table 2.1 and Table 2.2 compare various SIMD wrappers. Table 2.1 is focusing on the general
features while Table 2.2 is targeting the supported instruction sets and data types. They aim to

35

2.1. MIPP: A C++ Wrapper for SIMD Instructions

present an overview of some prominent solutions, although they are by no means exhaustive due
to the richness of the SIMD wrapper landscape. Some of the wrappers presented, such as MIPP,
Vc, Boost.SIMD, VCL and T-SIMD, have been designed in an academic research context.

Table 2.1 – Comparison of various SIMD wrappers: General Information and Features.

General Information Features

Name Ref. Start License Math C++ Test
Year Func. Technique Suite

MIPP [7] 2013 MIT 3 Op. overload. 3

VCL [Fog17] 2012 GNU GPL 3 Op. overload. N/A
simdpp [Kan17] 2013 Boost Software 7 Expr. templ. 3

T-SIMD [Möl16] 2016 Open-source 7 Op. overload. N/A
Vc [KL12] 2012 BSD-3-Clause 3 Op. overload. 3

xsimd [Mab17] 2014 BSD-3-Clause 3 Op. overload. N/A
Boost.SIMD [Est+12b] 2012 Boost Software 3 Expr. templ. 3

bSIMD [Est+12a] 2017 Non-free 3 Expr. templ. 3

Table 2.2 – Comparison of various SIMD wrappers: Supported ISA and Data Type.

Name
Instruction Set Data Type

SSE AVX AVX512 NEON AltiV. Float Integer
128-bit 256-bit 512-bit 128-bit 128-bit 64 32 64 32 16 8

MIPP 3 3 3 3 7 3 3 3 3 3 3

VCL 3 3 3 7 7 3 3 3 3 3 3

simdpp 3 3 3 3 3 3 3 3 3 3 3

T-SIMD 3 3 7 3 7 7 3 7 3 3 3

Vc 3 3 7 7 7 3 3 3 3 3 7

xsimd 3 3 7 7 7 3 3 3 3 7 7

Boost.SIMD 3 7 7 7 7 3 3 3 3 3 3

bSIMD 3 3 3 3 3 3 3 3 3 3 3

Some others, simdpp and xsimd, appear to be standalone development efforts by individual
programmers or maintainers. Proprietary, closed-source solutions also exist on the market, such
as bSIMD, which is an extended version of Boost.SIMD, or the commercial version of VCL. The
Instruction Set column is broken up into five families among the most widely available on the
market: NEON, SSE, AVX, AVX-512 and AltiVec. For the sake of conciseness, we choose not to
list all the instruction sets “sub-variants” (such as SSE2, SSE3, etc). simdpp et bSIMD propose
the most comprehensive instruction set compatibility. At the other end of the range, xsimd and
Boost.SIMD only support Intel® SIMD instruction sets. The Data Type column of the table
summarizes the supported vector element types and precisions. In their public version, and at
the time of writing, Vc does not support 8-bit integers, xsimd does not support 8-bit and 16-bit
integers and T-SIMD does not support 64-bit data types, to the best of our knowledge. The
Features column highlights some additional characteristics. The Math Func. column indicates
which wrapper supports additional mathematical sub-routines, not necessarily available as native
CPU instructions (exponential, logarithm, trigonometric functions for instance). These sub-
routines are required by algorithms such as the Box-Muller Transform (see Section 2.3.1). The C++
Technique column indicates whether the wrapper is designed as an expression template framework,
or whether it relies on operator overloading techniques. The expression template feature is a

36

2.1. MIPP: A C++ Wrapper for SIMD Instructions

powerful technique to automatically drive the rewriting of whole arithmetic expressions into SIMD
hardware instructions or instruction sequences. For instance if the user writes d = a * b + c,
the wrapper can automatically match a fused multiply and add instruction (FMA). Boost.SIMD
and bSIMD extensively take advantage of this technique [Est+12b, Est+12a]. The drawbacks
are that the source code complexity of the wrapper dramatically increases. Boost.SIMD and
bSIMD have a dependency on the Boost framework to build, and currently available C++ compilers
produce huge amounts of arcane error messages at the slightest mistake in the end user program.
For these reasons, we decided not to base MIPP on the expression template technique. As
mentioned in Section 2.1.3, maintaining SIMD wrappers, and porting them to new instruction
sets is error prone by nature, due to the large number of routines, cryptic intrinsics names, and
specific instruction set details. A comprehensive testing suite is therefore critical to validate new
development, optimizations and ports on new instruction sets. This is why MIPP, as well as Vc,
Boost.SIMD, simdpp and bSIMD come with their own test suites. We have not found similar
test suites in the software distributions of VCL, xsimd and T-SIMD. However, test suites might
be in use internally, within the development teams of these wrappers.

2.1.4.2 Experimentation Platforms

Table 2.3 – Specifications of the target processors.

Name Exynos5422 RK3399 Core™ i5-5300U Xeon Phi™ 7230
Year 2014 2016 2015 2016

Vendor Samsung® Rockchip® Intel® Intel®

Arch. ARMv7 ARMv8 Broadwell Knights
Cortex-A15 Cortex-A72 Landing

Cores/Freq. 4/2.0 GHz 2/1.6 GHz 2/2.3 GHz 64/1.3 GHz
LLC 2 MB L2 1 MB L2 3 MB L3 32MB L2
TDP ∼4 W ∼2 W 15 W 215 W

Four different architectures are considered for performance results as summarized in Table 2.3.
The Cortex-A15 is used to evaluate the NEON instruction set in 32-bit. The Cortex-A72 is
used to evaluate the 64-bit NEON instructions for Figure 2.1. The Core™ i5 is used for both
SSE and AVX benchmarks. The Xeon Phi™ is used for AVX-512 instructions. Source codes
are compiled with the GNU C++ 5 compiler using the common flags: -O3 -funroll-loops. The
additional architecture specific flags are: 1) -march=armv7-a -mfpu=neon-vfpv4 on Cortex-A15,
2) -march=armv8-a on Cortex-A72, 3) -msse4.2 for SSE or -mavx2 -mfma for AVX on Core™ i5,
4) -mavx512f -mfma on Xeon Phi™. All experiments have been performed in single-threaded. All
studied problem sizes fit into the last level cache (LLC) of CPUs. The references for the speedup
computations are always sequential versions of the SIMD codes. Those reference versions can be
auto-vectorized by the compiler, thus a reference version is compiled for each SIMD ISA.

2.1.4.3 Qualitative and Quantitative Comparisons

We now compare MIPP with the open-source wrappers presented above, both qualitatively
for our error correction code purpose, and quantitatively on a well known benchmark. The
computation of the Mandelbrot set is selected as the benchmark. It prevents as much as possible
the risk of unfairness of the port on each wrapper. This problem is compute-bound. The
chosen implementation relies on a floating-point representation (available online 2). Figure 2.1

2. Mandelbrot set source code: https://gitlab.inria.fr/acassagn/mandelbrot

37

https://gitlab.inria.fr/acassagn/mandelbrot

2.1. MIPP: A C++ Wrapper for SIMD Instructions

Intrinsics

M
IPP

low

M
IPP

med.

VCL
simdpp

T-SIM
D

Vc xsimd
Boost.SIM

D

0

2

4

6

8

10

12

14

Sp
ee

ed
up

NEON
SSE

AVX
AVX-512

(a) Float 32-bit

Intrinsics

M
IPP

low

M
IPP

med.

VCL
simdpp

T-SIM
D

Vc xsimd
Boost.SIM

D

0

1

2

3

4

5

6

Sp
ee

ed
up

(b) Float 64-bit

Figure 2.1 – Speedups over the Mandelbrot naive auto-vectorized implementation.

presents the speedups obtained on various instruction sets on single-precision floating-point
format (see Figure 2.1a) and on double-precision floating-point format (see Figure 2.1b). SSE
stands for SSE4.2, NEON stands for NEONv2 (includes the FMA instructions), AVX stands
for AVX2+FMA3 and AVX-512 stands for AVX-512F (with FMA instructions). The FMA
benefit ranges from 17% (AVX2) to 26% (AVX-512). An SIMD with intrinsics version has been
hand-coded for each specific instruction set. The intrinsics version is considered the “golden”
model.

Boost.SIMD only supports the SSE instruction set, even when the code is compiled with
one of the AVX or AVX-512 flags. It is insufficient for our channel coding processing purpose.
The Boost.SIMD wrapper performance results are disappointing because its contents has been
migrated into the new proprietary bSIMD wrapper. The sequential Mandelbrot kernel does an
early exit in the innermost loop, as soon as the divergence of the sequence is detected for the input
coordinates. We were unable to SIMDize this early termination with Boost.SIMD, because the
boost::simd::any function was not available in the GitHub repository at the time of writing.

xsimd achieves performance close to the intrinsic version in SSE and AVX. However, it
currently lacks NEON and AVX-512 supports. Moreover, it does not support small 8-bit and
16-bit integers that are necessary for Successive Cancellation decoders (see Section 2.5).

Vc is one of the earliest developed SIMD C++ wrapper. We used Branch 1.3 for the performance
measurements, the latest stable branch at this time. Vc includes a lot of of features compared
to the other wrappers. However, it lacks support for NEON and AVX-512 (which are currently
under progress). Performance results are on par with the best contenders for AVX. However, a
slowdown is observed for SSE. For AVX-512, since the support is not yet available in the stable
version, we used the capability of Vc to generate AVX2 code in order to produce the sample
points for AVX-512 series. The results are likely to improve once the full AVX-512 support is
released in a subsequent stable version.

T-SIMD is a wrapper primarily designed for image processing purpose. It performs well in
32-bit NEON, SSE and AVX. But, it lacks AVX-512. Support of the 64-bit types is not planned
since it is not useful for image computations.

38

2.2. Vectorization Strategies

simdpp supports an impressive number of instruction sets. This may explain why it does
not support mathematical functions so far. It matches the performance of the other wrappers for
NEON and SSE, but falls behind for AVX, and even more for AVX-512.

VCL is a high performance wrapper and one of the most feature rich for x86 SIMD. It gives
a lot of control to the developer and it is well documented. The obtained performance are on the
same level as hand-written intrinsics. However, it is not yet available on NEON.

MIPP corresponds to a programming model close to the intrinsics, with some adaptations
to architectures. Still, a high performance code requires that the developer knows how to
decompose efficiently some computations with the SIMD instructions. Between AVX-512 and SSE
or NEON for instance, several implementations of the same code are possible. MIPP offers to the
programmer the control on the intrinsics selected and ensures portability. We have tested both
the lower-level programming interface and the medium-level programming interface of our MIPP
wrapper, mainly to detect potential overheads when using the medium level interface instead of
the lower one. The obtained results do not show any performance penalties when using the MIPP
medium level interface. Moreover, the obtained speedups are close to the intrinsics version.

2.2 Vectorization Strategies

Vectorization is a key feature to develop high performance implementations of signal processing
algorithms. One of the main constraint of these algorithms is their low latency requirement. A
typical signal processing latency requirement ranges between one microsecond to a few nanoseconds
for a frame. Therefore, the usual multi-threading parallelism is not well-suited to speedup a single
signal processing algorithm. Indeed, the threads synchronizations overhead is too high compared
to the expected latency of these algorithms. Moreover, generally the signal processing algorithms
are implemented on hardware targets (ASIC or FPGA). Consequently, these algorithms have
been refined to take advantage of the fixed-point arithmetic. It enables software implementations
working on 16-bit and 8-bit integers. Combining the SIMDization and the fixed-point arithmetic
leads to a high level of SIMD parallelism. For instance, if we consider the AVX-512 ISA, there
are 512 bits in the registers. If computations are made on 8-bit integers, the available parallelism
is p8-bitSIMD = 512/8 = 64. This is more than the number of cores that is available in most of the
current CPUs. The multi-threading technique will be used later in the document (see Section 3.4.1,
Section 4.6.3 and Chapter 5), at a higher level, to parallelize chains of signal processing algorithms.
The next subsections detail the vectorization strategies that we have identified to effectively
implement signal processing algorithms on CPUs.

2.2.1 Intra-frame SIMD Strategy

The intra-frame SIMD strategy consists in using vectorization to process a single frame.
With this strategy, the available level of parallelism depends on the characteristics of the signal
processing algorithm. It is up to the developer to clearly identify the inherent parallelism of the
algorithm and to map it on SIMD instructions. One of the main advantages of this method is
that the latency of the processing can be divided, at best, by the parallelism factor pSIMD. Thus,
the intra-frame SIMD strategy is a key of very low latency signal processing implementations
on CPUs. Note that the throughput can also be increased by a factor of pSIMD. However, a
limitation of the intra-frame strategy is when the algorithm inherent parallelism is lower than
pSIMD. In this specific case, SIMD instructions cannot be used on full vector registers and some

39

2.2. Vectorization Strategies

efficiency is loss. Even if the inherent parallelism is higher than pSIMD the targeted algorithm
can require data movements inside the SIMD registers and cause some shuffle and permutation
extra-instructions have to be added. These extra instructions are generally a limiting factor in
the efficiency of the intra-frame SIMD strategy.

2.2.2 Inter-frame SIMD Strategy

Unlike the intra-frame SIMD strategy, the inter-frame SIMD strategy processes several frames
in parallel. The idea is to fill the SIMD registers with data coming from multiple frames. If
there is a pSIMD parallelism, then F = pSIMD frames are used to fill the SIMD registers. The
main advantage of this strategy is that the effective level of parallelism does not depend on the
algorithm. In other words, it is always possible to use 100% of the SIMD registers. Thus, the
inter-frame SIMD strategy is a key of very high throughput signal processing implementations
on CPUs. However, this technique does not reduce the overall latency of the processing as it
computes F = pSIMD in parallel, the throughput can be increased by a factor pSIMD but the
latency of a single frame is mainly unchanged.

...

...

Inter-frame SIMD process

...

...

Frame 1 Frame 2 Frame FN LLRs

F frames and F×N LLRs

F LLRs

R
eordering

R
eversed

R
eordering

Figure 2.2 – Frame reordering operation before and after an inter-frame SIMD process.

Moreover, one may note that the N bits of a frame are naturally transmitted frame by frame.
It is then necessarily to perform a reordering operation before to start the inter-frame SIMD
computations. This reordering process is illustrated in Figure 2.2 where F frames are represented
by different colors. The elements inside a single frame can be identified by the different patterns.
All the first elements of each frame are regrouped together in memory, then all the second
elements of each frame are regrouped together, and so on. The dual reverse reordering operation
is performed at the end of the inter-frame SIMD computations. The reordering operations are the
main key to reach high throughputs in the inter-frame SIMD strategy. They enable efficient load
and store instructions. These operations could be replaced by gather and scatter instructions each
time a load and store instructions are required. But this solution delivers poorer performance on
current CPU architectures. The selected version with reordering operations comes with a much
better data locality at the cost of extra operations before and after the SIMD computations.

40

2.3. Efficient Functional Simulations

...

Frame 1 Frame 2 Frame 3 Frame 4

mipp::load<T> mipp::load<T> mipp::load<T> mipp::load<T>

mipp::interleave<T> mipp::interleave<T>

mipp::interleave<T> mipp::interleave<T>

mipp::store<T> mipp::store<T> mipp::store<T> mipp::store<T>

... ...

Figure 2.3 – MIPP implementation of the SIMD frame reordering process for pSIMD = 4.

It is then mandatory to minimize the overhead introduced by the reordering operations. To this
purpose we developed a SIMD reordering function that extensively uses the mipp::interleave
function to reorder the elements. This function is completely vectorized and generic on the
data types and the frame sizes. The mipp::interleave function takes two registers ra =

[ra0 , r
a
1 , ..., r

a
pSIMD

] and rb = [rb0 , r
b
1 , ..., r

b
pSIMD−1] as input parameters and returns two output regis-

ters rc = [ra0 , r
b
0 , ..., r

a
pSIMD/2−1, r

b
pSIMD/2−1] and r

d = [rapSIMD/2
, rbpSIMD/2

, ..., rapSIMD−1, r
b
pSIMD−1].

The mipp::interleave function is applied N× log2(F) times. Figure 2.3 shows the MIPP imple-
mentation of the reordering process for F = pSIMD = 4. To increase the speed of the reordering
process, the template meta-programming technique has been used to unroll the mipp::interleave
calls. The generic reversed reordering process has also be implemented with MIPP and the
principle is similar to the reordering process.

2.2.3 Intra-/inter-frame SIMD Strategy

The intra-/inter-frame SIMD strategy is the combination of the two previous strategies.
For instance, if we have a hardware parallelism pSIMD = 16 and if the algorithm has only an
inherent parallelism of 8, then it is possible to use the intra-frame SIMD strategy to absorb
the parallelism of the algorithm and to use the inter-frame SIMD strategy on two frames. The
intra-/inter-frame SIMD strategy is also a good candidate to make trade-offs between low latency
and high throughput.

2.3 Efficient Functional Simulations

This section focuses on computational blocks specific to the functional simulation of digital
communication systems. In this type of simulations, the channel model can take a non negligible
amount of time. This is why we first propose a vectorized version of the AWGN channel.
Additionally when fixed-point decoders are benched, the output LLRs of the demodulator have to

41

2.3. Efficient Functional Simulations

be converted from a floating-point representation to a fixed-point representation. This process can
also take an important amount of time and has been optimized. The proposed implementations
are briefly evaluated with the protocol defined in Section 2.1.4.2.

2.3.1 Box-Muller Transform

Monte Carlo simulations of digital communication systems provide an empirical way to
evaluate error correction performance of the digital system. In this kind of simulations, the
transmission channel is modeled as a white Gaussian noise added to the modulated data. This
noise generation can be split in two parts: 1) the uniformly-distributed random variable generation,
2) the transformation to a Gaussian random variable. An uniform noise can be generated by a
pseudo random number generator (PRNG) like the Mersenne Twister 19937 [MN98] (MT19937).
Then, the Box-Muller method [BM58] transforms uniformly distributed random numbers into
normally distributed random numbers.

Suppose U1 and U2 are independent random variables uniformly distributed in]0, 1]:

z1 =
√
−2 logU1. cos(2π.U2), z2 =

√
−2 logU1. sin(2π.U2).

Then, z1 and z2 are independent and normally distributed samples.

1 #include <mipp.h>
2

3 void box_muller_transform(const std::vector<float> &uni_rand,
4 std::vector<float> &norm_rand) {
5 const size_t N = uni_rand.size();
6 const float two_pi = 2.f * 3.141592f;
7 for (size_t n = 0; n < N; n += mipp::N<float>() * 2)
8 {
9 const auto u1 = mipp::Reg<float>(&uni_rand[n]);

10 const auto u2 = mipp::Reg<float>(&uni_rand[mipp::N<float>() +n]);
11 const auto radius = mipp::sqrt(mipp::log(u1) * -2.f);
12 const auto theta = u2 * two_pi;
13 mipp::Reg<float> sintheta, costheta;
14 mipp::sincos(theta, sintheta, costheta);
15 auto z1 = radius * costheta;
16 auto z2 = radius * sintheta;
17 z1.store(&norm_rand[n]);
18 z2.store(&norm_rand[mipp::N<float>() +n]);
19 }
20 }

Listing 2.2 – Box-Muller Transform SIMD kernel with MIPP.

Listing 2.2 presents a new MIPP implementation of the Box-Muller transform. uniRand
is a vector of independent and uniformly distributed random numbers. For instance, it can
be generated with the MT19937 PRNG. norRand is a vector of independent and normally
distributed random numbers. The code stresses SIMD units with multiplications, mipp::sqrt
and mipp::sincos calls. The U1 and U2 are independent variables. So the algorithm inherent
parallelism directly depends on the frame size N. Generally N > pSIMD, this is why the proposed
implementation is based on the intra-frame SIMD strategy.

42

2.3. Efficient Functional Simulations

Table 2.4 – AWGN channel throughputs and speedups of the MIPP implementation.

NEON SSE AVX AVX-512
SIMD size 4 4 8 16

Throughput (Mb/s) 40.9 107.4 178.3 95.1
Speedup ×3.1 ×2.3 ×4.2 ×14.4

Table 2.4 presents the measured speedups with the same MIPP code compiled for NEON,
SSE, AVX and AVX-512, compared to the sequential code (can be auto-vectorized). It also gives
the actual throughput for each instruction set. The proposed kernel is compute intensive and the
speedups are mainly driven by the MIPP implementations of the mipp::sincos trigonometric
function. The conversion of floating-point format from single precision to double precision only
requires to replace the float keyword by double. The ability to switch seamlessly from one data
type to another is clearly a strength of the MIPP library.

2.3.2 Quantizer

During the implementation of ECC decoders, a common step is to convert the floating-point
representation into a fixed-point representation. This is necessary after the reception of the
noisy channel information representing Logarithmic Likelihood Ratios (LLRs) and encoded as
real values. The reduction of the LLRs precision (from 32 bits floating-point to 16 or 8 bits
fixed-point) does not significantly affect error correction performance. But, it provides more
SIMD parallelism. The quantizer computes:

lns,v = min(max(2v.ln ± 0.5,−2s−1 + 1), 2s−1 − 1), (2.1)

with ln the current floating-point value, s the number of bits of the quantized number, including
v bits for the fractional part.

1 void quantize_seq(const std::vector<float > &l_float,
2 std::vector<int8_t> &l_fixed,
3 const uint32_t s, const uint32_t v) {
4 const size_t N = l_float.size();
5 const float factor = 1 << v;
6 assert(s >= 2);
7 const float q_max = (1 << (s-2)) + (1 << (s-2)) -1;
8 const float q_min = -q_max;
9 for (size_t n = 0; n < N; n++)

10 {
11 // q = 2^v * y +- 0.5
12 const float q = std::round(factor * l_float[n]);
13 // saturation
14 l_fixed[n] = (int8_t)std::min(std::max(q, q_min), q_max);
15 }
16 }

Listing 2.3 – Sequential implementation of the quantizer.

The associate sequential code is presented in Listing 2.3. The code converts float (32-bit
floating-point number) to int8_t (8-bit signed integer). Although the scalar code is fairly simple,
the compiler fails to auto-vectorize the for-loop [7]. MIPP enables to convert floating-point data
types to integers with the mipp::cvt function. It also compresses larger data types into shorter

43

2.3. Efficient Functional Simulations

1 #include <mipp.h>
2

3 void quantize_simd(const std::vector<float > &l_float,
4 std::vector<int8_t> &l_fixed,
5 const uint32_t s, const uint32_t v) {
6 const size_t N = l_float.size();
7 const float factor = mipp::Reg<float>(1 << v);
8 assert(s >= 2);
9 const float q_max = (1 << (s-2)) + (1 << (s-2)) -1;

10 const float q_min = -q_max;
11 for (size_t n = 0; n < N; n += 4 * mipp::N<float>())
12 {
13 // implicit loads and q = 2^v * y +- 0.5
14 mipp::Reg<float> q32_0 = mipp::round(factor * &l_float[n+0*mipp::N<float>()]);
15 mipp::Reg<float> q32_1 = mipp::round(factor * &l_float[n+1*mipp::N<float>()]);
16 mipp::Reg<float> q32_2 = mipp::round(factor * &l_float[n+2*mipp::N<float>()]);
17 mipp::Reg<float> q32_3 = mipp::round(factor * &l_float[n+3*mipp::N<float>()]);
18 // convert float to int32_t
19 mipp::Reg<int32_t> q32i_0 = mipp::cvt<int32_t>(q32_0);
20 mipp::Reg<int32_t> q32i_1 = mipp::cvt<int32_t>(q32_1);
21 mipp::Reg<int32_t> q32i_2 = mipp::cvt<int32_t>(q32_2);
22 mipp::Reg<int32_t> q32i_3 = mipp::cvt<int32_t>(q32_3);
23 // pack four int32_t in two int16_t
24 mipp::Reg<int16_t> q16i_0 = mipp::pack<int32_t,int16_t>(q32i_0, q32i_1);
25 mipp::Reg<int16_t> q16i_1 = mipp::pack<int32_t,int16_t>(q32i_2, q32i_3);
26 // pack two int16_t in one int8_t
27 mipp::Reg<int8_t> q8i = mipp::pack<int16_t,int8_t>(q16i_0, q16i_1);
28 // saturation
29 mipp::Reg<int8_t> q8is = mipp::sat(q8i, q_min, q_max);
30 q8is.store(&l_fixed[k]);
31 }
32 }

Listing 2.4 – SIMD implementation of the quantizer with MIPP.

Table 2.5 – Quantizer throughputs and speedups of the MIPP implementation.

NEON SSE AVX
SIMD size 4-16 4-16 8-32

Throughput (Mb/s) 300.6 3541.4 5628.3
Speedup ×4.6 ×15.6 ×25.8

44

2.4. LDPC Decoders

ones with the mipp::pack function. The MIPP code is presented in Listing 2.4. It performs
explicit data types packaging, while in the sequential code, this operation is done implicitly by
the (int8_t) cast. Table 2.5 summarizes the obtained speedups with MIPP. For this specific
case study the speedups are significant for SSE and AVX. They are less important with the
NEON instruction set but still non-negligible. We do not provide results for AVX-512, since an
AVX-512BW compatible CPU would be required and the Xeon Phi™ 7230 is not.

2.4 LDPC Decoders

The LDPC decoders have been extensively studied in the literature. In this section we focus on
the Belief Propagation (BP) algorithm and its variants. On CPUs, the inter-frame SIMD strategy
has been explored and leads to very high throughputs on many different LDPC codes [LJ16].
On the other hand, the intra-frame strategy has also be studied [LJ19, Xu+19], the achieved
throughputs are lower compared to the inter-frame SIMD strategy but the latencies are also
significantly lower. To the best of our knowledge, the implementations proposed in the literature
always target a specific combination of scheduling and update rules. We found this is a limitation
to explore new trade-offs. Our contribution is to propose a generic implementation with a clear
separation of concerns between the scheduling and the updates rules.

2.4.1 Generic Belief Propagation Implementation

The intra- and inter-frame SIMD strategies have been considered and the inter-frame strategy
has been adopted. The reason of this choice is that the intra-frame implementations of the BP are
directly depending on the H parity matrix. In many current standards using LDPC codes, the H

parity matrices are Quasi-Cyclic (QC). QC H parity matrices are matrices that are composed of
an array of Z×Z circulant identity sub-matrices. Z is the order that defines the parallelism level.
So, the intra-frame SIMD parallelism directly depends on the H parity matrix and whether the
parity matrix is QC or not. Even if the selected H matrix is QC, the Z inherent parallelism can
be lower than pSIMD or higher but not a multiple of pSIMD. At the end we conclude that the
intra-frame SIMD strategy is not a good candidate for a generic software implementation.

Our main motivation in the proposed implementation is to be able to write the scheduling
description (BP-F, BP-HL, BP-VL, etc) once and to combine this scheduling with any update
rules (SPA, MS, OMS, NMS, etc.) written once too. The implementation of the BP horizontal
layered (BP-HL) scheduling is given in Listing 2.5. var_nodes is the vector of LLRs in the
variable nodes (v). contribs is the vector of the a priori information (a) and messages is
the vector of the extrinsic LLRs (e). In the horizontal layered scheduling, the extrinsic LLRs
can be updated during a single iteration. This is the key of a faster convergence compared
to the flooding scheduling. In the presented decode_single_ite method, one can note that
inner methods are called on the up_rules member. The up_rules member is an object of
Update_rules class. This class is generic and is given as a template parameter. This way, the
traditional inheriting scheme is bypassed. This choice has been made to improve the efficiency of
the decoder. Using inheritance would have prevented the compiler to inline method calls on the
up_rules member. The Update_rules class can be all the update rules such as the SPA, the
MS, the OMS, the NMS, etc. An Update_rules class has to implement the interface composed
by the begin_chk_node_in, compute_chk_node_in, end_chk_node_in, begin_chk_node_out,
compute_chk_node_out and end_chk_node_out methods.

45

2.4. LDPC Decoders

1 template <typename B, typename R, class Update_rules>
2 void Decoder_LDPC_BP_horizontal_layered<B,R,Update_rules>
3 ::decode_single_ite(std::vector<R> &var_nodes, std::vector<R> &messages) {
4 size_t kr = 0, kw = 0; // read and write indexes
5 const auto n_chk_nodes = (int)this->H.get_n_cols();
6 for (auto c = 0; c < n_chk_nodes; c++)
7 {
8 const auto chk_degree = (int)this->H[c].size();
9 this->up_rules.begin_chk_node_in(c, chk_degree);

10 for (auto v = 0; v < chk_degree; v++)
11 {
12 this->contribs[v] = var_nodes[this->H[c][v]] - messages[kr++];
13 this->up_rules.compute_chk_node_in(v, this->contribs[v]);
14 }
15 this->up_rules.end_chk_node_in();
16

17 this->up_rules.begin_chk_node_out(c, chk_degree);
18 for (auto v = 0; v < chk_degree; v++)
19 {
20 messages[kw] = this->up_rules.compute_chk_node_out(v, this->contribs[v]);
21 var_nodes[this->H[c][v]] = this->contribs[v] + messages[kw++];
22 }
23 this->up_rules.end_chk_node_out();
24 }
25 }

Listing 2.5 – LDPC BP-HL scheduling implementation.

1 template <typename R> void Update_rules_MS<R>
2 ::begin_chk_node_in(const int chk_id, const int chk_degree) {
3 this->sign = mipp::Msk<mipp::N<R>()>(false);
4 this->min1 = mipp::Reg<R>(std::numeric_limits<R>::max());
5 this->min2 = mipp::Reg<R>(std::numeric_limits<R>::max());
6 }
7 template <typename R> void Update_rules_MS<R>
8 ::compute_chk_node_in(const int var_id, const mipp::Reg<R> var_val) {
9 const auto var_abs = mipp::abs(var_val);

10 this->sign ^= mipp::sign(var_val);
11 this->min2 = mipp::min(this->min2, mipp::max(var_abs, this->min1));
12 this->min1 = mipp::min(this->min1, var_abs);
13 }
14 template <typename R> void Update_rules_MS<R>
15 ::end_chk_node_in() {
16 this->cst1 = mipp::max(mipp::Reg<R>(0), this->min2);
17 this->cst2 = mipp::max(mipp::Reg<R>(0), this->min1);
18 }
19 template <typename R> mipp::Reg<R> Update_rules_MS<R>
20 ::compute_chk_node_out(const int var_id, const mipp::Reg<R> var_val) {
21 const auto var_abs = mipp::abs(var_val);
22 auto res_abs = mipp::blend(this->cst1, this->cst2, var_abs == this->min1);
23 return mipp::copysign(res_abs, this->sign ^ mipp::sign(var_val));
24 }

Listing 2.6 – LDPC MS update rules implementation.

46

2.5. Polar Decoders

The implementation of the MS update rules is given in Listing 2.6. For the sake of conciseness,
the begin_chk_node_out and end_chk_node_out methods are not shown. These methods are
empty in the MS update rules. Each operation in the methods of the Update_rules_MS class is
vectorized thanks to MIPP. It results in a readable source code close to a traditional C++ code
where the std namespace has been replaced by the mipp namespace.

Both the scheduling and update rule implementations have a generic real R type. This way
the same BP decoder can automatically adapt to floating-point or fixed-point representations of
the LLRs values. The generic B type is for the decoder output bits representation.

Before to start the decoding process, the reordering step explained in Section 2.2.2 is performed.
After the last decoding iteration, the output bits are decided from the updated variable nodes (v)
and the input LLRs (l). Finally the reversed reordering is performed to recover the natural order
of the frames.

We implemented the flooding, the horizontal layered and the vertical layered scheduling as
well as the SPA, log-SPA, MS, OMS, NMS and AMS update rules. The main advantage of
the proposed methodology is to ease the creation of new scheduling strategies and update rules
without sacrificing too much the throughput performance (see Section 4.1). It is then possible to
quickly evaluate the error-rate performance of a new algorithm and to combine it with all the
previously implemented strategies.

2.4.2 Specialized Belief Propagation Implementation

Unfortunately, even if we observed that the function calls in the decode_single_ite method
are effectively inlined by the compiler, we were not able to remove some useless memory loads
and stores. These extra memory loads and stores are the consequence of the compiler limited
knowledge on the application. As the horizontal layered scheduling and the MS, NMS and OMS
update rules are often used, we decided to specialize a decoder for them. The specialized decoder
consists in the merge of the scheduling class and the update rules classes. In this work, the merge
operation has been done manually but it could be interesting to automate this process. The
throughput and latency performances of this decoder are evaluated in Section 4.1.

2.5 Polar Decoders

The polar decoder algorithms presented in Section 1.3.3 has a number of characteristics of
interest for its optimization:

— The tree traversal is sequential. f, g and h (see Equation 1.7) functions are applied
element-wise to all elements of the LLR and bits in the nodes and their children. As
there is no dependence between computations involving different elements of the same
node, these node computations can be parallelized or vectorized (see the intra-frame SIMD
strategy introduced in [Gia+14]);

— Frozen bits fully define their leaf values. Hence some parts of the traversal can be cut and
their computations avoided, depending on the location of the frozen bits as introduced in
Section 1.3.3.4;

— The decoder software implementation can be specialized for a particular configuration of
frozen bits, as frozen bit locations do not change for many frames;

— Multiple frames can be decoded concurrently with vector code. Such inter-frame optimiza-

47

2.5. Polar Decoders

tions can increase the decoding throughput. However these optimizations are obtained at
the expense of latency, which is also an important metric of the application (see [LLJ15]).

Beside optimizations coming from the computations in the tree, several representations of
LLR may lead to different error correction performance. A LLR for instance can be represented
by floats or integers (fixed point representation). Moreover, LLRs from different frames can be
packed together. Finally, usual code optimizations, such as unrolling or inlining can also be
explored. For instance, the recursive structure of the tree computation can be fully flattened,
depending on the size of the code length.

2.5.1 Tree Pruning Strategy

2.5.1.1 Pattern Matching Algorithm

In order to perform the polar tree pruning, we implemented a pattern matching algorithm.
For instance, knowing the initial location of the frozen bits, this algorithm can generate the
pruned tree structure as illustrated in Figure 1.9. Each internal node has a tag indicating the
type of processing required at that node (recursive children processing, f/g/h functions to be
applied or not). This tag is initially set to any.

Any
Frozen bit

(leaf)
Info. bit
(leaf) R0 R1 REP SPC4 SPC4+

f g

h

f g

h hd

f g

h rep

f g

h spc

f g

h

f g

h hd

f g

h rep

f g

h spc

f g

h

g0

h

f g

h

f g1

h

f g

h

f gr

h

f g

h spc

Figure 2.4 – Polar sub-tree rewriting rules for processing specialization.

For some sub-tree pattern configurations, the processing to be performed at the root of such
sub-trees can be simplified, or even skipped completely, for instance, when a node only has two
frozen bit leaf children. To exploit such properties, the decoder generator repeatedly applies the
set of sub-tree rewriting rules listed in Figure 2.4 using a depth first traversal to alter the node
tags, until no rewriting rule applies anymore.

Each rewriting rule defines a subtree pattern selector, a new tag for the subtree root, and
the f, g, and h processing functions to be applied, simplified or skipped for this node in the
resulting decoder. A null f (resp. g) function cuts the left (resp. right) child of the node. From
an implementation point of view, a rule is defined as a class, with a match function and a set of

48

2.5. Polar Decoders

functions f, g, and h. The current set of rewriting rules can thus easily be enriched with new
rules to generate even more specialized versions.

Patterns on the first two rows result in cutting away both children. For instance, the first rule
cuts the two frozen bit leaf children of the parent node, and tags it as R0 (blue node). Processing
is completely skipped on this node since the values of the bits are unconditionally known. The REP
rules match subtrees where only the rightmost leaf is black, the others being frozen bits. In this
case, the whole subtree is cut and replaced by a simpler processing. Moreover a single, specialized
rep function is applied on the node instead of the three functions f, g and h. The three first rules
of the third line describe partial cuts and specialization. For instance, the third rule of the third
column specializes the g functions in gr, but does not prune the recursive children processing.

Rewriting rules are ordered by decreasing priority (left to right, then top row to bottom row
in Figure 2.4). Thus, if more than one rule match an encountered subtree, the highest priority
rule is applied. The priority order is chosen such as to favor strongest computation reducing rules
over rules with minor impact, and to ensure confluence by selecting the most specific pattern first.
Rule selectors can match on node tags and/or node levels (leaf, specific level, above or below
some level). A given rule is applied at most once on a given node.

2.5.1.2 Impact of the Tree Pruning on the Decoding Performances

1/5
1/2

5/6
9/10

0

100

200

300

400

500

Code rate (R = K/N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

ref R0 R1 REP SPC4 SPC4+ SPC16-

(a) 32-bit intra-frame SIMD (AVX)

1/5
1/2

5/6
9/10

0

500

1,000

1,500

2,000

Code rate (R = K/N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

(b) 8-bit inter-frame SIMD (SSE4.1)

Figure 2.5 – Throughput of the SSC decoder depending on the different optimizations forN = 2048,
intra-frame vectorization on the left and inter-frame vectorization on the right, resp. (on the
Intel® Xeon™ E31225 CPU).

The tree pruning step has a dramatical effect in general. For instance, on the SSC decoder,
the reference code for a rate of 1/2 has 2047 nodes, whereas only 291 nodes remain in the pruned
version. However, the individual effect of each rewriting rule is not trivial. The plots in Figure 2.5
show the specific impact of several rewriting rules (R0, R1, REP and SPC), with N = 2048 and
multiple code rates, for intra-frame and inter-frame vectorization, respectively. The purpose of
the plots is to show that no single rewriting rule dominates for each code rate. They also show
that the respective impact of each rule may vary a lot from rate to rate, making the case for the
flexible, extensible architecture proposed. Indeed, the rewriting rule set can also be enriched with
rules for specific ranges of code rates. For instance, the rule Single Parity Check (SPC) has been
applied with different level limits for 9/10 code rate, where it has a significant impact and may
benefit from fine tuning.

49

2.5. Polar Decoders

1/10
2/10

3/10
4/10

5/10
6/10

7/10
8/10

9/10

0

1

2

3

4

5

6

7

Code rate (R = K/N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

ref R0 R1 REP SPC4 SPC4+

Figure 2.6 – Impact of the specialized nodes on the SSCL coded throughput. 32-bit intra-frame
vectorization, N = 2048 and L = 32 (on the Intel® Core™ i5-6600K CPU).

Figure 2.6 shows the impact of the different tree pruning optimizations on the SSCL decoder
throughput according to the code rate. The performance improvements are cumulative. Coded
throughput, in which the redundant bits are taken into account, is shown instead of information
throughput, for which only information bits are considered. It illustrates the computational effort
without the influence of the fact that higher rate codes involve higher information throughputs.

The coded throughput of the original unpruned algorithm (ref) decreases as the code rate
increases. Indeed, frozen bit leaf nodes are faster to process than information bit leaf nodes, in
which a threshold detection is necessary. As there are more R0 and REP nodes in low code rates,
the tree pruning is more efficient in the case of low code rates. The same explanation can be
given for R1 nodes in high code rates. R1 node pruning is more efficient than R0 node pruning on
average. Indeed, a higher amount of computations is saved in R1 nodes than in R0 nodes.

It has also been observed in [Sar+16] that when the SPC node size is not limited to 4, the
decoding performance may be degraded. Consequently the size is limited to 4 in SPC4. For SPC4+
nodes, there is no size limit. The two node types are considered in Figure 2.6. Therefore, the
depth at which dedicated nodes are activated in the proposed decoder can be adjusted, in order
to offer a tradeoff between throughput and decoding performance.

According to our experiments, the aforementioned statement about performance degradation
caused by SPC4+ nodes is not always accurate depending on the code and decoder parameters.
The impact of switching on or off SPC4+ nodes on decoding performance and throughput at a
FER of 10−5 is detailed in Figure 2.7. It shows that SPC4+ nodes have only a small effect on the
decoding performance. With L = 8, an SNR degradation lower than 0.1 dB is observed, except
for one particular configuration. Throughput improvements from 8 to 23 percents are observed.
If L = 32, the SNR losses are more substantial (up to 0.5 dB), whereas throughput improvements
are approximately the same. Besides this observation, Figure 2.7 shows how the proposed decoder
flexibility enables to easily optimize the decoder tree pruning, both for software implementations
and for hardware implementations in which tree pruning can also be applied [LXY14].

50

2.5. Polar Decoders

0

10

20

T
hr

ou
gh

pu
t

G
ai

n
(%

)

256 1024 4096
−0.6

−0.4

−0.2

0

L = 8

E
b
/
N

0
lo

ss
(d

B
)

256 1024 4096
L = 16

256 1024 4096
L = 32

R = 1/3

R = 1/2

R = 2/3

N N

Figure 2.7 – Effects of the SPC4+ nodes on the CA-SSCL decoder @ 10−5 FER. 32-bit intra-frame
SIMD strategy (on the Intel® Core™ i5-6600K CPU).

2.5.2 Polar Application Programming Interface

The main challenge in implementing an architecture dependent Application Programming
Interface (API) is to provide enough flexibility to enable varied types, data layout and optimization
strategies such as intra-frame SIMDization (intra-SIMD) and inter-frame SIMDization (inter-
SIMD), without breaking the high level skeleton abstraction. To meet this requirement, our
API heavily relies on generic programming and compile time specialization by the means of C++
templates, in a manner inspired by expression template techniques [Str13]. Template specializations
provide node functions.

Reducing the decoding time with SIMD instructions is a classical technique in former software
polar decoder implementations. The proposed polar decoders are based on specific building blocks
included from the Polar API [4, 5]. These blocks are fast optimized implementations of the f, g, h
(and their variants) polar intrinsic functions defined in Equation 1.7. Listing 2.7 details the SIMD
implementation of these functions. These implementations are based on MIPP. Consequently, the
description is clear, portable, multi-format (32-bit floating-point, 16-bit and 8-bit fixed-points) and
as fast as an architecture specific code. The mipp::Reg and mipp::Reg<R> types correspond
to SIMD registers. B and R define the type of the elements that are contained in this register. B for
bit could be int, short or char. R for real could be float, short or char. In Listing 2.7, each
operation is made on several elements at a time. For instance, line 17, the addition between all the
elements of the neg_la and lb registers is executed in a single CPU cycle. We also tried an auto-
vectorized approach but even if all the routines were well vectorized (from the GCC 5.4 compiler
report), the performance was, at least, 3 times slower than the MIPP handwritten versions. The
template N_ELMTS parameter is not used in the proposed API_polar_SIMD implementation. The
interest of this parameter will be explained in the next section.

A single SIMD polar API is necessary to both intra-frame and inter-frame strategies. In both
cases, only the input and output pointers change. The intra-frame strategy exploits SIMD units
without increasing the decoder latency. Since it still processes frames one at a time, it preserves
fine grain frame pipelining. However, at leaf nodes and nearby, too few elements remain to fill
SIMD units. For instance, 4-way SIMD registers are fully filled only at level 2 and above. Thus,

51

2.5. Polar Decoders

1 template <typename B, typename R>
2 class API_polar_SIMD : public API_polar
3 {
4 template <int N_ELMTS = 0> // <- this template parameter is not used here
5 static void f(const R *la, const R *lb, R *lc, const int n_elmts) {
6 for (auto n = 0; n < n_elmts; n += mipp::N<R>())
7 { // lc = f(la,lb) = sign(la.lb).min(|la|, |lb|)
8 auto r = mipp::copysign(mipp::min(mipp::abs(&la[n]), mipp::abs(&lb[n])),
9 mipp::sign(&la[n], &lb[n]));

10 r.store(&lc[n]);
11 }
12 }
13 template <int N_ELMTS = 0> // <- this template parameter is not used here
14 static void g(const R *la, const R *lb, const B *s, R *lc, const int n_elmts) {
15 for (auto n = 0; n < n_elmts; n += mipp::N<R>())
16 { // lc = g(la,lb,s) = (1-2s)la + lb
17 auto r = mipp::copysign(&la[n], &s[n]) + &lb[n];
18 r.store(&lc[n]);
19 }
20 }
21 template <int N_ELMTS = 0> // <- this template parameter is not used here
22 static void h(const B *sa, const B *sb, B *sc, const int n_elmts) {
23 for (auto n = 0; n < n_elmts; n += mipp::N<R>())
24 { // sc = h(sa,sb) = sa XOR sb
25 auto r = mipp::R(&sa[n]) ^ mipp::R(&sb[n]);
26 r.store(&sc[n]);
27 }
28 }
29 };

Listing 2.7 – Example of a C++ SIMD polar API (f, g and h functions are implemented).

the intra-frame strategy is only effective on trees that can be heavily pruned from these numerous
scalar nodes. Even if the tree is heavily pruned some nodes cannot be fully vectorized in the
lower layers. In this context, the building blocks of the polar API enable to automatically switch
from SIMD to sequential implementations.

2.5.3 Successive Cancellation Decoders

2.5.3.1 Dynamic Implementation

In this section, if a decoder is generic and flexible, it is called dynamic (as opposed to generated
or unrolled decoders). The proposed dynamic SSC decoder directly uses the polar API introduced
in Section 2.5.2. The same source code is able to accommodate different frozen bit layouts
and different parameters (N, K, SNR). It is the first non-generated version (to the best of our
knowledge) to support both multi-precisions (32-bit, 16-bit and 8-bit) and multi-SIMD strategies
(intra-frame or inter-frame).

The main challenge of the dynamic SSC decoder is to maintain a good performance level at
the bottom of the tree. Near the leaves, the decoder spends a non-negligible part of the time in
recursive function calls and short loop executions. In Listing 2.7, the loops lines 6, 15, 23 cannot
be unrolled by the compiler because n_elmts is a runtime parameter. Thus, an useless overhead
is due to the loop condition evaluation. To overcome this problem, we wrote a SSC sub-decoder

52

2.5. Polar Decoders

with the template meta-programming technique. The idea is to fully unroll the recursive calls
and to statically give the number of elements in the loops lines 6, 15, 23. To this purpose, a
specific API_polar_SIMD_static has been developed. The source code is mainly the same as the
API_polar_SIMD implementation. The only difference is that the n_elmts parameter has been
replaced by the static N_ELMTS parameter in the loops. Then, the compiler is able to unroll the
loops. The size of the unrolled sub-tree can be adjusted from a static parameter in the source
code. We found that a sub-tree with a depth of 6 gives a good level of performance. Increasing
the size of the sub-tree to more than 6 did not give any performance gains in our tests. As a
consequence, the proposed flexible decoder cannot decode polar codes smaller than N = 26 = 64.
This is acceptable knowing that the error-rate performance of the SSC decoder is good for large
frame sizes.

To go even further and reach highest throughputs and lowest latencies possible, the next
section proposes to fully unroll/generate the SSC decoder.

