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Abstract

Keywords: Domain decomposition methods, harmonic waves, junction points.

The pioneering work of B. Després then M. Gander, F. Magoules and F. Nataf have shown that
it is mandatory, at least in the context of wave equations, to use impedance type transmission
conditions in the coupling of subdomains in order to obtain convergence of non-overlapping
domain decomposition methods (DDM). In the standard approach considered in the literature,
the impedance operator involved in the transmission conditions is local and leads to algebraic
convergence of the DDM in the best cases. In later works, F. Collino, S. Ghanemi and P. Joly
then F. Collino, P. Joly and M. Lecouvez have observed that using non local impedance operators
such as integral operators with suitable singular kernels could lead to a geometric convergence
of the DDM.

This thesis extends these works (that mainly concerned the scalar Helmholtz equation) with
the extension of the analysis to electromagnetic wave propagation. Besides, the numerical anal-
ysis of the method is performed for the first time, proving the stability of the convergence rate
with respect to the discretization parameter, hence the robustness of the approach. Several in-
tegral operators are then proposed as transmission operators for Maxwell equations in the spirit
of those constructed for the acoustic setting. An alternative to integral operators, based on the
resolution of elliptic auxiliary problems, is also advocated and analyzed. Extensive numerical re-
sults are conducted, illustrating the high potential of the new approach. Based on a recent work
by X. Claeys, the last part of this work consists in exploiting the multi-trace formalism to extend
the convergence analysis to the case of partitions with junction points, which is a difficult prob-
lem that attracted a lot of attention recently. The new approach relies on a new operator that
communicates information between sub-domains, which replaces the classical point-to-point ex-
change operator. A proof of geometrical convergence of the associated iterative algorithm, again
uniform with respect to the discretization parameter, is available and we show that one recovers
the standard algorithm in the absence of junction points.
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Résumé

Mots clés : Méthodes de décomposition de domaine, ondes harmoniques, points de jonction.

Les premiers travaux de B. Després, puis M. Gander, F. Magoules et F. Nataf ont montré
qu’il est nécessaire, du moins dans le contexte des équations d’ondes, d’utiliser des conditions de
transmission de type impédante pour le couplage des sous-domaines afin d’obtenir la convergence
des méthodes de décomposition de domaine sans-recouvrement. L’approche standard considérée
dans la littérature utilise un opérateur d’impédance local permettant une convergence algébrique
dans les meilleurs cas. Des travaux ultérieurs dus à F. Collino, S. Ghanemi et P. Joly puis F.
Collino, P. Joly et M. Lecouvez ont permis de montrer que l’utilisation d’opérateurs d’impédance
non-locaux, comme par exemple des opérateurs intégraux avec des noyaux singuliers adaptés,
peut permettre une convergence géométrique des méthodes de décomposition de domaine.

Cette thèse prolonge ces travaux (qui ont principalement concerné l’équation de Helmholtz
scalaire) pour dans un premier temps étendre l’analyse au cas de la propagation d’ondes élec-
tromagnétiques. De plus, l’analyse numérique de la méthode est pour la première fois effectuée,
démontrant la stabilité du taux de convergence par rapport au paramètre de discrétisation, et
ainsi la robustesse de l’approche. Plusieurs opérateurs intégraux sont ensuite proposés comme
opérateurs de transmission pour les équations de Maxwell dans le même esprit que ceux constru-
its pour le cas de l’acoustique. Une alternative aux opérateurs intégraux, fondée sur la résolution
de problèmes auxiliaires elliptiques, est par ailleurs proposée et étudiée. De nombreuses expéri-
ences numériques ont été menées, illustrant le haut potentiel de cette nouvelle approche. À partir
de récents travaux de X. Claeys, la dernière partie de ce travail consiste à exploiter le formal-
isme multi-trace afin d’étendre l’analyse au cas des partitions comportant des points de jonction,
problème ayant attiré beaucoup d’attention récemment. Cette nouvelle approche met en jeu un
nouvel opérateur permettant la communication d’informations entre sous-domaines, qui a vo-
cation à remplacer l’opérateur point-à-point classique. Une preuve de convergence géométrique
de l’algorithme itératif associé, également uniforme par rapport au paramètre de discrétisation,
est disponible et l’on montre que l’on retrouve l’algorithme classique en l’absence de point de
jonction.
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Motivation for domain decomposition
Historically, Domain Decomposition (DD) methods were invented by Schwarz [125]. The purpose
was to prove existence of solution of Laplace equation in domains that are unions of sub-domains
with simple shapes, for which existence proofs were known. Nowadays, the interest in DD
methods has somehow shifted from a theoretical tool to a practical numerical strategy, able
to leverage the increasing power of modern parallel supercomputers. Broadly speaking, the
main motivation is now to be able to accurately compute numerical solutions to increasingly
more complex problems. DD methods generally refer to a coupling strategy for different Partial
Differential Equations (PDE) models and/or discretization methods in adjacent sub-domains.
In this work, however, we focus only on the situation where we want to solve only one type of
equation, related to time-harmonic wave propagation problems, posed in a large domain.

Mechanically, as the size of the domain of interest grows, the size of the associated linear
systems, obtained using standard numerical methods such as the finite element method (FEM),
also increases. At some point, the size of the linear system will become so big that using a direct
solver will not be feasible for a given machine. A possible approach could then be to use an
iterative solver (e.g. Krylov solvers) to solve the problem. However, for the propagative (and
even elliptic) problems we consider, the linear systems are often ill-conditioned. For a typical
mesh size h, the condition number is of the order of O(h−2) [127, Section 1.2]. So the iterative
solver would struggle to solve the large system without a preconditioner.

For wave propagation problems, the conditioning issue is often tied to mesh requirements
induced by the wave propagation phenomena. Indeed, as the wavelength λ decreases, the mesh
shall be refined to capture the finer oscillations. One expects to decrease h at least linearly
with λ. However, the so-called pollution effect makes the situation even worse since the finite
element error actually increases with the frequency when the number of points per wavelength
is kept constant. Besides, the additional inherent difficulty of wave propagation problems, in
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comparison to elliptic ones, mainly lies in the (a priori) indefiniteness of the wave equation and
therefore of the related linear systems after discretization.

DD methods appear as one possible way to tackle the issue of large problems by applying
the ‘divide and conquer’ strategy. The main idea is to divide the domain in many small sub-
domains, small enough so that the PDE can be solved easily in each sub-domain by means
of a direct method for instance. Moreover, each local solve in the sub-domains can be done
independently and in parallel on different machines or cluster nodes, thereby harvesting the
power of modern distributed architectures. These independent local solves alone will not yield
the global solution. However one can hope to construct a convergent sequence of local solutions
by iteratively solving the local sub-problems and letting sub-domains exchange some (boundary)
information in-between successive solves. The art of domain decomposition is precisely to devise
efficient methods to doing so and in particular on the adequate prescription of transmission
conditions between sub-domains.

Overlapping and non-overlapping strategies
In the large class of DD methods, there are two important sub-classes: the overlapping and non-
overlapping strategies, which refer to the type of underlying partition of the domain on which
the DD method is built. Roughly speaking, in an overlapping partition each sub-domain shares a
set of non-zero measure with its neighbours, whereas in a non-overlapping partition two adjacent
sub-domains are separated by an interface of inferior dimension.

If the initial algorithm of Schwarz [125] is based on an overlapping partition and the con-
vergence proof of Lions [94] actually rests on the existence of the overlap, overlapping strategies
possess many drawbacks in practical numerical implementations. First of all, the size of the
local sub-problems is increased by the size of the overlap, making the local solves somehow
unnecessarily more expensive. In addition, the generation of overlapping mesh partitions and
the implementation of overlapping domain decomposition methods are more involved than non-
overlapping strategies. Finally, we also point out that when DD methods are used to couple two
different PDE models, the non-overlapping strategies are much more natural to consider.

All these limitations are not prohibitive and many successful methods are built on overlapping
partitions, however this work is only dedicated to non-overlapping configurations.

Impedance-based domain decomposition methods
In classical Schwarz methods, the information coming from adjacent sub-domains is incorporated
in the local sub-problems in the form of either non-homogeneous Dirichlet (as proposed by
Schwarz [125]) or Neumann boundary conditions. However, such classical Schwarz algorithms
suffer from two issues

• they do not converge for Helmholtz type problems, even with overlap;

• they do not converge in a non-overlapping configuration, even for a coercive problem.

The breakthrough idea, proposed independently by Lions [96] for the Laplace equation and
Després [49] for the Helmholtz equation, is to combine Dirichlet and Neumann traces to form
Robin transmission conditions. One can use a scalar coefficient to compute the Robin quantity,
but this can be generalized easily to a (local or non-local) boundary operator. Such an operator
is referred to as the transmission or impedance operator. The term impedance is justified by
the fact that such an operator has the homogeneity of an impedance. We shall use both terms



Introduction 3

indifferently. Two key benefits of such transmission conditions are that, first, they make Schwarz-
type algorithms applicable for Helmholtz-like propagation problems [49], and second, do not
require overlapping to actually converge [96]. Furthermore, for elliptic problems with overlapping,
compared to the classical Schwarz algorithm, the convergence rate is always improved [67, Th.
1].

Many refinements on this original idea have been proposed, which mainly consist in using more
sophisticated transmission or impedance operators to construct the generalized Robin condition.
In the following, we shall distinguish different domain decomposition methods by the transmission
operator that is used. When designing a transmission operator, the main objective is of course
to obtain faster convergence, i.e. the minimum number of iterations, without increasing the
computation cost of one iteration too much. However, as far as the mathematical analysis is
concerned, the first question that arises and which we shall ask ourselves is the following:

Given a transmission operator, are the local sub-problems well-posed?

It is in general difficult to answer this question directly, since it does not only depend on the
type of transmission operator but also on the nature of the problem, on the regularity of the
interface and so on. Broadly speaking, for wave propagation problems, a sufficient condition to
ensure that the sub-problems will be well-posed is if the real-part (to be defined) of the operator
is positive, at least for a regular enough interface. At the discrete level, this will translate as
invertible matrices, at least for sufficiently refined meshes. To try to answer the above question
more precisely, we can classify the transmission operators found in the literature into three broad
categories:

• The identity operator of Després [49] deserves its own category. It yields properly defined
transmission conditions and the associated local sub-problems are always well-defined.

• High-order local operators, by which we mean second-order surface differential operators
but also rational fractions of such operators.
Second order operators have been proposed by Gander, Magoules and Nataf [72] for the
Helmholtz equation. Numerical experiments suggest that they improve the convergence
rates of the relaxed Jacobi algorithm, provided that the parameters involved in the def-
inition of the transmission operators are properly tuned. If the second-order differential
operator is positive and the interface is regular enough, the local sub-problems will be in
general well-posed.
The use of higher-order or rational fractions of surface differential operators was advocated
by Boubendir, Antoine and Geuzaine [17] for the Helmholz equation and El Bouajaji,
Thierry, Antoine and Geuzaine in [61] for Maxwell equations, in an attempt to approximate
transparent or absorbing boundary conditions. For such operators, the convergence analysis
is incomplete. In particular, they do not satisfy the sufficient condition of positivity so that
the well-posedness of local sub-problems remains in general an open problem and depends
on the configuration.

• Non-local operators: their interest in domain decomposition methods, which lies in the the-
oretical guarantees of convergence, was first advocated in [78] for the Helmholtz equation,
despite their increased computational cost. Among other properties, positivity is explic-
itly required for such impedance operators in order to ensure the well-posedness of local
sub-problems.

Note that we only cited above a few references, a more complete and detailed review of the
literature is conducted in the first chapter.
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The domain decomposition methods based on impedance conditions are often referred to as
‘Optimized Schwarz Methods’ (OSM) in the literature. The term seems to have been introduced
in [69] for symmetric positive definite problems. The ‘optimized’ term refers to the possibility
to tune the free parameters (which can be generalized to a boundary operator) that comes
into play when one combines the Dirichlet and Neumann quantities together. The goal of this
tuning is to decrease the convergence factor (i.e. improve the convergence rate) of the Jacobi
iterative algorithm, as was done for instance in [67, 72, 75, 97] for the Helmholtz equation in
non-overlapping configurations.

Convergence analysis: the utility of non-local operators
Domain decomposition methods are by nature iterative methods. The simplest iterative al-
gorithms are often considered for the theoretical analysis of convergence, namely fixed-point
algorithms such as the (relaxed) Jacobi or the Gauss-Seidel algorithms. However in practice one
typically uses Krylov acceleration techniques, for instance the Gmres algorithm, since for wave
propagation problems the matrices are in general indefinite. Note that the convergence of the
relaxed Jacobi algorithm implies the convergence of the corresponding Gmres algorithm, even
for the restarted version (the converse is not true). In this respect, it is important to study
theoretically the relaxed Jacobi algorithm.

Several important questions arise when we consider the mathematical analysis of the conver-
gence of domain decomposition algorithms:

Is the algorithm convergent to the solution of the original problem?
What is the convergence rate?
After discretization, how does the convergence rate depend on the parameter h?

A highly desirable property for domain decomposition methods often encountered in the literature
is the notion of optimality, in the sense of Toselli and Widlund [127, Def. 1.2, Sec. 1.3], i.e. “a
rate of convergence to the exact solution independent of the size of the system”, which is related
to the third question above.

The answers to these questions vary again greatly depending on the transmission operator
that is used. We use our previous classification to structure the discussion on this matter:

• Identity operator : The relaxed Jacobi algorithm is provably convergent, with an algebraic
convergence [49] and the convergence is guaranteed both in the continuous and discrete
settings. The proof is based on the decrease of a pseudo-energy. However the convergence
rate is not h-uniform for both the Jacobi and Gmres algorithm.

• High-order local operators: Domain decomposition methods based on high-order local op-
erator or rational fractions of local operators lack a general convergence analysis. Some
partial proofs are available but concern specific geometries amenable to Fourier or modal
analysis [17, 61]. However, the actual implementations of the method seem to perform
rather well.
The convergence proof based on energy considerations can be extended in some particular
cases to several (positive) second-order differential operators, as was done for instance by
Piacentini and Rosa [117] or by Després, Nicolopoulos and Thierry in a recent paper [52],
both for the acoustic case.

• Non-local operators: The main motivation for considering non-local operators comes from
the guaranteed geometric convergence of the relaxed Jacobi algorithm [78, 91]. Besides,
the convergence rate is observed to be stable with the discretization.
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Junctions and cross-points
In non-overlapping configurations, the special points (in 2D) or lines (in 3D) where strictly
more than two domains abut are termed ‘junctions’ or ‘cross-points’, depending on the authors.
We shall use both terms indifferently, although the term ‘cross-points’ is strictly speaking more
applicable to two-dimensional configurations. Besides, it is important to distinguish such interior
cross-points with the points (in 2D) or lines (in 3D) that mark the intersection of an interface
between two sub-domains with the physical boundary of the global domain, and which are
termed boundary cross-points. The union of all junctions lines in 3D is sometimes referred to as
the ‘wire-basket’.

For realistic large scale applications, domain decomposition methods should be applicable to
domain partitions with junctions, whose presence is in general inevitable if an automatic mesh
partitioner is used. However, the presence of junctions can be an issue both at the theoretical
level for the convergence analysis of the method and in practice in numerical implementations.

The nature of the issue posed by junctions varies depending on the type of transmission
operators that are used. We review below the literature on the subject, mainly for the Helmholtz
equation as it is rather scarce for the electromagnetic case:

• Identity operator : There is no additional issue in presence of junctions to define and analyse
the DD method at the continuous level. In addition, the convergence proof based on energy
estimates [49] still stands in presence of junction points. At the discrete level, one possible
route that avoids the junction problem altogether is to use a mixed-hybrid finite element
formulation as in the original work of Després [49]. The advantage of the approach is that
no degree of freedom is associated to cross-points.
In contrast, delicate questions may arise in the definition of transmission conditions at
cross-points in the case where nodal discretizations are used and for which degrees of
freedom are associated to cross-points. For instance, Gander and Kwok [71] pointed out,
already for elliptic problems, that straightforward nodal discretizations (for which degrees
of freedom are associated to cross-points) can diverge and that the continuous proof (based
on energy estimates) fails to carry over to the discrete setting in general.
Some ad-hoc treatment of the problem at the discrete level has been developed by Bendali
and Boubendir [13, 15] which introduces additional global unknowns at the junction points
effectively coupling all sub-domains. This leads to a global indefinite system posed on the
reunion of all junctions that needs to be solved at each iteration.
More recently, Gander and Santugini [73] introduced two techniques, termed ‘auxiliary
variable’ and ‘complete communication’, to treat the issue. They present the strategies for
elliptic problems but we believe that the approach could be extended to wave propagation
problems.

• High-order local operators: When second or higher-order impedance operators are used, the
implementation difficulties in continuous Lagrange finite element methods still stands, but
the junction points are already troublesome at the continuous level. The main additional
issue is the presence of a ‘corner’, which raises a definition issue due to the use of high-
order operators (for instance Laplace-Beltrami operators) on open surfaces. One needs
some compatibility conditions to be enforced at the corners to ensure the well-posedness
of the problems with such transmission conditions, a problem that is somehow overlooked
in many papers.
Modave et al [105] reported non-consistency issue in the absence of treatment of junction
points with physical boundaries in the context of high-order absorbing boundary conditions.
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They presented a discrete treatment of cross-points for high-order transmission operators.
However, the approach is only valid on cartesian-like partition of the mesh, allowing only
to treat cross- points where an even number of domains abut.
The issue has been addressed recently by Després, Nicolopoulos and Thierry [52] for a class
of second-order transmission operators. Quasi-continuity relations are used at the corners
to obtain a transmission operator suited for broken line interfaces. The convergence of the
algorithm is proven by using energy estimate techniques.

• Non-local operators: In presence of junctions, DD methods using non-local operators can
be properly defined at the continuous level, and are provably convergent [78]. However, the
geometric convergence proof [42, 44, 91] is not valid in presence of cross-points. Besides,
numerical experiments suggest that the convergence is in fact not geometric, and we shall
provide some numerical evidence of this fact.

Research direction and main contributions
First, let us point out that the work we present here is the latest development in a long standing
research effort on domain decomposition methods for wave propagation problems that dates back
to the PhD thesis of Bruno Després in 1991 [49], already under the supervision of Patrick Joly,
and from which the idea to use Robin transmission conditions to obtain convergence of domain
decomposition algorithms for the Helmholtz equation firstly emerged. This initial work was
later completed in the course of Souad Ghanemi PhD in 1996 [78], also advised by Patrick Joly
and in which Francis Collino took also part. The idea to use non-local transmission operators
was then developed and the geometric convergence of the associated relaxed Jacobi and Gauss-
Seidel algorithms was proven. More recently, the subject was revived during the PhD of Matthieu
Lecouvez in 2015 [91], still supervised by Patrick Joly, with Francis Collino also involved. Several
integral operators were proposed and analyzed for the Helmholtz equation, and tested numerically
in 2D. These different contributions were the main starting point of the ANR project ‘NonLocal
DD’ led by Xavier Claeys, which funded this work.

The first purpose of this work is to extend the convergence analysis of non-overlapping do-
main decomposition methods with non-local transmission operators that was available for the
Helmholtz equation [42, 43, 44, 78, 91] to the electromagnetic setting. We achieve this by pro-
viding an abstract framework that includes both the acoustic and electromagnetic settings and
which is the subject of Part I of this manuscript.

The second purpose of this work is to combine the convergence analysis with the actual
construction of suitable non-local impedance operators for Maxwell equations that satisfy the
requirements of the theory. This is the subject of Part II of this manuscript. The natural idea
was to extend the work of Lecouvez [91] where integral-based transmission operators adapted
to the acoustic case where advocated and numerically tested. This task proved to be rather
difficult. First on the theoretical side, since the functional setting associated to the Maxwell
equations is more intricate. Second, on the numerical implementation of the operators which
required great care. Despite the amount of work dedicated to these aspects and which is re-
ported in this manuscript for completeness, the outcome of the numerical tests in 3D is rather
disappointing. However, these difficulties motivated the investigation of a new route to construct
suitable non-local operators which proved in turn to be rather successful in our numerical ex-
periments. These operators are no longer integral operators (which were discretized using the
boundary element method) but rather involve solving auxiliary elliptic problems which are more
easily solved numerically and do not require sophisticated technologies. We provide a generic
definition, with simple adaptations to the acoustic or electromagnetic settings, which includes
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the case of heterogeneous media. The parameters appearing in the definition are easy to choose
and do not require complicated tuning to get efficiency. Besides, these transmission operators can
be used in sub-domains of arbitrary geometry, including ones with rough boundaries generated
by automatic graph partitioners, without any additional treatment.

A third research direction for this work was to prove the stability with respect to the dis-
cretization parameter of the geometric convergence of domain decomposition methods using
suitable non-local impedance operators. This was a conjecture, largely supported by numerical
evidence, made for instance in [91]. We rigorously proved this result in the acoustic case, see
the numerical analysis of Part I (the case of Maxwell equations is only partially covered by our
analysis). This axis of research led to the published work [30].

Finally, the last research direction concerned by this work is the investigation of the cross-
point issue, namely the fact that cross-points break the geometric convergence proof. Using the
multi-trace formalism and leveraging the ideas proposed by Xavier Claeys in a recent paper [29]
we provide an answer to the problem by defining a new communication operator that exchanges
information between sub-domains. The geometric convergence proof is recovered if suitable non-
local transmission operators are used and remains stable after discretization. Importantly, the
method is found to be a generalization of the previously described method in absence of junction
points. This axis of research led to the preprint work [33].

Let us summarize below the outcome of this work, in what we believe are our four main
contributions:

1. The description and analysis of a large class of non-overlapping domain decomposition
methods for wave propagation problems, including both the Helmholtz equation and 3D
time-harmonic Maxwell’s equations, with suitable non-local transmission operators.
This is completed by an actual implementation and testing of the method for a standard
finite element discretization;

2. The design of a novel transmission operator based on auxiliary elliptic problems which
satisfies the requirements of the convergence theory and can be generalized to a large class
of wave propagation problems including both the acoustic and electromagnetic settings;

3. The numerical analysis of a finite-element based Galerkin discretization of the domain
decomposition method applied to the Helmholtz equation. We proved the h-uniform
stability of the geometric convergence for the relaxed Jacobi algorithm;

4. The description and analysis, supported by extensive numerical results, of a specific domain
decomposition method that performs a clean treatment of configurations with junction
points, allowing to recover the geometric convergence of the algorithm if suitable non-local
transmission operators are used.

We acknowledge, in addition to Patrick Joly as PhD-advisor, the participation throughout
this work of two additional collaborators. Xavier Claeys, leader of the ANR project that funded
this work, who came up in particular with the breakthrough ideas regarding the fourth contri-
bution above. Francis Collino, also enrolled in the ANR project, who participated actively in
the development (and implementation) of new non-local transmission operators, in particular
regarding the second contribution above.
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Outline of the work
There are two preliminary chapters:

1. Chapter 1: we conduct an overview of the literature from our perspective, i.e. the em-
phasis is on domain decomposition methods that can be applied to time-harmonic wave
propagation problems.

2. Chapter 2: in this chapter we try to motivate in a simple two-domain configuration our
usage of the Multi-Trace (MTF) formalism [83, 84, 32, 38] for domain decomposition
methods. This is intended as an introduction to the main concepts that we will extensively
manipulate in subsequent chapters. The basic foundation of our treatment of junction
points is also laid out.

The rest of the manuscript is organized as follows:

1. Part I: we describe and analyse an abstract generalization of a class of non-
overlapping domain decomposition methods for some time-harmonic wave prop-
agation problems. This contribution builds on previous works that were mainly con-
cerned with acoustic wave propagation [42, 43, 44, 78, 91]. The initial aim was to generalize
the method to the electromagnetic setting. We extend the formalism to a wider class of
wave-type problems, provided that some simple abstract assumptions hold, that includes
both the Helmholtz and Maxwell equations. The domain decomposition methods we con-
sider belong to the family of impedance-based methods and our focus is on the derivation of
sufficient conditions on the impedance or transmission operators to ensure fast (geometric)
convergence of iterative algorithms.

• Chapter 3: the abstract domain decomposition method is firstly defined and analysed
at the continuous level. We write and prove the equivalence between our (abstract)
model problem and an (abstract) decomposed problem. We then show how to re-
cast the formulation as an interface problem posed on the skeleton of the partition
before describing some iterative algorithms that can be applied to solve it. The con-
vergence analysis is conducted and sufficient conditions on the transmission operator
for geometric convergence of the relaxed Jacobi algorithm are provided. The last sec-
tion of the chapter establishes that our abstract framework is valid for the two main
applications we have in mind, namely acoustic and electromagnetic harmonic wave
propagation problems.

• Chapter 4: this chapter is devoted to the numerical analysis of a particular choice
of discretization of the previously described method, namely conformal Galerkin dis-
cretization. We show that the discrete problem can also be decomposed and reformu-
lated equivalently on the skeleton. Besides, we settle the crucial question of uniform
stability of the geometric convergence of the iterative domain decomposition method,
which was recognized before this work as an open question in [91, Rem. 3, Chap.
6]. Indeed, we prove that the convergence factor of the discrete Jacobi algorithm
is uniformly bounded above with respect to the discretization parameter, upon us-
ing transmission operators with suitable uniform continuity and coercivity properties.
This important result rests on the theoretical existence of a continuous and stable
discrete Dirichlet lifting, constructed from the Scott-Zhang interpolator. We show
that widely used discretization methods for Helmholtz equation using standard finite
elements fall in our abstract discrete framework.
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2. Part II: we advocate several new transmission operators that satisfy the re-
quirements of the theory. We can further structure the work in this direction into two
main branches:

• Chapters 5, 6 and 7: we focus our attention on integral operators (of convolution
type). Similar transmission operators were studied in earlier works such as [44, 91]
for the acoustic setting and [34] for the electromagnetic setting.

– Chapter 5: we propose and construct several candidate transmission operators
based on potential theory with adequate theoretical properties, both for Helmholtz
and Maxwell equations. Our main concern is to propose, for the Maxwell case,
impedance operators for which we know techniques that reduce the computational
burden of non-local operators without compromising their essential properties.

– Chapter 6: we use modal analysis for spherical geometries in the electromagnetic
setting to compare more quantitatively the operators previously described. This
completes the theoretical analysis and provides further confidence in our propo-
sitions of suitable transmission operators.

– Chapter 7: the numerical implementation of the previously introduced operators
is discussed and numerical experiments are conducted. Numerical experiments
with the newly proposed operators in 3D are however disappointing. Our inves-
tigations suggest that the issue lies in the discretization method that is used to
compute the integral operators, namely the boundary element method (BEM)
which would not cope well with the finite element method (FEM) that is used to
solve the equation in the domain.

• Chapter 8: in this chapter we propose a novel realisation of a suitable non-local
transmission operator based on elliptic auxiliary problems. This idea, which can be
applied seamlessly either to the acoustic or the electromagnetic setting, appears to be
new. If the underlying continuous operator is of very similar nature as the operators
based on integral representations discussed in the preceding chapters, we show in our
numerical experiments that it behaves much better in practice. The implementation of
this operator exonerates from the need to interface (or implement) a boundary element
code and can be carried out so that to have a reduced computational footprint. To
do so, the geometric domain in which the auxiliary problem is solved is restricted
to a strip whose boundary coincides on one side with the transmission interface and
is a fictitious boundary on the other side. We discuss and carefully compare the
behaviour of the operator for various boundary conditions on the fictitious boundary
as the width of the strip is shrunk. Based on our numerical experiments this operator
seems particularly well-suited for heterogeneous media.

3. Part III: we describe and analyse a generalization of the domain decomposition
that allows the presence of junction points. We build upon the multi-trace formalism
and the breakthrough idea proposed in [29] which provides a new point of view on the
classical point-to-point exchange operator. This is the product of a joint work with Xavier
Claeys who provided most of the theoretical foundation in the analysis.

• Chapter 9: the novel domain decomposition strategy that permits the presence of
interior junction points (still excluding junction points with the physical boundary for
the sake of simplicity) is described at the continuous level. The presentation follows
the same abstract route as what was done in Chapter 3, highlighting in the process
the key features that permit to handle cross points. We show that under some mild
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conditions on the transmission operators the method falls back to the one described
in Chapter 3 in the absence of junction points. In addition, we provide again sufficient
conditions on the transmission operators to guarantee the geometric convergence of
the relaxed Jacobi algorithm.

• Chapter 10: the numerical analysis of a discrete version of the previously described
domain decomposition strategy is considered in full generality (i.e. the method allows
for interior as well as boundary cross points). Again, the discrete solution of the
original discrete problem is a fixed point of the interface problem posed on the skeleton.
We show for the acoustic setting that this new method also enjoys h-uniform bounds
on the convergence rate of the relaxed Jacobi algorithm, upon using transmission
operators with suitable uniform continuity and coercivity properties.

• Chapter 11: extensive numerical experiments are provided to support the theory. We
show numerical illustrations of the h-uniform stability of the convergence rate when
using non-local operators. The robustness of the method is demonstrated through
numerical tests with increasing frequency and in heterogeneous media. Strong and
weak scalability tests are also performed. Besides, we demonstrate numerically that
the novel exchange of data between sub-domains can be performed efficiently.
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Domain decomposition is a very active field of research and the associated literature is vast,
particularly regarding the design and analysis of methods for the numerical simulation of elliptic
problems. See for instance the books [58, 118, 113, 127] for a general reference, and [68] for an
historic of the field. Note that our review is mainly focused on methods for time-harmonic wave
propagation problems, which is the subject of this work, and more precisely on the literature that
views (as we do) domain decomposition methods at the PDE level. This bias actually excludes
a large body of valuable references that adopt a more algebraic point of view.
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The chapter is organized in three sections. In the first section we provide some brief com-
putations which we find enlightening. It indicates the interest in using Robin-type transmission
conditions for wave propagation problems in a non-overlapping configuration. This is a clear
difference with the original overlapping Schwarz algorithm which relies only on Dirichlet condi-
tions. The second section is devoted to an overview of the different transmission operators that
one can use to define (non-overlapping) domain decomposition methods for wave propagation
problems. In the third section we review several treatments that have been proposed to address
the different issues that arise in the presence of cross-points.

1.1 A revisit of the initial Schwarz algorithm
The purpose of this section is to motivate the use of (non-overlapping) impedance-based domain
decomposition methods. We show that the initial algorithm of Schwarz does not converge when
either the sub-problems do not overlap or the problem is no longer elliptic.

In his celebrated paper from 1870 [125], Schwarz considers the existence of a solution to the
following Dirichlet problem {

−∆u = 0, in Ω = Ω1 ∪ Ω2,

u = g, on ∂Ω.
(1.1)

where Ω1 and Ω2 are two overlapping sub-domains.
The solution is proved to exist as the (well-defined) limit of the sequence of local solutions

(un1 , un2 ), constructed for n ≥ 1 and two initial guesses u0
1 and u0

2 as follows,
−∆un1 = 0, in Ω1,

un1 = g, on ∂Ω ∩ ∂Ω1,

un1 = un−1
2 , on ∂Ω1 ∩ ∂Ω2,


−∆un2 = 0, in Ω2,

un2 = g, on ∂Ω ∩ ∂Ω2,

un2 = un1 , on ∂Ω1 ∩ ∂Ω2.

(1.2)

This is called the Schwarz alternating algorithm.
Note that the above algorithm is not parallel since the local problem in the sub-domain Ω1

must be solved before the local problem in the sub-domain Ω2. The parallel version was proposed
by Lions in a series of three articles published more than a century later from 1988 to 1990 [94,
95, 96] that revived the interest for domain decomposition methods. We shall study in this
section the parallel version, which is closer to our target applications.

1.1.1 A 1D model problem with the classical Schwarz algorithm
We show now on a 1D model problem that the classical Schwarz algorithm with Dirichlet trans-
mission conditions does not converge: first, for elliptic problems in the non-overlapping case; and
then, for propagative problems, even in the overlapping case.

Elliptic problem We consider first the model (elliptic) problem, for a positive and real pa-
rameter η, (

−∆ + η2)u = f, in Ω = R, (1.3)

where we require the solution u to decay at infinity and f is the source term, in L2(R) for
instance. Let us consider a modified version of the above classical Schwarz algorithm where the
unbounded domain R is split into two overlapping half-spaces Ω1 = (−∞, δ) and Ω2 = (0,+∞)
for an overlapping parameter δ ≥ 0 (the case δ = 0 allowing to recover the non-overlapping case).
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The classical (parallel) Schwarz algorithm, for n ≥ 1 and two initial guesses u0
1 and u0

2, is written
as {(

−∂xx + η2)un1 = f, in Ω1,

un1 = un−1
2 , at δ,

{(
−∂xx + η2)un2 = f, in Ω2,

un2 = un−1
1 , at 0,

(1.4)

where we require the local solutions un1 and un2 to decay at infinity. By linearity, it is enough to
consider the case f ≡ 0 and analyze the convergence to the zero solution.

Standard computations then yield{
un1 (x) = un−1

2 (δ) eη(x−δ), x < δ,

un2 (x) = un−1
1 (0) e−ηx, x > 0,

(1.5)

and by induction one can prove that{
u2n

1 (0) = ρnc,+ u
0
1(0),

u2n
2 (δ) = ρnc,+ u

0
2(δ),

(1.6)

where the convergence factor (over two iterations) is

ρc,+ := e−2ηδ. (1.7)

It is readily seen that in the non-overlapping case (δ = 0), the convergence factor ρc,+ is identi-
cally equal to 1 and the algorithm does not converge. In contrast, if the overlapping parameter
is not trivial (δ > 0) the convergence is guaranteed since the convergence factor ρc,+ < 1. This
is not surprising, it is clear that by exchanging only Dirichlet data at the common interface, the
algorithm for the error is stationary.

