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Introduction

Introduction

W ith the emerging technologies in several domains such as artificial intelligence,
communication, sensors, and processing power, manufacturers are increasingly developing
new ubiquitous connected devices identified as the “Internet of Things” –IoT–. According
to Forbes [1], the IoT is a fast-growing market that may even double before 2021. As a
result, manufacturers see in IoT a genuine business opportunity that encourages them to
increasingly release new smart devices over the coming years.

The prime purpose of IoT devices is to operate in an environment by collecting, process-
ing, and sharing data over the network with other computers without any human-to-human
or human-to-computer interaction. From the consumers’ perspective, smart devices are
technological innovations that aim at improving their daily life. One of the most common
applications example of the “Internet of Things” is the smart home. In a smart home, a
user can monitor some equipment such as the lights, the temperature, and the appliances
by only using a smartphone. However, the “Internet of Things” is not limited to smart
homes. Several sectors [2] such as agriculture, transport, healthcare, and the military
are heavily invested in the development of innovative IoT infrastructures to improve their
quality of life and quality of service.

This thesis unfolds within the European project SERENE-(IoT Secured & EneRgy
EfficieNt hEalth-care solutions for IoT market). SERENE-IoT project is labeled within
the framework of PENTA, the EUREKA Cluster for Application and Technology Re-
search in Europe on NanoElectronics. The project contributes to developing high quality
connected care services and diagnostic tools based on advanced smart health-care IoT de-
vices. SERENE-IoT leverages the emergence of the "Internet of Medical Things" -IoMT-
to prototype new devices, fully manufactured in Europe, that increases the healthcare
quality of service for patients remotely followed by caregivers at a much lower cost than
the traditional care.

Unfortunately, connecting medical devices to the network is a concern. It raises rel-
evant questions especially in the areas of privacy, security, and safety [3]. The main
purpose of this thesis performed within the CTSYS team of the Laboratoire de Concep-
tion et d’Intération des Systèmes (LCIS) in Valence and collaboration with the University
of Arizona in Tucson is to focus on the embedded system application security of the next
generation of IoMT. However, before digging into the security concerns that impact medi-
cal devices, it is important to define what is a medical device. According to the Food and
Drug Administration (FDA) [4], a medical device is “an instrument, apparatus, imple-
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ment, machine, contrivance, implant, in vitro reagent, or other similar or related article,
including a component part or accessory which is: recognized in the official National For-
mulary, or the United States Pharmacopoeia, or any supplement to them, intended for
use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment,
or prevention of disease, in man or other animals, or intended to affect the structure or
any function of the body of man or other animals, and which does not achieve its primary
intended purposes through chemical action within or on the body of man or other animals
and which is not dependent upon being metabolized for the achievement of any of its
primary intended purposes”. For instance, two medical devices are shown in Figure 1. On
the left, a pacemaker used in the treatment of heart diseases. On the right, an insulin
pump commonly used in the treatment of diabetes.

Figure 1: Off-the-shelf medical devices

In consistence with healthcare manufacturers, the main purpose of connecting these two
medical devices is to improve the quality of service. It may help healthcare professionals in
the prevention, diagnosis, and treatment of patients’ disease. From the patient perspective,
wireless medical devices improve the quality of life. For instance, it is much less restrictive
to update a pacemaker using the BluetoothTM [5] protocol rather than performing surgery.
Thus, healthcare manufacturers see IoMT as a way to revolutionize and improve patient
care. Thanks to connectivity many medical devices may help healthcare professionals to
identify early disease at the lowest cost but also to monitor and adjust the progress of a
patients’ treatment over time [3].

A representative example of a wireless medical device is a connected insulin pump.
Insulin pumps are commonly used in the treatment of diabetes. Today, according to the
World Health Organization (WHO) [6] it is more than 8% of the worldwide population
that suffers from diabetes. To stay alive, these people must regularly inject themselves
manually with insulin to keep their blood sugar at a reasonable threshold. Although this
practice is necessary, it remains very binding for patients. Thanks to new IoMT devices
such as wireless insulin pump [7,8] the process of measuring and self-injecting the insulin
is automated and even remotely controlled. As a result, the quality of life and comfort of
patients significantly improved.

Figure 2 displays an overview of a closed-loop wireless insulin pump. Three major
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Figure 2: Insulin pump closed-loop

components are identified. The Continuous Glucose Monitor (CGM) is a tiny sensor
implanted under the skin that measures glycemia at regular intervals. These measurements
are sent to a remote smartphone application that computes and determines whether the
blood glucose is too high (1 in Figure 2). If the glycemia is too high, a bolus injection
command is sent from the smartphone to the insulin pump (2 on Figure 2). Usually, these
commands are sent using a low-energy radio protocol such as BluetoothTM [5]. Once
received, the command is processed and injects an insulin bolus to the patient. Finally,
the injected insulin maintains the glycemia of the patient that is again measured by the
CGM forming the closed-loop system (3 on Figure 2).

The extension of connected devices such as insulin pumps in the healthcare industry
is a promising innovation and will undoubtedly bring many benefits to both caregivers
and patients. However, as previously stated, connecting medical devices to the network
is a concern. Indeed, a large majority of medical devices such as pacemakers, insulin
pumps, defibrillators are considered life-critical systems. In other words, these devices
are in direct interaction with the human body and may harm in the event of a hazard or
even worse, a security breach. Of course, healthcare manufacturers are well trained about
safety issues and various hazards in medical devices for decades. Many medical devices
on the market have been validated by recognized institutions such as the FDA [4] and to
date are considered very safe. However, it appears that manufacturers are less aware of
cybersecurity issues [9]. This is because connecting a medical device to the network is a
relatively recent trend. Consequently, these devices are more exposed to new threats that
manufacturers were not confronted with in the past.

According to recent studies [9], it seems that basic security features such as integrity,
authenticity, privacy, and defense-in-depth are missing in medical devices. One possible
explanation for this is that manufacturers lack security experts [10]. Thus, security issues
are left to non-security experts. Knowing that the integration of security in critical devices
is a difficult task, without security expertise, the design and the integration of the latter
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are usually poorly achieved. Furthermore, advanced vulnerability research should be part
of the development life cycle of a medical device. However, this is rarely the case, advanced
security tests are time and budget consuming making them regularly neglected.

For hackers, this lack of robust security trends is profitable. In recent years, many new
attacks have appeared on various life-critical systems. For instance, security researchers
were able to maliciously modify the firmware of a real infusion pump [11] and pacemakers
[12] because there were not properly signed by the manufacturers. As a result, these
researchers were able to implement malware directly in the device. Also, many wireless
medical devices do not verify the authenticity and the identity of the host with whom
they interact. Hence, a malicious hacker can easily craft a fake application [13] and
send malicious commands to the critical device. Many medical devices use a proprietary
protocol for communication. Unfortunately, these protocols do not use proper or standard
ciphers leaving the data in plain text passing through the network [13]. As these devices
are connected to the network, they can also be remotely accessed. Unfortunately, once
again, the accesses are often poorly secured, and even sometimes, there is no security
at all [14]. On top of that, medical devices are vulnerable to zero-day vulnerabilities
such as memory safety issues that result from code and design mistakes [15]. These
vulnerabilities can be exploited by hackers to remotely execute malicious code on the
device. The seriousness of this type of attack is extreme, it can be achieved without
requiring any physical access to the system. In an era of ransomware [16], such poor
security devices are profitable to hackers that look for a quick return on investment. Since
these critical-devices keep patients alive, it’s even easier for hackers to pressure them to
pay a ransom.

As it appears, there are various vulnerabilities in medical devices. Countermeasures
against these vulnerabilities cover many areas of software and hardware security. This
thesis focuses on embedded software security. More, specifically the thesis studies the
memory safety issue in life-critical devices. When exploited, memory safety issues allow
attackers to take control of a device and make it execute arbitrary malicious actions. While
the criticality of these vulnerabilities is severe, and even more when it can be performed
remotely, it seems that efficient protections are currently not deployed in medical devices
[9, 17,18].

To address these concerns, this manuscript proposes the following steps. The first
chapter covers the state-of-the of various attacks and defenses regarding memory safety.
It highlights the particularities of critical embedded systems such as medical devices, why
they are exposed to memory safety issues, how memory safety vulnerabilities are exploited,
and finally, what are the existing defenses. Chapter 2 confronts the state of the art with
the requirements of life-critical medical devices. More specifically, this transitional chap-
ter identifies why current medical devices do not benefit from existing defenses. Then, it
exposes the problem: How to implement practical and efficient defense against memory
safety defenses in safety-critical devices while respecting their constraints? The thesis pro-
poses to deal with this problem using two approaches and a life-critical demonstrator to
assess them. Chapter 3 exposes SecPump, a wireless insulin pump security system work-
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bench used to model memory safety threats and tailored for further security assessments.
Chapter 4 presents TrustFlow, the first approach of the thesis. This approach assumes
that memory safety defenses can be implemented using both hardware and software. As
a whole, TrustFlow is a framework that ensures low-level software protection specifically
for memory-constrained embedded systems. Conversely, Chapter 5 presents BackGuard,
the second approach of the thesis. Unlike the first approach, this approach assumes that
most critical embedded applications are running on a fixed microprocessor that cannot
be modified to implement security features. As a result of this assumption, this second
approach aims to demonstrate and study the feasibility of memory safety defenses using
only software primitives.
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1 Background

Summary of the Chapter
This Chapter surveys the memory-safety issue in embedded systems. As this
thesis unfolds in the medical area, a brief introduction to life-critical devices
is given at the beginning of the Chapter. This introduction describes how
these systems work, how they are designed, and why they are currently facing
memory safety issues. The Chapter offers an overview of the various attack
techniques that are leveraged by an attacker to execute malicious code on a
system. Then, it exhibits the state-of-art regarding the existing countermea-
sures. This state-of-the-art regroups the countermeasures in four categories
exposing their benefits, costs, and weaknesses. Finally, synthesis of the state of
the art prepares the gap exposure and the thesis approach outlined in Chapter
II.
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Chapter 1. Background

1.1 The Memory Safety Issue in Life-Critical Systems

1.1.1 C a prominent programming language in critical systems

Life-critical systems such as wireless insulin pumps described are governed by both hard-
ware and software components. One of the fundamental aspects of these components is
that they should meet high performance and deterministic real-time constraints to deliver
the patients’ perfect dose of insulin at the right time. Also, for patient-worn systems,
the components must be small in order not to be too invasive. The logical and deter-
ministic actions performed by cyber-physical systems are driven by thousands of lines of
code that are executed by microcontrollers. Microcontrollers are often considered as the
brain of smart devices. They execute instructions that control and deliver input/output
to external components. These external components include drug reservoirs, screens that
establish physical contact between the user and the embedded system, sensors, and radio
components. Finally, the set of lines of code that lead the logic of the system constitutes
the firmware. Its main purpose is to monitor the behavior of the device throughout its
lifetime.

According to a recent study made by the IEEE Spectrum 2017 [19], the C programming
language is the dominant language in the context of embedded system programming.
Most of the existing critical devices’ firmware on the market are developed using the C
programming language [18]. This popularity can be explained by several advantages
that this C offers to critical embedded systems manufacturers over other programming
languages:

• Maturity: The C programming language has been created more than 40 years ago to
provide an alternative to writing code in assembly. Since then it has been widely used
in companies and academia. Compared to much newer programming languages [20,
21], the C programming language has the advantage of being supported by a large
and experienced community.

• Readability: C is considered a high-level programming language in comparison with
assembly. It has been created to write data structures and algorithms without relying
on complex assembly knowledge.

• Toolchain support: Many free C compilers [22], [23], and libraries are available for
a wide range of microcontrollers. This means that the C programming language can
be easily translated into efficient machine-independent code. On top of that, the
current C compilers are very mature and offer a lot of features such as detecting
programming errors during compilation and/or code coverage [22]. Also, many free
open-source and well-maintained toolchains are available to perform either static
[23,24], and/or dynamic [25,26] verification of C programs.

• Modularity: The C programming language is very modular, thanks to header files it
allows developers to export functionality from a C source file and import it in another
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file. Consequently, by using modularity it is very easy for a programmer to break a
complex program into multiple sub-modules that achieve specific functionalities.

• Portability: Many free C compilers are available for a wide range of Instruction Set
Architecture (ISA). This means that the C programming language enables developers
to write convenient processor independent code that ensures low-level tasks while
retaining portability.

• Efficiency: The C programming language can easily interface with other program-
ming languages such as assembly. In embedded system programming, it is very com-
mon to see routines that are completely written in assembly to efficiently use the
hardware. Secondly, one of the most powerful features offered by the C programming
language is full control over memory management thanks to pointers. Indeed, by
using pointers, embedded system developers can directly read/write from/to mem-
ory or allocate it in an efficient, machine-independent way. Consequently, embedded
systems programmers can customize the memory usage of embedded systems ap-
plications making it inherently fast and optimized in size. Finally, as most of the
embedded systems have input/output devices that are directly mapped into the
memory, the use of pointers allows instant access to these memory locations.

• Real-time operating system support: On the market, the most popular real-time
operating systems [27–30] are written in the C programming language. The C pro-
gramming language is very fast and efficient; it can easily meet real-time constraints.
Besides, these real-time operating systems provide C APIs enforcing the use of this
language by developers.

• Determinism: C programs can be written to be deterministic. This means that it is
formally possible to determine the behavior of a program knowing its current state,
the previous events, and the environment. Determinism is a very strong feature for
critical systems because it allows manufacturers to develop very accurate programs.

• Standard: The C programming language is compliant with safety-critical standards
such as the DO-178C [31] and MISRA C [32].

It turns out that the C programming language is a perfect language for critical sys-
tems. The language is close to the hardware, allowing developers to tune specific routines
and memory allocation. This programming language can be used to develop lightweight
applications that are very fast, deterministic, safe, and portable.

Unfortunately, these benefits come at a certain price. The C programming language
does not provide any specific security support against memory access mistakes. This can
lead to several security breaches covered in the following section.

1.1.2 The C programming language weaknesses

While the C programming language provides many benefits to embedded system devel-
opers, it is often the source of numerous in-memory security flaws due to the misuse of
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pointers. To understand the origin of in-memory security flaws, it is important to introduce
the basic memory layout of a C program.

A simplified example of a C program is displayed in Figure 1.1.

Figure 1.1: C program memory layout

Several variables in the displayed program are annotated with bullets. When compiled
into instructions, the program is mainly stored on the “text” memory section of the mi-
crocontroller. When executed, this program performs computations using variables that
are stored in several areas of the memory.

The variable (1) is an uninitialized global variable. It is stored in the Block Started
by Symbol (BSS) area of the memory. This global variable can be accessed throughout
the entire lifetime of the program by any function. If it turned out that the variable was
initialized it would be placed in the data section.

Both variable (2) and (3) are used within a function, their scope is limited to the
life span of the main function. Regarding the microcontroller memory, these temporary
variables are placed in the stack area. The stack is a memory structure that follows the
Last-In-First-Out (LIFO) concept. In Figure 1.1, the stack is ascending downwards. The
stack memory structure is addressed by the stack pointer register of the microprocessor
core. This register always points to the memory address of the top of the stack. Two
main operations manage the stack: push and pop. When data is pushed, the stack pointer
moves to the lowest adjacent address, and the corresponding data is stored. When data is
popped, the data stored at the stack pointer address is returned and the pointer moves to
the highest adjacent address. Considering our example, when the main function executes,
(2) and (3) are pushed on the stack and destroyed when the function returns.

The variable (4) is slightly different from the variable (2) and (3). Indeed, the variable
(4) is a pointer stored on the stack but points on a freshly allocated memory which is
located in the heap area thanks to a memory allocation function. In Figure 1.1, the heap
memory area is increasing upwards. The heap is governed by specific memory allocation
algorithms that depend on the “malloc” implementation. Each memory chunk allocated
in the heap is accessible by a program through the use of pointers. Besides, allocated
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memory chunks can be freed thanks to the “free” function.
Finally, the variable (5), is a static initialized variable. This variable is placed into

the data memory section and its value is preserved even when the main function returns.
However, this variable is considered private and can only be accessed by the main function.

Knowing the structure of a C program in memory, it is now possible to point out
its weaknesses. Unlike high level and/or interpreted programming languages [33, 34], the
C programming language does not provide any extra features for spatial and temporal
memory safety. The C programming language is thus considered unsafe. Spatial memory
safety is defined as the property that all memory objects are always accessed within their
bounds. In other words, the C programming language does not ensure that the data
copied into a buffer will no longer be larger than the buffer can hold. It follows, that
if a developer does not explicitly check for oversized input, an attacker can intentionally
provide large enough data that will write past the end of a buffer. As a result, adjacent
memory areas that do not belong to the buffer will be overwritten, leaving the program in
an erratic state. The most prominent example of a spatial memory error is a stack buffer
overflow/underflow. A classical stack buffer overflow is displayed in Figure 1.2. In such a
situation, an attacker overflows a local buffer on the stack and overwrites useful buffers’
adjacent data of the program. In Figure 1.2, the “stack_buffer” buffer is in the stack area
and the “strcpy” function copies a buffer coming from “argv [1]” which is controlled by an
attacker. Unfortunately, the “strcpy” function does not check the size of “argv [1]” before
copying it to the “stack_buffer” buffer. Consequently, an attacker can exploit this feature
to modify some data in the memory that does not belong to the buffer. Thus, if this data
is reused later, the behavior of the program may be modified. It should be mentioned that
spatial vulnerabilities are nowadays much more complex than the straightforward example
displayed in Figure 1.2 [35].

Figure 1.2: Spatial memory issue

Temporal memory safety is defined as the property that ensures that all memory
objects are valid at the time they are dereferenced by a pointer. Like spatial memory
safety, the C programming language does not prevent any attempts to read or write an
object after it has been deallocated. It follows that, after deallocating an object in memory,
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if the developer does not explicitly invalidate all pointers on this object, some will still
point to the freed memory location. These pointers are called dangling pointers; they
can dereference invalid memory location. By leveraging dangling pointers, an attacker
can intentionally reallocate the previously freed memory, fill it with malicious data, and
dereference a dangling pointer to this location. As a result, the previously deallocated
object is reused thanks to the dangling pointer with invalid data causing unexpected
memory corruption.

Figure 1.3: Temporal memory issue

A typical dangling pointer scenario is displayed in Figure 1.3. This example assumes
that an attacker can use object A and free it thanks to the pointer A. Also, it assumes that
object A has previously been allocated by the application (1) and cannot be modified by
an attacker. However, the example assumes that an attacker can fully allocate an object B
and modify it. By leveraging this dangling pointer issue, an attacker can launch a memory
attack in three steps. First, the attacker makes the application free object A in memory
(2). Due to the vulnerability, pointer A is still pointing to invalid memory object A. Then,
the attacker allocates a new object B and fills it with custom data (3). Finally, the attacker
makes the application reuse the pointer A which is pointing on an invalid controlled object
B. As a result, the application executes code that belongs to object A but with object B
values. As spatial attacks, dangling pointers can be maliciously manipulated by attackers
to make an application execute invalid data.

The incorrect verification of oversized input and the usage of freed memory are com-
mon programming vulnerabilities related to the usage of the C programming language
[36]. Nowadays, buffer overflows and dangling pointers, represent a significant part of the
low-level security bugs [15, 37]. Their exploitation has many consequences from crash-
ing a target application to executing user-supplied malicious code. This thesis is chiefly
concerned about malicious code execution on critical devices. Indeed, the ability of an
attacker to induce faulty behavior into a critical system is a significant threat that can
lead to disastrous consequences.

To understand arbitrary code execution on embedded devices, Figure 1.4 exposes the
concept of control-flow graphs.

12



1.1. The Memory Safety Issue in Life-Critical Systems

Figure 1.4: Control-flow graph

A typical embedded system application written in C can be represented by a control-
flow graph such as Figure 1.4. All vertex in such a graph usually represents a basic block
of code. However, to simplify the study the present work considers that each vertex in
this graph represents a function. Of course, each function is composed of basic blocks and
has an internal control-flow graph as well. Vertices are linked with each other using edges.
These edges represent transitions between functions in the graph such as function calls
and function returns. A function call is denoted as a forward-edge and is represented in
green in Figure 1.4. A forward-edge can either be direct, or indirect through a function
pointer. Conversely, a function return is denoted as a backward-edge and is represented
in purple in Figure 1.4. Most of the time, a backward-edge is indirect and uses the return
address of the caller function that is already pushed in the stack or a register according
to the microcontroller architecture calling convention.

It turns out that every function transition in an application is governed by control-flow
information. This control-flow information is either immutable in the source code (direct
forward-edge) or calculated at run-time through a function pointer (indirect forward-
edge) and/or function return address (indirect backward-edge). Unlike fixed control-flow
information, indirect control-flow transitions are usually computed at run-time and stored
in either registers or memory. Thus, from the moment control-flow information is stored
in memory it can be tamper through the exploitation of one of the previously exposed
vulnerabilities such as buffer overflows or dangling pointers.

A typical control-flow attack is performed at run-time when data is exchanged between
a malicious user and the application. The main goal of a control-flow attack is to hijack
the execution flow of an application and make it execute malicious actions. For instance,
a spatial memory vulnerability can be exploited by an attacker to write past beyond the
limit of a buffer. Thus, the attacker possesses an arbitrary write in memory that may
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overwrite control-flow information located close to the buffer. By replacing in-memory
control-flow information, an attacker can divert the execution flow on a destination of his
choice.

Nowadays, every embedded system written in C can be vulnerable to memory corrup-
tion bugs. Even with extremely accurate and advanced tests, the time proved that some
memory bugs remain undetected [18, 35]. However, these memory bugs can potentially
threaten the security of a system after being discovered by attackers. Unfortunately, there
are still a lot of reasons why the memory safety issue is far from being solved in critical
IoT devices:

• Device complexity: Connected devices especially life-critical devices in healthcare
are becoming increasingly complex. These devices have to deal with hard real-time
constraints and deterministic behavior in any condition. For instance, an infusion
pump in its intended operating mode had to deliver the perfect amount of insulin
when needed without misbehaving due to physical external factors. Besides, some
embedded software may control physical devices. These physical devices can be the
source of high pressure or X-ray control and therefore extremely difficult to debug
when controlled by software. Finally, the combination of several physical elements
controlled by software increases the complexity of a system, its safety analysis, and
the implementation of accurate tests that cover all functionalities without unwanted
bugs.

• The number of lines of code: There are no existing metrics that give the average
bugs per line of code. However, it is often considered that there are between 15
and 50 bugs per 1000 lines of code [38]. Applied to a pacemaker which is around
80,000 lines of code [39], an infusion pump which is around 170,000 lines of code [39]
or a magnetic resonance imaging which is around 7 million lines of code [39], there
is a high probability that some memory bugs remains undetected after tests and
attackers are looking for them.

• Third-party services: When developing a critical application, it may require the use
of libraries or third-party code. Although it is possible to test these third-party codes
before integrating them, this operation may require non-trivial reverse engineering
skills due to the unavailability of the source codes.

• Increased attack surface: From the three previous points it follows that the attack
surface of a system is directly proportional to its complexity, its number of lines
of code, and its number of integrated third-party code. Hence, the more complex
the system proves to be, the more likely it is that attackers will find vulnerabili-
ties. Also, with the Internet of Things trend, more and more manufacturers are
connecting devices to the Internet and critical medical systems are no exception [9].
Unfortunately, the connectivity sharply increases the attack surface. Indeed, with a
memory vulnerability, an attacker is now able to remotely control a critical system.

Finally, while the C programming language offers fine control over embedded systems,
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this section demonstrated that it comes with a certain security cost. As extensively dis-
cussed, the C programming language does not provide any safeguard against memory
safety issues. One can argue that the exploitation of memory corruption bugs is not new
and the ways to overcome it have been studied over the past twenty years [40]. Unfortu-
nately, it seems that critical devices are still vulnerable to it [15,37].

1.1.3 Critical systems programming rules

The usage of the C programming language in critical embedded systems differs from
traditional desktop applications. Life-critical medical devices can mean the difference
between life and death. To release medical devices on the market, manufacturers closely
follow important standards such as the IEC 62304 [41], a functional safety standard that
specifies the software requirements for medical devices, the ISO 14971 [42] for the risks
managements, the ISO 13485 [43], a set of procedures guaranteeing the quality monitoring,
and finally, the FDA regulations [44] concerning medical records and device traceability.
These certification standards assess the quality and the safety of medical devices software
based on the development process [45]. Regarding the implementation, the IEC 62304 [41]
strongly enforces the use of coding standards such as MISRA [32] to enforce safety. By
respecting these guidelines, manufacturers reduce the likeliness of software hazards and
they allow certification of their products. While these standards ensure quality, reliability,
and safety, it should be mentioned that they do not remove security issues related to
memory safety [15,17,37].

To avoid the use of long and complex (sometimes vague) coding standards, the Jet
Propulsion Laboratory (JPL) of NASA proposes the “The Power of Ten – Rules for De-
veloping Safety Critical Code” [46]. This paper summarizes some strict development rules
to write safety-critical applications using the C programming language. The JPL argues
that 10 rules are not all-inclusive but it is enough to achieve measurable effects on soft-
ware reliability. These 10 rules mostly summarize the highest coding standards such as
MISRA [32].

This thesis considers that most life-critical medical devices enforce these rules. Con-
sequently, the security contributions detailed in the following thesis are designed in accor-
dance with [46]. More specifically, the security contributions will at a minimum be able to
protect systems that comply with the 10 rules enforced by the JPL. Not all the rules are
mentioned in this manuscript. Some of them encourage the improvement of code quality
in safety-critical applications. For in-depth details, the thesis refers the reader to “The
Power of Ten – Rules for Developing Safety Critical Code” paper [46]. However, bellow is
three important rules that have an impact on the outcome.

• Use of simple control-flow structures: No "setjmp", "longjmp”, “goto” or direc-
t/indirect recursion: By respecting simple control-flow structures developers improve
the clarity of an application and make debugging easier. Moreover, the use of re-
cursion introduces cycles into control-flow graphs that complicate the verification
task of static analyzers. Besides, it is not an easy matter to cover all the tests to
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determine the upper bound of a recursive function. As a consequence, recursion can
induce prohibitive unexpected large usage of stack memory in life-critical systems.
Finally, according to [38], a recursive function can always be translated into iterative
function.

• No dynamic memory allocation after initialization: According to [38, 46] and most
of the references in critical software development [31, 32], the use of dynamic mem-
ory allocation using “malloc” introduces memory pool fragmentation and potential
memory leakage (dangling pointers).

It follows that the usage of dynamic memory allocation is not deterministic and thus
cannot be safe.

• No more than one level of pointer dereferencing: The use of pointers is one of the
major sources of programming errors, safety, and security issues. Although their
use may be practical, it must be minimized and restricted to the smallest scope as
possible. Moreover, according to [46], the use of function pointers should be justified
and even prohibited. Indeed, when checking an application, the use of a function
pointer prevents static analysis tools from determining a call destination and the
absence of recursion. However, after being reviewed 10 years later [38], it seems that
the JPL considers that "constant function pointers, for instance, stored in lookup
tables, pose no risk to safe execution or code analysis".

Considering the previous rules and with section 1.1.2, life-critical application mostly
consumes static memory. Consequently, most memory vulnerabilities are located in static
regions such as the stack, the data, and the BSS. In critical embedded systems, temporal
memory safety issues are restricted by the non-use of dynamic memory allocation.

16



1.2. Exploitation Techniques

1.2 Exploitation Techniques

A successful memory attack results from the exploitation of a spatial and/or temporal
memory issue. The main goal of a memory exploit is to divert the execution flow of
an application to make it trigger malicious actions. This section highlights the various
exploitation techniques used by both attackers and researchers to hijack the behavior of a
program. The state-of-the-art is carried out in two parts: control-flow attacks and data-
oriented attacks. Control-flow attacks aim at diverting the execution flow of a program by
violating its control-flow graph whereas data-oriented attacks break the logical behavior
of an application without necessarily violating the control-flow graph.

1.2.1 Control-flow attacks

This section discusses various control-flow attacks. More specifically, control-flow attacks
mostly rely on malicious code injection and/or code-reuse techniques.

1.2.1.1 Code-injection attacks

Historically, the first control-flow attacks were based on code injection [47]. To illustrate
the code-injection process this section refers to Figure 1.5.

Figure 1.5: Stack-based buffer overflow issue

A trivial example of a buffer overflow vulnerability is displayed on the code part of the
Figure. A primary function “main” is calling a “vuln” function with a buffer argument.
Such code can be easily represented by a basic control-flow graph with two vertices (on
the bottom in Figure 1.5). The zoom on the stack memory area is particularly interesting
in this example because this is exactly where an attacker achieves his attack. First, the
“vuln” function (1) is called by the “main” function. This has the effect of saving the
return address (1) of the “vuln” function in the stack. Indeed, after its execution, the
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“vuln” function must return to the “main” function to continue execution. To achieve
this, the “vuln” function needs control-flow information stored in memory such as the
saved return address. Then, a buffer (2) is also stored in the stack area (2) of the “vuln”
function. According to Figure 1.5, the buffer is close to the return address stack. Finally,
the “strcpy” function is used to copy data controlled by an attacker in the stack buffer
(2). As the “strcpy” does not perform any bounds checking while copying the attacker
data in the stack buffer, a spatial memory vulnerability can be exploited. Such a spatial
attack is shown in Figure 1.6. First, an attacker injects a malicious code (shellcode) in
the stack buffer. Such shellcode is a string of hexadecimal characters that correspond to
instruction opcodes that can be executed by a processor. When executed, the main purpose
of shellcode is to manipulate registers, functions, or syscalls of a program (originally, the
term shellcode was derived from the action of spawning a root shell when executed on
a target). Then, the attacker exploits the out-of-bound vulnerability (1) to overwrite
the “vuln” return address in memory and replace it with the address of the buffer which
contains the shellcode (2).

Figure 1.6: Stack-based buffer overflow exploit

As a result, when the “vuln” function returns, its return address is popped from the
top of the stack to the program counter register that points on the next instruction to
execute. Consequently, instead of returning to the “main” function, the “vuln” function
returns to the shellcode previously injected by the attacker (2). Finally, the behavior of
the target application is controlled by the injected shellcode.

Code injection attacks were very popular around the 2000s on desktops computers.
For instance, the SQL Slammer worm [48] was exploiting a buffer overflow in Microsoft’s
SQL servers to infect computers. Likewise, the Morris worm [49] exploited a vulnerability
in the Fingerd protocol to spread over the network and paralyze hundreds of thousands
of computers.
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Since then, several countermeasures have been proposed to protect applications against
memory safety exploits. Three very famous buffer overrun protections such as Address
Space Layout Randomization (ASLR) [50], Data Execution Prevention (DEP), and Stack
Smashing Protector [51] are currently widely deployed in most personal computer appli-
cation. These countermeasures are summarized in Figure 1.7.

Figure 1.7: Common exploits mitigations

The Address Space Layout Randomization (ASLR) is managed by a classic
operating system such as Linux or Windows. It has the effect of placing the stack at
different memory offset (1) each time an application is executed. As a result, it is much
more difficult for an attacker to predict the address of an injected malicious code in ran-
domized memory areas. To push it further, various types of ASLR are currently available
and deeply exposed hereafter.

The Data Execution Prevention (DEP) is a hardware feature that can be man-
aged by operating systems with MMU and/or MPU support. The main purpose of DEP
is to define non-code memory regions as not executable. Consequently, any malicious code
injected into the stack, in particular, will no longer be treated as instructions.

The Stack Smashing Protector (SSP) is a compiler feature that requires a Random
Number (RN). This feature enforces the return address protection of function that manages
stack frame objects subject to overflow issues. Each time an application is executed, a
random value is placed in a function’s stack frame between the return address and the
local variables (2). Then, before a function returns, the value of the Stack Protector is
checked to ensure that no out-of-bounds write modified the return address.

With the ASLR, DEP, and the SSP, memory corruptions are much harder to exploit
on desktop computers. However, there are imperfect. For instance, the ASLR applies
to both 32-bit and 64-bit systems. Regarding 32 bits systems, the entropy of the ASLR
is very low (up to 8 bits). This means that a maliciously injected code position can be
brute-forced in a reasonable time. Also, there is a downside to using canaries. At first,
the compiler does not instrument all functions (around 20,5% functions for the Linux
kernel [52]), so some of them remain unprotected. Besides, checking a canary value for
each protected function introduce extra code that often results in performance degradation.
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Finally, DEP prevents attackers from executing malicious code in the data memory areas.
Although DEP is effective against code injection attacks, new attacks such as code-reuse
attacks [53] completely overcome it.

Regarding embedded systems, it seems that the ASLR, DEP, and the SSP are not
well-suited. Unlike desktop computers, embedded systems do not always benefit from an
operating system with full MMU support nor Truly-/Pseudo-Random Generators [54].
Hence, embedded applications cannot be effectively protected by the ASLR and the SSP.
On top of that, many embedded systems are based on 32 bits’ microcontroller systems.
As previously discussed, the 32 bits ASLR is weak. Finally, some embedded systems
with a Memory Protection Unit [55] (MPU) can define non-executable memory regions
to thwart data-execution. However, the MPU does not enforce DEP by default on major
embedded systems [54]. The configuration of the latter is left to developers, a task that
is not always trivial. As a consequence, classical defenses against code injections are very
limited when applied to embedded systems. It is therefore currently still easy to exploit
software vulnerabilities on embedded systems using simple code injections [18,37,56].

1.2.1.2 Code-reuse attacks

With the emergence of Data Execution Prevention (DEP), code injection attacks became
less powerful. Given this, attackers rapidly demonstrated new attacks based on code-reuse
to circumvent DEP. These attacks force unexpected executable control-flow paths in an
application avoiding any malicious code execution in data areas. A simple code-reuse
attack is displayed in Figure 1.8. The stack memory area is snapshotted in vertex 3 which
suffers from a memory vulnerability.

Figure 1.8: Control-flow diversion

First, the attacker replaces the return address (previously pointing to the return lo-
cation in vertex 2) of the vertex 3 by the address of the vertex 4. Hence, when vertex 3
returns, the execution-flow is redirected in vertex 4 instead of vertex 2. Such a control-
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flow violation attack overcome DEP. No malicious shellcode is executed in the stack. The
attacker only reuses the application code already located in the executable text memory
area.

An exploit technique called Return-to-Libc [57] uses the presented scheme to bypass
DEP. The main purpose of the Return-to-Libc attack is to gain execution-flow and chain
multiple returns on security-critical functions located in the application libraries. Of
course, the purpose of these attacks is to force an application to execute malicious actions.
Many “return-into” attacks such as [58] have been inspired by the Return-to-Libc scheme.
However, “return-into” attacks suffer from minor limitations. Indeed, such an attack reuse
functions that are part of the program or its libraries. Thus, an attacker may not find the
functions he wants to execute his payload. Besides, for embedded systems that rely on a
complex operating system such as Linux, the loaded shared libraries are often located in
an executable area of the stack. Consequently, due to the Address Space Randomization
(ASLR), the position of function libraries may change over time limiting the capabilities
of exploits. Finally, bare-metal systems use statically linked libraries. It is frequent that
compilers embed whole libraries without removing dead code, giving leeway to the attacker
to build a working payload.

To circumvent the limitation of “ret-into” attacks, S. Krahmer introduced a new exploit
technique [59] which consists of redirecting the execution flow of a program on short
sequences of instructions instead of functions. Later, this innovative exploit technique
is generalized by Shacham [53] into the so-called Return-Oriented Programming (ROP)
attack. The main purpose of ROP attacks is to divert the execution-flow of a target
application on a short sequence of instructions that end with an indirect branch. These
short sequences are called “gadgets” and are located in the code of the application itself.
The general idea is to make an application executing a gadget and use the branch at the end
of the instruction sequence to transfer the execution-flow on another gadget. Consequently,
given a large application with many instructions, an attacker may find enough gadgets to
mount a Turing-complete language. By using this language, the attacker may be able
to make the application successfully executes any malicious action he wants. It worth
mentioning that the term Return-Oriented Programming comes from the fact that the
first attacks used gadgets ending with a “ret” instruction. This instruction allows popping
the top of the stack in the program counter register and transfers the control-flow to
another gadget. An overview of a ROP attack is represented in Figure 1.9.

First, an attacker exploits a vulnerable buffer (stack-based in Figure 1.9). Then, the
attacker injects a sequence of pointers (1), (2), (3). In Figure 1.9, this sequence first
overwrites the return address of the vulnerable function (1) on other data higher up in
the stack (2)(3). These pointers dereference gadgets located in the text section of the
program. When the vulnerable function returns, the execution-flow of the application is
redirected to the address pointed by the first gadget pointer(1). Then, when the first
gadget returns, it transfers the execution to the next gadget (2) higher up in the stack
using a "branch" [60, 61] or “ret” instruction. Finally, the process is repeated for (3), as
well as all gadget addresses potentially injected by an attacker. In conclusion, by chaining

21



Chapter 1. Background

Figure 1.9: Return-Oriented Programming attack

gadgets into a so-called “ROPchain” an attacker can trigger any arbitrary code execution.
Although the return-oriented programming attack was initially introduced on the x86

architecture [53], the technique has been quickly extended by researchers to target many
other architectures such as ARM [53], SPARC [61], Atmel [56], PowerPC [62] that are
widely used in embedded systems. As a result, small Internet of Things devices based on
exotic architectures are no exception to code-reuse attacks.

The major issue with code-reuse attacks and ROP, in particular, is that it overcomes
the common protections against code injection attacks (ASLR, DEP, SSP). First of all,
ROP is based on gadgets found in the executable text section of a program. Thus, no
malicious code is executed on the stack bypassing the DEP protection. Secondly, many
systems only benefit from a partial ASLR. This means that the text sections of programs
are fixed from one application run to the next. As a direct consequence, the position of the
gadgets in memory is fixed, allowing adversaries to deploy large scale exploits. Concerning
systems that benefit from the full ASLR (randomization of the entire memory space of an
application), it is often found that vulnerability is associated with a memory disclosure
[42]. From this memory leak, an attacker can derandomize the vulnerable application
memory layout and therefore, compute on-the-fly-all the memory addresses of the gadgets
to achieve a successful attack [42]. It is worth reminding here that all embedded systems
do not benefit from ASLR. Therefore, these systems are even weaker at mitigating ROP
attacks. Finally, under certain conditions, A. Bittau et al. [57] demonstrated through
the blind Return-Oriented Programming technique that the stack canary can be brute-
forced. The blind return-oriented programming attack works particularly well against an
application that handles several processes. According to [57], the crash of a process does
not always cause the crash of the whole application as well as a reset of the canary value.
As a result, if the vulnerable process restarts, it is, therefore, possible to replay the exploit
several times and brute force the canary value byte by byte. While this technique is noisy,
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it demonstrates the non-infallibility of stack canaries. Of course, the protection offered by
a stack canary requires the support of a TRNG/PRNG [63] which is not always acquired
for embedded systems [54].

That concludes the discussion on code-reuse attacks. Of course, this section does not
tackle all the advanced exploitation techniques in the literature. They would be exposed
when evaluating the state-of-the-art of existing memory safety defenses.

1.2.2 Data-oriented attacks

This section introduces the data-oriented programming attacks, a powerful class of attacks
that exploits memory vulnerabilities to modify the behavior of an application without
violating its control-flow graph. Indeed, diverting the control-flow graph is not the only
way to achieve a successful attack. Usually, an attacker aims at modifying the behavior of
an application to unlock security restrictions or gain more control. Consider, for instance,
the code snippet with its the control-flow graph in Figure 1.10.

Figure 1.10: Data-oriented attack

There is an obvious out-of-bound vulnerability in (1). Also, the “vuln_function”
is calling both the “priv” or the “unpriv” according to the providing password. The
token variable is placed in the stack memory, very closed to the vulnerable buffer. As a
result, an attacker can maliciously set the token variable to zero by exploiting the spatial
vulnerability in (1). Of course, in this case, the comparison in (2) may fail. However, as
the token has been maliciously set to one in (1), the comparison in (3) succeeds allowing
the attacker to reach the privileged function. The important point is that a successful
attack can be achieved without necessarily violating the control graph. Besides, data-
oriented attacks such as the one presented in Figure 1.10 are very silent. They don’t
induce unexpected control-flow path and they can be very effective just by modifying a
couple of bytes in memory.

In their paper, S. Chen et al. [64] demonstrated that data flow attacks targeting
security-critical non-control data are realistic. Through their work, they identified many
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security-critical data in real-world software that can be tampered resulting in compromises
equivalent to control-flow attacks. According to [64] this critical data includes configura-
tion data, user input, user identity data, and decision making data such as in Figure 1.10.
In the case of an insulin pump, the amount of medication to be delivered to a patient is
critical data.

According to the previous description, it seems that the expressiveness of data-oriented
attacks is more limited than control-flow attacks. However, H. Hu and al. [65] demon-
strated that data flow attacks are Turing-complete. They introduced a generic exploita-
tion method called data-oriented programming. This technique requires two elements:
data-oriented gadgets and a gadget dispatcher. Data-oriented gadgets are sequences of
instructions that manipulate and perform operations between registers and either load
or store their results in/from the memory. These gadgets should respect the control-flow
graph of the program and operate on data location controlled by an attacker thanks to
a memory error. The purpose of the gadget dispatcher is to connect the data-oriented
gadgets. To achieve this, the gadget dispatcher is composed of both a loop and a selector.
At each loop turn, the selector is used by the attacker to select and activate gadgets that
perform operations on the data. Thus by chaining several loops and activating different
gadgets, [65] demonstrated that they could build a Turing complete language allowing
them to perform any operation on any data in memory. According to their results, 8 out
of 9 real-world programs contained data-oriented gadgets, and 2 were fully exploitable
using data-oriented programming. These results demonstrate that attacks on data flow
becomes increasingly practicable and empower more and more attackers.

So far, data-oriented attacks [64,66,67] are powerful enough to bypass DEP, ASLR, and
SSP. Protecting systems against data flow attacks is thus a complex problem. First, data-
oriented attacks do not violate the control-flow graph of an application. Consequently,
it is difficult to distinguish legitimate access to resources from illegitimate ones. Then,
as applications are becoming increasingly complex, the amount of critical data increases
proportionally. For performance reasons, it is impractical to protect every critical data
within an application. Finally, during the software development phase of a program, it is
extremely difficult to determine which data is critical or not. Some data may appear non-
critical, however, in the hands of an attacker, it can become devastating. According to [65]
it seems that a simple loop iteration data can be reused for malicious purposes. Nowadays,
most of the countermeasures against data-oriented attacks are still at the research stage
and are discussed later in this thesis.

1.2.3 Real-world exploits

The preceding sections highlight the various techniques used by attackers to hijack a vul-
nerable program. While several exploit examples were given, it is not discussed whether
control-flow or data-oriented attacks have already been applied to critical medical devices.
Also, do these exploits exist in the wild on real applications? Which exploit technique
is the most commonly used? The purpose of this section is to demonstrate that medical
devices are no exception to memory vulnerabilities. Unfortunately, threats such as attacks
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on control-flow or security-critical data are awfully real on critical medical devices. Recent
research on Smiths Medical Medfusion 4000 pumps [18] has uncovered several stack buffer
overflows in the real-time operating system of the device. Such critical vulnerabilities allow
an attacker to remotely take control of the pump. This research uncovered an embedded
system that does not benefit from the ASLR, DEP, and SSP. As a result, a successful
complete exploit is achieved with a simple code injection attack. This vulnerability also
underlines what was previously exposed in section 1.1. Indeed, the root cause of the vul-
nerability is the use of a third-party real-time system, itself having a certain complexity
and a consequent number of lines of code. It must be stressed that this example of mem-
ory corruption is only one among others. By digging on different Common Vulnerability
Exposure (CVE) databases it is straightforward to find many critical vulnerabilities on
medical systems [15, 17, 18]. Another important point is that the exploitation techniques
explained in the previous sections are very categorical. In reality, the exploitation tech-
niques of the attackers are hybrid. Real-world exploits combine code-reuse, code injection,
and data-oriented attacks to bypass the defenses of a device. For instance, in the presence
of an extremely protected system, an attacker tends to combine techniques such as code-
reuse, and/or data-oriented programming to first overcome the system protections such
as DEP. Then, in a second time, the attacker performs a code injection attack to execute
its malicious shellcode.

Studying the life cycle of an exploit makes it possible to realize the importance of
memory-based defenses. According to [35], after being discovered, an exploit has a lifes-
pan of 6.9 years. This means that even if a patch is released by manufacturers, many
systems are never updated and remain exposed to security threats. Furthermore, after
a critical vulnerability discovery, it takes an average of 22 days for hackers to develop
a working exploit [35]. This means that attackers are moving fast. Consequently, the
current memory-based defenses can be significantly improved to decrease the criticality of
vulnerabilities and increase the development time of working attacks. Finally, according
to [35], "given stockpile of zero-day vulnerabilities, after a year approximately 5.7 percent
have been discovered and disclosed". This underlines that many vulnerabilities are cur-
rently not public and work in the shadow threatening all types of systems. It is, therefore,
necessary to innovate in defense mechanisms to break functional exploits techniques and
harden embedded systems software as much as possible to face the next Internet of Things
era.
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1.3 Existing Defenses

The previous section outlined an overview of memory-based attacks. Awareness of
attacks is worthwhile to design and understand efficient defenses. In this section, the
state-of-the-art regarding advanced defenses against software attacks is exposed. Through
this study, new advanced attacks are also presented and complement the ones discussed
in the previous section. Indeed, with the advent of new countermeasures, innovative and
more robust attacks are constantly developed.

Figure 1.11 summarizes the various attacks previously discussed. To remind, an attack
often occurs in two stages. The first stage is the corruption of in-memory data. This data,
may or may not be a control-flow data. The second stage is the execution of the payload
that diverts the normal behavior of the target system. In Figure 1.11, a code injection
attack (control-flow violation) diverts the vertex 3 to A, then B (A and B represents
maliciously injected code). Equally, a code-reuse attack redirects the execution flow from
vertex 2 to gadgets located in vertex 5, then 7. Finally, the Figure displays a data-oriented
attack that forces the application to take the path to vertex 4 instead of vertex 6.

Figure 1.11: Memory safety attacks

From the observation of the control-flow graph, primary defense mechanisms can be
easily deducted. One type of defense could be to force the program to follow its control-
flow graph. Another would be to rely on heuristics to monitor the execution flow of the
program in real-time. If the latter deviates too much from its normal functioning, malicious
behavior can be suspected. Randomization may also be an efficient method to prevent
code-reuse attacks. Following this idea, each application has the same high-level code but
different low-level instructions. Consequently, a working exploit on an application may
be difficult to deploy at scale. Finally, it seems that defenses based on data integrity are
much harder to design when thinking in terms of control-flow graphs. A concept that
would probably reduce data-oriented attacks would be to monitor critical data integrity
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over time. The following sections explore these various protection mechanisms regrouped
into 4 sections such as control-flow integrity, heuristic defenses, software diversity, and
data-flow integrity.

As this work targets critical embedded systems, the following state-of-the-art gives
more importance to hardware/software co-design countermeasures. However, this work
also gives credit to the defenses implemented on desktop computers. In the end, all the
concepts are compared with each other to expose the gap regarding life-critical systems
defenses and our approach.

1.3.1 Control-flow integrity

Control-flow integrity is a practical defense introduced by M. Abadi [68] to mitigate
control-flow attacks. Control-flow integrity ensures that an executed path in a program
always complies with the original static control-flow graph. Figure 1.12 displays a control-
flow graph where each indirect transition in the graph is checked to ensure that a legiti-
mate path is taken. There are several ways to implement control-flow integrity providing
both a different policy and a different accuracy. Some existing implementations are
backward-edge oriented. This means that the control-flow integrity policy guarantees
that all backward-edges are always reaching a valid destination. Conversely, there are
control-flow integrity policies that ensure that all forward-edges always reach a valid ver-
tex (forward-edge control-flow integrity). Of course, the combination of the two equally
exists and provides a much more complete defense. The accuracy of a control-flow in-
tegrity solution is defined by the number of valid destinations a branch can reach. For
instance, in Figure 1.12, it appears that vertex 6 can either return in vertex 4 or vertex 5.

Figure 1.12: Control-flow integrity

A fine-grained control-flow integrity solution ensures that the vertex 6 returns to its
more recent calling vertex. On the other hand, a coarse-grained control-flow integrity
solution only ensures that the vertex 6 returns to one of the two vertices which are 5
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or 4. Although coarse-grained control-flow integrity is less accurate than fine-grained
control-flow integrity, it still degrades a wide range of control-flow attacks. However, it
does not prevent an adversary from slightly modifying the program execution flow without
breaking the control-flow graph. There is a metric titled Average Indirect target Reduction
(AIR), introduced by bin-CFI [69]. This metric is commonly used to evaluate control-flow
integrity accuracy. The AIR is given by the formula 1.1:

AIR= 1
n

n∑
j=0

(1− Tj

S
) (1.1)

Where n is the number of indirect control-flow transfer in a program, S the total
number of target addresses that can be reached by a branch (it is the size of the binary).
Tj represents the number of addresses that can be reached by a transfer j restricted by
control-flow integrity protection. It seems that if the percentage given by this formula is
close to 99% the control-flow solution can be considered as fine-grained [70]. Conversely,
a very coarse-grained control-flow protection has an AIR close to 80% [70].

1.3.1.1 Label-based control-flow integrity

One solution to achieve control-flow integrity is to use immutable code labels [68, 71]. A
label is a unique value that can be used to identify a vertex in a control-flow graph. During
the execution, it is possible to verify the destination label value of each transition to ensure
its validity. Any deviation from the original control-flow graph results in an invalid label
destination location that terminates the program. To assign a unique label to each vertex,
one solution is to inline it in the assembly code of its corresponding function or basic
block of code. Due to the immutability of the code (text section) in a program, the label
cannot be tampered by any memory-based attacks. Figure 1.13 displays a pure software
label-based backward-edge control-flow integrity protection.

Figure 1.13: Label-based control-flow integrity

Four functions (A, B, C, and D) are displayed in Figure 1.13, they form a simple call
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graph. Function A is calling function B, then function C. Functions B and C are both
calling the function D. The labels referenced by numbers (1), (2) and, (3) are inserted
within the assembly code of each function. More precisely, these labels are call-preceded.
This means that the labels are inserted after a call instruction on the top of a basic
block of code. It worth mentioning that labels maybe just regular 32 bits memory words.
The control-integrity solution works as follows, when a function returns to its caller, the
destination label of the return site is checked to ensure that the application is following
a legitimate path. For instance, when function B returns, it checks that the preceding
location of the return site contains the correct label.

At first glance, such a principle defeats a wide range of control-flow based attacks
exposed in the previous sections. However, Figure 1.13 displays inaccurate protection.
Indeed, functions B and C are both calling the function D. Thus, functions B and C are
sharing the same label B as an identifier giving function D two different valid targets.
This makes the presented label-based solution coarse-grained. More precisely, label-based
control-flow integrity suffers from several constraints. First, the protection is based on
the accuracy of the control-flow graph. Although it is easy to state that a called function
will always return to its caller, it is much more difficult to obtain an accurate control-flow
graph in the presence of indirect forward-edges. Indirect forward-edges are the result of
function pointers. It is statically impossible to determine all the point-to set of this type
of pointers and therefore to correctly inline labels. On top of that, embedded systems
frequently use interrupts to handle specific routines. An interrupt can be triggered at any
time and any location during the execution. Therefore, it is impossible to determine its
return point by only using static analysis. The usage of interrupts represents a strong
security limitation for label-based control-flow integrity.

As previously discussed, some functions share the same label ID. Unfortunately, it
relaxes the accuracy of the control-flow integrity policy as some function can return to
multiple callers. One of the positive points of label protections is that the labels are
fixed and not modifiable by the attacker thanks to the immutability of the code. Thus, an
attacker can neither modify a label nor inject code with a new label in the application data
space. On the other hand, label-based control-flow integrity protection does not prevent an
attacker from achieving an attack that remains within the control-flow graph enforced by
the labels. This well-known attack, titled call-preceded [72] return-oriented programming
leverage the label-based control-flow graph to achieve malicious code execution.

In their paper, M. Abadi and al. [68] implemented an inline label-based control-flow
integrity protection for Windows applications. They analyzed all indirect control-flow
transfers in various applications. Then, they instrumented them with unique labels using
Vulcan [73] a binary rewriter framework. They demonstrated that label-based control-flow
integrity is easily portable and can be compliant with formal analysis methods. However,
their control-low integrity implementation induces a run-time overhead up to 45% on the
SPEC2000 [74] benchmark suite. Applied to embedded systems such a pure software
label-based control-flow integrity is excessively costly regarding real-time performances.
Finally, control-flow integrity introduced by M. Abadi and al. [68] is coarse-grained and
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vulnerable to [72].

Label-based control-flow integrity takeaways
• Label-based control-flow integrity identifies each vertex in a control-flow

graph with a unique label.

• Labels are protected by the immutability of the code. They restrict the
control-flow of a program to its static control-flow graph.

• Pure software label-based control-flow integrity is coarse-grained and may
induce execution-time overhead up to 46% [68].

1.3.1.2 Shadow call stack-based control-flow integrity

To overcome the label limitation, M.Abadi et al. [68] suggested the use of a shadow call
stack. A shadow call stack handles copies of return addresses at run-time. Usually,
a shadow call stack is composed of two elements, a hardware or software buffer and a
controller. The hardware/software buffer is an isolated memory area that cannot be
tampered by a memory-based attack. This buffer is driven by a logic component called
a controller. The main purpose of the controller is to manage the state of the buffer (if
it is full or not) and the requests made by the secured software. During execution, each
function call and return make a query to the controller of the shadow call stack. More
specifically, Figure 1.14 displays the functioning of a shadow call stack.

Figure 1.14: Shadow call stack

When a function call occurs, for instance, from vertex 2 to vertex 3, the vertex 3 return
address is pushed both in the regular stack and in the memory buffer of the shadow call
stack. When the vertex 3 returns, the return address on the top of the stack is used to
return to the caller routine. Synchronously, the top return address of the stack is checked
using the top address of the shadow stack (displayed using a xor in Figure 1.14). In case
of a mismatch, the program ends with an error. Otherwise, the return address is popped
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from both stacks. In Figure 1.14, the shadow call stack provides a fine-grained backward-
edge control-flow integrity protection. As mentioned by [68] the shadow call stack ensures
that a vertex is always returning to its most recent caller.

Many hardware designs that implement various shadow call stacks have been proposed
in the literature to protect embedded systems [75–80]. One of the most recurring issues
faced by shadow call stack designers is defining the size of the memory buffer. While
hardware shadow stacks induce low execution-time overhead, the cost of an additional
on-chip hardware memory can be increasingly high. Also, a shadow call stack can only
contain a limited number of entries. Thus, if an application call-depth is higher than the
size of the shadow stack, an overflow may happen. One solution to tackle this issue is to
design a shadow call stack with a capacity that supports the maximum call depth of a
wide range of applications. However, this proposition faces several limitations. First of
all, a recursive call sequence with unfixed boundaries may tend to overflow the shadow
call stack. Secondly, it is hard to set a shadow call stack size that may be suitable for
every existing application. It follows that to be properly used, shadow call stacks must be
accompanied by programming rules as well as tools to formally verify that software may
not produce a shadow-stack overflow.

To overcome the size limitation, [81] proposed an interruption routine that regularly
checks the stack capacity and moves the oldest return addresses to a secure memory space.
Following the same idea, the NSA [77] proposed a flexible shadow call stack based on the
Memory Management Unit. Unfortunately, shadow call stacks have other limitations
such as multi-tasks programs. To manage a stack checking coherency in a multi-tasks
application, a shadow stack should be managed for each independent task. This type of
management is difficult to achieve for pure-hardware shadow call stacks. The proper way
to implement it is to assist the hardware shadow call stack with a kernel that restores the
appropriate shadow call stacks during context switching.

Another issue is that shadow stacks are not compliant with all possible constructions
offered by the C language. One of the well-known issues is the use of “setjmp/longjmp”
functions. These functions provide a way to perform inter-procedural jumps in an appli-
cation breaking the standard call/return sequence. Although their use is prohibited in
critical applications, it is not uncommon for them to be used to handle exceptions. Unfor-
tunately, after a “longjmp” the address on the top of the shadow stack no longer matches
the return address of the regular call stack. As a result, this mismatch may induce false
control-flow violations.

To support the “setjmp/longjmp” issue, some advanced shadow call stack leverage
open-hardware architectures with additional instructions and registers. For instance,
HCFI [78] modifies the SPARC architecture to enforce both backward and forward-edge
control-flow integrity. HCFI introduces 6 customs instructions to the SPARC architecture.
Among these 6 instructions, 2 instructions (SJCFI and LJCFI) are specifically dedicated
to the "setjmp/longjmp" issue. The SJCFI instruction is placed just after a "setjmp"
function call and carries a unique label that is part of its 8 least significant bits. In addi-
tion to holding a label, the SJCFI instruction serves as the landing point for the "longjmp"

31



Chapter 1. Background

function. When the "setjmp" function returns, the SJCFI instruction is executed. This
has the effect of saving the index of the top of the shadow stack in an isolated memory
indexed by the label of the instruction. Likewise, the LJCFI instruction is placed after a
"longjmp" function. Once executed, the execution flow is redirected back on the SJCFI
instruction (which is the restoration point of the "setjmp/longjmp" procedure). Then, the
second feature of the SJCFI instruction is activated. This instruction allows the hardware
logic to read the index of the previously saved top shadow stack and restore it.

HCFI [78] is dedicated to bare-metal applications. To benefit from the hardware
security feature, an application has to be compiled in an assembly file first. This assembly
file is then instrumented using python script [78] to be finally compiled into a binary. While
this process is scalable to test small applications, it is difficult to deploy in a production
environment. The compilation process is heavy. It requires several steps to generate a final
binary. In terms of security, [82] defeats most of the return-oriented programming attacks
ensuring a fine-grained backward-edge control-flow integrity. [82] also ensures forward-edge
control-flow integrity through labels. The implementation relies on the point-to analysis
performed at compilation time. Finally, leveraging the hardware for software security
support is a clever strategy to reduce the performance overhead. For instance, HCFI
induces less than of 1% execution-time penalty on average.

To deal with the recursion issue, Davi et al. proposed HAFIX [82] an architecture
that ensures a fine-grained backward-edge control-flow integrity based on hardware labels.
HAFIX extends the Intel Siskiyou Peak architecture with four instructions and an iso-
lated memory area to achieve control-flow integrity. Each application running on HAFIX
is instrumented such that every function begins with a CFIBR instruction, each call in-
struction in a program is followed by a CFIRET instruction, and each return instruction
is preceded by a CFIDEL instruction. As a result, each time a function is called, the
CFIBR is executed by the processor. This instruction active a unique function label in
an isolated memory area. When the function terminates, the CFIDEL instruction is exe-
cuted before the return instruction. This has the effect of deactivating the label from the
trusted memory. Then, the function returns to the CFIRET instruction placed after the
call instruction of the caller. This instruction contains the label of the caller function and
makes the hardware checking that this function is enabled.

HAFIX tackles recursion by using additional CFIREC instruction. As the CFIBR in-
struction, the CFIREC is placed at the beginning of a recursive function. Once executed
by the processor, CFIREC enables the label of the recursive function. This instruction
is linked with a specific CFIREC_CNTR register. Every time the recursive function is
called, the CFIREC_CNTR register is incremented. Once the recursive function returns,
the processor checks if the function’s label is enabled and if the CFIREC_CNTR register
is greater than 1. If both conditions are verified, the CFIREC_CNTR register is decre-
mented. Otherwise, the recursion is over and the label is deactivated. In comparison with
HCFI [78], HAFIX does not ensure forward-edge control-flow integrity. Also, a return in-
struction can always return to an active site that is not the most recent caller of a function.
Indeed, HAFIX does not prevent an attacker from returning in a caller’s active function of

32



1.3. Existing Defenses

its caller. Regarding the performance, HAFIX induces less than 2% execution-time over-
head. Moreover, HAFIX comes with a compiler extension that automatically generates
secure code with secure instructions. This approach is more practical to be deployed in
software production environments than [78]. It allows error-free security integration for
non-security experts.

The key point of this section is that shadow stacks are efficient at providing fine-
grained backward-edge control-flow integrity. In other words, a shadow stack can be
assimilated into a simple redundancy mechanism for functions’ return address. However,
this section also reveals that shadow stacks come with several limitations such as the
size, the recursion, the way C structures such as "setjmp/longjmp" are managed and
multitasks applications.

Shadow stacks takeaways
• Shadow stacks provide fine-grained backward-edge control-flow integrity.

• Shadow stacks require dedicated support for multi-tasks systems, recur-
sion, and "setjmp/longjmp".

• The execution-time overhead induced by hardware shadow stacks is low.
Unfortunately, hardware shadow stacks are always limited by their size.
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1.3.1.3 Branch policy-based control-flow integrity

The majority of control-flow attacks break the static control-flow graph of a program.
Code-injection attacks redirect the execution flow of an application on a malicious code
located out of the control-flow graph. In contrast, code-reuse attacks divert the execution-
flow on several gadgets scattered in the code of a vulnerable program. Thus, monitoring
any deviation from the original control-flow graph may be an effective process to catch
control-flow based attacks. One way to detect control-flow violations is to monitor each
indirect branch at run-time. Such a method, called “branch limitation” or “branch re-
striction” often requires the help of an external component called a branch monitor. The
main purpose of a branch monitor is to analyze each indirect control-flow transfer based
on a certain security policy. If an indirect branch breaks the security policy enforced
by the branch monitor, an exception is raised. Figure 1.15 displays a control-flow graph
instrumented with a branch monitoring protection.

Figure 1.15: Branch monitoring

For instance, a branch restriction security policy can enforce each function return to
target an instruction preceded by a call and, each indirect forward-edge to target the
beginning of a function. Thus, any indirect-forward-edge targeting the middle of a basic
block such as ROP would violate the security policy enforced and be detected.

BB-CFI [83] is an x86-based architecture with a branch restriction policy. BB-CFI
uses a hardware control-flow checker to monitor the behavior of an application over time.
The control-flow check enforces that every jump instruction is restricted to the beginning
of a basic block. Besides, the control-flow checker restricts every function call to the first
basic block of a function. To be aware of each valid branch destination, the BB-CFI
must be configured with a metadata file that contains the valid destination target of every
branch. Of course, this configuration file is stored in secure memory so that it may not

34



1.3. Existing Defenses

be tampered by any memory-based attacks. According to [84], BB-CFI can thwart every
attack from the RIPE benchmark suite, providing fine-grained control-flow integrity.

To dispense with the use of a metadata file such as [83] , W. He [84] proposes BBB-
CFI a similar approach than [83] . This proposal checks that the destination target of an
indirect branch is preceded by a branch instruction. Indeed, since a branch instruction
marks the end of a basic block and the beginning of a new one, checking the instruction
preceding the jump target ensures whether the destination is the beginning of a basic
block or not. Unfortunately, in the case of fall-through or switch, this policy doesn’t work.
To overcome this exception, W. He [84] proposes a second rule in which a list of allowed
branches not covered by the first rule is maintained and does not raise a control-flow
exception. Like BB-CFI [83], BBB-CFI [84] is implemented in hardware on an FPGA.
It consists of several components such as a control-flow checker that interacts with the
pipeline of a processor. This control-flow checker itself contains two elements; shadow call
stacks for backward-edges, and a checker module that enforces rules 1 and 2. More deeply,
BBB-CFI uses a 32 entry shadow call stack, and the average amount of memory required
to store the metadata file containing the second rule represents 13% of an application.
BBB-CFI also induces an overhead of 0.13% at runtime which is negligible. Finally, in
terms of security BBB-CFI is confronted with the Benchmark-RIPE [85] suite. All attacks
of the suite are countered by BBB-CFI except the return-to-libc attacks.

Intel Control-Flow Enforcement Technology [75] is similar to BBB-CFI. Indeed, it com-
bines a hardware/software branch restriction policy for the forward-edges with a shadow
call stack for the backward-edges. Indeed, Intel CET introduces a new ENDBANCH
instruction in the x86 instruction set. The ENDBRANCH instruction is used to mark
the beginning of a valid destination block for an indirect forward-edge. According to the
specifications [70], the Intel x86 processor implements an additional finite state machine
in the pipeline that tracks the indirect branches of an application. When a branch in-
struction passes through the pipeline, the state machine moves into a "WAIT_FOR_
ENDBRANCH" standby state. This state waits until the next instruction passing in the
pipeline is an ENDBRANCH to confirm a valid branch destination. If an ENDBRANCH
instruction is not seen by the processor, a control-flow exception is raised. Otherwise, the
finished state machine returns to its initial "IDLE" state. Currently, no specific security
assessment has been performed on Intel CET, according to [71], Intel-CET being similar
to [84] provides approximately the same security level.

While [75, 83, 84] prevents control-flow attacks by enforcing branch monitoring, C-
FLAT [86] proposes to measure the path taken by an application at runtime. To achieve
path measurement, C-FLAT monitors every indirect branch operated at runtime and
computes a cumulative hash using the source and the destination address of each taken
branch. The whole mechanism works with a prover and a verifier. The prover runs on
the system to be monitored and computes the cumulative hash of the paths taken by an
application. Then, it sends the cumulative hash result to a remote verifier which checks
that the hash is consistent with a list of pre-computed hashes. In case a cumulative hash
does not find a match in the verifier hash database a control-flow violation is lifted. C-
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FLAT is purely implemented in software and runs on the ARM architecture. Initially,
the application which must be protected is instrumented thanks to a script. Each branch
raises an interruption that transfers the execution to the prover. The latter computes the
cumulative hash using the source and destination address of the jump. Finally, the prover
returns the execution-flow to the main application and sends the cumulative hash value
to the verifier. In C-FLAT, the prover is placed in an isolated memory (TrustZone [87]),
unattainable from the monitored main application memory. It follows that the prover
is protected from the monitored application. According to [86], C-FLAT is extremely
accurate. Indeed, C-FLAT can also be used to monitor direct branches. Also, C-FLAT
can detect non-control data attacks that target loops [65]. However, the accuracy of
C-FLAT comes at a certain price. The performance of C-FLAT is measured on a real-
time system such as the open-syringe [88]. It turns out that when an application is not
monitored by C-FLAT the execution overhead decreases from 72 to 80%. Also, according
to [86], the majority of the overhead induced by C-FLAT comes from the hash algorithm,
from the switches between the TrustZone and the untrusted memory and, finally, from the
interrupt of the measurement engine.

To improve C-FLAT [86], Davi et al. proposed LO-FAT [89] an implementation of
C-FLAT but at the hardware level. LO-FAT leverages the open-source RISC-V archi-
tecture [90] to implement the monitoring mechanism of C-FLAT. To monitor branches,
LO-FAT is incorporated directly into the instruction pipeline of the RISC-V Pulpino pro-
cessor [91]. This strategy offers several advantages over C-FLAT. First, LO-FAT tracks
branches directly at the hardware level without interrupting the software execution. Also,
the hardware monitor of LO-FAT computes the cumulative hash in parallel with the ap-
plication execution. Finally, the monitored application is not instrumented thanks to the
branch monitor that recognizes branches in the processor pipeline.

In closing, LO-FAT takes advantage of hardware to fill the lack of C-FLAT. Regarding
the security, LO-FAT [89] is as accurate as C-FLAT [86]. To remind, both solutions are
fine-grained and able to detect some advanced data-oriented attacks [65]. Unlike C-FLAT,
the run-time overhead induced by LO-FAT is very low, less than 5%. Besides, LO-FAT
increases the size of a RISC-V Pulpino processor by around 20%. Finally, one of the
negative aspects of both solutions is that they do not prevent attacks, they can only
observe them. Moreover, these solutions require maintaining a hash database which can
be extremely heavy depending on the application to be monitored.

Branch policy takeaways
• Branch policies restrict or monitor the execution-flow according to the

control-flow graph.

• Hardaware-based monitors usually induce a low execution-time overhead.

• Branch policies are useless against data-oriented attacks and attacks that
remain within the control-flow graph.
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1.3.1.4 Trampoline enforced control-flow integrity

As control-flow attacks leverage indirect control-flow transfers, one mitigation is to check
their destination using an intermediate trampoline. The protection consists of introducing
an intermediate routine (trampoline) between an indirect branch and its destination ad-
dress. Every indirect branch is first redirected to a trampoline that verifies the destination
address, validates it and, redirects the execution flow to the expected function. Figure 1.16
displays the principle on indirect forward-edges.

Figure 1.16: Indirect branch verification

The example assumes that forward-edges are determined at run-time by the value of
a function pointer. Of course, by corrupting the function pointer’s value, an attacker can
hijack the application’s execution flow. To counter this type of attack, a trampoline is
introduced (on the right in Figure 1.16). This time, the indirect calls are first directly
redirected on a trampoline routine. This trampoline performs an Address Translation of
function pointers to compute an index in a table that corresponds to a valid destination
target. Finally, the execution flow is redirected from the table entry which contains a
jump to a valid final destination.

Many existing implementations use a trampoline approach to enforce a control-flow
integrity [69,77,92,93]. However, among these implementations two categories of trampo-
line approaches may be discerned: those that protect a program at compile-time [92] and
those that act after compilation [69,77,93], directly on a binary.

For instance, MoCFI [77], CCFIR [93], and bin-CFI [69] use a trampoline based ap-
proach applied after compilation to enforce both forward and backward-edge control-flow
integrity. Both [93] and [69] use various static binary analysis and rewriting techniques to
redirect the indirect control-flow on injected checking routines. First, these approaches use
a custom disassembler to collect all the indirect control-flow transfers. Then, a static an-
alyzer determines all the possible targets of indirect control-flow transfers and constructs
a table of every valid target destination. After that, each indirect control-flow transfer
is replaced (patched) by a direct branch to a trampoline. This trampoline implements
an address translation that transforms the destination address of the indirect control-flow
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transfer into a valid function table entry address. Finally, a jump to the table is per-
formed and the control-flow is transferred to the original indirect target. bin-CFI [69]
maintains a different table and a different trampoline routine for indirect backward-edges
and direct forward-edges. Consequently, an indirect return (backward-edge) cannot target
a valid destination from the forward-edge table. CCFIR [93] proposes the same approach
but adds a table for security-sensitive function. Both bin-CFI and CCFIR have a rea-
sonable execution-time overhead, around 3.6% for CCFIR on SPEC2000 [68] and around
4% for bin-CFI on SPEC2006 [91]. In terms of security, CCFIR is confronted against 10
real working exploits taken from Metasploit. The results demonstrated that CCFIR can
thwart any one of them. Conversely, bin-CFI exposes an AIR of 98,86% which is close to
fine-grained protection.

MoCFI [77] follows the principle of both bin-CFI [69] and CCFIR [93] to enforce
control-flow integrity. Unlike bin-CFI and CCFIR, MoCFI enforces a fine-grained backward-
edge control-flow integrity thanks to a software shadow stack. Also, to compute forward-
edge targets with accuracy, MoCFI emulates some parts of the assembly during the static
analysis phase. From this static analysis phase, a set of (src, target) couple addresses
is extracted. These couples are communicated to a protected Runtime Module. During
execution, each indirect forward-edge is redirected to a trampoline which calls the Run-
time Module. The Runtime Module checks that the indirect call destination is valid and
restores the control-flow. MoCFI has an average overhead of 1.22% for indirect jumps and
7.45% for calls and returns.

Unfortunately, the trampoline approach enforced by binary rewriting has many limi-
tations. Rewriting every indirect control-flow branch, adding trampolines and tables has
the effect of increasing the size of the final binary. For instance, bin-CFI [69] increases the
average size of an executable by 139%. As a result, this type of solution may be acceptable
for a desktop application with unlimited memory but unreasonable for a small embedded
system. Second, the accuracy of the control-flow integrity protection is based on the ac-
curacy of the control-flow graph computed by the static analyzer. Unfortunately, it is
almost impossible to estimate an accurate control-flow graph by only using static analysis.
As a result, the instrumentation is often coarse-grained degrading the security. Another
limitation is that trampoline approaches cannot protect embedded system interruption-
s/exceptions if not using a shadow call stack. Indeed, static binary rewriting techniques
cannot predict wherein the code an interruption may be lifted. It follows that they also
cannot determine their return location.

Finally, to enforce forward-edge control-flow integrity, Google Inc. [92] proposes to use
trampoline instrumentation at compilation time. This approach is more compatible with
software engineering concepts and can be easily integrated into a software development
life-cycle. The general idea of their approach remains the same as for bin-CFI [69] and
MoCFI [77] but is implemented in the GCC compiler as VTV [22] and the LLVM [23]
compiler as IFCC. The main asset of using a compiler is that more high-level information
is present in the program during the compilation phase and therefore it is much easier to
determine the indirect control-flow transfers of an application. Also, the compilation phase
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allows optimizing the trampoline routine implementation for each indirect branch. To
assess the security level of their protection, [89] introduces the concept fAIR (forward-edge
Average Indirect target Reduction), which evaluates the quality of control-flow integrity
protection by only taking into account the forward-edges. They measured an average of
99.8% fAIR with a performance penalty ranging from 0.6-5.8% for the SPEC 2006 C++
benchmark.

Trampoline control-flow integrity takeaways
• Trampoline control-flow integrity redirects indirect control-flow transfer

on trampoline routines that checks their destination target.

• Trampoline solutions are mostly implemented in software, and some of
them require the binary rewriting techniques.

• Most binary rewriting techniques are coarse-grained and induce non-
negligible size overhead.
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1.3.2 Heuristic defenses

Like current anti-virus software that detects the presence of malware on systems, heuristic
analysis can also be applied to detect control-flow attack signatures. The main purpose of
the heuristic analysis is to track a program at run-time and recognize suspicious behaviors
that look like a code-reuse or a code injection attack. To be accurate, the heuristic analysis
requires a set of specific signatures that allows it to assess the risk of a system being
under attack. These signatures are determined from the knowledge of control-flow exploits
patterns. For instance, Figure 1.17 displays a Return-Oriented Programming attack on
the right. On the left, one can observe a list of gadgets (short sequences of instructions
that end with a branch) that are scattered in the “text” section address space of the
application. These gadgets can be extracted using custom tools such as ROPgadget [94].

Figure 1.17: ROP signature

In Figure 1.17, some specific code-reuse attack characteristics can be extracted. On
the left, it appears that the majority of code reuse attacks use gadgets which are small
sequences of instructions (between 1 and 6) ending with an indirect branch. It turns out
that the average number of instructions executed between two branches is very low, which
is rarely the case in a normal application. Thus, one common signature of code-reuse
attacks is a low ratio of instructions between branches. On the right of Figure 1.17, the
system under attack is performing a lot of jumps all over the text section in a short period.
Thus, a second signature specific to code-reuse attacks is the high ratio of branches over
a short time window.

For hardware processor architectures that benefit from a speculative branching unit,
code-reuse attacks induce a lot of address misprediction [95]. For instance, a prediction
unit such as the Return Address Stack (RAS) cannot predict the destination address of
a return in a code-reuse attack because the happening returns are not associated with
call [96]. Thus a high level of branches misprediction is a signature of code-reuse attacks.
Finally, one of the commonalities of return-into-libc attacks is that they try to execute a
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system call or a sensitive function. As a result, the use of one or more sensitive system
calls in a non-regular way may also be a sign of an attack.

In summary, by looking for signatures such as the number of consecutive indirect
branches, the number of instructions between two branches, the number of branches over
a short time window, the misprediction rate of a speculative unit and, the use of system
calls, it is possible to determine whether a system is likely to be attacked.

kBouncer [97] is a heuristic engine implemented in Windows that leverages the use of
dangerous function/system calls to detect return-oriented programming attacks. kBouncer [97]
uses the Detours framework [98] to rewrite a binary and make it stop each time a sensitive
function call is performed. Once stopped, kBouncer takes over and checks the Last Branch
Record (LBR) unit of an Intel x86 processor. The LBR unit records all the last branches
performed by the processor. From the LBR, kBouncer filters the sources and destinations
of the last "returns" performed by an application. kBouncer checks that each return desti-
nation is preceded by a call. If not, a code reuse attack is detected and blocked. While the
estimated runtime overhead of kBouncer is up to 6%, kBouncer suffers from many limita-
tions. Indeed, kBouncer relies on the Last Branch Record (LBR) records; unfortunately,
the latter may be overflowed or polluted by the context switches of the Windows operat-
ing system. Moreover, kBouncer is only designed to detect Return-Oriented Programming
attacks. However, attacks such as Jump-Oriented Programming [60] are as practical and
dangerous than Return-Oriented attacks. At last, kBouncer only intercepts dangerous
function calls. Unfortunately, many attacks are not always using a sensitive function call
in their exploit. Consequently, a wide range of attacks may evade the kBouncer engine.

ROPGuard [99] is an alternative to kBouncer [97] which operates in the same way.
As kBouncer, ROPGuard is triggered each time a sensitive function is called in a pro-
gram. Then, ROPGuard performs more advanced verification than kBouncer to deter-
mine whether a program is currently being exploited. First, ROPGuard checks that the
stack pointer still belongs to the stack area. Many advanced exploits use the stack pivot
technique to move the stack pointer is the heap or the BSS where a gadget sequence can
be placed by an attacker. Second, ROPGuard checks if the return address of the called
sensitive function belongs to an executable memory area and is preceded by a call instruc-
tion. Indeed, many Return-Oriented Programming attacks jump all over the program
breaking the classical “call” and “return” structure. Third, ROPGuard tries to compute
the call stack of the sensitive function based on the previous frame pointers stored in the
stack. Return-oriented gadgets are injected in the memory space overwriting several stack
frames and previous frame pointers. Finally, ROPGuard provides additional features such
as preventing a program to make the stack executable and simulating a critical function
to observe its return address. Unfortunately, by only hooking sensitive function calls,
ROPGuard suffers from the same limitation as kBouncer.

To overcome the limitation of both kBouncer [97] and ROPGuard [94], ROPecker [100]
enforces three signatures detection methods such as the number of instructions between
branches, the number of branches over a time window and, the use of sensitive functions.
ROPecker is purely implemented in software in the Linux kernel and operates in two
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steps. First, before being executed, the monitored program is pre-processed by ROPecker.
This processing phase constructs a gadget database of the application. Then, at runtime
ROPecker restricts the execution of functions to their authorized pages by setting the
other pages as non-executable. As a result, when a program tries to execute an instruction
outside of the active page an exception is captured by the ROPecker engine. This exception
triggers the heuristic algorithm of ROPecker. The latter leverages the Last Branch Record
(LBR) history to check whether the last source/destination branches correspond to gadget
addresses already stored in the gadget database. Besides, ROPecker analyzes the top
of the stack and looks for gadget addresses to anticipate future attacks. Thanks to the
gadget database ROPecker can detect jump-oriented programming attacks [54] where both
kBouncer and ROPGuard fail.

Unfortunately, heuristic countermeasures are imperfect. Heuristic engines are weak at
detecting call-preceded gadgets [72]. Also, heuristic engines may be defeated by introduc-
ing long gadgets that include several instructions and function calls. The main purpose
of these long gadgets is to evade the heuristic engine by obfuscating the signature of a
classical Return-Oriented Programming exploit.

To counteract evasion methods, SCRAP [101] proposes a heuristic analysis coupled
with a hardware shadow stack. SCRAP is based on a modified implementation of an x86
processor. As ROPecker [100], SCRAP [101] noticed that many heuristic analyses [97,100]
only focus on return-oriented programming attacks, but not on jump-oriented program-
ming attacks. Moreover, SCRAP takes into account that the heuristic engine can be
evaded using long intermediate gadgets that include calls. To overcome these two issues,
SCRAP uses a counter to measure the length of gadgets in real-time. If a gadget length
may happen to be under a threshold, a transition is performed in a finite-state machine.
Conversely, if a gadget length is over a threshold, a step back is performed by the finite
state machine. When a function call is performed, the current state of the finite-state
machine is saved in a shadow stack and the finite-state machine is re-initialized. When
the function returns, the state is restored and SCRAP continues to monitor gadgets. In
terms of security, SCRAP [101] can detect any code-reuse attack, even the evasion tech-
niques that introduce long intermediate gadgets. Also, the detector engine of SCRAP can
be programmed to monitor up to 50 instruction gadget lengths without any false positive.
Finally, SCRAP is implemented through the PLTsim simulator and reports an execution
overhead of less than 2%.

Heuristic defenses takeaways
• Heuristic defenses act like anti-virus, they detect control-flow attacks sig-

nature.

• Heuristic defenses are completely transparent to binaries, they often do
not require any code instrumentation.

• Heuristic protections are vulnerable to attacks that evade known control-
flow signatures.
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1.3.3 Software diversity

When a vulnerability is discovered, an attacker aims to develop an exploit and compromise
as many systems as possible. The reason why large-scale exploits are usually functional
comes from the fact that each instance of an application is the same at the assembly level.
Thus, each instance of a program has the same set of gadgets and therefore is vulnerable to
the same exploit. To reduce the effectiveness of large-scale exploits, one idea is to diversify
the instances of a program in memory.

As previously studied in section 1.2.1.1, the Address Space Layout Randomization
(ASLR) is a technique to diversify programs’ heap/stack. To remind, the partial ASLR
inserts the position of the stack/heap at a random offset each time an application is
executed. In contrast, the complete ASLR places the whole application, including the
“text” section at a random offset in memory. The original goal of the partial ASLR is to
mitigate code injection attacks. In the same way, the full ASLR mitigates the so-called
return-oriented programming attacks by shifting the position of the “text” section at each
execution.

Unfortunately, the current implementations of the ASLR are weak. Indeed, partial
ASLR can be evaded using Return-Oriented Programming attacks. Moreover, code-
memory disclosures caused by dangling pointers may reveal the position of code memory
pages allowing an attacker to retrieve gadgets on-the-fly [50]. Finally, the ASLR is also
vulnerable to partial overwrite attacks and brute-force attacks [102,103] that aim at trying
every possible offset to match an address with a fixed exploit. It turns out that the random
offset protection used by the ASLR offers a coarse-grained software diversification.

According to the state-of-the-art of P. Larsen et al. [104], fine-grained software di-
versification can be obtained by randomizing the code structures of an application. To
achieve diversification, several hardware/software transformation techniques can be ap-
plied to generate several mutations of the same program instance. Figure 1.18 illustrates
a simple software diversification technique. Two instances of the same C code are repre-
sented in memory. However, the two applications do not have the same structure. The
order of the functions in memory is different, and within the functions, the order of the
basic blocks is different. It follows that the addresses of the gadgets found in the memory
of both programs may be different. While Figure 1.18 only displays two diversification
techniques such as function and basic block shuffling, the state-of-the-art of Per Larsen
et al. [104] highlights other software diversification techniques such as instruction sub-
stitution, instruction reordering, and register substitution. At last, the state-of-the-art
even mentioned some advanced obfuscation techniques such as control-flow flattening and
opaque predicates to diversify software.

To enforce software diversity, Jackson et al. [105] proposed two extensions of the cur-
rent GCC [22] and LLVM [23] compilers. These extensions aim at inserting random NOP
instructions between the instructions of a program. This has the effect of inserting random
offsets between instructions, complicating the deployment of accurate code-reuse attacks.
Unfortunately, this model provides low entropy. The order of the functions and the basic
blocks remains the same in memory and is frozen after compilation. It results that some
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Figure 1.18: Software diversification

attackers may launch brute-force attacks such as for the address space layout random-
ization [106]. Moreover, in this model, entropy is directly related to the ratio of NOP
instructions to be inserted into the program. Consequently, an increase in entropy for the
benefit of security leads to a drastic degradation of performance. Jackson et al. measured
up to 40% overhead in the SPEC2006 benchmark suite [107].

To improve the insufficient randomness of Jackson et al. [105], C. Kil et al. [108]
introduced Address Space Layout Permutation (ASLP). ASLP randomizes the sections of
a program during its initialization. To achieve this, C. Kil et al. [108] developed a custom
binary rewriting tool that places static code and data segment to a random location in
memory and performs permutation of code and data structure. At initialization, the
memory layout of the sections of a program is changed by ASLP. For instance, one binary
may have the stack above the BSS section, another one may have the stack below the
text section. Concerning the random permutations, ASLP collects all the reference of a
program at load time, permutes the functions, and the basic blocks within the functions,
finally it rewrites the new functions in the binary. ASLP induces less than 1% execution-
time overhead on average with 29 bits of randomness. ASLP requires the program to be
randomized to have all the relocation information.

To offer finer randomization than [105, 108], J. Hiser et al. proposed to randomize
every instruction to a program. To carry out instruction randomization, J. Hiser et al.
implemented ILR [109] (Instruction Location Randomization) a framework that shuffles
every instruction in a binary. To be executed in the right order, ILR maintains a fall
through map where each instruction’s successor is independent of its location. This map
is used by a virtual machine to fetch the instructions in the right order and executes
them. This approach enforces a high level of randomness; every instruction is located at
a different address every time. Unfortunately, the fall through map more than double the
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size of the application which is unreasonable for memory-constrained embedded systems.
Binary Stirring is a technique introduced by R. Wartwell [110] that dispenses with

a virtual machine to maintain software diversification. They randomize both the basic
blocks and the instructions at load time. To perform such randomization, they developed
a tool that disassembles binaries into an intermediate representation. This intermediate
representation is then followed by a load time phase that randomizes and rewrites the
instruction of the program. Compared to ILR, STIR is much lighter and does not require
a virtual machine. Moreover, STIR has a fairly acceptable run-time overhead of 1.6%.

Unfortunately, countermeasures based on binary randomization suffer from the Just-In-
Time Return-Oriented Programming (JIT-ROP) attack introduced by L. Davi [106]. Such
an attack leverages a memory disclosure to leak the text section of a program, disassemble
it, and build on-the-fly ROP exploits. L. Davi [42] demonstrated that JIT-ROP is powerful
enough to break any sort of randomization defenses previously exposed.

To prevent JIT-ROP, one solution is to prevent memory leaks by enforcing an “execute-
only” policy on certain memory areas of the program’s “text” section [111]. Another
method proposed by SOFIA [112] is to cipher every instruction of a program based on
its control-flow graph. At run-time, every instruction is deciphered using both the cur-
rent and the previous program counter. Thus, if the previous program counter does not
respect the intended execution-flow, the instruction deciphering fails. As a result, SOFIA
prevents both JIT-ROP and various software control-flow attacks. On top of that, SOFIA
is also able to thwart hardware fault injection attacks that aim at skipping instructions.
Unfortunately, due to the encryption, SOFIA incurs a high run-time overhead up to 106%
with a 23.3% penalty on the clock speed of the LEON3 processor.

Software diversity takeaways
• Software diversity produces multiple instances of the same software to

prevent exploit development.

• Software diversity is highly vulnerable to memory disclosure attacks and
JIT-ROP.

• The size and execution-time overhead induced by software diversity rely
on the randomization technique and the entropy source.
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1.3.4 Data-flow integrity

The previously discussed defenses protect against the second stage of memory-based at-
tacks. To remind, the first stage of an attack is the corruption of either control or non-
control-flow data. The second stage is the execution of a malicious payload by the cor-
rupted program. Control-flow integrity, heuristic analysis, and software diversification
take into account that an attacker already corrupted sensitive data. Their main purpose
is to harden and/or detect the deployment of a functional exploit. This section takes a
different approach, it focuses on defenses against the first stage of an attack, i.e. the initial
corruption of sensitive data. However, what can be considered as programs’ critical data?

Given the previous sections, control-flow data can be considered sensitive. This in-
cludes return address for indirect backward-edges and, function pointers for indirect
forward-edges. Once corrupted, this data can be leveraged by attackers to hijack the
execution flow. Besides, section 1.1.1 introduced data-oriented attacks, a practical class of
attacks that modify the behavior of an application without relying on control-flow data.
These powerful attacks unlock security restrictions and give more control of a program
to an attacker. To remind, H. Hu and al. [65] demonstrated the Turing-completeness of
data-oriented attacks using vulnerable loop variables and arbitrary writes in memory. As a
result, non-control data loops and data pointers may also be considered sensitive. Finally,
back to the discussion on critical systems, it seems that any non-control data inducing a
faulty behavior in a system can be considered sensitive.

Unlike control-flow integrity that restricts the execution flow to the control-flow graph,
data-flow integrity aims at protecting programs at the sensitive data granularity. Data-flow
integrity can be achieved using cryptography, fat-pointers, isolation, and tagged memory.
This section discusses each of these approaches mentioning their accuracy and costs.

1.3.4.1 Cryptographically enforced data-flow integrity

Cryptography is a discipline of cryptology that can be applied to ensure sensitive data-flow
integrity. The cryptography certifies the confidentiality, authenticity, and integrity of a
message. Thus to protect sensitive data, a cryptographic algorithm with a private key can
be applied to attest to the integrity of sensitive data whenever accessed.

For instance, CCFI [113] an LLVM compiler extension proposed by A.J. Mashtizadeh
et al. uses a Message Authentication Code algorithm (MAC) to protect the sensitive
control-flow data stored in memory. The CCFI compiler ensures that each time a control-
flow data is stored in memory its MAC is computed using the cryptographic extension
accelerator of the Intel processor and is stored alongside. In the same way, each time a
control-flow data is required by a program, its MAC is verified. According to [113], the
MAC key is randomly generated at the program start and stored in registers that CCFI
compiler reserves. The security of CCFI relies on two assumptions. First, the code never
leaks the key because the compiler enforces that the instructions of the program never
use the reserved registers. Second, attackers cannot execute the code that accesses the
reserved registers because they would have to break control-flow in the first place. CCFI
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induces an average of 23% execution-time overhead on the SPEC2006 [107] Benchmark
suite for the programs that are only written in C. Although this overhead is high, the
cryptographic approach ensures fine-grained control-flow integrity by protecting sensitive
control-flow data. It worth mentioning that the solution does not tackle pure data-flow
integrity but can be used to it by extending the compiler.

PointGuardTM [114] is another compiler extension based on GCC that protects point-
ers. To do so, PointGuardTM generates a unique stream cipher key at program initializa-
tion. Then, each pointer stored in memory is ciphered using the key. At runtime whenever
pointers are accessed they are ciphered/deciphered using the key. In comparison with
CCFI [113] that guarantees the pointers’ integrity, PointGuardTM uses the confidentiality
property of cryptography to protect sensitive data. As a result, if a ciphered pointer is
maliciously modified, its decryption may result in an erroneous value causing the applica-
tion to crash. PointGuardTM [114] reports an overhead ranging from 0 to 20% depending
on the application. Unfortunately, PointGuardTM suffers from two limitations. First,
PointGuardTM uses an XOR stream cipher with a unique key to cipher multiple pointers.
As a result, it is vulnerable to many time pad attacks. Second, PointGuardTM does not en-
force any specific security policy against memory disclosure. It follows that a memory dis-
closure may easily reveal the value of the key. Finally, as CCFI [113], PointGuardTM [114]
does not enforce non-control data integrity leaving programs vulnerable to [65].

To overcome the limitation of PointGuardTM [114], S. Bhatkar and R. Sekar proposed
Data Space Randomization (DSR) [115]. DSR is a C front end code instrumentation frame-
work based on CIL [116]. Data space randomization ciphers every data in the memory
using a mask. To avoid many time pad attacks, this mask is different for every ciphered
data. As a result, DSR offers a higher level of security than PointGuardTM. Besides,
the solution induces an execution-time overhead ranging from 15%-28%, which is close
to PointGuardTM. Unfortunately, DSR is not binary compatible with external libraries
and modules can’t be compiled separately. DSR is, therefore, constraining for incremental
compilation.

Finally, Pointer Authentication Code (PAC) [117,118] is a hardware extension of ARM
64 bits processors that use Message Authentication Code (MAC) to verify the integrity of
pointers at runtime. The PAC hardware extension comes with an extended compiler and
provides two sets of custom instructions (PAC* and AUT*) to authenticate pointers at
program execution-time. The PAC* instructions trigger a hardware MAC accelerator that
computes the MAC of a pointer using QARMA [119] block cipher. The result of the MAC
is stored in the 26 upper top-bits ignore of the pointer. This comes from the fact that the
ARM64 Linux uses a 40-bit address space by default, leaving 26 upper bits unused.

Once the pointer is re-accessed, the AUT* instruction is used to verify the MAC
and restore the pointer original value. If the pointer authentication fails, the processor
makes the pointer value an illegal address. When it comes to code pointers and return
addresses protection the execution-time overhead induced by PAC is very low (under
0,5% on average) [117]. This low overhead is very encouraging; it demonstrates that fine-
grained control-flow integrity can be achieved without inducing unwanted execution-time
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overhead. However, concerning the data pointers, [117] claims that the run-time overhead
largely depends on the memory profile of an application. The paper [117], reported up to
39,5% overhead.

Cryptographically enforced data-flow integrity takeways
• Cryptographically enforced data-flow integrity uses cryptographic algo-

rithms to authenticate/protect sensitive data integrity.

• By protecting sensitive data, cryptographically enforced data-flow in-
tegrity ensures fine-grained control-flow integrity.

• Implemented with hardware support, cryptographically enforced data-
flow integrity has a very low execution-time overhead.

1.3.4.2 Fat Pointers

Every programs’ variable has a memory location that can be retrieved thanks to its address.
Pointers are specific variables that dereference a memory location by its address. They are
commonly used to efficiently dereference data structures such as strings, tables, trees, but
also to call indirect subroutines (indirect forward-edges). In most memory-based attacks,
attackers leverage in-memory pointers to modify the behavior of a program. By modifying
the value of a pointer, an attacker can make it dereference another variable that is later
reused by the program.

One way to prevent pointer hijacking is the use of Fat Pointers. Fat Pointers are ex-
tended pointers that include extra information such as their base and bounds. Figure 1.19
illustrates both a simple pointer and a fat pointer. One can observe that both pointers
in Figure 1.19 dereference the same variable. However, the Fat Pointer has additional
metadata: a base and a bound. These data refer to the beginning and the limit of the
dereferenced object in memory. Hence, each time object A is dereferenced using the Fat
Pointer, the validity of the latter is checked using the additional base and bound metadata.

The use of Fat Pointers is an efficient technique to thwart pointer hijacking attacks.
Intel MPX [120], Watchdog [121], WatchdogLite [122], Softbound [123], and Hardbound
[124] broadly follow the same Fat Pointer approach to ensure memory safety. For instance,
both Softbound [123] and Hardbound [124] record metadata for every in-memory pointers.
These metadata are stored in a disjoin memory in the virtual address space and they
include the base and bound of every pointer. Whenever a pointer is used, the boundaries
of the latter are checked using its associated metadata. Softbound [123] is a pure software
approach that inserts bound checks at compile time. Softbound is compatible with the
C language programming standards, however, the execution overhead cost of Softbound
is very high, up to 79%. To overcome the overhead limitation of Softbound, Hardbound
implements a hardware extension of an Intel x86 processor with a custom instruction to
set the base and bound of a pointer in the disjoin memory. The hardware extension also
implicitly monitors each access to a pointer and check its boundaries. As Softbound [123],
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Figure 1.19: Fat Pointer

Hardbound [124] can thwart any pointer hijacking attacks with a fewer overhead, around
15% on average.

The Intel MPX [120] extension implements Fat Pointers’ memory safety by improving
the x86 architecture and its compiler. To support Fat Pointers, Intel MPX provides 7 new
instructions and four 128 bits additional bound registers in the x86 architecture. The main
purpose of a bound register is to keep both the lower bound and the upper bound of an in-
memory pointer. The additional x86 instructions are used to create new bounds in a bound
register, compare a pointer with its associated bound register, move a bound register to
another one, and finally, spill the bound register in a dedicated table bound table. At the
software level, the compiler toolchain implements all the new registers and the additional
instructions of the MPX extension. It also modifies the calling convention such that every
return address pointer is protected using the MPX extension. Unfortunately, Intel MPX
suffers from many limitations [120]. First, it induces a very high execution-time overhead
up to 150% with the GCC compiler support. Also, O. Oleksenko et al. founds that Intel
MPX is not compatible with some C idioms and 10% of their evaluated programs crashed
due to compiler bugs. Finally, Intel MPX exposes very poor security results. Despite Intel
MPX is tuned for desktop computers, it does not take into account dangling pointers.
Moreover, according to the evaluation performed by O. Oleksenko et al. [120], MPX only
protects against 46% of the attacks included in the RIPE benchmark suite [85].

In the same purpose, Shakti-T [125] is a RISC-V [90] processor architecture that
enforces data-flow integrity following the Fat Pointer approach. Shakti-T extends the
RISC-V architecture by introducing new instructions and specific memory support for Fat
Pointers. At execution-time, Shakti-T maintains a Pointer Limit Memory (PLM) to store
the base and bound of every pointer. The base address of the PLM is conserved in a ded-

49



Chapter 1. Background

icated Pointer Limits Base Register (PLBR), and every pointer is associated with an ID
stored alongside in the regular memory. To speed up the access to the PLM, the Shakti-T
architecture implements a Base and Bound Cache (BnBCache). This cache is composed
of two elements, a Base and Bound Index (BnBIndex) and a Base and Bound Look Up
(BnBLookUp) table. Each index of the BnBLookUp maintains the base, the bound, the
ID, and a validity bit of a pointer in the PLM. Moreover, the BnBIndex is an extension
of the register file that holds an index for each general-purpose register to an entry in the
Base and Bound Cache.

The Fat Pointer hardware support proposed by Shakti-T is driven by specific cus-
tomized instructions introduced in the RISC-V instruction set. For instance, a special
write instruction [125] (wrplm) is provided to populate the PLM memory with the base
and bound value of a pointer. Also, special load instructions are provided to load the
base and bound values from the PLM to the BnBCache, load a pointer with its ID into a
general-purpose register and checks its validity using the BnBCache. In terms of security,
no specific evaluation is performed by Shakti-T however, they claim to thwart both spatial
and temporal attacks with around no performance overhead.

Fat Pointers takeaways
• Fat Pointers extend regular pointers with metadata such that they keep

track of their base and bound.

• Fat Pointers require additional memory space to keep track of the limits
of each pointer

• Fat Pointer ensures fine-grained control-flow integrity.

1.3.4.3 Sensitive data isolation

When executing a common C application in memory, it appears that security-critical
and non-security critical data are interleaved. For instance, a function’s stack holds the
return address of the function (control-flow data), some buffers, pointers (code-pointers
and data-pointers), some loop control data (non-control data) and also security-critical
tokens (security-critical data). Unfortunately, due to this configuration, sensitive data
that are spatially close to vulnerable buffers may be tampered by out-of-bound attacks.

One way to tackle this issue is to disjoin the memory space in two parts, one for the
non-security critical data and the other for the security-critical data. Figure 1.20, displays
this concept of sensitive data isolation.

In Figure 1.20, an additional memory area (safe memory space) is introduced in the
memory layout of the application. This safe memory space is disjoined from the other data
memory areas. Thus, by placing the security-critical data (pointers/return addresses) in
the safe memory region and leaving non-sensitive data in the stack, it is conceptually
harder and even impossible for a spatial vulnerability to reach this disjointed area.
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Figure 1.20: Sensitive data memory separation

To avoid any confusion, it is important to point out that the principle of sensitive
data isolation in the example is different from Software Fault Isolation (SFI) [126]. SFI
technology such as TrustZone [87] maintains different memory areas where sensitive parts
of an application can be isolated. The main purpose of SFI is to segregate sensitive parts of
application code or isolate some tasks in a multi-tasks application such that vulnerability
does not spread through the entire system. While SFI restricts the attack surface of a
memory exploit, it does not ensure sensitive data-flow integrity.

Code pointer separation (CPS) [127] introduced by V. Kuznetsov et al., follows the
concept of memory space isolation. CPS creates two data memory space, one for sensi-
tive code pointers and the other one for the non-sensitive pointers. To achieve sensitive
code-pointers isolation, CPS maintains a disjoined safe stack memory area and a disjoined
safe heap memory area. Every sensitive code pointer such as function pointers and return
address pointers are always placed in the safe area while the other data/pointers remain
in the regular stack. The isolation between the sensitive code pointers and the insensitive
is guaranteed at the instruction level by the compiler. Indeed, V. Kuznetsov et al. [127]
implemented a plugin in the LLVM compiler that identifies sensitive code pointers and
generates the correct instruction flow to store them in the safe area. According to [121],
CPS induces a very low execution-time overhead ranging from 8.4% to 10.5%. Unfortu-
nately, CPS only protects code pointers with one level of dereferencement. Consequently,
every pointer indirectly calling an indirect function pointer is not considered sensitive by
CPS and then not protected by the safe stack. It follows that a memory-based attack
can leverage such pointers to execute malicious code. To overcome this limitation V.
Kuznetsov et al. proposed code pointer isolation [127] (CPI) an improved implementation
of CPS. CPI aims at placing every sensitive code pointer in the safe area as well as every
pointer that may dereference a sensitive code pointer. Both CPI and CPS thwart every at-
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tack from the RIPE [85] benchmark suite. This is very encouraging since CPI induces less
than 11% execution-time overhead. Unlike control-flow integrity, CPI does not perform
any sanity checks on code pointers, it just prevents their corruption thanks to isolation.
Unfortunately, as clearly mentioned in their implementation [127], CPS and CPI do not
mitigate the so-called data-flow oriented programming attack [65]. Indeed, CPI and CPS
only protect code pointers and not data pointers. In a recent attack, I. Evans [128] leverage
data pointers that are not protected by CPI/CPS to leak the position of the safe memory
and perform an arbitrary write on the code-pointers inside.

Data-isolation takeaways
• Sensitive data isolation maintains two different memory space, one for

sensitive data and one for regular data. Data isolation is usually achieved
with instruction level separation.

• Software-based data-flow isolation induce an acceptable execution-time
overhead.

1.3.4.4 Tagged sensitive data

The previous section exposed the mechanisms used to isolate sensitive data. In the example
of CPI and CPS [127], sensitive data isolation is achieved at the instruction level. The
LLVM [23] compiler plugin of CPI and CPS ensures that any load and store instruction
manipulates sensitive data using the safe memory. The principle of tagged memory broadly
reuses the same instruction separation approach introduced by CPI.

First, tagged memories provide additional tag information to data objects. At compi-
lation time, every read and write instruction is associated with the tags’ object it modifies.
At execution-time, the instrumented write instructions mark each written memory loca-
tion with its associated tag. When an object is accessed using a read instruction, the tag
of the object is compared with the tag of the instruction to verify that the object has not
been overwritten by a different tag instruction.

Figure 1.21 displays a simple tagged memory with three in-memory adjacent objects
and their respective tags. These tags are displayed using colors such as green, yellow, and
red. In Figure 1.21, a store instruction is associated to object A and a write instruction is
associated with object B. By controlling the offset of the store instruction, an attacker may
use it to tamper object B. However, when object B is accessed with the read instruction,
the maliciously modified tag of object B does not match the tag of its accessing instruction
raising a data-flow violation.

Data Flow Integrity (DFI) [129] extends the Phoenix compiler framework introduced
by Microsoft Research to enforce data protection. DFI enforces data integrity in three
steps. First, the compiler performs an inter-procedural reaching definition analysis to
determine the data-flow graph of a program. During this analysis, the compiler extracts
all the data that may be read by an instruction, these instructions are said to use the
value. Then, for each data read, the compiler determines the set of all instructions that
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Figure 1.21: Tagged sensitive data

define it, these instructions are said to define the value. As a result, the compiler builds
a data-flow graph where write instructions are associated with the value they may define.
In a second step, the compiler instrument every read and write instruction to track the
data-flow at execution-time. In the third step, at execution-time, the program maintains
a Reaching Definition Table (RDT). The RDT records the last instruction that defined
a memory location. Then, when this memory location is used by a read instruction; the
program consults the RDT to check whether the last instruction that defined the current
value is compliant with the precomputed data-flow graph. As a result, DFI is efficient at
tracing and detecting data-oriented attacks. Unfortunately, applied to embedded systems
it raises challenges. Indeed, DFI induces an execution-time overhead ranging from 43%
to 104% [129]. Also, the size of the reaching definition table is around 50% of the instru-
mented application which may be prohibitive for memory-constrained embedded systems.

Write Integrity Testing (WIT) [130] also introduced by Microsoft Research follows the
principle introduced by DFI. At compile-time, WIT uses an inter-procedural analysis to
compute the set of memory objects that are defined by write instructions. Then, WIT
assigns a color to each memory object and the instruction that can define them. During
execution-time, WIT ensures that each write instruction defines a memory object that has
the same color. The program also maintains a color table that is updated when objects are
allocated and de-allocated. Unlike DFI [129] that checks the last instruction that defined
sensitive data, WIT prevents memory exploits from defining sensitive data. Besides, WIT
only instruments the unsafe write instructions. Thus, the color table maintained but
WIT is smaller than the RDT of DFI with an extra size overhead of 12,5%. The average
execution-time overhead induced by WIT is around 10% with a maximum of 25% on the
SPEC CPU2000 [74]. In terms of security, both DFI and WIT are challenged with real-
world data-flow and control-flow attacks on the NullHttpd HTTP server. It seems that
they both detect any real exploits.

Hardware-Assisted Data Flow Isolation (HDFI) [131] and LowRISC [132] tagged mem-
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ory are hardware approaches to Data Flow Integrity (DFI) introduced by Microsoft Re-
search. For instance, HDFI uses two tag levels (IL1 and IL0) to separate sensitive data
(IL1) from regular data (IL0). To trace the data-flow, HDFI extends the open-source
RISC-V processor memory with an additional one-bit tag field for every word. Further-
more, to enforce sensitive data isolation, HDFI introduces a custom store and a custom
load instruction in the RISC-V Instruction Set Assembly (ISA). To support these instruc-
tions, the processor logic is modified such that; every regular write instruction defines a
data and set the tag field to zero, every special write instruction defines a sensitive data
and set the tag field bit to one and every special load instruction checks that the used
sensitive data has a tag set to one. Thus, a regular write that modifies sensitive data
also changes its tag. When this sensitive data is re-used by a custom load instruction,
the processor detects a wrong tag and raises an exception. Following the HDFI concept,
it appears that each data requires two memory accesses, one for the tag and one for the
value. Therefore, to not undermine the memory access performance, HDFI maintains an
additional L1 and L2 cache for the tag. Finally, HDFI comes with both an extended GCC
and LLVM compilers which ensure the instruction level isolation between sensitive data
and regular data. In terms of security, HDFI detects any attack from the RIPE benchmark
suite with an average overhead of 2% on the SPEC CPU CINT 2000 [131].

Tagged sensitive data takeaways
• Tagged memory are used to track every write instruction in a program

and check if it corresponds to a static data-flow graph.

• Pure software data-flow integrity is expensive in both execution-time and
memory size.

• Hardware assisted tagged memory are highly effective in security, induc-
ing a very low execution-time overhead.
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1.4 State of the Art Synthesis

This section summarizes the defenses previously discussed. It discusses the strengths
and weaknesses of control-flow integrity, heuristic countermeasures, software diversity, and
data-flow integrity. The main goal of this synthesis is to prepare the following Chapter
in which the thesis highlights why critical medical devices face security issues and why
the approaches proposed in the related state-of-the-art are not the most appropriated for
them. In a nutshell, this synthesis contributes to exposing the gap between the existing
security defenses and the security required by the life-critical systems.

1.4.1 Control-flow integrity discussion

Regarding control-flow integrity, Table 1.1 displays a summary of various control-flow
integrity concepts approached in the state-of-the-art. These concepts are summarized
regarding the protection they offer such as backward-edge (BW), and forward-edge (FW).
Table 1.1 considers a security policy as fine-grained (FG) if a protected branch always
targets the expected destination with 100% accuracy. Otherwise, Table 1.1 considers the
policy coarse-grained (CG). Besides, Table 1.1 considers whether the implementation of
the protection is either achieved at the software level, the hardware level, or both.

Table 1.1: Control-flow integrity policies

Name Type
Protection Implem.

Modularity Deterministic
Costs

BW FW Soft Hard Exec Size

Abadi [68] Labels CG CG 3 7 7 3 +16% +8%

Abadi [68] Labels+SCS FG CG 3 7 7 3 +21% N/A

CET [75] SCS+Labels FG CG 3 3 3 3 N/A N/A

HCFI [78] SCS+Labels FG CG P 3 7 3 <1% N/A

SmashGuard [81] SCS FG 7 3 3 3 3 <5% N/A

HAFIX [82] Labels FG 7 3 3 7 3 <2% N/A

HAFIX+ [76] Labels FG 7 3 3 7 3 +1.75% +13.5%

BB-CFI [83] Branch Monitoring FG CG 3 3 7 3 <1% <209kB

BBB-CFI [84] Branch Monitoring FG CG 3 3 7 3 0.13% 13%

C-FLAT [86] Branch Monitoring FG CG 7 7 3 3 <72% N/A

Lo-FAT [89] Branch Monitoring FG CG 7 3 3 3 2% N/A

bin-CFI [69] Trampoline CG CG 3 7 7 3 +4.29% +139%

MoCFI [77] Trampoline FG CG 3 7 3 3 <10% N/A

LLVM-CFI [92] Trampoline 7 FG 3 7 3 3 <6% N/A

CG: Coarse-grained, FG: Fine-grained, N/A: Not Available

The other elements in Table 1.1 refer to the assets of the C programming language
exposed in section 1.1.1. Indeed, Table 1.1 evaluates whether the various control-flow
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integrity protections are modular, deterministic, efficient with both a low execution-
time and size overhead.

More specifically, Table1.1 considers protection to be modular when they are compat-
ible with incremental compilation. It also considers protection to be deterministic when
the extra cost induced by the security is always the same given a program and an initial
state. Finally, the execution-time overhead and size overhead represents the costs of the
security. Unfortunately, few countermeasures provide a consumption analysis, this is why
Table 1.1 does not include these specific results.

Regarding the security, control-flow integrity is globally efficient at mitigating both
code injection and code-reuse attacks. Unfortunately, each approach suffers from minor
limitations that still leave opportunities for an attacker to execute a successful attack.
For instance, coarse-grained policies cannot guarantee that indirect branches target valid
destination sites with 100% accuracy. As a result, attackers can still perform attacks that
comply with enforced coarse-grained control-flow protection [72]. Some of these attacks
are practical, they leverage call-preceded gadgets that do not break the control-flow policy
to execute malicious code.

Regarding the costs, it seems that pure software-based control-flow integrity protec-
tions induces higher execution-time overhead than hardware-software codesign. For in-
stance, [68], and [86] induce a non-negligible execution-time overhead (21% and up to
72% respectively, see Table 1.1). Besides, purely software protections drastically increase
the size of applications [69], which could be prohibitive.

According to Table 1.1, control-flow integrity is deterministic, these solutions rely on
labels, shadow call stacks, trampolines, and branch restrictions that do not introduce ran-
domness in protected systems. In terms of modularity, not all existing concepts in Table 1.1
are compatible with incremental compilation and external non-protected libraries. For in-
stance, most control-flow integrity prototypes based on labels rely upon post-compilation
binary instrumentation. A lack of modularity is often difficult to integrate within the
regular software engineering processes.

In closing, hardware-software codesigns present the best tradeoff between security and
performances. For instance, labels or branch-restriction policies coupled with hardware
shadow call stacks induce both a very low execution-time and size overhead. Unfortu-
nately, although shadow call stacks provide fine-grained backward-edge control-flow in-
tegrity, their integration within real systems is challenging. First, they require dedicated
handlers to manage goto issues such as the setjmp and "longjmp". Second, hardware
shadow stacks are limited by the size of the buffer, a large call-depth may induce overflow
managements. Finally, for multi-tasks systems, hardware shadow stacks should be assisted
by operating systems and specifically schedulers to maintain stack coherency.

1.4.2 Heuristic defenses discussion

Table 2 summarizes the heuristic defenses exposed in the state of the art. Globally,
heuristic defenses all work on the same principle such as recognizing attack signatures.
These defenses use various heuristic metrics to determine the risk of a system being under

56



1.4. State of the Art Synthesis

attack. In comparison with Table 1.1, Table 1.2 protection’s column summarizes the
number of heuristic metrics used by the heuristic engine to detect attack signatures. The
other columns remain the same as Table 1.2.

Table 1.2: Heuristic defenses policies

Name Enforced metrics
Implem.

Transparent Modularity Deterministic
Costs

Soft Hard Exec Size

kBouncer [97] 1 3 7 7 3 3 +6% N.A

ROPGuard [99] 6 3 7 7 3 3 +0.5% N.A

ROPecker [100] 3 3 7 3 3 3 +2.6% N.A

SCRAP [101] 1 7 3 3 3 3 <2% N.A

One asset of heuristics is that they often require a few binary changes to be effective.
Heuristics are transparent to protected programs and thus, fully modular and compliant
with most of the C standards exposed in section 1.1.2. Besides, Table 2 reveals that
heuristic engines induce low execution-time overheads. For purely software protection this
low overhead can be explained by the fact that [97, 99, 100] often trigger the heuristic
engine in specific cases such as dangerous function calls. For hardware-based protections
the heuristic engine is fully integrated within processors’ architecture, operating in parallel
with the monitored program. This implies a very low execution-time overhead [101].

Regarding security, heuristic protections do not enforce any specific control-flow in-
tegrity policy. An attacker can still violate the application’s control-flow graph or attempt
data-oriented attacks. Also, like anti-virus, heuristic protections are highly vulnerable to
memory-based attacks combined with evasion techniques. With knowledge of the heuristic
detection algorithm, an attacker can craft an attack that mimics a normal behavior for
the heuristic engine. For instance, the most heuristic analysis aims at detecting code-reuse
attacks based on the number of branches executed by a program in a short time window
and the number of instructions between these branches. To thwart heuristic defenses, re-
searchers demonstrated that introducing intermediate long gadgets in a Return-Oriented
Programming chain is efficient at tricking heuristic engines [101]. Also, as revealed in sec-
tion 1.3.1.4, most heuristics offer incomplete protection. For instance, [97,99,100] do not
prevent Jump-Oriented Programming attacks. To push it further, recent research demon-
strates that signal-return oriented programming attacks [133] can launch a malicious code
execution with a single gadget. To date, such an attack defeats any heuristic engine.

1.4.3 Software diversity discussion

Table 1.3 exposes various software diversity techniques explored in the state-of-the-art.
Software diversity aims to create several morphs of a program to harden stable exploit
development. Table 1.3 considers a software diversification coarse-grained when the pro-
tection relies on random-offsets introduced in the program code. Conversely, fine-grained
software diversification implies complete randomization of code from a morph to another
while preserving the semantic of the program. For instance, with coarse-grained software
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diversification, the gadgets within a program remain the same from one morph to another,
however, their in-memory position is shifted by random offset. In contrast, gadgets do not
survive fine-grained software diversification. Table 1.3 also displays various diversification
techniques.

Table 1.3: Software diversity policies

Name Protection Diversification technique
Implem.

Modularity Deterministic
Costs

Soft Hard Exec Size

ASLR CG random offset 3 7 3 7 N/A 0%

Full-ASLR (PIE) CG random offset 3 7 3 7 14% [108] N/A

[105] CG random NOPs 3 7 3 7 <40% <80%

ASLP [108] FG sections, functions, BB, data 3 7 3 7 <1% <80%

ILR [109] FG instructions 3 7 3 7 13%-16% 14MB-264MB

STIR [109] FG BBs, instructions 3 7 3 7 1.6% 73%

SOFIA [112] FG cipher 3 3 7 3 106% N/A

One can observe that software diversity is not deterministic. This is exactly the heart
of the protection offered by software diversity. The general idea is to generate a ran-
dom binary which in the presence of a vulnerability prevents exploit development based
on Return-Oriented Programming techniques. While this type of protection raises the
bar for exploit developers it remains incompatible with safety-critical embedded software
guidelines [31].

Also, regarding security, software diversity becomes vulnerable when an in-memory
vulnerability is coupled with a memory disclosure. In this case, an attacker leverages
memory disclosure to de-randomize the application code. After de-randomization, the
attacker disassembles the leaked memory and craft a Just-In-Time Return-Oriented Pro-
gramming attack [106].

Regarding the costs, software diversification induces extensive execution-time overhead
depending on the implementation. According to Table 1.3 and section 1.3.2, the execution-
time ranges from less than 1% overhead, up to more than the double of the original
application. Finally, dynamic software diversification seems to be difficult to apply to low
cost embedded systems. First, fine-grained randomization often requires the support of a
powerful operating system or a virtual machine with an intermediate language [109] that
rewrites the binary on-the-fly. Second, according to Table 1.3, software diversification can
induce prohibitive size overhead.

1.4.4 Data-flow integrity discussion

Table 1.4 summarizes data-flow integrity defenses explored in the state-of-the-art. To re-
mind, data-flow integrity prevents both control and non-control data corruption. Table 1.4
displays wether the studied protection defenses protect Code Pointer (CP), Data Pointer
(DP), and/or regular Data (D). Other assessments in Table 1.4 such as Implementation,
Modularity, Determinism, remain the same as in Table 1.1.

According to Table 1.4, it seems that common data-flow integrity protections protect
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Table 1.4: Data-flow integrity policies

Name Type
Protection Implem.

Modularity Deterministic
Costs

CP DP D Soft Hard Exec Size

CCFI [113] Crypto 3 7 7 3 7 3 3 23% N/A

PointGuard [114] Crypto 3 3 7 3 7 3 3 0-20% N/A

DSR [115] Crypto 3 3 3 3 7 7 3 15-28% N/A

PAC [118] Crypto 3 3 7 3 3 3 3 0.5% N/A

Softbound [123] Fat Pointers 3 3 7 3 7 3 3 <79% N/A

Hardbound [124] Fat Pointers 3 3 7 3 3 3 3 <15% N/A

Intel MPX [120] Fat Pointers 3 3 7 3 3 3 3 <150% <0.5%

Shakti-T [125] Fat Pointers 3 3 7 3 3 3 3 N/A N/A

CPI/CPS [127] Pointer Isolation 3 7 7 3 7 3 3 10% N/A

DFI [129] Tagged memory 3 3 3 3 7 7 3 43-104% 50%

WIT [130] Tagged memory 3 3 3 3 7 7 3 10-25% 12.5%

HDFI [131] Tagged memory 3 7 7 3 3 3 3 2% <1%

CP: Code Pointers, DP: Data Pointer, D: Data, N/A: Not Available

code pointers thus ensuring fine-grained control-flow integrity. In table 1.4 there are also
quite a few solutions that propose data pointers and even regular data protection [115,
129]. While protecting code pointers enforces fine-grained control-flow integrity, data
pointers protection and regular data protection highly complicate data-oriented attacks.
Unfortunately, directly from Table 1.4, it appears that the finer the security protection,
the higher the execution-time overhead [129]. This is, even more the case for pure software
implementations. Indeed, data-flow integrity requires to trace and check every read and
write operation performed by a program at run-time. While this ensures high granularity
protection, the process is cumbersome inducing high execution-time and size overhead.
Like control-flow integrity, hardware support for data-flow integrity drops the execution-
time overhead and the costs of the security.

As control-flow integrity, data-flow integrity does not rely on randomness. Every data-
flow integrity protection reviewed in Table 1.4 can be considered deterministic. However,
existing data-flow integrity protection is not always very modular, sometimes they require
programs to be analyzed and instrumented as a whole to track each read and write op-
eration [129]. As previously mentioned this is convenient with incremental compilation
approaches. Another drawback of most data-flow protection such as [113,130] is the com-
patibility with non-instrumented code. Indeed, instrumented code badly interfaces with
non-instrumented code, preventing any continuity in the tracing of the data-flow.

1.4.5 State-of-the-art discussion

In closing, this Chapter highlights a state-of-the-art of memory-safety defenses. In the pre-
sented state-of-the-art, the existing works are grouped according to four main categories
such as; control-flow integrity, heuristics, software diversity, and data-flow integrity. All
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these protections raises the bar for attackers. It should be mentioned that the four pre-
sented categories include many more contributions than those presented in this manuscript.
Researchers try to solve the memory safety issue for more three decades by proposing the
most innovative solutions. For instance, other areas of memory safety based safe-dialects
such as Cyclone [134], and CCured [135] are not covered in this thesis’s state-of-the-art.
Also, the field of control-flow integrity and data-flow integrity is not restricted to software
security. It also covers many areas such as hardware security with other threat models.

While this thesis gives a global overview of the current existing security concepts,
research progresses. Over the past few years, it has become apparent that increasingly
more defense leverage open-hardware architectures [90]. According to the Tables 1.1,
1.2, 1.3, and 1.4, it is through a close combination of hardware and software that the
most robust and optimal protection are achieved. These results provide directions for the
approach of this thesis concerning the design of efficient memory safety defenses.

Regarding security, this state-of-the-art synthesis highlights that data-flow integrity
may be the most accurate defense. Indeed, data-flow integrity is accurate enough to
prevent multiple attacks such as code-reuse attacks and data-oriented attacks protecting
sensitive data at various granularities. However, this synthesis also revealed that fine-
grained protection comes at a certain price such as time and size overhead. In front of
that, critical systems have high-performance expectations, and to-date lack memory safety
protections. To determine the finest defense for life-critical systems, the next Chapter
study the root cause of memory safety issues in the context of medical devices, their
security requirements, why the state-of-the-art can be improved, and the thesis’s approach.

60





2 Approach

Summary of the Chapter
This Chapter follows the state-of-the-art. Although the previously exposed
memory-safety defenses are effective, it seems that none of them are really
integrated into life-critical medical devices due to several conceptual and con-
straint issues. As a first step, this Chapter exposes the gap and states the thesis
problematic. From the problem exposure, this Chapter raises several criteria
that should be taken into account when designing practical defenses for life-
critical medical devices. Finally, following such specifications, this Chapter
exposes the thesis approach to improve software security embedded systems.
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2.1. Problem statement

2.1 Problem statement

According to the state-of-the-art, various defenses against memory-based exploits are
available and efficient. Some of these defenses have been increasingly deployed in desktops
and operating systems in recent years. Even if they are imperfect, they still increase sys-
tem security. Unfortunately, it would appear that medical devices do not take advantage
of existing defenses and remain vulnerable to simple attacks. For instance, [18] found
multiple code injection attacks allowing remote code execution on commercial infusion
pumps. These code injection attacks revealed that the system didn’t possess even the
most basic memory safety mitigations highlighted in the state-of-the-art. Also, the study
conducted by [18] reveals that these pumps were not designed following a threat model
and secure coding practices. So there is an inconsistency. On the one hand, security is an
important concern for critical medical devices. These devices are in direct interaction with
the human body and may cause irreversible health damages in case of security breaches.
Knowing that the state-of-the-art of existing defenses provides various solutions, manu-
facturers should have implemented at least one of them in critical devices. Sadly, security
studies of current systems reveal that critical medical devices are vulnerable to attacks
that have been treated over 10 years in the past. Being aware of this inconsistency, this
section investigates the security issue faced by medical devices and dissects it in several
points, starting from explaining why wireless devices are still insecure and why existing
defenses are not yet implemented.

2.1.1 Why critical medical devices are insecure?

The Internet of Things (IoT) is a competitive and fast-moving market. Manufacturers
are rushing their products to get market leadership. Besides, there is no specific security
standard for medical devices [136]. This lack of regulation encourages manufacturers to
prioritize the functionalities of their products instead of spending time on security aspects.
Security tests and advanced vulnerability research are also time-consuming, inconsistent
with the dynamic of the IoT market. Unfortunately, many critical devices are written in
unsafe languages such as C. The design of these devices involves complex problems from
hardware to software such as complexity, third-party services (sometimes outdated), real-
time constraints, number of lines of code, wireless connectivity. Once again, covering all
these aspects with security tests is time-consuming and difficult. As a result, it appears
that the integration of security is poorly compatible with time-to-market and lack of
regulation.

Many existing medical devices on the market are to date very safe and approved by
the FDA [4]. This emphasizes that medical device manufacturers are experts in safety
and able to release high-quality products. Unfortunately, safety focuses on unintentional
actions that may be achieved by a device and overlooks the risk of intentional security-
related malicious actions. Most of the cybersecurity issues like remote code execution
happen when a critical device is connected to the network. Connecting a medical device
to the network is a relatively recent trend and cannot be blamed knowing the IoT market.
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Unfortunately, wireless features expose critical devices to new attacks that manufacturers
were not confronted with in the past. Are manufacturers disarmed when integrating
security in medical devices? In any case, both [17] and [18] reveal a lack of strong
defenses in medical devices. Probably, connectivity requires advanced security experts to
be properly integrated. Maybe companies lack security engineers [10] and thus, security
issues are left to non-security experts. One thing is certain, integrating security into a
critical system cannot be improvised, leaving non-expert achieving such task often results
in useless defenses that can’t fend off an advanced attacker. The lack of security in medical
devices can be explained by a lack of security expertise and especially by an increased
attack surface due to connectivity.

Openness to research is also a means of improving systems’ security. For instance,
increasing big tech companies such as Intel, Google, and Microsoft offer bug bounty pro-
grams [137] allowing researchers to look for vulnerabilities in their products within a
legal framework. Thus researchers may attack real systems and contribute to improving
their security while being rewarded. Currently, there is no medical devices manufacturer
that offer bug bounty platforms. Thus, many medical devices come with commercial
constraints that prevent researchers to freely attack them and disclose vulnerabilities.
Open-source systems also contribute to the improvement of closed-source systems. Take
the case of Windows and Linux. By showing attacks and innovative defenses under Linux,
researchers have contributed to the advancement of knowledge and concepts that have
allowed Windows to improve its security. This does not mean that an open-source system
is more secure than a closed-source system, or that all closed-source systems have to be
open-source to be more secure. What is important is to have open-source systems close
enough to closed-source systems that allow researchers to propose new security concepts
applicable to closed-source systems. Unfortunately, medical device security is not open
to research. Few open-source life-critical devices are available to researchers discouraging
them contribute. Thus, the lack of openness to research and the lack of open-models
remains an impediment to the improvement of critical medical systems security. One way
to change the situation would be to provide researchers with open-source systems close to
real systems.

2.1.2 Why current defenses are not implemented in medical devices?

Interestingly, regarding memory exploits, the state-of-art proposes efficient protections.
However, when looking at the real attacks on medical devices, none of these protections
seems to be deployed [15, 17, 18, 37, 138]. One can easily note that there is a gap, why no
protections are integrated into these systems?

By reviewing state-of-the-art defenses, several points reveal that the existing defenses
are not suitable for medical devices. First, many concepts offer an incomplete defense.
For instance, most of the control-flow integrity solutions provide either backward-edge or
forward-edge protection. So an attacker can always attack forward-edges when backward-
edges are protected and vice versa. As medical devices may be life-critical, they require
robust and complete protection. Second, most of the fine-grained approaches induce a
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relatively high execution-time overhead. As a result, to reduce the execution-time cost,
most fine-grained defenses are relaxed in coarse-grained defenses, leaving many more op-
portunities for attack. The major issue with memory safety is the trade-off between the
execution-time cost and the accuracy of the protection. Unfortunately, wireless connected
medical devices require both performance and accuracy. At the same time, these devices
should meet very strict real-time constraints with the highest security protection. To
remind, manufacturers use C because of its efficiency. Thus, they won’t break this asset
for incomplete security.

Most control-flow integrity approaches require application code to be instrumented
afterward. This is not very modular and even impractical in the sense that developers
can only perform security tests at the end of a system’s development phase. While many
implementations in the state-of-the-art provide the necessary toolchains to perform code
instrumentation, control-flow integrity often breaks the modularity asset provided by the
C language. Also, backward-edges control-flow integrity provided by shadow stacks faces
compatibility with the C standards (see "setjmp/longjmp").

Heuristic methods seem to be a good compromise for critical systems in comparison
with control-flow integrity. Especially hardware-assisted heuristic protections, they induce
a low execution-time overhead and do not require application code to be instrumented.
Thus heuristic methods maintain the modularity and efficiency of the C programming
language. Unfortunately, heuristic methods are incomplete security protection, they aim at
detecting specific memory-based attack signatures such as code-reuse attacks. However,
as exposed in the state-of-the-art, attackers use hybrid exploits to take over a system.
As a result, attackers leverage the fact that heuristic defenses do not enforce a specific
control-flow/data-flow integrity protection to evade the heuristic engine. Another issue
with heuristic protections is time-to-check and false positives. Most heuristic engines have
a certain detection delay between the moment an attack is performed and the moment it
is detected. This is an issue for critical systems, an attacker may have changed critical
data hard to restore afterward. Finally, the weakness of heuristic methods is the lack of
accuracy and therefore the lack of robustness against advanced attacks.

The criticality of wireless medical devices prevents the implementation of certain types
of defense. For instance, software diversity re-randomizes applications code at each execu-
tion by altering its instructions and structure (order of functions, basic blocks, and instruc-
tions). This practice makes the code non-deterministic and thus prevents an attacker from
forging functional exploits in case of vulnerability. Unfortunately, non-deterministic
code is strongly discouraged in safety-critical coding standards [31, 32]. Safety-critical
software manufacturers use C for determinism that is broken by software diversity. An-
other problem with software diversity is the resources needed to implement it. In the
state-of-the-art, most software diversity solutions involve a powerful virtual machine or a
modified operating system. These supports require huge memory space and consume a
significant amount of power. Unfortunately, critical medical devices are tiny and should
consume as little as possible. Often the embedded operating systems are real-time and
lightweight. They cannot implement virtual machines. Moreover, the execution-time
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overhead of some software diversity protections is very high, up to 100%. This breaks
the efficiency property of the C programming language. As a result, although software
diversity complicates the development of successful exploits, it does not satisfy most of the
safety coding guidelines required by critical medical devices. Therefore, software diversity
methods are not the most appropriate defense for medical critical-devices.

Data-flow integrity differs from the other approaches because it mitigates the memory-
safety issue at the root cause: the initial critical-data corruption. This approach prevents
an attacker from modifying sensitive data thanks to the data-flow graph. In compar-
ison with control-flow integrity, data-flow integrity is finer because it does not rely on
control-flow graphs. Data-flow integrity could protect either control-data and non-control
data. Unfortunately, according to the state-of-the-art, pure software implementations of
data-flow integrity induce a very high execution-time overhead (see Chapter 1, sec-
tion 1.4). Also, some implementation of data-flow integrity such as DFI [129] are incom-
patible with third-party libraries, that again break the compatibility asset of C. Regard-
ing hardware-software defenses, PAC [118] can achieve fine-grained control-flow integrity
through control-data integrity with less than 2% execution-time overhead. However, for
critical non-control data, the execution-time overhead rises to 40%. That always brings
up the tradeoff between accurate security and acceptable performance overhead.

In terms of practicality, the identification of sensitive non-control data is hard to per-
form automatically, most of the compiler and instrumentation toolchains provide code-
pointer protection and leave the implementation of sensitive code-data protection to the
user. Knowing the lack of security expertise in the industry [10], it is impractical
to let developers instrument their code to protect sensitive non-control data. Thus the
lack of proper software support does not ease the implementation of security in critical
devices. For the moment, it seems that software data-flow integrity is not implemented
in medical devices [18]. Software data-flow integrity induces too much high execution-
time overhead breaking the efficiency asset of the C programming language. Concerning
hardware-software approaches, there is no dedicated implementation for critical embedded
systems. Most implementations such as PAC [118] are designed for personal desktop or
mobile phone computers. This availability issue is also a reason why data-flow integrity is
not currently used. Finally, even if data-flow integrity protections are promising in terms
of security, it needs more research to better understand the assets of the C programming
language.

Following this discussion, one can understand why critical medical systems do not in-
tegrate memory safety defenses. Most existing concepts exposed in the state-of-the-art
are primarily intended for personal desktops and clouds than critical embedded systems.
To support this argument, it’s enough to recognize a few concepts are challenged on a real
life-critical system. Unfortunately, life-critical systems behave differently from personal
computers. A security countermeasure can stop a traditional cloud application from exe-
cuting malicious actions. Conversely, on critical systems, safety depends on security, and
security issues are impacting safety. For a life-critical system, detecting security attacks
is the first step, the second is defining how the system should react and recover without
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harming the user.
Most existing memory-based protection degrades the assets of the C programming

language. Many protections degrade the portability, the modularity, the efficiency,
the toolchain support, the determinism, and the standard of the C program-
ming language in favor of security. Security researchers often forget that performance
and portability are the main barriers [40] for a countermeasure to be accepted. On
top of that, many papers claim that they solved the memory safety issue until a new
attack appeared [40]. As a result, memory safety protections are hardly accepted by
manufacturers. Besides, critical medical devices are not only facing memory-safety issues.
Cryptography, authentication, privacy, integrity, defense-in-depth, and safety should be
considered and implemented along memory-safety. Hence, to be accepted along with other
security countermeasures, memory protections must have as few constraints as possible.
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2.2 Important memory safety criteria for medical devices

From the problem statement (section 2.1), this section highlights several criteria that
security countermeasures should take into account to run in consistency with critical de-
vices. This thesis considers that proper memory safety protection for critical systems
should adhere to the following criteria:

• Robustness: A memory exploit can take full control of a program by diverting its
control-flow. Regarding critical devices, such attacks endanger the life of its users
and may even kill. Such a disastrous scenario is unacceptable. The critical device
security should be at the highest level. Unfortunately, memory exploits are powerful.
They leverage both control and non-control data at the lowest granularity to make
an application execute malicious action. To restrict an attacker’s capabilities at the
lowest, critical-devices must enforce at least fine-grained protections. A vigorous
defense is not inviolable, but the higher the granularity of the protection, the more
an attacker’s abilities are decreased.

• Performance: The performance penalty of a countermeasure is one of the first criteria
to be considered before adopting a defense. Most countermeasures in the state-of-
the-art undermine performances. The performance penalty is generally measured by
the execution speed decrease of an application. As manufacturers want to optimize
their products at their best, a high execution-time overhead may be prohibitive
for real-time constrained medical systems. Even if 10% overhead seems acceptable,
manufacturers may not pay more 5% overhead for a security solution [40].

• Space overhead: To be integrated into embedded systems, memory safety counter-
measures should not induce unwanted memory overhead. Medical systems, espe-
cially in-body critical devices, are restricted in size. Manufacturers tend to reduce
the space taken by an application to its lowest. As a result, protection carrying a
large amount of metadata that increases the size of a binary over 100% is impractical.
Currently, there is no official number determining the memory overhead threshold
accepted by manufacturers. Finally, memory safety countermeasures are going to be
implemented along with other hardware-software protections. It further emphasizes
that low size overhead is very important to leave space for other protections.

• Modularity: This criterion applies to software countermeasures based on both com-
pilation or binary rewriting. As the C programming language allows developers to
break complex programs into several sub-modules, their hardening must be achieved
independently. Non-modular countermeasures are impractical in large scale projects
were several developer teams are working on different parts of a system. Only mod-
ular countermeasures can be integrated into a practical software development life-
cycle.

• Compatibility: Most countermeasures in the state-of-the-art are not compatible with
all the C standards. For instance, the shadow stacks have issues with the classical
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"setjmp/longjmp” functions. Even the use of “setjmp/longjmp” is prohibited in
critical systems, many countermeasures are still not compatible with external non-
instrumented libraries. While these libraries can be vulnerable to memory corrup-
tion, they allow incremental deployment. Finally, complex binary instrumentation
protections are sometimes incompatible with verification and static analysis tools.
The use of the latter is common for critical systems to validate safety.

• Determinism: Critical embedded systems must be deterministic. Safety-critical
standards prohibit any code practices that lead to non-deterministic behavior [31].
As a result, a safety-critical compatible countermeasure cannot use software diver-
sity or polymorphic code. Finally, deterministic protection can be formally verified.
Unlike probabilistic protections, deterministic countermeasures can thwart certain
types of attacks with over 100% success.

• Practicality: The ease of integration of a security countermeasure is important. As
mentioned in the previous section, manufacturers do not always have detailed ex-
pertise in security. Thus, to be properly integrated, a security countermeasure must
require minimum human interaction. Any security solution requiring a developer to
manually instrument code is impractical and error-prone. Therefore, an ideal mem-
ory safety protection for critical systems must be easy to use and transparent to the
user.

• Safety: Once life-critical systems have been developed by manufacturers, they are
certified with safety standards. From the moment a system is certified it is assumed
to be safe to use and immutable. Unfortunately, this assumption is inconsistent with
security. The security of a system constantly evolves. Countermeasures introduced
yesterday are no longer effective against tomorrow’s attacks. Besides, combining
security and safety is not an easy matter. The security of a critical system directly
impacts its safety. Thus, ideal memory safety countermeasures must be compatible
with safety. For instance, the detection of a security issue related to memory corrup-
tion must be highly configurable to switch to recovery routines that keep the critical
device in a safe mode.

To summarize, integrating practical memory safety protection in life-critical medical
systems is challenging. To be accepted, this thesis considers that security countermea-
sures should closely follow the previously exposed criteria such as Robustness, Perfor-
mance, Space overhead, Modularity, Compatibility, Determinism, Practicality,
and Safety to better fit life-critical software security. With an awareness of the criteria,
the following section unfolds the thesis’s approach to improve embedded device security.
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2.3 Approaches

This thesis aims to propose practical memory safety defenses adapted to life-critical
medical systems. For this purpose, this section proposes consistent approaches with the
problem statement in section 2.1 and the exposed criteria in section 2.2.

However, as this thesis unfolds in the life-critical system field, it is relevant to work
with a coherent system workbench. Such a system aims to model the behavior of a life-
critical device and serves as a security system workbench to evaluate the efficiency of
security countermeasures. Unfortunately, as previously stated, with the lack of openness
to research in the medical area, the existence of such a platform is less. Referring to
section 2.1.1, the lack of openness to research does not encourage security improvements
in medical devices. Indeed, there are almost no open-source medical devices, and it is
therefore almost impossible to design dedicated defenses and assess their effectiveness. To
fill this gap, this thesis proposes an open security-oriented system workbench platform
that models the behavior of a life-critical device. The main goal of such a platform is to
further allow the design and assessments of security countermeasures dedicated to safety-
critical systems. More specifically, the system workbench is a wireless insulin pump. Such
a system is considered as a life-critical medical system and can be simply modeled on off-
the-shelf microcontrollers or FPGA. The details and the novelty of the system workbench
are highlighted in Chapter 3. The platform is inspired by a survey on existing open
platforms and existing insulin pump models.

Back to memory safety, the thesis’s approach aims at following the criteria exposed in
section 2.2. According to the state-of-the-art synthesis in section 1.4 and to achieve the
best balance between robustness, overheads (time and size), compatibility, practi-
cality, determinism, and safety, this thesis enforces that ideal memory safety protec-
tions involve both hardware and software. Hardware means that countermeasures require
to either change a processor architecture, interface with a processor or add additional ex-
ternal independent hardware modules for security support. Software means that counter-
measures require a dedicated toolchain such as compiler, libraries, binary instrumentation
tools, and/or finally, real-time operating systems or bare-metal support.

To address software security, this work proposes two approaches. The first one assumes
that both the hardware layer (processor) and all the software layers (real-time operating
system, compiler, standard C libraries) can be modified to enforce dedicated security
support. The second approach considers that most of the chips used in medical devices
are fixed based on closed source processors. This unfortunately prevents any hardware
architecture modifications. Therefore, the implementation of memory safety defenses is
limited to the software layer, i.e. the real-time operating system, libraries, and the entire
code generation toolchain. It should be mentioned that even in some cases, neither the
compiler used nor the real-time system is accessible.

To fill the criteria exposed in section 2.2, both approaches are top-down and globally
divided into two phases. A first phase (design-time) in which critical application develop-
ers access an inherently secure toolchain. This toolchain hides the security complexity to
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developers allowing application code to be generated with security assets adapted to the
hardware. The second phase (run-time) is the execution of the generated critical applica-
tion that benefits from support provided by both hardware and software. The main goal
of both top-down approaches is to simplify the integration of memory safety defenses to
non-security experts and ensuring robust run-time protection.

Figure 2.1 displays an overview of both generative approaches.

Developer C

Application

Secured application

Hardware

Code generator

Design-time

C

Real-time O.S

External libraries

Secure libraries

Execution Time

Secure Environment

1 2

21

1
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Figure 2.1: Generative approaches

Referring to Figure 2.1, the first approach (1 in 2.1) provides security support from
hardware to software. To ensure the finest tradeoff between robustness and performances,
the run-time protection engine is rooted in hardware. As revealed in the state-of-the-art,
data-flow integrity seems to be the finest security approach to tackle the memory safety
issue. Thus, the run-time protection engine tracks sensitive data such as function pointers,
return addresses, induction variables, and security-critical data to detect their violation.
When a violation happens, the run-time protection detects it, logs it, and maintains the
system in a safe state. Of course, the run-time protection is deterministic and not based
on randomness.

To be efficiently used, the hardware support is accompanied by a software toolchain.
This toolchain, used at design-time allows the developer to easily generate a secure code
adapted to the hardware security support. Following section 2.1, providing a secure
toolchain removes the complexity of security to developers while maintaining modular-
ity and compatibility with the C standards. This first approach results in a framework
called TrustFlow discussed in Chapter 4.

The second approach (2 in Figure 2.1) does not consider hardware modifications. It
assumes that the latter is immutable and security features can only be implemented at
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the software layer. Since this approach has fewer degrees of freedom than the previous
approach, it is likely to be less robust. However, this approach aims at demonstrating that
it is still possible to integrate a certain level of security in critical applications without
degrading the criteria.

As the first approach, the second approach is top-down (see Figure 2.1). To ensure a
robust memory exploits protection, the software run-time environment approach should
also tackle the memory safety issue at its root: the initial corruption of critical data.
Unfortunately, as revealed in the state-of-the-art in Chapter 1, tracking the data-flow
entirely in software is costly. Thus, to not undermine the performance, this approach is
more relaxed and focus on control-flow integrity. While this approach is less robust than
pure data-flow integrity, it stills raises the bar for attackers.

Regarding the other criteria such as safety and determinism, the run-time environment
aims at providing the same assets as the first approach without performing any change at
the hardware layer. Of course, the secure run-time environment should be accompanied by
a design-time software tool-chain with the same assumptions as approach 1. This second
approach results in a framework called BackGuard discussed in Chapter 4.

To summarize, this thesis proposes three contributions. First, an open-source life-
critical medical device system workbench for security purposes. The main purpose of such
a platform is to serve as a relevant system to integrate and further benchmark security
solutions dedicated to life-critical medical devices. This contribution may assess both
approaches 1 and 2. Second, this thesis proposes TrustFlow and BackGuard that follows
two previously exposed approaches. One relies on both hardware and software and the
other completely on software to ensure memory safety. These two contributions aim
at providing a user-friendly framework where developers can easily integrate security in
critical systems taking into account all the criteria outlined in section 1.1.3.
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Summary of the Chapter
This chapter presents SecPump a life-critical system workbench tailored for
security assessments. Presently, medical devices are closed-source and pro-
tected by commercial constraints. These constraints prevent this thesis from
performing attacks on these devices as well as implementing appropriate coun-
termeasures. To fill this gap and conduct the approaches exposed in Chapter
2, this Chapter presents SecPump. SecPump is an open wireless insulin pump
model dedicated to security. The platform is specifically tailored for counter-
measures development against the numerous security flaws related to medical
devices. First, this chapter highlights the motivations of such a platform, its
assets over existing work, and its interests for security. Second, the chapter de-
tails the functioning of the system and its various operating modes. The results
show that SecPump is relevant enough to simulate the behavior of a classical
insulin pump. Then, both hardware and software security vulnerabilities on
such a platform are discussed and a set of memory safety exploit is showcased.
These demonstrations are thereafter used to assess security countermeasures.
Finally, SecPump aims at being open-source. Its assets over the existing work
are presented in the last section of the Chapter.
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3.1 Motivation

To further anticipate the design of appropriate security protections that target life-
critical medical systems, this work requires a representative system workbench. Of course,
such a system workbench should closely follow the assumptions highlighted in 1.1.1 and
models the behavior of an off-the-shelf life-critical medical device. Unfortunately, most of
the critical medical devices on the market are proprietary. They come with commercial
constraints and intellectual property that even prevent this work to freely attack them,
discloses vulnerabilities, and modify any components to integrate security features. To
remind, currently, no specific bug bounty program [137] encourages security research on
real medical devices.

Due to this lack of openness to research, the design of innovative security protection
in medical devices is difficult to implement and to evaluate. Neither the software nor the
hardware of existing devices on the market can be modified to accommodate innovation
in the field of security. As a result, it seems that without a representative model, medical
device security is not an easy matter for this academic thesis. Also, combined with the
fact that real medical devices are expensive, it seems that studying their security is a
challenge.

To address these issues and to further benchmark safe security protection this chapter
proposes SecPump; a wireless medical device security system workbench. More specifically,
SecPump is a platform that mimics the functioning of a real insulin closed-loop system.
This thesis decided to model a wireless insulin pump because it is a critical system that
has been actively developed and connected to various networks [13,138] over the last few
years. Overall, an insulin pump is a consumer device often used outside of hospitals.
With fewer functionalities, it can be easily modeled on an off-the-shelf microcontroller
with integrated wireless protocols. The main purpose of SecPump is thus to model the
activity of a wireless insulin pump without requiring the purchase of expensive external
mechanical components that are often not very useful in hardware or software security
assessments.

In a second step, this work proposes to make SecPump open-source in the hope that
it will be used in further security researches. Indeed, the platform aims at contributing to
the awareness of security and the acceptance of new concepts compatible and maybe im-
plementable in closed-sources systems. Overall, there is comparatively little information
on the web regarding attacks that target critical embedded systems, rather than mobile
and personal computers application. Although some methods of attacking personal com-
puters and embedded systems are similar, implementing countermeasures on a critical
system requires consideration of additional issues such as safety assessment and real-time
constraints [136]. These constraints are not required for most other types of computing
systems. Thus, such an open platform opens up new opportunities in the design of innova-
tive security assessments dedicated to embedded systems. On the red-team side, SecPump
can be used as a system workbench to show the impact of security vulnerabilities on a
cyber-physical system. For instance, both software attacks (e.g., memory corruption, mal-
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ware injection) and hardware attacks (e.g., side channel, glitch attacks) can be triggered
on the pump. On the blue-team side, SecPump can be extended to accommodate novel
countermeasures by considering determinism, safety, and real-time aspects.

Initially, this chapter reviews the open-existing platforms that inspired the design of
SecPump. Section 3.3 exhibits the wireless insulin pump model, its software architecture,
and the various algorithms that govern the functioning of the device. To showcase that
SecPump is a suitable target for security assessments, section 3.4 displays various security
attacks performed on the wireless pump. Finally, the last section is dedicated to the
open-source assets of the platform regarding the related work. It shows how SecPump
complements the existing platforms.
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3.2 Open Source Medical Devices

Wireless insulin pumps are an excellent example of life-critical medical devices. These
devices are used by both hospitals and individuals in the treatment of diabetes. More
precisely, the purpose of these devices is to mimic the pancreas achieving fine-grained
glycemic control. Emergent wireless insulin pumps are proved to be fairly effective at
delivering perfect doses of insulin maintaining blood sugar at a correct threshold. Usually,
a healthy, non-diabetic person has a blood glucose level of around 85mg/dL in the fasting
period. When the latter eats a meal, sugar enters the bloodstream. As a result, the
pancreas releases insulin so that the glucose in the blood is absorbed by the muscles to
produce energy. The natural production of insulin by the pancreas lowers glycemia to keep
it between 80 mg/dL and 120 mg/dL. With a type I diabetic, the pancreas is deficient
and loses its ability to produce insulin. Thus, when a meal is taken, the blood sugar level
does not decrease and can lead to health problems. Above 180 mg/dL the body starts to
release glucose in the urine, and a patient is considered hyperglycemic when the glycemia
exceeds 270 mg/dL.

Although many insulin pump devices are proprietary, several models, academic im-
plementations, and guidelines have been proposed so far [139]. This section reviews the
existing open-source medical devices and studies their feasibility to serve as a platform for
security assessments.

The Generic Infusion Pump (GIP) project [139] launched by researchers from the
FDA [4], the Center for Devices and Radiological Health (CDRH), and the Office of Science
and Engineering Laboratories provides several methods and guidelines in the design of
critical infusion pump devices. Many documents from this project are open-source and
aim at serving as a safety design reference model to identify several hazards in various
medical infusion pumps. These documents are intended to be used by both academia and
manufacturers. More precisely, it encourages life-critical devices manufacturers to refer to
the guidelines early in their design process to validate basic safety properties.

Several works, particularly in the field of safety, have been carried out on the GIP
project. An implementation of a formally verified infusion pump has even been made
available by the University of Pennsylvania [139]. However, the latter is slightly different
from the expectations of this work. First, the proposed model is a classical hospital infusion
pump that is not wearable and generally not available to the general public like insulin
pumps. Second, the proposed implementation is generic and hardware-independent, it
runs on a complete Linux operating with virtual layers that exhibit deterministic infusion
operations. This work is rather positioned in the emerging field of IoMT. It requires a
wearable medical device model much more restricted than GIP. An ideal model would if
possible be based on low power microcontroller(s) with a firmware written in bare-metal
or based on a lightweight real-time operating system such as FreeRTOS [29]. Finally, the
GIP model does not consider the security issues related to the connection of a medical
system. However, it seems that the IoMT is following a different trend [9]. Increasingly
more manufacturers are implementing network protocols in their devices [18] to enable
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remote access control and data gathering. As a consequence, an ideal security-oriented
model should implement at least one wireless feature commonly integrated into IoT.

The Open-Source Syringe Pump library [88] provides an open implementation of a
syringe system based on Raspberry Pi along with RepRap 3-D printers plans. The main
purpose of the Open-Source Syringe project is to provide a customizable inexpensive med-
ical system for research purposes affordable by all. The major components of the system
involve a Raspberry Pi, a stepper motor, and the mechanical parts such as a sliding screw
and other pieces that should be printed in 3-D. Figure 3.1 displays an overview of the
Open-Source Syringe pump. First, The Raspberry Pi hosts a web page accessible from
the network. This web interface allows an operator to calibrate the syringe, adjust its po-
sition, and define the injection speed. Once set up, the control of the syringe is achieved
with a python script running on Raspbian the Raspberry Pi GNU/Linux open-source op-
erating system. The latter interfaces between the drivers and the mechanical parts of the
system to perform an accurate control. The mechanical parts of the syringe integrated
with a stepper motor must be printed using an open-source RepRap 3-D printer. In com-
parison with commercial pumps, the open-syringe project claims that the entire system
can be built by spending less than 5% of the price of a real commercial pump.

Figure 3.1: Open-Syringe

Unfortunately, accessing a 3D printer, and buying certain parts to create a functional
system is convenient. Moreover, buying or accessing a 3D printer can be expensive and/or
time-consuming. To mostly focus on security aspects, this research requires a portable
demonstrator without relying on external mechanical components. Although mechanical
vulnerabilities are relevant to real medical devices, they are beyond the scope of this
thesis. Finally, from a certain point of view, the open-source syringe project is much more
aimed at students and researchers willing to learn how to build a medical device rather
than performing security assessments. For instance, the open-syringe does not model the
impact of a security vulnerability directly on the safety of the user’s medical device.

The Open Artificial Pancreas project (openAPS) [8] provides an open-source connected
artificial pancreas using a Raspberry-Pi. This project, initially launched by Dana Lewis
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in 2014, aims at automating insulin injection for diabetes using an open-source computer
system that controls a commercial insulin pump. Originally, insulin injection using com-
mercial pumps was achieved manually by diabetics. First, the latter had to prick itself to
measure his/her blood sugar. Then, depending on the measurement, the diabetic had to
self-inject an insulin bolus to bring his/her blood glucose back to an acceptable threshold.
Since this method is not the most practical for patients, Dana Lewis tried to improve it
by creating one of the first closed loops systems to automate the process. Such a system
involves four components displayed in Figure 3.2. The first component (1) is a wireless
Continuous Glucose Monitor (CGM) placed under the skin that constantly measures a pa-
tient’s blood sugar. The measured value is sent to a remote smartphone (2) via a wireless
protocol so a patient can visualize it. Then, the smartphone sends the glucose measure-
ments to an off-the-shelf Raspberry Pi computer (3) via Bluetooth. The Raspberry Pi
receives the Bluetooth data from the smartphone and processes it to define the amount
of insulin to inject so that the patient blood sugar remains within a pre-defined targeted
blood sugar level. Finally, once the insulin quantity is computed by the Raspberry Pi,
it is transmitted to a commercial pump (4) via a radio protocol to process the injection.
The injection regulates the glycemia of the patient closing the loop of the whole system.
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mg/dL

CGM

CGM
Monitor

Insulin
Pump

Raspberry-Pi
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3

4
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Figure 3.2: OpenAPS closed-loop

Unfortunately, OpenAPS is not completely open-source. The closed-loop system in-
volves a closed source commercial insulin pump from Medtronic (4). The ad-hoc control
of the closed-source pump with the Raspberry Pi was achieved by Ben West [8]. The
latter found a vulnerability in Medtronic insulin pumps allowing external computers to
send commands to the insulin pump. So even if such a system perfectly models a wireless
insulin pump, implementing countermeasures is restricted to the Raspberry Pi and not
the heart of the pump.

At the end of the day, finding a simple open-source implementation of a cyber-physical
system such as a medical device is not an easy matter. No existing open-source work

79



Chapter 3. SecPump

is really “plug-and-play”, it either requires printing additional parts, buying expensive
components or spending time implementing the model. Furthermore, it seems that the
existing open-source cyber-physical systems are more appropriate for learning how to build
a life-critical system than for security assessments thereof. Besides, most of the presented
models do not integrate the latest low-power and portable IoT wireless technologies such
as Bluetooth Low Energy, LoRa, etc. Consequently, they are not well suited to model
recent IoMT devices and consider a wide range of security threats.

To perform accurate security assessments, this work requires a portable open-platform
that closely models a medical device functioning with fewer constraints. In other words,
such a demonstrator should be implemented on an inexpensive off-the-shelf microcon-
troller and/or an FPGA and should not rely on any additional sensors, mechanical com-
ponents, and/or interactions with a real diabetic patient. Only the most security-sensitive
components relevant to the purpose of this thesis should be supported to conduct the
study. Finally, an appropriate IoMT medical device model should implement at least a
low power wireless feature to communicate.
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3.3 SecPump

Presently, no open-platform offers a portable, security-oriented, hardware-software
based model implementation of a wireless medical device. Thus, to further model cyber-
threats on life-critical devices, this chapter proposes SecPump a wireless infusion pump
system workbench primarily based on an STM32 Nucleo F446-RE board.

3.3.1 A wireless pump model

The design of SecPump is inspired by the OpenAPS [8] closed-loop system. More precisely,
Figure 3.3 displays how the SecPump system models the behavior of a wireless insulin
pump.
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Figure 3.3: SecPump

In Figure 3.3, three major components rule the closed-loop system; SecPump (1),
the smartphone (2), and a Raspberry Pi (3). The Raspberry Pi simulates the human
glycemia behavior of a diabetic. It may seem logical, but simulating the glycemia behavior
using an embedded system allows having a global model that operates without a real
patient. In comparison with the previous Figure 3.3, SecPump regroups the Continuous
Glucose Monitor (CGM) and the insulin pump into a single embedded system. SecPump
reproduces the functionalities of a conventional insulin pump and CGM without the need
for additional external sensors and mechanical components. Instead, SecPump simulates
the behavior of these components using software routines.

SecPump is only the insulin pump of the whole system. To operate it requires a
diabetic who is simulated by the Raspberry Pi. To represent the physical link between
a theoretical diabetic and the wireless pump, SecPump is connected via the serial port
to the Raspberry Pi. The Raspberry Pi models the glycemic regulation in response to
insulin injection performed by the pump. The relationship between blood insulin levels
and glucose is based on Bergman’s differential equations. These will be detailed further
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in the Chapter.
To regulate the simulated diabetic glycemia, SecPump integrates a Continuous Glu-

cose Monitoring routine that performs glucose requests to the Raspberry Pi at regular
intervals. Then, the CGM sends the glucose measurements to an external smartphone
and updates the internal controller routine values. According to the operating mode (de-
tailed in section 3.3.2), the controller routine injects (sends) an amount of insulin to the
Raspberry Pi to regulate glycemia.

3.3.2 SecPump software model

Currently, SecPump proposes to regulate diabetics’ glycemia using two operating modes:
a manual mode and an automatic mode. Simply, the manual mode requires a smartphone.
The latter should connect to the pump using Bluetooth Low Energy (BLE) protocol. Once
the connection has been established, the CGM routine of the pump sends the simulated
measured blood glucose at regular intervals to the smartphone. According to the mea-
sured glycemia, the patient can decide to manually trigger an insulin bolus injection by the
pump. The amount of insulin to inject by the pump is sent through BLE from the smart-
phone. Then, the pump simulates the injection to the human glycemia simulator using
the serial interface. Conversely, in automatic mode, SecPump regulates the blood glucose
autonomously without requiring any manual bolus injection from the diabetic. Changing
from one mode to another can be achieved using a BLE command. The functioning of
SecPump and its modes are described in the following sections.

3.3.2.1 Manual mode

The manual mode requires the SecPump’s user to monitor the glycemia from its smart-
phone and inject insulin accordingly. In other words, the manual mode can be compared
to an open-loop regulation system such as in Figure 3.4.

Human Body
Simulator

U(t)

D(t)

G(t)
SecPump

Figure 3.4: Open-loop regulation system

In manual mode, SecPump regularly measures blood glucose through the serial inter-
face with the diabetic simulator (Raspberry Pi). This value, G(t) in Figure 3.9, is sent
via BLE to a remote smartphone. The diabetic can thus proactively track glucose highs
and lows and perform an insulin bolus injection U(t) (in Figure 3.9) to regulate glycemia.

Upon receipt of a BLE insulin bolus request, the pump triggers the sequence displayed
in Figure 3.5.
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CGM routinePump Controller

Request blood sugar

Return blood sugar mg/dL

Evaluate 
blood sugar concentration

insulin injection command
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insulin injection amount
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Mechanical
Injector routine

Read blood sugar
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 amount

Figure 3.5: SecPump manual injection sequence

An insulin injection request involves three routines. First, the reception of a BLE
packet triggers an interruption processed by a dedicated BLE routine. The packet is
processed through a finite state machine and the extracted amount of insulin to inject is
transmitted to the pump controller logic routine. The controller checks the Continuous
Glucose Monitor routine to verify if the insulin request is overestimated with the current
blood glucose. More precisely, the controller requests the CGM routine to read the serial
port connected with the Raspberry Pi that simulates the diabetic glycemia in real-time.
Upon reception, the controller checks both glycemia and insulin injection history. These
checks ensure that the user is not trying to self-inject insulin with a low blood sugar
level or a lethal dose. Finally, the insulin value is transmitted to the Raspberry Pi. This
simulates a real insulin injection. Regarding the diabetic side, the Raspberry Pi simulates
the absorption of insulin and decreases glycemia accordingly.

3.3.2.1.1 Human body modeling Modeling the balancing feedback between insulin
and glucose is one of the most important parts of the platform. Although this thesis is not
related to research in medicine, the balancing feedback must be representative. Indeed, to
be efficiently used as a system workbench for security and safety assessments, SecPump
should accurately model the insulin/glucose kinetics.

Unfortunately, modeling the blood glucose relation using software is not an easy matter.
While several mathematical models have been proposed and evaluated so far [140], [141],
none of them can reproduce the human body with 100% accuracy. One of the most fa-
mous mathematical modelization of the glucose-insulin relation is the modified Bergman’s
minimal model [141]. This model is usually used to simulate the glucose-insulin kinetics
for a diabetic patient using four coupled differential equations stated below:
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dG(t)
dt

=−(p1 +X(t))G(t)+p1Gb +D(t) (3.1)

dX(t)
dt

=−p2X(t)+p3(I(t)− Ib) (3.2)

dI(t)
dt

=−p2I(t)+ U(t)
VI

(3.3)

dD(t)
dt

=−drateD(t) (3.4)

With the parameters described in Table 3.1.

Table 3.1: Modified Bergman’s minimal model paramters

Parameter Unit Description

G(t) mg/dM Blood Glucose concentration.

X(t) min−1 Effect of active insulin.

I(t) mU/L Blood insulin concentration

D(t) mg/(dL.min) Meal disturbance function.

U(t) mU/min Exogenous insulin.

Gb mg/dL Basal blood glucose concentration.

Ib mU/L Basal blood insulin concentration.

VI L The volume of insulin distribution pool.

p1 min−1 Glucose clearance rate independent of insulin.

p2 min−1 Rate of clearance of active insulin.

p3 L/(min2.mU) Increase in uptake ability caused by insulin.

p4 min−1 The decay rate of blood insulin.

drate min−1 The decay rate of the meal disturbance

The discussion regarding the exact details of theses parameters is beyond the scope of
the thesis study. For more in-depth details, this thesis refers the reader to more advanced
publications in the field of medicine [141–143] that inspired the presented implementation.
All these equations are integrated into the external Raspberry Pi using Python. The
modeling of blood glucose is at the heart of equations (1) and (3). The integral of equation
(1) gives the glucose concentration over time that is transmitted to SecPump. Of course,
this equation is coupled with the disturbance equation (4) and the Active Insulin Effect
equation (2). In more detail, equation (4) represents a patient’s meal intake, and thus the
perturbation induced on the blood glucose level given by equation (1). Finally, equation
(3) models the insulin concentration kinetics over time. This equation depends on U(t)
the function that usually models the insulin produced by the pancreas. However, in this
study, U(t) is replaced is the output of the artificial pancreas: SecPump.

As the aim of the external Raspberry Pi is to simulate a diabetic patient, several
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assumptions about the differential equations are outlined above. Initially, the Raspberry
Pi simulates an untreated diabetic patient. As a result, it considers that the blood sugar
of the patient and its basal value is extremely high as no insulin is produced. This leads
to the following initial conditions:

G(0) =Gb = 280mg/dL (3.5)

I(0) = Ib = 0 (3.6)

X(0) = 0 (3.7)

With these parameters [143]:

p1 = 0.028735min−1 (3.8)

p2 = 0.028344min−1 (3.9)

p3 = 5.035e−5L/(min2.mU) (3.10)

p4 = 0.05min−1 (3.11)

VI = 12L (3.12)

The initial state of the blood glucose simulation is displayed in Figure 3.6. The mea-
surements are taken over a simulated period of 24 hours considering that the theoretical
patient is fasting. The blue curve represents SecPump in manual mode, no insulin is in-
jected. The red curve represents the blood glucose level of the simulated diabetic patient.

Figure 3.6: Manual mode initial state

In Figure 3.6, the blood glucose level is extremely high. According to the initial
assumptions, no insulin is produced by the diabetic patient and no insulin is injected by
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SecPump. As a consequence, the Raspberry Pi simulates the glucose that remains within
the blood and is not absorbed by the human muscles.

To lower the blood glucose level, an injection sequence should be triggered using BLE.
By first considering the system with no perturbations (no meals, D(t)=0), a bolus step
response of the whole system with 17mU/min of insulin is displayed in Figure 3.7.

Figure 3.7: Manual mode step insulin injection

According to Figure 3.7, the step response reaches a new steady-state of around 100
mg/dL in two hours. This steady-state is within the blood glucose limits of a healthy
person without excessing 100 mU/min insulin injection rate [143]. These measurements
validate that the whole system operating in manual mode is reasonable for modeling a
real insulin pump.

Unfortunately, the manual mode does not fully simulate an artificial pancreas. The
two previous graphs result from measurements taken without meal disturbances. When
random disturbances due to meal intake are introduced by the diabetic simulator, the
blood glucose level in the human body still rises to 200 mg/dL (see Figure 3.8). In
Figure 3.8, the glycemia simulator is programmed such that it introduces disturbances at
mealtimes of 8:00 am, 1:00 pm and 7:00 pm respectively. These disturbances follow the
differential equation (4) with a draterandomvaluebetween0.5and10mg/(dL.min) [140].

Figure 3.8: Manual mode meal perturbation simulation

Of course, to better regulate the blood sugar, the diabetic can manually adjust the
pump injection rate according to each meal. The diabetic can also use an algorithm such
as [8] on the smartphone to control the pump remotely. However, better regulation can
be automated and practically implemented within the model.
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3.3.2.2 Automatic mode

To achieve fine-grained insulin regulation on the model, SecPump proposes an automatic
mode that regulates blood sugar using an integrated PID. This integrated PID is activated
when switching from manual mode to automatic mode. It requires a target value at which
the pump should maintain the patient’s blood glucose. As a whole, the automatic mode
operates as a closed-loop regulation system displayed in Figure 3.9.

Human Body
Simulator 

U(t)

D(t)

G(t)
PID Controller

ErrorSetpoint

SecPump

Figure 3.9: Closed-loop regulation system

The SecPump system measures blood glucose from the Raspberry Pi simulator. Using
the setpoint and the measured glucose the PID determines the amount of insulin to inject
within the system. More precisely, the main sequence of the pump in automatic mode is
displayed in Figure 3.10.

CGM
Task

Pump Kernel
Logic

Request blood sugar

Return blood sugar mg/dL

Evaluate 
blood sugar concentration

Insulin injection command

Read blood sugar

Mechanical
Injector Routine

Determine insulin to inject

Transfers insulin
 amount

Figure 3.10: SecPump automatic injection sequence

The automatic mode is driven by two routines. First, the pump controller frequently
checks the value of the blood glucose updated by the CGM routine. Glucose measurements
are added to a pump’s internal measurement history. According to the measured values
the controller determines the error between the blood glucose and the setpoint. From this
error, the PID injects a certain amount of insulin to lower the blood glucose.
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3.3.2.2.1 PID Regarding the insulin regulation, the output of the PID (output of the
pump) has a direct impact on equation (3) of the Bergman differential equations. As these
equations are non-linear, we developed a simple Python interface based on the Jupyter
framework to manually tuned the coefficients of the PID. This interface makes it possible
to graphically model the behavior of the controller before programming the pump. In
this thesis, the PID coefficients of SecPump are tuned empirically such that the blood
glucose stimulated by the human simulator stays between 60 and 180 mg/dL [143]. We
are aware that there are several techniques to determine the values of a PID accurately,
even for non-linear systems. However, they are beyond the scope of this thesis. It should
be mentioned that this can be the subject of ongoing work and further contribution to the
pump. Also, the PID implemented in SecPump follows the Oral Glucose Tolerance Test
(OGTT) [144] by ensuring that blood glucose of the diabetic simulator drops bellows 140
mg/dL at least 2 hours after meal intake.

The real-time functioning of the PID implemented in SecPump is displayed in Fig-
ure 3.11. In Figure 3.11, the blue curve represents the amount of insulin injected by the
pump while the red curve represents the simulated blood glucose. Initially, the blood
glucose is high and brought back to the setpoint around 85mg/dL by the PID in less than
4 hours. Finally, regardless of the magnitude of a rise in glucose following a simulated
meal, the PID regulates the insulin injection so that the glucose level is below 140mg/dL
at least two hours after the meal [144].

Figure 3.11: PID blood glucose regulation

Kc=-0.07, tauI=1, tauD=1.20

3.3.3 SecPump variants

To remind, in Chapter2 section 2.3, two approaches are proposed regarding the imple-
mentation of security in life-critical devices. One approach is hardware-software oriented
and the other completely software oriented. Thus, to perform appropriate security as-
sessments, several variants of SecPump are developed accordingly. Table 3.2 summarizes
these variants.

The first variant in Table 3.2, SecPump-BLE, is the implementation described in the
previous section. It targets an off-the-shelf STM32 microcontroller and supports the Blue-
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Table 3.2: SecPump variants
SecPump

version

Possible

extension

Pump

communication

O.S

support

Target

architecture

Lines of

Code

SecPump

BLE
Software BLE/Serial Bare-metal

STM32

ARM
18k

SecPump

RT-BLE
Software BLE/Serial FreeRTOS

STM32

ARM
27k

SecPump

RISC-V

Hardware

Software
Serial Bare-metal

Digilent Xilinx Arty-35T

RISC-V
7

tooth Low Energy communication with a remote smartphone. This variant is flexible, it
may be easily compiled without the manual mode. In other words, the Bluetooth Low
Energy (BlueNRG) expansion module of the STM32 board is not indispensable to operate
the pump. Of course, it removes wireless functionalities, but the latter can be replaced
with serial communication.

The second variant of SecPump, SecPump-RT-BLE is just an enhancement of SecPump-
BLE. While the previously exposed variant’s sequences are orchestrated by a finite state
machine, this version is based on the real-time system FreeRTOS [29]. Simply, all routines
of SecPump-BLE are implemented and scheduled by the FreeRTOS operating system.
On both SecPump-BLE and SecPump-BLE-RT, only the software layer of the implemen-
tation is open source. While it allows performing both hardware and software attacks
demonstration on the platform, the integration of security is more restricted. Indeed,
the ARM architecture is proprietary, it does not allow the integration of invasive hard-
ware security blocks into the processor core. Regarding previous approaches discussed in
section 2.3, both variants are mostly fitted for software-based security extensions, so the
second approach.

Finally, SecPump RISC-V is an adaption of SecPump-BLE ported to run on a RISC-
V processor using the open-source port on a Digilent Xilinx ARTY-35T provided by
SiFive [145]. As the FPGA does not support wireless connectivity, any communication
with the pump is performed through the serial interface. In comparison with the other
variants, SecPump RISC-V is fully open-source from hardware to software. Indeed, unlike
the ARM architecture, the RISC-V architecture running on the Digilent Xilinx ARTY-35T
is open-source. It allows modifying the hardware layer to integrate security features and
as the previous version, all the software layers as well.
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3.4 Security Assessments

Above all, SecPump is a life-critical system workbench dedicated to security assess-
ments. Usually, when performing security assessments on a system it is important to define
the context, the threats and their impact, the scenarios of attacks, the risks and the
countermeasures. As SecPump is a cyber-physical system, it is vulnerable to the same
as known attacks as other existing embedded systems. However, as SecPump models a
life-critical medical device, the consequences of related security vulnerabilities are a little
different. Indeed, an attack can directly impact the safety of the system and even cause
irreversible health damage to the user. The interesting point with security issues on life-
critical devices is that they can cause unexpected safety issues that were not considered
during the design. As part of the SERENE-IoT project Work Package 2 (WP2), we carry
out an in-depth security study of a wireless pump inspired by the EBIOS method [146].
While insulin pumps are not only subject to memory safety issues, this section focuses on
it to stick to the research direction of the thesis. The section 3.4.1 focuses on the memory
safety threats of such a platform. It showcases a scenario of attack on the pump and the
according risks. Finally, section 3.4.2 is an opening to hardware security.

3.4.1 Software Threats

At the software level, several modules of the pump can be targeted by an attacker. Re-
garding memory safety, the most critical software module remains the BLE connection.
A memory safety vulnerability in the wireless module leaves the pump open to a remote
attack. Conversely, without a wireless connection, memory safety issues can be considered
less threatening.

Based on the memory safety threats linked to the connection of such a system to
the network, we have developed several attack scenarios. To do so, an intentional stack-
based buffer overflow bug is introduced in the BLE packet parser by removing a common
boundary check in the SecPump software. This introduced vulnerability model a soft-
ware bug as it is possible to find in existing wireless pumps on the market [17, 18]. Two
memory exploits are developed accordingly to demonstrate the impact of such security
vulnerabilities.

The first exploit is a control-flow attack. It leverages the buffer overflow vulnerability
to overwrite a return address on the BLE’s routine stack. The exploit diverts the execu-
tion flow on an injected sequence of address instructions scattered into the SecPump code
address space. This attack breaks the control-flow graph of the insulin pump by com-
bining both Return-Oriented Programming [53] and Jump-Oriented Programming tech-
niques [60]. The executed gadget chain mimics an “insulin injection” sequence and trans-
mits the insulin amount to the diabetic simulator using the serial interface. The impact
of the attack is displayed in Figure 3.12. The blue graph displays the amount of insulin
injected by the pump in real-time, the red graph shows the simulated blood glucose level,
the black curve shows the concentration of insulin in the patient’s blood and the green
curve shows the effect of active insulin. One can observe that the attack is performed at
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around 4 pm in the graph. At this time, the controller injects up to 300 mU/min amount
of insulin inducing a significant drop in glucose and a significant lethal increase of insulin
in the diabetic.

Figure 3.12: Remote code execution in SecPump

The second exploit is a non-control data attack. As the previous attack, this exploit
leverages the same buffer overflow to perform arbitrary writes in the pump memory. In-
stead of overwriting a return address stack, this attack triggers a data pointer on the
stack that indirectly modifies the amount of insulin to inject to the human body. Unlike
the previous control-flow attack, this data attack does not break the control-flow of the
application but results in the same significant threats and results displayed in Figure 3.12.

Of course, these attacks are feasible because the demonstrator does not implement
any specific security protections. However, they can be reuse to access further security
protections. Also, these attacks showcase a worst-case scenario that may impact a critical
wireless device.

3.4.2 Hardware Threats

Hardware attacks are fully applicable to SecPump. Indeed, by having physical access
to a device an attacker may achieve a wide range of attacks. For instance, by using
passive and/or active hardware attacks such as side-channel and fault injection an attacker
leverages both the physical properties and the physical access to the device to leak/modify
sensitive assets such as cryptographic keys [147]. While the pump is developed without any
particular security countermeasures, its cryptographic module and other sensitive parts
may be jeopardized by hardware attacks. As for software attacks, SecPump is the perfect
target for research in lightweight cryptography that should be robust to hardware attacks
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and integrated into constrained critical systems [148].
Also, hardware attacks can target both the control-flow and the data-flow of an ap-

plication. This causes undefined code behavior leading to both security and safety issues.
The interesting fact with hardware attacks is that it induces disturbances into the sys-
tem. These disturbances result from attacks but can also be due to interactions with the
environment, which is the case for life-critical medical systems that should operate under
any conditions. For instance hardware attacks can be used to induce system failures such
as desynchronizing the Real-Time Clock of the pump, inducing false positives/negatives
during safety checks, flipping bits from the RAM and registers, and even simulates periph-
eral errors (CGM for instance). As a result, SecPump is a suitable platform to also assess
novel safety protections and recovery mechanisms. For more in-depth details about hard-
ware security assessments on life-critical medical systems, this section refers to interesting
works that used SecPump as a security system workbench [147].
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3.5 Comparison with other works

This work also proposes to release SecPump as an open platform for the community.
We believe that such a platform is a great asset and may encourage further researches
regarding life-critical devices’ security. This section compares SecPump to the related work
exposed in section 3.2. It should be mentioned that the purpose of this contribution is not
to compete with the related work, on the contrary, SecPump proves to be a complementary
platform with a focus on security.

Table 3.3: Comparison table

openAPS
GIP

GIIP

Open

Syringe
SecPump

Commercial

Pumps

Open-source G#    #

Price $750+ - <$100 $30 - $130 $260 - $5000

Practicality G# G# G#  -

Connectivity
Bluetooth

Serial
-

Ethernet

Wifi
BLE -

Security-oriented # G# G#  #

 = Yes; G#= Partial; #= No; - = Not defined

Table 3.3 compares the existing insulin/infusion pump platforms regarding five criteria.
Whether they are open-source, the financial costs to get a functional demonstrator, if
it is simple to set up the demonstrator (practicality), whether the existing work handles
wireless features, and finally if the platform is well suited for security assessments.

According to Table 3.3, three works offer a fully open-source IoT platform; Open-
Syringe [88], SecPump, and the University of Pennsylvania that provides an implemen-
tation of a Generic Patient Controlled Analgesic infusion pump that follows the GIP
guidelines [139]. They mostly provide complete code to implement a functional medical
device. In comparison, openAPS [8], provides a Raspberry-Pi based artificial pancreas that
controls a commercial insulin pump. Unfortunately, while the artificial pancreas insulin
regulation algorithm running on the Raspberry-Pi is fully open-source, the commanded
pump is not, making the whole system not entirely available.

Price is also a limiting acceptance factor for academic research. According to [88],
a commercial pump can cost up to $5000 which is not always affordable. Also, even if
the openAPS project is based on a Raspberry-Pi that costs around $50, it communicates
with a closed-source commercial insulin pump that costs around $700. Both open-syringe
and SecPump are affordable. The open-syringe project claims that the syringe can be
built by spending less than $100 including, Arduinos, the Raspberry-Pi, and printing the
3D mechanical parts. However, it does not include the 3-D printer price. Regarding
SecPump, the BLE-RT version only requires an off-the-shelf STM32 F446-RE with the
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BluNRG extension board. The total cost less than $30. However, the implementation
price of SecPump rises when the platform is implemented on an FPGA. For instance, the
SecPump RISC-V version requires a Xilinx Digilent Arty 35-T FPGA that costs about
$130. Finally, the GPCA implementation [139] provides a generic code that is not tied
to any specific hardware. According to the project, it should be ported/adapted to a real
infusion pump hardware or a microcontroller.

For practicality, Table 3.5 excludes the commercial pumps. They are supposedly not
requiring any manual implementation to work. The term practicality in Table 3.5 specifi-
cally targets the ease of implementation of an open platform to quickly perform primary
technical security assessments. GIP provides many clear design documents for life-critical
system developers. However, it does not provide an implementation tied to specific hard-
ware to begin security assessments quickly. Thus, to perform security assessments, a
primary step is to develop a prototype or adapt the specifications. Also, in comparison
with SecPump, the GPCA implementation is more safety-oriented than SecPump, but it
does not model the human body interactions. In addition to purchasing the components,
both Open-Syringe and openAPS requires several steps to reach a functional demonstrator.
For instance, Open-Syringe requires the printing of several 3D parts with the assembly
and connection of several motors. Unfortunately, not everyone possesses a 3D printer.
On the other hand, openAPS requires a compatible commercial insulin pump with the
correct firmware version to be connected with the Raspberry Pi. In comparison, SecPump
is more practical, it does not require any mechanical parts to be assembled, it only needs
the open-source code to be compiled and flashed to an off-the-shelf microcontroller.

When dealing with security in IoT, connectivity is an important concern. Almost
all the medical devices in Table 3.5 integrates a wireless communication protocol. This
commonality is a great advantage for security research. Due to the IoT, embedded systems
may be increasingly connected to the network and exposed to various new attack vectors.
Researchers should be able to work on these protocols to improve their security and find
better ways to integrate them along with critical applications. The variety of wireless
features offer diversity in attacks targeting protocols.

Finally, regarding security, OpenAPS and commercial pumps come with commercial
constraints that prevent attackers to freely attack them. Only the Raspberry Pi of the
OpenAPS project can be targeted. On the other hand, GIP aims at improving secure
design in medical systems providing open-source methods and guidelines. However, GIP
is not an implemented platform tailored for security assessments. Finally, Open-Syringe is
not security-oriented. The framework aims at teaching how to build open-source medical
devices. However, it should be noted that Open-Syringe has been adapted in software
security works to assess the robustness of control-flow integrity countermeasures [86].
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3.6 Conclusion

This chapter introduces SecPump, a new open medical device platform tailored for
security assessments. Presently, medical devices are closed source and protected by com-
mercial constraints. This lack of openness to research makes it difficult to perform security
assessments on these types of devices. Unfortunately, commercial constraints do not pro-
tect medical devices from security threats. It has been discovered that these devices are
highly vulnerable to various cyber-attacks ranging from data theft to lethal security ex-
ploits [9].

To conduct relevant security contributions in the field of life-critical devices, this thesis
requires a representative model to work with. Unfortunately, after reviewing the state-of-
the-art, we did not find a completely open-source platform that models a wireless insulin
pump at a lower cost, and that is tailored for security and safety assessments. As a re-
sult, this chapter proposed SecPump, a security-oriented wireless insulin pump system
workbench that mimics the behavior of a real insulin pump. SecPump requires an off-
the-shelf microcontroller or FPGA and is connected to an external Raspberry Pi that
simulates the behavior of a diabetic’s glycemia. More precisely, the Raspberry Pi simu-
lates the insulin-glucose kinetics of a diabetic following the extended Bergman minimal
model [142]. SecPump interacts with the Raspberry Pi model by acting as an artificial
pancreas. It regulates the insulin of the simulated diabetic thanks to a custom simple
PID controller. The resulting implementation demonstrates that the PID can keep the
insulin level of a diabetic within an acceptable range passing the OGTT test. We consider
these measurements sufficiently representative of a real system to perform various security
assessments.

As the second step, some security threats and scenarios in relation to the thesis are
showcased on the platform. Two intentional memory safety vulnerabilities are introduced
and exploited on the pump. The result shows that a simple linear buffer overflow vulnera-
bility in the wireless communication protocol of the pump can induce several security and
safety issues. These exploits are not new and follow the attack techniques widely explored
in the state-of-the-art. However, they aim at being further reused to assess the approaches
highlighted in 2.3. Regarding hardware security, SecPump is suitable to serve as a system
workbench for both attacks and defenses. However, the study of hardware-related security
issues is considered out of the scope of this thesis.

Finally, this work aims at being released as an open-source platform for the commu-
nity. We believe that such a minimalist and inexpensive platform may promote security
innovations in life-critical medical devices. It may open new security opportunities differ-
ent from personal computers by considering additional issues such as safety and real-time
constraints.

Final note: The wireless model of the pump presented in this chapter has signifi-
cantly evolved throughout the thesis and culminated in the final version incorporating a
PID insulin controller coupled with a diabetic simulator. SecPump has been published
in the 2020 IEEE Embedded Systems Letters journal [149]. The STM32-based version
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of SecPump also inspired the design of a lightweight cryptographic AES, resistant to
side-channel attacks. The related paper: “CONFISCA: an SIMD-based CONcurrent FI
and SCA countermeasure with switchable performance and security modes” will soon be
submitted for publication. SecPump-BLE-RT also served as a security demonstration
support for the “BackFlow: Backward Edge Control Flow Integrity Enforcement for Low
End-ARM Real-Time Systems” publication at the University Booth Demonstration at
IEEE DATE 2020. Finally, within the Serene IoT framework, the security analysis per-
formed on SecPump contributed to the LCIS security analysis of WP2. The pump model
will be open-sourced on Github at the end of this thesis. This will include the code of the
platform, the documentation, and the security analysis.
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4 TrustFlow

Summary of the Chapter
This Chapter introduces TrustFlow, the first approach of this thesis. TrustFlow
is a novel hardware/software co-designed framework that provides efficient fine-
grained control-flow integrity protection for critical embedded systems. Trust-
Flow is composed of an LLVM-based compiler toolchain that generates a secure
code. The latter is then executed on an extended RISC-V processor that keeps
track of sensitive data using a trusted memory. The obtained results show that
the contribution is practical for developers, providing a high level of trust in
life-critical embedded systems with an execution-time overhead of less than 1%.
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4.1 Motivation

Recent studies revealed that many critical Internet of Medical Things (IoMT) devices
on the market are vulnerable to intrusion and software exploits [9]. For instance, in 2017,
the CVE-2017-12718 [18] revealed several buffer overflow vulnerabilities allowing remote
code execution on commercial infusion pumps. This case demonstrates that today’s em-
bedded IoT systems are beginning to face the same type of attacks as servers and personal
computers. However, in the case of an infusion pump, a software exploit can directly
threaten a patient’s life. Unfortunately, as manufacturers are increasingly connecting de-
vices to the Internet without sufficient security measures, serious security issues such as
CVE-2017-12718 are expected to grow in the coming years.

According to both Chapter 1 and 2, one possible reason for this poor security trend
comes from the fact that time-to-market, innovative features, and costs often take
precedence over the integration of security. Also, another potential reason is that man-
ufacturers of embedded applications lack security experts [10]. Of course, healthcare
manufacturers are well trained about safety issues and various hazards in medical devices
for decades. Many medical devices on the market have been validated by recognized in-
stitutions [4] and to date are very safe. However, healthcare manufacturers are less aware
of cybersecurity issues. Indeed, connecting a medical device to the network is a relatively
recent trend. Exposing wireless devices to the Internet raises new cybersecurity issues
that manufacturers were not confronted with in the past. The integration of security
in embedded devices is a difficult task, and without security expertise, the design and
the integration of the latter are usually poorly achieved.

In contrast, when a new critical device is released, hackers try to find programming
errors to exploit them. One of the most common weaknesses is a memory corruption
vulnerability. Such vulnerabilities give an attacker the ability to inject arbitrary code into
the application at execution-time and divert its execution flow. Considering a life-critical
medical device, such attacks can give the hacker the ability to modify life-critical values
harming a patient’s life [12,15,18,37].

Interestingly, regarding memory exploits, Chapter 1 of this thesis revealed an abun-
dant state-of-art of effective protections. However, despite all the efforts that have been
made to enforce memory safety, it seems that emergent wireless medical devices are still
vulnerable to a wide range of memory exploits. For instance, [17,18] found multiple code
injection attacks allowing remote code execution on commercial infusion pumps. These
code injection attacks revealed that the system did not possess even the most basic mem-
ory safety mitigations highlighted in the state-of-the-art. Security is an important concern
for critical medical devices. They are in direct interaction with the human body and may
cause irreversible harm in case of a security breach. Knowing the existing state-of-the-art
defenses, manufacturers should have implemented at least one of them in critical devices.
Unfortunately, this is often not the case. As extensively discussed in Chapter 2, several
factors are limiting the acceptance of memory safety protection in life-critical devices:

1. The time-to-market dynamic imposed by IoT is incompatible with advanced and
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complex security tests that are time-consuming. Manufacturers want to release
new innovative devices full of features to get to the market first.

2. Life-critical device manufacturers lack security resources [10]. While they have
the necessary resources concerning safety issues, wireless features expose critical
devices to new attacks that they were not confronted with in the past.

3. Many concepts offer an incomplete defense [40, 82]. Most of the CFI solutions
provide either backward-edge or forward-edge protection. So an attacker can always
attack forward-edges when backward-edges are protected and vice versa. As medical
devices may be life-critical, they require complete protection.

4. Memory safety is a trade-off between the execution-time cost and the accuracy
of the protection. It is often considered that memory protection inducing more than
5% execution-time overhead will never be accepted by manufacturers [40]. Unfortu-
nately, a lot of research work does not take this constraint into account [129].

5. Most of the hardware-based countermeasures lack software support [40] needed
to enable them with minimal developer effort. As long as developers have to rewrite
some parts of the software by hand, security solutions may be unpractical and hardly
accepted.

6. Among all the protections, the state of a system after detecting an attack is never
tackled. Detecting an attack is only the first step, the second step is to move the
system to a safe state that does not impact the users’ safety. None of the existing
countermeasures exhibits innovative techniques to recover from memory attacks.

7. Finally, according to section 1.4, many security defenses, and concepts break the C
programming language’s modularity and portability [40]. They require an applica-
tion code to be instrumented afterward. This is not modular and even impractical
in production software development environments. It forces developers to perform
security tests at the end of a system’s development phase. Besides, instrumented
codes are often not compatible with non-instrumented third-party libraries.

To summarize, effective memory safety protection for life-critical embedded systems
should closely follow the criteria listed above and in section 2.2 to have a chance to be
integrated into medical devices. To fill this gap, this Chapter presents TrustFlow, a
practical framework for memory safety in critical systems. Trustflow aims at keeping a
sufficient tradeoff between simplicity, security, safety, and performances. TrustFlow
is designed to provide fine-grained control-flow integrity support using data-flow integrity.
The main contributions of this Chapter are summarized below:

• TrustFlow environment, an innovative hardware design that can prevent, de-
tect, and treat memory-based exploits at the data granularity. TrustFlow is
an enhanced shadow stack (trusted memory) interfaced with a RISC-V processor
pipeline.
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• TrustFlow framework, an innovative software toolchain able to generate secure
code for the TrustFlow environment. The toolchain provides several control-
flow integrity levels. The TrustFlow framework integrates a static analyzer that
can determine the security cost of an application before its implementation on real
hardware.

• A security evaluation of the TrustFlow framework based on the RIPE benchmark
suite.

• A benchmark of the TrustFlow environment that exposes: the memory footprint
of real representative critical applications, the execution-time overhead induced by
TrustFlow using CoreMark [150] benchmark suite, and the hardware cost of our
implementation.
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4.2 Approach

As TrustFlow deals with life-critical embedded devices, it follows the assumptions
exposed in section 1.1.3. To remind, here are the major assumptions concerning the
design of medical applications and the attacker’s capabilities that the TrustFlow framework
considers in this Chapter.

Critical software assumptions: TrustFlow assumes that critical embedded systems
mostly follow “The Power of Ten Rules for Developing Safety Critical Code” [38,46]. These
guidelines are not limited to but mostly forbid:

1. Dynamic memory allocation after initialization: the use of dynamic memory alloca-
tion with “malloc” introduces memory fragmentation and potential memory leakage
(dangling pointers). The usage of dynamic memory allocation is nondeterministic
and thus cannot be safe.

2. More than one level of pointer dereferencing: The use of pointers is one of the major
sources of programming errors, safety, and security issues. Although their use
is practical, it must be minimized and restricted to the smallest scope as possible.

3. Usage of recursion and goto statement: recursion introduces cycles into control-flow
graphs that complicate the verification task of static analyzers. Besides, it is not
an easy matter to cover all the tests to determine the upper bound of a recursive
function. As a consequence, recursion can induce prohibitive unexpected large usage
of stack memory in life-critical systems.

4. Function pointers: The use of function pointers is discouraged according to the power
of ten rules. Indeed, function pointers prevent static analyzers to prove the absence
of recursion. Also, they restrict the types of checks that can be performed by static
analyzers. The rules claim that the use of function pointers should be justified if
used. According to the reviewed rules [38], it seems that "constant function pointers,
for instance, stored in lookup tables, pose no risk to safe execution or code analysis".
Function pointers are thus considered by the TrustFlow framework.

Threat model assumptions: As this work focuses on memory corruption, it assumes
that executed critical software may contain software bugs such as buffer overflows that
can be turned into successful exploits. To be more precise, this work assumes that the
attacker is powerful and may corrupt any in-memory data they want, either locally (on
the interface of the embedded system) or remotely (through a communication protocol).
Thus, this threat model considers software attacks that are performed at execution-time
with the following assumptions:

1. The running critical application software is statically verified and does not contain
any malware. We consider that the attacker possesses the firmware and can find
all vulnerabilities. However, the application code is immutable, the attacker cannot
modify it nor upload a malicious process into the application data-space before
triggering a successful memory exploit.
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2. While embedded systems are also prey to hardware attacks. Hardware attacks are
out of the scope of this work. It considers that software attacks are operated remotely
and not physically on the system. Hardware attacks can also be used to learn how
the system operates. The threat model has no problem with this. In 1, it already
considers that an attacker possesses the firmware code and exploitable vulnerabilities.
The aim of TrustFlow is not to obfuscate or complicate the vulnerability research
process, but to accept vulnerabilities and prevent successful exploits.

3. Software attacks such as row-hammer and cache side-channel attacks are considered
out of the scope of the study.

Approach overview: To address the criteria exposed in section 2.2, TrustFlow follows
the top-down approach proposed in section 2.3. Unlike most existing defenses [40], this
approach tackles the memory safety issue from initial software design-time to its execution
on the hardware. This thesis truly enforces that security should be integrated as early as
possible in the software design process with simple tools that require minimal human
efforts. Then, during execution-time, the security assets enforced by the software should
be reinforced by hardware primitives. Figure 4.1 displays the overview of the approach in
line with section 2.3.

Application

Execution-Time

Secure LibrairiesApplication Model
Developer Expert

Code Generation

Security Expert

Security Expert

Design-Time

Secure 
Environment

RTOS

Hardware Architecture

Figure 4.1: TrustFlow top-down approach

In Figure 4.1 the top-down approach is divided into two phases. First, at execution-
time, the application is protected in a secure environment that provides hardware-based
data-flow integrity. The secure environment assumes that the executed low-level program
may contain any kind of memory bug that can be turned into an exploit. Taking this into
account, the hardware extension tracks the integrity of both control-flow and non-control
sensitive data. If sensitive data is maliciously corrupted, the safe environment detects it,
logs it, and heals the corrupted data without impacting the users’ safety.
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To be efficient, the secure environment must identify sensitive data-flow. In the top-
down approach, the sensitive data-flow is identified at design-time thanks to a secure
toolchain and secure libraries. This software support is composed of specific libraries and
a code generator used at design-time (see Figure 4.1). These libraries allow developers
and security analysts to mark sensitive data in their code using annotations. Then, during
code-generation, the toolchain produces a code where control-flow information is protected
as well as sensitive data annotated during the design-time. As a result, software support
allows the developer to easily generate a secure code that fits the security features
provided by the hardware secure environment with minimal effort.

4.2.1 A trusted environment

The secure environment aims at ensuring sensitive data integrity at execution-time. To
guarantee sensitive data integrity, one idea is to store them in a safe, trusted, and physically
isolated memory in hardware. Such a trusted memory would isolate sensitive data making
them unattainable from the untrusted memory corruptable by adversaries. However, while
this principle protects sensitive data from any corruption, it cannot detect a memory
exploit attempt. The process of detecting an attack remains as important as the protection
of sensitive data for a critical system. Indeed, the detection of an attack and its report
makes it possible to be aware of threats and anticipate security updates in real-time.
Furthermore, as a complement, detecting an attack helps developers of embedded system
software to be aware of its failures. To perform both detection and data-flow integrity, the
TrustFlow environment uses a trusted memory displayed in Figure 4.2 that handles a copy
of sensitive data at run-time. While this principle can be compared to a voter for sensitive
data, it allows tracing the data-flow integrity, detecting a memory violation, logging the
anomaly, and finally, healing the corrupted data with a healthy one leaving the system
in a safe state. Another argument in favor of duplication and detection rather than just
dividing the memory spaces into two parts (one for sensitive data, one for insensitive data)
is security tests. Embedded applications have far fewer software execution-time evaluation
tools support than custom desktop applications [25]. Memory safety issues are much more
silent in embedded systems and more difficult to track [151]. By splitting the memory
space, this issue may not be improved. Although the security level may be the same, the
detection of silent memory corruption may be much harder.

To manage interaction with its trusted memory, TrustFlow provides both a custom
load and a custom store operation. The custom store operation of sensitive data is similar
to the store of non-sensitive data. The only difference is that the value of the sensitive data
is duplicated in the trusted memory displayed in Figure 4.2. Of course, when sensitive
data is updated using a custom store operation in the current memory the same operation
is performed in the trusted memory. The custom load operation provided by TrustFlow
works as similarly as the regular load of non-sensitive data. When used, the custom load
fetches both sensitive data from the current memory and sensitive data from the trusted
memory. Then, it verifies its integrity.

In the case of data-flow violation, the violated data in the regular memory differs from
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Figure 4.2: TrustFlow Trusted Environment Concept

the one in the trusted memory. TrustFlow logs this issue, raises an exception, and replaces
the corrupted data with the healthy one. Considering a classic load and store processor
architecture the implementation of such hardware support for data-flow integrity induces
the following challenges:

• ISA extension: The basic instruction set of the target load and store processor
must be extended to support the two new custom instructions;

• The trusted memory: The trusted memory should be integrated within an exist-
ing load and store processor architecture. The latter interacts with the main core;

– Trusted memory size: Obviously, the size of the trusted memory restricts
the number of sensitive data that can be protected at the same time. Also, the
trusted memory needs to be aware of the liveliness of the stored sensitive data.
Freed data may take up valuable space in the trusted memory;

– Real-time constraints: The interactions with the trusted memory and the
integrity checks should be fast;

• Main core logic: The target processor should perform sensitive data verification
without inducing unwanted execution-time overhead. The processor should heal
corrupted data on the fly without inducing any hazards.

4.2.2 A secure toolchain

The previously presented secure environment requires high-level software support to pro-
tect sensitive data. The environment only secures data that uses custom instructions. This
means correct instructions should be used only and always to manipulate sensitive data.
If this property is guaranteed, the assembly code may ensure instruction-level separation
between sensitive data and non-sensitive data controllable by adversaries.
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In the scope of this work, TrustFlow considers that every in-memory code-pointer can
be corrupted by an adversary. This includes backward-edge control-flow information such
as stack return address and indirect forward-edges such as function pointer. To remind,
function pointers are rarely used in embedded system programming and discouraged by [46]
but are still included in the threat model.

Obviously, after code generation, it would be impractical to have developers manually
instrument the sensitive data-flow with custom instruction. Thus, for practicality and
accuracy, the TrustFlow toolchain automates the instruction selection. It generates an
assembly code where each sensitive data access is performed with the custom instructions.

To provide a degree of freedom, the toolchain provides several security levels. Such lev-
els aim at protecting either backward-edges, backward-edges and forward-edges, forward-
edges, or everything including spilled registers. Besides, these security levels provided
by the toolchain can be used to perform security tests at different granularities. Finally,
the TrustFlow toolchain provides a secure library with inline assembly routines that al-
low developers to manipulate custom sensitive data that are not considered by the threat
model.

Unfortunately, the trusted memory size is limited. The amount of the trusted memory
used by an application is directly proportional to the amount of sensitive data. Therefore,
an excess of sensitive data in an application can lead to an overflow of the trusted memory.
To anticipate this issue, the TrustFlow toolchain suite proposes a trusted memory static
analyzer. This tool statically estimates the trusted memory cost of a program before any
implementation on the real hardware. As a result, the static analyzer informs developers
early in the design stage about the cost of the security as well as the validity of its
application regarding the hardware environment. Regarding critical devices, this tool
allows to formally prove that an application fits the hardware security support. The
TrustFlow toolchain workflow is displayed in Figure 4.3.
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Figure 4.3: TrustFlow Toolchain Concept.

First, a secure library is included in the development phase. This library allows devel-
opers and the security expert team to mark custom sensitive data. Then, the code passes
the code generator provided by the TrustFlow security experts. After this step, sensitive
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code-pointers are protected. At this stage, the application is ready to be deployed, but,
the latter can also be passed through the static analyzer to be verified.

A toolchain that respects the traditional software development flow can only be imple-
mented with the help of a compiler framework infrastructure. However, as for the secure
environment, it raises several challenges listed below:

• ISA extension: The targeted compiler should support the custom load and store
instructions introduced by the hardware environment.

• Data selection: The targeted compiler should automatically select the correct load
and store instruction to achieve instruction-level separation. It should also provide
multiple security levels.

• Manual sensitive data annotation: The toolchain suite must provide a library
that enables developers to annotate custom sensitive data at the source code level.
Then, the targeted compiler should interpret these annotations and make sure that
these data are always accessed using custom instructions.

• Static analyzer: Given a binary, the static analyzer should be able to compute the
trusted memory footprint of an application as accurately as possible.
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4.3 Implementation

The TrustFlow framework is implemented within the RISC-V [90] instruction set ar-
chitecture and the Clang/LLVM compiler infrastructure [23]. More precisely, the secure
hardware environment extends the RISC-V Rocket-Chip generator in Chisel [152]. The
TrustFlow hardware extension is a trusted memory driven by a modified pipeline. Be-
sides, TrustFlow integrates a custom hardware correction algorithm that heals systems
from detected memory-based attacks. At the software level, an extended version of the
LLVM compiler is provided. This compiler provides instruction-level separation support
for sensitive data access. During code generation, the compiler identifies each sensitive
data. At instruction selection time, the compiler uses the custom instructions to secure
sensitive data-flow (code pointers). The critical application code can be analyzed using
the custom LLVM based static analyzer. The latter determines the maximum amount of
live sensitive data used by an application.

4.3.1 Environment Implementation

At the hardware level, TrustFlow integrates two major components: a trusted translation
lookaside buffer (TLB), and an extended processor pipeline with two custom instructions.
The TLB handles sensitive data and is used as a fast lookup memory. On the other
hand, the processor pipeline is directly connected to the TLB to quickly store and retrieve
sensitive data. The whole design is a 5-stage, in-order, 32bit RISC-V processor with a 16
kB data cache and a 4kB instruction cache. TrustFlow extends the RV32I basic instruction
set with two new secure instructions given below:

• sws rs, imm(rd): stores a 32-bit word and duplicates the sensitive data in the
trusted memory (secure store instruction)

• lws rd, imm(rs): loads a 32-bit word and checks the integrity of the data using
the trusted memory (secure load instruction).

The two new instructions introduced by the TrustFlow extension inherit the properties
of the classic RISC-V load ("lw”) and store ("sw") instructions.

4.3.1.1 Translation Lookaside Buffer Design

Given the real-time requirements of life-critical embedded systems, TrustFlow’s trusted
memory is a fast Translation Lookaside Buffer (TLB) implemented as content-addressable
memory (CAM) [153]. This TLB can perform lookups in a single clock cycle. Figure 4.4
displays how custom instructions interact with the TLB. The trusted TLB is implemented
as an associative memory [153]. The TLB search key is the sensitive data address in the
regular memory, and the result is the value of the sensitive data itself.

When a valid custom store instruction stores sensitive data (see Figure 4.4), the sen-
sitive data address is committed as a key (V(0) in Figure 4.4) in TLB, and the data itself
is stored both in the regular memory and as a value in the TLB (V(1) in Figure 4.4). The
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sensitive data value/address vector is always placed in a free entry of the TLB pointed by
IDX. Conversely, if the key V(0) is already present in the TLB the corresponding value
V(1) is updated.

With a custom load (see Figure 4.4), the TLB uses the sensitive data address as a key
to retrieve the matching data value. Then, both data from the regular memory and data
from the TLB are compared by the checker. In case of mismatch, TrustFlow replaces the
corrupted data with its healthy copy coming from the trusted memory and raises a “DFI”
exception.

Each entry in the TLB is indexed by a vector V. The IDX value always points to free
entry (0) of the TLB. If IDX does not point on a valid entry in the TLB, the latter is full,
raising an overflow exception.

One can see that freed data may occupy precious space in the trusted TLB. According
to the assumptions in section 1.1.3, the only freed data in the TLB are part of the freed
stack frame. In other words, all data located below the stack pointer. Thus, when the
stack pointer (sp) increases, all data that belong under it are considered as freed. To erase
freed data, the trusted TLB acts as a garbage collector. Every time the stack pointer
frees memory, all entries in the TLB that belongs to the freed stack slot are erased. By
defining V as a vector stored in the trusted TLB, the latter follows the simple Algorithm
1 to eliminate freed data.

Algorithm 1: Hardware Garbage Collector
foreach V ∈ TLB do

if V (0) ∈ [Stackbase;Stackbound] then
if V (0)< SPV alue then

Vvalid = 0
end

end
end
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4.3.1.2 Processor Pipeline changes

To remind, the trusted memory is driven by two custom instructions. When used, these
custom instructions pass the 5 stages of the processor pipeline as regular instructions.
Before digging into architectural details, here is a brief outline of the 5 stages of the
RISC-V processor pipeline displayed in Figure 4.5:

• Instruction Fetch: The program counter register (PC) points on the instruction
to fetch from the instruction memory and put it in the instruction register.

• Instruction Decode: The previously fetched instruction is then decoded into con-
trol signals. The operands of the instruction are moved to immediate fields or
general-purpose registers.

• Instruction Execute: The instruction is executed. Usually, at this stage, either an
arithmetic register/register operation or register/immediate operation is performed
by the arithmetic-logic unit.

• Memory Access: If the instruction is a load or a store, the memory is accessed
at this stage. Otherwise, the instruction is simply forwarded to the next stage.
Usually, for a load or store instruction, the accessed memory address comes from the
arithmetic-logic unit and the data to store from “rs2”.

• Write Back: The results of an operation performed by an instruction are written
to a destination register within the register file.

The custom load and store instructions trigger the TrustFlow extension during the
memory access stage. At this stage, TrustFlow processes sensitive data address pairs
needed to be stored/checked in/from the trusted TLB.

TrustFlow is aware of the validity of the instruction flow in the pipeline and replicates
the regular memory access to the trusted TLB. For instance, each invalid custom “load”
with the normal memory due to a pipeline stall (cache miss) is also canceled with the TLB
inhibiting the checker. Likewise, a canceled “custom” store instruction is never committed
to the trusted TLB. TrustFlow performs the data integrity checks during the write back
stage of the pipeline. The checker is triggered by a custom load and verifies that data
fetched from the data cache do not differ from the trusted TLB. In the case of discrepancy,
a data-flow violation is logged and the faulty data is replaced on-the-fly by the checker.

A stage by stage simplified pipeline outline of TrustFlow is given below, the blue
components in Figure 4.5 represent the important TrustFlow modules.

Healing data on the fly by replacing corrupted one is an important feature of TrustFlow.
Another solution would be to revert the execution flow to a previous state and re-execute
and entire section. However, it would allow an attacker to replay his attack. Also, memory
exploits can be seen as a non-deterministic disturbance. They are unpredictable and
therefore not appreciated by critical deterministic systems. As a result, reverting the
execution flow due to a non-deterministic attack may be inconsistent with deterministic
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Figure 4.5: Simplified RISC-V Core with the TrustFlow Extension.

critical systems. By healing data on the fly, TrustFlow does not interrupt the execution
flow maintaining determinism. However, it simply logs data-flow issues that can be tackled
by a real-time, deterministic developer’s custom task afterward. For in-depth details about
the TrustFlow pipeline, we refer the reader to Annex A.

4.3.2 Toolchain implementation

To ensure instruction-level separation, the TrustFlow toolchain extends the Clang/L-
LVM [23] compiler with additional passes. With strong compiler support, the toolchain
simplifies the integration and accuracy of security. Also, the second goal of the toolchain
is to deliver verification options regarding the amount of trusted memory consumed by an
application.

4.3.2.1 Required compiler changes

The custom instructions introduced in the RISC-V ISA resulted in an extension of the
RISC-V LLVM backend.

As pointed out earlier, the goal of the compiler is to protect both indirect backward
and forward-edges preventing memory exploits. By design, the compiler spills the return
address (backward-edge control-flow information), and some registers of a calling function
in the prologue of the called function. Also, when a called function returns to its caller, the
return address and the spilled registers are restored during the epilogue. By targeting the
calling convention and more precisely the in-memory return address stack an attacker can
divert an indirect backward-edge. To address this issue using the TrustFlow environment,
both the prologue and the epilogue should use custom instructions when spilling/restoring
the caller register and the return address in a stack frame.

By leveraging an in-memory bug an attacker may also target indirect forward-edges
such as function pointers. To protect indirect forward-edges, function pointers should
be manipulated with custom instructions. However, protecting every in-memory function
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pointer is less trivial as for the backward-edges. Indeed, the data-flow of function pointers
must be analyzed to determine when and where they are spilled and restored in/from the
memory. Each time it happens, it must be achieved with a custom instruction. To perform
such protection, the compiler must analyze and determine each function pointers’ flow.
Then, during instruction selection, each load/store involving a function pointer should use
a custom instruction. Finally, to determine the trusted TLB footprint of an application,
the compiler integrates a static analyzer that crosses the application code and determines
the worst-case trusted TLB usage.

4.3.2.2 Introduced passes workflow

Multiple passes are introduced in the LLVM compilation pipeline to achieve fine-grained
data-flow integrity. Figure 1.6 displays a simplified representation of the LLVM backend
pipeline with the TrustFlow introduced passes.
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Figure 4.6: LLVM Backend Compilation Pipeline.

In Figure 4.6, the passes dealing with the forward-edge control-flow integrity happen
earlier than the backward-edge control-flow integrity passes in the compilation pipeline.

The first function pointers pass occurs on the Intermediate Representation (IR). At
this stage, the code is strongly typed and still in the Single Static Assignment (SSA) form.
Using the LLVM IR, the pass parses each instruction and their operand type to determine
whether they handle a function pointer. If an SSA load/store instruction manipulates a
function pointer, the pass annotates it with LLVM metadata. Before instruction selection,
the compiler translates each SSA instruction into Selection Dag Node (SDNode). The
SelectionDAG pass is extended to handle the SSA metadata to the SDNode structure.
During instruction selection, the SDNodes are converted into machine SDNode which
handles target instructions. A custom post instruction selection DAG pass operates at
this level and translates both load and store machine DAG that handle metadata into
custom load and store machine DAG.

The backward-edge control-flow integrity is performed after the register allocation
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pass during prologue-epilogue insertion. To protect backward-edges, the prologue/epilogue
insertion pass is modified to spill/restore function return address with custom instructions.
Also, at this stage, the improved compiler offers an option to secure every spilled register
with custom instructions. For more details about the prologue-epilogue insertion, we refer
the reader to Annex B.

4.3.2.3 Static analyzer

After secure code generation, developers have no idea about the cost of their program
in the trusted TLB. They can perform tests on the hardware to determine whether the
trusted memory overflows or not. This approach is unpractical and time-consuming. To
safely use the TLB, developers require a practical tool that ensures that their application
fits the TLB according to the security level.

To do so, the TrustFlow comes with a static verification compiler extension that esti-
mates the worst-case maximum amount of trusted memory used by an application. This
pass is implemented as a "Machine Module" pass within the RISC-V LLVM backend.
Also, the pass is only compatible with full Link-Time Optimization (full-LTO). During
compilation, the full-LTO optimization merges separated modules into a single monolithic
Intermediate Representation module. This monolithic module is then passed to the LLVM
backend allowing the static analyzer pass to see the program as a whole and perform inter-
procedural analysis. The static analyzer pass traverses each function evaluating its trusted
memory costs. Figure 4.7 displays on the left various compiled functions with their trusted
memory costs. For instance, the vertex (function) 1 cost 3 entries in the TLB and calls
vertex 2, 3, and 4.
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Figure 4.7: Static Analyzer.

Then, the static analyzer pass reconstructs the entire program control-flow graph. This
operation results in the construction of a weighted directed graph. More precisely, as we
forbid recursion in our approach [46], this constructed directed graph is acyclic (DAG).

Unfortunately, static control-flow graphs are often imprecise due to indirect forward-
edges targets. To generate a fine-grained control-flow graph the static analyzer requires
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little human interaction. To do so, the Clang front end of the compiler is improved and
provides a high-level annotation that can be used by developers to mark functions that
handle indirect control-flow transfers with the name of their potential target(s). With this
support, the compiler can construct a fine-grained weighted directed acyclic graph.

To determine the maximum usage of trusted TLB by an application, the static analyzer
determines the deepest path in the constructed weighted DAG. As verification, the static
analyzer makes sure that the generated call graph does not contain any cycles. For space
reasons, we do not detail the cycle detection algorithm performed by the static analyzer.
However, the cycle detection is based on a depth-first search algorithm that colors visited
vertices.

The deepest path problem for a weighted directed acyclic graph is known to be a linear
problem. To solve it, the static analyzer uses a classical topological sorting algorithm on
the DAG to sort all the vertices. This algorithm performs a linear ordering of all vertices
such that for every direct edge between two vertices A and B, vertex A comes before vertex
B in the ordering.

Once the vertices are sorted in a stack S, the static analyzer initializes the distance of
every vertex as negative infinity (NINF) and the distance of the root vertex (application
entry point) as 0. Then, the vertices are processed one by one by popping the stack. For
every vertex being processed, the static analyzer updates the distances of its child(s) using
the distance of the one being processed. The entire algorithm is summarized in Algorithm
2 snippet.

Algorithm 2: Deepest Path Algorithm
foreach vertex ∈DAG do

dist[vertex] =NINF
end
dist[root] = 0 ;
while S 6= ∅ do

vertex= S.pop();
if dist[vertex] 6=NINF then

foreach child ∈ vertex do
if dist[child]< dist[vertex]+ child.getWeight() then

dist[child] = dist[vertex]+ child.getWeight();
end

end
end

end
deepth= 0;
foreach d ∈ dist do

if d > deepth then
deepth= d;

end
end
Time Complexity O(V+E)

As a result, the deepest path corresponding to the worst-case trusted memory usage
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is displayed. Another “feature” algorithm implemented in the static analyzer prints the
longest path for the developer. This critical path can then be optimized to reduce the
trusted TLB footprint of its application.
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4.4 Evaluation

This section assesses the TrustFlow framework. The toolchain requires about 1500 lines
of C++ code to be added to the Clang/LLVM compiler infrastructure. Also, the TrustFlow
environment is synthesized on a Xilinx ARTY-35T FPGA and requires 400 lines of Chisel
code to be added in the RISC-V RocketChip generator. To validate the security of the
concept, TrustFlow is confronted with the RIPE benchmark suite [85]. Then, we evaluate
the costs of the TrustFlow environment in hardware. This includes a trusted memory size
benchmark regarding different life-critical medical applications, execution-time overhead
induced by the TrustFlow extension, and the additional LUTs and Flip-Flops required by
TrustFlow. Finally, the main goal of this section is to demonstrate that an acceptable
level of security can be achieved on a wide range of programs with a very small trusted
TLB and at the lowest costs.

4.4.1 Security evaluation

The RIPE benchmark suite [85] provides different attack patterns to test the coverage of
countermeasures against memory attacks. These attacks use five different dimensions: the
location, the target code pointer, the overflow technique, the attack code, and the function
abused. Following the assumptions [46], this evaluation considers out of scope all attacks
involving the dynamic memory allocation from the benchmark suite. Also, as Trust-
Flow detects sensitive data corruption at execution-time, the evaluation is focused on the
targeted code pointers regarding its location and the overflow technique. In the evalua-
tion, the benchmark is compiled with 3 different options: backward-edge protection (B),
backward-edge and spilled registers (BS) protection and finally, backward-edges spilled
registers, and forward-edges (BFS) protection. The results are summarized in Table 4.1.

Table 4.1: TrustFlow Security Benchmark.
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B D X X O.S X X O.S X X X X

BS D D X O.S X D O.S D X D X

BFS D D D O.S X D O.S D X D X
X=undetected, D=Detected and healed by TrustFlow, O.S=Out of the scope of the
TrusFlow-X framework.

After compilation with full protection and execution on the environment, TrustFlow
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protects and detects any attack from the benchmark suite that targets: function return
addresses, stack function pointers (both in the stack or pass as a parameter), data section
function pointers and BSS function pointers. Besides, the TrustFlow framework is also able
to protect and detect any attacks that target function pointers residing close to a buffer
within a structure located either in the stack, the BSS, or the data section. However,
these function pointers should only be used with one level of dereferencement. Of course,
following the threat model in section 4.2, none of the attacks corrupting a target code
pointer in dynamic memory is detected. From Table 4.1 it also appears that the security
difference between “B” and “BS” is less. Only two additional direct attacks and indirect
attacks are detected by the “BS” option.

Several data-oriented attacks are also implemented in the benchmark suite. At this
moment, the improved compiler is not able to automatically protect security-critical data
such as numerical values used for a branch condition, or token used for privileges. However,
the TrustFlow environment provides the necessary support to ensure its integrity. Finally,
any data leakage that does not corrupt sensitive data is not detected by TrustFlow.

4.4.2 Environment evaluation

4.4.2.1 Trusted memory benchmark

While TrustFlow is capable of ensuring fine-grained CFI through fine-grained DFI, its
security level is ensured by the trusted memory that has a fixed size. To prove that
TrustFlow can handle a wide range of life-critical applications respecting our software
assumptions [46] (see section 2.2) with a reasonable fixed TLB size, this section assesses
the amount of trusted memory consumed by various medical applications that follow our
software assumptions:

1. Inverse Radon Transform from the HERMIT benchmark suite [154]. This application
is commonly used in portable ultrasound and MRI devices. It allows reconstructing
the output image from a 159KB 2D sinogram input data file for visualizing abnormal
openings in the body.

2. SecPump [149] a fully open-source wireless insulin pump. The SecPump project
aims at serving as a medical platform for security evaluation.

3. The open-source syringe pump project [88]. Open-syringe proposes an inexpensive
Arduino based medical for research purposes. This project is easily portable on
RISC-V and highly representative of a real medical device.

4. ARM Mbed TLS library [155]. While not entirely dedicated to medical devices ARM
Mbed TLS is a cryptographic library reference for embedded systems.

The applications are benchmarked using the static analyzer. The results outputted by
the static analyzer represent the worst-case trusted TLB usage according to a path taken
within an application. The static analyzer does not guarantee the coverage of the longest
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path and if it is frequently taken. The trusted memory benchmark is achieved with the
following assumptions:

• The applications are compiled and evaluated without recompiling external libraries;

• Five data-flow integrity levels are applied; backward-edges (“ret”), forward-edges
(“pointer”), backward-edges and spill registers (“spill”), backward-edges and forward-
edges (“ret+pointer”), and finally, forward-edges and backward-edges with spilled
registers (“spill+pointer”);

• The compilation options recommended for the evaluated applications are kept as
provided in their dedicated Makefile, we only changed the compiler optimization
level to measure the impact on the trusted memory. Three compiler options are
considered: “O0, O2, Os”

The results of the benchmark are displayed in Figure 4.8.

Pointer Ret Ret+Pointer Spill Spill+Pointer

Figure 4.8: Trusted Memory Footprint.

The Y-axis is the maximum entries required in the TLB. The X-axis is the compiler opti-
mization.

According to the results, only a reasonable amount of trusted memory is used by all
evaluated critical applications. The "Inverse Radon Transform" application consumes the
most number of entries in the trusted TLB. More precisely, 50 entries with full protection
for an application totaling about 7000 lines of code. However, 50 entries of 64 bits (8
bytes) only represent 400 bytes of a trusted memory, which is less than a kB. Securing
spilled registers highly increases the consumption of trusted memory. For each function
call, every register spilled in memory is saved by the compiler using a custom instruction.
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Besides, a better compiler optimization option increases the number of spilled registers
and, consequently, the consumed trusted memory. Indeed, the compiler tends to favor the
use of registers per function instead of memory accesses to improve the execution speed.

Comparing with the previous security evaluation, the cost of protecting spilled registers
is very high for a security level very little different from the backward-edge protection.
Depending on the threat model and system constraints, securing the spilled registers
may not be worth the costs. Conversely, according to the previous security evaluation,
protecting function pointers (forward-edges) render a wide range of attacks ineffective.
According to the measurements, the effect of function pointer protection is ineffective on
the trusted memory. Function pointers are rarely used in critical embedded systems [38]
(even never used, see Figure 4.8, RadonAna, and Open-Syringe).

The results outputted by the static analyzer represent the worst-case trusted TLB
usage according to a path taken within an application. To remind, the static analyzer does
not guarantee the coverage of the longest path. To verify the accuracy of the static analyzer
and to validate its measurements the static measurement of RadonAna is compared with
a dynamic analysis using 6 various compiler optimization options. We selected RadonAna
because it totals around 7000 lines of codes, 130 vertices, a large corpus of input that covers
many different paths in the application, and because the application seems to consume
the most memory.

An interesting point, more related to section 4.4.1 is that TrustFlow’s static analyzer
detected several vulnerabilities in the HERMIT benchmark suite. Some of these vulnera-
bilities included infinite call sequences causing deadlocks in the benchmarked application.

The results of the static analysis versus the dynamic analysis are displayed in Fig-
ure 4.9. The RadonAna application is executed 20 times with different sinogram data
files. The worst dynamic case is displayed in Figure 4.9.

The dynamic evaluation comparison in Figure 4.9 confirms the trustworthiness of the
static analyzer. It also confirms that in real execution the worst-case evaluation given
by the static analyzer is not always attained. Finally, the dynamic benchmark reinforces
the static benchmark and confirms the hypothesis that a small trusted memory with a
hardware garbage collector can secure reasonable embedded applications.
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Figure 4.9: Dynamic versus Static Evaluation.

The Y-axis is the maximum entries required in the TLB. The X-axis is the compiler opti-
mization.

4.4.2.2 Execution time overhead

Since TrustFlow is dedicated to bare-metal/RTOS embedded systems, it is not relevant
to port the well-known benchmark suite SPEC2006 CPU [107]. Moreover, TrustFlow
cannot support the Linux Kernel. So this assessment turned to the CoreMark benchmark
suite [150]. CoreMark contains 4 algorithms such as list processing (find and sort), matrix
manipulation (common matrix operations), state machine, and CRC (cyclic redundancy
check) that are designed to run on devices ranging from 8-bit microcontrollers up to 64-bit
microprocessors. Thus, CoreMark is easily portable on bare-metal architectures such as
TrustFlow.

To measure the execution-time overhead induced by the TrustFlow environment, the
processor is synthesized on a Xilinx ARTY-35T FPGA with a fixed TLB size of 384
bytes. The CoreMark benchmark suite is compiled using the TrustFlow’s Clang/LLVM
extended compiler using optimization level 3 with 5000 iterations. The measurements
revealed a processor execution ticks overhead of 0.0087% for the backward-edge protection
and 0.021% for the spill protection. As a result, the execution-time overhead induced
by TrustFlow is negligible. This can be easily explained by the fact that all operations
performed by TrustFlow in hardware are carried out in parallel to the main pipeline. Thus,
any custom instruction triggers an independent hardware extension that only performs a
simple check operation at the write-back stage.

Also, it should be mentioned that TrustFlow does not induce any size overhead on the
final binary of the benchmark. Custom load and store instruction just replace the classic
load and store instruction for sensitive data.
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4.4.2.3 Hardware costs

The TrustFlow hardware extension overhead can be divided into two distinct parts: (1) a
trusted external fast memory with a garbage collector and (2) additional instructions with
an in-pipeline checker. Like any hardware implementation, the TrustFlow core consumes
additional LUTs and Flip-Flops.

The additional hardware cost due to the two new instructions is very low compared
to the hardware cost induced by the trusted memory. The reference RISC-V RocketChip
processor [152] consumes a total of 16671 LUTs and 9905 Flip-Flops. The addition of
two new instructions in the core, the checker, and the digital logic that ensures memory
management increases the number of LUTs (16789) by 1.03% and the number of Flip-
Flops (10020) by 1.16%. However, when adding a fixed trusted memory of 384 bytes (48
entries), the design consumes a total of 18643 LUTs (11% increase) and 12099 Flip-Flops
(22% increase).

In terms of performance, the two instructions are similar to the load and store in-
struction. Both custom instructions manage the trusted memory in parallel with the
main memory. Similar performances are measured between the custom load and store
instruction and the regular ones. The core modifications induced by the addition of these
instructions have mostly no effect on the timing performance of the core. TrustFlow is
able to broadly reach the same running frequency on the embedding core. However, a
negligible timing delay may impact the system performances in case of data discrepancy
due to the checker and the data correction.
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4.5 Discussion

It is fair to affirm that TrustFlow is first designed to secure critical bare-metal appli-
cations. In theory, TrustFlow can boot a lightweight real-time operating system such as
FreeRTOS. Indeed, the TrustFlow’s trusted memory is a table, mapping address and sen-
sitive data pairs that are compliant with multi-threading. Unfortunately, a simple small
trusted memory such as the one exposed in this Chapter is not enough to store all the
critical data of the tasks shared by an application on a single processor. Besides, the
current hardware implementation of the TrustFlow memory garbage collector does not
support multiple stacks. The garbage collector invalidates part of the trusted memory
data depending on the value of the stack pointer. Unfortunately, with a multi-tasks ap-
plication, the real-time operating system maintains several stacks inducing stack pointer
changes at each context switch. Thus, the current hardware garbage collector that follows
algorithm 1 may evict valid sensitive data in the trusted memory if the stack of the new
active task is at a higher address than the stack of the suspended task.

To address multitasking, one solution would be to map trusted memory registers.
These registers may allow a real-time system to configure the garbage collector with the
address ranges corresponding to the different stacks in memory. The global idea would be
to make the garbage collector aware of the different stacks. However, this improvement
may introduce new limitations. Indeed, the number of trusted memory registers will limit
the number of tasks protected by trusted memory. Although the concept lends itself to it,
it would induce high hardware costs to keep the same performances as TrustFlow while
protecting all the sensitive data per process.

Another way to handle multiple tasks would be to save and restore the trusted memory
per process. Taking the FreeRTOS [29] real-time operating system as an example, the task
control block (TCB) structure can be extended such that it handles valid stack entries from
the trusted TLB. Then, during a context switch, the scheduler of the operating system can,
therefore, save the state of the task trusted memory in the extended TCB, and restores
the following running task trusted memory. Of course, this concept should be coupled
with software isolation (SFI) such that the TCB of suspended tasks cannot be corrupted
by a memory violation in a running task.

Finally, the TrustFlow hardware trusted memory is size limited. This work provides
an accurate static analyzer such that developers can easily optimize their application to
fit the trusted memory. During the evaluation of the concept, and like other work related
to shadow stacks [78, 82, 156] we did not face any overflow issue with a fixed trusted
memory. However, considering manufacturing TrustFlow for critical systems at a large
scale, giving trusted memory depth metrics is not enough. Indeed, the overflow issues
related to the trusted memory must be supported. One way to deal with it would be to
raise an interruption when the trusted TLB is full and to transfer the highest stack data
to the current memory or an extended TCB for a real-time system. However, once again
this mechanism should be coupled with SFI to protect the transferred data.

At the software level, TrustFlow ensures control-flow integrity through sensitive data-
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flow integrity using compilation. Unfortunately, any third-party libraries that are not
compiled with the TrustFlow Clang/LLVM extension are unprotected. Thus, these third-
party libraries constitute new attack surfaces not covered by the protection. To deal with
this case, the TrustFlow framework can be associated with a patching application. The
latter could easily disassemble third-party libraries, identify the load and store instructions
that manipulate sensitive data and patches them using custom instruction. However, this
process is less precise than a regulation compilation workflow. It could introduce hazards
in the assembler. Pre-compiled application codes are not trivial to analyze. Some of
them are obfuscated, making static analysis very difficult, requiring error-prone human
interaction.

Regarding function pointers protection, the current Clang/LLVM extension handles
one level of dereferencing. Thus, in the case of function pointers that are dereferenced
across multiple structures, the compiler is not able to generate the correct instructions.
Although this goes against the assumptions made in section 1.1.3, and the safety-critical
code practices proposed by [38, 46], this issue requires manual code instrumentation by
the developer at the assembler level.

Finally, at present, the TrustFlow compiler extension cannot protect the induction
variables. These variables are usually increased or decreased within loops and are the
targets of Data-Oriented Programming attacks [65]. We are currently working on a pass
similar to the function pointer identification pass to protect such variables.
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4.6 Comparison with related work

In comparison with other memory safety protection work, TrustFlow is an enhanced
instruction driven shadow stack [157] that can ensure fine-grained CFI protecting sensitive
data-flow. In this section, we discuss a coherent selection of well-known hardware-software
co-design CFI protections and their limitations with TrustFlow.

HCFI [78] is an extension of SPARC architecture that enforces CFI. HCFI enforces fine-
grained backward-edge CFI thanks to a hardware shadow stack that stores the call stack.
As TrustFlow, this policy provides an accurate security level but can only guard a limited
call depth. Concerning forward-edge CFI, HCFI enforces a policy label thanks to two
additional instructions. Although restricted, HCFI’s indirect forward-edges can still target
multiple locations making the overall protection a little coarse-grained. In comparison,
TrustFlow enforces fine-grained forward-edge integrity. Both HCFI and TrustFlow are
limited by the size of the trusted memory. However, HCFI consumes twice less memory
per sensitive data than TrustFlow because it does not store the address of sensitive data
as a key in its trusted memory. Besides, HCFI provides specific support for recursion.
TrustFlow supports recursion but prohibits it through its assumptions. Finally, both
solutions induce less than 1% execution-time overhead.

At the software level, the HCFI protection is ensured with binary instrumentation
scripts. While this process is scalable for small applications, it is difficult to deploy in a
production environment. The code generation is heavy and requires several steps each time
a binary had to be generated. Conversely, TrustFlow provides an easy to use, accurate
compiler support.

HAFIX [82] is a hardware backward-edge CFI based on labels and an isolated memory.
Each time a function is called, a custom instruction is executed by the processor. This
activates a unique function label in an isolated memory area. When the function ter-
minates, another custom instruction deactivates the label from the trusted memory, and
the processor checks that the target return address is part of an active function. Com-
pared with TrustFlow, HAFIX does not enforce forward-edge CFI, leaving room function
pointer hijacking attacks. In terms of backward-edge CFI, HAFIX always ensures that a
function returns to an active function which is part of the call stack. Unfortunately, it
does not guarantee that the function main return to its most recent caller which Trust-
Flow does. While execution-time overhead of both HAFIX and TrustFlow is very low,
HAFIX has an advantage over TrustFlow. HAFIX overcomes the regular shadow call
stack size limitation thanks to label activation/deactivation. However, HAFIX proposes
special instructions just to tackle "setjmp" and "longjmp". TrustFlow uses an innovative
technique based on the stack pointer value to maintain stack coherency. Finally, HAFIX
is accompanied by a compiler extension that generates a secure code using the additional
instructions. Thus, the security implementation is straightforward to use for non-security
experts which is consistent with the philosophy of TrustFlow.

FIXER [156] proposes a decoupled and flexible RISC-V compatible coprocessor to en-
force both forward-edge and backward-edge control-flow integrity. FIXER targets hybrid
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processors based on an unmodified RISC-V core interfaced with a reconfigurable FPGA
core. The FPGA part of FIXER implements a shadow call stack for fine-grained backward-
edge and a policy matrix to enforce forward-edge protection. More precisely the FPGA is
interfaced with the RoCC interface of the RISC-V processor and interacts with it using the
dedicated accelerator instructions. FIXER proposes developers to annotate each function
call and returns with tags at the source code level to protect their application. These tags
are then translated into instructions that interact with FIXER thanks to a binary instru-
mentation script that parses assembly files generated by the GCC compiler. While this
technique is automatic, we argue that manually annotating an application’s source code
for security is not very practical. This argument is also supported by [40]. In contrast,
TrustFlow automates the instruction selection at compilation time freeing the user from
any binding source code annotation. Also, unlike TrustFlow, the FIXER forward-edge
policy matrix is coarse-grained. Indeed, indirect forward-edges can still target valid des-
tination sites that are invalid for a specific call. In closing, both FIXER and TrustFlow
have a negligible execution-time overhead. However, the flexibility proposed by FIXER
is a great asset over TrustFlow. Indeed, the trusted memory size (shadow call stack) of
FIXER can be optimized on purpose and accommodate new security threats.

Finally, TrustFlow can be compared with well-known fine-grained tagged memory poli-
cies such as HDFI [131] and LowRISC [132]. They use two tag levels (IL1 and IL0) to
separate sensitive data (IL1) from regular data (IL0). To trace the data-flow, HDFI [131]
extends the RISC-V processor memory with an additional one-bit tag field for every word.
To enforce sensitive data isolation, HDFI introduces custom store and custom load in-
structions as TrustFlow. These instructions are supported by a modified processor logic
such that; every regular write instruction defines a data and set the tag field to zero, every
special write instruction defines a sensitive data and set the tag field bit to one and every
special load instruction checks that the used sensitive data has a tag set to one. Thus, a
regular write that modifies sensitive data also changes its tag. When this sensitive data
is re-used by a custom load instruction, the processor detects a wrong tag and raises an
exception. HDFI has a major advantage over TrustFlow in terms of memory limitation.
Indeed, HDFI protection is not restricted by the size of the trusted memory. However, it
induces one bit overhead per double memory words which also is not negligible.

The HDFI approach carries full operating system support which TrustFlow does not.
However, in terms of safety, HDFI does not provide any recovery mechanism capable
of restoring corrupted data. While a custom exception handler can be implemented to
re-execute the faulty code section, it would allow an attacker to replay his attack until
blocking a system. Also, it may induce a non-determinism source of perturbation over the
critical device. Finally, HDFI, LowRISC, and TrustFlow have full toolchain support that
facilitates the integration of security into systems.
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4.7 Conclusion

This Chapter proposes an innovative practical defense against memory-based exploits
on life-critical medical devices. According to the state-of-the-art, it seems that existing
works are not the most appropriated for medical devices. Many solution overlooks fine-
grained security, safety, and other practical aspects that cause their solutions to be
neglected by life-critical device manufacturers. Many concepts often offer incomplete
defenses and a poor balance between execution-time overhead and accuracy. On
top of that, most hardware-based countermeasures lack software support so that they
can be used with minimal human efforts. As long as developers have to rewrite some parts
of the software assembly code by hand, security may never be integrated. Besides, binary
instrumentation is neither modular nor practical in a software production environment.
It sometimes breaks the C programming language structures and forces developers to
perform security tests at the end of a system’s development phase. Finally, among all
existing memory safety protections, the state of a system after detecting an attack is never
addressed. For critical devices, detecting an attack is only the first step, the second step
is to move the system to a safe state that does not impact the users’ safety. None of the
current countermeasures exhibit innovative techniques to recover from memory attacks.

To address these gaps, TrustFlow, proposes a novel practical framework that simpli-
fies the integration of memory safety in critical systems while keeping a sufficient tradeoff
between security, safety, and performance. The contribution is composed of an LLVM
based secure toolchain able to generate secure code for a RISC-V based secure environ-
ment that can prevent, detect, log, and self-heal critical devices from memory exploits.
The whole hardware environment is composed of an extended RISC-V processor commu-
nicating with an isolated trusted memory that handles duplicated sensitive data.

According to the assessments, TrustFlow can ensure complete fine-grained control-
flow integrity through fine-grained data-flow integrity with less than 1% execution-time
overhead and a trusted memory with less than 100 entries. The contribution comes with
strong compiler support, compliant with all C standards, making the integration of se-
curity simple and compatible with incremental tests/compilation. Finally, TrustFlow
provides a novel data recovery process for corrupted data that maintains execution flow
determinism. In closing, TrustFlow focuses on the first stage of spatial exploitation tech-
niques. Two popular security threats such as temporal exploits and information leakage
exploits still lack enough research. These two popular exploits constitute open issues and
further TrustFlow improvements.

Final Note: TrustFlow is the result of several previous works achieved on hardware
shadow stacks. Its origin goes back to Speculoos [158,159], a hardware shadow stack based
on the OpenRISC architecture. Speculoos is a hardware shadow stack driven by a finite
state machine, dedicated to low-end single task application. Unlike TrustFlow, Speculoos
does not require any software support. For space reasons, Speculoos architecture is not
detailed in this thesis. However, Speculoos has been published at the 2nd International
Verification and Security Workshop, IVSW 2017 [158]. Moreover, further results of the
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Speculoos architecture have also been published in the IEEE Embedded Systems Letters
journal in 2018 [159]. TrustFlow leverages the limitation of Speculoos and results in finer
protection and more advanced concepts than Speculoos. The TrustFlow contribution
has been published in the 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) [157]. The original software support was based on the GCC [22] compiler, then,
the work moved to the Clang/LLVM compiler. The trusted memory management has
also been improved with the hardware garbage collector. The final TrustFlow framework
has been accepted as a journal paper at the ACM Transactions on Embedded Computing
Systems in May 2020 [160].
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5 BackGuard

Summary of the Chapter
This chapter introduces BackGuard, the second approach of this thesis. Back-
Guard is a compiler-based toolchain that protects embedded system systems
against memory-based attacks. More specifically, BackGuard is intended for
tiny constrained embedded systems generally implemented in bare-metal. Un-
like TrustFlow, BackGuard is only implemented at the software level. The
latter does not require any specific invasive hardware support to protect embed-
ded applications. BackGuard is implemented within the Clang/LLVM compiler
and is tested in this chapter on the ARM ISA. The control flow integrity gen-
erated by the compiler relies on a bitmap, where each set bit indicates a valid
pointer destination. The memory exploits protection is enhanced by in-memory
guards that prevent spatial memory vulnerabilities to spread. The efficiency of
the framework is benchmarked using an STM32 NUCLEO F446RE microcon-
troller that implements various well-known benchmark suites. The obtained
results show that the control flow integrity solution incurs an execution-time
overhead of 5% on average.
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5.1 Motivation

With the emergence of the Internet of Things (IoT), there is an increasing trend of
connecting tiny devices to the Internet. In healthcare, this trend has resulted in expo-
nential growths of related security and safety incidences widely discussed along with this
thesis [9, 12,15,17,18].

Currently and for the coming years, the IoMT’s market share is growing. This cre-
ates new business opportunities for manufacturers, start-ups, and independent innovators.
However, the increase of connected devices directly increases the potential attack surfaces
and data theft. If the Internet of Medical Things manufacturers continues to follow the
trend of ignoring security issues in favor of adding fashionable features to their products,
security incidents are likely to occur shortly.

The previous Chapter of this thesis introduced TrustFlow, a security-oriented proces-
sor with software support that ensures fine-grained memory safety in life-critical systems.
To remind, TrustFlow is an architecture based countermeasure that protects the security-
critical dataflow. Unfortunately, TrustFlow relies on invasive hardware changes to operate.
Today’s IoMT manufacturers or even startups do not necessarily have the financial ca-
pacities to produce silicone with specific support for memory safety. Also, sometimes,
critical medical devices are developed on microcontrollers that do not allow architectural
modifications [18]. To push is further, IoMT devices are often developed on low-end micro-
controllers that do not support hardware-based memory safety support [15,17,18]. Indeed,
these low-end microcontrollers are often highly constrained. They do not benefit from the
same security support as traditional desktop systems. For instance, less than 50% of em-
bedded system application enforces the Data Execution Prevention (DEP) protection and
less than 5% enforces both the Address Space Layout Randomization (ASLR) and the
Stack Smash Protector (SSP) [54, 161]. Usually, IoMT devices run on the metal relying
on exotic architectures such as ARM, AVR, MIPS, RISC-V. Each low-end microcontroller
comes with fixed and specific hardware features that often have no common dedicated
support for memory safety. Yet, despite these constraints, medical devices still need to be
protected from security threats.

This Chapter, therefore, takes a different approach to the TrustFlow approach outlined
in Chapter 4. More precisely, this Chapter follows the second approach exposed in Chap-
ter 2, section 2.3. This time, the thesis assumes that critical applications are developed on
off-the-shelf fixed microcontroller architectures. Thus, security countermeasures against
memory exploits can only be implemented at the software level. However, the objectives
of this Chapter remain the same as TrustFlow, and those set out in the thesis approach
in Chapter 2:

• Security: Like TrustFlow, the primary goal of this software-only approach is to
prevent and harden memory-exploits development.

• Performances: This thesis targets industrial IoMT applications. As manufacturers
optimize their application to the maximum, the countermeasures should not induce
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prohibitive execution-time overhead. To remind [40], embedded system manufactur-
ers may not accept more than 5% execution-time overhead.

• Space overhead: IoMT embedded applications are highly constrained. Embedded
system platforms have little memory, of the order of a kilobyte. As manufacturers
tend to reduce the cost and the space taken by an embedded application to its lowest,
security protections should not induce prohibitive extra memory overhead.

• Flexibility: In comparison with TrustFlow, this time, the security must be the least
intrusive. It should be easy to integrate within a practical embedded software devel-
opment cycle, including incremental tests and targeting a wide range of embedded
systems.

• Compatibility and modularity: The security should be compatible with third-
party libraries and the existing C standards. Also, it should be compatible with
incremental development and able software developers to work with separated mod-
ules.

• Practicality: To avoid security mistakes the security should be transparent for the
developer. Embedded system developers do not always have advanced expertise in
security. Thus, countermeasures should require minimum user interactions [40].

To address these challenges, this chapter proposes BackGuard, a flexible compiler
toolchain that mitigates memory exploits. BackGuard reduces memory-based attack sur-
faces by hardening embedded applications with a bitmap-based backward-edge control-
flow integrity protection. Besides, BackGuard complements the bitmap with an adap-
tation of the SSP called Random-Guard, and memory barriers called RO-Guards. The
Random-Guards cluster vulnerable buffers from sensitive data such as function pointers.
Conversely, RO-Guards clusters memory sections preventing spatial memory exploits to
spread. Finally, BackGuard enforces DEP.

In this work, the efficiency of BackGuard is showcased on the ARM Cortex-M architec-
ture. However, at the end of the chapter, several openings are given to allow BackGuard
to be ported to other architectures at a lower cost. Finally, BackGuard induces the least
possible modification of existing embedded systems development tools. In summary, the
major contributions of this work are listed below:

• Backguard; a set of LLVM [23] compiler plugins that harden low-end microcon-
trollers against memory safety exploits. BackFlow is highly flexible, easy to use,
deployable on several architectures requiring no internal changes of the LLVM com-
piler;

• A security evaluation of BackGuard; Both a quantitative and qualitative se-
curity evaluation of the framework are performed in this Chapter. This includes
the average target reduction (AIR) measurements of the control flow integrity pro-
tection, the return-oriented programming gadgets reduction, and a qualitative basic
exploitation test based on SecPump a security-critical wireless infusion pump [149].
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• Benchmark of Backguard; The code-size overhead induced by BackGuard is
measured on a real representative wireless infusion pump. Regarding the execution-
time overhead, 145 measurements are performed on various benchmark programs
such as Dhrystone [162], CoreMark [150], and BEEBS [163].
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5.2 Approach

To address the BackGuard objectives, this chapter proposes the same top-down ap-
proach as TrustFlow. However, unlike the previous chapter on TrustFlow, the ability to
integrate security features is much more restricted. While TrustFlow assumes that the
security can be implemented on both the hardware and the software layer, BackGuard
assumes that microcontrollers are provided as is by manufacturers and thus only the soft-
ware layer can be modified. Like TrustFlow, Backguard tackles the memory safety issue
from the initial software design-time to the execution on the hardware. At execution-time,
the application is protected in a secure environment. This time, the secure environment is
assured by both the software and the hardware. But, as the hardware is immutable, extra
security features for memory safety can only be managed by the software. It should be
mentioned that the software can efficiently use the available hardware to create a secure
environment. The main purpose of the secure environment is to protect embedded software
against spatial memory-safety exploits. This secure environment focuses on buffer over-
flow mitigation because they represent the top-rated threat [164] in the current low-end
embedded system.

As TrustFlow, the secure environment assumes that the executed embedded application
contains memory corruption bugs that can be turned into exploits. However, as BackGuard
has no access to the hardware layer to provide extra security features, and to not induce
excessive timing and size penalty, the protection offered by BackGuard is more relaxed than
TrustFlow. BackGuard’s secure environment focuses on the control-flow integrity which is
less accurate than the fine-grained data-flow integrity provided by TrustFlow. Taking this
into account, the hardware/software secure environment provided by BackGuard tracks the
control flow integrity of a running application and raises the bar of exploit development. If
an exploit attempt is detected by the secure environment the execution flow is interrupted.
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Application

Secure Toolchain
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C

BackGuard
Libraries
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Code Generation-time

Design Time

Execution Time Secure Environment

Figure 5.1: BackGuard top-down approach

The secure environment is entirely managed by the software. The latter configures the
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fixed hardware efficiently and offers run-time control-flow integrity protection generated
at compilation-time by a flexible toolchain. This toolchain is composed of both secure
libraries and a set of compiler plugin. These libraries are linked to the final application to
ensure the proper hardware configuration while the compiler hardens the final binary code
against memory exploits. Following the approach, the BackGuard’s software toolchain
allows the developer to easily generate a secure code with minimal effort as the security
is enforced by the compiler.

5.2.1 Protection concept

Typical control-flow exploits leverage in-memory control-flow information to hijack the
execution flow. This control-flow information is either indirect backward-edges (function
return addresses) or indirect forward-edges (function pointers). BackGuard focuses on
indirect backward-edge control-flow integrity. Regarding indirect forward-edges, several
practical compiler works have already taken the issue seriously and provided flexible de-
fenses [92]. Also, indirect forward-edges such as C++ virtual methods tables pointers are
less frequent in embedded system programming, and specifically in safety-critical embed-
ded applications.

Protecting indirect backward-edges implies the protection of return addresses. To do
so, one way is to duplicate the function return address into a shadow stack [158, 159].
Then, when a function returns, the validity of the return address is checked using the
shadow stack. Another concept is to identify return addresses on an isolated bitmap. The
bitmap is an array that identifies a valid return address destination using a single activated
bit. Thus, at runtime, before each function return, the bitmap is checked to certify that
the destination address is valid.
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134



5.2. Approach

Microsoft Control Flow Guard [165] is a compiler and operating system protection that
uses a bitmap to prevent forward-edge hijacking. A simplified version of the concept is
displayed in Figure 5.2. At program start, Control Flow Guard initializes a static bitmap
where each set bit identifies a valid indirect forward-edge destination. When an indirect
forward-edge is performed, Control Flow Guard intercepts the transition and checks that
the edge destination corresponds to a valid bit set in the map. For instance, the indirect
forward-edge from vertex 3 to 6 in Figure 5.2 triggers Control Flow Guard.

Unfortunately, all valid destination targets are statically initialized by Control Flow
Guard. This means that a hijacked forward-edge can target any wrong valid destination
address set in the bitmap. For instance, in Figure 5.2, Control Flow Guard can detect an
indirect malicious forward-edge from vertex 3 to 7, but not from vertex 3 to 4 when the
expected branch was 3 to 6. Regarding the state of the art control-flow integrity definitions
performed in Chapter 1, section 1.4.1, Control Flow Guard is coarse-grained and leaves
room for advanced control-flow bending attacks [166]. However, Control Flow Guard still
raises the bar for attackers.

BackGuard proposes bitmap-based control-flow integrity lighter than Microsoft Con-
trol Flow Guard that does not require a complex operating system. Indeed, BackGuard
mostly targets single stack embedded system applications. It proposes more precise bitmap
protection than [165] thanks to return address activation and deactivation in the bitmap.
The overall bitmap protection concept proposed by BackGuard is displayed in Figure 5.3.
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Figure 5.3: BackGuard bitmap concept

When a function is called, its return address is activated in the bitmap. The activation
process takes the return address and performs an Address Translation (AT) that results
in the activation of a corresponding bit in the bitmap. Then, when a function returns,
its return address is translated to check whether the corresponding bit in the bitmap is
valid. In the case of a match, the index in the bitmap is invalidated and the execution
flow continues. Conversely, in case of mismatch, a control-flow exception is raised. To
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summarize, a set bit in the map refers to a valid return pointer.
The advantage of a bitmap approach over a shadow stack is that its size is fixed

at compile time. Each bit in the map identifies an executable address pointer which is
generally 32 bits. As a result, the bitmap size is fixed to 3.125% of the total memory.

Finally, the bitmap approach maintains the application determinism. While this ap-
proach may induce an obvious execution-time overhead due to function activation, deac-
tivation, and indirect backward-edge verification, the address translation is operated by
fixed instructions that remain independent of the function that identifies in the bitmap.
Consequently, it has no impact on the deterministic performances of an embedded appli-
cation.

5.2.2 Security challenges

Regarding the security, the bitmap is a memory area that acts as a checker to validate the
integrity of return addresses. Unfortunately, like other memory areas such as the stack,
the BSS, and the data sections it can be jeopardized by the out-of-bound vulnerability. To
illustrate these issues, Figure 5.4 proposes to display the memory map of the SecPump-
BLE embedded application that is based on an ARM Cortex M3 microcontroller. It should
be mentioned that this memory mapping is common to ARMv7 architectures.
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Figure 5.4: ARMv7 memory layout

In Figure 5.4, the processor chips a default memory map that addresses up to 4 Gbytes
of memory. The embedded application code and the rodata are placed in the upper
memory of the flash, while the stack, the heap, the BSS, and the data sections are located
in the SRAM. More specifically, the data and BSS sections are copied from the flash
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memory to the SRAM during the boot sequence of the microcontroller.
By default, the STM32s’ stack is ascending downwards, and as the other sections

located in the SRAM, the stack enforces read, write, and execute permissions.
The peripherals’ memory mapping is located above the SRAM memory section of the

microcontroller. These peripherals mostly include serial communications, GPIOs, and any
external hardware peripherals. Of course, the peripherals are configured and accessed by
embedded applications by writing and reading to their memory-mapped addresses.

Both the external RAM and external memory regions are usually dedicated to external
memory and coprocessor. These memory regions are unused on the STM32 platform. The
top memory regions such as the “Private Peripheral Bus” and “Vendor-specific memory”
are present on every ARMv7-M processor. These regions, more specifically the “Private
Peripheral Bus” region, handle the System Control Space (SCS) including the Nested
Vector Interrupt Controller (NVIC), and the Memory Protection Unit (MPU), and the
system reset.

Finally, it should be mentioned that the ARMv7-M architecture offers two execution
modes. By default, an application runs at the highest privileges. This implies that the ap-
plication can use all instructions and all processor resources. Conversely, the unprivileged
mode has limited access to system registers and instructions. The unprivileged mode also
restricts access to peripherals.

Following this brief discussion, it seems that a simple linear stack buffer overflow/un-
derflow can take over an entire embedded application. First, a memory exploit can target
a return address located in the stack and divert the execution flow of an application on
a previously injected malicious code. Also, as the peripherals are located above the stack
memory region. Their configuration, as well as the I/O of the application, can be tam-
pered leading to undefined malicious behavior. Finally, as the flash memory enforces read,
write, and execute by default, an attacker can even tamper the firmware and modify its
integrity.

As a direct consequence, protecting an in-memory bitmap from a spatial vulnerability
seems to be a difficult challenge. A naive technique to complicate spatial attacks is to
place the bitmap in a hard-to-reach place in memory. For instance, by leveraging the
read, write, execute property of the flash, the bitmap can be placed below the text section
as displayed in Figure 5.5. Therefore, it would be harder to reach the bitmap using a
simple out-of-bounds vulnerability located in the SRAM.

Unfortunately, just placing the bitmap section below the other sections is not enough.
Certain out-of-bound attacks may allow an unlimited number of bytes to be injected in
the memory space and reach the bitmap from underneath. An interesting improvement
to protect the bitmap would be to use a Memory Protection Unit (MPU) combined with
processor privileges execution modes. For instance, most ARM Cortex M0+/M3/M7 pos-
sess two privileges mode and an MPU. The MPU would only allow the privilege mode to
write the bitmap and the embedded application would run at the least privilege level. Un-
fortunately, function calls and returns occur frequently. Thus, following the least privilege
principle, each function call and return may generate an exception that escalates privilege
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Figure 5.5: Bitmap memory position

and then access the bitmap. Regarding the execution-time cost, this type of protection
may induce a high overhead and even double the execution-time overhead of tiny func-
tions. Besides, by default embedded applications on ARM microcontrollers are running at
the highest privileges. From a security point of view, it is not the best practice. However,
dropping the privileges by default to protect the bitmap may introduce additional security
and development constraints that may lead non-security experts to security mistakes. For
instance, only privilege mode can access the peripherals, thus dropping the privileges af-
ter protecting the bitmap may require the embedded application developer to instrument
each peripheral accesses such that the application escalates privileges before accessing the
peripheral and dropping the privileges after accessing the peripherals.
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Instead of separating privileges, BackGuard proposes a more relaxed policy that still
protects the bitmap. This policy is based on read-only guards (RO-Guards). These guards,
displayed in Figure 5.6, cluster the boundaries of the bitmap, the stack, and the unsafe
global variables in the SRAM.
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Figure 5.6: BackGuard protections

Besides the bitmap protection, BackGuard proposes two additional protections that
make exploit development harder. The first is the Data Execution Prevention (DEP)
policy applied to the SRAM sections. DEP is also combined with a Read eXecute (RX)
policy for the code section and the rodata section located in the flash of the microcontroller.
Of course, the bitmap section stays writable. Thanks to this DEP protection, an attacker
may not be able to perform code-injection attacks anymore.

The second protection is called unsafe object clustering with Random Guards (Rand-
Guard). This protection, displayed in Figure 5.6 is an adaptation of the Stack Smash
Protector but for bare-metal embedded system application. The protection places Rand-
Guards between unsafe memory objects, code-pointers, and data-pointers. These Rand-
Guards cluster overflowable objects to prevent out-of-bounds attack propagation.

5.2.3 Implementation challenges

To summarize, BackGuard hardens low-end applications by enforcing both backward-edge
control-flow integrity thanks to a dedicated bitmap where each set bit refers to a valid
pointer destination. BackGuard also clusters spatial vulnerabilities with Rand-Guards
and RO-Guards.

Such security features can only be implemented using a strong compiler infrastructure
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and additional secure libraries that are linked to the final executable code. Overall, the
BackGuard framework takes up the following implementation challenges:

Backward-edge control-flow integrity: The BackGuard compiler that generates
the backward-edge protection should be aware when a return address is spilled in the
memory. Once this is the case, BackGuard needs to generate the appropriate code that
identifies the return address in the bitmap. Finally, when a function returns using a
previously spilled return address, BackGuard should also generate the return address
verification code.

Data Execution Prevention (DEP) and RO-Guards: During the boot sequence
of the embedded application, an MPU should be configured such that DEP and code anti-
tampering is enforced. Furthermore, the MPU needs to insert the RO-Guards to protect
the bitmap, delimit the upper stack boundary, and the unsafe global variables memory
space.

Rand-Guards: At execution-time, each function’s stack should insert a Rand-Guard
between vulnerable buffers and data variables. Although this protection is close to the
regular stack canary, it needs a random number so that the value of the guard is different
for each existing embedded application. Unfortunately, unlike desktop computers, most
low-end microcontrollers don’t have dedicated hardware support for Random Number
Generation/Truly Random Number Generator [54]. Thus an appropriate method must be
implemented for random number generation.
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5.3 Implementation

BackGuard is implemented within the Clang/LLVM compiler infrastructure. It comes
with secure libraries that are linked to the final executable. These libraries configure our
STM32F446RE workbench MPU and generate a random number during the initialization
sequence of the processor. The details of both the MPU and the random number generation
is given further in the section.

The improved LLVM compiler provides bitmap protection. During code generation,
the compiler identifies which function saves its return address in the memory. Then, it
adds extra instruction to the application code so that vulnerable function activates and
deactivates their return address corresponding bit in the bitmap. Regarding the Rand-
Guards, the compiler analyses the stack frames data. It identifies vulnerable buffer that
may overflow from other data. All the allocated stack frame objects are then sorted such
that stack objects that may overflow are placed bellow the Rand-Guard and sensitive data
such as function pointers are placed above the Rand-Guard. Finally, during code gener-
ation, the compiler changes the attribute section of overflowable global memory objects
such that they cannot reach safe objects incase of vulnerability.

5.3.1 Compiler implementation strategy

The Clang/LLVM project is a very modular and well-documented compiler for native
languages such as C/C++. The way LLVM is architected makes it easy to implement
additional compiler passes. A global overview of the Clang/LLVM compiler infrastructure
is displayed in Figure 5.7. One can see that the compiler is divided into several components
that drive the compilation flow from C/C++ source codes to the final object-assembly
files. In Figure 5.7, the compilation workflow starts with the Clang front-end. The
latter translates native languages into a Clang Abstract Synthax Tree. The front-end
ends by generating an Intermediate architecture-independent Representation (IR). The
IR representation is strongly typed in a static single assignment form providing an infinite
set of virtual registers. Briefly, each variable in the intermediate representation form is only
assigned once and every variable is defined before it is used. As displayed in Figure 5.7,
the Intermediate Representation can be independently optimized and instrumented by the
middle-end with the optimization tool “opt”. An interesting feature provided by LLVM
is that compiler passes working on the IR can be introduced in the compilation workflow
on-the-fly. In other words, additional IR passes can be introduced as external plugins to
the compiler without modifying its internals.
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Figure 5.7: Clang/LLVM compilation workflow

After independent optimization, the IR code is passed to the backend that produces the
architecture-dependent assembly code. The target-dependent code generation is driven by
the “llc” tool. First, the IR is converter into Selection Dag Nodes for instruction selection.
Then the DAGs are destroyed and translated to Machine IR (MIR). This representation
enables specific target-dependent optimization, register allocation, prologue and epilogue
insertion, and machine code instrumentation. Finally, the last step of the compiler emits
the machine code and constructs the final object file.

Regarding the compiler infrastructure, it seems that the bitmap return address pro-
tection should be implemented in the backend. Indeed, the backend is responsible for
target-dependent prologue and epilogue insertion including return address register spill.
Thus, one way to protect the return address with the bitmap is to implement a target-
dependent machine pass that adds extra instructions per function prologue and epilogue so
that every spilled return address in the memory is registered and removed from the bitmap
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on purpose. Many extensive works such as [167–169] have worked and implemented mem-
ory safety protection for low-end ARM-based microcontrollers in the backend.

However, backend modification imposes invasive changes in the compiler internals.
Also, providing security features based on backend modifications breaks flexibility. It
forces developers to use a specific version of the compiler and recompiles it from the sources.
Indeed, invasive backend modifications only target specific architecture. This means that
the portability is low and when changing architecture, the security feature may not be
implemented. Conversely, it seems that working on the LLVM IR is much more flexible
than providing security at the backend level. It allows the security to be developed as a
compiler plugin that can be loaded within any compiler version. Also, it does not require
developers to compile their compiler from the sources. Quite the opposite, the security
can be loaded in the compilation workflow of the Clang/LLVM version available from
officials repositories. However, it should be mentioned that implementing the security
at the LLVM IR level raises challenges; Additional IR instructions for security may be
removed in backend optimizations, breaking the security.

5.3.2 Additional passes

To ensure flexible security, the BackGuard toolchain introduces two additional Interme-
diate Representation (IR) passes in the Clang/LLVM compiler workflow. These compiler
passes are developed as external compiler libraries and are loaded at compilation time in
LLVM as a plugin. Working on the IR provides a high level of flexibility. First, external
libraries do not require any invasive internal compiler modification. Second, the security
provided by the external libraries can be easily deployed on exotic architectures main-
tained by the various LLVM backends. Finally, the security can be easily deactivated on
purpose.

5.3.2.1 Bitmap hardening pass

The first BackGuard compilation pass enforces return address bit activation and deactiva-
tion in the bitmap. As this work focuses on ARM-based microcontrollers it is important
to remind the procedure call standard. Function subroutines are called using both the
“bl” and “blx” instruction. These “call” instructions pass the execution flow to a sub-
routine and place the caller return address pointer in the ARM link register (LR). Then,
depending on the fact that whether the called function is a leaf function or not, the caller
return address is spilled by the compiler.

Unfortunately, the information on whether a function saves the return address in the
memory is only available late in the compiler pipeline during prologue/epilogue generation.
To determine whether a function is saving its return address in the memory from the
LLVM IR, the BackGuard bitmap pass iterates over every function’s IR instruction to
find function call. If the parsed function is not calling any function, it is considered as a
leaf function. Consequently, the compiler backend may not spill its return address making
the BackGuard pass skipping the function protection.
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The second challenge is to get the return address value from the IR and then perform
the address translation to enable the corresponding bit in the bitmap. Usually, the return
address is handled in the Link Register which is defined in the compiler backend. However,
LLVM provides a specific intrinsic (llvm.returnaddress) that can be used at the IR form
to manipulated the return address of a function. This intrinsic function is inlined by the
BackGuard compiler pass at the beginning of each function. The returning value of this
intrinsic is the return address of the function that is then translated into a bit loaded in
the bitmap by classical IR instructions. According to the LLVM documentation, intrinsics
are transparent to optimization passes and consequently, they preserve the BackGuard
bitmap protection during the whole compilation workflow.

5.3.2.2 Random guard pass

As previously explained, the random guard pass is very similar to the existing stack
protector implemented in GCC. Our random guard pass is not the major innovation of
this work but it contributes to hardening embedded applications against memory exploits.

The random guard value of BackGuard is based on a random number generated during
the boot sequence of the microcontroller. The details of the boot sequence are highlighted
in the next sub-section.

During compilation, the BackGuard’s Random Guards pass analyses each function at
the IR level and identifies stack frames object that may be vulnerable to overflow issues.
The local stack frame objects are then sorted such that dangerous objects are placed bellow
the Random Guard and safe objects above.

Regarding the global variables, the Random-Guard pass changes the section location
of sensitive memory objects. As displayed in Figure 5.4, sensitive memory objects that
are supposed to reside in the BSS or the data sections are moved into the safe BSS and
the safe data sections.

5.3.3 Boot sequence

Both the bitmap protection and the random guard canary rely on memory protection
(MPU) and random number generation (RNG). Concerning the protection of the bitmap,
the Data Execution Prevention (DEP), and the code section protection, BackGuard links
a secure library to the final embedded application. This library includes a set of functions
that are called during the initialization sequence of the microcontroller. These functions
configure the Memory Protection Unit of the microcontroller such that it protects the
code section with RX, the bitmap section with RW, and the SRAM with RW permissions.
BackGuard leverages the fact that the protected memory regions can overlap. For the
ARMv7-M architecture, the region with the highest number has a priority over the other
region with the lowest number (e.g region 4 protection takes precedence over region 2).
Consequently, the configuration of the bitmap region takes precedence over the whole flash
configuration. The configuration of the MPU is summarized in Table 5.1.
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Table 5.1: MPU configuration

Priority Memory Permissions

1 Code RX

2 Data (stack, BSS, Data, unsafe-regions) RW

3 Stack-RO-Guard R

4 Date-RO-Guard R

5 Bitmap RW

6 MPU-Configuration R

R=Read; W=Write; X=Execute

The boot sequence of the microcontroller also includes the generation of the Random-
Guard value. BackGuard leverages the property of SRAM’s initial values to generate a
random number. As a disclaimer, the goal of this study is not to evaluate the randomness
of microcontroller-based SRAM initial values. Several works in the literature address this
topic and provide very relevant results [170]. According to [171] and for the rest of the
study we will consider that 20 bits of SRAM cells are enough to generate a random bit.
Thus to generate a strong 256 bits random number, BackGuard bootloader reads 640
bytes of SRAM and passes them through an embedded BLAKE hash function [172]. As
the 640 bytes of SRAM are random and the BLAKE hash function is a cryptographic
pseudorandom function, the generated 256 bits value is random. The 32 bits value of the
canary is then extracted from the generated key and placed in a read-only location in the
flash.
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5.4 Evaluation

This section assesses BackGuard protection. The whole BackGuard compiler exten-
sions represent around 900 lines of C++ code. The external libraries of BackGuard include
the custom bootloader that configures the memory protection unit (MPU), the bitmap,
and the random guard value. It represents around 500 lines of C.

While BackGuard operates at the LLVM-IR and thus is architecture-independent, the
evaluation of the countermeasure is performed on an off-the-shelf STM32F446-RE board
based on the ARM architecture. More precisely, the security is assessed using SecPump-
BLE [149] the STM32 security-oriented system presented in Chapter 3. Both quantitative
and qualitative security assessments are performed on the pump. This evaluation reveals
the average target reduction of BackGuard, the gadget reduction, and finally, the exploit
development steps required by an attacker to bypass BackGuard.

While the size overhead of BackGuard is measured on the pump application, the
execution-time overhead of the protection is measured with well-known benchmark suites
dedicated to low-end ARM microcontrollers such as CoreMark [150], Dhrystone [162], and
BEEBS [163]. Also, we implemented a backend variant of BackGuard and a shadow-
stack variant of BackGuard to compare them with the IR variant detailed along with
this Chapter. In the end, BackGuard is a compiler security framework offering several
protection variants from middle-end to the backend. Finally, this section demonstrates
that an acceptable level of security can be achieved on low-end microcontrollers with
very few constraints and modifications in the development toolchains commonly used by
embedded system developers.

5.4.1 Security evaluation

As previously explained, SecPump [149] is used to assess the security protection induced
by BackGuard. SecPump is a functional wireless infusion pump system workbench tailored
to security evaluation. The cyber-physical model targets on an off-the-shelf STM32 with a
Bluetooth Low Energy extension board. It is highly representative of the next generation
of IoT devices. One of the main advantages of the platform is that it models the classical
closed-loop regulation of the glucose-insulin thanks to an integrated PID.

Quantitative Analysis: The entire embedded application consists of 18312 lines of C
(including the external libraries). To evaluate the control-flow integrity accuracy provided
by the BackGuard’s bitmap, the Average Indirect target Reduction [69] (AIR) is measured
on the secured application. To remind from Chapter 1, section 1.3.1, the AIR [69], gives a
percentage of how much a protection enhances compliance of an application to its control-
flow graph. The AIR is given by Formula 5.1.

AIR= 1
n

n∑
j=0

(1− Tj

S
) (5.1)

N is the number of indirect control-flow transfers in a program, S the total number
of target addresses that can be reached by a branch (it is the size of the binary). Tj
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represents the number of addresses that can be reached by a transfer j restricted by
control-flow integrity protection. It seems that if the percentage given by this formula is
close to 99% the control-flow solution can be considered as fine-grained [70]. Conversely,
a very coarse-grained control-flow protection has an AIR close to 80% [70].

The bitmap protection enforces indirect backward-edge integrity. As a result, forward-
edges are left unprotected. To measure the impact of unprotected forward-edges and
the accuracy of protected backward-edges, we first measure the BAIR (Backward-edge
Average Indirect target Reduction) provided by BackGuard which does not take into
account the forward-edges. Then, we measured the AIR to determine the impact of
unprotected forward-edges on the overall protection.

As a reminder, the bitmap protection is a little less accurate than a regular shadow call
stack. Each function can only return to an activated return call-site in the bitmap. These
activated return-sites are part of the call stack of an activated function. When returning,
a function can thus return to a few valid locations in its call stack.

To measure the BAIR and the impact of the little inaccuracy of the protection, a
specific graph analysis algorithm is developed. The latter evaluates the worst-case valid
return call site per function and the best-case valid return call site per function. For
SecPump, it results in both a worst-case and best-case direct acyclic graph. Both graphs
are then processed with Formula 5.1 to determine the worst-case and best-case average
indirect target reduction. The results are displayed in Table 5.2.

Table 5.2: AIR measurements

Best-case Worst-case

BAIR 99.99% 99.98%

AIR 83.33% 83.31%

According to the measurements, the protection enforces the consistency of the control-
flow graph to 99% for function returns. In turn, the overall AIR is much less accurate due to
the lack of forward-edges protection. Although indirect forward-edges remain exploitable,
they are considered as a low-security risk. Indirect function calls using pointers are less
used in the context of embedded systems programming. Combined with the fact that
BackGuard isolates function pointers from vulnerable buffers using random guards, the
likelihood of working indirect function call exploits is possible but harder.

Finally, using ROPgadget [94], 2261 return-oriented gadgets in the whole SecPump
application are found. After applying the bitmap protection, we measured that in the
worst-case only 14 gadgets were usable at the same time (99.4% gadget reduction).

Qualitative Analysis: To improve the quantitative security analysis, we propose
a qualitative analysis of the protection by describing the exploit development workflow
to thwart BackGuard. To validate this workflow, The security exploits exposed in sec-
tion 3.4.1 are re-used and readapted.

Figure 5.8 displays the development steps of a functional exploit in the presence of
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Figure 5.8: Exploit workflow

First, to reach any sensitive data, the attacker should pass the Rand-Guard protection.
The Rand-Guard value can be leaked through a memory disclosure or with physical access.
However, its value would only be valid for a single vulnerable application thanks to the
property enforced by SRAM based Physical Unclonable Function (PUFs). Thus, to be
efficient and to scale multiple targets, an exploit should leak the Rand-Guard any time
it targets an application. Second, the attacker can either corrupt sensitive data such as
function pointers or a function return address. Unfortunately, when targeting a return
address the attacker has to replace it with a valid destination on the map or target a
function pointer.

The other option is that the attacker tampers the bitmap. However, the latter is
deeply buried in the flash and surrounded by RO-Guard that prevents spatial attacks. Of
course, the bitmap is not unreachable, one way to corrupt it is to acquire a data pointer,
make it point to the target index in the bitmap, use this pointer to write the bitmap and
finally corrupt an in-memory return address to redirect the execution flow on the desired
location.

Although this scenario is quite likely, it is tedious and requires several primitives.
BackGuard considerably increases memory safety. Finally, as BackGuard enforces Data
Execution Prevention (DEP), no malicious code can be executed in the stack. Thus,
attackers should use advanced return-oriented programming gadgets to develop functional
exploits.

5.4.2 Costs

5.4.2.1 Size overhead

The size overhead induced by BackGuard is measured in three different cases. First, the
reference application is compiled with Clang/LLVM without the BackGuard protection
options but with the “Os” optimization (size optimization). Second, the application is
compiled with the bitmap protection only, and finally, the bitmap protection combined
with the Rand-Guard. The vanilla application as a fixed code size of 29504 bytes and
32064 of total bytes in the flash. The application leaves 94% of the flash memory free.

Using the bitmap protection, any code pointers (executable address in the flash) is
identified with a bit. As in-memory code-pointers are 32 bits the total size of the bitmap
represents 3.1% of the flash memory. In our case, it represents 32768 additional bytes
reserved in the flash. Furthermore, the additional code generated by the compiler to
interact with the bitmap increases the total code application size up to 32264 bytes (9%
increase). Overall the applied bitmap protection increases the application size up to

148



5.4. Evaluation

67592 bytes which is a 110% application code size overhead. However, it still leaves 88%
of the entire microcontroller memory free. It is important to remind that the bitmap
is fixed. Thus, although it induces a significant size overhead for a small application,
its memory usage regarding the available memory of the microcontroller is very small
(3.1%). Furthermore, the size of the bitmap is not linked to the size of the compiled
application. Consequently, as long as the application does not use more than 96.9% of the
microcontroller memory it should not be an issue.

Finally, the fully protected application occupies 81208 bytes of flash which represents
a size overhead of 153%. Again, it leaves 85% of the microcontroller memory free. More
specifically, we measured a code-size increase of 55%. This code-size increase includes the
custom bootloader that initializes the random guard by reading the flash and passing the
value to the BLAKE hash function, the MPU configuration, the bitmap checks, and the
random guard insertion/checks. We believe that this 55% should decrease with a bigger
application. Indeed, among the 55% increase, 84% represents the custom bootloader
application that configures the MPU, reads the uninitiated SRAM, and hashes the random
value using the BLAKE algorithm.

Figure 5.9 recapitulates the memory occupation of each compiled version of the protec-
tion. One can see that the more the application code increases, the more the occupation
of the bitmap is reduced. This is because the bitmap is fixed and thus only the application
code percentage is expected to grow. The reasoning remains the same for the memory oc-
cupation repartition of the full-protected version. Since the bitmap and the bootloader are
fixed their memory sized percentage occupation tends to decrease in favor of an application
code increase.
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Figure 5.9: BackGuard memory occupation

5.4.2.2 Execution-time overhead

Two execution-time overhead is induced by BackGuard. First, during the initialization of
the microcontroller, in addition to configuring all the peripherals, initializing the stack,
and copying the data of the microcontroller in the SRAM, BackGuard should initialize
the bitmap, the MPU, and the Rand-Guards with the BLAKE hash function. These
additional operations increase the boot-time by 48%.

To assess the average execution-time overhead after boot-time, various embedded sys-
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tem benchmark suites such as CoreMark [150], Dhrystone [162], and various embedded
benchmarks from BEEBS [163] are compiled with BackGuard.

The average execution-time overhead induced by BackGuard is measured with opti-
mization level 2. The CoreMark benchmark suite is configured to run up to 1000 iterations
and the Dhrystone benchmark suite up to 50000 iterations.

To obtain accurate execution-time measurements we leveraged the STM32F446RE cy-
cle counter. We developed a simple library that resets the cycle counter before performing
the various benchmarks and displays its value at the end of the execution.

As mentioned earlier, several variants of BackGuard are added to the compiler. These
variants include a backend implementation of BackGuard and a shadow stack variant of
BackGuard. They allow them to be compared with the IR implementation of the original
bitmap. The backend implementation of BackGuard is a machine pass that constructs the
bitmap registration/un-registration after the prologue and epilogue insertion. This pass
is completely compatible with the IT Block optimization pass performed by the ARM
compiler backend (for more details about this machine bitmap, we refer the reader to
Annex C). The shadow stack variant operates on the intermediate representation (IR).

The execution-time overhead results are displayed in Figure 5.10.
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Figure 5.10: BackGuard benchmarks

The Y-axis represents the execution-time overhead percentage, the X-axis represents the
benchmark suite

In Figure 5.10, the “Bitmap” represents the execution-time overhead induced by the
BackGuard Intermediate Representation protection, the “Bitmap+Guards” represents the
execution-time overhead induced by both the bitmap protection and the Rand-Guard in-
sertion, the “Machine-Bitmap” represents the execution-time overhead measured by the
backend bitmap pass and the “Shadow-Stack” displays the execution-time overhead mea-
sured induced by the shadow stack implementation.

On average we measured 5.06% execution-time overhead for the IR bitmap and 5.13%
execution-time overhead for the shielded version. This execution-time overhead increase is
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consistent with the fact that the combination of two protections such as the Rand-Guard
insertion and the bitmap verification increases the size of the code. For the machine
bitmap pass, we measured an average execution-time overhead of 2.15%, which is more
than 50% times more optimized in comparison with the IR protection. This result is
consistent, the back-end has more control over the generated code than in the interme-
diate representation. The machine pass can optimize to the maximum the instructions
used by the compiler to interact with the bitmap. Finally, the shadow stack version of
BackGuard induces less execution-time overhead. We measured 1.59% execution-time
overhead induced by the shadow stack protection. The shadow stack protection is much
less expensive than the bitmap protection in terms of execution cost because it adds far
fewer protected per-function instructions than the bitmap. The only expensive interac-
tions induced by the shadow stack are the push and pop instructions used to check the
return addresses of protected functions. To conclude, the three approaches proposed in
the course of this evaluation are consistent with our assumptions and in all cases result in
around 5% execution-time overhead.
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5.5 Discussion

This section outlines the current limitations of BackGuard and the research avenues
for its improvement. As with any software defense, it is fair to state that BackGuard is
not perfect protection. However, BackGuard still protects low-end microcontrollers from
a wide range of trivial spatial memory attacks.

Regarding limitations, BackGuard is not well designed to support the famous "setjm-
p/longjmp" issue. Unlike TrustFlow which perfectly handles it, BackGuard handles it
with a little bias. Indeed, the "setjmp/longjmp" functions are generally used to restore a
program to a previous state. In the context of embedded system programming, "setjm-
p/longjmp" can be used in exception handling. The effect of the "longjmp" function is to
restore the program and its stack frame to the "setjmp" point. Unfortunately, this jump
breaks the classical call/return construction of a program. As a result, some functions
called after the "setjmp" point may never return. For shadow call stack this might be a
problem because the top of the shadow stack may not match the restored function’s return
address. For the bitmap, the restoration state might not be an issue, as all the whole call
stack is activated on the map. Unfortunately, all functions called after the "setjmp" may
never be deactivated from the map. This opens new valid target destination addresses for
an attacker. One way to tackle this issue would be to deactivate the functions from which
the stack frame is destroyed by the "longjmp". While not impossible, this may require to
parse the call stack trace of an application before the "longjmp" and after the "longjmp".
Then, the return address of each function freed by the "longjmp" should be identified and
deactivated from the bitmap. Although this process might be costly, it may worth the
price if an application rarely uses "setjmp" and "longjmp".

Unlike TrustFlow, BackGuard is currently incompatible with recursion. A recursive
function may call itself more than twice. As a result, after the first return, the function
return pointer’s corresponding bit in the bitmap is unset raising an exception at the second
return. There are several ways to tackle this recursion issue. First, BackGuard can be
provided with coding rules like TrustFlow that prevent the usage of recursion. Indeed,
recursive function calls in low-end embedded systems may blow up the stack. Usually,
the upper bound of recursive functions is difficult to predict with static analyzers and
code verification tools. As a result, the usage of recursion in low-end embedded systems is
inconsistent with safe development practices. To push it further, rule 16.2 of MISRA-C [32]
for safety-critical embedded application bans the usage of recursion. Finally, recursive
functions are computable by an iterative model [38]. In many cases, converting a recursive
function into an iterative model can be achieved using a global stack completely compatible
with BackGuard. Another solution to handle recursion is to use the shadow stack variant
of BackGuard.

Currently, BackGuard is not implemented within multitasking real-time operating sys-
tems [29]. Of course, managing multiple tasks is hardly possible with a single bitmap. In a
low-end real-time system, two separate tasks may share multiple functions and the scenario
that two tasks may concurrently access the same function is plausible. Unfortunately, it
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may result in a false-positive control-flow integrity violation.
One way the bitmap approach would be compatible with a multitasking system is

to develop an application where every single task does not share any function. In this
case, a single bitmap may handle a whole application. Another way would be to handle
a single bitmap per task. Unfortunately, a single bitmap takes up to 3.1% of the whole
memory. While this size overhead is acceptable for a single bare-metal system it may
increase proportionally with the number of tasks to be secured.

It seems that a shadow stack approach could be a better approach than the bitmap for
multitasking embedded applications. Following this principle, each process would handle
a per task shadow stack that is switched and restored by the scheduler on purpose.

Since the BackGuard compiler extensions set acts on the intermediate representation
(IR) of LLVM, its transformations are architecture-independent. We extensively test the
implementation of BackGuard on the ARM instruction set using an STM32 as a system
workbench. However, using the Clang/LLVM compiler version 9.0.1, we were able to im-
plement BackGuard on the RISC-V, SPARC, MIPS, x86, Aarch64 architectures making
the overall defense inherently scalable. Of course, the configuration of the MPU, and the
generation of a random guard may depend on the target microcontroller. They repre-
sent the only architectural dependant part of the BackGuard framework that should be
adapted.
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5.6 Comparison with related work

This section discusses a coherent selection of well-known software-based memory safety
protection dedicated to bare-metal embedded systems. Their effectiveness, approaches,
and flexibility is compared with BackGuard.

RECFISH [70] is an ARM instrumentation-based framework that protects real-time
embedded systems against memory safety issues. RECFISH instruments pre-compiled
minimal real-time embedded systems to enforce control-flow integrity. It protects function
backward-edges thanks to an RTOS-MPU protected shadow stack and indirect forward-
edges thanks to immutable labels. While the backward-edge security policy of both REC-
FISH and BackGuard is broadly the same, BackGuard protects sensitive function pointers
with Random-Guard, RECFISH enforces control-flow graph coherency with labels. Thus,
RECFISH can be vulnerable to control-flow bending attacks [166] while BackGuard can
be defeated by memory disclosures. Regarding the execution-time overhead, RECFISH
induces 30% execution-time overhead on CoreMark 1000 while BackGuard induces 6.8%
to 23.4% depending on the variant. In terms of flexibility, RECFISH applies to pre-
compiled ARM binaries. This approach is better in security that BackGuard. It allows
instrumenting pre-compiled/closed-source libraries. Unfortunately, binary patching is not
always compatible with software-engineering aspects. BackGuard provides a compiler-
oriented approach compatible with full modularity, portability, and compatibility with
software tests. Besides, BackGuard operates on the LLVM-IR making it more flexible
than RECFISH.

µArmor [54] is a Clang/LLVM compiler-based memory safety protection for ARM
bare-metal embedded systems. µArmor enforces three protections to mitigate memory-
based exploits: µESP, µSSP, and µScramble. µESP enforces non-executable permissions
on non-code regions using the ARM MPU. µSSP is a stack smashing protection based on
a random value generated by µRNG, an SRAM based PUF random number generator.
As BackGuard, µSSP clusters vulnerable buffers from sensitive data per stack frames.
However, unlike BackGuard µArmor does not specifically enforce control-flow integrity.
In the case of stack memory disclosure, return address pointers are unprotected allowing
attackers to hijack the execution flow. Finally, µScramble is a software diversity compiler
pass that mimics fine-grained address space layout randomization protection. µScramble
shuffles registers, function orders, and inserts dead-code. Unfortunately, the diversity of
the code generated by µScramble is limited by the size of the microcontroller and code
memory leaks. The former restricts the numbers of possible morphs that can be generated
by the compiler while the latter can completely de-randomize the code memory section
allowing on-the-fly memory explois [106]. Also, regarding the thesis’s approach, software
diversity is prohibited in safety-critical devices. Finally, BackGuard is more flexible than
µArmor. µArmor requires to recompile the application code before being deployed on the
hardware. Also, µArmor involves several invasive backend compiler modifications while
BackGuard is more flexible by operating on the IR. Finally, regarding the performances,
µArmor induces less than 1% execution-time overhead on average and less than 5% size
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overhead which is better than BackGuard.
Silhouette [168] is a memory isolation protection that efficiently protects ARM em-

bedded systems against control-flow hijacking attacks. Silhouette is based on the LLVM
compiler and introduces native code generative passes to enforce memory safety. Sil-
houette protects backward-edges thanks to a protected shadow call stack. Besides, like
RECFISH [70], Silhouette protects forward-edges thanks to immutable labels that force
the application execution to comply with its control-flow graph. Finally, to protect the
shadow stack Silhouette leverages the feature of the unprivileged STRT instructions of the
ARM instruction set. Regardless of the processor execution mode, these specific instruc-
tions are treated as if they were executed in unprivileged mode. Thus, Silhouette leverage
this feature to create two protection domains. On the one hand, the application is only
using unprivileged stores and on the other hand privileged domain uses the regular ARM
STR instructions. The silhouette’s MPU is configured such that the shadow stack is read-
able and writeable in privileged mode but only readable in unprivileged mode. Hence it
ensures that privileged code running using unprivileged instructions and unprivileged code
cannot tamper the shadow stack. As a result, only code function prologue and epilogue
uses regular STR instructions to write in the shadow stack. Silhouette provides better
security protection than BackGuard. It ensures safe memory accesses thanks to the ARM
STRT instruction feature. However, in its threat model silhouette does not protect the
HAL library code. This code should be run at the highest privileges because it accesses
the peripherals and the I/O. While this code is rendered unreachable from the applica-
tion point of view, it may contain unprotected exploitable vulnerabilities that BackGuard
considers. On average Silhouette induces less than 5% execution-time overhead and a
geometric mean of 21.4% and 25.5% code size overhead on CoreMark-Pro and BEEBS.
However, to maintain the STRT memory access feature, Silhouette relies on heavy modi-
fication of the LLVM ARM backend. While it provides safer security than BackGuard its
flexibility and portability are more impacted.

EPOXY [167] is an LLVM compiler-based embedded system protection that mixes
memory safety and least privilege execution. EPOXY extends the CPI and CPS project
such that any embedded application maintains two concurrent stacks. One stack is dedi-
cated to unsafe objects such as buffer, the other stack is dedicated to sensitive code and
data pointers. EPOXY [162] clusters the unsafe stack with a guard to detect any over-
flow attempt. At boot-time EPOXY also configure the ARM microcontroller to enforce
DEP and code anti-tampering. EPOXY drops the privileges of the running application
to prevent any malicious write to either modify the MPU configuration, sensitive IO, or
peripherals. At compilation time EPOXY identifies which store instruction is allowed
to write the sensitive IO/peripherals. Before each privileged store, EPOXY raises the
application privileges such that the store can be performed. The privileges are dropped
immediately after. EPOXY induces 1.6% execution-time overhead which is better than
BackGuard. Unfortunately, as the other previous proposition, EPOXY is less flexible than
BackGuard.
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5.7 Conclusion

This chapter proposed a flexible defense against memory-based exploits on low-end
embedded systems. Low-end microcontrollers are becoming increasingly popular with
the rise of the Internet of Things. They are currently integrated into exotic embedded
applications ranging from connected bulbs to real-time life-critical devices. Also, low-
end microcontrollers are often used as companion processors to relieve main application
processors from specific tasks. Unfortunately, unlike powerful processors, the security
features provided by low-end microcontrollers are less. Low-end microcontrollers do not
benefit from well-known memory safety protection such as the Address Space Layout
Randomization (ASLR), the Data Execution Prevention (DEP), and the Stack Smash
Protector (SSP). On top of that, these microcontrollers are highly restricted in terms of
execution-time, code size, and power consumption which does not ease the integration of
security protections. As a result, even the most trivial linear buffer overflow vulnerability
can easily be turned into a successful remote code execution exploit.

To improve memory safety, BackGuard proposes a set of compiler plugins that simpli-
fies the integration of memory safety in low-end bare-metal microcontrollers. BackGuard
aims at keeping a sufficient trade-off between security, performance, and code-size
overhead. Besides, unlike other existing works, BackGuard protection is flexible. In-
deed, BackGuard extends the Clang/LLVM compiler infrastructure with external plug-
ins that can be loaded within the compilation workflow without requiring any internal
invasive compiler modification. As a result, BackGuard is simple to integrate into real-
world embedded software development processes. Also, BackGuard is compatible with
Clang/LLVM versions available from official repositories, it does not require any Clang/L-
LVM recompilation from sources. Finally, the BackGuard plugins operate on the LLVM
Intermediate Representation. This feature makes it multi-architecture compatible.

According to the assessments, BackGuard can ensure a reasonable backward-edge
control-flow integrity protection with 5% execution-time overhead on average. The main
backward-edge control-flow integrity protection provided by BackGuard relies on an up-
dated bitmap where each set bit represents a valid control-flow destination. This backward-
edge protection provides an accurate average indirect target reduction close to 99.99% and
requires only 3.1% of the available microcontroller memory. Moreover, BackGuard hard-
ens memory exploits development thanks to RO-Guards and Rand-Guards. These protec-
tions prevent spatial memory exploits to reach sensitive microcontroller memory regions.
Finally, BackGuard efficiently configures a Memory Protection Unit to enforce Data Exe-
cution Prevention. At this time, BackGuard does not mitigate against information leakage
and temporal memory safety.

Final Note: BackGuard is originally an extension from BackFlow, a compiler-based
memory safety protection for low-end ARM microcontrollers. Unlike BackGuard, Back-
Flow was a compiler back-end extension specific to the ARM Instruction Set Architecture.
Two passes of BackFlow were dedicated to building dynamic bitmap protection, and an-
other two passes were dedicated to building static bitmap protection. BackFlow was
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accompanied by a set of diversification passes dedicated to embedded system applications.
BackFlow has been published as "BackFlow: Backward Edge Control Flow Integrity En-
forcement for low-End ARM Microcontrollers" at the IEEE DATE conference 2020. Also,
the efficiency of BackFlow has been demonstrated as "BackFlow: Backward Edge Con-
trol Flow Integrity Enforcement for low End-ARM Real-Time Systems" at the University
Booth Demonstration at IEEE DATE 2020. Finally, the results regarding BackGuard, the
improvement of BackFlow has not been published yet. A final BackGuard optimization
not included in this thesis will be evaluated before publication to the ACM Transactions
on Embedded Computing Systems journal upon submission of this manuscript to the
reviewers.
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Conclusion

Violating the control-flow integrity of an application using software exploits is at least
as broad as the existing protections. During this thesis, I particularly explored the memory
safety issue and its impact on wireless critical medical devices (IoMT). Interestingly, de-
spite the numerous efforts spent at mitigating such attacks over the last 30 years, medical
devices do not possess even the most basic memory safety defenses.

By reviewing the memory safety defenses state-of-the-art and the context of the In-
ternet of Things (IoT), I exhibit that only a few concepts are suitable for critical and
constrained IoMT devices. First, these devices are part of the IoT trend. They are pres-
sured by time-to-market and costs that often take precedence over the integration of
security. Besides, it seems that manufacturers of wireless medical devices are lacking se-
curity experts and connectivity opens new threats that were not present beforehand.
On top of that, medical devices are constrained by their size, real-time performances,
and safety requirements making the integration of security challenging.

With the awareness of this context, we identified several criteria that should be taken
into account when designing practical defenses against memory attacks in critical and
constrained embedded systems. In a nutshell, these criteria highlight that memory safety
in these systems should be robust, practical, safe, deterministic inducing low perfor-
mance degradation and size overhead.

From the identified criteria, we developed a complete case study of efficient memory
safety integration on critical cyber-physical systems. As a first contribution, we proposed
SecPump, a life-critical wireless infusion pump system workbench tailored for security
assessments. The aims of SecPump are manifold. Indeed, it allows us to conduct the
approach of this thesis as well as to validate it. But also, the model aims to be open to
the community allowing security research on cyber-physical systems in various areas that
cover both hardware and software.

Then, to protect critical and constrained cyber-physical systems from memory violation
attacks, we proposed two top-down approaches that led to several contributions such as
TrustFlow and BackGuard. Both approaches tackle the memory safety issue from the
software design-time to its run-time on the hardware.

Regarding the thesis approach, TrustFlow provides both a processor and a complete
software toolchain that can be used to develop secure cyber-physical applications. Trust-
Flow proposes an efficient hardware-based secure environment that tracks the integrity
of sensitive data in real-time. More precisely, TrustFlow extends the RISC-V Instruc-
tion Set Assembly with additional secure instructions and trusted memory. These secure
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instructions are used to manipulate sensitive data and protect them using the trusted
memory. The latter acts as an enhanced shadow stack able to protect both backward-
edges and forward edges while remaining fully compatible with "setjmp" and "longjmp".
Besides, TrustFlow leverage the trusted memory to detect memory violations, log them,
and heal the corrupted data in hardware without interrupting the application execution-
flow. In other words, TrustFlow is engineered to continue to function correctly even if
under memory-based attacks. The results demonstrated that the TrustFlow environment
induces a negligible execution time overhead with a reasonable trusted memory depth. At
design-time, TrustFlow comes with a practical compiler toolchain. This compiler gener-
ates a secure code that enforces instruction separation between sensitive data that use the
trusted memory and non-sensitive data that remain in the regular memory.

Unlike TrustFlow, BackGuard assumes that hardware is immutable and memory safety
can only be implemented at the software level. Thus, BackGuard only provides a secure
software toolchain that can be included in the software development cycle of cyber-physical
systems. The aim of BackGuard is to demonstrate that memory defenses are feasible in
embedded applications even if the hardware does not enforce specific support. Besides,
BackGuard aims at being highly flexible targeting a wide range of Instruction Set Assem-
bly. To do so, BackGuard leverage the LLVM Intermediate Representation to construct
a bitmap-based backward-edge control-flow integrity protection coupled with in-memory
guards. At compilation-time BackGuard separates sensitive memory objects from un-
sensitive one using random guards. Besides, BackGuard protects in-memory return ad-
dresses using an isolated bitmap. With BackGuard, we proved that practical and efficient
memory defenses are feasible for off-the-shelf microcontrollers without relying on invasive
hardware modifications. In comparison with TrustFlow, BackGuard is more flexible. As it
only relies on the software it provides less security accuracy than TrusFlow. Our measure-
ments showed that BackGuard induces around 5% execution-time overhead but requires
at least 5% of a microcontroller memory.

As a result, both approaches seem adapted to secure constrained and critical IoMT
devices. They induce low-performance degradation (both execution-time and size), they
are robust, deterministic, and practical to use and implement by non-security experts.
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Perspectives

This thesis opens new prospects, particularly in the security of constrained and criti-
cal embedded systems. Regarding microprocessors, the results of the TrustFlow’s trusted
memory are encouraging. They demonstrate that a reasonable trusted memory can provide
fine-grained control-flow integrity without degrading the execution-time performances. As
a direct consequence, we believe that the TrustFlow concept can be implemented in the
next generation of low-end microcontrollers dedicated to the IoT. Of course, further re-
search would be required to integrate TrustFlow with a multi-tasking system. In particular,
the TrustFlow trusted memory should be optimized to accommodate context switches. We
believe that some research in Direct Memory Access (DMA) should be done to quickly
save and restore the trusted memory when context switches occur. Also, it would be
interesting to study the feasibility of coupling TrustFlow with software isolation mecha-
nisms. Indeed, in the context of a multi-tasking system, it is better to prevent untrusted
tasks from using the trusted memory. At the software level, this thesis shows that the
implementation of security no longer requires detailed knowledge of the hardware by the
developer. For instance, the TrustFlow compiler automates code generation preventing
any security implementation mistakes. Of course, the TrustFlow compiler is a proof of
concept and may require much more testing and research to refine the definition of critical
data and the selection of according secure instructions. Beyond TrustFlow, the use of
open architectures such as RISC-V or open-RISC opens new possibilities in all fields of
innovation. These open architectures allow customizing processors and System on Chip
for specific applications’ requirements. Also, fitted with compilers and operating system
extensions, these architectures allow designing highly efficient systems.

BackGuard also opens new perspectives regarding the software security of low-end em-
bedded systems. BackGuard demonstrated that memory safety can be integrated within
embedded applications even if a microcontroller does not have dedicated hardware memory
safety primitives. Although full software security support is less efficient than a combina-
tion of both hardware and software, BackGuard stills harden memory exploits, improving
the overall security. Besides, BackGuard aims at keeping a sufficient trade-off between se-
curity, performance, and code-size overhead. The latter induces around 5% execution-time
overhead which is suitable for most existing embedded systems. In closing, BackGuard
leverages the LLVM intermediate representation to generate memory safety protected
code. This makes BackGuard multi-architecture compliant and flexible. Further research
directions plan to study the existing architecture that can be covered by BackGuard.

Finally, the two approaches proposed in this thesis are compatible with each other.
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We believe than a hybrid solution between TrustFlow and BackGuard would allow fine-
grained memory safety protection while keeping an excellent tradeoff between security,
performances, and space overhead. For instance, it would be interesting to study how
BackGuard can be coupled with TrustFlow to reduce the trusted memory footprint of
an application. On the other hand, the bitmap protection proposed by BackGuard is
something that can be implemented at the hardware level. Indeed, the bitmap could be
integrated instead of the trusted memory currently implemented in TrustFlow.

At the end of the day, the IoT promises to evolve over the next few years. Future
devices may require less energy, less memory consumption, and higher processing capa-
bilities. Simultaneously, new attacks will emerge, opening new research opportunities and
in particular for solutions that aim at efficiently combining the hardware along with the
software. This reinforces the fact that open architectures have a bright future with many
research opportunities.
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A Annex 1 : TrustFlow pipeline

A.1 Trusted memory integration
The functioning of the TrustFlow extension is explained in Chapter 4, section 4.3.1.

This appendix gives little more details about the TrustFlow extension, and the changes
performed within the Rocket Chip processor generator [152]. All TrustFlow extensions
are implemented within a Rocket core (Tile), an in-order RISC-V CPU. A Tile, such as
the one displayed in Figure A.1 consist of several components such as the L1 instructions
and data caches, a Rocket core (processor pipeline), an FPU, and a coprocessor interface
such as RoCC.

L1 D$

L1 I$

Trusted Memory

Rocket Core

FPU RoCC

Tile

Figure A.1: Rocket Tile

The trusted memory support of TrusFlow interfaces with the Rocket core pipeline. To
remind, the latter is a content-addressable memory that performs input address search
against a table of stored address/data vectors. Regarding memory safety, this trusted
memory can be compared to an improved shadow call stack by mostly protecting sensitive
control-flow data. The trusted memory is driven by two custom instructions added to the
RISC-V Instruction Set Assembly (ISA). These two instructions such as “load word secure”
(lws) and “store word secure” (sws) inherit from the classical load and store instructions of
the RISC-V instruction set. However, these instructions trigger the TrustFlow extension
so that it stores and checks the sensitive data. An overview of the extended Rocket core
is displayed in Figure A.2. The diagram is simplified, it does not include all the signals
and components of the pipeline, but only the relevant information for the understanding
of the TrusFlow extension.
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Annex A. Annex 1 : TrustFlow pipeline

TrustFlow particularly extends the memory access stage and the write-back stage of
the Rocket core pipeline. During the memory stage, the data cache is accessed by a
memory access instruction and the result is then forwarded to the write-back stage which
updates the register file.

During the memory access stage, the TrustFlow extension decodes the custom instruc-
tions handled in “mem_reg_inst”. If custom instructions appear to be valid at this stage
of the pipeline, the TrustFlow extension retrieves the address of the data that should be
stored or loaded in regular memory from the output of the ALU (“io_req_bits_addr”).
Furthermore, in the case of the custom store instruction, the data to duplicate in the
trusted memory is handled in “mem_reg_rs2”. Both “mem_reg_inst” and “io_req_
bits_addr” triggers the TrustFlow trusted TLB controller, which is detailed further in
this annex.

During the write-back stage, the TrustFlow extension operates in consistency with the
custom instruction. Concerning custom loads ("lws"), the output of the trusted memory
(“safe_data”) fetched from the memory access stage is compared with the output of the
data cache (“io_dmem_resp_bit_data”). In case of discrepancy, a data-flow violation is
detected. In our proof of concept, TrustFlow proposes two ways to deal with this violation.
The first one generates a hardware fault stopping the execution flow of the exploited
application. The other way is that the violation triggers the self-healing mechanism of
TrustFlow that replaces the corrupted data by the healthy data and logs the violation in
a hidden register.

Regarding custom stores ("sws"), the TrustFlow extension waits until the custom store
instruction is valid at the end of the pipeline to perform the final commit of the sensitive
data in the trusted memory. Indeed, if the custom store is not valid at the end of the
pipeline, it means that the data storage in the main memory has not been carried out
correctly. Thus the trusted memory is synchronized according to this result.
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A.2. Trusted memory controller

A.2 Trusted memory controller
The TrustFlow’s trusted memory extension is driven by a controller that follows the

state machine displayed in Figure A.3. Both sws_req and lws_req events are "sws" and
"lws" instruction requests performed during the memory access stage. Besides, both sws_
valid and lws_valid events are valid "sws" and "lws" instructions in the write-back stage
of the pipeline. It turns out that the transitions of the finite state machine take place
according to four different events spread over two stages (memory access and write-back
stage).

Idle

Commit Check

Commit 
&

Lookup

Check 
&

Lookup

Lookup
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sws_req || lws_req

(sw
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va
lid

 &
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 ||
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 &
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s_valid lw

s_
va

lid

(sws_valid && lws_req) ||
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s_

re
q |

| s
ws_

re
q lws_req || sws_req

lws_req || sws_req lws_req || sws_req

Figure A.3: Trusted memory controller state-machine

The finite state machine in Figure A.3 handles six states. The operations are performed
on the transition.

• Idle: The controller waits for a valid custom instruction to be decoded in the
pipeline.

• Lookup: TrustFlow performs a lookup table in the trusted memory.
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Annex A. Annex 1 : TrustFlow pipeline

– In the case of "sws" instruction, the lookup table determines the index in the
TLB where the sensitive data/address vector should be stored. If the data/ad-
dress vector is already in the trusted memory the lookup table returns its index.
If the data/address vector is not in the trusted memory the lookup table returns
a free entry.

– In the case of "lws" instruction, the matching data is forwarded to the output
of the trusted memory.

• Commit: TrustFlow commits a data in the trusted memory at the index determined
by the lookup table operation.

• Check: TrustFlow performs a check between the output of the trusted memory and
the output of the regular memory. In case of discrepancy, TrustFlow either stops
the executed program or heals the corrupted data.

• Commit & Lookup: This state is reached when two custom instructions follow
each other in the pipeline. In such case TrustFlow performs both a Commit and a
Lookup operation.

• Check & Lookup: This state is reached when two custom instructions follow each
other in the pipeline. In such case TrustFlow performs enables a Check and a
Lookup operation.
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A.3. Data restoration

A.3 Data restoration

Introducing two custom instructions and violated data replacement in the Rocket core
requires to adjust the datapath accordingly. As for regular instructions, the custom in-
structions are subject to data hazards, stalls, and forwarding issues. For instance, when
an instruction reads a register following a load that defines the same register. Figure A.4
displays a non-handled data hazard.

IF ID EX MEM WB

IF/ID

ID
/EX

EX/M
EM

M
EM

/W
B

Time (in clock cycle)

CC1 CC2 CC3 CC4 CC5

IF ID EX MEM WB
IF/ID

ID
/EX

EX/M
EM

M
EM

/W
B

CC6

lws x1, 0(x2)

add x2, x1, x3

Data hazard no
forwarding 

Data hazard issue

Figure A.4: Data hazard example

In TrustFlow and like in regular RISC pipeline, the hazard detection unit introduces
a stall to delay the instruction that follows the custom load. Then, the forwarding unit
forwards the loaded memory data back in the pipeline. Figure A.5 displays the stall and
forward case handled by TrustFlow.

IF ID EX MEM WB

IF/ID

ID
/EX

EX/M
EM

M
EM

/W
B

Time (in clock cycle)

CC1 CC2 CC3 CC4 CC5

IF ID

IF/ID

ID
/EX

EX/M
EM

M
EM

/W
B

CC6

lws x1, 0(x2)

add x2, x1, x3 nop

add x2, x1, x3 IF ID EX MEM WB

IF/ID

ID
/EX

EX/M
EM

M
EM

/W
B

Data forwarding

Figure A.5: Data hazard resolution

Of course, both Figure A.4 and Figure A.5 display a specific example of a data haz-
ard happening in the TrustFlow pipeline. We currently modified the forwarding unit and
the hazard detection unit to handle custom instructions. Also, when a data violation is
detected within the pipeline, the modified datapath takes care of forwarding the healed
data. More simply the modified forwarding unit of the TrustFlow pipeline implements the
following conditions for the load hazards:
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Annex A. Annex 1 : TrustFlow pipeline

MEM/WB forwarding 1:
if (MEM/WB.Rd // if MEM/WB writes a register
and not (EX/MEM.Rd // and if MEM/WB is not writing the same register as EX/MEM
(e.g Rs1 or Rs2)
and ((EX/MEM.Rd == ID/EX.Rs1) or (EX/MEM.Rd == ID/EX.Rs2)))
and ((MEM/WB.Rd == ID/EX.Rs1) or (MEM/WB.Rd == ID/EX.Rs2))) // and if
ID/EX uses an operand defined by MEM/WB

// if data healthy
if not (dfi_except) Forward MEM/WB
// if data violation
if (dfi_except) Forward safe_data

MEM/WB forwarding 2:
// Case especially for stores that follows loads
if (MEM/WB.Rd // if MEM/WB writes a register
and ((MEM/WB.Rd == EX/MEM.Rs1) or (MEM/WB.Rd == EX/MEM.Rs2))) // and
if EX/MEM uses an operand defined by MEM/WB

// if data healthy
if not (dfi_except) Forward MEM/WB
// if data violation
if (dfi_except) Forward safe_data
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B Annexe 2 : RISC-V prologue and epilogue
insertion

This annex details how the RISC-V LLVM compiler backend generates a secure prologue
and a secure epilogue. The prologue and epilogue inserter pass arrives late in the target
code generator of the compiler. According to Figure B.1 that displays the various passes
executed in order by the back-end, the prologue and epilogue code insertion happens after
the register allocation pass. Indeed, to determine the registers that should be spilled in a
stack frame, the prologue and epilogue code insertion pass should be aware of the registers
used by a callee. Thus, the prologue and epilogue inserter pass is a machine function pass
that operates at the function level. The insertion of the prologue and epilogue mostly
involves stack unwinding, finalizing the function layout, saving the callee-saved registers,
and then emitting the prologue and epilogue code.

Simple Register Coalescing 
Rename Disconnected Subregister Components
Machine Instruction Scheduler
Machine Block Frequency
Debug Variable Analysis
Live Stack Slot Analysis
Virtual Register Map
Live Register Matrix
Bundle Machine CFG Edges
Spill Code Placement Analysis
Lazy Machine Block Frequency Analysis
Machine Optimization Remark Emitter
Greedy Register Allocator
Virtual Register Rewriter
Stack Slot Coloring
Machine Copy Propagation Pass
Machine Loop Invariant Code Motion
PostRA Machine Sink
Machine Block Frequency Analysis
MachinePostDominator Tree Construction
Lazy Machine Block Frequency Analysis
Machine Optimization Remark Emitter
Shrink Wrapping analysis
Prologue/Epilogue Insertion & Frame Finalization
Control Flow Optimizer

Register allocation

Prologue/Epilogue
insertion

Figure B.1: LLVM RISC-V back-end pipeline

The prologue and epilogue insertion pass is located in the target-dependent code gen-
erator of the back-end. More specifically, the "PrologEpiloginserter.cpp" file is responsi-
ble for handling the Prologue and Epilogue Insertion (PEI). PEI operates on "Machine
Functions". As displayed in Figure B.1, it calls the "SpillCalleeSavedRegs" function that
determines which registers in the callee should be saved. It also assigns a stack slot for any
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Annex B. Annexe 2 : RISC-V prologue and epilogue insertion

called registers. Finally, the function that inserts the code for the callee-saved registers
used in a function is achieved by "insertCSRSaves". This specific function either call the
"spillCalleeSavedRegisters" function (if implemented in the back-end) or the "storeReg-
ToStackSlot" to spill the caller registers. The "storeRegToStackSlot" is a regular function
that is usually used in various passes of the back-end to insert load and/or store instruc-
tion to spill a register in a stack frame. This function is not specifically dedicated to the
PEI.

RunOnMachineFunction

SpillCalleeSavedRegs

insertCSRSaves

spillCalleeSavedRegisters

Iterate over each Machine Functions

Handle CSR spilling and restoring 
Determine which registers in the callee should be saved
Assign stack slot for any called registers

Add code to save and restore the
spilled registers in stack frame

Implemented hook that uses
custom instructions to secure
spilled registers

Figure B.2: LLVM PEI pass

The version of LLVM used during the thesis was still a testing version not pushed
on the official stream. At that time, the RISC-V back-end used the current "storeReg-
ToStackSlot" function to store spilled registers in a stack frame and "loadRegFromStack-
Slot" to restore the spilled registers from the memory. One strategy would have been
to modify this function so that it uses custom instructions to secure the memory loads.
Unfortunately, this function is not only used by the prologue and epilogue inserted in the
back-end. Modifying it could induce hazards in code generation. For this reason, we ex-
tended the RISC-V backend so that it uses the predefined "spillCalleeSavedRegisters" and
"restoreCalleeSavedRegisters" functions. These two functions are only used for prologue
and epilogue generation and, depending on the security level (explained in section 4.6),
secure the spilled registers with custom instructions.

Figure B.3 displays the RISC-V assembly code generated by the TrustFlow LLVM
Back-end according to security options.
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#include <stdio.h>

extern void foo();

int main ( int argc, char ** argv ){
void (*f_ptr)()=foo;
(*f_ptr)(); 
return 0;

}

main: 

addi sp, sp, -16 

sws ra, 12(sp)             // return address register 

sw s0, 8(sp)               // spilled register

addi s0, sp, 16           // stack frame init

sw zero, -12(s0) 

lui a0, %hi(foo) 

addi a0, a0, %lo(foo) 

sw a0, -16(s0)          // function ptr store 

lw a1, -16(s0)          // function ptr load 

addi a0, zero, 10 

jalr a1                       // indirect forward edge 

mv a0, zero

lw s0, 8(s0)            // register restore 

lws ra, 12(sp)          // return address restore  

addi sp, sp, 16        // stack frame destruction 

ret

main: 

addi sp, sp, -16 

sws ra, 12(sp)             // return address register 

sws s0, 8(sp)              // spilled register

addi s0, sp, 16           // stack frame init

sw zero, -12(s0) 

lui a0, %hi(foo) 

addi a0, a0, %lo(foo) 

sw a0, -16(s0)          // function ptr store 

lw a1, -16(s0)          // function ptr load 

addi a0, zero, 10 

jalr a1                       // indirect forward edge 

mv a0, zero

lws s0, 8(s0)            // register restore 

lws ra, 12(sp)          // return address restore  

addi sp, sp, 16        // stack frame destruction 

ret

main: 

addi sp, sp, -16 

sws ra, 12(sp)             // return address register 

sws s0, 8(sp)              // spilled register

addi s0, sp, 16           // stack frame init

sw zero, -12(s0) 

lui a0, %hi(foo) 

addi a0, a0, %lo(foo) 

sws a0, -16(s0)          // function ptr store 

lws a1, -16(s0)          // function ptr load 

addi a0, zero, 10 

jalr a1                       // indirect forward edge 

mv a0, zero

lws s0, 8(s0)            // register restore 

lws ra, 12(sp)          // return address restore  

addi sp, sp, 16        // stack frame destruction 

ret

Return address protection

Spilled registers protection

Spilled registers + function
pointers protection

Figure B.3: TrustFlow generated Code

XXIX



C Annexe 3 : LLVM ARM backend bitmap pass

This annex details the implementation of the ARM machine bitmap pass which is part
of the BackGuard compiler Framework. In the study regarding BackGuard, this pass is
specifically developed to observe the impact on the performances between flexible security
operated on the LLVM IR and target-specific security implementation. The details of
the BackGuard compiler extension at the LLVM IR level are provided in Chapter 5,
section 5.3.2. The bitmap protection variant implemented within the ARM Backend allows
the BackGuard framework to benefit from a better execution-time overhead than the
LLVM IR bitmap protection. In reference to section 5.4.2.2, the obtained results reveal
that the execution time overhead induced by the LLVM machine bitmap pass is 50% lower
than the LLVM IR protection. This is explained by the fact that the LLVM machine
bitmap pass can perform architecture dependant optimizations by directly working on the
assembly before code emission.

To better understand the functioning of the LLVM backend bitmap pass, this annex
requires several essential points regarding the ARM Cortex-M Instruction Set Assembly
(ISA) and its calling convention. The ARM Cortex-M microprocessors follow a Reduced
Instruction Set Computing (RISC) design. They are 32-bit processors that provide six-
teen general-purpose registers (from r0 to r15) and 32-bit aligned instructions. Besides,
these microprocessors provide a sub-instruction set called the Thumb ISA. The Thumb
instruction set only uses a subset of the general registers (r0-r7), and instructions are 16
bits long. Most of the current Cortex-M processors use the Thumb 2 instruction set, which
is a mix between 32-bit and 16-bit instructions. The main registers involved in the ARM
calling convention are summarized in Table C.1 bellow.

Table C.1: ARM Core Registers

Purpose in the procedure call standard Register Special

Program counter R15 PC

Link Register R14 LR

Stack Pointer R13 SP

Variable Registers R4-R7

Scratch Registers R0-R3

The procedure call standard [173] for the ARM architecture details how subroutines
are called, how they return, and finally how the registers in Table C.1 are involved. Both
“bl” (branch and link) and “blx” (branch and link exchange) instructions are used to call
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a subroutine. These instructions pass the execution flow to a subroutine and put the caller
return address pointer in the link register (LR). In a program, each function has a prologue
and an epilogue. Function prologue and epilogue have the effect of setting/destroying a
new stack frame and spilling/restoring the caller registers. To ensure a function return,
we denote two types of instruction patterns that can be generated by the compiler. If
the return address is previously spilled from the link register to a stack frame during the
prologue, the ARM compiler uses a multiple load instruction to both places the return
address in the program counter register and restore the spilled registers. On the contrary,
if a return address handled in the link register is never spilled, the ARM compiler uses a
branch exchange (“bx”) instruction to branch to the return destination target.

Following the calling convention of the ARM instruction set, it follows that every func-
tion that saves the link register in a stack frame should be secured using the bitmap. On
the other hand, functions that keep return addresses in the link register are not vulnerable
to memory attacks. In order to protect functions that spill the link register, one challenge
is to modify the way they are generated by the compiler. During compilation, and espe-
cially in the back-end, the compiler is aware of which functions spill its link register. These
functions are called leaf function (e.g functions that make no calls). From this analysis,
the compiler can generate a specific prologue and epilogue that registers/checks the link
register using the bitmap.

The machine bitmap pass modifies the ARM calling convention. More precisely the
LLVM ARM backend prologue and epilogue generation passes are modified and a cus-
tom machine passes in introduced within the compilation workflow. The resulting code
generated by the compiler is displayed in Figure C.1.

_write:
push {r4, r6, r7, lr}
mov r4, lr
bl <__bitmap_reg__>
add r7, sp, #8
subs r0, #1
cmp r0, #1

... assembly code

cmp r0, #0
it ne
movne r4, #0
mov r0, r4
ldr r4, [sp, #12]
bl <__bitmap_chk__>
pop {r4, r6, r7, pc}

_write:
push {r4, r6, r7, lr}
add r7, sp, #8
subs r0, #1
cmp r0, #1

... assembly code

cmp r0, #0
it ne
movne r4, #0
mov r0, r4
pop {r4, r6, r7, pc}

Non-protected function

Protected function

Figure C.1: BackGuard Machine pass generated Code

The “__bitmap_reg__” routine is a couple of instructions that set the link register
in the bitmap using the r4 register as an argument. Likewise, the “__bitmap_chk_
_” routine is used to check the integrity of the spilled link register using the bitmap.
Both jump tables are constructed by the compiler backend during code generation. We
decided to use the variable register r4 as an argument for the assembly tables. Indeed,
at the beginning/end of each function, the r4 register is never live. Consequently, this
register can be used to perform operations without inducing any hazards in the following
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Annex C. Annexe 3 : LLVM ARM backend bitmap pass

instruction flow of the function. Naturally, the r4 register can be used by a called function.
The latter is thus both saved and restored by the modified compiler prologue and epilogue.
Choosing to use the r4 saves the spill of several registers.

During the function epilogue, the compiler machine passes leverage the LLVM stack
frame info to retrieve the position of the saved link register in the local stack frame. Then,
the compiler generates an instruction to load the return address from the stack frame to
the r4 register. Once again this register is used by the jump table to verify and de-register
the return address.

The machine bitmap pass is implemented immediately after prologue and epilogue
insertion and before the second instruction scheduling pass. More specifically, the machine
bitmap pass is implemented just before the ITBlockPass. This pass is an optimization
that leverages the IT instruction to specify assembly condition code. As some function
returns are conditional the ITBlockPass includes these return instructions within an IT
block. We leverage this feature to include the bitmap checks within IT blocks so that
bitmap checks are conditional if returns are conditional as well.

As a final note, we also implemented a "Machine bitmap pass" that directly includes the
tables’ instructions within functions’ prologue and epilogue. This implementation required
heavy modifications to the backend, and unfortunately, we came to the conclusion that
this had the effect of considerably increasing the size of an application for very little gain
in execution time.
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Approches, Stratégies, et Implémentations de
Protections Mémoire dans les Systèmes Embar-
qués Critiques et Contraints.

Approaches, Strategies, and Implementations
of Memory Safety Defenses in Critical and Con-
strained Embedded Systems.

Résumé

Cette thèse traite de la problématique des corruptions de mémoire dans les disposi-
tifs médicaux vitaux. Au cours des dernières années, plusieurs vulnérabilités telles
que les exploits de mémoire ont été identifiées dans divers dispositifs connectés
de l’Internet des objets médicaux (IoMT). Dans le pire des cas, ces vulnérabilités
permettent à un attaquant de forcer à distance une application à exécuter des ac-
tions malveillantes. Si de nombreuses contre-mesures contre les exploits logiciels
ont été proposées jusqu’à présent, seules quelques-unes d’entre elles semblent
convenir aux dispositifs médicaux. En effet, ces dispositifs sont contraints de par
leur taille, leurs performances en temps réel et les exigences de sûreté de fonc-
tionnement, ce qui rend l’intégration de la sécurité difficile. Pour répondre à ce
problème, la thèse propose deux approches. Toutes deux abordent la question de
la sécurité de la mémoire depuis la conception du logiciel jusqu’à son exécution sur
le matériel. Une première approche suppose que les défenses peuvent être mises
en œuvre à la fois dans le matériel et dans le logiciel. Cette approche aboutit à
TrustFlow, une structure composée d’un compilateur capable de générer un code
sécurisé pour un processeur modifié. Ce processeur peut prévenir, détecter, enreg-
istrer et auto-guérir les applications critiques victimes d’une attaque mémoire. La
seconde approche considère que le matériel est immuable. Selon cette contrainte,
les défenses ne reposent que sur le logiciel. Cette seconde approche aboutit à
BackGuard, un compilateur modifié qui renforce efficacement les applications em-
barquées tout en assurant l’intégrité du flot d’exécution.

Mots-clés : IoMT, sécurité, corruption de mémoire, intégrité du flot
d’exécution.

Abstract

This thesis deals with the memory safety issue in life-critical medical devices. Over
the last few years, several vulnerabilities such as memory exploits have been iden-
tified in various Internet of Medical Things (IoMT) devices. In the worst case, such
vulnerabilities allow an attacker to remotely force an application to execute mali-
cious actions. While many countermeasures against software exploits have been
proposed so far, only a few of them seem to be suitable for medical devices. Indeed,
these devices are constrained by their size, real-time performances, and safety re-
quirements making the integration of security challenging. To address this issue,
the thesis proposes two approaches. Both address the memory safety issue from
the software design-time to its run-time on the hardware. A first approach assumes
that memory defenses can be implemented both in hardware and software. This
approach results in TrustFlow, a framework composed of a compiler able to gen-
erate secure code for an extended processor that can prevent, detect, log, and
self-heal critical applications from memory attacks. The second approach consid-
ers that hardware is immutable. Following this constraint, defenses only rely upon
software. This second approach results in BackGuard a modified compiler that effi-
ciently hardens embedded applications while ensuring control-flow integrity.

Keywords : IoMT, security, memory corruption, control-flow integrity
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