2.5.3.2 Unrolled/Generated Implementation

Specialized Decoder Skeletons and Polar API The tree structure at the heart of SC
decoders is fully determined by the parameters of a given polar code instance: the code size, the
code rate (R = K/N), the position of the frozen bits. All these parameters are statically known
at compile time. Yet, the recursive tree traversal code structure and the corresponding tree data
structure are challenging to vectorize and to optimize for a compiler. Our Polar ECC Decoder
Generation Environment (P-EDGE) builds on this property to provide a general framework for
polar decoder design, generation and optimization 3. Beyond the code parameters, Polar decoders
can be tweaked and optimized in many different orthogonal or loosely coupled ways: Elementary
type (floating-point, fixed-point), Element containers (array size), Data layout (bit packing
techniques), Instruction Set (x86, ARM®), SIMD support (scalar, intra-frame or inter-frame
processing vectorization), SIMD instruction set variant (SSE, AVX, AVX-512, NEON), as well as
the set and relative priorities of the rewriting rules for tree pruning. Our framework enables to
quickly experiment the different combinations of all optimizations. Thus, the decoder description
results from two distinct parts:

— An architecture independent specialized decoder skeleton generated by our decoder genera-
tor, from a given frozen bits location input. Starting from the naive, recursive expression
of the computational tree, we apply successively cuts and specializations on the tree. They
are described through a set of rewriting rules, that can be customized according to the
specificities of the decoder and to the constraints in terms of code size for instance (see
Section 2.5.1.1).

— A library of architecture dependent elementary computation building blocks, corresponding
to the implementation variants of the f, g and h functions (fixed- or floating-point versions,
scalar or vector versions, ...). These blocks do not depend on the frozen bits location and
can therefore be used by any specialized skeleton (see Section 2.5.2).

This separation of concerns, between high-level specialized algorithmic skeletons and low-level
arithmetic routines, enables both ECC experts to focus on optimizing algorithm skeletons and
architecture experts to focus on writing highly optimized routines.

3. P-EDGE repository: https://github.com/aff3ct/polar_decoder_gen

53

https://github.com/aff3ct/polar_decoder_gen

2.5. Polar Decoders

1 // the frozen bits definition (1 = frozen, 0 = not frozen)
2 static const std::vector<bool> Decoder_polar_SC_N8_K4 = {
3 1, 1, 1, 0, 1, 0, 0, 0};
4 // the generated decoder class with templatized bit ('B') and real ('R') types
5 // and the generic polar API ('API_polar') can be seq., inter- and intra-SIMD
6 template <typename B, typename R, class API_polar>
7 class Decoder_polar_SC_N8_K4
8 {
9 public:

10 // the 'decode' method: recursive function calls are fully unrolled
11 // 'l' is the input and intermediate vector of LLRs (RW)
12 // 's' is the partial sums and the output vector of bits (RW)
13 void decode()
14 { // ... n_elmts read read read write n_elmts
15 // static l/s l/s l/s l/s dynamic
16 API_polar::template f < 4>(l + 0, l + 4, l + 8, 4);
17 API_polar::template rep< 4>(l + 8, s + 0, 4);
18 API_polar::template gr < 4>(l + 0, l + 4, s + 0, l + 8, 4);
19 API_polar::template spc< 4>(l + 8, s + 4, 4);
20 API_polar::template h < 4>(s + 0, s + 4, s + 0, 4);
21 }
22 /* ... */
23 };

Listing 2.8 – Generated polar SC decoder source code corresponding to the pruned tree in
Figure 1.9.

Decoder Generation The decoder generator first builds the binary tree structure from the
pattern matching algorithm presented in Section 2.5.1.1. Then, once the tree has been fully
specialized, the P-EDGE generator performs a second tree traversal pass to output the resulting
decoder. An example of such a tree specialization process together with the generator output
is shown in Figure 1.9 and in Listing 2.8. In Listing 2.8, each operation (f, rep, gr, spc and h)
is applied on 4 elements. This number of elements is given as a static template parameter as
well as a standard function parameter. Depending on the selected polar API, one or the other
will be used. Of course with fully unrolled decoders, it is much more efficient to use an API
implementation that uses the template parameter to fully unroll the loops at compile time.

Source Code Compression Decoders are generated as straight-line code (no recursive calls),
with all node computations put in sequence. This improves performance for small to medium
codeword sizes, up to the point where the compiled binary exceeds the L1I cache size (this is
also reported in [Gia+16]). We mitigated this issue by reducing decoder binary sizes using two
compression techniques: 1) in the generated code, we moved the buffer offsets from template
arguments to function arguments, which enabled the compiler to factorize more function calls
than before (improvement by a factor of 10), 2) we implemented a sub-tree folding algorithm in
the P-EDGE generator (see Figure 2.8), to detect multiple occurrences of a same sub-tree and to
put the corresponding code into a dedicated function. These techniques lead to an improvement
by a factor of 5 for N = 216 knowing that the compression ratio increases with the size of the tree.

54

2.5. Polar Decoders

Any
Frozen bit

(leaf)
Info. bit
(leaf) R0 R1 REP SPC4 SPC4+

Left edge (f) Right edge (g)

(a) Legend.

(b) Without compression.

(c) With compression.

Figure 2.8 – Pruned polar decoding tree representation (N = 128, K = 64) without and with the
compression sub-tree folding algorithm.

55

2.5. Polar Decoders

2.5.3.3 LLRs and Partial Sums Memory Management

The memory management is similar in the flexible SSC decoder and in the unrolled versions.
Each time, the decoder stores its state using two data buffers, one for the LLR values (λ) and
the other for the bits (partial sums ŝ). The “logical” tree layout is implemented as a simple and
efficient heap vector data layout. Therefore traversing the tree corresponds to moving through the
array, at different offsets and considering different index intervals. The LLR offset is computed
from the graph depth d (the node vertical indexing) as follows:

oλ(d) =

0 d = 0,
d∑
i=1

N
2i−1 otherwise.

(2.2)

Given la the lane (the node horizontal indexing), the bit offset is determined as follows:

oŝ(d, la) =
N

2d
× la. (2.3)

The LLR buffer size is 2N and the bit buffer is N, for a frame of N bits. Thus, the memory
footprint per frame can be expressed:

memfp = N× (2× sizeof(LLR) + sizeof(bit)). (2.4)

LLRs element size is 4 bytes (float) or 1 byte (fixed-point numbers). The inter-SIMD version also
employs a bit packing memory footprint reduction technique [LLJ15] to pack several bits together
by using shifts and masking instructions.

2.5.4 Successive Cancellation List Decoders

In this section, the proposed implementation of the SSCL class of decoders focuses on intra-
frame SIMD dynamic decoders. A description of a fully unrolled SSCL decoder has been previously
evaluated in [Sar+16]. But, we want to oppose it to more generic and flexible decoders. Some
implementation improvements are necessary in order to be competitive with specific unrolled
decoders of the literature. The polar API (see Section 2.5.2) enables to benefit from the SIMD
instructions for various target architectures. Optimizations of CRC checking benefit to both
the non-adaptive and adaptive versions of the CA-SSCL algorithms. The new sorting technique
presented in Section 2.5.4.2 can be applied to each variation of the SSCL algorithm. Finally, an
efficient implementation of the partial sums memory management is proposed in Section 2.5.4.3.
It is particularly effective for short polar codes.

2.5.4.1 Improving Cyclic Redundancy Checking

By profiling the Adaptive SCL decoder, one may observe that a significant amount of time is
spent to process the cyclic redundancy checks. Its computational complexity is O(LN) versus the
computational complexity of the SCL decoding, O(LN logN). The first is not negligible compared
to the second. In the adaptive decoder, the CRC verification is performed a first time after the
SC decoding. In the following, we show how to reduce the computational complexity of these
CRC verifications.

56

2.5. Polar Decoders

First, an efficient CRC checking code has been implemented. Whenever the decoder has to
check the CRC, the bits are packed and then computed 32 by 32. In order to further speed up
the implementation, a lookup table used to store pre-computed CRC sub-sequences, and thus
reduce the computational complexity. The size of the lookup table is 1 KB.

After a regular SC decoding, a decision vector of size N is produced. Then, the K information
bits must be extracted to apply cyclic redundancy check. The profiling of our decoder description
shows that this extraction takes a significant amount of time compared to the check operation itself.
Consequently, a specific extraction function was implemented. This function takes advantage of
the leaf node type knowledge to perform efficient multi-element copies.

Concerning SCL decoding, it is possible to sort the candidates according to their respective
metrics and then to check the CRC of each candidate from the best to the worst. Once a candidate
with a valid CRC is found, it is chosen as the decision. This method gives similar decoding
performance as performing the CRC of each candidate and then selecting the one with the best
metric. With the adopted order, decoding time is saved by reducing the average number of
checked candidates. This is made in the “selectBestPath()” sub-routine (Algorithm 1.1, l.18).

2.5.4.2 LLR and Metric Sorting

Metric sorting is involved in the path selection step, but also in the “updatePaths()” sub-
routine (Algorithm. 1.1, l.16) and consequently in each leaf. Sorting the LLRs is also necessary
in R1 and SPC nodes. Because of a lack of information about the sorting technique presented
in [Sar+16], its reproduction is not possible. In this paragraph, the sorting algorithm used in our
proposed SCL decoder is described.

In R1 nodes, a Chase-2 [Cha72] algorithm is applied. The two minimum absolute values of
the LLRs have to be identified. The way to do the minimum number of comparisons to identify
the 2 largest of n > 2 elements was originally described by Schreier in [Sch32] and reported
in [Knu73]. The lower stages of this algorithm can be parallelized thanks to SIMD instructions in
the way described in [FAN07]. According to our experimentations, Schreier’s algorithm is the
most efficient compared to parallelized Batcher’s merge exchange, partial quick-sort or heap-sort
implemented in the C++ standard library in the case of R1 nodes. At the end, we chose not to
apply the SIMD implementation of Schreier’s algorithm because: 1) the speedup was negligible,
2) in 8-bit fixed-point, only N 6 256 codewords can be considered.

Concerning path metrics, partial quick-sort appeared to yield no gains in terms of throughput
by comparison with the algorithm in [Sch32], neither did heap-sort or parallelized Batcher’s merge
exchange. For a matter of consistency, only Schreier’s algorithm is used in the proposed decoder,
for both LLR sorting in R1 and SPC nodes and for path metrics sorting. The sorting of path
metrics is applied to choose the paths to be removed, kept or duplicated.

2.5.4.3 Partial Sums Memory Management

An SCL decoder can be seen as L replications of an SC decoder. The first possible memory
layout is the one given in Figure 1.8. In this layout, the partial sums ŝ of each node is stored in
a dedicated array. Therefore, a memory of size 2N − 1 bits is necessary in the SC decoder, or
L(2N− 1) bits in the SCL decoder. This memory layout is described in [TV11] and present in
previous software implementations [Sar+14c, Sar+16, She+16].

57

2.5. Polar Decoders

A possible improvement is to change the memory layout to reduce its footprint. Due to the
order of operations in both SC and SCL algorithms, the partial sums on a given layer are only
used once by the h function and can then be overwritten. Thus, a dedicated memory allocation is
not necessary at each layer of the tree. The memory can be shared between the stages. Therefore
the memory footprint can be reduced from 2N− 1 to N in the SC decoder as shown in [Ler+13].
A reduction from L(2N− 1) to LN can be obtained in the SCL decoder.

In the case of the SCL algorithm, L paths have to be assigned to L partial sum memory arrays.
In [TV11], this assignment is made with pointers. The advantage of pointers is that when a
path is duplicated, in the “updatePaths()” sub-routine of Algorithm 1.1, the partial sums are not
copied. Actually, they can be shared between paths thanks to the use of pointers. This method
limits the number of memory operations. Unfortunately, it is not possible to take advantage of
the memory space reduction. Indeed, the partial sums have to be stored on L(2N− 1) bits. There
is an alternative to this mechanism. If a logical path is statically assigned to a memory array, no
pointer is necessary at the cost that partial sums must be copied when a path is duplicated (only
LN bits are required). This method is called SSCLcpy whereas the former is called SSCLptr.

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

0

1

2

3

4

5

6

Codeword size (N)

In
fo

.
th

ro
ug

hp
ut

(M
b/

s)

SSCLcpy SSCLptr

8-bit
16-bit
32-bit

Figure 2.9 – Information throughput of the SSCL decoder depending on the codeword size (N)
and the partial sums management. R = 1/2, L = 8 (on the Intel® Core™ i5-6600K CPU).

Our experiments have shown that the overhead of handling pointers plus the extra memory
space requirement cause the SSCLcpy to be more efficient than the SSCLptr for short and medium
code lengths, as shown in Figure 2.9. The 32-bit version uses floating-point LLRs, whereas 16-bit
and 8-bit versions are in fixed-point. Notice that in this work, each bit of the partial sums is
stored as an 8-bit, 16-bit or 32-bit number accordingly to the LLR data type. The code rate
R is equal to 1/2. The throughput of the SSCLcpy version is higher for N 6 8192 whereas the
SSCLptr version is more efficient for higher values of N. Figure 2.9 also illustrates the impact of
the representation of partial sums. For very high values of N, the 8-bit fixed point representation
takes advantage of fewer cache misses. As the decoding performance improvements of the SCL
algorithm are not very significant compared to the SC algorithm for long polar codes, SSCLcpy is
the appropriate solution in most practical cases.

In our decoder description, LLRs are managed with pointers, as it is the case in other software
implementations of the literature [Sar+14c, Sar+16, She+16]. We tried to remove the pointer
handling as for the partial sums, but this was not beneficial in any use case.

58

2.6. Turbo Decoders

2.5.4.4 Memory Footprint

Table 2.6 – Polar decoders memory complexity.

Algorithms Memory Footprint
(CA-)SSCLcpy O((2L+ 1)NQ)
(CA-)SSCLptr O((3L+ 1)NQ)

A-SSCLcpy O((2L+ 3)NQ)
A-SSCLptr O((3L+ 3)NQ)

The exact memory footprint of the SSCL decoders is hard to estimate as there are many
small buffers related to the implementation. However, the memory footprint is mainly driven by
the LLRs (λ) and the partial sums (ŝ) as they linearly depend on LN. The buffers related to the
path metrics can be neglected as they linearly depend on L. The memory footprint of the CRC is
also negligible, the only requirement is a lookup table of 256 integers. Table 2.6 summarizes the
memory footprint estimation of the various decoders while Q stands for the size of the element
(1, 2 or 4 bytes). The channel LLRs are taken into account in the approximation. As explained
in the previous section, the SSCLptr version of the code requires twice the amount of data for the
partial sums. Notice that the memory footprint of the adaptive decoders is a little bit higher
than the other SSCL decoder since it includes an additional SSC decoder.

In this section we proposed flexible software implementations of the SC and the SCL decoding
algorithms. The pruned versions of these decoders (SSC and SSCL) are the key of efficiency. The
generated (or unrolled) strategy has also been experimented and improved for the SSC decoders.
These specialized decoders trade a part of the flexibility for higher throughput and lower latency
performance.

2.6 Turbo Decoders

A turbo decoder is in charge of decoding a large set of frames. Two strategies are then possible
to speedup the decoding process. i) intra-frame parallelism: the decoder exploits the parallelism
within the turbo-decoding process by executing concurrent tasks during the decoding of one
frame. ii) inter-frame parallelism: several frames are decoded simultaneously. In the perspective
of a hardware implementation, the intra-frame approach is efficient [MBJ09] because the area
overhead resulting from parallelization is lower than the speedup. On the contrary, the inter-frame
strategy is inefficient, due to the duplication of multiple hardware turbo-decoders. The resulting
speedup comes at a high cost in terms of area overhead.

In the perspective of a software implementation, the issue is different. The algorithm is
executed on a programmable non-modifiable architecture. The degree of freedom lies in the
mapping of the different parallelizable tasks on the parallel units of the processor. Modern multi-
core processors support Single Program Multiple Data (SPMD) execution. Each core includes
Single Instruction Multiple Data (SIMD) units. The objective is then to identify the parallelization
strategy suitable for both SIMD and SPMD programming models. In the literature, intra-frame
parallelism is often mapped on SIMD units while inter-frame parallelization is usually kept for
multi-threaded approaches (SPMD). In [Zha+12, Wu+13], multiple trellis-state computations are
performed in parallel in the SIMD units. In [WSC10, Wu+11, CS12, YC12, Zha+12, Liu+13,
Che+13, Xia+13, Wu+13, Zha+14b, Li+14], the decoded frame is split into sub-blocks that are
processed in parallel in the SIMD units. An alternative approach is to process both SISO decoding
in parallel but, it requires additional computations for synchronization and/or impacts on error-

59

2.6. Turbo Decoders

correction performance [MBJ09]. However, for all these approaches a part of the computation
of the BCJR decoder remains sequential, bounding the speedup below the capabilities of SIMD
units. Inter-frame parallelism has been proposed in [WSC10, Wu+11, Zha+12, Wu+13]. Multiple
codewords are decoded in parallel, this improves the memory access regularity and the usage rate
of SIMD units. The speedup is no longer bounded by the sequential parts, all removed, but this
comes at the expense of an increase in memory footprint and latency. In this work, we focus on
the inter-frame parallelization and show that the use of this approach enables some register-reuse
optimizations that are not possible in the intra-frame strategy.

2.6.1 Inter-frame Parallelism on Multi-core CPUs

The contribution of this work is to propose an efficient mapping of multiple frames on the
CPU SIMD units (inter-frame strategy): the decoding of F frames is vectorized. Before the
decoding process can be launched, this new approach requires to: (a) buffer a set of F frames
and (b) reorder the input LLRs in order to make the SIMDization efficient with memory aligned
operations (see Section 2.2.2). Similarly, a reverse-reordering step has to be performed at the end
of the turbo decoding. These reordering operations are expensive but they make the complete
decoding process very regular and efficient for SIMD parallelization. Moreover, reordering is
applied only once, independently of the number of decoding iterations.

Algorithm 2.1: Loop fusion BCJR implementation.
1 for all frames do . Vectorized loop
2 α0 ← initAlpha()
3 for k = 1; k < K; k = k+ 1 do . Sequential loop
4 γk−1 ← computeGamma(Lk−1

s , Lk−1
p , Lk−1

a)

5 αk ← computeAlpha(αk−1,γk−1)

6 γK−1 ← computeGamma(LK−1
s , LK−1

p , LK−1
a)

7 βK−1 ← initBeta()
8 LK−1

e ← computeExtrinsic(αK−1,βK−1,γK−1, LK−1
s , LK−1

a)
9 for k = K− 2; k > 0; k = k− 1 do . Sequential loop

10 βk ← computeBeta(βk+1,γk)
11 Lke ← computeExtrinsic(αk,βk,γk, Lks , Lka)

In the proposed implementation, the inter-frame parallelism is used to fill the SIMD units
of the CPU cores. Algorithm 1.2 illustrates the traditional implementation of the BCJR (used
for the intra-frame vectorization). The inter-frame strategy makes the outer loop on the frame
parallel (through vectors). This means all computations inside this loop operate on SIMD vectors
instead of scalars. The inner loops can be turned into sequential loops on SIMD vectors. This
gives the opportunity for memory optimizations, through loop fusion. The initial 4 inner loops are
merged into 2 loops. Algorithm 2.1 presents this loop fusion optimization. This makes possible
the scalar promotion of βj (no longer an array). Indeed, it can be directly reused from the CPU
registers. In this version, the SIMD are always stressed.

On a multi-core processor, each core decodes F frames using its own SIMD unit. As T threads
are activated, a total of F× T frames are therefore decoded simultaneously with the inter-frame
strategy. Theoretically, this SPMD parallelization strategy provides an acceleration up to a
factor T , with T cores. Large memory footprint exceeding L3 cache capacity may reduce the
effective speedup, as shown in Section 4.3.

60

2.6. Turbo Decoders

2.6.2 Software Implementation of the Turbo Decoder

2.6.2.1 Fixed-point Representation

Nowadays on x86 CPUs, there are large SIMD registers: SSE/NEON are 128 bits wide and
AVX are 256 bits wide. The number of elements that can be vectorized depends on the SIMD
length and on the data format: pSIMD = sizeof(SIMD)/ sizeof(data). So, the key for a wide
parallelism is to work on short data.

During the turbo-decoding process, the extrinsic values grow at each iteration. It is then
necessary for internal LLRs to have a larger dynamic than the channel information. Depending on
the data format, 16-bit or 8-bit, the quantization used in the decoder is Q16,3 or Q8,2, respectively.

2.6.2.2 Memory Allocations

The systematic information Ls/L′s and the parity information Lp/L′p are stored in the natural
domain N as well as in the interleaved domain I. Moreover, two extrinsic vectors are stored:
Le:1→2 in N and Le:2→1 in I as well as two a priori vectors: La:1→2 in I and La:2→1 in N. Inside
the BCJR decoding and per trellis section, two γi and eight αj metrics are stored. Thanks to
the loop fusion optimization, the eight βj metrics are not stored in memory. In the proposed
implementation i ∈ {0, 1} and j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Notice that all those previously-mentioned
vectors are K-bit wide and are duplicated F× T times because of the inter-frame strategy. The
memory footprint in bytes is approximately: 18× K× sizeof(data)× F× T (where F = pSIMD).
The interleaving and deinterleaving lookup tables have been neglected in this model.

2.6.2.3 Forward Trellis Traversal

The objective is to reduce the number of loads/stores by performing the arithmetic computa-
tions (add and max) inside registers. The max-log-MAP (ML-MAP) algorithm only stresses the
integer pipeline of the CPU. This kind of operations takes only one cycle to execute when the
latency is also very small (1 cycle too). In contrast, a load/store can take a larger number of
cycles depending on where the current value is loaded/stored in the memory hierarchy. Using
data directly from the registers is cost-free but loading/storing it from the L1/L2/L3 cache can
take up to 30 cycles (at worst).

Per trellis section k, the two γki metrics are computed from the systematic and the parity
information. These two γki are directly reused to compute the eight αkj metrics. Depending on
the number of bits available, the trellis traversal requires to normalize the αkj because of the
accumulations along the multiple sections. In 8-bit format, the αkj metrics are normalized for each
section: the first αk0 value is subtracted from all the αkj (including αk0 itself). In the 16-bit decoder,
the normalization is only applied every eight steps, since there are enough bits to accumulate
eight values. We have observed in experiments that there is no performance degradation due to
the normalization process. At the end of a trellis section k the two γki and the eight normalized
αkj are stored in memory. In the next trellis section (k+ 1) the eight previous αkj are not loaded
from memory but they are directly reused from registers to compute the αk+1

j values.

61

2.6. Turbo Decoders

2.6.2.4 Backward Trellis Traversal

Per trellis section k, the two γki metrics are loaded from the memory. These two metrics are
then used to compute, on the fly, the eight βkj metrics (whenever needed the βkj metrics have
been normalized like for the αkj metrics). After that, the αkj metrics are loaded from the memory.
The αkj , β

k
j and γki metrics are used to determine the a posteriori and the extrinsic LLRs. In the

next trellis section (k− 1) the previous βkj metrics are directly reused from registers in order to
compute the next βk−1

j values. The βkj metrics are never stored in memory.

2.6.2.5 Loop Unrolling

1 for (auto j = 0; j < n_states; j++) // in the LTE standard 'n_states' = 8
2 {
3 const mipp::Reg<R> alpha_kprev1_j = &alpha[trellis[1][j]][k -1];
4 const mipp::Reg<R> alpha_kprev2_j = &alpha[trellis[2][j]][k -1];
5 auto alpha_k_j = mipp::max(alpha_kprev1_j + gamma, alpha_kprev2_j - gamma);
6 }

Listing 2.9 – Generic implementation of the αk computations.

1 const mipp::Reg<R> alpha_kprev_0 = &alpha[0][k -1];
2 const mipp::Reg<R> alpha_kprev_1 = &alpha[1][k -1];
3 // ...
4 const mipp::Reg<R> alpha_kprev_7 = &alpha[7][k -1];
5 auto alpha_k_0 = mipp::max(alpha_kprev_0 + gamma, alpha_kprev_1 - gamma);
6 auto alpha_k_1 = mipp::max(alpha_kprev_3 + gamma, alpha_kprev_2 - gamma);
7 auto alpha_k_2 = mipp::max(alpha_kprev_4 + gamma, alpha_kprev_5 - gamma);
8 auto alpha_k_3 = mipp::max(alpha_kprev_7 + gamma, alpha_kprev_6 - gamma);
9 auto alpha_k_4 = mipp::max(alpha_kprev_1 + gamma, alpha_kprev_0 - gamma);

10 auto alpha_k_5 = mipp::max(alpha_kprev_2 + gamma, alpha_kprev_3 - gamma);
11 auto alpha_k_6 = mipp::max(alpha_kprev_5 + gamma, alpha_kprev_4 - gamma);
12 auto alpha_k_7 = mipp::max(alpha_kprev_6 + gamma, alpha_kprev_7 - gamma);

Listing 2.10 – Unrolled implementation of the αk computations.

The computations of the eight αkj states can be implemented with a generic trellis structure
as shown in Listing 2.9. The main problem is that the loop line 1 cannot be unrolled by the
compiler and there is extra memory accesses (or indirections) due to the trellis vector. Knowing
precisely the structure of the trellis in the LTE standard (see Figure 1.13), it is possible to fully
unroll the loop. The unrolled description is shown in Listing 2.10. This version is adopted in the
Section 4.3 as it leads to significant throughput improvements. The same optimization is also
applied to the computation of the βkj states. One can note that the source code examples are
simplified: gamma represents the corresponding γki .

In this section, we presented a high throughput implementation of the turbo decoding
algorithm. This implementation largely relies on the inter-frame SIMD strategy combined with a
fixed-point representation of the LLRs and some specializations for the LTE 8-state trellis.

62

2.7. SCMA Demodulators

2.7 SCMA Demodulators

Besides methodical improvements of the MPA such as log-MPA, hardware oriented improve-
ments are important to take full benefit of C-RAN servers capabilities. Since MPA and log-MPA
are control heavy algorithms, mishandling of data can induce huge performance losses. This
section explores how MPA can be reformulated: 1) to improve data locality in cache and to
reduce cache misses and branch mispredictions 2) to reorder the data paths in order to help
exploiting data-level parallelism at each step of the MPA and log-MPA algorithms and 3) to
exploit approximated modeling of additive white Gaussian noise in order to eliminate exponential
calculations and to drastically reduce the number of SIMD instructions.

2.7.1 Flattening Matrices to Reduce Cache Misses and Branch Misses

Considering (1.15), there are 64 calculations of distances and probabilities for each resource
(256 for all resources). Using a multidimensional array (4× 4× 4) should be avoided, because it
typically causes bad data locality, which leads to an increased number of cache misses. These
misses negatively affect the throughput, and this is significant, since this process must be repeated
in the decoder for each received 12-bit block of data. Flattening a d-dimensional array to a vector
using (2.5) is appropriate to prevent cache misses and improve the spatial locality of data. This
is done with the help of an index defined as:

index =

d∑
i=1

d∏
j=i+1

Nj

ni. (2.5)

Where Nj is the size of the jth dimension of the array and ni is the location of a target element
in that dimension. Improving data locality with a stride of a single floating-point number in each
element makes it easier for the processor to have aligned and contiguous accesses to the memory
through SIMD ISA. SIMD instructions help to reduce the total number of mispredicted branches
in the algorithm. Contiguous accesses to the L1 cache are performed by chunks of 128-bit, 256-bit
or 512-bit. This reduces the number of iterations in the for-loops and consequently it reduces the
number of branches. On the other hand, for a vector of sixty four 32-bit floating-point numbers,
64 iterations are necessary in the scalar mode, while only 16, 8 or 4 iterations are required in the
vectorized modes using SSE (or NEON), AVX or AVX-512 (or KNCI) ISAs, respectively.

2.7.2 Adapting the Algorithms to Improve Data-level Parallelism

The SIMD instructions provide high-performance loads and stores to the cache memory due
to data vectorization. Flattening matrices to vectors is a prerequisite to enable SIMD contiguous
accesses to memory. In the presented work the SIMD operations are made on 32-bit floating-point
real numbers (T = float). The proposed implementations are working on F = J = 6 frames. The
F frames are not independent so we consider that the SIMD strategy is similar to the intra-frame
SIMD strategy presented in Section 2.2.1. For the MPA, the SIMD instructions are used to 1)
compute the complex norm ||.|| in (1.14), 2) calculate the exponentials in (1.15), 3) perform users
to resources messaging and final beliefs at each user in (1.18).

SIMD Computation of Complex Norms Equation 1.14 use a complex norm function ||.||.
It can be optimized by using SIMD instructions. There are two ways to perform this computation

63

2.7. SCMA Demodulators

Global memory (RAM)

SIMD register

SIMD function

Complex real part r

Complex imaginary part i

Complex norm

... ...

ar ai br bi cr ci dr di er ei rr ri gr gi hr hi

mipp::load<T> mipp::load<T>

ar br cr dr er fr gr hr ai bi ci di ei fi gi hi

mipp::deinterleave<T>

a2
r +a2

i
b2
r +b2

i
c2
r +c2

i
d2
r +d2

i
e2
r +e2

i
f2r + f2

i
g2
r +g2

i
h2
r +h2

i

mipp::norm<T>

... ...

mipp::store<T>

(a) Array of Structures (AoS)

...

ar br cr dr er fr gr hr ai bi ci di ei fi gi hi

mipp::load<T> mipp::load<T>

a2
r +a2

i
b2
r +b2

i
c2
r +c2

i
d2
r +d2

i
c2
r +c2

i
d2
r +d2

i
a2
r +a2

i
b2
r +b2

i

mipp::norm<T>

... ...

mipp::store<T>

(b) Structure of Arrays (SoA)

Figure 2.10 – MPA vectorized complex norm computations (pSIMD = 8).

64

2.7. SCMA Demodulators

depending on the initial data layout. Figure 2.10a depicts how to implement the norm function
with an Array of Structures (AoS) layout for complex numbers. In this data layer, the complex
numbers are represented as two consecutive floating-point numbers. The implementation with
AoS uses five MIPP functions: two mipp::load, one mipp::deinterleave, one mipp::norm and
one mipp::store. The MIPP loads and stores are equivalent to real SIMD move instructions. The
mipp::deinterleave operation can contain from 4 to 12 real assembly instructions. It depends
on the data type T and the SIMD ISA. The mipp::norm operation performs two multiplications
and one addition. Figure 2.10b sketches the computation of the complex norm using a Structure of
Array (SoA) data layout. This implementation does not require the MIPP mipp::deinterleave
operation. The real and imaginary parts of the complex numbers are initially separated in
memory. Our experiments demonstrated that the SoA method leads to higher performance than
the AoS method. This is due to the economy of the mipp::deinterleave operation. Depending
on the SIMD ISA the deinterleaving can take up to 20% longer. The SoA data layout is used for
evaluations.

memory

SIMD register

SIMD function

Complex norm dx

Noise nx = −N0

Probability Px

... ...

d1 d2 d3 d4 d5 d6 d7 d8

mipp::load<T>

n1 n2 n3 n4 n5 n6 n7 n8

mipp::set1<T>(−N0)

d̂1 d̂2 d̂3 d̂4 d̂5 d̂6 d̂7 d̂8

mipp::div<T>

P1 P2 P3 P4 P5 P6 P7 P8

mipp::exp<T>

... ...

mipp::store<T>

Figure 2.11 – MPA vectorized exponentials (N0 = 2σ2, pSIMD = 8).

SIMD Computation of Exponential To speedup the computation of the exponentials used
in (1.15), the mipp::exp math function is used. The flattened complex and normalized numbers
are calculated as shown in Figure 2.10 to produce the preliminary values used to compute the
probabilities. Figure 2.11 illustrates the full process on a vector of eight floating-point numbers
(pSIMD = 8). First the values are loaded into SIMD registers. Then they are multiplied by −1/2σ2.
Finally the exponential function is performed according to (1.15).

Exponential Approximation with the Estimated-MPA algorithm In the proposed E-
MAP algorithm approximation, (1.24) replaces the mipp::exp function used in Figure 2.11. It
reduces the overall number of instructions to two multiplications and one addition. Knowing that
the mipp::exp function represents about 30 SIMD assembly instructions, the E-MAP algorithm
leads to a drastic reduction of the computation effort.

65

2.7. SCMA Demodulators

Msg. RES1 →UE3 (µ1
x)

Msg. RES3 →UE3 (µ3
x)

Beliefs at UE3 (B3
x)

...

µ1
1 µ1

2 µ1
3 µ1

4

mipp::load<T>

µ3
1 µ3

2 µ3
3 µ3

4

mipp::load<T>

B3
1 B3

2 B3
3 B3

4

mipp::mul<T>

mipp::store<T>

... ...

Resources to user messages

Final beliefs

Figure 2.12 – MPA vectorized computations of final beliefs (pSIMD = 8).

SIMD Message Passing Some remaining parts of the MPA can be vectorized too. Especially,
the guess swaps and the computation of the final beliefs. Each user node can be vectorized but
the available level of parallelism is limited to 4 elements. Figure 2.12 shows the computation of
final beliefs for user 3 (this is illustrated in Figure 1.17d (III)). There are four messages from
a resource to a user containing the probabilities of four different codewords. If pSIMD > 4 then
some elements of the SIMD register are not used. The data layout has been adapted and the
memory allocation is padded. By this way, the read and written extra-elements do not produce
segmentation fault errors.

Accuracy of Floating-point Computations The finite precision of floating-point calcula-
tions induces losses in the results. Thus, technical standards such as IEEE 754 define rounding
rules, precision of calculations, exception handling and underflow behavior. However, the MPA
delivers the same bit error rate results with less precise floating-point models. For instance, in
the GNU compiler, -Ofast is a high-level compiler option which includes fast math libraries
to handle floating-point calculations (-ffast-math). The compiler uses various mathematical
simplifications as explained in [GCC18]. It also uses approximated tables for the division and
the square root functions. The compiler also forces the value to zero in the case of an underflow.
Using -Ofast can improve the throughput of the MPA algorithm as will be shown in Section 4.5.

In this section, we proposed a generic intra-frame SIMD software implementation of the
SCMA MPA class of algorithms. The vectorized sub-parts of the algorithms have been detailed
and the corresponding MIPP implementations have been given. Other well-known optimization
techniques, such as loops unrolling, avoiding type conversions and functions inlining have been
used to enhance the throughput of the various message passing algorithms.

66

2.8. Conclusion

2.8 Conclusion

In this chapter, generic strategies for efficient algorithm implementations on CPUs are
presented first. The vectorization is a key for performance efficiency on current CPUs. Thus, a
main contribution in this chapter is the proposition of MIPP: a wrapper for the SIMD instructions.
The idea is to abstract data types and SIMD ISAs in order to propose “universal” and efficient
implementations of digital communication receiver algorithms. We show that MIPP introduces
little overhead over specific intrinsic functions (or assembly code) and is able to operate on
floating-point representations as well as fixed-point ones. For digital communication receiver
algorithms, fixed-point representations are very interesting for channel coding algorithms because
they offer increased SIMD widths, with moderate impact on the decoding performance. To
summarize, MIPP improves the source code flexibility and portability while keeping the same level
of performance. Note that the MIPP wrapper has been published in a scientific conference [7].

In a second part, two main vectorization strategies are explicitly defined and presented. The
intra-frame SIMD strategy operates on a single frame relying on the algorithm inherent parallelism
while the inter-frame SIMD strategy operates on multiple frames at the same time. The intra-
SIMD can increase the throughput as well as the latency. On the contrary, the inter-SIMD does
not improve the latency but comes with a potentially higher SIMD efficiency and can lead to
very high throughputs. These two strategies can be applied to all the processing blocks of digital
communication chains. Thus, they are a key point to address the algorithmic heterogeneity
problem.

Then, two expensive blocks of functional simulations are studied: the channel and the quantizer.
Both algorithms are implemented with MIPP by the mean of the intra-frame SIMD strategy.
This results in high performance implementations to deliver fast functional simulations.

The four last sections focus on the design of efficient software implementations of the algorithms
presented in Chapter 1 (LDPC decoders, polar decoders, turbo decoder and SCMA demodulator).
The LDPC BP decoders, the polar SC decoders and the turbo decoder are compatible with
the inter-frame SIMD strategy while the polar SC/SCL decoders and the SCMA demodulator
are compatible with the intra-frame SIMD strategy. Depending on the code families, we focus
on different constraints. The LDPC BP decoders have been implemented to support many
variants and thus to maximize the flexibility at the cost of lower throughputs and higher latencies
compared to other works. This choice enables to evaluate the decoding performance of many
algorithmic combinations. In the polar decoders, flexibility as well as aggressive optimizations
are considered, combined and compared. The turbo decoder focuses on achieving the highest
possible throughputs and some specializations are made for the LTE standard. Finally the
SCMA demodulator implementation tries to propose a compromise between high throughputs and
low latencies. Most of the proposed software implementations have been published in scientific
conferences and journals [2, 3, 4, 5, 6].

The optimizations performed in the proposed implementations are compatible with a large set
of CPUs, compilers, and data types. This portability is one of our main concern and we believe
that the proposed software implementations will be easily extended to future CPUs as long as
there is no drastic changes in the hardware architectures.

Some optimization strategies have not been considered in the proposed implementations and
are good candidates to improve them. For each implementation the inter- or the intra-frame
SIMD strategy has been selected. With the growing size of the SIMD registers, it becomes difficult

67

2.8. Conclusion

to achieve high efficiency using the intra-frame SIMD strategy. However, the reduced latencies
are still very interesting, especially for the SDR and the C-RAN needs. Then, it could be a
good idea to combine both the intra- and inter-frame SIMD strategies. The intra-SIMD will
absorb as much as possible the algorithm inherent parallelism while the inter-SIMD will fill the
empty elements in the SIMD registers. The inter-SIMD also has its limits, when large frames are
processed in parallel, the amount of required memory linearly increases with the frame size. This
leads to reduced throughput efficiency as it will be shown in Chapter 4. Additionally, for some
decoding algorithms, it is not possible to maintain optimal error-rate performance with too short
fixed-point representations (8-bit). It could be interesting to consider mixed-precision in these
specific cases.

The next chapter introduces AFF3CT, the toolbox we designed to integrate all the proposed
implementations in a consistent, modular and extensible forward error correction framework.

68

3 AFF3CT: A Fast Forward Error Correc-
tion Toolbox

This chapter is dedicated to the introduction of our AFF3CT open-source toolbox. The first
section describes the main prerequisites driven by four objectives: high performance software
implementation, support for algorithmic heterogeneity, portability and reproducibility. In the
second section, AFF3CT is compared with the other existing C/C++ FEC software libraries. The
third section presents AFF3CT as a library dedicated to the digital communication algorithms.
The software architecture and functionalities are described. Then, examples of library use are
given in C++ and MATLAB®. The fourth section focuses on the AFF3CT BER/FER simulator
that comes with the toolbox. A tour of the possible explorations is given and our BER/FER
comparator is presented. At the end, the AFF3CT testing strategy is explained. The fifth section
shows the impact of AFF3CT in industrial and academic contexts. A review of the scientific
publications that used AFF3CT is given. The last section concludes this chapter.

3.1 Prerequisites . 70
3.1.1 High Performance Implementations . 70
3.1.2 Support for Algorithmic Heterogeneity 70
3.1.3 Portability . 71
3.1.4 Reproducibility . 71

3.2 Related Works . 71
3.3 Library of Digital Communication Algorithms 72

3.3.1 Software Architecture . 72
3.3.2 Examples of Library Use . 74
3.3.3 MATLAB® Wrapper . 76
3.3.4 Software Functionalities . 77

3.4 Simulation of Digital Communication Algorithms 79
3.4.1 A Simulator Application on Top of the Library 79
3.4.2 In-depth Parameter Exploration . 80
3.4.3 BER/FER Comparator and Pre-simulated Results 83
3.4.4 Continuous Integration and Continuous Delivery 84

3.5 Impact and Community . 84
3.6 Conclusion . 85

69

3.1. Prerequisites

3.1 Prerequisites

AFF3CT for A Fast Forward Error Correction Toolbox is a set of tools regrouping all the
contributions of this thesis and more. In this section, we explain how AFF3CT answers to the
different problematics defined in Section 1.5.

3.1.1 High Performance Implementations

The signal processing community mainly writes source codes with high level languages like
MATLAB® or Python. These languages enable to write implementations close to the pseudo-code
but an important part of the CPU computational power is wasted. When targeting low error-rate
functional simulations or real-time constraints (like for the C-RAN and the SDR), these high
level languages are not suitable. With the increasing complexity of the digital communication
systems it becomes crucial to have high performance implementations.

To this purpose, AFF3CT is mainly written in C++ [Str13]. This choice has been made to focus
on high performance implementations without sacrificing too much the expressiveness. C++ is a
compiled language, it enables very low level programming paradigms like intrinsics functions (or
even assembly code) as well as high level concepts like the Object-Oriented Programming (OOP)
paradigm. Moreover, C++ comes with the template meta-programming technique to facilitate
the programming at compile time. Another main advantage of C++ is that it is constantly
evolving [Str20] and it is well-spread in the HPC community. However, we choose to limit the
utilization of C++ to its 2011 version (C++11). This choice has been made for two main reasons:
1) to maximize the compatibility with the installed compilers in various environments; 2) C++11
features are sufficient for digital communication systems.

For the signal processing algorithms implemented in AFF3CT, we observed that compared
to interpreted languages, the speedups range from 10 to 1000 in C++. If we consider the heavily
optimized implementations presented in Chapter 2, the speedups are closer to 1000. Of course the
speedups are not simply coming from the porting of the MATLAB® code to the C++ code. It is
true that the compiler is sometime able to perform optimizations that can benefit for the overall
performance. But, most of the speedup comes from dedicated implementations. C++ enables
source code implementations to take advantage of the hardware architecture. Moreover, it is up
to the developer to exploit his/her knowledge of the CPU architecture in the design process. As
explained in Chapter 2, optimizations like the vectorization, the choice of an adapted data layout
and the loop unrolling are the keys of the proposed high performance software implementations.

3.1.2 Support for Algorithmic Heterogeneity

As shown in Chapter 1 and 2, there are many signal processing algorithms along with many
possible implementations. A summary list of the algorithms supported by AFF3CT is given in
the next section. It motivates the need to regroup and package all these algorithms in a common
toolbox. The main interests are 1) to propose common and homogeneous interfaces to the users
and 2) to maximize code reuse among implementations.

In the context of the channel codes, the algorithmic heterogeneity is challenging. Actually,
each family has its own specificities. This is why in most existing projects the focus is made on a
single code family (see Section 3.2). This strongly motivated the need of a toolbox like AFF3CT.
The objective is to homogenize the use of various FEC code families.

70

3.2. Related Works

MIPP is an example of code reuse as it defines elementary blocks used everywhere in AFF3CT.
Other macro blocks are also often reused like the reordering process proposed in Sections 2.2.2.
There are many other macro blocks in AFF3CT similar to the ones that are presented in the
manuscript. This enables to speedup and facilitate the implementation of new efficient algorithms.

3.1.3 Portability

Portability is a main concern in AFF3CT. The signal community use multiple operating
systems. The predominant ones are Windows, macOS and Linux. Thanks to the C++11 standard
library, the same AFF3CT source code can be compiled on these three operating systems. It is
possible to compile with the GNU compiler (GCC), the Clang compiler, the Intel® C++ compiler
(ICPC) and the Microsoft® Visual compiler (MSVC). Note that other operating systems and
compilers may also work as long as they are compatible with the C++11 standard.

AFF3CT also takes advantage of various common CPU architectures like Intel®/AMD® and
ARM® processors. The Intel®/AMD® CPUs are widely spread in current laptops as well as
in the clusters (or in the supercomputers). ARM® CPUs are interesting as they are generally
consuming less energy than Intel®/AMD® CPUs. They are good candidates for embedded
systems. Moreover, they are more and more present in HPC contexts. At the time of the writing,
Fugaku, the most powerful supercomputer in the world, is based on ARM CPUs.

The heterogeneity of the CPU architectures is mainly managed by MIPP (see Section 2.1). The
compiled binary is dedicated to the appropriate SIMD ISA. If the architecture is not recognized
then the AFF3CT binary falls back to a sequential version.

3.1.4 Reproducibility

In the signal processing community it is not common to share the resulting implementations
of a scientific publication. Thus, it is sometime a tedious task to reproduce the state-of-the-art
results. Consequently, the community spends a non-negligible amount of time in “reinventing the
wheel”. We think this should be avoided, thus AFF3CT is an open source toolbox coming with
a permissive MIT license. This way, industrial and academic actors can invest themselves and
reuse parts of AFF3CT in their own projects without any restrictions. The diffusion of AFF3CT
is discussed in Section 3.5.

Even when a code is fully open, there is no guarantee that the achieved results can be
reproduced as the code is constantly evolving. Any modification of the source code can break
features that were working before. This problem is inherent to all living projects. To prevent
regressions as much as possible, a full pipeline of tests has been created. It is detailed in
Section 3.4.4. Each time someone makes a modification on the AFF3CT source code, then the
pipeline of tests is triggered. The reproducibility of the results is based on the fact that for a
given AFF3CT simulator command line, the output BER/FER decoding performance should
always be the same. In other terms, the AFF3CT simulator is deterministic.

3.2 Related Works

In the digital signal processing community, many researchers implement their own simulation
chain to validate their works. Table 3.1 presents, to the best of our knowledge, a list of currently

71

3.3. Library of Digital Communication Algorithms

Table 3.1 – C/C++ open source channel coding simulators/libraries.

Name Ref. License

P
ol
ar

LD
P
C

T
ur
bo

T
ur
bo

P.

B
C
H

R
S

C
on

v.

R
A

R
ep

.

E
ra
su
reContri- Code Start

butors Lines Year

AFF3CT [1] 11 76k 2016 MIT 3 3 3 3 3 3 3 3 3 7

aicodix GmbH [aic18] 1 7k 2018 Copyright 7 3 7 7 3 3 7 7 7 7

eccpage [Mor89] 20 - 1989 - 7 3 3 7 3 3 3 7 7 3

EZPWD [Kun14] 2 6k 2014 GPLv3 7 7 7 7 7 3 7 7 7 7

FastECC [Zig15] 2 1k 2015 Apache 2.0 7 7 7 7 7 3 7 7 7 7

FEC-AL [Tay18a] 1 3k 2018 BSD 7 7 7 7 7 7 3 7 7 3

FECpp [Llo09] 1 2k 2009 - 7 7 7 7 7 7 7 7 7 3

GNURadio [Ron+06] 192 270k 2006 GPLv3 3 3 7 7 7 7 3 7 3 7

Inan [IS18] 2 13k 2018 Copyright 7 3 7 7 7 7 7 7 7 7

IT++ [COP+05] 20 109k 2005 GPLv3 7 3 3 7 3 3 3 7 7 7

Le Gal [Le 15] 1 83k 2015 - 7 3 7 7 7 7 7 7 7 7

Leopard [Tay+17] 4 5k 2017 BSD 7 7 7 7 7 3 7 7 7 7

libcorrect [Arm+16] 6 5k 2016 BSD 7 7 7 7 7 3 3 7 7 7

Neal [Nea06] 1 5k 2006 Copyright 7 3 7 7 7 7 7 7 7 7

OpenAir [EUR13] 148 740k 2013 OAI Public 7 7 3 7 7 7 7 7 7 7

OpenFEC [Cun+09] 8 55k 2009 CeCCIL-C 7 3 7 7 7 3 7 7 7 7

Schifra [Par10] 1 7k 2010 GPLv3 7 7 7 7 7 3 7 7 7 7

Siamese [Tay18b] 1 11k 2018 BSD 7 7 7 7 7 7 3 7 7 3

Tavildar (Polar) [Tav16b] 1 2k 2016 - 3 7 7 7 7 7 7 7 7 7

Tavildar (LDPC) [Tav16a] 1 1k 2016 - 7 3 7 7 7 7 7 7 7 7

the-art-of-ecc [Mor06] 1 - 2006 Copyright 7 3 3 3 3 3 3 7 7 7

TurboFEC [PT+15] 2 4k 2015 GPLv3 7 7 3 7 7 7 7 7 7 7

available C/C++ open source channel coding simulators/libraries. This comparison table is also
available online where it is regularly updated 1. We choose to compare with projects compiled
as binaries, since they aim at high throughput and low latency, as AFF3CT. Many open source
projects in Python or in MATLAB® exist as well. But these tools are usually slower than
compiled binaries, and rather aim at prototyping.

Table 3.1 shows that, generally, the C/C++ FEC libraries target a single family or a small
subset of channel codes. As a consequence, a large effort is spent to re-develop similar features,
since all those libraries and tools share many characteristics (except the channel code itself).
AFF3CT attempts to lower this redundancy by offering a full simulator/library that consistently
supports a wide range of channel codes and homogenizes usage (command line, C++ interfaces,
etc.) across all code families. One can observe that AFF3CT is the only library to support the
LDPC codes, the polar codes and the turbo codes. These three channel codes are known to be
the most challenging ones to implement.

3.3 Library of Digital Communication Algorithms

3.3.1 Software Architecture

AFF3CT is developed in C++ in an object-oriented programming style. It provides fundamental
classes involved in the building of digital communication chains. For instance, in Fig 1.14, the
source, the encoder, the modulator, the channel, the demodulator, the decoder and the monitor
are module classes. Tools can be classes or functions. For instance, the polar API presented in
Section 2.5.2 is a static class implementing the polar f, g and h functions (see Equation 1.7) that
are common to all the polar decoders. Many implementations of defined interfaces can coexist.
For instance, the abstract Encoder class that defines the encode pure virtual method. The

1. C/C++ Open Source FEC Libraries: https://aff3ct.github.io/fec_libraries.html

72

https://aff3ct.github.io/fec_libraries.html

3.3. Library of Digital Communication Algorithms

encode method takes a vector u of K bits as inputs and outputs a vector c of N bits. Then, there
are many implementations of the Encoder class like the Encoder_polar class, the Encoder_LDPC
class, the Encoder_turbo class, etc. To simplify the instanciation of the non-static classes (like
the encoders), many factory classes have been created. Their job is to simplify the allocation of
the module and tool objects.

3.3.1.1 Module

All the classes that implement communication chain elements inherit from the Module abstract
class. The particularity of the module classes is that they have to expose at least one method
that can be called in the context of digital communication chains. These specific methods are
called tasks. A task is an elementary processing performed on some data. For instance, the
Encoder class inherits from the Module class. It also defines the encode method which is a task.
To be recognized as a task, the encode method has to be registered in the constructor of the
Encoder class. The abstract Module class defines and implements a set of functions to perform
this registering. Most of the time, when a developer wants to add a new module, he does not
need to register any task because it is already done for him. For instance, if a developer wants
to add a new encoder, then he simply needs to inherit from the proposed Encoder class and to
implement the encode method. A task is characterized by its sockets. They are used to describe
the input and output data of the task following a philosophy close to ports in component-based
development approaches. The socket type can be input or output. The sockets also enable to
automatically allocate the data. In AFF3CT the convention is to automatically allocate the data
of the output sockets.

3.3.1.2 Tools

The tools regroups many different types of processing:
— Algorithmic & Math: the algorithmic components focus on the implementation of

traditional algorithmic structures. For instance, this contains implementations of trees,
matrices, histograms, etc. It also contains sorting and PRNG algorithm implementations.
The math components regroup the interpolations, the Galois fields, the distributions, the
integrations, etc.;

— Channel code: this type of tools regroups the processing implementations that are
common to a single code family. For instance, the Polar_API is located here;

— Display: these components are classes and functions dedicated to the display of the
information in the terminal or in files. Statistic functions are located here as well as classes
dedicated to the display of the BER and the FER performances;

— Interface: these abstract classes define interfaces. For instance, the Interface_reset
proposes a common interface for the reset method. This way, all the classes inhering
from this interface have exactly the same prototype for their implementation of the reset
method;

— Performance: this type of components is dedicated to high performance implementation.
The vectorized reordering process presented in Section 2.2.2 is located here.

The above list is not exhaustive but is intended to give a representative overview of what can be
found in the different tools.

73

3.3. Library of Digital Communication Algorithms

3.3.1.3 Factory

In AFF3CT, one has to allocate modules dynamically at runtime. Combined with the fact
that there are many possible combinations of modules, we applied the factory pattern. In the
OOP paradigm, the factory method pattern is dedicated to the the problem of creating objects
without having to specify the exact class of the object that will be created. This is done by
calling a method on the factory. In AFF3CT, all the factories propose a build method to this
purpose. The return type of the build method is always an abstract class that regroups a
sub-set of implemented classes. Considering the factory Source class, first the instantiation of
this class is required. Then, the created object comes with a list of public members that can be
manually set or deduced from the command line arguments. Once this is done the build method
can be called. This method makes use of the public members (previously set) of the object to
instantiate an object of the module Source class. This object can be a Source_random object, a
Source_user_binary object, etc.

3.3.2 Examples of Library Use

As a FEC library, AFF3CT can be used programmatically in real-time contexts or to build
specific functional simulations. AFF3CT blocks can also be operated in external projects without
restriction. In this section we propose two illustrative examples of the AFF3CT library usage.
The first one is dedicated to the simulation of a digital communication chain while the second
focuses on the validation of a hardware decoder.

generate encode modulate

add_noise

demodulatedecode_sihocheck_errrors

Source Encoder

Modem

ChannelDecoderMonitor

u c x

yl
û

Task

Module

Output socket

Input socket

Figure 3.1 – Simulation of a digital communication chain using the AFF3CT library.

Simulation of a Digital Communication Chain A simulation chain that can be imple-
mented is given in Figure 3.1. The represented modules an tasks correspond to the classes and
methods presented in the previous section. For instance, the modem module contains the modulate
and demodulate tasks. Figure 3.1 presents common modules and tasks typically found in a typical
digital communication chain. It shows that the number of tasks per module can vary depending
on the module type. The first step is to allocate the modules. In Listing 3.1 we chose to allocate
modules on the stack. But it is also possible to do the same on the heap. K is the number of
information bits, N is the frame size and E is the number of erroneous frames to simulate. In this
basic example, a repetition code is selected, it simply repeats the information bits N/K times.
The next step is to bind the sockets of successive tasks together (see Listing 3.2). To propose
an easy to use interface, sockets and tasks can be selected through the [] operator, which takes
a C++ strongly typed enumerate. This way it is possible to specialize the code depending on
whether it is a socket or a task. Strongly typed enumerates are checked at compile time (contrary

74

3.3. Library of Digital Communication Algorithms

1 #include <aff3ct.hpp>
2 using namespace aff3ct;
3

4 constexpr int K = 128; // number of information bits
5 constexpr int N = 256; // codeword or frame size
6 constexpr int E = 100; // number of errors to simulate
7

8 // allocate the module objects
9 module::Source_random<> Src(K);

10 module::Encoder_repetition<> Enc(K, N);
11 module::Modem_BPSK<> Mdm(N);
12 module::Channel_AWGN<> Chn(N);
13 module::Decoder_repetiton<> Dec(K, N);
14 module::Monitor_BFER<> Mnt(K, E);

Listing 3.1 – Example of modules allocation with the AFF3CT library.

1 // bind the sockets over the tasks
2 Enc[module::enc::sck::encode ::u].bind(Src[module::src::sck::generate ::u]);
3 Mdm[module::mdm::sck::modulate ::c].bind(Enc[module::enc::sck::encode ::c]);
4 Chn[module::chn::sck::add_noise ::x].bind(Mdm[module::mdm::sck::modulate ::x]);
5 Mdm[module::mdm::sck::demodulate ::y].bind(Chn[module::chn::sck::add_noise ::y]);
6 Dec[module::dec::sck::decode_siho ::l].bind(Mdm[module::mdm::sck::demodulate ::l]);
7 Mnt[module::mnt::sck::check_errors::u1].bind(Src[module::src::sck::generate ::u]);
8 Mnt[module::mnt::sck::check_errors::u2].bind(Dec[module::dec::sck::decode_siho::u]);

Listing 3.2 – Example of sockets binding with the AFF3CT library.

1 // the simulation loop
2 while (!monitor.fe_limit_achieved()) {
3 Src[module::src::tsk::generate].exec();
4 Enc[module::enc::tsk::encode].exec();
5 Mdm[module::mdm::tsk::modulate].exec();
6 Chn[module::chn::tsk::add_noise].exec();
7 Mdm[module::mdm::tsk::demodulate].exec();
8 Dec[module::dec::tsk::decode_siho].exec();
9 Mnt[module::mnt::tsk::check_errors].exec();

10 }

Listing 3.3 – Example of tasks execution with the AFF3CT library.

75

3.3. Library of Digital Communication Algorithms

to standard enumerates), making it impossible to use wrong values. For instance, in the example,
the source module output socket module::src::sck::generate::u is connected to the input
socket module::enc::sck::encode::u of the encoder. The simulation is then started and each
task is executed. In Listing 3.3, the whole communication chain is executed multiple times, until
the E = 100 frame error limit is reached. Complete examples are available on GitHub 2.

Validation of a Hardware Decoder The AFF3CT library has also been used to prototype
FPGA decoders. In [8], a BCH decoder is implemented on a Xilinx® Artix-7 FPGA. AFF3CT
simulates the transmission of a first frame. The noisy frame is then sent to the FPGA using the
UART protocol. The hardware BCH decoder processes the frame and sends it back to the PC.
AFF3CT can then perform the rest of the processing for this frame. Once the number of residual
errors is updated, AFF3CT starts with a new frame, and so on. The decoding performance
matches to the performance of the pure software simulation which shows that the hardware BCH
decoder is correctly implemented. This process is also known as hardware in the loop.

3.3.3 MATLAB® Wrapper

In the signal processing community it is common to exploit MATLAB® to implement and to
evaluate new algorithms or/and configurations. More specifically, the Communications Toolbox is
often used. This toolbox contains a larger set of digital communication algorithms than AFF3CT.
But they often lack of efficiency, especially for the channel decoder implementations. Knowing
that, a MATLAB® wrapper has been proposed to be interfaced to the compiled AFF3CT
library. The wrapper can be seen as a new MATLAB® toolbox that proposes faster decoder
implementations than the traditional MATLAB® communications toolbox. AFF3CT also comes
with channel decoders that are not available in the standard communications toolbox.

1 K = 128; N = 256; E = 100;
2

3 Src = aff3ct_module_source_random (K);
4 Enc = aff3ct_module_encoder_repetition(K, N);
5 Mdm = aff3ct_module_modem_BPSK (N);
6 Chn = aff3ct_module_channel_AWGN (N);
7 Dec = aff3ct_module_decoder_repetition(K, N);
8 Mnt = aff3ct_module_monitor_BFER (K, E);
9

10 while ~Mnt.fe_limit_achieved()
11 u = Src.generate ();
12 c = Enc.encode (u);
13 x = Mdm.modulate (c);
14 y = Chn.add_noise (x);
15 l = Mdm.demodulate (y);
16 v = Dec.decode_siho (l);
17 Mnt.check_errors(u, v);
18 end

Listing 3.4 – Example of the AFF3CT MATLAB® wrapper.

The proposed MATLAB® wrapper is automatically generated for the AFF3CT headers. The
Clang compiler is used to generate the Abstract Syntax Tree (AST) of the AFF3CT source

2. AFF3CT library examples: https://github.com/aff3ct/my_project_with_aff3ct/

76

https://github.com/aff3ct/my_project_with_aff3ct/

3.3. Library of Digital Communication Algorithms

code. A Python script extracts useful classes and methods. These data are stored in a JSON
database. Then, another Python script has been written to generate C++ and MATLAB® codes.
It effectively performs the interfaces between the AFF3CT library and MATLAB®. Listing 3.4
shows the same example of code as in Section 3.3.2 written in MATLAB®. At the time of the
writing, the MATLAB® wrapper has not been publicly released yet.

3.3.4 Software Functionalities

The AFF3CT software functionalities are decomposed in three main parts: the codecs, the
modems and the channels.

Table 3.2 – List of the channel codes (codecs) supported in AFF3CT.

Channel Code Standard Decoders

LDPC

5G (data), Wi-Fi, Scheduling: Flooding and H./V. Layered
WiMAX, WRAN, Sum-Product Algorithm (SPA, log-SPA)
10 Gigabit Eth., Min-Sum its derivatives (MS, NMS and OMS)
DVB-S2, CCSDS Approximate Min-Star (AMS)

etc. Bit Flipping: GallagerA/B/E, PPBF, WBF
Successive Cancellation (SC)

Polar 5G Successive Cancellation List (SCL)
(Arıkan mono-kernel) (control channel) CRC-Aided SCL (CA-SCL, FA-SCL, PA-SCL)

Soft Cancellation (SCAN)
Polar Successive Cancellation (SC)

(mono/multi-kernel – Successive Cancellation List (SCL)
generic) CRC-Aided SCL (CA-SCL, PA-SCL)
Turbo LTE (3G, 4G), Turbo BCJR

(single and double DVB-RCS, Turbo BCJR + Early Termination (CRC)
binary) CCSDS, etc. Post proc.: Flip aNd Check (FNC)

Product WiMAX (opt.) Turbo Chase-Pyndiah

BCH
CD, DVD,

SSD, DVB-S2, Berlekamp-Massey + Chien search
Bitcoin, etc.

Reed-Solomon
CD, DVD,

SSD, DVB-T, Berlekamp-Massey + Chien search
ADSL, etc.

Convolutional BCJR - Maximum A Posteriori (MAP)
(single and double NASA BCJR - Linear Approximation (L-MAP)

binary) BCJR - Max-log Approximation (ML-MAP)

The codecs are the main part of the toolbox. There is a broad range of supported codes
listed in Table 3.2. They naturally encompass the encoders and decoders. But they can also
include puncturing patterns to shorten frame length according to some communication standards.
Most of the codec algorithms come from the literature, while the others have been designed
under AFF3CT [Ton+16b, Ton+16a, Ton17, 3]. In channel coding, the decoder is the most
time-consuming process, compared to the puncturing and the encoding processes. This is why
a specific effort is put on ensuring the high computing performance of the decoders. Most of
the decoding algorithms have thus been optimized to satisfy high throughput and low latency

77

3.3. Library of Digital Communication Algorithms

constraints [LLJ15, 4, 6, 5]. Those optimizations generally involve a vectorized implementation, a
tailored data quantization and the use of fixed-point arithmetic.

Table 3.3 – List of the modulations/demodulations (modems) supported in AFF3CT.

Modem Standard Information

N-PSK
IEEE 802.16 (WiMAX)

UMTS (2G, 2G+) Phase-Shift Keying
EDGE (8-PSK), ...

N-QAM
IEEE 802.16 (WiMAX)

UMTS (2G, 2G+) Quadrature Amplitude Modulation
3G, 4G, 5G, ...

N-PAM
IEEE 802.16 (WiMAX)

UMTS (2G, 2G+) Pulse Amplitude Modulation
3G, 4G, 5G, ...

CPM GMSK, Bluetooth Continuous Phase Modulation
IEEE 802.11 FHSS Coded (convolutional-based) modulation

OOK IrDA (Infrared) On-Off Keying
ISM bands Used in optical communication systems

SCMA Considered for 5G Sparse Code Multiple Access
Multi-user modulation

User defined - Constellation and order can be
defined from an external file

In typical communication chains, it is necessary to adapt the digital signal to the physical
support. This operation is performed by the modulator and conversely by the demodulator.
AFF3CT comes with a rich set of modems to this purpose. Table 3.3 lists all the supported
modems. AFF3CT supports several coded modulation/demodulation schemes like the Contin-
uous Phase Modulation (CPM) [AS81, ARS81] and the Sparse Code Multiple Access (SCMA)
modulation [NB13, Gha+17, 2] with many codebooks [Alt15b, WZC15, CWC15, Zha+16, KS16,
SWC17, KS17]). It enables to easily combine and evaluate the channel codes with several types
of modulations. In the case of the CPM, analogical wave shapes are also simulated. The other
modulation schemes are at the digital level.

Table 3.4 – List of the channel models supported in AFF3CT.

Channel Multi-user Information

AWGN Yes Additive White Gaussian Noise

BEC No Binary Erasure Channel

BSC No Binary Symmetric Channel

Rayleigh Yes Flat Rayleigh fading channel

User defined No User can import noise samples
from an external file

For simulation purposes, it is crucial to emulate the behavior of the physical layer. This is the
role of the channel. There are many possible configurations depending on the physics phenomena

78

3.4. Simulation of Digital Communication Algorithms

to simulate. Table 3.4 reports all the supported channels. The channels involve complex floating-
point computations. It is frequent to use expensive exponential and trigonometric operations. As
for the decoders, the channel software implementations have to be carefully optimized based on
branch instructions reduction and massive vectorization. The multi-user column refers to the
ability of the channel to add correlated noise to a sub-set of frames.

3.4 Simulation of Digital Communication Algorithms

3.4.1 A Simulator Application on Top of the Library

The AFF3CT toolbox comes with a dedicated functional simulator [9]. It is based on the
AFF3CT library presented before. We remarked that the functional simulation chains are often
similar. For this reason, the simulation chain presented in Figure 3.1 has been implemented and
enriched. The proposed simulator supports multi-threading to take advantage of current CPU
multi-core architectures. It is also able to run on supercomputers and comes with a multi-node
implementation based on the well-known HPC Message Passing Interface (MPI). The multi-core
and multi-node performance of the AFF3CT simulator is illustrated later in Section 4.6.

One of the main advantage of the AFF3CT simulator is to come with a common interface for
many channel code families. It is also possible to evaluate the error-rate performance of these
code families on various configurations thanks to the supported modems and channel models.
This makes it easy to compare different code families with each other.

$ aff3ct -C "POLAR" -K 1723 -N 2048 -m 1 -M 4 -s 1 --dec-type "SC"

Listing 3.5 – Example of an AFF3CT simulator command.

The AFF3CT simulator is a command line executable. All its possible parameters are
exhaustively documented 3. Listing 3.5 proposes to simulate a (2048, 1723) polar code from 1 dB
to 4 dB with a step of 1 dB (see Section 1.4.1). By default, the AWGN channel is selected as well
as the BPSK modulation. Then the SC decoder is specified. For a given SNR, by default the
simulation stops when more than 100 erroneous frames have been detected.

1 # --
2 # ---- A FAST FORWARD ERROR CORRECTION TOOLBOX >> ----
3 # --
4 # Parameters :
5 # [...]
6 # ----------|----------||----------|----------|----------|----------|----------
7 # Es/N0 | Eb/N0 || FRA | BE | FE | BER | FER
8 # (dB) | (dB) || | | | |
9 # ----------|----------||----------|----------|----------|----------|----------

10 0.25 | 1.00 || 104 | 16425 | 104 | 9.17e-02 | 1.00e+00
11 1.25 | 2.00 || 104 | 12285 | 104 | 6.86e-02 | 1.00e+00
12 2.25 | 3.00 || 147 | 5600 | 102 | 2.21e-02 | 6.94e-01
13 3.25 | 4.00 || 5055 | 2769 | 100 | 3.18e-04 | 1.98e-02
14 # End of the simulation.

Listing 3.6 – Example of an AFF3CT simulator output.

3. AFF3CT documentation: https://aff3ct.readthedocs.io

79

https://aff3ct.readthedocs.io

3.4. Simulation of Digital Communication Algorithms

Listing 3.6 shows the simulation results corresponding to the AFF3CT command given in
Listing 3.5 (note that some details have been removed for concision). The same command line
always gives the same decoding performance results. FRA stands for the number of simulated
frames, while BE and FE are the number of bit and frame errors. The simulator output is adapted
to post processing: lines starting with a hashtag can be skipped.

3.4.2 In-depth Parameter Exploration

One of the main strength of the AFF3CT simulator is to enable the exploration of various
configurations. In this section, a tour of possible experimentation scenarios is given. The objective
is not to be exhaustive and many more parameters could be explored. However, it gives a
representative overview of the large variety of parameters that can be tweaked in the proposed
simulator. As shown in Section 3.3.4, many code families are supported. To the best of our
knowledge the AFF3CT toolbox regroups more channel codes than all the other existing libraries
(see Section 3.2). Each of these codes can be simulated over many channel models (BEC, BSC,
AWGN and Rayleigh) and modulation schemes (PSK, QAM, PAM, OOK, CPM and SCMA). In
this thesis the channel model is always the AWGN and the modulation scheme is almost always a
BPSK. It can also be the SCMA modulation. It will be explicitly mentioned in the latter case.
For each channel code, many decoding algorithms and their corresponding approximations can be
compared.

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
or

R
at

e

Sum-Product Algorithm

Min-Sum
Offset Min-Sum (λ = 0.5)

Normalized Min-Sum (α = 0.875)

Figure 3.2 – Decoding performance of the LDPC BP algorithm depending on the update rules
(horizontal layered scheduling). 40 iterations, IEEE 802.16e (WiMAX) H parity matrix (N = 2304,
R = 1/2).

Impact of the Decoder Algorithmic Parameters on the FER In Figure 3.2, the LDPC
belief propagation (BP) decoding algorithm is considered with an horizontal layered scheduling.
The H parity matrix has been taken from the WiMAX standard (N = 2304, R = 1/2). The impact
of various update rules on the decoding performance is observed. As explained in Section 1.3.2,
the Min-Sum (MS) is an approximation of the Sum-Product Algorithm (SPA) and leads to
a performance loss. The Offset Min-Sum (OMS) and the Normalized Min-Sum (NMS) are
improvements of the MS. They enable to recover a part of the SPA decoding performance.

80

3.4. Simulation of Digital Communication Algorithms

0.5 1 1.5 2 2.5 3 3.5

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
or

R
at

e

ite. BP-F BP-HL BP-VL

10
20
40

Figure 3.3 – Decoding performance of the LDPC BP algorithm depending on the scheduling
techniques. Flooding (BP-F), horizontal layered (BP-HL) and vertical layered (BP-VL) scheduling
are considered with SPA update rules. IEEE 802.16e (WiMAX) H parity matrix (N = 2304,
R = 1/2).

In Fig 3.3 only the SPA is considered and the decoding performances of various scheduling
policies are compared. The results show that the convergence of the layered scheduling policies
is faster than the traditional flooding scheduling for a same number of iterations. Increasing
the number of iterations improves the decoding performance while it increases the computation
complexity of the decoder. It is up to the system designer to chose the right configuration.

Impact of the Decoder Type on the Throughput An example of polar decoders working
on a N = 2048 and K = 1723 code is given in Figure 3.4. The FA-SSCL and PA-SSCL decoders
have the same decoding performance for a list size L. However, the throughputs are different
depending on the SNR values. This is another example of possible explorations with the AFF3CT
simulator. Depending on the targeted SNR range, it is more interesting to choose either decoder.

Impact of the Decoder Quantization on the FER Another important feature is the impact
of the quantization on the decoding performance. To increase the throughput or to decrease the
latency of a signal processing, it is common to reduce the amplitude of the data. A fixed-point
representation can be shorter and more efficient than a floating-point representation. This is true
for hardware decoder implementations as well as for high performance software implementations.
In Figure 3.5, the longest turbo code from the LTE standard is proposed (K = 6144, R = 1/3).
The same code is evaluated over 3 different data representations. float is a 32-bit decoder working
on floating-point data, this is the reference. int-16 and int-8 decoders are working on 16 bits and
on 8 bits, respectively. The Qs,v corresponds to the quantization format of the decoder input
LLRs (see Equation 2.1). s is the number of bits of the quantized number, including v bits for the
fractional part. The quantization format is a parameter of the AFF3CT simulator. In Figure 3.5,
the 16-bit quantization is able to match the reference decoding performance while there is a little
performance degradation in 8-bit.

81

3.4. Simulation of Digital Communication Algorithms

2.5 3 3.5 4 4.5

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0(dB)

Fr
am

e
E

rr
or

R
at

e

2.5 3 3.5 4 4.5
1

2

4

8

16

32

64

128

256

512

Eb/N0(dB)

In
fo

rm
at

io
n

th
ro

ug
hp

ut
(M

b/
s)

L FA PA
8
32

Figure 3.4 – Frame Error Rate performance and throughput of the polar Fully and Partially
Adaptive SSCL decoders (FA and PA). N = 2048, K = 1723 and 32-bit CRC (GZip). Throughputs
have been measured on the Intel® Core™ i5-6600K CPU.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E
rr
or

R
at
e

float (ref.)

int-16 Q6,3

int-8 Q6,2

Figure 3.5 – Frame Error Rate of the turbo decoder for K = 6144, R = 1/3 and 6 decoding
iterations. Enhanced max-log-MAP algorithm (α = 0.75).

82

3.4. Simulation of Digital Communication Algorithms

4 4.2 4.4 4.6 4.8 5 5.2
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
or

R
at

e

N K MPA E-MPA
LDPC 4000 2000
Polar 4096 2048
Turbo 4108 2048

Figure 3.6 – FER evaluation of the SCMA MPA and E-MPA demodulators combined with LDPC
codes, polar codes and turbo codes (K ≈ 2048 and R ≈ 1/2).

Effect of the SCMAModulation Scheme on a Sub-set of Channel Codes More complex
simulation scenarios where the BPSK modulation is replaced by the SCMA modulation is
illustrated in Figure 3.6. The MPA demodulator and its E-MPA approximation are combined
with the LDPC codes, the polar codes and the turbo codes. The LDPC H parity matrix comes
from the MacKay personal webpage 4. The LDPC decoder used is the BP-HL with the SPA
update rules (100 iterations). The polar code is built from the Gaussian Approximation technique.
The polar decoder is the CA-SSCL decoder with L = 32 (the 32-bit GZIP CRC is used). The
turbo code comes from the LTE standard and it is punctured to support R ≈ 1/2. The turbo
decoder is based on the EML-MAP with α = 0.75 and 6 iterations. The purpose of these curves
is not to directly confront the three channel code families even if we tried to select codes that
have close enough characteristics. The results show that the E-MPA approximation leads to a
performance degradation for each channel code family. But, this negative impact is higher for the
selected LDPC code than for other ones.

3.4.3 BER/FER Comparator and Pre-simulated Results

The AFF3CT output (see Listing 3.6) is not adapted to see the error-rate performance at
a glance. One can note that it is even more complicated to compare two or more simulation
outputs with each other. Traditionally the BER and FER decoding performances are presented
in a form of graphical curves (see Figure 1.15). It is then much easier to compare their decoding
performance.

To this purpose, we introduced the BER/FER comparator. It is available online on the
AFF3CT website 5. It is capable of reading the AFF3CT simulator outputs and it can also easily
adapt to many other formats. The comparator is written in JavaScript. This enables to run
the comparator easily on any web browser (no installation is needed). A database of AFF3CT
pre-simulated results is available. This database is the same as the error-rate reference results used
in the regression tests (see Section 3.4.4). These references are classified according to different

4. MacKay’s webpage: http://www.inference.org.uk/mackay/codes/data.html
5. AFF3CT online BER/FER comparator: https://aff3ct.github.io/comparator.html

83

http://www.inference.org.uk/mackay/codes/data.html
https://aff3ct.github.io/comparator.html

3.5. Impact and Community

characteristics: the code type, the modem type, the channel type, the frame size (N) and the
code rate (R). At the time of the writing, approximatively 500 BER/FER references are available.
For each reference, it is possible to get the corresponding command line in the AFF3CT simulator.
This way, it is easy to reproduce the reference results or to modify the command line parameters.
The reference curves that have been published are marked with the Digital Object Identifier
(DOI) of the corresponding publication. It is then possible to search a specific result from its
DOI in the search bar. With the online BER/FER comparator it is easy to share the selected
curves with other people thanks to a permalink (= an URL that contains the information of the
selected curves). The default proposed database is the AFF3CT database (error-rate references).
But it is also possible to access to the database of the Kaiserslautern University 6.

3.4.4 Continuous Integration and Continuous Delivery

AFF3CT’s development leverages a streamlined Continuous Integration (CI) process. Each
new commit the version control repository (Git) triggers a comprehensive sequence of tests to
catch potential regressions. These tests are combined with Continuous Delivery (CD) tasks to
deliver new AFF3CT builds automatically.

Analysis Build Check Test Coverage Deploy

Figure 3.7 – AFF3CT continuous integration and continuous delivery pipeline.

Figure 3.1 shows the different stages of the AFF3CT CI/CD pipeline. The analysis stage
contains jobs that can be executed without compiling the AFF3CT binaries. The build stage is
a set of compilation jobs. The check stage proposes verification jobs that require the AFF3CT
binaries. The test stage is composed by a set of jobs focusing on regression testing. Error-rate
reference results that have been recorded from previous simulations are replayed. The coverage
stage measures the percentage of the AFF3CT source code analyzed in the regression tests.
Finally, the deploy stage contains jobs that are used to push the pipeline results on various targets.
For instance, the new builds are automatically pushed on the AFF3CT website 7.

3.5 Impact and Community

AFF3CT is currently used in several industrial contexts for simulation purposes (Turbo
concept, Airbus, Thales, Huawei) and for specific developments (CNES, Schlumberger, Airbus,
Thales, Orange, Safran), as well as in academic projects (NAND French National Agency project,
IdEx CPU, R&T CNES). The MIT license chosen for the project enables industrial and academic
partners to reuse parts of AFF3CT in their own projects without any restriction.

AFF3CT has been cited in scientific publications. Many works are exploiting the AFF3CT
simulator as a reference for the decoding performance [Pig+18, Pou+18, Gha+18, Wan+19,
HV20, RHV20, Duf20]. In other works, AFF3CT has been enriched to support new features.
In [Léo+18b] the P-EDGE generator tool (see Section 2.5.3.2) has been modified to generate
Transport Triggered Architecture (TTA ≈ VLIW) instructions while in [TB20] a new LDPC
code construction method is proposed and directly implemented in the AFF3CT simulator. In
some cases AFF3CT is used as a library from which some sub-parts of the toolbox are reused or

6. Kaiserslautern ML BER/FER database: https://www.uni-kl.de/channel-codes/ml-simulation-results/
7. AFF3CT download page: https://aff3ct.github.io/download.html

84

https://www.uni-kl.de/channel-codes/ml-simulation-results/
https://aff3ct.github.io/download.html

3.6. Conclusion

some methodologies are extracted [Flo18, LCL18, CTG19b, CTG19a, ETG20]. A non-negligible
part of the citations are comparisons with the fast decoder implementations described in this
manuscript [Zen+17, Léo+18a, GO19, LJ19, She+20]. Finally, in many works, AFF3CT is simply
discussed and considered but not directly used [Deb+16b, Deb+16a, Erc+17, NC18, Cen19,
KSK19, Vam+19, MMA19, Sha+19, Aly+19, Del+20].

As AFF3CT is open-source, some of the previous works have been integrated inside the
toolbox. However, it worths mentioning that AFF3CT is more often simply used than enriched.
We believe that its philosophy can lead to a growing community of users and contributors. This
is already demonstrated with the increasing activity on the public issue tracker 8.

3.6 Conclusion

In this chapter, AFF3CT, our open-source toolbox dedicated to digital communication
algorithms, is presented. First the focus is made on the library with a software architecture
that enables the algorithmic heterogeneity. Many channel codes are supported like the LDPC
codes, the polar codes, the turbo codes, the TPC codes, the convolutional codes, the BCH
codes, the RS codes, etc. To the best of our knowledge, AFF3CT is the library with the most
comprehensive support for channel coding algorithms. AFF3CT also comes with multiple channel
models (AWGN, Rayleigh, BEC, BSC, etc.) and modulation schemes (PSK, QAM, PAM, OOK,
CPM, SCMA, etc.). All these efficient algorithm implementations can be used from interfaces.
Examples of library usages are given in native C++ or by using the MATLAB® wrapper. The
AFF3CT toolbox has been valued in a conference [8] and a journal [1].

AFF3CT also comes with a BER/FER simulator. All the previously enumerated features can
be simulated over various parameters. The simulator takes advantage of the CPUs multi-core
architecture to reduce the restitution time. Its capacity to explore a large variety of parameters
is demonstrated. Many parameters can be tweaked like the number of decoding iterations, the
approximations in the algorithm implementation, the quantization of the LLRs in the decoders,
etc. Some of these parameters are presented according to the decoders and demodulators detailed
in Chapter 1 and Chapter 2. Note that this topic has been valued in a national conference [9].

AFF3CT is designed to enable reproducible science. A BER/FER comparator tools has
been added to easily search in a database of 500 pre-simulated BER/FER references. All there
references are results simulated with AFF3CT and that can be reproduced. To this purpose, a
pipeline of tests has been implemented. Each time there is a modification in the source code,
the database of references is replayed to avoid regressions. These tests are also ran on multiple
architectures (x86 and ARM®) and operating systems (Windows, macOS and Linux) to ensure
that the portability is always conserved.

The last section discusses the AFF3CT impact in the community. It is shown that more and
more users are adopting the toolbox in both industrial and academic contexts. The application
contexts are varied and range from decoding performance validations to the use of specific
sub-parts of the library. External contributions are still rare, however.

The next chapter proposes the performance evaluations of the decoder implementations
presented in Chapter 2 and packaged in AFF3CT. The overall performance of the BER/FER
simulator is also studied on various CPU targets.

8. AFF3CT issue tracker: https://github.com/aff3ct/aff3ct/issues

85

https://github.com/aff3ct/aff3ct/issues

4 Performance Evaluations and Compar-
isons

This chapter proposes to evaluate the various contributions exposed in the previous chapters.
The three first sections focus on the efficient implementations of the LDPC decoders, polar
decoders and turbo decoders. The throughput, the latency and the energy efficiency are studied
and compared with other works. The forth section summarizes the most efficient software decoder
implementations we found in the literature. Three hall of fames are proposed: one for the LDPC
decoders, one for the polar decoders and one for the turbo decoders. Some metrics are defined
to facilitate the comparison with the different works. The fifth section is an evaluation of the
proposed SCMA demodulator implementations. The throughput, the latency and the energy
efficiency are studied over various platforms. The sixth section is a performance analysis of
the proposed AFF3CT simulator. A representative digital communication chain is defined and
evaluated at two different levels. The first level is the mono-threaded per task performance and
the second level is the multi-threaded global performance of the simulator. The last section
concludes this chapter.

4.1 LDPC Decoders . 87
4.1.1 Experimentation Platforms . 87
4.1.2 Throughput and Latency Performance on Multi-core CPUs 87
4.1.3 Comparison with State-of-the-art BP Decoders. 89

4.2 Polar Decoders . 90
4.2.1 Successive Cancellation Decoders . 90
4.2.2 Successive Cancellation List Decoders 97

4.3 Turbo Decoders . 99
4.3.1 Experimentation Platforms . 100
4.3.2 Throughput Performance on Multi-core CPUs 100
4.3.3 Energy Efficiency on a Multi-core CPU 101
4.3.4 Comparison with State-of-the-art Turbo Decoders 101

4.4 FEC Software Decoders Hall of Fame 102
4.5 SCMA Demodulators . 107

4.5.1 Experimentation Platforms . 107
4.5.2 Throughput, Latency and Energy Efficiency on Multi-core CPUs 107

4.6 Analysis of the Simulator Performance 109
4.6.1 Experimentation Platforms . 110
4.6.2 Mono-threaded Performances . 110
4.6.3 Multi-threaded and Multi-node Performances 111

4.7 Conclusion . 113

86

4.1. LDPC Decoders

4.1 LDPC Decoders

In this section we propose to evaluate the fast LDPC BP implementation presented in
Section 2.4. The decoder throughputs and latencies are benched on two high-end x86 CPUs
and on two H parity matrices with different characteristics. Then, the proposed BP decoder is
compared with the state-of-the-art LDPC decoders.

4.1.1 Experimentation Platforms

Table 4.1 – Specifications of the target processors.

Platinum 8168 EPYC 7452
CPU Intel® Xeon™ Platinum 8168 AMD® EPYC 7452
Arch. Skylake Q3’17 Zen 2 Q3’19
Process 14 nm 7 nm

Cores/Freq. 24 cores, 2.7 GHz 32 cores, 2.35 GHz
LLC 33 MB L3 128 MB L3
TDP 205 W 155 W

For the experimentations, we selected two high end CPUs: the Intel® Xeon™ Platinum 8168
and the AMD® EPYC 7452 as shown in Table 4.1. The two targets come with a large number of
cores, 24 and 32 respectively. The SMT and the frequency boost have been disabled for a matter
of reproducibility. The Intel® CPU is able to execute SSE, AVX and AVX-512 instructions while
the AMD® CPU can only execute SSE and AVX instructions. The GNU compiler version 7.5
has been used with the following optimization flags: -O3 -funroll-loops.

In this section, we choose to evaluate the BP decoder with an horizontal layered scheduling
(BP-HL) and with the Normalized Min-Sum (NMS) update rules. We focus on the BP-HL+NMS
implementation presented in Section 2.4.2. This decoder is not as flexible as the one presented in
Section 2.4.1. But it comes with higher decoding speed. Gains ranging between 20% to 50% are
observed depending on the H parity matrix and on the CPU. In all the presented results, the
decoder works on 16-bit fixed-point data. This representation is able to match the BER/FER
decoding performance of the floating-point representation. We encounter some difficulties to keep
an acceptable level of decoding performance when we ran the 8-bit fixed-point decoder. This is
why we have chosen a 16-bit fixed-point representation.

4.1.2 Throughput and Latency Performance on Multi-core CPUs

In this section, we propose to study the throughput and the latency performance evolution
depending on the number of cores. Two H parity matrices are benched. The first one comes from
the WiMAX standard and is a middle size matrix where N = 2304 and R = 1/2. The second one
is a bigger matrix from the DVB-S2 standard where N = 16200 and K = 14400.

The throughput and latency values for the WiMAX H parity matrix are given in Figure 4.1.
On the Platinum 8168 target, the throughput evolution is almost linear in function of the number
of cores and the wider instruction sets. In other words, the best throughput performance is
obtained with AVX-512 instructions and on 24 cores. If we look at the latencies, we remark that
with AVX-512 instructions there is a marginal increase of the value starting from 17 cores. On
the EPYC 7452 CPU the performance increase is mostly linear from 1 to 15 cores. After that, the

87

4.1. LDPC Decoders

0 5 10 15 20 25 30 35

0

200

400

600

800

Number of CPU cores

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

SSE AVX AVX-512
Platinum 8168
EPYC 7452

(a) Throughput.

0 5 10 15 20 25 30 35

1,000

1,500

2,000

2,500

Number of CPU cores

La
te

nc
y

(µ
s)

(b) Latency.

Figure 4.1 – LDPC decoder throughput and latency depending on the number of cores. (2304,
1152) IEEE 802.16e WiMAX code. BP-HL scheduling with 50 iterations and NMS updates rules
(α = 0.875). 16-bit fixed-point data representation.

latency is increasing and the throughput gains are reduced. Like for the Platinum 8168 target, it
is preferable to use the wider possible SIMD instructions on the EPYC 7452 CPU.

0 5 10 15 20 25 30 35

0

200

400

600

800

Number of CPU cores

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

SSE AVX AVX-512
Platinum 8168
EPYC 7452

(a) Throughput.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

·105

Number of CPU cores

La
te

nc
y

(µ
s)

(b) Latency.

Figure 4.2 – LDPC decoder throughput and latency depending on the number of cores. (16200,
14400) DVB-S2 code. BP-HL scheduling with 50 iterations and NMS updates rules (α = 0.875).
16-bit fixed-point data representation.

The obtained throughput and latency values for the DVB-S2 H parity matrix are presented
in Figure 4.2. This matrix is significantly larger than the previous one. As a consequence the
memory footprint of the decoder is also higher. This highlights some limitations of the proposed
inter-frame SIMD implementation. With this type of implementation, the memory footprint
of the decoder is increasing with the size of the SIMD instructions. On the proposed 16-bit
implementation, 8 frames are buffered in SSE, 16 frames are buffered in AVX and 32 frames are
buffered in AVX-512. On the resulting throughput performance, one can note that the AVX-512
performance is acceptable until a point (14/15 cores) where the performance begin to decrease
significantly. At this point the caches of the CPUs are not big enough to contain all the data
anymore. The number of slow transactions between the CPU and the RAM are increasing (as
well as the number of LLC misses). The same phenomena appears for the AVX implementation
on the Platinum 8168 target but later namely 20 cores. On the EPYC 7452 the throughout
performance results always take advantage of the increasing number of cores. But in AVX, after

88

4.1. LDPC Decoders

16 cores the performance gains is smaller. This is due to the fact that the data cannot be fully
contained in the L2 caches anymore.

The Platinum 8168 comes with higher computational power per core than the EPYC 7452
CPU thanks to its AVX-512 SIMD engine. However the dedicated amount of L3 memory per
core is lower than on the EPYC CPU. The Platinum 8168 target dedicates 33/24 = 1.375 MB
per core while the EPYC 7452 target dedicates 128/32 = 4 MB per core. This is approximately
three times more L3 memory per core for the EPYC CPU. As a consequence, the AMD® Zen 2
architecture is more adapted to the inter-frame SIMD strategy.

4.1.3 Comparison with State-of-the-art BP Decoders.

Table 4.2 – Comparison of the proposed BP decoder with the state-of-art. Horizontal layered
scheduling. Early termination is disabled. NTc = (Tc × i)/(Cores× 50).

Ref. Standard (N,K) Platform Cores Pre. i Up. L Tc NTc

(bits) Rules (µs) (Mb/s) (Mb/s)
[LJ16] 802.16e (2304, 1152) i7-4960HQ 4 8 50 OMS 1359 217 54.25
[LJ17] 802.16e (2304, 1152) i7-5650U 2 8 10 OMS 12 385 38.50

[Xu+19] 5G (9126, 8448) Gold 6154 18 8 10 OMS 31 4892 54.36
This work 802.16e (2304, 1152) Platinum 8168 24 16 50 NMS 2637 671 27.96
This work 802.16e (2304, 1152) EPYC 7452 32 16 50 NMS 1368 862 26.94

Table 4.2 summarizes the fastest software LDPC BP implementations on CPU we found in the
literature. Pre. is the precision in bits. i is the number of decoding iterations. Up. Rules are the
update rules type. L is the decoder latency. Tc is the coded throughput. NTc is the normalized
coded throughput: this metric considers 50 iterations on a single core. It enables to directly
compare the throughput of the listed decoders. In [LJ16], the decoder uses the same inter-frame
SIMD strategy as our proposed decoder. The latency is comparable with our implementation while
the throughput is about two times higher. This is a direct consequence of the 8-bit quantization.
All the presented decoders from the literature are using a 8-bit fixed-point representation while our
implementation is executed on 16-bit. The 8-bit implementations require specific modifications
to ensure the same level of decoding performance. In the proposed implementation, these specific
modifications have not been implemented to the benefit of genericity. Indeed, the same decoder
description is able to adapt to 32-bit floating-point and 16-bit fixed-point representations. It is
also able to run on various targets like x86 and ARM® CPUs.

In [LJ17, Xu+19], an intra-frame SIMD strategy is used. The parallelism comes from the
structure of the H parity matrix (quasi-cyclic). It is then possible to apply the SIMD instructions
during the decoding of a single frame. It leads to much lower latencies. We can see that our
proposed decoder is not competitive. The limitation of this type of intra-frame implementation is
that the performance strongly depends on the parity matrix. In the worst case, if the H parity
matrix is not quasi-cyclic, then the throughput and the latency cannot be improved.

To summarize, the proposed implementation comes with a throughput approaching to the
best implementations (≈ two times slower) while the latency is still very high compared to the
intra-frame decoders. One of the main advantage of the proposed implementation is its flexibility.
Indeed, it can be run on 32-bit floating-point or 16-bit fixed-point. There is also a unique source
code description for the SSE, AVX, AVX-512 and NEON instructions. As it has been shown
before, this is valuable because depending on the H parity matrix, the CPU and the number of
cores used. The throughput and latency performances can be more interesting on one or the

89

4.2. Polar Decoders

other of the SIMD engine. However, even if the proposed implementation is always able to take
advantage of the SIMD instructions, we saw some limitations when the memory footprint exceeds
the CPU caches.

4.2 Polar Decoders

4.2.1 Successive Cancellation Decoders

In this section we propose to evaluate both the polar SC dynamic and generated decoders
presented in Section 2.5.3. First, a study on the software decoders energy efficiency is conducted
on low power ARM® CPUs. Then, the impact of the compression technique for the generated
SC decoders (see Section 2.5.3.2) is studied. Finally, the dynamic and generated SC decoders are
compared with the state-of-the-art decoders.

4.2.1.1 Experimentation Platforms

Table 4.3 – Specification of the x86 platforms.

E3-1225 i7-2600 i7-4850HQ
CPU Intel® Xeon™ E3-1225 Intel® Core™ i7-2600 Intel® Core™ i7-4850HQ

Cores/Freq. 4 cores, 3.1-3.4 Ghz 4 cores, 3.4-3.8 GHz 4 cores, 2.3-3.5 GHz
Arch. Sandy Bridge Sandy Bridge Crystal Well
Process 32 nm 32 nm 22 nm
LLC L3 6 MB L3 8 MB L3 6 MB

Table 4.4 – Specification of the ARM® platforms.

A15-J A15-O/A7-O A57/A53
SoC Nvidia® Jetson TK1 Hardkernel® ODROID-XU ARM® Juno
Arch. 32-bit, ARMv7 32-bit, ARMv7 64-bit, ARMv8
Process 28 nm 28 nm unspecified (32/28 nm)

big
4xCortex-A15 MPCore 4xCortex-A15 MPCore 2xCortex-A57 MPCore

freq. 2.32 Ghz freq. 0.8–1.6 GHz freq. 0.45–1.1 GHz
L2 1 MB L2 2 MB L2 2 MB

LITTLE -

4xCortex-A7 MPCore 4xCortex-A53 MPCore
freq. 250–600 MHz freq. 450–850 MHz

L2 512 KB L2 1 MB

Table 4.3 shows the x86/Intel® targets used for the polar SC decoders evaluation while
Table 4.4 summarizes the ARM® platforms. There are two platforms with Cortex-A15 cores.
We decided to identify the ones from the Nvidia® Jetson TK1 board as the A15-J and the ones
from the Hardkernel® ODROID-XU as the A15-O.

In this section, all the binaries have been compiled with the GNU compiler version 5.4 and with
the following optimization flags: -Ofast -funroll-loops. All the proposed results are single
threaded and the frequency boost is enabled on the Intel® CPUs. As a convention, performance
of the intra-frame SIMD version of the SC decoder is represented in blue in the figures while
performance of the inter-frame SIMD version is represented in red.

90

4.2. Polar Decoders

4.2.1.2 Performance and Energy Efficiency on Embedded CPUs

The objective and originality of this section is to explore different software and hardware
parameters for the execution of a software SC decoder on ARM® architectures. For a software
decoder implementation, many parameters can be explored, influencing performance and energy
efficiency. The target rate and frame size are applicative parameters. The SIMDization strategies
(intra-frame or inter-frame) and the features of decoders (generated or dynamic) are software
parameters. Furthermore, the target architecture, its frequency and its voltage are hardware
parameters. This study investigates the correlations between these parameters in order to better
choose an efficient implementation for a given applicative purpose. The low-power general
purpose ARM32 and ARM64 processor testbeds based on big.LITTLE architecture are selected
as representative of modern multi-core and heterogeneous architectures.

The flexibility of the AFF3CT software enables to alter many parameters and turn many
optimizations on or off, leading to a large amount of potential combinations. For the purpose of
this study, computations are performed with 8-bit fixed-point data types, with all tree pruning
optimizations activated. The main metric considered is the average amount of energy in Joules to
decode one bit of information, expressed as Eb = (P × L)/(K× F) where P is the average power
(Watts), L is the latency, K is the number of information bits and F is the number of frames
decoded in parallel.

Table 4.5 – Characteristics for each cluster (Ti is the information throughput), for dynamic SC
decoders. N = 4096, rate R = 1/2. The RAM consumption is not included in P and in Eb.

Cluster Freq. Impl. L Ti P Eb
(MHz) (µs) (Mb/s) (W) (nJ)

A7-O 450
seq. 655.0 3.1 0.117 37.8
intra 158.0 13.0 0.123 9.5
inter 1506.0 21.8 0.131 6.0

A53 450
seq. 966.0 2.1 0.062 29.0
intra 203.0 10.1 0.070 7.0
inter 1902.0 17.2 0.088 5.1

A15-O 1100
seq. 274.0 7.5 0.913 122.0
intra 58.0 35.2 0.991 28.2
inter 522.0 62.8 1.093 17.4

A57 1100
seq. 222.0 9.2 0.730 78.9
intra 52.0 39.2 0.826 21.1
inter 503.0 65.1 0.923 14.2

i7-4850HQ 3300
seq. 56.5 36.3 8.532 235.4
intra 9.2 221.8 9.017 40.5
inter 51.8 632.2 9.997 15.8

Table 4.5 gives an overview of the decoder behavior on different clusters and for various
implementations. The code is always single threaded and only the 8-bit fixed-point decoders are
considered. Indeed 32-bit floating-point versions are 4 times more energy consuming, on average.
The sequential version is mentioned for reference only, as the throughput Ti is much higher on
vectorized versions. Generally the inter-frame SIMD strategy delivers better performance at the
cost of a higher latency L. Table 4.5 also compares the energy consumption of LITTLE and big
clusters. The A53 consumes less energy than the A7-O. The A57 consumes less energy than the
A15-O, respectively. This can be explained by architectural improvements brought by the more
recent ARM64 platform. Despite the fact that the ARM64 is a development board, the ARM64

91

4.2. Polar Decoders

outperforms the ARM32 architecture. Finally we observe that the power consumption is higher
for the inter-frame version than for the intra-frame one because it fills the SIMD units more
intensively. One can note that the SIMD units consume more than the scalar pipeline. However,
this is largely compensated by a much higher efficiency.

For comparison, the results for the Intel® Core™ i7-4850HQ, using SSE4.1 instructions (same
vector length as ARM® NEON vectors) are also included. Even if the i7 is competitive with the
ARM® big cores in terms of energy-per-bit (Eb), these results show it is not well suited for the
low power SDR systems because of its high power requirements.

29 211 213 215 217 219
0

10

20

30

40

50

60

Codeword size (N)

E
ne

rg
y-

pe
r-

bi
t

(n
J)

Dyn. Gen.
intra-frame SIMD
inter-frame SIMD

(a) Total (cluster + memory).

29 211 213 215 217 219

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

Codeword size (N)

P
er

ce
nt

ag
e

of
en

er
gy

-p
er

-b
it

(n
J)

Dyn. Gen.
intra-frame SIMD
inter-frame SIMD

(b) Memory only.

Figure 4.3 – Variation of the energy-per-bit for different frame sizes and implementations: intra-
/inter-frame, dynamic and generated code, on A15-O @ 1.1 GHz and with a fixed code rate
R = 1/2.

Figure 4.3 shows the energy-per-bit consumption depending on the frame size N for the fixed
rate R = 1/2. In general, the energy consumption increases with the frame size. For small
frame sizes (N from 28 to 214), the inter-frame SIMD outperforms the intra-frame SIMD. This is
especially true for N = 28 which has a low ratio of SIMD computations over scalar computations in
the intra-frame version. As the frame size increases, the ratio of SIMD versus scalar computations
increases as well. At some point around N = 216 the intra-frame implementation begins to
outperform the inter-frame one. Indeed, the data for the intra-frame decoder still fits in the CPU
cache, whereas the data of the inter-frame decoder does not fit the cache anymore. In our case
(8-bit fixed point numbers and 128-bit vector registers) the inter-frame decoders require 16 times
more memory than the intra-frame decoders. Then, for the frame size N = 220, both intra and
inter-frame decoders now exceed the cache capacity. The RAM power consumption becomes more
significant due to the increased number of cache misses causing RAM transactions. Considering
those previous observations, it is more energy efficient to use inter-frame strategy for small frame
sizes, whereas it is better to apply intra-frame strategy for larger frame sizes.

Figure 4.4 shows the impact of the frequency on the energy, for a given value of frame size
N = 4096 and a code rate R = 1/2. On both A7-O and A15-O clusters, the supply voltage
increases with the frequency from 0.946 V to 1.170 V. Results for the A7-O LITTLE cluster shows
that the energy consumed by the system RAM is significant: At 250 MHz it accounts for half of
the energy cost. Indeed, at low frequency, the long execution time due to the low throughput

92

4.2. Polar Decoders

250 350 450 550
0

5

10

15

20

25

30

CPU frequency (MHz)

E
ne

rg
y-

pe
r-

bi
t

(n
J)

CPU RAM

intra-frame SIMD

inter-frame SIMD

(a) ARM® Cortex-A7 (ODROID-XU+E)

800 900 1000 1100
0

5

10

15

20

25

30

CPU frequency (MHz)

E
ne

rg
y-

pe
r-

bi
t

(n
J)

(b) ARM® Cortex-A15 (ODROID-XU+E)

Figure 4.4 – Variation of the energy-per-bit (Eb) depending on the cluster frequency (dynamic
code, intra-, inter-frame). N = 4096 and R = 1/2. Dark colors and light colors stand for CPU
cluster and RAM energy consumption, respectively.

causes a high dynamic RAM refreshing bill. Therefore it is more interesting to use frequencies
higher than 250 MHz. For this problem size and configuration, and from an energy-only point of
view, the best choice is to run the decoder at 350 MHz. On the A15-O big cluster, the energy
cost is driven by the CPU frequency, while the RAM energy bill is limited compared to the CPU.

Thus, the bottom line about energy versus frequency relationship is: On the LITTLE cluster
it is more interesting to clock the CPU at high frequency (higher throughput and smaller latency
for a small additional energy cost); On the big cluster, where the RAM consumption is less
significant, it is better to clock the CPU at a low frequency.

1/10
2/10

3/10
4/10

5/10
6/10

7/10
8/10

9/10

0

10

20

30

40

Rate (R = K/N)

E
ne

rg
y-

pe
r-

bi
t

(n
J)

A57 A7-O A53
intra-frame SIMD
inter-frame SIMD

Figure 4.5 – Evolution of the energy-per-bit (Eb) for N = 32768 depending on the code rate
R = K/N (various impl.: intra-, inter-frame, code gen. on). Running on A7-O, A53 and A57
clusters @ 450MHz.

In Figure 4.5 the energy-per-bit cost decreases when the code rate increases. This is expected
because there are many information bits in the frame when R is high. It makes the decoder more

93

4.2. Polar Decoders

energy efficient. With high rates, the SC decoding tree can be pruned more effectively. It makes
the decoding process even more energy efficient. Figure 4.5 also compares the ARM® A7-O, A53
and A57 clusters for the same 450 MHz frequency (note: this frequency is not available on the
A15-O). The LITTLE A7-O is more energy efficient than the big A57, and the LITTLE A53 is
itself more energy efficient than the LITTLE A7-O (EbA53 < EbA7-O < EbA57).

Larger
SNR range

Lower memory
footprint

Lower latency Lower energy
per bit

Higher
throughput

Figure 4.6 – Ranking of the different approaches along 5 metrics. In red, inter-frame vectorization
performance and in blue, intra-frame performance. Solid color is for the dynamic versions and
dotted is for the generated versions. Each version is positioned along each of the 5 axes and the
best version for one axis is placed further from the center.

Figure 4.6 presents a qualitative summary of the characteristics of the different code versions,
for intra-/inter-frame vectorization, generated or dynamic code. For instance, if the size of
the memory footprint is an essential criterion, the dynamic intra-frame code exhibits the best
performance.

To sum up, the dynamic implementations provides efficient trade-off between throughput,
latency and energy depending on code length. It was demonstrated by previous benchmarks.
Both implementations provide low-energy and low-power characteristics compared to previous
works in the field on x86 processors [Sar+14a, Gia+14, Sar+14b, LLJ14, LLJ15, 4]. Whereas
the throughput on a single processor core is reduced compared to x86 implementations, ARM®

implementations must fulfil a large set of SDR applications with limited throughputs and where
the power consumption matters. Finally, it is important to notice that multi-core implementations
of the proposed ARM® decoders is still possible on these ARM® targets to improve the decoding
throughputs.

4.2.1.3 Source Code Compression for the Generated Decoders

For generated decoders, the corresponding binary size is linearly increasing with the codeword
size N. Beyond a codeword size point which depends on the architecture and on the selected
SIMD version, performance decreases due to L1I cache misses. Indeed, decoders are generated as
straight-line code (no recursive calls), with all node computations put in sequence. This improves

94

4.2. Polar Decoders

performance for small to medium codeword size, up to the point where the compiled binary
exceeds the L1I cache size. We mitigated this issue by reducing decoder binary sizes by applying
two compression techniques: 1) in the generated code, we moved the buffer offsets from template
arguments to function arguments. It enabled the compiler to factorize more function calls than
before, 2) we implemented a sub-tree folding algorithm in the generator.

Table 4.6 – Binary code size (in KB) of the generated decoders depending on the number of bits
N per frame.

Decoder N = 26 N = 28 N = 210 N = 212 N = 214 N = 216

inter 32-bit, R = 1/2 1 (7) 2 (24) 7 (77) 9 (254) 19 (736) 40 (2528)
inter 32-bit, R = 5/6 1 (4) 2 (19) 4 (53) 7 (167) 16 (591) 32 (1758)
intra 32-bit, R = 1/2 1 (4) 3 (16) 9 (56) 8 (182) 19 (563) 38 (1947)
intra 32-bit, R = 5/6 1 (3) 3 (13) 6 (38) 7 (126) 20 (392) 27 (1365)
inter 8-bit, R = 1/2 1 (5) 2 (22) 7 (72) 8 (252) 17 (665) 36 (2220)
inter 8-bit, R = 5/6 1 (4) 2 (18) 4 (51) 6 (191) 14 (461) 26 (1555)

26 27 28 29 210 211 212 213 214 215 216
2

8

32

128

512

2048

Codeword size (N)

D
ec

od
er

bi
na

ry
si

ze
(K

B
)

32-bit intra-frame
8-bit intra-frame

32-bit inter-frame
L1I size

(a) Without compression

26 27 28 29 210 211 212 213 214 215 216

1

2

4

8

16

32

• Enable sub-tree folding

Codeword size (N)

D
ec

od
er

bi
na

ry
si

ze
(K

B
)

(b) With compression

Figure 4.7 – Generated SC decoder binary sizes depending on the frame size (R = 1/2).

Table 4.6 and Figure 4.7 illustrate the binary code size of the decoders depending on N. The
results which exceed the 32KB of the L1I cache are highlighted in bold font. A CPU with L1I =
32 KB is supposed, this is consistent with most of the current CPUs. Sub-tree folding is enabled
starting from N = 212 because there is an overhead (at run-time) when using this technique.
The source code is compiled with AVX instructions for the 32-bit decoders and with SSE4.1
instructions for the 8-bit decoders. AFF3CT decoder code sizes without compression are shown
in parentheses: we can observe a huge improvement, until N = 214 the code size never exceeds
the L1I cache anymore. In [Gia+16], authors report that they can’t compile codes longer than
N = 215. The proposed compression technique enables to exceed that limit. For instance, we
were able to generate N = 220 decoders as shown in Figure 4.3.

4.2.1.4 Comparison with State-of-the-art SC Decoders

Dynamic Implementation Table 4.7 shows a performance comparison (throughput, latency)
with the dynamic intra-frame decoder of [Gia+14]. On a x86 CPU, our dynamic decoder is 2.8
times faster than the state-of-the-art decoder. Even if we used a more recent CPU, the same set
of instructions (SSE4.1) is applied and the frequencies are comparable.

95

4.2. Polar Decoders

Table 4.7 – Comparison of 8-bit fixed-point dynamic SC decoders (intra-frame SIMD). N = 32768
and R = 5/6.

Ref. Platform Freq. SIMD L Ti

(GHz) (µs) (Mb/s)
[Gia+14] i7-2600 3.4 SSE4.1 135 204

[5] i7-4850HQ 3.3 SSE4.1 47 580
[5] A15-O 1.1 NEON 391 70
[5] A57 1.1 NEON 374 73

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

100

200

300

400

500

Codeword size (N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

R = 5/6 R = 1/2
AFF3CT
[Sar+14a]

(a) Intel® Xeon™ E3-1225 (AVX SIMD)

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

0

20

40

60

80

100

120

Codeword size (N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

R = 5/6 R = 1/2
AFF3CT

(b) Nvidia® Jetson TK1 A15 (NEON SIMD)

Figure 4.8 – Performance comparison between two code rates of 32-bit floating-point decoding
stages (intra-frame vectorization, generated SC decoders).

Table 4.8 – Comparing SC with a state-of-art generated software polar decoder, for different code
sizes, using intra-frame SIMD. The two cross marks show state-of-the art performance results
reported in [Sar+14a], for comparison. The AVX SIMD instructions are applied.

Ref. (N,K) Platform L Ti

(µs) (Mb/s)
[Sar+14a] (16384, 14746) i7-2600 50 292

[4] E3-1225 43 341
[Sar+14a] (32768, 27568) i7-2600 125 220

[4] E3-1225 114 241
[Sar+14a] (32768, 29492) i7-2600 113 261

[4] E3-1225 101 293

96

4.2. Polar Decoders

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

1,000

1,500

2,000

2,500

Codeword size (N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

R = 5/6 R = 1/2
AFF3CT
[LLJ15]

(a) Intel® Xeon™ E3-1225 (SSE4.1 SIMD)

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

100

200

300

400

500

Codeword size (N)

C
od

ed
th

ro
ug

hp
ut

(M
b/

s)

R = 5/6 R = 1/2
AFF3CT
[LLJ15]

(b) Nvidia® Jetson TK1 A15 (NEON SIMD)

Figure 4.9 – Performance comparison between two code rates of 8-bit fixed-point decoding stages
(inter-frame vectorization). Squares show AFF3CT generated SC decoders results. Circles show
the “handwritten” implementation results from [LLJ15].

Generated Implementation Figure 4.8 shows AFF3CT intra-frame throughput on different
architectures. Our generic framework performance outperforms previous works (between 10%
and 25% higher). This is confirmed in Table 4.8 which compares AFF3CT with the state-of-
the-art result samples for some specific code sizes reported in [Sar+14a]. The throughput of the
inter-frame implementation is shown in Figure 4.9 for different architectures. Again, the results
confirm that our generic approach overtakes handwritten code (also between 10% and 25% higher
on x86). It worth mentioning that the decoder from [LLJ15] is not generated and can dynamically
adapt to various frame sizes and code rates where our generated decoders cannot. To the best of
our knowledge, there is no other generated implementation with the inter-frame SIMD strategy
in the literature. By design, generated decoders are faster than the dynamic decoder (up to 20%
on x86-based CPUs). But, it is less clear on ARM®-based CPUs.

4.2.2 Successive Cancellation List Decoders

Throughput and latency measurements of the dynamic SCL implementations (see Section 2.5.4)
are detailed in this section. The proposed dynamic decoder implementations are compared with
the previous software decoder implementations. Despite the additional levels of genericity and
flexibility, the proposed software implementation is very competitive with its counterparts.

4.2.2.1 Experimentation Platforms

During our investigations, all the throughput and latency measurements have been obtained
on a single core of an Intel® Core™ i5-6600K CPU (Skylake architecture with AVX2 SIMD) with
a base clock frequency of 3.6 GHz and a maximum turbo frequency of 3.9 GHz. The description
has been compiled on Linux with the C++ GNU compiler (version 5.4.0) and with the following
options: -Ofast -march=native -funroll-loops.

97

4.2. Polar Decoders

4.2.2.2 Throughput and Latency of Adaptive SCL Decoders

Table 4.9 – Throughput and latency comparisons between floating-point (32-bit) and fixed-point
(16-bit and 8-bit) Adaptive SSCL decoders. Code (2048,1723), L = 32 and 32-bit CRC (Gzip).
Lavg is in µs and Ti is in Mb/s.

Decoder Prec.
Lworst

(µs)
3.5 dB 4.0 dB 4.5 dB

Lavg Ti Lavg Ti Lavg Ti

PA-SSCL
32-bit 635 232.3 7.6 41.7 42.1 7.4 237.6
16-bit 622 219.6 8.0 40.1 43.8 6.6 267.5
8-bit 651 232.4 7.6 41.2 42.6 6.5 268.3

FA-SSCL
32-bit 1201 67.2 26.1 8.5 207.8 5.1 345.5
16-bit 1198 68.7 25.6 7.7 225.7 4.3 408.7
8-bit 1259 71.8 24.4 7.7 227.3 4.1 425.9

The property to easily change the list size of the SCL decoders enables the use of the FA-SSCL
algorithm. With an unrolled decoder as proposed in [Sar+16], the fully adaptive decoder would
imply to generate a fully unrolled decoder for each value of the list depth. In our approach, only
one source code gives to the designer the possibility to run each variation of the SCL decoders.
FA-SSCL algorithm is the key to achieve the highest possible throughput. In Table 4.9, maximum
latency (Lworst in µs), average latency (Lavg in µs) and information throughput (Ti in Mb/s) are
given. The FER performance of the 32-bit version of the PA/FA-SSCL decoders as well as the
corresponding throughputs can be seen in Figure 3.4. The 16-bit and 8-bit implementations have
similar decoding performance. Note that in 8-bit configuration only the REP8- nodes are used.
The fixed-point implementation reduces, on average, the latency. In the high SNR region, the
frame errors are less frequent. Therefore, the SCL algorithm is less necessary than in low SNR
regions for Adaptive SCL algorithms. As the gain of fixed-point implementation benefits more
to the SC algorithm than to the SCL algorithm, the throughput is higher in high SNR regions.
With an 8-bit fixed-point representation of the decoder inner values, the achieved throughput in
the case of the (2048,1723) polar code is about 425 Mb/s on the i5-6600K for an Eb/N0 value
of 4.5 dB. It corresponds to a FER of 5× 10−8. This throughput is almost 2 times higher than
the throughput of the PA-SSCL algorithm. The highest throughput increase from PA-SSCL to
FA-SSCL, of about 380%, is in the domain where the FER value is between 10−3 and 10−5. It is
the targeted domain for wireless communications like LTE or 5G standards. In these conditions,
the throughput of FA-SSCL algorithm is about 227 Mb/s compared to 42 Mb/s for the PA-SSCL
algorithm.

With Adaptive SCL algorithms, the worst case latency is the sum of the latency of each
triggered algorithm. In the case of PA-SSCL with Lmax = 32, it is just the sum of the latency of
the SC algorithm, plus the latency of the SCL algorithm with L = 32. In the case of the FA-SSCL
algorithm, it is the sum of the decoding latency of the SC algorithm and all the decoding latencies
of the SCL algorithm for L = 2, 4, 8, 16, 32. This is the reason why the worst latency of the
PA-SSCL algorithm is lower while the average latency. Consequently the average throughput is
better with the FA-SSCL algorithm.

4.2.2.3 Comparison with State-of-the-art SCL Decoders

The throughput and latency of the proposed decoder compared to other reported implementa-
tions are detailed in Table 4.10. For all the decoders, all the available tree pruning optimizations
are applied excluding the SPC4+ nodes because of the performance degradation. Each decoder

98

4.3. Turbo Decoders

Table 4.10 – Throughput and latency comparisons with state-of-the-art SCL decoders. 32-bit
floating-point representation. Polar code (2048,1723), L = 32, 32-bit CRC.

Ref. Target Decoder Lworst Ti (Mb/s)
(µs) 3.5 dB 4.0 dB 4.5 dB

[Sar+14c] i7-2600
CA-SCL 23000 0.07 0.07 0.07

CA-SSCL 3300 0.52 0.52 0.52
PA-SSCL ≈ 3300 0.90 4.90 54.00

[She+16] i7-4790K CA-SCL 1572 1.10 1.10 1.10

[Sar+16] i7-2600
CA-SCL 2294 0.76 0.76 0.76

CA-SSCL 433 4.00 4.00 4.00
PA-SSCL ≈ 433 8.60 33.00 196.00

[3] i7-2600

CA-SCL 4819 0.37 0.37 0.37
CA-SSCL 770 2.30 2.30 2.30
PA-SSCL 847 5.50 31.10 168.40
FA-SSCL 1602 19.40 149.00 244.30

[3] i5-6600K

CA-SCL 3635 0.48 0.48 0.48
CA-SSCL 577 3.00 3.00 3.00
PA-SSCL 635 7.60 42.10 237.60
FA-SSCL 1201 26.10 207.80 345.50

is based on a 32-bit floating-point representation. The polar code parameters are N = 2048,
K = 1723 and the 32-bit GZip CRC is applied. The list size is L = 32.

The latency given in Table 4.10 is the worst case latency. The throughput is the average
information throughput. The first version, CA-SCL, is the implementation of the CA-SCL
algorithm without any tree pruning. As mentioned before the throughput of the proposed
CA-SSCL decoder (2.3 Mb/s) is only halved compared to the specific unrolled CA-SSCL decoder
(4.0 Mb/s) described in [Sar+16]. The proposed CA-SSCL decoder is approximately 4 times
faster than the generic implementation (0.52 Mb/s) in [Sar+14c] and 2 times faster than the
CA-SCL implementation (1.1 Mb/s) in [She+16] thanks to the implementation improvements
detailed in Section 2.5.4. Furthermore, the proposed decoder exhibits a much deeper level of
genericity and flexibility than the ones proposed in [Sar+14a, She+16]. Indeed, the following
features are not enabled: the customization of the tree pruning, the 8-bit and 16-bit fixed-point
representations of the LLRs, the puncturing patterns and the FA-SSCL algorithm.

When implemented on the same target (i7-2600), the proposed PA-SSCL is competitive with
the unrolled PA-SSCL in [Sar+16], being only two times slower. This can be explained by the
improvements concerning the CRC that are described in Section 2.5.4.1, especially the information
bits extraction in the SC decoder. Finally, as mentioned before, the throughput of the proposed
FA-SSCL significantly outperforms all the other SCL decoders (up to 345.5 Mb/s at 4.5 dB in
32-bit floating-point).

4.3 Turbo Decoders

In this section we propose to evaluate the turbo EML-MAP decoder presented in Section 2.6.2.
The decoder throughput is benched on middle and high-end x86 CPUs. Then, the energy efficiency
of the proposed decoder is studied. Finally, it is compared with the state-of-the-art decoders.

99

4.3. Turbo Decoders

4.3.1 Experimentation Platforms

Table 4.11 – Specifications of the target processors.

E5-2650 i7-4960HQ E5-2680 v3
CPU Intel® Xeon™ E5-2650 Intel® Core™ i7-4960HQ Intel® Xeon™ E5-2680 v3

Cores/Freq. 8 cores, 2–2.8 GHz 4 cores, 2.6–3.8 GHz 12 cores, 2.5–3.3 GHz
Arch. Ivy Bridge Q1’12 Haswell Q4’13 Haswell Q3’14
LLC 20 MB L3 6 MB L3 30 MB L3
TDP 95 W 47 W 120 W

The experiments have been conducted on three different x86-based processors detailed in
Table 4.11. A mid-range processor (i7-4960HQ) is used for comparison with similar CPU targets
in the literature [Hua+11, Zha+12, Wu+13]. The two high-end processors (E5-2650 and E5-2680
v3) are used for multi-threading benchmarking. Indeed, E5-2650 and E5-2680 v3 are potentially
good candidates for C-RAN servers. Moreover, the code has been compiled with the GNU
compiler (version 4.8) and with the -Ofast -funroll-loops -msse4.1/-mavx2 options.

4.3.2 Throughput Performance on Multi-core CPUs

1,024 2,048 3,072 4,096 5,120 6,144

32

64

128

256

512

1024

Code dimension (K)

In
fo

rm
at

io
n

th
ro

ug
hp

ut
(M

b/
s)

i7-4960HQ:
AVX SSE

1 core
4 cores

E5-2680 v3:
AVX SSE

1 core
4 cores

12 cores
24 cores

Figure 4.10 – Information throughput depending on K for various number of cores and SIMD
instruction types. 6 iterations, 8-bit fixed-point.

Figure 4.10 shows the evolution of the information throughput depending on the code
dimension K. This experiment was conducted on i7-4960HQ and E5-2680 v3 (both have Haswell
architectures). The throughput tends to increase linearly with the number of cores (up to 24 cores)
except in AVX mode where a performance drop can be observed when K > 4096. The reason
is that the AVX instructions use vectors 2× wider than those used by SSE instructions. The
inter-frame strategy loads twice the number of frames to fill these vectors. Thus, for K > 4096,
in AVX, the memory footprint exceeds the L3 cache occupancy. Consequently, the performance
is driven by the RAM bandwidth. Then, as K increases the number of RAM accesses increases.
There is not enough memory bandwidth to feed all the cores. This explains the decreasing
throughput for K > 4096, in AVX mode. Nonetheless, on E5-2680 v3 target, the throughput
exceeds 1 Gbps for all codes with K < 4096.

100

4.3. Turbo Decoders

4.3.3 Energy Efficiency on a Multi-core CPU

1 2 3 4
250

300

350

400

450

500

550

Number of cores

E
ne

rg
y-

pe
r-

bi
t

(n
J)

K AVX SSE
1024
6144

Figure 4.11 – Energy-per-bit (Ed) depending on the number of cores and the instruction types. 6
iterations, 8-bit fixed-point.

Figure 4.11 shows the energy consumed by the processor to decode one information bit (Ed)
of the codes using SSE and AVX instructions on the i7-4960HQ CPU target. The throughput
and power measurements were conducted on i7-4960HQ with the Intel® Power Gadget tool. For
small codewords (K = 1024) it is more energy efficient to resort to AVX. But this is not so clear
on larger codewords (K = 6144) since with 3/4 cores, the code using SSE outperforms the AVX
one.

4.3.4 Comparison with State-of-the-art Turbo Decoders

Table 4.12 – Comparison of the proposed turbo decoder with the state-of-art. EML-MAP decoder
(α = 0.75). Code from the LTE standard, K = 6144 and R = 1/3. NTi = (Ti × i)/(Cores× 6).

Ref. Platform Cores SIMD Pre. Inter i BER FER L Ti NTi

(length) (bit) (level) (at 0.7 dB) (µs) (Mb/s) (Mb/s)

[Zha+12] X5670 6 16 8 6 3 6e-02 - 157 222.6 18.6
[Wu+13] i7-3770K 4 8 16 4 6 - 1e-01 323 76.2 19.1

[6] E5-2650 8 8 16 64 6 6e-06 5e-03 3665 107.3 13.4
[6] i7-4960HQ 4 8 16 32 6 6e-06 5e-03 2212 88.9 22.2
[6] 2×E5-2680 v3 24 8 16 192 6 6e-06 5e-03 2657 443.7 18.5
[6] E5-2650 8 16 8 128 6 5e-05 4e-02 3492 225.2 28.2
[6] i7-4960HQ 4 16 8 64 6 5e-05 4e-02 2837 138.6 34.7
[6] 2×E5-2680 v3 24 16 8 384 6 5e-05 4e-02 3293 716.4 29.9

[LJ19] 2×E5-2680 v3 24 32 8 24 6 1e-03 3e-01 84 1735.0 72.3

Table 4.12 shows a performance comparison with related works. SIMD is the number of
elements that can be computed in parallel in one SIMD instruction. Pre. is the precision of LLRs
in bits. Inter is the number of frames computed in parallel. i is the number of turbo decoding
iterations. BER and FER are the decoding performance of the decoder at 0.7 dB. L is the decoder
latency. Ti is the information throughput of the decoder and NTi is the normalized information

101

4.4. FEC Software Decoders Hall of Fame

throughput: this metric considers 6 iterations on a single core. It enables to directly compare the
throughput of the listed decoders. The FER performance of the proposed decoders are shown in
Figure 3.5. One can note that using the 8-bit decoder leads to BER/FER degradations.

The variety of CPU targets and algorithmic parameters enables to show some global emerging
trends. When comparing to similar CPU targets [Zha+12, Wu+13], the proposed implementation
reaches similar or higher throughput (from 88.9 Mbps to 138.6 Mbps on i7-4960HQ target) at
the price of an latency increase (from 2212 µs to 2837 µs) and additional memory footprint.
The implementation from [LJ19] outperforms the throughput (up to 2,5 times higher) and the
latency performance of our proposed decoder on the E5-2680 v3 target. The other works [Zha+12,
Wu+13, LJ19] are based on the intra-frame SIMD strategy. It results in significantly reduced
latencies compared to the proposed implementation. The intra-frame implementations use less
memory than the inter-frame strategy. It is possible to take advantage of wider SIMD instructions
for the selected code. It mainly explains the throughput performance difference between the
proposed implementation and the implementation from [LJ19]. Moreover, the decoder has been
specialized for the LTE interleaver. However in the LTE standard, the EML-MAP turbo decoder
comes with a limited inherent parallelism of 8 (corresponding to the 8 trellis states). To fill the
SIMD registers, the intra-frame implementations require to modify the algorithm to introduce
more parallelism. This modification leads to non-negligible decoding performance losses. At
0.7 dB, none of the state-of-the-art implementations are able to match the reference decoding
performance of the EML-MAP algorithm except our proposed implementation in 16-bit. Even
considering our 8-bit implementation, none of the other works are reaching the same level of
decoding performance.

To summarize, the proposed implementation comes with a throughput approaching to the
best implementations (≈ two times slower) while the latency is still very high compared to the
intra-frame decoders. One of the main advantage of the proposed implementation is its flexibility.
Indeed, it can be run on 32-bit floating-point and 16/8-bit fixed-point. There is also a unique
source code description for the SSE, AVX, AVX-512 and NEON instructions. As it has been
shown before, this is valuable because depending on the codeword size, the CPU and the number
of cores assigned, the throughput and latency performance can be more interesting on one or the
other of the SIMD engine. Moreover, the proposed implementation is able to reach the reference
decoding performance in 16-bit. In 8-bit, there is contained decoding performance degradations
compared to the other works in the literature.

4.4 FEC Software Decoders Hall of Fame

In this section three software decoders Hall of Fames (HoFs) are provided: 1) for the LDPC
decoders in Table 4.13, 2) for the polar decoders in Table 4.14 and 3) for the turbo decoders in
Table 4.15. The purpose of these HoFs is to see at a glance what has been achieved, what can be
expected from current software decoders. Moreover, they enable to easily compare their respective
characteristics. All the presented results, collected from the state-of-the-art research papers
published in the field, consider a BPSK (Bit Phase-Shift Keying) modulation/demodulation
and an AWGN (Additive White Gaussian Noise) channel. This Hall of Fame strives to present
results as fairly as possible. For instance, early termination (Early T.) criteria are not taken
into consideration while computing throughput, in order to compare raw performances using a
consistent method. It remains possible, however, for typos/glitches/mistakes to have inadvertently
made it to the scoreboard.

102

4.4. FEC Software Decoders Hall of Fame

Table 4.13 – LDPC Software Decoders Hall of Fame.

H
ar
d
w
ar
e
sp
ec
ifi
ca
ti
on

s
C
od

e
D
ec
od

er
p
ar
am

et
er
s

D
ec
od

in
g
p
er
f.

M
et
ri
cs

W
or
k

Y
ea
r

P
la
tf
or
m

A
rc
h
.

T
D
P

C
or
es

S
IM

D
Fr
eq
.

(N
,K

)
S
td
.

#
of

S
ch
e-

E
ar
ly

U
p
.

P
re
.

F
i

L
T
c

N
T
c

T
N
D
C

E
d

(W
)

(o
r
SM

)
(l
en

gt
h)

(G
H
z)

E
d
ge
s

d
u
li
n
g

T
.

R
u
le
s

(b
it
)

(i
nt
er
)

(µ
s)

(M
b/

s)
(M

b/
s)

(n
J)

GPU-based

[W
C
W

08
]

20
08

88
00

G
T

T
es
la

10
5

7
16

1.
50

(4
09

6,
20

48
)

-
61

44
B
P
-F

ye
s

SP
A

32
1

6
46

70
00

0.
01

0.
00

1
0.
00

00
06

10
50

00
00

0
[F
al
+
09

]
20

09
88

00
G
T
X

T
es
la

17
6

8
16

1.
35

(1
90

8,
16

96
)

-
76

32
B
P
-F

no
SP

A
32

-
50

-
0.
08

0.
08

0
0.
00

05
00

22
00
00

0
[F
SS

11
]

20
11

88
00

G
T
X

T
es
la

17
6

8
16

1.
35

(8
00

0,
40

00
)

-
24

00
0

B
P
-F

no
SP

A
8

-
50

-
10

.1
0

10
.1
00

0.
05
80

00
17

42
6

[F
al
+
11

]
20

11
T
es
la

C
20
50

Fe
rm

i
24

7
14

32
1.
15

(6
48

00
,2
16

00
)

D
V
B
-S
2

21
60

00
B
P
-F

no
M
S

8
16

30
13

27
5

78
.1
0

46
.8
60

0.
09
10

00
52

71
[W

an
+
11

a]
20

11
G
T
X

47
0

Fe
rm

i
21

5
14

32
1.
22

(1
94

4,
97

2)
80

2.
11

n
68

04
B
P
-F

ye
s

LS
PA

32
30

0
50

57
74

3
10

.1
0

10
.1
00

0.
01
80

00
21

28
7

[J
C
S1

1]
20

11
G
T
X

28
5

T
es
la

20
4

15
16

1.
48

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-F

ye
s

SP
A

32
1

15
10

97
2.
10

0.
63

0
0.
00

18
00

32
38

10
[C

ha
+
11

]
20

11
T
es
la

C
10
60

T
es
la

20
0

15
16

1.
30

(8
00

0,
40

00
)

-
32

00
0

B
P
-F

no
LS

PA
32

1
50

86
38

0.
92

0.
92

0
0.
00

29
00

21
73

91
[W

an
+
11

b]
20

11
G
T
X

47
0

Fe
rm

i
21

5
14

32
1.
22

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-F

no
LS

PA
32

22
4

10
10

53
3

49
.0
0

9.
80

0
0.
01

80
00

21
93

9
[K

M
12

]
20

12
G
T
X

48
0

Fe
rm

i
25

0
15

32
1.
40

(2
04

8,
17

23
)

80
2.
3a

n
12

28
8

B
P
-F

ye
s

SP
A

32
1

50
42

6
4.
80

4.
80

0
0.
00

71
00

52
08

3
[F
al
+
12

]
20

12
H
D

58
70

C
yp
re
ss

18
8

20
20

1.
20

(8
00

0,
40

00
)

-
-

B
P
-F

no
M
S

8
50
0

10
22

22
2

18
0.
00

36
.0
00

0.
07
50

00
52

22
[F
al
+
12

]
20

12
T
es
la

C
20
50

Fe
rm

i
24

7
14

32
1.
15

(8
00

0,
40

00
)

-
-

B
P
-F

no
M
S

8
50
0

10
20

00
0

20
0.
00

40
.0
00

0.
07
80

00
61

75
[G

N
B
12

]
20

12
T
es
la

C
20
50

Fe
rm

i
24

7
14

32
1.
15

(1
62

00
,8
10

0)
D
V
B
-T

2
48

59
9

B
P
-F

no
M
S

8
12
8

50
26

08
3

79
.5
0

79
.5
00

0.
15
40

00
31

07
[L
i+

13
]

20
13

G
T
X

58
0

Fe
rm

i
24

4
16

32
1.
54

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-C

L
no

M
S

8
10

24
5

33
22

71
0.
20

14
2.
00

0
0.
18
00

00
17

18
[W

an
+
13

]
20

13
G
T
X

T
IT
A
N

K
ep
le
r

25
0

14
19

2
0.
84

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-F

ye
s

N
M
S

32
50

10
12

66
30

4.
20

60
.8
00

0.
02
70

00
41

12
[W

an
+
13

]
20

13
G
T
X

T
IT
A
N

K
ep
le
r

25
0

14
19

2
0.
84

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-F

ye
s

N
M
S

32
6

10
20

7
66

.8
0

13
.4
00

0.
00
60

00
18

65
7

[L
N
14

]
20

14
G
T
X

66
0
T
i

K
ep
le
r

15
0

7
19

2
0.
92

(8
00

0,
40

00
)

-
24

00
0

B
P
-F

no
SP

A
8

12
54

4
50

95
41

00
10

5.
20

10
5.
20

0
0.
08
50

00
14

26
[L
JC

14
]

20
14

G
T
X

66
0

K
ep
le
r

14
0

5
19

2
0.
98

(1
94

4,
97

2)
80

2.
11

n
68

04
B
P
-H

L
no

O
M
S

8
16

38
4

10
34

36
2

92
6.
90

18
5.
40

0
0.
04
90

00
75

5
[L
ai
+
16

]
20

16
G
T
X

47
0

Fe
rm

i
21

5
14

32
1.
22

(1
94

4,
97

2)
80

2.
11

n
68

04
B
P
-P

L
no

M
S

32
25

6
10

97
39

51
.1
0

10
.2
00

0.
01
90

00
21

07
8

[K
K
17

b]
20

17
G
T
X

T
IT

A
N

X
P
as
ca
l

25
0

28
12

8
1.
42

(1
94

4,
97

2)
80

2.
11

n
68

04
B
P
-F

no
M
S

32
1

10
2

91
3.
00

18
2.
60

0
0.
03
60

00
13

69
[K

K
17

a]
20

17
G
T
X

T
IT

A
N

X
P
as
ca
l

25
0

28
12

8
1.
42

(1
94

4,
97

2)
80

2.
11

n
68

04
B
P
-F

no
M
S

32
28

10
33

16
60

.0
0

33
2.
00

0
0.
06
50

00
75

3
[K

un
18

]
20

18
G
T
X

T
IT

A
N

X
p

P
as
ca
l

25
0

30
12

8
1.
58

(6
48

00
,2
16

00
)

D
V
B
-S
2

21
60

00
B
P
-F

ye
s

O
M
S

32
1

50
40

5
16

0.
00

16
0.
00

0
0.
02
60

00
15

63

CPU-based

[F
al
+
08

]
20

08
C
E
LL

/B
E

C
E
LL

20
0

6
16

3.
30

(1
24

8,
62

4)
80

2.
16

e
-

B
P
-F

no
M
S

8
96

25
36

53
32

.8
0

16
.4
00

0.
05
20

00
60

98
[F
SS

11
]

20
11

C
E
LL

/B
E

C
E
LL

20
0

6
4

3.
30

(1
02

4,
51

2)
-

30
72

B
P
-F

no
SP

A
32

24
50

17
19

14
.3
0

14
.3
00

0.
18
10

00
13

98
6

[F
SS

11
]

20
11

2x
E
55

30
N
eh
al
em

16
0

8
4

2.
40

(8
00

0,
40

00
)

-
24

00
0

B
P
-F

no
SP

A
32

1
50

13
11

5
0.
61

0.
61

0
0.
00

79
00

26
22

95
[Z
ha

+
11

]
20

11
C
E
LL

/B
E

C
E
LL

20
0

8
16

3.
20

(9
60
,4
80
)

80
2.
16

e
-

B
P
-F

no
O
M
S

8
1

15
74

13
.0
0

3.
90

0
0.
00

95
00

51
28

2
[G

N
B
12

]
20

12
i7
-9
50

N
eh
al
em

13
0

4
16

3.
06

(1
62

00
,8
10

0)
D
V
B
-T

2
48

59
9

B
P
-F

no
M
S

8
12
8

50
11

39
34

18
.2
0

18
.2
00

0.
09
30

00
71

43
[P
an

+
13

]
20

13
i7
-3
96

0X
S.

B
ri
dg
e

13
0

6
16

3.
30

(9
21

6,
46

08
)

C
M
M
B

27
64

8
B
P
-F

ye
s

N
M
S

8
12

10
12

02
92

.0
0

18
.4
00

0.
05
80

00
70

65
[H

N
H
13

]
20

13
i7
-2
60

0K
S.

B
ri
dg
e

13
0

4
16

3.
40

(5
24

28
0,
26

21
40
)

80
2.
11

n
-

B
P
-L

no
O
M
S

8
1

5
17

42
0

30
.1
0

3.
00

0
0.
05

50
00

31
66

7
[G

B
13

]
20

13
C
or
te
x-
A
9

A
R
M
v7

≈
4

4
16

1.
60

(1
62

00
,8
10

0)
D
V
B
-T

2
48

59
9

B
P
-F

no
M
S

8
12
8

20
59

24
57

3.
50

1.
40

0
0.
01

40
00

28
57

[D
eb

+
16

b]
20

16
i7
-4
96

0H
Q

H
as
w
el
l

47
4

8
3.
40

(2
30

4,
11

52
)

80
2.
16

e
72

96
LP

-F
no

A
D
M
M

32
4

8
15

11
6.
10

0.
98

0
0.
00

90
00

47
95

9
[D

eb
+
16

a]
20

16
i7
-4
96

0H
Q

H
as
w
el
l

47
4

8
3.
40

(2
30

4,
11

52
)

80
2.
16

e
72

96
LP

-H
L

no
A
D
M
M

32
32

10
0

13
75

5
5.
40

10
.8
00

0.
09
90

00
43

52
[L
J1

6]
20

16
i7
-4
96

0H
Q

H
as
w
el
l

47
4

32
3.
40

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-H

L
ye
s

N
M
S

8
12

8
50

13
59

21
7.
00

21
7.
00

0
0.
50
00

00
21

7
[L
J1

7]
20

17
i7
-5
65

0U
B
ro
ad
w
el
l
≈

10
2

32
3.
00

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-H

L
ye
s

O
M
S

8
2

10
12

38
5.
00

77
.0
00

0.
40
10

00
12

3
[G

ra
19

]
20

19
2x

E
P
Y
C

73
51

Ze
n

34
0

32
16

2.
40

(6
48

00
,3
24

00
)

D
V
B
-S
2

22
67

99
B
P
-H

L
ye
s

O
M
S

8
51

2
20

18
43

2
18

00
.0
0

72
0.
00

0
0.
58
60

00
47

2
[X

u+
19

]
20

19
G
ol
d
61

54
Sk
yl
ak
e

20
0

18
64

3.
00

(9
12

6,
84

48
)

5G
-

B
P
-H

L
ye
s

O
M
S

8
18

10
31

48
92

.4
0

97
8.
50

0
0.
28
30

00
20

4
T
hi
s
w
or
k

20
20

P
la
ti
nu

m
81

68
Sk
yl
ak
e

20
5

24
32

2.
70

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-H

L
ye
s

N
M
S

16
76
8

50
26

37
67

1.
04

67
1.
04

0
0.
32
36

00
30

5
T
hi
s
w
or
k

20
20

E
P
Y
C

74
52

Ze
n
2

15
5

32
16

2.
35

(2
30

4,
11

52
)

80
2.
16

e
72

96
B
P
-H

L
ye
s

N
M
S

16
51
2

50
13

68
86

2.
08

86
2.
08

0
0.
71
65

00
18

0

103

4.4. FEC Software Decoders Hall of Fame

Table 4.14 – Polar Software Decoders Hall of Fame.

H
ar
d
w
ar
e
sp
ec
ifi
ca
ti
on

s
C
od

e
D
ec
od

er
p
ar
am

et
er
s

D
ec
od

in
g
p
er
f.

M
et
ri
cs

W
or
k

Y
ea
r

P
la
tf
or
m

A
rc
h
.

T
D
P

C
or
es

S
IM

D
F
re
q.

N
R

A
lg
or
it
h
m

P
re
.

F
i/
L

L
T
i

N
T
i

T
N
D
C

E
d

(W
)

(o
r
SM

)
(l
en

gt
h)

(G
H
z)

(b
it
)

(i
nt
er
)

(µ
s)

(M
b/

s)
(M

b/
s)

(n
J)

GPU-based

[G
ia
+
16

]
20

16
T
es
la

K
20
c

K
ep
le
r

22
5

13
19
2

0.
71

40
96

0.
90

SS
C

32
83

2
1

94
00

10
43

.0
0

10
43

.0
0

0.
58

90
21

6
[L
L1

6]
20

16
T
es
la

K
20
c

K
ep
le
r

22
5

13
19
2

0.
71

25
6

0.
50

SS
C

32
-

1
-

39
5.
00

39
5.
00

0.
22

30
57

0
[C

am
+
17

]
20

17
G
T
X

98
0
T
i

M
ax
w
el
l

25
0

22
12
8

1.
00

40
96

0.
50

B
P
+
C
A
-S
C
L

32
5

32
10

00
00

0
0.
01

0.
32

0.
00

01
78

12
50

[H
an

+
17

]
20

17
G
T
X

98
0

M
ax
w
el
l

16
5

16
12
8

1.
17

40
96

0.
50

SC
L

32
/1

6
13

10
32

11
19

00
24

.0
0

76
8.
00

0.
32

05
21

5
[H

an
+
17

]
20

17
G
T
X

T
IT

A
N

X
M
ax
w
el
l

25
0

24
12
8

1.
00

40
96

0.
50

SC
L

32
/1

6
19

18
32

12
67

00
31

.0
0

99
2.
00

0.
32

29
25

2

CPU-based

[G
ia
+
14

]
20

14
i7
-2
60

0
S.

B
ri
dg
e

95
4

8
3.
40

32
76

8
0.
84

SS
C

32
1

1
22

3
12

3.
70

12
3.
70

4.
54

80
76

8
[G

ia
+
14

]
20

14
i7
-2
60

0
S.

B
ri
dg
e

95
4

16
3.
40

32
76

8
0.
84

SS
C

8
1

1
13

5
20

3.
60

20
3.
60

3.
74

30
46

7
[L
LJ

14
]

20
14

C
or
te
x-
A
9

A
R
M
v7

≈
3

4
16

1.
30

32
76

8
0.
90

SS
C

8
16

1
16

85
2

28
.0
0

28
.0
0

1.
34

60
10
7

[S
ar
+
14

c]
20

14
i7
-2
60

0
S.

B
ri
dg
e

95
4

8
3.
40

20
48

0.
84

C
A
-S
SC

L
32

1
32

33
00

0.
52

16
.6
4

0.
58

82
57

09
[S
ar
+
14

a]
20

14
i7
-2
60

0
S.

B
ri
dg
e

95
4

8
3.
40

32
76

8
0.
84

SS
C

32
1

1
12

5
21

9.
80

21
9.
80

8.
08

10
43

2
[L
LJ

15
]

20
15

i7
-4
96

0H
Q

H
as
w
el
l

47
4

16
3.
60

32
76

8
0.
90

SS
C

8
16

1
33

7
14

00
.0
0

14
00

.0
0

24
.3
06

0
34

[4
]

20
15

E
3-
12

25
S.

B
ri
dg
e

95
4

8
3.
10

32
76

8
0.
84

SS
C

32
1

1
11

4
24

1.
00

24
1.
00

9.
71

80
39

4
[4
]

20
15

E
3-
12

25
S.

B
ri
dg
e

95
4

16
3.
10

32
76

8
0.
83

SS
C

8
16

1
37

0
11

80
.0
0

11
80

.0
0

23
.7
90

0
81

[S
ar
+
16

]
20

16
i7
-2
60

0
S.

B
ri
dg
e

95
4

8
3.
40

20
48

0.
84

C
A
-S
SC

L
32

1
32

43
3

4.
00

12
8.
00

4.
70

59
74

2
[G

ia
+
16

]
20

16
i7
-4
77

0S
H
as
w
el
l

64
4

32
3.
10

32
76

8
0.
84

SS
C

8
1

1
31

88
6.
00

88
6.
00

8.
93

10
73

[G
ia
+
16

]
20

16
C
or
te
x-
A
9

A
R
M
v7

≈
3

4
16

1.
70

32
76

8
0.
90

SS
C

8
1

1
36

1
81

.7
0

81
.7
0

3.
00

30
37

[5
]

20
16

i7
-4
85

0H
Q

H
as
w
el
l

47
4

16
3.
30

32
76

8
0.
83

SS
C

8
1

1
47

58
0.
00

58
0.
00

10
.9
84

0
81

[5
]

20
16

C
or
te
x-
A
57

A
R
M
v8

≈
2

2
16

1.
10

32
76

8
0.
83

SS
C

8
1

1
37

4
73

.0
0

73
.0
0

4.
14

80
27

[S
he

+
16

]
20

16
i7
-4
79

0K
H
as
w
el
l

88
4

8
4.
00

20
48

0.
84

SC
L

32
1

1
15

73
1.
10

35
.1
0

1.
09

38
25

14
[L
LJ

18
]

20
18

i7
-4
96

0H
Q

H
as
w
el
l

47
4

32
3.
60

32
76

8
0.
84

SS
C
A
N

32
1

1
56

49
0.
00

49
0.
00

4.
25

35
96

[L
LJ

18
]

20
18

i7
-4
96

0H
Q

H
as
w
el
l

47
4

32
3.
60

32
76

8
0.
84

SS
C
A
N

32
32

1
16

01
55

0.
00

55
0.
00

4.
77

43
85

[3
]

20
19

i5
-6
60

0K
Sk

yl
ak
e

91
4

32
3.
90

20
48

0.
84

C
A
-S
SC

L
8

1
32

57
7

3.
00

96
.0
0

0.
76

92
94
8

104

4.4. FEC Software Decoders Hall of Fame

Table 4.15 – Turbo Software Decoders Hall of Fame.

H
ar
d
w
ar
e
sp
ec
ifi
ca
ti
on

s
C
od

e
D
ec
od

er
p
ar
am

et
er
s

D
ec
od

in
g
p
er
fo
rm

an
ce
s

M
et
ri
cs

W
or
k

Y
ea
r

P
la
tf
or
m

A
rc
h
.

T
D
P

C
or
es

S
IM

D
Fr
eq
.

K
R

S
td
.

A
lg
or
it
h
m

P
re
.

F
i

B
E
R

F
E
R

L
T
i

N
T
i

T
N
D
C

E
d

(W
)

(o
r
SM

)
(l
en
gt
h)

(G
H
z)

(b
it
)

(i
nt
er
)

(a
t
0.
7
dB

)
(µ

s)
(M

b/
s)

(M
b/

s)
(n
J)

GPU-based

[W
SC

10
]

20
10

T
es
la

C
10
60

T
es
la

20
0

15
16

1.
30

61
44

1/
3

LT
E

M
L-
M
A
P

32
10
0

5
1e
-0
4

-
76
80
0

8.
0

6.
7

0.
02
1

29
85
1

[W
u+

11
]

20
11

G
T
X

47
0

Fe
rm

i
21
5

14
32

1.
22

61
44

1/
3

LT
E

M
L-
M
A
P

32
10
0

5
4e
-0
5

-
20
82
7

29
.5

24
.6

0.
04
5

87
40

[C
S1

2]
20
12

T
es
la

C
20
50

Fe
rm

i
24
7

14
32

1.
15

11
91
8

1/
3

-
L-
M
A
P

32
32

5
-

-
10
89
65

3.
5

2.
9

0.
00
57

85
17
2

[Y
C
12
]

20
12

98
00

G
X
2

T
es
la

19
7

16
16

1.
50

61
44

1/
3

LT
E

M
L-
M
A
P

32
1

5
1e
-0
2

-
30
72

2.
0

1.
7

0.
00
43

11
58
82

[L
iu
+
13
]

20
13

G
T
X

55
0
T
i

Fe
rm

i
11
6

6
32

1.
80

61
44

1/
3

LT
E

E
M
L-
M
A
P

32
1

6
1e
-0
2

-
72

85
.3

85
.3

0.
24
7

13
60

[C
he
+
13
]

20
13

G
T
X

58
0

Fe
rm

i
24
4

16
32

1.
54

61
44

1/
3

LT
E

M
L-
M
A
P

32
1

6
3e
-0
4

-
16
60

3.
7

3.
7

0.
00
47

63
94
6

[X
ia
+
13
]

20
13

G
T
X

48
0

Fe
rm

i
25
0

15
32

1.
40

61
44

1/
3

LT
E

E
M
L-
M
A
P

32
1

6
-

-
50

12
2.
8

12
2.
8

0.
18
3

20
36

[W
u+

13
]

20
13

G
T
X

68
0

K
ep
le
r

19
5

8
19
2

1.
01

61
44

1/
3

LT
E

E
M
L-
M
A
P

32
16

6
-

1e
-0
2

26
57

37
.0

37
.0

0.
02
4

52
70

[Z
ha

+
14
b]

20
14

T
es
la

K
20
c

K
ep
le
r

22
5

13
19
2

0.
71

61
44

1/
3

LT
E

M
L-
M
A
P

32
1

5
1e
-0
4

-
10
97

5.
6

4.
7

0.
00
26

47
87
2

[L
i+

14
]

20
14

G
T
X

58
0

Fe
rm

i
24
4

16
32

1.
54

61
44

1/
3

LT
E

B
R
-S
O
V
A

8
4

5
2e
-0
2

-
19
2

12
7.
8

10
6.
5

0.
13
5

22
91

[L
i+

16
]

20
16

G
T
X

68
0

K
ep
le
r

19
5

8
19
2

1.
01

61
44

1/
3

LT
E

E
M
L-
M
A
P

32
1

7
9e
-0
3

-
81
7

8.
2

9.
6

0.
00
62

20
31
3

[L
i+

16
]

20
16

G
T
X

68
0

K
ep
le
r

19
5

8
19
2

1.
01

61
44

1/
3

LT
E

F
P
T
D

32
1

36
9e
-0
3

-
40
3

18
.7

-
-

-

CPU-based

[H
ua

+
11
]

20
11

i7
-9
60

N
eh
al
em

13
0

1
8

3.
20

10
08

1/
3

LT
E

M
L-
M
A
P

16
1

8
3e
-0
3

7e
-0
2

13
8

7.
3

9.
7

0.
38
0

13
40
2

[Z
ha

+
12
]

20
12

X
56
70

W
es
tm

er
e

95
6

16
2.
93

58
24

1/
3

LT
E

E
M
L-
M
A
P

8
6

3
6e
-0
2

-
15
7

22
2.
6

11
1.
3

0.
39
6

85
4

[W
u+

13
]

20
13

i7
-3
77
0K

I.
B
ri
dg
e

77
4

8
3.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

16
4

6
-

1e
-0
1

32
3

76
.2

76
.2

0.
68
0

10
11

[6
]

20
16

E
5-
26
50

I.
B
ri
dg
e

95
8

8
2.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

16
64

6
6e
-0
6

6e
-0
3

36
65

10
7.
3

10
7.
3

0.
66
9

88
5

[6
]

20
16

i7
-4
96
0H

Q
H
as
w
el
l

47
4

8
3.
20

61
44

1/
3

LT
E

E
M
L-
M
A
P

16
32

6
6e
-0
6

6e
-0
3

22
12

88
.9

88
.9

0.
86
8

52
7

[6
]

20
16

2×
E
5-
26
80

v3
H
as
w
el
l

24
0

24
8

2.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

16
19
2

6
6e
-0
6

6e
-0
3

26
57

44
3.
7

44
3.
7

0.
92
4

54
1

[6
]

20
16

E
5-
26
50

I.
B
ri
dg
e

95
8

16
2.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

8
12
8

6
8e
-0
5

5e
-0
2

34
92

22
5.
2

22
5.
2

0.
70
4

42
2

[6
]

20
16

i7
-4
96
0H

Q
H
as
w
el
l

47
4

16
3.
20

61
44

1/
3

LT
E

E
M
L-
M
A
P

8
64

6
8e
-0
5

5e
-0
2

28
37

13
8.
6

13
8.
6

0.
67
7

33
9

[6
]

20
16

2×
E
5-
26
80

v3
H
as
w
el
l

24
0

24
16

2.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

8
38
4

6
8e
-0
5

5e
-0
2

32
93

71
6.
4

71
6.
4

0.
74
6

33
5

[L
J1

9]
20
19

2×
E
5-
26
80

v3
H
as
w
el
l

24
0

24
32

2.
50

61
44

1/
3

LT
E

E
M
L-
M
A
P

8
24

6
1e
-0
3

3e
-0
1

84
17
35
.0

17
35
.0

0.
90
4

13
8

105

4.4. FEC Software Decoders Hall of Fame

All the entries are sorted by platform type (GPU and CPU) and chronologically. For each
HoF table, a column is dedicated to the Hardware specifications. Indeed, it can have a huge
impact on the decoding performance depending on if you are using a low power ARM® CPU
or a high end HPC GPU for instance. Then the next column aims to give some insights on the
Code used in the decoding process. Again, decoding a short code generally results in low latencies
performance when decoding a big code generally leads to higher latencies. The Decoder parameters
are given in a dedicated column. Those parameters characterize the decoding process used in
the experiments. The Decoding performances (or Decoding perf.) column shows the reported
performances in terms of latency and throughput (and exceptionally the BER and FER in the
turbo HoF). For the LDPC HoF, the throughput considers the codeword size (coded throughput
Tc, N bits) whereas in the polar and turbo HoFs the information throughputs are presented (Ti
considering K bits). Generally speaking, the throughput (T) can be deduced from the number of
bits B in the codeword (B can be K or R depending on if we are considering information or coded
throughput), the number of frames decoded in parallel (F) and the latency (L):

T = (B× F)/L. (4.1)

In many cases, the raw performances are hard to directly compare. Indeed, the number of
iterations (i) or the number of lists (L) can vary from a work to another one. This is why
we proposed some Metrics in the last column. Those metrics aim to facilitate the comparison
between the results. The normalized throughput (NT) is different for each HoF. But, the idea is
to normalize the throughput with a representative number of iterations/lists (I). The normalized
throughput can be expressed as follows:

NT = (T × i)/I, (4.2)

for the LDPC HoF I = 50, for the turbo HoF I = 6 and for the polar HoF I = 1. The Throughput
under Normalized Decoding Cost (TNDC) is a metric proposed in [Yin+12]. The general idea is
to see how much the hardware components are stressed (higher TNDC is better). In the initial
paper, the TNDC was only taking care of the frequency and the number of cores. In this thesis
we refined the model by adding the SIMD length as this is a key for performance in channel
decoding algorithms:

TNDC = NT/(Freq.× Cores× SIMD). (4.3)

The last metric is the decoding energy (Ed), this is the energy cost of the proposed implementation
(lower is better):

Ed = (TDP/NT)× 103. (4.4)

For the TNDC and the decoding energy, the normalized throughput is considered instead of
the raw throughput. So one can compare metrics with each other. One can note that there is
additional information given by the colors in the different tables. The definition of the colors is:

— blue: only one core of the CPU is used, in the TNDC computation one core is considered,
in Ed the entire TDP is used,

— green: not including the memory data transfer time between the CPU and the GPU, in
real life those transfers occur and the impact on the real latency can be significant,

— orange: following the formula, the throughput should be lower but the authors performed
a specific data transfers overlapping with CUDA streams to reach higher throughput,

— purple: the inter-frame level has been deduced from the throughput and the latency.

106

4.5. SCMA Demodulators

4.5 SCMA Demodulators

In this section, the effects of the various SCMA demodulator optimizations considered in
Section 2.7 are investigated. Energy efficiency, power consumption, throughput and latency are
discussed.

4.5.1 Experimentation Platforms

Table 4.16 – Specifications of the target processors.

i7-6700HQ 7120P A57

CPU Intel® Core™ i7-6700HQ Intel® Xeon Phi™ 7120P ARM® Cortex-A57
(Nvidia® Jetson TX1)

Cores/Freq. 4 cores, 2.6–3.5 GHz 64 cores, 1.24–1.33 GHz 4 cores, 1.91 GHz
Arch. Ivy Bridge Q1’12 Knights Corner Q2’13 ARMv8 Q1’15
LLC 6 MB L3 30.5 MB L2 2 MB L2
TDP 45 W 300 W 15 W

Energy efficiency is of interest in the design of C-RAN servers. It is determined by the rate
of computation that can be achieved by a processor. Joint optimization of the throughput and
energy consumption is a main goal of system designers. Energy optimization can significantly
reduce the cost of cloud services while it can contribute to decrease the emission of greenhouse
gases. Power utilization is also important because improved performance per Watt is useful to
limit power demands. This section explores the power, energy efficiency and throughput of the
various message passing algorithms suggested in this work. Tests have been conducted on three
platforms running the Ubuntu Linux operating system. The three systems are : 1) an Intel®

Core™ i7-6700HQ processor with AVX instructions (256-bit SIMD) and four physical cores using
2-way Simultaneous Multi-Threading (SMT or Intel® Hyper-Threading technology) running at
nominal frequency of 2.6 GHz, 2) an ARM® Cortex-A57 with NEON instructions (128-bit SIMD)
and four cores (no SMT) running at 2.0 GHz and 3) an Intel® Xeon Phi™ 7120P with KNCI
instructions (512-bit SIMD) and 61 cores using 4-way SMT and running at 1.2 GHz. On the
i7-6700HQ and the Cortex-A57 targets the GNU compiler (version 5.4) has been used while on
the Xeon Phi™ co-processor the Intel compiler (version 17) has been used.

4.5.2 Throughput, Latency and Energy Efficiency on Multi-core CPUs

Table 4.17 shows the comparison of throughput, latency, power consumption and energy of
different decoding algorithms that are executed on the three platforms to decode 768 Million
bits. The average power and energy consumption measured on the Core™ i7 processor were
obtained with the turbostat software 1 which exploits the Intel® performance counters in Machine
Specific Registers (MSRs) to monitor CPU and RAM utilizations. However, in the case of ARM®

and Xeon Phi™ platforms, external current sensors were used to measure the energy and power
consumptions.

i7-6700HQ Platform During the evaluation process, 8 threads are run on the i7-6700HQ
platform. The baseline implementation of MPA with level 3 (-O3) optimization of the GNU
compiler reaches 3.51 Mbps by assigning all four physical cores of the processor (SMT on).

1. turbostat: https://github.com/torvalds/linux/tree/master/tools/power/x86/turbostat

107

https://github.com/torvalds/linux/tree/master/tools/power/x86/turbostat

4.5. SCMA Demodulators

Table 4.17 – MPA throughput, latency, power and energy characteristics over 768 Million bits [2].

Algorithm Optim. L T P Eb
& SIMD Level (s) (Mb/s) (W) (µJ)

i7
-6
70
0H

Q
E-MPA+AVX -Ofast 81.4 75.46 40.02 0.53

MPA+AVX -Ofast 90.6 67.83 40.53 0.59
Log-MPA -Ofast 595.3 10.31 35.11 3.40
Log-MPA -O3 960.0 6.37 33.11 5.17

MPA -Ofast 412.9 14.85 33.01 2.22
MPA -O3 1745.5 3.51 35.00 9.94

71
20
P

E-MPA+KNCI -O2 1634.0 114.60 198.00 1.73
MPA+KNCI -O2 2258.8 82.32 198.00 2.39

Log-MPA -O2 3490.9 53.38 184.00 3.43
MPA -O2 5120.0 36.09 196.00 5.36

A
57

E-MPA+NEON -Ofast 200.5 15.30 7.93 0.51
MPA+NEON -Ofast 365.7 8.40 7.56 0.90

Log-MPA -Ofast 650.1 4.70 6.99 1.48
Log-MPA -O3 1024.0 3.01 6.99 2.33

MPA -Ofast 752.9 4.07 7.18 1.76
MPA -O3 1920.0 1.60 6.99 4.37

Log-MPA algorithms improves the performance to 6.37 Mbps thanks to the deletion of the
exponential calculations, still in -O3. However, using the fast math libraries (-Ofast) and the
loop optimizations from Section 2.7.2 increases the throughput to 14.85 Mbps for MPA and
to 10.31 Mbps for log-MPA. It is important to observe that MPA outperforms the log-MPA
with the fast math libraries and more aggressive optimizations, without compromising on the
bit error rate performance. This is because log-MPA induces inefficient data accesses due to
the messages passed from resources to users. Using the AVX and SSE SIMD ISAs reduces the
branch mispredictions and the cache misses (see Section 2.7.1). Consequently, the throughput
is increased to 67.83 Mbps in MPA and to 75.46 Mbps for the E-MPA where the Ψ ′ estimated
exponentials from (1.24) are performed. These results confirm significant throughput gains for the
proposed implementations, while the energy consumption is reduced. AVX instructions increase
the average power consumption of MPA and log-MPA from 35 to 40 Watts but throughput and
latency are improved by much larger factors. It means that the overall energy consumption have
been decreased with AVX instructions.

7120P Platform The Xeon Phi™ Knights Corner (KNC) [Chr12] benefits from the ability to
execute four hardware threads per core, while having 61 cores and 512-bit SIMD registers. In this
case, 244 threads are run to handle the MPA decoding task. Despite these benefits, the Xeon
Phi™ Knights Corner suffers from two main disadvantages: 1) the KNC instruction set diversity
is reduced compared to AVX or AVX-512 ISAs and 2) the cores frequency is relatively low in
order to keep reasonable power consumption and limits the heat dissipation. As an example of
missing instruction, the KNCI ISA does not offer coalesced division for floating-point numbers.
Beside those limitations, the E-MPA+KNCI exhibits the highest throughput among the three
mentioned platforms (up to 114.60 Mbps). However, it consumes almost three times more energy
per bit compared to the ARM®-based implementations. On the Intel® ICPC compiler, the best
performances are obtained using the -O2 optimization level. Enabling the -O3 optimization level
and the fast math library does not lead to higher throughputs.

108

4.6. Analysis of the Simulator Performance

A57 Platform On the Nvidia® Jetson TX1 platform, the throughput difference caused by the
fast math libraries of the GNU compiler is still visible for MPA and log-MPA algorithms. With
level three optimization (-O3), MPA and log-MPA run at 1.60 Mbps and 3.01 Mbps, respectively.
When using fast math libraries (-Ofast) the throughputs increase to 4.07 and 4.70 Mbps. It
should be noted that the four physical cores of the ARM® platform were utilized for those tests.
Power consumption and energy used per decoded bit are lower on the ARM® platform than on
the Intel® processors. The low power consumption of the ARM® platform notably comes at
the cost of less powerful floating-point arithmetic units (see MPA+NEON and E-MPA+NEON
in Table 4.17). Eliminating the exponential computations almost doubled the performance in
E-MPA (15.30 Mbps) as compared to MPA+NEON (8.40 Mbps). It shows the limits of low power
processors when many exponentials have to be calculated. Nevertheless, by using E-MPA, the
ARM® low power processors can be a good candidate for implementation of SCMA decoders on
C-RAN servers as it enables significant energy savings.

Considering the energy consumed per decoded bit (Eb), the SIMD algorithms have a higher
energy efficiency. The processor resources are well stressed and the power does not increase
too much. Among the obtained results, the Xeon Phi™ achieves the best throughput while the
Cortex-A57 has the lowest energy consumption. If the number of users in the cloud increases,
then the presented results are scalable up to the number of processing units dedicated to them.

4.6 Analysis of the Simulator Performance

All-zero
Codeword

AWGN
Channel

BPSK
Demodulator

32 to 8-bit
Quantizer

FA-SSCL
Decoder

CRC
Extractor Monitor

Receiver

N N N N K1 K2

Figure 4.12 – AFF3CT simulator chain.

In this section we propose to evaluate the simulator performance over a representative
simulation chain. This chain is illustrated in Figure 4.12. The transmitter is simplified and only
all-zero codewords are generated. This technique enables to bench only the AWGN channel and the
receiver tasks. The AWGN channel is presented in Section 1.2 and the vectorized implementation
from the Section 2.3.1 is applied. The SNR is set to Eb/N0 = 4.5 dB. The BPSK demodulator
implementation is also vectorized and its implementation has not been detailed in the manuscript.
Indeed, it is trivial and can be resumed to the multiplication of the AWGN channel output by
a constant factor (l = y × 2

σ2). Then, the demodulator 32-bit floating-point output data is
converted in a 8-bit fixed-point representation thanks to the quantizer task (see Section 2.3.2).
The decoder is the 8-bit polar FA-SSCL presented in Section 1.3.3.5 an in Section 2.5.4. A
N = 2048 and K1 = 1755 polar code with L = 32 and a 32-bit CRC (GZip 0x04C11DB7) is
simulated (see Figure 3.4 for the error rate). This decoder has been chosen because it represents
one of the best optimized decoder of this thesis work. After the decoding process, the 32 CRC bits
are extracted from the polar codeword and K2 = 1723 bits are returned. This operation consists
in copying the K2 first bits of the K1 decoder output bits. Finally, the monitor checks if all the
bits are equal to zero, if not, errors are counted. All the tasks of the proposed communication
chain are fully vectorized with the MIPP wrapper. The intra-frame SIMD strategy is applied.

This section is decomposed in three sub-sections. The first one details the selected experimen-
tation platforms. Then, the mono-threaded performances are given for each task. Finally, the full
potential of the simulator is demonstrated over multi-threaded and multi-node executions.

109

4.6. Analysis of the Simulator Performance

4.6.1 Experimentation Platforms

Table 4.18 – Specifications of the target processors.

CPU SIMD instr. # Proc. # Cores Freq. SMT Turbo
Name Size per Proc. (GHz) Boost

ARM® ThunderX2® CN9975 NEON 128-bit 2 28 2.00 4 7

Intel® Xeon Phi™ 7230 AVX-512F 512-bit 1 64 1.30 4 3

Intel® Xeon™ E5-2680 v3 AVX2 256-bit 2 12 2.50 1 7

Intel® Xeon™ Gold 6140 AVX-512BW 512-bit 2 18 2.30 2 3

Intel® Xeon™ Gold 6240 AVX-512BW 512-bit 2 18 2.60 1 7

AMD® EPYC™ 7702 AVX2 256-bit 2 64 2.00 1 7

Table 4.18 summarizes the 6 server-class selected CPUs. These CPUs have been chosen
because they have a lot of cores and are good candidates for a multi-threading scaling evaluation.
All these CPUs are 8-bit SIMD fixed-point capable except for the Xeon Phi™ 7230. In this specific
case the computations are made on 32-bit everywhere and the quantizer task is skipped. Also,
Intel®, AMD® and ARM® CPUs are representative of the today market. It demonstrates the
flexibility and the portability capacities of the proposed simulator. One can note that AFF3CT
can adapt to various CPU architectures.

For all the CPU targets, the code has been compiled with the C++ GNU compiler version 8.2.0
on Linux, with the following optimization flags: -O3 -funroll-loops -march=native. Note
that AFF3CT also works on Windows and macOS at the same level of performance.

4.6.2 Mono-threaded Performances

Table 4.19 – Average throughput and latency performance per simulated task (single-threaded).
In bold the best performance by task. In blue the best total simulation performance and in
red the worst total simulation performance.

CPU Chan. Demod. Quant. Dec. CRC ext. Mon. Total

T
(M

b/
s)

ThunderX2® CN9975 53.7 672.9 748.3 112.1 6338.4 2386.3 28.4
Xeon Phi™ 7230 100.2 1862.1 - 49.8 2073.2 921.4 29.0
Xeon™ E5-2680 v3 159.7 7427.1 4586.2 247.5 20832.6 8234.5 82.3
Xeon™ Gold 6140 421.7 14131.7 12931.5 376.5 31749.5 11093.0 171.8
Xeon™ Gold 6240 314.6 10518.3 9915.8 277.4 23118.3 7953.5 127.3
EPYC™ 7702 215.4 14919.5 9234.5 359.5 28404.0 13562.0 115.4

L
(µ

s)

ThunderX2® CN9975 38.15 3.04 2.74 15.65 0.27 0.72 60.58
Xeon Phi™ 7230 20.45 1.10 - 35.23 0.83 1.87 59.48
Xeon™ E5-2680 v3 12.82 0.28 0.45 7.09 0.08 0.21 20.93
Xeon™ Gold 6140 4.86 0.14 0.16 4.66 0.05 0.16 10.03
Xeon™ Gold 6240 6.51 0.19 0.21 6.33 0.07 0.22 13.53
EPYC™ 7702 9.51 0.14 0.22 4.88 0.06 0.13 14.94

Table 4.19 presents the mono-threaded throughput (T) and the latency (L) of the simulated
tasks. The throughput is calculated depending on the number of output samples in the task.
For instance, the throughput of the channel is estimated with N bits while the throughput of
the decoder is computed with K1 bits. The latency is the average latency. The Total column
corresponds to the global throughput and latency. The total latency is the cumulative latencies
of each task while the total throughput is deduced from the total latency and K2 value.

110

4.6. Analysis of the Simulator Performance

In general, the most time consuming tasks are the AWGN channel and the decoder. The
other tasks are mainly negligible thanks to the fast SIMD implementations. The Intel® Gold
6140 CPU has the best throughputs and latencies in general. This is due to the Turbo Boost
that enables the CPU to reach very high frequencies on a single thread but not only. The main
difference with the AMD® CPU comes from the best performance of the Gold 6140 CPU for the
AWGN channel task. Indeed, the Gold 6140 CPU takes advantage of its doubled SIMD length
(AVX-512) compared to the AMD® EPYC CPU (AVX2). The ARM® ThunderX2® CPU comes
with the worst single threaded general performance. The Intel® Xeon Phi™ is also very close to
the ARM® CPU performance. This is not surprising as these processors have not been designed
for the single core performance but for multi-core performance.

4.6.3 Multi-threaded and Multi-node Performances

Figure 4.13a depicts the speedups achieved on the various modern CPU architectures, while
Figure 4.13b exposes the corresponding simulation information throughputs. In Figure 4.13a, the
speedups on each architecture are computed with respect to the single thread simulation time on
the same architecture. Each run assigns at most one AFF3CT thread to each hardware thread.
Since the architectures have different number of hardware threads, the presented speedups do not
all have the same number of measurement points. To reduce the simulation time it is possible to
multiply the number of concurrent communication chains, thanks to the independence property of
Monte Carlo simulations. The simulation scales rather well on the tested architectures. The data
remains in the CPU caches because of the moderate frame size (N = 2048) and SIMD intra-frame
strategy. Scaling on the Xeon™ Gold 6140 is not as good as the other targets, because the Intel®

Turbo Boost technology is enabled. The CPU runs at higher frequencies when the number of active
cores is low. AFF3CT effectively leverages the simultaneous multi-threading (SMT) technology.
This is especially true for the ThunderX2® CN9975 and Xeon™ Gold 6140 targets. The SMT
technology helps to improve the usage of the available instruction-level parallelism.

The best multi-threaded throughput performance is achieved on the AMD® EPYC platform
and its 128 cores. 11 Gb/s are reached on the two AMD® EPYC 7702 CPUs. The best Intel®

target (Xeon™ Gold 6140) can only get half of the AMD® CPU performance. The ARM® target
and the Xeon Phi™ are not competitive in terms of throughput even when all the hardware
threads are assigned. It is possible that these targets are more adapted for SDR usage (like for
the C-RAN) when power consumption matter more. However, for simulation purpose, it is clear
that the AMD® EPYC CPUs are more interesting. Those results also demonstrate the interest
to enable the frequency boost as well as the SMT technology. Indeed, the Xeon™ Gold 6240
CPU should be faster than the Xeon™ Gold 6140 CPU. But, the frequency boost and the SMT
technology have been disabled on this server. It results in worst multi-threaded performance. We
could not try to enable the frequency boost and the SMT techniques on the AMD® CPU but
there is a good chance that it would have increased the throughput even more.

Table 4.20 shows the multi-node scaling with the OpenMPI library (version 3.1.2). The
information throughput (Ti) and the speedup values are almost linear with the number of nodes:
This is expected because there are very few communications between the various MPI processes.
Note that the super-linear scaling is due to the measurement imprecision.

Those aforementioned results demonstrate the high throughput capabilities of the AFF3CT
simulator. For instance, when using 32 MPI nodes on the given (2048,1723) polar code, it takes
about one minute to estimate the Eb/N0 = 4.5 dB SNR point (BER = 4.34e-10, FER = 5.17e-08).

111

4.6. Analysis of the Simulator Performance

1 32 64 96 128 160 192 224 256

1

16

32

48

64

80

96

Number of threads

Sp
ee

du
p

2×ThunderX2 CN9975
1×Xeon Phi 7230

2×Xeon E5-2680 v3
2×Xeon Gold 6140
2×Xeon Gold 6240

2×EPYC 7702

1 32 64 96 128 160 192 224 256

1

16

32

48

64

80

96

Number of threads

Sp
ee

du
p

2×ThunderX2 CN9975
1×Xeon Phi 7230

2×Xeon E5-2680 v3
2×Xeon Gold 6140
2×Xeon Gold 6240

2×EPYC 7702

(a) Simulator speedups.

Single thread
1-way SMT

All threads
1-way SMT

All threads
2-way SMT

All threads
3-way SMT

All threads
4-way SMT

0

1,000

2,000

3,000

4,000

5,000

28

1,
57

3 2,
14

8

2,
44

6

2,
60

4

27

1,
71

6 2,
19

6

2,
20

8

2,
15

9

82

1,
95

0

16
5

3,
53

3

5,
43

6

12
6

4,
29

4

11
3

11
,1

45

In
fo

.
th

ro
ug

hp
ut

(M
b/

s)

2×ThunderX2 CN9975
1×Xeon Phi 7230

2×Xeon E5-2680 v3
2×Xeon Gold 6140
2×Xeon Gold 6240

2×EPYC 7702

(b) Simulator throughputs.

Figure 4.13 – AFF3CT simulation results of a (2048,1723) Polar code, FA-SSCL decoder L = 32,
BPSK modulation, AWGN channel, Eb/N0 = 4.5 dB (BER = 4.34e-10, FER = 5.17e-08).

Table 4.20 – AFF3CT multi-node speedups (single node: 2×Xeon™ E5-2680 v3).

Nodes Cores Ti Speedup
(Mb/s)

1 24 1,950 1.00
2 48 3,901 1.95
4 96 7,793 4.00
8 192 15,829 8.12
16 384 31,640 16.22
32 768 63,075 32.34

112

4.7. Conclusion

4.7 Conclusion

In this chapter we evaluated the implementations of the LDPC decoders, polar decoders and
turbo decoders studied during this thesis. The throughput, the latency and the energy efficiency
have been studied and compared with other works. For the LDPC decoders and the turbo
decoders, the inter-frame strategy has been applied and leads to throughputs comparable with
the state-of-the-art performance. However, the latencies are not competitive with the intra-frame
implementations found in the literature. These implementations are then more oriented for
simulation purpose or for real-time applications that do not require low latency like the video
streaming, for instance. For the polar decoders, both the inter-frame and intra-frame strategies
has been implemented. It results in a complete framework that can adapt to many applicative
contexts. The proposed decoders are ones of the fastest in the literature. There are also able to
be very flexible with the dynamic implementations or specialized for highest possible performance
with the source code generation technique. For all the proposed decoders (LDPC, polar and turbo),
the level of genericity is one of our main contribution. The implementations are able to adapt
to various CPUs architectures as well as to support many algorithmic variants. Moreover, each
of the presented implementations are able to work close to the reference decoding performance.
Most of the obtained results have been published in scientific conferences and journals [2, 3, 4, 5,
6].

The software decoder Hall of Fames (HoFs) are then introduced. These HoFs are exhaustive
surveys of the software decoders found in the literature. The proposed decoders are reported
as well as the other state-of-the-art works. These HoFs enables to compare CPU and GPU
implementations. Some metrics like the normalized throughput, the TNDC and the energy
consumption are defined. The results show that these last years, the CPU implementations are
more efficient than the GPU works in terms of throughput, latency and energy efficiency. One
of the main issue of the GPU-based implementations is the required transfer time between the
CPU and the GPU. An other main issue comes from the intrinsic architecture of the GPU that
requires a lot of parallelism to be efficient. This is not always possible to take advantage of this
high level of parallelism in the channel decoding algorithms. As a consequence, in general, the
CPUs are more adapted to low latency implementations than the GPUs.

The last section of this chapter focuses on the AFF3CT simulator performance. A fully
vectorized digital communication chain is proposed for the evaluation. First the mono-threaded
performances are reported. As a result, AFF3CT runs fast on the last Intel® Gold CPUs that
support the AVX-512 SIMD engine. Then the multi-threaded performances are benched and the
AMD® EPYC CPUs comes with the best throughout performance, up to 11 Gb/s. Even if the
AMD® EPYC CPUs only supports the AVX instructions, it looks like the Zen 2 architecture is
well balanced between computational power and memory speed. Finally, the multi-node capacity
of the AFF3CT simulator is tested and a linear speedup is observed over 32 nodes. The peak
throughput performance in multi-node is 32 Gb/s. These high throughputs enable the exploration
of many combinations at very low error-rate level. Preliminary results have been published in a
scientific journal [1]. To the best of our knowledge, AFF3CT is one of the current fastest FEC
simulator.

The next chapter presents a new extension of the AFF3CT library to improve the SDR
support. An embedded domain specific language is proposed to ease the usage of multi-core
CPUs in real-time contexts.

113

5 Embedded Domain Specific Language
for the Software-defined Radio

This chapter presents a new embedded Domain Specific Language (eDSL) dedicated to the
Software-Defined Radio (SDR). The first section discusses the existing models and solutions. It
also motivates the need of a new dedicated language for the SDR. In a second part a description
of the proposed eDSL is given and detailed in two sub-sections: the elementary components
are presented first and then the parallel components are described. The third part is focusing
on the implementations of the previously presented components. Among others, the sequence
duplication technique and the pipeline implementation are discussed. Finally, the last part shows
a concrete use case of the proposed eDSL on the well-spread DVB-S2 standard. A fully digital
transceiver has been designed in software. The DVB-S2 standard is presented from an applicative
point of view (transmitter and receiver) and is then evaluated on a specific CPU target.

5.1 Related Works . 115
5.1.1 Dataflow Model . 115
5.1.2 Dedicated Languages . 115
5.1.3 GNU Radio . 116

5.2 Description of the Proposed Embedded Domain Specific Language 116
5.2.1 Elementary Components . 116
5.2.2 Parallel Components . 119

5.3 Implementation Strategies . 120
5.3.1 Implicit Rules . 120
5.3.2 Sequence Duplication . 120
5.3.3 Processes . 120
5.3.4 Pipeline . 121

5.4 Application on the DVB-S2 Standard 124
5.4.1 Transmitter Software Implementation 124
5.4.2 Receiver Software Implementation . 125
5.4.3 Evaluation . 127
5.4.4 Related Works . 131

5.5 Conclusion . 131

114

5.1. Related Works

5.1 Related Works

Digital communication systems are traditionally implemented onto dedicated hardware (ASIC)
targeting high throughputs, low latencies and energy efficiency. However, the implementations of
such solutions suffer from a long time to market, are expensive and are specific by nature [Pal+10,
Pal+12].

The new standards like the 5G are coming with very large specifications and multiple possible
configurations [ETS18]. Small objects that need to communicate very few data at low rates are
going to live together with 4K video streaming for mobile phone games which will require high
throughputs as well as low latencies [Ros+14].

To meet those various specifications the transceivers have to be able to adapt quickly to new
configurations. There is a growing need for flexible, re-configurable and programmable solutions.
To match those constraints, there is a growing interest for the SDR which consists in processing
both the Physical (PHY) and Medium Access Control (MAC) layers in software [Mit93], as
opposed to the traditionally hardware-based solutions. Short time to market, lower development
costs, interoperability, readiness to adapt to future updates and new protocols are the mains
advantages of the SDR [AD18].

The SDR can be implemented on various targets like Field Programmable Gate Arrays (FP-
GAs) [CC04, SBW06, Dut+10, SA13, MBB15, NRV16], Digital Signal Processors (DSPs) [KR08,
Kar+13, SA13] or General Purpose Processors (GPPs) [YC12, Ban+14, MK19, GU20]. Many
elementary blocks of digital communication systems have been optimized to run fast on Intel®

and ARM® CPUs [4, 6, 5, 7, 3, 2] and have been packaged in AFF3CT [8, 1]. Even if there
is some interesting results in term of throughput on GPUs [Xia+13, Li+14, LJC14, Gia+16,
KK17a], the achieved latency on this architecture is still too high to meet real time constraints
and cannot compete with existing CPU implementations [LLJ15, 4, Gia+16, 6, LJ17, 3, LJ19].
This is mainly due to data transfers between the host (CPUs) and the device (GPUs), and to the
intrinsic nature of the GPU architecture which is not optimized for latency efficiency.

5.1.1 Dataflow Model

The Shanon’s communication model presented in Section 1.1 can be refined in a way that
the transmitter and the receiver are decomposed into many processing blocks. Those blocks
are mainly connected to each other in a directed graph. This perfectly matches the dataflow
model [Den80, Ack82]: the blocks are the filters and the binding links between the blocks represent
the data exchanges. The dataflow model enables to describe the system from a high level point of
view and to perform optimizations independently of the system designer. In the case of the SDR,
simpler models than the generalized dataflow can be used like the synchronous dataflow [LM87]
or the cyclo-static dataflow [Eng+94, Bil+95]. It enables to perform aggressive simplifications
like a static scheduling of the filters execution [PPL95].

5.1.2 Dedicated Languages

Many languages dedicated to streaming applications have been introduced [Buc+04, Ama+05,
Lia+06, BD10, GDB10, TA10, DLB17]. Streaming applications are most of the time represented
with the dataflow model and the dedicated languages often support the general or the cyclo-static
dataflow model. They also very often come with automatic parallelism mechanisms like pipelining

115

5.2. Description of the Proposed Embedded Domain Specific Language

and forks/joins. With dedicated languages, it is natural to describe a system with the dataflow
model. The main drawbacks of this type of solution is that the designer has to learn a new
language. But, when something is not intended by the language it is hard to find a workaround.

5.1.3 GNU Radio

There are few solutions targeting specifically the SDR sub-domain yet. The most famous
is GNU Radio [Ron+06] which is open source and largely adopted by the community. The
software is bundled with a large variety of algorithms used in real life systems. GNU Radio
models digital communication systems at the symbol level. This philosophy is very close to the
algorithms descriptions that can be found in the signal community literature. Thus, it enables
quick implementation of new digital processing algorithms. Still, this is a limitation to meet high
throughputs and low latencies constraints on current GPPs architectures.

5.2 Description of the Proposed Embedded Domain Specific Lan-
guage

This section details, through AFF3CT, our proposition of an embedded Domain Specific
Language (eDSL) working on sets of symbols (aka frames). AFF3CT implements a form of
the synchronous dataflow (SDF) model dedicated to the relevant characteristics of FEC digital
communication chains. It performs more aggressive optimizations than GNU Radio, at the cost
of lower generality.

Many C++ eDSLs are based on the template meta-programming technique. It performs
computations at the compilation time instead of during the program execution. In AFF3CT
we decided to not use the C++ template meta-programming for the eDSL. This choice has been
made to match the existing internal organization of the project and more precisely the modules,
tasks and sockets components. It was also comforted by one of the main draw back of the
template-based eDSLs: the errors management and reporting. A non-negligible part on the
proposed eDSL is dedicated to error verifications and clear messages display. Of course the static
scheduling implied by the synchronous dataflow model could theoretically be resolved at the
compilation time. Instead of that, the scheduling of the tasks is precomputed at the runtime and
the execution order is stored in an array of function pointers (std::function). The cost of the
execution of the tasks is very cheap (consecutive function calls). It means that the overhead is
negligible compared to a template-based solution.

5.2.1 Elementary Components

The proposed eDSL comes with a set of elementary components: sequence, module, task
and socket. The module, task and socket components have been reused and enriched from the
AFF3CT library (see Section 3.3.2).

In the eDSL the task is the fundamental component. It is also known as the filter in the
standard dataflow model. A task is an elementary component, it can be an encoder, a decoder or
a modulator processing for instance. A task, unlike a dataflow filter, can have an internal state
and a private memory to store temporary data. If the lifetime of the private data exceeds the
task execution then the data is owned by the module. Additionally a set of tasks can share the

116

5.2. Description of the Proposed Embedded Domain Specific Language

same internal/private memory, in that case, multiple tasks are regrouped in a single module. This
behavior is not recommended by the standard dataflow model. It should be avoided in a fully
dataflow-compliant model. The main problem with internal memory is that the tasks cannot be
executed safely by many threads in parallel because of data races. However, in many situations
the writing of a task or a set of tasks can be simplified by relieving this constraint. Furthermore,
storing private data in the module can be, in some cases, a way to avoid to allocate memory for
each task execution which is expensive.

A task can consume and produce public data. To this purpose, each task exposes input and/or
output sockets. The action of connecting the sockets of different tasks is called the binding (see
Figure 3.1). The binding determines the tasks execution order.

Tasks that have been bound together can be regrouped in what we call a sequence of tasks.
The sequence notion reminds us that the tasks are executed sequentially in a fixed order (like in
the SDF model). To create a sequence, the designer has to give the first tasks and the last tasks
to execute. Then the connected tasks will be analyzed and a sequence object will be built. The
analysis is a deep traversal of the tasks graph. The order in which the tasks have been traversed
is memorized in the sequence. When the designer calls the exec method on a sequence, the tasks
constituting it are executed one by one in the memorized order (static scheduling).

The proposed eDSL is targeting streaming applications and more precisely signal processing
and digital communication chains. In this type of applications, the processing is repeated
indefinitely on batches of frames when the system is on. So, a sequence is executed in loop, it
means that when the last task is executed, the next task is the first one on the next frame. The
designer can control if the sequence should restart by giving a condition function when calling
the exec method on the sequence. The prototype of the function is bool cond_func(void): if
the function returns false, the sequence is repeated, the sequence is stopped otherwise.

t1 t2 t3 t4

Sequence

Task

Output socket

Input socket

(a) Simple chain sequence.

t1

t2

t3

t4

t5

t6

Sequence

(b) Sequence with multiple first and last tasks.

Figure 5.1 – Example of sequences.

Figure 5.3 shows two examples of sequence. Figure 5.1a is a simple chain of tasks. The
designer only needs to specify the first task of the chain (t1). The sequence analysis automatically
follows the binding until the last task (t4). Figure 5.1b is more complicated. Indeed there are
bound tasks before and after the wanted sequence. There are also two first tasks (t1 and t3) and
two last tasks (t5 and t6). In this case, the designer needs to explicitly specify that t1 and t3
are first tasks. If t1 is given before t3 then t1 will be executed first and t3 after. The analysis
starts from t1 and continue to traverse new tasks if possible. In this example, t2 can be executed
directly after t1 but t4 cannot because it depends on t3. So the analysis stops after t2 and then
restarts from t3. The index i of the ti task represents the execution order. The t5 and t6 last
tasks have to be given by the designer because there are other tasks bound to their output sockets:
the analysis cannot guess the end of the sequence alone.

117

5.2. Description of the Proposed Embedded Domain Specific Language

In general, all the tasks of a sequence are repeated in the same predefined order. But it
some particular cases, a task can raise the tools::processing_aborted exception to restart the
sequence (on the next frame) before its end. For instance, in Figure 5.1a if the t3 task raises the
tools::processing_aborted exception, then the next executed task is t1 instead of t4.

Some digital communication scenarios include repeated schemes. To map a repeated scheme,
we introduced a specific type of task: the loop. This task is executed one or more times depending
on a condition. A loop is bound to two sub-sequences of tasks. The first one is executed and
repeated while the condition is false and the second one is taken when the condition is true.

Loop

Condition
Evaluation

1

2

1

2

3

4

false

truet1 t2

t3 t4 t5

t6 t7Sub-sequence 1

Sub-sequence 2

Sub-sequence 3

Figure 5.2 – Example of a sequence of tasks with a loop.

Figure 5.2 illustrates a sequence of tasks with a loop. In this particular case, the loop condition
is based on an input socket. So the condition evaluation is dynamic and depends on the runtime
values of this input socket. In a first place, the sub-sequence 1 is executed; then the loop condition
is evaluated; if the condition return false the sub-sequence 2 is executed and the loop condition
is re-evaluated until it returns true. At this point the sub-sequence 3 is executed. After the
execution on the sub-sequence 1, the convention in the loop is to use the input sockets 1 and
3. The input socket 1 is only applied for the condition evaluation whereas the input socket 3
is simply forwarded to the output socket 1 and 2. If the sub-sequence 2 is executed, the input
sockets 2 and 4 will be used until the end of the loop.

In the example the loop uses an input socket to evaluate the condition. This is common in
iterative demodulation/decoding schemes when the overall system can have an early termination
criterion like a CRC detection. Of course, it is also possible to override the loop behavior by
inheriting from it. The condition evaluation process can be modified by the designer. The loop
can be a predicate: in this case, the condition evaluation does not require any input socket. The
predicate can be a counter. Each time the condition is evaluated, the counter is incremented.
When the counter reaches a given value then the condition evaluation returns true (for-loop
behavior).

SS1 L1

SS2 L2

SS3

SS4

SS5

fals
e

true

fals
e

true

Figure 5.3 – Nested loops.

118

5.2. Description of the Proposed Embedded Domain Specific Language

The overall system also supports nested loops. The idea is to regroup the tasks in sub-
sequences: one before the loop and two after the loop. This is implemented as a binary tree. Each
time a loop is encountered, two new paths are created. Figure 5.3 shows an example with two
loops (L1 and L2). Five sub-sequences of tasks are created (SSx): one before L1 (SS1), two after
L1 (SS2 and SS5) and two after L2 (SS3 and SS4). In this example L2 is a nested loop. Indeed, it
is an inner loop within the body of an outer one (L1).

5.2.2 Parallel Components

t11 t12 t13 t14

t21 t22 t23 t24

tt1 tt2 tt3 tt4

Sequence

thread

Figure 5.4 – Sequence duplication for multi-threaded execution.

A created sequence can be duplicated. This way many threads can execute the sequence in
parallel. The t number of duplications (= number of threads) is a parameter of its constructor.
As shown in Figure 5.4, one thread is affected to one duplicated chain. Thus, a sequence is
able to take advantage of the multi-core architectures. For instance, the AFF3CT simulator,
extensively exploits the sequence duplication feature to automatically parallelize the processing.
The duplication strategy is efficient since no synchronization is necessary between the threads.
Each threaded sequence can be executed on one dedicated core and the public data transfers
remain on this core for the data reuse in the caches. However this parallelism is only possible if
the tasks themselves can be duplicated.

In some particular cases like in the signal synchronization processing, the tasks can have
a dependency on themselves. It is then impossible to duplicate the sequence because of the
sequential nature of the tasks. To overcome this issue the well-known pipelining strategy can be
applied to increase the sequence throughput up to the slowest task throughput. The proposed
eDSL comes with a specific pipeline component to this purpose. The pipeline takes multiple
sequences as input. Each sequence of the pipeline is called a stage. A pipeline stage is run on
one thread. For instance, a 4-stage pipeline creates 4 threads, one thread per stage. A pipeline
stage can be combined with the sequence duplication strategy. It means that there are nested
threads in the current stage thread. Be aware that the pipelining strategy comes with an extra
synchronization cost between the stage threads. The implementation details will be discussed in
the next section. It worth mentioning that is not possible to split a loop in separated pipeline
stages.

119

5.3. Implementation Strategies

5.3 Implementation Strategies

5.3.1 Implicit Rules

In the proposed eDSL, an input socket can only be bound to one output socket while an
output socket can be bound to multiple input sockets. A task can only be executed if all its input
sockets are bound. In a sequence, the scheduling of the tasks is defined by the binding order.
The general rule in the sequence analysis is to add a task to the array of function pointers when
its last input socket is discovered in the deep first traversal of the tasks graph. After that, the
output sockets of the current task are followed to reach new tasks. The new tasks are discovered
in the order in which they were bound by the designer.

5.3.2 Sequence Duplication

In order to duplicate sequences, a clone method is implemented in the modules. The clone
method is polymorphic and defined in the Module abstract class. It relies on the implicit copy
constructors and a deep copy protected method (overridable). The clone method prototype is
module::Module* clone() const. In an implementation (ModuleImpl) of the abstract Module
class, a covariant return type is used: module::ModuleImpl* clone() const. The clone method
implementation first calls the implicit copy constructor of the ModuleImpl class and secondly
calls the deep copy protected method. It is the responsibility of the ModuleImpl developer to
correctly override the deep copy method.

In a fully dataflow-compliant model, there is no need to duplicate the sequence because a filter
(or task) is always thread-safe. In the proposed eDSL, we had to introduce the clone method
because a task can have an internal state and use private memory (stored in the module). It means
that this task is not thread-safe. The deep copy method deals with pointer and reference members.
If the pointer/reference members are read-only (const), then the implicit copy constructor copies
the memory addresses automatically. The problem comes when there is writable pointer/reference
members. If the current ModuleImpl class possesses one ore more writable references then it
means that the module can’t be cloned. The tasks of the module are sequential. In the particular
case of a writable pointer member, the developer can explicitly allocate a new pointer in the deep
copy method. Note that if a task does not implement the clone method, the eDSL outputs an
error message during the sequence analysis if the designer tries to make a duplication.

5.3.3 Processes

A sequence encapsulates a set of tasks and gives the opportunity to execute these tasks in
a predefined order. The designer can also execute tasks explicitly, outside sequences. With a
sequence, the analysis is able to match specific patterns (known configurations of bound tasks)
and replace them by a more efficient source code. To this purpose the notion of process has been
introduced: in a sequence each task is encapsulated in a process (this has nothing to do with
OS processes). For the majority of the tasks, the process just executes the task. But for some
specific patterns, the task execution source code is replaced by a more efficient one. The pattern
detection is based on a C++ introspection feature: during the analysis, for each parsed task, we
try to cast (dynamic_cast) the corresponding module in a specific class. In the next section, the
processes are applied to improve the efficiency of the pipeline.

120

5.3. Implementation Strategies

5.3.4 Pipeline

t1 t2 t3 t4 t5 t6

Stage 1 Stage 2 Stage 3

Pipeline

(a) Description of a pipeline: tasks creation, tasks binding and sequences/stages definition
(with the corresponding number of threads).

t1
push

1

pull
n

t2 t3 t4
push
n

pull
n ′ t ′2 t ′3 t ′4

push
n ′

pull
n ′′ t ′′2 t ′′3 t ′′4

push
n ′′

pull
n ′′′ t ′′′2 t ′′′3 t ′′′4

push
n ′′′

pull
1

t5 t6

Stage 1

Stage 2

Stage 3

1 to n adaptor n to 1 adaptor

Pipeline

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

Stage 1 Stage 2 Stage 3

Pipeline threads pinning on a multi-core CPU

(b) Automatic parallelization of a pipeline description: sequence duplications, 1 to n and n to 1 adaptors creation
and binding.

Figure 5.5 – Example of a pipeline description and the associate transformation with adaptors.

In this section, the pipeline implementation is illustrated through a simple example. Figure 5.5
shows the difference between a pipeline description (see Figure 5.5a) and its actual instantiation
(see Figure 5.5b). In Figure 5.5 we suppose that the t1, t5 and t6 tasks cannot be duplicated
(filled in blue). The designer knows that the execution time of the t1 task is higher than the
cumulate execution time of t5 and t6 tasks. We assume that the cumulate execution time of t2,
t3 and t4 is approximatively four times higher than t1. This knowledge motivates the splitting of
the stages 1, 2 and 3. There is no need to split the t5 and t6 tasks in two stages because the
overall throughput is limited by the slowest stage (t1 here). The stage 2 is duplicated four times
to increase its throughput by four as we know that its latency is approximatively four times the
sequence 1. In general, a primarily profiling phase of the sequential code is required to define the
pipeline strategy. Listing 5.1 presents the C++ eDSL source code corresponding to the pipeline
description in Figure 5.5a. Each ti task is contained (as a method) in the Mi module (or class).

121

5.3. Implementation Strategies

1 #include <aff3ct.hpp>
2 using namespace aff3ct;
3

4 int main()
5 {
6 // 1) creation of the module objects
7 module::M1 m1_obj(/* ... */); // 'M1' class contains 't1' task
8 module::M2 m2_obj(/* ... */); // 'M2' class contains 't2' task
9 module::M3 m3_obj(/* ... */); // 'M3' class contains 't3' task

10 module::M4 m4_obj(/* ... */); // 'M4' class contains 't4' task
11 module::M5 m5_obj(/* ... */); // 'M5' class contains 't5' task
12 module::M6 m6_obj(/* ... */); // 'M6' class contains 't6' task
13

14 // 2) binding of the tasks
15 m2_obj[module::m2::sck::t2::in].bind(m1_obj[module::m1::sck::t1::out]);
16 m3_obj[module::m3::sck::t3::in].bind(m2_obj[module::m2::sck::t2::out]);
17 m4_obj[module::m4::sck::t4::in].bind(m3_obj[module::m3::sck::t3::out]);
18 m5_obj[module::m5::sck::t5::in].bind(m4_obj[module::m4::sck::t4::out]);
19 m6_obj[module::m6::sck::t6::in].bind(m5_obj[module::m5::sck::t5::out]);
20

21 // 3) creation of the pipeline (= sequences and pipeline analyses)
22 tools::Pipeline pipeline(
23 // first task of the sequence (for validation purpose)
24 m1_obj[module::m1::tsk::t1],
25 // description of the sequence decomposition in stages
26 { // pipeline stage 1
27 { { m1_obj[module::m1::tsk::t1] }, // first task of stage 1
28 { m1_obj[module::m1::tsk::t1] } }, // last task of stage 1
29 // pipeline stage 2
30 { { m2_obj[module::m2::tsk::t2] }, // first task of stage 2
31 { m4_obj[module::m4::tsk::t4] } }, // last task of stage 2
32 // pipeline stage 3
33 { { m5_obj[module::m5::tsk::t5] }, // first task of stage 3
34 { m6_obj[module::m6::tsk::t6] } }, // last task of stage 3
35 },
36 // number of threads per stage (4 sequence duplications in stage 2)
37 { 1, 4, 1 }, /* ... */
38 // explicit pinning of the threads
39 {
40 { 1 }, // pin thread '1' of stage 1 to core '1'
41 { 3, 4, 5, 6 }, // pin threads '1,2,3,4' of stage 2 to cores '3,4,5,6'
42 { 8 }, // pin thread '1' of stage 3 to core '8'
43 });
44

45 // 4) execution of the pipeline, it is indefinitely executed in loop
46 pipeline.exec([]() { return false; });
47

48 return 0;
49 }

Listing 5.1 – AFF3CT C++ eDSL source code of the pipeline described in Figure 5.5.

122

5.3. Implementation Strategies

The four main steps are: 1) the creation of the modules; 2) the binding of the tasks; 3) the
creation of the pipeline; 4) the pipeline execution.

Figure 5.5b presents the internal structure of the pipeline. As we can see, new tasks have been
automatically added: push 1, pull n shared by a 1 to n adaptor module and push n, pull 1 shared
by a n to 1 adaptor module. The binding as been modified to insert the tasks of the adaptors.
For instance, in the initial pipeline description, t1 is bound to t2. In a parallel pipelined execution
this is not possible anymore because many threads are running concurrently: one for t1, four for
t2 and one for t3 in the example. To this purpose, the adaptors implement a producer-consumer
algorithm. The yellow diamonds represent the buffers of the producer-consumer algorithm. The
push 1 and pull 1 tasks can only be executed by a unique thread while the pull n and push n
tasks support to be executed by multiple threads concurrently. The push 1 task copies its input
socket in one buffer each time it is called. There is one buffer per duplicated sequence (or thread).
To guarantee that the order of the input frames is conserved, a round-robin scheduling has been
adopted (at the first call, a copy to the first buffer is performed, at the second call, a copy to the
second buffer is performed and so on). On the other side, the pull 1 task is copying the data
from the buffers to its output socket, with the same round-robin scheduling.

During the pipeline creation, it is possible to select the size of the synchronization buffers in
the adaptors. The default buffer size is one (the buffers can only contain the data of one push 1
input sockets). During the copy of the input sockets data in one of the buffers, the corresponding
thread cannot access the data until the copy is finished. The synchronization is automatically
managed by the framework. If the buffer is full, the producer (push 1 and n tasks) has to wait.
It is similar for the consumer (pull 1 and n tasks) if the buffer is empty. We implemented both
active and passing waiting.

In the previously described implementation, the copies from and to the buffers can take a
non-negligible amount of time. Thus, the process encapsulation detailed before replaces the copies
by pointer switches. The idea is to dynamically re-bind the tasks just before and just after the
push and pull tasks. It is also necessary to bypass the regular execution in the push 1, pull n, push
n and pull 1 tasks. The processes that encapsulate these tasks dynamically replace the source
code of the data buffer copy by a simple pointer copy. The pointers are exchanged cyclically.

In Figure 5.5b, the pipeline threads are pinned to specific CPU cores. This is the direct
consequence of the lines 38-43 in Listing 5.1. The hwloc library [Bro+10] has been used and
integrated in AFF3CT to pin the software threads to processing units (PUs or hardware threads).
In the given example, we assume that the CPU cores can only execute one hardware thread (SMT
off) and so an hwloc PU is equal to a CPU core. The threads pinning is given by the designer. It
can improve the multi-threading performance when dealing with NUMA architectures.

Figure 5.5 is an example of a simple chain of tasks. More complicated task graphs can have
more than two tasks to synchronize between two pipeline stages. The adaptor implementation
can manage multiple sockets synchronization. The key idea is to deal with a 2-dimensional array
of buffers. Another difficult case is when a task t1 is in stage 1 and possesses an output socket
bound to an other task tx which is located in the stage 4. To work, the pipeline adaptors between
the stages 1 and 2 and the stages 2 and 3 automatically synchronize the data of the t1 output
socket.

123

5.4. Application on the DVB-S2 Standard

5.4 Application on the DVB-S2 Standard

The second generation of Digital Video Broadcasting standard for Satellite (DVB-S2) [ETS05]
is a flexible standard designed for broadcast applications. DVB-S2 is typically used for the
digital television (HDTV with H.264 source coding). In this section, a concrete use case of the
AFF3CT eDSL is detailed. The full DVB-S2 transmitter and receiver are implemented in a
SDR-compliant system. Two Universal Software Radio Peripherals (USRPs) N320 1 have been
used for the analog signal transmission and reception where all the digital processing of the system
have been implemented under AFF3CT. The purpose of this section is not to detail precisely all
the implemented tasks but to expose the system as a whole. Some specific focuses are given to
describe the main encountered problems and the adopted solutions.

5.4.1 Transmitter Software Implementation

generate
(tTx

1)
scramble
(tTx

2)
encode
(tTx

3)
encode
(tTx

4)
interleave
(tTx

5)

modulate
(tTx

6)
insert
(tTx

7)
scramble
(tTx

8)
filter
(tTx

9)
send
(tTx

10)

Source Binary File Scrambler Binary Encoder BCH Encoder LDPC Interleaver

Modem PSK Framer PLH Scrambler Symbol Filter Shaping Radio

USRP

Stage 1

Stage 2 Stage 3

Figure 5.6 – DVB-S2 transmitter software implementation.

Figure 5.6 shows the DVB-S2 transmitter decomposition in tasks. The tasks filled in blue are
intrinsically sequential and cannot be duplicated. The initial information bits are read from a
binary file (tTx1). Then, the DVB-S2 coding scheme rests upon the serial concatenation of a BCH
(tTx3) and an LDPC code (tTx4). The selected modulation (tTx6) is a Phase-Shift Keying (PSK).
The scrambler tasks (tTx2 and tTx8) apply predefined repeated sequences of xor to the frame in
order to avoid too long sequences of the same bit or symbol in the frames sent by the radio
(tTx10). Depending on the DVB-S2 configuration (MODCOD), the frame can be interleaved (tTx5)
after the encoding process. If there is no interleaver, then the frame is just copied. After the
modulation, Pay Load Header (PLH) and pilots are inserted (tTx7). These extra data are used
by the synchronization tasks in the receiver side. Before the radio transmission (tTx10), the signal
bandwidth is rescaled by a shaping filter (tTx9).

Table 5.1 – Selected DVB-S2 configurations (MODCOD).

Config. Modulation Rate R KBCH KLDPC NLDPC NPLH Interleaver
MODCOD 1 QPSK 3/5 9552 9720 16200 16740 no
MODCOD 2 QPSK 8/9 14232 14400 16200 16740 no
MODCOD 3 8-PSK 8/9 14232 14400 16200 16740 column/row

The DVB-S2 defines 32 different configurations or MODCODs. This work focuses on the
3 MODCODs given in Table. 5.1. Depending on the MODCOD, the PSK modulation and the
LDPC code rate R vary. In the MODCOD 1 and 2 there is no interleaver and the MODCOD 3
uses a column/row interleaver. KBCH or K is the number of information bits and the input size of
the BCH encoder. NBCH or KLDPC is the output size of the BCH encoder and the input size of

1. USRP N320: https://www.ettus.com/all-products/usrp-n320/.

124

https://www.ettus.com/all-products/usrp-n320/

5.4. Application on the DVB-S2 Standard

the LDPC encoder. NLDPC is the output size of the LDPC encoder. NPLH or N is the frame size
containing NLDPC bits plus the PLH and pilots bits.

The DVB-S2 transmitter software implementation has been split into 3 pipeline stages, the
stages 1 and 3 are sequential and the stage 2 is parallel. The transmitter is not the most resources
consuming part. An Intel® Core™ i7 CPU with 4 cores (SMT was switched on) has been used.
One core has been assigned for the radio thread (stage 3), one hardware thread for the source
(stage 1) and the five remaining hardware threads have been dedicated to the stage 2.

5.4.2 Receiver Software Implementation

receive
(tRx

1)
imultiply
(tRx

2)

synchronize (tRx
3,4,5)

filtersynchronize synchronize
extract
(tRx

6)
imultiply
(tRx

7)
synchronize

(tRx
8)

USRP

Radio Multiplier AGC

Synchronizer
Pilot Feedback

Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer Timing
(Gardner) Multiplier AGC

Synchronizer
Frame

(a) Waiting phase and learning phase 1 & 2.

receive
(tRx

1)
imultiply
(tRx

2)
synchronize

(tRx
3)

filter
(tRx

4)

synchronize
(tRx

5)
extract
(tRx

6)
imultiply
(tRx

7)
synchronize

(tRx
8)

descramble
(tRx

9)
synchronize

(tRx
10)

synchronize
(tRx

11)
remove
(tRx

12)
estimate
(tRx

13)

demodulate
(tRx

14)
deinterleave

(tRx
15)

decode SIHO
(tRx

16)
decode HIHO

(tRx
17)

descramble
(tRx

18)
send
(tRx

19)

USRP

Stage 1 Stage 2

Stage 3 Stage 4

Stage 5 Stage 6

Stage 7 Stage 8

Radio Multiplier AGC
Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer Timing
(Gardner) Multiplier AGC

Synchronizer
Frame

Scrambler Symbol
Synchronizer

Freq. Fine L&R
Synchronizer

Freq. Fine P/F Framer PLH Noise Estimator

Modem PSK Interleaver Decoder LDPC Decoder BCH Scrambler Binary Sink Binary File

End of the learning phase 3

(b) Learning phase 3 & transmission phase.

Figure 5.7 – DVB-S2 receiver software implementation.

125

5.4. Application on the DVB-S2 Standard

Figure 5.7 presents the task decomposition of the DVB-S2 receiver software implementation
with the five distinct phases. The first one is called the waiting phase (see Figure 5.7a). It consists
in waiting until a transmitter starts to transmit. The Synchronizer Frame task (tRx8) possesses a
frame detection criterion. When a signal is detected, the learning phase 1 (see Figure 5.7a) is
executed during 150 frames. After that the learning phase 2 (see Figure 5.7a) is also executed
during 150 frames. After the learning phase 1 and 2, the tasks have to be re-bound for the
learning phase 3 (see Figure 5.7b). This last learning phase is applied over 200 frames. After 500
frames for all the learning phases, the final transmission phase is established (see Fig 5.7b).

In a real life communication systems, the internal clocks of the radios can diverge slightly. A
specific processing has to be added in order to be resilient. This is achieved by the Synchronizer
Timing tasks (tRx5 and tRx6). Similarly, the radio transmitter frequency is not exactly the same as
the receiver frequency, the Synchronizer Frequency tasks (tRx3 , tRx10 and tRx11) recalibrate the signal
to recover the transmitted symbols. Finally the LDPC is a block coding scheme that requires
to know precisely the first and last bits of the codeword. The Synchronizer Frame task (tRxt8)
uses the Pay Load Headers (PLH) and pilots bits inserted by the transmitter Framer PLH task
(tTx8) to recover the first and last symbols. One can notice that the Synchronizer Timing module
is composed by two separated tasks (synchronize or tRx5 and extract or tRx6). This behavior is
different from the other Synchronizer modules. The synchronize task (tRx5 or tRx3,4,5) has two
output sockets, one for the regular data and another one for a mask. The regular data and the
mask are then used by the extract task (tRx5) to filter which data that is selected or not for the
next task. This specific implementation has been retained for two reasons: 1) the Synchronizer
Timing tasks (tRx5 and tRx6) have a high latency compared to the others tasks and splitting the
treatment in two tasks is a way to increase the throughput of the pipeline (this will be discussed
more precisely after) and 2) the extract task (tRx6) introduces a new possible behavior: in some
case the task does not have enough samples to produce a frame. In this particular case, the
extract task raises the tools::processing_aborted exception. The exception is caught and the
sequence restarts from the first task (tRx1). This implies to manage a buffer of samples in the
extract task (tRx6). If the buffer contains more than one frame then the next task (tRx7) can be
executed, else the sequence has to be restarted.

During the waiting and learning phases 1 and 2, the Synchronizer Freq. Coarse, the Filter
Matched and a part of the Synchronizer Timing have to work symbol by symbol. They have been
grouped in the Synchronizer Pilot Feedback task (tRx3,4,5). t

Rx
3,4,5 also requires a feedback input

from the Synchronizer Frame task (tRx8). This behavior is no longer required in the next phases
and so the tRx3,4,5 task has been split in tRx3 , tRx4 and tRx5 . Moreover, the feedback from the tRx8
second output socket is left unbound.

Figure 5.8 contains the BER and FER decoding performance of the 3 selected MODCODs.
The forms represent the channel conditions: the squares stand for a standard simulated AWGN
channel, the triangles are also a simulated AWGN channel in which frequency shift, phase shift
and symbol delay have been taken into account and the circles are the real conditions measured
performances with the USRPs. One can notice a 0.2 dB inaccuracy in the noise estimated by
the tRx13 task. It is symbolized by the extra horizontal bars over the circles. The MODCOD 1 is
represented by dashed lines; the MODCOD 2 is represented by dotted lines; the MODCOD 3
is represented by solid lines. For each MODCOD, the LDPC decoder is based on the belief
propagation algorithm with horizontal layered scheduling (10 iterations) and with the min-sum
node update rules. Each DVB-S2 configuration has a well-separated SNR predilection zone.

126

5.4. Application on the DVB-S2 Standard

1 2 3 4 5 6 7 8 9
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

1 2 3 4 5 6 7 8 9

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

F
E

R

QPSK QPSK 8-PSK

R = 3/5 R = 8/9 R = 8/9

AWGN
AWGN+

Real

Figure 5.8 – DVB-S2 BER/FER decoding performance (LDPC BP h-layered, min-sum, 10 ite.).

5.4.3 Evaluation

This section evaluates the receiver part of the system. We did not bench the transmitter
part as it is not the most compute intensive part and high throughputs are much more easier to
reach. All the presented results have been obtained by running the code on a high-end machine
composed by two Intel® Xeon™ Platinum 8168 CPUs and 128 GB of RAM. The frequency of
the CPUs is 2.70 GHz and the Turbo Boost mode has been disabled for the reproducibility of
the results. Each CPU is composed by 24 cores. They support the SMT technology but we
disabled it in our tests to get the lowest possible tasks latency per core. 48 cores (or hardware
threads) are available for the DVB-S2 receiver. All input and output data are represented by
32-bit floating-point or integer numbers. Knowing that the Platinum 8168 CPU supports the
AVX-512 ISA. Sixteen 32-bit elements can be processed in one SIMD instruction. Most of the
receiver tasks have been accelerated with MIPP SIMD functions. By this way, MIPP has even
been enriched with new functions to improve the complex numbers support.

Knowing that the LDPC decoding is one of the most compute intensive task of the receiver,
we decided to use the efficient inter-frame SIMD implementation presented before in the document
(the early termination criterion has been switched on). This choice has the effect of computing
sixteen frames at once in each task of the receiver. As discussed before, it negatively affects
the overall latency of the system (by a factor of sixteen). But it is not important in the video
streaming targeted application. The Decoder LDPC task (tRx16) is the only one in the receiver
to take advantage of the inter-frame SIMD technique. The other tasks simply process sixteen
frames sequentially.

Table 5.2 presents the tasks throughputs and latencies measured for a sequential execution
of the MODCOD 2 in the transmission phase. The tasks have been regrouped per stage in
order to introduce the future decomposition when the parallelism is applied. The throughput
is given in mega samples per second (MS/s). Indeed, some of the tasks are not working on
bits but on samples and a bit is the smallest possible sample. The average (Avg), minimum
(Min.) and maximum (Max.) throughputs are calculated with the number of output samples.
Depending on the task, the number of output samples can drastically vary. Consequently, it is

127

5.4. Application on the DVB-S2 Standard

not possible to directly compare the task throughputs with each others. This is the normalized
average throughput (NAvg) has been introduced. It is the average throughput considering the K
information bits independently of the task output socket size. In a first observation, one may
notice that the latencies of the tasks are very high compared to the ones presented in the simulator
evaluation (see Section 4.6). This is mainly due to the very large frame size N = 16740 and to the
inter-frame level. Indeed, each task processes approximatively 16740× 16 samples when in the
simulator evaluation each task processes approximatively 2048 bits (there is a factor of ≈ 130).
The applicative context is very different and it is directly observable from the resulting latencies.

Table 5.2 – Tasks sequential throughputs and latencies of the DVB-S2 receiver (transmission
phase, 16288 frames, inter-frame level = 16, MODCOD 2, error-free SNR zone). The sequential
tasks are represented by orange rows. The slowest sequential stage is in red . The slowest of all
stages is in blue .

Stages and Tasks Throughput (MS/s) Latency (µs) Time
Avg Min. Max. NAvg Avg Min. Max. (%)

Radio - receive (tRx1) 1015.86 234.20 1093.98 431.83 527.32 489.66 2287.24 0.94
Stage 1 1015.86 234.20 1093.98 431.83 527.32 489.66 2287.24 0.94

Multiplier AGC - imultiply (tRx2) 864.41 420.05 935.71 367.45 619.71 572.49 1275.28 1.11
Synch. Freq. Coarse - synchronize (tRx3) 1979.17 665.98 2237.38 841.32 270.66 239.42 804.35 0.48

Filter Matched - filter (tRx4) 273.85 121.60 275.25 116.41 1956.08 1946.13 4405.09 3.49
Stage 2 188.19 82.61 194.22 80.00 2846.45 2758.04 6484.72 5.08

Synch. Timing - synchronize (tRx5) 130.38 58.97 131.31 55.42 4108.52 4079.39 9084.64 7.34
Stage 3 130.38 58.97 131.31 55.42 4108.52 4079.39 9084.64 7.34

Synch. Timing - extract (tRx6) 331.50 151.54 354.62 281.83 807.97 755.28 1767.48 1.44
Multiplier AGC - imultiply (tRx7) 806.31 442.69 877.19 685.51 332.18 305.34 605.02 0.59
Synch. Frame - synchronize (tRx8) 187.50 120.17 193.25 159.41 1428.51 1386.01 2228.76 2.55

Stage 4 104.27 58.21 109.47 88.65 2568.66 2446.63 4601.26 4.58

Scrambler Symbol - descramble (tRx9) 1979.41 668.85 2649.55 1682.89 135.31 101.09 400.45 0.24
Synch. Freq. Fine L&R - synchronize (tRx10) 1466.55 596.19 1741.72 1246.85 182.63 153.78 449.25 0.33
Synch. Freq. Fine P/F - synchronize (tRx11) 132.40 62.59 140.88 112.56 2022.98 1901.24 4279.30 3.61

Stage 5 114.42 52.22 124.22 97.27 2340.92 2156.11 5129.00 4.18

Framer PLH - remove (tRx12) 1148.07 427.71 1180.59 1008.60 225.77 219.55 606.02 0.40
Noise Estimator - estimate (tRx13) 626.12 151.24 656.09 550.06 413.98 395.07 1713.87 0.74

Stage 6 405.16 111.73 421.72 355.94 639.75 614.62 2319.89 1.14

Modem PSK - demodulate (tRx14) 46.07 42.12 46.28 40.47 5626.34 5600.83 6153.50 10.05
Interleaver - deinterleave (tRx15) 1533.54 518.95 1582.97 1347.25 169.02 163.74 499.47 0.30

Decoder LDPC - decode SIHO (tRx16) 166.15 69.12 171.59 164.21 1386.74 1342.74 3333.34 2.48
Decoder BCH - decode HIHO (tRx17) 6.92 6.15 6.96 6.92 32905.37 32705.15 36998.15 58.79

Scrambler Binary - descramble (tRx18) 91.11 47.74 91.73 91.11 2499.41 2482.41 4770.24 4.47
Stage 7 5.35 4.40 5.38 5.35 42586.88 42294.87 51754.70 76.09

Sink Binary File - send (tRx19) 1838.31 25.30 2100.47 1838.31 123.87 108.41 9001.34 0.22
Stage 8 1838.31 25.30 2100.47 1838.31 123.87 108.41 9001.34 0.22

Total 4.09 2.51 4.14 4.09 55742.37 54947.73 90662.79 99.57

The stage 7 takes 76% of the time with especially the Decoder BCH task (tRx17) that takes 59%
of the time. tRx17 should not take so many time compared to the other tasks. Indeed, we chose to
not spend too much time in optimizing the BCH decoding process as the stage 7 throughput can
easily be increased with the sequence duplication technique. The second slower stage in the stage
3. This stage is the main hotspot of the implemented receiver. The stage 3 contains only one
synchronization task (tRx5). In the current implementation this task cannot be duplicated (or
parallelized) because there is an internal data dependency with the previous frame (state-full
task). The stage 3 is the real limiting factor of the receiver. If a machine with an infinite number
of cores is considered, the maximum reachable information throughput is 55.42 Mb/s.

128

5.4. Application on the DVB-S2 Standard

We did not try to parallelize the waiting and the learning phases. We measured that the
whole learning phase (1, 2 and 3) takes about one second. During the learning phase, the receiver
is not fast enough to process the received samples in real time. To fix this problem, the samples
are buffered in the Radio - receive task (tRx1). Once the learning phase is done, the transmission
phase is parallelized. Thus, the receiver becomes fast enough to absorb the radio buffer and
samples in real time. During the transmission phase, the receiver is split into 8 stages as presented
in Figure 5.7b. This decomposition has been motivated by the nature of the tasks (sequential or
parallel) and by the sequential measured throughput. The number of stages has been minimized
in order to limit the pipeline overhead. Consequently, sequential and parallel tasks have been
regrouped in common stages. The slowest sequential task (tRx5) has been isolated in the dedicated
stage 3. The other sequential stages have been formed to always have a higher normalized
throughput than the stage 3. The sequential throughput of the stage 7 (5.35 Mb/s) is lower
than the throughput of the stage 3 (55.42 Mb/s). This is why the sequence duplication has been
applied. The stage 7 has been parallelized over 28 threads. This looks overkill but the machine
was dedicated to the DVB-S2 receiver and the throughput of the Decoder LDPC task (tRx16) varies
depending on the SNR. One can notice that an early termination criterion was enabled. When
the signal quality is very good, the Decoder LDPC task runs fast and the threads can spend a lot
of time in waiting. With the passive waiting version of the adaptor push and pull tasks, the CPU
dynamically adapt the cores charge and energy can be saved. In Table 5.2, the presented Decoder
LDPC task throughputs and latencies are optimistic because we are in a SNR error-free zone.
All the threads are pinned to a single core with the hwloc library. The 28 threads of the stage
7 are pinned in round-robin between the CPU sockets. By this way, the memory bandwidth is
maximized thanks to the two NUMA memory banks. The strategy of the stage 7 parallelism
is to maximize the throughput. During the duplication process (modules clones), the thread
pinning is known and the memory is copied into the right memory bank (first touch policy). All
the other pipeline stages (1, 2, 3, 4, 5, 6 and 8) are running on a single thread. Because of the
synchronizations between the pipeline stages (adaptor pushes and pulls), the threads have been
pinned on the same socket. The idea is to minimize the pipeline stage latencies in maximizing the
CPU cache performance. It avoids the extra-cost of moving the cache data between the sockets.

The receiver program needs around 1.3 GB of the global memory when running in sequential
while it needs around 30 GB in parallel. The memory usage increases because of the sequence
duplications in the stage 7. The duplication operation takes about 20 seconds. It is made at
the very beginning of the program. It worth mentioning that the amount of memory was not a
critical resource. So, we did not try to reduce its overall occupancy.

1 2 3 4 5 6 7 8

0%

20%

40%

60%

80%

100%

Pipeline stage

P
er

ce
nt

ag
e

of
ti

m
e

in
th

e
st

ag
e

Std. tasks Push wait Push copy Pull wait Pull copy

(a) Data copy (stage throughput is 40 Mb/s).

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Pipeline stage

P
er

ce
nt

ag
e

of
ti

m
e

in
th

e
st

ag
e

Standard tasks Push wait Pull wait

(b) Pointer copy (stage throughput is 55 Mb/s).

Figure 5.9 – Comparison of the two pipeline implementations in the receiver (MODCOD 2).

129

5.4. Application on the DVB-S2 Standard

Figure 5.9 presents the repartition of the time in the pipeline stages (MODCOD 2). The
receiver is running over 35 threads. Figure 5.9a shows the pipeline implementation with data
copies. Figure 5.9b shows the pipeline implementation with pointer copies. Push wait and Pull
wait are the percentage of time spent in passive or active waiting. Push copy and Pull copy are
the percentage of time spent in copying the data to and from the adaptors buffers. Standard
tasks is the cumulative percentage of time spent by the tasks presented in Figure 5.7b. In both
implementations the pipeline stage throughput is constraint by the slowest one. In Figure 5.9a
the measured throughput per stage is 40 Mb/s whereas in Figure 5.9b the measured throughput
is 55 Mb/s. The pointer copy implementation throughput is ≈ 27% higher than the data copy
implementation. Figure 5.9a shows that the copy overhead is non-negligible. A 27% slowdown is
directly due to these copies in the stage 3. It largely justifies the pointer copy implementation. In
Figure 5.9b and in the stage 3, 100% of time is taken by the tRx5 task. This is also confirmed by
the measured throughput (55 Mb/s) which is very close the sequential throughput (55.42 Mb/s)
reported in Table 5.2.

Table 5.3 – Throughput performance depending of the selected DVB-S2 configuration.

Config.
Throughput (Mb/s)

Sequential Parallel
Info. Coded Info. Coded

MODCOD 1 3.4 5.7 37 62
MODCOD 2 4.1 4.6 55 62
MODCOD 3 4.0 4.5 80 90

Table 5.3 summarizes the obtained throughputs for the 3 MODCODs presented in Table 5.1.
Each time, sequential and parallel throughput are given. To measure to maximum achievable
throughput, the USRP modules has been removed and replaced by the read of samples pre-
registered in a binary file. This is because the pipeline stages are naturally adapting to the slowest
one. It means that in a real communication, the throughput of the radio is always configured to be
just a little bit slower than the slowest stage. Indeed, it is necessary for real time communication
otherwise the radio task has to indefinitely bufferize the samples while the amount of available
memory in the machine is clearly not infinite. The information throughput (K bits) is the final
useful throughput for the user while the coded (N) throughput is here for observations. Between
the MODCOD 1 and 2, only the LDPC code rate varies (R = 3/5 and R = 8/9 resp.). In the
parallel implementation, it has a direct impact on the information throughput while the coded
throughput is unchanged. Indeed, the Decoder LDPC task (tRx16) is parallelized in the stage 7.
This stage is capable to adapt to the charge automatically. In the sequential implementation,
the coded throughput is negatively impacted when R = 8/9. Between the MODCOD 2 and
3, the modulation varies (QPSK and 8-PSK resp.) and the frames have to be deinterleaved
(column/row interleaver). High order modulation reduces the amount of samples processed by in
the Synchronizer Timing task (tRx5): this results in higher throughput (80 Mb/s for the 8-PSK) in
the slowest stage 3. In the parallel implementation, the pipeline stage throughputs are adapting
to the slowest stage 3. It results in an important speedup. In the sequential implementation, it
results in a little slowdown. Indeed, the additional time spent in the deinterleave task (tRx15) is
higher than the time saved in the Synchronizer Timing task (tRx5).

These results demonstrate the benefit of the parallelized implementation of the proposed
receiver. The throughput speedup ranges from 10 to 20 compared to the sequential implementation.
It is also important to note that the selected configurations are efficient in different SNR zones
(as shown in Figure 5.8). Depending on the signal quality, different MODCOD can be selected.

130

5.5. Conclusion

A direct impact in observed on the system throughput. For instance, MODCOD 1 is adapted
for noisy environments (3 dB). However the information throughput is limited to 37 Mb/s while
MODCOD 3 is more adapted to clearer signal conditions (7.5 dB) and the information throughput
reaches 80 Mb/s. MODCOD 2 is in-between.

5.4.4 Related Works

Some other works are focusing on the SDR implementation of a DVB-S2 transceiver. To the
best of our knowledge, here is a list of the existing projects:

— gr-dvbs2rx [Eco18] is an open source extension to GNU Radio. The project sounds
promising but lacks efficiency. Its main maintainer affirms that the receiver is not yet able
to meet the satellite real time constraints (30 to 50 Mb/s) on a Xeon™ Gold/Platinum
series processor 2. It advises to use a dedicated GPU or FPGA for the LDPC decoding.

— leansdr [pab16] is a standalone open source project. The project creation was motivated to
reach higher receiver throughput than GNU Radio even if it results in decoding performance
degradations. For instance, a low complexity LDPC bit-flipping decoder [RL09] is chosen.
At the time of the writing, the project does not support multi-threading and SIMD
instructions.

— Grayver and Utter recently published a paper [GU20] in which they succeed to build a
10 Gb/s DVB-S2 receiver on a cluster of server-class CPUs. On a comparable CPU, their
work is able to double or even triple the throughput of our implementation. This is mainly
due to the use of a high speed SIMD LDPC decoder [LJ16, Gra19] and to new algorithmic
improvements in the synchronization tasks. For instance, they were able to express more
parallelism than us in the Synchronizer Timing task (tRx5). It is very promising. However,
we also tried some aggressive optimizations in the Synchronizer Timing task but we
never succeeded to keep the same level of BER/FER decoding performance. It could
be interesting to check if the Grayver and Utter work comes with no penalty in terms
of decoding performance and to combine their optimizations with the AFF3CT eDSL.
Unlike our work, Grayver and Utter are focusing on a single DVB-S2 MODCOD (8-PSK,
N = 64800 and R = 1/2).

5.5 Conclusion

In this chapter, a new eDSL dedicated to the SDR has been presented. Main components
have been designed to satisfy the SDR needs in terms of 1) expressiveness with sequences, tasks
and loops; 2) performance with the sequence duplication technique and the pipelining strategy.
We evaluated the proposed eDSL in an applicative context: the software implementation of the
DVB-S2 standard. The results demonstrate the efficiency of the AFF3CT eDSL. Indeed, the
proposed solution matches satellite real time constraints (30 ∼ 50 Mb/s). This is the consequence
of two main factors: 1) the task level optimizations, for instance a fast LDPC decoder has
been applied (see Chapter 2); 2) the quasi zero overhead eDSL, with among others, an efficient
implementation of the pipeline technique.

In future works, it could be interesting to combine the parallel features of the AFF3CT
eDSL with high level languages like Python or MATLAB®. The signal processing community
is often not familiar with the C++ language. They could use the existing high-speed C++ tasks
and develop their own in the high level language. Linking with the AFF3CT library, it would

2. https://lists.gnu.org/archive/html/discuss-gnuradio/2019-01/msg00196.html.

131

https://lists.gnu.org/archive/html/discuss-gnuradio/2019-01/msg00196.html

5.5. Conclusion

be convenient if the tasks written in the high level language could be inserted in the AFF3CT
sequences. This way the whole system would automatically be parallelized. This is technically
possible in our model. As the static scheduling is evaluated at the runtime, it is possible to
encapsulate a function from a high level language in AFF3CT task (with a callback) and to start
the sequence analysis (= perform the static scheduling resolution) after that. In comparison, it
would be more complicated to make the languages interfacing with GNU Radio as the static
scheduling is resolved at the compilation time and flatten in the Python language. When the
generated Python code is executed, it performs calls to the tasks written and compiled in a
C++ library. Moreover, it could be very useful to propose a graphical user interface like GNU
Radio Companion to facilitate the tasks creation and binding as well as the parallelism definition
(sequence duplication, pipeline stages). The graphical user interface would then generate a ready
to compile C++ code similar to the one presented in Listing 5.1.

132

Conclusions and Perspectives

Conclusion

In the context of digital communications, channel coding schemes are widely spread. This
thesis focuses on three channel codes that are present in most of the current digital communication
standards: the LDPC codes, the polar codes and the turbo codes. In digital communication
systems, most of the computational time is spent in the receiver and more precisely in the decoding
stage. This is why, we propose efficient implementations of these decoding algorithms on CPUs.
The proposed implementations enable fast evaluations and validations of various configurations.
Moreover, there is a growing need to build full digital communication chains in software. This
is what we call the Software-Defined Radio (SDR). Thus, the challenge is to take advantage of
multi-core CPU architectures to schedule the processing in parallel.

Several optimization strategies have been presented and discussed. One of the main char-
acteristic of the digital communication algorithms is that they have a very short execution
time (low latency). Thus, the most adapted parallelism level presents in the actual CPUs is
the Single Instruction Multiple Data (SIMD) model. In Section 2.1, MIPP, a generic SIMD
library, is proposed. This library enables simplified and portable use of the CPUs vectorized
instructions. Then, in Section 2.2, two main vectorization strategies are detailed: the intra-frame
SIMD strategy that enables very low latency implementations and the inter-frame SIMD strategy
that enables very high throughput implementations. The intra-frame SIMD strategy consists in
using the algorithm inherent parallelism to speedup the computation in a single frame while the
inter-frame SIMD strategy processes several frames in parallel. In a second part of this chapter,
specific optimizations for each channel codes are given. First, a new SIMD implementation of the
LDPC Belief Propagation (BP) decoder is proposed. This decoder rests upon the inter-frame
strategy and focuses on maximizing the flexibility. Indeed, it is able to adapt to many algorithmic
sub-variants which is without precedent in the domain. Then, the optimizations of two polar
decoders are proposed, namely the Successive Cancellation (SC) and the Successive Cancellation
List (SCL) algorithms. Both the inter-frame and intra-frame strategies are implemented. This
two decoders are based on a recursive description and the decoding process can be seen as a tree
traversal. Some specific optimizations like the tree pruning are performed to drastically reduce
the number of tree nodes. The recursive calls have also been unrolled and generated decoders are
proposed to reach the best possible throughputs and latencies. This comes at the cost of reduced
flexibility. Finally, an SIMD implementation of the turbo decoder (max-log-MAP algorithms) is
given. The implementation uses the inter-frame SIMD strategy and targets high throughputs.
Specific optimizations have been made to increase the decoder efficiency: some loops at the core
of the decoding process have been merged and unrolled to increase the registers reuse.

AFF3CT is a library of digital communication algorithms, developed as part of this thesis,
focusing on high performance implementations. Its software architecture supports the algorithmic
heterogeneity. Many channel codes are supported like the LDPC codes, the polar codes and the

133

Conclusions and Perspectives

turbo codes detailed before. To the best of our knowledge, AFF3CT is the library with the most
comprehensive support for channel coding algorithms. The toolbox also includes a BER/FER
simulator. Many digital communication systems can be evaluated over various parameters. The
simulator takes advantage of the multi-core CPU architectures to reduce the restitution time. All
these features have been designed to enable reproducible science. A BER/FER comparator tool
has been developed to easily search in a database of 500 pre-simulated BER/FER references. All
there references are results simulated with AFF3CT and can be reproduced. To this purpose, a
pipeline of tests has been implemented. Each time there is a modification in the source code, the
database of references is replayed to avoid regressions.

The new implementations have been evaluated and compared with the state-of-the-art. The
results show levels of performance close to the best software implementations in the literature.
Exhaustive surveys are given through software decoder Hall of Fames (HoFs). The proposed
decoders are reported as well as state-of-the-art works. These HoFs enable to compare CPU
and GPU implementations. Some metrics like the normalized throughput, the Throughput
Under Normalized Decoding Cost (TNDC) and the energy consumption are defined. Finally the
AFF3CT simulator performance is evaluated over several server-class CPUs. It shows that the
simulator is able to take advantage of various SIMD instructions and multi-core architectures.
During the simulation of a polar code, a peak performance of 11 Gb/s is reached on a AMD®

EPYC CPU. To the best of our knowledge, this is the first work to reach this level of performance.

The AFF3CT library has been enriched with a new embedded Domain Specific Language
(eDSL). The main components have been designed to satisfy the SDR needs in terms of 1)
expressiveness; 2) performance. Most of the digital communication systems can be represented by a
directed graph of processing tasks (dataflow model). The proposed eDSL uses this representation to
improve the expressiveness. Indeed, the tasks data transfers and their execution are automatically
managed by the eDSL. Moreover, the performance is an critical aspect. To reduce the execution
time, some data independent parts of the graph of tasks can be duplicated. Each duplication can
be executed on separated CPU cores. This strategy leads to an increased throughput. However,
when it cannot be applied the well-known pipeline strategy have been implemented. Thus, the
performance of the overall communication system can be increased up to the throughput of the
slowest task. Then, the proposed eDSL is evaluated in an applicative context: the software
implementation of the DVB-S2 standard physical layer. The results demonstrate the efficiency of
the AFF3CT eDSL. Indeed, the proposed solution matches satellite real-time constraints (30 ∼
50 Mb/s). This is the consequence of two main factors: 1) the task level optimizations, 2) the
low overhead eDSL, with among others, an efficient implementation of the pipeline technique.

AFF3CT is currently used in several industrial contexts for simulation purposes (Turbo
concept, Airbus, Thales, Huawei) and for specific developments (CNES, Schlumberger, Airbus,
Thales, Orange, Safran), as well as in academic projects (NAND French National Agency project,
IdEx CPU, R&T CNES). The MIT license chosen for the project enables industrial and academic
partners to reuse parts of AFF3CT in their own projects without any restriction. Moreover,
AFF3CT has been cited in scientific publications. Many works are exploiting the AFF3CT
simulator as a reference for the decoding performance. In other works, AFF3CT has been
enriched to support new features. And, in some cases, AFF3CT is used as a library where some
sub-parts of the toolbox are reused or some methodologies are extracted.

To conclude on this thesis work, the main contributions are 1) the definition of task level
optimization techniques that enable high performance portable implementations of signal process-
ing algorithms on CPUs, 2) an open-source software that enables homogeneous uses of various

134

Conclusions and Perspectives

algorithms and implementations and 3) a new language dedicated to the SDR needs that enables
to define digital communication systems taking advantage of the CPUs parallel architecture.
AFF3CT has been designed for high performance keeping in mind that the algorithms come
from the signal community experts that are not familiar with CPU optimization techniques.
Consequently, there is a clear separation of concerns between the tasks design and their parallel
execution. Co-design is then possible: signal experts can focus on the tasks description while HPC
experts can work independently on the parallel execution thanks to the eDSL abstraction. To the
best of our knowledge, AFF3CT is the first environment to propose this level of performance
combined with the integration of many digital communication algorithms.

Perspectives

Several study and research perspectives remain to be explored following this thesis work. A
non-exhaustive list of these perspectives is given below. This list is given in ascending order of
presupposed complexity.

First, thanks to the flexibility of the proposed software architecture, new coding schemes
can be explored. The channel coding theory is constantly evolving and it is mandatory to be
able to evaluate the performance of new schemes. For instance, the polar codes are one of the
main interest in the domain. They have been recently generalized from their discovery by Arıkan.
It is possible to build new codes from various kernels that are not just powers of two. This is
called multi-kernel polar codes. Some preliminary works have been conducted to find kernels that
have good factorization properties. However, this is a brute force exploration and the complexity
grows exponentially with the size of the kernels. It could be interesting to reduce the kernel
exploration domain and to apply HPC techniques to reduce the finding time. The multi-kernel
polar codes construction is a promising area of research that could lead to better finite-length
decoding performance.

One of the main contribution of this thesis is to propose efficient digital signal processing
methods and implementations on CPU. Nowadays there is a growing interest for GPUs in the
HPC community. The GPUs are very parallel architectures. In some conditions, the GPU
implementations can lead to non-negligible reduction of the computational time compared to
the implementations on CPU. It could be interesting to study the integration of GPU tasks
in AFF3CT. One of the main challenges is to manage the CPU to GPU and GPU to CPU
transfers. On GPUs, many works are focusing on implementing only the most compute intensive
task (namely the channel decoder) or a fixed configuration of tasks (BPSK modulation, AWGN
channel and a specific coding scheme) [Wu+11, Xia+13, LJC14, Lai+16, Gia+16, KK17b]. The
several configurations available in AFF3CT combined with the ability to execute tasks on both
CPU and GPU would be a major improvement. Even if the GPUs are a good alternative to the
CPUs, we believe that they will not be integrated in C-RAN architectures. The FPGAs look
like to provide a better compromize between power efficiency and computational performance for
scaling up. Their integration in AFF3CT could be a great challenge.

Finally, the proposed eDSL could be enriched. For instance, the pipeline stages are given
by the user while they could be found automatically. The execution time of the tasks is mostly
constant for a given CPU. Thus, an auto-tuning phase could be applied to determine a good
configuration of the pipeline stages automatically. Moreover, the scheduling of the tasks inside
a sequence is very basic. The tasks are not executed in parallel even if the data dependencies
allow it. We think that a dynamic scheduling strategy like it can be found in the HPC runtime

135

Conclusions and Perspectives

libraries (see OpenMP or StarPU) would be overkill. The overhead of a dynamic scheduler is
not negligible because the execution time of the signal processing tasks in very short (ranging
from some nanoseconds to some microseconds). However, an improved static scheduling strategy
that enables parallel executions inside sequences would certainly help to reduce the restitution
time. These improvements could lead to an extension of the AFF3CT eDSL. Indeed, the targeted
domain could be expended to the generalized streaming applications (image/video processing,
cryptographic processing, networking, DSP, etc.). The challenge will be to identify the required
additional modules and to integrate them into the eDSL with no impact on the execution efficiency.

136

Bibliography

[Ack82] W.B. Ackerman. “Data Flow Languages”. In: IEEE Computer 15 (Feb. 1982), pp. 15–
25. doi: 10.1109/MC.1982.1653938 (cit. on p. 115).

[AD18] R. Akeela and B. Dezfouli. “Software-Defined Radios: Architecture, State-of-the-Art,
and Challenges”. In: ACM Computer Communications 128 (2018), pp. 106–125. doi:
10.1016/j.comcom.2018.07.012 (cit. on p. 115).

[aic18] aicodix GmbH. Reusable C++ Not-DSP-related Code Library. 2018. url: https:
//github.com/aicodix/code (cit. on p. 72).

[AK11] A. Alamdar-Yazdi and F. R. Kschischang. “A Simplified Successive-Cancellation
Decoder for Polar Codes”. In: IEEE Communications Letters (COMML) 15.12 (Dec.
2011), pp. 1378–1380. doi: 10.1109/LCOMM.2011.101811.111480 (cit. on p. 16).

[Alt15a] Altera Innovate Asia FPGA Design Contest. 5G Algorithm Innovation Competition.
2015. url: http://www.innovateasia.com/5g/en/gp2.html (visited on 09/16/2018)
(cit. on p. 26).

[Alt15b] Altera University Program. The 1st 5G Algorithm Innovation Competition-SCMA.
2015. url: http://www.innovateasia.com/5g/images/pdf/1st%205G%20Algorithm%
20Innovation%20Competition-ENV1.0%20-%20SCMA.pdf (cit. on p. 78).

[Aly+19] R. M. Aly, A. Zaki, W. K. Badawi, and M. H. Aly. “Time Coding OTDM MIMO
System Based on Singular Value Decomposition for 5G Applications”. In: MDPI
Applied Sciences 9.13 (July 2019), p. 2691. doi: 10.3390/app9132691 (cit. on p. 85).

[Ama+05] S. Amarasinghe, M. l. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah,
and W. Thies. “Language and Compiler Design for Streaming Applications”. In:
Springer International Journal of Parallel Programming (IJPP) 2.33 (June 2005),
pp. 261–278. doi: 10.1007/s10766-005-3590-6 (cit. on p. 115).

[Arı09] E. Arıkan. “Channel Polarization: A Method for Constructing Capacity-Achieving
Codes for Symmetric Binary-Input Memoryless Channels”. In: IEEE Transactions
on Information Theory (TIT) 55.7 (July 2009), pp. 3051–3073. doi: 10.1109/TIT.
2009.2021379 (cit. on pp. 9, 14).

[Arı11] E. Arıkan. “Systematic Polar Coding”. In: IEEE Communications Letters (COMML)
15.8 (Aug. 2011), pp. 860–862. doi: 10.1109/LCOMM.2011.061611.110862 (cit. on
p. 13).

[Arm+16] B. Armstrong, L. Teske, P. Noordhuis, T. Petazzoni, J. Carlson, and E. Betts.
libcorrect. 2016. url: https://github.com/quiet/libcorrect (cit. on p. 72).

[ARS81] T. Aulin, N. Rydbeck, and C. Sundberg. “Continuous Phase Modulation - Part II:
Partial Response Signaling”. In: IEEE Transactions on Communications (TCOM)
29.3 (Mar. 1981), pp. 210–225. doi: 10.1109/TCOM.1981.1094985 (cit. on p. 78).

137

https://doi.org/10.1109/MC.1982.1653938
https://doi.org/10.1016/j.comcom.2018.07.012
https://github.com/aicodix/code
https://github.com/aicodix/code
https://doi.org/10.1109/LCOMM.2011.101811.111480
http://www.innovateasia.com/5g/en/gp2.html
http://www.innovateasia.com/5g/images/pdf/1st%205G%20Algorithm%20Innovation%20Competition-ENV1.0%20-%20SCMA.pdf
http://www.innovateasia.com/5g/images/pdf/1st%205G%20Algorithm%20Innovation%20Competition-ENV1.0%20-%20SCMA.pdf
https://doi.org/10.3390/app9132691
https://doi.org/10.1007/s10766-005-3590-6
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/LCOMM.2011.061611.110862
https://github.com/quiet/libcorrect
https://doi.org/10.1109/TCOM.1981.1094985

Bibliography

[AS81] T. Aulin and C. Sundberg. “Continuous Phase Modulation - Part I: Full Response
Signaling”. In: IEEE Transactions on Communications (TCOM) 29.3 (Mar. 1981),
pp. 196–209. doi: 10.1109/TCOM.1981.1095001 (cit. on p. 78).

[Bah+74] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate (Corresp.)” In: IEEE Transactions on Information
Theory (TIT) 20.2 (Mar. 1974), pp. 284–287. doi: 10.1109/TIT.1974.1055186
(cit. on p. 20).

[Ban+14] S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn. “Implementation of
LTE System on an SDR Platform using CUDA and UHD”. In: Springer Journal
of Analog Integrated Circuits and Signal Processing (AICSP) 78.3 (Mar. 1, 2014),
p. 599. doi: 10.1007/s10470-013-0229-1 (cit. on p. 115).

[BD10] D. Black-Schaffer and W. J. Dally. “Block-Parallel Programming for Real-Time Em-
bedded Applications”. In: International Conference on Parallel Processing (ICPP).
IEEE, Sept. 2010, pp. 297–306. doi: 10.1109/ICPP.2010.37 (cit. on p. 115).

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo-Codes”. In: International Conference on Communica-
tions (ICC). Vol. 2. IEEE, May 1993, pp. 1064–1070. doi: 10.1109/ICC.1993.397441
(cit. on p. 8).

[Bil+95] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. “Cyclo-Static Data
Flow”. In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Vol. 5. IEEE, May 1995, pp. 3255–3258. doi: 10.1109/ICASSP.1995.
479579 (cit. on p. 115).

[BM58] G. E. P. Box and M. E. Muller. “A Note on the Generation of Random Normal
Deviates”. In: The Annals of Mathematical Statistics 29.2 (1958), pp. 610–611. doi:
10.1214/aoms/1177706645 (cit. on p. 42).

[BPB15] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg. “LLR-Based Successive
Cancellation List Decoding of Polar Codes”. In: IEEE Transactions on Signal
Processing (TSP) 63.19 (Oct. 2015), pp. 5165–5179. doi: 10.1109/TSP.2015.2439211
(cit. on p. 15).

[BR60] R.C. Bose and D.K. Ray-Chaudhuri. “On a Class of Error Correcting Binary
Group Codes”. In: Elsevier Information and Control 3.1 (1960), pp. 68–79. doi:
10.1016/S0019-9958(60)90287-4 (cit. on p. 8).

[Bro+10] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. “hwloc: A Generic Framework for Managing Hardware
Affinities in HPC Applications”. In: Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP). IEEE, Feb. 2010, pp. 180–186. doi: 10.1109/
PDP.2010.67 (cit. on p. 123).

[Buc+04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.
Hanrahan. “Brook for GPUs: Stream Computing on Graphics Hardware”. In: ACM
Transactions on Graphics (TOG) 23.3 (Aug. 2004), pp. 777–786. doi: 10.1145/
1015706.1015800 (cit. on p. 115).

[Cam+17] S. Cammerer, B. Leible, M. Stahl, J. Hoydis, and S. ten Brink. “Combining Belief
Propagation and Successive Cancellation List Decoding of Polar Codes on a GPU
Platform”. In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, Mar. 2017, pp. 3664–3668. doi: 10.1109/ICASSP.2017.7952840
(cit. on p. 104).

138

https://doi.org/10.1109/TCOM.1981.1095001
https://doi.org/10.1109/TIT.1974.1055186
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1109/ICPP.2010.37
https://doi.org/10.1109/ICC.1993.397441
https://doi.org/10.1109/ICASSP.1995.479579
https://doi.org/10.1109/ICASSP.1995.479579
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1109/TSP.2015.2439211
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1145/1015706.1015800
https://doi.org/10.1145/1015706.1015800
https://doi.org/10.1109/ICASSP.2017.7952840

Bibliography

[CC04] P. Coulton and D. Carline. “An SDR Inspired Design for the FPGA Implementation
of 802.11a Baseband System”. In: International Symposium on Consumer Electronics
(ISCE). IEEE, Sept. 2004, pp. 470–475. doi: 10.1109/ISCE.2004.1375991 (cit. on
p. 115).

[Cen19] T. Cenova. “Exploring HLS Coding Techniques to Achieve Desired Turbo Decoder
Architectures”. PhD thesis. Rochester Institute of Technology, 2019. url: https:
//scholarworks.rit.edu/theses/10256/ (cit. on p. 85).

[CF02] J. Chen and M. P. C. Fossorier. “Density Evolution for Two Improved BP-Based
Decoding Algorithms of LDPC Codes”. In: IEEE Communications Letters (COMML)
6.5 (May 2002), pp. 208–210. doi: 10.1109/4234.1001666 (cit. on p. 12).

[Cha+11] C. C. Chang, Y. L. Chang, M. Y. Huang, and B. Huang. “Accelerating Regular
LDPC Code Decoders on GPUs”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing (J-STARS) 4.3 (Sept. 2011), pp. 653–659.
doi: 10.1109/JSTARS.2011.2142295 (cit. on p. 103).

[Cha72] D. Chase. “Class of Algorithms for Decoding Block Codes with Channel Measurement
Information”. In: IEEE Transactions on Information Theory (TIT) 18.1 (Jan. 1972),
pp. 170–182. doi: 10.1109/TIT.1972.1054746 (cit. on p. 57).

[Che+13] Xiang Chen, Ji Zhu, Ziyu Wen, Yu Wang, and Huazhong Yang. “BER Guaranteed
Optimization and Implementation of Parallel Turbo Decoding on GPU”. In: Inter-
national Conference on Communications and Networking in China (CHINACOM).
IEEE, Aug. 2013, pp. 183–188. doi: 10.1109/ChinaCom.2013.6694588 (cit. on
pp. 59, 105).

[Che+15] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and
L. Dittmann. “Cloud RAN for Mobile Networks – A Technology Overview”. In:
IEEE Communications Surveys Tutorials 17.1 (2015), pp. 405–426. doi: 10.1109/
COMST.2014.2355255 (cit. on p. 25).

[Chr12] G. Chrysos. “Intel Xeon Phi coprocessor (codename Knights Corner)”. In: Hot Chips
Symposium (HCS). IEEE, Aug. 2012, pp. 1–31. doi: 10.1109/HOTCHIPS.2012.
7476487 (cit. on p. 108).

[COP+05] B. Cristea, T. Ottosson, A. Piątyszek, et al. IT++. 2005. url: http : / / itpp .
sourceforge.net (cit. on p. 72).

[CS12] S. Chinnici and P. Spallaccini. “Fast Simulation of Turbo Codes on GPUs”. In:
International Symposium on Turbo Codes and Iterative Information Processing
(ISTC). IEEE, Aug. 2012, pp. 61–65. doi: 10.1109/ISTC.2012.6325199 (cit. on
pp. 59, 105).

[CTG19a] A. Cavatassi, T. Tonnellier, and W. J. Gross. “Asymmetric Construction of Low-
Latency and Length-Flexible Polar Codes”. In: International Conference on Com-
munications (ICC). IEEE, 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761129 (cit. on
p. 85).

[CTG19b] A. Cavatassi, T. Tonnellier, and W. J. Gross. “Fast Decoding of Multi-Kernel Polar
Codes”. In: Wireless Communications and Networking Conference (WCNC). IEEE,
2019. doi: 10.1109/WCNC.2019.8885698 (cit. on p. 85).

[Cun+09] M. Cunche, J. Detchart, J. Lacan, V. Roca, et al. OpenFEC. 2009. url: http:
//openfec.org (cit. on p. 72).

139

https://doi.org/10.1109/ISCE.2004.1375991
https://scholarworks.rit.edu/theses/10256/
https://scholarworks.rit.edu/theses/10256/
https://doi.org/10.1109/4234.1001666
https://doi.org/10.1109/JSTARS.2011.2142295
https://doi.org/10.1109/TIT.1972.1054746
https://doi.org/10.1109/ChinaCom.2013.6694588
https://doi.org/10.1109/COMST.2014.2355255
https://doi.org/10.1109/COMST.2014.2355255
https://doi.org/10.1109/HOTCHIPS.2012.7476487
https://doi.org/10.1109/HOTCHIPS.2012.7476487
http://itpp.sourceforge.net
http://itpp.sourceforge.net
https://doi.org/10.1109/ISTC.2012.6325199
https://doi.org/10.1109/ICC.2019.8761129
https://doi.org/10.1109/WCNC.2019.8885698
http://openfec.org
http://openfec.org

Bibliography

[CWC15] M. Cheng, Y. Wu, and Y. Chen. “Capacity Analysis for Non-orthogonal Overloading
Transmissions under Constellation Constraints”. In: International Conference on
Wireless Communications Signal Processing (WCSP). IEEE, Oct. 2015, pp. 1–5.
doi: 10.1109/WCSP.2015.7341294 (cit. on p. 78).

[Deb+16a] I. Debbabi, B. Le Gal, N. Khouja, F. Tlili, and C. Jégo. “Real Time LP Decoding
of LDPC Codes for High Correction Performance Applications”. In: IEEE Wireless
Communications Letters (WCL) 5.6 (Dec. 2016), pp. 676–679. doi: 10.1109/LWC.
2016.2615304 (cit. on pp. 85, 103).

[Deb+16b] I. Debbabi, N. Khouja, F. Tlili, B. Le Gal, and C. Jégo. “Multicore Implementation
of LDPC Decoders based on ADMM Algorithm”. In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, Mar. 2016, pp. 971–975.
doi: 10.1109/ICASSP.2016.7471820 (cit. on pp. 85, 103).

[Del+20] Y. Delomier, B. Le Gal, J. Crenne, and C. Jego. “Model-Based Design of Hardware
SC Polar Decoders for FPGAs”. In: ACM Transactions on Reconfigurable Technology
and Systems (TRETS) 13.2 (May 2020). doi: 10.1145/3391431 (cit. on p. 85).

[Den80] J.B. Dennis. “Data Flow Supercomputers”. In: IEEE Computer 13.11 (Nov. 1980),
pp. 48–56. doi: 10.1109/MC.1980.1653418 (cit. on p. 115).

[DLB17] P. De Oliveira Castro, S. Louise, and D. Barthou. “DSL Stream Programming on
Multicore Architectures”. In: Programming Multi-core and Many-core Computing
Systems. John Wiley and Sons, 2017. Chap. 7. doi: 10.1002/9781119332015.ch7
(cit. on p. 115).

[Duf20] Ken R. Duffy. Ordered Reliability Bits Guessing Random Additive Noise Decoding.
Jan. 2020. arXiv: 2001.00546 [cs.IT] (cit. on p. 84).

[Dut+10] P. Dutta, Y. Kuo, A. Ledeczi, T. Schmid, and P. Volgyesi. “Putting the Software
Radio on a Low-calorie Diet”. In: Workshop on Hot Topics in Networks (HotNets).
ACM, 2010. doi: 10.1145/1868447.1868467 (cit. on p. 115).

[Eco18] R. Economos. gr-dvbs2rx: GNU Radio Extensions for the DVB-S2 and DVB-T2
Standards. 2018. url: https://github.com/drmpeg/gr-dvbs2rx (cit. on p. 131).

[Eli54] P. Elias. “Error-free Coding”. In: Transactions of the IRE Professional Group on
Information Theory 4.4 (Sept. 1954), pp. 29–37. doi: 10.1109/TIT.1954.1057464
(cit. on p. 8).

[Eli55] P. Elias. “Coding for Two Noisy Chanels”. In: IRE Convention Record. IEEE, Apr.
1955. url: http://web.mit.edu/6.441/www/reading/hd2.pdf (cit. on pp. 8, 17).

[Eng+94] M. Engels, G. Bilsen, R. Lauwereins, and J. A. Peperstraete. “Cycle-Static Dataflow:
Model and Implementation”. In: Asilomar Conference on Signals, Systems, and
Computers (ACSSC). Vol. 1. IEEE, Oct. 1994, pp. 503–507. doi: 10.1109/ACSSC.
1994.471504 (cit. on p. 115).

[Erc+17] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross. “On Error-correction Per-
formance and Implementation of Polar Code List Decoders for 5G”. In: Allerton
Conference on Communication, Control, and Computing. Oct. 2017, pp. 443–449.
doi: 10.1109/ALLERTON.2017.8262771 (cit. on p. 85).

[Eri15] Ericsson. Cloud RAN - The Benefits of Virtualization, Centralisation and Coordi-
nation. Tech. rep. Ericsson, 2015. url: https://www.ericsson.com/assets/local/
publications/white-papers/wp-cloud-ran.pdf (cit. on p. 25).

140

https://doi.org/10.1109/WCSP.2015.7341294
https://doi.org/10.1109/LWC.2016.2615304
https://doi.org/10.1109/LWC.2016.2615304
https://doi.org/10.1109/ICASSP.2016.7471820
https://doi.org/10.1145/3391431
https://doi.org/10.1109/MC.1980.1653418
https://doi.org/10.1002/9781119332015.ch7
https://arxiv.org/abs/2001.00546
https://doi.org/10.1145/1868447.1868467
https://github.com/drmpeg/gr-dvbs2rx
https://doi.org/10.1109/TIT.1954.1057464
http://web.mit.edu/6.441/www/reading/hd2.pdf
https://doi.org/10.1109/ACSSC.1994.471504
https://doi.org/10.1109/ACSSC.1994.471504
https://doi.org/10.1109/ALLERTON.2017.8262771
https://www.ericsson.com/assets/local/publications/white-papers/wp-cloud-ran.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp-cloud-ran.pdf

Bibliography

[Est+12a] P. Estérie, M. Gaunard, J. Falcou, and J. T. Lapresté. “Exploiting Multimedia
Extensions in C++: A Portable Approach”. In: IEEE Computing in Science &
Engineering (CS&E) 14.5 (Sept. 2012), pp. 72–77. doi: 10.1109/MCSE.2012.96
(cit. on pp. 36, 37).

[Est+12b] P. Estérie, M. Gaunard, J. Falcou, J. T. Lapresté, and B. Rozoy. “Boost.SIMD:
Generic programming for portable SIMDization”. In: International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM/IEEE, Sept. 2012,
pp. 431–432. doi: 10.1145/2370816.2370881 (cit. on pp. 36, 37).

[ETG20] F. Ercan, T. Tonnellier, and W. J. Gross. “Energy-Efficient Hardware Architectures
for Fast Polar Decoders”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers (TCAS1) 67.1 (Jan. 2020), pp. 322–335. doi: 10.1109/TCSI.2019.2942833
(cit. on p. 85).

[ETS05] ETSI. EN 302 307 - Digital Video Broadcasting (DVB); Second Generation Framing
Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive
Services, News Gathering and Other Broadband Satellite Applications (DVB-S2).
Mar. 2005. url: https://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.
02.01_60/en_302307v010201p.pdf (cit. on p. 124).

[ETS13] ETSI. 3GPP - TS 36.212 - Multiplexing and Channel Coding (R. 11). Aug. 2013.
url: https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/11.03.00_60/
ts_136212v110300p.pdf (cit. on p. 20).

[ETS18] ETSI. 3GPP - TS 38.212 - Multiplexing and Channel Coding (R. 15). Aug. 2018.
url: https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/
ts_138212v150200p.pdf (cit. on p. 115).

[EUR13] EURECOM. OpenAirInterface (OAI). 2013. url: https://gitlab.eurecom.fr/oai/
openairinterface5g (cit. on p. 72).

[Fal+08] G. Falcao, V. Silva, L. Sousa, and J. Marinho. “High Coded Data Rate and Multi-
codeword WiMAX LDPC Decoding on Cell/BE”. In: IET Electronics Letters 44.24
(Nov. 2008), pp. 1415–1416. doi: 10.1049/el:20081927 (cit. on p. 103).

[Fal+09] G. Falcão, S. Yamagiwa, V. Silva, and L. Sousa. “Parallel LDPC Decoding on GPUs
Using a Stream-Based Computing Approach”. In: Springer Journal of Computer
Science and Technology (JCST) 24.5 (Sept. 1, 2009), p. 913. doi: 10.1007/s11390-
009-9266-8 (cit. on p. 103).

[Fal+11] G. Falcao, J. Andrade, V. Silva, and L. Sousa. “GPU-Based DVB-S2 LDPC Decoder
with High Throughput and Fast Error Floor Detection”. In: IET Electronics Letters
47.9 (Apr. 2011), pp. 542–543. doi: 10.1049/el.2011.0201 (cit. on p. 103).

[Fal+12] G. Falcao, V. Silva, L. Sousa, and J. Andrade. “Portable LDPC Decoding on
Multicores Using OpenCL”. In: IEEE Signal Processing Magazine 29.4 (July 2012),
pp. 81–109. doi: 10.1109/MSP.2012.2192212 (cit. on p. 103).

[FAN07] T. Furtak, J. N. Amaral, and R. Niewiadomski. “Using SIMD Registers and Instruc-
tions to Enable Instruction-Level Parallelism in Sorting Algorithms”. In: Symposium
on Parallel Algorithms and Architectures. San Diego, California, USA: ACM, 2007,
pp. 348–357. doi: 10.1145/1248377.1248436 (cit. on p. 57).

[Flo18] F. Florian. “PHYSIM - A Physical Layer Simulation Software”. In: International
Conference on Consumer Electronics (ICCE). IEEE, Sept. 2018, pp. 1–6. doi:
10.1109/ICCE-Berlin.2018.8576187 (cit. on p. 85).

141

https://doi.org/10.1109/MCSE.2012.96
https://doi.org/10.1145/2370816.2370881
https://doi.org/10.1109/TCSI.2019.2942833
https://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
https://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/11.03.00_60/ts_136212v110300p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136212/11.03.00_60/ts_136212v110300p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://doi.org/10.1049/el:20081927
https://doi.org/10.1007/s11390-009-9266-8
https://doi.org/10.1007/s11390-009-9266-8
https://doi.org/10.1049/el.2011.0201
https://doi.org/10.1109/MSP.2012.2192212
https://doi.org/10.1145/1248377.1248436
https://doi.org/10.1109/ICCE-Berlin.2018.8576187

Bibliography

[FMI99] M. P. C. Fossorier, M. Mihaljevic, and H. Imai. “Reduced Complexity Iterative
Decoding of Low-Density Parity Check Codes based on Belief Propagation”. In:
IEEE Transactions on Communications (TCOM) 47.5 (May 1999), pp. 673–680.
doi: 10.1109/26.768759 (cit. on p. 12).

[Fog17] A. Fog. C++ Vector Class Library (VCL). 2017. url: http://www.agner.org/
optimize/#vectorclass (cit. on p. 36).

[For73] G. D. Forney. “The Viterbi Algorithm”. In: Proceedings of the IEEE 61.3 (Mar.
1973), pp. 268–278. doi: 10.1109/PROC.1973.9030 (cit. on p. 18).

[FSS11] G. Falcao, L. Sousa, and V. Silva. “Massively LDPC Decoding on Multicore Archi-
tectures”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS) 22.2
(Feb. 2011), pp. 309–322. doi: 10.1109/TPDS.2010.66 (cit. on p. 103).

[Gal62] R. Gallager. “Low-Density Parity-Check Codes”. In: IRE Transactions on Informa-
tion Theory 8.1 (Jan. 1962), pp. 21–28. doi: 10.1109/TIT.1962.1057683 (cit. on
pp. 8, 12).

[GB13] S. Grönroos and J. Björkqvist. “Performance Evaluation of LDPC Decoding on a
General Purpose Mobile CPU”. In: Global Conference on Signal and Information
Processing (GlobalSIP). Dec. 2013, pp. 1278–1281. doi: 10.1109/GlobalSIP.2013.
6737142 (cit. on p. 103).

[GCC18] GCC. Semantics of Floating Point Math in GCC. 2018. url: https://gcc.gnu.org/
wiki/FloatingPointMath (visited on 09/16/2018) (cit. on p. 66).

[GDB10] C. Glitia, P. Dumont, and P. Boulet. “Array-OL with Delays, a Domain Specific Spec-
ification Language for Multidimensional Intensive Signal Processing”. In: Springer
Multidimensional Systems and Signal Processing 21 (Mar. 2010), pp. 105–131. doi:
10.1007/s11045-009-0085-4 (cit. on p. 115).

[Gha+17] A. Ghaffari, M. Léonardon, Y. Savaria, C. Jégo, and C. Leroux. “Improving Per-
formance of SCMA MPA Decoders using Estimation of Conditional Probabilities”.
In: International Conference on New Circuits and Systems (NEWCAS). June 2017,
pp. 21–24. doi: 10.1109/NEWCAS.2017.8010095 (cit. on pp. 29, 78).

[Gha+18] R. Ghanaatian, A. Balatsoukas-Stimming, T. C. Müller, M. Meidlinger, G. Matz,
A. Teman, and A. Burg. “A 588-Gb/s LDPC Decoder Based on Finite-Alphabet
Message Passing”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 26.2 (Feb. 2018), pp. 329–340. doi: 10.1109/TVLSI.2017.2766925 (cit. on
p. 84).

[Gia+14] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross. “Fast Software Polar Decoders”.
In: International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, May 2014, pp. 7555–7559. doi: 10.1109/ICASSP.2014.6855069 (cit. on pp. 47,
94–96, 104).

[Gia+16] P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and W. J. Gross. “Low-Latency
Software Polar Decoders”. In: Springer Journal of Signal Processing Systems (JSPS)
90 (July 11, 2016), pp. 761–775. doi: 10.1007/s11265-016-1157-y (cit. on pp. 32, 54,
95, 104, 115, 135).

[GNB12] S. Grönroos, K. Nybom, and J. Björkqvist. “Efficient GPU and CPU-Based LDPC
Decoders for Long Codewords”. In: Springer Journal of Analog Integrated Circuits
and Signal Processing (AICSP) 73.2 (Nov. 1, 2012), p. 583. doi: 10.1007/s10470-
012-9895-7 (cit. on p. 103).

142

https://doi.org/10.1109/26.768759
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#vectorclass
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.1109/TPDS.2010.66
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/GlobalSIP.2013.6737142
https://doi.org/10.1109/GlobalSIP.2013.6737142
https://gcc.gnu.org/wiki/FloatingPointMath
https://gcc.gnu.org/wiki/FloatingPointMath
https://doi.org/10.1007/s11045-009-0085-4
https://doi.org/10.1109/NEWCAS.2017.8010095
https://doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/ICASSP.2014.6855069
https://doi.org/10.1007/s11265-016-1157-y
https://doi.org/10.1007/s10470-012-9895-7
https://doi.org/10.1007/s10470-012-9895-7

Bibliography

[GO19] A. Guermouche and A-C. Orgerie. Experimental Analysis of Vectorized Instructions
Impact on Energy and Power Consumption under Thermal Design Power Constraints.
Research rep. working paper or preprint. Télécom SudParis and Inria Rennes
- Bretagne Atlantique, June 2019. url: https ://hal .archives - ouvertes . fr/hal -
02167083v2 (cit. on p. 85).

[Gra19] E. Grayver. “Scaling the Fast x86 DVB-S2 Decoder to 1 Gbps”. In: Aerospace
Conference (AeroConf). IEEE, Mar. 2019, pp. 1–9. doi: 10.1109/AERO.2019.
8742225 (cit. on pp. 103, 131).

[GU20] E. Grayver and A. Utter. “Extreme Software Defined Radio – GHz in Real Time”.
In: Aerospace Conference (AeroConf). IEEE, Mar. 2020. arXiv: 2001.03645 (cit. on
pp. 115, 131).

[Han+17] X. Han, R. Liu, Z. Liu, and L. Zhao. “Successive-Cancellation List Decoder of Polar
Codes based on GPU”. In: International Conference on Computer and Communica-
tions (ICCC). IEEE, Dec. 2017, pp. 2065–2070. doi: 10.1109/CompComm.2017.
8322900 (cit. on p. 104).

[HNH13] X. Han, K. Niu, and Z. He. “Implementation of IEEE 802.11n LDPC Codes Based
on General Purpose Processors”. In: International Conference on Communication
Technology (ICCT). IEEE, Nov. 2013, pp. 218–222. doi: 10.1109/ICCT.2013.6820375
(cit. on p. 103).

[Hoc59] A. Hocquenghem. “Codes correcteurs d’erreurs”. In: Chiffres. Vol. 2. Paris, Sept.
1959, pp. 147–156. url: http://kom.aau.dk/~heb/kurser/NOTER/KOFA02.PDF
(cit. on p. 8).

[How15] L. Howes. The OpenCL Specification. Version 2.1, Revision 23. 2015. url: https:
//www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf (cit. on p. 35).

[Hua+11] L. Huang, Y. Luo, H. Wang, F. Yang, Z. Shi, and D. Gu. “A High Speed Turbo
Decoder Implementation for CPU-Based SDR System”. In: International Conference
on Communication Technology and Applications (ICCTA). IEEE, Oct. 2011, pp. 19–
23. doi: 10.1049/cp.2011.0622 (cit. on pp. 100, 105).

[Hua13] Huawei. 5G: A Technology Vision. Tech. rep. Huawei, 2013. url: https://www.
huawei.com/ilink/en/download/HW_314849 (cit. on p. 25).

[HV20] K. Hsieh and R. Venkataramanan. Modulated Sparse Superposition Codes for the
Complex AWGN Channel. Apr. 2020. arXiv: 2004.09549 [cs.IT] (cit. on p. 84).

[IS18] A. Inan and J. Schiefer. Playing with Low-Density Parity-Check Codes. 2018. url:
https://github.com/xdsopl/LDPC (cit. on p. 72).

[Isl+17] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak. “Power-Domain Non-
Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges”. In:
IEEE Communications Surveys Tutorials 19.2 (2017), pp. 721–742. doi: 10.1109/
COMST.2016.2621116 (cit. on p. 26).

[JCS11] H. Ji, J. Cho, andW. Sung. “Memory Access Optimized Implementation of Cyclic and
Quasi-Cyclic LDPC Codes on a GPGPU”. In: Springer Journal of Signal Processing
Systems (JSPS) 64.1 (July 1, 2011), p. 149. doi: 10.1007/s11265-010-0547-9 (cit. on
p. 103).

[Kan17] P. Kanapickas. libsimdpp. 2017. url: https://github.com/p12tic/libsimdpp (cit. on
p. 36).

143

https://hal.archives-ouvertes.fr/hal-02167083v2
https://hal.archives-ouvertes.fr/hal-02167083v2
https://doi.org/10.1109/AERO.2019.8742225
https://doi.org/10.1109/AERO.2019.8742225
https://arxiv.org/abs/2001.03645
https://doi.org/10.1109/CompComm.2017.8322900
https://doi.org/10.1109/CompComm.2017.8322900
https://doi.org/10.1109/ICCT.2013.6820375
http://kom.aau.dk/~heb/kurser/NOTER/KOFA02.PDF
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://doi.org/10.1049/cp.2011.0622
https://www.huawei.com/ilink/en/download/HW_314849
https://www.huawei.com/ilink/en/download/HW_314849
https://arxiv.org/abs/2004.09549
https://github.com/xdsopl/LDPC
https://doi.org/10.1109/COMST.2016.2621116
https://doi.org/10.1109/COMST.2016.2621116
https://doi.org/10.1007/s11265-010-0547-9
https://github.com/p12tic/libsimdpp

Bibliography

[Kar+13] A. Karlsson, J. Sohl, J. Wang, and D. Liu. “ePUMA: A Unique Memory Access
based Parallel DSP Processor for SDR and CR”. In: Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, Dec. 2013, pp. 1234–1237. doi:
10.1109/GlobalSIP.2013.6737131 (cit. on p. 115).

[KK17a] S. Keskin and T. Kocak. “GPU Accelerated Gigabit Level BCH and LDPC Con-
catenated Coding System”. In: High Performance Extreme Computing Conference
(HPEC). IEEE, Sept. 2017, pp. 1–4. doi: 10.1109/HPEC.2017.8091021 (cit. on
pp. 103, 115).

[KK17b] S. Keskin and T. Kocak. “GPU-Based Gigabit LDPC Decoder”. In: IEEE Communi-
cations Letters (COMML) 21.8 (Aug. 2017), pp. 1703–1706. doi: 10.1109/LCOMM.
2017.2704113 (cit. on pp. 103, 135).

[KL12] M. Kretz and V. Lindenstruth. “Vc: A C++ Library for Explicit Vectorization”. In:
Software: Practice and Experience 42.11 (2012), pp. 1409–1430. doi: 10.1002/spe.
1149 (cit. on p. 36).

[KM12] S. Kang and J. Moon. “Parallel LDPC Decoder Implementation on GPU Based on
Unbalanced Memory Coalescing”. In: International Conference on Communications
(ICC). IEEE, June 2012, pp. 3692–3697. doi: 10.1109/ICC.2012.6363991 (cit. on
p. 103).

[Knu73] D.E. Knuth. The Art of Computer Programming. 3. Addison-Wesley, 1973, pp. 207–
209 (cit. on p. 57).

[KR08] G. Kaur and V. Raj. “Multirate Digital Signal Processing for Software Defined
Radio (SDR) Technology”. In: International Conference on Emerging Trends in
Engineering and Technology (ICETET). IEEE, July 2008, pp. 110–115. doi: 10.
1109/ICETET.2008.207 (cit. on p. 115).

[KS16] V. P. Klimentyev and A. B. Sergienko. “Detection of SCMA Signal with Channel
Estimation Error”. In: Conference of Open Innovations Association and Seminar on
Information Security and Protection of Information Technology (FRUCT-ISPIT).
IEEE, Apr. 2016, pp. 106–112. doi: 10.1109/FRUCT-ISPIT.2016.7561515 (cit. on
p. 78).

[KS17] V. P. Klimentyev and A. B. Sergienko. “SCMA Codebooks Optimization Based on
Genetic Algorithm”. In: European Wireless Conference. IEEE, May 2017, pp. 1–6.
url: https://ieeexplore.ieee.org/document/8011314 (cit. on p. 78).

[KSK19] Y. Krainyk, I. Sidenko, and O Kylymovych. “Software Models for Investigation of
Turbo-Product-codes Decoding”. In: International Conference on ICT in Education,
Research, and Industrial Applications (ICTERI). June 2019. url: http://ceur-
ws.org/Vol-2387/20190152.pdf (cit. on p. 85).

[Kun14] P. Kundert. EZPWD Reed-Solomon. 2014. url: https://github.com/pjkundert/
ezpwd-reed-solomon (cit. on p. 72).

[Kun18] D. Kun. “High Throughput GPU LDPC Encoder and Decoder for DVB-S2”. In:
Aerospace Conference (AeroConf). IEEE, Mar. 2018, pp. 1–9. doi: 10.1109/AERO.
2018.8396831 (cit. on p. 103).

[Lai+16] B. C. C. Lai, C. Y. Lee, T. H. Chiu, H. K. Kuo, and C. K. Chang. “Unified Designs
for High Performance LDPC Decoding on GPGPU”. In: IEEE Transactions on
Computers (TC) 65.12 (Dec. 2016), pp. 3754–3765. doi: 10.1109/TC.2016.2547379
(cit. on pp. 103, 135).

144

https://doi.org/10.1109/GlobalSIP.2013.6737131
https://doi.org/10.1109/HPEC.2017.8091021
https://doi.org/10.1109/LCOMM.2017.2704113
https://doi.org/10.1109/LCOMM.2017.2704113
https://doi.org/10.1002/spe.1149
https://doi.org/10.1002/spe.1149
https://doi.org/10.1109/ICC.2012.6363991
https://doi.org/10.1109/ICETET.2008.207
https://doi.org/10.1109/ICETET.2008.207
https://doi.org/10.1109/FRUCT-ISPIT.2016.7561515
https://ieeexplore.ieee.org/document/8011314
http://ceur-ws.org/Vol-2387/20190152.pdf
http://ceur-ws.org/Vol-2387/20190152.pdf
https://github.com/pjkundert/ezpwd-reed-solomon
https://github.com/pjkundert/ezpwd-reed-solomon
https://doi.org/10.1109/AERO.2018.8396831
https://doi.org/10.1109/AERO.2018.8396831
https://doi.org/10.1109/TC.2016.2547379

Bibliography

[LCL18] F. Lemaitre, B. Couturier, and L. Lacassagne. “Small SIMD Matrices for CERN High
Throughput Computing”. In: Workshop on Programming Models for SIMD/Vector
Processing (WPMVP). Vienna, Austria: ACM, Feb. 2018. doi: 10.1145/3178433.
3178434 (cit. on p. 85).

[Le 15] B. Le Gal. Fast LDPC Decoder for x86. 2015. url: https://github.com/blegal/
Fast_LDPC_decoder_for_x86 (cit. on p. 72).

[Léo+18a] M. Léonardon, C. Leroux, D. Binet, J.M. P. Langlois, C. Jégo, and Y. Savaria.
“Custom Low Power Processor for Polar Decoding”. In: International Symposium
on Circuits and Systems (ISCAS). IEEE, May 2018, pp. 1–5. doi: 10.1109/ISCAS.
2018.8351739 (cit. on p. 85).

[Léo+18b] M. Léonardon, C. Leroux, P. Jääskeläinen, C. Jégo, and Y. Savaria. “Transport
Triggered Polar Decoders”. In: International Symposium on Turbo Codes and Iterative
Information Processing (ISTC). IEEE, 2018. doi: 10.1109/ISTC.2018.8625310
(cit. on p. 84).

[Ler+13] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross. “A Semi-Parallel Successive-
Cancellation Decoder for Polar Codes”. In: IEEE Transactions on Signal Processing
(TSP) 61.2 (Jan. 2013), pp. 289–299. doi: 10.1109/TSP.2012.2223693 (cit. on p. 58).

[Li+13] R. Li, J. Zhou, Y. Dou, S. Guo, D. Zou, and S. Wang. “A Multi-Standard Effi-
cient Column-Layered LDPC Decoder for Software Defined Radio on GPUs”. In:
International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC). IEEE, June 2013, pp. 724–728. doi: 10.1109/SPAWC.2013.6612145
(cit. on p. 103).

[Li+14] R. Li, Y. Dou, J. Xu, X. Niu, and S. Ni. “An Efficient Parallel SOVA-based
Turbo Decoder for Software Defined Radio on GPU”. In: IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 97.5 (2014),
pp. 1027–1036. doi: 10.1587/transfun.E97.A.1027 (cit. on pp. 59, 105, 115).

[Li+16] A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo. “Implementation of a
Fully-Parallel Turbo Decoder on a General-Purpose Graphics Processing Unit”. In:
IEEE Access 4 (2016), pp. 5624–5639. doi: 10.1109/ACCESS.2016.2586309 (cit. on
p. 105).

[Lia+06] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh. “Data and Computation Transformations
for Brook Streaming Applications on Multiprocessors”. In: International Symposium
on Code Generation and Optimization (CGO). IEEE, Mar. 2006, pp. 207–219. doi:
10.1109/CGO.2006.13 (cit. on p. 115).

[Liu+13] C. Liu, Z. Bie, C. Chen, and X. Jiao. “A Parallel LTE Turbo Decoder on GPU”. In:
International Conference on Communication Technology (ICCT). IEEE, Nov. 2013,
pp. 609–614. doi: 10.1109/ICCT.2013.6820447 (cit. on pp. 59, 105).

[LJ15] B. Le Gal and C. Jégo. “High-Throughput LDPC Decoder on Low-Power Embed-
ded Processors”. In: IEEE Communications Letters (COMML) 19.11 (Nov. 2015),
pp. 1861–1864. doi: 10.1109/LCOMM.2015.2477081 (cit. on p. 32).

[LJ16] B. Le Gal and C. Jégo. “High-Throughput Multi-Core LDPC Decoders Based on
x86 Processor”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS)
27.5 (May 2016), pp. 1373–1386. doi: 10.1109/TPDS.2015.2435787 (cit. on pp. 32,
45, 89, 103, 131).

145

https://doi.org/10.1145/3178433.3178434
https://doi.org/10.1145/3178433.3178434
https://github.com/blegal/Fast_LDPC_decoder_for_x86
https://github.com/blegal/Fast_LDPC_decoder_for_x86
https://doi.org/10.1109/ISCAS.2018.8351739
https://doi.org/10.1109/ISCAS.2018.8351739
https://doi.org/10.1109/ISTC.2018.8625310
https://doi.org/10.1109/TSP.2012.2223693
https://doi.org/10.1109/SPAWC.2013.6612145
https://doi.org/10.1587/transfun.E97.A.1027
https://doi.org/10.1109/ACCESS.2016.2586309
https://doi.org/10.1109/CGO.2006.13
https://doi.org/10.1109/ICCT.2013.6820447
https://doi.org/10.1109/LCOMM.2015.2477081
https://doi.org/10.1109/TPDS.2015.2435787

Bibliography

[LJ17] B. Le Gal and C. Jégo. “Low-Latency Software LDPC Decoders for x86 Multi-Core
Devices”. In: International Workshop on Signal Processing Systems (SiPS). IEEE,
Oct. 2017, pp. 1–6. doi: 10.1109/SiPS.2017.8110001 (cit. on pp. 89, 103, 115).

[LJ19] B. Le Gal and C. Jégo. “Low-latency and High-throughput Software Turbo Decoders
on Multi-core Architectures”. In: Springer Annals of Telecommunications 75 (Aug.
2019), pp. 27–42. doi: 10.1007/s12243-019-00727-5 (cit. on pp. 32, 45, 85, 101, 102,
105, 115).

[LJC14] B. Le Gal, C. Jégo, and J. Crenne. “A High Throughput Efficient Approach for
Decoding LDPC Codes onto GPU Devices”. In: IEEE Embedded Systems Letters
(ESL) 6.2 (June 2014), pp. 29–32. doi: 10.1109/LES.2014.2311317 (cit. on pp. 103,
115, 135).

[LL16] Y. Li and R. Liu. “High Throughput GPU Polar Decoder”. In: International Confer-
ence on Computer and Communications (ICCC). IEEE, Oct. 2016, pp. 1123–1127.
doi: 10.1109/CompComm.2016.7924879 (cit. on p. 104).

[LLJ14] B. Le Gal, C. Leroux, and C. Jégo. “Software Polar Decoder on an Embedded
Processor”. In: International Workshop on Signal Processing Systems (SiPS). IEEE,
Oct. 2014, pp. 1–6. doi: 10.1109/SiPS.2014.6986083 (cit. on pp. 94, 104).

[LLJ15] B. Le Gal, C. Leroux, and C. Jégo. “Multi-Gb/s Software Decoding of Polar Codes”.
In: IEEE Transactions on Signal Processing (TSP) 63.2 (Jan. 2015), pp. 349–359.
doi: 10.1109/TSP.2014.2371781 (cit. on pp. 48, 56, 78, 94, 97, 104, 115).

[LLJ18] B. Le Gal, C. Leroux, and C. Jégo. “High-Performance Software Implementation of
SCAN Decoders for Polar codes”. In: Springer Annals of Telecommunications 73.5
(June 2018), pp. 401–412. doi: 10.1007/s12243-018-0634-7 (cit. on pp. 32, 104).

[Llo09] J. Lloyd. FECpp: Erasure Codes based on Vandermonde Matrices. 2009. url: https:
//github.com/randombit/fecpp (cit. on p. 72).

[LM87] E. A. Lee and D. G. Messerschmitt. “Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing”. In: IEEE Transactions on Computers (TC)
C-36.1 (Jan. 1987), pp. 24–35. doi: 10.1109/TC.1987.5009446 (cit. on p. 115).

[LN14] Y. Lin and W. Niu. “High Throughput LDPC Decoder on GPU”. In: IEEE Commu-
nications Letters (COMML) 18.2 (Feb. 2014), pp. 344–347. doi: 10.1109/LCOMM.
2014.010214.132406 (cit. on p. 103).

[LST12] B. Li, H. Shen, and D. Tse. “An Adaptive Successive Cancellation List Decoder for
Polar Codes with Cyclic Redundancy Check”. In: IEEE Communications Letters
(COMML) 16.12 (Dec. 2012), pp. 2044–2047. doi: 10.1109/LCOMM.2012.111612.
121898 (cit. on p. 17).

[Lu+15] L. Lu, Y. Chen, W. Guo, H. Yang, Y. Wu, and S. Xing. “Prototype for 5G New
Air Interface Technology SCMA and Performance Evaluation”. In: IEEE China
Communications 12.Supplement (Dec. 2015), pp. 38–48. doi: 10.1109/CC.2015.
7386169 (cit. on p. 26).

[LXY14] J. Lin, C. Xiong, and Z. Yan. “A Reduced Latency List Decoding Algorithm for
Polar Codes”. In: International Workshop on Signal Processing Systems (SiPS).
IEEE, Oct. 2014, pp. 1–6. doi: 10.1109/SiPS.2014.6986062 (cit. on p. 50).

[Mab17] J. Mabille. xsimd. 2017. url: https://github.com/xtensor-stack/xsimd (cit. on
p. 36).

146

https://doi.org/10.1109/SiPS.2017.8110001
https://doi.org/10.1007/s12243-019-00727-5
https://doi.org/10.1109/LES.2014.2311317
https://doi.org/10.1109/CompComm.2016.7924879
https://doi.org/10.1109/SiPS.2014.6986083
https://doi.org/10.1109/TSP.2014.2371781
https://doi.org/10.1007/s12243-018-0634-7
https://github.com/randombit/fecpp
https://github.com/randombit/fecpp
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/LCOMM.2014.010214.132406
https://doi.org/10.1109/LCOMM.2014.010214.132406
https://doi.org/10.1109/LCOMM.2012.111612.121898
https://doi.org/10.1109/LCOMM.2012.111612.121898
https://doi.org/10.1109/CC.2015.7386169
https://doi.org/10.1109/CC.2015.7386169
https://doi.org/10.1109/SiPS.2014.6986062
https://github.com/xtensor-stack/xsimd

Bibliography

[MBB15] M. R. Maheshwarappa, M. Bowyer, and C. P. Bridges. “Software Defined Radio
(SDR) Architecture to Support Multi-satellite Communications”. In: Aerospace
Conference (AeroConf). IEEE, Mar. 2015, pp. 1–10. doi: 10.1109/AERO.2015.
7119186 (cit. on p. 115).

[MBJ09] O. Muller, A. Baghdadi, and M. Jezequel. “From Parallelism Levels to a Multi-ASIP
Architecture for Turbo Decoding”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 17.1 (Jan. 2009), pp. 92–102. doi: 10.1109/TVLSI.2008.
2003164 (cit. on pp. 59, 60).

[Mit92] J. Mitola. “Software Radios-Survey, Critical Evaluation and Future Directions”. In:
NTC-92: National Telesystems Conference. IEEE, May 1992, pp. 13/15–13/23. doi:
10.1109/NTC.1992.267870 (cit. on p. 25).

[Mit93] J. Mitola. “Software Radios: Survey, Critical Evaluation and Future Directions”. In:
IEEE Aerospace and Electronic Systems Magazine 8.4 (Apr. 1993), pp. 25–36. doi:
10.1109/62.210638 (cit. on pp. 25, 115).

[MK19] S. Meshram and N. Kolhare. “The Advent Software Defined Radio: FM Receiver
with RTL SDR and GNU Radio”. In: International Conference on Smart Systems
and Inventive Technology (ICSSIT). IEEE, Nov. 2019, pp. 230–235. doi: 10.1109/
ICSSIT46314.2019.8987588 (cit. on p. 115).

[MMA19] N. A. Mohammed, A. M. Mansoor, and R. B. Ahmad. “Mission-Critical Machine-
Type Communication: An Overview and Perspectives Towards 5G”. In: IEEE Access
7 (2019), pp. 127198–127216. doi: 10.1109/ACCESS.2019.2894263 (cit. on p. 85).

[MN95] D. J. C. MacKay and R. M. Neal. “Good Codes Based on Very Sparse Matrices”.
In: IMA International Conference on Cryptography and Coding (IMA-CCC). UK:
Springer, Dec. 1995, pp. 100–111. doi: 10.1007/3-540-60693-9_13 (cit. on pp. 8,
12).

[MN98] M. Matsumoto and T. Nishimura. “Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator”. In: ACM Transactions
on Modeling and Computer Simulation (TOMACS) 8.1 (1998), pp. 3–30. doi:
10.1145/272991.272995 (cit. on p. 42).

[Möl16] R. Möller. Design of a Low-Level C++ Template SIMD Library. Tech. rep. Bielefeld
University, Faculty of Technology, Computer Engineering Group, 2016. url: http:
//www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html (cit. on
p. 36).

[Mor06] R. H. Morelos-Zaragoza. the-art-of-ecc.com. 2006. url: http://www.the-art-of-
ecc.com (cit. on p. 72).

[Mor89] R. H. Morelos-Zaragoza. The Error Correcting Codes (ECC) Page. 1989. url:
http://www.eccpage.com (cit. on p. 72).

[Mul54] D. E. Muller. “Application of Boolean Algebra to Switching Circuit Design and
to Error Detection”. In: Transactions of the IRE Professional Group on Electronic
Computers EC-3.3 (Sept. 1954), pp. 6–12. doi: 10.1109/IREPGELC.1954.6499441
(cit. on p. 9).

[NB13] H. Nikopour and H. Baligh. “Sparse Code Multiple Access”. In: International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).
IEEE, Sept. 2013, pp. 332–336. doi: 10.1109/PIMRC.2013.6666156 (cit. on pp. 26,
78).

147

https://doi.org/10.1109/AERO.2015.7119186
https://doi.org/10.1109/AERO.2015.7119186
https://doi.org/10.1109/TVLSI.2008.2003164
https://doi.org/10.1109/TVLSI.2008.2003164
https://doi.org/10.1109/NTC.1992.267870
https://doi.org/10.1109/62.210638
https://doi.org/10.1109/ICSSIT46314.2019.8987588
https://doi.org/10.1109/ICSSIT46314.2019.8987588
https://doi.org/10.1109/ACCESS.2019.2894263
https://doi.org/10.1007/3-540-60693-9_13
https://doi.org/10.1145/272991.272995
http://www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
http://www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
http://www.the-art-of-ecc.com
http://www.the-art-of-ecc.com
http://www.eccpage.com
https://doi.org/10.1109/IREPGELC.1954.6499441
https://doi.org/10.1109/PIMRC.2013.6666156

Bibliography

[NC18] K. Natarajan and N. Chandrachoodan. “Lossless Parallel Implementation of a Turbo
Decoder on GPU”. In: International Conference on High Performance Computing
(HiPC). Dec. 2018, pp. 133–142. doi: 10.1109/HiPC.2018.00023 (cit. on p. 85).

[Nea06] R. Neal. Software for Low Density Parity Check codes. 2006. url: https://github.
com/radfordneal/LDPC-codes (cit. on p. 72).

[NGM15] NGMN Alliance. 5G White Paper. 2015. url: https : / /www . ngmn . org /wp -
content/uploads/NGMN_5G_White_Paper_V1_0.pdf (cit. on p. 26).

[Nik15] N. Nikaein. “Processing Radio Access Network Functions in the Cloud: Critical
Issues and Modeling”. In: International Workshop on Mobile Cloud Computing and
Services (MCS). ACM, 2015, pp. 36–43. doi: 10.1145/2802130.2802136 (cit. on
p. 26).

[NRV16] R. Nivin, J. S. Rani, and P. Vidhya. “Design and Hardware Implementation of
Reconfigurable Nano Satellite Communication System using FPGA based SDR for
FM/FSK Demodulation and BPSK Modulation”. In: International Conference on
Communication Systems and Networks (ComNet). IEEE, July 2016, pp. 1–6. doi:
10.1109/CSN.2016.7823976 (cit. on p. 115).

[Ope13] OpenMP Architecture Review Board. OpenMP Application Program Interface. 2013.
url: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf (cit. on p. 35).

[pab16] pabr. leansdr: Lightweight, Portable Software-defined Radio. 2016. url: https :
//github.com/pabr/leansdr (cit. on p. 131).

[Pal+10] M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, L. Van der Perre, and F. Catthoor.
“Future Software-Defined Radio Platforms and Mapping Flows”. In: IEEE Signal
Processing Magazine 27.2 (Mar. 2010), pp. 22–33. doi: 10.1109/MSP.2009.935386
(cit. on p. 115).

[Pal+12] M. Palkovic, J. Declerck, P. Avasare, M. Glassee, A. Dewilde, P. Raghavan, A.
Dejonghe, and L. Van der Perre. “DART - a High Level Software-Defined Radio
Platform Model for Developing the Run-Time Controller”. In: Springer Journal of
Signal Processing Systems (JSPS) 69 (Mar. 2012), pp. 317–327. doi: 10.1007/s11265-
012-0669-3 (cit. on p. 115).

[Pan+13] Xia Pan, Xiao-fan Lu, Ming-qi Li, and Rong-fang Song. “A High Throughput LDPC
Decoder in CMMB Based on Virtual Radio”. In: Wireless Communications and
Networking Conference Workshops (WCNCW). IEEE, Apr. 2013, pp. 95–99. doi:
10.1109/WCNCW.2013.6533323 (cit. on p. 103).

[Par10] A. Partow. Schifra: Reed-Solomon Error Correcting Code Library for Software
Applications Implemented in C++. 2010. url: https://github.com/ArashPartow/
schifra (cit. on p. 72).

[Pig+18] V. Pignoly, B. Le Gal, C. Jégo, and B. Gadat. “High Data Rate and Flexible Hard-
ware QC-LDPC Decoder for Satellite Optical Communications”. In: International
Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE,
Dec. 2018, pp. 1–5. doi: 10.1109/ISTC.2018.8625274 (cit. on p. 84).

[PM12] M. Pharr and W. R. Mark. “ispc: A SPMD Compiler for High-Performance CPU
Programming”. In: Innovative Parallel Computing (InPar). IEEE, May 2012, pp. 1–
13. doi: 10.1109/InPar.2012.6339601 (cit. on p. 35).

148

https://doi.org/10.1109/HiPC.2018.00023
https://github.com/radfordneal/LDPC-codes
https://github.com/radfordneal/LDPC-codes
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://doi.org/10.1145/2802130.2802136
https://doi.org/10.1109/CSN.2016.7823976
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://github.com/pabr/leansdr
https://github.com/pabr/leansdr
https://doi.org/10.1109/MSP.2009.935386
https://doi.org/10.1007/s11265-012-0669-3
https://doi.org/10.1007/s11265-012-0669-3
https://doi.org/10.1109/WCNCW.2013.6533323
https://github.com/ArashPartow/schifra
https://github.com/ArashPartow/schifra
https://doi.org/10.1109/ISTC.2018.8625274
https://doi.org/10.1109/InPar.2012.6339601

Bibliography

[Poh+16] A. Pohl, B. Cosenza, M. A. Mesa, C. C. Chi, and B. Juurlink. “An Evaluation
of Current SIMD Programming Models for C++”. In: Workshop on Programming
Models for SIMD/Vector Processing (WPMVP). Barcelona, Spain: ACM, 2016,
3:1–3:8. doi: 10.1145/2870650.2870653 (cit. on p. 35).

[Pou+18] S. Poulenard, B. Gadat, J. F. Chouteau, T. Anfray, C. Poulliat, C. Jego, O.
Hartmann, G. Artaud, and H. Meric. “Forward Error Correcting Code for High
Data Rate LEO Satellite Optical Downlinks”. In: International Conference on Space
Optics (ICSO). Ed. by Zoran Sodnik, Nikos Karafolas, and Bruno Cugny. Vol. 11180.
International Society for Optics and Photonics. SPIE, 2018, pp. 2029–2038. doi:
10.1117/12.2536120 (cit. on p. 84).

[PPL95] T. M. Parks, J. L. Pino, and E. A. Lee. “A Comparison of Synchronous and Cycle-
Static Dataflow”. In: Asilomar Conference on Signals, Systems, and Computers
(ACSSC). Vol. 1. IEEE, Oct. 1995, pp. 204–210. doi: 10.1109/ACSSC.1995.540541
(cit. on p. 115).

[PT+15] T. T. Pham, T. Tsou, et al. TurboFEC - SIMD Vectorized LTE Turbo and Con-
volutional Encoders and Decoders. 2015. url: https://github.com/ttsou/turbofec
(cit. on p. 72).

[Pyn+94] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq. “Near Optimum Decoding of
Product Codes”. In: Global Communications Conference (GLOBECOM). Vol. 1.
IEEE, Nov. 1994, pp. 339–343. doi: 10.1109/GLOCOM.1994.513494 (cit. on p. 8).

[Ree54] I. Reed. “A Class of Multiple-error-correcting Codes and the Decoding Scheme”.
In: Transactions of the IRE Professional Group on Information Theory 4.4 (Sept.
1954), pp. 38–49. doi: 10.1109/TIT.1954.1057465 (cit. on p. 9).

[RG17] V. Q. Rodriguez and F. Guillemin. “Towards the Deployment of a Fully Centralized
Cloud-RAN Architecture”. In: International Wireless Communications and Mobile
Computing Conference (IWCMC). IEEE, June 2017, pp. 1055–1060. doi: 10.1109/
IWCMC.2017.7986431 (cit. on p. 26).

[RHV20] C. Rush, K. Hsieh, and R. Venkataramanan. Capacity-achieving Spatially Coupled
Sparse Superposition Codes with AMP Decoding. Feb. 2020. arXiv: 2002.07844
[cs.IT] (cit. on p. 84).

[RL09] W. Ryan and S. Lin. Channel Codes: Classical and Modern. Cambridge University
Press, Sept. 2009. doi: 10.1017/CBO9780511803253 (cit. on p. 131).

[Rob13] A. D. Robison. “Composable Parallel Patterns with Intel Cilk Plus”. In: IEEE
Computing in Science & Engineering (CS&E) 15.2 (Mar. 2013), pp. 66–71. doi:
10.1109/MCSE.2013.21 (cit. on p. 35).

[Ron+06] T. Rondeau, J. Blum, J. Corgan, S. Koslowski, E. Blossom, M. Müller, T. O’Shea,
B. Reynwar, M. Dickens, A. Rode, R. Economos, M. Braun, et al. GNURadio: the
Free and Open Software Radio Ecosystem. 2006. url: https://github.com/gnuradio/
gnuradio (cit. on pp. 72, 116).

[Ros+14] P. Rost, C. J. Bernardos, A. D. Domenico, M. D. Girolamo, M. Lalam, A. Maeder,
D. Sabella, and D. Wübben. “Cloud Technologies for Flexible 5G Radio Access
Networks”. In: IEEE Communications Magazine 52.5 (May 2014), pp. 68–76. doi:
10.1109/MCOM.2014.6898939 (cit. on pp. 25, 115).

[RS60] I. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In: Journal
of the Society for Industrial and Applied Mathematics 8.2 (1960), pp. 300–304. doi:
10.1137/0108018 (cit. on p. 8).

149

https://doi.org/10.1145/2870650.2870653
https://doi.org/10.1117/12.2536120
https://doi.org/10.1109/ACSSC.1995.540541
https://github.com/ttsou/turbofec
https://doi.org/10.1109/GLOCOM.1994.513494
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1109/IWCMC.2017.7986431
https://doi.org/10.1109/IWCMC.2017.7986431
https://arxiv.org/abs/2002.07844
https://arxiv.org/abs/2002.07844
https://doi.org/10.1017/CBO9780511803253
https://doi.org/10.1109/MCSE.2013.21
https://github.com/gnuradio/gnuradio
https://github.com/gnuradio/gnuradio
https://doi.org/10.1109/MCOM.2014.6898939
https://doi.org/10.1137/0108018

Bibliography

[SA13] S. Shaik and S. Angadi. “Architecture and Component Selection for SDR Applica-
tions”. In: International Journal of Engineering Trends and Technology (IJETT) 4.4
(2013), pp. 691–694. url: http://www.ijettjournal.org/volume-4/issue-4/IJETT-
V4I4P236.pdf (cit. on p. 115).

[Sar+14a] G. Sarkis, P. Giard, C. Thibeault, and W. J. Gross. “Autogenerating Software Polar
Decoders”. In: Global Conference on Signal and Information Processing (GlobalSIP).
IEEE, Dec. 2014, pp. 6–10. doi: 10.1109/GlobalSIP.2014.7032067 (cit. on pp. 94,
96, 97, 99, 104).

[Sar+14b] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross. “Fast Polar Decoders:
Algorithm and Implementation”. In: IEEE Journal on Selected Areas in Commu-
nications (JSAC) 32.5 (May 2014), pp. 946–957. doi: 10.1109/JSAC.2014.140514
(cit. on pp. 16, 94).

[Sar+14c] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross. “Increasing the Speed
of Polar List Decoders”. In: International Workshop on Signal Processing Systems
(SiPS). IEEE, Oct. 2014, pp. 1–6. doi: 10.1109/SiPS.2014.6986089 (cit. on pp. 57,
58, 99, 104).

[Sar+16] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross. “Fast List Decoders
for Polar Codes”. In: IEEE Journal on Selected Areas in Communications (JSAC)
34.2 (Feb. 2016), pp. 318–328. doi: 10.1109/JSAC.2015.2504299 (cit. on pp. 16, 32,
50, 56–58, 98, 99, 104).

[SBW06] K. Skey, J. Bradley, and K. Wagner. “A Reuse Approach for FPGA-Based SDR
Waveforms”. In: Military Communications Conference (MILCOM). IEEE, Oct. 2006,
pp. 1–7. doi: 10.1109/MILCOM.2006.302391 (cit. on p. 115).

[Sch32] J. Schreier. “On Tournament Elimination Systems”. In: Mathesis Polska 7 (1932),
pp. 154–160. url: https://ci.nii.ac.jp/naid/10027928626/en/ (cit. on p. 57).

[Sha+19] F. Shaheen, M. F. U. Butt, S. Agha, S. X. Ng, and R. G. Maunder. “Performance
Analysis of High Throughput MAP Decoder for Turbo Codes and Self Concatenated
Convolutional Codes”. In: IEEE Access 7 (2019), pp. 138079–138093. doi: 10.1109/
ACCESS.2019.2942152 (cit. on p. 85).

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System
Technical Journal 27.4 (Oct. 1948), pp. 623–656. doi: 10.1002/j.1538-7305.1948.
tb00917.x (cit. on pp. 6, 7).

[She+16] Y. Shen, C. Zhang, J. Yang, S. Zhang, and X. You. “Low-Latency Software Successive
Cancellation List Polar Decoder using Stage-Located Copy”. In: International
Conference on Digital Signal Processing (DSP). IEEE, Oct. 2016, pp. 84–88. doi:
10.1109/ICDSP.2016.7868521 (cit. on pp. 57, 58, 99, 104).

[She+20] Y. Shen, L. Li, J. Yang, X. Tan, Z. Zhang, X. You, and C. Zhang. “Low-Latency
Segmented List-Pruning Software Polar List Decoder”. In: IEEE Transactions on
Vehicular Technology 69.4 (Apr. 2020), pp. 3575–3589. doi: 10.1109/TVT.2020.
2973552 (cit. on p. 85).

[Sho04] A. Shokrollahi. “Raptor Codes”. In: International Symposium on Information Theory
(ISIT). IEEE, June 2004, pp. 36–. doi: 10.1109/ISIT.2004.1365073 (cit. on p. 9).

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Addison-Wesley Profes-
sional, 2013 (cit. on pp. 51, 70).

150

http://www.ijettjournal.org/volume-4/issue-4/IJETT-V4I4P236.pdf
http://www.ijettjournal.org/volume-4/issue-4/IJETT-V4I4P236.pdf
https://doi.org/10.1109/GlobalSIP.2014.7032067
https://doi.org/10.1109/JSAC.2014.140514
https://doi.org/10.1109/SiPS.2014.6986089
https://doi.org/10.1109/JSAC.2015.2504299
https://doi.org/10.1109/MILCOM.2006.302391
https://ci.nii.ac.jp/naid/10027928626/en/
https://doi.org/10.1109/ACCESS.2019.2942152
https://doi.org/10.1109/ACCESS.2019.2942152
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1109/ICDSP.2016.7868521
https://doi.org/10.1109/TVT.2020.2973552
https://doi.org/10.1109/TVT.2020.2973552
https://doi.org/10.1109/ISIT.2004.1365073

Bibliography

[Str20] B. Stroustrup. “Thriving in a Crowded and Changing World: C++ 2006–2020”. In:
Proceedings of the ACM on Programming Languages (PACMPL) 4.HOPL (June
2020). doi: 10.1145/3386320 (cit. on p. 70).

[Stu+11] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang. “Design and Implementation of
a Parallel Turbo-Decoder ASIC for 3GPP-LTE”. In: IEEE Journal of Solid-State
Circuits (JSSC) 46.1 (Jan. 2011), pp. 8–17. doi: 10.1109/JSSC.2010.2075390 (cit. on
p. 22).

[SWC17] G. Song, X. Wang, and J. Cheng. “Signature Design of Sparsely Spread Code
Division Multiple Access Based on Superposed Constellation Distance Analysis”. In:
IEEE Access 5 (Oct. 2017), pp. 23809–23821. doi: 10.1109/ACCESS.2017.2765346
(cit. on p. 78).

[TA10] W. Thies and S. Amarasinghe. “An Empirical Characterization of Stream Programs
and its Implications for Language and Compiler Design”. In: International Conference
on Parallel Architectures and Compilation Techniques (PACT). ACM/IEEE, Sept.
2010, pp. 365–376. doi: 10.1145/1854273.1854319 (cit. on p. 115).

[Tav16a] S. Tavildar. C and MATLAB Implementations for LDPC Codes. 2016. url: https:
//github.com/tavildar/LDPC (cit. on p. 72).

[Tav16b] S. Tavildar. C and MATLAB Implementations for Polar Codes. 2016. url: https:
//github.com/tavildar/Polar (cit. on p. 72).

[Tay+17] C. Taylor, E. Nemerson, M. Corallo, and M. Al-Bassam. Leopard-RS: MDS Reed-
Solomon Erasure Correction Codes for Large Data in C. 2017. url: https://github.
com/catid/leopard (cit. on p. 72).

[Tay18a] C. Taylor. FEC-AL: Forward Error Correction at the Application Layer in C. 2018.
url: https://github.com/catid/fecal (cit. on p. 72).

[Tay18b] C. Taylor. Siamese: Infinite-Window Streaming Erasure Code (HARQ). 2018. url:
https://github.com/catid/siamese (cit. on p. 72).

[TB20] A. Tasdighi and E. Boutillon. Integer Ring Sieve (IRS) for Constructing Compact
QC-LDPC Codes with Large Girth. Mar. 2020. arXiv: 2003.08707 [cs.IT] (cit. on
p. 84).

[Ton+16a] T. Tonnellier, C. Leroux, B. Le Gal, B. Gadat, C. Jégo, and N. Van Wambeke.
“Lowering the Error Floor of Turbo Codes With CRC Verification”. In: IEEE Wireless
Communications Letters (WCL) 5.4 (Aug. 2016), pp. 404–407. doi: 10.1109/LWC.
2016.2571283 (cit. on p. 77).

[Ton+16b] T. Tonnellier, C. Leroux, B. Le Gal, C. Jégo, B. Gadat, and N. Van Wambeke.
“Lowering the Error Floor of Double-Binary Turbo Codes: The Flip and Check
Algorithm”. In: International Symposium on Turbo Codes and Iterative Information
Processing (ISTC). IEEE, Sept. 2016, pp. 156–160. doi: 10.1109/ISTC.2016.7593096
(cit. on p. 77).

[Ton17] T. Tonnellier. “Contribution to the Improvement of the Decoding Performance of
Turbo Codes : Algorithms and Architecture”. PhD thesis. Université de Bordeaux,
2017. url: https://tel.archives-ouvertes.fr/tel-01580476 (cit. on p. 77).

[Tri12] P. Trifonov. “Efficient Design and Decoding of Polar Codes”. In: IEEE Transactions
on Communications (TCOM) 60.11 (Nov. 2012), pp. 3221–3227. doi: 10.1109/
TCOMM.2012.081512.110872 (cit. on pp. 12, 15).

151

https://doi.org/10.1145/3386320
https://doi.org/10.1109/JSSC.2010.2075390
https://doi.org/10.1109/ACCESS.2017.2765346
https://doi.org/10.1145/1854273.1854319
https://github.com/tavildar/LDPC
https://github.com/tavildar/LDPC
https://github.com/tavildar/Polar
https://github.com/tavildar/Polar
https://github.com/catid/leopard
https://github.com/catid/leopard
https://github.com/catid/fecal
https://github.com/catid/siamese
https://arxiv.org/abs/2003.08707
https://doi.org/10.1109/LWC.2016.2571283
https://doi.org/10.1109/LWC.2016.2571283
https://doi.org/10.1109/ISTC.2016.7593096
https://tel.archives-ouvertes.fr/tel-01580476
https://doi.org/10.1109/TCOMM.2012.081512.110872
https://doi.org/10.1109/TCOMM.2012.081512.110872

Bibliography

[TV11] I. Tal and A. Vardy. “List Decoding of Polar Codes”. In: International Symposium
on Information Theory (ISIT). IEEE, July 2011, pp. 1–5. doi: 10.1109/ISIT.2011.
6033904 (cit. on pp. 15, 57, 58).

[Vam+19] M. Vameghestahbanati, I. D. Marsland, R. H. Gohary, and H. Yanikomeroglu.
“Multidimensional Constellations for Uplink SCMA Systems – A Comparative
Study”. In: IEEE Communications Surveys Tutorials 21.3 (2019), pp. 2169–2194.
doi: 10.1109/COMST.2019.2910569 (cit. on p. 85).

[VF00] J. Vogt and A. Finger. “Improving the max-log-MAP Turbo Decoder”. In: IET
Electronics Letters 36.23 (Nov. 2000), pp. 1937–1939. doi: 10.1049/el:20001357
(cit. on p. 22).

[Wan+11a] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro. “A Massively Parallel Implementation
of QC-LDPC Decoder on GPU”. In: Symposium on Application Specific Processors
(SASP). IEEE, June 2011, pp. 82–85. doi: 10.1109/SASP.2011.5941084 (cit. on
p. 103).

[Wan+11b] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro. “GPU Accelerated Scalable Parallel
Decoding of LDPC Codes”. In: Asilomar Conference on Signals, Systems, and
Computers (ACSSC). IEEE, Nov. 2011, pp. 2053–2057. doi: 10.1109/ACSSC.2011.
6190388 (cit. on p. 103).

[Wan+13] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro. “High Throughput Low Latency
LDPC Decoding on GPU for SDR Systems”. In: Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, Dec. 2013, pp. 1258–1261. doi:
10.1109/GlobalSIP.2013.6737137 (cit. on p. 103).

[Wan+19] Y. Wang, L. Chen, Q. Wang, Y. Zhang, and Z. Xing. “Algorithm and Architec-
ture for Path Metric Aided Bit-Flipping Decoding of Polar Codes”. In: Wireless
Communications and Networking Conference (WCNC). Apr. 2019, pp. 1–6. doi:
10.1109/WCNC.2019.8885419 (cit. on p. 84).

[WCW08] S. Wang, S. Cheng, and Q. Wu. “A Parallel Decoding Algorithm of LDPC Codes
Using CUDA”. In: Asilomar Conference on Signals, Systems, and Computers (AC-
SSC). IEEE, Oct. 2008, pp. 171–175. doi: 10.1109/ACSSC.2008.5074385 (cit. on
p. 103).

[WSC10] M. Wu, Y. Sun, and J. R. Cavallaro. “Implementation of a 3GPP LTE Turbo
Decoder Accelerator on GPU”. In: International Workshop on Signal Processing
Systems (SiPS). IEEE, Oct. 2010, pp. 192–197. doi: 10.1109/SIPS.2010.5624788
(cit. on pp. 59, 60, 105).

[Wu+11] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro. “Implementation of a High Throughput
3GPP Turbo Decoder on GPU”. In: Springer Journal of Signal Processing Systems
(JSPS) 65.2 (Sept. 10, 2011), p. 171. doi: 10.1007/s11265-011-0617-7 (cit. on pp. 59,
60, 105, 135).

[Wu+13] M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro. “HSPA+/LTE-A Turbo
Decoder on GPU and Multicore CPU”. In: Asilomar Conference on Signals, Systems,
and Computers (ACSSC). IEEE, Nov. 2013, pp. 824–828. doi: 10.1109/ACSSC.
2013.6810402 (cit. on pp. 32, 59, 60, 100–102, 105).

[Wub+14] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione, A. Dekorsy,
and G. Fettweis. “Benefits and Impact of Cloud Computing on 5G Signal Processing:
Flexible Centralization Through Cloud-RAN”. In: IEEE Signal Processing Magazine
31.6 (Nov. 2014), pp. 35–44. doi: 10.1109/MSP.2014.2334952 (cit. on p. 25).

152

https://doi.org/10.1109/ISIT.2011.6033904
https://doi.org/10.1109/ISIT.2011.6033904
https://doi.org/10.1109/COMST.2019.2910569
https://doi.org/10.1049/el:20001357
https://doi.org/10.1109/SASP.2011.5941084
https://doi.org/10.1109/ACSSC.2011.6190388
https://doi.org/10.1109/ACSSC.2011.6190388
https://doi.org/10.1109/GlobalSIP.2013.6737137
https://doi.org/10.1109/WCNC.2019.8885419
https://doi.org/10.1109/ACSSC.2008.5074385
https://doi.org/10.1109/SIPS.2010.5624788
https://doi.org/10.1007/s11265-011-0617-7
https://doi.org/10.1109/ACSSC.2013.6810402
https://doi.org/10.1109/ACSSC.2013.6810402
https://doi.org/10.1109/MSP.2014.2334952

Bibliography

[WZC15] Y. Wu, S. Zhang, and Y. Chen. “Iterative Multiuser Receiver in Sparse Code Multiple
Access Systems”. In: International Conference on Communications (ICC). IEEE,
June 2015, pp. 2918–2923. doi: 10.1109/ICC.2015.7248770 (cit. on p. 78).

[Xia+13] J. Xianjun, C. Canfeng, P. Jääskeläinen, V. Guzma, and H. Berg. “A 122Mb/s
Turbo decoder using a mid-range GPU”. In: International Wireless Communications
and Mobile Computing Conference (IWCMC). IEEE, July 2013, pp. 1090–1094. doi:
10.1109/IWCMC.2013.6583709 (cit. on pp. 59, 105, 115, 135).

[Xu+19] Y. Xu, W. Wang, Z. Xu, and X. Gao. “AVX-512 Based Software Decoding for 5G
LDPC Codes”. In: International Workshop on Signal Processing Systems (SiPS).
IEEE, Oct. 2019, pp. 54–59. doi: 10.1109/SiPS47522.2019.9020587 (cit. on pp. 45,
89, 103).

[YC12] D. R. N. Yoge and N. Chandrachoodan. “GPU Implementation of a Programmable
Turbo Decoder for Software Defined Radio Applications”. In: International Confer-
ence on VLSI Design. IEEE, Jan. 2012, pp. 149–154. doi: 10.1109/VLSID.2012.62
(cit. on pp. 59, 105, 115).

[Yeo+01] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. “High Throughput Low-
Density Parity-Check Decoder Architectures”. In: Global Communications Con-
ference (GLOBECOM). Vol. 5. IEEE, 2001, pp. 3019–3024. doi: 10.1109/GLOCOM.
2001.965981 (cit. on p. 12).

[Yin+12] Y. Ying, K. You, L. Zhou, H. Quan, M. Jing, Z. Yu, and X. Zeng. “A Pure
Software LDPC Decoder on a Multi-Core Processor Platform with Reduced Inter-
Processor Communication Cost”. In: International Symposium on Circuits and
Systems (ISCAS). IEEE, May 2012, pp. 2609–2612. doi: 10.1109/ISCAS.2012.
6271839 (cit. on p. 106).

[Zen+17] J. Zeng, C. Wu, Z. Zhang, X. Cheng, G. Xie, J. Han, X. Zeng, and Z. Yu. “A
Multi-core-based Heterogeneous Parallel Turbo Decoder”. In: IEICE Electronics
Express advpub (2017). doi: 10.1587/elex.14.20170768 (cit. on p. 85).

[ZF02] J. Zhang and M. Fossorier. “Shuffled Belief Propagation Decoding”. In: Asilomar
Conference on Signals, Systems, and Computers (ACSSC). Vol. 1. IEEE, Nov. 2002,
pp. 8–15. doi: 10.1109/ACSSC.2002.1197141 (cit. on p. 12).

[Zha+11] J. Zhao, M. Zhao, H. Yang, J. Chen, X. Chen, and J. Wang. “High Performance
LDPC Decoder on Cell BE for WiMAX System”. In: International Conference on
Communications and Mobile Computing (CMC). IEEE, Apr. 2011, pp. 278–281.
doi: 10.1109/CMC.2011.117 (cit. on p. 103).

[Zha+12] Suiping Zhang, Rongrong Qian, Tao Peng, Ran Duan, and Kuilin Chen. “High
Throughput Turbo Decoder Design for GPP Platform”. In: International Conference
on Communications and Networking in China (CHINACOM). IEEE, Aug. 2012,
pp. 817–821. doi: 10.1109/ChinaCom.2012.6417597 (cit. on pp. 32, 59, 60, 100–102,
105).

[Zha+14a] S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen. “Sparse Code Multiple
Access: An Energy Efficient Uplink Approach for 5G Wireless Systems”. In: Global
Communications Conference (GLOBECOM). IEEE, Dec. 2014, pp. 4782–4787. doi:
10.1109/GLOCOM.2014.7037563 (cit. on p. 27).

153

https://doi.org/10.1109/ICC.2015.7248770
https://doi.org/10.1109/IWCMC.2013.6583709
https://doi.org/10.1109/SiPS47522.2019.9020587
https://doi.org/10.1109/VLSID.2012.62
https://doi.org/10.1109/GLOCOM.2001.965981
https://doi.org/10.1109/GLOCOM.2001.965981
https://doi.org/10.1109/ISCAS.2012.6271839
https://doi.org/10.1109/ISCAS.2012.6271839
https://doi.org/10.1587/elex.14.20170768
https://doi.org/10.1109/ACSSC.2002.1197141
https://doi.org/10.1109/CMC.2011.117
https://doi.org/10.1109/ChinaCom.2012.6417597
https://doi.org/10.1109/GLOCOM.2014.7037563

Bibliography

[Zha+14b] Y. Zhang, Z. Xing, L. Yuan, C. Liu, and Q. Wang. “The Acceleration of Turbo
Decoder on the Newest GPGPU of Kepler Architecture”. In: International Sympo-
sium on Communications and Information Technologies (ISCIT). IEEE, Sept. 2014,
pp. 199–203. doi: 10.1109/ISCIT.2014.7011900 (cit. on pp. 59, 105).

[Zha+16] S. Zhang, K. Xiao, B. Xiao, Z. Chen, B. Xia, D. Chen, and S. Ma. “A Capacity-
based Codebook Design Method for Sparse Code Multiple Access Systems”. In:
International Conference on Wireless Communications Signal Processing (WCSP).
IEEE, Oct. 2016, pp. 1–5. doi: 10.1109/WCSP.2016.7752620 (cit. on p. 78).

[Zig15] B. Ziganshin. FastECC. 2015. url: https://github.com/Bulat-Ziganshin/FastECC
(cit. on p. 72).

154

https://doi.org/10.1109/ISCIT.2014.7011900
https://doi.org/10.1109/WCSP.2016.7752620
https://github.com/Bulat-Ziganshin/FastECC

Personal Publications

International Journals

[1] A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage,
D. Barthou, T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. “AFF3CT: A Fast Forward
Error Correction Toolbox!” In: Elsevier SoftwareX 10 (Oct. 2019), p. 100345. doi: 10.
1016/j.softx.2019.100345 (cit. on pp. vii, ix, 72, 85, 113, 115).

[2] A. Ghaffari, M. Léonardon, A. Cassagne, C. Leroux, and Y. Savaria. “Toward High Perfor-
mance Implementation of 5G SCMA Algorithms”. In: IEEE Access 7 (2019), pp. 10402–
10414. doi: 10.1109/ACCESS.2019.2891597 (cit. on pp. vii, ix, 29, 67, 78, 108, 113, 115).

[3] M. Léonardon, A. Cassagne, C. Leroux, C. Jégo, L-P. Hamelin, and Y. Savaria. “Fast and
Flexible Software Polar List Decoders”. In: Springer Journal of Signal Processing Systems
(JSPS) 91 (Jan. 2019), pp. 937–952. doi: 10.1007/s11265-018-1430-3 (cit. on pp. vii, ix,
32, 67, 77, 99, 104, 113, 115).

International Conferences

[4] A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou. “An Efficient, Portable
and Generic Library for Successive Cancellation Decoding of Polar Codes”. In: International
Workshop on Languages and Compilers for Parallel Computing (LCPC). Springer, Nov. 1,
2015. doi: 10.1007/978-3-319-29778-1_19 (cit. on pp. vii, ix, 32, 51, 67, 78, 94, 96, 104,
113, 115).

[5] A. Cassagne, O. Aumage, C. Leroux, D. Barthou, and B. Le Gal. “Energy Consumption
Analysis of Software Polar Decoders on Low Power Processors”. In: European Signal
Processing Conference (EUSIPCO). IEEE, Aug. 2016, pp. 642–646. doi: 10.1109/EUSIPCO.
2016.7760327 (cit. on pp. vii, ix, 32, 51, 67, 78, 96, 104, 113, 115).

[6] A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and D. Barthou. “Beyond
Gbps Turbo decoder on multi-core CPUs”. In: International Symposium on Turbo Codes
and Iterative Information Processing (ISTC). IEEE, Sept. 2016, pp. 136–140. doi: 10.1109/
ISTC.2016.7593092 (cit. on pp. vii, ix, 32, 67, 78, 101, 105, 113, 115).

[7] A. Cassagne, O. Aumage, D. Barthou, C. Leroux, and C. Jégo. “MIPP: A Portable C++
SIMD Wrapper and its use for Error Correction Coding in 5G Standard”. In: Workshop on
Programming Models for SIMD/Vector Processing (WPMVP). Vösendorf/Wien, Austria:
ACM, Feb. 2018. doi: 10.1145/3178433.3178435 (cit. on pp. vi, 35, 36, 43, 67, 115).

155

https://doi.org/10.1016/j.softx.2019.100345
https://doi.org/10.1016/j.softx.2019.100345
https://doi.org/10.1109/ACCESS.2019.2891597
https://doi.org/10.1007/s11265-018-1430-3
https://doi.org/10.1007/978-3-319-29778-1_19
https://doi.org/10.1109/EUSIPCO.2016.7760327
https://doi.org/10.1109/EUSIPCO.2016.7760327
https://doi.org/10.1109/ISTC.2016.7593092
https://doi.org/10.1109/ISTC.2016.7593092
https://doi.org/10.1145/3178433.3178435

Personal Publications

National Conferences and Posters

[8] A. Cassagne, O. Hartmann, M. Léonardon, T. Tonnellier, G. Delbergue, C. Leroux, R.
Tajan, B. Le Gal, C. Jégo, O. Aumage, and D. Barthou. “Fast Simulation and Prototyping
with AFF3CT”. In: International Workshop on Signal Processing Systems (SiPS). IEEE,
Oct. 2017. doi: 10.13140/RG.2.2.10295.42409/1. url: https://sips2017.sciencesconf.org/
data/demo_9.pdf (cit. on pp. vii, 76, 85, 115).

[9] A. Cassagne, M. Léonardon, O. Hartmann, T. Tonnellier, G. Delbergue, V. Giraud, C.
Leroux, R. Tajan, B. Le Gal, C. Jégo, O. Aumage, and D. Barthou. “AFF3CT : Un
environnement de simulation pour le codage de canal”. In: GdR SoC2. June 2017. doi:
10.13140/RG.2.2.13492.91520 (cit. on pp. vii, 79, 85).

156

https://doi.org/10.13140/RG.2.2.10295.42409/1
https://sips2017.sciencesconf.org/data/demo_9.pdf
https://sips2017.sciencesconf.org/data/demo_9.pdf
https://doi.org/10.13140/RG.2.2.13492.91520

	Acknowledgments in French
	Abstracts
	Extended Abstract in French
	List of Figures
	List of Tables
	List of Algorithms and Source Codes
	List of Acronyms
	Introduction
	Context and Objectives
	Digital Communication Systems
	Channel Model
	Channel Codes
	Prerequisites
	Low-density Parity-check Codes
	Polar Codes
	Turbo Codes

	Applicative Contexts
	Functional Simulation
	Software-defined Radio
	Sparse Code Multiple Access

	Problematics

	Optimization Strategies
	MIPP: A C++ Wrapper for SIMD Instructions
	Low Level Interface
	Medium Level Interface
	Software Implementation Details
	Related Works

	Vectorization Strategies
	Intra-frame SIMD Strategy
	Inter-frame SIMD Strategy
	Intra-/inter-frame SIMD Strategy

	Efficient Functional Simulations
	Box-Muller Transform
	Quantizer

	LDPC Decoders
	Generic Belief Propagation Implementation
	Specialized Belief Propagation Implementation

	Polar Decoders
	Tree Pruning Strategy
	Polar Application Programming Interface
	Successive Cancellation Decoders
	Successive Cancellation List Decoders

	Turbo Decoders
	Inter-frame Parallelism on Multi-core CPUs
	Software Implementation of the Turbo Decoder

	SCMA Demodulators
	Flattening Matrices to Reduce Cache Misses and Branch Misses
	Adapting the Algorithms to Improve Data-level Parallelism

	Conclusion

	AFF3CT: A Fast Forward Error Correction Toolbox
	Prerequisites
	High Performance Implementations
	Support for Algorithmic Heterogeneity
	Portability
	Reproducibility

	Related Works
	Library of Digital Communication Algorithms
	Software Architecture
	Examples of Library Use
	MATLAB® Wrapper
	Software Functionalities

	Simulation of Digital Communication Algorithms
	A Simulator Application on Top of the Library
	In-depth Parameter Exploration
	BER/FER Comparator and Pre-simulated Results
	Continuous Integration and Continuous Delivery

	Impact and Community
	Conclusion

	Performance Evaluations and Comparisons
	LDPC Decoders
	Experimentation Platforms
	Throughput and Latency Performance on Multi-core CPUs
	Comparison with State-of-the-art BP Decoders.

	Polar Decoders
	Successive Cancellation Decoders
	Successive Cancellation List Decoders

	Turbo Decoders
	Experimentation Platforms
	Throughput Performance on Multi-core CPUs
	Energy Efficiency on a Multi-core CPU
	Comparison with State-of-the-art Turbo Decoders

	FEC Software Decoders Hall of Fame
	SCMA Demodulators
	Experimentation Platforms
	Throughput, Latency and Energy Efficiency on Multi-core CPUs

	Analysis of the Simulator Performance
	Experimentation Platforms
	Mono-threaded Performances
	Multi-threaded and Multi-node Performances

	Conclusion

	Embedded Domain Specific Language for the Software-defined Radio
	Related Works
	Dataflow Model
	Dedicated Languages
	GNU Radio

	Description of the Proposed Embedded Domain Specific Language
	Elementary Components
	Parallel Components

	Implementation Strategies
	Implicit Rules
	Sequence Duplication
	Processes
	Pipeline

	Application on the DVB-S2 Standard
	Transmitter Software Implementation
	Receiver Software Implementation
	Evaluation
	Related Works

	Conclusion

	Conclusions and Perspectives
	Bibliography
	Personal Publications