Propagation problem We consider now the model problem for wave propagation, for a pos-
itive and real parameter κ, and a source term in L2 with compact support(

−∆− κ2)u = f, in Ω = R, (1.8)

where we require the solution u to satisfy the Sommerfeld radiation condition at infinity (our
time convention is e−iωt)

lim
r→+∞

(∂r − iκ) u = 0, r = |x|. (1.9)

The classical Schwarz algorithm, for n ≥ 1 and two initial guesses u0
1 and u0

2, is written as{(
−∂xx − κ2)un1 = f, in Ω1,

un1 = un−1
2 , at δ,

{(
−∂xx − κ2)un2 = f, in Ω2,

un2 = un−1
1 , at 0,

(1.10)

where we also require the local solutions un1 and un2 to satisfy the Sommerfeld radiation condition
at infinity. Standard computations then yield{

un1 (x) = un−1
2 (δ) e−iκ(x−δ), x < δ,

un2 (x) = un−1
1 (0) eiκx, x > 0,

(1.11)

and by induction one can prove that{
u2n

1 (0) = ρnc u
0
1(0),

u2n
2 (δ) = ρnc u

0
2(δ),

(1.12)
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where the (now complex) convergence factor (over two iterations) is

ρc := e−2iκδ. (1.13)

Again, in the non-overlapping case (δ = 0), the convergence factor ρc is identically equal to
1 and the algorithm does not converge (which was predicted). However this time, even if the
overlapping is not trivial (δ > 0), we see that the convergence factor ρc is equal to 1 in modulus,
from the presence of the imaginary unit in the exponential factor.

1.1.2 The interest of the Robin transmission conditions
We show now on the same model problems that using Robin transmission conditions one can
restore the lost convergence previously observed.

Elliptic problem Introducing a Robin boundary condition, parameterized by a complex t to
be chosen later, the (optimized) Schwarz algorithm, for n ≥ 1 and two initial guesses u0

1 and u0
2,

is written as{(
−∂xx + η2)un1 = f, in Ω1,

(∂x + t)un1 = (∂x + t)un−1
2 , at δ,

{(
−∂xx + η2)un2 = f, in Ω2,

(−∂x + t)un2 = (−∂x + t)un−1
1 , at 0,

(1.14)

where we require the local solutions un1 and un2 to decay at infinity. Note that we could consider
two different Robin parameters, one for each sub-domain, but it is enough to introduce only one
parameter for our purposes.

Note that by taking formally the limit t→ +∞ one recovers the previous case with Dirichlet
transmission conditions and by setting t = 0 one gets Neumann transmission conditions (which
yield similar pathological behavior as the Dirichlet case).

Standard computations then yieldu
n
1 (x) = un−1

2 (δ)
(
t−η
t+η

)
eη(x−δ), x < δ,

un2 (x) = un−1
1 (0)

(
t−η
t+η

)
e−ηx, x > 0,

(1.15)

and by induction one can prove that{
u2n

1 (0) = ρno,+ u
0
1(0),

u2n
2 (δ) = ρno,+ u

0
2(δ),

(1.16)

where the convergence factor (over two iterations) is

ρo,+ :=
(
t− η
t+ η

)2
e−2ηδ. (1.17)

It is readily seen that for any Robin parameter t with a real and positive real part, the convergence
factor ρc,+ is strictly lower than 1 in modulus and the algorithm does converge independently
of the overlap (albeit with a faster rate with a larger overlap). In fact, the best parameter is
t = η which yields convergence in two iterations. This is an optimal result, which is valid in the
one-dimensional case. In higher dimensions (see [74] for instance), the optimal parameter is a
(pseudo-differential) operator.
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Propagation problem Introducing a Robin boundary condition, parameterized by a complex
t to be chosen later, the (optimized) Schwarz algorithm, for n ≥ 1 and two initial guesses u0

1 and
u0

2, is written as{(
−∂xx − κ2)un1 = f, in Ω1,

(∂x − t)un1 = (∂x − t)un−1
2 , at δ,

{(
−∂xx − κ2)un2 = f, in Ω2,

(−∂x − t)un2 = (−∂x − t)un−1
1 , at 0,

(1.18)

where we require the local solutions un1 and un2 to satisfy the Sommerfeld radiation condition at
infinity. Standard computations then yieldu

n
1 (x) = un−1

2 (δ)
(
t−iκ
t+iκ

)
e−iκ(x−δ), x < δ,

un2 (x) = un−1
1 (0)

(
t−iκ
t+iκ

)
eiκx, x > 0,

(1.19)

and by induction one can prove that{
u2n

1 (0) = ρno u
0
1(0),

u2n
2 (δ) = ρno u

0
2(δ),

(1.20)

where the convergence factor (over two iterations) is

ρo :=
(
t− iκ
t+ iκ

)2
e−2iκδ. (1.21)

The situation is formally similar to the previous case. We observe that the overlapping
parameter plays no role in the convergence and for any Robin parameter t with a real and
positive imaginary part, the convergence factor ρc,+ is strictly lower than 1 in modulus. The
optimal parameter in this case is t = iκ, which is valid in the one-dimensional case. In higher
dimensions (see [72] for instance), the optimal parameter is also a (pseudo-differential) operator.

1.2 DDM for propagative problems
We provide in this section an overview of the different transmission operators that one can use
to define (non-overlapping) domain decomposition methods for wave propagation problems.

1.2.1 The original transmission conditions of Després
The idea proposed by Després [47, 49, 48, 51, 50] is to consider the physical transmission condi-
tions at the interface and to rewrite them equivalently as Robin conditions.

1.2.1.1 Helmholtz

Let us consider a partition with two sub-domains Ω1 and Ω2 separated by an interface Σ, with
respective outward unit normals ν1 and ν2. We denote by u1 and u2 their respective local
solutions, satisfying the Helmholtz equation, introducing the wavenumber κ,(

−∆− κ2)uj = 0, in Ωj , j = 1, 2. (1.22)

For simplicity we assume that the source term comes from a non-homogeneous physical boundary
condition which is omitted. The continuity conditions, which correspond to the continuity of the
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trace of the solution and the trace of its normal derivative, are{
u1 = u2,

∂ν1u1 = −∂ν2u2,
on Σ, (1.23)

and can be recast as Robin conditions as follows{
+∂ν1u1 − iκ u1 = −∂ν2u2 − iκ u2,

+∂ν2u2 − iκ u2 = −∂ν1u1 − iκ u1,
on Σ. (1.24)

It is clear that the conditions (1.23) and (1.24) are equivalent.

Remark 1.1. In the case were the medium of propagation is heterogeneous, the coefficient iκ can
be modified, for instance by taking into account a simple local average of the varying coefficients
of the PDE from both sides of the interface, see [49, Sec. 4.3].

Formal generalization To help compare different choices of transmission operators, let us
rewrite the transmission conditions (1.24) for two general transmission operators Ts, s ∈ {1, 2},
as {

+∂ν1u1 − T1 u1 = −∂ν2u2 − T1 u2,

+∂ν2u2 − T2 u2 = −∂ν1u1 − T2 u1,
on Σ. (1.25)

With this convention, the conditions of Després consists in using

T1 = T2 = iκ Id. (1.26)

The first equation of (1.25) will be used as a Robin condition for the local sub-problem written
in the domain Ω1 and the second one for the local sub-problem written in the domain Ω2.

In the actual implementation of the domain decomposition method, such transmission condi-
tions will imply that one will need to solve local sub-problems of the form (omitting the physical
boundary condition){(

−∆− κ2)uj = 0, in Ωj ,
+∂νj

uj − iκ Tj uj = xj , on Σ,
j = 1, 2, (1.27)

where xj , j = 1, 2 are given. Usually this data will incorporate information coming from the
adjacent sub-domain and will be computed with the solution obtained at the previous iteration.
For instance, if the relaxed Jacobi algorithm is used, this data reads{

x1 := +r [+∂ν1u1 − iκ T1 u1] + (1− r) [−∂ν2u2 − iκ T1 u2] ,
x2 := +r [+∂ν2u2 − iκ T2 u2] + (1− r) [−∂ν1u1 − iκ T2 u1] ,

(1.28)

where 0 ≤ r < 1 is the relaxation parameter and the quantities used are computed at the previous
iteration.

Convergence analysis The first advantage in using Després method is that the local sub-
domain problems are always well-posed which translates in the discrete setting as the fact that
the local matrices are always invertible. This feature is not always guaranteed if Dirichlet or
Neumann conditions are used instead of the Robin boundary conditions proposed by Després.
When used in the static (elliptic) problem, using the Robin condition corresponds to suppressing
the so-called “rigid body modes”.
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The second advantage of using Després method is that the convergence of the relaxed Jacobi
algorithm iterative algorithm is always guaranteed. Note that the relaxation is necessary in
the general case, although the classical Jacobi algorithm (without relaxation) may nevertheless
converge in some particular configurations. For a proof of this convergence result, we refer the
reader to [49] and more precisely to Theorem 4.1 for the continuous setting and to Theorem 7.1
for the corresponding discrete result in the case of a discretization based on a mixed-hybrid finite
element formulation. These proofs are based on the decay of a pseudo-energy estimate defined
on the interface.

1.2.1.2 Maxwell

The extension of the original idea for Helmholtz to Maxwell was considered by Després, Joly and
Roberts [49, 51]. In the electromagnetic setting, the local solutions E1 and E2 satisfy(

curl curl−κ2)Ej = 0, in Ωj , j = 1, 2. (1.29)

The continuity conditions are{
ν1 × (E1 × ν1) = ν2 × (E2 × ν2),
curl E1 × ν1 = − curl E2 × ν2,

on Σ, (1.30)

and can be recast as Robin conditions as follows{
+ curl E1 × ν1 − iκ ν1 × (E1 × ν1) = − curl E2 × ν2 − iκ ν2 × (E2 × ν2),
+ curl E2 × ν2 − iκ ν2 × (E2 × ν2) = − curl E1 × ν1 − iκ ν1 × (E1 × ν1),

on Σ.

(1.31)

Formal generalization Again, to help compare different choices of transmission operators,
let us rewrite the transmission conditions (1.31) for two general transmission operators Ts,
s ∈ {1, 2}, as{

+ curl E1 × ν1 − T1 ν1 × (E1 × ν1) = − curl E2 × ν2 − T1 ν2 × (E2 × ν2),
+ curl E2 × ν2 − T2 ν2 × (E2 × ν2) = − curl E1 × ν1 − T2 ν1 × (E1 × ν1),

on Σ.

(1.32)
With this convention, the conditions of Després consists in using

T1 = T2 = iκ Id. (1.33)

In the actual implementation of the domain decomposition method, the local sub-problems are
of the form (omitting the physical boundary condition){(

curl curl−κ2)Ej = 0, in Ωj ,
+ curl Ej × νj − iκ Tj νj × (Ej × νj) = xj on Σ,

j = 1, 2, (1.34)

where xj , j = 1, 2 are given data incorporating information coming from the neighbouring sub-
domain.

Convergence analysis This choice of transmission conditions yields well-posed local sub-
problems and a convergence analysis formally similar to the one devised in the acoustic setting is
also applicable, see for instance [49, Th. 9.1] or [51, Th. 2.5]. Besides, a mixed-hybrid finite ele-
ment formulation of the method inherits the convergence properties from the continuous setting
and is therefore a well-adapted discretization strategy, at the price of an increased computational
cost.
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1.2.2 The “exact” transmission operator
It is worth mentioning the existence of an “exact” transmission operator which provides optimal
domain decomposition methods in the sense that it yields convergence in J iterations if J is the
number of sub-domains in the decomposition. This result is valid in the special configuration
where the sub-domains satisfy a chain-like configuration (one-dimensional splitting). For the
proof of this result, we refer the reader to [44, Sec. 1.3.2] for a two-domain configuration and [74,
Th. 17] for a configuration with J serially connected sub-domains. In [39, Th. 6.2], it is shown for
a slightly more general configuration (still excluding cross-points) that the number of iterations
to convergence (or nilpotence index) is equal to the depth of the adjacency graph of the partition
plus one iteration.

In the acoustic setting, the “exact” transmission operator T1 that shall be used in the Robin
boundary condition imposed for the problem in the sub-domain Ω1 is the so-called Dirichlet-to-
Neumann (DtN) map associated to the sub-domain Ω2. More specifically, we define for a given
Dirichlet trace x on the interface Σ

T1x := ∂ν2v2, (1.35)

where v2 is solution to (omitting the physical boundary){(
−∆− κ2) v2 = 0, in Ω2,

v2 = x, on Σ.
(1.36)

The definition of the operator T2 is formally similar, with a DtN map defined in the sub-domain
Ω1. Note that these maps are not always well-defined, for instance if κ is a Dirichlet eigenvalue
of the Laplacian operator. The extension to the electromagnetic setting is straightforward and
uses Electric-to-Magnetic maps. The generalization if this idea to more sub-domains requires to
solve auxiliary problems in the complementary of each sub-domain.

At the discrete level, the “exact” transmission operator can be viewed as a Schur complement
matrix for the degrees of freedom that lies on the transmission interface. In [98] for instance, the
authors compute a sparse approximation of the (dense) Schur complement matrix to derive an
algebraic DD method.

This strong result is however mainly of theoretical interest since actually computing this ideal
operator is (almost) as difficult than solving the original problem. It is nevertheless clear that
this could be used as a guide for the construction of efficient transmission operators and this is
the idea behind some DD methods as we have already seen.

Connection with absorbing boundary conditions In some cases the above “exact” trans-
mission conditions coincide with transparent or absorbing boundary conditions. The construction
of (artificial) absorbing boundary conditions (ABC) is an old subject, first formalized in 1977 in
a paper by B. Engquist and E. Majda [63]. In this paper, the Helmholtz equation is considered
and the “exact” transmission condition given by the Dirichlet-to-Neumann (DtN) map is studied
for the case of the exterior half-space problem in homogeneous media. It corresponds to the
following pseudo-differential impedance operator

iκ
√

Id + 1
κ2 ∆Σ , (1.37)

where ∆Σ is the Laplace-Beltrami tangential operator. This operator is sometimes referred to
in the literature as the “square-root operator”.
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For the electromagnetic setting, the exact transparent operator formally corresponds to the
following pseudo-differential impedance operator

iκ
(

Id + 1
κ2 ∆Σ

)−1/2(
Id − 1

κ2 curlΣ curlΣ
)
. (1.38)

For a proof of this result, see for instance [59, Prop. 1].
The transmission conditions of Després are commonly reinterpreted as a zeroth order Taylor

approximation of (1.37) in the small parameter |ξ|/κ if we denote by ξ the Fourier parameter.
This approximation yields the following absorbing boundary condition for a general surface Σ
with outward unit vector ν (our time convention is e−iωt)

∂νu− iκ u = 0, on Σ, (1.39)

for the Helmholtz equation and

curl E× ν − iκ ν × (E× ν) = 0 on Σ, (1.40)

for the Maxwell case. This is the reason why the DDM using Després transmission conditions
is sometimes referred to as TO0 for “Taylor Order 0”. This reinterpretation also explains the
choice of parameter iκ in the transmission conditions.

The point of view of this work We emphasize that, in this work and in contrast to some
other works, we do not try to approximate these “exact” transmission conditions. The approach
that we adopt is to try to derive a method which is provably convergent (with hopefully a fast
convergence rate) and to provide sufficient conditions on its ingredients (mainly the transmission
operator) to do so. In particular, we will always consider real positive definite transmission
operators and this “exact” operator does not in general fall into this class of operators. However,
one common characteristic shared by both the transmission operators we advocate and this
“exact” operator is that they will be both of the same order when considered as pseudo-differential
operators.

1.2.3 Zeroth-order transmission operators
In the continuous setting To try to improve the convergence of the iterative algorithms,
one can consider alternatives to the choice of the parameter iκ involved in the definition of the
Robin conditions. The common approach to do so is based on the splitting of R3 or R2 into
two half-spaces. This particular geometry allows to use Fourier analysis to compute explicitly
a modal convergence rate in Fourier space of the classical Jacobi algorithm (no relaxation is
considered). In the continuous setting and for a non-overlapping configuration, such an analysis
will reveal that for any choice of the free parameter, the convergence rate in Fourier space will
always tend to 1 as the modulus of the Fourier parameter goes to infinity. Any optimization
strategy at the continuous level is therefore hopeless.

In the discrete setting The situation changes if one consider the discrete problem. The key
idea is to consider only the Fourier frequencies that can be represented on the mesh. Typically
this means for a Fourier parameter smaller than π

h , where h is the discretization parameter. The
coefficient in the transmission conditions is then optimized by solving min−max problems for
Fourier frequencies only in the bandwidth of the mesh discretization. Since the strategy is based
on an optimization process with zeroth order transmission operators, the methods described
below are sometimes referred to as “Optimized Order 0” (OO0 ) methods.
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A first step in this direction was proposed by Gander, Magoules and Nataf in [72], where the
authors propose to use, for a parameter α ∈ C to be optimized,

T1 = T2 = α Id. (1.41)

Note that the parameter α must be chosen with a strictly positive imaginary part to ensure the
well-posedness of the local sub-problems. For the optimized value of the coefficient α, which
depends on h, the convergence factor of the classical Jacobi algorithm for the half-space problem
is of the form τh = 1−O

(
h1/2) [72, Th. 4.1]. We also note that Magoules, Iványi and Topping

proposed an alternative optimization strategy, based on the same form of transmission conditions,
see [97, 99] for the details.

A further generalization of these conditions was later considered by Gander, Halpern and
Magoules in [75], which are referred to as the “two-sided Robin transmission conditions”, by
opposition to the “one-sided” version described above. The transmission operators are defined
as, for two (dimensionless) parameters α1, α2 ∈ C

Ts = αs Id, s ∈ {1, 2}. (1.42)

Again, the parameters α1 and α2 must be chosen with a strictly positive imaginary part to
ensure the well-posedness of the local sub-problems [75, Th. 2.1]. For the optimized value of the
coefficients α1 and α2 the convergence factor of the classical Jacobi algorithm for the half-space
problem is of the form τh = 1−O

(
h1/4) [75, Th. 4.1].

1.2.4 Second-order transmission operators
1.2.4.1 Helmholtz

Various improvements have been made on the original idea of Després. Several authors have
proposed to use higher order surface differential operators defined on the boundary. We readily
see that this approach may raise difficulties when the boundary is not smooth. The presence of
‘corners’ requires dedicated care, which is not specific to domain decomposition methods, see for
instance [10, 88].

Second-order Taylor approximation A first idea, if one sees Després operator as the zeroth-
order approximation of an absorbing boundary condition (ABC) is to use a higher-order approx-
imation of (1.37). Since the Helmholtz operator is self-adjoint, the next order considered is a
second-order Taylor approximation (sometimes referred to as TO2 for “Taylor Order 2”) and
reads

∂νu− iκ
(

Id + 1
2κ2 ∆Σ

)
u = 0, on Σ. (1.43)

Transmission conditions based on this ABC are not (often) considered though, because the well-
posedness of the local sub-problems are not guaranteed, since the operator Id + 1

2κ2 ∆Σ is not
coercive.

Using a positive operator For this reason, Piacentini and Rosa consider a second-order
approximation, with the upsetting sign flipped, to obtain a coercive operator [117], namely

∂νu− iκ
(

Id − 1
2κ2 ∆Σ

)
u = 0, on Σ. (1.44)
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Besides, they introduced two real and positive tuning parameters α and β, so that their trans-
mission operators are written as

T1 = T2 = iκβ
(

Id − α

κ2 ∆Σ

)
. (1.45)

This choice ensures the well-posedness of the local sub-problems, at least for a regular enough
interface. The convergence of the associated iterative algorithm can be proved by extending the
proof of Després based on a pseudo-energy estimate [117].

Optimization The optimization approach based on the Fourier analysis of the splitting of
R3 into two half-spaces can also be considered with second-order transmission operators by
introducing free-parameters in the definition of the operators. Such methods are sometimes
referred to as “Optimized Order 2” (OO2 ) methods.

The optimization of second order operators for Helmholtz problems without overlap was
considered in [67, 72], for two parameters α, β ∈ C to be tuned, the transmission operators read

T1 = T2 = αId + β∆Σ. (1.46)

For the optimized values of the free parameters, the convergence factor of the classical Jacobi
algorithm for the half-space problem is of the form τh = 1−O

(
h1/4) for the propagative modes

and τh = 1 − O
(
h1/2) for the evanescent modes [72, Th. 4.2]. We also note that Magoules,

Iványi and Topping proposed an alternative optimization strategy, based on the same form of
transmission conditions, see [97, 99] for the details.

A “two-sided” version was considered in [76], but for an overlapping configuration.

1.2.4.2 Maxwell

Using a positive operator In [41] (and [26]), the idea to adapt a second-order approximation
of the transparent operator (1.38) for the half-space is again considered for the Maxwell setting.
It is clear that due to the presence of two operators, different second order approximation can be
used. The square-root operator is commonly approximated by a constant so that the simplest
approximation reads

curl E× ν − iκ
(

Id − 1
κ2 curlΣ curlΣ

)
ν × (E× ν) = 0, on Σ, (1.47)

but is troublesome due to the presence of a non coercive operator. The sign can however be
modified accordingly, to obtain [41]

curl E× ν − iκ
(

Id + 1
κ2 curlΣ curlΣ

)
ν × (E× ν) = 0, on Σ, (1.48)

which can be seen as a straightforward adaptation to the electromagnetic setting of (1.44).
Besides, the authors introduce two real and positive tuning parameters α and β, so that their
transmission operators are written as

T1 = T2 = iκβ
(

Id + α

κ2 curlΣ curlΣ

)
. (1.49)

This choice ensures the well-posedness of the local sub-problems, at least for regular enough
interfaces.
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Optimization The first analytic optimization of second-order operators in the context of
Maxwell equations was considered by Rodriguez and Gerardo-Giorda [121], in the spirit of the
techniques used in [72]. They provide an optimized value for the one-parameter transmission
conditions (α > 0)

T1 = T2 = iκα
(

Id − 1
κ2 curlΣ curlΣ

)
, (1.50)

and two-parameters transmission conditions (α1, α2 > 0)
T1 = κα1

(
Id − 1

κ2 curlΣ curlΣ

)
,

T2 = iκα2

(
Id − 1

κ2 curlΣ curlΣ

)
.

(1.51)

One can however be wary of such conditions, since the well-posedness of such operators is not
guaranteed in a general configuration.

In [114], Peng, Rawat and Lee improve the conditions (1.50) by considering a complex coef-
ficient α ∈ C and by making a distinction between the transverse electric (TE) and transverse
magnetic (TM) modes. The approach is then further improved in [119], where two second-order
transmission operators are used (α, β ∈ C)

T1 = T2 = iκ
(

Id + α

κ2 gradΣ divΣ

)−1
(

Id − β

κ2 curlΣ curlΣ

)
. (1.52)

Similar optimized transmission conditions with second-order operators were also considered
in [57] for Maxwell equations written as a first order system and subsequently studied in [56]
where a connection between the two-fields and one-field versions is established. Different families
of operators are proposed and a convergence factor of the form τh = 1 − O

(
h1/4) was proved

for two classes of operators using Fourier analysis [57, Tab. 3]. See also [116, 115] for additional
work using second-order tangential operators in transmission conditions, including numerical
illustrations on test cases of practical interest.

For the damped Maxwell equations, written as a first-order system, the optimization was
treated first in [62] for one-parameter families of operators and further extended in [60] where
two-parameters operators are considered.

1.2.5 Rational fraction of local operators
There is a widespread belief in the domain decomposition community that good absorbing bound-
ary conditions (ABC) make for good transmission conditions. As we have already seen, there
are indeed connections, at least formally, in the types of transmission operators that are used,
even if several transmission conditions have nothing to do with ABC [117, 41]. Note that a first
usage of ABC for domain decomposition can perhaps be traced back to [82] and [64], but for
Laplace’s equation, with zeroth and second order operators. The first use in the context of the
Helmholtz equation can be found in [109]. The pinnacle of the approach consisting to use ABC
as transmission conditions is probably the work of Boubendir, Antoine and Geuzaine [17] for the
Helmholtz equation and then El Bouajaji, Thierry, Antoine and Geuzaine [61] for the Maxwell
case. For a review of ABC (and PML, not considered here) techniques, see for instance [108].

If the performance of such domain decomposition methods are rather impressive in the nu-
merical illustrations presented in the literature [17, 61], the approach lacks a general analysis. In
particular, it is unclear if the local sub-problems are unconditionally well-posed and if the con-
vergence of the iterative algorithm is guaranteed. Some partial convergence results are available,



1.2. DDM FOR PROPAGATIVE PROBLEMS 23

see [17, Prop. 3] and [61, Th. 1], but in particular geometries (the case of spherical domains is
treated) and without taking into consideration the Padé approximation actually used to compute
the transmission operators.

1.2.5.1 Helmholtz

The approach of [17] consists in using the high-order ABC introduced in [3] for the Helmholtz
equation. The starting point is the Fourier analysis that provides an exact transmission operator,
see (1.37), in the case of the splitting of the whole space R3 into two half-spaces. To avoid
resonances, the operator (1.37) is conveniently regularized by the formal substitution of the
wavenumber κ by a complex version κε := κ+ iε,

iκ
√

Id + 1
κ2
ε

∆Σ , (1.53)

where ε is a tunable damping parameter, possibly varying on the surface Σ. Some heuristics can
be proposed to tune ε based on the local curvature of the interface Σ. However, the operator (1.53)
remains non-local and expensive to compute. A local approximation of this operator is therefore
considered. The idea, borrowed from [9, 81], is to approximate (1.53) using Padé approximation.
The (2N + 1)th-order Padé approximation of the square root is

√
1 + x ≈ 1 + 2

2N + 1

N∑
j=1

c1

(
1− c1 + 1

c1 + 1 + x

)
, c1 = cotan2

(
iπ

2N + 1

)
. (1.54)

In addition, following [103], the efficiency of the approximant is enhanced by a suitable rotation
by some angle φ of the branch cut of the square root which is enabled by a change of variable.
We have

√
1 + x ≈ α

1 + 2
2N + 1

N∑
j=1

c1

(
1− α2(c1 + 1)

α2c1 + 1 + x

) , α = eiφ. (1.55)

The real approximation (1.54) provides a good approximation for the propagative modes, while
the complex approximation (1.55) improves the approximation of the evanescent modes but
deteriorates the one of the propagative modes. The rotation angle should be tuned in order to
hit the sweet spot.

The transmission operators T1 = T2 are evaluated by the formal substitution of x by κ−2
ε ∆Σ

in (1.55). We readily see that the inverse of several local operators must be evaluated in order
to compute the action of the operator. This is dealt with by introducing adequate auxiliary
variables. For more detail on the reformulation of Padé approximants using auxiliary fields, we
refer to [104, Appendix A] and the reference therein.

Note that the above high-order ABC is valid (and efficient) for planar boundaries or regular
curved boundaries. Specific treatments shall be applied in presence of corners and were recently
derived in [104] and applied in the context of domain decomposition in [105].

1.2.5.2 Maxwell

The approach of [61] consists in using the high-order ABC introduced in [59] for Maxwell equa-
tions, on the model of what was previously done for the acoustic case. In the electromagnetic
setting the transparent operator for the half-space splitting is given in (1.38). Using again the
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formal substitution of the wavenumber κ by a complex version κε := κ+iε, the aim is to construct
transmission operators T1 = T2 which approximate the operator

iκ
(

Id + 1
κ2
ε

∆Σ

)−1/2(
Id − 1

κ2
ε

curlΣ curlΣ
)
. (1.56)

The high-order ABC considered is more clearly understood written in the following form√
Id + 1

κ2
ε

∆Σ curl E× ν − iκ
(

Id − 1
κ2 curlΣ curlΣ

)
ν × (E× ν) = 0, on Σ, (1.57)

and the square-root is again approximated as in the acoustic setting using Padé approximants.

1.2.6 Non-local transmission operators
The analysis of domain decomposition methods for Helmholtz equation using non-local operators
dates back to the PhD thesis of Ghanemi [78, 42] and was subsequently extended during the PhD
thesis of Lecouvez [91, 43, 44].

The approach adopted in those works consists in deriving sufficient conditions on the trans-
mission operators to ensure both the well-posedness of the local sub-problems and the fastest
convergence of the iterative algorithms. In particular, if the transmission operators in (1.25) are
such that 

T1 is continuous from H
1/2(Σ) to H−1/2(Σ),

T2 = T∗
1, (the adjoint)

T1 + T2 is positive and injective,
(1.58)

then the local sub-problems are well-posed, see [78, Th. 3.1], [42, Th. 1], [91, Lem. 1] and [44,
Lem. 2.5]. Moreover, if{

Σ is closed (no junction points),
T1 + T2 is an isomorphism from H

1/2(Σ) to H−1/2(Σ),
(1.59)

then the convergence of the relaxed Jacobi algorithm is geometrical, see [78, Th. 3.3], [42, Th.
7], [91, Th. 1] and [44, Th. 2.1], by which we mean that the error between the iterative solution
and the exact solution at the iteration n is proportional to τn, with the convergence factor τ < 1.
Note that (1.59) is not necessary to ensure the convergence of the relaxed Jacobi algorithm, only
the geometric convergence. Several integral operators satisfying the above requirements have
been analysed in [91, Chap. 4 and 5] and tested numerically (in 2D). More recently, similar ideas
and integral operators were also used in [19].

It is the purpose of this document to pursue those works, namely extend the convergence
analysis to the electromagnetic setting and propose suitable transmission operators, analyse the
dependence of the convergence rate with the discretization parameter and finally lift the absence
of junction point assumption.

1.3 The junction issue and available treatments
As we already mentioned in the introduction, the presence of junctions can be an issue both
at the theoretical level for the convergence analysis of the method and in practice in numerical
implementations. We shall mention that the junction issue is not exclusive to wave propagation
problems, in fact it is also present for elliptic problems.
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The nature of the issue posed by junctions varies depending on the type of transmission
operators that are used. For zeroth-order transmission operators, difficulties arise at the discrete
level for nodal finite element discretizations, in the definition of transmission conditions at cross-
points. When second or higher-order impedance operators are used, the main difficulty comes
from the presence of a ‘corner’, which raises a definition issue due to the use of high order
operators (for instance Laplace-Beltrami operators) on open surfaces, already at the continuous
level. In presence of junctions, DD methods using non-local operators can be properly defined
but the geometric convergence proof is not valid.

We review below some of the literature available on the cross point issue.

1.3.1 Zeroth-order transmission operators
As we already mentioned in the introduction, there is no additional issue in presence of junctions
to define and analyse the DD method at the continuous level when using the identity operator (or
other zeroth-order transmission operators). In addition, the continuous convergence proof based
on energy estimates [49] still stand in presence of junction points. However, the discretization of
the method must be handled with great care, and was the subject of some attention. We review
below several strategies that have been proposed at the discrete level to cope with junction
points.

1.3.1.1 Mixed-hybrid and mortar methods

Mixed-hybrid or mortar finite element formulations introduce naturally the two Dirichlet and
Neumann traces, which are both explicitly discretized. Mixed-hybrid methods seem as a result
particularly adapted to the discretization of domain decomposition methods we consider. This
was recognized as a decisive feature in early works on the subject [49] which therefore considered
such formulations as the preferred discretization method. For a general reference on mixed hybrid
methods see [120].

The mixed-hybrid strategy leads to solve local saddle point problems. The main idea, bor-
rowed from [49, Chap. 7] as it was originally constructed, is as follows. Let f ∈ L2(Ω) and
x ∈ H1/2(Σ) and suppose we are set to solve the simple model problem{

−∆p− κ2p = f, in Ω,
(∂ν − ik) p = x, on Σ,

(1.60)

where Σ = ∂Ω is the transmission interface. We introduce two auxiliary unknowns: u which
is intended to represent ∇p and λ which is intended to represent the natural trace p|Σ. The
variational form of the problem is

Find p, u, λ ∈ L2(Ω)×H(div; Ω)×H1/2(Σ) such that
−(div u, q)L2(Ω) − κ2(p, q)L2(Ω) = (f, q)L2(Γ), ∀q ∈ L2(Ω),
(u, v)L2(Ω)3 − (p, div v)L2(Ω) − 〈v · n, λ〉Σ = 0, ∀v ∈ H(div,Ω),
〈u · n, µ〉Σ − iκ 〈λ, µ〉Σ = 〈x, µ〉Σ , ∀µ ∈ H1/2(Σ),

(1.61)

where we noted 〈·, ·〉Σ the duality product on H−1/2(Σ)×H1/2(Σ). Note that u ∈ H(div,Ω) has
a natural trace u · n in H−1/2(Σ).

After discretization, the three unknowns p, u and λ are respectively represented using P0(Ω),
RT(Ω) and P0(Σ) elements (this is the lowest order approximation). The discretization of λ is
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therefore non-conformal. The notations P0(Ω) and P0(Σ) refer respectively to piecewise con-
stant approximation spaces in the volume and on the interface, the notation RT(Ω) refer to
approximation spaces built on Raviart-Thomas finite elements in the volume.

The key thing to note is that with those approximation spaces the degrees of freedom are
located at the interior of either the elements or the interfaces between two elements and thus
cannot be shared by more than two subdomains. It follows that none of these degrees of freedom
is associated to the cross-points in 2D or junction lines in 3D. It follows that there is no issue in the
definition of the transmission conditions, since there is always a point-to-point correspondence
between the degrees of freedom of two given sub-domains at their common interface. Besides,
this particular choice of discrete approximation strategy allows to inherit the convergence result
from the continuous analysis which therefore extends to the actual discrete process.

Independently of the cross-point issue, numerical implementations based on mixed-hybrid
formulations suffer from an increased computational cost compared to the usual one field equation
based on a nodal discretization. Even if we eliminate some variables, we are left with at least
a system of size the number of edges in 2D (or the number of triangles in 3D) which is three
(respectively two) times bigger than the corresponding P1 system.

In addition, it is of interest to be able to devise DD methods applicable to nodal-based dis-
cretizations, at least in order to be applicable to already existing codes. It would be particularly
irksome that successful DD methods cannot cope well with widely popular discretization methods
and must be restricted to only special methods.

1.3.1.2 Boubendir and Bendali strategy for nodal discretizations

In a series of articles [13, 14, 15], an innovative treatment of cross-points was proposed by
Boubendir and Bendali. The main idea of the method is to leave untouched the finite elements
unknowns and equations related to the cross-points while on the transmission boundaries, stan-
dard Robin transmission conditions between sub-domains are enforced.

Since the junction points and associated degrees of freedom are kept in common for all sub-
domains, a strong coupling is maintained between all local sub-problems at these nodes. This
is dealt with by using a Schur complement procedure by solving the local sub-problems with
a Dirichlet condition at the cross-points and a Neumann condition for the other nodes located
at the transmission interfaces. A global (still indefinite) system remains to be solved at each
iteration, which is of the size of the number of degrees of freedom at cross-points. The size of
this problem remains moderate since the number of such degrees of freedom is relatively small
compared to the size of the local sub-problems.

The method leads to provably well-posed local sub-problems [15, Th. 3.2] and a convergence
analysis is available which states that the relaxed Jacobi algorithm converges [15, Th. 3.3].
Numerical results illustrating the suitability of the approach can be found in [12, 18].

It shall be mentioned that this technique builds on ideas that were already available for
elliptic problems. Algebraic DD techniques such as the FETI method [100] introduce additional
unknowns at cross-points which leads to under-determined systems of interface unknowns (so-
called redundant matching conditions) and requires Krylov acceleration techniques to actually
converge. The FETI-DP algorithm [66, 90] avoids the problem altogether by replacing the dual
variables of the Lagrange multiplier defined on the transmission interface with primal ones. It
follows that solving the local problems amounts to performing a Schur complement for the degrees
of freedom associated to the junction points, hence relies on the positivity and semi-definiteness
of the local matrices.
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1.3.1.3 Gander and Santugini strategy for nodal discretizations

For the Poisson equation, it is reported in [70] that the Robin parameter shall be modified in the
presence of cross-points in order to avoid divergence of stationary point algorithms. Moreover,
Gander and Kwok [71] pointed out that straightforward nodal discretizations of OSM can diverge
and that the continuous proof of convergence fails to carry over to the discrete setting in general.

To address this issue, two different approaches are described in [73]. The first strategy consists
in introducing auxiliary variables allowing to construct a consistent discretization of the Neumann
traces at cross-points which yields provably convergent fixed point iterative algorithms. The use
of auxiliary variable is avoided in the second strategy proposed but relies on communication
between all neighbouring sub-domains that share a common junction point.

Although developed for the elliptic problem, it seems to us that these approaches are promis-
ing and could be extended to wave propagation problems without difficulties, but we are not
aware of available work in this direction.

1.3.2 Second-order transmission operator
When tangential second-order (or any higher-order) operators are used in the transmission con-
dition, the cross-points are first troublesome because of the presence of geometric singularities
on the transmission boundary and at which the tangential differential operators are not well-
defined. Recently, a new corner treatment for absorbing boundary conditions using second order
tangential operators defined on polygonal boundaries has been introduced, which paves the way
for successful domain decomposition methods [111, 52]. The case of boundary junction points
is treated but the work is on-going for interior junction points. The idea is to substitute the
classical second order operator, namely

(
Id + 1

2κ2 ∆Σ
)
, by an operator with the same second

order Taylor approximation (for low Fourier frequencies) but with the correct sign to obtain well
posed local sub-problems. The associated second order ABC is

∂νu− iκ
(

Id − 1
2κ2 ∆Σ

)−1
u = 0, on Σ, (1.62)

or equivalently (
Id − 1

2κ2 ∆Σ

)
∂νu− iκu = 0, on Σ. (1.63)

Moreover, the authors derive quasi-continuity relations at the corners of the polygonal boundary
to complement the above ABC with corner conditions which takes the form of a system of linear
ordinary differential equations defined on the flat edges of the boundary. This yields well-defined
local sub-problems [52, Th. 2]. The ABC with the corner conditions is then adapted to defined
transmission conditions and construct domain decomposition methods. The convergence of the
relaxed Jacobi algorithm is guaranteed and the proof relies on a skeleton energy estimate which
is provably decreasing [52, Lem. 8].

1.3.3 Rational fraction of local operators
Again, the presence of corners (more than the nature of the cross-point) is troublesome when
using Padé-based transmission conditions because tangential differential operators are involved
in the definition of the transmission condition. In [104] the authors apply Padé-type high-order
ABCs to computational domains with non-smooth (polygonal or polyhedral) boundaries. The
proposed treatment relies on compatibility relations which are derived for the case of right-
angles. The technique is subsequently applied to more general corners at the price of making
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additional approximations or using a regularization of the boundary. The treatment involve
auxiliary unknowns which satisfy linear systems of differential equations posed on the flat edges
of the boundary.

The approach is then applied in the context of domain decomposition methods in [105] to
treat the cross point issue. Numerical results illustrate the efficiency of the approach on a nodal
finite element discretization and both boundary and interior cross-points are taken care of.

Notice that such a treatment is limited to special types of partitions where only an even
number of sub-domains can meet at a cross-point. Besides, the degrees of freedom associated to
cross-points are duplicated as many times as there are sub-domains and this results in an under-
determined system in the number of interface unknowns to be solved for. Finally, we point out
that the approach lacks a general analysis on the well-posedness of the local sub-problems and
the convergence of the iterative algorithms, but this is not specific to the cross-point treatment
that is applied.

1.3.4 Non-local transmission operators
In the continuous setting In presence of junctions, DD methods using non-local operators
can be properly defined and are provably convergent [78]. However, the geometric convergence
proof [42, 44, 91] is not valid in presence of cross points. Notice that the proof fails both with
interior cross points, but also with boundary cross points.

Besides, the transmission operators based on integral operators proposed in [91] lose their
continuity properties on open boundaries. An adequate treatment is therefore required, as pro-
posed in [19] for instance, where the authors use cut-off functions to suitably regularize the
integral operators and as a result deal with cross-points.

In the discrete setting In her thesis [78], S. Ghanemi reported numerical results showing the
h-uniform stability of the convergence of the relaxed Jacobi algorithm in presence of boundary
junctions, see Fig. 3.8 in Chap. 6 for the 2D results and Fig. 4.7 in Chap. 9 for the 3D results.
The numerical results are obtained using a mixed-hybrid finite element formulation. If other
tests presented are obtained in presence of interior junctions, no result are provided that shows
the degradation of the h-uniformity of the convergence.

In contrast, it is mentioned in [91, Sec. 9.2] that numerical experiments in 2D using a nodal
discretization show, at least for the integral operator tested, that the geometric convergence
deteriorates with decreasing mesh parameter in the presence of boundary junctions. Besides, the
numerical error seems to be concentrated near the cross points. Given the previous results using
a mixed-hybrid formulation we just mentioned, the issue seems however to be due to the type of
non-local operator used, which, as we already mentioned, loses its adequate mapping properties
on open boundaries.

Note that several of the above strategies developed for zeroth-order transmission operators
could, in theory, be applicable to DD methods using non-local operators. We are not aware of
any attempt in this direction though.
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This chapter is intended as a self contained introduction to domain decomposition and the
main important ideas later presented in the thesis. We wish to describe our approach to domain
decomposition in a toy configuration with two non-overlapping sub-domains to help the reader
grasp the essential concepts. In particular, our goal is to develop intuition on the reasons be-
hind some of the abstract definitions we will later introduce. Subsequent chapters will consider
generalizations of the ideas presented below, in a more abstract way. Note that our viewpoint
is to first interpret domain decomposition methods at the PDE level, before any discretization
method is considered.

2.1 Standard approach for a two-domain decomposition
We consider a model configuration with a non-overlapping partition consisting of two sub-
domains, excluding the presence of (boundary) junction points.

2.1.1 A first introduction to domain decomposition method
2.1.1.1 Model problem

We consider the Helmholtz equation in 2D in a (regular) domain Ω with a first order absorbing
boundary condition imposed on the boundary Γ of Ω. The model problem is then

Find u ∈ H1(Ω) such that(
−∆− κ2)u = f, in Ω,

(∂ν − iκ)u = g, on Γ,
(2.1)

where f ∈ L2(Ω) and g ∈ L2(Γ) represent the source, κ denotes the wavenumber and ν is the
outward unit normal vector to Γ.

2.1.1.2 Decomposition

We consider a non-overlapping partition in two domains, excluding the presence of (boundary)
junction points, by introducing a (closed) interface Σ that splits the domain Ω into an interior
domain Ω1 and exterior domain Ω2. Our assumption on the geometry of the partition yields
that the boundary of Ω1 is made of one component Σ while the boundary of Ω2 is made of two
(disconnected) components Σ and Γ, see Figure 2.1.

The domain decomposition method consists in considering the two local sub-problems{
Find u1 ∈ H1(Ω1) such that(
−∆− κ2)u1 = f |Ω1 , in Ω1,

and


Find u2 ∈ H1(Ω2) such that(
−∆− κ2)u2 = f |Ω2 , in Ω2,

(∂ν − iκ)u2 = g, on Γ,

(2.2)
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Ω1 Ω2

Σ
Γ

Figure 2.1: Geometric partition in two non-overlapping sub-domains.

which are equivalent to the model problem provided they are coupled by the following trans-
mission conditions, expressing the continuity of the two traces (Dirichlet and Neumann) at the
interface Σ {

u1|Σ = u2|Σ,
∂ν1u1 = −∂ν2u2,

(2.3)

where we denoted by ν1 (respectively ν2) the outward unit normal vector to Ω1 (respectively Ω2)
at the interface Σ.

2.1.1.3 Transmission operator and generalized Robin quantities

Using the two equations (2.3) in a domain decomposition method yields algorithms that fail to
converge. This is why impedance-like transmission conditions have been developed.

Introducing a boundary operator T on Σ (often referred to as a transmission or impedance
operator) and taking two linear combinations of the transmission conditions (2.3) we get{

(+∂ν1 − iκT )u1 = (−∂ν2 − iκT )u2,

(−∂ν1 − iκT )u1 = (+∂ν2 − iκT )u2,
on Σ. (2.4)

It is readily checked that if the operator T is injective, the set of equations (2.4) is equivalent
to (2.3).

Using the above transmission conditions (2.4), we can rewrite the decomposed problem in
the form of the (still coupled) two following local sub-problems

Find u1 ∈ H1(Ω1) such that(
−∆− κ2)u1 = f |Ω1 , in Ω1,

(+∂ν1 − iκT )u1 = (−∂ν2 − iκT )u2, on Σ,

and


Find u2 ∈ H1(Ω2) such that(
−∆− κ2)u2 = f |Ω2 , in Ω2,

(∂ν − iκ)u2 = g, on Γ,
(+∂ν2 − iκT )u2 = (−∂ν1 − iκT )u1, on Σ.

(2.5)

Assuming that the operator T is positive definite, one can prove that the above two local
sub-problems are well posed.
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2.1.1.4 A first (naive) iterative algorithm

Starting from an initial guess (for instance u0
± ≡ 0), one can construct two sequences

(
un±
)
n∈N

of local solutions defined iteratively, for n ≥ 0, as
Find un+1

1 ∈ H1(Ω1) such that(
−∆− κ2)un+1

1 = f |Ω1 , in Ω1,

(+∂ν1 − iκT )un+1
1 = (−∂ν2 − iκT )un2 , on Σ,

and


Find un+1

2 ∈ H1(Ω2) such that(
−∆− κ2)un+1

2 = f |Ω2 , in Ω2,

(∂ν − iκ)un+1
2 = g, on Γ,

(+∂ν2 − iκT )un+1
2 = (−∂ν1 − iκT )un1 . on Σ,

(2.6)

Note that the above local sub-problems are no longer coupled, since we use in the right-hand-side
the data from the previous iteration. We see here how the decomposition of the original problem
into smaller local sub-problems can be used to compute iteratively the solution of the model
problem.

This is the simplest algorithm that one can write, but as we shall see this is not actually
how the method is implemented and analysed. To see this, we shall first reformulate the volume
transmission problem as a problem at the interface Σ, which is the subject of the next section.

2.1.2 Reformulation at the interface

2.1.2.1 Interface problem

Before starting the reformulation, let us introduce (w1, w2) a lifting of the source defined as
follows 

Find w1 ∈ H1(Ω1) such that(
−∆− κ2)w1 = f |Ω1 , in Ω1,

(+∂ν1 − iκT )w1 = 0, on Σ,

and


Find w2 ∈ H1(Ω2) such that(
−∆− κ2)w2 = f |Ω2 , in Ω2,

(∂ν − iκ)w2 = g, on Γ,
(+∂ν2 − iκT )w2 = 0, on Σ.

(2.7)

By linearity, finding (u1, u2) is equivalent to find (v1, v2) such that
Find v1 ∈ H1(Ω1) such that(
−∆− κ2) v1 = 0, in Ω1,

(+∂ν1 − iκT ) v1 = (−∂ν2 − iκT ) v2 + (−∂ν2 − iκT )w2, on Σ,

and


Find v2 ∈ H1(Ω2) such that(
−∆− κ2) v2 = 0, in Ω2,

(∂ν − iκ) v2 = 0, on Γ,
(+∂ν2 − iκT ) v2 = (−∂ν1 − iκT ) v1 + (−∂ν1 − iκT )w1, on Σ.

(2.8)
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It is natural to introduce the following operators, often referred to as local scattering operators

S1 : x1 7→ (−∂ν1 − iκT ) v1 where


v1 ∈ H1(Ω1) is such that(
−∆− κ2) v1 = 0, in Ω1,

(+∂ν1 − iκT ) v1 = x1, on Σ,

and S2 : x2 7→ (−∂ν2 − iκT ) v2 where


v2 ∈ H1(Ω2) is such that(
−∆− κ2) v2 = 0, in Ω2,

(∂ν − iκ) v2 = 0, on Γ,
(+∂ν2 − iκT ) v2 = x2, on Σ.

(2.9)

Using the above definition, we obtain from our coupled system that{
(+∂ν1 − iκT ) v1 = S2 (+∂ν2 − iκT ) v2 + (−∂ν2 − iκT )w2,

(+∂ν2 − iκT ) v2 = S1 (+∂ν1 − iκT ) v1 + (−∂ν1 − iκT )w1,

⇔
([

Id 0
0 Id

]
−
[

0 S2
S1 0

])[
(+∂ν1 − iκT ) v1
(+∂ν2 − iκT ) v2

]
=
[
(−∂ν2 − iκT )w2
(−∂ν1 − iκT )w1

]
.

(2.10)

Noting that, by construction, {
(+∂ν1 − iκT )w1 = 0,
(+∂ν2 − iκT )w2 = 0,

(2.11)

we have in fact([
Id 0
0 Id

]
−
[

0 S2
S1 0

])[
(+∂ν1 − iκT )u1
(+∂ν2 − iκT )u2

]
=
[
(−∂ν2 − iκT )w2
(−∂ν1 − iκT )w1

]
. (2.12)

To have more compact notations, we introduce

S :=
[
S1 0
0 S2

]
, Π :=

[
0 Id
Id 0

]
, (2.13)

and

x =
[
x1
x2

]
:=
[
(+∂ν1 − iκT )u1
(+∂ν2 − iκT )u2

]
, b :=

[
(−∂ν2 − iκT )w2
(−∂ν1 − iκT )w1

]
. (2.14)

so that we obtain that x is solution to

(Id −ΠS) x = b. (2.15)

The operator S is the global scattering operator and the operator Π is referred to as the exchange
operator since its action consists in swapping information between the two sub-domains.

We have therefore established that if (u1, u2) satisfy the decomposed problem (2.5) then its
(incoming) Robin trace x satisfy the interface problem (2.15).

Reciprocally, we see that if x := (x1, x2) satisfy the interface problem (2.15), and if (v1, v2)
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are defined as the solution to the local problems
Find v1 ∈ H1(Ω1) such that(
−∆− κ2) v1 = 0, in Ω1,

(+∂ν1 − iκT ) v1 = x1, on Σ,

and


Find v2 ∈ H1(Ω2) such that(
−∆− κ2) v2 = 0, in Ω2,

(∂ν − iκ) v2 = 0, on Γ,
(+∂ν2 − iκT ) v2 = x2, on Σ,

(2.16)

then (u1, u2) := (v1 + w1, v2 + w2) is solution to the decomposed problem (2.5).

2.1.2.2 Iterative algorithms

One of the simplest iterative method to solve (2.15) is the (relaxed) Jacobi algorithm. Let x0 ∈ M
and a relaxation parameter 0 < r ≤ 1 be given, a sequence (xn)n∈N in M is constructed using the
(relaxed) Jacobi algorithm as follows

xn+1 = [(1− r)Id + rΠS] xn + r b, n ∈ N. (2.17)

The standard Jacobi algorithm (2.6) can be recovered by setting r = 1. We shall provide in a
subsequent chapter a complete convergence analysis for this algorithm.

Alternatively, a more efficient algorithm to use in practice is the Gmres algorithm [122]. The
convergence analysis of such an algorithm is however more delicate to conduct.

2.2 The Multi-Trace point of view
The formalism and terminology adopted below and in the rest of this manuscript is inspired
by the Multi-Trace Formalism (MTF) initially introduced in [83, 84, 32, 38] in the context of
boundary integral equations. As we shall see, this formalism brings a new point of view on the
derivation of domain decomposition methods which will be a fertile ground to develop a new
approach to tackle the junction issue. Note that there already exists some literature making
connections between the MTF and domain decomposition methods [7, 35, 31, 55].

Spaces We shall need in the following several spaces, for which we recall the definitions. For
a Lipschitz domain Ω ⊂ R2, we set

H1(Ω) :=
{
u ∈ L2(Ω), gradu ∈ L2(Ω)2

}
,

H(div; Ω) :=
{

u ∈ L2(Ω)2
, div u ∈ L2(Ω)

}
,

H1(∆; Ω) :=
{
u ∈ H1(Ω), ∆u ∈ L2(Ω)

}
,

(2.18)

equipped with the usual norms. The Dirichlet trace space H1/2(∂Ω) will be defined as the range
of the Dirichlet trace operator, extension to elements of H1(Ω) of u 7→ u|∂Ω, and equipped with
the graph norm. The Neumann trace space H−1/2(∂Ω) will be defined as its dual, equipped with
the canonical dual norm.
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2.2.1 Multi-trace spaces
2.2.1.1 Dirichlet multi-trace space

We introduce the following notation

u :=
[
u1
u2

]
∈ H1(Ω1)×H1(Ω2), (2.19)

which is intended to denote a couple of local solutions. Such a couple u = (u1, u2) will be
identified (by concatenation) as an element of L2(Ω) (i.e. of the whole domain) in a obvious
way, and conversely an element of L2(Ω) will be identified with its local restrictions to the
sub-domains. We introduce the Dirichlet multi-trace space,

MD := H
1/2(Σ)×H1/2(Σ), (2.20)

and we denote by
γD : H1(Ω1)×H1(Ω2)→ MD, (2.21)

the extension to elements of H1(Ω1) × H1(Ω2) of the restriction operator defined for regular
fields as

u =
[
u1
u2

]
7→
[
u1|Σ
u2|Σ

]
. (2.22)

Using standard trace theorems, it is clear that the operator γD is a continuous and surjective
mapping from H1(∆; Ω1)×H1(∆; Ω2) to MD.

The terminology “multi-trace” is borrowed from the Multi-Trace Formalism. The term can
be understood in reference to the fact that an element of those spaces represent multiple traces
(here from both sides, hence in fact two values) on a single interface Σ.

2.2.1.2 Neumann multi-trace space

Similarly, we introduce the following notation

uuu :=
[
u1
u2

]
∈ H(div; Ω1)×H(div; Ω2), (2.23)

which is intended to denote a couple of gradients of local solutions. Again, such a couple uuu =
(u1,u2) will be identified as an element of L2(Ω) := L2(Ω)2 (i.e. of the whole domain) in a
obvious way, and conversely an element of L2(Ω) will be identified with its local restrictions to
the sub-domains. We introduce the Neumann multi-trace space,

MN := H−1/2(Σ)×H−1/2(Σ), (2.24)

and we denote by
γn : H(div; Ω1)×H(div; Ω2)→ MN , (2.25)

the extension to elements of H(div; Ω1) ×H(div; Ω2) of the normal trace operator defined for
regular fields as

uuu :=
[
u1
u2

]
7→
[
(ν1 · u1) |Σ
(ν2 · u2) |Σ

]
. (2.26)

Using standard trace theorems, it is also clear that the operator γn is a continuous and surjective
mapping from H(div; Ω1)×H(div; Ω2) to MN .
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The space MN does deserve the qualifying adjective Neumann since it is the range of the
Neumann operator defined as

γN : H1(∆; Ω1)×H1(∆; Ω2)→ MN ,

u =
[
u1
u2

]
7→ γn

[
gradu1
gradu2

]
.

(2.27)

2.2.1.3 Multi-trace space

We set
M := MD × MN , (2.28)

and we introduce the continuous multi-trace operator

γ := (γD,γN ) : H1(∆; Ω1)×H1(∆; Ω2)→ M, (2.29)

so that (for sufficiently regular fields) we have

γu :=


u1|Σ
u2|Σ

(∂ν1u1) |Σ
(∂ν2u2) |Σ

 ∈ M. (2.30)

2.2.2 Cauchy-trace space
2.2.2.1 Definition

We define the Cauchy-trace space C (the clash with the set of complex numbers is unfortunate) as
the subspace of the multi-trace space M whose elements are the two Dirichlet and two Neumann
traces of a broken solution u = (u1, u2) ∈ H1(Ω1) × H1(Ω2) that satisfies the homogeneous
Helmholtz equation in the sub-domains (with the physical boundary condition on Γ, but nothing
prescribed on Σ).

More precisely

x ∈ C

⇔ ∃u = (u1, u2) ∈ H1(Ω1)×H1(Ω2)

such that x = γu =


u1|Σ
u2|Σ

(∂ν1u1) |Σ
(∂ν2u2) |Σ

 with


(
−∆− κ2)u1 = 0, in Ω1,(
−∆− κ2)u2 = 0, in Ω2,

(∂ν − iκ)u2 = 0, on Γ.
(2.31)

2.2.2.2 A first useful characterization

We formally define two (generalized) Robin operators that couple Dirichlet and Neumann traces
using the transmission operator T introduced above as follows

R± :=
[
−iκT 0 ±Id 0

0 −iκT 0 ±Id

]
. (2.32)

These operators are continuous mappings from M = MD × MN to MN .
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Using the above notations, we have for a u = (u1, u2) ∈ H1(∆; Ω1)×H1(∆; Ω2)

R±γu =
[
(±∂ν1 − iκT )u1
(±∂ν2 − iκT )u2

]
. (2.33)

It is then an exercise to show the following characterization of the Cauchy-trace space using the
scattering operators (see (2.9) and (2.13)) and the above Robin operators

C = Ker
(
R− − SR+) . (2.34)

2.2.3 Single-trace spaces

2.2.3.1 Definition

The Dirichlet and Neumann single-trace spaces are respective subsets of the Dirichlet and Neu-
mann multi-trace spaces and consists of those elements that match (in some sense) at the interface
Σ, namely we define

SD := {(x1, x2) ∈ MD | x1 = x2} , SN := {(x1, x2) ∈ MN | x1 = −x2} , (2.35)

and we set
S := SD × SN . (2.36)

The term “single-trace” now clearly refers to the matching condition that characterize elements
of these spaces.

2.2.3.2 A second useful characterization

The interest of considering such spaces comes from the fact that then one can equivalently
reformulate the continuity requirements expressed in (2.3) in the compact form{

γDu ∈ SD,

γNu ∈ SN ,
⇔ γu ∈ S. (2.37)

Besides, we can readily rewrite the transmission conditions (2.4) in the compact form

R+γu = ΠR−γu. (2.38)

We recall now that imposing on an element u ∈ H1(∆; Ω1)×H1(∆; Ω2) to satisfy the continuity
requirements of (2.3) (or equivalently the transmission conditions (2.4)) is equivalent to require
u to be an element of H1(∆,Ω). To summarize, we can state that

∀u = (u1, u2) ∈ H1(∆; Ω1)×H1(∆; Ω2),(
u ∈ H1(∆; Ω) ⇔ γu ∈ S = Ker

(
R+ −ΠR−) ). (2.39)
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2.2.4 A new derivation of the interface problem
2.2.4.1 Interface problem

Before starting the reformulation, let us recall that we introduced (w1, w2) a lifting of the source
defined as follows 

Find w1 ∈ H1(Ω1) such that(
−∆− κ2)w1 = f |Ω1 , in Ω1,

(+∂ν1 − iκT )w1 = 0, on Σ,

and


Find w2 ∈ H1(Ω2) such that(
−∆− κ2)w2 = f |Ω2 , in Ω2,

(∂ν − iκ)w2 = g, on Γ,
(+∂ν2 − iκT )w2 = 0, on Σ.

(2.40)

It follows with our notations, that

R+γ(w1, w2) =
[
(+∂ν1 − iκT )w1
(+∂ν2 − iκT )w2

]
= 0. (2.41)

Using this lifting, the decomposed problem is

Find u1, u2 ∈ H1(Ω1)×H1(Ω2) such that
(
−∆− κ2) (u1 − w1) = 0, in Ω1,(
−∆− κ2) (u2 − w2) = 0, in Ω2,

(∂ν − iκ) (u2 − w2) = 0, on Γ,{
u1|Σ = u2|Σ,
∂ν1u1 = −∂ν2u2,

on Σ.

(2.42)

Using the two characterizations (2.34) and (2.39) we readily obtain that{
γ(u1 − w1, u2 − w2) ∈ C = Ker (R− − SR+) ,
γ(u1, u2) ∈ S = Ker (R+ −ΠR−) ,

(2.43)

Using (2.41) we get {
R−γ(u1, u2) = SR+γ(u1, u2) + R−γ(w1, w2),
R+γ(u1, u2) = ΠR−γ(u1, u2).

(2.44)

Eliminating R−γ(u1, u2) it is then immediate that

R+γ(u1, u2) = ΠSR+γ(u1, u2) + ΠR−γ(w1, w2), (2.45)

hence we get that the Robin quantity x := R+γ(u1, u2) satisfies the interface problem (2.15) if
we set b := ΠR−γ(w1, w2).

2.2.4.2 Decomposition of the multi-trace space

We finish this section with a key result that will be useful when proving convergence result in
the following.
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We have the following direct sum
M = C⊕ S. (2.46)

We give below the idea of the proof, which rests on elementary results.
Null intersection. It is clear that an element of x ∈ C is the trace of a broken solution

u = (u1, u2) ∈ H1(Ω1) × H1(Ω2) which satisfies the homogeneous Helmholtz equation in each
sub-domain. Since in addition x ∈ S, the solution u is continuous in its Dirichlet and Neumann
traces at the interface Σ, so it satisfies the homogeneous Helmholtz equation in the whole domain
Ω. It follows from the well-posedness of the model problem that u is identically zero, and so are
its two traces.

Decomposition. We will prove the decomposition for any element

x :=


x1,D
x2,D
x1,N
x2,N

 ∈ M. (2.47)

The proof then rests on the well-posedness [44, Lem. 2.4] of the following classical transmission
problem 

u = (u1, u2) ∈ H1(Ω1)×H1(Ω2) such that,(
−∆− κ2)u1 = 0, in Ω1,(
−∆− κ2)u2 = 0, in Ω2,

(∂ν − iκ)u2 = 0, on Γ,
u1 − u2 = x1,D − x2,D, on Σ,
∂ν1u1 + ∂ν2u2 = x1,N + x2,N , on Σ.

(2.48)

Set

y =


y1,D
y2,D
y1,N
y2,N

 := γu =


u1|Σ
u2|Σ

(∂ν1u1) |Σ
(∂ν2u2) |Σ

 ∈ C, (2.49)

which is in C by construction, and
z := x − y. (2.50)

The conditions on Σ in the transmission problem are rewritten as{
x1,D − y1,D = x2,D − y2,D,

x1,N − y1,N = −x2,N + y2,N ,
⇔

{
z1,D = z2,D,

z1,N = −z2,N ,
(2.51)

which proves that z ∈ S.

2.3 Towards a treatment for cross-points
The new point of view brought by the multi-trace formalism, as it was described in Section 2.2,
allows us to explain the rationale behind our treatment of junction points. It is clear that
the characterization (2.34) will generalize easily in presence of junctions. On the contrary, the
classical exchange operator Π is awkward to define in presence of junctions. In the following, we
obtain the characterization (2.39) by a method of proof that will easily generalize to an arbitrary
setting. Importantly though, the operator Π involved will be different in presence of junctions
but falls back on the usual exchange operator otherwise.
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2.3.1 Properties of the single-trace elements
Elements of the single-trace spaces enjoy several easy but nevertheless interesting properties that
we are going to review now.

1. First, they are characterized as the traces of functions that are globally “regular” in a
Sobolev sense (the identification between a global function and a couple of local functions
is used implicitly here):

SD = γD H1(Ω),
SN = γn H(div; Ω).

(2.52)

This characterization will actually become of importance when we consider junction points,
in fact, it will serve as a definition for the single trace spaces.

2. A second key property is the orthogonality between the Dirichlet and Neumann single-trace
spaces for the (natural) duality pairing defined on the multi-trace spaces as

〈〈·, ·〉〉Σ : MN × MD → C,([
x1,N
x2,N

]
,

[
x1,D
x2,D

])
7→ 〈x1,N , x1,D〉Σ + 〈x2,N , x2,D〉Σ.

(2.53)

We readily have
∀xN =

[
xN
−xN

]
∈ SN , xD =

[
xD
xD

]
∈ SD,

〈〈xN , xD〉〉Σ = 〈xN , xD〉Σ + 〈−xN , xD〉Σ = 0.
(2.54)

Note that this duality pairing respects in some sense the Cartesian product nature of the
multi-trace spaces. It is easy to see that such a property can be used as yet another
characterization of the single-trace spaces, namely we have

∀xD ∈ MD, (xD ∈ SD ⇔ 〈〈xN , xD〉〉Σ = 0, ∀xN ∈ SN ) ,
∀xN ∈ MN , (xN ∈ SN ⇔ 〈〈xN , xD〉〉Σ = 0, ∀xD ∈ SD) .

(2.55)

This last property might seems very trivial at first sight. Indeed, it mainly rests on the simple
identification of the Dirichlet and Neumann multi-trace spaces with R2 and the simple remark
that an alternative orthonormal (for the Euclidian scalar product) basis for R2 is provided by the
two vectors (1, 1) and (1,−1). The subspaces generated by these two vectors being themselves
easily identified with the Dirichlet and Neumann single-trace spaces. However, we feel like these
simple remarks are enlightening to understand the more abstract framework we are going to
develop in the subsequent chapters.

2.3.2 Introducing orthogonal projectors
Transmission operator Let us suppose that T is a self-adjoint positive isomorphism from
H

1/2(Σ) to H−1/2(Σ). We introduce the diagonal transmission operator defined as

T :=
[
T 0
0 T

]
: MD → MN , (2.56)

which is by assumption also a self-adjoint positive isomorphism on MD.
Then T defines a norm on MD, induced by the scalar product

tD(xD, yD) := 〈〈TxD, yD〉〉Σ, ∀xD, yD ∈ MD. (2.57)
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If we note for all elements of MD

xD =
[
x1,D
x2,D

]
, and yD =

[
y1,D
y2,D

]
, (2.58)

then this scalar product can be written in full as

tD(xD, yD) := 〈Tx1,D, y1,D〉Σ + 〈Tx2,D, y2,D〉Σ. (2.59)

Similarly, the inverse operator

T−1 :=
[
T−1 0

0 T−1

]
: MN → MD, (2.60)

is a self-adjoint positive isomorphism on MN and it defines a norm on MN , induced by the scalar
product

tN (xN , yN ) := 〈〈xN ,T−1yN 〉〉Σ, ∀xN , yN ∈ MN . (2.61)

Decomposition of the multi-trace spaces The Dirichlet multi-trace space MD can be de-
composed naturally as follows:

∀xD =
[
x1,D
x2,D

]
∈ MD,

[
x1,D
x2,D

]
=
[

1/2 (x1,D + x2,D)
1/2 (x1,D + x2,D)

]
+
[

1/2 (x1,D − x2,D)
−1/2 (x1,D − x2,D)

]
. (2.62)

Then, if we set (notice the introduction of the operator T in the definition of zN )

yD =
[

1/2 (x1,D + x2,D)
1/2 (x1,D + x2,D)

]
and zN = T

[
1/2 (x1,D − x2,D)
−1/2 (x1,D − x2,D)

]
, (2.63)

we have the decomposition

xD = yD + T−1zN , where
{

yD ∈ SD,

zN ∈ SN .
(2.64)

In fact, we can introduce the projector, defined on MD, by

PD :=
[

Id/2 Id/2
Id/2 Id/2

]
, (2.65)

and we have
Rg PD = SD, Ker PD = TSN . (2.66)

Notice finally that this projector has an interesting relationship with the exchange operator

PD = 1/2 (Id + Π) . (2.67)

Similarly, we can decompose the space MN :

∀aN =
[
x1,N
x2,N

]
∈ MN ,

[
x1,N
x2,N

]
=
[

1/2 (x1,N + x2,N )
1/2 (x1,N + x2,N )

]
+
[

1/2 (x1,N − x2,N )
−1/2 (x1,N − x2,N )

]
, (2.68)

and we have the decomposition

aN = TbD + cN , where


bD = T−1

[
1/2 (x1,N + x2,N )
1/2 (x1,N + x2,N )

]
∈ SD,

cN =
[

1/2 (x1,N − x2,N )
−1/2 (x1,N − x2,N )

]
∈ SN .

(2.69)
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This motivates the introduction of the projector, defined on MN , as

PN :=
[

Id/2 −Id/2
−Id/2 Id/2

]
= 1/2 (Id −Π) . (2.70)

These decompositions are written in the more compact forms

MD = SD ⊕T−1SN ,

MN = TSD ⊕ SN .
(2.71)

Orthogonality of the decompositions We point out that these decompositions are respec-
tively orthogonal for the scalar products tD and tN . Indeed, we have for the two cases

tD(yD,T−1zN ) = 〈〈TyD,T−1zN 〉〉Σ = 〈〈yD, zN 〉〉Σ = 0,
tN (TbD, cN ) = 〈〈TbD,T−1cN 〉〉Σ = 〈〈bD, cN 〉〉Σ = 0,

(2.72)

since yD,bD ∈ SD and zN , cN ∈ SN .
This also means that the projector PD onto SD (respectively the projector PN onto SN )

is orthogonal for the scalar product tD induced by T (respectively for the scalar product tN
induced by T−1).

Finally, let us point out that these orthogonal decompositions holds regardless of the trans-
mission operator T that is chosen (provided of course that this operator is a self-adjoint positive
isomorphism between the trace spaces).

2.3.3 New derivation of the characterization of the single-trace space
We provide below an alternative route to get to the characterization (2.39) with the impor-
tant additional benefit that this new way will be fairly easily amenable to generalization to a
geometrical configuration allowing junction points.

Let us consider a couple of local solutions

u :=
[
u1
u2

]
∈ H1(∆; Ω1)×H1(∆; Ω2). (2.73)

Our goal here is to retrieve the usual transmission conditions. The couple u viewed as a global
element of L2(Ω) is an element of H1(Ω) if, and only if, its Dirichlet multi-trace belongs to the
Dirichlet single-trace space

γDu ∈ SD. (2.74)

Besides, it is an element of H1(∆; Ω) if, and only if, its Neumann multi-trace also belongs to the
Neumann single-trace space

γNu ∈ SN . (2.75)

Using the orthogonal projectors PD and PN defined respectively in (2.65) and (2.70), we
have the equivalence {

γDu ∈ SD,

γNu ∈ SN ,
⇔

{
(Id −PD)γDu = 0,
(Id −PN )γNu = 0.

(2.76)

The idea is to introduce the Robin quantities (2.32) and the exchange operator Π using the
relations with the projectors (2.67) and (2.70). To introduce the Robin quantities, we need to
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multiply γDu with the transmission operator T. This is why, from the decompositions (2.71) of
the multi-trace spaces, it is actually more relevant to write{

γDu ∈ SD,

γNu ∈ SN ,
⇔

{
PNTγDu = 0,
(Id −PN )γNu = 0.

(2.77)

On a side note, we point out that one can also get to the same point using the following identity,
valid in MD

T (Id −PD) = PNT, (2.78)

but this will not be true for more general partitions. Using simple properties of the projection
operator PN , namely P2

N = PN , we obtain the equivalence{
γDu ∈ SD,

γNu ∈ SN ,
⇔ (Id −PN )γNu− iκPNTγDu = 0. (2.79)

From PN = 1/2 (Id + Π) we readily obtain

(Id −PN )γNu− iκPNTγDu = 0,
⇔ 1/2 (Id + Π)γNu− 1/2 iκ (Id −Π) TγDu = 0,
⇔ [γNu− iκTγDu]−Π [−γNu− iκTγDu] = 0,
⇔

(
R+ −ΠR−)γu = 0.

(2.80)

In fact, to summarize, we proved again the characterization (2.39)

∀u = (u1, u2) ∈ H1(∆; Ω1)×H1(∆; Ω2),(
u ∈ H1(∆; Ω) ⇔ γu ∈ S = Ker

(
R+ −ΠR−) ). (2.81)

The main difference with the previous proof lies in the fact that the matching conditions (or
continuity requirements) at the interface Σ are completely hidden. It follows that the method of
proof actually generalizes to geometrical configurations allowing junction points.

2.4 Generalizations
Subsequent chapters will cover the generalization of the previously described ideas in several
directions.

2.4.1 Generalization to configurations without junction points
In Part I of this manuscript, we exclude the presence of junctions points in the partition.

Generalization to J sub-domains The first obvious generalization concerns partitions with
more than two sub-domains, that are of particular interest for applications. The generalization
is pretty straightforward in geometrical configurations that excludes cross-points, which is what
we are going to consider first in Part I. This assumption simplifies in particular the functional
analysis since all interfaces are closed manifolds.
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Generalization to Maxwell’s equations Another generalization of interest that motivated
this work concerns the extension to Maxwell’s equations. We do this by introducing an ab-
stract formalism for a sub-class of wave propagation problems that covers both the acoustic and
electromagnetic settings.

Note that the extension to Maxwell equation is (as usual) complicated by some theoretical
difficulties. We think in particular to the loss of compacity of the embedding of the natural
solution space H(curl) in L2, which was a theoretical obstacle to prove the well-posedness of the
local sub-problems. This is usually tackled by using so-called Helmholtz-Hodge decompositions,
but it was somehow insufficient for our particular configuration as we shall see. In addition, the
construction of suitable transmission operators is more intricate and this is due to the nature of
the two tangential trace spaces.

Several spaces in which to set the interface problem It shall be noted that the interface
problem (2.15) can be set in different spaces. We presented here the most natural derivation for
which the space is H−1/2(Σ)×H−1/2(Σ) as was done for instance in [91, 44]. In contrast, in [42],
the authors use L2(Σ)×L2(Σ). Following some symmetry, a third choice, which was not used in
the literature to the best of our knowledge, is to set the interface problem in H1/2(Σ)×H1/2(Σ).
We shall consider all three cases (and their corresponding counterparts in the electromagnetic
setting) by indexing the operators that we will introduce with a parameter σ in {0, 1/2, 1}.

2.4.2 Generalization to configurations with junction points
A more difficult generalization concerns the analysis with junction points, which is the main
subject of Part III. This is made possible by exploiting the ideas presented in Section 2.3. Still,
one key idea, borrowed from the multi-trace formalism, was not present in this simple two-
domain configuration. This idea is to consider traces of local solutions at the whole boundary of
the corresponding sub-domains (which are closed manifolds) instead of traces at interfaces (which
may not be closed). This is especially important to keep a more pleasant functional setting to
work with.

Ω1 Ω2

Ω3

Γ

x1
x2

x3

Figure 2.2: Visual representation of the three components of an element of the multi-trace spaces,
for instance (x1, x2, x3) ∈ MD.

2.4.2.1 An obstacle of geometrical nature

However, if the traces are taken on the whole boundary of the sub-domains, they will include a
part on the physical boundary and the generalization of the above discussion is not straightfor-
ward. To explain the difficulty, let us take the example of the configuration of Figure 2.2. We
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have three sub-domains Ωj , with j ∈ {1, 2, 3}, the multi-trace spaces become (we use the same
notations as in the two-domain configuration)

MD := H
1/2(∂Ω1)×H1/2(∂Ω2)×H1/2(∂Ω3),

MN := H−1/2(∂Ω1)×H−1/2(∂Ω2)×H−1/2(∂Ω3).
(2.82)

We can then define the trace operators (the outward unit normal to Ωj is νj)

γD : H1(Ω1)×H1(Ω2)×H1(Ω3)→ MD,

u =

u1
u2
u3

 7→
u1|∂Ω1

u2|∂Ω2

u3|∂Ω3

 , (2.83)

and
γn : H(div; Ω1)×H(div; Ω2)×H(div; Ω3)→ MN ,

uuu :=

u1
u2
u3

 7→
(ν1 · u1) |∂Ω1

(ν2 · u2) |∂Ω2

(ν3 · u3) |∂Ω3

 . (2.84)

The single-trace spaces are
SD = γD H1(Ω),
SN = γn H(div; Ω).

(2.85)

The duality pairing becomes

〈〈·, ·〉〉Σ : MN × MD → C,x1,N
x2,N
x3,N

 ,
x1,D
x2,D
x3,D

 7→ 〈x1,N , x1,D〉∂Ω1
+ 〈x2,N , x2,D〉∂Ω2

+ 〈x3,N , x3,D〉∂Ω3
.

(2.86)

The issue comes from the fact that the orthogonality between the Dirichlet and Neumann single-
trace spaces (see (2.54)), which is a key ingredient in the new derivation (see (2.72)), is lost:

∀xN ∈ SN , xD ∈ SD, 〈〈xN , xD〉〉Σ 6= 0. (2.87)

To see this, it is enough to consider elements

xN ∈ L2(∂Ω1)× L2(∂Ω2)× L2(∂Ω3) ∩ SN ,

xD ∈ L2(∂Ω1)× L2(∂Ω2)× L2(∂Ω3) ∩ SD,
(2.88)

we can then formally split the duality products. The parts on the interfaces cancel and it remains
the parts on the physical boundary Γ only, which have no reason to cancel

〈〈xN , xD〉〉Σ = 〈x1,N , x1,D〉∂Ω1∩Γ + 〈x2,N , x2,D〉∂Ω2∩Γ + 〈x3,N , x3,D〉∂Ω3∩Γ 6= 0. (2.89)

An easy solution It is clear that the above problem disappears altogether if we exclude the
presence of boundary junction points, i.e. cross-points between a transmission interface and the
physical boundary, as illustrated in Figure 2.3a. One then considers traces on the whole boundary
of the sub-domains, except for the part on the physical boundary. However, we are able to deal
with interior junction points. This approach is the one adopted in Chapter 9, where the ideas
presented in Section 2.3 are generalized in the abstract setting we introduced. This approach has
the benefit of being an exact generalization of the more standard method described in Chapter 3,
in absence of junctions.
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Figure 2.3: Visual representation of the components of an element of the multi-trace spaces, for
two configurations.

2.4.2.2 Generalization to arbitrary partitions

Nevertheless, it is not satisfactory to impose that the partition does not contain boundary junc-
tion points. Two approaches can be considered, that we discuss below.

Introducing the complementary unbounded domain To deal with boundary junctions,
one idea is to introduce a fictitious domain Ω0 defined as the unbounded complementary of the
physical domain

Ω0 := R2 \
(
∪3
i=1Ωi

)
. (2.90)

As a result, an additional component is added in the multi-trace space in a natural manner,
as illustrated in Figure 2.3b. Since traces are defined on both sides of all boundaries, the
orthogonality can be recovered.

For wave propagation problems, this approach can be very sensible. Indeed, in many prob-
lems, an absorbing boundary condition is imposed on Γ in an attempt to model an unbounded
domain. This can be taken into account exactly by using integral equations. This point of view
is the one adopted in [29] for instance, but will not be further developed here.

Orthogonality by construction The second approach that allows to deal with general config-
urations is to bake the orthogonality into the definition of the single-trace spaces. The multi-trace
spaces are still defined as in (2.82), which is illustrated on Figure 2.2. The Dirichlet single-trace
space is also defined as SD = γD H1(Ω). However, the Neumann single-trace space will be
defined as

SN := {xN ∈ MN | 〈〈xN , xD〉〉Σ = 0, ∀xD ∈ SD} . (2.91)

Of course the two definitions coincide in the two-domain configuration, but this is not true in
general.

To see why this is the right approach, we need to consider variational formulations. Let us
resume the discussion with the two-domain configuration. The model problem (2.1) is written
equivalently in variational form as{

Find u ∈ H1(Ω) such that,
a(u, v) = l(v), ∀v ∈ H1(Ω),

(2.92)



2.4. GENERALIZATIONS 47

where we introduced for u, v ∈ H1(Ω)

a(u, v) := (gradu,grad v)L2(Ω)2 − κ2 (u, v)L2(Ω) − iκ(u|Γ, v|Γ)L2(Γ),

l(v) := (f, v)L2(Ω) + (g, v|Γ)L2(Γ).
(2.93)

Let us introduce in addition the local versions for uj , vj ∈ H1(Ωj), j ∈ {1, 2},

a1(u1, v1) := (gradu1,grad v1)L2(Ω1)2 − κ2 (u1, v1)L2(Ω1),

a2(u2, v2) := (gradu2,grad v2)L2(Ω2)2 − κ2 (u2, v2)L2(Ω2) − iκ(u2|Γ, v2|Γ)L2(Γ),

l1(v1) := (f |Ω1 , v1)L2(Ω1),

l2(v2) := (f |Ω2 , v2)L2(Ω2) + (g, v2|Γ)L2(Γ).

(2.94)

It is a standard result that the problem (2.92) is equivalent to
Find (u1, u2) ∈ H1(Ω1)×H1(Ω2), λ ∈ H−1/2(Σ) such that,
a1(u1, v1)− 〈λ, v1|Σ〉Σ = l1(v1), ∀v1 ∈ H1(Ω1),
a2(u2, v2) + 〈λ, v2|Σ〉Σ = l2(v2), ∀v2 ∈ H1(Ω2),
u1|Σ = u2|Σ, on Σ.

(2.95)

Interestingly, the multi-trace formalism allows to reformulate the above problem (2.95) as
Find (u1, u2) ∈ H1(Ω1)×H1(Ω2), xN = (x1,N , x2,N ) ∈ SN such that,
a1(u1, v1)− 〈x1,N , v1|Σ〉Σ = l1(v1), ∀v1 ∈ H1(Ω1),
a2(u2, v2)− 〈x2,N , v2|Σ〉Σ = l2(v2), ∀v2 ∈ H1(Ω2),
γD(u1, u2) ∈ SD.

(2.96)

Note that the single-trace xN identifies as the couple of Neumann traces γN (u1, u2) of the broken
solution (u1, u2). This can be further reformulated as

Find (u1, u2) ∈ H1(Ω1)×H1(Ω2), xN ∈ SN such that,
[a1(u1, v1) + a2(u2, v2)]− [l1(v1) + l2(v2)]

= 〈〈xN ,γD(v1, v2)〉〉Σ, ∀(v1, v2) ∈ H1(Ω1)×H1(Ω2),
γD(u1, u2) ∈ SD.

(2.97)

We will resume this discussion with more detail in the following, but it is readily seen that the
existence of such a xN in MN exists by the Riesz representation theorem. Moreover, the model
problem is recovered provided xN is an element of SN as defined in (2.91). These arguments will
carry over to more general partitions with the definitions of the multi-trace spaces as in (2.82).
However, in general the element xN of SN will not represent the Neumann trace anymore.

This approach is considered in more detail in Chapter 10, in the discrete setting only (but
the approach can be conducted in the continuous setting without difficulties).
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In this chapter, we describe in the continuous setting a class of domain decomposition methods
we consider in this work. We chose to describe the domain decomposition method in an abstract
framework, valid for our main applications, which are mainly second order systems of equations,
which are compact perturbations of elliptic systems. In particular, the typical instances of
systems we have in mind are Helmholtz and Maxwell equations, which will serve as illustrative
examples as we describe the general theory. While the abstract formalism might obfuscate the
presentation a little, we believe that it has the great benefit of highlighting the main ideas
pertaining to the method while allowing in the meantime to stress the main differences between
acoustics and electromagnetism.

Influenced by the work of Xavier Claeys [29], a novelty of the approach we adopt in the
following, compared to previous descriptions of similar ideas [42, 91, 44], is to view everything
from the perspective of traces (see Section 3.2.2). The motivation for this comes from the fact that
the iterative algorithm is actually written at the interfaces (this is not new). As a result, the main
objects that the solver manipulates are not collections of local solutions but rather collections
of traces, elements of a space which we refer to as the multi-trace space (see Definition 3.16).
Both zeroth and first order traces (as well as couples of the two) will be manipulated in this
work. The goal of the domain decomposition procedure is then to select the unique element
of the multi-trace space which corresponds to the actual solution of our original problem. It is
then natural to try to characterize this element. We do that by introducing two subspaces of
the multi-trace space. The first one is the so-called Cauchy trace space (see Definition 3.18),
which is the space of couples of zeroth and first order traces that represent functions satisfying
the original physical equation locally in each sub-domain. The second subspace we introduce
is the so-called single-trace space (see Definition 3.20), whose elements match in some sense at
an interface (expressing the transmission conditions between sub-domains), hence imposing the
global regularity required by the solution of the original problem. Matching conditions for both
the zeroth and first order traces should be satisfied. Roughly speaking (see Proposition 3.24 for
the details), it is then possible to characterize the solution as the intersection between the two
subspaces.

To devise the domain decomposition method, we introduce the so-called transmission or
impedance operator which is a boundary operator used to combined the two traces together,
constituting a generalized Robin trace. As we shall show, the transmission operator is the key-
stone of the method and should be designed carefully as its properties will have a tremendous
impact on the efficiency of the approach. The analysis is conducted for a class of transmission
operators having some general properties. The construction of some suitable operators is ad-
dressed in Part II of this manuscript. We then show in Section 3.2.4 that the Robin trace of
the solution of the model problem is a fixed point of a boundary operator defined on the skele-
ton (see Proposition 3.38). This boundary operator involves a scattering operator (see (3.176))
whose graph is linked to the Cauchy trace space (Proposition 3.30) and the exchange operator
(see (3.184)) whose graph is linked to the single-trace space (Proposition 3.37). The scattering
operator takes an incoming Robin trace and computes an outgoing Robin trace after solving a
local problem in the sub-domain. As a result, its properties (and well-posedness) are heavily
influenced by the choice of the transmission operator. On the contrary, the exchange operator is,
in this chapter, independent of the transmission operator. This feature is a key difference with
the method described in Chapter 9.

Two algorithms to solve the interface problem are then introduced. The first one is a fixed
point iteration algorithm, the relaxed Jacobi algorithm, for which we analyze in detail the con-
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vergence. The analysis is performed in a particular norm induced by a suitable inner-product
built from the transmission operator. The second algorithm we consider is the Gmres algorithm
and is seen as an improvement of the previous algorithm.

3.1 Abstract definitions
3.1.1 Generic definitions and tools
To set some definitions, we consider a generic open bounded Lipschitz domain O subset of Rd,
with d = 1, 2, 3, intended to be either our model domain or a sub-domain of the partition. Its
boundary is denoted by ∂O with outward normal unit vector ν.

Unknowns and differential operators The complex-valued unknowns of our model prob-
lem, considered as a first order system of equation, will be denoted

u : O → Cm0 ,

v : O → Cm1 ,
(3.1)

where m0 ,m1 ∈ {1, d, d × d}, depending on the type of wave propagation problem we wish to
solve. However, since we will write our model problem as a second order equation, v will not
appear explicitly but in the form v = Du, where D is a first-order differential operator defined
as

D :=
d∑
j=1
Dj∂xj , (3.2)

such that Dj ∈ Rm1×m0 , for all j = 1, . . . , d. We denote by D∗ the formal adjoint of D defined as

D∗ := −
d∑
j=1
D∗
j∂xj

. (3.3)

We readily provide two examples of systems that fit in this rather general setting, namely
the (time harmonic) Helmholtz and Maxwell equations.
Example 1: Helmholtz. In the acoustic setting, the unknowns are the pressure p, hence a
scalar field, so that m0 ≡ 1, and the velocity field u, proportional to grad p, so that m1 ≡ d.
The differential operators are then identified as

D ≡ grad and D∗ ≡ − div . (3.4)
Besides, one can check that

Dj := (δ1j , . . . , δdj)t, ∀j ∈ {1, . . . , d}. (3.5)
Example 2: Maxwell. In the electromagnetic setting (we will only consider in what follows 3D
Maxwell equations, so that d ≡ 3), the unknowns are the electric field E, hence a vector field, so
that m0 ≡ 3, and the magnetic field H, proportional to curl E, so that m1 ≡ 3. The differential
operators are then identified as

D ≡ curl and D∗ ≡ curl . (3.6)
Besides, one can check that

D1 =

0 0 0
0 0 −1
0 1 0

 , D2 =

 0 0 1
0 0 0
−1 0 0

 , D3 =

0 −1 0
1 0 0
0 0 0

 (3.7)
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Volume spaces We introduce the following (solution) spaces

U(D;O) :=
{
u ∈ L2(O)m0 | Du ∈ L2(O)m1

}
,

U(D∗;O) :=
{
u ∈ L2(O)m1 | D∗u ∈ L2(O)m0

}
.

(3.8)

Let κ0 be a scalar, supposed to be the inverse of a characteristic length of our problem. In
practice, it can be the wavenumber of the medium of propagation, or of a reference medium in
the heterogeneous case. We equip our solution space U(D;O) with the following κ0-dependent
scalar product and (energy) norm

(u, v)U(D;O) := κ0 (u, v)L2(O)m0 + κ0
−1 (Du,Dv)L2(O)m1 , ∀u, v ∈ U(D;O),

‖u‖2
U(D;O) := (u, u)U(D;O), ∀u ∈ U(D;O).

(3.9)

Notice that we introduced κ0 in order to have two terms with the same homogeneity in the
definition of the scalar product.

Example 1: Helmholtz. Let us set

L2(O) := L2(O)3
. (3.10)

In the acoustic setting, the natural functional spaces are

U(D;O) ≡ H1(O) :=
{
p ∈ L2(O) | grad p ∈ L2(O)

}
,

U(D∗;O) ≡ H(div;O) :=
{

u ∈ L2(O) | div u ∈ L2(O)
}
,

(3.11)

Example 2: Maxwell. In the electromagnetic setting, the natural functional spaces are

U(D;O) ≡ H(curl;O) :=
{

E ∈ L2(O) | curl E ∈ L2(O)
}
,

U(D∗;O) ≡ H(curl;O).
(3.12)

We will require in the following the following density assumption.

Assumption 3.1. We suppose that

the space D(O)m0 is dense in U(D;O),
the space D(O)m1 is dense in U(D∗;O).

(3.13)

Example 1: Helmholtz. In the acoustic setting, we have the following density results [79, Th.
1.2 and Th. 2.4]

the space D(O) is dense in H1(O),

the space D(O)d is dense in H(div;O).
(3.14)

Example 2: Maxwell. In the electromagnetic setting, we have the following density result [79,
Th. 2.10]

the space D(O)3 is dense in H(curl;O). (3.15)



3.1. ABSTRACT DEFINITIONS 55

Integration by parts formula We shall make the (reasonable) assumption that C1(O) is
dense in both U(D;O) and U(D∗;O).

We introduce the following (matrix-valued) fields over the boundary ∂O

Dν : ∂O → Rm1×m0 , with adjoint D∗
ν : ∂O → Rm1×m0 ,

x 7→
d∑
j=1

νj(x)Dj , x 7→
d∑
j=1

νj(x)D∗
j .

(3.16)

For any (complex-valued) u ∈ C1 (O)m0 and v ∈ C1 (O)m1 , the following integration by
parts formula holds

(v,Du)L2(O)m1 − (D∗v, u)L2(O)m0 = (D∗
νv, u)L2(∂O)m0 ≡ (v,Dνu)L2(∂O)m1 . (3.17)

Example 1: Helmholtz. In the acoustic setting, we set Dν := ν so that, for any u ∈ C1 (O)3

and p ∈ C1 (O),
Dνp = pν and D∗

νu = ν · u, (3.18)

and we recover the usual integration by parts formula

(u,grad p)L2(O) + (div u, p)L2(O) = (ν · u, p)L2(∂O). ≡ (u, pν)L2(∂O) (3.19)

Example 2: Maxwell. In the electromagnetic setting, we set

Dν :=

 0 −ν3 ν2
ν3 0 −ν1
−ν2 ν1 0

 and D∗
ν :=

 0 ν3 −ν2
−ν3 0 ν1
ν2 −ν1 0

 (3.20)

so that, for any H ∈ C1 (O)3 and E ∈ C1 (O)3,

DνE = ν ×E and D∗
νH = −ν ×H ≡ H× ν. (3.21)

and we recover the usual integration by parts formula

(H, curl E)L2(O) − (curl H,E)L2(O) = (H× ν,E)L2(∂O) ≡ (H, ν ×E)L2(∂O). (3.22)

Trace spaces and operators The definition of trace operators and trace spaces is delicate in
this general setting, as it depends heavily on the coefficients involved in the differential operators.
This is the reason why we suppose that the following assumption holds true in what follows.

Assumption 3.2 (Continuous and surjective trace operators). We assume that there
exists two bounded (matrix-valued) functions defined on the boundary ∂O

A0 : ∂O → Rm0×m0 , and A1 : ∂O → Rm1×m0 , (3.23)

such that, for any (complex-valued) u ∈ C1 (O)m0 and v ∈ C1 (O)m1 ,

(A1v,A0u)L2(∂O)m0 = (D∗
νv, u)L2(∂O)m0 ≡ (v,Dνu)L2(∂O)m1 . (3.24)

Besides, we will suppose that A0 is independent of the orientation of the normal vector ν, while A1
is anti-symmetric with respect to its orientation so that A1 is changed into −A1 if the orientation
of ν is flipped.
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In addition, we suppose that there exists two Hilbert spaces, the trace spaces, denoted by

X0(∂O) and X1(∂O), (3.25)

such that we have the continuous embeddings

H
1/2(∂O)m0 ⊂ X0(∂O),

X1(∂O) ⊂ H−1/2(∂O)m0
.

(3.26)

These trace spaces are assumed to be dual to each other

X0(∂O)′ = X1(∂O), (3.27)

with duality pairing
〈·, ·〉∂O : X1(∂O)×X0(∂O)→ C, (3.28)

and such that the (interior) trace maps

γD,∂O : u 7→ A0u|∂O, ∀u ∈ C1 (O)m0
,

γD∗,∂O : v 7→ A1v|∂O, ∀v ∈ C1 (O)m1
,

(3.29)

can be uniquely extended into linear continuous and surjective trace mappings, still denoted
γD,∂O and γD∗,∂O , such that

γD,∂O U(D;O)→ X0(∂O),
γD∗,∂O U(D∗;O)→ X1(∂O).

(3.30)

Finally, we assume that the trace space X0(∂O) can be equipped with the graph norm

‖x0‖X0(∂O) := inf
u∈U(D;O)
γ0,∂O u=x0

‖u‖UΓ(D;O), ∀x0 ∈ X0(∂O), (3.31)

which, by construction, satisfies

‖γD,∂O u‖X0(∂O) ≤ ‖u‖U(D;O), ∀u ∈ U(D;O), (3.32)

and the space X1(∂O) can be equipped with the corresponding canonical dual norm, namely

‖x1‖X1(∂O) := sup
x0∈X0(∂O)

x0 6=0

〈x1, x0〉∂O
‖x0‖X0(∂O)

, ∀x1 ∈ X1(∂O). (3.33)

Example 1: Helmholtz. In the acoustic setting, Assumption 3.2 holds if one simply takes

A0 := IdRd and A1 := D∗
ν ≡ ν · . (3.34)

The associated natural trace spaces, respective images of H1(O) and H(div;O) for the trace
operators γD,∂O (in this case the restriction operator) and γD∗,∂O (in this case the normal trace
operator) are then

X0(∂O) ≡ H1/2(∂O), and X1(∂O) ≡ H−1/2(∂O). (3.35)
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Example 2: Maxwell. In the electromagnetic setting, notice that, for any H ∈ C1 (O)3 and
E ∈ C1 (O)3,

(H× ν,E)L2(∂O) = (H× ν, ν × (E× ν))L2(∂O). (3.36)

One can show that Assumption 3.2 holds if one takes

A0 := DνD∗
ν ≡ ν × (· × ν) and A1 := D∗

ν ≡ −ν × ·. (3.37)

For a regular enough boundary ∂O, the associated natural trace spaces, respective images of
H(curl;O) for the trace operators γD,∂O (in this case the tangential trace operator) and γD∗,∂O
(in this case the rotated tangential trace operator) are then

X0(∂O) ≡ H−1/2(curl; ∂O) :=
{

x ∈ H−1/2(∂O)3
| curl x ∈ H−1/2(∂O)

}
,

X1(∂O) ≡ H−1/2(div; ∂O) :=
{

x ∈ H−1/2(∂O)3
| div x ∈ H−1/2(∂O)

}
.

(3.38)

When the boundary is not regular enough the proper definition of the trace spaces is more involved,
see [20, 21].

An immediate consequence of the above assumption is the following generalized integration
by parts formula, for any u ∈ U(D;O) and v ∈ U(D∗;O), we have

(v,Du)L2(O)m1 − (D∗v, u)L2(O)m0 = 〈γD∗,∂O v, γD,∂O u〉∂O. (3.39)

If the boundary ∂O consists of K connected closed components (∂Ok)Kk=1 so that

∂O :=
K⋃
k=1

∂Ok,

∂Ok ∩ ∂Ol = ∅, ∀k, l ∈ {1, . . . ,K}, k 6= l,

(3.40)

then it is obvious that we can define the restrictions of the two traces to any specific component
∂Ok, k ∈ {1, . . . ,K}, and still define trace spaces and trace operators which are continuous and
surjective mappings as follows

γD,∂Ok
U(D;O)→ X0(∂Ok),

γD∗,∂Ok
U(D∗;O)→ X1(∂Ok).

(3.41)

Furthermore, the duality pairing between the trace spaces can be split as follows: for any x0 ∈
X0(∂O) and x1 ∈ X1(∂O), we have

〈x1, x0〉∂O =
K∑
k=1
〈x1|∂Ok

, x0|∂Ok
〉∂Ok

. (3.42)

We will also need at some point the following assumption.

Assumption 3.3. We suppose that

Ker γD,∂O = D(O)m0
‖·‖U(D;O)

,

Ker γD∗,∂O = D(O)m1
‖·‖U(D∗;O)

.
(3.43)
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Example 1: Helmholtz. In the acoustic setting, we have the results [79, Th. 1.5 and Th. 2.6]

Ker γD,∂O = H1
0 (O), where H1

0 (O) = D(O)‖·‖H1(O) ,

Ker γD∗,∂O = H0(div,O), where H0(div,O) = D(O)d
‖·‖H(div;O)

.

(3.44)

Example 2: Maxwell. In the electromagnetic setting, we have the result [79, Th. 2.12]

Ker γD,∂O = Ker γD∗,∂O = H0(curl,O), where H0(curl,O) = D(O)3‖·‖H(curl;O)
.

(3.45)

Pivot space In addition to Assumption 3.2 we shall make the following additional hypothesis.

Assumption 3.4. We assume that there exists a third Hilbert (trace) space, denoted by X1/2(∂O),
such that

X1/2(∂O) ⊂ L2(∂O)m0
, (3.46)

so that we can adopt the identification

X1/2(∂O)′ ≡ X1/2(∂O). (3.47)

We suppose that this space acts as a pivot space between the trace spaces X0(∂O) and X1(∂O),
by which we mean that there exists linear operator t1/2 satisfying

t1/2 is an isomorphim from X0(∂O) to X1/2(∂O),
and t∗

1/2 is an isomorphim from X1/2(∂O) to X1(∂O). (3.48)

Note that the pivot space does not necessarily occupy a position that is midway between the
trace spaces in terms of regularity.

The pivot trace space is endowed with the natural inner product (and associated norm) which
we denote by

(·, ·)∂O := (·, ·)L2(∂O)m0 , (3.49)

and
‖x1/2‖

2
∂O := (x1/2, x1/2)∂O, x1/2 ∈ M1/2,‖. (3.50)

Example 1: Helmholtz. In the acoustic setting, the (only possible) pivot space is

X1/2(∂O) ≡ L2(∂O). (3.51)

A possible realization of the isomorphism t1/2 is (Id −∆∂O)
1
4 where ∆∂O is the Laplace-Beltrami

operator.

Example 2: Maxwell. In the electromagnetic setting, the pivot space is

X1/2(∂O) ≡ L2(∂O). (3.52)

In this case, the construction of a possible isomorphism t1/2 is more involved than for acoustics
and requires the used of the so-called Hodge (or Helmholtz) decomposition of tangential vector
fields on ∂O.
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Model equation Let a be a bounded and Lipschitz (symmetric matrix valued) field over the
domain

a : O → Cm1×m1 , (3.53)
we introduce the second order differential operator La defined on

U(D,La;O) :=
{
u ∈ U(D;O) | Lau ∈ L2(O)m0

}
. (3.54)

such that
La := D∗ a D. (3.55)

In addition, let n be another bounded and Lipschitz (matrix-valued) field over the domain

n : O → Cm1×m1 , (3.56)

The model equation we are going to consider can be written (here in its homogeneous form)

(La − κ0
2 n)u = 0, in O. (3.57)

Example 1: Helmholtz. The time harmonic Helmholtz equation in heterogeneous media and
at frequency ω can be written, for the pressure p, as(

−div 1
ρ

grad−ω
2

λ

)
p = 0, in O, (3.58)

where ρ is the mass density and λ is the incompressibility of the medium under consideration. The
velocity field is computed from the pressure as u = (ωρ)−1 grad p. The speed c and wavenumber
k of the medium are then defined respectively as

c :=

√
λ

ρ
, k := ω

c
= ω

√
ρ

λ
. (3.59)

This PDE fits in the abstract framework that was previously presented provided we set

a ≡ ρ−1
r , n ≡ λ−1

r and κ0 ≡ ω
√
ρ0

λ0
, (3.60)

where ρ0 and λ0 are reference (constant) scalar coefficients of the medium of propagation, and
ρr := ρ/ρ0 and λr := λ/λ0 are the (variable) relative coefficients.
Example 2: Maxwell. The (one-field) time harmonic Maxwell equation in (isotrope) hetero-
geneous media and at frequency ω can be written, for the electric field E, as(

curl 1
µ

curl−ω2ε

)
E = 0, in O, (3.61)

where µ is the permeability and ε is the permittivity of the medium under consideration. The
magnetic field can be computed from the electric field as H = (iωµ)−1 curl E. The speed c and
wavenumber k of the medium are then defined respectively as

c :=
√

1
εµ
, k := ω

c
= ω
√
εµ. (3.62)

This PDE fits in the abstract framework that was previously presented provided we set

a ≡ µ−1
r , n ≡ εr and κ0 ≡ ω

√
µ0ε0, (3.63)

where µ0 and ε0 are reference (constant) scalar coefficients of the medium of propagation and
µr := µ/µ0 and εr := ε/ε0 are the relative (variable) coefficients.
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Physical trace operators Using Assumption 3.2, we now introduce the following (physical)
trace operators

γ0,∂O := γD,∂O ,

γ1,∂O := κ0
−1 γD∗,∂O aD.

(3.64)

Note that we chose to rescale γ1,∂O by the constant factor κ0 in order to have two traces with
the same dimension.

It follows from the generalized integration by parts formula (3.39) that we have the following
classical result.
Lemma 3.5 (First Green identity). We have, for all u ∈ U(D,La;O), v ∈ U(D;O),

(Lau, v)L2(O)m0 − (aDu,Dv)L2(O)m1 = −κ0 〈γ1,∂O u, γ0,∂O v〉∂O. (3.65)

Example 1: Helmholtz. In the acoustic setting, we have the following explicit expressions for
the Dirichlet trace operator γ0,∂O and the Neumann trace operator γ1,∂O , for sufficiently regular
functions

γ0,∂O := ·|∂O and γ1,∂O := κ0
−1 ν · (ρ−1

r grad ·|∂O) ≡ κ0
−1 ρ−1

r ∂ν · |∂O. (3.66)

Example 2: Maxwell. In the electromagnetic setting, we have the following explicit expres-
sions for the tangential trace operator γ0,∂O and the rotated tangential trace operator γ1,∂O , for
sufficiently regular functions

γ0,∂O := ν × (·|∂O × ν) and γ1,∂O := −κ0
−1 ν × (µ−1

r curl ·|∂O). (3.67)

Robin boundary condition In this general setting, the analysis of variational formulations
stemming from problems with (standard) Robin boundary condition, which are linear combi-
nations of the two traces γ0 and γ1, require to introduce another volume Hilbert space with
additional regularity.

In order to define this more regular space, we shall suppose that the boundary ∂O is com-
posed of a first connected component denoted ∂OR, intended to be the boundary on which the
Robin boundary condition is imposed, and additional components, disconnected from ∂OR. The
definitions we set below can be easily adapted if either ∂OR or ∂O \ ∂OR are empty.

We introduce,

U∂OR
(D;O) :=

{
u ∈ U(D;O) | γ0,∂OR

u ∈ X1/2(∂OR)
}
,

U∂OR
(D∗;O) :=

{
u ∈ U(D∗;O) | γ0,∂OR

u ∈ X1/2(∂OR)
}
,

U∂OR
(D,La;O) :=

{
u ∈ U(D,La;O) | γ0,∂OR

u ∈ X1/2(∂OR)
}
.

(3.68)

The space U∂OR
(D;O) is made into an Hilbert space with the help of the following scalar product

and associated norm, defined for all u, v ∈ U∂OR
(D;O), as

(u, v)U∂OR
(D;O) := (u, v)U(D;O) + (γ0,∂OR

u, γ0,∂OR
v)L2(∂OR)m0 ,

‖u‖2
U∂OR

(D;O) := (u, u)U∂OR
(D;O).

(3.69)

Example 1: Helmholtz. In the acoustic setting, the space H1/2(∂O) is included in L2(∂O),
hence U∂O(D;O) = U(D;O) ≡ H1(O).
Example 2: Maxwell. In the electromagnetic setting, because H−1/2(curl; ∂O) is not included
in L2(∂O)3, we need to introduce the following space as our solution space for our model problem
to be able to study properly Robin boundary conditions

UΓ(D;O) ≡ H∂O(curl;O) :=
{

E ∈ H(curl,O) | γ0,∂O E ∈ L2(∂O)
}
. (3.70)
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Combined trace operator We also introduce the Cartesian product of the trace spaces as

X(∂O) := X0(∂O)×X1(∂O), (3.71)

and define the following (continuous but not surjective) combined trace operator

γ∂O U(D,La;O)→ X(∂O),
u 7→ (γ0,∂O u, γ1,∂O u).

(3.72)

We introduce the following bilinear form

[·, ·]∂O : X(∂O)×X(∂O)→ C, (3.73)

such that, for all x = (x0, x1) ∈ X(∂O) and y = (y0, y1) ∈ X(∂O),

[x, y]∂O := 〈y1, x0〉∂O − 〈x1, y0〉∂O. (3.74)

It is a simple computation to show the following lemma.

Lemma 3.6.
i[x, x]∂O = 2=〈x1, x0〉∂O, ∀x ≡ (x0, x1) ∈ X(∂O). (3.75)

Proof. Let x ≡ (x0, x1) ∈ X(∂O), we have

[x, x]∂O = 〈x1, x0〉∂O − 〈x1, x0〉∂O = 〈x1, x0〉∂O − 〈x1, x0〉∂O = −2i=〈x1, x0〉∂O. (3.76)

�

3.1.2 Model problem
We consider an open, bounded, simply connected, Lipschitz domain Ω subset of Rd, with d =
1, 2, 3. Its boundary is denoted by Γ := ∂Ω with outward unit normal vector ν, and consists in one
single connected component. We wish to solve a time-harmonic wave propagation problem on Ω.
We denote by ω ∈ R+ the pulsation of the problem and by κ0 ∈ R+ the wavenumber of a reference
medium (for instance, the air in the acoustic setting, or the vacuum in the electromagnetic
setting). We adopt the following convention.

Convention 3.7. The sign convention of the harmonic regime (hence of the Fourier transform)
is chosen to be e−iωt.

The propagative medium is characterized relatively to the reference medium by two (dimen-
sionless) bounded Lipschitz functions

a : Ω→ Cm1×m1 ,

n : Ω→ Cm0×m0 ,
(3.77)

such that there exist a− > 0, a+ > 0, n− > 0 and n+ > 0,

a− < |a| < a+, = a ≤ 0,
n− < |n| < n+, = n ≥ 0.

(3.78)

From Convention 3.7 these conditions mean in particular that the medium can only propagate or
absorb energy. We are particularly interested in the case where these coefficients are real, which
is actually the more challenging situation.
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Strong formulation Let f ∈ UΓ(D; Ω)′ and g ∈ L2(Γ)m0 . The archetype of a propagative
model problem we will consider in the following is given by the following problem

Find u ∈ UΓ(D; Ω) such that
(La − κ0

2n)u = f, in Ω,
(γ1,Γ − iγ0,Γ )u = g, on Γ.

(3.79)

Remark 3.8. It follows from Convention 3.7 that the equation on Γ models a first order (crude)
absorbing boundary condition, which expression is formally very close to the transmission condi-
tions we will consider later.

Example 1: Helmholtz. In the acoustic setting, our model problem is written
Find p ∈ H1(Ω) such that(
− div ρ−1

r grad−κ0
2λ−1
r

)
p = f, in Ω,(

ρ−1
r ∂ν − iκ0

)
p = κ0g, on Γ.

(3.80)

Example 2: Maxwell. In the electromagnetic setting, our model problem is written
Find E ∈ HΓ(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = f, in Ω,
µ−1
r curl E× ν − iκ0 ν × (E× ν) = κ0g, on Γ.

(3.81)

Weak formulation The variational formulation of (3.79) is written{
Find u ∈ UΓ(D; Ω) such that
a(u, v) = l(v), ∀v ∈ UΓ(D; Ω),

(3.82)

where, for all u, v ∈ UΓ(D; Ω), we have the definitions,{
a(u, v) := κ0

−1(a Du,Dv)L2(Ω)m1 − κ0 (nu, v)L2(Ω)m0 − i(γ0,Γ u, γ0,Γ v)L2(Γ)m0 ,

l(v) := κ0
−1〈f, v〉Ω + (g, γ0,Γ v)L2(Γ)m0 .

(3.83)

Because of the abstract framework, we shall make the following assumption, which will be
justified in Section 3.4 when we consider actual wave propagation problems.

Assumption 3.9 (Well-posedness of the model problem). For all f ∈ UΓ(D; Ω)′ and
g ∈ L2(Γ)m0 the model problem (3.79), or equivalently its weak formulation (3.82), is well-posed.
Namely, there exists a unique solution u ∈ UΓ(D; Ω) and we have the following stability result

‖u‖UΓ(D;Ω) ≤ α
(
‖f‖UΓ(D;Ω)′ + ‖g‖L2(Γ)m0

)
, (3.84)

for a positive constant α > 0.

3.1.3 Geometric domain partitioning
After describing the geometric partition of the domain Ω, we introduce the space of broken
solutions which consists in collections of solutions local to each sub-domain.
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Partition into non-overlapping domains We introduce a domain partitioning of Ω, denoted
PΩ, into J non-overlapping, Lipschitz, open sub-domains Ωj , j ∈ {1, . . . , J},

PΩ ≡ (Ωj)Jj=1, (3.85)

such that

Ω =
J⋃
j=1

Ωj , with Ωj ∩ Ωk = ∅, if j 6= k. (3.86)

We define the following boundaries and skeleton Σ

Γj := ∂Ωj , j ∈ {1, . . . , J},
Γjk := ∂Ωj ∩ ∂Ωk, (j, k) ∈ {1, . . . , J}2

, j 6= k,

Σ :=
J⋃
j=1

Γj ,
(3.87)

and
Γ̃j := Γj \ Γ, j ∈ {1, . . . , J},
Σ̃ := Σ \ Γ.

(3.88)

Of course, some of the boundaries Γjk are empty. We insist on the fact that, a priori, the
boundaries Γj are (unions of) closed surfaces (∂Γj = ∅) while the subsets Γjk may be open
(∂Γjk 6= ∅).

For convenience, we introduce the (ordered) index sets

Kj :=
{
k ∈ {1, . . . , J} \ {j}

∣∣ Γjk 6= ∅
}
, ∀j ∈ {1, . . . , J}, (3.89)

and

J :=
J⋃
j=1

{
(j, k) ∈ {1, . . . , J}2 ∣∣ k ∈ Kj

}
. (3.90)

The cardinal of this set is equal to twice the number of non-empty interfaces between two distinct
sub-domains. An element of the set J represent the two distinct sub-domain indices that share
a (non-empty) common interface. Besides, note that by symmetry

∀(j, k) ∈ {1, . . . , J}2
,

(
(j, k) ∈ J ⇔ (k, j) ∈ J

)
. (3.91)

Broken solution spaces In a domain decomposition framework one works with collections
of local solutions that satisfies the PDE and physical boundary conditions in each sub-domain.
The full (Sobolev) regularity of the true solution is imposed by the transmission conditions at
interfaces between sub-domains. This motivates the introduction of the following broken solution
spaces,

U(D;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj ∈ U(D; Ωj), ∀j ∈ {1, . . . , J}
}
,

U(D∗;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj ∈ U(D∗; Ωj), ∀j ∈ {1, . . . , J}
}
,

U(D,La;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj ∈ U(D,La; Ωj), ∀j ∈ {1, . . . , J}
}
.

(3.92)
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(a) Example of a general partition with interior and
boundary cross points (card J = 8).
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<latexit sha1_base64="6tzGgxAUR4VKKHWv5z1+qAMFEL0="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="u62bftOt4EibpI8+aoQRg2+l7rI="></latexit>

⌦4
<latexit sha1_base64="rK0Y9fiajf4+BqEGnE3xDJTTqLw="></latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="7BE163+ZZ8Cs8UfVLdTSYjvTuTk="></latexit>

�12
<latexit sha1_base64="84QCrBELPFuFPSLzDZK1tM2YnvA="></latexit><latexit sha1_base64="JWYYIEl2JMyP4FY2d1qUYmzZTjs="></latexit><latexit sha1_base64="JWYYIEl2JMyP4FY2d1qUYmzZTjs="></latexit><latexit sha1_base64="T3/YLqEzD6ebph518Gau2oxtPII="></latexit>

�23
<latexit sha1_base64="/Q20uKwN1DQKFapWMc8lW4MydOY="></latexit><latexit sha1_base64="NJxr4pMm+8YldOzQagxLu30Z4r4="></latexit><latexit sha1_base64="NJxr4pMm+8YldOzQagxLu30Z4r4=">AAACznicjVHLSsNAFD2Nr1qtVl26CZaCq5Lowi4LgrqsYB/QljJJpzU0L5JJoZTi1h9wqzs/xJ8Q/0D/wjvTFNQiOiHJmXPPuTP3Xit0nVgYxltGW1ldW9/Ibua2tvM7u4W9/UYcJJHN63bgBlHLYjF3HZ/XhSNc3gojzjzL5U1rdC7jzTGPYifwb8Qk5F2PDX1n4NhMENXuXDLPY73pyemsVygaZUMtfRmYKShW8y9J6SL3XAsKr+igjwA2Enjg8CEIu2CI6WnDhIGQuC6mxEWEHBXnmCFH3oRUnBSM2BF9h7Rrp6xPe5kzVm6bTnHpjcipo0SegHQRYXmaruKJyizZ33JPVU55twn9rTSXR6zALbF/+RbK//pkLQIDVFQNDtUUKkZWZ6dZEtUVeXP9S1WCMoTESdyneETYVs5Fn3XliVXtsrdMxd+VUrJyb6faBB/yljRg8+c4l0HjpGwaZfOaJl3BfGVxiCMc0zzPUMUVaqirjj/gEU9aTRtrM+1uLtUyqecA35Z2/wkT9ZX1</latexit><latexit sha1_base64="Bc8OQkqu0DVkxITU36jCRjAow1k="></latexit>

�34
<latexit sha1_base64="4CXs9wrIcoRyD9p4fsJCTvBIMp4="></latexit><latexit sha1_base64="f7CcPahaO9F4woy0Xs94edQ1Ib0="></latexit><latexit sha1_base64="f7CcPahaO9F4woy0Xs94edQ1Ib0="></latexit><latexit sha1_base64="sGqxJFkVRepC/zXRoFGcdHJpreQ="></latexit>

�13
<latexit sha1_base64="tRXTFHjfc+c9RPPDmDj1VU4tw+Y="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="WxTAAGv+FYDQ/T2NiQZ1qJQLo68="></latexit>

�14
<latexit sha1_base64="08m9FegJtEtFkHd2nowMs959fNU="></latexit><latexit sha1_base64="5NkwlaKF0FavvE+gb4UwL2JpK+c="></latexit><latexit sha1_base64="5NkwlaKF0FavvE+gb4UwL2JpK+c="></latexit><latexit sha1_base64="XrXYk21MUhSrUccyAOnoBZVSUyQ=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVRIR7LLgQpcV7APaUibTqQ7mRTIplFLc+gNu9bPEP9C/8M6YglpEJyQ5c+45d+be68W+TJXjvBaspeWV1bXiemljc2t7p7y710qjLOGiySM/SjoeS4UvQ9FUUvmiEyeCBZ4v2t7duY63xyJJZRReq0ks+gG7CeVIcqaI6vYuWBCwwdQ9nQ3KFafqmGUvAjcHFeSrEZVf0MMQETgyBBAIoQj7YEjp6cKFg5i4PqbEJYSkiQvMUCJvRipBCkbsHX1vaNfN2ZD2Omdq3JxO8elNyGnjiDwR6RLC+jTbxDOTWbO/5Z6anPpuE/p7ea6AWIVbYv/yzZX/9elaFEaomRok1RQbRlfH8yyZ6Yq+uf2lKkUZYuI0HlI8IcyNc95n23hSU7vuLTPxN6PUrN7zXJvhXd+SBuz+HOciaJ1UXafqXjmVei0fdREHOMQxzfMMdVyigabp+COe8Gw1rLE1s+4/pVYh9+zj27IePgBMepNW</latexit>

�24
<latexit sha1_base64="K3gb1yawRk5P2C7XXDDbcJPsRdY=">AAACznicjVHLSsNAFD2Nr1qtVl26CRbBVUlEsMuCC11WsA9opUzSaQ3Ni8mkUEpx6w+41X/xJ8Q/0L/wzjQFtYhOSHLm3HPuzL3XiX0vkZb1ljNWVtfWN/Kbha3t4s5uaW+/mUSpcHnDjfxItB2WcN8LeUN60uftWHAWOD5vOaMLFW+NuUi8KLyRk5jfBmwYegPPZZKoTveSBQHrTU/PZr1S2apYepnLwM5AuVZ8SU0A9aj0ii76iOAiRQCOEJKwD4aEng5sWIiJu8WUOEHI03GOGQrkTUnFScGIHdF3SLtOxoa0VzkT7XbpFJ9eQU4Tx+SJSCcIq9NMHU91ZsX+lnuqc6q7TejvZLkCYiXuiP3Lt1D+16dqkRigqmvwqKZYM6o6N8uS6q6om5tfqpKUISZO4T7FBWFXOxd9NrUn0bWr3jIdf9dKxaq9m2lTfKhb0oDtn+NcBs3Tim1V7GuadBXzlcchjnBC8zxHDVeoo6E7/ognPBt1Y2zMjPu51MhlngN8W8bDJ+95lPs=</latexit><latexit sha1_base64="X5zbr2FIefWtCa5KZL5dGAexVGk="></latexit><latexit sha1_base64="X5zbr2FIefWtCa5KZL5dGAexVGk="></latexit><latexit sha1_base64="g0GlTsghgfmFXN38O5mJ85qNCXg=">AAACznicjVHLSsNAFD3GV62vqks3wSK4KkkR7LLgQpcV7AOqlMl0WkPzIpkUSilu/QG3+lniH+hfeGecglpEJyQ5c+45d+be6yWBn0nHeV2ylldW19YLG8XNre2d3dLefiuL85SLJo+DOO14LBOBH4mm9GUgOkkqWOgFou2NzlW8PRZp5sfRtZwk4jZkw8gf+JxJoro3FywMWW9aPZ31SmWn4uhlLwLXgDLMasSlF9ygjxgcOUIIRJCEAzBk9HThwkFC3C2mxKWEfB0XmKFI3pxUghSM2BF9h7TrGjaivcqZaTenUwJ6U3LaOCZPTLqUsDrN1vFcZ1bsb7mnOqe624T+nskVEitxR+xfvrnyvz5Vi8QANV2DTzUlmlHVcZMl111RN7e/VCUpQ0Kcwn2Kp4S5ds77bGtPpmtXvWU6/qaVilV7brQ53tUtacDuz3Eugla14joV98op12tm1AUc4ggnNM8z1HGJBpq64494wrPVsMbWzLr/lFpLxnOAb8t6+ABO3JNX</latexit>

(b) Example of partition with interior cross points
but without boundary cross points (card J = 12).

⌦1
<latexit sha1_base64="e+DsXPMoW0iErzeglb1mCiQgaCE=">AAACy3icjVHLTsJAFD3UF6Io6tJNIzFxRVo3siRx48aIiTwSIKQdBpzQV9qpCaJLf8Ctfo0/YfwD/QvvDCVRidFp2p4595w7c+91I08k0rLecsbS8srqWn69sLFZ3Nou7ew2kzCNGW+w0Avjtusk3BMBb0ghPd6OYu74rsdb7vhUxVs3PE5EGFzJScR7vjMKxFAwRxLV7l74fOT07X6pbFUsvcxFYGegXCu+pCaAelh6RRcDhGBI4YMjgCTswUFCTwc2LETE9TAlLiYkdJzjHgXypqTipHCIHdN3RLtOxga0VzkT7WZ0ikdvTE4Th+QJSRcTVqeZOp7qzIr9LfdU51R3m9DfzXL5xEpcE/uXb678r0/VIjFEVdcgqKZIM6o6lmVJdVfUzc0vVUnKEBGn8IDiMWGmnfM+m9qT6NpVbx0df9dKxao9y7QpPtQtacD2z3EuguZxxbYq9iVNuorZymMfBziieZ6ghjPU0dBzfMQTno1zIzFujbuZ1Mhlnj18W8bDJ7eTk7Y=</latexit><latexit sha1_base64="+P2WSFlzJohoyv0GHrBenTpnIHU="></latexit><latexit sha1_base64="+P2WSFlzJohoyv0GHrBenTpnIHU=">AAACy3icjVHLSsNAFD2Nr1qtVl26CZaCq5K4scuCIG7ECvYBVmSSTuvQvEgmQq0u/QG3uvZD/AnxD/QvvDNNQS2iE5KcOfecO3PvdSJPJNKy3nLG3PzC4lJ+ubCyWlxbL21stpIwjV3edEMvjDsOS7gnAt6UQnq8E8Wc+Y7H287wQMXb1zxORBicyVHEL3w2CERfuEwS1eme+HzALu3LUtmqWnqZs8DOQLlefEkrh4XnRlh6RRc9hHCRwgdHAEnYA0NCzzlsWIiIu8CYuJiQ0HGOOxTIm5KKk4IRO6TvgHbnGRvQXuVMtNulUzx6Y3KaqJAnJF1MWJ1m6niqMyv2t9xjnVPdbUR/J8vlEytxRexfvqnyvz5Vi0QfNV2DoJoizajq3CxLqruibm5+qUpShog4hXsUjwm72jnts6k9ia5d9Zbp+LtWKlbt3Uyb4kPdkgZs/xznLGjtVW2rap/SpGuYrDy2sYNdmuc+6jhCA009xwc84sk4NhLjxridSI1c5tnCt2XcfwLeYZSx</latexit><latexit sha1_base64="hcUSazlJf2tffmVo49kOr+ohgPI="></latexit>

⌦2
<latexit sha1_base64="uj3Ao5gRJgHyK+aos4WgaN2GZxc=">AAACy3icjVHLTsJAFD3UF6Io6tJNIzFxRVo2siRx48aIiTwSJKQdBpzQV9qpCaJLf8Ctfo0/YfwD/QvvDCVRidFp2p4595w7c+91I08k0rLecsbS8srqWn69sLFZ3Nou7ey2kjCNGW+y0Avjjusk3BMBb0ohPd6JYu74rsfb7vhExds3PE5EGFzKScR7vjMKxFAwRxLVuTr3+cjpV/ulslWx9DIXgZ2Bcr34kpoAGmHpFVcYIARDCh8cASRhDw4SerqwYSEirocpcTEhoeMc9yiQNyUVJ4VD7Ji+I9p1MzagvcqZaDejUzx6Y3KaOCRPSLqYsDrN1PFUZ1bsb7mnOqe624T+bpbLJ1bimti/fHPlf32qFokharoGQTVFmlHVsSxLqruibm5+qUpShog4hQcUjwkz7Zz32dSeRNeueuvo+LtWKlbtWaZN8aFuSQO2f45zEbSqFduq2Bc06RpmK499HOCI5nmMOk7RQFPP8RFPeDbOjMS4Ne5mUiOXefbwbRkPn7nzk7c=</latexit><latexit sha1_base64="gksjuQTIXdOxQob6yBEany53kQw="></latexit><latexit sha1_base64="gksjuQTIXdOxQob6yBEany53kQw="></latexit><latexit sha1_base64="dSB9iwrT0X+M5G7s7sOfmYGDoN8="></latexit>

⌦3
<latexit sha1_base64="6tzGgxAUR4VKKHWv5z1+qAMFEL0="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="u62bftOt4EibpI8+aoQRg2+l7rI="></latexit>

⌦4
<latexit sha1_base64="rK0Y9fiajf4+BqEGnE3xDJTTqLw=">AAACy3icjVHLSsNAFD3GV61Wqy7dBIvgqiQi2GXBjRuxgn1AW8okndaheZFMhFpd+gNu9Wv8CfEP9C+8M01BLaITkpw595w7c+91Ik8k0rLeFozFpeWV1dxafn2jsLlV3N5pJGEau7zuhl4YtxyWcE8EvC6F9HgrijnzHY83ndGpijdveJyIMLiS44h3fTYMxEC4TBLV6lz4fMh6x71iySpbepnzwM5AqVp4SU0AtbD4ig76COEihQ+OAJKwB4aEnjZsWIiI62JCXExI6DjHPfLkTUnFScGIHdF3SLt2xga0VzkT7XbpFI/emJwmDsgTki4mrE4zdTzVmRX7W+6JzqnuNqa/k+XyiZW4JvYv30z5X5+qRWKAiq5BUE2RZlR1bpYl1V1RNze/VCUpQ0Scwn2Kx4Rd7Zz12dSeRNeuest0/F0rFav2bqZN8aFuSQO2f45zHjSOyrZVti9p0hVMVw572MchzfMEVZyhhrqe4yOe8GycG4lxa9xNpcZC5tnFt2U8fAK+s5O5</latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="7BE163+ZZ8Cs8UfVLdTSYjvTuTk="></latexit>

�14
<latexit sha1_base64="08m9FegJtEtFkHd2nowMs959fNU="></latexit><latexit sha1_base64="5NkwlaKF0FavvE+gb4UwL2JpK+c="></latexit><latexit sha1_base64="5NkwlaKF0FavvE+gb4UwL2JpK+c="></latexit><latexit sha1_base64="XrXYk21MUhSrUccyAOnoBZVSUyQ=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVRIR7LLgQpcV7APaUibTqQ7mRTIplFLc+gNu9bPEP9C/8M6YglpEJyQ5c+45d+be68W+TJXjvBaspeWV1bXiemljc2t7p7y710qjLOGiySM/SjoeS4UvQ9FUUvmiEyeCBZ4v2t7duY63xyJJZRReq0ks+gG7CeVIcqaI6vYuWBCwwdQ9nQ3KFafqmGUvAjcHFeSrEZVf0MMQETgyBBAIoQj7YEjp6cKFg5i4PqbEJYSkiQvMUCJvRipBCkbsHX1vaNfN2ZD2Omdq3JxO8elNyGnjiDwR6RLC+jTbxDOTWbO/5Z6anPpuE/p7ea6AWIVbYv/yzZX/9elaFEaomRok1RQbRlfH8yyZ6Yq+uf2lKkUZYuI0HlI8IcyNc95n23hSU7vuLTPxN6PUrN7zXJvhXd+SBuz+HOciaJ1UXafqXjmVei0fdREHOMQxzfMMdVyigabp+COe8Gw1rLE1s+4/pVYh9+zj27IePgBMepNW</latexit>

�12
<latexit sha1_base64="84QCrBELPFuFPSLzDZK1tM2YnvA="></latexit><latexit sha1_base64="JWYYIEl2JMyP4FY2d1qUYmzZTjs="></latexit><latexit sha1_base64="JWYYIEl2JMyP4FY2d1qUYmzZTjs="></latexit><latexit sha1_base64="T3/YLqEzD6ebph518Gau2oxtPII=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVZJudFlwocsK9gFtKZPptIbmRTIRSilu/QG3+lniH+hfeGecglpEJyQ5c+45d+be6yWBn0nHeS1YK6tr6xvFzdLW9s7uXnn/oJXFecpFk8dBnHY8lonAj0RT+jIQnSQVLPQC0fYmFyrevhNp5sfRjZwmoh+yceSPfM4kUd3eJQtDNpi5tfmgXHGqjl72MnANqMCsRlx+QQ9DxODIEUIggiQcgCGjpwsXDhLi+pgRlxLydVxgjhJ5c1IJUjBiJ/Qd065r2Ij2Kmem3ZxOCehNyWnjhDwx6VLC6jRbx3OdWbG/5Z7pnOpuU/p7JldIrMQtsX/5Fsr/+lQtEiOc6xp8qinRjKqOmyy57oq6uf2lKkkZEuIUHlI8Jcy1c9FnW3syXbvqLdPxN61UrNpzo83xrm5JA3Z/jnMZtGpV16m6106lfm5GXcQRjnFK8zxDHVdooKk7/ognPFsN686aW/efUqtgPIf4tqyHD0e4k1Q=</latexit>

�13
<latexit sha1_base64="tRXTFHjfc+c9RPPDmDj1VU4tw+Y="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="WxTAAGv+FYDQ/T2NiQZ1qJQLo68="></latexit>

⌦1
<latexit sha1_base64="e+DsXPMoW0iErzeglb1mCiQgaCE="></latexit><latexit sha1_base64="+P2WSFlzJohoyv0GHrBenTpnIHU="></latexit><latexit sha1_base64="+P2WSFlzJohoyv0GHrBenTpnIHU="></latexit><latexit sha1_base64="hcUSazlJf2tffmVo49kOr+ohgPI="></latexit>

⌦2
<latexit sha1_base64="uj3Ao5gRJgHyK+aos4WgaN2GZxc="></latexit><latexit sha1_base64="gksjuQTIXdOxQob6yBEany53kQw="></latexit><latexit sha1_base64="gksjuQTIXdOxQob6yBEany53kQw="></latexit><latexit sha1_base64="dSB9iwrT0X+M5G7s7sOfmYGDoN8="></latexit>

⌦3
<latexit sha1_base64="6tzGgxAUR4VKKHWv5z1+qAMFEL0="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="hYVs2Kq2+Ln5IuTdFkysSODkZhA="></latexit><latexit sha1_base64="u62bftOt4EibpI8+aoQRg2+l7rI="></latexit>

⌦4
<latexit sha1_base64="rK0Y9fiajf4+BqEGnE3xDJTTqLw="></latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="tvYQmA8inHr+HZ0+KcEKDB6JcE4="></latexit><latexit sha1_base64="7BE163+ZZ8Cs8UfVLdTSYjvTuTk="></latexit>

�13
<latexit sha1_base64="tRXTFHjfc+c9RPPDmDj1VU4tw+Y="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="xexuhL98P3Aiuh1ijfZbUM6bRCA="></latexit><latexit sha1_base64="WxTAAGv+FYDQ/T2NiQZ1qJQLo68="></latexit>

�23
<latexit sha1_base64="/Q20uKwN1DQKFapWMc8lW4MydOY="></latexit><latexit sha1_base64="NJxr4pMm+8YldOzQagxLu30Z4r4="></latexit><latexit sha1_base64="NJxr4pMm+8YldOzQagxLu30Z4r4="></latexit><latexit sha1_base64="Bc8OQkqu0DVkxITU36jCRjAow1k="></latexit>

�34
<latexit sha1_base64="4CXs9wrIcoRyD9p4fsJCTvBIMp4=">AAACznicjVHLSsNAFD2Nr1qtVl26CRbBVUlUsMuCC11WsA+oUibptIbmxWRSKKW49Qfc6r/4E+If6F94Z5qCWkQnJDlz7jl35t7rxL6XSMt6yxlLyyura/n1wsZmcWu7tLPbTKJUuLzhRn4k2g5LuO+FvCE96fN2LDgLHJ+3nOG5irdGXCReFF7LccxvAzYIvb7nMklU5+aCBQHrTk5Op91S2apYepmLwM5AuVZ8SU0A9aj0ihv0EMFFigAcISRhHwwJPR3YsBATd4sJcYKQp+McUxTIm5KKk4IRO6TvgHadjA1pr3Im2u3SKT69gpwmDskTkU4QVqeZOp7qzIr9LfdE51R3G9PfyXIFxErcEfuXb678r0/VItFHVdfgUU2xZlR1bpYl1V1RNze/VCUpQ0ycwj2KC8Kuds77bGpPomtXvWU6/q6VilV7N9Om+FC3pAHbP8e5CJrHFduq2Fc06SpmK499HOCI5nmGGi5RR0N3/BFPeDbqxsiYGvczqZHLPHv4toyHT/HblPw=</latexit><latexit sha1_base64="f7CcPahaO9F4woy0Xs94edQ1Ib0=">AAACznicjVHLSsNAFD2Nr1qtVl26CZaCq5KoYJcFQV1WsK3QljJJpzU0L5JJoZTi1h9wqzs/xJ8Q/0D/wjvTFNQiOiHJmXPPuTP3Xit0nVgYxltGW1peWV3Lruc2NvNb24Wd3UYcJJHN63bgBtGNxWLuOj6vC0e4/CaMOPMslzet4ZmMN0c8ip3AvxbjkHc8NvCdvmMzQVSrfcE8j3UnxyfTbqFolA219EVgpqBYzb8kpfPccy0ovKKNHgLYSOCBw4cg7IIhpqcFEwZC4jqYEBcRclScY4oceRNScVIwYof0HdCulbI+7WXOWLltOsWlNyKnjhJ5AtJFhOVpuoonKrNkf8s9UTnl3cb0t9JcHrECt8T+5Zsr/+uTtQj0UVE1OFRTqBhZnZ1mSVRX5M31L1UJyhASJ3GP4hFhWznnfdaVJ1a1y94yFX9XSsnKvZ1qE3zIW9KAzZ/jXASNo7JplM0rmnQFs5XFPg5wSPM8RRWXqKGuOv6ARzxpNW2kTbW7mVTLpJ49fFva/ScYuJX3</latexit><latexit sha1_base64="f7CcPahaO9F4woy0Xs94edQ1Ib0="></latexit><latexit sha1_base64="sGqxJFkVRepC/zXRoFGcdHJpreQ="></latexit>

⌦1
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(c) Examples of partitions without any cross points (card J = 6).

Figure 3.1: Different approaches for partitioning the computational domain.
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Besides, recalling our previous discussion about Robin boundary condition on Γ we set,

UΓ(D;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj
∈ UΓ(D; Ωj), ∀j ∈ {1, . . . , J}

}
,

UΓ(D∗;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj
∈ UΓ(D∗; Ωj), ∀j ∈ {1, . . . , J}

}
,

UΓ(D,La;PΩ) :=
{

u ∈ L2(Ω)m0 | u|Ωj
∈ UΓ(D,La; Ωj), ∀j ∈ {1, . . . , J}

}
.

(3.93)

We equip the broken space UΓ(D;PΩ) by the following scalar product (and associated norm)

(u, v)UΓ(D;PΩ) :=
J∑
j=1

(u|Ωj , v|Ωj )UΓ(D;Ωj), ∀u, v ∈ UΓ(D;PΩ). (3.94)

Note that we have, for op ∈ {D,D∗,La},

U(op; Ω) ( U(op;PΩ) ( L2(Ω)m0
,

UΓ(op; Ω) ( UΓ(op;PΩ) ( L2(Ω)m0
,

(3.95)

and that the scalar products and norms on the broken spaces agree with the continuous ones.
Elements of the broken space U(D;PΩ) may admit jumps (for both trace operators) along

interfaces between sub-domains. In a domain decomposition algorithm, one construct sequences
of broken solutions in UΓ(D;PΩ) which (hopefully) converges to the actual regular solution of
the original undecomposed problem, which lives in UΓ(D; Ω).

Splittings of the variational problem Note that we have a natural splitting of the sesquilin-
ear form a as follows

a(u, v) :=
J∑
j=1

aj(u|Ωj
, v|Ωj

), ∀u, v ∈ UΓ(D; Ω), (3.96)

where, for all j ∈ {1, . . . , J}, uj , vj ∈ UΓ(D; Ωj),

aj(uj , vj) := κ0
−1(a Duj ,Dvj)L2(Ωj)m1 − κ0 (nuj , vj)L2(Ωj)m0 − i(γ0,Γ uj , γ0,Γ vj)L2(Γ)m0 . (3.97)

This motivates the introduction of the (broken) version a of the above sesquilinear form a, defined
on the (larger) broken solution space UΓ(D;PΩ):

a(u, v) :=
J∑
j=1

aj(u|Ωj
, v|Ωj

), ∀u, v ∈ UΓ(D;PΩ). (3.98)

We require more regularity on the source terms that could be assumed on the model prob-
lem to avoid any difficulties after decomposition, in particular in the definition of the co-normal
derivative. Assuming f ∈ U(D; Ω)′ for instance would possibly induce non-zero distributions
with support at transmission interfaces later on. Therefore, when we consider our domain de-
composition method, we make the following assumption.

Assumption 3.10. The source of the model problem is such that f ∈ L2(Ω)m0 .
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Since both source terms are regular enough, namely f ∈ L2(Ω)m0 and g ∈ L2(Γ)m0 , we also
have a natural splitting of the linear form l as follows

l(v) :=
J∑
j=1

lj(v|Ωj ), ∀v ∈ UΓ(D; Ω), (3.99)

where, for all j ∈ {1, . . . , J}, vj ∈ UΓ(D; Ωj),

lj(vj) := κ0
−1(f |Ωj

, vj)L2(Ωj)m0 + (g, γ0,Γ vj)L2(Γ)m0 . (3.100)

This motivates the introduction of the (broken) version l of the above linear form l, defined on
the (larger) broken solution space UΓ(D;PΩ):

l(v) :=
J∑
j=1

lj(v|Ωj
), ∀v ∈ UΓ(D;PΩ). (3.101)

3.2 Abstract domain decomposition method
3.2.1 Free junction assumptions
Some results in the first part (Part I) of this manuscript require the following assumptions on
the geometric partition. Unless stated otherwise, from this point onwards in Part I we suppose
that these assumptions hold. We shall however point out precisely where these assumptions are
necessary. In fact, we shall provide a generalization of the theory in Part III of this manuscript.
Assumption 3.11 (Absence of interior junction points). We suppose that

Γj ∩ Γk ∩ Γl = ∅, ∀(j, k, l) ∈ {1, . . . , J}3
, j 6= k, k 6= l, l 6= j. (3.102)

This assumption can be further extended as follows:
Assumption 3.12 (Absence of boundary junction points). We suppose that

Γj ∩ Γk ∩ Γ = ∅, ∀(j, k) ∈ {1, . . . , J}2
, j 6= k. (3.103)

An important implication of these assumptions is that all the interfaces Γjk are closed man-
ifolds of Rd. The definitions of functional spaces and operators of the previous section for a
general domain Ω extend naturally to the local sub-domains Ωj , for j = 1, . . . , J . In particular,
under Assumptions 3.11 and 3.12 there will be no definition issues for the trace operators and
the trace spaces. As a result, in each sub-domain we have the following first Green identity for
all uj ∈ UΓ(D,La; Ωj) and vj ∈ UΓ(D; Ωj),

(Lauj , vj)L2(Ωj)m0 − (a Duj ,Dvj)L2(Ωj)m1

= −κ0〈γ1,Γ uj , γ0,Γ vj〉Γ − κ0
∑
k∈Kj

〈γ1,Γjk
uj , γ0,Γjk

vj〉Γjk
. (3.104)

It follows from Assumption 3.12 that we can choose the numbering of the sub-domains so that
there is exactly one sub-domain, by convention with number j = 1, for which part of its boundary
is Γ, the physical boundary of Ω. For the sake of simplicity, we always mention in the following
the boundary condition (γ1,Γ − iγ0,Γ )u|Ωj = 0 on Γ for all j ∈ {1, . . . , J}, but it is obvious
that when j > 1, this condition is meaningless and should be discarded. For the same reason, it
should be noted that UΓ(D; Ωj) ≡ U(D; Ωj) for j > 1 and the first term on the right-hand-side
in (3.104) is actually present only if j = 1.
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3.2.2 A first equivalent transmission problem
We then specify which (physical) transmissions conditions these solutions shall satisfy (in addition
to the PDE) to be solution of the original (undecomposed) problem.

3.2.2.1 Transmission conditions

The following lemma makes clear the difference between the U (regular) and the U (broken)
versions of the solution spaces.

Lemma 3.13. An element u in U(D;PΩ) is an element of U(D; Ω) if, and only if,

γD,Γjk

(
u|Ωj

)
= γD,Γkj

(u|Ωk
) , ∀(j, k) ∈ J. (3.105)

An element u in U(D∗;PΩ) is an element of U(D∗; Ω) if, and only if,

γD∗,Γjk

(
u|Ωj

)
= −γD∗,Γkj

(u|Ωk
) , ∀(j, k) ∈ J. (3.106)

Proof. Let u ∈ U(D;PΩ) and a test function φ ∈ D(Ω)m0 , the quantity Du is defined in a
distributional sense as

〈Du, φ〉Ω = 〈u,D∗φ〉Ω, (3.107)
where 〈·, ·〉Ω denotes the usual duality pairing between a distribution and a test function. Now,
we can split the right hand side into local contributions and using integration by parts (3.39), in
each of the sub-domains we get

〈Du, φ〉Ω =
J∑
j=1

(
〈Duj , φj〉Ωj

− 〈γD∗,Γ φj , γD,Γ uj〉Γ∩Γj
−
∑
k∈Kj

〈γD∗,Γjk
φj , γD,Γjk

uj〉Γjk

)
,

=
J∑
j=1

(
〈Duj , φj〉Ωj

−
∑
k∈Kj

〈γD∗,Γjk
φj , γD,Γjk

uj〉Γjk

)
,

(3.108)
where we used as a short hand uj := u|Ωj

, φj := φ|Ωj
and the (exterior) boundary term vanish

because of the compact support of φ. By definition of the trace operators (3.29) (see also
Assumption 3.2) and the regularity of the test function φ, we have γD∗,Γjk

φj = −γD∗,Γkj
φk. We

deduce that

〈Du, φ〉Ω =
( J∑
j=1
〈Duj , φj〉Ωj

)
−
( ∑

(j,k)∈J
j<k

〈γD∗,Γjk
φj , γD,Γjk

uj − γD,Γkj
uk〉Γjk

)
, (3.109)

hence, u in U(D;PΩ) is an element of U(D; Ω) if, and only if, for all (j, k) ∈ J,

〈γD∗,Γjk
φj , γD,Γjk

uj − γD,Γkj
uk〉Γjk

= 0. (3.110)

From Assumption 3.1, D(Ω)m0 is dense in U(D∗; Ω). It follows that for each interface Γjk, the
image of D(Ω)m0 by the (continuous) trace operator γD∗,Γjk

is dense into X1(Γjk) the image of
U(D∗; Ω) by the (continuous) trace operator γD∗,Γjk

. As a result, we have

γD,Γjk
uj = γD,Γkj

uk, in X0(Γjk), ∀(j, k) ∈ J. (3.111)

The proof of the other result is similar and omitted for the sake of brevity, we just remark that
for a test function φ we will have in this case γD,Γjk

φj = γD,Γkj
φk (notice the sign change, hence

the change of sign in the corresponding result). �
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From the previous lemma, and by definition of the physical trace operators (3.64), we have
the following result.

Corollary 3.14. An element u in U(D;PΩ) (respectively in UΓ(D;PΩ)) is an element of U(D; Ω)
(respectively in UΓ(D; Ω)) if, and only if,

γ0,Γjk

(
u|Ωj

)
= γ0,Γkj

(u|Ωk
) , ∀(j, k) ∈ J. (3.112)

An element u in U(D,La;PΩ) (respectively in UΓ(D,La;PΩ)) is an element of U(D,La; Ω) (re-
spectively in UΓ(D,La; Ω)) if, and only if,{

γ0,Γjk

(
u|Ωj

)
= γ0,Γkj

(u|Ωk
) ,

γ1,Γjk

(
u|Ωj

)
= −γ1,Γkj

(u|Ωk
) ,

∀(j, k) ∈ J. (3.113)

3.2.2.2 Equivalent transmission problem

The following proposition is an immediate consequence of Corollary 3.14.

Proposition 3.15. The model problem (3.79) is equivalent to the following transmission prob-
lem:

Find u ∈ UΓ(D;PΩ) such that :

∀j ∈ {1, . . . , J},
{

(La − κ0
2n)u|Ωj

= f |Ωj
,

(γ1,Γ − iγ0,Γ )u|Ωj
= g,

in Ωj ,
on Γ ∩ Γj ,

∀(j, k) ∈ J,

{
γ0,Γjk

(
u|Ωj

)
= γ0,Γkj

(u|Ωk
) ,

γ1,Γjk

(
u|Ωj

)
= −γ1,Γkj

(u|Ωk
) ,

on Γjk.

(3.114)

Proof. (⇒) Let u be a solution of the model problem (3.79):
Find u ∈ UΓ(D; Ω) such that
(La − κ0

2n)u = f, in Ω,
(γ1,Γ − iγ0,Γ )u = g, on Γ.

(3.115)

Since u satisfies the PDE in Ω in a distributional sense, by testing for each j ∈ {1, . . . , J} with
a test function in C∞

0 (Ωj) (extended by zero outside Ωj), the restriction u|Ωj
, which ought to

be in UΓ(D; Ωj), satisfies the PDE in each sub-domain Ωj . The physical boundary condition on
Γ is not affected by the decomposition since we exclude the case of boundary junction points
(Assumption 3.12). We get{

(La − κ0
2n)u|Ωj

= f |Ωj
, in Ωj , ∀j ∈ {0, . . . , J},

(γ1,Γ − iγ0,Γ )u = g, on Γ.
(3.116)

Besides u is explicitly sought as an element of UΓ(D; Ω) so that according to Corollary 3.14 the
trace γ0 should match across each interface. Since in addition u satisfy the PDE in the whole
of Ω and by Assumption 3.10 necessarily u ∈ UΓ(D,La; Ω) and Corollary 3.14 then yields the
continuity of both traces γ0 and γ1. Finally, u is solution of (3.114).

(⇐) Conversely, suppose that u is a solution of (3.114). From the continuity of the traces γ0
and γ1, Corollary 3.14 yields that u ∈ UΓ(D,La; Ω). It follows that (La − κ0

2n)u makes sense in
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L2(Ω)m0 and we can write for any test function φ ∈ C∞
0 (Ω)

((La − κ0
2n)u, φ)L2(Ω)m0 =

J∑
j=1

((La − κ0
2n)u|Ωj

, φ|Ωj
)
L2(Ωj)m0 ,

=
J∑
j=1

(f |Ωj
, φ|Ωj

)
L2(Ωj)m0 = (f, φ)L2(Ω)m0 ,

(3.117)

where we could write the last equality thanks to Assumption 3.10. Finally, using the same
argument for the physical boundary condition on Γ, u is solution of the model problem (3.79). �

Example 1: Helmholtz. In the acoustic setting, the equivalent transmission problem is written

Find p ∈ L2(Ω) such that :

∀j ∈ {1, . . . , J},


pj := p|Ωj ∈ H1(Ωj),(
−div ρ−1

r grad−κ0
2λ−1
r

)
pj = f |Ωj

,(
ρ−1
r ∂ν − iκ0

)
pj = κ0g|Γj

,

in Ωj ,
on Γ ∩ Γj .

∀(j, k) ∈ J,

{
pj |Γjk

= pk|Γkj
,

ρ−1
r ∂νjk

pj = −ρ−1
r ∂νkj

pk.
on Γjk.

(3.118)

In the system above we introduced νjk the unit normal vector on the interface Γjk, for any
(j, k) ∈ J, and defined to be outward to the domain Ωj, so that by definition νjk = −νkj.

Example 2: Maxwell. In the electromagnetic setting, the equivalent transmission problem is
written

Find E ∈ L2(Ω) such that :

∀j ∈ {1, . . . , J},


Ej := E|Ωj

∈ HΓ(curl; Ωj),(
curlµ−1

r curl−κ0
2εr
)

Ej = f |Ωj
,

µ−1
r curl Ej × ν − iκ0 ν × (Ej × ν) = κ0g|Γj ,

in Ωj ,
on Γ ∩ Γj .

∀(j, k) ∈ J,

{
νjk × (Ej × νjk) = νkj × (Ek × νkj),
µ−1
r curl Ej × νjk = −µ−1

r curl Ek × νkj .
on Γjk.

(3.119)

3.2.3 Multi-trace formalism
We introduce now a set of definitions to provide a characterization of the solution of the original
problem entirely through its trace. The framework described below is inspired by the work of
Xavier Claeys [29] and the so-called Multi-Trace Formalism (MTF). This formalism (which — we
concede — might be disconcerting, especially in this very abstract setting) allows for very concise
formulations. Besides, it is very rewarding as it will turn out to be a fertile ground to relax the
somewhat penalizing no cross-point assumption (see Chapter 9). We present this framework in
this simplified free junction setting to be able to draw a parallel between the classical approach
described in this section and the more general method described later. We refer the reader
to [42, 44, 78, 91] for a more standard approach of the same DD method in the acoustic setting.
Note that there already exists some literature making connections between the MTF and domain
decomposition methods [7, 35, 31, 39, 55]. The MTF comes in two main flavors, the local [83,
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84] and the non-local versions [32, 38]. In this chapter we will rely on the former version while
we will exploit the latter version in Part III of this manuscript.

With this aim, we introduce the multi-trace space M‖ whose elements are collections of couples
of zeroth and first order traces at each interface, and from both sides of it. We then introduce
two important subspaces of M‖. The first one is the so-called Cauchy trace space C‖, which
is the space of couples of zeroth and first order traces that are compatible in the sense that
they represent a (broken) function satisfying the homogeneous physical equation locally in each
sub-domain. The second subspace is the so-called single-trace space S‖, whose elements match
in some sense at an interface (expressing the transmission conditions between sub-domains),
hence imposing the global regularity required by the solution of the original problem. Roughly
speaking (up to a contribution of the source of the problem) the trace of the solution belongs to
the intersection between the two subspaces.

A remark on our notations We shall use when necessary the symbol ‖ as an index to denote
a space or an operator whose definition relies on the free junction assumption. In contrast in
Part III, we shall replace it with the symbol × to indicate a definition that is valid even in
presence of junctions.

3.2.3.1 Multi-trace spaces

We introduce global trace spaces whose elements are collection of traces on all interfaces (from
both sides) between two sub-domains.

Definition 3.16 (Multi-trace spaces). The global multi-trace spaces are defined as

M0,‖
(
Σ̃
)

:= ×
(j,k)∈J

X0(Γjk),

M1,‖
(
Σ̃
)

:= ×
(j,k)∈J

X1(Γjk),

M1/2,‖

(
Σ̃
)

:= ×
(j,k)∈J

X1/2(Γjk),

M‖

(
Σ̃
)

:= ×
(j,k)∈J

X(Γjk) ≡ M0,‖
(
Σ̃
)
× M1,‖

(
Σ̃
)
.

(3.120)

Note that because Assumption 3.11 and Assumption 3.12 hold, each manifold Γjk is neces-
sarily closed.

The multi-trace space M0,‖
(
Σ̃
)

(respectively, M1,‖
(
Σ̃
)
) is composed of collections of traces of

order 0 (respectively, 1) on each interface and from both sides of it. The term multi-trace refers
to the fact that at a single interface between two distinct sub-domains, two (interior) traces from
each of the two sub-domains appear in such collections. Indeed, for each interface Γjk with (j, k) ∈
J (hence not empty), there also exists Γkj which actually refers to the same manifold. Therefore,
the two traces from the sub-domains Ωj and Ωk are present in the collections. Importantly, these
two traces need not be compatible, in the sense that they are not necessarily traces of solutions
that are globally regular across the said interface.

The multi-trace space M1/2,‖

(
Σ̃
)

will acts as a pivot space between M0,‖
(
Σ̃
)

and M1,‖
(
Σ̃
)

for
the duality induced by 〈〈·, ·〉〉‖ (see (3.127)).

The multi-trace space M‖

(
Σ̃
)

is defined as the collections of couples of traces of order 0 and 1
on each interface. Note that this space could also be defined as the Cartesian product of the two
previous multi-trace spaces, which differs only by a reordering of the components. We shall make
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the natural identification between the two definitions and use them interchangeably depending
on the context.

For the sake of simplicity, we omit the dependence to the skeleton domain and simply write
M‖ := M‖

(
Σ̃
)

and so on, unless it is not clear from the context.
We provide below the particularization of the above abstract definition to our main target

applications.

Example 1: Helmholtz. In the acoustic setting, the multi-trace spaces are

M0,‖
(
Σ̃
)
≡ ×

(j,k)∈J

H
1/2(Γjk),

M1,‖
(
Σ̃
)
≡ ×

(j,k)∈J

H−1/2(Γjk),

M1/2,‖

(
Σ̃
)
≡ ×

(j,k)∈J

L2(Γjk).

(3.121)

Example 2: Maxwell. In the electromagnetic setting, the multi-trace spaces are

M0,‖
(
Σ̃
)
≡ ×

(j,k)∈J

H−1/2(curl; Γjk),

M1,‖
(
Σ̃
)
≡ ×

(j,k)∈J

H−1/2(div; Γjk),

M1/2,‖

(
Σ̃
)
≡ ×

(j,k)∈J

L2
t (Γjk).

(3.122)

Trace operators By construction, the following global trace operators are continuous map-
pings from the broken solution spaces into the multi-trace spaces

γ0,‖ : U(D;PΩ)→ M0,‖,

u 7→
(
γ0,Γjk

u|Ωj

)
(j,k)∈J

,

γ1,‖ : U(D,La;PΩ)→ M1,‖,

u 7→
(
γ1,Γjk

u|Ωj

)
(j,k)∈J

,

γ‖ : U(D,La;PΩ)→ M‖,

u 7→
(
γΓjk

u|Ωj

)
(j,k)∈J

.

(3.123)

In addition, from Assumption 3.2, the mappings γ0,‖ and γ1,‖ are surjective. It is clear that, up
to a re-ordering of the elements, we can make the identification γ‖ ≡ (γ0,‖,γ1,‖).

Remark 3.17. Without Assumptions 3.11 and 3.12 the range of these trace operators could not
necessarily be these trace spaces (but rather larger spaces).

Norms and duality pairings In the definitions below, and systematically in the remainder
of this document, we shall use the following notations for elements of the multi-trace spaces

x0 = (xjk0 )(j,k)∈J, y0 = (yjk0 )(j,k)∈J ∈ M0,‖,

x1 = (xjk1 )(j,k)∈J, y1 = (yjk1 )(j,k)∈J ∈ M1,‖,

x1/2 = (xjk1/2
)
(j,k)∈J

, y1/2 = (yjk1/2
)
(j,k)∈J

∈ M1/2,‖,

x = (xjk)(j,k)∈J ≡ (x0, x1), y = (yjk)(j,k)∈J ≡ (y0, y1) ∈ M‖.

(3.124)
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The multi-trace spaces can be endowed with the norms stemming from their Cartesian product
structure. Recalling the definitions of the norms on a single domain given in (3.31), (3.33)
and (3.50), we set, for each σ ∈ {0, 1/2, 1},

‖xσ‖2
Mσ,‖

:=
∑

(j,k)∈J

‖xjkσ ‖
2
Xσ(Γjk,h). (3.125)

Besides, we introduce the natural norm on M‖ as follows

‖x‖2
M‖

:= ‖x0‖2
M0,‖

+ ‖x1‖2
M1,‖

, ∀x ≡ (x0, x1) ∈ M‖. (3.126)

Recalling the local duality pairing 〈·, ·〉∂O between the two dual trace spaces (3.28) on a
single boundary ∂O, we introduce the duality pairing between multi-trace spaces (which does
not involve any complex conjugation operation)

〈〈·, ·〉〉‖ : M1,‖ × M0,‖ → C,

(x1, x0) 7→
∑

(j,k)∈J

〈xjk1 , xjk0 〉Γjk
. (3.127)

Recalling our definition (3.49) of the inner product (·, ·)∂O on the pivot trace space X1/2(∂O) on
a single boundary ∂O, we also equip the (pivot) multi-trace space with its natural scalar product
(and associated norm) which reads

((·, ·))‖ : M1/2,‖ × M1/2,‖ → C,

(x1/2, x1/2) 7→
∑

(j,k)∈J

(xjk1/2
, yjk1/2

)
X1/2(Γjk)

. (3.128)

Recalling the definition (3.73) of the bilinear form [·, ·]∂O on X(∂O) for a single boundary ∂O,
we finally define the skew symmetric bilinear form

[[·, ·]]‖ : M‖ × M‖ → C,

(x, y) 7→
∑

(j,k)∈J

[xjk, yjk]Γjk
= 〈〈y1, x0〉〉‖ − 〈〈x1, y0〉〉‖. (3.129)

3.2.3.2 Cauchy-trace spaces

We define a first subset of the space of multi-trace spaces which is the space of traces of a function
whose restriction in each sub-domain satisfies the homogeneous PDE and physical boundary
conditions on Γ (see (3.130)). In particular, note that no boundary condition on the transmission
interface is imposed in the following definition and that the two traces associated to the two sides
of a single interface between two sub-domains need not satisfy a matching condition.

Definition 3.18 (Cauchy-trace space). For each j = 1, . . . , J , define the subspace of solutions
of the homogeneous PDE in Ωj as

S (Ωj) :=
{
uj ∈ UΓ(D; Ωj) such that

{
(La − κ0

2n)uj = 0, in Ωj ,
(γ1,Γ − iγ0,Γ )uj = 0, on Γ ∩ Γj .

}
. (3.130)

For each j = 1, . . . , J , the local space of Cauchy traces is defined as

C‖ (Γj) :=
{(

xjk
)
k∈Kj

∈×
k∈Kj

X(Γjk)
∣∣∣ ∃uj ∈ S(Ωj), xjk := γΓjk

uj , ∀k ∈ Kj

}
. (3.131)
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The global Cauchy trace space is defined as

C‖

(
Σ̃
)

:=
J×
j=1

C‖ (Γj) , (3.132)

which we identify as a subspace of M‖ in a straightforward manner.

Because elements of the Cauchy trace space C‖ are traces of local solutions u|Ωj that satisfy
the original equation locally in each sub-domain Ωj , it is natural that they satisfy some sort
of energy conservation result, as stated in the following proposition. Since we are interested in
harmonic wave propagation problems, the notion of energy balance is not properly defined. When
we say that the energy decreases we mean that there is a dissipation phenomenon in the problem
either by dissipation through the boundary or by absorption from the medium (coefficients a and
n in the PDE with non vanishing imaginary parts). If neither of this two dissipation phenomenon
are present (which is possible in a single sub-domain), we say that the energy is conserved. A
similar result in a more general setting (in the whole space and with junctions) can be found
in [29, Lem. 6.1].

Proposition 3.19 (Energy balance interpretation). The energy decreases globally in Ω,
which translates as

i[[x, x]]‖ < 0, ∀x ∈ C‖. (3.133)

Proof. Let
x = (xjk)(j,k)∈J ∈ C‖, xjk = (xjk0 , xjk1 ), ∀(j, k) ∈ J. (3.134)

For each j ∈ {1, . . . , J}, by definition of the local Cauchy trace space C‖ given in (3.131), there
exists uj ∈ UΓ(D; Ωj) such that

(
La − κ0

2n
)
uj = 0, in Ωj ,

(γ1,Γ − iγ0,Γ )uj = 0, on Γ,
γΓjk

uj = xjk, on Γjk, ∀k ∈ Kj .

(3.135)

We have, using Lemma 3.6 and the first Green identity (3.104)

i 1
2
∑
k∈Kj

[xjk, xjk]Γjk
= =

∑
k∈Kj

〈γ1,Γjk
uj , γ0,Γjk

uj〉Γjk
,

= =
[
−κ0

−1(Lauj , uj)L2(Ωj)m0 + κ0
−1(a Duj ,Duj)L2(Ωj)m1

−〈γ1,Γ uj , γ0,Γ uj〉Γ
]
.

(3.136)

From (3.135), we obtain

i 1
2
∑
k∈Kj

[xjk, xjk]Γjk
=
[
−κ0(=(n)uj , uj)L2(Ωj)m0 + κ0

−1(=(a) Duj ,Duj)L2(Ωj)m1

−‖γ0,Γ uj‖2
L2(Γ)m0

]
≤ 0,

(3.137)

from the assumption (3.78). This proves that the energy is conserved or diminished locally in
each sub-domain, the global result follows by summing over all sub-domains. �

In each sub-domain Ωj , we are therefore in either of the following two situations
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1. If the imaginary parts of the coefficients a and n in the PDE are identically zero and the
boundary of the sub-domain Ωj does not include part of the physical boundary Γ, we have

i 1
2
∑
k∈Kj

[xjk, xjk]Γjk
= 0, ∀(xjk)k∈Kj

∈ C‖ (Γj) , (3.138)

and we say that the energy is conserved in the sub-domain.

2. On the contrary, if the imaginary parts of the coefficients do not vanish everywhere in the
sub-domain, or its boundary includes part of the physical boundary we have

i 1
2
∑
k∈Kj

[xjk, xjk]Γjk
< 0, ∀(xjk)k∈Kj

∈ C‖ (Γj) , (3.139)

and we say that the energy decreases in the sub-domain.

3.2.3.3 Single-trace spaces

It is clear that the transmission conditions that we shall impose on our local solutions should be
equivalent to (3.112) and (3.113) (sometimes referred to as physical coupling conditions). This is
the motivation to introduce a second subspace S‖ of the multi-trace space M‖, which is the space
of traces that match across all interfaces, hence deserving to be named single-trace, in contrast
to a general multi-trace.

Definition 3.20 (Single-trace spaces). The global single-trace spaces are defined as

S0,‖
(
Σ̃
)

:=
{

x0 = (xjk0 )(j,k)∈J ∈ M0,‖ | xjk0 = xkj0 , ∀(j, k) ∈ J
}
,

S1,‖
(
Σ̃
)

:=
{

x1 = (xjk1 )(j,k)∈J ∈ M1,‖ | xjk1 = −xkj1 , ∀(j, k) ∈ J
}
,

S‖

(
Σ̃
)

:= S0,‖
(
Σ̃
)
× S1,‖

(
Σ̃
)
.

(3.140)

It is enlightening to state a few properties of these single-traces spaces. To do so, let us define
the following global trace operators (see in particular Assumption 3.2 for the definition of the
local traces)

γD,‖ : U(D;PΩ)→ M0,‖,

u 7→
(
γD,Γ̃jk

u|Ωj

)
(j,k)∈J

,

γD∗,‖ : U(D∗;PΩ)→ M1,‖,

u 7→
(
γD∗,Γ̃jk

u|Ωj

)
(j,k)∈J

.

(3.141)

Of course from (3.64), we have γD,‖ = γ0,‖. However, we introduced the operator γD,‖ to respect
the symmetry in our notations.

Elements of the single-trace spaces are traces of functions that have some “global regularity”
property, in a Sobolev sense, as stated by the following proposition which is based on Lemma 3.13.

Proposition 3.21. Under Assumptions 3.11 and 3.12, we have

S0,‖ = γD,‖ U(D; Ω)
(

= γD,‖ UΓ(D; Ω)
)
,

S1,‖ = γD∗,‖ U(D∗; Ω)
(

= γD∗,‖ UΓ(D∗; Ω)
)
.

(3.142)
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Proof. The surjectivity properties of the global trace operators which follow from the one of the
local trace operators stated in Assumption 3.2 provide us with the inclusions

S0,‖ ⊂ γD,‖ U(D; Ω),
S1,‖ ⊂ γD∗,‖ U(D∗; Ω).

(3.143)

The regularity result from Lemma 3.13 provides us with the reverse inclusions

S0,‖ ⊃ γD,‖ U(D; Ω),
S1,‖ ⊃ γD∗,‖ U(D∗; Ω).

(3.144)

The substitution from U(D; Ω) to UΓ(D; Ω) and U(D∗; Ω) to UΓ(D∗; Ω) is �

We deduce the following corollary, which in some sense is a rewriting of Lemma 3.13. It is
a characterization of the difference between the U (regular) and the U (broken) versions of the
solution spaces using the single-trace spaces.

Corollary 3.22. We have

(i) ∀u ∈ UΓ(D;PΩ), γD,‖u = γ0,‖u ∈ S0,‖ ⇔ u ∈ UΓ(D; Ω),
(ii) ∀u ∈ UΓ(D∗;PΩ), γD∗,‖u ∈ S1,‖ ⇔ u ∈ UΓ(D∗; Ω),
(iii) ∀u ∈ UΓ(D,La;PΩ), γ‖u ∈ S‖ ⇔ u ∈ UΓ(D,La; Ω).

(3.145)

Proof. It is clear that one implication (⇐) stems from Proposition 3.21. We need only to prove
the reverse implication (⇒).

(i) Let u ∈ UΓ(D;PΩ) such that γ0,‖u ∈ S0,‖. By Proposition 3.21 of S0,‖, there exists
v ∈ UΓ(D; Ω) such that γ0,‖(v − u) = 0. It follows that w := v − u ∈ Kerγ0,‖ = KerγD,‖ and by
Lemma 3.13 we get w ∈ UΓ(D; Ω) so that finally u = v + w does belong to UΓ(D; Ω).

(ii) Let u ∈ UΓ(D∗;PΩ) such that γ1,‖u ∈ S1,‖. By Proposition 3.21 of S1,‖, there exists
v ∈ UΓ(D∗; Ω) such that γ1,‖(v − u) = 0. It follows that w := v − u ∈ Kerγ1,‖ = KerγD∗,‖ and
by Lemma 3.13 we get w ∈ UΓ(D∗; Ω) so that finally u = v + w does belong to UΓ(D∗; Ω).

(iii) Let u ∈ UΓ(D,La;PΩ) such that γ‖u ∈ S‖, which rewrites from Definition 3.20 as
γ0,‖u ∈ S0,‖ and γ1,‖u ∈ S1,‖. We just proved in (i) that from γ0,‖u ∈ S0,‖ we have u ∈ UΓ(D; Ω).
If we let v ∈ L2(Ω)m1 such that for each j ∈ {1, . . . , J}, v|Ωj

= aDu|Ωj
, we have γ1,‖v ∈ S1,‖

and we just proved in (ii) that then v ∈ UΓ(D∗; Ω). Hence we get aDu ∈ UΓ(D∗; Ω) and we have
u ∈ UΓ(D,La; Ω). �

The following proposition states that the single trace spaces are orthogonal in some sense. It
provides as a result a characterization of these spaces, which will prove useful when we consider
the discretization of the method. Besides, such a result is an easy particular case of more general
results, for instance in [28, Prop. 2.1], [36, Prop. 2.1] and [29, Prop. 4.1] for the acoustic setting
and in [37, Prop. 3.1] for the electromagnetic setting. In fact, as we shall see, a result of this
type is the corner stone of the theory that allows the presence of junction points.

Proposition 3.23. The single trace spaces are such that

∀x0 ∈ M0,‖,
(

x0 ∈ S0,‖ ⇔ 〈〈y1, x0〉〉‖ = 0, ∀y1 ∈ S1,‖

)
,

∀x1 ∈ M1,‖,
(

x1 ∈ S1,‖ ⇔ 〈〈x1, y0〉〉‖ = 0, ∀y0 ∈ S0,‖

)
,

∀x ∈ M‖,
(

x ∈ S‖ ⇔ [[x, y]]‖ = 0, ∀y ∈ S‖

)
.

(3.146)
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Proof. Let x0 ≡ (xjk0 )(j,k)∈J ∈ M0,‖ and x1 ≡ (xjk1 )(j,k)∈J ∈ M1,‖, we first establish the identity

〈〈x1, x0〉〉‖ =
∑

(j,k)∈J

〈xjk1 , xjk0 〉Γjk
=

∑
(j,k)∈J
j<k

[
〈xjk1 , xjk0 〉Γjk

+ 〈xkj1 , xkj0 〉Γjk

]
.

(3.147)

Now, if x0 ∈ S0,‖ and x1 ∈ S1,‖, it follows from Definition 3.20 that 〈〈x1, x0〉〉‖ = 0. Reciprocally,
let x0 ∈ M0,‖ such that for any x1 ∈ S1,‖, we have 〈〈x1, x0〉〉‖ = 0. We obtain

〈〈x1, x0〉〉‖ =
∑

(j,k)∈J
j<k

〈xjk1 , xjk0 − xkj0 〉Γjk
= 0,

(3.148)

which holds for any x1, so that xjk0 = xkj0 for any (j, k) ∈ J and finally x0 ∈ S0,‖.
The other results stated by the proposition can be obtained analogously. �

3.2.3.4 Characterization of the trace of the solution

We are now ready to characterize the solution of the model problem (3.79) (or equivalently of
the transmission problem (3.114)) entirely through its trace. This is the purpose of the following
proposition.

Proposition 3.24. Let F ∈ UΓ(D;PΩ) be any source lifting such that (the choice is not unique){
(La − κ0

2n)F |Ωj
= f |Ωj

, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )F = g, on Γ.

(3.149)

Let u ∈ UΓ(D,La;PΩ). Then, u is solution of the model problem (3.79) if, and only if,

γ‖u ∈ (C‖ + γ‖F ) ∩ S‖. (3.150)

Proof. Given any F ∈ UΓ(D;PΩ) satisfying (3.149), from Proposition 3.15, u ∈ UΓ(D;PΩ) is
solution of the model problem (3.79) if, and only if,

Find u ∈ UΓ(D;PΩ) such that :

∀j ∈ {1, . . . , J},
{

(La − κ0
2n)(u− F )|Ωj

= 0,
(γ1,Γ − iγ0,Γ )(u− F )|Ωj

= 0,
in Ωj ,
on Γ ∩ Γj ,

∀(j, k) ∈ J,

{
γ0,Γjk

(
u|Ωj

)
= γ0,Γkj

(u|Ωk
) ,

γ1,Γjk

(
u|Ωj

)
= −γ1,Γkj

(u|Ωk
) ,

on Γjk.

(3.151)

By Definition 3.18 of the Cauchy trace space C‖ and from Proposition 3.21 on the single trace
space S‖, u ∈ UΓ(D;PΩ) is solution of the model problem (3.79) if, and only if,{

γ‖(u− F ) ∈ C‖, (u satisfies the PDE in each sub-domain),
γ‖u ∈ S‖, (the transmission conditions are satisfied).

(3.152)

�

The above characterization of the trace of the unique solution of the model problem (3.79)
as the intersection of a vector space and an affine space entails necessarily that this intersection
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is reduced to a singleton. This fact is corroborated and completed by the following proposition.
A similar result in a more general setting (in the whole space and with junctions) was proven in
the case of constant coefficients for instance in [32, Prop. 6.1] for the acoustic setting and in [37,
Prop. 6.1] for the electromagnetic setting. The extension to variable coefficients for the acoustic
setting is available in [29, Prop. 6.1].

Proposition 3.25. We have the direct sum

M‖ = C‖ ⊕ S‖. (3.153)

Proof.
Null intersection C‖ ∩ S‖ = {0}. Let x ≡ (xjk)(j,k)∈J ∈ C‖ ∩ S‖. First, since x ∈ C‖,

from Definition 3.18 of the Cauchy trace space C‖, for all j ∈ {1, . . . , J}, we can find a lifting
uj ∈ UΓ(D; Ωj) such that {

(La − κ0
2n)uj = 0, in Ωj ,

(γ1,Γ − iγ0,Γ )uj = 0, on Γ,
(3.154)

and
γΓjk

uj = xjk, on Γjk, ∀k ∈ Kj . (3.155)

Now let u ∈ UΓ(D;PΩ) such that

u|Ωj
= uj , ∀j ∈ {1, . . . , J}, (3.156)

we remark that u belongs in fact to UΓ(D,La;PΩ) (so that its trace γ‖ is well defined) and by
construction it is such that

γ‖u = x ∈ C‖ ∩ S‖. (3.157)

From Proposition 3.24, it follows that u actually satisfies the homogeneous model problem (3.79)
in the whole of Ω

γ‖u ∈ C‖ ∩ S‖ ⇔


u ∈ UΓ(D; Ω),
(La − κ0

2n)u = 0, in Ω,
(γ1,Γ − iγ0,Γ )u = 0, on Γ.

(3.158)

The well-posedness of this problem (Assumption 3.9) yields u = 0, hence x = γ‖u = 0.

Decomposition. Let x ≡ (x0, x1) ∈ M‖ with x0 ≡ (xjk0 )(j,k)∈J and x1 ≡ (xjk1 )(j,k)∈J. We
wish to construct y ∈ C‖ and z ∈ S‖ such that x = y + z. The proof performs explicitly the
projection of x on the subspace C‖ in parallel to the subspace S‖. To construct y, we consider
the following transmission problem

u ∈ UΓ(D;PΩ) such that,
(La − κ0

2n)u|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J}
(γ1,Γ − iγ0,Γ )u = 0, on Γ,
γ0,Γjk

u|Ωj
− γ0,Γkj

u|Ωk
= xjk0 − xkj0 , on Γjk, ∀(j, k) ∈ J,

γ1,Γjk
u|Ωj

+ γ1,Γkj
u|Ωk

= xjk1 + xkj1 , on Γjk, ∀(j, k) ∈ J.

(3.159)

To solve the above problem, we proceed in two steps
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1. Lifting of x0: define{
v ∈ UΓ(D,La;PΩ) such that,
γ0,Γjk

v|Ωj − γ0,Γkj
v|Ωk

= xjk0 − xkj0 , on Γjk, ∀k ∈ Kj .
(3.160)

Any such lifting will work, a particular lifting can be constructed for instance by solving
coercive (note the change of sign in the equation and the real parts of the coefficients) local
problems (which are well-posed):

∀j ∈ {1, . . . , J},


v|Ωj

∈ UΓ(D; Ωj) such that,
(L<(a) + κ0

2<(n))v|Ωj
= 0, in Ωj ,

(γ1,Γ − iγ0,Γ )v|Ωj
= 0, on Γj ∩ Γ,

γ0,Γjk
v|Ωj

= xjk0 , on Γjk, ∀k ∈ Kj .

(3.161)

2. Lifting of x1: define
w ∈ UΓ(D; Ω) such that,
(La − κ0

2n)(v − w)|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J}
(γ1,Γ − iγ0,Γ )(v − w) = 0, on Γ,
γ1,Γjk

(v − w)|Ωj
+ γ1,Γkj

(v − w)|Ωk
= xjk1 + xkj1 , on Γjk, ∀(j, k) ∈ J.

(3.162)

Such a solution w ∈ UΓ(D; Ω) exists from the well-posedness of the model problem (3.79)
(Assumption 3.9).

Set
u := v − w ∈ UΓ(D;PΩ). (3.163)

From (3.160)

γ0,Γjk
v|Ωj

− γ0,Γkj
v|Ωk

= xjk0 − xkj0 , on Γjk, ∀(j, k) ∈ J, (3.164)

and since w ∈ UΓ(D; Ω), using Proposition 3.21, we have

γ0,Γjk
w|Ωj

− γ0,Γkj
w|Ωk

= 0, on Γjk, ∀(j, k) ∈ J, (3.165)

so that
γ0,Γjk

u|Ωj
− γ0,Γkj

u|Ωk
= xjk0 − xkj0 , on Γjk, ∀(j, k) ∈ J, (3.166)

It is therefore clear from (3.162) that u solves the transmission problem (3.159).
Set

y ≡ (y0, y1) := γ‖u ≡ (γ0,‖u,γ1,‖u). (3.167)

By construction u satisfies the PDE in each sub-domain Ωj (and the physical boundary condition)
and Definition 3.18 of the Cauchy trace space C‖ yields y ∈ C‖.

Now, set
z ≡ (z0, z1) := x − y. (3.168)

Introducing
y0 ≡ (yjk0 )(j,k)∈J, y1 ≡ (yjk1 )(j,k)∈J,

z0 ≡ (zjk0 )(j,k)∈J, z1 ≡ (zjk1 )(j,k)∈J,
(3.169)
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the last two equations of (3.159) are rewritten as{
xjk0 − yjk0 = xkj0 − ykj0 ,

xjk1 − yjk1 = −xkj1 + ykj1 ,
∀(j, k) ∈ J, ⇔

{
zkj0 = zkj0 ,

zkj1 = −zkj1 ,
∀(j, k) ∈ J, (3.170)

which, by Definition 3.20 of the single trace space S‖, proves that z ∈ S‖.
Finally we have constructed the decomposition

x = y + z, with
{

y ∈ C‖,

z ∈ S‖.
(3.171)

�

3.2.4 Reformulation as an interface problem
The previous characterization (see Proposition 3.24) of the trace of the (unique) solution of
the original problem (3.79) using the two subsets C‖ and S‖ of the multi-trace space M‖ is
admittedly elegant but not very practical. In this section, we exploit the above characterization
to equivalently recast the original problem (3.79) as a problem posed on the skeleton Σ̃ of the
partition (see (3.200)).

3.2.4.1 Transmission operators

We start by introducing a key ingredient of our formulation, the transmission operators. The
choice of a transmission operator completely characterizes the domain decomposition method
and its property will greatly influence the efficiency of the method.

Definition 3.26 (Transmission operators). We call transmission operators any continuous
and injective mappings such that

T0,‖ : M0,‖ → M1,‖,

T1,‖ : M1,‖ → M0,‖,

T1/2,‖ : M0,‖ → M1/2,‖,

T−1/2,‖ : M1,‖ → M1/2,‖.
(3.172)

Note that the assumptions on the transmission operators given in the above definition are the
bare minimum we shall require. They will need to satisfy additional assumptions as we proceed
with the theory, see Assumptions 3.28, 3.36 and 3.47.

Besides, we also introduce an additional continuous mapping

Z : M0,‖ → M1,‖. (3.173)

This operator Z is less important to the domain decomposition method and shall rather be seen
as an additional parameter that is available to tune the method in order to improve its efficiency.
In fact, all what follows still stands if one considers this operator to be identically equal to zero.

From the Cartesian nature of multi-trace spaces on which they are defined, the transmission
operators have a special block structure as either an operator matrix of size card J×card J (if we
adopt the interface point of view) or an operator matrix of size J×J (if we adopt the sub-domain
point of view). We provide two examples of the transmission operators structure in Figure 3.2.
These sketches correspond to the bottom and top-right geometrical configurations that are given
in Figure 3.1c.

The transmission operators (together with the operator Z) are used to combine the two types
of traces into so-called generalized Robin multi-traces.
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Figure 3.2: Sketch of the operator matrix of transmission operators.

Definition 3.27 (Generalized Robin operators). For each σ ∈ {0, 1/2, 1}, we introduce the
global operators,

R±
σ,‖ : M‖ ≡ (M0,‖,M1,‖)→ Mσ,‖,

x ≡ (x0, x1) 7→


±T1,‖ (x1 + Zx0)− ix0, if σ = 0,
±T−1/2,‖ (x1 + Zx0)− iT1/2,‖x0, if σ = 1/2,

± (x1 + Zx0)− iT0,‖x0, if σ = 1,

(3.174)

Again, for the same reasons, the generalized Robin operators R±
σ,‖, σ ∈ {0, 1/2, 1}, have a

special block structure. However they are this time (block) “rectangular” since they map a
couple of zeroth and first order multi-traces (element of M‖ ≡ M0,‖×M1,‖) to an element of Mσ,‖.

It is clear from the mapping properties of the transmission operators (see equation (3.173)
and Definition 3.26), that these quantities are well-balanced in a functional sense: all three terms
that appear in their definition naturally belong to the same multi-trace space.

If u ∈ UΓ(D,La;PΩ), for any σ ∈ {0, 1/2, 1}, the quantity R+
σ,‖γ‖u will be referred to as an

incoming Robin trace while the quantity R−
σ,‖γ‖u will be referred to as an outgoing Robin trace,

according to standard practice in [42, 44, 91].

3.2.4.2 Scattering operators

Another key ingredient in the reformulation of the problem at the interface is the so-called
scattering operator which takes an incoming Robin trace, solves the PDE in each sub-domain
and computes an outgoing Robin trace.

Because of the abstract setting, we make the following assumption (which puts constraints
on the transmission operators) before proceeding. Of course, we shall get back to this and justify
it in what follows, but we emphasize that it is not trivial to satisfy.

Assumption 3.28. For each σ ∈ {0, 1/2, 1} and for any xσ ∈ Mσ,‖, f ∈ L2(Ω)m0 , g ∈ L2(Γ)m0 ,
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the transmission operators are such that the following problem is well-defined:
Find uσ ∈ UΓ(D;PΩ) such that
(La − κ0

2n)uσ|Ωj
= f |Ωj

, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )uσ = g, on Γ,
R+
σ,‖γ‖uσ = xσ, on Σ̃.

(3.175)

The problem (3.175) consists in local sub-problems which are coupled through the last equa-
tion. In practice though, the transmission operators will be chosen in order to decouple those
sub-problems, leading to some possible parallelization of the algorithm, see Section 3.2.4.5 for
further discussion on this matter.

Upon satisfying the above assumption, we can now safely define the scattering operators.

Definition 3.29 (Scattering operator). For each σ ∈ {0, 1/2, 1}, we define the global scattering
operators,

Sσ,‖ : Mσ,‖ → Mσ,‖,

xσ 7→ R−
σ,‖γ‖uσ,

(3.176)

where uσ ∈ UΓ(D;PΩ) is such that
(La − κ0

2n)uσ|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,‖γ‖uσ = xσ, on Σ̃.

(3.177)

From the above definition, we readily obtain a characterization of the Cauchy trace space
C‖ (Definition 3.18) as the kernel of an operator involving the generalized Robin operators Rσ

±,‖
and the scattering operator Sσ,‖. The main ingredient of the proof is the injectivity assumption
on the transmission operators (see Definition 3.26).

Proposition 3.30 (Characterization of the Cauchy trace space). For each σ ∈ {0, 1/2, 1},
we have the following characterization of the Cauchy-trace space:

C‖ = Ker
(
R−
σ,‖ − Sσ,‖R+

σ,‖

)
. (3.178)

Proof. (⇒) Let x ∈ C‖. From Definition 3.18 of the Cauchy trace space C‖, there exists u ∈
UΓ(D; Ωj) such that γ‖u = x and{

(La − κ0
2n)u|Ωj

= 0, in Ωj , ∀j ∈ {1, . . . , J}
(γ1,Γ − iγ0,Γ )|Ωj

= 0, on Γ ∩ Γj .
(3.179)

If, for any σ ∈ {0, 1/2, 1}, we let y := R+
σ,‖γ‖u = R+

σ,‖x, by Definition 3.29 of the scattering
operator Sσ,‖, we have R−

σ,‖γ‖u := Sσ,‖y which are rewritten as R−
σ,‖x = Sσ,‖R+

σ,‖x.
(⇐) Let σ ∈ {0, 1/2, 1} and x ∈ M‖ be such that R−

σ,‖x = Sσ,‖R+
σ,‖x. By Assumption 3.28,

there exists uσ ∈ UΓ(D; Ωj) such that
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,‖γ‖uσ = R+

σ,‖x, on Σ̃,
(3.180)
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and from Definition 3.29 of the scattering operator Sσ,‖ we have R−
σ,‖γ‖uσ := Sσ,‖R+

σ,‖x. It
follows that {

R+
σ,‖γ‖uσ = R+

σ,‖x,

R−
σ,‖γ‖uσ = R−

σ,‖x.
(3.181)

It remains to prove that γ‖uσ = x. We give the proof for σ = 1, the other proofs follow the same
lines. By Definition 3.27 of the generalized Robin operators R±

σ,‖, the system (3.180) is rewritten
as {

(γ1,‖u1 + Zγ0,‖u1)− iT0,‖γ0,‖u1 = (x1 + Zx0)− iT0,‖x0,

− (γ1,‖u1 + Zγ0,‖u1)− iT0,‖γ0,‖u1 = − (x1 + Zx0)− iT0,‖x0,
(3.182)

so that taking linear combinations we get{
T0,‖ (γ0,‖u1 − x0) = 0,
(γ1,‖u1 − x1) + Z (γ0,‖u1 − x0) = 0,

⇒

{
γ0,‖u1 = x0,

γ1,‖u1 = x1,
⇒ γ‖u1 = x, (3.183)

using the injectivity assumption on the transmission operator T0,‖ (Definition 3.26). �

3.2.4.3 Exchange operator

The last key ingredient in the reformulation of the original problem as a problem on the skeleton
Σ̃ is the so-called exchange operator Π‖. The role of this operator is to couple all sub-domains
by exchanging information through all interfaces.

Definition 3.31 (Exchange operator). We introduce the exchange operator, denoted Π‖, such
that, for any σ ∈ {0, 1/2, 1},

∀xσ, yσ ∈ Mσ,‖,
(
yσ = Π‖xσ ⇔ xjkσ = ykjσ , ∀(j, k) ∈ J

)
, (3.184)

with the convention that xσ ≡ (xjkσ )(j,k)∈J and yσ ≡ (yjkσ )(j,k)∈J.

Remark 3.32. Because this operator is very simple, we do not introduce different operators
Πσ,‖, σ ∈ {0, 1/2, 1}. Strictly speaking, because its definition does not depend on σ, we could
define this operator on the largest trace space that includes both M0,‖ and M1,‖, namely

×
(j,k)∈J

H−1/2 (Γjk)m0
. (3.185)

From the Cartesian nature of multi-trace spaces, the exchange operator has a special block
structure. We provide two examples of the exchange operator structure in Figure 3.3. These
sketches correspond to the bottom and top-right geometrical configurations that are given in
Figure 3.1c.

The following two propositions are immediate consequences of the above definition.

Proposition 3.33. For each σ ∈ {0, 1/2, 1}, the exchange operator Π‖ is an involution of Mσ,‖,

Π2
‖ = Id in Mσ,‖. (3.186)

Proposition 3.34. For each σ ∈ {0, 1/2, 1}, the two operators 1/2 (Id ±Π‖) are two complemen-
tary projectors in Mσ,‖,

1/4[Id ±Π‖]2 = 1/2 [Id ±Π‖] ,
[Id + Π‖] [Id −Π‖] = [Id −Π‖] [Id + Π‖] = 0.

(3.187)
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Figure 3.3: Sketch of the operator matrix of the exchange operator. The non-zero operators are
the Id blocks featured by the shaded areas.

Using Definition 3.31 of the exchange operator Π‖, we are able to characterize the kernel of
the above projectors and rephrase Definition 3.20 of the single trace space S‖. This is the subject
of the following proposition.

Proposition 3.35. We have

x ≡ (x0, x1) ∈ S‖ ⇔

{
x0 ∈ S0,‖,

x1 ∈ S1,‖,
⇔

{
x0 ∈ Ker (Id −Π‖) ,
x1 ∈ Ker (Id + Π‖) .

(3.188)

Before proceeding, we impose some additional requirements on the transmission operators.

Assumption 3.36. The transmission operators are such that

• Z is symmetric with respect to 〈〈·, ·〉〉‖

〈〈Zx0, y0〉〉‖ = 〈〈Zy0, x0〉〉‖, ∀x0, y0 ∈ M0,‖. (3.189)

and anti-commutes with Π‖

ZΠ‖ = −Π‖Z; (3.190)

• Tσ,‖ commutes with Π‖ for all σ ∈ {0, 1/2, 1},

Tσ,‖Π‖ = Π‖Tσ,‖. (3.191)

Upon making the above assumption, which we assume to hold in what follows, we can char-
acterize the single-trace space S‖ (Definition 3.20) as the kernel of an operator involving the
generalized Robin operators R±

σ,‖ and the exchange operator Π‖. A similar result in a more
general setting (in the whole space and with junctions) was proven for instance in [29, Prop. 5.4]
for the acoustic setting.
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Proposition 3.37 (Characterization of the single-trace space). For each σ ∈ {0, 1/2, 1},
we have the following characterization of the single-trace space (3.140):

S‖ = Ker
(
R±
σ,‖ −Π‖R∓

σ,‖

)
. (3.192)

Proof. First note that, for any σ ∈ {0, 1/2, 1} and any x ∈ M‖, R+
σ,‖x = Π‖R−

σ,‖x is equivalent to
R−
σ,‖x = Π‖R+

σ,‖x since the exchange operator Π‖ is an involution according to Proposition 3.33.
We prove the equivalence for σ = 1, the proofs for the other two cases formally take the same

route.
(⇐) Let x ≡ (x0, x1) ∈ M‖ such that R+

1,‖x = Π‖R−
1,‖x. From Definition 3.27 of the generalized

Robin operators R±
1,‖, we get

R+
1,‖x = Π‖R−

1,‖x ⇒ + (x1 + Zx0)− iT0,‖x0 = Π‖ [− (x1 + Zx0)− iT0,‖x0] ,
⇒ [Id + Π‖] (x1 + Zx0)− i [Id −Π‖] T0,‖x0 = 0.

(3.193)

Using the projection properties of Id ±Π‖ given in Proposition 3.34 we deduce{
[Id + Π‖] (x1 + Zx0) = 0,
[Id −Π‖] T0,‖x0 = 0,

(3.194)

so that using the commutativity properties of Assumption 3.36 we have{
T0,‖ [Id −Π‖] x0 = 0,
[Id + Π‖] x1 + Z [Id −Π‖] x0 = 0.

(3.195)

Hence, using the injectivity of T0,‖, we get{
[Id −Π‖] x0 = 0,
[Id + Π‖] x1 = 0.

(3.196)

We finally use the characterization of the single trace space S‖ given in Proposition 3.35 to obtain
x ≡ (x0, x1) ∈ S‖.

(⇒) Reciprocally, let x ≡ (x0, x1) ∈ S‖. Using again the characterization of the single trace
space given in Proposition 3.35 together with the commutation relations of Assumption 3.36 we
obtain successively

{
[Id −Π‖] x0 = 0,
[Id + Π‖] x1 = 0,

⇒


T0,‖ (Id −Π‖) x0 = 0,
Z (Id −Π‖) x0 = 0,
(Id + Π‖) x1 = 0,

⇒


(Id −Π‖) T0,‖x0 = 0,
(Id + Π‖) Zx0 = 0,
(Id + Π‖) x1 = 0,

(3.197)
so that taking an adequate linear combination we get

[Id + Π‖] (x1 + Zx0)− i [Id −Π‖] T0,‖x0 = 0,
⇒ + (x1 + Zx0)− iT0,‖x0 = Π‖ [− (x1 + Zx0)− iT0,‖x0] ,
⇒ R+

1,‖x = Π‖R−
1,‖x

(3.198)

from Definition 3.27 of the generalized Robin operators R±
1,‖. �
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3.2.4.4 Equivalent interface problem

With the help of the scattering operators Sσ,‖ and exchange operator Π‖ we are now in a
position to recast the original problem (3.79) (or equivalently the transmission problem (3.114))
as a problem for the trace of the solution posed on the skeleton Σ̃.

Proposition 3.38 (Equivalent interface problem). Let σ ∈ {0, 1/2, 1}. Let Fσ ∈ UΓ(D;PΩ)
be the (unique) source lifting such that

(La − κ0
2n)Fσ|Ωj

= f |Ωj
, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )Fσ = g, on Γ,
R+
σ,‖γ‖Fσ = 0, on Σ̃.

(3.199)

Consider the problem {
Find xσ ∈ Mσ,‖,

(Id −Π‖Sσ,‖) xσ = Π‖R−
σ,‖γ‖Fσ.

(3.200)

If u ∈ UΓ(D; Ω) is solution of the model problem (3.79), then its trace xσ := R+
σ,‖γ‖u satisfies

the interface problem (3.200).
Reciprocally, if xσ ∈ Mσ,‖ is solution of the interface problem (3.200) and if vσ ∈ UΓ(D;PΩ)

is the (unique) solution of
(La − κ0

2n)vσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )vσ = 0, on Γ,
R+
σ,‖γ‖vσ = xσ, on Σ̃,

(3.201)

then u ∈ UΓ(D;PΩ) defined as uσ := vσ + Fσ is solution of the model problem (3.79).

Proof. Let Fσ be the unique solution (by Assumption 3.28) of (3.199), then it satisfies (3.149).
We will rely on the characterization given by Proposition 3.24, which states that u ∈ UΓ(D,La; Ω)
is solution of the model problem (3.79) if, and only if,

γ‖u ∈ (C‖ + γ‖Fσ) ∩ S‖. (3.202)

(⇒) Let u ∈ UΓ(D; Ω) be the solution of the model problem (3.79), then γ‖u ∈ (C‖ + γ‖Fσ)∩
S‖. From Propositions 3.30 and 3.37 we have{

γ‖(u− Fσ) ∈ C‖,

γ‖u ∈ S‖,
⇔

{
R−
σ,‖γ‖(u− Fσ) = Sσ,‖R+

σ,‖γ‖(u− Fσ),
R+
σ,‖γ‖u = Π‖R−

σ,‖γ‖u.
(3.203)

Hence using R+
σ,‖γ‖Fσ = 0 from (3.199) we deduce{

R−
σ,‖γ‖u = Sσ,‖R+

σ,‖γ‖u+ R−
σ,‖γ‖Fσ,

R+
σ,‖γ‖u = Π‖R−

σ,‖γ‖u.
(3.204)

Eliminating R−
σ,‖γ‖u it is then immediate that

R+
σ,‖γ‖u = Π‖Sσ,‖R+

σ,‖γ‖u+ Π‖R−
σ,‖γ‖Fσ, (3.205)

hence its trace xσ := R+
σ,‖γ‖u satisfies the interface problem (3.200).
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(⇐) Reciprocally, let xσ ∈ Mσ,‖ be solution of the interface problem (3.200) and let vσ ∈
UΓ(D;PΩ) be the unique solution (by Assumption 3.28) to (3.201). Then, by definition of the
Cauchy trace space C‖ (Definition 3.18), its trace γ‖vσ ∈ C‖. If we set uσ := vσ +Fσ, we readily
obtain γ‖(uσ − Fσ) ∈ C‖. Besides, using xσ = R+

σ,‖γ‖vσ from (3.201), we rewrite (3.200) as

(Id −Π‖Sσ,‖) xσ = Π‖R−
σ,‖γ‖Fσ, ⇔ (Id −Π‖Sσ,‖) R+

σ,‖γ‖vσ = Π‖R−
σ,‖γ‖Fσ.

(3.206)
Using Proposition 3.30 we get

R+
σ,‖γ‖vσ −Π‖R−

σ,‖γ‖vσ = Π‖R−
σ,‖γ‖Fσ. (3.207)

Finally, using the fact that R+
σ,‖γ‖Fσ = 0 from (3.199) and the definition of uσ yield

R+
σ,‖γ‖uσ = Π‖R−

σ,‖γ‖uσ. (3.208)

Proposition 3.37 then gives γ‖uσ ∈ S‖. Finally we indeed have γ‖uσ ∈ (C‖ + γ‖Fσ) ∩ S‖. �

Remark 3.39. It is perhaps worth mentioning an alternative equivalent interface problem, ex-
changing the order of composition of Sσ,‖ and Π‖. Let σ ∈ {0, 1/2, 1} and consider instead the
alternative interface problem {

Find xσ ∈ Mσ,‖,

(Id − Sσ,‖Π‖) xσ = R−
σ,‖γ‖Fσ.

(3.209)

If u ∈ UΓ(D; Ω) is solution of the model problem (3.79), then its trace xσ := R−
σ,‖γ‖u satisfies the

interface problem (3.209). Reciprocally, if xσ ∈ Mσ,‖ is solution of the interface problem (3.209)
and if vσ ∈ UΓ(D;PΩ) is the (unique) solution of (3.201) then u ∈ UΓ(D;PΩ) defined as uσ :=
vσ + Fσ is solution of the model problem (3.79).

While the choice of using (3.200) or (3.209) in a practical implementation is not really im-
portant, taking σ = 1 rather than σ = 0 or σ = 1/2 has important impacts that we shall discuss
in the following.

3.2.4.5 Block diagonal transmission operators

We now investigate the particular case of block diagonal transmission operators. We emphasize
that this sub-case is in fact the only case of practical interest as any other alternative would
prevent us to get any parallelization of the domain decomposition algorithm. It is interesting
to note though that the theory does not rest on this assumption. As a result one would typi-
cally imposes the following additional requirement (which is not restrictive) on the transmission
operators.
Assumption 3.40 (Block diagonal transmission operators). The operators Z and Tσ,‖,
σ ∈ {−1/2, 0, 1/2, 1}, viewed as operator matrices of size card J× card J, are diagonal

Z = diag(j,k)∈J

(
Zjk
)
,

Tσ,‖ = diag(j,k)∈J

(
Tjk
σ,‖

)
,

(3.210)

where, for all (j, k) ∈ J, we have

Tjk
0,‖ : X0(Γjk)→ X1(Γjk),

Tjk
1,‖ : X1(Γjk)→ X0(Γjk),

Tjk
1/2,‖ : X0(Γjk)→ X1/2(Γjk),

Tjk
−1/2,‖ : X1(Γjk)→ X1/2(Γjk),

(3.211)

and
Zjk : X0(Γjk)→ X1(Γjk). (3.212)
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We provide two examples of a (block) diagonal transmission operator in Figure 3.4. These
sketches correspond to the bottom and top-right geometrical configurations that are given in
Figure 3.1c. The non-zero operators are represented by the hatched areas.

Γ13

Γ23

Γ31

Γ32

Γ34

Γ43

Γ13 Γ23 Γ31 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(a) Top right geometric partition in Figure 3.1c.

Γ12

Γ21

Γ23

Γ32

Γ34

Γ43

Γ11 Γ21 Γ23 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(b) Bottom geometric partition in Figure 3.1c.

Figure 3.4: Sketch of the operator matrix of diagonal transmission operators. The non-zero
operators are featured by the hatched areas. When the hatching pattern and color match, the
operators are equal in order to satisfy Assumption 3.36 as stated in Proposition 3.41.

We can then give a sufficient condition on the elements of the transmission operators in order
to satisfy Assumption 3.36.

Proposition 3.41. Suppose that Assumption 3.40 holds. If each diagonal elements of Z and
Tσ,‖, σ ∈ {0, 1/2, 1}, satisfy

Zjk = −Zkj , ∀(j, k) ∈ J, j < k,

Tjk
σ,‖ = Tkj

σ,‖, ∀(j, k) ∈ J, j < k,
(3.213)

and for all (j, k) ∈ J, Zjk is symmetric, then Assumption 3.36 is satisfied.

To represent (block) operators that shall be equal in order to satisfy Assumption 3.36, we
used identical hatching patterns and colors in the sketch of the transmission operator given in
Figure 3.4.

Remark 3.42. One could argue that considering diagonal operators of the form of (3.210), is
too restrictive. Indeed, we could instead consider each Z and Tσ,‖, σ ∈ {−1/2, 0, 1/2, 1} to be
block diagonal, with J blocks, where each non-zero block would be local to a single sub-domain
and of size card Kj× card Kj, for each j ∈ {1, . . . , J}. Such an operator would increase the filling
in the transmission matrix. This is represented in Figure 3.4 in the example configuration by
the dotted area. It is then possible to show that the algorithm remains with the same parallel
structure (albeit with a possible extra computational cost). However, to satisfy Assumption 3.36,
one must have

(Z)(j,k), (m,n) = −(Z)(k,j), (n,m), ∀(j, k), (m,n) ∈ J2,

(Tσ,‖)(j,k), (m,n) = (Tσ,‖)(k,j), (n,m), ∀(j, k), (m,n) ∈ J2.
(3.214)
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The condition (3.213) written for a block diagonal operator, then shows that only the pure diagonal
elements, (Z)(j,k), (j,k) and (Tσ,‖)(j,k), (j,k) for (j, k) ∈ J, can be non-zero. In the illustration of
Figure 3.4 this means that the dotted area needs to be identically zero.

Furthermore, the diagonal structure of the transmission operators implies a diagonal structure
for the scattering operator. To see that we first introduce local versions of the Robin operators
at an interface.

Definition 3.43 (Local generalized Robin operators). For each σ ∈ {0, 1/2, 1} and (j, k) ∈
J, we introduce the local operators,

Rjk,±
σ,‖ : X(Γjk)→ Xσ(Γjk),

x ≡ (x0, x1) 7→


±Tjk

1,‖
(
x1 + Zjkx0

)
− ix0, if σ = 0,

±Tjk
−1/2,‖

(
x1 + Zjkx0

)
− iTjk

1/2,‖x0, if σ = 1/2,

±
(
x1 + Zjkx0

)
− iTjk

0,‖x0, if σ = 1,

(3.215)

S1
σ,‖

S2
σ,‖

S3
σ,‖

S4
σ,‖

Γ13

Γ23

Γ31

Γ32

Γ34

Γ43

Γ13 Γ23 Γ31 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(a) Top right geometric partition in Figure 3.1c.

S1
σ,‖

S2
σ,‖

S3
σ,‖

S4
σ,‖

Γ12

Γ21

Γ23

Γ32

Γ34

Γ43

Γ11 Γ21 Γ23 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(b) Bottom geometric partition in Figure 3.1c.

Figure 3.5: Sketch of the operator matrix of diagonal scattering operators. The non-zero opera-
tors are featured by the shaded areas.

Then, for each σ ∈ {0, 1/2, 1}, we have

Sσ,‖ = diagj∈{1,...,J}

(
Sjσ,‖

)
, (3.216)

where the local scattering operators are given in the following definition.
Note that the level of element granularity for the scattering operator viewed as an operator

matrix is not the same as for the transmission operators. There are card J elements on the diag-
onal of the transmission operators, while there are J elements on the diagonal of the scattering
operator. Each diagonal element Sjσ,‖, j ∈ {1, . . . , J} is itself of size card Kj × card Kj .
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Definition 3.44 (Local scattering operator). For each σ ∈ {0, 1/2, 1} and j ∈ {1, . . . , J}, we
define the local scattering operators,

Sjσ,‖ : ×
k∈Kj

Xσ(Γjk)→×
k∈Kj

Xσ(Γjk),

(
xjkσ
)
k∈Kj

7→
(

Rjk,−
σ,‖ γΓjk

uσ,j

)
k∈Kj

,
(3.217)

where, for all j ∈ {1, . . . , J}, uσ,j ∈ UΓ(D; Ωj) is such that
(La − κ0

2n)uσ,j = 0, in Ωj ,
(γ1,Γ − iγ0,Γ )uσ,j = 0, on Γ,
Rjk,+
σ,‖ γΓjk

uσ,j = xjkσ , on Γjk, ∀k ∈ Kj .

(3.218)

It is now clear that applying the scattering operator consists in solving local problems lo-
cally in each sub-domain (hence hopefully in parallel), thereby insuring that the PDE is satisfied
locally. It is the exchange operator that couples all sub-domains together by exchanging infor-
mation, thereby insuring the global continuity of the solution.

Besides, we note that satisfying Assumption 3.28 now amounts to satisfy the following as-
sumption, and we shall provide in Section 3.4 sufficient conditions to satisfy it.

Assumption 3.45 (Well-posedness of local sub-problems). For each σ ∈ {0, 1/2, 1}, j ∈
{1, . . . , J} and for any

(
xjkσ
)
k∈Kj

∈×k∈Kj
Xσ(Γjk), f ∈ L2(Ω)m0 , g ∈ L2(Γ)m0 , the transmission

operators are such that the following local sub-problems are well-defined:
Find uσ,j ∈ UΓ(D; Ωj) such that
(La − κ0

2n)uσ,j = f |Ωj
, in Ωj ,

(γ1,Γ − iγ0,Γ )uσ,j = g, on Γj ∩ Γ,
Rjk,+
σ,‖ γΓjk

uσ,j = xjkσ , on Γjk, ∀k ∈ Kj .

(3.219)

If the transmission operator is diagonal, one can rewrite the equation (3.200), for σ = 1 for
instance, in the more usual form of the following transmission problem

Find u ∈ UΓ(D;PΩ) such that :
(La − κ0

2n)u|Ωj
= f |Ωj

, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )u = g, on Γ,(

+ γ1,Γjk
+
(
Zjk − iTjk

0,‖
)
γ0,Γjk

)
u|Ωj

=
(
− γ1,Γkj

+
(
Zjk − iTjk

0,‖
)
γ0,Γkj

)
u|Ωk

on Γjk, ∀(j, k) ∈ J.

(3.220)

3.3 Iterative domain decomposition methods
Our reformulation of the model problem (3.79) in the form of the interface problem (3.200) would
be pointless if it was not easier to solve. Provided the transmission operators are diagonal,
multiple local sub-problems are hidden behind the problem (3.200), which are however still
coupled. This is why to provide an actual practical way of computing a solution, we need to
resort to iterative solvers. Such solvers will involve solving independently (hence hopefully in
parallel) the local sub-problems at each iteration (using the information of the previous iteration).
The update of the source terms of the local sub-problems will happen in between each iteration
with an actual exchange or communication of information between sub-domains.
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3.3.1 Iterative algorithm
Let σ ∈ {0, 1/2, 1}, Fσ be the solution of (3.199), and define

bσ := Π‖R−
σ,‖γ‖Fσ. (3.221)

In this section, we want to devise (and study the convergence of) an algorithm to solve{
Find xσ ∈ Mσ,‖ such that,
(Id −Π‖Sσ,‖) xσ = bσ.

(3.222)

Recall that, according to Proposition 3.24, having found such a xσ solution of (3.222), the global
volume solution of the model problem (3.79) can be computed as

uσ := vσ + Fσ, (3.223)

where vσ ∈ UΓ(D;PΩ) is such that
(La − κ0

2n)vσ|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )vσ = 0, on Γ,
R+
σ,‖γ‖vσ = xσ, on Σ̃,

(3.224)

which is well-posed according to Assumption 3.28.

Relaxed Jacobi algorithm One of the simplest iterative method to solve (3.222) is the
(relaxed) Jacobi algorithm. Let x0

σ ∈ Mσ,‖ and a relaxation parameter 0 < r ≤ 1 be given, a
sequence (xnσ)n∈N in Mσ,‖ is constructed using the (relaxed) Jacobi algorithm as follows

xn+1
σ = [(1− r)Id + rΠ‖Sσ,‖] xnσ + r bσ, n ∈ N. (3.225)

The standard Jacobi algorithm can be recovered by setting r = 1. Constructing this sequence of
traces also constructs a sequence of broken solutions (vnσ )n∈N in UΓ(D;PΩ) when the action of
Sσ,‖ is computed. For each n ∈ N the broken solution vnσ satisfy

(La − κ0
2n)vnσ |Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )vnσ = 0, on Γ,
R+
σ,‖γ‖v

n
σ = xnσ, on Σ̃.

(3.226)

The true solution of the original problem is then (hopefully, if convergence occurs) the limit of
the broken solutions (unσ := vnσ + Fσ)n∈N in UΓ(D;PΩ).

Remark 3.46. While it might not be immediate to see, the algorithm (3.225) deserves to be
referred to as a (relaxed) Jacobi algorithm — in the parlance of iterative solvers for linear systems
— when the operators are viewed as operator matrices of size J × J . Indeed, Id and Π‖Sσ,‖ are
respectively the diagonal and off-diagonal parts of the full operator Id − Π‖Sσ,‖. To see why,
recall that Sσ,‖ is diagonal (independent solves in each sub-domains) and Π‖ has only off-diagonal
elements (a sub-domain does not exchange with itself).

3.3.2 Convergence analysis
We now turn to the convergence analysis of the previously described iterative method.
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3.3.2.1 A particular choice of scalar product

We have equipped our multi-trace spaces with the norm stemming from the Cartesian product
structure of the multi-trace space. In this sub-section, we introduce different, albeit equivalent,
norms.

Scalar products Unless stated otherwise, we shall assume in the following that Assump-
tion 3.47 holds.

Assumption 3.47. We suppose that the transmission operators are positive definite isomor-
phisms between the multi-trace spaces. In addition, we suppose to have the following relations

T0,‖ = T∗
1/2,‖T1/2,‖, T∗

1/2,‖ =
(
T−1/2,‖

)−1
, and T1,‖ = (T0,‖)−1

. (3.227)

It is implicit from Assumption 3.47 that the operators T0,‖ and T1,‖ are supposed to be
self-adjoint.

We can equip the multi-trace spaces M0,‖, M1,‖ and M1/2,‖ and M‖ respectively with the fol-
lowing scalar products

t0,‖(x0, y0) := 〈〈T0,‖x0, y0〉〉‖, ∀x0, y0 ∈ M0,‖,

t1,‖(x1, y1) := 〈〈y1,T1,‖x1〉〉‖, ∀x1, y1 ∈ M1,‖,

t1/2,‖(x1/2, y1/2) = 〈〈(T−1/2,‖)−1 x1/2, (T1/2,‖)−1 y1/2〉〉‖, ∀x1/2, y1/2 ∈ M1/2,‖.

(3.228)

Norms We can then endow the multi-trace spaces M0,‖, M1,‖ and M1/2,‖with the norms induced
by the previous scalar products. Hence we define

‖x0‖2
T0,‖

:= t0,‖(x0, x0), ∀x0 ∈ M0,‖,

‖x1‖2
T1,‖

:= t1,‖(x1, x1), ∀x1 ∈ M1,‖,

‖x1/2‖
2
T1/2,‖

:= t1/2,‖(x1/2, x1/2), ∀x1/2 ∈ M1/2,‖.

(3.229)

Remark 3.48. Since the transmission operators are supposed to be continuous and coercive
(by assumption 3.47), the norms defined in (3.229) are equivalent to the ones previously defined
in (3.125).

3.3.2.2 A sufficient condition for convergence

The previous problem can be recast in the following abstract framework. Let V be a Hilbert
space, A : V → V and b ∈ V . We are set to solve

(Id −A)x = b. (3.230)

The problem is formally related to the convergence of the following Neumann series

x = (Id −A)−1
b =

+∞∑
n=0

Anb, (3.231)

which is known to converge provided A is bounded and a strict contraction ‖A‖V < 1 in V .
The following proposition, adapted from [42, Th. 6], provides weaker sufficient conditions for
the convergence of the abstract interface problem (3.230).
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Proposition 3.49. Let V be a Hilbert space endowed with a norm ‖ · ‖V . Let x0 ∈ V \ {0},
0 < r < 1 and define the sequence

xn+1 = ((1− r)Id + rA)xn, n ∈ N. (3.232)

If the following two assumptions hold true

• Id −A is injective in V ;

• A is a contraction in V ;

then the relaxed Jacobi algorithm (3.232) converges to 0 in V .

Proof. The convexity of x 7→ ‖x‖2
V yields the identity for any x, y ∈ V , with 0 ≤ r ≤ 1,

‖(1− r)x+ ry‖2
V = (1− r)‖x‖2

V + r‖y‖2
V − r(1− r)‖x− y‖2

V . (3.233)

Let n ∈ N, using the above identity with x = xn and y = Axn we get

‖xn+1‖2
V = (1− r)‖xn‖2

V + r‖Axn‖2
V − r(1− r)‖xn −Axn‖2

V . (3.234)

Since A is a contraction in V we have for all x ∈ V ,

‖Ax‖V ≤ ‖x‖V . (3.235)

It follows that
‖xn+1‖2

V ≤ ‖xn‖2
V − r(1− r)‖xn −Axn‖2

V , (3.236)
so that the sequence (xn)n∈N is non-increasing. Furthermore,

r(1− r)‖xn −Axn‖2
V ≤ ‖xn‖2

V − ‖xn+1‖2
V , (3.237)

and we deduce that for any N ∈ N,

r(1− r)
N∑
n=0
‖(Id −A)xn‖2

V ≤ ‖x0‖2
V − ‖xN+1‖2

V ≤ ‖x0‖2
V , (3.238)

and (since in addition 0 < r < 1) the series
∞∑
n=0
‖(Id −A)xn‖2

V < +∞, (3.239)

is finite. We therefore conclude to the strong convergence of ((Id −A)xn)n∈N to 0, and thereby
to its weak convergence: for any y ∈ V ,

((Id −A)xn, y)V → 0, as n→∞. (3.240)

Besides, from the boundedness of the sequence (xn)n∈N we also deduce that it admits a sub-
sequence, still denoted (xn)n∈N, that converges weakly, say to an element x of V . For any y ∈ V ,
we get

((Id −A)xn, y)V = (xn, (Id −A)∗
y)V → (x, (Id −A)∗

y)V , as n→∞. (3.241)

Finally, from (3.240) and (3.241), we have for any y ∈ V ,

(x, (Id −A)∗
y)V = ((Id −A)x, y)V = 0, (3.242)

and the injectivity of Id − A yields x = 0. Since the limit is independent of the sub-sequence,
the whole sequence converges (to 0). �
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If we set A = Π‖Sσ,‖ and V = Mσ,‖, the purpose of the next few results is to verify that the
assumptions of the previous abstract proposition are satisfied in our particular case. We start
with the injectivity assumption which is a direct consequence of the following lemma.

Lemma 3.50. Let σ ∈ {0, 1/2, 1} and bσ ∈ Mσ,‖. Consider the two problems{
Find xσ ∈ Mσ,‖ such that :
(Id −Π‖Sσ,‖) xσ = bσ,

(3.243)

and {
Find y ∈ C‖ such that :(
R+
σ,‖ −Π‖R−

σ,‖

)
y = bσ.

(3.244)

If xσ ∈ Mσ,‖ is solution to the problem (3.243), then there exists y ∈ C‖ solution to the
problem (3.244) such that xσ = R+

σ,‖y.
Reciprocally, if y ∈ C‖ is solution to the problem (3.244) then xσ = R+

σ,‖y ∈ Mσ,‖ is solution
to the problem (3.243).

Proof. Let σ ∈ {0, 1/2, 1} and bσ ∈ Mσ,‖.
(⇒) Suppose to have xσ ∈ Mσ,‖ a solution to the problem (3.243) and let uσ ∈ UΓ(D;PΩ) be

such that 
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,‖γ‖uσ = xσ, on Σ̃,

(3.245)

which is well defined thanks to Assumption 3.28 and set

y := γ‖uσ ∈ M‖, so that by construction xσ = R+
σ,‖y. (3.246)

By Definition 3.18 of the Cauchy trace space C‖ we also have y ∈ C‖ and the characterization of
this space given in Proposition 3.30 yields(

R−
σ,‖ − Sσ,‖R+

σ,‖

)
y = 0. (3.247)

Finally, equation (3.243) is rewritten as(
R+
σ,‖ −Π‖R−

σ,‖

)
y = bσ, (3.248)

which finally proves that y ∈ C‖ solves (3.244).
(⇐) Suppose to have y ∈ C‖ a solution to the problem (3.244) and set xσ := R+

σ,‖y. Using
the characterization of the Cauchy trace space C‖ given in Proposition 3.30 we have(

R−
σ,‖ − Sσ,‖R+

σ,‖

)
y = 0. (3.249)

Then, equation (3.244) is readily rewritten

(Id −Π‖Sσ,‖) xσ = bσ, (3.250)

�

From the previous lemma we immediately obtain the following result.

Proposition 3.51. Let σ ∈ {0, 1/2, 1}, the operator (Id −Π‖Sσ,‖) is injective on Mσ,‖.
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Proof. Let σ ∈ {0, 1/2, 1} and xσ ∈ Mσ,‖ be such that

(Id −Π‖Sσ,‖) xσ = 0. (3.251)

Using Lemma 3.50, there exists necessarily a y ∈ C‖ such that xσ = R+
σ,‖y and(

R+
σ,‖ −Π‖R−

σ,‖

)
y = 0. (3.252)

Using the characterization of S‖ given in Proposition 3.37 we get from this last equation that
y ∈ S‖ so that in fact y ∈ C‖ ∩ S‖, which is reduced to the singleton {0} from Proposition 3.25.
Finally from y = 0 we obtain xσ = R+

σ,‖y = 0. �

To prove the property of contraction of Π‖Sσ,‖, we first need to establish the following lemma.
Crucially, the result is established in the norms induced by the transmission operators, and rests
in particular on Assumption 3.47.

Lemma 3.52. For each σ ∈ {0, 1/2, 1}, we have,

‖R−
σ,‖x‖2

Tσ,‖
− ‖R+

σ,‖x‖2
Tσ,‖

= 2i[[x, x]]‖, ∀x ∈ M‖. (3.253)

Proof. We prove the equality for σ = 1, the two other proofs are similar. Let x ≡ (x0, x1) ∈ M‖.
By definition of the norms (3.229) and the Robin operators (3.174), we have

‖R+
1,‖x‖2

T1,‖
= ‖x1 + Zz0 − iT0,‖x0‖2

T1,‖
,

= 〈〈x1 + Zz0 − iT0,‖x0, T1,‖(x1 + Zz0 − iT0,‖x0)〉〉‖.
(3.254)

Now using the self-adjointness of T0,‖ and Assumption 3.47, this yields

‖R+
1,‖x‖2

T1,‖
= 〈〈(x1 + Zx0)− iT0,‖x0, T1,‖(x1 + Zx0) + ix0〉〉‖,

= ‖x1 + Zx0‖2
T1,‖

+ ‖x0‖2
T0,‖
− i〈〈x1 + Zx0, x0〉〉‖ + i〈〈x1 + Zx0, x0〉〉‖,

= ‖x1 + Zx0‖2
T1,‖

+ ‖x0‖2
T0,‖
− i〈〈x1, x0〉〉‖ + i〈〈x1, x0〉〉‖

− i〈〈Zx0, x0〉〉‖ + i〈〈Zx0, x0〉〉‖.

(3.255)

Using the symmetry of Z (Assumption 3.36), the last two terms simplify and we get

‖R+
1,‖x‖2

T1,‖
= ‖x1 + Zx0‖2

T1,‖
+ ‖x0‖2

T0,‖
− 2=〈〈x1, x0〉〉‖,

= ‖x1 + Zx0‖2
T1,‖

+ ‖x0‖2
T0,‖
− i[[x, x]]‖,

(3.256)

using Lemma 3.6 to get the last result. Similarly,

‖R−
1,‖x‖2

T1,‖
= ‖x1 + Zx0‖2

T1,‖
+ ‖x0‖2

T0,‖
+ i[[x, x]]‖. (3.257)

�

We are now able to prove the property of contraction of the scattering operator Sσ,‖ (Defi-
nition 3.29). Such a result was already proven in the acoustic setting in [42, Th. 3] or [91, Lem.
3], but with only two sub-domains in this latter reference. A similar result in a more general
setting (in the whole space and in presence of junctions, but for the scalar equation) can also be
found in [29, Lem. 7.1].
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Proposition 3.53 (Contraction property of the scattering operator). Let σ ∈ {0, 1/2, 1},
the scattering operator Sσ,‖ is a contraction of Mσ,‖, for our particular choice of norm (3.229),

‖Sσ,‖xσ‖Tσ,‖
≤ ‖xσ‖Tσ,‖

, ∀xσ ∈ Mσ,‖. (3.258)

Proof. Let σ ∈ {0, 1/2, 1} and xσ ∈ Mσ,×. Let us introduce uσ ∈ UΓ(D;PΩ) be such that
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,‖γ‖uσ = xσ, on Σ̃,

(3.259)

which is well defined thanks to Assumption 3.28. Set y = γ‖uσ, by Definition 3.29 of the
scattering operator Sσ,‖ we have

R−
σ,‖y = Sσ,‖xσ, (3.260)

and we also have by construction
xσ = R+

σ,‖y. (3.261)

It follows that
‖Sσ,‖xσ‖Tσ,‖

− ‖xσ‖Tσ,‖
= ‖R−

σ,‖y‖Tσ,‖
− ‖R+

σ,‖y‖Tσ,‖
(3.262)

Using Lemma 3.52, we obtain

‖Sσ,‖xσ‖Tσ,‖
− ‖xσ‖Tσ,‖

= 2i[[x, x]]‖. (3.263)

Applying the energy conservation results of Proposition 3.19 we finally get

‖Sσ,‖xσ‖Tσ,‖
− ‖xσ‖Tσ,‖

≤ 0. (3.264)

�

From the definition of the exchange operator (3.184), we readily have the following result.

Proposition 3.54 (Properties of the exchange operator). Let σ ∈ {0, 1/2, 1}, the exchange
operator Π‖ is self-adjoint with respect to the duality product 〈〈·, ·〉〉‖,

〈〈Π‖x1, y0〉〉‖ = 〈〈x1,Π‖y0〉〉‖, ∀(x1, y0) ∈ M‖, (3.265)

and an isometry of Mσ,‖, for our particular choice of norm (3.229),

‖Π‖xσ‖Tσ,‖
= ‖xσ‖Tσ,‖

, ∀xσ ∈ Mσ,‖. (3.266)

Proof. The self-adjointness follows, for any x0 = (xjk0 )(j,k)∈J ∈ M0,‖ and x1 = (xjk1 )(j,k)∈J ∈ M1,‖,
from

〈〈Π‖x1, x0〉〉‖ =
∑

(j,k)∈J

〈xkj1 , xjk0 〉Γjk
= 〈〈x1,Π‖x0〉〉‖. (3.267)

Finally, using Assumption 3.36 and Proposition 3.33, we obtain, for all x1 ∈ M1,‖,

‖Π‖x1‖T1,‖
= 〈〈Π‖x1,T1,‖Π‖x1〉〉‖ = 〈〈Π‖x1,Π‖T1,‖x1〉〉‖ = 〈〈x1,T1,‖x1〉〉‖ = ‖x1‖T1,‖

, (3.268)

which proves (3.266) for the case σ = 1, the other two proofs follow the same route. �
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Combining both Proposition 3.53 and Proposition 3.54 we get the contraction property we
were looking for.

Corollary 3.55 (Contraction property). Let σ ∈ {0, 1/2, 1}, we have

‖Π‖Sσ,‖xσ‖Tσ,‖
≤ ‖xσ‖Tσ,‖

, ∀xσ ∈ Mσ,‖. (3.269)

We are now ready to state our first important convergence result. A similar result was already
stated in [42, Th. 6] for the acoustic setting only.

Theorem 3.56 (Convergence of the relaxed Jacobi algorithm). The sequence of bro-
ken solutions (unσ)n∈N computed according to (3.226), converges to u the solution of the model
problem (3.79)

‖unσ − u‖UΓ(D;PΩ) → 0, as n→∞. (3.270)

Proof. At each iteration n ∈ N, we can define an error on the trace εnσ ∈ Mσ,‖ such that

εnσ = xnσ − xσ, (3.271)

where the sequence (xnσ)n∈N is computed through (3.225) and xσ is the solution of (3.222). By
the well-posedness of the problem (3.226), there exists a strictly positive constant C such that

‖unσ − u‖UΓ(D;PΩ) ≤ C‖ε
n
σ‖Tσ,‖

. (3.272)

We can readily show that the error εnσ satisfies

εn+1
σ = [(1− r)Id + rΠ‖Sσ,‖] εnσ, n ∈ N. (3.273)

The end of the proof is then a direct application to the sequence (εnσ)n∈N of the abstract result
given in Proposition 3.49 whose two assumptions are verified in Proposition 3.51 and Proposi-
tion 3.55. �

3.3.2.3 A sufficient condition for geometric convergence

The following proposition, adapted from [42, Th. 7], supplements Proposition 3.49 and makes
clear what additional assumption is required to obtain geometric convergence.

Proposition 3.57. If, in addition to the assumptions of Proposition 3.49,

• Id −A is an isomorphism in V ,

then the relaxed Jacobi algorithm (3.273) converges geometrically to 0 in V . Specifically, there
exist C > 0 and 0 < τ < 1 such that

‖xn‖V ≤ Cτn. (3.274)

Proof. Let n ∈ N, we use again the convexity identity (3.233) from the proof of Theorem 3.49
and we get

‖xn+1‖2
V = (1− r)‖xn‖2

V + r‖Axn‖2
V − r(1− r)‖xn −Axn‖2

V . (3.275)

Since A is a contraction in V from the assumptions of Proposition 3.49, we have for all x ∈ V ,

‖Ax‖V ≤ ‖x‖V . (3.276)
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Since Id −A is an isomorphism in V , there exists δ > 0 such that, for all x ∈ V

‖x‖V ≤ δ‖(Id −A)x‖V . (3.277)

From (3.275) we get
‖xn+1‖V ≤

√
1− r(1− r)δ−2 ‖xn‖V . (3.278)

Besides, using again the contraction property of A, we have for all x ∈ V ,

‖x‖V ≤ δ‖(Id −A)x‖V ≤ δ (‖x‖V + ‖Ax‖V ) ≤ 2δ‖x‖V . (3.279)

Hence 0 ≤ δ−1 ≤ 2 and it can be proven that for all 0 ≤ r ≤ 1, we have 0 ≤ r(1 − r) ≤ 1
4 . It

follows that
0 ≤ τ :=

√
1− r(1− r)δ−2 ≤ 1. (3.280)

�

Remark 3.58. Depending on the authors, the type of convergence given in Proposition 3.57 can
be called linear, exponential [42, 44, 91, 30] or geometric [29, 33]. We chose to use the term
geometric in this manuscript in contrast to the algebraic convergence proved for local transmission
operators [49].

To apply the previous proposition, we need only to prove that the operator Id −Π‖Sσ,‖ is
surjective (its injectivity was the subject of Proposition 3.51). To do so we first need to establish
additional preparatory results.

Recall that, according to Proposition 3.21, the operator R+
σ,‖ − Π‖R−

σ,‖ (respectively the
operator R−

σ,‖ −Π‖R+
σ,‖) is not injective on Mσ,‖, its kernel is S‖ 6= {0}. It is however surjective,

as stated in the following lemma which relies mainly on the assumption that the transmission
operator Tσ,‖ is invertible (which directly follows from Assumption 3.47).

Lemma 3.59. For each σ ∈ {0, 1/2, 1}, the operator R+
σ,‖ −Π‖R−

σ,‖ (respectively the operator
R−
σ,‖ −Π‖R+

σ,‖) is surjective from M‖ ≡ (M0,‖,M1,‖) onto Mσ,‖.

Proof. First note that, for any σ ∈ {0, 1/2, 1}, the result for the operator R−
σ,‖ − Π‖R+

σ,‖ is
equivalent to the result for the operator R+

σ,‖ −Π‖R−
σ,‖ since the exchange operator Π‖ is an

involution according to Proposition 3.33.
We prove the results for σ = 1, the proofs for the other two cases formally take the same

route.
Let b1 ∈ M1,‖. We seek y ≡ (y0, y1) ∈ M‖ such that

R+
1,‖y −Π‖R−

1,‖y = b1 (3.281)

which, by Definition 3.27 of the generalized Robin operators R±
1,‖, is equivalent to

(y1 + Z− iT0,‖y0)−Π‖ (−y1 − Z− iT0,‖y0) = b1, (3.282)

which is rewritten as

(Id + Π‖) (y1 + Zy0) + (Id −Π‖) (−iT0,‖y0) = b1. (3.283)

Using the properties of the projectors 1/2(Id±Π‖) given in Proposition 3.34, it is then immediate
to check that a solution is at hand if y0 and y1 satisfy{

−iT0,‖y0 = 1
4 (Id −Π‖) b1,

y1 + Zy0 = 1
4 (Id + Π‖) b1.

(3.284)
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A solution y ≡ (y0, y1) ∈ M‖ to (3.281) is then{
y0 = i

4 (T0,‖)−1 (Id −Π‖) b1,

y1 = 1
4 (Id + Π‖) b1 − i

4 Z(T0,‖)−1 (Id −Π‖) b1.
(3.285)

�

As a direct corollary to Propositions 3.25, 3.37 and Lemma 3.59 we have the following easy
result. Notice that the cornerstone to establish this result is the decomposition M‖ = C‖ ⊕ S‖

from Proposition 3.25.

Corollary 3.60. For each σ ∈ {0, 1/2, 1}, the operator R+
σ,‖ −Π‖R−

σ,‖ (respectively the operator
R−
σ,‖ −Π‖R+

σ,‖) is a bijection from C‖ to Mσ,‖.

Proof. Let σ ∈ {0, 1/2, 1}. Again, first note that the result for the operator R−
σ,‖ − Π‖R+

σ,‖ is
equivalent to the result for the operator R+

σ,‖ −Π‖R−
σ,‖ since the exchange operator Π‖ is an

involution according to Proposition 3.33.
From Lemma 3.59, the operator R+

σ,‖−Π‖R−
σ,‖ is surjective from M‖ onto Mσ,‖. From Propo-

sition 3.37 we know that its kernel is S‖. From Proposition 3.25 we have that M‖ = C‖ ⊕ S‖. It
follows that the operator R+

σ,‖ −Π‖R−
σ,‖ is invertible on C‖. �

We are finally able to verify that we satisfy in our particular setting the required additional
assumption of the abstract result contain in Proposition 3.57.

Proposition 3.61. For each σ ∈ {0, 1/2, 1}, the operator Id − Π‖Sσ,‖ is an isomorphism on
Mσ,‖.

Proof. We proved the injectivity of this operator in Proposition 3.51, so we need to only to
establish its surjectivity. Let σ ∈ {0, 1/2, 1} and bσ ∈ Mσ,‖. From Lemma 3.50 we know that to
find a xσ ∈ Mσ,‖ such that

(Id −Π‖Sσ,‖) xσ = bσ, (3.286)

it is enough to find a y ∈ C‖ such that(
R+
σ,‖ −Π‖R−

σ,‖

)
y = bσ, (3.287)

and set xσ = R+
σ,‖y. The above problem in y is uniquely solvable by application of Corollary 3.60

and we are done. �

Remark 3.62. For any σ ∈ {0, 1/2, 1}, by inspecting the proofs, we can actually give an explicit
construction of the solution xσ of the interface problem:{

Find xσ ∈ Mσ,‖ such that :
(Id −Π‖Sσ,‖) xσ = bσ.

(3.288)

The steps are as follows:

1. Find any solution (there is no uniqueness) of{
Find y ∈ M‖ such that :(
R+
σ,‖ −Π‖R−

σ,‖

)
y = bσ.

(3.289)

One particular solution can be computed according to (3.285) from the proof of Lemma 3.59;
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2. Project this solution onto C‖ in parallel to S‖: an explicit projection is performed in the
proof of Proposition 3.25 for instance;

3. If we still denote by y the result of this projection, the solution is then xσ = R+
σ,‖y, according

to Lemma 3.50.

This is not a surprise, but we emphasize however that this construction involves solving a global
problem on Ω, during the projection step, hence is of no use in practice.

We are finally able to state the following important convergence result. For the acoustic
setting, a similar result was already stated in [78, Th. 3.3], [42, Th. 7], [91, Th. 1], but for two
sub-domains only, and in [29, Sec. 7.3], but for a more general partition with junctions.

Theorem 3.63 (Geometric convergence of the relaxed Jacobi algorithm). The sequence
of broken solutions (unσ)n∈N computed according to (3.226), converges geometrically to u the
solution of the model problem (3.79). Specifically, there exist C > 0 and 0 < τ < 1 such that

‖unσ − u‖UΓ(D;PΩ) ≤ Cτ
n, ∀n ∈ N. (3.290)

Proof. Arguing as in the proof of Theorem 3.56, this is a direct application of Proposition 3.57
whose essential assumption is verified by Proposition 3.61. �

3.3.3 GMRES algorithm
While the theoretical analysis of the Jacobi algorithm allows to get some deep insight on the
efficiency of the method, such an algorithm is rarely used in practice. Krylov methods are the
preferred choice in real-life applications, in particular one will typically resort to the Gmres
algorithm in our non-symmetric case. See [122, 123] for the definition of this algorithm.

Importantly, geometric convergence of the relaxed Jacobi algorithm guarantees geometric
convergence of the Gmres counter-part, even the restarted version. This is the subject of the
following lemma which uses again the notations and assumptions of Proposition 3.49 and Propo-
sition 3.57.

Lemma 3.64. Let V be a Hilbert space endowed with a norm ‖ · ‖V . Suppose we are set to solve
in V , for a given b ∈ V ,

(Id −A)x = b. (3.291)

Let x0
J = 0, 0 < r < 1 and define a sequence (xnJ)n∈N of solutions using the relaxed Jacobi

algorithm
xn+1
J = ((1− r)Id + rA)xnJ + rb, n ∈ N. (3.292)

Similarly let x0
G = 0 and define a sequence (xnG)n∈N of solutions using the Gmres algorithm

(using the scalar product in V ). If the following two assumptions hold true

• Id −A is an isomorphism in V ;

• A is a contraction in V ;

then both the sequence (xnJ)n∈N computed using the relaxed Jacobi algorithm (3.292) and the
sequence (xnG)n∈N computed using the Gmres algorithm converge geometrically to x the (by
assumption well-defined) solution of (3.291) in V . Specifically, there exist CJ > 0, CG > 0 and
0 < τ < 1 such that

‖xnJ − x‖V ≤ CJ τn, and ‖xnG − x‖V ≤ CG τn. (3.293)
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Proof. Let us defined the residual for the relaxed Jacobi algorithm

rnJ := (Id −A)xnJ − b = (Id −A) (xnJ − x) , ∀n ∈ N, (3.294)

and similarly the residual for the Gmres algorithm

rnG := (Id −A)xnG − b = (Id −A) (xnG − x) , ∀n ∈ N. (3.295)

We will use the following characterization of the iterates of the Gmres algorithm [11, 45]: the
iterates xnG for n ≥ 1 are such that

‖rnG‖V := min
{
‖p (Id −A) r0

G‖V | p ∈ Pn, p(0) = 1
}
, (3.296)

where Pn is the set of polynomials of degree at most n. It follows that xnG is the minimizer in
the so-called Krylov sub-space Vn ⊂ V defined for n ≥ 1 such that

Vn := vect
{
b, (Id −A)r, (Id −A)2

r, . . . , (Id −A)nr
}
. (3.297)

Besides, it turns out that each xnJ for n ≥ 1 is also an element of Vn, which can be proved by
induction. Indeed, we have trivially

x1
J = rb ∈ V1, (3.298)

and assuming that xnJ ∈ Vn is true for n ≥ 1 we have

xn+1
J = ((1− r)Id + rA)xnJ + rb = xnJ − r (Id −A)xnJ + rb, (3.299)

so that xn+1
J ∈ Vn+1. Using the characterization (3.296), we get

‖rnG‖V ≤ ‖r
n
J‖V , ∀n ∈ N, (3.300)

which is a first interesting result on the residuals.
Let us now prove the estimates on the errors xnJ −x and xnG−x. With the given assumptions,

the existence of CJ and τ so that

‖xnJ − x‖V ≤ CJ τn, (3.301)

is ensured by Proposition 3.57. It follows that, using the fact that A is a contraction in V

‖rnJ‖V = ‖(Id −A) (xnJ − x) ‖V ≤ ‖x
n
J − x‖V +‖A (xnJ − x) ‖V ≤ 2‖xnJ − x‖V ≤ 2CJτn. (3.302)

Now, from the fact that Id − A is an isomorphism in V hence have a bounded inverse, we have
the existence of δ > 0 such that

‖xnG − x‖V = ‖(Id −A)−1
rnG‖V ≤ δ‖r

n
G‖V ≤ δ‖r

n
J‖V ≤ 2δCJτn, (3.303)

which proves the (non optimal) estimate with CG = 2δCJ . �

The derivation of better convergence estimates for the Gmres algorithm would be of consid-
erable interest but was not further pursued in this work.

3.4 Well-posedness of some wave propagation problems
In this section we consider some wave propagation models of particular interest. We show how
they fit in the abstract framework that was previously presented by proving the remaining main
assumptions this framework required, namely the well-posedness of the model problem and the
local sub-problems (Assumption 3.9 and Assumption 3.45).
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3.4.1 Acoustics
We consider a generic bounded, simply connected, Lipschitz domain Ω with a closed Lipschitz
boundary composed of two connected components: one component, denoted Γ, where we impose
a first order absorbing boundary condition; and a second component, denoted Σ, where we
impose a transmission-like boundary condition.

Let f ∈ H1(Ω)′, g ∈ L2(Γ) and x ∈ H−1/2(Σ), we consider the following problem
Find p ∈ H1(Ω) such that(
−div ρ−1

r grad−κ0
2λ−1
r

)
p = f, in Ω,

(γ1,Γ − iγ0,Γ ) p = g, on Γ,
(γ1,Σ + [Z− iT] γ0,Σ ) p = x, on Σ.

(3.304)

Here T and Z respectively represent one diagonal block of the operators T0,‖ and Z, corre-
sponding to the boundary of one sub-domain.

This problem is representative of both the model problem (3.304) (for which the transmission
boundary Σ = ∅) and the local sub-problems (3.218) (for which the physical boundary Γ may
or may not be empty). We shall therefore prove that the above problem is well-posed without
excluding the two exclusive cases Σ = ∅ or Γ = ∅.

We shall show in the remainder of this sub-section that the above problem is well-posed under
the following assumption.

Assumption 3.65. We suppose that the coefficients satisfy

0 < < (ρr) < +∞, 0 ≤ = (ρr) < +∞,
0 < <

(
λ−1
r

)
< +∞, 0 ≤ =

(
λ−1
r

)
< +∞,

in ΩΣ. (3.305)

In addition, we suppose that the transmission operators are such that

• T is a self-adjoint positive isomorphism from H
1/2(Γ) to H−1/2(Γ);

• Z is a symmetric continuous operator from H
1/2(Γ) to H−1/2(Γ),

with
βT

αZ
> max

(
infΩ = (ρr)
infΩ < (ρr)

,
infΩ= (λr)
infΩ< (λr)

)
, (3.306)

where αZ is the continuity constant of Z and βT is the coercivity constant of T.

In particular, we do not assume that the imaginary parts of the coefficients are strictly positive
almost everywhere in Ω, which would considerably simplify the analysis since that would mean
that the medium is purely dissipative. We are rather interested in the case where they vanish
in at least some subsets (of non zero measure) of Ω so that the medium is (at least partly)
propagative.

We shall prove the well posedness of the above problem using a variational approach, hence
consider the weak form of (3.304) which is written{

Find p ