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Résumé 
La rémorine du groupe 1 isoforme 3 de Solanum tuberosum (StREM1.3) est une 

protéine membranaire de la famille multigénique de protéines de plante appelée 

rémorines (REMs), impliquées dans l’immunité des plantes, la symbiose, la résistance 

aux stress abiotiques et la signalisation hormonale. La caractéristique la plus connue 

des REMs est leur capacité à se ségréger en nanodomaines au feuillet interne de la 

membrane plasmique (MP). Pour StREM1.3, ceci se fait via une interaction entre deux 

lysines de l’ancre C-terminale de la rémorine (RemCA) et le phosphatidylinositol 4-

phosphate (PI4P) négativement chargé. Ainsi, RemCA modifie sa conformation et 

s’enfonce partiellement dans la MP, résultant en un accrochage membranaire 

intrinsèque. Capitalisant sur les données structurales déjà disponibles concernant cet 

isoforme, nous investiguons StREM1.3 davantage quant à ses propriétés d’interaction 

membranaire, en utilisant un large éventail de techniques, allant de la microscopie de 

fluorescence et de la RMN à l’état solide (ssNMR) à la microscopie de force atomique 

(AFM), la cryo-microscopie électronique (cryoEM) et la modélisation informatique. 

Nous souhaitons découvrir l’impact de l’oligomérisation et de la phosphorylation de 

StREM1.3 sur ses interactions membranaires et son activité biologique, ainsi que 

d’examiner son influence sur la dynamique des lipides et les lipides requis pour 

l’accrochage à la membrane et le regroupement en nanodomaines. Enfin, forts de 

toutes les données structurales disponibles, nous entreprendrons la reconstruction in 

vitro et la caractérisation de nanodomaines minimaux de StREM1.3. 

 

Abstract 
Group 1 isoform 3 remorin from Solanum tuberosum (StREM1.3) is a membrane 

protein belonging to the multigenic family of plant proteins called remorins (REMs), 

involved in plant immunity, symbiosis, abiotic stress resistance and hormone 

signalling. REMs’ most well-known feature is their ability to segregate into 

nanodomains at the plasma membrane’s (PM) inner leaflet. For StREM1.3, this is 

achieved by an interaction between two lysines of the remorin C-terminal anchor 

(RemCA) and negatively charged phosphatidylinositol 4-phosphate (PI4P). Thus, 

RemCA undergoes conformational changes and partially buries itself in the PM, 

resulting in an intrinsic membrane anchoring. Capitalising on pre-existing structural 

data about this isoform, we investigate StREM1.3’s membrane-interacting properties 

further, using a wide array of techniques, ranging from fluorescence microscopy and 

solid-state nuclear magnetic resonance (ssNMR) to atomic force microscopy (AFM), 

cryo-electron microscopy (cryoEM) and computational modelling. We aim to discover 

the impact of StREM1.3’s oligomerisation and phosphorylation on its membrane 

interactions and biological activity, and to assess its influence on lipid dynamics as well 

as its lipid requirements for membrane binding and nanoclustering. Finally, based on 

all available structural data, we will undertake the in vitro reconstruction and 

characterisation of minimal nanodomains of StREM1.3. 
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INTRODUCTION 

 

I. Biological membranes 

The word membrane refers to a thin semi-permeable material separating two liquid 

compartments. In the context of biology, compartmentation using membranes is very 

common (van Meer et al., 2008): from the plasma membrane (PM), delimiting a cell’s 

inside from its outside, the nuclear membrane, delimiting the nucleus from the 

cytoplasm, the mitochondrial double membrane, the chloroplast double membrane and 

thylakoids, to the endoplasmic reticulum (ER) membrane. Some viruses even 

envelope themselves in the plasma membrane of the infected cell they budded from 

(Chazal and Gerlier, 2003). A cell may or may not have all the organelles cited above 

but, at the very least, it has a PM: this one is ubiquitous. Indeed, encapsulation of some 

self-replicating RNA by a primitive membrane could have been at the origin of the first 

cell ever (Kamat et al., 2015). 

Although the PM acts as a physical barrier between the cell and its environment, it 

must also, in terms of signalling and metabolism (i.e. signal transduction and exchange 

of molecules), take from the outside and release from the inside (Grecco et al., 2011; 

Groves and Kuriyan, 2010; Ray et al., 2016). This implies a great complexity in the 

PM’s organisation, far from being a homogeneous and impenetrable wall. 

In this section, we shall rewind the history of membrane discovery, starting from the 

first observation of a cell in the 17th century (Lombard, 2014). We shall see how the 

mere existence of the PM was debated, what was thought of its composition and how 

its structural organisation was depicted. Once the fluid mosaic model (Singer and 

Nicolson, 1972) will be introduced, we shall discuss about membrane composition and 

spatial heterogeneity, such as microdomains and nanodomains. 

 
Figure 1 

Trombinoscope of the pioneers of cell and organelle discovery. 
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A. The discovery of cell membranes 

The emergence of the microscope unlocked the key to the microscopic realm for 

biologists of the 17th century and beyond. The first published observation of a cell dates 

back to 1665 when Robert Hooke (Figure 1) cut a thin slice of cork and observed, 

under a microscope (Hooke, 1665), an ensemble of cavities separated by a thick, solid 

and continuous structure. He named these cavities cells, likely as a reference to cells 

within a monastery, and referred to the cell wall as a wall. Later observations enforced 

the existence of cells as a basic unit of biological matter (Grew, 1672; Leeuwenhoek 

and Hoole, 1800; Malpighii, 1675). But if the cell exists, what about its frontier? 

As shocking as it may be from our modern point of view, the very existence of 

membranes as physical barriers was questioned: some argued it was the mere optical 

manifestation of a liquid-liquid phase separation between two immiscible liquids, for 

example, in the case of the PM, a membrane-less cell and its environment. By the late 

19th century, seminal work on cell osmosis, diffusion, electrophysiology and cytolysis 

managed to engrave the existence of cell membranes in the scientific discourse 

(Lombard, 2014). Meanwhile, the first report on the observation of an organelle, the 

nucleus, dates back to 1833 (Brown, 1833). Other organelles soon followed, as 

reviewed in (Mullock and Luzio, 2013). 

 

B. Towards the fluid mosaic model 

By the end of the 19th century, it was known that living matter was made of proteins, 

lipids (called fats back then), carbohydrates, nucleic acids and salts (Dahm, 2008; 

Loeb, 1906). Charles Ernest Overton showed PMs to be apolar, by virtue of the fact 

that they allowed the diffusion of apolar molecules yet blocked the diffusion of polar 

ones (Lombard, 2014). Therefore, the best candidates to be membrane components 

were “lecithin and cholesterin” or, in modern terms, phospholipids and sterols (section 

I.C). But in which manner are they organised? The emergence of Langmuir trough, 

first developed by Agnes Pockels (Pockels, 1891), then popularised by Irving Langmuir 

(Langmuir, 1917), allowed in vitro surface measurements. Ratios between monolayer 

surface and cell surface at the PM ranged greatly: Gorter and Grendel found 2 (Gorter 

and Grendel, 1925), then Bar et al. found 1.3 (Bar et al., 1966). The use of different 

cell types, with variable protein content, and different purification protocol are obvious 

pitfalls that could explain such discrepancies. It should be noted that the last value, 

1.3, is the most truthful for PMs, if we remind ourselves of the high amount of proteins 

within (Cacas et al., 2016). Nonetheless, electron microscopy of PMs showed a 

“railroad”-like structure: two thin and dense layers encasing a broader and lighter one, 

with a total thickness below 10 nm (Robertson, 1957), reinforcing the hypothesis of a 

phospholipid bilayer with hydrophilic parts exposed to water and hydrophobic parts 

buried. 

By the 1960s, mainly three models subsisted (Singer, 2004): the Davson-Danielli-

Robertson model (Danielli and Davson, 1935), where a phospholipid bilayer was 

sandwiched between two layers of unfolded proteins, the Benson model (Benson, 

1966), where membranes were a juxtaposition of lipoproteins, and the lipid-protein 

mosaic model (Lenard and Singer, 1966), where folded membrane proteins would bury 
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their hydrophobic parts in a phospholipid bilayer while keeping their hydrophilic parts 

in contact with solvent water (Figure 2). Further refinements on the fold of membrane 

proteins led to the achievement of the fluid mosaic model (Figure 3) (Singer and 

Nicolson, 1972), which is, to this day, still the basis for the depiction of biological 

membranes in virtually any biology textbook. 

 
Figure 2 

Before the fluid mosaic model (Singer and Nicolson, 1972), three models of 

membrane structure prevailed. The Davson-Danielli-Robertson model (Danielli and 

Davson, 1935) proposed a phospholipid bilayer with hydrophobic tails groups buried 

and hydrophilic ones exposed to solvent water, sandwiched between two layers of 

unfolded proteins. The Benson model pictured membranes as a juxtaposition of 

lipoproteins (Benson, 1966). The lipid-protein mosaic model (Lenard and Singer, 

1966) is a prototype version of the fluid mosaic model with a less detailed description 

of membrane protein folding, although the schematic displayed here was used to 

illustrate both models. Adapted from (Singer, 2004). 

 
Figure 3 

The fluid mosaic model. Biological membranes can be envisioned as two-

dimensional bilayers of phospholipids and proteins with hydrophobic parts buried and 

hydrophilic parts exposed to solvent water. Membrane proteins must adopt particular 

conformations in order for their insertion to be thermodynamically stable. From 

(Singer and Nicolson, 1972). 
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C. The composition of lipid bilayers 

The composition of biological membranes displays tremendous diversity. To remain 

concise, we shall restrain our description to the three major lipid classes: 

phospholipids, sterols and sphingolipids and the distribution of all three at the PM, with 

a special focus on plant membranes. Membrane proteins will be discussed in section 

I.D. 

 

1. Phospholipids 

a. Generalities 

Phospholipids, whose full name are glycerophospholipids, share a common 

chemical structure: two acyl chains esterified in sn-1 and sn-2 of a glycerol moiety, and 

a polar head etherified in sn-3. The polar head starts with an inorganic phosphate. It is 

eventually followed by other moieties, the nature or absence of which defining the 

polarity and shape of the molecule (Figure 4). Depending on the organism, acyl chains 

may be 16 to 24 carbons long (Cacas et al., 2016; Sassa and Kihara, 2014; Villasmil 

et al., 2017), though longer chains exist (see sphingolipids), and may be desaturated 

(i.e. bearing C=C double bonds) (Nakamura, 2017; Wisnieski et al., 1973). 

 
Figure 4 

General description of phospholipids. (A) A phospholipid is made of two acyl 

chains, whether saturated or unsaturated, esterified in sn-1 and sn-2 and an 

inorganic phosphate etherified in sn-3 of a glycerol moiety. The inorganic phosphate 

may, or not, be grafted with an additional group, the nature of which defines the 

phospholipid class it belongs to. An oleoyl-linoleoyl-phosphatidylcholine is drawn as 

an example. (B) Chemical structure of the various additional groups and their 

abbreviations and (C) overall shape of the entire phospholipid (circle: polar head, 

sticks: acyl chains, not to scale). Inorganic phosphates may be added to PI, 

introducing new negative charges on the polar head and making it bigger. 
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b. Phosphoinositides (PIPs) 

One class of phospholipids will be of particular interest to us: phosphoinositides 

(PIPs). They are characterised by their inositol sugar moiety to which inorganic 

phosphates are added (figure 5). They represent a minor class of all eukaryotic 

phospholipids, whose biological implications range from endo- and exo-cytosis to 

signal transduction and membrane targeting by proteins (figure 6) (Di Paolo and De 

Camilli, 2006; Heilmann, 2016). Prokaryotes do not bear PIPs but possess PIP-specific 

phosphatases as virulence factors (Heinz et al., 1998). Positions 3, 4 and 5 of the myo-

inositol ring can be specifically phosphorylated or dephosphorylated, leading to a 

multitude of PIP species, whose localisations could be assigned as follows (figure 7) 

(Noack and Jaillais, 2017), leading to the concept that PIPs are signature lipids of a 

given cellular structure. 

This manuscript will focus on plant PMs, where PI4P and PI4,5P2 are the main PIPs 

(Noack and Jaillais, 2017; Simon et al., 2014). They are also found enriched in 

detergent insoluble membranes (DIMs, see section V.A) (Furt et al., 2010) and have a 

tendency to cluster with one another at the PM (Bilkova et al., 2017; van den Bogaart 

et al., 2011; Ji et al., 2015). 

 
Figure 5 

On the diversity of phosphoinositide polar heads. A phosphoinositide is a 

phospholipid with a terminal myo-inositol upon which one, two or three inorganic 

phosphates are grafted. Positions 2 and 6 cannot be phosphorylated. 
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Figure 6 

On the biological involvements of PIPs. (A) In a membrane, PIPs may serve as 

specific anchor for proteins. As the distribution of PIPs in all membranes is 

heterogeneous, this allows a fine addressing of organelles by specific membrane 

proteins. (B) Once hydrolysed, e.g. by phospholipase C (PLC), their products are 

substrates of major cell signalling pathways. Both products of hydrolysis may be 

phosphorylated further, up to all 6 positions in the case of the nascent inositol-1,4,5-

trisphosphate (Ins(1,4,5)P3), yielding InsP6. PtdIns: PIPs; DAG: di-acyl glycerol; 

PtOH: PA; DGPP: DAG pyrophosphate; InsP5: inositol pentakisphosphate; InsP6: 

inositol hexakisphosphate; PP-IPPs: pyrophosphorylated (PP) inositol 

polyphosphates (IPPs). From (Heilmann, 2016). 

 

2. Glycolipids 

Monogalactosyldiacylglycerol, digalactosyldiacylglycerol and 

sulfoquinovosyldiacylglycerol are galactolipids synthesised in chloroplasts and major 

constituents of their photosynthetic membranes, in lieu of phospholipids (Nakamura, 

2017).  
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Figure 7 

Distribution of PIPs in plant cells. There are two pools of PIPs: those 

phosphorylated at position 3 for late endosomes (LE), multivesicular bodies (MVB), 

tonoplasts, autophagosomes and vacuoles (left); those phosphorylated at position 4 

for early endosomes (EE), the trans-Golgi network (TGN) and the PM (top and right). 

An increasing gradient of PI4P exists from the Golgi to the PM (right), and a similar 

increasing gradient of PI3P exists from tonoplasts to late endosomes (Simon et al., 

2014). The PM is enriched in PI4P and PI4,5P2. The nucleus is enriched in PI5P (not 

shown). Modified from (Noack and Jaillais, 2017). 

 

3. Sterols 

Unlike animals and yeasts that rely on cholesterol and ergosterol, respectively, 

plants possess a plethora of phytosterols. Sterol profiles may strongly vary between 

species. Later, we will be interested in Solanum tuberosum (potato), whose major 

sterols are sitosterol and stigmasterol, in an approximate 11/1 molar ratio (Figure 8) 

(Nyström et al., 2012; Wewer et al., 2011). Most chemical differences between 

phytosterols rely on their aliphatic part or substitution at position 4 (Moreau et al., 

2018). Cholesterol may exist in plants but remains in minor quantities (Diener et al., 

2000). Sterols may be conjugated via their hydroxyl group into steryl glycosides (SG), 

steryl esters (SE) and acylated steryl glycosides (ASG) (Figure 9) (Wewer et al., 2011). 

In lipid membranes, sterols are oriented perpendicular to the membrane plane, with 

their hydroxyl group at the height of the phospholipid glycerol backbones. This has 

been proved only for free cholesterol but is likely true for other sterols (Dufourc, 2008; 

Léonard et al., 2001). 

Besides being crucial membrane components, phytosterols are involved in the 

biosynthesis of phytoecdysteroid, an anti-parasitic agent (Speranza, 2010) and 
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brassinosteroids, a plant growth hormone (Moreau et al., 2018). Similarly, cholesterol 

is at the basis of the steroid hormone metabolism. Evidence of biological function for 

sterol conjugates are scare, though ASG are involved in thermal shock response in 

plants (Grille et al., 2010). 

 
Figure 8 

Chemical structures of common sterols. Animals and yeasts use only one 

sterol (cholesterol and ergosterol, respectively) while plants employ a multitude of 

them, among which cholesterol may be found in small quantities. In this manuscript, 

we will interested in PMs of Solanum tuberosum (potato), whose main phytosterols 

(in blue) are sitosterol and stigmasterol in an 11/1 ratio (Nyström et al., 2012). 
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Figure 9 

Display of the various types of phytosterol conjugates. Here, a simplified 

sitosterol is used as example. All conjugation rely on attaching an ester (sterol ester, 

SE), a sugar (steryl glycoside, SG) or an esterified sugar (acetylated steryl glycoside, 

ASG) to the sterol’s hydroxyl function. Adapted from (Moreau et al., 2002). 

 

Prokaryotes possess no sterol. Instead they produce hopanoids, pentacyclic sterol 

analogues (Bramkamp and Lopez, 2015). Although they are thought to behave 

similarly to sterols, the absence of hydroxyl group on the A ring implies that (1) 

hopanoids cannot be conjugated and (2) the polar and apolar regions are inverted 

compared to sterols, with rings being apolar and the tail being polar (Dufourc, 2008). 

 

4. Lipid phase behaviour and sterols 

Depending on their nature, phospholipids, glycolipids and sphingolipids may exhibit 

a variety of phase behaviours (Koynova and Tenchov, 2013). Yet, in the context of the 

fluid mosaic model, we are referring to a lipid bilayer, which is a lamellar phase (Figure 

10). In addition, depending on lipid composition, temperature and hydration, the rate 

of diffusion of molecules within, the thickness and the acyl chain packing (hereafter 

called order) will vary (Feigenson, 2006; Koynova and Tenchov, 2013). Here, we will 

be interested in the phase behaviour of mixtures of phospholipids, sphingolipids and 

sterols at physiological temperature (i.e. 0-40°C). Here, phospholipids and 

sphingolipids (section I.C.4) have a phase transition temperature (Tm) above which 

they make a liquid-disordered (Lα) phase and below which they enter into a gel phase 

(Lβ or Lβ’, depending on the lipids). Tm can reach rather extreme values, so that the 

concerned lipids are present almost exclusively in a Lα- (e.g. unsaturated acyl chains) 

or a Lβ- or Lβ ‘-phase (saturated acyl chains). Briefly, lipids in a Lα phase diffuse fast 

and are loosely ordered, while lipids in a Lβ or Lβ‘ phase diffuse slowly and are much 

more ordered. Another important phase is the sterol-enriched liquid-ordered phase (LO) 

where lipids still diffuse fast but are more ordered. 
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How do free sterols compare to each other in terms of function? Cholesterol is 

known to fluidify membranes in the gel phase at low temperature and to rigidify them 

in the liquid phase at higher temperature. This latter effect is lessened for sitosterol 

and even inverted for stigmasterol, depending on the membrane composition, while 

campesterol retains properties similar to cholesterol (Beck et al., 2007; Grosjean et al., 

2015). Conjugated sterols can order membranes further, with an increased efficiency 

in the case where free sterols are already present (Grosjean et al., 2015). 

 
Figure 10 

Representation of lipid phases. (A) Biological membranes are in lamellar phase. 

At the lowest temperature, a given phospholipid is in a subgel (Lc) phase with slow 

lateral diffusion and high acyl chain order. Upon temperature increase, it will 

transition to an untilted (Lβ), then tilted (Lβ’), then rippled (Pβ’) gel phase, depending 

on the nature of the lipid. Once a certain temperature Tm is reached, a gel-liquid-

disordered (Lα) phase transition occurs. In this latter phase, lipids diffuse quickly and 

acyl chain order is lower. In lieu of the Lα phase, the sterol-enriched liquid-ordered 

phase (Lo) (not shown) may be reached: it retains a higher acyl chain order than the 

Lα phase. Lipids in water may spontaneously aggregate into spherical (B) and non-

spherical structures (C). Adapted from (Koynova and Tenchov, 2013). 
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5. Sphingolipids 

Plant sphingolipids are made of a long (acyl) chain base (LCB) amide linked to a FA 

to create a ceramide, with the eventual addition of phosphate and sugar moieties. In 

plants, four classes may be distinguished: free LCBs, ceramides, glucosylceramides 

(GluCers) and glycosyl inositol phospho-ceramides (GIPCs) (Figure 11). The first three 

classes are entirely synthesised in the ER while GIPC synthesis is pursued with 

ceramides in the Golgi apparatus. Animals cells contain no GIPCs but they possess 

sphingomyelin (Futerman and Hannun, 2004). 

 
Figure 11 

Display of plant sphingolipids. An FA, possibly hydroxylated, is grafted to an 

LCB. The primary hydroxyl can be functionalised with a head group, defining its 

sphingolipid class. From (Pata et al., 2010). 

 

GIPCs are the most abundant sphingolipids in Arabidospsis thaliana leaves 

(Markham et al., 2006). GIPCs make up a wide class of molecules whose diversity 

relies on: (1) the LCB, its double bonds and hydroxylations, mostly t18:0 or t18:1 

(where t means trihydroxylated); (2) the FA length, its double bonds and 

hydroxylations, most commonly a very long chain FA (VLCFA) or a 2-hydroxylated 

VLCFA up to 30 carbons ; (3) the glycans, their number, their nature and their 

glycosidic links (Buré et al., 2014; Cacas et al., 2016; Pata et al., 2010). The polar head 

composition defines the series to which a GIPC belongs (Mamode Cassim et al., 2019). 

In synergy with phytosterols, sphingolipids can modulate membrane rigidity: 

GluCers fluidify membranes in presence of stigmasterol where GIPC would rigidify, 

while a 1/1 GluCer/GIPC mixture would strongly rigidify membranes in presence of 
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sitosterol or campesterol (Grosjean et al., 2015). Beside their structural role, GIPCs 

were also found to act as toxin receptors: necrosis and ethylene-inducing peptide 1-

like (NLP) protein may bind GIPCs from series A, predominant in eudicotyledons and 

bearing two hexose moieties, but not those from series B, predominant in 

monocotyledons and bearing three hexose moieties. This explains why eudicotyledons 

plants are sensitive to NLPs while monocotyledons are not (Lenarčič et al., 2017). 

Yeast sphingolipids have sphingolipids similar to plants’, with the exception that 

GIPCs are replaced by mannosyl inositol phospho-ceramides (Marquês et al., 2018). 

Prokaryotes, with very few exceptions, bear no sphingolipids (Hannich et al., 2011). 

 

6. Lipid composition and asymmetry of PMs 

Understanding membrane organisation implies quantifying and situating all its 

compounds. This section will provide the necessary data about the PMs of the 

organisms discussed in this manuscript. The description of endomembranes (e.g. 

nuclear membranes, mitochondrial membranes, plastid membranes…) is out of the 

scope of this manuscript; the interested reader is referred to (Cheesbrough and Moore, 

1980; Rolland et al., 2009; Schwertner and Biale, 1973; Zachowski, 1993; Zhendre et 

al., 2011). 

 

a. Of animal cells 

The erythrocyte, lacking a nucleus, is commonly used to study PM composition and 

asymmetry as the PM is the only membrane it possesses. Cholesterol represents 

about 40% of the whole PM (Steck and Lange, 2018), sphingolipids around 25% 

(Virtanen et al., 1998) while the remainder is made of phospholipids. Sphingolipids are 

almost exclusively in the outer leaflet along with PC while other phospholipids, 

particularly anionic ones, are in the inner leaflet (Zachowski, 1993). The repartition of 

cholesterol between both leaflets is still up to debate (Steck and Lange, 2018). 

 

b. Of plant cells 

Phospholipids account for 30-40% of the plant PM, sterols make up 20-30% of it 

while sphingolipids make up the remainder (Cacas et al., 2016). Although the PM’s 

lipid distribution is well studied in animal cells (Zachowski, 1993), data in plant cells 

are scarce (Cacas et al., 2016; Tjellström et al., 2010). Recently, building upon these 

few articles, a model of PM’s lipid asymmetry was proposed (Mamode Cassim et al., 

2019): (1) GIPCs are exclusive to the outer leaflet, (2) GluCers and sterols, both free 

and conjugated, are enriched in the outer leaflet, (3) phospholipids, including 

glycolipids, are enriched in the inner leaflet and (4) PS, PA and PIPs are exclusive to 

the inner leaflet. We must remind ourselves it is only a model that remains to be tested. 

 

c. Of yeasts 

According to (Patton and Lester, 1991), the PM of Saccharomyces cerevisiae is 

made up of phospholipids for 34%, sphingolipids for 16%, cardiolipin for 2% and 

ergosterol for 48%. There again, aminophospholipids and PIPs remain mostly in the 
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inner leaflet while sphingolipids, ergosterol and PC are mostly in the outer leaflet 

(Mioka et al., 2014; Santos and Riezman, 2012; Solanko et al., 2018). 

 

d. Of Bacillus 

Bacteria of the Bacillus clade are Gram-positive bacteria, with one PM coated by a 

thick layer of polysaccharides. Bacillus subtilis was shown to contain PG/PE/CL in a 

70/12/4 molar ratio (Clejan et al., 1986), while a study on the PM asymmetry in Bacillus 

amyloliquefaciens hints at an enrichment of 70% of all phospholipids in the outer leaflet 

while CL would remain in the inner leaflet. The amount and distribution of hopanoids 

at the PM remains an open question. 

 

Overall, anionic- and amino-phospholipids remain in the inner leaflet while 

sphingolipids and PC remain in the outer leaflet. Sterol distribution may vary and is 

generally very disputed. Proteins of both leaflets are completely different, being either 

cytoplasmic, apoplasmic or transmembranous, in ways we will see in the next section. 

 

D. Membrane proteins 

(Singer and Nicolson, 1972) make a distinction between peripheral membrane 

proteins, which superficially interact with membranes, and integral ones, which bind 

tightly and may even span the entirety of the bilayer. Examples of the former would be 

pleckstrin domains (Lenoir et al., 2015a) while examples of the latter would be GPCRs 

(Katritch et al., 2013), ATP-synthases (Zhou et al., 2015), voltage-dependent ion 

channels (Hosaka et al., 2017) and remorins (section III). For an integral protein to 

interact with a membrane, thermodynamics tell us there are three types of interactions 

to consider: (1) hydrophobic interactions, (2) hydrogen bonding and (3) electrostatic 

interactions. Basing ourselves upon the lecture of (Singer, 2004), we shall comment 

all three then conclude on the kind of protein fold we may expect for membrane-

interacting proteins. 

 

1. Hydrophobic interactions 

Let us consider the solubility of a typically hydrophobic molecule such as methane 

(CH4) in both water and benzene: 

CH4 (water) ⇄ CH4 (benzene) 

with ΔG = - 11.5kJ/mol (Kauzmann, 1959). The dielectric constant, i.e. the electric 

permeability of a material over that of the void, for a protein is Dprotein = 4 and Dwater = 

78.5 (Dwyer et al., 2000), so Dprotein < Dwater, so proteins may bury their hydrophobic 

residues in their core. Alternatively, such hydrophobic residues may be buried in the 

core of the hydrophobic membrane whose Dmembrane = 2-3 (Gramse et al., 2013; Huang 

and Levitt, 1977). 

 

2. Hydrogen bonding 

In addition to some residues’ lateral chains, the peptide backbone itself is involved 

in hydrogen bonding. Solvent water may bond with such groups as well as other protein 

groups, but what if they are within the hydrophobic core of a bilayer? Absence of 
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hydrogen bonding costs about ΔG = + 18.5kJ/mol (Klotz and Franzen, 1962). The only 

H-acceptors there would be the protein’s H-donors. This implies the integral part of a 

protein must be meticulously folded to be both thermodynamically stable and 

functional. 

 

3. Electrostatic interactions 

a. Polar residues within a membrane 

Charges from polar residues (i.e. aspartate, glutamate, histidine, lysine and 

arginine) in the polar environment of solvent water (e.g. at pH≈7 in the cytosol) may 

be balanced by it or nearby polar solutes. Can polar residues find themselves stably 

inside a bilayer? All the above-mentioned residues are in exchange between a charged 

state and a discharged state. As an example, for glutamate: 

—COO- + H3O+ ⇄ —COOH + H2O 

with pK = 4.25 in 0.1 M NaCl water at 25°C (Thurlkill et al., 2006). The interior of a 

protein is itself much less polar than water, as attested by their respective dielectric 

constants of Dprotein = 4  and Dwater = 78.5 (Dwyer et al., 2000). The thermodynamic cost 

to keep a glutamate in the discharged state at pH = 7 is ΔG = + 15.7kJ/mol in solvent 

water, making it unfavourable. Yet we must keep in mind that pK constants for 

aminoacids inside a protein may be heavily shifted, as exemplified in (Dwyer et al., 

2000) where a buried glutamate had a pK = 8.8 with an unusually high Dprotein = 12, in 

which case a substantial proportion of glutamates are discharged. Thus, we should 

remind ourselves that the peculiar environment of a protein’s inside may impose 

behaviours on residues much different from solvent water. Yet, discharging a polar 

residue to bury it in a lipid bilayer seems unfavourable. 

Counterbalancing a charged residue with another charged residue or an ion of 

opposite sign would be another mechanism to embed a polar residue in a bilayer. This 

mechanism finds its limit illustrated with the poor solubility of a zwitterionic glycine in 

acetone, whose Dacetone = 21.0, compared to water whose Dwater = 78.5 (Lide, 2010). A 

lipid bilayer core has Dmembrane = 2-3 (Gramse et al., 2013; Huang and Levitt, 1977). 

Since, as D decreases, the solubility of glycine decreases, it shows that 

counterbalancing a charge does not improve its solubility in an apolar environment. 

The free energy cost of burying a residue was systematically assessed in 

(MacCallum et al., 2007). It strengthens the conclusion that, for a part of a protein to 

be embedded in a lipid membrane, polar residues should be avoided. 

 

b. Protein-lipid electrostatic interactions at the membrane’s surface 

However, lipid polar head groups may favour the presence of polar residues at the 

membrane-water interface. In (MacCallum et al., 2007), free energy costs to bury a 

residue in a DOPC membrane were compared with the costs of keeping these residues 

at such an interface (Table 1). Arginine, asparagine, glutamine, threonine, and tyrosine 

are very costly to bury but are prone to stay at the membrane-water interface. 
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Residue At interface Buried 

Leu -14.1 -15.2 

Ile -20.6 -22.1 

Val -12.2 -13.8 

Phe -14.9 -12.8 

Ala -6.8 -8.4 

Trp -21.6 -4.9 

Met -10.5 -4.4 

Cys -6.6 -3.4 

Tyr -14 6.6 

Thr -4.2 13.9 

Ser -0.7 15.8 

Gln -8.9 20.2 

Lys1 -18.6 19.9 

Asn -6.5 23.9 

Glu2 -1.68 21.1 

Asp2 1.6 31 

Arg3 -21.2 58.1 
1 Charged at interface, neutral if buried 
2 Neutral in both cases 
3 Charged at interface, both states are equiprobable if buried 

Table 1 

Free energy cost (in kJ/mol) to bury a residue in a lipid bilayer or to keep it at 

the membrane-water interface. Values from (MacCallum et al., 2007). 

 

This leads to the question: how much do electrostatic interactions with lipid polar 

groups contribute to the stabilisation of a membrane protein? We will consider the case 

of the peripheral pleckstrin homology (PH) protein domain, which is a well-known 

marker of phosphoinositides both in vivo and in vitro (Kavran et al., 1998). These 

domains merely touch the membrane to bind their target partner (Lenoir et al., 2015b, 

2015a). In (Figure 12), we visualise the loop responsible for FAPP1-PH’s membrane-

interaction docked in silico to a micelle of dodecylphosphorylcholine (DPC) / 

phosphatidylinositol 4-phosphate (PI4P). It is only a few angstroms deep inside the 

micelle. Recalling (Table 1), the residues’ positions are not surprising: L12 may 

favourably be buried deep within the micelle while other residues are more stable at 

the interface. This explains why mutations of W8 to a less hydrophobic residue (i.e. 

less prone to be at the interface) nullifies binding. A similar result is obtained for the 

mutant N10T, highlighting the necessity of a basic residue that is likely to interact with 

the negatively charged 4-phosphate moiety of the PI4P polar head group (Lenoir et al., 

2015b). 

The structural analysis of FAPP1-PH demonstrates that electrostatic interactions at 

the membrane-water interface can ensure a protein’s tethering to a membrane. 



26 
 

 
Figure 12 

In silico structure of FAPP1-PH’s loop (grey) with a micelle (orange surface) of 

dodecylphosphorylcholine (DPC) / phosphatidylinositol 4-phosphate (PI4P). From 

(Lenoir et al., 2015a). 

 

4. Possible folds of membrane proteins 

In the example above, the interplay between hydrophobic and electrostatic 

interactions is blatant. Now that we are aware of the different types of interactions 

between a membrane protein and its membrane, we may wonder what they imply in 

terms of membrane protein fold. 

A first consideration is that proteins will keep their polar residues in water and away 

from the apolar membrane core. For apolar residues, the opposite is true. In addition, 

we just saw that some residues, whether polar or not, may be found at the membrane-

water interface and play a crucial role in membrane binding. 

FAPP1-PH’s membrane anchoring is shallow. What about integral protein domains? 

Most do fold in one of the following manners: (1) into helices spanning part of or all the 

membrane, lying in its plane or tilted (Katritch et al., 2013; Lins et al., 2008; Zickermann 

et al., 2015a). (2) Into β-strands, granted they are long enough to span the membrane 

and numerous enough to make a complete barrel, as in porins, forming a β-barrel 

(Figure 13) (Kefala et al., 2010). 

Less canonical folds exist for peripheral membrane proteins. We already discussed 

FAPP1-PH. Another example would be the fusion protein gp41 from the human 

immunodeficiency virus (HIV), folding into a β-sheet in the host membrane, allowing 

membrane hemi-fusion (Figure 14) (Lee et al., 2019). We shall discuss, in section 

III.C.1, a less canonical fold of an integral membrane anchoring domain, in which a 

horizontal α-helix is only partially embedded in the membrane while one hydrophobic 

extended β-strand is deeply buried. 
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Figure 13 

Display of the most common protein fold in membranes. Left: the 

mitochondrial complex I is embedded in the inner mitochondrial membrane via many 

helices. The majority of them are transmembrane (i.e. perpendicular to the 

membrane plane), some are tilted and a few are amphiphatic, thus lying in the 

membrane plane (Zickermann et al., 2015b). Right: OmpF is a pore granting passage 

of small molecules (< 600 Da) through Escherichia coli’s outer membrane. Each 

monomer is made of 16 β-strands folded in a β-barrel (Kefala et al., 2010). 

 
Figure 14 

Schematic structure of gp41, a subunit of the HIV’s envelope. The 

transmembrane domain (TMD, red) is made of helices spanning the viral membrane 

while the fusion peptide (FP) and the FP proximal region (FPPR) fold into β-strand in 

the targeted cell membrane. This fold promotes membrane fusion and viral entry into 

the cell. From (Lee et al., 2019). 
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E. Membrane domains 

1. Early observations 

We discussed the complex composition of membranes (sections I.C and I.D). The 

amount of possible interactions between all its components is gigantic. We also 

discussed that both leaflets of the PM possess different lipids (section I.C.6) and 

proteins (section I.D), creating a strong heterogeneity. Could there be heterogeneities 

within one leaflet of the PM? 

 

a. Coexistence of lipid phases 

We are already familiar with the concept of lipid phases (section I.C.4). Soon after 

the publishing of the fluid mosaic model, evidence of in vitro lipid phase separation in 

membranes were brought in (Stier and Sackmann, 1973) monitored, using 

paramagnetic electron resonance, the activity of the peripheral P450 cytochrome 

reductase on both a soluble spin label and a fatty acid one, embedded in liver 

microsomal membranes, at various temperatures. The Arrhenius plot showed a drop-

in energy activation above 32°C only for the fatty acid label. Stier and Sackmann 

interpreted this as proof of the presence, below 32°C, of rigid membrane domains 

created by the interaction between the peripheral P450 cytochrome reductase and the 

otherwise fluid bulk membrane (Figure 15). 

 
Figure 15 

The earliest proof of coexistence of lipid phases. P450 cytochrome reductase 

is a peripheral protein. It was hypothesised to order the lipids in its vicinity (fine 

stripes), creating a rigid membrane domain in the otherwise fluid bulk membrane 

(large stripes). From (Stier and Sackmann, 1973). 

 

 

b. Caveolae, a visible heterogeneity 

In 1955, electron microscopy of mouse gall bladder epithelium cells showed small 

invaginations of about 50 to 90 nm (Figure 16) (Yamada, 1955). This is a visual 

example of spatial heterogeneity in biological membranes. Since these structures 

resemble cavities within the PM, they were named caveolae. Caveolae will be 

discussed in greater lengths in section II.A.3. 
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For now, we need only to remember that one could see, as early as 1955, that 

biological membranes were not homogeneous. 

 
Figure 16 

The earliest observation of a caveolae. Thin slice of a mouse’s gall bladder 

epithelium by negative staining electron microscopy with osmium tetroxide. Scale 

bar: 1 µm. S: synaptic vesicle, M: mitochondria, C: caveolae. From (Yamada, 1955). 

 

c. Detergent-insoluble membranes (DIM) 

In parallel, lipids and membrane proteins of human erythrocytes treated by Triton X-

100, a mild non-ionic detergent, at cold, followed by ultracentrifugation on a sucrose 

gradient, showed variable solubilities (Yu et al., 1973): detergent-solubilised material 

was pelleted while DIM remained in the supernatant. We may note that phospholipids 

were mostly soluble while sphingomyelin, an animal sphingolipid, was not. It was yet 

another hint that biological membranes may not be homogeneous. 

Twenty years later, (Sargiacomo et al., 1993) purified DIM enriched in proteins 

bearing glycosyl-phosphatidyl-inositol (GPI) anchors and caveolin, the main protein 

component of caveolae (section II.A.3). The enrichment in such GPI-bearing proteins 

was a commonly explored feature of DIMs (Brown and Rose, 1992; Hooper and 

Turner, 1988). (Schroeder et al., 1994) pushed the lipidomic analysis of DIMs further 

by reconstituting minimal DIMs. Cholesterol and lipids with high Tm, such as 

sphingolipids and saturated phospholipids, were shown to promote the formation of 

DIMs, in the absence of any protein. 

 

d. Cell polarity 

Meanwhile, investigations on animal cell polarity, more specifically on animal 

epithelial cells, revealed differential lipid and protein composition between apical and 

basolateral membrane domains (Simons and Van Meer, 1988). This lead to the 

formulation of putative lipid and protein sorting mechanisms for the specialisation of 

these membranes (Simons and Wandinger-Ness, 1990) 

 

2. From lipid rafts to nanodomains 

a. Birth of the lipid raft hypothesis 
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Evidence stated above led to the formulation of the raft hypothesis: the existence of 

(1) small membrane domains, the size of a caveolae (50-90nm), (2) enriched in 

cholesterol, high-Tm lipids and GPI-anchored proteins (Figure 17) (Simons and 

Ikonen, 1997). It was proposed that lipid rafts could be purified in DIM fractions: they 

would float at the top of a sucrose gradient, hence their designation as rafts (Dupree 

et al., 1993). In this initial description, lipid rafts were regarded as sorters of membrane 

trafficking (Simons and Ikonen, 1997). 

 
Figure 17 

First hypothetical model of lipid rafts and caveolae at the animal PM, in 1997. 

Rafts (red) segregate from the bulk PM (blue). Caveolae are proposed as a peculiar 

kind of raft-like structure. (a) A lipid raft enriched in cholesterol bearing some 

membrane proteins attached to one leaflet, a GPI-anchored protein (red) to the outer 

leaflet and the Src-family kinase Yes (blue) to the inner leaflet, or spanning the entire 

bilayer, here hemagglutinin (HA, yellow). (b) Asymmetry of the animal PM, as 

described in section I.C.6.a: sphingolipids and PC are in the outer leaflet while other 

lipids, particularly anionic ones, are the inner leaflet. (c) Caveolae are formed by self-

associating caveolin proteins making a hairpin loop in the membrane. Interactions 

with raft lipids may be mediated by binding to cholesterol and by acylation of C-

terminal cysteines. From (Simons and Ikonen, 1997). 
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b. Restatements 

Many more observations of lipid rafts occurred, which did not relate on caveolae and 

GPI-anchored proteins (de Laurentiis et al., 2007; Mongrand et al., 2004; Yuan and 

Johnston, 2001), rending the initial description of lipid rafts obsolete. In 2006, at the 

Keystone Symposium on Lipid Rafts and Cell Function, an updated, much broader 

definition was proposed (Pike, 2006). “Membrane rafts”, for it was accepted that 

proteins could also be involved in their formation, “are small (10-200nm), 

heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that 

compartmentalise cellular processes. Small rafts can sometimes be stabilised to form 

larger platforms through protein-protein and protein-lipid interactions.” Major limitations 

of DIM purifications as indicators of membrane rafts were pointed out (Munro, 2003; 

Shogomori and Brown, 2003) and a clear distinction was made between simple in vitro 

system, where a distinction between phases may apply, and in vivo systems, where 

the multiplicity of interactors makes lipid phases harder to assess. The question of 

biological functions was deliberately left unanswered beyond the statement that 

“[membrane] rafts are involved in the compartmentalisation of cellular processes”, 

whatever they may be. 

This led to a restatement, by one of the author of the initial lipid raft hypothesis, of 

what a raft should be (Lingwood and Simons, 2010) (Figure 18). In this view, lipid rafts 

(used as a synonym of membrane rafts) are also thicker, LO phase membrane 

domains, something that was previously deemed too specific of simple in vitro systems 

(Pike, 2006). 

 

c. Interdigitation and domain registration 

This last redefinition also addressed the concept of interdigitation: if a lipid raft is in 

the outer leaflet, would a raft be recruited (registration) or chased away 

(antiregistration) from the inner leaflet (Figure 19)? Theoretical calculations oppose 

antiregistration to minimise membrane thickness variations to registration via 

interdigitation of aliphatic chains (Williamson and Olmsted, 2015). Works on planar 

(Collins and Keller, 2008) and supported (Lin et al., 2006; Rinia et al., 2001) model 

membranes, favour registration. 

 

d. Pinning 

The concept of interdigitation is often linked to the notion of pinning, as in pinning 

and keeping these registered membrane domains together. Such phenomena were 

observed in vivo between GPI-anchored proteins of lipid rafts of the PM’s outer leaflet 

and actin bound to phosphoinositides of lipid rafts of the PM’s inner leaflet (Dinic et al., 

2013; Raghupathy et al., 2015). 

(Tsuji and Ohnishi, 1986) were the first to demonstrate a pinning of the anion 

transporter Band 3 by the actin cytoskeleton in erythrocytes in a spectrin-dependent 

manner. A model of pinning was thus proposed (Figure 20), often referred to as the 

fence and picket model (Kusumi et al., 2005). Similar findings were obtained on 

transferrin and α2-macroglobulin upon disruption of actin filaments and microtubules 

(Sako and Kusumi, 1994). 
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Figure 18 

Restatement of the lipid raft hypothesis in 2010. Lipid rafts are liquid-ordered 

LO membrane domains enriched in sterols, sphingolipids, some particular 

membrane proteins and among which some may interact with actin (green). The 

may exist in various membrane systems, even though most examples within relate 

to the PM and animals. (A) Lipid rafts are dynamic structures with particular lifetimes. 

They may fuse or dissociate. (B) Lipid rafts may have heterogeneous contents. Their 

formation may be trigger by lipid-lipid segregation, protein-lipid multivalent binding 

and protein-protein oligomerisation. Protein-actin interaction as a mechanism to 

initiate lipid raft formation by pinning (see section I.E.2.d) its component in place is 

also suggested. (C) Casting the concept of actin pinning aside, lipids and proteins 

may coalesce, or not, into lipid rafts by their sheer preference for a certain degree 

of membrane order, liquid-ordered LO for lipid rafts or liquid-disordered Ld for the 

bulk membrane, and biochemical interactions. GPL: glycerophospholipid; GSL/SM: 

glycerosphingolipid/sphingomyelin; TM: transmembrane. From (Lingwood and 

Simons, 2010). 
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Figure 19 

The two leading behaviours of inter-leaflet membrane domain coupling. Inter-

leaflet interactions between acyl chains favour domains in both leaflets to be registered 

(A) while hydrophobic mismatch favours domain anti-registration (B) to even 

membrane thickness. From (Fujimoto and Parmryd, 2017). 

 
Figure 20 

Pinning of membrane proteins. Pinning of band 3 (white circles) by the actin 

cytoskeleton, later termed the “membrane skeleton fence model” (Sako and 

Kusumi, 1994). Black dots represents actin and its associated band 4.1 protein, 

connected to six spectrins (white lines) at the PM’s inner leaflet. Each spectrin is 

either in a tetrameric state (full lines) or a dissociated dimeric state (broken lines), 

forming a mesh. The fate of three pinned band 3 molecules a, b and c trying to 

escape the membrane region of interest represented here is drawn. a diffuses 

through the mesh and escapes quickly. b encountered a dead-end in the mesh, so 

it escapes slowly. c is blocked and will never escape: it is pinned down until a 

neighbouring spectrin tetramer dissociates. From (Tsuji and Ohnishi, 1986). 

 

e. A clarification of terminology 

We must have noted that the nomenclature of membrane domains is quite 

heterogeneous: between DIMs (also synonymously called detergent resistant 

membranes, DRMs), lipid rafts, membrane rafts, microdomains and nanodomains. 

Now, we shall define each term with precision and decide on which to commit to. 
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DIMs are the insoluble fraction of a biological membrane preparation treated with a 

mild detergent at cold temperature. They are separated from their soluble counterparts 

by ultracentrifugation on a sucrose gradient. 

Lipid rafts and membrane rafts are synonymous, although the former is the historical 

and most remembered word. The term raft was a reference to DIMs that would float at 

the top of a sucrose gradient (Dupree et al., 1993). Although it is still used in scientific 

parlance, we prefer the broader designation of nanodomain (Gronnier et al., 2018). 

Nanodomains are small (10-200 nm) membrane domains of specific and 

independent compositions. This broad definition welcomes a wide variety of 

phenomena, some of which will be described in section II. Common features of 

nanodomains may include an enrichment in sterols and lipids with high Tm, such as 

sphingolipids and saturated PL, a higher acyl chain order parameter and, therefore, a 

slightly greater membrane thickness. This definition emphasises the spatial 

segregation of membrane components and avoids confusion with DIMs, whose 

physiological relevance can be questioned (see section V.A). 

Microdomains are micrometric (≥ 1µm) membrane domains related to cell 

polarisation, fabricated through polarised secretion or endocytosis. A large patchwork 

of nanodomains may also be considered a microdomain. This distinction in size 

between nano- and micro-domains is capital to emphasise that the former is a sub-

membrane specialisation while the latter concerns a whole portion of it (Figure 21). 

This implies that microdomains can be resolved by classic confocal microscopy while 

nanodomains cannot. 
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Figure 21 

Examples of membrane microdomains in plants cells. (A) The four 

microdomain types in a pollen tube along with some respective components and 

characteristics: shank, subapical, flank and apical. (B) Schematic of a leaf epidermal 

cells highlighting three proteins with polar repartitions: Breaking of Asymmetry in the 

Stomatal Lineage (BASL, red) in planar microdomains, desperado (DSO, purple) in 

apical microdomains and the boron transporter 1 (BOR1, blue) in basal 

microdomains. (C) Schematic of endodermal root cells. There are planar, equatorial, 

inner and outer polar microdomains. Some typical components within and general 

characteristics are given. From (Gronnier et al., 2018). 
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II. Models of membrane nanodomains across Nature’s clades 

We wish to understand the structure, the formation and the dynamics of membrane 

nanodomains. This requires the study of a wide variety of membrane nanodomain 

systems before achieving a more general model. This section will provide details on a 

few well studied membrane nanodomain systems. 

 

A. In animals 

1. Ras 

Ras proteins form a family of three proto-oncogene GTPases: H-Ras, K-Ras and N-

Ras. They are ubiquitously expressed. Mutations of K-Ras and N-Ras are often found 

in human cancers (Prior et al., 2012). Ras are involved in two signalling pathways 

related to cell proliferation and survival: the mitogen-activated protein kinases (MAPK) 

pathway and the P13K/Akt pathway (Braicu et al., 2019). Their G-domains, responsible 

for the binding of guanine nucleotides and effectors, are highly similar while their C-

termini vary greatly. Ras anchors include a carboxymethyl S-farnesylated cysteine for 

all isoforms, palmitoylations for H- and N-Ras, and a cluster of lysines for K-Ras (Zhou 

and Hancock, 2015). 

It is through this extremity that Ras attaches to the inner leaflet of the PM (Hancock, 

2003). A detailed structural and functional analysis of membrane anchor mutants of K-

Ras4B highlighted the mechanisms behind its interactions with membranes what it 

entails in terms of cell signalling (Zhou et al., 2017). Nanoclustering of K-Ras4B with 

asymmetric PS species (one saturated acyl chain and one unsaturated acyl chain) 

relies on a delicate balance of H-bonds, hydrophobic and electrostatic interactions that 

can easily be shattered by a single mutation. Indeed, a membrane anchor mutant was 

shown to interact and cluster with PI4,5P2 rather than PS, resulting in altered cell 

signalling. K-Ras4B is an example of an animal oncoprotein where just one mutation 

can impact nanoclustering and subsequent interactions with its protein partners (Figure 

22). 

 
Figure 22 

Atomic force microscopy (AFM) on K-Ras4B nanodomains. Bilayers of 

20/5/45/5/25 DOPC/DOPG/DPPC/DPPG/cholesterol and K-Ras4B in a GDP-bound 

(left) or a GTP-bound state (right). K-Ras4B clusters in nanodomains ranging from 

500 nm to 1µm only in the liquid-disordered (ld) phase, never in the liquid-ordered (Lo) 
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phase. Nanodomains appear thicker when K-Ras4B is loaded with GTP. Scale bar: 2 

µm. Adapted from (Weise et al., 2011). 

 

2. GM1 

GM1 gangliosides (Figure 23) are sphingolipids critically involved in many metabolic 

and signalling pathways in animals cells, such as ion transport, neuronal differentiation, 

GPCRs, immune system reactions, neuroprotection, toxin and viral susceptibility 

(Ledeen and Wu, 2015). It is these latter aspects (toxin and viral susceptibility) that we 

will discuss now. Indeed, atomic force microscopy (AFM) reveals the formation of GM1 

nanodomains in simple monolayer systems. Moreover, incubation with cholera toxin 

induces the formation of larger nanodomains, hinting at a direct interaction between 

GM1 and the cholera toxin (Yuan and Johnston, 2001). Similarly, the simian virus 40 

(SV40) can target giant unilamellar vesicles (GUV) enriched in GM1 and produce 

invaginations, demonstrating the mean of entry of SV40 in animal cells exhibiting GM1 

at their surface (Ewers et al., 2010). 

 
Figure 23 

AFM on GM1 nanodomains. of 2/1 DPPC/cholesterol bilayers alone (A) or with 

10% GM1 (w/v) (B). Adapted from (Yuan and Johnston, 2001). 

 

3. Caveolae 

Caveolae are invaginations of the PM. They were first observed in 1955, making it 

the first nanodomain system to be ever discovered (Yamada, 1955). Caveolae are 

formed by proteins called caveolins that bind to the PM’s inner leaflet (figure 24). They 

are mainly involved in endocytosis, cell signalling (Lisanti et al., 1995; Williams and 

Lisanti, 2005) and cellular entry of pathogens such as SV40 (section II.A.2) and toxins 

like Vibrio cholerae’s toxin (CTX). Indeed, internalisation of SV40 utilises both GM1 

gangliosides and caveolae nanodomain systems (Norkin and Kuksin, 2005; Pang et 

al., 2004; Parton, 1994). Drug-induced removal of cholesterol from the PM makes 

these initially relatively immobile structures quite mobile (Thomsen et al., 2002). Thus, 
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cholesterol seems not involved in their formation but may impact their biological 

activity. Lastly, caveolae are rigid structures: neighbouring caveolae tagged with 

different fluorophores do not mix, unless cholesterol is depleted (Tagawa et al., 2005). 

 
Figure 24 

A general description of caveolae. (A-B) Electron micrographs of adipocytes 

showing invaginations at the PM: caveolae. Notice how some caveola appear to be 

interconnected to each other. (C) Schematic of a caveola. Insertion of caveolins 

(blue) in the PM provoke the formation of a caveola. Their N-termini scaffolding 

domains are putatively involved in interactions with cholesterol while their central part 

is embedded in the PM. In addition, their C-termini domains bear palmitoylation sites. 

Modified from (Parton and Simons, 2007). 

 

B. In yeasts: on different nanodomain distributions of many systems 

(Spira et al., 2012) described an ensemble of nanodomain systems in yeast with 

distinct localisations. A distinction was made between patch-like systems of punctate 

domains (i.e. nanodomains) and network-like systems displaying varying levels of 

connectivity, excluded from nanodomains (Figure 25). Some nanodomains appeared 

larger than for animals (up to 1 µm). This was attributed to a slower diffusion of 

membrane components compared to animal cells favouring their aggregation (Valdez-

Taubas and Pelham, 2003). Knockoffs of ergosterol or sphingosine biosynthesis 

switched patch-like systems to network-like systems, indicating a loss of patch-like 

membrane repartition capability upon suppression of typical membrane nanodomain 

components (see section I.E.2.d), a proof that these patches could be nanodomains. 
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Figure 25 

Screening the subcellular localisation of yeast proteins. Some cluster in 

patch-like domains while others adopt a network-like reparation, as if they were 

excluded from some membrane nanodomains. From (Spira et al., 2012). 

 

C. In prokaryotes: flotillins 

Flotillins and flotillin-like proteins are ubiquitous, appearing by convergent evolution 

in all clades of Nature (Rivera-Milla et al., 2006). YuaG is involved in the sporulation of 

Bacillus subtilis, localises at the PM’s inner leaflet into nanodomains of size below 500 

nm and is purified in DIMs enriched in PG and cardiolipin (Donovan and Bramkamp, 

2009). Fluorescence microscopy with the lipid order-sensitive probe Laurdan 

demonstrated YuaG’s ability to regulate membrane fluidity. Indeed, a knockoff of YuaG 

resulted in the coalescence of initially punctate ordered membrane domains into a cell-

wide increase of lipid ordering. A similar phenotype was observed for a knockoff of 

squalene synthase, responsible for the synthesis of hopanoids, the bacterial 

equivalents of sterols (Bach and Bramkamp, 2013). This dependence on molecules 

with similar functions as sterols reinforces the idea of the existence of membrane 

nanodomains in bacteria. Finally, many of YuaG’s interacting partners were found to 

co-cluster leading to propose a role for YuaG as maker of membrane hubs in various 

cell processes (Bramkamp and Lopez, 2015) (Figure 26). 

 
Figure 26 

Epifluorescence microscopy of Bacillus subtilis expressing CFP and FloT-

GFP. Images use false-colours. From (Bramkamp and Lopez, 2015). 
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D. In plants: Rho of plants (ROP) 

Ras proteins in animals and Rho proteins in yeast have a plant vegetal equivalent 

with Rho of plants (ROP), which exist and cluster into nanodomains. The molecular 

basis of its membrane-interacting properties are similar to animal Ras proteins (see 

section II.A.1) (Nagawa et al., 2010; Platre et al., 2019; Zhou et al., 2017) and will not 

be re-discussed here. Rather, the involvement of membrane nanodomains in signal 

transduction will be detailed. Auxin, a plant hormone involved in growth and 

development (Leyser, 2018), can remodel cellular distribution of PS, activate ROP6 

and promote its PS-dependent nanoclustering (Platre et al., 2019). Conversely, 

variations in PS levels at the PM define ROP6-mediated auxin response. As a result, 

co-clustering of ROP6 and PS is an obligatory step in auxin signalling, as part of an 

analogue-digital-analogue signal converter (Figure 27) (Jaillais and Ott, 2020; Tian et 

al., 2007): (1) a certain amount of auxin interacts with its cognate receptors; (2) 

resulting in a given level of ROP6 nanoclustering; (3) defining a particular signal output 

level. This model, which was first hypothesised for Ras proteins (Tian et al., 2007), was 

further expanded to ROP in a recent preprint (Smokvarska et al., 2020). 

ROP11 is pinned by microtubules forming a fence preventing the free diffusion of 

the protein. These ROP11 microdomains were shown to define cell shapes (Oda and 

Fukuda, 2012). 

 
Figure 27 

A model for the role of Ras and ROP nanodomains in cell signalling. (A) Let 

us assume that hormone receptors of the PM bind increasing concentrations of their 

ligand and subsequently recruit and activate ROP, which clusters in PM 

nanodomains, such as the more ligand is bound, the more ROP is clustered in 

nanodomains and the more of these nanodomains there are (analogue-to-digital 

conversion). Nanoclustering allows signal concentration, making the signalling 

pathway more efficient, such as the more ROP nanoclusters, the higher the signalling 

output (digital-to-analogue conversion). (B) ROP binds the PM via PS, the quantity of 

which, at the PM, positively regulates ROP signalling. From (Jaillais and Ott, 2020). 
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Another plant membrane nanodomain system will be the subject of this manuscript: 

the remorins. 

 

III. Remorins 

The multigenic, plant-specific, family of remorin proteins (Raffaele et al., 2007a) is 

a well-known marker of such nanodomains in plants (Demir et al., 2013; Gronnier et 

al., 2017; Mongrand et al., 2004; Raffaele et al., 2009a). Remorins were first 

discovered as soluble DNA-, oligogalacturonide- and pectin-binding phosphorylated 

receptors (Alliotte et al., 1989; Farmer et al., 1989; Jacinto et al., 1993) in tomato and 

potato plants. In the latter, this protein, having an apparent molecular weight of 34 kDa 

by SDS-PAGE, was named pp34 (Jacinto et al., 1993). It is only after it was cloned 

and turned out to be totally hydrophilic (albeit membrane bound) that it was renamed 

remorin, as a reference to the remora fish hanging up to boats or other fishes from El 

Libro De Los Seres Imaginarios (Borges and Guerrero, 1969), just like remorin is 

bound to the plasma membrane (Reymond et al., 1996). 

 

To avoid spoiling this manuscript, contributions of articles in which I was involved 

were removed and replaced with their related interrogations and hypotheses as they 

were at the beginning of this PhD thesis.  

 

A. Phylogeny 

Remorins are split into six phylogenetic groups (Raffaele et al., 2007a). All bear a 

predicted C-terminal coiled-coil domain ended by a remorin C-terminal anchor (Perraki 

et al., 2012; Raffaele et al., 2013) and an N-terminal intrinsically disordered domain 

(IDD), where lie most differences between isoforms (Figure 28). It should be noted that 

group 3 remorins lack an IDD. In comparison, C-terminal domains have a well 

conserved size of about 110 residues. A brief overview of each group will be given. 

Group 1 contains remorins from ancestral plants such as gymnosperms (i.e. naked 

seed plants such as conifers), ferns and early angiosperms (i.e. floral plants), from 

monocotyledons to eudicotyledons. These remorins possess proline-enriched IDDs 

(8.9% for group 1a and 14.4% for group 1b) of about 81 ± 11 residues with a high 

homology (Raffaele et al., 2007a). In silico analysis of group 1 IDDs reveals a 

propensity for phosphorylation, hinting at a putative regulatory mechanism and a 

functional diversity of these domains, as phosphorylation is a common mean to control 

and tune an IDD’s function (Khan et al., 2017; Uversky, 2013). Group 1a remorins’ 

gene expression is correlated with genes involved in cell wall biology and extracellular 

functions, while group 1b remorins’ gene expression seems more related to genes 

involved with the Golgi apparatus or the PM (Raffaele et al., 2007a). 

Group 2 contains isoforms coming mostly from legumes and poplars. Their IDDs 

are about 86 ± 7 residues long and bear no significant homology with group 1’s IDDs. 

They are mainly expressed in eurosids, even though we should note that a REM2.1 

has recently been evidenced in Arabidopsis thaliana (Gouguet et al., 2020). 
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Group 3 gathers remorins without IDDs. As such, it could be labelled as the shortest 

remorin group. This absence of N-terminal domain could indicate a more restricted set 

of functions performed by remorins from this group, with all the biological activity 

originating from the coiled-coil C-terminal domain and its membrane anchor. They are 

expressed in rosids. 

Group 4 remorins have IDDs about 160 ± 31 residues long, which are notoriously 

longer and different from group 1 IDDs, and these domains are enriched in both 

prolines and serines, highlighting a different set of biological functions. They are 

expressed in both monocotyledons and eudicotyledons. 

Group 5 remorins have more divergent C-terminal domains in addition to a 91 ± 45 

residues long IDD that is poor in prolines. This absence of conformation-restrictive 

aminoacids could be a hint at a higher order parameter of these N-terminal domains 

and a greater ability to form, upon interaction with a ligand, a complex structure. 

Group 6 remorins are the longest with highly variable, 279 ± 89 residues long IDDs, 

for total lengths between 240 and 522 residues. Such discrepancies may indicate the 

existence of many yet uncharacterised subgroups. 

 
Figure 28 

Phylogenetics of the remorin family. All remorins share a common C-terminal 

coiled-coil signature. Their classification relies on their distinct N-terminal domains. 

Organisms are colour-coded as described in the inlet. Abbreviations: Ac, Adiantum 

capillus-veneris; Ak, Amborella trichopoda; Ap, Allium cepa; At, Arabidopsis thaliana 

(thale cress); Cr, Ceratopteris richardii; Mc, Mesembryanthemum crystallinum; Mt, 
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Medicago truncatula (barrelclover); Na, Nuphar advena; Nt, Nicotiana tabacum 

(common tobacco); Os, Oryza sativa (rice); Pa, Persea americana; Pd, Pinus taeda; 

Pi, Pinus pinaster; Pp, Physcomitrella patens; Ps, Picea sitchensis; Pt, Populus 

trichocarpa; Sl, Solanum lycopersicum (tomato); St, Solanum tuberosum (potato); Wm, 

Welwitschia mirabilis; Zm, Zea mays (corn). From (Raffaele et al., 2007b). 

 

B. Biological implications 

The functions of remorins remain partly enigmatic although it is attributed some 

recurring roles such as in the regulation of cell-to-cell communication, plant immunity, 

symbiosis and stress resistance. Sections III.B.1 to III.B.4 are heavily inspired from the 

comprehensive bibliographic review of (Gouguet et al., 2020), currently in positive 

revision in Plant Physiology and of which I am co-author (see Annex). Thematics 

associated with remorins are summarised in (Figure 29), some of which will be 

discussed below. A complete list of known biological involvements is given at the end 

of Annex. 

 
Figure 29 

Summary of remorins biology. (A) Main biological roles of remorins (Gouguet et 

al., 2020). (B) Localisation (blue) or anti-colocalisation (red) of some remorins in 

nanodomains observed by spt-PALM (Jarsch et al., 2014). 

  



44 
 

1. Immunity 

a. Against viruses 

Plasmodesmata are membranous channels, about 20-40 nm large, connecting 

neighbouring cells, across PMs and cell wall. They are partially filled with ER from one 

side to another (Nicolas et al., 2017). Thus, they link the cytosols of virtually every plant 

cell, allowing the exchange of molecules. Consequently, PD are capital elements of 

plant development (Otero et al., 2016; Wu et al., 2016), metabolism (Ross-Elliott et al., 

2017) and immunity (Benitez-Alfonso et al., 2010). On this last point, we should 

emphasise that, if metabolites and signalling molecules can travel from one cell-to-

another, so can plant viruses by hijacking the PD to increase its size exclusion limit. It 

is on such a basis that we can grasp the role of remorins in viral immunity. 

Overexpression of StREM1.3, slowed down the cell-to-cell propagation of the plant 

virus model Potato Virus X (PVX), as could be assessed by a decrease in PVX infection 

foci area. Conversely, underexpression of StREM1.3 increased the size of  infection 

foci (Perraki et al., 2014; Raffaele et al., 2009a). The closure of PD is correlated with 

the deposition at their neck region of a 1,3-β-glucan named callose that seems to clog 

the pore. Conversely, the degradation of callose open the PD pore. The passage of 

the PVX through PD is made possible by its viral movement protein TGBp1 (Howard 

et al., 2004). Coincidentally, StREM1.3 interacts with TGBp1 and can be found at PD 

(Gronnier et al., 2017; Raffaele et al., 2009a). There are two non-exclusive hypothetical 

mechanism to explain these phenomenon: (1) StREM1.3 interacts with TGBp1 

(Raffaele et al., 2009a) and prevents the passage of PVX components through PD; (2) 

StREM1.3 promotes callose deposition at PD, thus confining the PVX to the cells it 

already infected. This last mechanism is supported by the fact that co-expression of 

lone viral movement proteins TGBp1 from the PVX, or 30K from the Tobacco Mosaic 

Virus (TomV) or Hc-Pro from the Potato Virus Y, along with StREM1.3, restricted the 

cell-to-cell diffusion of free GFP, indicating PD closure (Perraki et al., 2014). 

 

b. Against bacterial and fungal infections 

Arabidopsis thaliana treated with flagellin 22, a short segment of a bacterial flagellin 

a known immune response elicitor, display a more phosphorylated AtREM1.3, on 

residues S14 and T58, but not AtREM1.2, which does not have these phosphorylation 

sites (Benschop et al., 2007). Yet, both AtREMs co-localise to the same nanodomains 

(Jarsch et al., 2014). Similarly, upon overexpression of the bacterial effector gene 

AvrRPM1 from Pseudomonas syringae, AtREM1.2’s expression increases (Widjaja et 

al., 2010). In the fight between plants and pathogens, extracellular vesicles (EVs) are 

excreted from both sides, containing proteins, metabolites and interfering RNAs. 

Among these, we find again AtREM1.2, AtREM1.3 and RIN4, a known interactor of 

AtREM1.2 related to Pathogen-Associated Molecular Pattern (PAMP)-triggered 

immunity (PTI) against Pseudomonas syringae (Meyer et al., 2009; Micali et al., 2011). 

AtREM1.3 is also known to bind ergosterol, which happens to be toxic for plants (Khoza 

et al., 2019). 

StREM1.4 is up-regulated against Ralstonia solanacerum, a pathogen of potato 

(Kong et al., 2016), while StREM1.3 is enriched in PMs near haustoria of Phytophtora 
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infestans, i.e. fungal protrusions into plant cells (Bozkurt et al., 2014; Lu et al., 2012). 

In maize, ZmREM6.3 is genetically correlated to the resistance against Steosphaeria 

turcica, responsible for the northern leaf blight plant disease, and ZmREM1.3 infers 

resistance against Puccinia polyspora (Bilska-Kos et al., 2016; Jamann et al., 2014). 

 

2. Symbiosis 

If remorins are involved in protecting the plant from harmful pathogens, it is equally 

involved in symbiotic relationship with bacteria. Indeed, MtREM2.2 is expressed in 

roots, especially in nodules as a necessary response to nodulation factors sent by 

symbionts during nodulation initiation. It acts as a scaffold for receptor-like kinases 

NFP, DMI2 and LYK3, as well as flotillin 4, all involved in nodulation (Lefebvre et al., 

2010; Liang et al., 2018). Overexpression of LjSYMREM1, a group 2 remorin, 

increases the number of nodules per root (Tóth et al., 2012). Finally, QrREM4.1 is up-

regulated in case of symbiosis with Piloderma croceum (Tarkka et al., 2013). 

 

3. Stress resistance 

We described remorins as organisers of symbiosis and biotic stress (i.e. defence 

against pathogens). They are also involved in abiotic stress. A first hint would the ability 

of group 1 remorins to bind poly-galacturonic acid, a product of cell wall degradation 

(Reymond et al., 1996). A large bibliography records remorins from groups 1, 4 and 6 

as inferring resistance to drought and salt-stress. Treatment with various plant 

hormones whose levels increase during biotic and abiotic stress, including abscisic 

acid, auxin, brassinosteroids, cytokinins, jasmonates and salicylic acid, also up-

regulates these remorins, confirming a general link between remorins and stress 

resistance (Gouguet et al., 2020). 

 

4. Cell-to-cell communication 

In rice, OsREM6.6 Grain Setting Defect 1 (GSD-1) mutant provokes an 

accumulation of starch and free sugars in leaf blades and a lack of starch in grains. 

This implies a correlation between this remorin and metabolite transfer across tissues. 

This can be corroborated to the presence of a subset of StREM1.3 at PD (Gronnier et 

al., 2017; Raffaele et al., 2009a). 

 

C. Biophysics of membrane anchoring and nanodomain formation, with a 

special attention to StREM1.3 

The remorin family is vast, yet one isoform received much attention not only for its 

biological implications but also as a model to study its membrane anchoring and 

nanodomain formation mechanism: StREM1.3. Many structural data are already 

available, making this isoform a candidate of choice to further our understanding of 

remorins’ biophysics. However, other remorins will be discussed in order keep in mind 

the larger picture of learning about the biophysics of remorins. 

 

1. Remorin C-terminal anchor (RemCA) 
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Removing the last 28 aminoacids of StREM1.3 turns it from an integral, tightly 

membrane-bound protein into a fully soluble protein (Perraki et al., 2012). This C-

terminal feature, RemCA, is common to all remorins and has convergent analogues 

outside of plants sharing the same overall fold and aminoacid bias: a long helix lying 

at the membrane interface and a shorter C–terminal helix buried in the membrane, 

both linked by a small loop (Figure 29) (Raffaele et al., 2013). A comparison of RemCA 

domains between remorins of Arabidopsis thaliana and MtREM2.2 displays the extent 

of their diversity, some bearing many S-acylated cysteines while others none, most 

showing a strong pattern of hydrophobic residues at their C-terminal and basic 

residues towards their N-terminal, with the notable exceptions of At4g36970, 

At1g53860, At4g67590 and StREM1.3 (Konrad et al., 2014). However, all of them are 

detected in PM nanodomains, but not necessarily the same nanodomains: some do 

colocalise while others exclude one another (Jarsch et al., 2014). This could imply that: 

(1) remorins may bind different and specific target at the PM or (2) actively exclude 

one another on a yet unknown basis (section III.C.4). 

 
Figure 29 

First structural studies on RemCA. Left: aminoacid composition bias of 117 

RemCA from 26 species, compared to randomly selected 28 aminoacids long 

peptides from Uniprot. From (Raffaele et al., 2013). Right: first structural model of 

StREM1.3-RemCA from (Perraki et al., 2012). 

 

A detailed biophysical analysis of StREM1.3’s RemCA (StREM1.3-RemCA) and 16 

mutants provided the structural basis for its PM nanodomain targeting (Gronnier et al., 

2017). Lowering the PI4P content in the PM’s inner leaflet of Nicotiana benthamiana 

by expressing the myristoylated/palmitoylated-phosphatidylinositol 4-phosphatase 

SAC1p enzyme, StREM1.3’s PM targeting was largely abolished. Using a combination 

of solid-state nuclear magnetic resonance (ssNMR), Langmuir trough and infrared 

spectroscopy, StREM1.3-RemCA’s fold was re-evaluated: the short C-terminal helix 

was replaced by an extended β-sheet (Figure 30). In this model, K192 and K193 (of 

the extended β-sheet) are positively charged and interact with PI4P through an 

electrostatic interaction with the inorganic phosphate in position 4 of the inositol. 
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Attempts at deciphering the aminoacid code responsible for StREM1.3-RemCA’s 

membrane interacting properties, by mutant analysis followed confocal microscopy or 

super-resolution microscopy, revealed the anchor’s net charge as an interesting 

parameter to follow: a shift from a non-charged WT anchor to negatively charge 

mutated anchor is correlated with a decrease in PM targeting. Surprisingly, a fine 

monitoring of some WT and mutated StREM1.3-RemCA, by single-particle tracking 

photoactivated localisation microscopy (spt-PALM), revealed that all variants were still 

able to make nanodomains, although with significantly different sizes, diffusion rates, 

relative areas and nanodomain localisation (Figure 31). 

 
Figure 30 

Structural model of StREM1.3’s RemCA by molecular dynamics. Comparing 

to figure remca_2012_2013, the second helix of the latter is now an extended β-

sheet in the former. In this model, PI4P specificity is explained by an electrostatic 

interaction between K192, K193 and the last inorganic phosphate of the polar head. 

From (Gronnier et al., 2017). 

 

Critical mutations of StREM1.3-RemCA shown to abolish PM targeting decreased, 

if not cancelled, StREM1.3’s ability to slow down cell-to-cell viral propagation (Perraki 

et al., 2014), proving the need of an optimal repartition of StREM1.3 at the PM 

localisation to ensure its anti-viral activity. 

 



48 
 

 
Figure 31 

Spt-PALM analysis of EOS-tagged WT and mutated StREM1.3 in Nicotiana 

benthamiana leaves (EOS is a fluorphore suited for spt-PALM). (A) Representative 

PALM image analysis for each protein with tessellation-based automatic image 

segmentation (images are automatically fragmented so that only one remorin 

occupies a given tile). Nanodomains are circled in red. (B) Diameter distributions of 

nanodomains for each protein. (C) Percentage of the PM occupied by nanodomains. 

(D) Percentage of EOS-tagged StREM1.3 in nanodomains. (E) Number of 

nanodomains per µm2. From (Gronnier et al., 2017). 

 

 

2. Oligomerisation domain 

Early on, some group 1 remorins, including StREM1.3, were shown to 

spontaneously assemble into filaments in vitro (Figure 32) (Bariola et al., 2004). Cross-

linking experiments and analytical centrifugation (although the latter was labelled as 

“data not shown”) indicated a continuum of oligomeric states from degree 2, 4 and 

above. In opposition, size exclusion chromatography on StREM1.3 would indicate a 

homo-trimeric state (Perraki et al., 2012), but this experiment suffered from a poor 

choice of column and corresponding separation range. The ability of remorins to 

spontaneously make filaments certainly hinders the measurement of intermediate 

oligomeric states. 

Beyond in silico analyses (Raffaele et al., 2007a; Reymond et al., 1996), the putative 

coiled-coil fold of the oligomerisation domain has yet to be proven. 
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Figure 32 

Negative-staining electron microscopy of StREM1.3 (from potato) and 

SlREM1.2 (from tomato) filaments, in vitro. Adapted from (Bariola et al., 2004). 

 

3. IDD 

Bioinformatic tools predict remorins’ N-termini as IDD (Raffaele et al., 2007a). 

Although no experimental structural investigation can confirm this yet, if it is taken for 

granted, the study of this domain in interactions with partners of remorins would allow 

to grasp the structural implications of such associations. 

Phosphorylation is a recurrent mean to change an IDD’s properties, or to switch it 

from an unfolded inactive state to a folded active state, or vice versa (Khan et al., 2017; 

Nishi et al., 2013; Uversky, 2013). Remorins’ IDDs are no exception (Marín and Ott, 

2012), so if a non-phosphorylated IDD is indeed unfolded, what about its 

phosphorylated state? There again, no structural study of a remorin’s IDD is available 

beyond sequence analysis. 

 

4. Towards a model of StREM1.3 nanoclustering 

The study of (Gronnier et al., 2017) was the first to formulate a hypothetical 

membrane nanoclustering mechanism of a remorin: (1) cytosolic, homo-trimeric 

StREM1.3 would bind to PI4P of the PM’s inner leaflet and (2) cluster with one another 

together with sterols. The bundling of three RemCA domains within a single trimer 

would confer the protein a higher avidity for PI4P, and maybe other PIPs, than a lone 

StREM1.3-RemCA. 

Although the first step, the PM binding, is easy to accept, given the evidence at our 

disposal (section III.C.1), the second step remains elusive. What promotes 

nanoclustering? 

 

a. Remorin/lipid-lipid interactions: PIPs cluster on their own 

Due to their big negatively charged polar heads conferring an inverted conical 

shape, PIPs have the interesting property to promote a negative membrane curvature 

and cluster (Bilkova et al., 2017; van den Bogaart et al., 2011; Ji et al., 2015; Picas et 

al., 2016). This nano-environment is reminiscent of our definition of nanodomains. The 
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presence of sterols could be explain by the presence of a pool of saturated PIPs in 

DIMs of plants (Furt et al., 2010). 

In this aspect, the mere binding of StREM1.3 would be enough to ensure its 

nanoclustering. However, StREM1.3 binds tightly to the PM, as salt- and high pH 

shocks cannot alter its binding (Perraki et al., 2012). In this regard, it is an integral 

protein. We may expect protein insertion to modify if not shatter this pre-existing 

organisation. 

At last, this mechanism alone cannot explain the coexistence of many different 

remorin-enriched nanodomains (Jarsch et al., 2014). 

 

b. Remorin-remorin interactions: remorins tether with their peers 

Remorins are likely to make oligomers through their putative coiled-coil domains 

(Raffaele et al., 2007a; Reymond et al., 1996), and they can make filaments in vitro 

(Bariola et al., 2004). Although these have never been unambiguously observed in 

vivo, the underlying self-assembling behaviour could persist. This would explain why 

remorins with high homology, such as those within a given phylogenetic group, could 

cluster together while divergent remorins could not. The structural basis of such 

discrimination is unknown. It could originate either from the oligomerisation domain or 

the IDD. It could also be directed by pinning, as we will see in the next section.  

 

c. Remorin-cytoskeleton interactions: the cytoskeleton directs 

nanoclustering 

Disruption of microfilaments or microtubules changed the localisations of AtREM1.2 

and AtREM1.3 from DIMs to detergent-soluble membranes (DSMs) (Figure 33) 

(Szymanski et al., 2015). Coincidentally, for AtREM1.2, the characteristic dot-like 

pattern of fluorescently-tagged remorins observed by confocal microscopy turned into 

a more homogeneous PM distribution upon disruption of microfilaments but not 

microtubules. We should remind ourselves that confocal microscopy cannot resolve 

remorin nanodomains of about ≈80 nm in diameter (section III) (Gronnier et al., 2017; 

Raffaele et al., 2009a), so we can only conclude that the overall PM organisation of 

this remorin has been modified. In any case, these observations indicate an interaction 

between remorins and cytoskeletal components, namely actin and microtubules, to pin 

remorins (Dinic et al., 2013; Raghupathy et al., 2015; Tsuji and Ohnishi, 1986). 

Disruption of the cytoskeletal network would unleash these remorins from their 

nanodomains and grant them freer movement. 



51 
 

 
Figure 33 

Relationship between the cytoskeleton and AtREM1.2 or AtREM1.3. (A) Mass 

spectrometry analysis of AtREM1.2 content of Arabidospsis thaliana seedlings. (B) 

Principle of DRM (or DIM) purification. (C) Analysis of DRM purification by western 

blot on untreated (control), disrupted for actin (cyt-d) or disrupted for microtubule 

(oryzalin). (D) Confocal microscopy of Arabidopsis thaliana seedlings expressing 

YFP-AtREM1.2 of untreated or treated with cyt-d or oryzalin. Scale bars: 20 µm. 

Adapted from (Szymanski et al., 2015). 

 

IV. Objectives 

As can be gauged from the previous section, a lot of unknowns hover in the realm 

of remorins. To work upon pre-existing knowledge, we will concern ourselves with the 
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biophysics of StREM1.3 in membranes. We will be interested in answering the 

following questions: 

 

1. What is the nanoclustering mechanism of StREM1.3? 

What is StREM1.3’s impact on membrane dynamics? How does it oligomerise? Is 

oligomerisation relevant in understanding its membrane interactions? How does it 

make filaments? The seminal work of (Gronnier et al., 2017) must be pursued to test 

and further our model of StREM1.3’s nanoclustering. 

 

2. What is the minimal set of partners required to make StREM1.3 

nanodomains? 

Can we reconstruct such domains in vitro? If we achieved it, it would mean that: (1) 

we understood how StREM1.3 nanodomains are formed and (2) we would have a 

powerful in vitro tool to study the formation and the behaviour of such nanodomains. 

 

3. How interactors of StREM1.3 may regulate its relationship with 

membranes and biological functions?  

The interactors and the precise mechanism by which StREM1.3 can block the cell-

to-cell propagation of the PVX remain to be elucidated. 

 

4. Professional context 

This doctoral work is the fruit of a joint effort by a team of biologists, biochemists 

and remorin specialists at the Laboratoire de Biogenèse Membranaire, UMR 5200, 

CNRS led by Dr Sébastien Mongrand and a team of biophysicists and NMR 

spectroscopists at the Institute of Chemistry and Biology of Membranes and Nano-

objects, UMR 5248, CNRS led by Dr Birgit Habenstein. About a quarter of the work 

was performed in the “biology team” and the rest was done in the “NMR team”, 

including protein production and purification. As such, and due to my student cursus, 

my outlook on the project is inherently focused on structural biology rather than plant 

biology. Nonetheless, I was trained to perform experiments belonging in either of these 

categories. 

 

To achieve the aforementioned objectives, we disposed of many biophysical tools, 

whose description will be the subject of the next section. 

 

V. Biophysical tools to study membrane nanodomains 

The aim of this section is to list the biophysical tools of interest for the 

comprehension of this manuscript. Principles will be explained and relevance to our 

field of study indicated. It is not intended to be a full-length description of these tools. 

 

A. Detergent insoluble membranes 

Although no DIM purification will be performed in this manuscript, given the 

importance of this technique in membrane nanodomain research, it deserves to be 

discussed in more details. 
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Density gradient separation is a powerful biochemical tool to separate components 

of varying densities. Proteins have densities around 1.4 g/cm3 (Fischer et al., 2004; 

Quillin and Matthews, 2000), lipid membranes have densities ≈ 1.05 g/cm3, water’s 

density is 0.997 g/cm3 and a 60% (w/v) sucrose solution, a common maximum in such 

experiments, is 1.29 g/cm3. Here, proteoliposomes tend to behave, in terms of density, 

like pure liposomes. The membrane preparation is incubated at 4°C overnight in 

presence of 1% (v/v) Triton X-100. It is adjusted to 60% sucrose, covered with 40%, 

35% then 30% sucrose and submitted to an ultracentrifugation. A short run of 2-3 h will 

maintain gradient discontinuity, while a longer run of 16h will turn the density gradient 

continuous. Solubilised proteins will be located at the bottom of the gradient while 

membrane proteins anchored to DIMs will float near the top of it (Figure 34) (Brown 

and Rose, 1992; Carter and Hakomori, 1981; Mongrand et al., 2004; Raffaele et al., 

2009a; Yu et al., 1973). 

 
Figure 34 

Schematic of a typical DIM purification. Purified membranes are incubated with 

1% Triton X-100 (w/v) at 4°C overnight. The sample is then adjusted to 52% sucrose 

and covered with layers of sucrose of decreasing concentrations. After 

ultracentrifugation (200000 g for 16h), DIMs will float at one interface near the 

gradient’s top while soluble material will be pelleted. Protocol based on (Raffaele et 

al., 2009b). 

 

The formation of DIMs is correlated to the enrichment in high-Tm lipids, such as 

sphingolipids and saturated phospholipids, and sterols (Schroeder et al., 1994), which 

is, as we saw in section I.E.2.d, an expected feature of many membrane nanodomain 

systems. Moreover, DIM purification is the only technique amenable to lipidomic 

investigations (Furt et al., 2010; Schroeder et al., 1994). However, it does not inform 

on spatial segregation: just because two proteins are enriched in DIMs does not imply 

they are segregated in the same membrane nanodomains: we saw, in the case of 

remorins, that many remorins seem to exclude each other while being enriched in DIMs 

(Jarsch et al., 2014). Also, some membrane nanodomain systems are not particularly 

enriched in lipids suitable to behave as DIMs, such as the Ras system that relies on 
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PS in the fluid phase (section II.A.1). Finally, the appearance of DIMs depends on the 

choice of detergent (Schuck et al., 2003), casting doubt on the results this purification 

technique may provide. This is the main reason to explain its decline. 

 

B. Fluorescence microscopy 

Recent definitions of membrane nanodomains increasingly emphasize spatial 

segregation, which may only be observed by some kind of microscopy. Light 

microscopy allows the study of both in vivo and in vitro samples in native or native-like 

conditions. Since sample fixation is not mandatory, one can also observe time-

dependent phenomena. 

 

1. The fluorescence phenomenon 

Suppose a fluorophore F, whose size is nanometric, (1) receives an incident light 

carrying an energy E = h.c.λ-1 where h = 6.626.10-34 m2.kg.s-1 is the Planck constant 

and c = 299792458m/s the celerity of light (Bureau International des Poids et Mesures, 

2006). λ is such that an electron may jump from a ground electronic state S0 to an 

excited electronic state S1. Note the multiple vibrational energy states for each 

electronic state. Here, F is at the highest electronic and vibrational states S1,3 of our 

diagram. (2) Following a process called interconversion, F will relax to the lowest 

vibrational state S1,0 in about 10-12s. (3) F will relax further by returning to S0 by emitting 

a photon. Yet, F carries less energy in (3) compared to (1), so the photon’s energy will 

be less: Eexcitation > Eemission so λexcitation < λemission (Figure 35) (Lakowicz, 2006). The 

whole process takes about 10-8s and although excitation is done at a specific λexcitation 

via a laser, fluorescence emission covers a range of λemission. 

 
Figure 35 

An explanation of the fluorescence phenomenon. A fluorophore F is in an 

electronic and vibrational state S0,1 of lowest energy. Following an excitation with a 

photon of energy h.νexcitation, F is excited to the highest electronic and vibrational state 

S1,2. F will lose some energy through a process called internal conversion, reaching 

the lowest vibrational state S1,0. Finally, F will relax to S0 by emitting a photon of 

energy h.νemission, such that h.νexcitation > h.νemission. 

 

2. Confocal microscopy 

Epifluorescence microscopy differs from confocal microscopy in that the former 

illuminates the whole sample at once and recovers the fluorescence signal across all 

of it. The latter illuminates one point of the sample at a time and recovers the 
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fluorescence signal from that point only (Figure 36). Due to a detection pinhole, 

photons will not bleed from nearby areas towards the detector, so the resolutions both 

in the (x,y) plane and along z are much higher. Assuming one can graft a fluorescent 

label without modifying the properties of a protein of interest, its membrane interacting 

properties can be studied. Lipid-binding fluorescent proteins can also be used to 

inquire on lipid repartition. Altogether, confocal microscopy allows the study of protein 

and lipid repartition at the cellular and sub-cellular scales. We already saw many 

examples of what this technique can do. We also saw it being replaced by techniques 

with higher resolutions. Indeed, let us discuss the resolution of confocal microscopy in 

the context of nanodomains. 

 
Figure 36 

General schematic of a confocal microscope. Right: lasers send photons to the 

specimen. Bottom: the scanner ensures only one point of the sample is imaged at 

any given time. Top: the emitted fluorescence signal is directed to detectors. Note the 

use of pinholes the lasers and before the detectors: these ensure out-of-focus 

photons are not detected, effectively increasing the resolution. From (Reichman, 

2013). 

 

First, we shall differentiate the act of detecting from that of resolving (Figure 37). 

Presented with a clear sky, our eyes may detect Mars: all we would see is a brighter-

than-usual spot. Yet, our eyes cannot resolve Mars: we cannot distinguish any of its 

many features, as we can do for the Moon which appears, not as a spot, but as a 

sphere of a certain diameter, littered with craters and various shades of grey. To 

resolve Mars, a telescope is needed: an apparatus with a higher resolution. It is the 

same issue with light microscopy and nanodomains. 
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Figure 37 

On the difference between detecting and resolving. (A) Moon and Mars seen 
from Earth. From (https://earthsky.org/todays-image/photos-videos-mars-brightest-
closest-2018). (B) Mars seen 2500 km away from its surface by Viking 1 Orbiter, 

NASA, on the 22nd of February 1980 (MG07S078-334SP, NASA). (C) PM repartition 
of GFP-StREM1.3 by confocal microscopy in Nicotiana benthamiana leaves. (D) Spt-

PALM of an EOS-StREM1.3 nanodomain microscopy in Nicotiana benthamiana 
leaves. (C) and (D) are adapted from (Gronnier et al., 2017). 

 
Visible light, when meeting an obstacle or when passing through a hole of similar or 

smaller size than the light’s wavelength, makes a diffraction pattern (Figure 38). This 
implies that even a perfectly focused beam of light will produce a diffraction pattern 
instead of a point. Moreover, no matter the fineness of the apparatus, its centre cannot 
be made smaller. John William Strutt Rayleigh found that this pattern’s diameter d is 
defined by: 

 d = 0.61 
λ

NA (Eq.1) 

where λ is the wavelength, NA = n.sin(θ) is the numerical aperture, with n the 
immersion medium’s refractive index, θ the half-angle from the image to one half of the 
cone of light reaching the photomultiplier, and 0.61 = 3.83/2π where 3.83 is the first 
minimum of a diffraction pattern behaving as a Bessel function J0: 

 J0(x) = 
1
π∫ cos(x.cos (θ)) dθ

π

0
 (Eq.2) 

https://earthsky.org/todays-image/photos-videos-mars-brightest-closest-2018
https://earthsky.org/todays-image/photos-videos-mars-brightest-closest-2018
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Figure 38 

Illustrating the importance of Airy discs in light microscopy. Top: Airy discs 

are diffraction patterns of a perfectly focused beam of light through a given optical 

system. Bottom: 3D projection with intensity as height. (a-c) Increasing the 

microscope’s numerical aperture (e.g. by switching from an air immersion objective of 

NA = 1 to an oil immersion objective of NA = 1.4). (d-e) When multiple spots (here 

two) are in proximity, it becomes difficult to assess the centre of each spot, making 

sample resolution harder. Adapted from (http://zeiss-

campus.magnet.fsu.edu/print/basics/imageformation-print.html). 

 

For example, one GFP, which is among the fluorophores with the smallest λemission 

with    λemission (GFP) = 509 nm, observed with an oil-immersion objective whose NA = 

1.40, yields a spot of size d = 222 nm. d is also called the Airy unit (AU) for the GFP 

channel. 

In the case of remorins, nanodomains are smaller than 100 nm (Demir et al., 2013; 

Gronnier et al., 2017; Raffaele et al., 2009a), so it would not be possible to resolve a 

GFP-REM nanodomain with confocal microscopy. Although confocal microscopy can 

be used to assess overall PM organisation (Spira et al., 2012; Szymanski et al., 2015), 

its resolution is too poor to resolve many nanodomain systems. Alternative 

methodologies must be employed, regrouped in what is called super-resolution 

microscopy. 

 

3. Super-resolution microscopy 

a. Airy scan 

The Airy scan relies on the idea that, although a diffraction pattern has an immutable 

size, the area it covers can be finely scanned then de-convolved to break the resolution 

limit up to 120nm in (x,y) and 340nm in z (Huff et al., 2017). This is done by using a 

32-channel photomultiplier array detector in lieu of a single photomultiplier detector. 

 

b. Stimulated emission depletion (STED) 

http://zeiss-campus.magnet.fsu.edu/print/basics/imageformation-print.html
http://zeiss-campus.magnet.fsu.edu/print/basics/imageformation-print.html
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STED uses the concept that the electronic states of a Jablonski diagram can be 
manipulated in both directions. Thus, photons of a given energy are sent until every 
illuminated fluorophore reaches the excited state S1 just before a third photon of slightly 
smaller energy returns fluorophores from a small central area to S0, all before 
fluorescence occurs, effectively depleting fluorescence from an area smaller than 1 
AU, thus breaking the resolution limit (Hell and Wichmann, 1994). It is the oldest super-
resolution methodology, reaching a maximal resolution of 40 nm (Vicidomini et al., 
2018). 

 
c. Single-particle tracking photoactivated localisation microscopy 
(spt-PALM) 

Spt-PALM relies on the fact that if only a single fluorophore emits fluorescence at a 
given time, one could locate the centre of its diffraction pattern and call it the position 
of the fluorophore. This requires that (1) only a subset of fluorophores is excited during 
each acquisition, so any diffraction pattern is due to exactly one fluorophore, and (2) 
this subset of excited fluorophores must change over many acquisitions so all 
fluorophores are imaged (Betzig et al., 2006; Liu et al., 2015). Classical fluorophores, 
such as GFP, cannot be used: some of them must remain “dark” and not fluorescent 
while others are excited and fluoresce (Dempsey et al., 2011; Rust et al., 2006). This 
requires the use of photoactivable (PA) fluorophores, such as PA-GFP (Patterson and 
Lippincott-Schwartz, 2002), that can be switched, by irradiation at a specific 
wavelength, from an active to an inactive state. First, a laser activates a subset of all 
targeted fluorophores. Then, a second laser excites the activated fluorophores. As this 
cycle is repeated, new fluorophores will be activated while a fraction of already 
activated fluorophores will be de-activated (Betzig et al., 2006). A resolution around 20 
nm can be reached, and time series can be used to track single particles and 
reconstitute their trajectories, granting unique insights into the dynamics of live cells 
(Gronnier et al., 2017; Liu et al., 2015). 

 
Super-resolution microscopy is becoming increasingly common. Yet, other kinds of 

microscopies, whose methodologies are older, more commonly available and easier 
to perform exist. 

 
C. Electron microscopy (EM) 

Recalling (Eq.1), one way to improve resolution would be to decrease λ. Yet, lenses 
do not exist for every wavelength of the light spectrum: none for ultraviolets and x-rays. 
De Broglie states the wave-particle duality: 

 λ = 
h
p  = 

h
mv (Eq.3) 

The kinetic energy Ek of an electron is: 

 Ek = 
1
2  m v2 (Eq.4) 

where m = 9.1.10-31 kg is the rest mass of an electron (Bureau International des 
Poids et Mesures, 2006). Combining (Eq.4) and (Eq.5): 
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 λ = 
h

√2mEk
 = 

h
√2meU

 (Eq.5) 

where e = 1.6.10-19 C is the elementary electric charge (Bureau International des 
Poids et Mesures, 2006) and U the acceleration voltage applied to an electron. If we 
are to send an electron beam on a sample at acceleration voltage U, we will do so at 
a non-negligible proportion of the speed of light c = 299792458 m/s in vacuum. Thus, 
the special theory of relativity (Einstein, 1920) applies and eU must be corrected: 

 λ = 
h

√2meU(1+ eU
2mc2 )

 (Eq.6) 

If U = 200 kV then λ = 2.51 pm. Thus, electrons allow us to reach wavelengths in 
the picometre range, much below the length of a C-C bond (154 pm), and far below 
the few hundred nanometres of fluorescence microscopy, therefore providing a very 
high theoretical resolution. 

 
Figure 39 

Schematic of transmission electron microscope. An electron gun shoots an 
electron beam accelerated to a high voltage (100-300 keV). A series of condenser 
lenses (electromagnetic lenses) and diaphragms focus the electron beam onto the 
sample. Electrons passing through will encounter the objective lens to magnify the 

electron beam. A fluorescent screen may be employed for direct visualisation (by the 
eye), or a CCD camera to record electron microscopy clichés. From Dr Graham 

Beards, published on Wikipedia (https://en.wikipedia.org/wiki/Electron_microscope). 
 
However, the sample’s nature, the quality of preparation and the instrumentation will 

be the most determining factors of the final resolution. The details of sample 
preparation will be discussed later. The sample is loaded onto a grid and inserted in 
an electron microscope, in vacuum, and bombarded with electrons (Figure 39). Note 
that the glass lenses of a fluorescent microscope are replaced here by electromagnetic 

https://en.wikipedia.org/wiki/Electron_microscope
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lenses. The possible fates of electrons when reaching the sample stage are many 

(Figure 40). Here, we deal with transmission electron microscopy (TEM), which makes 

use of transmitted and scattered electrons, even though we must acknowledge the 

existence of scanning electron microscopy (SEM), using back-scattered and Auger 

electrons and whose resolution is poorer. Electrons will reach a charge-coupled device 

(CCD) camera that will produce fluorescence upon excitation by transmitted electrons. 

This fluorescence will be recorded as a grayscale image, the brightness of a pixel being 

positively correlated to the amount of electrons received. It follows that a dark spot 

indicates electron absorption by the sample and thus the presence of a material of 

some kind blocking the electron’s path. 

 
Figure 40 

Illustrating the possible fates of electrons in an electron microscope. Top: An 

incident electron may elastically (without losing energy) back-scatter (yellow), non-

elastically (with energy loss) be reflected back from the sample’s surface (orange), 

excite an atom that will return to its ground by emitting X-rays (violet) or Auger 

electrons (cyan) to the incident side. These electrons are captured in scanning EM 

(surface observation, low resolution). The sample will heat upon beam exposure. 

Bottom: an incident electron may pass, undisturbed, through the sample (black) or be 

scattered elastically (red) or not (blue). Adapted from Prof. Alain Brisson’s lecture on 

EM. 

 

Biological matter is primarily made of light atoms such as hydrogens, carbons, 

nitrogens, oxygens, sulphurs and phosphorus, along with a handful of heavier atoms. 

These light atoms do not block much electrons, so we say that biological matter does 

not yield much amplitude contrast: most incident electrons are either transmitted (black 

arrows) or scattered (red and blue arrows). Scattered electrons are phase-shifted upon 

interaction with the sample, experience a longer path towards the detector compared 

to transmitted electrons and are finally refocused by the objective lens and sent to the 

CCD camera for detection. Phase interference between all transmitted and scattered 

electrons in the image plane increases contrast: this is phase contrast. It is defined by 

the contrast transfer function (CTF) (Erickson and Klug, 1970; Thuman-Commike and 

Chiu, 2000): 
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 CTF = sin [ - π Δz λ k2 + 
π Cs λ3 k4

2 ] (Eq.7) 

where Cs represents spherical aberration (waves passing through the edges of the 
lens being refocused too far away from the focal plane), Δz is the defocus, λ is the 
electron’s wavelength and k is the spatial frequency (1/Å). CTF are plotted as functions 
of k (figure 41).  

 
Figure 41 

Simulation of the CTF for 400 kV electrons with an LaB6 gun and a Cs = 4.1 
mm. The first zero of the contrast transfer function, denoted by the arrows, occurs at 
1/12.5 Å-1 for a defocus Δz of (a) 0.95 µm and at 1/21 Å-1 for a defocus of (b) 2.7 µm. 

From (Thuman-Commike and Chiu, 2000). 
 

If CTF (k) = 0, no contrast is yielded for features of spatial frequency k. As CTF (k) 
approaches 1 (or -1), k is imaged with a higher contrast (or a higher negative contrast). 
Thus, not all values of k may be represented, much less equally, in an EM image. If 
the defocus Δz is 0, phase contrast is minimal and there is not so much contrast at all 
in the final image. By increasing the defocus Δz, the CTF can be modified to gain 
contrast at the expense of resolution. Here, a higher Δz allows for an easier detection 
of the objects of interest, yet the resolution is lowered as many k values now have poor 
contrast. Hence one of the main issues of biological TEM: getting enough contrast. 

In this manuscript, two methodologies will be employed: negative staining TEM and 
cryo-TEM. 

 
1. Negative staining TEM 



62 
 

The idea is that, if the sample itself does not yield much contrast, an addition of 

heavy atoms to fill the empty spaces left by the sample on the grid will provide contrast 

instead. Therefore, electron absorption (i.e. dark spots) will be caused by the stain 

while the sample, which does not absorb much electrons, will remain light, hence the 

term of negative staining TEM: the object of interest will be light, not dark. 

A sample, which may or may not be fixated (e.g. with glutaraldehyde), is blotted onto 

an electrically charged carbon-coated copper grid. Excess sample is removed by 

blotting against an absorbent paper then stained, typically with a uranyl acetate 

solution, and dried by blotting. The resolution, though heavily dependent on the 

sample’s nature and the quality of the stain, can reach up to a few nanometres in the 

best cases (Scarff et al., 2018). As the sample is dehydrated and littered with heavy 

atoms, its shape may be deformed by the non-physiological conditions. Typically, 

liposomes observed by negative staining TEM can display a characteristic flat balloon 

shape (see Article IV). 

 

2. Cryo-TEM 

A way to maintain the physiological state of a biological object of interest and to 

reach atomic resolution exists: freezing the sample fast enough so it does not have 

time to react to the change of environment. This is cryo-TEM. Since there is no stain 

and biological matter is made of light atoms, contrast is lower compared to negative 

staining TEM. Nevertheless, the native-like state of the object of interest combined with 

the absence of stain to interact or hinder resolution made this technique famous over 

the past decades. By building image classes of an object of interest, which can be 

considered as 2D projections of such an object, a 3D model of it can be reconstructed. 

For a protein, a resolution as high as 1.8 Å can be reached (Merk et al., 2016). 

In this manuscript, our use of cryo-TEM will be more modest: it will provide high-

resolution clichés of protein assemblies and proteoliposomes in native-like conditions 

at a nanometric scale. 

 

D. Atomic force microscopy (AFM) 

The first technique to ever be able to provide an image of individual atoms was 

atomic force microscopy (AFM) (Figure 42). Here, the tip of a cantilever will touch or 

gently scrap the surface of a sample, yielding a height map (Figure 43). In the field of 

biology, spreading vesicles of chosen composition on a mica surface and measuring 

their height map upon various treatments is common (Frederix et al., 2009; Garcia-

Manyes and Sanz, 2010; Jung et al., 2010; Whited and Park, 2014; Yuan and 

Johnston, 2001). More specific measurements concern the force needed to rupture a 

bilayer (Garcia-Manyes and Sanz, 2010) or that which is required to unfold a protein 

domain (Pimenta-Lopes et al., 2019), the latter being sometimes referred to as force 

spectroscopy. 

In this manuscript, we will attempt to reconstitute supported bilayers of just enough 

components and remorin to form nanodomains. 
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Figure 42 

Principle of AFM. The sample (yellow) is placed atop a scanner that will move 

with high precision. A cantilever with a tip culminating with a single atom will tap or 

gently scratch the sample’s surface. The tip’s position is monitored by a laser pointed 

at the cantilever, which will reflect light onto another mirror then a photodiode. The 

cantilever will adjust its position to aim at the photodiode’s centre. Thus, the sample’s 

height map is generated. Adapted from (Zeng et al., 2012). 

 

 
Figure 43 

Xenon atoms (blue) on a mica surface (grey) manipulated to form the name IBM. 

From (https://www.ibm.com). 

 

E. Computational modelling 

Computational methods are well suited to apprehend protein-lipid nano-objects, 

assuming one can correctly describe each interaction using the right software and 

parameters (Marrink et al., 2019). Atoms are considered as balls and interactions are 

described as springs linking two atoms together. In this classical picture, since 

quantum mechanics refutes the “balls and springs” analogy, every energy level of 

every interaction between two atoms has the following shape as a function of distance 

(Figure 44). The entire system evolves to minimise its energy and maximise its entropy 

(Smith, 2014). 

https://www.ibm.com/
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Figure 44 

Lennard-Jones potential Φ as a function of distance r between two atoms. σ 
is the length scale, i.e. atoms’ diameter. ε is the energy scale, i.e. interaction 

strength. rcut is the value of r above which Φ = 0. 
 

The resolution issue is inverted: the bigger the system and the longer the simulation, 
the more computational power is required. A way to circumvent this issue is to lower 
the resolution of the modelled system: to replace a group of neighbouring atoms with 
similar properties by one single object. This methodology is called coarse grain 
(Chavent et al., 2016; Friedman et al., 2018). It allows the increase in size and time 
length of the modelled system. It has been thoroughly used to model lipid phase 
behaviour and nanoclustering (Ackerman and Feigenson, 2015; van den Bogaart et 
al., 2011; Gronnier et al., 2017; Javanainen et al., 2017; Koldsø et al., 2014). Moreover, 
it is becoming ever more successful at predicting protein structures (Baker, 2019). 

 
F. Nuclear magnetic resonance (NMR) 

Having performed many NMR experiments in the making of this work, I had the 
opportunity to delve further into the theoretical details of this technique. As a result, 
this subsection is a vulgarisation effort: an introductory lecture to NMR for beginners 
and particularly biologists, who may be interested in what this technique has to offer 
yet do not understand its functioning. 

 
1. Spin 

NMR deals with a fundamental property of particles called spin I, which is either 
positive or null. It denotes, if I > 0, an intrinsic angular momentum L linked to a magnetic 
momentum µ by: 

 µ = γ L (Eq.8) 
where γ is a constant called the gyromagnetic ratio. If I = 0, the particle has no spin 

and it follows that L and µ are null vectors. As its name suggests, NMR deals with 
magnetic nuclei whose spin I > 0, a non-exhaustive list of which is provided (Table 3). 
The value of I describes the nucleus’ behaviour in NMR in a way that will be explained 
later. The absolute value of γ gives the nucleus’ sensitivity, its sign gives the spinning 
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direction (trigonometric if positive, clockwise if negative). The natural abundance 

describes the occurrence of this isotope in nature. Thus, we may note, for example, 

that a proton (1H) has a greater sensitivity and is highly abundant compared to 15N, 

which is much less sensitive and represents only a third of a hundredth of all nitrogens. 

As we discussed for EM, biological matter, particularly proteins and lipids, is mainly 

made of hydrogens, carbons, nitrogens, oxygens, sulfurs and phosphorus along with 

a couple of heavier elements. Aside from 1H, performing 13C-, 15N- or 2H-NMR will 

require isotopic enrichment. We will make use of 13C-, 15N-labelled proteins produced 

by Escherichia coli BL21-DE3 on a minimal medium enriched in isotopically labelled 

metabolites, such as 13C-glucose and 15NH4Cl, although more complex labelling 

schemes can be achieved by replacing these fully labelled metabolites with specifically 

labelled ones and labelled or unlabelled aminoacids (Habenstein and Loquet, 2016). 

Deuterated lipids, here PC with at least one deuterated acyl chain, are synthesised by 

means of organic chemistry (Bragina and Chupin, 1997). 

 

Nucleus 1H 13C 15N 2H 31P 

I 1/2 1/2 1/2 1 1/2 

γ 
(107.rad.s-1.T-1) 

26.75 6.73 -2.71 4.11 10.84 

Natural abundance (%) 99.99 1.07 0.364 0.0115 100 

Table 3 

Nuclei of interest in biological NMR. I is the spin umber and γ is the 

gyromagnetic ratio (or sensitivity). Values from Bruker. 

 

2. NMR spectrometer 

To perform an NMR experiment, the sample must be placed in a strong magnetic 

field called B0, whose value is expressed in tesla T (or N.m-1.A-1 or kg.s-2.A-1) (Bureau 

International des Poids et Mesures, 2006), typically produced by a superconducting 

magnet. It is held in place by a probe, whose main function is to send radiofrequency 

photons and record an electromagnetic induction of an electric current, all via a small 

coil surrounding the sample. This signal will be amplified, converted to lower 

frequencies to be digitalised then sent to the desk computer from which the experiment 

is controlled (Figure 45). 
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Figure 45 

Simplistic schematic of an NMR spectrometer. It has two main components: a 

superconducting magnet cooled with liquid helium then liquid nitrogen and a probe, 

to hold the sample, send radiofrequency photons and record an electromagnetic 

induction of an electric current. From Dr Erick Dufourc’s lecture on NMR. 

 

3. Energy levels 

Outside of the NMR spectrometer, with the approximation that the Earth’s magnetic 

field is negligible, there is no significant magnetic field and magnetic momenta µ are 

randomly oriented, so the sum of all µ that is the net magnetisation M is null. Once 

inserted in the NMR spectrometer, the sample is submitted to a strong magnetic field 

B0 along z from the superconducting magnet. Then, magnetic momenta µ will 

rearrange so Mx = My = 0 but Mz ≠ 0. It is important to emphasise that all µ are not 

necessarily parallel to B0 and z but their sum is null along both x and y (Figure 46).  

 
Figure 46 

Behaviour of 12 nuclei of spin I = 1/2 exposed to a magnetic field B0. 

Individual magnetic momenta µ will cancel each other along x and y but not along z: 

7 µz are aligned with B0 while 5 µz are aligned against it. This small discrepancy 

creates a net magnetisation M (red arrow) such that, at equilibrium, M = Mz. From Dr 

Erick Dufourc’s lecture on NMR. 
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An energy diagram may be drawn with a number of energy levels 2I+1 (Figure 47): 

it is called a Zeeman splitting. States of lower energies are slightly more populated, 

giving rise to a non-zero net magnetisation along z. In NMR, the populations of each 

energy level are immovable: do not try to make an analogy with fluorescence! NMR 

spectroscopy is about manipulating M, not modifying energy state populations per se. 

 
Figure 47 

Energy levels for a population of spins I = 1/2. Two states are possible: the α 

state, in which µz are aligned with B0, and the β state, in which µz are aligned against 

B0. As the α state has the lowest energy, it is more populated than β so Nα > Nβ. The 

energy gap is ΔEm. For I > 1/2, there is no general rule to determine which state has 

the lowest energy: consider it a property of the nuclei of interest. 

 

4. The simplest NMR experiment 

We will consider the case of a population of nuclei whose spin I = 1/2, as this is the 

simplest case. Let us perform the simplest NMR experiment (also called a pulse 

sequence) possible: to move M away from z into the xy plane and to record an NMR 

signal (Figure 48). 

 
Figure 48 

The simplest NMR experiment: 90° - pulse acquisition. The probe sends a 

radiofrequency wave tuned at the nucleus’ NMR frequency, with a power and for a 

duration required to flip M by 90° from z to xy. The pulse is a few microseconds long. 

Then, the probe switches, in a few microseconds, to receiver mode and acquires the 

electromagnetic induction of an electric current: the NMR signal. After a period of 

time T1 (a few seconds), M is considered to have relaxed and is back along z, so 

another scan can begin. 

 

This requires to move M by exactly 90°. We are confronted to a matter of size: how 

can we apply a magnetic field strong enough to compete and win over B0 with the 

probe’s tiny coil? Cranking up the power is bound to burn the probe long before it 

reaches the necessary power to do so. Instead, we will use a geometrical trick. Our 

nuclei are at equilibrium and are submitted to B0 thanks to a superconducting magnet 
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that cannot be turned off, so they rotate on themselves at the exact Larmor frequency 
ω0: 

 ω0 = γ B0 (Eq.9) 
In practice, not all nuclei may rotate at ω0 exactly for reasons we will discuss soon. 

Until now, we were thinking in the fixed laboratory frame. We shall switch to a rotating 
frame of frequency ω0. Here, nuclei are immobile and the apparent magnetic field will 
be null, so we only need to apply a radiofrequency field of ΔE on the sample. 
Translated back into the fixed frame, this means applying an oscillating radiofrequency 
field of frequency ω0 and energy ΔE: 

 ∆E = γ h
2π

 B0 = h
2π

 ω0 (Eq.10) 
Applying a radiofrequency field is called a pulse: it is generally short enough so 

nothing of interest happens in that period (generally a few µs). The power, in watts, 
and the length of the pulse must be tweaked so M is flipped by exactly 90°. Once in 
the xy plane, M will rotate around and slowly flip back to z. After a period of time T1, 
equilibrium is reached again: it is said that the spins have relaxed (Figure 49A). The 
precession of M is recorded by the probe as the electromagnetic induction of a current: 
it is the free induction decay (FID), the NMR signal. 

 
Figure 49 

From signal collection to the NMR spectrum. (A) Trajectory of M in the xy 
plane. After a 90° pulse, M is flipped from z to xy and starts precessing around and 
slowly flip back to z after a period of time T1. (B) Recorded signal in y (black). Note 

the exponential decrease in signal (red) as M flips back to z. (C) A Fourier transform 
of (B) with subsequent phase correction yields an NMR spectrum with a single peak 

of frequency ω. 
 

Nuclei have slightly different Larmor frequencies ω. This implies that every 
magnetisation of every nucleus with a particular ω will, in time, drift away from the 
others. The result is a rapid collapse of the NMR signal after a period of time T2. The 
reason for such discrepancies in ω is chemical shielding σ (sometimes abbreviated 
CS): 

 σ = γ Beff = γ (B0 – σ B0) = ω0 (1 – σ) (Eq.11) 
σ arises from the influence of the atom’s electrons on the nucleus’ magnetic 

behaviour, which depend on the atom’s chemical environment (e.g. nearby presence 
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of an electronegative atom, hybridisation states, aromaticity…). It follows that if σ = 0 
then ω = ω0. 

We already discussed that a small difference in spin populations yields a non-trivial 
M that is responsible for the NMR signal. Consequently, the signal-to-noise ratio (SNR) 
is small too. Thus, most NMR experiments must be repeated enough, up to tens of 
thousands of scans for some of them, to yield an NMR spectrum with acceptable SNR. 

 
5. NMR spectrum 

We are interested in the relative abundance of each nuclei with a given Larmor 
frequency ω. However, the FID gives an amplitude as a function of time (Figure 49B).  
Fitting the FID with a decreasing exponential (which is the overall shape of any FID) 
and applying a Fourier transform (to switch from a time-domain to a frequency domain) 
with phase correction (the Fourier transform does not give phase values, it is computed 
by the software or found manually based on spectral line shapes) will yield an NMR 
spectrum: NMR intensity as a function of frequency. (Figure 49C) NMR intensities are 
defined such as the integral of a peak gives the relative amount of nuclei with a given 
ω. Most spectra employ normalised frequencies in parts per million (ppm): 

 δ =  ωsample - ω0

ω0
 . 106 (Eq.12) 

This choice of unit makes comparison between spectra easier (e.g. 1H resonates 
between 0 and 10 ppm no matter the spectrometer and its exact B0). It is because ω 
may deviate from ω0 due to σ that we can have peaks at δ values other than 0. 

 
We just discussed the simplest NMR experiment: 90° pulse – acquisition. Most NMR 

spectroscopy requires pulse sequences significantly more complex than this, whose 
derivations require a basic knowledge of quantum mechanics that we successfully 
avoided above by making use of the simpler vector model, its classical analogue. 
Derivations of such experiments is not the subject of this chapter: the interested reader 
is redirected to (Keeler, 2016). However, we will discuss what these NMR experiments 
may teach us. 

 
6. Liquid-state vs. solid-state NMR 

A liquid sample has all molecules rotating rapidly and no preferential orientation: the 
sample is said to be isotropic and this results in sharp NMR peaks. In a solid sample, 
molecules do have preferential orientations and rotate slowly, if at all: the sample is 
said to be anisotropic and yields a poorly resolved spectrum with an important full width 
at half-height. If one is interested in orientation parameters, as in the case of 2H static 
ssNMR, such spectra can be satisfactory. If not, one needs to “remove” this anisotropy. 
Some light quantum mechanics are required. 

Let H be the Hamiltonian operator (the quantum mechanical equivalent of the total 
energy function in classical mechanics) and let us consider some nuclei of spin I = 1/2. 
We are concerned only with spin states so any other contribution can be neglected 
(Levitt, 2008): 

 H = HZ + HCS + HD
IS + HD

II +  HQ (Eq.13) 



70 
 

where HZ is the Zeeman contribution (from spin populations being split between 
energy levels), HCS is the chemical shielding contribution (arising from chemical 
shielding), HD

IS and HD
II  are the heteronuclear and homonuclear dipolar coupling 

contributions (accounting for the magnetic fields induced by the nuclei themselves) and 
HQ is the quadrupolar coupling (due to the non-sphericity of the nucleus; it is null for 
non-quadrupolar nuclei, i.e. all those whose I = 1/2). The anisotropic contributions of 
each component are (Alia et al., 2009; Smith et al., 1992a, 1992b): 

 

HCS = 
h

2π  γ B0 Iz σzz(
3 cos2β – 1

2 +
η
2  cos(2α) sin2β) 

HD
IS = 

h
4π

γAγB
rAB
3  Iz

A Iz
B  Dzz(

3 cos2β – 1
2 ) 

HD
II  = 

h
4π

γ2

r3  (3 Iz
A Iz

B - IA IB)  Dzz(
3 cos2β – 1

2 ) 

HQ = 
eQ

4I (2I - 1) (3 IZ
2  - I2) Vzz (

3 cos2β – 1
2  + 

η
2  cos(2α) sin2β) (Eq.14) 

where α is a rotation along z (in the xy plane), β is a rotation along y (in the zx 

plane), η is the asymmetry parameter for a given parameter A such as η = Ay - Ax
Az

,  I, 
σ, D and V are the spin, chemical shielding, dipolar coupling and quadrupolar coupling 
tensors, respectively, and eQ is the quadrupolar constant. HZ has no anisotropic 
contribution. 

We wish that all the terms in (Eq.13) equal 0. In practice, we assume η = 0, so the 
sample’s anisotropy depends on 3 cos2β – 1: 

 3 cos2β – 1 = 0  
 β = 54.7° = magic angle (Eq.15) 

The value of this magic angle happens to be the same than between a cube’s 
diagonal and one of its consecutive edges. By tilting the sample at 54.7° from z, and 
therefore B0, and spinning it, to average the orientations of all molecules within the 
sample, one can remove anisotropic contributions: this is magic angle spinning (MAS) 
ssNMR. The spinning rate remains an instrumental limitation: it must surpass the value, 
in hertz, of the contributions it means to suppress. Thus, NMR rotors (Figure 50), in 
which samples are held, and their associated probes are designed for spinning at a 
dozen of kHz at least, over 100 kHz for a 0.7 mm (outer diameter) rotor. 

 
7. ssNMR to study membrane nanodomains 

As we saw in section I.E, membrane nanodomains are big, insoluble and non-
crystalline objects. Therefore, X-ray crystallography and liquid-state NMR are 
disqualified. Remorins being rather small, about 23 kDa, cryoEM will have difficulties 
to analyse anything smaller than high-order stable oligomeric complexes. ssNMR is 
limited by spectral overlap, i.e. the presence of too many peaks in a small spectral 
region hindering or even prohibiting analysis. Overcrowded spectra may result from 
sample heterogeneity, i.e. more than one possible structural conformation of the 
protein under investigation, increasing the number of peaks or broadening them until 
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analysis becomes difficult if not impossible. ssNMR can provide unique data on lipid 

dynamics using the lineshapes of 2H and 31P static ssNMR spectra – on a sample 

using 2H-doped lipids, and protein structure, using 13C- and 15N- MAS ssNMR on 

isotopically labelled proteins, where each peak will represent the protein’s local 

structure at a given nucleus whose magnetic behaviour is modulated by its chemical 

environment, namely solvent and surrounding residues. Thus, a great part of our study 

will rely on ssNMR. 

 
Figure 50 

Image of ssNMR rotors. From left to right: 7 mm, 4 mm, 3.2 mm, 2.5 mm and 1.3 

mm (of outer diameter) MAS ssNMR rotors from Bruker. These are zirconium oxide 

cylinders, closed at the top by a plastic cap with small wings. To achieve MAS, air is 

blown onto them. 2.5 mm rotors and below must also be closed at the bottom with a 

specific cap. A dark semi-circle is drawn to ensure a correct optical measurement of 

MAS frequency. A Canadian cent is given for size reference (19.05 mm in diameter, 

according to the Royal Canadian Mint, https://www.mint.ca). From Glenn Facey’s 

blog on NMR, University of Ottawa, Canada (https://u-of-o-nmr-

facility.blogspot.com/2008/04/how-much-sample-do-i-need-to-get-solid.html). 

 

8. ssNMR to elucidate protein structures 

Unlike liquid state NMR, which relies mostly on 1H detection, ssNMR is mainly 

limited by dipolar coupling anisotropy (Thureau et al., 2014). As a result, 1H detection 

is very tasking and requires very specific and expensive gear. Instead, we used simpler 

methodologies, where the loss of 1H detection is be compensated by 13C-detected 

experiments – the nucleus with the second highest sensitivity γ between 1H and 15N. 

 

a. Cross polarisation (CP) 

To enhance the signal-to-noise ratio (SNR), the higher gyromagnetic ratio γ of 1H is 

used by transferring the magnetisation M to 13C via a technique called cross 

polarisation (CP). While 13C is on z, 1H is brought into xy, then both nuclei are 

irradiated: 13C with a hard pulse and 1H with a shaped pulse of increasing power and 

whose duration is termed “contact time”. At a given power of the shaped pulse, the 

effective magnetic fields on both nuclei are equal, and magnetisation M is transferred 

from 1H to nearby 13C. Acquisition is performed on the 13C channel while decoupling, 

i.e. a rapid succession of pulses, occurs on 1H, to destroy dipolar couplings between 

https://u-of-o-nmr-facility.blogspot.com/2008/04/how-much-sample-do-i-need-to-get-solid.html
https://u-of-o-nmr-facility.blogspot.com/2008/04/how-much-sample-do-i-need-to-get-solid.html
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both nuclei. Note that CP works for any two nuclei, granted one is significantly more 

sensitive than the other. 

It follows that a typical ssNMR analysis of a protein starts by recording a one-

dimensional 1H MAS spectrum, which is not very informative besides determining the 

sample’s temperature from the water’s chemical shift (Wishart et al., 1995), defining 

the “0 ppm” using the peak provided by a molecule containing a single 1H, such as 

DSS (sodium trimethylsilylpropanesulfonate), and detecting contaminants. Then, a 1H-
13C CP gives a one-dimensional 13C spectrum (Figure 51). Chemical shift references 

for all nuclei of all residues can be found in the literature (Merutka et al., 1995; Wang, 

2002; Wishart et al., 1992; chemical shifts statistics of the Biological Magnetic 

Resonance Bank (BMRB)). One can discern Cα (50-75 ppm) and aliphatic carbons 

(10-50 ppm), aromatic moieties (100-160 ppm) and amide carbons (Co, 160-180 ppm). 

When dealing with proteins, such a spectrum is often very crowded, and gives only 

little structural information: peak overlap hinders spectral assignment, i.e. matching 

peaks with their corresponding nuclei. 

 
Figure 51 

A typical 1H-13C CP spectrum of a 13C-labelled protein sample. Inlet: pulse 

sequence. ACQ: acquisition, DEC: decoupling. 

 

b. Proton Driven Spin Diffusion (PDSD) 

We will perform a 13C-13C proton driven spin diffusion (PDSD) experiment to spread 

all peaks in a two-dimensional (2D) spectrum. This experiment also starts with a 1H-
13C CP. To get a second axis, the delay labelled as t1 in the pulse sequence (Figure 

52A) is incremented and transformed into a frequency by Fourier transform, thus 

providing another spectral dimension. It follows that a 2D spectrum is a stack of 1D 

spectra with an incremented delay. The chemical shift coming from this incremented 

delay is F1 (vertical axis) and the one coming from the FID is F2 (horizontal axis). Since 

peaks are spread along one additional axis, peak overlap is reduced. Moreover, the 

intensity of cross-peaks (off-diagonal peaks) is positively correlated to the proximity of 

the nuclei they are assigned to, the rigidity of the protein and the length of the mixing 

time tm: increasing tm allows obtaining cross-peaks between nuclei that are further 

apart, at the cost of SNR. As an example (Figure 52B): let us consider an anisotropic 

sample composed of one hypothetical kind of molecule with three 13C. We are studying 



73 
 

it using ssNMR. Here is its fictional 13C-13C PDSD spectrum. We can neglect diagonal 

peaks, as they correspond to those of a 1H-13C CP spectrum. Ideally, the spectrum is 

symmetric along its diagonal, so any peak on one side should also be on the other side 

(dashed lines). As a rule of thumb, if cross-peaks appear at chemical shifts 

corresponding to two different nuclei, then these nuclei are close in space, and the 

bigger the peaks, the closer they are. Here, 1 and 2 seem close from each other while 

3 seems further away from 1 and 2. Thus, this experiment offers the possibility to derive 

distance constraints, which will prove useful in protein structure determination. The 
13C-13C PDSD experiment has one drawback: peaks will only appear if the sample is 

rigid enough. This is not an issue for an amyloid protein core or a bacterial needle 

(Daskalov et al., 2015, 2016; Demers et al., 2014; Habenstein et al., 2012). However, 

flexible regions of a protein may disappear and proteins in a less rigid structural regime 

may lead to weak SNR, or lack thereof. 

 

 
Figure 52 

On how to read a 13C-13C PDSD spectrum. (A) Pulse sequence. t1 is an 

incremented delay: the experiment will be repeated at various t1 values, turned into 

frequencies reported on the vertical axis in (B). tm is the mixing time: increasing it 

allows to collect longer distance restraints between two nuclei, however it decreases 

SNR. (B) Schematic example of a 13C-13C PDSD spectrum of a molecule with three 
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13C, numbered from 1 to 3. In this experiment, cross-peaks (off-diagonal peaks) will 
appear if nuclei are close in space. Here, 1 and 2 seem close from one another while 
3 seems far away from both. Ideally, the spectrum is symmetrical to its diagonal, as 

indicated by the dashed lines: “if 1 sees 2 then 2 sees 1”. 
 

c. Secondary chemical shifts 
By calculating the difference between a measured chemical shift and the expected 

value for a random coil conformation, one can assess whether a given part of a protein 
is in a helical (α), if positive, or strand (β) conformation, if negative: this is called the 
secondary chemical shift or the chemical shift index (Wang, 2002; Wishart et al., 1992). 
Even if spectral assignment happens to be very tedious, this method can potentially 
already yield robust structural data. 

 
9. lsNMR to study soluble intrinsically disordered proteins 

a. Generalities 
Thanks to its high gyromagnetic ratio and abundance, lsNMR makes an extensive 

use of 1H. Unlike ssNMR, a protein’s structural fingerprint will not be a 13C-13C 
correlated spectrum but a 1H-15N Heteronuclear Multiple Quantum Coherence 
(HMQC). Here, one peak will appear for every amide function. In practice, that is: one 
peak for every residue’s backbone amide with the exceptions of prolines and the N-
terminal residue (they have none), one peak per amide of a tryptophan sidechain and 
one doublet (two peaks in 1H, one peak in 15N) per amide of an asparagine or a 
glutamine sidechain (Merutka et al., 1995) (chemical shift statistics of the BMRB). 

 
b. On intrinsically disordered proteins (IDPs) 

StREM1.3 has an N-terminal intrinsically disordered domain, which we will study 
here: the freshly purified protein will have no particular structure, making nuclei of 
identical residues appear in the same crowded spectral region, with severe spectral 
overlap as a consequence. Thus, spreading the peaks with 3D spectra is imperative. 
A plethora of NMR experiments exist to establish connectivities between residues, i.e. 
to identify a residue i by assessing which residues could be i-1 and i+1 (Figure 53). 

A disordered protein is in exchange between a variety of conformations (Uversky, 
2013). It can be said to “scan a conformational space”. Upon interaction with a ligand 
or post-translational modifications, such as phosphorylation, this conformational space 
is modified. Thus, an otherwise disordered protein may fold, at least partially, upon 
such events. Mapping of phosphorylated residues or interaction surfaces can therefore 
be achieved by following the evolution of a protein’s 1H-15N HMQC spectrum over the 
course of phosphorylation or interaction with a ligand (Theillet et al., 2013; Kragelund 
and Skriver, 2020).  
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Figure 53 

Some experiments to establish connectivities between residues in lsNMR. 

The 1H and 15N chemical shifts (δ) for a backbone amide of a residue i are generally 

obtained by a 1H-15N HMQC spectrum. The first set of 3D experiments (top) links i to 

i-1 by their carbonyls: e.g. the Co of i-1 yields a blue peak and a purple peak at the δ 

of 1H and 15N for i, but it yields only a blue peak at the chemical shifts of 1H and 15N 

for i-1. The second set of 3D experiments (bottom) links i to i-1 by their Cα: e.g. the 

Cα of i-1 yields a cyan peak and a green peak at the δ of 1H and 15N for i, but it yields 

only a green peak at the δ of 1H and 15N for i-1. In addition, the HN(Co)CaCb gives 

the δ of the Cβ of i-1, allowing residue identification based on their chemical shifts. 

 

c. On folded proteins 

If our previously disordered protein is now folded, how do we determine its 

structure? Where ssNMR makes use of 13C-13C distance constraints obtained from 
13C-13C PDSD spectra, lsNMR will employ 1H-1H Nuclear Overhauser Effect 

SpectroscopY (NOESY) to obtain distance constraints between neighbouring protons. 

Software such as ARIA2 and the CCPNMR Grid interface (Nilges et al., 2008; Rieping 

et al., 2005, 2007; Vranken et al., 2005) can perform computational modelling based 

on distance restraints obtained by lsNMR and ssNMR as well as secondary chemical 

shifts (section V.E.9). 

 

10. ssNMR to monitor lipid dynamics: 2H ssNMR 

ssNMR permits the study of membrane biophysics under native conditions. The 

nuclei of interest are 31P (section V.F.11), which allows easy characterisation of a 

sample’s phase behaviour (Huster, 2014) and shape of liposomes (Pott and Dufourc, 

1995), and 2H which, which informs us about lipid order (Seelig, 1977) and membrane 

thickness (Grélard et al., 2013). 2H, unlike 31P, is a poorly abundant isotope. To perform 
2H NMR, one must use a deuterated reporter lipid, whose physical properties may vary 

slightly from its naturally abundant counterpart (e.g. DMPC has a phase transition 

temperature of 295K while DMPC-d54’s, a DMPC deuterated on both acyl chains, is 

293K). 
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Liposomes, bearing a deuterated reporter lipid, must be big enough to be anisotropic 
(>100 nm at least). We commonly employ multilamellar vesicles for their ease of 
production: hydration of a lipid film or a lipid powder followed by a few freeze-thaw-
vortex cycles to ensure homogeneity in size and composition. The sample is then fitted 
into an ssNMR rotor. 

Experiments are performed under static conditions. To enhance the signal-to-noise 
ratio (SNR), the quadrupolar interaction of 2H must be refocused by employing a 
quadrupolar spin echo pulse sequence (90°-τ-90°- τ -acquisition) in lieu of the classical 
Hahn echo pulse sequence (90°-τ-180°- τ -acquisition). This interaction will dominate 
the spectrum (Seelig, 1977). Spectral lineshapes being capital for data analysis, signal 
acquisition must be started slightly before the top of the echo so signal processing can 
be performed exactly at the top of it. Powder spectra thus obtained can rapidly give us 
a global order parameter <SCD>chain for C-D bonds of aliphatic chains by computing 
first order spectral moments M1: 

 
M1=

∫ (ω-ω0) g(ω-ω0)dω+∞
-∞

∫ g(ω-ω0)dω+∞
-∞

 (Eq.16) 

 
<SCD>chain=

√3
πAQ

M1 (Eq.17) 

where ω is the NMR frequency, ω0 is the Larmor frequency, g(ω-ω0) is the spectral 
lineshape and AQ = 167kHz (Burnett and Muller, 1971). 

Plotting M1 or <SCD>chain as a function of temperature is a powerful mean to assess 
the phase transition temperature of a sample or to detect any major difference in global 
order between samples. However, a finer spectral analysis is possible. Powder spectra 
are a sum of Pake doublets: one per kind of 2H in a sample; and an optional isotropic 
peak centred around 0 ppm originating from small liposomes (about < 100 nm in 
diameter) and deuteriums from water (one usually uses deuterium-depleted water to 
avoid this unwanted signal). In a DMPC-d54 sample, there are as many Pake doublets 
as carbon positions along the acyl chains. As the sample is anisotropic, if θ is the angle 
between the local membrane plane and B0, a 2H NMR spectrum is a sum of 2H NMR 
subspectra for each value of θ. This forbids direct measurement of quadrupolar 
splittings. One must construct a 2H NMR spectrum for only one value of θ: a de-pake-
d spectrum. De-Pake-ing (McCabe and Wassail, 1997) is a calculation routine made 
specifically to compute such a depaked spectrum. Quadrupolar splittings ΔνQ 
measured herein can be translated into local order parameters: 

 
∆νQ(θ)=

3
2 AQ |

3cos2(θ)-1
2 | SCD (Eq.18) 

Measurements of ΔνQ are refined by spectral simulation, along with half-height 
widths, interpreted as 1/T2, and magnetically induced liposome deformation (Pott and 
Dufourc, 1995; Seelig, 1977). In our case, we are simply interested in getting SCD 
values. The general procedure of 2H static ssNMR analysis is described in (Figure 54). 

Plotting |2*SCD| as a function of carbon positions along deuterated acyl chains 
informs us about lipid dynamics at the atomic level. (Grélard et al., 2013) describes a 
convenient way to compute membrane thicknesses from SCD. 



77 
 

 
Figure 54 

On data analysis of a 2H static ssNMR experiment. Left: the experimental 
spectrum (black) is recorded. A depaked spectrum at angle θ is calculated (blue), 
allowing the measurement of quadrupolar splittings ΔνQ as the difference, in Hz, 
between both peaks of a given Pake doublet. These ΔνQ are refined by spectrum 
simulation (red). Top right: ΔνQ are translated into local order parameters of C-D 

bonds SCD as a function of carbon position along a deuterated acyl chain. From the 
here-obtained SCD, a membrane thickness can be computed. Bottom right: 

computation of first spectral moments M1 from experimental spectra over a range of 
temperatures T allows the monitoring of phase behaviour and thermotropism. 

 
11. ssNMR to monitor lipid dynamics: 31P ssNMR 

2H static ssNMR unlocks a wealth of structural information about the behaviour of 
lipids in membranes. Yet, another nucleus is also of interest: 31P, for which data 
interpretation is significantly easier. The experiment consists of a Hahn echo on 31P 
with 1H decoupling. The resulting spectrum can be described by (Huster, 2014): 

 ω = ωiso + ωaniso = σiso γ B0 + 
Δ
2  (3cos2θ - 1 - η cos(2α) sin2β) (Eq.19) 

where α is a rotation along z (in the xy plane), β is a rotation along y (in the zx plane), 
η is the asymmetry parameter for a given parameter A such as η = Ay - Ax

Az
 and Δ is the 

anisotropy parameter. In practice, η = 0. The spectral lineshape informs on the 
orientation and the phase behaviour of the lipid bilayers (Figure 55). Spectral 
simulation allows to compute Δ, half-height widths, and magnetically-induced liposome 
deformation as described in (Pott and Dufourc, 1995). 
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Figure 55 

On the different lineshapes of a phospholipid by 31P NMR. (A) In solution, 

there will be one single peak at δisotropic. (B, C) In oriented bilayers, due to the 

sample’s anisotropy, this peak will shift to higher values if the normal n is parallel to 

B0 (B) or to lower values if n is perpendicular to B0 (C). (D) In large vesicles, the 

angle θ between n and B0 may take any value. The probability for θ to take a given 

value defines the line shape (Pott and Dufourc, 1995), which is characteristic of a 

lamellar phase: with some imagination, one could picture a chair with its back to the 

right side. (E) For hexagonal phases (here an inverted hexagonal lipid phase made 

of POPE at 20°C), a mirrored line shape is obtained: a chair with its back to the left 

side. The width of this line shape is halved compared to its lamellar counterpart 

(obtained at 5°C) (Cullis and de Kruyff, 1976). Inlet: phospholipids in an inverted 

hexagonal phase HII (Koynova and Tenchov, 2013). See figure lipid_phases for more 

details. (A-D) is modified from (Huster, 2014) and E is modified from (Cullis and de 

Kruyff, 1976). 
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In our case, we want to confirm that our samples are indeed in a lamellar phase: 

that we are indeed studying lipid bilayers. A minor isotropic contribution is also 

expected from small liposomes (roughly < 100 nm in diameter). 
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This first article reports on a work that began before my master 2 internship. One of 

the main focus of this internship was to set up the production and purification of WT 

and truncated StREM1.3. The work of (Gronnier et al., 2017) had just been published, 

consecrating the first biophysical analysis of RemCA, and we wondered how the, then 

putative, coiled-coil oligomerisation (Raffaele et al., 2007a) would come into play 

regarding membrane interactions. Initial protein constructs had very low production 

yield: a few milligrams at best. We focused our efforts on the best candidate of all, 

REM86-198, and, after a few optimisations, managed to produce and purify about 20 mg 

per litre of LB medium – which became 40 mg per litre later on. When we dialysed the 

eluted REM86-198 to remove imidazole, we noticed the sample had turned turbid. 

Negative staining electron microscopy revealed a branched filament architecture. If 

such ordered structures were made possible by joined assembly of oligomerisation 

domains, we expected to observe a strong 13C-CP ssNMR signal originating from it. 

Therefore, we undertook a structural analysis of these filaments using ssNMR, cryoEM 

and molecular modelling. Taking into account previous data on StREM1.3’s oligomeric 

state, we built a structural model of homotrimeric coiled-coil domains of REM86-198 in 

filaments, in which the oligomerisation’s driving force seemed to be hydrophobic 

contacts between conserved residues. Disruption of the coiled-coil in vivo yielded 

proteins with diminished PM targeting. 

With the help of Mélanie Berbon and Dr Denis Martinez, and the participation of 

Loris Verron, I set up and performed the production and purification of REM86-198, as 

well as the sample preparation and observation for electron microscopy. I also 

participated to the writing of the revised article.
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A B S T R A C T

REMORINs are nanodomain-organized proteins located in the plasma membrane and involved in cellular re-
sponses in plants. The dynamic assembly of the membrane nanodomains represents an essential tool of the
versatile membrane barriers to control and modulate cellular functions. Nevertheless, the assembly mechanisms
and protein organization strategies of nanodomains are poorly understood and many structural aspects are
difficult to visualize. Using an ensemble of biophysical approaches, including solid-state nuclear magnetic re-
sonance, cryo-electron microscopy and in vivo confocal imaging, we provide first insights on the role and the
structural mechanisms of REMORIN trimerization. Our results suggest that the formation of REMORIN coiled-
coil trimers is essential for membrane recruitment and promotes REMORIN assembly in vitro into long filaments
by trimer-trimer interactions that might participate in nanoclustering into membrane domains in vivo.

1. Introduction

Membrane nanodomains are dynamic cellular signalling platforms
in the plasma membrane of a size of up to a several hundred nan-
ometers that execute essential messaging events between cells and their
surroundings (Lingwood and Simons, 2010). Selective dynamic re-
cruitment of specific proteins mediates the formation of functional
membrane sub-compartments, related to signal transduction (Grecco
et al., 2011) and membrane trafficking (Simons and Sampaio, 2011).
Clustering of proteins into membrane compartments is notably driven
by protein-lipid and protein-protein interactions (Lingwood and
Simons, 2010). A significant number of membrane proteins are in-
volved in protein-protein interactions leading to homo- or hetero-oli-
gomers (McBride et al., 2017). Protein homo- or hetero-oligomerization
has been proposed to mediate protein clustering (Kasai and Kusumi,
2014; Suzuki et al., 2012). Moreover, specific nanoclustering of pro-
teins can drive functional compartmentalization, i.e. distinct nanodo-
mains can be enriched in distinct nanodomain-associated proteins
(Bucherl et al., 2017; Jarsch et al., 2014). As a consequence of the

complexity of the system, i.e. proteins associated to membrane do-
mains, insights into the structural and mechanistic organization of these
proteins are sparse.

The REMORIN family consists of six phylogenetically distinguish-
able groups (Raffaele et al., 2007) of plant-specific nanodomain-orga-
nized proteins of the inner-leaflet of the plasma membrane (PM).
Members of the REMORIN family carry out multiple functions related
to biotic and abiotic stimuli (Jarsch and Ott, 2011; Lefebvre et al.,
2010; Raffaele et al., 2009; Gui et al., 2014). In contrast to a highly
variable N-terminal region, putatively implicated in protein-protein
interactions (Marin et al., 2012; Toth et al., 2012), all REMORINs
contain a conserved C-terminal region that encompasses a predicted
coiled-coil domain (Bariola et al., 2004; Raffaele et al., 2007; Reymond
et al., 1996), as well as a short membrane anchor domain (Gronnier
et al., 2017; Perraki et al., 2012).

Coiled-coil domains are frequent motifs observed in proteins pro-
moting multimerization towards homo- and also hetero-oligomers
(Crick, 1953; Kohn et al., 1997; Lupas and Bassler, 2017). Proteins of
the REMORIN family can oligomerize in vivo and in vitro into a
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filamentous state, possibly mediated by the coiled-coil domain (Bariola
et al., 2004; Perraki et al., 2012). The in vivo functions of REMORIN
oligomerization are not understood but they might include protein
clustering to assure the nanodomain-mediated tasks. Nanoclustering of
proteins is proposed to play an essential role in the segregation and
functionalization of membrane rafts (Simons and Sampaio, 2011).
Subtype Group 1 REMORINs form trimeric coiled-coil superstructures in
vitro (Perraki et al., 2012) that lead to the formation of filamentous
complexes (Bariola et al., 2004).

Our studies on the membrane anchoring mechanism and nanodo-
main targeting have recently revealed unconventional protein-mem-
brane interactions mediated by the last 28 residues of the C-terminal
region (REMORIN C-terminal anchor, REMCA) (Gronnier et al., 2017)
that anchors to the surface of the plasma membrane without providing
any transmembrane segment. The role of REMORIN oligomerization
during this process remains obscure.

Magic-angle-spinning (MAS) solid-state nuclear magnetic resonance
(SSNMR) and cryo-electron microscopy (cryo-EM) are both powerful
emerging techniques useful to investigate assembled biomolecules in
their native states. These techniques have the complementary char-
acteristics of providing atomic data (reviewed for example in
(Habenstein and Loquet, 2015; Loquet et al., 2013; Meier and
Bockmann, 2015; Tycko and Wickner, 2013; Weingarth and Baldus,
2013)) and detailed shape/symmetry information (reviewed for ex-
ample in (Bai et al., 2015; Earl et al., 2017; Jiang and Tang, 2017;
Vonck and Mills, 2017)), respectively.

We have here taken advantage of several biochemical, biophysical
and bioinformatic tools to decipher the role and the structure of
REMORINs’ assembly. We report that multimerization of REMORINs
into trimers confers their membrane affinity and could participate in
the nanoclustering into membrane domains. Establishing homogeneous
filament formation of the protein core involved in oligomerization al-
lowed us to combine SSNMR and cryo-EM to gain insights into the
supramolecular architecture of oligomerized REMORIN filaments.

We can thus add another piece to the puzzle of the unconventional
mechanism of membrane binding and nanodomain recruitment of the
REMORIN family. The coiled-coil superstructures of the REMORINs
hold functions resulting from the assembled complexes rather than
from their monomeric subunits.

2. Material and methods

2.1. Expression, purification and filament formation of recombinant
StREM1.386-198

E. coli BL21 (DE3) strains were transformed with a pET24-
StREM1.3(86-198)-His6 vector, containing the DNA encoding for re-
sidues 86–198 of REMORIN1.3 of Solanum tuberosum, and plated onto
LB agar plates containing 30·g/mL kanamycin. A flask containing 10mL
of LB medium was inoculated with a single colony and incubated
overnight at 37 °C under shaking at 200 rpm. The culture and expres-
sion of uniformly labelled 15N,13C StREM1.3(86-198)-His6 (hereafter
called REMH6(86-198)) was performed in M9 medium supplemented in
15NH4Cl and 13C6-D-glucose as nitrogen and carbon sources. The la-
belled M9 medium was inoculated with 2% (v/v) of the unlabelled LB
preculture and incubated at 37 °C under shaking until the OD600

reaches 0.7–0.8. At this stage, 1 mM IPTG was added to the culture for
20 h protein expression at 18 °C. Cells are then harvested by cen-
trifugation (6000g, 10min, 4 °C) and resuspended in the lysis buffer
(20mM HEPES, 150mM NaCl, 20mM imidazole, 1 mM PMSF, 1 tablet
of Complete (Roche), 0.02% NaN3, pH 7.4). Cells were lysed by soni-
cation on ice for 3min, 30% magnitude (30 s pulses, 30 s intervals). The
suspension was centrifuged at 15 000g for 15min at 4 °C to recover the
supernatant. The affinity purification was realised with the Äkta Pure
25 HPLC system (GE Healthcare Life Sciences) using a His-trap HP af-
finity column equilibrated with 5 column volumes of washing buffer

(20mM HEPES, 150mM NaCl, 20mM imidazole, 0.02% NaN3, pH 7.4).
The protein was eluted with a linear gradient from 0 to 100% of elution
buffer (20mM HEPES, 150mM NaCl, 500mM imidazole, 0.02% NaN3,
pH 7.4) which led to a final yield of 10mg of pure 15N,13C labelled
protein per liter of culture (Fig. S1). Protein filaments were obtained by
dialyzing overnight at room temperature the eluted sample against the
assembly buffer (10mM HEPES, 50mM NaCl, 0.02% NaN3, pH 7.4).
Protein filaments of REM(86-198), i.e. REMH6(86-198) lacking the N-term-
inal His6-tag, were prepared as follows. Affinity purification was per-
formed as described above using a different washing buffer (50mM
Tris, 100mM NaCl, 0.5mM EDTA, 1mM DTT, 0.5mM PMSF, 0.02%
NaN3, pH=8.1) and elution buffer (50mM Tris, 100mM NaCl, 0.5 mM
EDTA, 1mM DTT, 0.5mM PMSF, 500mM imidazole, 0.02% NaN3,
pH=8.1). REMH6(86-198) contains a TEV cleavable His6-tag at its N-
terminus. Eluted proteins and the TEV protease were mixed in a 100:1
(w/w) ratio, incubated at 4 °C overnight under shaking and dialyzed
against 1L of assembly buffer as described above to obtain REM(86-198)

filaments.
For ssNMR studies, filaments of REM(86-198) lacking the N-terminal

His6-tag were prepared with a different protocol to enhance purity /
yield of the sample. Expression and affinity purification was performed
as described for filaments of uniformly 15N,13C-labelled REMH6(86-198).
Eluted protein fractions were pooled and adjusted to 0.5 mM EDTA and
1mM DTT. Eluted proteins and TEV protease were mixed in a 100:1
(w/w) ratio, incubated at room temperature for 3 h under shaking and
dialyzed overnight at 4 °C against the following buffer: 20mM HEPES,
150mM NaCl, 0.02% NaN3, pH=7.4. After dialysis, urea was added to
the proteins up to 7M urea and REM(86-198) was retrieved on a His-trap
HP column with the following washing buffer: 20mM HEPES 150mM
NaCl 7M urea pH=7.4; and elution buffer: 20mM HEPES, 150mM
NaCl, 7M urea, 500mM imidazole, pH=7.4. REM(86-198) was enriched
in the flowthrough. Uncleaved REMH6(86-198) and TEV protease, con-
taining a His6-tag, bound to the column and were then eluted. Fractions
containing REM(86-198) were pooled and concentrated in an Amicon
Ultra-15 centrifugal filter unit with MWCO=3 kDa up to 0.8mM, then
dialyzed at room temperature against the assembly buffer (10mM
HEPES, 50mM NaCl, 0.02% NaN3, pH=7.4). The sample was then
incubated at 37 °C for 3 h under shaking then at room temperature for
7 days.

2.2. Coiled-coil prediction and sequence alignment

StREM1.3(86-198) coiled-coil domain was identified using the soft-
ware COILS (Lupas et al., 1991) and helical wheel diagrams for coiled-
coils were built with DrawCoil 1.0 (http://www.grigoryanlab.org/
drawcoil/).

Arabidopsis REMORINs were retrieved from (Raffaele et al., 2007).
Protein alignment was computed using MUltiple Sequence Comparison
by Log-Expectation (MUSCLE; (Edgar, 2004)) using BLOSUM62 matrix,
an –sv profile scoring method with following parameters; Anchor spa-
cing:32, diagonal break:1, diagonal length:24, diagonal margin:5, gap
extension penalty:-1, gap open penalty:-12, hydro:5 and hydro
factor1.2) through the JABAWS server (Troshin et al., 2011). Sequence
alignments were rendered via the Jalview plugin (Waterhouse et al.,
2009) (Fig. S2).

2.3. Microsomal purification and Western blot analyses

Microsomal and soluble fractions from Nicotiana benthamiana leaves
expressing GFP-StREM1.3 constructs were prepared as described in
Perraki et al., 2012. Each fraction was analyzed by western blot using
antibodies against StREM1.3 (Raffaele et al., 2009).

2.4. In vivo confocal imaging

Live cell imaging was performed using a Leica SP5 confocal laser
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scanning microscopy system (Leica, Wetzlar, Germany) equipped with
Argon, DPSS and He-Ne lasers and hybrid detectors. Two days after
agro-infiltration N. benthamiana leaves samples were transferred be-
tween a glass slide and a cover slip in a drop of water. GFP fluorescence
was observed with excitation wavelengths of 488 nm and emission
wavelengths of 490 to 550 nm. Experiments were performed using
strictly identical confocal acquisition parameters (e.g. laser power,
gain, zoom factor, resolution, and emission wavelengths reception),
with detector settings optimized for low background and no pixel sa-
turation. Pseudo-colored images were obtained using the “Red hot”
look-up-table (LUT) of Fiji software (http://www.fiji.sc/).

2.5. TEM and cryo-EM

REMH6(86-198) filaments were applied to previously glow-discharged
carbon-coated copper 300 mesh grids and stained with a 2% uranyl
acetate (w/v) solution. REMH6(86-198) filaments were also prepared for
cryo-EM. For the latter, lacey carbon copper grid were submitted to a
standard glow discharge procedure and flash-frozen into a liquid ethane
bath using EM GP (Leica). Specimens were observed under low-dose
conditions using a cryo holder (Gatan, USA). Observations were per-
formed with a FEI Tecnai F20 electron microscope operating at 200 kV
and images were acquired using a digital 2 k x 2 k USC1000 camera
(GATAN). Measurements of the repetitive patterns were calculated on
FFT images of 10 selected areas. REM(86-198) filaments lacking the N-
terminal His6-tag were stained and applied to carbon-coated copper
grids as described above. TEM images were recorded under low-dose
conditions on a FEI CM120 120 kV FEI electron microscope using a
Gatan USC1000 2 k X 2 k camera.

3. 3D modelling

The 3D model of StREM1.3(117-166) was constructed by homology
using the server I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/) (Zhang, 2008). Coiled-coil trimers were assembled using the
SymmDock server (Schneidman-Duhovny et al., 2005) and a supple-
mentary energy minimization step was performed with Yasara (http://
www.yasara.org/minimizationserver.htm) (Krieger et al., 2009).

3.1. Solution NMR spectroscopy

1H,15N SOFAST-HMQC (band-Selective Optimized-Flip-Angle Short-
Transient Heteronuclear Multiple-Quantum Correlation (Schanda et al.,
2005)) experiment was carried out at 313 K on a protein sample con-
taining 200 μM REM(86-198), 20mM HEPES, 150mM NaCl, 0.02%
NaN3, pH 7.4. Spectra were recorded on a Bruker Avance Neo 700MHz
spectrometer equipped with a 5mm TXI 1H/13C/15 N/2H probe. The
spectrum was acquired with 512 scans, 128 and 2048 complex points in
F1 and F2 dimensions, respectively. Frequencies were calibrated ac-
cording to DSS signal. The NMR data were processed using the TOP-
SPIN 4 software (Bruker Biospin).

3.2. Solid-state NMR spectroscopy

MAS solid-state NMR experiments were performed on a 600MHz
(REMH6(86-198)) and 800MHz (REM(86-198)) 1H Larmor frequency spec-
trometer (Bruker Biospin) using 3.2 mm MAS probes. Solid-state NMR
rotors were filled with 10mg of REMH6(86-198) or (REM(86-198)) fila-
ments and span at 11 kHz for spectra acquisition. Sample temperature
was set between 0 and 5 °C according to DSS signal used as an internal
reference (Bockmann et al., 2009). A ramped CP with a 1ms (REMH6(86-

198)) and 0.7 ms (REM(86-198)) contact time was used for the 1H-13C
cross-polarization (CP) transfer. An acquisition time of 20ms and 2 k
scans were used for 1D 1H-13C CP. For the 2D spectrum, the 13C-13C
polarization transfer was performed with proton-driven spin diffusion
(PDSD) applied for a mixing time of 50ms to detect intra-residue

correlations. Proton decoupling during the acquisition was achieved
using a SPINAL-64 decoupling sequence (Fung et al., 2000). Acquisition
times of 20ms and 6.5ms (REMH6(86-198)), 20 ms and 7.5ms (REM(86-

198)) were chosen for the direct and indirect dimensions, respectively.
The total number of scans was 960 and 640 for a total experiment time
of 6 and 7 days approximately, for REMH6(86-198) and REM(86-198) re-
spectively. Secondary chemical shifts were calculated using random coil
chemical shifts described by Wang and Jardetzky (Wang and Jardetzky,
2002). All data were processed using Topspin 3.2 (Bruker Biospin) and
analyzed with CCPNMR Analysis software (Skinner et al., 2016).
Backbone and sidechains 13C chemical shifts were predicted from the
protein 3D coordinates of the coiled-coil model spanning residues
117–166 using the software ShiftX2 (Han et al., 2011).

4. Results

4.1. REMORIN coiled-coil trimerization promoted by the highly-conserved
C-terminal is essential for membrane targeting

REMORINs share a highly variable N-terminal domain in terms of
length and conservation of the primary sequence and a highly con-
served C-terminal region (Bariola et al., 2004; Raffaele et al., 2007;
Reymond et al., 1996). Previous work on a Solanum tuberosum RE-
MORIN of group 1 isoform 3 (StREM1.3) showed that the C-terminal
region encompasses two distinct domains (Fig. 1A): the short C-term-
inal anchor [171–198] (Perraki et al., 2012) specifically binds plasma
membrane phosphatidylinositol 4-phosphate (PI4P) and mediates
StREM1.3 PM nanodomain organization (Gronnier et al., 2017), while
the region [86–170] contains a segment predicted to be implicated in
the oligomerization of the protein (Bariola et al., 2004; Perraki et al.,
2012). The latter domain displays a strong propensity to form a coiled-
coil super helix (Fig. 1B). In such structures, alpha helical monomers
wind around each other to optimize protein-protein contacts and sta-
bilize the multimer assembly (Crick, 1953; Kohn et al., 1997). All the
members of the REMORIN family share these predicted structural
properties and have strong sequence similarities between their C-
terminal regions (Raffaele et al., 2007). We compared and analyzed the
sequences of StREM1.3 with 5 Arabidopsis thaliana REMORINs from
different groups (Groups 1, 3, 4, 5 and 6) to identify conserved elements
that might be essential to the formation of coiled-coil super-helices
(Figs. 1B and S2). This comparison revealed a sequence similarity of
59% with the most divergent, i.e. AtREM3.1, and 94% sequence simi-
larity with AtREM1.3. Based on the chemical properties of the amino
acids, we identified three candidates that could potentially be involved
in the helix-helix interfaces within the coiled-coil domain (L126, L137
and L155). The hydrophobic character of the residues at these three
positions is highly conserved between the different members of the
REMORIN family. Fig. 1C shows the coiled-coil helical wheel at position
L155 for the StREM1.3 trimer. L152 and L155 form a hydrophobic
patch, which stabilizes the coiled-coil structure. Polar and charged re-
sidues (H156, K157 and E158) are exposed either to the solvent or to an
opposite charge residue, again potentially stabilizing the structure.

We have recently reported structural insights into the role of the C-
terminal peptide REM-CA during PM anchoring and nanodomain or-
ganization (Gronnier et al., 2017) and we here aimed at testing the
impact of StREM1.3 trimerization on its membrane-binding properties.
Based on the sequence analyses, we introduced Prolines, in order to
destabilize the coiled-coil superstructure (Chang et al., 1999), at posi-
tions L126, L137 and L155. In vivo confocal imaging visualized the
subcellular localization of GFP-StREM1.3, GFP-StREM1.3L126P, GFP-
StREM1.3L137P and GFP-StREM1.3L155P (Fig. 1D). As expected, the wild-
type protein localized exclusively at the plasma membrane. However,
for all mutants, fluorescence was detected in the cytosol, which in-
dicates that the protein is no longer strictly associated with the plasma
membrane. To further confirm this observation we performed cell
fractionation of tissues expressing either GFP-StREM1.3, GFP-
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StREM1.3L126P, GFP-StREM1.3L137P, or GFP-StREM1.3L155P (Fig. 1E).
Western blotting with anti-REM antibody (Raffaele et al., 2009) clearly
confirmed that StREM1.3 is only found in the microsomal fraction
whereas the three mutants are visible in both microsomal and soluble
fractions. Altogether, these observations suggest that oligomerization
might be required for REMORINs’ PM localization.

4.2. Building blocks of assembled REMH6(86-198) form organized fibers as
revealed by TEM and cryo-EM

To investigate the assembly features and the structure of REMORIN
oligomers, we focused on the conserved C-terminal region (residues 86
to 198), including the coiled-coil domain that most likely is responsible
for the assembly (Bariola et al., 2004), and REMCA. We expressed and
purified StREM1.3C-terminal moiety (REMH6(86-198)) in E. coli. After the
purification, we recovered different fractions containing REMH6(86-198)

protein and analyzed them with gel-electrophoresis under denaturing
conditions (Fig. S1). The fractions containing pure REMH6(86-198) were
pooled and the self-assembly was triggered by dialysis. In order to
provide an in-depth analysis of the mesoscopic shape as well as struc-
tural features of the assembly, we chose several biophysical techniques
including negative staining transmission EM (TEM), cryo-EM and
SSNMR. TEM and cryo-EM gave us first insights into the morphology of
REMH6(86-198) assemblies (Fig. 2A and B, respectively), revealing or-
dered REMORIN fibers with a repetitive pattern. The repeating ele-
ments are propagated both horizontally and vertically. The periodicities

correspond to 13 nm along and approximately 5 nm perpendicular to
the fiber axis. Interestingly, along the fibers, their width can vary (Fig.
S3) and their endings are irregular. The variable width engendering
irregular endings of the fibers suggests an association and juxtaposition
of thin filaments (arrow Fig. 2C). This implies that the thin filaments
self-assemble into large fibers in a constructive manner leading to the
repetitive patterns.

Importantly, filaments of REM(86-198) without the N-terminal His6-
tag do not show specific lateral association (Fig. 2D). However, the
SSNMR data on REM(86-198) lacking the His6-tag clearly confirm that the
molecular structure of REM(86-198) in laterally associated (REMH6(86-

198)) and single filaments (REM(86-198)) does not vary essentially, be-
cause the spectral fingerprint is conserved between both filaments (Fig.
S4). The lateral association of REMH6(86-198) filaments allows for the
analysis of the repetitive patterns promoted by the His6-tag, indicative
of the assembly features.

4.3. The REMORIN coiled-coil domain gains a partially well-organized
structure upon trimerization

To decipher the molecular basis underlying the filament formation,
we performed a 3D modelling of the StREM1.3 coiled-coil domain
based on sequence homology using the I-TASSER server (Zhang, 2008).
The modelling was restrained to the region with the higher coiled-coil
propensity [117–166] defined by the software COILS (Lupas et al.,
1991). The 3D model converged to a regular alpha helix composed of

Fig. 1. Mutations of conserved amino acid motifs in the coiled coil impairs PM targeting. (A) Domain organization in StRem1.3. (B) Coiled-coil propensity of StRem1.3C-terminal region
(109–183) realised with COILS. Sequence alignment of REMORIN homologs in S. tuberosum and A. thaliana. Protein sequences are ranked according to the conservation score.
Hydrophobic residues potentially involved in helix contacts are highlighted in red. Conserved amino acids between the different REMORINs are shown in blue (dark blue for the most
conserved to light blue for the less conserved). (C) Helical wheel corresponding to a coiled-coil trimer centred to the 152–158 region. Residues type are colored as follows: yellow,
hydrophobic; blue, basic; red, acid; green, polar. Wheels were drawn using DrawCoil 1.0. (D) Confocal images presenting secant views of N. benthamiana epidermal cells expressing GFP-
StREM1.3, GFP-StREM1.3L126P, GFP-StREM1.3L137P, GFP-StREM1.3L155P, transiently expressed in tobacco epidermal cells. Scale bars: 20 μm. (E) Tobacco leaf cells expressing each
construct were fractionated into soluble (sol.) and microsomal (m) compartments by centrifugation. Proteins were analyzed by Western blot with antibodies against StREM1.3. The
protein loading control is presented in Fig. S8.
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residues 133 to 166. REM(117-166) monomers were assembled into a
trimer by geometry based docking using the SymmDock server
(Schneidman-Duhovny et al., 2005). Fig. 3A shows the trimeric coiled-
coil structure of the REMORIN obtained in silico. A patch composed of
hydrophobic residues, which point towards the trimer core, defines the
interface between the three monomers and electrostatic interactions
stabilize the architecture.

4.4. SSNMR data on REMH6(86-198) filaments support the 3D model of the
coiled-coil domain and identify a short segment in β-strand conformation

To determine whether the 3D model obtained in silico reflects the
structure adopted by REMH6(86-198) in the filaments, we analyzed
15N,13C-labelled filaments using liquid and solid-state NMR. Solution
NMR analysis revealed that REMH6(86-198) is unstructured in solution
and adopts a 3D fold only upon assembly into multimeric complexes

(Fig. S5). SSNMR is an emerging technique providing atomic structural
information on molecular assemblies in their native states. We con-
ceived a protocol to successfully produce, purify and assemble suitable
quantities (∼10mg) of 15N- and 13C-labelled REMH6(86-198) in vitro to
conduct multidimensional MAS SSNMR on the REMORIN in its fila-
mentous state. The very intense signal observed in a one-dimensional
1H-13C cross-polarization spectrum revealed the presence of a rigid core
in the structure of the assembled proteins (Fig. S6). A two-dimensional
13C-13C PDSD (proton-driven spin diffusion), Fig. 3B, acquired with a
short mixing time (50ms) set up to detect intra-residues 13C-13C cor-
relations, reveals the SSNMR fingerprint of the REMH6(86-198) structure
in filaments. The intense signals again indicate that the filaments con-
tain a rigid protein core and the appearance of well-resolved individual
peaks points to a well-defined atomic structure adopted by the mono-
mers composing the assembly. Our in silico 3D model of REM(117-166)

suggests that the REMORIN monomers oligomerize into α-helical
coiled-coil trimers promoted by the coiled-coil domain. Based on the 3D
model, we used the ShiftX2 software (Han et al., 2011) to predict the
expected protein 13C chemical shifts for the coiled-coil domain REM(117-

166) and reported them on the 2D 13C-13C SSNMR spectrum recorded on
REMH6(86-198) filaments (Fig. 3B, red crosses, left spectrum). The ma-
jority of the predicted chemical shifts match well with the experimen-
tally observed signals. This strongly supports the model of a α-helical
tertiary fold in the filament core, reflecting the coiled-coil domain.
However, a non-negligible part of the signals in the 2D spectrum remain
unassigned and do not appear in spectral regions where signals from α-
helical structural segments are located (Fig. 3B, blue crosses, right
spectrum). Among them, a detailed analysis was possible for Thr, Glu,
Lys, Val, Ser, Leu, Ile, and Ala amino acids for which the resonances
reflecting β-strand secondary structures are isolated in the spectrum. By
comparing these residue-specifically assigned amino acids with the
primary sequence of REMH6(86-198) we identified the unique motif in the
REMH6(86-198) primary sequence (T86-EKRVSLIKA-A95) adjacent to the
coiled-coil region. The theoretical sequential peaks are all visible even
if their assignments remain ambiguous. The local conformation of these
residues was identified via their secondary chemical shifts that reflect a
β-strand conformation where negative values were obtained. The un-
ique amino acid composition of T86-EKRVSLIKA-A95 and the clear β-
strand conformation of the identified residues indicate the occurrence
of a short β-segment at this location (Fig. 3D). The assignment of the
R89 spin system remained ambiguous because of the important peak
overlap in this spectral region. Likewise, the region around T86-A95

region might be extended but the chemical shifts of these residues could
not be identified due to spectral overlap.

4.5. Cryo-EM data suggest that trimeric coiled-coil REMH6(86-198) arranges
itself as aligned building blocks into filaments

Cryo-EM micrographs revealed the repetitive motifs in the
REMH6(86-198) filaments and the spectral resolution we obtained on the
filaments allowed for the detailed measurement of their dimensions
(Fig. 4A). The longitudinal repetitions are characterized by 13 nm in
length with a width of approximately 5 nm. The dimensions of the 3D
model of the REM(117-166) coiled-coil trimer, with 8 nm in length and a
width of ∼1.5 nm without side-chains (Fig. 4A), tie in the distances
obtained on the electron micrograph of the REMH6(86-198) fibers. The 3D
model of the coiled-coil domain illustrates the tertiary fold of the
REM(117-166) with the region spanning 132–166 showing well-defined
α-helices, slightly twisted to allow protein-protein contacts at positions
155 and 137 (Fig. 4A, B). The segment 117–131 is less ordered than
expected for the coiled-coil domain but displays lower structure accu-
racy for the generated model (Fig. S7). Fig. 4B shows an example of
close hydrophobic contacts between Leucine residues in the trimer at
the position 155, essential for trimer stability.

Based on the ensemble of our results we propose a cartoon model of
the REMH6(86-198) building block in filaments, encompassing a coiled-

Fig. 2. Electron micrographs of REMH6(86-198) and REM(86-198) filaments. (A) Negative
staining TEM and (B) cryo-EM show filaments of REMH6(86-198) with two repetitive pat-
terns perpendicular to each other. Width and thickness of fibers vary over the length of
the filaments. (C) CryoEM of the sharp extremity of a REMH6(86-198) fiber shows similar
repetitive motifs. Scale Bar of (A), (B) and (C) is the same: 100 nm (D) Negative-staining
TEM micrograph of thin filaments of REM(86-198), lacking the N-terminal His6-tag. Scale
Bar: 100 nm.
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coil domain, in which the three membrane-affinity impairing mutations
are localized, flanked by a short β-strand and supposedly two segments
with less well-defined structures on both sides (Fig. 4A). The N-terminal
ending of the coiled-coil domain contains a region of less defined
structure and a stretch of 10 amino acids, mainly composed of hydro-
phobic residues constituting a regular β-strand, whereas the C-terminal
REM-CA seems to adopt a condensed, unstructured form. The two
endings account for the regions of dense protein concentration in the
EM micrographs. The proximity of the β-strands could stabilize the
trimer through an inter-strand hydrogen-bonding network.

5. Discussion

Our results have demonstrated an unexpected impact of REMORIN
oligomerization via the coiled-coil domain on membrane affinity and
we therefore decided to tackle the structure of this best-characterized
nanodomain-associated plant protein supramolecular assembly.

By using a coiled-coil prediction server, we identified the region
with the highest propensity of forming a coiled-coil and we singled out
three hydrophobic residues that could stabilize the trimeric archi-
tecture, L126, L137 and L155. In vivo monitoring of the localization of
REMORIN and of the three substitution mutants by confocal microscopy
showed that all three mutations strongly impair membrane affinity
suggesting that trimer formation is correlated with REMORIN-mem-
brane interactions and that a cooperative effect between REMORINs
plays an important role in membrane binding.

Full-length REMORINs form filaments, which were proposed to
arise from interactions between coiled-coil trimers of the conserved C-
terminal region (Bariola et al., 2004). We show that REM(86-198),
lacking the highly variable N-terminal region, also assembles into well-
organized filaments. When the N-terminal His6-tag of REM(86-198) is
conserved, i.e. REMH6(86-198), the filaments arrange into fibers that vary
in width over the filament length and end in a thin architecture. This
behaviour is consistent with the association or dissociation of trimeric
building blocks that build a strong intermolecular network of weak
interactions. Importantly, these fibers show very homogeneous re-
petitive patterns in electron micrographs that enable the analysis of the
molecular building blocks in the filaments.

Creating an in silico 3D model of the coiled-coil domain allowed us
to visualize the underlying 3D structures, to identify stabilizing hy-
drophobic and electrostatic contacts and to estimate the dimensions of
such coiled-coil trimer. In this model, the three Leucines are located in
essential positions, explaining the destabilizing effect and membrane-
affinity loss of Proline mutations, L126P, L137P and L155P.

To corroborate our working model of trimeric coiled-coil building
units, we performed SSNMR on REMH6(86-198) and REM(86-198) fila-
ments, obtaining atomic structural data on the intact filaments. Based
on the 3D trimeric model, we compared predicted with observed
SSNMR chemical shifts, validating the hypothesis of trimeric coiled-coil
units that associate laterally and, furthermore, residue-type and se-
quential assignments revealed longitudinal interactions between the
trimers involving a short β-strand and less well-ordered condensed

Fig. 3. 3D model and solid-state NMR of REMH6(86-198) filaments. (A) 3D model of StREM1.3 coiled coil domain predicted with I-TASSER server (Zhang, 2008). Two monomers in
magenta are represented in surface mode and the third monomer with cartoon. All the hydrophobic side chains in the monomer are colored in yellow. Residue contacts identified between
in StREM1.3 coiled-coil domain are highlighted on the primary sequence (green, hydrophobic contacts; red and blue, electrostatic contacts). (B) 2D PDSD 13C–13C spectrum of REMH6(86-

198) filaments (50 ms mixing time) showing back-calculated 13C chemical shifts with ShiftX2 from the 3D model (left spectrum, red crosses) and assigned chemical shift from β-strands
(right spectrum, blue crosses). (C) Secondary chemical shift ΔδCα-ΔδC β•••• the T86-E87-K88-R89-V90-S91-L92-I93-K94-A95 amino acid segment in REMH6(86-198), revealing the presence
of a β -strand segment.
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segments. The dimensions of the building blocks obtained from cryo-
EM micrographs are compatible with the trimeric REMH6(86-198) coiled-
coil units, derived from the 3D model. Combining the structural data
from SSNMR, the in silico model, and cryo-EM, we propose a cartoon
model that reflects the architecture in REMH6(86-198) and REM(86-198)

filaments (Fig. 4A). Furthermore, incorporating the recently proposed
model of the REM-CA peptide structure during nanodomain formation
and the data obtained on the role and structure of coiled-coil trimers,
we propose a cartoon model for the nanodomain-associated REM(86-198)

(Fig. 4C). The coiled-coil trimers are stabilized by intermolecular pro-
tein-protein interactions including the three Leucine-Leucine contacts
of residues 126, 137 and 155 (Fig. 4C, red stars).

6. Conclusions

Protein organization into membrane domains relies on complex and

scarcely in-detail explored structural mechanisms, involving lipid-pro-
tein and protein-protein interactions (Simons and Sampaio, 2011).
Considered as genuine PM nanodomain-organized proteins in plants,
REMORINs attach to the PM and concentrate in nanodomains by an
original mechanism via the C-terminal anchor, REM-CA (Gronnier
et al., 2017). We here report that REM-CA alone is not sufficient and
responsible for membrane targeting. We show that the conserved tri-
merization region plays a central role and we investigated the structure
of this region by conceiving a protocol to obtain filaments of meso-
scopic scale that we analyzed by various techniques. The obtained data
and proposed cartoon model might also reveal other modes of inter-
action of REMORINs during oligomerization such as β-strand hydrogen
bonding. However, the interactions between trimer coiled-coil domains
promoting the filament assembly might reflect interactions that favour
the highly specific nanoclustering occurring between REMORINs of the
same family (Jarsch et al., 2014). Our findings open an avenue to

Fig. 4. 3D architecture of REM(86-198) inside the filaments and associated to PM nanodomains. (A) Cryo-EM micrograph of REMH6(86-198) fibers depicts 13 nm horizontal repetitive
patterns corresponding to a regular assembly of REMH6(86-198). Scale bar: 20 nm. Schematic representation of REMH6(86-198) structure inside the filament (β -strands are represented as blue
arrows and α-helices as rectangles) and 3D structural model of REM(86-198) coiled-coil domain. (B) Example of protein contacts inside the coiled coil domain. α-helices are represented in
cartoon and Leucine sidechains in sticks. (C) Schematic representation of REM(86-198) structure when associated to the PM nanodomains. Red stars represent point mutations, which
impair the membrane localization of StREM1.3. α-helices are represented as rectangles. The C-terminal membrane anchor REM-CA contains a short α-helice. Point mutations for in vivo
confocal imaging experiments are highlighted in red.
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understanding the complex nanodomain-targeting mechanisms of RE-
MORIN proteins based on the combination of SSNMR and cryo-EM and
aim at contributing to the comprehension of molecular strategies em-
ployed by membrane-domain proteins to perform their cellular func-
tions.
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Figure S1. SDS-PAGE (12 % acrylamide gel) of REMH6(86-198) at different stages of 

His-trap chromatography purification. Molecular weight marker in lane 1; Washing 

fraction at 25 mM imidazole – lanes 2 and 3; Elution with 400 mM imidazole – lanes 4 

to 7; Elution with 500 mM imidazole – lanes 8 and 9; Purified fraction after HPLC as a 

control – lane 10; the arrow indicates the position of the recombinant REMH6(86-198).  

 

Figure S2. Residues conservation in REMORINs. MUSCLE multiple alignments of 

full length StREM1.3 and Arabidopsis REMORINs proteins were visualized using 

JalView v2.10.2b2. The alignment is colour-coded by percentage identity. 

 

 
Figure S3. Cryo TEM micrograph of REMH6(86-198) illustrating the varying filament 

thickness. Scale bar : 100 nm. 



 
Figure S4. 2D SSNMR on REMH6(86-198) and REM(86-198) filaments. Overlay of 2D 

PDSD 13C-13C spectra of REMH6(86-198) (black, recorded on a 600MHz spectrometer) and 

REM(86-198) (red, recorded on a 800MHz spectrometer) filaments (50 ms mixing time). 
 



 
Figure S5. 1H,15N SOFAST-HMQC liquid-state NMR spectrum of the unfolded 

REMH6(86-198) in solution. The spectrum was acquired at 313K on a 15N,13C labelled 

protein sample at a concentration of 200 μM in 20 mM HEPES, 150 mM NaCl, 0.02% 

NaN3, pH 7.4 in a mixture of 90% H2O, 10 % D2O. The spectrum was referenced 

according to the DSS signal added in the sample. 

 

 
Figure S6. 1D 13C solid-state NMR spectrum of REMH6(86-198) filaments recorded 

using a 1H-13C cross-polarization transfer. The spectrum was referenced according to 

DSS signal added in the sample. 

 



 
Figure S7. Accuracy graph of the generated 3D model. Residue-level quality of the 

protein structure prediction has been evaluated by the program ResQ (Yang et al., 
2016) 

 

Figure S8. Stain-free of SDS_PAGE showing the loading of proteins for the western 
blot presented Figure 1. 

 

Yang, J., Wang, Y., Zhang, Y., 2016. ResQ: An Approach to Unified Estimation of B-Factor 
and Residue-Specific Error in Protein Structure Prediction. Journal of molecular 
biology 428, 693-701. 
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Article I: addendum 

After working on filaments of REM86-198 to gather structural insights into its coiled-

coil oligomerisation domain, we focused on inserting the protein in membranes. Would 

the structural fingerprint be modified? Would RemCA’s structural fingerprint appear as 

it was first observed (Gronnier et al., 2017)? 

 

I. REM86-198 in liposomes by ssNMR 
15N-, 13C- labelled REM86-198 was reconstituted in DMPC/sitosterol/PIPmix (70/15/15 

molar ratio) liposomes as described in Article IV. The sample was analysed on a Bruker 

Avance NEO Solids operating at 600 MHz for proton with a CPMAS 4 mm probe. MAS 

frequency was 11 kHz. 13C-13C PDSD spectra were recorded using 20 ms and 7 ms 

acquisition times in direct and indirect dimensions, respectively. 1H decoupling during 

acquisition was performed using a SPINAL-64 decoupling sequence (Fung et al., 

2000). All experiments are carried out at 4°C according to water’s chemical shift 

(Wishart et al., 1995). 

In the presence of membranes, the N-terminal β-region of REM86-198 disappears 

while the helical region remains mostly unchanged (Figure 56). Superimposing 

RemCA’s structural fingerprint (Gronnier et al., 2017), we could not match any peaks. 

In addition, no new peaks were detected. This may imply that: (1) RemCA’s 

conformation in the protein differs from the lone anchor or (2) most of it is too flexible 

to be detected by 13C-13C PDSD. Nonetheless, the proteoliposomes preparation was 

contaminated with filaments of REM86-198 (Figure 57). 

 

Figure 56 
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13C-13C PDSD spectra of REM86-198 in liposomes of PC/sitosterol/PIPmix 75/10/15 

(molar ratio) with mixing times of 50 ms (black) and 150 ms (red). 13C-13C PDSD of 

RemCA (blue) in liposomes containing PIPmix with a 50 ms mixing time from 

(Gronnier et al., 2017). 

 

 
Figure 57 

Negative staining electron microscopy on 15N-, 13C-labelled REM86-198 in liposomes 

(Figure 56). Due to the staining protocol, liposomes are deformed and adopt a flat 

balloon shape. Scale bar: 50nm. 

 

 

II. Structure of RemCA in micelles 

We decided to work on RemCA alone. lsNMR already showed that it was disordered 

in H2O and that it would fold differently whether it was in trifluoroethane or in deuterated 

dodecyl phosphatidylcholine (DPC-d38) micelles (Gronnier et al., 2017). The latter 

being more relevant in mimicking a biological membrane, we pursued a full structural 

investigation of RemCA by lsNMR. The following is a revised translation of my master 

2 internship report. This work was done under the direct supervision of Dr Denis 

Martinez, who performed lsNMR experiments and structure calculations. 

 

A. Material and methods 

1 mM of synthetic N-acetylated RemCA peptide is mixed with 20 mM of DPC-d38 in 

9/1 H2O/D2O (V/V). The sample was analysed on a Bruker Avance III spectrometer 

operating at 800 MHz for proton with a 5 mm TCI cryoprobe controlled by TopSpin 3.1 

(Bruker). Pulse sequences used were: 1H-15N HMQC, 1H-13C HMQC, 1H-1H TOCSY 

(150 ms mixing time) and 1H-1H NOESY (300 ms mixing time) (Levitt, 2008). Spectra 

were analysed with CCPNMR Analysis (http://www.ccpn.ac.uk) and chemical shift 

statistics from the BMRB. Structure calculation were handled through the CCPNMR 

Grid interface (Fogh et al., 2005; Nilges et al., 2008; Rieping et al., 2007; Vranken et 

al., 2005). 

http://www.ccpn.ac.uk/
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Figure 58 

Information provided by the different NMR pulse sequences employed. R is a 

lateral chain of a residue. In B, C and D, the case of an alanine is illustrated. (A) 1H-
15N HMQC informs on the chemical shifts of the highlighted 1H and 15N of the amide 

backbone. (B) 1H-13C HMQC informs us on the chemical shifts of a given 13C and the 
1H bound to it. (C) 1H-1H TOCSY allows to obtain all the 1H chemical shifts of a given 

spin system, i.e. a residue. (D) 1H-1H NOESY provides distance constraints between 

neighbouring 1H: the intensity of a cross-peaks is correlated to their distance from 

one another (Nilges et al., 2008). 

B. Results 

To access RemCA’s structure, it was reconstituted in DPC-d38 micelles and 

analysed by lsNMR. Peak assignment was performed manually with the following 

methodology: (1) chemical shifts of 1H bound to backbone nitrogens were determined 

using the 1H-15N HMQC; (2) 1H-1H NOESY cross-peaks in the amide region were used 

to assess connectivities between neighbouring residues; (3) using both the 1H-1H 

NOESY and the 1H-1H TOCSY, each residue was identified by its expected chemical 

shifts (according to the BMRB) and, finally, (4) weak 1H-1H NOESY peaks are assigned 

to more distant connectivities between residues (Figure 58). Figure 59 gives an 

example of the assignment process for residues 171 to 175. Figure 60 shows the 

assigned 1H-15N HMQC spectrum. 
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Figure 59 

Assignment of residues 171 to 175. (A) Abbreviations used to designate 1H. (B) 

Connectivities between residues are defined using 1H-1H NOESY cross-peaks in the 

H region. Full arrows: i, i + 1 connectivities. Dashed arrows: i, i + n > i + 1 

connectivities (longer range connectivities). (C) Each residue is identified using the 
1H-1H TOCSY and the expected chemical shifts from the BMRB. 
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Figure 60 

Assigned 1H-15N HMQC for RemCA in micelles of DPC-d38. Due to the 

RemCA’s N-terminal being acetylated, G171 has a backbone amide and thus can be 

detected. 

 

990 peaks were assigned on the 1H-1H NOESY, among which 359 ambiguous 

assignments (Table 4). Preliminary structure calculations converge to a structure 

bearing, in N-terminal, one α-helix of 4 residues then a second α-helix of 9 residues, 

kinked by an angle of 96°, followed by a loop and a flexible C-terminal region (Figure 

61). The helix break in N-terminal could be an artefact due to the non-physiological 

micellar environment: it is the major difference with the model from (Gronnier et al., 

2017), in which there was only a single N-terminal helix. As a reminder, in the full length 

protein, a long helix is attached at the N-terminal of RemCA. It is unlikely that both 

would be connected by a loop partially embedded in the membrane. 

 

Connectivities i, i i, i+1 i, i+2 i, i+3 i, i+4 i, i>4 

Number of peaks 215 216 88 113 81 277 

Ambiguities 40 52 23 30 20 194 

Table 4 

Number of assigned cross-peaks of the 1H-1H NOESY spectrum and amount of 

ambiguous assignments, sorted by connectivity types, where i is a given residue. 
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Figure 61 

Preliminary structure of RemCA in micelles of DPC-d38. (A) 7 structures were 

calculated from the same dataset then superimposed. Blue end: N-terminal. Red end: 

C-terminal. (B) Structure of lowest energy from (A). Dark blue: lysines. Light blue: 

arginine. Red: aspartate and glutamates. Grey: hydrophobic residues. Aromatic 

sidechains are represented as sticks. Hydrophobicity and hydrophilicity labelled 

according to the Kyte-Doolittle scale (Perraki et al., 2012). 

 

III. Structural analysis of RemCA in native-like conditions by ssNMR 

We decided to change the membrane mimetic for something more physiologically 

relevant i.e. multilamellar vesicles (MLVs). 

Ordering synthetic RemCA peptides that are fully labelled with 13C and 15N is too 

expensive, so we decided to produce a fusion protein GFP-(TEV cleavage site)-

RemCA in E. coli BL21-DE3. The production of GFP-RemCA in BL21-DE3 cells was 

induced by the addition of 1 mM IPTG followed by overnight incubation at 18°C under 

stirring. Cells were lysed and the supernatant was loaded onto a HisTrap column 

controlled with an Atka Pure 25 HPLC system (GE Healthcare) equilibrated with 20 

mM HEPES 150 mM NaCl 20 mM imidazole 0.02% NaN3 pH=7.4 and eluted with 20 

mM HEPES 150 mM NaCl 500 mM imidazole 0.02% NaN3 pH=7.4. GFP-RemCA was 

adjusted to 0.5 mM EDTA and 1 mM DTT then TEV protease was added in a ~ 1/200 

TEV/GFP-RemCA weight ratio. The mixture was incubated for 2-3h at room 

temperature then dialysed at 4°C overnight in a MWCO = 1 kDa dialysis tubing made 

of regenerated cellulose (Spectra Labs). It was adjusted to 7M urea and incubated for 

1h at room temperature before being loaded onto a HisTrap column equilibrated with 

20 mM HEPES 150 mM NaCl 7 M urea pH=7.4 and with 20 mM HEPES 150 mM NaCl 

7 M urea 500 mM imidazole pH=7.4 as elution buffer. Free RemCA flowed through the 

column without binding to the resin. It was dialysed three times against water. 

We were able to produce 3 mg of fully 15N-, 13C-labelled RemCA per litre of labelled 

culture medium. The peptide was lyophilised, co-solubilised in CHCl3/MeOH 2/1 (v/v) 

with DMPC/sitosterol/PIPmix 75/15/10 (molar ratio) (PIPmix is PS/PI/PI4P/PI4,5P2 

50/20/15/15 (Gronnier et al., 2017)), lyophilised and re-hydrated. The final sample was 

fitted into a 3.2 mm rotor and analysed by ssNMR on a Bruker Avance NEO operating 
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at 800 MHz for proton with a CPMAS 3.2 mm probe. Acquisition times were 20 ms and 

8 ms in the direct and indirect dimensions, respectively. 1H decoupling during 

acquisition was performed using a SPINAL-64 decoupling sequence (Fung et al., 

2000). 

 
Figure 62 

13C-13C PDSD (50 ms mixing time) spectrum of RemCA co-solubilised in 

PC/sitosterol/PIPmix liposomes. Unambiguously assigned spin systems are 

highlighted. Due to spectral overlap and possible sample aggregation, the 

assignment of some peaks is deemed too ambiguous and is not shown here. 

 

The residue types of a few spin systems could be identified without ambiguity 

(Figure 62): two alanines (at least), two isoleucines, two leucines (at least), 191Pro and 

a threonine. The SNR is quite poor and obtaining unambiguous inter-residue cross-

peaks to perform structure calculations will prove difficult. Instead, we will use the 

simpler but nonetheless robust secondary chemical shift index: by computing the 
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difference in chemical shift between an assigned Cα or Cβ and the value for such a 

nucleus in a residue of random coil conformation, we can determine if the residue in a 

helical conformation or a strand conformation (Figure 63) (Wang, 2002). A positive 

value in Cα is characteristic of helical conformation while a negative one indicates a 

strand conformation. This reasoning is inverted for Cβ: strands yield positive values, 

helices yield negative ones. 

 
Figure 63 

Secondary chemical shifts for spin systems identified in Figure 7, based on 

(Wang, 2002). Top: sequence and fold of RemCA according to (Gronnier et al., 

2017). Bottom: secondary chemical shifts of assigned spin systems in Cα and Cβ. 

Positive secondary chemical shift in Cα indicates a helical fold while a negative value 

indicate a strand conformation. It is the opposite for secondary chemical shifts in Cβ. 

Notice the change of scale between both plots. 

 

There are five alanines in RemCA. At least of them are assignable as Ala1 and Ala2. 

Furthermore, there are some less intense signals in the Ala region, indicating sample 

heterogeneity, multiple conformations or alanines in less rigid conformation. Ala1 is in 

a blatant helical conformation while Ala2 adopts a strand conformation. According to 

our model (Gronnier et al., 2017), alanines are either in the N-terminal helix, which 

could correspond to Ala1’s, or in the loop, close to the extended β-strand, which could 

fit Ala2’s secondary chemical shifts. Both isoleucines are in a strand conformation, 

which is consistent with our model (Gronnier et al., 2017). Similarly, proline 191, which 

is supposed to be at the junction between the loop and the β segment, displays a 

strand conformation. There are two identified leucines, with cross-peaks of similar 

identities but opposite conformations: one is a helical conformation, the other in a 

strand conformation. Since there are three leucines in the putative N-terminal helix and 

two in the C-terminal region, these secondary chemical shifts confirm that one part of 

RemCA is helical and that another part contains an extended β-strand. Overall, this 
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structural analysis of RemCA by ssNMR does not contradict, and might confirm, the 

model of (Gronnier et al., 2017). 

 

IV. On a putative role of the N-terminal IDD of StREM1.3 on the structure of its 

filaments 

We wished to compare REM86-198 to full length StREM1.3 filaments (figure 64). 

Using the same methodology, with the exception that StREM1.3’s histag is not 

cleavable, we compared the fingerprint of both samples (Figure 65). 

Most peaks of the β-region in REM86-198 vanish when switching to the full length 

StREM1.3, indicating that the presence of this β-segment was artifactual. Otherwise, 

the structural fingerprints of both constructs are identical, proving that depletion of the 

first 85 aminoacids of StREM1.3 does not disrupt its propensity to form coiled-coil 

domains with a wild-type fold. Reciprocally, it implies that this region is not involved in 

the formation of the coiled-coil structure nor the assembly of the filaments. 

 

 
Figure 64 

Negative staining electron microscopy on 15N-, 13C-labelled StREM1.3 filaments 

(NMR spectrum is given on Figure 65). Scale bar: 50 nm. 

 

V. Conclusion 

As a general conclusion, the short N-terminal β-segment of REM86-198 spotted in 

(Martinez et al., 2018) in filaments is artifactual: it disappears if the protein is in 

membranes as well as in filaments of the full length StREM1.3. Also, the coiled-coil 

signature is retained between filaments of both constructs, StREM1.3 and REM86-198, 

and between REM86-198 in filaments and in liposomes. Reconstitution of RemCA 

peptides in lipid bilayers and structural analysis by ssNMR strengthened the validity of 

our structural model of RemCA in membranes. In addition, preliminary data obtained 

in micelles provided by lsNMR, although tainted by a micelle-induced artefact, 

corroborated some of the findings of (Gronnier et al., 2017): an N-terminal helix 

followed by a loop then a flexible and extended β-strand C-terminal. 
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Figure 65 

13C-13C PDSD of REM86-198 filaments (black) (Martinez et al., 2018) and StREM1.3 

filaments (red) at 50 ms mixing time. 
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This second article was much more focused on biology, and much less on 

biophysics. The thematic was StREM1.3’s phosphocode and interactome, and how it 

relates to remorin-mediated PD closure and slowing down of PVX cell-to-cell 

propagation. StREM1.3 was phosphorylated in vitro using N. benthamania extracts, 

including purified PMs and [γ-33P]-ATP further detected by autoradiography. Inhibition 

by EGTA, a Ca2+ chelator, narrowed our field of research to the Arabidospsis thaliana 

calcium-dependent protein kinase 3 AtCPK3, which is indeed able to phosphorylate 

StREM1.3 in vitro. Mass spectrometry-based phospho-mapping failed, so we resorted 

to systematic mutations of the three most putative phosphorylation sites S74, T86 and 

S91 (Marin et al., 2012) to Alanine (A), phosphodead, or Aspartic acid (D), 

phosphomimetic. High resolution microscopy Spt-PALM showed StREM1.3AAA mutant 

was less mobile than StREM1.3DDD, with StREM1.3WT in between. We assessed these 

mutants’ biological activity by measuring PVX infection foci area in leaves of N. 

benthamiana. 

I got involved after the article’s first submission, when reviewers asked to perform a 

finer mutant analysis by testing single-residue mutations (single mutants). Under the 

supervision and training of Paul Gouguet (PhD student then), who taught me how to 

use an epifluorescence microscope, we undertook the cloning and analysis of single 

phosphomutants shown in Figure 3D, from agroinfiltration to observation of viral 

propagation and data analysis. We were able to show that single phosphodead-

mutants (particularly S74) had a WT-like phenotype, hinting at a functional redundancy 

between these three phospho-residues. I was briefly involved in the re-writing process, 

mostly for grammar corrections.
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Abstract

Plants respond to pathogens through dynamic regulation of plasma membrane-bound sig-

naling pathways. To date, how the plant plasma membrane is involved in responses to

viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX)

COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the acti-

vation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis

thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs

in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1

REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3’s phospho-status

defines its plasma membrane nanodomain organization and is crucial for REM1.3-depen-

dent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmo-

desmata. This study unveils plasma membrane nanodomain-associated molecular events

underlying the plant immune response to viruses.

Author summary

Viruses propagate in plants through membranous channels, called plasmodesmata, link-

ing each cell to its neighboring cell. In this work, we challenge the role of the plasma
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membrane in the regulation of virus propagation. By studying the dynamics and the acti-

vation of a plant-specific protein called REMORIN, we found that the way this protein is

organized inside the membrane is crucial to fulfill its function in the immunity of plants

against viruses.

Introduction

The cell plasma membrane (PM) constitutes a regulatory hub for information processing [1].

Current knowledge suggests that PM proteins and lipids dynamically associate with each

other to create specialized sub-compartments or nanodomains [2], that regulate the cellular

responses in space and time [3–5]. For instance, modeling of the localization behavior of a

PM-bound receptor and its downstream interactor before and after ligand perception in ani-

mal cells suggests that PM-partitioning into nanodomains improves the reliability of cell sig-

naling [6]. In plants a recent example of PM partitioning shows that despite sharing several

signaling components, the immune and growth receptors FLS2 and BRI1 are divided into con-

text-specific nanodomains to confer signaling specificity [7]. The REMORIN (REM) family is

one of the best-characterized PM nanodomain-associated proteins in plants [7–12]. The asso-

ciation of REMs to the PM is mediated by a short sequence at the extremity of the C-terminus

of the protein, called REM-CA (REMORIN C-terminal Anchor) [13, 14]. The REM C-termi-

nal domain contains a coiled-coil (residues 117–152, [15]) which is thought to regulate REM

oligomerization [11, 14, 16] and may be involved in regulating REM spatial organization at the

PM [15]. Members of the REM family have been associated with plant responses to biotic [9,

17, 18], abiotic stress [19, 20] and developmental clues [12] and current view suggests they

could regulate signaling events through nanodomain association [21]. However, the molecular

mechanisms leading to REM-associated downstream events remain elusive.

Several REM proteins have been identified as components of the plasmodesmata-plasma

membrane subcompartment (PD-PM) [8, 22, 23]. PD are membranous nanopores, crossing

the plant cell wall and enabling cytoplasmic, endoplasmic reticulum and PM continuity

between adjacent cells. They regulate the intercellular transport of proteins and small mole-

cules during development and defense [24, 25]. The PD-PM is a particular subcompartment of

the PM, which displays a unique molecular composition, notably enriched in sterols [26]. The

movement of macromolecules through PD can be tightly controlled through modulation of

the PD size-exclusion limit (SEL) via hypo- or hyper-accumulation of callose at the PD neck

region [27–29]. Overexpression of GRAIN SETTING DEFECT 1 (GSD1) encoding a phyloge-

netic-group 6 REM protein from rice, restricts PD aperture and transport of photo-assimilates

[23].

PDs are also the only route available for plant viruses to spread from cell-to-cell. Potato
virus X (PVX) promotes its cell-to-cell movement via modification of PD permeability [30]

through the action of TRIPLE GENE BLOCK PROTEIN 1 (TGBp1) [31]. Overexpression of

StREM1.3 (Solanum tuberosum REM from group 1b, homolog 3 [32], further referred as

REM1.3) hampers TGBp1’s ability to increase PD permeability [33]. How REM1.3 obstructs

TGBp1 action is still unknown. Here, we used REM1.3 and PVX pathosystem in the solanaceae

Nicotiana benthamiana, because PVX cannot infect Arabidopsis [34] and N. benthamiana is a

widely used model for research on plant-virus interaction [35]. We previously showed that

REM1.3 lateral organization into nanodomains at the PM is directly linked with its ability to

restrict PVX movement and regulate PD conductance [36].

REM phosphorylation and viral infection
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REM1.3 was the first REM family member discovered and initially described as a protein

phosphorylated upon treatment with oligogalacturonides, which are plant cell wall compo-

nents and elicitors of plant defense [37, 38] The biological relevance of REM phosphorylation

is not known of different REM phospho-statuses suggest that the activity of these proteins

could be regulated by phosphorylation during plant-microbe interactions [16, 17, 39, 40].

In the present paper, we show that phosphorylation of REM dictates its membrane dynam-

ics and antiviral defense by the reduction of PD permeability. Our data point towards a model

in which viral proteins such as the Coat Protein (CP), TGBp1 from PVX and 30K proteins

from Tobacco mosaic virus (TMV) elicit the activation of protein kinase(s), which in turn phos-

phorylate(s) REM1.3 at its N-terminal domain. In turn, REM1.3’s phospho-status regulates its

spatial-temporal organization at the PM and association with PD. The latter is associated with

PD closure by induction of callose deposition at PD pit fields and restriction of viral cell-to-

cell movement. Last, we further provide evidence that the membrane bound Arabidopsis CAL-

CIUM-DEPENDENT PROTEIN KINASE 3 (CPK3) interacts with the taxonomic group 1b

REMs in vivo, phosphorylates REM1.3 in vitro and restricts PVX propagation in a REM-

dependent manner. Collectively, this study brings valuable information about the involvement

of PM nanodomains dynamics during the establishment of membrane-bound signaling

processes.

Results

PVX triggers changes in REM1.3’s membrane dynamic behavior and

REM1.3 association with plasmodesmata

Group 1 and group 6 REM have been described as proteins regulating PD size-exclusion limit

[8, 23, 33]. REM1.3 plays a role in restricting PVX passage through PD channels [8], [33] coun-

teracting PVX movement proteins which promote PD opening [41]. To study the potential

function of REM1.3 at PD in response to PVX infection, we surveyed simultaneously PD cal-

lose content and REM1.3 PD localization in healthy or PVX-infected N. benthamiana tran-

siently expressing YFP-REM1.3 [42] (S1 Fig). Our analysis showed a significant increase in

callose deposition in PVX-infected cells compared to mock conditions (Fig 1A and 1B). This

finding suggests the recognition of PVX-encoded elicitors and the mobilization of a plant

defense response leading to an increase of callose accumulation at PD pit fields.

Since protein activation is often linked to changes in subcellular localization [3, 44], we

next examined whether PVX infection triggers changes in REM1.3 association with PD. Calcu-

lation of the PD index (ratio between fluorescence intensity of YFP-REM1.3 at the aniline-

labeled PD pit fields and fluorescence at the PM around the pit fields [28], S1 Fig). Fig 1A and

1B showed that despite its role on PD regulation, YFP-REM1.3 is not enriched in the PD

region of healthy N. benthamiana epidermal cells. We however reproducibly observed a slight

increase of YFP-REM1.3 PD index upon PVX infection suggesting that PVX perception mod-

ulates REM1.3 localization and association with the PD pitfields (Fig 1A and 1B).

To gain further insights into REM1.3 dynamic localization at the PM upon PVX infection,

we applied single-particle tracking Photoactivated Localization Microscopy in Variable Angle

Epifluorescence Microscopy mode (spt-PALM VAEM) in living N. benthamiana epidermal

cells [45] in absence or presence of PVX. We used the photoconvertible fluorescent protein

EOS [46, 47] fused to REM1.3 to visualize, track, and characterize mobility behavior of single

REM1.3 molecules. In addition, nanoscale localizations of single molecules observed overtime

were computed to obtain super-resolution images and analyze REM1.3 organization at a

molecular level. By this approach, we recently studied the protein organization and mobility

parameters of single EOS-REM1.3 molecules in non-infected conditions and found that

REM phosphorylation and viral infection
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Fig 1. REM1.3 modulates plasmodesmata callose accumulation and displays altered PM organization and

dynamic following PVX infection. (A) Representative confocal images of aniline blue stained N. benthamiana leaf

epidermal cells transiently expressing YFP-REM1.3 in the absence (mock is infiltration with empty A. tumefaciens) or

the presence of PVX at 2 days after infiltration (DAI). Color-coding indicates fluorescence intensity. (B) Left, Pit field

aniline blue fluorescence intensity was quantified by ImageJ as described in S1 Fig and expressed as the percentage of

the mock control. Right, Quantification of the PD residency of YFP-REM1.3 in the absence (mock) and in the presence

of PVX using the PD index [28] as described in S1 Fig. Graphs represent quantifications from 3 independent biological

experiments. At least 15 cells per condition were analysed per experiment. Significant differences were determined by

Mann-Whitney comparisons test ��� p<0.001. (C) Super-resolved trajectories of EOS-REM1.3 molecules (illustrated

by different colours) in the PM plane in the absence (Mock) and presence of PVX obtained by high-resolution

microscopy spt-PALM. EOS-REM1.3 was transiently expressed in N. benthamiana (D) Diffusion coefficients (D) of

EOS-REM1.3 expressed as log(D) in the absence (Mock) and presence of PVX. Statistical significances were assessed

by Mann-Whitney test ��� p<0.001 using data collected over two independents experiments. (E) Mean Square

Displacement (MSD) over time for the global trajectories of EOS-REM1.3 followed during at least 600 ms reflecting

two independent experiments. (F) Live PALM analysis of EOS-REM1.3 localization in the absence (mock) and

presence of PVX by tessellation-based automatic segmentation of super-resolution images. (G) Computation of

EOS-REM1.3 single molecule organization features based on tessellation-based automatic segmentation images. For

REM phosphorylation and viral infection
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EOS-REM1.3 displays an immobile and confined PM localization pattern, as commonly

observed for plant membrane-associated proteins (Fig 1C–1E) [48], [36]. Reminiscent of these

data, previous studies using different techniques described REM-associated PM domains to be

predominantly laterally static [36, 48, 49]. Analysis of PVX-infected cells demonstrated an

increase of EOS-REM1.3 diffusion coefficient (D) and mean square displacement (MSD),

reflecting an increase of REM1.3 mobility (Fig 1C–1E). We next apply mathematical computa-

tion (Voronoï tessellation method [36, 50]) to compare the supra-molecular organization of

EOS-REM1.3 of live PALM data in mock- and PVX-infected conditions (Fig 1F and 1G).

Computation of EOS-REM1.3 single molecule organization features demonstrated a modula-

tion of REM1.3 nanodomain-organization upon PVX infection (Fig 1G). Following PVX

infection, the EOS-REM1.3-formed nanodomains are bigger in size, and there is a slight

decrease of the proportion of molecules that localized into nanodomains as well as a decrease

in the number of nanodomains formed. Overall, in both conditions, EOS-REM1.3 nanodo-

mains represented similar proportions of the total PM surface. Additionally, a decrease in the

localization density (number of molecules observed per μm2 per s) showed that upon PVX

infection, there was less REM1.3 protein at the PM level. Overall, the changes of REM1.3 distri-

bution under PVX infection i.e. enrichment of YFP-REM1.3 in the PD pit field regions, the

increase of REM1.3’s mobility and the modulation of REM1.3 nanodomain organization, sug-

gest that the plant cell modulates PD-PM and PM nanodomain dynamics to circumvent PVX

infection.

Perception of PVX proteins by plant cells leads to the activation of kinase

(s) phosphorylating REM1.3
REM1.3 overexpression restricts PVX local and systemic spreading in both Solanum lycopersi-
cum [8] and Nicotiana benthamiana [33, 36] (S2A and S2B Fig). Because REM1.3 protein level

is not affected by PVX infection (S2C and S2D Fig), we assumed that neither synthesis nor

degradation of the protein is modified by PVX, but perhaps post-translational modifications.

As REM1.3 was originally discovered as a PM-associated phosphorylated protein [38], we first

asked whether REM1.3 could be phosphorylated by leaf protein extracts. Equal protein

amounts of microsomal and soluble extracts from N. benthamiana leaves were used as a poten-

tial kinase source to phosphorylate affinity-purified full-length 6His-REM1.3 in an in vitro
kinase assay in the presence of ATP [γ-33P]. Autoradiography revealed the presence of a clear

band corresponding to a phosphorylated form of 6His-REM1.3 by kinase(s) present in the

microsomal fraction (Fig 2A). The intensity of this band was completely abolished by competi-

tion with cold ATP, but not cold AMP, indicating a valid experimental set-up to study a genu-

ine transphosphorylation event (S3A Fig). Phosphorylation of 6His-REM1.3 was almost

undetectable in soluble fractions, representing cytosolic kinases (Fig 2A). In silico analysis pre-

dicted phosphorylation sites throughout REM1.3 sequence (Diphos, DEPP and NETPHOS

prediction softwares). In agreement with the location of the sites presenting the highest phos-

phorylation potential, we experimentally found that REM1.3 was phosphorylated in its N-ter-

minal domain (residues 1–116, hereafter 6His:REM1.3N) whereas the C-terminal domain

REM1.3 nanodomain size distribution for the indicated conditions, the Gaussian fits in absence (mock) and presence

of PVX are indicated by lines. Total nanodomain area is expressed as percentage of the total PM surface. Percentage of

EOS-REM1.3 molecules localizing into nanodomains, relative to all molecules observed. Localization density refers to

the number of molecules observed per μm2 per second. Statistics were performed on at least 10 data sets per condition,

from two independent experiments. Significant differences were determined by Mann-Whitney test � p<0.05, ���

p<0.001.

https://doi.org/10.1371/journal.ppat.1007378.g001
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(residues 117–198, hereafter 6His:REM1.3C) did not present any detectable phosphorylation

(S3B and S3C Fig).

We next tested whether PVX activates the kinase(s) that phosphorylate(s) REM1.3. Our

results unveiled that microsomal and PM fractions extracted from symptomatic PVX-infected

leaves promoted higher levels of 6His-REM1.3 phosphorylation compared to non-infected

plants (Fig 2B and 2C). Studies have shown that functionally different viral components, such

as virus-encoded proteins and double-stranded RNA, can trigger plant defense responses [51–

56]. We therefore examined whether the PVX genome in its free form was an eliciting signal

for kinase activation. We found that the addition of total RNAs extracted from PVX-infected

plants in the kinase reaction mix did not alter the levels of 6His-REM1.3 phosphorylation (Fig

2D). We then examined whether the sole expression of individual viral movement proteins

was sufficient to trigger REM1.3 phosphorylation (Fig 2E). Importantly, our results demon-

strated that the expression of TGBp1 and Coat Protein (CP) fused to GFP triggered the stron-

gest levels of 6His-REM1.3N phosphorylation to the same extent as the full PVX-GFP

construct (Fig 2F and 2G and S3E Fig for controls of viral fluorescent-tagged protein expres-

sion as described in [41]). In good agreement, expression of a TGBp1-deleted version of PVX

(PVXΔTGBp1) decreased 6His-REM1.3 phosphorylation levels compared to wild-type PVX

extracts (S3D Fig). Expression of TGBp2 and infiltration of the empty Agrobacterium strain

alone protein also induced 6His-REM1.3N phosphorylation, albeit less effective than TGBp1

and CP proteins (Fig 2F and 2G). In accordance with previous reports suggesting REM phos-

phorylation during plant-microbe interactions [9], Agrobacterium infected N. benthamiana
extracts induced much stronger REM1.3 phosphorylation than the water control condition

(Fig 2F and 2G). Furthermore, we found that the 30K-RFP protein from Tobacco mosaic virus
(TMV) also induces REM phosphorylation (S3D Fig). Similar to PVX-TGBp1, REM1.3 inter-

feres with the ability of TMV-30K to increase PD permeability [33] and overexpression of

REM1.3 restricts TMV-GFP cell-to-cell movement in N. benthamiana epidermal cells (S4A

Fig).

Altogether our data suggest an additional role of REM-mediated plant response against

TMV and possibly to bacteria. Our results also indicate that REM1.3 phosphorylation status is

modulated by the perception of viral proteins by plant cells.

Phosphorylation of REM1.3 regulates its function in restricting PVX

spreading via PD aperture modulation

Since phosphorylation of REM occurs upon PVX infection, we next aimed to functionally

characterize the importance of REM1.3 phosphorylation for the regulation of PVX cell-to-cell

movement. Despite our efforts, the identification of in vivo phosphorylation sites of REM1.3

appeared technically challenging and remained unsuccessful. In silico predictions and in vitro

Fig 2. PVX and viral proteins induce REM1.3 phosphorylation in its N-terminal domain. (A, B) In vitro protein phosphorylation assays were

performed by incubation of recombinant affinity-purified 6His-REM1.3 and N. benthamiana extracts with [γ-33P]-ATP. The samples were run on

SDS-PAGE gels and developed by autoradiography. Soluble (Sol) or microsomal (μ) extracts of healthy leaves in (A), or microsomal and PM extracts

from healthy and PVX-infected plants in (B) were used. (C) In vitro phosphorylation of 6His-REM1.3N by leaf microsomal extracts of healthy or PVX-

infected N. benthamiana leaves. Bars show the quantification of phosphorylated 6His-REM1.3N bands from 5 independent repeats. (D) In vitro
phosphorylation of 6His-REM1.3 by leaf microsomal extracts in the presence of total RNA extracts from PVX-infected leaves. (E) Experimental flow-

chart to study the role virus protein in membrane-bound kinase activation. (F) 6His-REM1.3N phosphorylation by microsomal extracts infected with

PVX-GFP or expressing the indicated viral proteins at 4 DAI. Leaves expressing GFP alone, infiltrated with water or with A. tumefaciens strain GV3101

alone served as controls. Expression of the viral proteins is presented in S3 Fig. (G) Graph represents the quantification of 6His-REM1.3N bands from

three independent repeats (n = 3), as a percentage of the activity induced by A. tumefaciens strain GV3101 alone. Error bars show SE, and significance is

assessed by Dunnett’s multiple comparison test to water control (�, P< 0.1; ��, P< 0.05; ���, P< 0.001). Phosphorylated proteins were detected by

autoradiography and total proteins by stain free procedure. In all experiments 10μg of total protein extracts and 1μg of affinity purified 6His-REM1.3 or

6His-REM1.3N were loaded per lane.

https://doi.org/10.1371/journal.ppat.1007378.g002
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kinase assays however showed that REM1.3N displays regions of intrinsic disorder and pres-

ents the highest potential of phosphorylation (Fig 2C–2F and Fig 3A). For functional charac-

terization, we selected the three putative phosphorylation Serine(S) /Threonine(T) sites

present in REM1.3N, namely S74, T86 and S91, that presented high scores of phosphorylation

prediction in intrinsic disorder regions (Fig 3A). S74 and S91 are conserved across the phylo-

genetic group 1b of REM proteins, suggesting functional redundancy (S5A Fig) [32, 57]. S74

and S91 were the analogous residues identified as phosphorylated in vivo in the group 1b REM

AtREM1.3 (At2g45820) of Arabidopsis thaliana (hereafter Arabidopsis) in a stimuli-dependent

manner [39, 40, 57]. Biochemical analysis showed that α-1,4-poly-D-galacturonic acid (PGA)-

induced phosphorylation of StREM1.3 occurs on T32, S74 and T86 [58]. T86 is not conserved

in Arabidopsis but it is conserved in Solanaceae REM proteins, such as in N. benthamiana
(S5A Fig). By an in vitro kinase assay, we show that phosphorylation occurs within three

potential phosphor-residues, since mutation of S74, T86 and S91 to the non-phosphorylatable

Aspartic acid (D), generating the 6His-REM1.3DDD mutant abolished REM phosphorylation

by the PVX-activated kinase(s) (Fig 3B and 3C).

To discriminate which residues are functionally relevant in the context of PVX-GFP propa-

gation, we generated RFP-tagged REM1.3 phosphomutants, individually mutated at those sites

to the non-phosphorylatable Alanine. Transient expression in N. benthamiana coupled with

PVX-GFP infection assays demonstrated that individual phospho-null mutations at those sites

induce a loss of function of REM1.3 in restricting PVX-GFP spreading (Fig 3D). This result

suggests that phosphorylation of either S74, T86 and S91 is important for REM1.3 function.

To further characterize the relevance of different REM1.3 phospho-statuses in the context

of PVX-GFP propagation and PD-aperture regulation, we analysed RFP-tagged REM1.3DDD

to mimic constitutive phosphorylation hereafter termed phosphomimetic mutant, or to Ala-

nine (REM1.3AAA) hereafter termed phosphodead mutant. Infection assays in N. benthamiana
confirmed that the phosphodead mutant completely lost REM1.3 ability to restrict PVX-GFP

cell-to-cell movement, while the phosphomimetic mutant maintained this ability (Fig 3D).

TMV-GFP propagation was similarly affected by the phospho-status of REM1.3 (S4A Fig). We

then analyzed the capacity of REM1.3 phosphomutants to regulate PD aperture in the absence

of viral infection. As previously described [33, 36], RFP-REM1.3 reduces the PD size-exclusion

limit as measured by free-GFP cell-to-cell diffusion (Fig 3E). Detailed analysis of REM1.3

phosphorylation mutants demonstrated that the phosphomimetic mutant recapitulated

REM1.3 activity towards PD-aperture regulation, while the phosphodead mutant did not (Fig

3E).

Altogether, these results provide strong evidence that REM1.3’s phosphorylation state at

the evolutionarily conserved positions of S74, T86 and S91 is linked to its function in control-

ling viral infection and PD conductance.

REM1.3 phospho-status modulates its dynamic lateral segregation in the

PM and PD sub-compartments

Both REM1.3 phosphomimetic and phosphodead mutants maintained PM localization, simi-

larly to wild-type REM1.3, when transiently expressed in fusion with YFP in N. benthamiana
(S4B Fig). Upon PVX infection we observed a modulation of REM1.3 PD-association and PM

dynamics (Fig 1), linked to REM1.3 phosphorylation (Fig 2) that is required for REM1.3 func-

tion against PVX infection (Fig 3). We then asked whether different REM1.3 phospho-statuses

might regulate its lateral organization at the PM and PD compartments in the absence of PVX.

We examined the enrichment of REM1.3 YFP-tagged phosphomutants at the PD pit fields,

previously calculated by the PD index (S1 Fig) and found that similarly to YFP-REM1.3, none
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of the phosphomutants appeared enriched at the pit field level (Fig 4A and 4C). The phospho-

dead mutant appeared statistically more excluded than YFP-REM1.3, whereas the phosphomi-

metic mutant displayed an increase of its PD index (Fig 4C), reminiscent of the REM1.3

localization phenotype under PVX infection (Fig 1A and 1B). Importantly, REM1.3 phospho-

mutants’ association with PD was directly correlated with callose content at PD (Fig 4B).

These observations reinforced the hypothesis that REM1.3-mediated increase of callose levels

at PD is associated with a dynamic and phosphorylation-dependent redistribution of REM1.3

to the PD surroundings.

We next used spt-PALM VAEM to characterize the localization and mobility behaviour of

the EOS-REM1.3 phosphomutants in the PM plane. The analysis of reconstructed trajectories

and corresponding super-resolved localization maps indicated slight modifications of lateral

mobility behavior between the phosphomutants (Fig 4D and 4E). Quantification of the diffu-

sion coefficient values (D) extracted for each individual molecule revealed that EOS-RE-

M1.3AAA displayed a more immobile behavior than EOS-REM1.3DDD and EOS-REM1.3.

Consistently, EOS-REM1.3DDD exhibited a higher mobility illustrated by higher diffusion coef-

ficient and mean square displacement values (Fig 4D and 4E). Analysis of the supra-molecular

organization of the phosphomutants by Voronoï tessellation (Fig 4F) firstly showed that all

mutants displayed similar nanodomain size and localization density compared to EOS--

REM1.3WT. Compared to EOS-REM1.3AAA, the EOS-REM1.3DDD nanodomains occupied a

smaller area of the total PM and their density in the PM plane appeared slightly reduced (Fig

4F and 4G). A higher number of nanodomains were formed with the EOS-REM1.3AAA

mutant. Hence, the phosphomimetic mutations favor a less confined and a more dynamic

localization pattern of REM1.3 at the PM, reminiscent to the phenotype of EOS-REM1.3WT

in the context of PVX infection (Fig 1C and 1D).

These results suggest that differential REM1.3 phosphorylation is involved in regulating

REM1.3 mobility and PM domain organization and support the hypothesis that REM1.3 phos-

phorylation on S74, T86 and S91 reflects an ‘active form’ of the protein necessary for

REM1.3-mediated defense signaling.

Fig 3. Mutational analysis reveals three critical phospho-residues required for REM1.3 regulation of PVX-GFP

propagation and PD conductance. (A) In silico analysis of REM1.3 protein sequence. Prediction of putative

phosphorylation sites was performed by Diphos, DEPP and NETPHOS coupled with published MS data. Predictions

highlight three residues S74, T86 and S91 with high probability to be phosphorylated. Disordered prediction was

performed by pDONR VL XT. Numbers indicate amino acid position. (B) In vitro kinase assay on recombinant

affinity purified 6His-REM1.3 or 6His-REM1.3DDD by incubation with [γ-33P]-ATP and microsomal extracts of

PVX-infected N. benthamiana leaves, as described in Fig 2. Phosphorylated proteins were detected by autoradiography

and total proteins by silver staining. Asterisk � indicates phosphorylation of a N. benthamiana protein of close

molecular weight not detected by silver staining. (C) Graph represents the relative quantifications from 4 independent

reactions, using WT signal as a reference. (D) Left, Representative epifluorescence microscopy images of PVX-GFP

infection foci on N. benthamiana leaf epidermal cells at 5 DAI. Graph represents the mean relative PVX-GFP foci area

in cells transiently expressing RFP alone, wild-type RFP-REM1.3 or carrying single serine /threonine mutations to

alanine. Co-infiltration of PVX-GFP with an empty A. tumefaciens strain served as mock control. Approximately 160

foci per condition from 3 independent biological repeats were measured. Letters indicate significant differences

revealed by Dunn’s multiple comparisons test p<0.001. Right, Graph represents the mean relative PVX-GFP foci area

in cells transiently expressing wild-type RFP-REM1.3 or triple RFP-REM1.3 phosphodead and phosphomimetic

mutants compared to mock control (co-infiltration of PVX-GFP with an empty A. tumefaciens strain). Approximately

250 foci per condition from 5 independent biological repeats were measured Letters indicate significant differences

revealed by Dunn’s multiple comparisons test p<0.001. Epifluorescence microscopy images show representative

PVX-GFP infection foci on N. benthamiana leaf epidermal cells at 5 DAI. (E) GFP diffusion to neighbor cells was

estimated by epifluorescence microscopy at 5 DAI in N. benthamiana cells transiently expressing RFP-REM1.3 or

phosphomutants. Measurements from 3 independent biological repeats were normalized to mock control (co-

infiltration with an empty A. tumefaciens strain). Letters indicate significant differences determined by Dunn’s

multiple comparisons test p<0.001.

https://doi.org/10.1371/journal.ppat.1007378.g003
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Fig 4. REM1.3’s dynamic localization in PD and PM nanodomains is regulated by its phospho-status. (A) Representative

confocal mages showing aniline blue staining of callose deposition at the PD pitfields in N. benthamiana leaf epidermal cells

transiently expressing YFP-REM1.3 or phosphomutants. Color-coding indicates fluorescence intensity. (B) Graphs show aniline
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AtCPK3 phosphorylates REM1.3

To gain more insights into the signaling processes leading to REM1.3 phosphorylation, we

aimed to biochemically characterize the kinase(s) involved in the phosphorylation of REM1.3.

Previous evidence suggested that the kinase(s) phosphorylating REM1.3 are membrane-associ-

ated (Fig 2) [38]. We therefore biochemically analyzed the localization of the kinase(s) phos-

phorylating REM1.3. Plant material from healthy and PVX-GFP-infected leaves was cell-

fractionated to obtain crude extracts, soluble and microsomal fractions [59] to perform in vitro
kinase assays on REM1.3N. Analysis confirmed a maximal kinase activity in purified micro-

somes (Figs 5A and 2A). Since a kinase in close proximity with its substrate would enhance

reaction kinetics [60] and signal fidelity [61], and given that REM1.3 is enriched in detergent-

resistant membranes (DRM) [8], we investigated whether the kinase activity towards 6His-

REM1.3 is enriched in this biochemical fraction. We included “control PM” (C-PM) prepara-

tions, submitted to discontinuous sucrose gradients but in the absence of Triton-X100 treat-

ments [62]. In vitro kinase assays on 6His-REM1.3N showed that the kinase activity in C-PM

was 5 times inferior than in freshly purified PM not submitted to the sucrose gradient, suggest-

ing that the kinase is not stable during the overnight purification procedure. Only half of the

specific activity of the kinase was found in DRMs compared to the C-PM fraction, indicating

that the kinase(s) phosphorylating REM1.3 is (are) only partially located in the DRM fraction

(Fig 5B).

To gain more information concerning the biochemical characteristics of the kinase phos-

phorylating REM1.3, we analyzed its activity in the presence of known inhibitors. We firstly

tested staurosporine, [63, 64] a general inhibitor that prevents ATP binding to kinases. We

found an inhibition of REM1.3 phosphorylation starting at very low concentrations (30 nM)

(S6A Fig). We further tested the effect of poly-L-lysine, described to stimulate the activity of

the CK2 kinases and inhibit several CDPK kinases [65, 66]. No significant differences on

REM1.3 phosphorylation levels were observed under increasing concentrations of poly-L-

lysine (S6B Fig). The addition of the wide range of Ser/Thr phosphatases inhibitor β-glycero-

phosphate (BGP) [66] to the reaction mix did not alter the levels of phosphorylated 6His-

REM1.3, indicating that the observed data was due to the activation of kinase activity by PVX

rather than by inhibition of phosphatases (S6B Fig). Competition assays in the presence of

cold AMP and GTP showed that only cold ATP even at 2 mM caused 20-fold depletion in

[γ-33P] incorporation, suggesting that ATP is the major phosphoryl-donor for the kinase (S6B

Fig). Addition in the reaction mix of 0,2 mM of EGTA, a chelator of Ca2+, strongly inhibited

the kinase activity suggesting that the kinase(s) phosphorylating REM1.3 in healthy leaves is

blue fluorescence intensities in cells transiently expressing YFP-REM1.3 and phosphomutants relative to control cells expressing

YFP alone. Three independent biological experiments were performed and at least 15 cells per condition and per experiment were

analyzed. Letter indicate significant differences revealed by Dunn’s multiple comparisons test p<0.001. (C) PD index of

YFP-REM1.3 phosphomutants was calculated as described in S1 Fig. Graphs present quantifications from 3 independent biological

experiments. Letter indicate significant differences revealed by Dunn’s multiple comparisons test p<0.002. (D) Super-resolved

trajectories (illustrated by different colours) of transiently expressed EOS-REM1.3, and phosphomutants, transiently expressed in N.

benthamiana cells, observed by spt-PALM. Scale bars, 2 μm. (E) Distribution of diffusion coefficients (D) represented as log(D) of

the different fusion proteins. Mean Square Displacement (MSD) over time for the global trajectories of each EOS-REM1.3 construct

followed during at least 600ms. 27 cells for EOS-REM1.3, 15 cells for EOS-REM1.3AAA and 17 cells for EOS-REM1.3DDD were

analyzed in 3 independent experiments. Statistical analysis was performed by Mann-Whitney test � p<0.05 �� p<0.01. (F) Live

PALM analysis of EOS-REM1.3 phosphomutants by tessellation-based automatic segmentation of super-resolution images. (G)

Computation of EOS-REM1.3 and phosphomutants single molecule organization features based on tessellation-based automatic

segmentation images. For REM1.3 and phosphomutants nanodomain size distribution and the Gaussian fits are indicated. Total

nanodomain area is expressed as percentage of the total PM surface. Percentage of EOS-REM1.3 molecules localizing into

nanodomains, relative to all molecules observed. Localization density refers to the number of molecules observed per μm2 per

second. Statistics were performed on at least 13 data sets per condition extracted from 3 independent experiments. Statistical

differences determined by Mann-Whitney test � p<0.05, �� p<0.01.

https://doi.org/10.1371/journal.ppat.1007378.g004

REM phosphorylation and viral infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007378 November 12, 2018 12 / 33

https://doi.org/10.1371/journal.ppat.1007378.g004
https://doi.org/10.1371/journal.ppat.1007378


Fig 5. AtCPK3 phosphorylates REM1.3 in a calcium-dependent manner. (A, B) In vitro phosphorylation of purified 6His:REM1.3N by

kinase(s) from different cellular fractions of N. benthamiana leaves, CEs, leaf crude extracts; Sol, Soluble fraction; μ, microsomal fraction;

PM, Plasma Membrane; C-PM: “Control-PM” is PM fraction not treated by TX100, but submitted to sucrose gradient; DRM, Detergent

REM phosphorylation and viral infection
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calcium sensitive (S6C Fig). Calcium is a conserved second messenger in signal transduction

during biotic and abiotic stress. In plants, kinases harboring different calcium sensitivities can

perceive calcium variations and translate them into downstream signaling activation [67, 68].

To determine whether the PVX-activated kinase phosphorylating REM1.3 is sensitive to cal-

cium regulation, in vitro kinase assays from microsomes of healthy and PVX-infected N.

benthamiana leaves were assayed in the presence of free calcium (Ca2+) concentrations rang-

ing from 10 nM to 0,1 mM. Fig 5C shows that the kinase(s) displays a high sensitivity to cal-

cium with an optimal activity in the presence of 10 μM of free Ca2+. At this concentration, a

5-fold increase of 6His-REM1.3N phosphorylation was observed in PVX-infected leaves (Fig

5C). These experiments allowed us to narrow-down the kinase(s) phosphorylating REM1.3

after PVX infection to the group of membrane-bound Ca2+-dependent protein kinases [67].

Plants possess three main families of calcium-regulated kinases: calmodulin-binding

kinases (CBKs), calcineurin B-like-interacting protein kinases (CIPKs) and calcium-depen-

dent protein kinases (CPKs) [67]. CPKs have the unique feature of calcium sensing and

responding activities in one single polypeptide, best characterized in the model plant Arabi-
dopsis [67]. Based on the measured calcium dose response (Fig 5C), we correlated the kinase

phosphorylating REM1.3 in N. benthamiana with homologs of Arabidopsis subgroup II

AtCPKs [69], and we aimed to capitalize on the knowledge of Arabidopsis CPKs to test

REM1.3 phosphorylation. Among the characterized members of subgroup II AtCPKs, we

selected the Arabidopsis AtCPK3 as a good candidate to test its putative role in REM1.3 phos-

phorylation, since previous proteomics studies in Arabidopsis have identified both AtCPK3
and AtREM1.3 as being enriched in PM, PD and DRM fractions [22, 70]. In addition, one

study showed that AtREM1.3 from microsomal fractions is phosphorylated in vitro by AtCPK3
[71]. We therefore predicted that REM1.3 might share common functions with the evolution-

arily conserved group 1b Arabidopsis REMs [32]. AtREM1.2 and AtREM1.3 are close homo-

logs to REM1.3 and group 1 N. benthamiana REMs (NbREMs) in term of protein sequence

[32, 36] and they conserved at least the S74 and S91 phosphorylation sites [39], [40, 57] (S5A

Fig). Using super-resolution microscopy, Demir et al. showed that, when co-expressed in Ara-

bidopsis leaves, REM1.3 and AtREM1.3 co-localized in the same PM-nanodomains [72].

Importantly, transient expression of AtREM1.2 and AtREM1.3 in N. benthamiana epidermal

cells impaired PVX-GFP cell-to-cell movement, as REM1.3 does (S5B Fig), strengthening the

hypothesis that the function of group 1 REMs might be conserved between homologs in differ-

ent plant species [36].

We assayed the in vitro phosphorylation activity of the affinity-purified AtCPK3-GST

towards the 6His-REM1.3, the 6His-REM1.3N and the 6His-REM1.3C, as well as the homolo-

gous substrate 6His-AtREM1.2. Similar to our previous results (S3B and S3C Fig),

AtCPK3-GST could phosphorylate strongly both 6His-REM1.3 and 6His-REM1.3N, but not

6His-REM1.3C (Fig 5D). In accordance with the effect of AtREM1.2 in PVX-GFP propagation

(S5B Fig), AtCPK3-GST can also phosphorylate 6His-AtREM1.2 (Fig 5E). Addition of Ca2+ is

essential for a strong kinase activity as shown by both kinase auto-phosphorylation and trans-

phosphorylation (Fig 5D and 5E). AtCPK3-GST specifically phosphorylated S74, T86 and S91

resistant membranes [62]. The graph represents the relative quantification of 3 independent experiments normalized to the activity in

the PM fraction +/- SEM. (C) Quantification of the calcium dose response of kinase activity on 6His-REM1.3N phosphorylation by N.

benthamiana microsomal extracts from healthy and PVX infected leaves. (D, E, F) Autoradiography gels show in vitro phosphorylation

of 6His-REM1.3, 6His-REM1.3N and 6His-REM1.3C, 6His:REM1.3DDD or 6His:AtREM1.2 by affinity purified GST-AtCPK3 in the

presence or the absence of Ca2+. Bands corresponding to autophosphorylation of AtCPK3-GST and transphosphorylation of 6His-

tagged group 1 REM variants are indicated. Gels were stained by coomassie blue to visualize protein loading. Asterisk� indicates a non-

specific band present in both 6His-REM1.3C and 6His-REM1.3N preparation.

https://doi.org/10.1371/journal.ppat.1007378.g005
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residues of REM1.3, since the phosphorylation was abolished in the phosphomimetic mutant

6His-REM1.3DDD (Fig 5F).

These results suggest that AtCPK3 is a good candidate for group 1b REM phosphorylation

and further support that the S74, T86, and S91 are the phosphorylation sites of REM1.3 (Figs

3A and 5E).

AtCPK3 interacts with group 1b REMs and restricts PVX propagation in a

REM-dependent manner

CPKs harbor a variable N-terminal domain, a Ser/Thr kinase domain, an auto-inhibitory junc-

tion region and a regulatory calmodulin-like domain. The calmodulin-like domain contains

four EF-hand binding motifs that determine the sensitivity of each kinase to calcium [73, 74].

To investigate the role of AtCPK3 in REM-dependent signalling, we generated AtCPK3

mutants presenting altered kinase activities. Deletion of the inhibitory junction region and the

regulatory calmodulin-like domain in CPKs creates a constitutive active kinase while mutation

of the aspartic acid residue in the catalytic center ‘DLK’ motif of the kinase domain to an ala-

nine (D202A) creates a catalytically inactive or ‘dead’ kinase [67] (Fig 6A). We generated

AtCPK3 full-length (AtCPK3), constitutive active (AtCPK3CA, residues 1–342) and kinase-

dead (AtCPK3CAD202A) constructs for transient protein expression (Fig 6A). We evaluated

their catalytic activities by expressing them transiently in Arabidopsis mesophyll protoplasts

and performing immunoprecipitation coupled to kinase assays using 6His-REM1.3 and his-

tone as a generic substrate [67]. Autoradiography confirmed that in vivo purified AtCPK3-

CA-HA could trans-phosphorylate both 6His-REM1.3 and histone without the addition of

calcium, while the point mutation D202A drastically abolished kinase activity (S7 Fig).

We next examined the sub-cellular localization of both AtCPK3 and AtCPK3CA fused to

YFP and found that both proteins disclosed a partial association with the PM, which was fur-

ther confirmed by their presence, after cell fractionation, in the microsomal fraction at the

expected molecular weight (Fig 6B) in good agreement with [71]. We further used AtCPK3CA

to test the interaction with group 1b REMs. Bimolecular Fluorescence Complementation

(BiFC) experiments showed that AtCPK3CA and REM1.3, REM1.3AAA and REM1.3DDD inter-

act together at the level of the PM in planta. Importantly, we also confirmed the interaction

of AtCPK3CA with homologous AtREM1.2 and AtREM1.3 (Fig 6C). REM1.3/REM1.3 interac-

tion was used as a positive control, and AtCPK3CA /AtCPK3CA as a negative control.

We finally aimed to functionally characterize the AtCPK3- and REM1.3-mediated signaling

in the context of PVX infection. Transient over-expression of AtCPK3-RFP alone induces a

reduction of PVX-GFP infection foci suggesting that AtCPK3 is indeed important for antiviral

responses in plant cells (Fig 6D). Expression of the constitutively-active AtCPK3CA-RFP had

a stronger effect on PVX-GFP spreading and to a similar degree with the over-expression of

REM1.3 alone (Fig 6D). AtCPK3’s function towards PVX movement was observed to be medi-

ated by its kinase activity, as the expression of the catalytically inactive mutant AtCPK3-

CAD202A had no effect on PVX-GFP propagation (Fig 6D).

This raised the question whether the effect of AtCPK3CA on PVX propagation was REM-

dependent. To tackle this question, we stably transformed N. benthamiana plants with a hair-

pin construct, to induce post-transcriptional gene silencing, which resulted in lowering RNA

and protein expression of group 1 endogenous NbREMs (S8A and S8B Fig). Consistent with

previous studies [8], silencing of group 1 REM correlates with an increase of PVX-GFP cell-to-

cell movement in inoculated leaves (S8C Fig). No difference was observed by ELISA when

measuring PVX accumulation in systemic leaves (S8D Fig). Importantly, PVX assays demon-

strated that AtCPK3CA ability to restrict PVX movement was impaired in two independent N.
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Fig 6. AtCPK3 physically interacts in vivo with group 1b REMs and impairs PVX cell-to-cell movement in a REM-

dependent manner. (A) Primary sequence of AtCPK3. EF-hands are helix E-loop-helix F structural domains able to bind

calcium. Ai: Autoinhibitory domain. The position of the DLK motif (Aspartic acid-Leucine-Lysine) at the catalytic domain

conserved in all CPKs is indicated. (B) Confocal images showing AtCPK3-YFP and AtCPK3CA-YFP localization in N.

REM phosphorylation and viral infection
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benthamiana lines underexpressing group 1 REM levels, (namely lines 1.4 and 10.2 with

expression levels decreased respectively by 2 and 20 times) (Fig 6E), indicating that REMs

might be the direct substrate of CPK3 in vivo.

Altogether, these data suggest that CPK3 and group 1 REMs are major regulators involved

in signaling and antiviral defense at the PM level.

Discussion

Protein phosphorylation is a ubiquitous and specific mechanism of cell communication [75].

The addition of a phosphate group on one or more critical residues of a given protein can

induce important conformational changes that affect energetically favorable interactions and

may lead to changes in its interacting network, localization, abundance and may influence the

activity of protein signaling pools [76]. Although, since the initial discovery of REM1.3 in

1989, accumulating evidence suggests that the functions of REM proteins are regulated by pro-

tein phosphorylation [38–40]. The biological significance of this phosphorylation remained

unclear to this date. REM proteins were among the first plant proteins described which sup-

ported the notion of PM sub-compartmentalization to functional protein-lipid nanodomains

[8, 11, 77], also named membrane rafts [3, 4, 21]. In the present paper, we used REM1.3 and

PVX as an experimental system to study the role of protein phosphorylation and membrane

dynamics in the context of stress response.

REM1.3 functions likely involve distinct PM compartments during plant

PVX-sensing

Understanding how plants defend themselves against viruses remains a challenging field. The

canonical plant immune response against viruses is mainly represented by the mechanism of

RNA silencing [78, 79], while additional mechanisms of plant antiviral defense involve hor-

monal signaling, protein degradation, suppression of protein synthesis and metabolic regula-

tion [51, 78, 80]. Antiviral defense presents similarities to the immune response against

microbes [81–83]. Compelling evidence suggests that cell-surface as well as intracellular plant

immune receptors recognize viral elicitors [55, 84–89]. An additional number of host cell com-

ponents have been shown genetically to affect viral replication or cell-to-cell movement [8,

90], indicating that more sophisticated plant defense mechanisms against viruses may exist.

For instance, manipulation of REM levels in transgenic Solanaceae suggested that REM is

as a positive regulator of defense against the PVX by affecting viral cell-to-cell movement [8,

14, 36]. We recently showed that REM1.3 does not interfere with the suppressor ability of PVX

movement protein TGBp1, but specifically affects its gating ability [33]. Group 1 REMs could

benthamiana epidermal cells. Scale bar shows 10 μm. Western blot against GFP showing AtCPK3-YFP and

AtCPK3CA-YFP expression in the microsomal fraction (μ) of N. benthamiana leaves. (C) In planta Bimolecular

Fluorescence Complementation (BiFC) analysis showing interaction of AtCPK3 with Group 1 REMs. REM1.3-YFPN/

REM1.3-YFPC was used as a positive control, and AtCPK3CA-nYFP/ AtCPK3CA-cYFP as a negative control. Mean

fluorescence intensity at the cell boundary level was recorded using ImageJ. Statistical differences were determined by

Mann-Whitney test compared to AtCPK3CA +AtCPK3CA.��� p = 0.0002, ���� p<0.0001. All scale bars indicate 20μm.

(D) PVX-GFP spreading in N. benthamiana cells expressing RFP-REM1.3 or AtCPK3FL-RFP, AtCPK3CA-RFP,

AtCPK3CAD202A-RFP Graph represents the area of PVX-GFP infection foci relative to the mock control (co-infiltration

of PVX-GFP with empty A. tumefaciens). At least 200 PVX-GFP infection foci from at least 3 independent repeats were

imaged at 5DAI. Letters indicate significant differences revealed by Dunn’s multiple comparisons test p<0.001. (E) Effect of

AtCPK3CA on PVX-GFP cell-to-cell movement in WT N. benthamiana or in transgenic lines constitutively expressing

hairpin REM (hpREM) constructs. At least 200 PVX-GFP infection foci from at least 3 independent repeats were imaged at

5DAI. For each N. benthamiana line the effect of AtCPK3CA is expressed as a percentage of the corresponding mock

control (empty Agrobacteria). Absolute values of the average foci area for each mock control are indicated.

https://doi.org/10.1371/journal.ppat.1007378.g006
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be a target for viruses (and other pathogens) to circumvent infection as illustrated by the case

of Rice Stripe Virus that targets NbREM1 for degradation by 26S proteasome [91]. Neverthe-

less, in this study we show that REM1.3 protein levels are not altered during PVX infection

(S2C and S2D Fig).

In this paper, we provide supporting mechanistic evidence that REM1.3 regulates the levels

of callose accumulation at PD pit fields during PVX infection (Fig 1). Whether this function is

mediated by a direct interaction with callose synthase/glucanase complexes remains however

still unknown. Surprisingly, we found that REM1.3 is not dramatically recruited to PD pit

fields, although its PD index is slightly increased after PVX infection (Fig 1). This suggests that

association of a sub-fraction of the REM1.3 to the PD-PM region may be sufficient to increase

callose accumulation, although we cannot rule out the possibility that REM1.3 may regulate

PD permeability via a more indirect mechanism. The spt-PALM VAEM microscopy data sup-

ports an increase of protein mobility and redistribution to distinct domains during PVX infec-

tion (Fig 1). These findings indicate the existence of a mechanism that operates at specific

REM1.3-associated PM nanodomains, capable of regulating PD permeability (Fig 1). The

dynamic partitioning between PM nanodomains and PD pit fields needs to be further studied.

Plant PVX-sensing induces the activation of a calcium-dependent protein

kinase

Since various studies have reported REM phosphorylation during plant-microbe interactions

[16, 17, 39, 40], we set out to address which kinase phosphorylates REM and whether REM1.3

phosphorylation plays a role in REM-mediated anti-viral defense. Indeed, our experimental

findings show that plant PVX sensing induces the activation of a membrane-bound calcium-

dependent protein kinase that in turn phosphorylates REM1.3 (Fig 2, Fig 5). Importantly, we

show that the kinase able to phosphorylate REM1.3 is activated specifically by the expression

of two PVX proteins, namely CP and TGBp1. Deciphering the exact mechanisms allowing the

molecular recognition of those PVX components will be a crucial step toward understanding

REM-mediated anti-viral defense. Intriguingly, the finding that the presence of Agrobacterium
also induces REM1.3 phosphorylation (Fig 2G) is in agreement with previous reports suggest-

ing phosphorylation of REMs under bacterial infection [39, 40] and suggests that phosphoryla-

tion should be also a way to regulate -yet unknown functions- of REM1.3 in bacterial defense.

Genetic studies have established that different CPKs comprise critical plant signaling hubs

by sensing and translating pathogen-induced changes of calcium concentrations [67, 68]. Bio-

chemical characterization of the kinase phosphorylating 6His-REM1.3 showed that its strong

sensitivity to calcium (Fig 5C) corresponds to homologs of phylogenetic subgroup II CPKs

from Arabidopsis [67]. CPK3 is a prominent member of subgroup II, shown to function in sto-

matal ABA signaling [92], in salt stress response [71, 93] and in a defense response against an

herbivore [94]. Interestingly, it was suggested that AtREM1.3 from taxonomical group 1 of

REMs could be a substrate for AtCPK3 in response to salt stress [71]. Here we show that

AtCPK3 can interact in vivo with group 1 REM (Fig 6C) and that AtCPK3 phosphorylates

group 1 REM in an in vitro kinase assay (Fig 5D). Transient overexpression of AtCPK3 in N.

benthamiana resulted in a reduction of PVX propagation in a REM-dependent manner, pro-

viding compelling evidence that CPK3 together with REM contribute to the plant antiviral

immunity. This is the first report demonstrating the participation of CPKs in plant basal

immunity against viruses.

Although [95] reports that there is no calcium signal during early recognition of PVX, the

activation of CPKs by PVX supports the notion that calcium might be involved in some other

late steps of plant-virus interaction like the control of intercellular connectivity. These changes
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in calcium concentrations in the cell are sensed by the CPKs and translated via the phosphory-

lation of REM and/or other unknown downstream components. In Nicotiana tabacum cal-

modulin isoforms are critical for the plant resistance against Tobacco Mosaic Virus and

Cucumber Mosaic Virus, further illustrating the existence of virus-specific patterns of calcium

signals [96, 97]. More work is needed to identify the CPK family members participating to the

response and also the nature and specificity of those PVX-induced calcium changes.

Phosphorylation regulates group 1 REM’s function during PVX cell-to-cell

movement

AtCPK3 specifically phosphorylated REM1.3 at its N-terminal domain (residues 1–116), a

domain displaying a mostly intrinsically disordered secondary structure (Figs 3A and 5). In sil-
ico analysis followed by a mutagenesis approach coupled with in vitro kinase assays revealed

three major putative phosphorylation sites for REM1.3, namely S74, T86 and S91 on REM1.3.

The in vitro phosphorylation of REM1.3 (Figs 3A and 5E) is almost totally lost when S74, T86

and S91 are mutated to non-phosphorylable residues, confirming these residues as major

REM1.3 phosphorylation sites. Individual phospho-null mutations at those sites impaired

REM1.3 ability to restrict PVX cell-to-cell movement to various extent (Fig 3D). The triple

phospho-null mutant, YFP-REM1.3AAA totally obliterated REM1.3’s capability to restrict PVX

cell-to-cell movement (Fig 3D) and to regulate PD permeability (Fig 3E). Reciprocally,

REM1.3 triple phosphomimetic mutant, RFP-REM1.3DDD appeared fully functional (Fig 3E

and 3F). These results strongly support the functional involvement of single or combined

phosphorylation in the N-terminal domain of S74, T86 and S91 to establish REM’s function in

the context of PVX infection. This is in contrast with LjSYMREM1 from Lotus japonicus
which was shown to be phosphorylated at its C-terminal domain in vitro by SYMRK [16].

Despite the fact that phosphorylation of REM proteins has been widely reported [16, 17, 39,

40, 57], this work firstly describes an associated role of REM-induced phosphorylation with its

function.

Toward the understanding of REMORIN function

Our finding that overexpression of AtREM1.2 and AtREM1.3 also restricts PVX-GFP cell-to-

cell movement (S5B Fig) suggests that REM phosphorylation and its associated functions

might be conserved for some REMs of taxonomic group 1b. In good agreement, AtREM1.2
and AtREM1.3 localize to the same PM nanodomains [72] and maintain conserved phosphor-

ylation sites with REM1.3 (S5A Fig). By contrast, AtREM4.1 from subgroup 4, presenting a dif-

ferent N-terminal domain and different expected phosphorylation profile has an opposite

effect against geminiviral propagation by promoting susceptibility to Beet curly top virus and

Beet severe curly top virus [17, 57]. This further argues that REMs might be phosphorylated by

diverse families of kinases in order to respond to different stimuli [57].

Overexpression of REM1.3 restricts TMV propagation (S4A Fig), and additionally modu-

lates the movement proteins from different virus genera [33, 91]. These findings suggest that

the initial hypothesis that REM1.3 causes the sequestration of the PVX virions at the PD [8]

might not hold true, but rather that REM1.3 might have a more general role in plant stress and

PD regulation (Figs 1 and 3). Interestingly, REM1.3 promotes susceptibility to Phytophthora
infestans in N. benthamiana and localizes exclusively to the PM and the extrahaustorial mem-

brane around non-callosic haustoria [42]. The exact role of REM1.3 as a common regulator of

different signaling pathways and its role in PD permeability regulation remains to be

determined.
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It has been speculated that phosphorylation in intrinsically disorder regions of proteins

may act as a molecular switch and confer potential protein-protein interaction plasticity [76,

98]. The intrinsically disordered REM1.3 N-terminal domain exhibits the most sequence vari-

ability in REM proteins, presumably conferring signaling specificity [32, 57]. Phosphorylation

of AtREM1.3’s N-terminal domain could stabilize coil-coiled-associated protein trimerization

and protein-protein interactions [57]. Phosphorylated REM1.3 seems to be further targeted to

PD-PM to trigger callose deposition. In good agreement, we found that the mobility in the PM

of REM1.3 changed depending on its phospho-status (Fig 4). The triple phosphomimetic

mutant exhibited a less confined and more mobile behavior at the PM, reminiscent of the WT

protein in the context of PVX infection (Fig 4D). Similarly to the role of 14.3.3 proteins in

plants [99], REM1.3 could act as a scaffolding protein, interacting with multiple members of a

signaling pathway and tethering them into complexes to specific areas of the membrane.

Hence, REM1.3 phosphorylation could act as a regulatory switch of protein conformations

that would modulate REM1.3 specific interaction patterns and transient signalosomes at the

PM. The triple phosphomimetic REM mutant might reflect a ‘functionally active’ form that

constitutes REM-guided signalosomes against PVX-infection at the PM and should be

exploited in future studies. The study of the phosphorylation-dependent interactions of

REM1.3 (and related phosphocode) in regard to the modulation of REM1.3 PM dynamics and

molecular function is the topic for future studies.

Materials and methods

Plant material

Nicotiana benthamiana plants were cultivated in controlled conditions (16 h photoperiod,

25 ˚C). Proteins were transiently expressed via Agrobacterium tumefaciens-mediated transfor-

mation for virus and PD functional assays as in [14, 33] or for the localization experiments as

described in the appendix. For subcellular localization studies and protein extractions, plants

were analyzed 2 or at 4 days after inoculation (DAI) in the phosphorylation assays. Imaging

for PVX-GFP spreading assays and plasmodesmata GFP-diffusion experiments were done at

5 DAI. PVX inoculation for test ELISA was performed at 4-week-old N. benthamiana plants.

Details on molecular cloning and protein work, transgenic lines generation are described in

the Appendix.

Cloning and molecular constructs

All vectors constructs were generated using classical Gateway cloning strategies (www.

lifetechnologies.com), pDONR211 and pDONR207 as entry vectors, and pK7WGY2,

pK7YWG2, pK7WGR2, pK7RWG2, and pGWB14 and pGWB15 as destination vectors [100].

The REM1.31–116, REM1.3117–198 and REM1.3 single S74A, T86A and S91A and triple

S74/T86/S91AAA and S74/T86/S91DDD mutants were synthesized in a pUC57 vector

(including the AttB sites) by Genscript (http://www.genscript.com/) or GENEWIZ (http://

www.genewiz.com/) and next cloned to Gateway destination vectors. AtCPK3D202A mutant

was generated by site-directed mutagenesis as previously described [101] with minor modifica-

tions. For BiFC experiments, the genes of interest were cloned into pSITE-BIFC- C1nec,

-C1cec, -N1nen, and–N1cen destination vectors [102]. To map the dynamics of single mole-

cules with sptPALM, REM1.3 and phosphomutants were cloned in fusion with EOS in the

gateway compatible vector pUBN-Dest::EOS [103]. EOS protein has been widely use for single

molecule localization microscopy in mammals, bacteria, and plant cells. It corresponds to the

name of a fluorescent protein from the stony coral Lobophyllia hemprichii which peculiarity

resides in its photoconvertability. The energy of UV light can break the core polypeptidic
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chain of EOS fluorescent protein inducing changes in EOS spectral fluorescence properties.

Due to the stochasticity of EOS photoconversion at low UV radiation (space and number of

events/sec can be controlled by modulating UV laser power), single molecules can be con-

verted, localized and tracked.

Generation of transgenic stable hairpin REM and 35S::GFP-REM1.3 N.

benthamiana lines

Leaf discs were cut from N. benthamiana leaves, transferred on petri plates containing culture

medium (complete Murashige and Skoog medium (MS) supplemented with 30g/L saccharose,

pH 5,8; phytoagar HP696 (Kalys) 5,5 g/L and the hormones: AIA 0,1 mg/L, BAP 2 mg/L) and

incubated for 48 h in the growth room (16 h photoperiod, 30 μmol photons.m2.s-1, 23 ˚C).

For the transformation, the N. benthamiana plants disk leaves were incubated with the Agro-
bacterium cultures (GV3101 strain) carrying the plasmid of interest for 20 min. The leaf sam-

ples were next placed on plates with the complete medium previously described. 48 hours

later, the leaf fragments were washed 3 times with sterile water (with 0,1% Tween20). The leaf

fragments were next washed with MS complete medium supplemented with Timentin

(300 μg/mL). The leaves were next placed on plates with regeneration medium (MS culture

medium, as previously described, supplemented with 300 mg/L of timentin and 150 mg/l of

kanamycin). The plates were next incubated in the growth room. The explants were trans-

ferred to fresh regeneration medium with a maximum periodicity of 7 days until the develop-

ment of callus. The regenerated seedlings were transferred to a rooting medium (MS, sucrose

30 g/L, phytoagar 5,5 g/L, timentin 200 mg/L, kanamycin 150 mg/L). The regenerated plants

(T0) were transferred to the greenhouse for growth and self-fertilization. Homozygous T2

lines carrying a single transgene insertion were selected by segregation analysis on selective

Kanamycin media and used for physiological studies and phenotypic characterization. The

expression of the GFP-REM1.3 or silencing levels of endogenous NbREMs was controlled by

cytological, biochemical and expression analysis. Cytological analysis of the GFP-REM1.3

expression in all leaf cells was performed to avoid chimeric expression, see S2A and S2B Fig.

Transient expression in N. benthamiana
Four-week-old N. benthamiana greenhouse plants grown at 22–24 ˚C were used for Agrobacter-
ium tumefaciens-mediated transient expression. A. tumefaciens were pre-cultured at 28 ˚C

overnight and used as inoculum for culture at initial OD600nm of 0.15 in pre-warmed media.

Cultures were grown until OD600nm reached 0.6 to 0.8 values (3–5 h). Cultures were then cen-

trifuged at 3,200 g for 5 min, pellet were washed twice, using water to the desired OD600nm.

Bacterial suspensions at OD600nm of 0.2 and 0.1 were used for subcellular localization and Spt-

PALM experiments, respectively. The bacterial suspensions were inoculated using a 1-mL

syringe without a needle by gentle pressure through a<1mm-hole punched on the lower epi-

dermal surface [104]. Transformed plants were incubated under normal growth conditions for

2 days at 22–24 ˚C. Transformed N. benthamiana leaves were analyzed 2–5 DAI depending on

the experiment.

Viral spreading, GFP diffusion assays

PVX-GFP cell-to-cell movement experiments were performed as previously described [14,

36], with minor modifications. Briefly, A. tumefaciens strain GV3101 carrying the constructs

tested were infiltrated at a final optical density at 600 nm (OD600nm) = 0.2 together with the

same strain carrying the plasmid pGr208, which expresses the PVX-GFP complementary

DNA harboring GFP placed under the control of a Coat protein promoter, as well as the helper
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plasmid pSoup [105] at final OD600nm of 0.001. Viral spreading of PVX-GFP was visualized by

epifluorescence microscopy (using GFP long pass filter on a Nikon Eclipse E800 with x4 objec-

tive coupled to a Coolsnap HQ2 camera) at 5 DAI and the area of at least 30 of PVX-GFP

infection foci was measured using Fiji software (http://www.fiji.sc/) via a homemade macro or

ImageJ. The expression levels of transiently expressed constructs were confirmed by Western

blot. ELISA tests in systemic N. benthamiana leaves were performed similarly to [8] to follow

the global virus accumulation. Briefly, GFP-REM1.3 or hpREM plants were mechanically inoc-

ulated with PVX, and viral accumulation in systemically invaded leaves (at 3 nodes above the

inoculated leaf) was evaluated at 10 or 14 DAI with a specific anti-PVX coat protein antibody

(Sediag). Five plants per line for GFP-REM1.3 and 8 for hpREM plants were tested per experi-

ment. GFP diffusion at PD experiments was performed as previously described [33]. All the

experiments were repeated at least three times.

Epidermal cells live imaging and quantification. Bimolecular Fluorescence

Complementation

Live imaging was performed using a Leica SP5 confocal laser scanning microscopy system

(Leica, Wetzlar, Germany) equipped with Argon, DPSS and He-Ne lasers and hybrid detec-

tors. N. benthamiana leaf samples were gently transferred between a glass slide and a cover slip

in a drop of water. YFP and mCitrine (cYFP) fluorescence were observed with similar settings

(i.e., excitation wavelengths of 488 nm and emission wavelengths of 490 to 550 nm). In order

to obtain quantitative data, experiments were performed using strictly identical confocal

acquisition parameters (e.g. laser power, gain, zoom factor, resolution, and emission wave-

lengths reception), with detector settings optimized for low background and no pixel satura-

tion. Pseudo-colored images were obtained using the “Red hot” look-up-table (LUT) of Fiji

software (http://www.fiji.sc/). All quantifications were performed for at least 10 cells, at least

two plants by condition with at least 3 independent replicates. BiFC images were taken 2 DAI

by confocal microscopy (Zeiss LSM 880). Quantification of fluorescent intensities was per-

formed by ImageJ, as described in [36].

Spt-PALM, single molecule localization and tracking

N. benthamiana epidermal cells were imaged at room temperature (RT). Samples of leaves of

2-week-old plants expressing EOS constructs were mounted between a glass slide and a cover

slip in a drop of water to avoid dehydration. Acquisitions were done on an inverted motorized

microscope Nikon Ti Eclipse (Nikon France S.A.S., Champigny-sur-Marne, France) equipped

with a 100× oil-immersion PL-APO objective (NA = 1.49), a TIRF arm, a Perfect Focus System

(PFS), allowing long acquisition in oblique illumination mode, and a sensitive Evolve EMCCD

camera (Photometrics, Tucson, USA). Images acquisitions and processing were done as previ-

ously described [45].

Single molecule fluorescent spots were localized in each image frame and tracked over time

using image processing techniques such as a combination of wavelet segmentation [106] and

simulated annealing algorithms [107]. The software package used to extract quantitative data

on protein localization and dynamics is custom written as a plug-in running within the Meta-

Morph software environment. This plugin is now property of Molecular devices company

(https://www.moleculardevices.com/sites/default/files/en/assets/product-brochures/dd/img/

metamorph-super-resolution-software.pdf).

Single molecule localization organization analysis, Log(δ1/δ) correspond to the ratio

between the local molecule density to overall molecule density at the PM. After correction for

artefacts due to multiple single-molecule localization (described in [36] and now presented in
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materiel and methods section), we computed potential nanodomain by applying a threshold

δ1i>2δN, where δN is the average localization density at PM level and δ1i is the density in pre-

sumed protein-forming nanodomain, with a minimal area of 32 nm2 and with at least 5 locali-

zations per nanodomain.

SR-Tesseler software was used to produce Voronoï diagrams, and subsequently quantify

molecule organization parameters as previously recommended [50]. Taking in account fluoro-

phore photophysical parameters, localization accuracy and the first rank of local density of

fluorescent molecules, correction for multiple detections occurring in a vicinity of space (w)

and blinking tolerance time interval (t) are identified as the same molecule, merged together

and replaced by a new detection at a location corresponding to their barycentre. Because first

rank of local density of fluorescent molecules was below 0.5 mol/mm2 (c.a ranking from 0.1 to

0.3 mol/mm2), we used a fixed search radius w of 48 nm as recommended [50]. To determine

the correct time interval t, the photophysics of the fluorophore namely the off-time, number of

blinks per molecule and on-time distributions are computed for each cell. For example, for a

dataset composed of 618,502 localizations, the average number of blinks per molecule was

1.42, and the number of molecules after cleaning was 315,929. As a control, the number of

emission bursts (439,331), counted with t = 0, divided by the average number of blinks per

molecule (1.42) was only 2.15% different. After correction for artefacts due to multiple single-

molecule localization, we computed potential cluster using a threshold d1i>2dN, where dN is

the average localization density at PM level and d1i is the density in presumed protein-forming

nanocluster, with a minimal area of 32 nm2 and with at least five localization by cluster.

Over the two independent experiments 54 446 single molecule trajectories have been

observed (34 740 Mock / 19 706 PVX). We then computed single molecule mobility behavior

(Diffusion coefficient and Mean square displacement) using trajectories of at least 8 time

points (tracked for at least 0.16 s; representing 19495 trajectories in total, 12073 for Mock con-

dition and 7422 for PVX condition).

In silico analysis of REM1.3 protein sequence

Prediction of putative phosphorylation sites was performed by Diphos, DEPP and NETPHOS

coupled with published data. Disordered domains were performed by pDONR VL XT.

In vitro REM1.3 phosphorylation assays

6His-REM1.3 and mutant recombinant proteins were purified from bacteria using fast flow

chelating sepharose resin (Amersham) according to manufacturer’s instructions and as in

[14]. For the in vitro REM1.3 phosphorylation assays about 2 μg of total plant extracts were

incubated with 1 μg of affinity-purified 6His:REM1.3 protein variants for 10 minutes at room

temperature and in a phosphorylation buffer (Tris-HCl 30mM, EDTA 5mM, MgCl2 15mM,

DTT 1mM, Na3VO4 2,5 mM, NaF 10 mM and 10 μCi/reaction ATP [γ-33P]- (3000Ci/mmol,

Perkinelmer). The buffer contained also 10–5 M of free Ca2+ which allows the detection of

6His-REM1.3 phosphorylation also in mock conditions. Gradual concentrations of free Ca2+

as in [108] were added for Fig 5C. Reactions were performed for 15 minutes in a volume of

25 μl. The reactions were stopped by the addition of 15 μl of 6x loading buffer. Proteins were

separated by SDS-PAGE and phosphorylation status of REM1.3 was analysed by autoradiogra-

phy using a phosphor-Imager and quantified by ImageQuant TL program.

In vitro CPK3 kinase assays

CPK3-HA was transiently expressed in mesophyll protoplasts and immunopurified with anti-

HA antibodies as performed in [109] while CPK3-GST recombinant protein was purified
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from bacterial extracts as reported in [69]. For in vitro kinase assays, the tagged CPK was incu-

bated with 0.5–1 μg histone or 6His-REM1.3 proteins in the following kinase reaction buffer

(20 mM Tris HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 50 μM cold ATP, ATP [γ-33P] 2 μCi per

reaction, 1 mM CaCl2 or 5 mM EGTA) in a volume of 15 μL for 30 min at RT. The reaction

was stopped with 5 μL 4X Laemmli buffer, then samples were heated at 95 ˚C for 3 min. Pro-

teins samples were separated by SDS-PAGE on 12% acrylamide gel. After migration, the gel

was dried before exposing against a phosphorScreen to reveal radioactivity on a Storm Imag-

ing system (GE Heathcare). The gel was then rehydrated for Coomassie staining.

Protein work

SDS-PAGE, Western Blot analysis, protein extractions and recombinant protein purification

were performed in E. coli as in [14]. Cell fractionation and extractions followed the established

protocol from [59] and [62]. Anti-REM antibodies were previously described in [8].

Accession numbers

All relevant data are within the paper and its Supporting Information files are available from

Arabidopsis Genome Initiative (https://www.arabidopsis.org/index.jsp), and GenBank/EMBL

(https://www.ncbi.nlm.nih.gov/genbank/) databases under the accession numbers: StREM1.3
(NP_001274989), AtREM1.2 (At3g61260), AtREM1.3 (At2g45820), AtCPK3 (At4g23650).

Supporting information

S1 Fig. Callose quantification by aniline blue staining and PD index calculation. (A) Origi-

nal sample image is an 8-bit, single-channel image.

(B) Masks of total Region Of Interest (ROI) objects before particle analysis were created using

the following filters; background subtraction with a rolling ball radius as in [43]; “smooth”

twice and an auto-local threshold Max Entropy dark, creating a black and white mask, used for

particle detection.

(C) Overlay of outlines of the analyzed ROI (green; after particle analysis with particle size

3–100 pixel2 circularity (0.3–1) exclude on edge) with the original image. Scale bar indicates

10 μm.

(D) Quantification of PD Index; after aniline blue labeled pit-field detection, YFP-REM1.3

fluorescence intensity was manually measured at pit-field level (ROI2) and surrounding PM

(ROI1 and ROI3) using a circle of fixed area (0.18 μm2). The PD index was then calculated as

the ratio between YFP-REM1.3 pit-field fluorescence (ROI2) and the mean of YFP-REM1.3

fluorescence intensity at surrounding PM (ROI1+ROI3).

(TIF)

S2 Fig. Overexpression of GFP-REM1.3 results in reduced PVX accumulation in N.
benthamiana and REM1.3 protein levels are not affected by PVX infection. A. Top, Confo-

cal image showing GFP-REM1.3 localisation in the PM in N. benthamiana lines Bottom, The

GFP:REM1.3 expression in three independent transgenic lines #6, 7 and 16 was tested by

Western blot against REM and showed that it contains at least three times the amount of

endogenous N. benthamiana REM.

B. PVX infection assays in independent stably expressing GFP-REM1.3 and wild-type control

N. benthamiana lines. Viral charge was assayed by test DAS-ELISA using antibodies to PVX

coat protein on distal (3 nodes above inoculation) leaves at 14 DAI. Three independent experi-

ments were performed with five plants for each transgenic line and non-transgenic (WT).

Error bars show SE, and significance is assessed by Dunnett’s multiple comparison test against
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WT (�, P< 0.1; ��, P< 0.05; ���, P< 0.001).

C, Western blot against REM1.3 was performed on total protein extracts from wild type N.

benthamiana leaves infected by PVX-GFP at 0, 3, 5 and 7 DAI. Stain free loading is indicated

below.

D, Confocal images showing PVX-GFP foci at the indicated DAI, tested in C.

(TIF)

S3 Fig. Analysis of in vitro 6His-REM1.3 phosphorylation and viral proteins expression.

(A) Effect of the addition of ATP or AMP in in vitro phosphorylation assays of 6His-REM1.3

by kinase(s) in microsomal (μ) or PM extracts of N. benthamiana leaves developed by autora-

diography.

(B) 6His-REM1.3N and 6His-REM1.3 phosphorylation by healthy N. benthamiana leaf micro-

somal (μ) and plasma membrane (PM) extracts.

(C) 6His-REM1.3N and 6His-REM1.3C phosphorylation by kinase(s) in microsomal (μ) and

soluble extracts.

(D) 6His-REM1.3 was differentially phosphorylated by leaf microsomal extracts expressing the

indicated constructs i.e. PVX alone, PVX deleted for TGBp1 (PVXΔTGBp1), 30K protein from

Tobacco Mosaic Virus (TMV), PVX fused to GFP, and GFP alone at 4 DAI. See the rationale

Fig 2E. Control of loading is shown after stain free procedure. In all phosphorylation experi-

ments about 10μg of total protein extracts and 1μg of affinity purified 6His-REM1.3, REM1.3N

or REM1.3C were loaded per lane.

(E) Controls of expression of fluorescently-tagged viral proteins, namely CP, TGBp1, TGBp2

used in Fig 2.

(TIF)

S4 Fig. REM1.3 S74 T86 S91 phosphorylation is important to regulate Tobacco mosaic

virus movement and REM1.3 phosphorylation mutants maintain PM localization. (A)

Representative epifluorescence microscopy images of Tobacco Mosaic Virus (TMV-GFP)

infection foci in N. benthamiana leaf epidermal cells at 5 DAI. Graph represents the relative

foci area of REM1.3 or phosphomutants (S74, T86 and S91 into Alanine, AAA or Aspartic

Acid, DDD) compared to mock control (co-infiltration of PVX-GFP with an empty A. tumefa-
ciens strain). About 78–128 foci per condition were measured in 2 independent biological

repeats. Dunn’s multiple comparison tests were applied for statistical analysis, p<0.001.

(B) Confocal microscopy images of secant views of N. benthamiana epidermal cells expressing

YFP-REM1.3, YFP-REM1.3AAA and YFP-REM1.3DDD at 2 DAI. Scale bar indicates 10 μm.

(TIF)

S5 Fig. Group 1b AtREMs and REM1.3 have similar behavior against PVX cell-to-cell

movement in N. benthamiana epidermal cells. (A) Clustal alignments of protein sequences

of group 1b REMORINs: AtREM1.2, AtREM1.3, NbREM1.2, NbREM1.3 and REM1.3

(StREM1.3). Blue color-coding shows percentage of identity. The REM1.3 S74, T81 and S91

sites are highlighted.

(B) Left, Representative epifluorescence microscopy images of PVX-GFP infection foci on N.

benthamiana leaf epidermal cells transiently expressing RFP-REM1.3, RFP-AtREM1.2 or

RFP-AtREM1.3 at 5 DAI. Scale bar indicate 400 μm. Right, Graph represents the relative

PVX-GFP infection foci area in the presence of RFP-REM1.3 or Arabidopsis homologs com-

pared to mock control (co-infiltration of PVX-GFP with empty A. tumefaciens strain). At least

184 foci per condition in 4 independent biological repeats were measured. Statistical differ-

ences are indicated by letters as revealed by Dunn’s multiple comparisons test p<0.001.

(TIF)
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S6 Fig. In vitro characterization of REM1.3 phosphorylation conditions. Autoradiography

reveals in vitro phosphorylated 6His-REM1.3N (A) or 6His-REM1.3 (B) by microsomal

extracts of healthy N. benthamiana leaves in the presence of increasing concentrations of staur-

osporine (A) or Polylysine, β-glycerophosphate (BGP), GTP, AMP and ATP (B).

(C) Effect of Ca2+ and EGTA on 6His-REM1.3N phosphorylation by kinase(s) in microsomal

extracts.

(TIF)

S7 Fig. AtCPK3CAD202A dead mutant does not phosphorylate REM1.3 in vitro. AtCPK3-

CA-HA and AtCPK3CAD202A-HA were expressed in Arabidopsis thaliana mesophyll proto-

plasts. Immunoprecipitated proteins were incubated with ATP [γ-33P] and submitted to an in
vitro kinase assay using 6His-REM1.3 or histone as substrates. In vitro kinase assays were

revealed by autoradiography. Trans-phosphorylation of the substrates 6His-REM1.3 or histone

is indicated. Western blot against HA shows the expression levels of the expressed proteins.

(TIF)

S8 Fig. Stable transgenic lines N. benthamiana under-expressing group 1 REMORINs. (A)

Protein expression levels of endogenous NbREMs in the hpREM lines, determined by Western

Blot analysis using anti-REM1.3 antibodies. Protein extracts from three independent plants

per line were used, namely lines 1.4, 2.1, 10.2.

(B) Expression of endogenous NbREMs in the hpREM lines determined by RT-qPCR analysis.

Results are expressed relative to the NbREMs expression levels in the WT background. RT-

qPCR signals were normalized to actin levels.

(C) PVX-GFP spreading is accelerated in the hpREM lines. Graph represents the PVX-GFP

infection foci area in the different hpREM lines compared to WT. At least three independent

experiments were performed. Error bars show +/- SEM. Statistical differences compared to

WT were determined by Mann- Whitney test ��� p<0.001.

(D) PVX systemic propagation is inversely correlated with REM levels in 4-week-old trans-

genic N. benthamiana leaves. Viral charges were assayed by DAS ELISA using antibodies to

PVX coat protein (diluted on 1/100) on distal leaves (at 3 nodes above the inoculated leaves) at

10 DAI. 3 independent experiments were performed with eight plants for each hpREM trans-

genic line and WT or empty vector control (mock). Error bars show SE, and significance is

assessed by Mann-Whitney non-parametric test (�, P< 0.1; ��, P< 0.05; ���, P< 0.001).

(TIF)
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Article II: addendum 

We pursued our quest to discover more about StREM1.3’s interactome and to map, 

by biophysical means, its phosphorylation sites. Its N-terminal is predicted to be 

intrinsically disordered (Perraki et al., 2018), however this has never been proven 

experimentally. If it truly is an IDD, it is tempting to envision it as a domain responsible 

for many interactions (Uversky, 2013), such as those we have already discussed in 

Article II, namely kinase AtCPK3 and, directly or through an uncharacterised signalling 

pathway, callose synthase. We decided to work solely on this IDD. Thus, the protein 

of interest here will be a truncated StREM1.3: REM1-116. 

REM1-116 was produced in BL21-DE3 cells in minimal medium with 13C-labelled 

glucose and 15NH4Cl, by addition of 1 mM IPTG at OD600 = 0.6-0.8 and incubation at 

37°C for 3h. Cells were lysed by sonication and the supernatant was loaded onto a 

HisTrap column (GE Healtchare) equilibrated in 20 mM HEPES 150 mM NaCl 20 mM 

imidazole 0.02% NaN3 pH=7.4 and eluted with 20 mM HEPES 150 mM NaCl 500 mM 

imidazole 0.02% NaN3 pH=7.4. Eluted REM1-116 was adjusted to 1 mM DTT and 0.5 

mM EDTA then TEV protease was added in a ~1/200 TEV/REM1-116 mass ratio. The 

mixture is incubated for 3h at room temperature then desalted against 10 mM HEPES 

50 mM NaCl 0.02% NaN3 pH=7.5 with a HiPrep column (GE Healthcare). Under native 

conditions, REM1-116 was loaded onto a Histrap column equilibrated with 20 mM 

HEPES 150 mM NaCl 0.02% NaN3 pH=7.4 and eluted with the same elution buffer as 

above. Under denaturing conditions, this step was performed in buffers containing 7M 

urea. Finally, REM1-116 was desalted again against 10 mM HEPES 50 mM NaCl 0.02% 

NaN3 pH=7.5. 

In vitro phosphorylation of 0.5 mM of REM1-116 by AtCPK3 required adjusting the 

sample to 10 mM MgCl2, 1 mM CaCl2, 1 mM DTT and 3 mM ATP. The reaction was 

initiated by the addition of 88 µM of AtCPK3 and incubation at 20°C. 

lsNMR was performed on a Bruker Avance NEO spectrometer operating at 700 MHz 

for proton with a TXI 5 mm probe. The sample was adjusted to 9/1 H2O/D2O to lock 

the magnetic field. 1H-15N HMQC spectra were recorded at 283 K (10°C). 

I performed the cloning, production and purification of labelled 15N-, 13C-labelled 

REM1-116. Axelle Grélard and Estelle Morvan, engineers of the NMR platform, trained 

me to perform all the lsNMR experiments and data analysis. The in vitro 

phosphorylation assay by AtCPK3 was designed and optimised by Dr Marie Boudsocq, 

who confirmed the phosphorylation of REM1-116 by biochemical means. 

The structural fingerprint of REM1-116 is characteristic of an IDP (Figure 66). In 

addition, using either native or denaturing conditions during purification had no impact 

its fingerprint. Next, we performed the in vitro phosphorylation of REM1-116 by AtCPK3 

with cold ATP in the NMR tube and monitored the evolution of its structural fingerprint. 

In addition to many chemical shifts being slightly perturbed, three peaks (3 and 4) 

disappeared and two new peaks appeared (1 and 2) (Figure 67). Even so, the 

structural fingerprint remains that of an IDP: most peaks are still clogged in the same 

spectral region. Plotting NMR intensities as a function of time, maximal intensities for 
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1 and 2 and minimal intensities for 3 and 4 are reached after ~ 4h, meaning that the 

phosphorylation reaction is complete at that time (Figure 68). 

 
Figure 66 

1H-15N HMQC spectra of REM1-116 purified under native (black) or denaturing 

conditions using 7M of urea (red). 

 
Figure 67 

1H-15 HMQC spectra of REM1-116 in AtCPK3’s reaction buffer before addition 

(black) or 14 h 13 min after addition (red) of AtCPK3. Notice how the peaks labelled 

1,2 and 5 appeared over time while 3 and 4 disappeared. Each spectrum was 

acquired using 2 scans for an experimental time of 1 min 42 s each. 
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Figure 68 

Kinetics of phosphorylation of REM1-116 by AtCPK3. NMR intensities are plotted 

as a function of time for peaks 1 to 5 according to (Figure 67). Each data point was 

obtained from a 1H-15N HMQC spectrum acquired using 2 scans for an experimental 

time of 1 min 42 s. Notice the difference of scale in NMR intensity between (A) and (B). 

 

Recording 3D NMR spectra, namely HNCa and HN(Co)CaCb, will prove capital to 

establish connectivities between residues and to identify them, thus mapping, for the 

first time, the phosphorylated residues of StREM1.3 through biophysical means. Then, 

having both phosphorylated and non-phosphorylated REM1-116, we shall be able to 

monitor interactions between putative ligands and both forms of the protein. By looking 

for changes in its structural fingerprint, we could identify their interaction sites on REM1-

116 (to be done). 

 

 

  



148 
 

Article III 

Mechanisms governing subcompartmentalization of biological membranes 
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This first review was aimed at showcasing some known cases of plant membrane 

subcompartmentalisation and how they could be studied. Examples given included 

remorins, thylakoids, chloroplast envelope and mitochondria cristae. Biophysical tools 

to study domains are given, with a special focus on ssNMR. 

My major contribution was to design Figure 2 and write its caption. I reviewed the 

main text for grammar corrections and general organisation of ideas. I also offered 

some technical assistance with Illustrator to make Figure 1.
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Membranes show a tremendous variety of lipids and proteins

operating biochemistry, transport and signalling. The

dynamics and the organization of membrane constituents

are regulated in space and time to execute precise functions.

Our understanding of the molecular mechanisms that shape

and govern membrane subcompartmentalization and inter-

organelle contact sites still remains limited. Here, we review

some reported mechanisms implicated in regulating plant

membrane domains including those of plasma membrane,

plastids, mitochondria and endoplasmic reticulum. Finally,

we discuss several state-of-the-art methods that allow

nowadays researchers to decipher the architecture of these

structures at the molecular and atomic level.
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Introduction
Spatiotemporal organization of the cellular biomolecules

is critical to coordinate the numerous activities simulta-

neously carried out by cells. Biological membranes

delimit cells and organelles and constitute specialized

subunits that are constantly reshaped to adapt to ever-

changing environmental conditions and to operate cell

functions effectively (Special issue on cell biology edited

by Ref. [1]). Cell membranes are composed of a specific

set of biomolecules defining their identity. For example,

phosphoinositide lipids and small GTPases proteins are

major contributors to endosome identity [2,3]. A tremen-

dous body of evidence shows that the motion and the

organization of membrane constituents are dynamically

regulated on the level of the membrane to form functional

domains and this conversely throughout the tree of life

[4��,5,6]. Thus, it appears that membrane subcompart-

mentalization into domains is universal and may repre-

sent an essential characteristic. Taking into account the

knowledge acquired in various model organisms and

model systems over the past decades, membrane domains

can be defined as membrane regions in which the local

composition, lateral organization, and/or dynamics differ

in some way from the average membrane properties [7–9].

Such local specificity is dictated by preferential intermo-

lecular interactions, including intra-membrane interac-

tions (i.e lipid–protein, lipid–lipid and protein–protein)

and associations with structures peripheral to the mem-

brane for example cortical cytoskeleton and the cell wall

in the case of plasma membrane. This also leads to the

formation of inter-membrane interaction through Mem-

brane Contact Sites (MCS), important functional plat-

forms for the exchange of lipids and signalling proteins

[10,11], see Figure 1. Yet, membranes being constituted

of several thousands of molecules surrounded by variable

and complex environments, a tremendous mechanistic

complexity remains to be uncovered. Here, we review

some described mechanisms regulating membrane

architecture in plants and discuss recent technological

advancements allowing researchers to study membrane

organization with molecular and atomic resolution.

Examples of subcompartmentalization of
plant membranes
Plasma membrane domains

The plasma membrane (PM) is the outermost boundary

of the cell, acting as a communication headquarter inte-

grating signal from the environment to the cell interior

and vice-versa. The PM is asymmetric, as exemplified by

the enrichment of sphingolipids in the outer leaflet and

phospholipids in the inner leaflet [12,13]. The PM associ-

ates with the cortical cytoskeleton network and the cell

wall creating a continuum at the cell surface [14]. PM

establishes MCS with organelles, notably with ER at the

level of PD, see Figures 1a and 2 . The lipid and protein

composition of the domains formed at these MCS is very

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in Plant Biology 2019, 52:114–123 www.sciencedirect.com

mailto:sebastien.mongrand@u-bordeaux.fr
https://doi.org/10.1016/j.pbi.2019.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2019.08.003&domain=pdf
http://www.sciencedirect.com/science/journal/13695266


Mechanisms governing subcompartmentalization of biological membranes Gronnier et al. 115

Figure 1

(a)

(b)

(c)

(d)

(e)

(b) (d)

(c)

(e)

Stacked region

100 nm

Unstacked region

LHCII trimer
PSII dimer
LHCa monomer
PSI monomer

Thylakoïde membranes

Dynamin

ATP synthase

Outer membrane
Inner membrane
Cristse junctions
Cristae membrane

Thylako ïde membrane
Thylapse
Inner membrane
Outer membrane

Respirasome

ADP + Pi ATP

PM outer leaflet

PM inner leaflet

Trimer of REMs
Ribosomes

Chloroplast

Golgi

Mitochondria

Peroxisome

Nucleus

Stromule

lipid droplet

Vacuole

Plasma membrane

Endoplasmic
reticulum

P
la

sm
od

es
m

at
a

Cell wall

:Membrane contact sites

Current Opinion in Plant Biology

Examples of subcompartmentalization of membranes and membrane contact sites (MCS) in different organelles of plant cells.

(a) Scheme of a plant cell showing the membrane contact sites (MCS) between organelles shown by a red dot. Few examples of

subcompartmentalization of biological membranes are emphasized in the plasma membrane (b), thylakoids (c), chloroplast envelope

(d), mitochondria cristae (e).
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Figure 2
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Biophysical techniques to study membrane domains.

(a) Examples of major biophysical tools to analyse membrane domains and membrane-associated proteins, subsequently deciphering the

molecular mechanisms at play in nanodomain organization. X-ray: shaker family voltage-dependent potassium channel Kv represented in the

cartoon, lipids in stick (PDB: 2R9R, [111]). Modelling: C-terminal anchor of StREM1.3 interacting with membranes enriched in phosphoinositol-

4-phosphate and sitosterol. ssNMR: model of StREM1.3 nanodomains. FTIR: insertion of C-terminal anchor of StREM1.3 in nanodomain-like

membranes [16��]. EM/tomography: observation of ER–PM membrane contact sites at plasmodesmata [89��]. Solution NMR: membrane-

embedded domain of the Influenza B BM2 integral protein (PDB: 2KIX, [112]). (b) ssNMR workflow to study membrane domain-associated

proteins. Bacterial expression cells (e.g. E. coli BL21-DE3) are transformed with a high expression level plasmid coding for the protein of interest.

Protein production is achieved in minimal culture media supplemented with isotope labelled metabolites depending on the desired isotopic

labelling scheme of the protein (e.g. 13C-glucose, 1,3-13C-glycerol, 2-13C-glycerol . . . ). Proteins are purified and reconstituted into liposomes of a

chosen lipid composition. ssNMR allows obtaining two types of structural data: magic angle spinning (MAS) ssNMR is used to analyze the

structure and dynamics of the membrane protein [16��], and 2H (unpublished typical data) and 31P (not shown) ssNMR to decipher the dynamics

and phase behavior of the membranes of interest comprising deuterated lipids.
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specific [11]. Organization of the PM can be rationalized

into two types: microdomains and nanodomains. Micro-

domains are site-specific enrichment of membrane

compounds at the cellular level usually referred to as

polar domains that control localized cell activities. Nano-

domains represent submicrometric heterogeneity of the

PM whose visualization often requires the use of high or

superresolution microscopy techniques [15,9]. Nanodo-

mains have been proposed to act as dedicated platforms

regulating cell signalling notably [4��,16��,9,17�,15].
Mechanisms regulating the organization of PM domains

being recently reviewed [9,15,13,18–22], we present

here only three case studies to illustrate the molecular

mechanisms at play in the organization and dynamics of

PM domains.

REMORINs are plant-specific proteins regulating notably

immunity [23–26], symbiosis [27,28,29�] and development

[30] possibly by modulating nanodomain-associated com-

plexes [16��,31,32,17�,29�]. REMORINs predominantly

associate with the PM [33,23,31,34,35]. In addition, isoforms

from group 1 and group 6 REMORINs have been shown to

be associated with plasmodesmata (PD) in Rice and in

Solanaceae [23,36,30,31]. Electron microscopy immuno-

localization, stimulated emission depletion microscopy

(STED) and photoactivated localization microscopy

(PALM) studies showed group 1 REMORINs are organized

into nanodomains of about 70–90 nm in diameter that are

sensitive to sterol composition [23,37,16��] and cytoskeleton

integrity [38]. Molecular mechanisms at the basis of

REMORIN domain organization are being discovered:

REMORINs are targeted from the cytosol to the cytosolic

leaflet of the PM via a short unconventional sequence at the

extremity of the C-terminus of the protein, called REM-CA

(REMORIN C-terminal Anchor) [39,34,40], see Figures 1b

and 2 ; REM-CA undergoes conformational changes upon

binding of conserved positively charged residues to phos-

phoinositides and provides to REMORINs biochemical

properties indistinguishable from integral proteins

[23,39,16��]; REM-CA-sterol-phosphoinositide interactions

are required for Group 1 REMORINs supra-molecular

organization into functional domains involved in plant

response to the Potato Virus X (PVX). Numerous REMOR-

INs present cysteine residues that can be S-acylated

[41,34,42,43]. While S-acylation of Arabidopsis REMORINs

seems to regulate PM affinity but not primarily nanodomain

organization [34], the substitution of an S-acylated cysteine

of Nicotiana benthamiana REM alters nanodomain organiza-

tion [43], suggesting functional divergence of REMORIN

S-acylation. Oligomerization of group 1 REMORINs into

homotrimers is required for PM localization [39,44], suggest-

ing that REMORINs’ self-assembly constitute an early step

of PM targeting. Furthermore, REMORIN organization

seems regulated by intermolecular protein association.

Indeed, in Medicago, FLOT4 scaffolds SYMBIOTIC

REM1 to recruit the Nod factor co-receptor LYSINE

MOTIF KINASE 3 (LYK3) to specific nanodomains

controlling root hair infection by Sinorhizobium meliloti
and the establishment of symbiosis [29�]. Interaction of

AtREM1.3 with AtHIR1 in Arabidopsis suggests that asso-

ciation of SPFH (Stomatin, Prohibitin, Flotillin, HflK/C)

proteins with REMORINs may represent a conserved

core module shaping PM organization [45]. Finally, phos-

phorylation of group 1 REMORINs upon infection of

N. benthamiana by the PVX modulates REM1.3 organiza-

tion and function [31], probably through the modulation of

protein–protein interactions. Thus the genesis and regula-

tion of REMORIN nanodomains appear to rely on several

molecular mechanisms such as post-translational modifica-

tions, and protein–lipid and protein–protein interactions.

Rho of Plants (ROPs) are the plant-specific subfamily

of Rho/Rac small GTP binding proteins, regulating

numerous cellular processes such as signalling, traffick-

ing and cytoskeleton dynamics [46,47]. Reversible

switch from a GDP-bound state to a GTP-bound state

mediated by ROP-GEFs and ROP-GAPs regulates

ROPs activity [48]. Polarization of the growth machinery

to a predefined root hair initiation domain (RHID)

pledges root hair formation in trichoblast cells. ROP2,

4 and 6, are recruited to the RHID before any detectable

cell bulging and serve as a landmark for the recruitment

of downstream effectors [49,50�]. Strikingly, guanine

nucleotide exchange factor 3 (GEF3) defines the RHID

by guiding ROPs polarization via direct protein–protein

binding [50�]. At the bulging stage, phosphatidylinosi-

tol-4-phosphate  5-kinase 3 (PIP5K3), the AGCVIII

kinase D6 PROTEIN KINASE (D6PK) and sterol

composition modulate ROPs association to the RHID

[51,52]. Here, co-regulation of ROP, phosphoinositides

and phosphoinositide kinases has been proposed to

form a self-organizing system amplifying ROP recruit-

ment and activation [3]. In addition, ROPs associate

with the PM via post-translational lipid modifications

and direct interaction with membrane lipids mediated

by the carboxy-terminal tail [53,47,4��]. For example,

ROP6 interacts with phosphatidylserine (PS) via its

polybasic tail, a process likely at the basis of nanodo-

main organization. Recently, using live superresolution

microscopy, Platre et al. elegantly showed that variation

in PS level during root development stabilized ROP6

into nanodomains to regulate auxin signaling [4��]. In

metaxylem vessel cells, ROP-GEF4 locally activate

ROP11 to recruit MICROTUBULE DEPLETION

DOMAIN 1 scaffold protein which in turn recruits

microtubule-depolymerizing kinesin-13A enabling the

formation of pits in secondary cell walls [54,55]. IQD13

associates with cortical microtubules (cMTs) and the

PM to laterally restrict the localization of ROP GTPase

domains, establishing a lateral fence for ROP GTPase

[56]. In contrary, CORTICAL MICROTUBULE DIS-

ORDERING1-induced disorganization of cortical

microtubules impairs the boundaries of PM domains

of active ROP11 GTPase [57].
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Cellulose microfibers are synthesized by the PM-embedded

cellulose synthase (CESA) complexes (CSCs) which are

composed of 18–36 cellulose synthase subunits [58]. Cortical

microtubules recruit CESA-containing vesicles and guide the

trajectory of CSCs at the PM [59–61]. In addition, S-acylation

of CESAs influences its immediate membrane environment

and conditions their location to the PM [62]. CSCs are

tetheredtocorticalmicrotubulesvia twointegralcomponents,

CELLULOSE SYNTHASE INTERACTING 1 [63–65]

which determines the trajectory of CSCs along the cMTs

[59] and COMPANION OF CELLULOSE SYNTHASE 1

(CC1), which sustains cellulose synthesis by promoting

the formation of a stress-tolerant microtubule array during

salt stress [66��].

These examples emphasized that regulation of plasma

membrane subcompartmentalization is regulated as part

of developmental program, is modulated to respond to

environmental clues, relies on the cooperation of multiple

factors and is fundamental for function.

Chloroplastic membrane domains

Chloroplasts are organelles composed of a double mem-

brane envelope and thylakoids found in plant cells and

algae that conduct photosynthesis. Little is known about

how the photosynthetic membrane machinery is arranged

in time and space. Microscopy and biophysical shreds of

evidence showed the coexistence of domains where lipids

are organized in lamellar or hexagonal phases. For exam-

ple, hexagonal phases have been described in etioplasts of

prolamellar bodies or during the transfer of lipids between

the envelope and thylakoids, such hexagonal phase

domains may be of importance for localizing metabolic

activities, for example the violaxanthine-epoxidase in

thylakoid domains [67].

Biochemical, 3D reconstruction, in vivo spectroscopy and

immunolocalization data, reveal that thylakoids display a

heterogeneous subcompartmentalization of photosyn-

thetic complexes in domains which redistribute during

state transitions in Chlamydomonas [68] and diatoms [69],

see Figure 1c. These domains are interconnected, ensuring

fast equilibration of electron carriers for efficient and

optimal photosynthesis. Underlying molecular events at

the basis of thylakoid subcompartmentalization remain

unclear. Thylakoids possess a special fatty acid namely

trans-D3-hexadecenoic acid (trans-16:1) esterified in phos-

phatidylglycerol (PG) which may play a role in cementing

thylakoids during granum formation and control of light

reactions of photosynthesis [70]. Recent 3D cryo-electron

tomography showed the thylakoid network of cyanobac-

teria is organized in domains and forms a synapse-like MCS

decorated by ribosomes (but not by phycobilisomes) in

tight association with the PM of cyanobacteria. This MCS

was named the ‘thylapse’, for ‘thyl(akoid syn)apse’, and

likely serves for compartmentalization of the different

functions of the thylakoids that is photosynthesis or protein

synthesis [71��], see Figure 1d. Because PM of cyanobac-

teria represents the inner membrane of eukaryotic plastids,

thylapses most likely also exist in higher plants.

Chloroplast envelope establishes numerous MCS with

other organelles [10]. For example, plastid and mitochon-

drion envelopes establish membrane connection during

phosphate deprivation. The molecular content of this MCS

has been recently identified by biochemical and proteomic

approaches and showed a big complex of hundred proteins

enriched in specific lipids. AtMic60, a conserved protein of

the mitochondria inner membrane, plays a crucial role in

the lipid transport process by regulating the proximity

between mitochondrial membranes via its interaction with

the outer membrane protein Tom40 and by destabilizing

membranes, likely to promote lipid desorption [72��].
Plastids can also undergo drastic changes in shape under

stress, through specialized protrusive membrane domains

called stromules (stroma-filled tubules, see Figure 1a)

which link plastid envelope with other organelles such as

ER, Golgi and nucleus [73,74]. The molecular mechanisms

governing stromule formation are not established, but the

involvement of cytoskeleton motors has been proposed

[75]. Similarly, peroxules, peroxisomal protrusions tether-

ing chloroplasts or mitochondria through specialized

membrane microdomains have been evidenced [76,77].

Peroxules also for example link with lipid droplets, see

section ‘Endoplasmic reticulum domains’. These studies

reveal the importance of physical connections through

plant membrane domains for establishing complex meta-

bolic pathways.

Mitochondrial membrane domains

Mitochondria are double-membrane-bound organelles.

The outer mitochondrial membrane encloses the entire

organelle and can be in contact with other organelles for

example during phosphate starvation, see above [10]. The

inner membrane separates the mitochondrial matrix from

the intermembrane space. The structure of the inner mito-

chondrial membrane is extensively folded. These invagi-

nations are separated from the inner membrane by dynamin

proteins to form three domains namely, the inner boundary

membrane, the cristae junctions and the cristae membranes

[78], see Figure 1e. The latter contains enzymes of the

mitochondrial respiratory chain that, instead of being

dispersed in the membrane, are organized into a functional

supramolecular respiratory domain called respirasome, see

Figure 1. ATP synthase dimers sit at the edge of the cristae.

Mitochondria inner membrane is rich in cardiolipin (CL), a

key phospholipid playing important roles in maintaining

the functional integrity and dynamics of mitochondria.

Arabidopsis CL localizes to mitochondria and is enriched

at specific domains and CARDIOLIPIN SYNTHASE

targets to the inner membrane of mitochondria with its

C-terminus in the intermembrane space [79]. Mitochondria

of cls mutants exhibit altered structural integrity and

morphogenesis. In contrast to animal and yeast, plant CL
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plays a dominant role in mitochondrial fission and exerts

this function through stabilizing the protein complex of

DYNAMIN-RELATED PROTEIN3 [79]. In addition,

CL induces membrane invaginations which are stabilized

by dimers of ATP synthase. In reconstituted systems,

bovine ATP synthase is sufficient to deform a lipid bilayer,

which is likely the driving force triggering cristae curvature

[80]. Recently, dimers of mitochondrial ATP synthase from

the green algae Polytomella were shown to be required for

cristae formation and constitute the main factor in mito-

chondrial morphogenesis to induce membrane curvature

and self-assembly into rows [81�]. Finally, mitochondria-

associated ER membrane (MAM) is another structural

element that is increasingly recognized for its critical role

in cellular physiology and homeostasis of mitochondria [10].

Endoplasmic reticulum domains

The endoplasmic reticulum forms a membrane network

virtually in contact with all cell organelles, see Figure 1a.

Thus, the ER is actively engaged in organizing mem-

brane domains to perform various functions. For example,

ER is known to be organized into smooth and rough

domains, the latter being enriched in ribosomes involved

in protein production, protein folding, quality control and

dispatch. Formation of these domains is regulated by

syntaxin proteins [82]. Lipid droplets (LD) are lipid-rich

cellular organelles regulating storage and hydrolysis of

neutral lipids. LD biogenesis takes place at ER subdo-

mains which are regulated by lipodystrophy proteins

called SEIPINs in human, yeast, and plants. SEIPINs

reorganize the normal, reticulated ER structure into

discrete ER domains that colocalize with LD. In plants,

SEIPINs modulate the number and sizes of LD [83�,84].
Recent work in plants showed that peroxisome exten-

sions deliver the major TAG lipase Sugar-Dependent

1 (SDP1) to the LD. At early stages of seedling develop-

ment, SDP1 localizes to a peroxisome membrane domain

and then possibly moves to the LD surface through

peroxisome tubulations [85]. This constitutes an interest-

ing case of inter-organelle communication and protein

transport that is reminiscent of stromule.

In the next chapter, we will briefly describe state-of-the-art

biophysical methods that have provided access to the

structural basis membrane domain organization.

How to study the molecular mechanisms
shaping biological membrane domains in
plants?
Membrane subcompartmentalization is intimately linked to

the preferential association of membrane constituents.

Therefore, establishing the structure-function relationship

between the membrane subcompartment components is

an essential piece of the puzzle towards understanding

the complex interplay of the cells with the extracellular

environment.  Yet, the intrinsic soft matter state of mem-

brane-related systems in their native environment, such as

peripheral or membrane-embedded proteins, hampers

the application of numerous techniques in structural biology

to visualize molecular association at the atomic level. To

provide an overview on a promising route towards under-

standing the molecular basis underlying membrane sub-

compartmentalization, we can list tools such as X-ray,

crystallography and solution NMR [86–88]. The recent

developments of superresolution microscopy (eg. STED,

PALM), cryo-electron microscopy (EM) and tomography

methods allowed the study of the organization of proteins

and lipids and the characterization of membrane subcom-

partmentalizationand  MCS [89��,16��,90�] with unpreceded

resolution. The complementary biophysical tools to investi-

gate lipid/protein interactions  such as Langmuir monolayer,

Fourier-Transform InfraRed spectroscopy (FTIR), NMR

or modelling are reviewed in [91,11,13]. Figure 2a

shows several examples of diverse contributions, including

solid-state nuclear magnetic resonance (ssNMR), X-ray

crystallography, modelling, FTIR, tomography by EM

and solution NMR. The development of lipid and protein

imagery by isotope-labeled high-resolution secondary ion

mass spectrometry (nano-SIMS) would allow the study of

molecular events at play in domain formation and dynamics

[92,93]. In plants, nano-SIMS was used to localize elements

such as manganese, arsenic, iron, zinc, and cadmium at the

nanoscale level [94], but this approach could also be used for

lipids and proteins in internal organelles.

Here, we further describe the powerful technique ssNMR

that emerges as a tool to understand domain assembly.

SsNMR is a versatile technology reporting on membrane

and protein structure, sensitive to dynamics and protein–

lipid interactions. A major advantage relies in its application

on systems in the native bilayer environment, that is recon-

stituted liposomes that can represent membranes of a

chosen lipid composition. The flowchart in Figure 2b

illustrates the overall procedure applied to inquire on the

previously mentioned aspects of membrane-associated

proteins. Reporting membrane biophysical and structural

parameters are achieved by well-established membrane-

focused ssNMR, mainly recorded on 2H and 31P nuclei

[95,96]. The quadrupolar 2H signal in static ssNMR

encodes for the overall lipid mobility and, importantly,

the local dynamics along the acyl chain. Upon varying

the membrane components (lipid composition, presence

or absence of protein) and environment (temperature, pH),
2H ssNMR reveals detailed insights on phase, phase transi-

tions, acyl chain dynamics and membrane thickness and

curvature depending on the precise lipid composition and

on the presence of a potential interaction partner. The

chemical shift of 31P nuclei complements and corroborates

the data reporting on phase behavior and the impact

of potential partner molecules on the lipid head groups.

Tackling membrane proteins is based on Magic-Angle

spinning (MAS) ssNMR, a method which has seen tremen-

dous advances in elucidating insoluble protein structures,

dynamics and interactions in soft matter states such as
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assemblies, aggregates [97�,98,99] ormembrane-association

[100��,101,102]. Since 2002, when the first structure of a

microcrystalline protein has been solved by MAS ssNMR

[103], the technology has proven very powerful to elucidate

protein assemblies such as the first amyloid protein

structure [104], bacterial filaments [105,106] and protein–

membrane complexes [107�]. A considerable knowledge

has already been derived from ssNMR on protein–lipid,

lipid–lipid interactions and membrane dynamics and

functioning [108–110,96,102]. Most recent technological

developments achieving ultra-fast MAS frequencies

(�100 kHz) MAS ssNMR allow for observing proton nuclei

in protonated protein samples (�500 mg) and should

facilitate ssNMR to serve as a common tool for structural

biology on membrane/protein related questions. Because of

its striking technological evolution, MAS ssNMR has

recently been applied in few cases to shed light on protein

structures, dynamics and protein–lipid interactions pro-

moted by lipid-dependent membrane features [100��].
Membrane domain formation in plants, relying on the plant

protein and lipid interplay (see below the example of

REMORIN in PM [16��,44]) remains a field to explore

by MAS ssNMR.

Conclusions
Virtually all membranes are organized in functional

domains that coordinate cell functions. Recent break-

through in biochemistry, biophysic and microscopy

approaches allow nowadays the study of the mechanisms

regulating the formation of membrane domains, particu-

larly the interplay between lipids and proteins. The next

decade will likely open a vast area of research to understand

the roles of membrane organization during plant develop-

ment and adaptation.
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In this work, my first as a first author, we studied the lipid dynamics of artificial lipid 

membranes in the presence of whole or mutated StREM1.3. We already had a 

hypothetical model of remorin nanodomain formation: (1) homotrimeric StREM1.3 

binds to and clusters PI4P. These PI4P have mostly saturated acyl chains (Furt et al., 

2010). Cholesterol has a higher affinity for saturated than unsaturated phospholipids 

(Engberg et al., 2016). By analogy, we expect sitosterol to be recruited in this nascent 

cluster. (2) More PI4P and sitosterol would coalesce into a larger nanodomain. But 

what are the exact driving forces and molecular determinants in the formation of 

StREM1.3 nanodomains? PIPs can cluster on their own (Bilkova et al., 2017; van den 

Bogaart et al., 2011), and therefore drive nanodomain formation. Does StREM1.3’s 

interaction with lipids change that? What about a StREM1.3-StREM1.3 driven 

clustering? 
2H static ssNMR allows experimental measurement of lipid dynamics using a 

deuterated reporter lipid, here DMPC-d54 (fully deuterated on both acyl chains). We 

employed this methodology to monitor the phase behaviour, thermotropism, lipid 

dynamics and membrane thickness of liposomes in presence of PC, sitosterol, PIPs 

and PS as well as RemCA WT or mutated. Next, we reconstructed, domain by domain, 

the full length StREM1.3 to assess the impact of each domain on these parameters. 

Finally, we proposed an updated model for the formation of StREM1.3 nanodomains. 

Under the help of Mélanie Berbon, I produced and purified both protein constructs 

REM86-198 and StREM1.3. Experiments with peptides and liposome formation were 

taught to me by Denis Martinez. Under the guidance and training of Axelle Grélard and 

Estelle Morvan, I was trained to and performed all the NMR experiments in this report, 

with the exception of 31P MAS ssNMR that was performed by Estelle Morvan. For data 

analysis, interpretation and critical reviewing, I was helped by Dr Denis Martinez and 

Dr Arpita Tawani. The first draft was made by Dr Birgit Habenstein, who conceptualised 

the study, and myself, then reviewed by all the authors of this manuscript.
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Nanodomains are dynamic membrane subcompartments, enriched in specific lipid,

and protein components that act as functional platforms to manage an abundance

of cellular processes. The remorin protein of plants is a well-established nanodomain

marker and widely serves as a paradigm to study nanodomain clustering. Located at

the inner leaflet of the plasma membrane, remorins perform essential functions during

signaling. Using deuterium and phosphorus solid-state NMR, we inquire on the molecular

determinants of the lipid-protein and protein-protein interactions driving nanodomain

clustering. By monitoring thermotropism properties, lipid acyl chain order and membrane

thickness, we report the effects of phosphoinositides and sterols on the interaction

of various remorin peptides and protein constructs with the membrane. We probed

several critical residues involved in this interaction and the involvement of the coiled-coil

homo-oligomerisation domain into the formation of remorin nanodomains. We trace

the essential role of the pH in nanodomain clustering based on anionic lipids such

as phosphoinositides. Our results reveal a complex interplay between specific remorin

residues and domains, the environmental pH and their resulting effects on the lipid

dynamics for phosphoinositide-enriched membranes.

Keywords: nanodomains, lipid raft, solid-state NMR, membrane protein, plant protein, phosphoinositide, sterol,

remorin

INTRODUCTION

The fluid mosaic model of Singer and Nicolson (1972) describes a biological membrane as a
bilayer of phospholipids, hydrophobic parts buried and hydrophilic parts exposed, with membrane
proteins spanning or anchoring to the bilayer. In this model, lipid heterogeneity, and precise
lipid-protein interactions that might lead to cooperative local enrichment of specific components,
i.e., nanodomain organization becomes conceivable. Due to their eclectic composition, membranes
are key players in cell biology, and have a plethora of functions (Grecco et al., 2011; Ott, 2017), thus
constituting prime drug design targets.

The lipid raft hypothesis, that is the lateral segregation of membrane components, was first
formulated by Simons and Ikonen (1997). Lipid rafts have different characteristics depending
on the organism and bore different names throughout past decades, accounting for the variety
of techniques allowing their detection. Here, we will commit to the word nanodomain because
remorin, isoform StREM1.3, segregates into around 80 nm wide domains (Raffaele et al., 2009).
Considering the recent technological advancements in analyzing nanodomains (Sezgin et al.,
2017), the description given by Pike (2006), herein named “membrane raft,” is still relevant: a

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2019.00107
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2019.00107&domain=pdf&date_stamp=2019-10-15
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:birgit.habenstein@u-bordeaux.fr
https://doi.org/10.3389/fmolb.2019.00107
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00107/full
http://loop.frontiersin.org/people/778887/overview
http://loop.frontiersin.org/people/768072/overview
http://loop.frontiersin.org/people/634449/overview
http://loop.frontiersin.org/people/42712/overview
http://loop.frontiersin.org/people/764886/overview


Legrand et al. Nanodomain Clustering by ssNMR

small (10–200 nm wide) region of a membrane, not necessarily
the plasma membrane (PM), enriched in sterols, and specific
proteins and lipids, like phosphoinositides (PIPs) (Furt et al.,
2010; Brown, 2017). Nanodomain formation thus relies on
the diffusion of the membrane components creating detectable
membrane heterogeneity. Importantly, the diffusing, internally
ordered lipids can separate into liquid-ordered (Lo) and
liquid-disordered (Ld) regions in membranes, including PM-
mimicking environments (Kaiser et al., 2009). Considering
typical nanodomain compositions, these membrane regions
should have a tendency of manifesting Lo behavior, usually
containing lipids fostering liquid order such as sterols.

Members of the multigenic, aerial plant-specific family of
remorins (Raffaele et al., 2007) are well-known protein markers
of such nanodomains in plants (Mongrand et al., 2004; Raffaele
et al., 2009). This family is made of 6 phylogenetic groups
sharing a canonical C-terminal domain, containing a segment
with high coiled-coil propensity, and a variable N-terminal
domain (Raffaele et al., 2007). Our study will focus on potato
(Solanum tuberosum) remorin group 1 isoform 3 (StREM1.3).
It contains an intrinsically disordered N-terminal domain
involved in protein-protein interactions (Raffaele et al., 2009) and
phosphorylation events (Marín et al., 2012; Perraki et al., 2018),
a coiled-coil domain involved in homo-trimerisation (Martinez
et al., 2018) and a C-terminal domain called the Remorin C-
terminal membrane Anchor (RemCA).

StREM1.3 specifically binds negatively charged liposomes
in vitro, as we showed in Perraki et al. (2012). Expression
of a plasma membrane (PM)-targeted phosphatidylinositol 4-
phosphatase MAP-SAC1p in Nicotiana benthamiana leaves leads
to a strong decrease of a StREM1.3’s PM targeting and lateral
segregation, implying that it has a specific affinity for PI4P
of the PM’s inner leaflet (Gronnier et al., 2017). Moreover,
PM vesicles of Nicotiana benthamiana leaves treated with
methyl β-cyclodextrin, a chelator of sterols, showed a complete
loss of remorin nanoclustering, indicating phytosterols also
play a role in the formation of nanodomains (Raffaele et al.,
2009). Similarly, treatment with sterol inhibitor fenpropimorph
strongly impaired nanodomain clustering, without affecting PM
targeting of StREM1.3 (Gronnier et al., 2017).

Membrane anchoring of StREM1.3 proceeds over an
unconventional mechanism with a hydrophilic domain
tethering to the membrane and organizing into nanodomains
(Gronnier et al., 2017). From the latter study, we formulated a
hypothetical two-step mechanism for the formation of StREM1.3
nanodomains: (1) the remorin, likely as a homotrimer (Perraki
et al., 2012), binds to PI4P of the PM’s inner leaflet with a ratio
of 1 PI4P moiety per 1 RemCA, therefore clustering the 3 lipids
with the remorin; (2) PI4P moieties, bearing mostly saturated
acyl chains (Furt et al., 2010), will preferentially attract plant
sterols, of which sitosterol is the main representative, while other
PI4P moieties gather around the nascent PI4P nanocluster (Picas
et al., 2016). Removal of sterols by m-β-cyclodextrin on PM
vesicles disrupts nanodomain clustering but not PM binding
(Raffaele et al., 2009), revealing a dependency of nanodomain
formation on sterols. Remorins are also known to form filaments
in vitro though no such structure has yet been unambiguously
observed in vivo (Bariola et al., 2004; Martinez et al., 2018).

In essence, remorins might bind over a complex mechanism
involving electrostatic interactions between the positively
charged lysines in the RemCA (Figure 1A) with negatively
charged PI4P head groups (Gronnier et al., 2017), favoring the
formation of sitosterol and PIP enriched clusters (Figure 1B).

Structural studies of the mechanisms behind protein-lipid
nanodomain formation and assembly at the atomic level remain
scarce, mostly relying on molecular dynamics (Ackerman and
Feigenson, 2015; Gronnier et al., 2017; Javanainen et al., 2017).
Indeed, the size, insolubility, non-crystallinity and required
native state of the objects of interest disqualify most biophysical
techniques, such as X-ray crystallography and liquid-state NMR,
to obtain experimental evidence at the atomic level. We use
solid-state NMR spectroscopy (ssNMR), a technique tailored to
study such objects, both in terms of protein fold and interactions
(Habenstein and Loquet, 2016; Loquet et al., 2017) in the
native membrane environment (Cady et al., 2010; Baker et al.,
2015; Stanek et al., 2016; Ladizhansky, 2017; Lalli et al., 2017;
Mandala et al., 2018) and to determine membrane dynamics and
interactions at the atomic level using static deuterium NMR on
deuterated liposomes (Dufourc et al., 1992; Beck et al., 2007;
Huster, 2014; Yao and Hong, 2014; Molugu et al., 2017).

Here, we aim at deciphering the molecular mechanisms
by which StREM1.3 anchors to PM to form nanodomains
using deuterated liposomes along with deuterium (2H) ssNMR
as our main tool. To reflect the lipid-protein interactions
and dynamic behavior during nanodomain formation, we
chose to work with liposomes of nanodomain-mimicking lipid
compositions, including PIPs and sitosterol (Figure 1B). Using
different remorin constructs including the membrane anchor
RemCA alone, in the wild-type and several mutated versions,
Rem86−198, composed of RemCA and the coiled-coil segment,
and the intact StREM1.3, we monitored the overall mechanisms
and the fine molecular implications of nanodomain assembly
guided by remorin. We tested the behavior of RemCA and its
critical mutants in various nanodomain-like and unlike lipid
environments, assessing the lipid preferences and electrostatic
interactions involved in the anchor-membrane association. We
then monitored the impact of the coiled-coil trimerisation
domain, and its capacity of forming higher-order oligomers, as
well as of the intrinsically disordered domain (IDD) of StREM1.3
on its membrane-binding behavior.

MATERIALS AND METHODS

Protein Production and Purification
Synthetic RemCA peptides were ordered from GenScript HK
Limited at >90% purity with N-terminal acetylation.

Escherichia coli BL21-DE3 were transformed with a
pET24 vector containing the DNA encoding for StREM1.3
or REM86−198 and plated onto LB-agar plates containing
30µg/mL kanamycin. A pre-culture of 100mL LB medium was
inoculated with a single transformed colony and incubated at
37◦C overnight (about 20 h). 1L of LB medium is inoculated
with the pre-culture at OD600 = 0.2 and incubated at 37◦C until
OD600 = 0.7–0.8. Protein production was induced with 1mM
of IPTG at 18◦C overnight. Cells were pelleted at 6,000 g for
20min at 4◦C and resuspended in a lysis buffer (20mM HEPES,
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FIGURE 1 | Primary sequence of RemCA (red: negatively charged residues, blue: positively charged residues, hydrophobic residues: gray (A) and lipids used in this

study (B,C), for the sake of clarity, carbon positions along the acyl chain of DMPC-d54 are explicitly labeled.

150mM NaCl, 20mM imidazole, 1mM PMSF, 0.02% NaN3, pH
= 7.4) containing protease inhibitors (Complete, Roche). Cells
were sonicated on ice at 30% magnitude three times (30s on,
30s off) and centrifuged at 15,000 g for 30min at 4◦C to recover
the supernatant.

Purification of StREM1.3 was achieved with an Akta Pure
25 HPLC system (GE Healthcare) on a HisTrap affinity column
equilibrated in wash buffer (20mM HEPES, 150mM NaCl,
20mM imidazole, 0.02% NaN3, pH = 7.4). The protein was
eluted with a stepwise gradient of elution buffer (20mM HEPES,
150mM NaCl, 500mM imidazole, 0.02% NaN3, pH = 7.4):
15, 40, 80, and 100% elution buffer. About 20mg of pure
unlabelled StREM1.3 were obtained from a 1L culture in LB
medium. Purification of REM86−198 was performed as described
previously in Martinez et al. (2018). After purification, proteins
were buffer-exchanged against a reconstitution buffer (10mM
HEPES, 10mM NaCl, 0.02% NaN3, pH = 7.4) using a HiPrep
gel filtration column (GE Healthcare).

Liposome Reconstitution
1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (DMPC-
d54), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC),
1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS),
β-sitosterol were purchased from Avanti Polar Lipids,
Inc. (USA) and phosphoinositides from bovine brain
(PIP mix, PS/PI/PI4P/PI(4,5)P2 50/20/15/15 (mol/mol)
from Sigma-Aldrich.

Synthetic RemCA peptides were co-solubilized in
CHCl3/MeOH 2/1 (V/V) with the appropriate amount of
lipids (peptide/lipid molar ratio of 1/20). Organic solvents

were evaporated under an air stream, hydrated, and then
lyophilised. Lipid and lipid-peptide powders were rehydrated
with deuterium-depleted water or 260mM Tris buffer. The
hydrated samples were submitted to three freeze-thaw-vortex
cycles (1min in liquid N2, 10min at ∼40◦C, 20 s vortexing) for
sample homogenization and packed into a ssNMR rotor. This
sample preparation has been used for triplicate error assessment
on liposomes of the following composition: PC/β-sitosterol/PIP
mix 75/15/10 (molar ratio) and RemCA K192A/K193A
(lipid/peptide= 20) (Figures S1A,C,E).

For protein reconstitution, pre-formed liposomes were
incubated overnight at 30◦C with the protein at a protein/lipid
molar ratio of 1/20. The milky solution was centrifuged at
100,000 g for 2 h at 4◦C to recover the proteoliposomes. To
remove filaments, proteins were centrifuged at 12,000 g for
20min at 4◦C before reconstitution and liposomes were then
recovered by centrifugation at 12,000 g for 20min at 4◦C.
This sample preparation has been used for triplicate error
assessment on liposomes of the following composition PC/β-
sitosterol/PIP mix 75/15/10 (molar ratio) incubated without
protein (Figures S1B,D,F).

NMR
For 2H static ssNMR, we applied a static quadrupolar spin echo
sequence (Davis et al., 1976) at the 2H frequency of 76.8 MHz
on a 500 MHz (11.7 T) Bruker Avance III NMR spectrometer,
with a 90◦ pulse of 3.8 µs, a delay of 40 µs, a recycle delay
of 2 s, a spectral window of 500 kHz and a number of scans
of 512 at least. We acquired spectra at different temperatures,
ranging from 278 to 308K. Sample temperature was stabilized
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for 20min prior to data acquisition. All spectra were processed
with TopSpin 4.0.6 (Bruker). An exponential window function
with a line broadening factor of 300Hz was applied prior to
Fourier transformation. De-Pake-ing procedure (Bloom et al.,
1981; McCabe and Wassail, 1997), first order spectral moments
M1 and local order parameters |2∗SCD| along the acyl chains
of DMPC-d54 were calculated with NMR Depaker (provided
by Dr. Sébastien Buchoux) and refined by spectra simulation
with NMR-099 (provided by Arnaud Grélard) as described in
Beck et al. (2007). Membrane thickness is calculated as described
in Grélard et al. (2013). For DMPC-d54/DMPS 90/10 (molar
ratio) liposomes, 2H static ssNMR was performed on a 300 MHz
(7.1 T) Bruker Avance III at 121.50 MHz for 31P with a 90◦

pulse of 3.3 µs, a delay of 30 µs, a recycle delay of 2 s, a spectral
window of 500 kHz and a number of scans of 512 at least. Sample
temperature was stabilized for 10min prior to data acquisition.
Error bars on M1 and |2∗SCD| are presented in Figure S1 and
reflect standard deviations of three independent experiments on
the two conditions (see sample preparation 2.2). Error bars for
membrane thicknesses are 0.5 Å, based on (Grélard et al., 2013)
plus the error contributions from the standard deviations of the
|2∗SCD| at each position.

For 31P ssNMR, we applied a static Hahn spin echo sequence
at the 31P frequency of 162 MHz on a 400 MHz (9.4 T) Bruker
Avance III HD spectrometer, with a 90◦ pulse of 8 µs, a delay
of 40 µs, a recycle delay of 5 s, a spectral window of 400 ppm

and a number of scans of 1,024 at least. Spectra were processed
with TopSpin 4.0.6 (Bruker). An exponential window function
with a line broadening factor of 200Hz was applied prior to
Fourier transformation.

31P magic-angle spinning (MAS) ssNMR was performed on
a Bruker Avance III spectrometer with a 4mm HX probe at the
frequency of 121.52 MHz, a MAS rate of 7 kHz and a 2.5 µs
90◦ pulse-acquisition sequence. Five hundred twelve scans were
acquired for both experiments. Pure H3PO4 was used as external
reference.

Negative Staining Electron Microscopy
Samples were loaded onto previously glow-discharged carbon-
coated copper grids and stained with 2% uranyl acetate
(w/v) solution. Observations were performed under low-dose
conditions on a CM120 120 kV FEI electron microscope using
a Gatan USC1000 2k × 2k camera. Clichés were analyzed with
the Fiji distribution of ImageJ2 (Schindelin et al., 2012; Rueden
et al., 2017).

RESULTS

Nanodomain Segregation by RemCA
Involves Both PIPs and β-Sitosterol
Using 2H ssNMR, we monitored thermotropism, lipid
dynamics, and membrane thickness of liposomes containing

FIGURE 2 | Comparison of 2H quadrupolar spin echo spectra acquired at 298K in absence (black) or in presence (red) of RemCA WT. Inner line pairs indicate the

Pake doublet frequency of the terminal CD3 while outer line pairs indicate the plateau region (usually between positions 2 and 8). Liposome compositions are (A)

DMPC-d54/PIP mix 90/10, (B) DMPC-d54/β-sitosterol 85/15, (C) DMPC-d54/β-sitosterol/PIP mix 75/15/10, (D) DMPC-d54/DMPS/β-sitosterol/PIP mix 65/10/15/10

(molar ratio), at pH = 7–8.
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FIGURE 3 | Local order parameters |2*SCD | as a function of the carbon positions along the acyl chains of DMPC-d54 in absence (black) or presence (red) of RemCA

WT. Liposome compositions are (A) DMPC-d54/PIP mix 90/10, (B) DMPC-d54/β-sitosterol 85/15, (C) DMPC-d54/β-sitosterol/PIP mix 75/15/10,

(D) DMPC-d54/DMPS/β-sitosterol/PIP mix 65/10/15/10 (molar ratio), at pH = 7–8. Representative error bars are shown in Figure S1C.

consecutively the different membrane components that
might impact on remorin-driven nanodomain assembly.
The lipid systems of choice included, consecutively,
perdeuterated phosphatidylcholine (PC, here DMPC-
d54), phosphoinositolphosphates (PIPs), β-sitosterol and
phosphatidylserine (PS, here DMPS), Figures 1B,C. Deuterium
spectra reveal the quadrupolar splittings that can be assigned to
the positions of the 2H along the acyl chain of the deuterated
lipid. The splitting of the so-called Pake doublet depends on the
dynamics of the Carbon-Deuterium bond and can be translated
into the local order parameters (|2∗SCD|) along the acyl chains
of DMPC-d54 by de-Pake-ing (Davis, 1983). To accurately
measure the impact of RemCA WT peptides on lipid dynamics
we detected the quadrupolar splittings and then computed the
order parameters |2∗SCD| in presence and in absence of RemCA.
We chose the physiologically relevant temperature of 298K
(25◦C). Addition of RemCA to liposomes containing PC/PIPs
and PC/β-sitosterol did not visually modify the quadrupolar
splittings (Figures 2A,B) whereas RemCA has a clear impact
on membranes containing PC/β-sitosterol/PIPs and PC/PS/β-
sitosterol/PIPs (Figures 2C,D). Membrane-protein interactions
generally entail a modification of the lipid dynamic behavior.
The selective impact of RemCA points out the importance of
β-sitosterol and PIP being simultaneously present to allow for its
nanodomain association.

Assessing the order parameters along the acyl chain provides
a detailed view on the impact of RemCA on the membrane
dynamics (Figure 3). No significant change in |2∗SCD| was

observed in PC/PIPs and PC/β-sitosterol liposomes upon
addition of RemCA (Figures 3A,B), despite a slight increase
of the order parameter in the presence of β-sitosterol. PC/β-
sitosterol/PIPs and PC/PS/β-sitosterol/PIPs liposomes display
lower |2∗SCD| along their acyl chains in the presence of
RemCA, indicating a PIP- and sterol-dependent interaction
between RemCA and the membrane (Figures 3C,D). The
chosen lipids display a consecutively rigidifying effect on
the membrane (Figure S2). RemCA then increases the lipid
mobility in the membranes of the complex lipid mixtures
PC/β-sitosterol/PIPs and PC/PS/β-sitosterol/PIPs. Addition of
PS does not significantly enhance the observed effect of
RemCA on liposomes containing β-sitosterol/PIPs (Figure 3D).
To monitor whether the impact of the peptide depends
exclusively on the simultaneous presence of PIPs and β-
sitosterol, we tested its effect also on PC/PS-containing
liposomes and we observe no detectable change of the
|2∗SCD| (Figure S3). The representative error for this type
of sample preparation (Figure S1C) is below 0.9% at carbon
positions 2–6.

The local order parameter |2∗SCD| can further be translated
into the average membrane thickness (Grélard et al., 2013) at
298K (Figure 4). PC/PIPs and PC/β-sitosterol liposomes without
and with RemCA display similar membrane thicknesses (46.3 Å
vs. 46.5 Å and 49.3 Å vs. 50.4 Å) whereas the membrane thickness
of PC/β-sitosterol/PIPs and PC/PS/β-sitosterol/PIPs decreases
slightly in the presence of RemCA (51.4 Å−48.9 Å and 52.7
Å−50.9 Å, respectively).
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FIGURE 4 | Membrane thickness at 298K calculated from the corresponding

|2*SCD | (Figure 2) in absence (black) or presence (red) of RemCA WT.

Liposome compositions are, from left to right, DMPC-d54/PIP mix 90/10,

DMPC-d54/β-sitosterol 85/15, DMPC-d54/β-sitosterol/PIP mix 75/15/10 and

DMPC-d54/DMPS/β-sitosterol/PIP mix 65/10/15/10 (molar ratio), at pH =

7–8. Error bars are assessed as described in Figure S1E.

The first order spectral moments M1, which can be extracted
from the deuterium spectra, report on the bilayer phase behavior
and thermotropism (Figure S4). The inflection point between
higher M1 values indicating a gel phase to lower ones pointing
to a fluid phase reports on the phase transition. For all lipid
compositions, the phase transition temperatures (Tm) seem to
remain close to the Tm of DMPC-d54 alone, 293K, but no clear
phase transitions were detected in the presence of β-sitosterol.
We observe a clear thermotropic transition in the absence of
sterols, but only a slow descent of M1 in their presence. Sterols
might broaden the primary transition or it might be below
the chosen temperature range (Dufourc, 2008). The presence of
RemCA WT peptides does not have a significant effect on M1

values nor on Tm across the range of temperature considered,
278–308K. 31P NMR confirms the presence of lamellar phases in
liposomes in all samples, as well as small vesicles in presence of
PIPs (Figure S5).

Taken together with the |2∗SCD| analysis, our results show that
upon interaction with membranes of relevant lipid compositions
(PC/β-sitosterol/PIP and PC/PS/β-sitosterol/PIP), RemCA WT
binds to the lipid bilayer without disrupting its structural
integrity and lipid phase, while exerting a noticeable effect
on its internal dynamics, reflected by the variations of the
order parameters.

pH Dependency of Protein-Lipid
Interactions in Nanodomain Association
At low pH (pH≈3–4), polyphosphate PIPs lose parts of their
negative charges present at pH = 7–8 (Kooijman et al., 2009).
Though, to our knowledge, no values on the pH dependency of
the charges for all PIPs of the PIP mix have been documented,
in analogy to PI(3,5)P2, the PIPs of the PIP mix (including

PI4P) should be neutralized at pH≈3–4. Moreover (Redfern and
Gericke, 2004) showed that di-palmitoyl phosphoinositol mono-
phosphates were able to segregate into phosphatidylinositol-
enriched microdomains at pH = 7–9.5 but not at pH = 4. To
obtain insights into the role of electrostatic interactions during
the RemCA-membrane interplay, we decided to test how the
pH value influences the impact of RemCA on nanodomain-
mimicking membranes. To assess the lipid interactions during
RemCA-membrane association, we co-solubilised synthetic
RemCA WT peptides in various liposome preparations (%/%
molar ratio): DMPC/PIP mix 90/10, DMPC/β-sitosterol 85/15,
DMPC/β-sitosterol/PIP mix 75/15/10 and DMPC/DMPS/β-
sitosterol/PIP mix 65/10/15/10. Peptides used in our study
carried impurities (<10% w/w), such as TFA, which acidified
the samples to pH = 3–4 during peptide-containing liposome
preparation, as judged by pH paper. We therefore chose to
buffer our samples to an approximate pH = 7–8, as judged
by pH paper. To reveal the RemCA/membrane interactions at
low pH, we also rehydrated our samples in pure 1% acetate
pH = 3 during proteoliposome reconstitution (final pH = 3).
Monitoring phase behavior (Figure 5A), spectral line shapes
(Figure S6), and local order parameters |2∗SCD| (Figure 5B) at
low pH revealed the significant effect of the head group charges
on RemCA-lipid interactions. RemCA, when in contact with
low pH nanodomain-mimicking membranes has the inverse
effect on the phase behavior, as observed by an increase of
the first spectral moment M1 (Figure 5A), and local order
parameter (Figure 5B) as compared to neutral pH (Figure 3C
and Figure S4C). Thus, the impact of the peptide on membrane
dynamics is significantly modified because of the lower pH. 31P
MAS ssNMR revealed significant chemical shift perturbations
as a function of pH (Figure S7). Based on (Kishore and
Prestegard, 2003; Müller et al., 2004), we tentatively assigned
the four visible signals, from higher to lower chemical shifts: 4-
phosphate (4-P)-, 4,5-bisphosphate (4,5-P2)-monoester, PS and
PC. The diester groups might be obscured by the PS and
PC signal. Assignment of 4,5-P2- remained ambiguous as a
second peak was expected. Signals assigned to the monoesters
witnessed a heavy shift between spectra at pH = 7–8 and
revealing important modifications of their chemical environment
which may be attributed to a change in their protonation state
(van Paridon et al., 1986).

The acidic pH entails a negligible effect on phase
behavior (Figure 5C) whereas it significantly modifies the
local order parameter at 298K (black curves, Figure 3C

vs. Figure 5B).

K192 and K193 Are Critical Residues in the
Targeting of PIPs by RemCA WT
Based on a pre-established list of mutants impaired for both
PM and nanodomain targeting (Gronnier et al., 2017), we
employed mutated RemCA peptides to evidence the concerted
role of lipid-amino acid interactions involving the specific
targeting of PIPs. According to previous molecular dynamics
experiments, residues K192 and K193 play a key role in the
targeting of PI4P by StREM1.3. We limited ourselves to five
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FIGURE 5 | (A) M1 as a function of the temperature for liposomes containing

PIPs, hydrated with 1% acetate pH = 3 in absence (black) or in presence (red)

of RemCA WT at peptide/lipid ratio of 1/25. (B) Local order parameters |2*SCD |

as a function of the carbon position along the acyl chains of DMPC-d54 in

presence of RemCA WT at pH = 3–4. (C) M1 as a function of the temperature

for liposomes, in 1% acetate pH = 3 (dotted lines) or with 260mM Tris pH = 8

(full lines). Liposome composition is: DMPC-d54/β-sitosterol/PIP mix 75/15/10

(molar ratio). Representative error bars are shown in Figures S1A,C.

mutants (Gronnier et al., 2017): G188A, a negative control that
should show no specific difference to the wild-type peptide;
K183S, K193A, K183S/K192A, and K192A/K193A, localizing less
efficiently into nanodomains. To trace the influence of each

FIGURE 6 | Comparison of 2H quadrupolar spin echo spectra acquired at

298K in presence of RemCA WT and mutated RemCA. Inner line pairs indicate

the Pake doublet frequency of the terminal CD3 while the outer line pairs

indicate the plateau region (usually between positions 2 and 8). Liposome

compositions are (A) DMPC-d54/β-sitosterol 85/15 and (B)

DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH = 7–8. Above

RemCA WT, peptides with a similar effect on membranes in presence of PIP

mix (K183S, G188A, K192A/K193A) followed by those with no discernible

effect (K193A, K183A/K192A).

mutation on the peptide-PIP interaction, each mutant and the
WT were co-solubilised in liposomes of two different lipid
compositions: PC/β-sitosterol 85/15 and PC/β-sitosterol/PIPmix
75/15/10 (molar ratio). We then determined the local order
parameter |2∗SCD| of DMPC-d54 at 298K for every sample
(WT, K183S, G188A, K192A/K193A, K193A, and K183S/K192A)
(Figures 6, 7). In absence of PIPs, the effect of the peptides on
the quadrupolar splitting and the local order parameter |2∗SCD|
of the liposomes does not differ between RemCA WT and the
mutants (Figures 6A, 7A,C); the impact of RemCA WT and the
mutants is undetectable or entails a slight increase of the local
|2∗SCD|. In presence of PIPs, we observe two different behaviors
(Figures 6B, 7B,D). The wild type peptide (RemCA WT) and
a group of mutants (K183S, G188A, and K192A/K193A) have
a pronounced effect on the membranes, decreasing |2∗SCD| all
along the acyl chains of DMPC-d54. Importantly, this effect is
abolished for a second group composed of the mutants K193A
and K183S/K192A (Figures 6B, 7B,D), exposing an undetectable
or a slightly increasing effect on the |2∗SCD|. This observation
suggests that mutants from the first group, together with RemCA
WT, interact with PIP-containing liposomes whereas peptides
from the second group do not (Figures 6, 7). Unexpectedly, the
double mutant K192A/K193A still binds to liposomes containing
PIPs, possibly through an alternative mechanism involving K183.
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The representative error for this type of sample preparation
(Figure S1C) is below 0.9% at carbon positions 2–6.

Measurements of the membrane thickness reflect a
comparable trend, as expected, since they rely on the 2H
NMR data. The membrane thicknesses without PIPs are all
within the same range of ≈50 Å. Liposomes containing PIPs
are split in the same two groups as described above with
RemCA WT, K183S, G188A, or K192A/K193A decreasing
membrane thickness more or less significantly (≈49 Å)
whereas RemCA K193A or K183S/K193A have no effect
(≈51 Å) (Figure 8). Our data corroborate the in vivo results
that K192 and K193 are critical residues in the targeting of
PIPs by RemCA. However, the results reveal that the in vivo
membrane association of StREM1.3 relies on a more complex
behavior of the positively charged residues during the trimerised
protein-membrane interaction.

Monitoring M1 as a function of temperature, we detect
no important impact of the different mutants and the
WT on the phase behavior (Figure S8). Above 293K, M1

values in presence of PIP mix seem to spread out a little
more than without PIP mix. All samples contain large
liposomes in lamellar phase along with smaller vesicles
in presence of PIP mix (Figure S9). Our data point to
different effects of the different mutations, larger than the
error margins for repetition of the identical conditions.
However, considering possible uncertainties introduced by
other sources (e.g., varying impurities in different peptide
stocks) future interpretation of these results should be handled
with care.

Oligomerisation Modifies RemCA Behavior
on Nanodomain-Mimicking Membranes
We have previously demonstrated (Martinez et al., 2018) that
disrupting the coiled-coil region of StREM1.3 would partially
disrupt membrane targeting. While we hypothesize that the
intrinsically disordered domain, responsible for protein-protein
interactions, and the coiled-coil homo-oligomerisation domain
do not directly interact with the nanodomains, they could
indirectly influence nanodomain targeting. To monitor the effect
of the two domains, we designed two protein constructs for NMR
investigation.We expressed and purified the truncated StREM1.3
(REM86−198), bearing only RemCA and the coiled-coil domain
(Martinez et al., 2018), and the full length StREM1.3 including
also the IDD.

We achieved setting up a protocol to produce high
quantities of StREM1.3 in E.coli (about 20 mg/L of culture
medium) (Figures S10, S11A). Both protein constructs,
REM86−198 and StREM1.3, were purified to high purity
(Figure S11B). We avoided reconstitution into liposomes
by co-solubilisation to mitigate the risk of misfolding and
non-native interactions with lipids. Instead, we incubated
the proteins with preformed liposomes overnight at 30◦C,
using two lipid compositions: DMPC-d54/β-sitosterol 85/15 or
DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio). For
each proteoliposome sample, about 40–50% of the proteins
were pelleted by ultracentrifugation, as could be assessed by

absorbance at 280 nm of the supernatant fractions and SDS-
PAGE of the pellets (Figure S12). We used deuterium NMR to
probe the lipid order in presence of the two remorin domains.

Local order parameters |2∗SCD| of PC-d54/β-sitosterol
membranes are similar whether in absence or presence of both
REM86−198 and StREM1.3, no protein-membrane interactions
seem to occur (Figure 9A and Figure S13A). In contrast,
DMPC-d54/β-sitosterol/PIP liposomes containing REM86−198 or
StREM1.3 witnessed a similar increase of the order parameter
|2∗SCD| all along their acyl chains (Figure 9B and Figure S13B).
In accordance, membrane thicknesses were similar in absence
of PIPs but increased comparably in presence of PIPs and
one of the proteins (Figure S14). The representative error for
this type of sample preparation (Figure S1D) is below 3.7%
at carbon positions 2–7. The samples contain large liposomes
in lamellar phase with a small isotropic peak in presence of
PIPs (Figure S15). All samples displayed a Tm around 293K
(Figure 10, representative error in Figure S1B). When compared
to the monomeric anchor RemCA, REM86−198 and StREM1.3
show an inverse effect on nanodomain-mimicking membranes,
revealing the crucial impact of remorin oligomerisation during
nanodomain clustering.

In contrast, both constructs, REM86−198 and StREM1.3,
display a very similar behavior on the membranes, indicating
that the non-phosphorylated intrinsically disordered domain
does not influence remorin nanodomain targeting. The sample
preparation used for measuring the effects of the two longer
constructs should lead to reduced detectable readout range
since predominantly the outer leaflet of the liposomes will be
accessible. In line with this view, our results indeed show smaller
effects for all tested conditions. Consequently, the data and
interpretation should be handled with care.

Transient Higher-Order Oligomer
Formation Could Stabilize Nanodomain
Clustering
When incorporating the constructs REM86−198 and StREM1.3
into liposomes, negative staining electron microscopy revealed
the presence of protein filaments (Figure S16). Notably,
this observation mostly concerned samples without PIPs
(Figures S16A,B,E,F) whereas in the presence of PIPs very few
filaments were observed (Figures S16C,D,G,H). Since there is
no significant effect of either protein on liposomes in absence
of PIPs and filament formation is significantly reduced in
the presence of PIPs, we assume that the filaments do not
directly interfere with liposomes. Nevertheless, we attempted
to remove filaments by pelleting at lower centrifugal force
before reconstitution. Removing the filamentous objects before
reconstitution into liposomes caused both proteins to remain
mostly in solution when exposed to the preformed liposomes, as
assessed by absorbance at 280 nm (2.5 and 1.7 in solution before
reconstitution, 2.8 and 1.7 in supernatant after reconstitution and
liposome pelleting for REM86−198 and StREM1.3, respectively).
Absorbance measurement may be biased by remaining small
liposomes. However, few proteins were still incorporated into
the liposomes, for REM86−198 only in the presence of PIPs,
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FIGURE 7 | Local order parameters |2*SCD | as a function of carbon positions along the acyl chains of DMPC-d54 in presence of RemCA WT or mutated RemCA.

Liposome compositions are (A,C) DMPC-d54/β-sitosterol 85/15 and (B,D) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH = 7–8. Representative error

bars are shown in Figure S1C.

FIGURE 8 | Membrane thickness at 298K calculated from the corresponding |2*SCD | (Figure 6). Liposome compositions are (A) DMPC-d54/β-sitosterol 85/15 and

(B) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH = 7–8. Error bars are assessed as described in Figure S1E.

as the band seems to be absent, even though it might be
hidden under the liposome smear (Figure S17). No filaments
were found on the liposomes (example given for REM86−198,
Figure S18). We could not detect an effect of this low protein
amount on the membrane dynamics as reflected in the local

order parameter |2∗SCD| of DMPC-d54 (Figure S19). Since
filaments do not seem to have a direct impact on liposomes
and their formation is reduced in the presence of PIPs, transient
higher-order oligomer formation might stabilize protein-lipid
interactions during membrane association.
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FIGURE 9 | Local order parameters |2*SCD | as function of the carbon position along the acyl chains of DMPC-d54 in presence of REM86−198 or StREM1.3. Liposome

compositions are (A) DMPC-d54/β-sitosterol 85/15 and (B) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH = 7–8. Representative error bars are shown

in Figure S1D.

FIGURE 10 | Variation of first order spectral moments M1 as a function of temperature T in presence of REM86−198 or StREM1.3. Liposome compositions are (A)

DMPC-d54/β-sitosterol 85/15 and (B) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio). Error bars are standard deviations of three independent experiments, as

shown in Figure S1B.

DISCUSSION

Our results shed light on the detailed mechanisms of StREM1.3-
driven nanodomain clustering. We dissect the roles of the three
StREM1.3 domains, the C-terminal anchor RemCA, the coiled-
coil oligomerisation domain and the intrinsically disordered
domain (IDD), implicated in protein-protein interactions.

We have monitored a fluidifying effect of RemCA on the
membrane, assessed by the decrease of the local carbon-
deuterium order parameter all along the acyl chains of DMPC-
d54, only in presence of PIPs and β-sitosterol simultaneously.
RemCA’s membrane interactions therefore depend on the
presence of both PIPs and β-sitosterol during nanodomains
clustering, as we have suggested earlier (Raffaele et al.,
2009; Gronnier et al., 2017). Moreover, addition of DMPS,
another negatively charged phospholipid, does not modify this
behavior, corroborating RemCA’s genuine specificity for PIP
and β-sitosterol.

RemCA peptides lacking K192 or K193, namely RemCA
K183S/K192A or K193A, do not show any fluidifying effect
on nanodomain-mimicking membranes, highlighting the

important role of these two positively charged residues. In
the absence of PIPs RemCA and several mutants show a
slight increase of the lipid order parameters in the presence
of β-sitosterol, which could be attributed to a low overall
membrane binding without the formation of lipid clusters.
K183S and K192A/K193A mutants still interact with the
nanodomain-mimicking membranes such as the wild-type
RemCA. These two mutants behave similarly to K183S/K192A
or K193A, when considering their segregation into nanodomains
in StREM1.3 in vivo, detected by Single-Particle Tracking
Photoactivated Localization Microscopy, spt-PALM (Gronnier
et al., 2017). Their behavior on nanodomain-mimicking
membranes in vitro therefore suggests a more complex interplay
between the different positive charges in the intact StREM1.3
in vivo (Gronnier et al., 2017), possibly influenced by the
oligomerisation and the subsequent trimeric exhibition of the
anchor RemCA. However, our results are coherent with specific
electrostatic interactions between K192 and K193 and the polar
head of PI4P from the PM’s inner leaflet (Gronnier et al., 2017).

In the K192A/K193A mutant, still displaying specificity for
PIPs, the replacement of two consecutive positively charged
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lysines by two consecutive hydrophobic alanines might allow
an alternative folding and binding mechanism. However, we
cannot exclude the possibility of errors that might not have been
monitored by our error assessment, so we suggest treating the
data with care.

Our findings show that negative PIP head group charges
should foster RemCA nanodomain-mimicking membrane
association. We therefore tested the impact of the pH on
RemCA-membrane interactions. The impact of RemCA on
phase behavior and acyl chain mobility at acidic pH is inversed
compared to neutral pH, i.e., RemCA reduces acyl chain mobility
in the nanodomain-mimicking membrane in acidic conditions.
This might rely on an alternative binding mode of RemCA
to the lipid bilayer, potentially reflecting an unspecific overall
membrane binding, as is also the case for low binding of the
peptide and its mutants in the presence of β-sitosterol. The
electrostatic PIP-RemCA interactions present at physiological
conditions should therefore represent a crucial actor during
remorin nanodomain clustering.

We then examined the membrane- and nanodomain-
association of the C-terminal anchor in conjunction with
the coiled-coil oligomerisation domain REM86−198 and the

full-length StREM1.3, including the intrinsically disordered
region. In line with our knowledge on StREM1.3, they only
associate to nanodomain-mimicking membranes, i.e., containing
PIPs and β-sitosterol responsible for StREM1.3 nanodomain
segregation. Their effect on the membrane dynamics is very
similar, indicating that the intrinsically disordered domain
does not directly influence the nanodomain association.
However, use of phosphodead StREM1.3 S74A/T86A/S91A
and phosphomimetic StREM1.3 S74D/T86D/S91D mutants
revealed a phosphorylation-dependent change in nanodomain
organization in vivo (Perraki et al., 2018), implying the
StREM1.3’s intrinsically disordered region indirectly modifies
the membrane-associating behavior, possibly by altering the
interactions with other proteins or itself.

Both REM86−198 and the full-length StREM1.3 have an inverse
effect on nanodomain-mimicking membrane dynamics when
compared to RemCA WT. The anchoring domain alone is in
a monomeric state and therefore represents the lipid specificity
of the peptide alone (Figures 11A,B), presumably fostering the
formation of lipid clusters. In the absence of RemCA, the lipid
dynamics could represent the homogeneous rigidifying effect of
intercalated PIP/sitosterol (Figure S1) along the reporter DMPC

FIGURE 11 | Hypothetic model of a comprehensive nanodomain clustering mechanism consolidating the structural data on StREM1.3. (A) PIP mix and sterols

increase lipid order over the whole membrane because of their homogeneous distribution (B) RemCA peptides could bind and cluster PIP altogether and recruit

sterols in their vicinity. This would reduce the presence of sterols and PIPs in DMPC-d54-rich regions, lowering the |2*SCD | of the latter. (C) StREM1.3 forms

homo-trimers, bringing RemCA domains in vicinity. This might increase the rigidifying effect more efficiently over the whole membrane, considering the size and the

stability of the associated objects.
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acyl chain (Figure 11A). When RemCA is present, it might
cluster the PIP/sitosterol moieties and therefore have a fluidifying
effect on the reporter DMPC acyl chains (Figure 11B). Including
the coiled-coil domain drastically increases the complexity
of the native trimeric StREM1.3 structure, containing three
RemCA anchors. REM86−198 and StREM1.3 would reflect the
rigidifying impact of the clustered protein on the nanodomain-
mimicking membranes (Figure 11C) with the inner bilayers
of the liposomes unaffected and the outer exposed to the
trimeric remorin. The protein and lipid clustering might
reflect driving mechanisms of nanodomain formation in native
membranes. Again, we cannot exclude the possibility of
errors that might not have been monitored by our error
assessment, in consequence we suggest treating the data
with care.

We found that REM86−198 and StREM1.3 formed filaments
even at low protein concentration, when we proceeded to
liposome reconstitution (Figure S16). Filament formation
observed by EM was much reduced by the presence of
PIP (Figures S16C,D,G,H) and the pelleted liposomes
contained a significantly higher amount of protein in the
presence of PIP (Figure S12), indicating that the protein is
incorporated into membranes. When removing filaments
by moderate centrifugation, the relative amount of proteins
incorporated into liposomes drastically decreases, indicating
that the presence of transient higher-order oligomers might
favor the incorporation of trimeric remorins into the
nanodomain-mimicking membranes. Although filaments
are unlikely to be stable in vivo, the underlying ability
of StREM1.3 to cluster with its peers into higher-order
complexes could be biologically relevant. In line with
this results, disrupting the coiled-coil region resulted
in a partial loss of membrane targeting, indicating this
domain is required to ensure a tight binding to the PM
(Martinez et al., 2018).

CONCLUSION

Gaining mechanistic insights into the interactions and
protein/membrane structures governing nanodomain formation
remains difficult because of the complexity of the native
protein-bilayer system. Here, we employed a 2H ssNMR-
based methodology to tackle the lipid-protein interactions
and mechanisms behind nanodomain clustering driven by
StREM1.3. Using a divide-and-conquer approach, we deciphered
the roles of the membrane anchor RemCA in isolation,
REM86−198, including the coiled-coil domain responsible for
trimerisation and the intact StREM1.3. We seek to uncover the
essential electrostatic interactions between RemCA’s positive
residues and the negatively charged PIP head groups involved
in nanodomain formation. Our data moreover suggest that
nanodomain clustering depends on the evolutionary evolved
trimeric structure, which can only be partially represented by the
monomeric anchor. The trimers of remorins appear to confer

nanodomain clustering while the pure protein-lipid association
relies mostly on the membrane anchor RemCA. Furthermore,
we reveal that transient higher-order oligomer formation might
stabilize the in vivo association of remorins to nanodomains,
which is further supported by the structural conservation of
the oligomerisation domain in the six phylogenetic groups
(Raffaele et al., 2007).

Our results shed new light on the essential role of certain
specific electrostatic protein-lipid interactions and protein
oligomerisation properties toward understanding the driving
forces in the nanoclustering of StREM1.3. We propose a
more general picture of the relevance of oligomerisation, a
character often present in nanodomain-segregating proteins.
To gain more precise notions on the mechanisms behind
lipid domain assembly, it will be vital to understand the
structural implications of protein oligomerisation and the
lipid-protein interactions from a protein structural point
of view.
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Figure S1. Estimation of the experimental errors for the peptide co-reconstitution method (A, C, E) or 
liposome preparation for protein constructs (B, D, F) for M1 (A, B), |2*SCD| (C, D) and membrane 
thickness assessment (E, F). Error bars are the standard deviations of three independent experiments, 
as described in section 2.2. 

 
 
Figure S2. Comparison of the local order parameters |2*SCD| as a function of the carbon position 
along the acyl chains of DMPC-d54 for the four lipid systems of this study, at 298K. Liposome 
compositions are: DMPC-d54/β-sitosterol 85/15, DMPC-d54/PIP mix 90/10, DMPC-d54/β-
sitosterol/PIP mix 75/15/10, DMPC-d54/DMPS/β-sitosterol/PIP mix 65/10/15/10 (molar ratio) at pH=7-
8. Representative error bars are shown in Figure S1C.  



 

Figure S3. Local order parameters |2*SCD| as a function of the carbon positions along the acyl chains 
of DMPC-d54 in absence (black) or presence (red) of RemCA WT. Liposome composition is DMPC-

d54/DMPS 90/10 (molar ratio), at pH=7-8. Representative error bars are shown in Figure S1C. 

 

 
Figure S4. Variation of the first order spectral moments M1 as a function of the temperature T in 
absence (black) or presence (red) of RemCA WT. Liposome compositions are (A) DMPC-d54/PIP mix 
90/10, (B) DMPC-d54/β-sitosterol 85/15, (C) DMPC-d54/β-sitosterol/PIP mix 75/15/10, (D) DMPC-
d54/DMPS/β-sitosterol/PIP mix 65/10/15/10 (molar ratio), at pH=7-8. Representative error bars are 
shown in Figure S1A. 
  



 

Figure S5. 31P Hahn echo spectra in absence (black) or presence (red) of RemCA WT for different 
lipid systems. Liposome compositions are (A) DMPC-d54/PIP mix 90/10, (B) DMPC-d54/β-sitosterol 
85/15, (C) DMPC-d54/β-sitosterol/PIP mix 75/15/10, (D) DMPC-d54/DMPS/β-sitosterol/PIP mix 
65/10/15/10 (molar ratio), at pH=7-8 
 

 
 



  

 

Figure S6. Comparison of 2H quadrupolar spin echo spectra acquired at 298K in absence (black) or in 
presence (red) of RemCA WT in liposomes containing PIPs, hydrated with 1% acetate pH=3. The 
inner line pair indicates the Pake doublet frequency of the terminal CD3 while the outer line pair 
indicates the plateau region (usually between positions 2 and 8). Liposome composition is: DMPC-
d54/βb-sitosterol/PIP mix 75/15/10 (molar ratio), at pH=3 



 

Figure S7. 31P MAS ssNMR on DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio) in presence of 
RemCA WT at pH=7-8 (black) or pH=3 (red). 

 
Figure S8. Variation of first order spectral moments M1 as a function of the temperature T in presence 
of RemCA WT or mutated RemCA. Liposome compositions are (A, C) DMPC-d54/β-sitosterol 85/15, 
(B, D) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH=7-8. Representative error bars are 
shown in Figure S1A. 
 

  



 

Figure S9. 31P Hahn echo spectra in presence of various RemCA mutants. Liposome compositions 
are (A) DMPC-d54/β-sitosterol 85/15 and (B) DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at 
pH=7-8. 

  

Figure S10. Histrap purification chromatogram of 15N-, 13C-labelled StREM1.3. FT: flow-through. W: 
wash. Blue curve: absorbance at 280 nm in arbitrary units. Brown curve: conductivity (mS/cm). Green 
curve: elution buffer percentage. 



 

Figure S11. (A) SDS-PAGE of eluted fractions from figure S8. In: sample loaded into the column. 5 
and 6 are pooled and purified further. (B) Example of pure protein samples for REM86-198 and 
StREM1.3 analysed by SDS-PAGE. Coomassie-stained gels. 

 

Figure S12. SDS-PAGE of liposomes containing, or not, PIP mix in presence of REM(86-198) or 
StREM1.3, at pH=7.4. Coomassie-stained gel. 

  



 
Figure S13. Comparison of 2H quadrupolar spin echo spectra acquired at 298K in absence (black) or 
presence of REM86-198 (red) or StREM1.3 (blue). Inner line pairs indicate the Pake doublet frequency 
of the terminal CD3 while outer line pairs indicate the plateau region (usually between positions 2 and 
8). Liposome compositions are (A) DMPC-d54/β-sitosterol 85/15 and (B) DMPC-d54/β-sitosterol/PIP 
mix 75/15/10 (molar ratio), at pH=7.4. 

 
Figure S14. Membrane thickness at 298K calculated from the corresponding |2*SCD| (Figure 8). 
Liposome compositions are DMPC-d54/β-sitosterol 85/15 and DMPC-d54/β-sitosterol/PIP mix 
75/15/10 (molar ratio), at pH=7.4. Error bars are assessed as described in Figure S1A, C, E. 

 



Figure S15. 31P Hahn echo spectra in absence (black) or presence of REM86-198 (red) or StREM1.3 
(blue). Liposome compositions are (A) DMPC-d54/β-sitosterol 85/15 and (B) DMPC-d54/β-
sitosterol/PIP mix 75/15/10 (molar ratio), at pH=7.4. 

 
Figure S16. Negative staining electron microscopy of REM86-198 (A-D) and StREM1.3 (E-H) in 
liposomes DMPC-d54/β-sitosterol 85/15 (A, B, E, F) and DMPC-d54/β-sitosterol/PIP mix 75/15/10 (C, 
D, G, H) (molar ratio), at pH=7.4. Scale bars: (A, C, E, G) 500 nm or (B, D, F, H) 50 nm. Fewer 
filaments are observed for REM86-198 compared to StREM1.3 and the presence of PIP mix seems to 
reduce their number even more. 

 
Figure S17. SDS-PAGE of liposomes containing, or not, PIP mix in presence of REM86-198 or 
StREM1.3 when attempting to remove filaments, at pH=7.4. For REM86-198 in liposomes in absence of 
PIP mix, the protein band might be hidden by the smear but the gel indicates a lack of a band. Red 
arrows indicate the expected molecular weight of each protein. 



 
Figure S18. Negative staining electron microscopy of REM86-198 in liposomes without filaments. 
Liposome composition is DMPC-d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH=7.4. 

 
Figure S19. (A) Comparison of 2H quadrupolar spin echo spectra acquired at 298K in absence (black) 
or presence of REM86-198 (red) or StREM1.3 (blue) without filaments in either case. Inner line pairs 
indicate the Pake doublet frequency of the terminal CD3 while outer line pairs indicate the plateau 
region (usually between positions 2 and 8). (B) Local order parameters |2*SCD| as function of carbon 
position along the acyl chains of DMPC-d54 from spectra in (A). Liposome composition is DMPC-
d54/β-sitosterol/PIP mix 75/15/10 (molar ratio), at pH=7.4. Representative error bars for (B) are shown 
in Figure S1D. 



185 
 

Article IV: addendum 

In our study, we committed to sitosterol, which is the most abundant phytosterols in 

plant PM, with a role similar to cholesterol in ordering membranes above the phase 

transition temperature, where, by contrast, stigmasterol decreases the order 

membranes (Grosjean et al., 2015). What would it change, in terms of order and 

thermotropism, if we replaced sitosterol with stigmasterol? Lipid systems without and 

with PIP mix displayed a lesser M1 in the fluid phase yet retained comparable M1 in the 

gel phase, compared to their sitosterol counterparts (Figure 69). This loss of M1 can 

be interpreted as a loss of global order parameter, which is confirmed by computing 

local order parameters |2*SCD|. RemCA WT had no significant effect on liposomes 

made only of PC/stigmasterol but showed significant increase in global order 

parameters in the gel phase (figure 70). Due to the very large half-height widths of 

most peaks in the gel phase, computing |2*SCD| is difficult and very much prone to 

error. We did not compute them. 

 
Figure 69 

Comparison of first spectral moments M1 between four different lipid systems as a 

function of temperature: 85/15 PC/sitosterol (black, dashed), 75/15/10 

PC/sitosterol/PIPmix (red, dashed), 85/15 PC/stigmasterol (black, full), 75/15/10 

PC/sitosterol/PIPmix (red, full). Data on systems with sitosterol comes from (Legrand 

et al., 2019). 
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Figure 70 

On the effect of RemCA WT in a PC/stigmasterol/PIPs lipid system. (A) 

Superimposed 2H quadrupolar echo spectra in the designed conditions. Black: 

liposomes alone. Red: liposomes with a 1/20 RemCA WT/lipid ratio. (B) M1 as a 

function of temperature for without or with PIPmix (dashed vs full lines) and RemCA 

WT (black vs red). (C) |2*SCD| as a function of carbon position along the acyl chains 

of DMPC-d54. The legend is the same as (B). 

 

So replacing sitosterol with stigmasterol modified the effect of a synthetic RemCA 

WT peptide on lipid order: with stigmasterol, there is no discernible effect on |2*SCD| in 

the fluid phase when there is a significant increase in |2*SCD| with sitosterol; whereas 

RemCA WT increased M1, and thus global order, in presence of stigmasterol in the gel 

phase while no effect was found in presence of sitosterol. This confirms that these two 

phytosterols have different effects on lipid order depending on temperature (section 

I.C.4) (Beck et al., 2007; Grosjean et al., 2015). More generally, the diversity and 

variability of plant sterols should always be accounted for when dealing with their 

behaviour in membranes. 
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Article V 

This article is in a draft state. It is about reconstituting StREM1.3 nanodomains in 

vitro. Based on all the data and – partially – hypothetical models available on 

membrane attachment and clustering, we were confident enough to try to reconstruct 

these nanodomains in a minimal system. This would: (1) confirm our model (see Article 

IV) on StREM1.3’ nanodomain clustering and (2) provide an in vitro platform for further 

investigations. 

We started by assessing which lipids a GFP tagged REM86-198 would bind to. By 

forming giant lipid vesicles (1-20 µm) labelled the fluorescent lipid rhodamine-PE (rhod-

PE), we could, qualitatively, determine which negatively charged lipids (PS, PA, PIPs) 

are required for membrane binding. It appeared that StREM1.3 binds to any lipid 

bearing terminal phosphates, but notably not PS.   

A next step was to disrupt REM86-198’s coiled-coil oligomerisation domain to assess 

the effect of forcing a monomeric state on its membrane interactions, on giant vesicles, 

and biological activity, by assessing its ability to hinder the cell-to-cell propagation of 

the Potato Virus X (PVX). Though StREM1.3 was shown to interact with PIPs and PA, 

we observed the effect of PS synthase knockouts on StREM1.3 nanodomain 

organisation. At last, we attempted to reconstitute and observe nanodomains of 

StREM1.3 in a minimal system by cryoEM and AFM. 

I performed the experiments involving giant vesicles. Marie-Dominique Jolivet 

performed all the in vivo assays, with coiled-coil mutants of StREM1.3 and PS synthase 

knockouts (pss1). I prepared samples for cryoEM and performed the observations with 

the tremendous help of both engineers of the CBMN EM platform: Dr Marion Decossas 

and Dr Tan Sisareuth. AFM was handled by collaborators, namely Dr Marisela Vélez 

for. The following draft was written by myself, figures included. 
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I. Introduction 

Remorins belong to a multigenic family of plant proteins (Raffaele et al., 2007b). 

They display a broad range of functions and interactors: from protection against biotic 

and abiotic stress, inception of symbiosis to hormone signalling response (Gouguet et 

al., 2020). Their most well-known characteristic is to segregate into ~ 80 nm membrane 

nanodomains (Gronnier et al., 2017; Legrand et al., 2019) in the plasma membrane’s 

(PM) inner leaflet. A model for the nanoclustering of StREM.3 has been proposed 

(Gouguet et al., 2020), in which homo-oligomeric remorins bind to phosphatidylinositol 

4-phosphate (PI4P) negatively charged head groups via their remorin C-terminal 

anchors (RemCA) and recruit sterols and other remorins and PI4P in their vicinity to 

form a membrane nanodomain (Gronnier et al., 2017; Legrand et al., 2019; Perraki et 

al., 2012), while coiled-coil homo-oligomerisation ensures an efficient PM targeting 

(Martinez et al., 2018). This nanodomain organisation was shown to be cytoskeleton-

dependent (Szymanski et al., 2015). StREM1.3’s N-terminal intrinsically disordered 

domain (IDD) can be phosphorylated (Perraki et al., 2018) and is thought to mediate 

protein-ligand and protein-protein interactions (Khan et al., 2017; Nishi et al., 2013; 

Uversky, 2013). 

Granted a sufficient understanding of StREM1.3’s nanodomains, we will attempt to 

reconstitute these in vitro and to observe them by cryo-electron microscopy (cryoEM) 

and atomic force microscopy (AFM). This would confirm our proposed nanodomain 

formation model and provide us with a powerful tool for future biophysical studies. 

 

II. Material and methods 

A. Protein purification 

REM86-198 and StREM1.3 are produced and purified as described in (Legrand et al., 

2019). 

Production of GFP-REM86-198 is identical to REM86-198 and StREM1.3. Cells are 

broken by sonication and the supernatant is loaded onto a HisTrap affinity column 

controlled by an Atka Pure 25 HPLC system (GE Healthcare) equilibrated with 

equilibration buffer (20 mM HEPES 150 mM NaCl 20 mM imidazole 0.02% NaN3 pH = 

7.4) and eluted with a stepwise gradient of elution buffer (20 mM HEPES 150 mM NaCl 

500 mM imidazole 0.02% NaN3 pH = 7.4). Proteins eluted at 80% elution buffer was 

dialysed against 10 mM HEPES 150 mM NaCl 0.02% NaN3 pH = 7.4 at 4°C overnight. 

The sample should turn turbid as GFP-REM86-198 will assemble overnight (MARTINEZ). 

It is centrifuged at 100000 g 4°C 1h, the pellet, containing both GFP-REM86-198 and 

contaminants, is resuspended then pelleted again. The last supernatant contains pure 

GFP-REM86-198. 

Production of REM1-116 in BL21-DE3 cells is induced by 1 mM IPTG during 3h at 

37°C. Cells are broken by sonication and the supernatant is loaded onto a HisTrap 

affinity column controlled by an Atka Pure 25 HPLC system (GE Healthcare) 

equilibrated with equilibration buffer and eluted with elution buffer (buffer compositions 

as described above). The eluted protein is adjusted to 0.5 mM EDTA and 1 mM DTT 

then TEV protease is added in a ~ 1/200 mass ratio. The mixture is incubated for 3h 

at RT then dialysed at 4°C overnight against 10 mM HEPES 50 mM NaCl 0.02% NaN3 
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pH=7.5. Proteins were adjusted to 7M urea for 1h at room temperature before being 

loaded on a HisTrap column equilibrated with 20 mM HEPES 50 mM NaCl 7 M urea 

pH=7.4 and 20 mM HEPES 150 mM NaCl 7 M urea pH=7.4. TEV-cleaved REM1-116 

flowed through without binding to the resin and was desalted against 10 mM HEPES 

150 mM NaCl 0.02% NaN3 pH=7.4 using a HiPrep column (GE Healthcare). 

 

B. Preparation and observation of giant vesicles (GVs) 

200 µg of lipids, are mixed in solvent, adjusted to 0.1 mg/mL (final concentration) of 

rhodamine-dioleoyl-PE (RhodPE), spread drop-by-drop on a Teflon disk and dried for 

at least 1 h in a vacuum chamber. The remaining lipids are stored at -20°C for future 

use. The disk is pre-hydrated under a water-saturated nitrogen stream, covered with 5 

mL of 300 mM sucrose and incubated at 34°C overnight. Observation chambers are 

coated with 5% BSA (w/v) for 20 min then rinsed three times with 10 mM HEPES 300 

mM NaCl pH = 7.4. With large pipette tip, to avoid shearing, a drop of GV solution is 

added to the chamber, followed by ~2.10-12 moles of GFP-REM86-198, WT or EEE, if 

necessary. Lipid systems were 0.5 / 0.26/0.08/0.16 dipalmitoyl-PC (DPPC)/di-linoleoyl-

PC (DLPC)/sitosterol/anionic lipid (as indicated) plus rhodPE (molar ratio). All lipids 

were from obtained from Avanti. 

 

C. Nanodomain reconstitution for cryoEM 

Lipids are hydrated to 10 g/L with 10 mM HEPES 150 mM NaCl 0.02% NaN3 pH = 

7.4, submitted to five freeze-thaw-vortex cycles (liquid N2, 42°C water bath), mixed with 

GFP-REM86-198 to final concentrations of 0.5 g/L lipids and 1 µM GFP-REM86-198 then 

incubated at room temperature for 1-2h. Samples are loaded on glow discharged 

cryoEM grids, blotted then frozen in liquid ethane using an EM-GP plunge freezer 

(Leica). Observed are carried out on an FEI20 (Tecnai) operating at 200 keV. 

 

D. Agroninfiltration in Nicotiana benthamiana 

Proteins were transiently expressed via infection with OD600 = 0.2 Agrobacterium 

tumefaciens (strain GV3101) bearing pK7WGY2-StREM1.3-EEE (N-terminal YFP-tag) 

in four-weeks-old Nicotiana benthamiana plants grown at 22-24°C in a greenhouse. 

Leaves are observed 3 days post-infection by confocal microscopy. 

 

E. Confocal microscopy 

Observations were performed on a Leica SP5 confocal laser scanning microscopy 

system (Leica, Wetzlar, Germany) equipped with Argon, DPSS and He-Ne lasers and 

a hybrid detector. GFP was excited at 488 nm, YFP was excited at 514 nm and rhodPE 

was excited at 565 nm. 

 

III. Results 

A. StREM1.3 specifically binds to PA and PIPs, but not PS 

To reconstruct a remorin nanodomain, its lipid binding specificity must be precisely 

assessed. StREM1.3 is located at the PM’s inner leaflet, where most negatively 

charged lipids lie. Expression of SAC1 in Nicotiana benthamiana leaves, which 
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removes the last phosphate of PI4Ps, abolishes PM targeting (Gronnier et al., 2017). 
2H static ssNMR confirmed a specific interaction between StREM1.3, with or without 

its N-terminal IDD, and PIPs along with an overall increase in lipid order (Legrand et 

al., 2019). 

A truncated GFP-tagged StREM1.3 (GFP-REM86-198), without its N-terminal IDD, is 

mixed with GVs of defined lipid compositions, comprising some rhodamine-PE 

(rhoPE). Phase separation was favoured by mixing di-palmitoyl-phosphatidyl-choline 

(DPPC), di-linoleyl-phosphatidyl-choline (DLPC) and sitosterol. Using confocal 

microscopy, we assessed GFP-REM86-198’s binding ability towards negatively charged 

lipids (Figure 71). GFP-REM86-198 does not bind to neither PC nor PS, but does bind to 

PA and various phosphoinositides: PI4P, PI5P, PI(4,5)P2, PI(3,4,5)P3 and PIPs from 

bovine brain (PIPmix) (PIPmix is PS/PI/PI4P/PI4,5P2 50/20/15/15 (Gronnier et al., 

2017). 

 

 
Figure 71 

Liposome binding assay on GFP-REM86-198. RhodPE (red) labels all liposomes. 

GFP-REM86-198 (green) decorates liposomes it binds to. Scale bars: 10 µm. 

 

To test whether PS could play an indirect role in the nanodomain clustering of 

StREM1.3, we assessed its distribution at the PM in epidermal cells of Nicotiana 

benthamiana leaves expressing wild-type (WT) function PS synthase (Platre et al., 

2018) or a knocked-out (KO) version. Preliminary results show that StREM1.3 was still 

able to segregate into nanodomains at the PM, although these appear larger and more 

diffuse (Figure 72). 
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Figure 72 

PM repartition of GFP-StREM1.3 in 5-days old seedling roots of Arabidopsis 

thaliana expressing WT or knocked-out (KO) pss. Scale bars: 10 µm. 

 

B. StREM1.3 must be oligomerised to ensure a tight membrane binding 

Mutation of critical hydrophobic residues impairs PM targeting (Martinez et al., 

2018). Here, leucines were mutated to glutamates, to remove hydrophobic residues at 

these positions, instead of prolines, to avoid disruption of coiled-coil helices. 

Just like REM86-198-PPP, REM86-198-EEE displays a severely impaired PM targeting 

in vivo (Figure 73). Its biological activity, as assessed by its ability to slow down the 

cell-to-cell propagation of the Potato Virus X (Perraki et al., 2014, 2018; Raffaele et al., 

2009b), remains to be tested. Binding of PIP-enriched vesicles by GFP-REM86-198-EEE 

in vitro seems vastly reduced (Figure 74), although these observations should be 

repeated to make sure this result is reproducible (n = 2). 

 
Figure 73 

Cellular localisation of StREM1.3 WT (left) (Gronnier et al., 2017) and coiled-coil 

disrupted EEE (right). Scale bars: 10 µm. 
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Figure 74 

Liposome binding assay for GFP-REM86-198-EEE on liposomes containing 

PIPmix. Notice the homogeneous background noise from the GFP and its absence of 

signal on the liposome. Scale bars: 10 µm. 

 

C. Close visual of synthetic remorin nanodomains 

Considering the mass of structural data available on StREM1.3 nanodomains, both 

from previous sections and literature, we shall now attempt to reconstitute and observe 

them. Were the GVs from section 1 simply decorated with GFP-REM86-198 or where 

they organised into nanodomains? Confocal microscopy does not allow to 

unambiguously distinguish nanodomains about 80 nm wide. Also, GVs, unless they 

are resting at the bottom of the observation chamber, which is rare, swim in solution. 

Yet, spt-PALM and STED super-resolution microscopies require an immobile sample. 

Other methodologies must be employed. 

We turned ourselves towards cryoEM and AFM. All we should need are bulk lipids, 

here DPPC and DLPC, some sterols, here sitosterol, and some PIPs. For cryoEM, 

liposomes, mostly LUVs (100 - 1000 nm in diameter) and SUVs (< 100 nm in diameter) 

with some multilamellar vesicles as well, are pre-formed by five freeze-thaw-vortex 

cycles then mixed with GFP-REM86-198. The rationale of choosing the GFP-tagged 

version was double: (1) the N-terminal IDD is not involved in membrane interactions 

(Legrand et al., 2019), (2) REM86-198 alone is too small to be unambiguously detected 

by cryoEM (13 kDa), the GFP makes it 27 kDa bigger (total size: 40 kDa) and thus 

easier to spot. 
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Figure 75 

CryoEM images of GFP-REM86-198 nanodomains. Notice how the protein 

decorates both liposomes with a heterogeneous repartition. (A) Inlet: schematic 

description of a GFP-REM86-198 nanodomain. Proteins attach to the outer leaflet of 

the liposome and can be easily detected on the liposome’s equatorial plane. A region 
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of the liposome surrounding this equatorial plane (dashed line) appears rippled: it 

could be the rest of the nanodomain outside the equatorial plane. (B) Inlet: closer 

view of a GFP-REM86-198 nanodomain (X5 magnification). Scale bars: 50 nm. 

 

We observe dense objects decorating patches of liposomes (Figure 75A, inlet). In 

these patches, one can distinguish small cylindrical objects directly and exclusively 

attached to the outer leaflet of liposomes (Figure 75A-B). Since these objects are 

absent of samples without GFP-REM86-198, we conclude that these objects are GFP-

REM86-198 and these patchy structures are, or at least resemble closely to, GFP-REM86-

198 nanodomains. Tomography would be required to assess the distribution of angles 

between these objects and the bilayer they are attached to. In the top image, the 

membrane alone is 6.8 ± 0.3 nm thick and the nanodomain is 10.8 ± 1.3 nm thick. In 

the bottom image, thicknesses are 5.3 ± 0.1 nm for the membrane alone and 10.4 ± 

0.3 nm for nanodomains. Thus, these nanodomains seem to be 4-5 nm thicker than 

the bulk membrane due to the presence of the remorin (Figure 75B, inlet). 

In our quest to obtain a reliable reconstitution protocol, and to push the resolution 

barrier lower, we switched to atomic force microscopy (AFM) to study the products of 

our nanodomain reconstitution attempts, using the same molecular actors as for 

cryoEM. Experiments are still ongoing. 

 

IV. Discussion 

Membrane targeting of StREM1.3 relies on PA and PIPs but not PS (Figure 71). We 

should note that all three are available at PM’s inner leaflet. Thus, the anionic 

phospholipid must bear a free terminal inorganic phosphate at its extremity to be 

targeted by RemCA through electrostatic interactions (Gronnier et al., 2017). Knocking 

out the production of PS provoked minor changes in nanoclustering that could be 

construed as a consequence of modifications to cell metabolism and signalling induced 

by the deprivation of PS, rather than implying an interaction between StREM1.3 and 

PS (Figure 72). 

Disruption of the coiled-coil, as exemplified by StREM1.3-EEE in vivo, on Nicotiana 

benthamiana leaves (Figure 73), and GFP-REM86-198-EEE in vitro on giant vesicles 

(Figure 74), greatly reduces membrane targeting. So, to reconstitute nanodomains of 

StREM1.3, the minimal set of partners seems to be: REM86-198, i.e. three RemCA plus 

a coiled-coil domain to permit a homotrimerisation (Martinez et al., 2018), PIPs, sterols 

(Gronnier et al., 2017; Legrand et al., 2019) and bulk lipids, such as DPPC and DLPC. 

With this minimal set of partners, we were able to decorate liposomes with patches 

of GFP-REM86-198. These patches shared every expected feature of a nanodomain: (1) 

a finite width around a few hundred nanometres (roughly) so not all the liposome is 

covered and (2) it is enriched in GFP-REM86-198 (Figure 75). The limitation in size of 

these nanodomains would come from the exhaustion of nanodomain components, 

particularly the protein and PIPs, in its vicinity. 

 

V. Conclusion 
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We are currently attempting to improve the yield of our protocol for the reconstitution 

of StREM1.3 nanodomains. So far, we were able to reconstitute and observe GFP-

REM86-198 nanodomains using cryoEM, but analyses on REM86-198 and StREM1.3, by 

both cryoEM and AFM are on their way. Once more thorough observations can be 

performed, studying the arrangement of these remorins inside a nanodomain will 

provide capital insights into their functioning. Another key methodology to achieve this 

goal would be electron cryotomography to reconstruct a 3D model of a remorin 

nanodomain. 
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Conclusion 

1. What is the nanoclustering mechanism of StREM1.3? 

As detailed in Article V, StREM1.3 binds to negatively charged phospholipids with 

the exception of PS. In other words, it targets phospholipids with a free terminal 

phosphate: PIPs and PA. StREM1.3 has an ordering effect on lipid membranes 

mimicking nanodomains (Article IV) (Legrand et al., 2019), which is an expected 

feature of nanodomains enriched in both cholesterol (Raffaele et al., 2009b) and PIPs 

with saturated acyl chains (Furt et al., 2010). Indeed, both PIPs and sterols seem 

important for RemCA to influence membrane dynamics (Article IV) (Legrand et al., 

2019). And so we come back to wandering whether this nanoclustering is lipid-, protein- 

or interactome-driven. Even though PIP clusters may pre-exist (Bilkova et al., 2017; 

van den Bogaart et al., 2011; Ji et al., 2015), there is an undeniable effect of StREM1.3 

on lipid dynamics that we attributed to protein-driven nanoclustering. Thus, both 

mechanisms, PIP- and StREM1.3-induced clustering seem at work. The influence of 

the interactome will be discussed in section 3. 

Oligomerisation of StREM1.3 was proved to depend on the formation of a coiled-

coil domain sustained by hydrophobic contacts, and whose integrity is needed to 

ensure an efficient PM targeting in vivo (Article I) (Martinez et al., 2018). In addition, 

these coiled-coil domains are the building blocks of StREM1.3 filaments. Moreover, 

the nanoclustering mechanism of StREM1.3 is linked to its ability to oligomerise: it 

cannot be summarised by RemCA alone, only by RemCA plus the coiled-coil domain, 

(the N-terminal IDD is dispensable). Yet, phosphorylation modifies PM mobility, hinting 

at a crucial influence of StREM1.3’s interactome on its PM repartition (Article II) 

(Perraki et al., 2018). These interactions are postulated to happen mainly at the N-

terminal IDD, challenging the idea that this domain would be completely irrelevant to 

the protein’s behaviour at the PM. We will elaborate further on this line of thought in 

section 3. 

Aside from StREM1.3 specifically, we still wonder what differences in nanoclustering 

mechanism produce such a variety of different remorin nanodomains in Arabidopsis 

thaliana (Jarsch et al., 2014). Reminiscing on the diversity of RemCA domains involved 

herein (Konrad et al., 2014), some of which are acylated or display a quite different 

repartition of basic, acidic and hydrophobic residues, or both, we could attribute some 

of these differences in PM repartition to differences in lipid specificity. However, 

AtREM6.1 and AtREM1.2 strongly anti-colocalise even though their RemCA domains 

both bear a rather basic N-terminal and a rather acidic C-terminal with two 

palmitoylation sites. In such a case, to test whether the RemCA is the sole determinant 

of their PM repartition, one could swap the RemCA of one remorin with the other and 

assess whether they would then colocalise. In the same vein, one could swap coiled-

coil domains instead of RemCA: where would a hybrid oligomeric remorin be localised?  

Alternatively, we can think that the RemCA is not the sole determinant in PM 

repartition and colocalisation or anti-colocalisation with other remorins. Once more, the 

answer we seek might lie within the interactome (section 3). 
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2. What is the minimal set of partners required to make StREM1.3 

nanodomains? 

The work towards the reconstitution of minimal StREM1.3 nanodomains in vitro has 

begun. We know that PIPs and PA but not PS interact StREM1.3 (Article V) and that 

sterols are essential partners of this nanodomain system (Article IV) (Legrand et al., 

2019). Moreover, knockouts of PS synthase mutants, effectively removing all PS 

content from the cells, do not prevent the formation of StREM1.3 nanodomains. 

For now, we hypothesise that the necessary partners for the formation of these 

nanodomains are: REM86-198, a bulk phospholipid like PC, PIPs and sterols. The 

importance of acyl chain lengths and unsaturations, although important in a case like 

the Ras nanodomain system (Zhou et al., 2017), was not studied here: the combination 

of electrostatic interactions with PIPs and hydrophobic effects both involving the 

RemCA and the PM were already shown to be the major mechanisms of membrane 

targeting (Gronnier et al., 2017). Also, StREM1.3, unlike Ras, does not possess a 

farnesyl anchor, hence a lesser focus on a hypothetical acyl chain specificity. 

 

3. How interactors of StREM1.3 may regulate its relationship with membranes 

and biological functions? 

To understand how StREM1.3’s interactome may influence its behaviour in 

membranes, particularly in regard to phosphorylation (Article II) (Perraki et al., 2018), 

we undertook the mapping of its phosphorylated residues (Article II: addenda). 

Working on the N-terminal domain REM1-116, we described it is an IDP and remain an 

IDP even after phosphorylation by AtCPK3. 

The question remains: why is StREM1.3-DDD, a mutant mimicking a constitutively 

phosphorylated protein, more mobile than StREM1.3-AAA, a mutant mimicking a 

constitutively not phosphorylated protein (Article II) (Perraki et al., 2018)? If we 

consider phosphorylation as a molecular switch, modifying the protein’s interactome, it 

is tempting to view the changes in the mobility of StREM1.3-DDD as a consequence 

of interactors driving the protein out of nanodomains, while StREM1.3-AAA would 

remain strictly within. StREM1.3 has an intermediate phenotype, indicating either a 

turnover between non-phosphorylated and phosphorylated forms or, less likely, an 

inhibition of StREM1.3’s phosphorylation when it is in nanodomains through an 

unknown mechanism. 

With the goal of being more biologically relevant, it will be important to find what 

phosphorylates StREM1.3 in Solanum tuberosum (potato): the only remorin kinase we 

know of, for now, is AtCPK3 from Arabidopsis thaliana (Article II) (Perraki et al., 2018). 

Conversely, is there a phosphatase that can dephosphorylate pStREM1.3? 

Alternatively, we should switch to an AtREM to take advantage of the many genetic 

resources available on remorins in Arabidopsis thaliana. 

One hypothesis to explain how the PM repartition of StREM1.3 could be influenced 

by its interactome should be investigated soon. Unpublished work by Dr Paul Gouguet 

and Dr Julien Gronnier identified the Actin Depolymerising Factor (ADF) as an 

interactor of StREM1.3-DDD, but not the WT, by both split ubiquitin assay and bi-
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fluorescence complementation. ADF, as its name suggests, binds to filamentous F-

actin and provokes its depolymerisation into G-actin monomers: it disrupts the actin 

cytoskeleton. Could it be that (1) nanodomains of non-phosphorylated StREM1.3 are 

pinned by actin and that (2) upon phosphorylation of StREM1.3, StADF is recruited, 

disrupting the actin cytoskeleton, therefore freeing StREM1.3 from pinning by actin and 

allowing it to escape the nanodomain, hence the higher PM mobility of StREM1.3-DDD 

(Article II) (Perraki et al., 2018)? (Szymanski et al., 2015) showed that disrupting the 

actin cytoskeleton modifies the PM repartition of AtREM1.2 and that AtREM1.2 and 

AtREM1.3, found to be enriched in DIMs under physiological conditions, target DSMs 

upon disruption of either the actin or the microtubule cytoskeleton. This interplay 

between StREM1.3 and actin would well illustrate the concept of fence and pickets as 

well as provide a plausible explanation to the difference in nanodomain localisation 

between different remorins (Jarsch et al., 2014), based on differences of interactome. 

 

4. Final words 

StREM1.3, likely as a homotrimer in the cytosol through a coiled-coil mediated 

oligomerisation (Article I) (Martinez et al., 2018), anchors to the inner leaflet of the PM 

using a combination of electrostatic interactions between the polar heads of PIPs, 

mostly PI4P, and two positively charged lysines of its three RemCA domains, as well 

as hydrophobic effects  (Gronnier et al., 2017). More sitosterol and PIPs are then 

recruited to the nascent nanodomain where the lipid order parameter increases (Article 

IV) (Legrand et al., 2019). Phosphorylation of the N-terminal IDD influences the mobility 

of StREM1.3 at the PM (Article II and addenda) (Perraki et al., 2018). 

The reconstitution of StREM1.3 nanodomains (Article V) and the study of its 

phosphorylation and interaction mechanism with StADF (Article II and addenda) 

(Perraki et al., 2018) are promising outlooks for future studies. The former will give 

access to a powerful platform to experiment upon nanodomain formation and validate 

our hypothetical nanoclustering model (Article IV) (Legrand et al., 2019). The latter will 

elaborate on the biological implications of StREM1.3, how they are performed and how 

they may impact its behaviour at the PM. New interactors could be studied using the 

same methodology. 

 

At last, now that this manuscript is coming to an end and there is nothing left to spoil, 

I shall leave the reader with the revised draft of our review on remorins (Gouguet et al., 

2020). 
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Annex: an up-to-date review on 

remorins 

This review was the introduction of the PhD manuscript of Dr Paul Gouguet, my 

predecessor on the two decades long project to study remorins. It has recently been 

accepted for publication. From the very start, it was written with the intention to become 

the most comprehensive and up-to-date review on remorins. It covers all remorin 

groups and summarises all demonstrated biological functions along with putative ones. 

The history of their discovery and their biophysics are also discussed to their fullest 

extent. New axes of research are also discussed. 

Most of the writing was done by Dr Paul Gouguet and reviewed by Dr Sébastien 

Mongrand. Among all the authors, Dr Birgit Habenstein and I stepped in to write about 

the biophysics of the remorins, and that of StREM1.3 in particular. In conjunction with 

Dr Sébastien Mongrand, we also designed the related figure. A table summing up, in 

the light of this review, all established functions of remorins will be available; it is not 

part of the accepted manuscript. 
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Abstract 

REMORINs (REMs) are a plant-specific protein family, proposed regulators of 

membrane-associated molecular assemblies and well-established markers of 

plasma membrane nanodomains. REMs have been shown to play a diverse set of 

functions in plant interactions with pathogens and symbionts, responses to abiotic 

stresses, hormones signaling and cell-to-cell communication. In this review, we 

highlight the established and more putative roles of REMs throughout the 

literature. We discuss the physiological functions of REMORINs, the 

mechanisms underlying their nanodomain-organization and their putative role as 

regulators of nanodomain-associated molecular assemblies. Furthermore, we 

discuss how REMORINs phosphorylation may regulate their functional 

versatility. Overall, through data-mining and comparative analysis of the 

literature, we suggest how to further study the molecular mechanisms 

underpinning the functions of REMs. 
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Advances Box 

• REMORINs are plant-specific membrane-bound proteins family involved 

in response to biotic (bacteria, viruses, fungi, oomycetes, mycorrhizae) and 

abiotic stresses (cold, mannitol, salt…), as well as developmental cues. 

• REMORINs are strongly embedded in the inner-leaflet of the plasma 

membrane by an unconventional mechanism involving anionic lipids and sterols 

• REMORINs are proposed as nanodomain-organizing proteins. 

• REMORINs are highly phosphorylated proteins containing putative 

intrinsically disordered regions, which likely play a role in scaffolding protein 

complexes. 

• REMORINs regulate cell-to-cell connectivity through plasmodesmata. 

 

Outstanding Questions Box 

• How can REMORIN functional versatility be explained? 

• What are the consequences of the phosphorylation(s) of REMORIN’s 

putative intrinsically disordered regions in term of 3D structure, protein-protein 

interaction and nanodomain organization? 

• How do REMORINs regulate cell-to-cell connectivity through 

plasmodesmata? 

 

One-sentence summary 

This review collates and discusses all the available information on the plant-

specific plasma membrane-bound family of REMORIN proteins involved in a 

plethora of cellular processes, and discuss their role as potential scaffolding 

proteins. 
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REMORINS DISCOVERY 

 

REMORINs were first identified in tomato (Solanum lycopersicum) and potato (Solanum 

tuberosum) by Edward Farmer, Gregory Pearce and Clarence Ryan in 1989, in a will of 

identifying molecular actors involved in the perception of polygalacturonides (PGA) by plant 

cells (Farmer et al., 1989). PGA are pectic polysaccharides present in the plant cell wall and 

released during wounding and pathogen attack to sensitize plant defense. (Voxeur and Höfte, 

2016). By in vitro phosphorylation assays on isolated tomato and potato plasma membrane 

(PM), Farmer et al. found that PGA treatment caused the phosphorylation of a protein of 34 

kilodaltons, named phosphorylated protein of 34 kilodaltons or pp34 (Farmer et al., 1989). 

Pp34 was then used as a marker of the plant response to wounding (Farmer et al., 1991). 

Unintuitively, the purification (Jacinto et al., 1993) and cloning of pp34 (Reymond et al., 1996) 

revealed that its sequence turned out to be one of a hydrophilic protein even though it is tightly 

bound to the PM. Pp34 was then renamed REMORIN (later named StREM1.3 for Solanum 

tuberosum REMORIN of Group 1 isoform 3) in reference to remora or “suckerfish” depicted 

as attaching itself to vessels and larger fish described by J.L. Borges in ‘‘Book of Imaginary 

Beings’’ (El libro de los seres imaginarios, J.L. Borges, 1969), and reflecting REMORIN’s 

ability to bind to the PM whilst displaying an overall hydrophilic residue profile. Concurrently 

to the experiments of Farmer et al., Alliote et al. isolated a similar protein in Arabidopsis 

thaliana termed DNA-binding protein (dbp). This gene would be later known as AtREM1.3 

(At2g45820) and was first characterized as a DNA-binding protein due to its highly-hydrophilic 

nature permitting electrostatic interactions with DNA and its amino-acid composition similar 

to Histone 1 proteins (Alliotte et al., 1989).  

Genome-wide analyses have shown that the REM family is specific to the land-plant lineage 

(Raffaele et al., 2007). REM proteins present a highly-conserved C-terminal domain and a 

divergent N-terminal domain, which has been the basis for their phylogenetic classification into 

6 separate groups (Raffaele et al., 2007). For example, we count 19 OsREMs in rice Oryza 

sativa and 16 AtREMs in Arabidopsis thaliana. 

Since their discovery in the late 1980’s, REMs have been the subject of ever-increasing 

attention. Be they directly the subject of studies or found in different screens of “omics” 

approaches, REMs are consistently found in a large variety of academic inquiries, providing 

grist to the mill to the idea that they could play a central role in plant development and 

adaptation. The first REMORIN protein identified in potato, which would be later named 

StREM1.3 for Solanum tuberosum REMORIN of Group 1 isoform 3. REMORIN’s polyanion 



206 

 

binding capacity, originally linked to binding cell wall compounds (Reymond et al., 1996) 

would be later mitigated by the discovery of REMORIN’s presence in the inner-leaflet of the 

PM. 

In this review, we address the different characteristics that have been described for REMs as 

well as an overview of the physiological roles that REMs may participate in. We will discuss 

how REMs are anchored to the PM and cluster into PM-nanodomains, how they are 

phosphorylated and the subsequent role of these post-translational modifications. Finally, we 

provide a number of perspectives on how REMs should be further studied in order to better 

understand the many physiological conditions involving REMs. 

 

REMORINS LOCALIZE IN DIVERSE AND COEXISTING NANODOMAINS 

 

REMORINs predominantly associate with the PM (Raffaele et al., 2009a; Marín et al., 2012; 

Jarsch et al., 2014; Konrad et al., 2014; Perraki et al., 2014). Moreover, isoforms from Group 

1 and Group 6 REMs have been shown to be partially associated with the plasmodesmata (PD)-

PM in rice and in Solanaceae (Raffaele et al., 2009a; Fernandez-Calvino et al., 2011; Gui et 

al., 2014; Perraki et al., 2018). Nonetheless, translocation into the nucleus upon interaction with 

α-importins (Marín et al., 2012) and re-localization to intracellular foci upon perception of an 

immunogenic epitope of bacterial flagellum (Albers et al., 2019) have been reported for Group 

1 and Group 4 REMs, respectively. However, the ER-PM contact sites observed by bimolecular 

fluorescence complementation (BiFC) for StREM1.3 are likely artefactual and highlight the 

risk of using the BiFC to study membrane protein interactions in plants (Tao et al., 2019). 

Concerning their PM localization, the identification of Group 1 REMs in tobacco detergent-

resistant membrane fractions (DRM; a biochemical counterpart of membrane sub-

compartmentalization) first suggested a lateral organization of REMs into clusters at the PM 

(Mongrand et al., 2004). REMs’ co-purification with DRM appeared to be dependent on the 

presence of phytosterols as it was reported to be absent of DRM in the sterol methyl-transferase 

mutant smt1 albeit still present in this fraction in the sterol glycosylation mutant ugt80A2;B1 

(Zauber et al., 2014). 

In relation with the above biochemical data, electron microscopy immunolocalization, 

stimulated-emission depletion (STED) microscopy and photoactivated localization microscopy 

(PALM) studies have all showed that Group 1 REMs were organized into nanodomains around 

about 70-90 nm in diameter in Arabidopsis and Solanaceae species (Raffaele et al., 2009a; 

Demir and Horntrich, 2013; Gronnier et al., 2017). Members of other groups in Arabidopsis 
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and Medicago are organized in PM domains that can be distinguished in density, size and shape 

(Jarsch et al., 2014). Interestingly, evolutionary distant REMs (belonging to distinct groups e.g. 

groups 1 and 6) localize in separate nanodomains suggesting that distinct REMs cluster into 

separate domains in order to play independent functions (Jarsch et al., 2014; Bücherl et al., 

2017). It must also be noted that not all REMs are found in DRM-fractions of different plant 

tissues (Stanislas et al., 2009; Keinath et al., 2010; Srivastava et al., 2013; Takahashi et al., 

2013) hinting to a diversity of REM-associated PM-domains.  

 

Mechanisms of REMs Association to PM Nanodomains  

A number of works have been performed to understand how highly-hydrophilic REMs could 

be tightly anchored to the PM and the molecular interactions leading to the clustering of REMs 

into nanodomains. REMs are anchored to the PM inner-leaflet via the unconventional lipid-

binding motif called REMORIN C-terminal Anchor (REM-CA) (Raffaele et al., 2009; Konrad 

et al., 2014; Perraki et al., 2012; Gronnier et al., 2017). In the past few years, several molecular 

determinants regulating REMs’ nanodomain organization have emerged mostly for Group 1 

and 2 REMs and need to be further studied to fully understand the diversity of REMs’ clustering 

(Jarsch et al., 2014). There are at least four determinants: the lipid-binding properties of REM-

CA domain, REM-CA S-acylation, REM-REM oligomerization and REM-cytoskeleton 

interactions. Here we review the knowledge obtained to explain the molecular mechanisms at 

play. 

 

1. The unconventional membrane-anchoring REMORIN C-terminal Anchor domain 

(REM-CA) and S-acylation 

REMs do not contain target-peptides or transmembrane domains (Raffaele et al., 2007) 

and attached to the PM independently of the conventional secretory pathway (Gui et al., 2015; 

Gronnier et al., 2017). StREM1.3, SYMREM1 (also termed MtREM2.2) as well as AtREM1.2, 

AtREM1.3, AtREM4.2, AtREM6.1 and AtREM6.4 have been described to be strictly PM 

localized thanks to their REM-CA moieties (Raffaele et al., 2009a; Lefebvre et al., 2010; 

Perraki et al., 2012; Raffaele, 2013; Jarsch et al., 2014; Konrad et al., 2014; Gronnier et al., 

2017). In the case of StREM1.3, the last 28 amino acids (i.e. REM-CA) partially folds into an 

alpha helix in the presence of PI4P and sitosterol and also inserts itself into the hydrophobic 

core of the bilayer (Gronnier et al., 2017). This is driven by protein-lipid interactions between 

the REM-CA and the PM's inner-leaflet lipids: negatively-charged phosphoinositides (PIPs), 

notably phosphatidylinositol-4-phosphate (PI4P), and sterols, notably sitosterol (Raffaele et al., 
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2009a; Legrand et al., 2019), (Figure 1). REM-CA binds to PI4P with a yet unknown 

stoichiometry through its Lysine/Arginine residues via electrostatic interactions. Association of 

StREM1.3’s REM-CA with negatively-charged phospholipids regulates its nanodomain 

organization (Gronnier et al., 2017).  

In mammals, PIPs have been reported to possess the ability to cluster in vivo to form 

nanodomains (van den Bogaart et al., 2011). It was also shown, in vitro, that cholesterol are 

found in the vicinity of saturated phospholipids rather than of unsaturated ones (Engberg et al., 

2016). This mechanism creates a so-called Liquid-ordered domain in the lipid bilayer. In plants, 

the fact that PIPs bear mostly saturated acyl-chains suggest that phytosterols may also actively 

participate to the formation of nanodomains (Furt et al., 2010). REMs could be either targeted 

to pre-existing lipid-mediated nanodomains or participate in the organization of their own lipid 

environments. Both the latter and former possibilities for REMs’ association to PM-

nanodomains still remain open questions. 

The presence of cysteine residues in the REM-CA of many REMs raised the possibility 

of membrane association due to S-acylation. AtREM1.2 was the first REM to be found to be S-

acylated (Hemsley et al., 2013). AtREM1.2 and AtREM6.4 , lost strict-PM localization when 

their REM-CA Cysteine residues were substituted by Alanine residues (Konrad et al., 2014). 

Altered localization when S-acylation is abolished via 2-bromopalmitate was also observed 

with the rice REM OsREM6.6 (Gui et al., 2015). This is reminiscent of the relocalization 

observed for the S-acylation site mutant NbREM1.1C206A to RFP-ATG8e-tagged vesicles (Fu 

et al., 2018). It is important to note that NbREM1.1C206A is no longer organized in nanodomains, 

nor co-purifies with the DRM biochemical fraction (Fu et al., 2018). Yet for SYMREM1, the 

Cysteine substitution did not reduce its PM-localization and did not change its segregation 

pattern in the PM, hinting to a more complex PM association mechanism. Altogether, all of the 

above mentioned data highlight the importance of the REM-CA as a determinant of REM’s 

general membrane affinity as well as REM’s organization within these membranes. 

Interestingly, many REMs do not have predicted S-acylation sites in their REM-CA (Konrad et 

al., 2014; Gronnier et al., 2017), suggesting a degree of diversity in the mechanisms regulating 

REMs’ PM targeting and nanodomain organization. 

2. REM Oligomerization 

REM oligomerization is highly important for its targeting and function. REMs were first 

proposed to form oligomeric structures. The first evidence of the oligomerization was reported 

in Bariola et al. (2004) where the group 1 REMORIN coiled-coil domain was described to 

participate in the formation of REM oligomers. Electron microscopy and glutaraldehyde 
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crosslinking assays evidenced REM multimerization via the C-terminal region of two Group 1 

REMs i.e. StREM1.3 and SlREM1.2 (Bariola et al., 2004). Bariola et al. (2004) proposed via 

analytical ultracentrifugation of recombinant proteins and cross-linking experiments on isolated 

PM that Group 1 REMs associate into dimers, tetramers or higher-order oligomeric structures 

via their coiled-coil domains. Alternatively, Perraki et al. (2012) developed the hypothesis that 

StREM1.3 would trimerize either before or after the anchoring event at the PM. This hypothesis 

was upheld by gel filtration assays with the E. coli purified 6His-tagged full-length StREM1.3 

protein (Perraki et al., 2012). The exact order of oligomerization of REMs in planta is still 

lacking (Jaillais and Ott, 2020). 

In our current view, StREM1.3 is homo-trimeric in solution bundling three REM-CA 

domains together (Bariola et al., 2004; Martinez et al., 2018). This trimeric hypothesis was 

further developed in Martinez et al. (2018) upon in silico modelling confirmed by Solid-State 

NMR in conjunction with cryo-Electron Microscopy (cryo-EM) and in vivo observations of 

mutations in the coiled-coil domain that impair PM-association (Figure 1). These in vivo 

observations seem to corroborate the hypothesis that in a minimal state, the trimeric form is 

necessary for PM anchoring. Cryo-EM further revealed a possible lateral association of the 

trimeric REMs in the presence of an N-terminal 6His-tag (Martinez et al., 2018), yet the 

presence of a 6His-tag may also alter the oligomeric behavior of proteins (Amor-Mahjoub et 

al., 2006). This casts a doubt on the in vivo relevance of the trimer of StREM1.3 observed by 

gel filtration (Perraki et al., 2012). In any case, the existence in vivo of homo-oligomers and 

higher-order oligomers has not been invalidated by the latest data. Formation of higher-order 

oligomers, i.e. oligomers of trimers, as a mean to drive nanoclustering cannot be excluded but 

has yet to be tested. Interactions between neighboring REM trimers are likely to further stabilize 

nanodomain clustering. 

Group 1 AtREMs have been found to form oligomers in a large-scale study of PM protein 

oligomerization in leaves (McBride et al., 2017). AtREM1.2, AtREM1.3 and AtREM1.4 were 

predicted to form oligomeric complexes according to their ratio of the calculated mass to the 

apparent mass (Rapp) score which calculates a ratio between the predicted molecular mass of 

the monomer and the measured molecular mass of the complex in which the protein is found. 

AtREM1.2, AtREM1.3 and AtREM1.4 were found in different complexes to have a ratio of the 

calculated mass to the apparent mass scores (Rapp) ranging on average from 35 to 60 for 

AtREM1.2, 25 for AtREM1.3 and 30 to 95 for AtREM1.4 (McBride et al., 2017). This data 

may suggest that in addition to being homo-oligomerized, Group 1 REMs are also forming 

multi-protein complexes. This idea has already been suggested in the literature, notably in 
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Lefebvre et al. (2010) where REMs are compared to caveolins considering the common 

properties they share: small, oligomeric, lipid raft-associated scaffold proteins that can form 

filamentous structures. 

3. REM Association with the Cytoskeleton 

In the seminal work of Jarsch et al. (2014), filamentous exclusion zones observed at the 

surface of the PM have led to think that REMs could be associated with the cortical 

cytoskeleton. A localization dependent on microtubule polymerization has been reported using 

the microtubule depolymerizing drug oryzalin. Oryzalin treatment substantially mislocalized 

AtREM1.2 that was originally at the PM in domains (Szymanski et al., 2015). Moreover, 

AtREM6.6, that localizes at fibrillar structures and to PM domains, has been shown to be 

affected in its fibrillar localization by oryzalin treatment (Jarsch et al., 2014; Konrad et al., 

2014). 

This interplay between the cortical cytoskeleton and PM-nanodomains fits with the “fences 

and pickets” paradigm (Kusumi et al., 2012), where REMs could play a role as a putative 

scaffold protein. This interplay with actin has been further demonstrated for other REMs such 

as SYMREM1. SYMREM1’s association to PM-nanodomains has been shown to be 

destabilized by the actin depolymerizing drug, latrunculin B, yet not by the microtubule 

depolymerizing drug, oryzalin. SYMREM1’s presence at the PM was also shown to be essential 

for the establishment of FLOT4-LYK3 domains that are dependent on the contact between 

FLOT4 and the actin cytoskeleton (Liang et al., 2018) (see Figure 2B). The rice Group 6 REM, 

OsREM6.6 (or GSD1 for grain setting defect 1, see below), has also been shown to associate 

with the actin cytoskeleton. Treatment with cytochalasin D (a potent inhibitor of actin 

polymerization) completely disrupted the punctate localization pattern of AtREM1.2 and 

AtREM1.3 to a more uniform distribution with smaller punctate patterns of lower intensity 

(Szymanski et al., 2015). Additionally, AtREM1.2 was shown to associate with the actin 

cytoskeleton under viral infection (Cheng et al., 2020). This data reveals the strong relationship 

between REMs’ anchoring to the PM and the actin cytoskeleton, although the functional 

mechanism remains to be tackled. 
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THE BIOLOGICAL FUNCTIONS OF REMORINS 
Established functions of REMORIN proteins 

Plant-Microbe Interactions 

Numerous studies have reported the implication of REMs in plant interactions with 

microorganisms. 

Viruses 

The first REM to be shown as implicated in the context of viral infection has been 

StREM1.3. It has been demonstrated that its over-expression leads to the limiting of the cell-

to-cell movement of Potato Virus X (PVX), and that its under-expression (RNAi lines) lead to 

an acceleration of the PVX movement (Raffaele et al., 2009) (Perraki et al., 2018). A general 

effect on the REM-dependent gating of PD was also shown in the presence of viral movement 

proteins such as 30K from the Tobacco Mosaic Virus (TMV) or Hc-Pro from the Potato Virus 

Y (PVY) (Perraki et al., 2014). In addition to limiting PVX cell-to-cell movement, StREM1.3 

has also recently been shown to limit TMV cell-to-cell propagation (Perraki et al., 2018). Over-

expression of StREM1.3 was shown not to impair the silencing suppressor activity of the PVX-

encoded TRIPLE-GENE BLOCK protein 1 (TGBp1) (Perraki et al., 2012), but rather to induce 

the increase in callose accumulation at PD pit-fields (Perraki et al., 2018). Furthermore, 

StREM1.3’s capacity in hindering PVX cell-to-cell movement has been shown to be abolished 

when REM-CA is mutated, thereby modifying its targeting to the PM (Gronnier et al., 2017). 

Additionally, StREM1.3 was shown to physically interact with the PVX movement protein 

TGBp1 with or without an impaired REM-CA domain (Perraki et al., 2012). 

In Perraki et al., (2018), it was shown that PVX-activated kinases are responsible for 

StREM1.3’s phosphorylation potentially on residues S74/T86/S91 and that expression of the 

phosphomimetic, but not the phosphoablative mutant of StREM1.3 hampered virus cell-to-cell 

propagation to similar levels with the wild type. Importantly, the calcium-dependent protein 

kinase AtCPK3, which could phosphorylate StREM1.3 in vitro, could also restrict PVX cell-

to-cell movement in a REM-dependent manner. In vitro, the StREM1.3 phosphomutants were 

not phosphorylated by AtCPK3 (Perraki et al., 2018). This suggests that an AtCPK3 ortholog 

in potato could potentially regulate StREM1.3 in vivo for anti-viral defense. Moreover, the 

phosphorylation mutants had an impact on the localization of REM at PD and on callose 

deposition, associating phosphorylation status, protein mobility, PD permeability and cell-to-

cell viral propagation (Perraki et al., 2018, Figure 2A). 

Solanaceae Group 1 REMs have also been studied in the context of Tenuivirus infection. N. 

benthamiana NbREM1.1 and NbREM1.2 were shown to be degraded during Rice Stripe Virus 
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(RSV) infection in consequence to the interference of the RSV-encoded protein, NSvc4. The 

degradation of NbREM1.1 and NbREM1.2 via the autophagy pathway led to RSV 

circumventing NbREM1-associated resistance (Fu et al., 2018). In contrast, a recent study has 

underlined the effect of the tobacco REM NtREM1.2 on the cell-to-cell movement of a 

Tobamovirus, the Tomato Mosaic Virus (ToMV) (Sasaki et al., 2018). ToMV infection and the 

overexpression of ToMV movement proteins separately affected NtREM1.2’s localization by 

inducing its aggregation at the PM. Dissimilarly to StREM1.3, which is known to localize in a 

patchy pattern at the PM and is present in PM-nanodomains, NtREM1.2 localized in a uniform 

fashion throughout the PM regardless of N-terminal or C-terminal fusion to fluorescent tags. 

Considering the high sequence conservation of the C-terminal region, this suggested that the 

N-terminal region was involved in NtREM1.2’s characteristic localization. Interestingly, 

NtREM1.2 was shown to interact and colocalize with ToMV’s 30-kDa movement protein at 

PD. Agrobacterium-mediated transient expression of NtREM1.2 was also shown to slightly 

increase ToMV infection foci size (Sasaki et al., 2018). Moreover, in ToMV infected cells, 

NtREM1.2 aggregates occur close to tubular ER structures and are associated with ToMV’s 30-

kDa movement protein bodies that appeared to be linked to the ER-Actin network (Sasaki et 

al., 2018). Finally, A. thaliana AtREM1.2 has been proposed to play a role in Turnip Mosaic 

Virus (TuMV) cell-to-cell movement by competing with the TuMV protein VPg in the actin-

dependent regulation of PD aperture (Cheng et al., 2020). 

Group 4 REMs have been reported as positive regulators of viral infection. AtREM4.1 and 

AtREM4.2 were shown to be susceptibility factors during Beet Curly Top Virus (BCTV) and 

Beet Severe curly Top Virus (BSCTV) infection. This was shown using single- and double- 

knock-out and overexpressing lines for AtREM4.1 and AtREM4.2. This effect of Group 4 

REMs on geminiviral infection could be linked to SnRK1, an important positive regulator of 

plant stress involved in antiviral defense, which could phosphorylate AtREM4.1 in vitro (Son 

et al., 2014). 

Bacterial Symbiosis 

The Group 2 REMs merely constituted of a C_domain (c.f. Figure 1A) (Raffaele et al., 

2007), have been characterized by their role in the establishment of infection threads (IT) during 

the symbiosis of M. truncatula and Lotus japonicus with Rhizobiaceae family bacteria by 

participating in the formation of root nodules (Lefebvre et al., 2010; Tóth et al., 2012). 

SYMREM1 has been shown to be specifically expressed in M. truncatula roots and nodules 

with an expression strongly induced by Nod factor treatment (Lefebvre et al., 2010), which are 

lipo-chitooligosaccharides produced by symbiotic bacteria in order to initiate symbiosis 
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(Oldroyd, 2013). Furthermore, SYMREM1 knock-down lines were shown to strongly reduce 

nodule establishment and growth (Lefebvre et al., 2010). Analogously, overexpression of 

Group 2 REM LjSYMREM1 significantly increased the number of nodules per root in L. 

japonicus, establishing these orthologs as key players for symbiosis in legumes (Tóth et al., 

2012). In this context, SYMREM1 has been further characterized at the molecular level. It has 

been described as a scaffold protein due to its interaction with three receptor-like kinases 

(RLKs) essential for nodule establishment and maintenance i.e. NFP, DMI2 and LYK3 

(Lefebvre et al., 2010). This could be a recruiting process of RLKs to specific nanodomains to 

initiate IT along with FLOT4 (Liang et al., 2018). SYMREM1 is believed to stabilize the 

interactions between FLOT4 and both NFP and LYK3 which would prevent the RLKs’ 

endocytosis and ensure nodulation-promoting signaling (Liang et al., 2018; see Figure 2B). 

 Fungi and Oomycetes 

REMs have been reported to be implicated in interactions with filamentous 

pathogens/symbionts. StREM1.3 has long been established as a marker of Phytophthora 

infestans extrahaustorial membrane (EHM) (Lu et al., 2012; Bozkurt et al., 2014). StREM1.3 

has been observed to label haustoria, approximately 50 % of the time, and to specifically label 

non-callosic haustoria (Bozkurt et al., 2014). Moreover, the overexpression of StREM1.3 in N. 

benthamiana and tomato increased susceptibility to P. infestans infection (Bozkurt et al., 2014). 

The precise role of StREM1.3 during P. infestans has yet to be precisely determined. 

Interestingly, recent studies showed the specific recruitment of phosphoinositides (PIPs) to the 

plant-pathogen interfacial membrane during fungal infection (Qin et al., 2020). Different PIPs 

were found enriched at the EHM. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) was shown 

to be dynamically up-regulated at powdery mildew infection sites and recruited to the EHM, 

whereas PI4P is absent in the EHM. Furthermore, the depletion of PI(4,5)P2 in the pip5k1 

pip5k2 mutant lines inhibited fungal pathogen development and caused disease resistance, 

independent of cell death-associated defenses, involving impaired host susceptibility. The fact 

that REMs both bind to PIPs and are involved in immune responses to fungi incites to examine 

in detail the link between these two observations in future work. 

The first report of a possible implication of REMs in plant-fungal interactions was a maize 

ZmREM6.3 that was found in a QTL (Quantitative Trait Loci) analysis for resistance to 

northern leaf blight caused by the fungal pathogen Setosphaeria turcica (Jamann et al., 2016). 

A recent study further highlighted the importance of REMs in the resistance to fungal pathogens 

by identifying ZmREM1.3 in a large scale proteomic analysis (Wang et al., 2019). The 

comparison between southern corn rust (Puccinia polysora) sensitive- and resistant-maize 
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inbred lines revealed that ZmREM1.3 protein amount was increased in the resistant line 

whereas it was decreased in the sensitive line. Genetic approaches (overexpression and KO) 

confirmed that ZmREM1.3 mediated maize resistance to P. polysora, through SA/JA signaling 

and defense gene up-regulation (Wang et al., 2019).  

A recent study showed that overexpression of tomato (Solanum lycopersicum) SlREM1 

increased susceptibility to the necrotrophic fungus Botrytis cinerea (Cai et al., 2020). 

Heterologous expression of SlREM1 increased ROS accumulation and triggered other cell-

death regulators, suggesting a positive regulatory role of SlREM1 in programmed cell-death 

(PCD) and providing clues for understanding the PCD molecular regulatory networks in plants. 

 

Hormone Signaling & Abiotic Stress  

The rice (Oryza sativa) OsREM4.1 was shown to be up regulated by ABA treatment via the 

bZIP transcription factor OsZIP23, which can bind the OsREM4.1 promoter. OsREM4.1 

overexpression inhibited BR signaling by inhibiting OsSERK1 and OsBRI1 complex 

formation. This REM effect is undermined by the phosphorylation of REM. Under high BR 

concentrations, BR stabilizes the OsSERK1/OsBRI1 complex, which activates the 

phosphorylation of OsREM4.1 by OsBRI1, thereby reducing OsREM4.1’s affinity for 

OsSERK1 and enabling the BR signaling cascade. This signaling system maintains a dynamic 

equilibrium between ABA and BR signaling (Gui et al., 2016), see Figure 2C. In A. thaliana, 

AtREM1.2 and AtREM1.3 have been shown to organize lipid raft nanodomains in a salicylic 

acid (SA)-dependent fashion. Indeed, by interaction with GRF10, both REMs were shown to 

participate in PD closure after SA treatment (Huang et al., 2019). Moreover, AtREM1.2 was 

shown to be crucial for SA-induced asymmetric auxin flux during root gravitropic response as 

well as for the regulation of clathrin-mediated endocytosis (Ke et al., 2020). 

The tomato SlREM1.2 has recently been shown to be involved in fruit ripening by interacting 

with the ethylene biosynthesis proteins. The overexpression of SlREM1.2 up-regulates key 

genes involved in ethylene, lycopene biosynthesis and ripening regulators resulting in an 

effective increase in the ethylene and lycopene content of fruit (Cai et al., 2018).  

The functional characterization of a mulberry (Morus indica) Group 1 isoform MiREM1 

evidenced its transcriptional upregulation under a number of abiotic stresses and hormone 

treatments. Gain of function via the heterologous overexpression of MiREM1 in A. thaliana 

conferred resistance to salt stress and drought (Checker and Khurana, 2013).  

The Group 6 REM SiREM6 (Setaria italica, fox-tail millet) has been found to be 

transcriptionally up regulated under salt, cold, ABA and osmotic stress. Yet this up regulation 
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was weakly observed under drought stress and SiREM6 overexpression did not impact drought 

tolerance. SiREM6 overexpression in A. thaliana increased germination rate and seedling 

biomass as well as seedling survival under salt stress. These characteristics were linked to an 

increase in proline content and a reduction in electrolyte leakage. Additionally, overexpression 

of SiREM6 in A. thaliana enhanced sensitivity to ABA treatment (Yue et al., 2014). In rice 

(Oryza sativa), OsREM6.5 was also found to be highly upregulated during drought stress and 

ABA treatment (Wu et al., 2006) 

In Populus euphratica, a salt-resistant poplar, PeREM6.5 was induced by NaCl stress. 

Interestingly, PeREM6.5 recombinant protein significantly increased the H+-ATPase hydrolytic 

activity and proton transport activity in P. euphratica PM vesicles. Yeast two-hybrid assays 

showed that PeREM6.5 interacted with RPM1-interacting protein 4 (PeRIN4). Notably, the 

increase of H+-ATPase activity induced by PeREM6.5 was further enhanced by PeRIN4 

recombinant protein. Finally, overexpression of PeREM6.5 in A. thaliana improved salt 

tolerance. PeREM6.5, by regulating H+-ATPase activity in the PM, may therefore enhance the 

plant capacity to maintain ionic homeostasis under salinity (Zhang et al., 2020). 

 Cell-to-Cell connectivity via PD 

The first direct evidence of the implication of REMs in cell-to-cell connectivity via PD was 

revealed by the ability of StREM1.3 to hinder PVX cell-to-cell movement as well as GFP 

diffusion in non-virally-infected plants in N. benthamiana leaf epidermal cells (Perraki et al., 

2012; Perraki et al., 2014, Raffaele et al., 2009). REM transcript and protein levels were shown 

to increase in mature, ageing and senescing tissues, as well as in “source parts” of tobacco 

leaves (i.e. the tip of the leaf), where a majority of mature- and branched-PD are present 

(Raffaele et al., 2009b). These results suggest that tobacco Group 1 REMs predominantly 

associate with mature-branched-PD. 

The Group 6 REM OsREM6.6 was shown to regulate PD permeability in rice leading to the 

filling of the seed. The mutant termed GSD-1 (grain setting defect 1) was shown to have an 

altered and ubiquitous expression of OsREM6.6, which is natively only expressed in phloem 

companion cells, thereby inducing an accumulation of starch and free-sugars in the leaf blades 

and consequently a reduction of starch accumulation in grains (Gui et al., 2014). 

 
Data mining toward the putative functions of REMORINs 
 

Throughout the relatively extensive literature that links REMs to biological functions (from 

transcriptomic, proteomic, phosphoproteomic data), several patterns may be found. 
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Considering the overlapping nature of these types of events, we summarize that data in Table 

1 by grouping REMs by phylum and by putative function. These links remain to be further 

experimentally confirmed but deserve to be pointed out in order to pave the way in 

understanding the biological functions of REMs. 

 

STRUCTURAL AND BIOLOGICAL IMPLICATIONS OF REM 

PHOSPHORYLATION  

Since the first identification of REM as an in vitro phosphorylated protein, pp34 (Farmer et 

al., 1989), members of all REM groups have been detected in phosphoproteomes from diverse 

tissues and biological contexts, suggesting phosphorylation as a major in vivo regulatory 

mechanism of REMs (see Supplemental Table 1 for a compilation of REM phosphoproteomic 

data). A recent study established the phosphorylation pattern of 14 AtREMs in 30 different 

plant tissues (Mergner et al., 2020). Apart from this broad-scale analysis, other studies have 

shown that, for some residues, the phosphorylation of REMs is modulated by stress conditions 

such as flg22 and OG treatment, nitrogen deprivation, ABA, H2O2, cold, osmotic and salt 

stresses (Benschop et al., 2007; Kohorn et al., 2016; Menz et al., 2016; Nikonorova et al., 2018; 

Wang et al., 2020, see Supplemental Table 1), suggesting functional roles of phosphorylation 

that remain to be explored.  

REMs are found to be phosphorylated in vivo mainly at the putatively intrinsically 

disordered region (IDR) located in the N-terminal domain (Figure 3) (Marín and Ott, 2012). 

IDR regions are flexible and extended protein segments that provide dynamic structural 

remodeling and protein-protein interaction plasticity (Iakoucheva et al., 2004; Dyson and 

Wright, 2005; Uversky, 2013). They are often regulated via phosphorylation that may act as a 

regulatory switch leading to structural changes such as folding and the sequestration of binding 

sites (Bah et al., 2015). Because they facilitate protein recognition and binding by acting as 

adaptable interaction surfaces, IDR regions may often found in hub proteins that link interaction 

networks and integrate signals (Kim et al., 2008). REMs’ basal and signal-induced 

phosphorylation regions could putatively regulate interactions with its protein partners upon 

stimulus (Figure 3). This, and the fact that REMs participate in different plant signaling 

networks, ground the idea that they act as PM-bound-complex signaling “hubs” able to interact 

with many different proteins, at specific times and locations, and in response to specific stimuli. 

However, little is known about how REMs integrate diverse signaling cues in plants. 

Only a few studies have drawn links between REM phosphorylation and intracellular 

signaling. Marín and Ott (2012) showed that AtREM1.3 phosphorylation at S66 located in the 
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IDR region led to a reduced affinity for importins in yeast two-hybrid assays. However, the 

impact of this phosphorylation on the structure, and subcellular localization of AtREM1.3 

remains to be investigated. Furthermore, Gui et al. (2016) demonstrated the role of OsREM4.1 

phosphorylation by OsBRI1 in activation of the brassinosteroid signaling pathway (Gui et al., 

2016, Figure 2C). While the phosphosites remain to be identified, this model connects REM 

phosphorylation, hormone-signaling balance and rice development, giving an important insight 

on one of the functional roles of REM phosphorylation in rice. In Perraki et al., 2018, it was 

shown that the phosphorylation of StREM1.3 on residues S74, T86, S91 was essential for its 

anti-viral function and dynamic nanodomain association (Perraki et al., 2018, Figure 2A). Yet, 

the in vivo phosphorylation at those sites in response to PVX infection still remains to be 

determined. 

Although multiple REM phosphosites have been described in phosphoproteomes or with 

directed approaches, only few REM-associated kinases have been identified (see Supplemental 

table 1). A recent large-scale phosphoproteomic study identified 8 Arabidopsis kinases 

(CPK11, MPK6, OST1, SnRK2.4, SOS2, OXI1, CKL2, CRKL2) that could phosphorylate, in 

vitro, AtREM phosphopeptides generated in vivo (Wang et al., 2020). Additional kinases 

responsible for REM phosphorylation have been described in rice, N. benthamiana, M. 

truncatula, L. japonicus and A. thaliana (SnRK1.2, AtCPK3 and various RLKs) (Mehlmer et 

al., 2010; Tóth et al., 2012; Son et al., 2014; Gui et al., 2016; Perraki et al., 2018; Albers et al., 

2019), see a summary in Figure 4. However, all these data have been obtained in vitro and will 

require further validation. Notably, in vivo interactions between REMs and protein kinases had 

already been reported for some of the kinases identified in Wang et al., (2020) (Tóth et al., 

2012; Perraki et al., 2018; Albers et al., 2019). These kinases have been reported to 

phosphorylate a unique REM or several of them (Mehlmer et al., 2010; Tóth et al., 2012; Son 

et al., 2014; Gui et al., 2016; Perraki et al., 2018; Albers et al., 2019; Wang et al., 2020) 

(Supplemental Table 1). Interestingly, most of those kinases are associated with DRMs, 

(Majeran et al., 2018) but some of them are putatively soluble suggesting a PM recruitment. 

This protein-protein interaction conferred by regions with high-scores of intrinsic disorder 

(Raffaele et al., 2007, Marín and Ott, 2012) and phosphorylation (Reymond et al., 1996; Marín 

and Ott, 2012; Gui et al., 2016; Kohorn et al., 2016; Perraki et al., 2018) (see Figure 3) are 

characteristics reminiscent of scaffold proteins, such as the 14-3-3 family of proteins. This 

analogy holds on the cases where REMs’ interaction capacity was reported to differ upon 

phosphorylation of either the interaction partner(s) or the REM isoform itself (Gui et al., 2016; 

Liang et al., 2018). GRF10 (14-3-3 epsilon, At1g22300) was recently shown to interact with 
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and mediate AtREM1.2 and AtREM1.3 interaction (Huang et al., 2019). 14-3-3 family proteins 

are involved in phospho-relay events, preeminently in facilitating and hindering protein-protein 

interactions by binding to the phosphorylated residues of interaction partners (Lozano-Durán 

and Robatzek, 2015).  

 

PERSPECTIVES 

The amount of data that has been accumulated since the cloning of the first REM in 1989 on 

the characteristics and the cellular and physiological role of REMs is very heterogeneous. 

Although many articles have shown REMs expression as being correlated with a number of 

physiological processes, a clear role for the REM family has not yet arose. Nevertheless, many 

trails have emerged from the 30 years of research on REMs that show great promise in the 

search for REMs’ functionalities. One of these functionalities stands out, considering the 

multiple instances where REMs are linked to intercellular connectivity. These instances 

reinforce the idea that the establishment of REMs as a genetic family could have been important 

for the adaptation of photosynthetic algae during the land plant invasion that occurred 

approximately 475 million years ago (Steemans et al., 2009). Indeed, the control of water and 

solute exchanges between cells and tissues was a major necessary adaptation in order to handle 

water fluxes in dry land. The development of complex PD along with a complex vasculature 

necessary for the establishment of root systems and hormone signaling were the fundamental 

developments that enabled adaptation and establishment of Embryophytes (Rensing et al., 

2008). Moreover, the fact REMs are found to be involved in biotic interactions, notably with 

symbiotic fungi and bacteria is also a clue to their potential involvement in the conquest of land 

by plants considering the hypothetical importance of symbiotic microorganisms in helping the 

first rootless land plants to secure nutrients (for review Rensing 2018). (Raffaele et al., 2009a). 

The recent discovery of Group 1 REMs in a proteomic analysis of A. thaliana extracellular 

vesicles may potentially change our view of REMORIN’s strictly-PM function (Rutter and 

Innes, 2017; Rutter and Innes, 2018). 

 

1. Genetics 

A major weakness in the functional study of REMs is the lack of genetic tools. Overall, REM 

single mutants have not yet been shown to display any striking or strong phenotypes although 

AtREM1.2 alone has recently been shown to be involved in SA-dependent gravitropism 

response (Ke et al., 2020). To study REMs, the most notable problematic is currently the lack 
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of multiple KO-lines for each isoform although the generation of these lines is currently 

ongoing with the recently published CRISPR-Cas9 KO-lines for two Group 1 REMs in N. 

benthamiana (Fu et al., 2018, Huang et al., 2019) and the quadruple CRISPR-Cas9 KO-line for 

all four Group 1 REMs in A. thaliana soon available (T. Ott, personal communication). KO 

lines for each REM Group will be essential for our understanding of the role played by each 

REM Group that could entail not only different possible cellular functions but also different 

tissue specificities (e.g. Gui et al., 2014). Nevertheless, we cannot exclude that REMs from 

different sub-groups are at least partially redundant or can functionally substitute for other 

REMs, even if in the wild-type situation they are doing a different function.  

Several REM Groups such as Group 5 and Group 3 could consequently become less illusive 

as to their function. The generation of KO-lines should be combined with gain-of-function 

assays as those undertaken in the characterization of OsREM6.6 (or GSD1; Gui et al., 2014) 

and OsREM4.1 (Gui et al., 2016) in order to develop true functional approaches in deciphering 

the cellular and physiological purposes of REMs. 

 

2. Protein-Protein Interactions 

Phosphorylation of REMs are suspected to be involved in protein-protein interactions 

(Raffaele et al., 2007; Marín et al., 2012) (Figure 2, Supplemental Table 1). These 

characteristics are reminiscent of scaffold proteins, notably of 14-3-3 family proteins. Recently, 

GRF10 (14-3-3 epsilon) was shown to interact with AtREM1.2 and to be crucial for its 

partitioning at the PM (Huang et al., 2019). REMs and 14-3-3 family proteins could indeed co-

depend on each other considering REMs’ interaction capacity was reported to vary upon 

phosphorylation of either the interaction partner(s) or the REM isoform itself (Gui et al., 2016; 

Liang et al., 2018;). In both cases, the REM isoforms i.e. OsREM4.1 or SYMREM1 interact 

with receptor-like kinases (RLKs), OsSERK1 (Gui et al., 2016) and LYK3 and NFP (Liang et 

al., 2018), respectively (Figure 2B). The interplay between REMs and RLKs deserves to be 

further investigated particularly in view of the recent emerging role of RLK signaling in PD 

physiology (Grison et al., 2019; Cheval et al., 2020) 

Considering that phosphorylation is at the center of the interaction events recorded for 

REMs, it seems crucial to develop phospho-dependent interactomic screens for REMs in order 

to understand their function. This type of screen should importantly be performed under 

different stress conditions and in different tissues as REMs’ interactions with its cognate 

partners appear to be highly determined by plant development and stress. 
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3. The PM’s complexity 

Important advancements have recently been established in the deciphering of the PM-

anchoring properties of REMs (Perraki et al., 2012; Gronnier et al., 2017; Martinez et al., 2018; 

Legrand et al., 2019). In as much as REMs are dependent of their C-terminal region or REM-

CA for their anchoring to the PM, more must be developed in the understanding of the exact 

biophysical properties that govern this anchoring. Critically, decrypting the determinants of the 

PM-nanodomain association of REMs is a top priority, as it has already been shown to be a 

determining factor of REM function (Gronnier et al., 2017; Fu et al., 2018; Ke et al., 2020). In 

particular, affiliating the presence of Group 1 REMs in PM-nanodomains with their observed 

effect on the accumulation of callose at PD pit-fields (Gronnier et al., 2017; Perraki et al., 2018) 

raises a critical question: how does a protein, present in the PM inner-leaflet, influence 

enzymatic activities (i.e. callose synthesis/degradation) occurring in the cell wall or, at best in 

the PM outer-leaflet?  

Several hypotheses may be explored to answer this question: 1) Can Group 1 REMs or their 

interaction partners regulate callose synthases or other partners of the callose synthesis complex 

present at PD pit-fields in order to stimulate callose deposition? 2) Can Group 1 REMs or their 

interaction partners regulate the activity or localization of ß-1,3-glucanases? This latter question 

can be a particularly interesting hypothesis to investigate considering the different subcellular 

and extracellular localizations of ß-1,3-glucanases (for review: (Zavaliev et al., 2011). Group 1 

REMs could potentially regulate the extracellular secretion of ß-1,3-glucanases as it was 

reported in Zavaliev et al. 2013 in response to salicylic acid treatments. Yet some ß-1,3-

glucanases have been reported to be glycosylphosphatidylinositol (GPI)-anchored proteins 

within the PM outer-leaflet associated with PD (Levy et al., 2007). The enrichment of GPI-

anchored proteins in the DRM biochemical fraction (for review on plant GPI-anchored proteins: 

Yeats et al., 2018) licenses the hypothesis that there could be trans-bilayer coupling between 

the inner-leaflet PM-domains containing REMs and the outer-leaflet PM-domains containing 

GPI-anchored ß-1,3-glucanases. In this context, the concept of trans-bilayer coupling refers to 

the presence of each component in a common PM-domain that spans from one PM-leaflet to 

the other. There could therefore be interaction in trans between inner- and outer-leaflet proteins 

via the interdigitation of saturated and/or very-long-chain acyl chains of the lipids that are 

present in these PM-domains. This functional mechanism has been demonstrated in animal cells 

by showing the necessity of long-chain PS species with at least one long saturated chain in 

order to register a GPI-anchored protein to a lipid-protein complex that virtually anchored the 
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GPI-anchored protein to the actin cytoskeleton (Raghupathy et al., 2015; Skotland and Sandvig, 

2019). The registration hypothesis is supported by the altered StREM1.3 PM-dynamics under 

a phosphorylated state (Perraki et al., 2018), which could be due to the regulation of 

StREM1.3’s PM-lateral-segregation via the cortical cytoskeleton. This change in REM PM-

patterning could affect the PM-dynamics of PM-outer-leaflet-associated proteins e.g. GPI-

anchored ß-1,3-glucanases. Ultimately, elucidating not only the protein-protein- but also the 

protein-lipid-interactions necessary for REMs’ PM-nanodomain-association constitutes a great 

challenge that will participate in the unfurling of the complex and dynamic molecular 

mechanisms that govern REMs particular role(s) at the PM. 

New methodologies must be developed in order to study the PM-based events and 

interactions: these methodologies should include: 1) cutting-edge proteomic and lipidomic 

techniques (e.g. identifying lipids in close interaction with proteins) including 

phosphoproteomics and the study of lipidated proteins (myristoylation, palmitoylation, 

isoprenylation, and GPI-anchoring; reviewed in Ray et al., 2017); 2) biophysical tools to study 

lipid–protein interactions via surface plasmon resonance (e.g. Lenarčič et al., 2017), liposome 

binding assays and lipid blotting assays (e.g. Perraki et al., 2012), solid-state NMR, cryo-

electron microscopy, atomic force microscopy, computational modeling, Langmuir monolayer 

tensiometry, and Fourier transform infrared spectrometry (e.g. Gronnier et al., 2017; methods 

reviewed in Zhou & Hancock 2018); 3) to obtain the structure of these lipid-protein complexes 

for example by solid-stade NMR; 4) generation of mutants impaired in PM-domain-association 

and the use of super-resolution imaging to visualize the in vivo segregation and dynamics of 

PM-components, which should be a focus in order to better understand the molecular interplay 

occurring at the protein and lipid clustering sites that are PM-domains. These important tools 

can considerably be assisted by in silico modeling such as molecular dynamics simulations (for 

review: Ulmschneider & Ulmschneider 2018). Overall, these techniques and methods have 

been used and described in numerous research articles and reviews that focus on understanding 

the function of PM-based proteins (Zhou et al., 2015; Zhou et al., 2017; Gronnier et al., 2018; 

Maxwell et al., 2018). 
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Table 1: Data mining toward the putative functions of REMORINs 
 

Plant 

species 

Group of 

REMs 

Methods / Stimuli Biological 

effect(s) 

Putative 

associated 

function(s) 

References 

Arabidopsis 

thaliana 

AtREM1.2 Protein-protein 

interaction (in vivo co-

purification)  

Interaction with 

RPM1- 

INTERACTING 

PROTEIN 4 

(RIN4) 

Bacterial 

immunity 

(Mackey et 

al., 2002; 

Liu et al., 

2009a; Lee 

et al., 2015) 

 AtREM1.2  Proteomics and 

Phosphoproteomics / 

AvrRPM1 

Increased 

protein amount 

and 

phosphorylation 

Bacterial 

immunity 

(Widjaja et 

al., 2009) 

 AtREM1.2 

AtREM1.3 

Protein-protein 

interaction (in vivo 

Proximity-dependent 

biotin identification 

BioID) 

Interaction with 

HopF2bPtODC3000 

Bacterial 

immunity 

(Khan et 

al., 2018) 

 AtREM1.2 

AtREM1.3 

Proteomics Presence in 

extracellular 

vesicles 

Immunity (Rutter and 

Innes, 

2017) 

 AtREM1.3 Phosphoproteomics / 

Flagellin (flg22) 

Increased 

phosphorylation 

Bacterial 

immunity 

(Benschop 

et al., 2007) 

 AtREM1.3 Transcriptomics / Water 

deficit, cold, mannitol, 

salt stress 

Transcript up-

regulation  

Abiotic stress (Reymond 

et al., 2000; 

Bray, 2002; 

Kreps et al., 

2002) 

 AtREM1.3 Transcriptomics / auxin Transcript up-

regulation  

Development (Alliotte et 

al., 1989) 

 AtREM1.3 Protein-protein 

interaction (yeast two-

hybrid) 

Interaction with 

Arabidopsis 

response-

regulator 4 

(ARR4) 

Cytokinin 

response 

(Yamada et 

al., 1998)  

 AtREM1.3 Affinity-based 

chromatography 

enrichment with 

immobilized ergosterol/ 

ergosterol 

Interaction with 

the fungal 

MAMP 

ergosterol 

Fungal 

immunity 

(Khoza et 

al., 2019) 

 AtREM4.1 

AtREM4.2 

Transcriptomics / 

Drought, osmotic, salt 

stress and ABA 

treatment 

Transcript  

up-regulation 

Abiotic stress (Reymond 

et al., 2000; 

Bray, 2002; 

Son et al., 

2014). 

 AtREM6.7 Transcriptomics / 

Overexpression of 

DAYSLEEPER 

Transcript  

up-regulation 

Flowering, PD 

connectivity in 

the meristematic 

zones 

(Bundock 

and 

Hooykaas, 

2005) 

Curcumis 

sativus 

Group 1 

and 4 

CsREMs 

Quantitative trait loci and 

transcriptomics / 

Podosphaera fusca 

Transcript  

up-regulation 

associated with 

increased fungal 

resistance 

Fungal 

immunity 

(Xu et al., 

2017) 

Glycine max GmREM4 Transcriptomics / 

Drought treatment 

Transcript  

up-regulation 

Abiotic stress, 

circadian 

rhythm 

(Marcolino-

Gomes et 

al., 2014) 
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Hordeum 

vulgare 

Group 1 

REM 

Transcriptomics / GA 

and ABA treatments 

Transcript  

down-regulation  

Hormone 

response 

(Chen and 

An, 2006) 

Lotus 

japonicus 

Group 1 

REMs 

Transcriptomics / 

Glomus intraradices 

Transcript  

up-regulation 

Fungal 

symbiosis 

(Kistner et 

al., 2005) 

Oryza sativa OsREM1.5 Transcriptomics / ABA, 

BR treatments 

Transcript  

up-regulation 

Hormone 

response 

(Lin et al., 

2003) 

 OsREM5.3 

(Long 

Panicle 1 

LP1) 

 Quantitative trait loci Strongly 

expressed in 

young panicle, 

associated with 

longer panicle 

Panicle size (Liu et al., 

2016) 

 OsREM4.1 Transcriptomics / 

overexpression of 

Deschampsia antartica 

C-repeat binding factor 

/dehydration-responsive 

element binding protein 

(CBF/DREB), DaCBF7 

Transcript  

up-regulation 

Stress 

adaptation, cold 

recovery 

(Byun et 

al., 2015) 

 OsREM6.5 drought stress and ABA 

treatment 

Transcript  

up-regulation 

Stress 

adaptation,  

(Wu et al., 

2006)  

Quercus 

robur 

QrREM4.1 Transcriptomics / 

Piloderma croceum 

Transcript  

up-regulation  

Ectomycorrhizal 

symbiosis 

(Tarkka et 

al., 2013) 

Solanum 

tuberosum 

StREMa4  Transcriptomics / 

Ralstonia solanacearum 

Transcript  

up-regulation  

Bacterial 

immunity 

(Kong et 

al., 2016) 

 StREMa4  Transcriptomics/ ABA, 

SA, MeJa 

Transcript  

up-regulation  

Hormone 

response 

(Kong et 

al., 2016) 

Solanum 

lycopersicum 

SlREM1.2 Tomato plants 

overexpressing CaPIF1 

Transcript  

up-regulation 

Enhanced 

resistance to 

cold stress 

(Seong et 

al., 2007).  

 

 SlREM1.2 Proteomics / Verticillium 

dahlia 

Increased 

protein amount 

during 

incompatible 

interaction 

Fungal 

immunity 

(Hu et al., 

2019) 

Triticum 

aestivum 

12 

members of 

TaREM 

Transcriptomics / Cold 

acclimation 

 Transcript up-

regulation 

during early (7 

TaREMs) and 

late (3 TaREMs) 

cold response, 

Transcript 

down-regulation 

(2 TaREM) 

Cold adaptation (Badawi et 

al., 2019) 

Zea mays ZmREM4.1 Transcriptomics / cold Transcript 

down-regulation 

Cold sensitivity (Bilska-Kos 

et al., 

2016). 

 ZmREM4.1 Transcripts localized 

near PD linking cells 

from the Kranz 

mesophyll and the 

bundle sheath 

Transcript 

localization 

PD connectivity (Bilska-Kos 

et al., 2016) 
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FIGURE LEGENDS 

Figure 1: StREM1.3-enriched PM nanodomains based on structural analysis. (A) 

Sequence features of all REMs with Intrinsically Disordered Region (IDR) domain at the N-

terminal highly variable in length, and a REM-C domain composed of a coiled-coil region (CC) 

and the REM-C-terminal anchor (REM-CA); (B) StREM1.3 (blue) clusters at the PM’s inner 

leaflet into nanodomains (red rectangle) enriched in phytosterols and phosphoinositides, the 

most common being sitosterol and PI4P (Palta et al., 1993; Furt et al., 2010; Furt et al., 2011; 

Gronnier et al., 2017; Legrand et al., 2019). The overall REM orientation is likely to be 

perpendicular to the membrane plane to minimize steric hindrance, though the precise angle 

distribution is unknown. Lipids herein are more ordered than the bulk of the PM and the 

membrane therefore is slightly thicker even though the PM’s complex composition may greatly 

attenuate this tendency (Gronnier et al., 2018, Legrand et al., 2019); (C) StREM1.3 forms 

homo-trimers through a coiled-coil domain (Martinez et al., 2018) bundling together three REM 

C-terminal membrane anchors (REM-CA) (Gronnier et al., 2017) and three intrinsically-

disordered regions (IDR) bearing phosphorylation sites (Perraki et al., 2018). REM-CA binds 

to PI4P through electrostatic interactions involving, notably, positively charged amino-acids 

K192 and K193, as proposed in the right panel by molecular dynamics (Gronnier et al., 2017). 

The most C-terminal part (region 2) of REM-CA is embedded inside the inner leaflet, as 

supported by solid-state NMR and molecular dynamics (Gronnier et al., 2017). Nanodomain-

associated PIPs being enriched in saturated acyl chains (Furt et al., 2010), sitosterol is also 

recruited. The left panel shows hydrophobic contacts between the three L155 residues (red), 

which are critical to the coiled-coil’s structure, supporting membrane-association (Martinez et 

al. 2019). Membrane binding is accompanied by an enrichment in PI4P and sitosterol in the 

vicinity of the binding site (Legrand et al., 2019). A relative impoverishment in such lipids in 

the surrounding bulk membrane would therefore be a logical consequence. Note here that only 

REM molecules are presented, and the other PM proteins are omitted. 

Figure 2. Proposed model for REM-mediated signaling. (A). Group 1 REM in Nicotiana 

benthamiana. Proposed model for the molecular mechanisms involved in the StREM1.3-

dependent limiting of PVX cell-to-cell movement according to the data from (Raffaele et al. 

2009; Perraki et al. 2012; Gronnier et al. 2017; Perraki et al. 2018). Perception of PVX leads to 

the production of a calcium burst that activates a group 2 calcium-dependent protein kinase 

(here CPK3), which in turns phosphorylates group 1 REMs. Group 1 REMs’ phosphorylated 
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state increases its PM-mobility and interacts with phospho-REM Interacting Proteins (RIP). 

These interactions cause an increase in callose deposition at the plasmodesmata; (B) Group 2 

REM in Medicago truncatula. Constitutively-expressed FLOT4 forms a primary PM-scaffold 

that is unable to recruit LYK3 in the absence of SYMREM1 (MtREM2.2). Nod factor (NF) 

perception by NFP and LYK3 PM-receptors triggers the activation of a symbiosis-specific 

signaling cascade that leads to the expression of SYMREM1. Due to its ability to directly bind 

LYK3, SYMREM1 actively recruits the receptor into the FLOT4 domain. In symrem1 mutants, 

LYK3 is destabilized and endocytosed upon rhizobial inoculation. Illustrations adapted from 

Liang et al. 2018; (C) Group 4 REM in Oryza sativa. OsREM4.1 protein is PM-localized in 

association with OsBRI1-OsSERK1 complex. Upon elevated ABA levels, the ABA-responsive 

transcription factor OsbZIP23 is activated and upregulates OsREM4.1 expression. OsREM4.1 

protein interacts with OsSERK1 and interferes with OsBRI1-OsSERK1 active complex 

formation, repressing therefore BR signaling initiation. Increased BR levels, causes the binding 

of BR to the extracellular domain of OsBRI1 and the activation of OsBRI1 kinase (BKI1) to 

phosphorylate OsREM4.1. The phosphorylated OsREM4.1, has lower binding affinity to 

OsSERK1, and therefore the OsREM4.1- OsSERK1 complex is dissociated. Therefore, 

OsSERK1 is able to interact with OsBRI1 to form the OsBRI1- OsSERK1 receptor kinase 

complex, and activate BR signaling. OsREM4.1 function is similar to BKI1, which upon BR 

binding to BRI1, is phosphorylated and released from the PM, allowing the BRI1/SERK1 

complex to form. Illustrations adapted from Gui et al. 2016. 

Figure 3. Phosphorylation of Arabidopsis REMs occurs mostly at putative intrinsically 

disordered regions at its N-terminus. Graphs show the intrinsic disorder probability on the 

Arabidopsis REM proteins that were found to be phosphorylated up to date by in vivo studies. 

In vivo phosphorylation site positions on REM sequences are indicated by asterisk. Intrinsic 

disorder predictions were calculated using the PrDOS-Protein disorder prediction server 

(http://prdos.hgc.jp/cgi-bin/top.cgi). Coiled-coil predictions were calculated using the COILS 

program (https://embnet.vital-it.ch/software/COILS_form.html). REM-CA prediction was 

estimated based on homology with the REM-CA protein from StREM1.3. 

Figure 4. REM proteins are involved in independent signaling pathways and are 

phosphorylated by different kinases.  

Schematic representation of all the known interactions between REM proteins from groups 1, 

2, 4 and protein kinases, that were described in plant immunity, symbiosis and hormonal 
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signaling. Dotted lined arrow (i.e. Functional link to be determined) signifies that the given 

REM and kinases were identified as being involved in the given biological context yet direct 

experimental data has yet to be established. See text for details. 
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SUPPLEMENTAL INFORMATION 

Table 1: Compilation of phosphoproteomic datasets on REMs of different plant 

species. (Nühse et al., 2004; Benschop et al., 2007; Niittylä et al., 2007; Nühse et al., 2007; 

Sugiyama et al., 2008; Whiteman et al., 2008; Li et al., 2009; Reiland et al., 2009; Chen et 

al., 2010; Grimsrud et al., 2010; Mehlmer et al., 2010; Nakagami et al., 2010; Reiland et al., 

2011; Engelsberger and Schulze, 2012; Lan et al., 2012; Mayank et al., 2012; Tóth et al., 

2012; Yang et al., 2013; Son et al., 2014; Wang et al., 2014; Choudhary et al., 2015; Hou et 

al., 2015; Lu et al., 2015; Marcon et al., 2015; Roitinger et al., 2015; Ye et al., 2015; Gui et 

al., 2016; Kohorn et al., 2016; Marondedze et al., 2016; Mattei et al., 2016; Nukarinen et al., 

2016; Qiu et al., 2016; Vu et al., 2016; Xiang et al., 2016; Qiu et al., 2017; Nikonorova et 

al., 2018; Perraki et al., 2018; Song et al., 2018; Wang et al., 2018; Albers et al., 2019; Gupta 

et al., 2019; Wong et al., 2019; Cai et al., 2020; Mergner et al., 2020; Wang et al., 2020) 
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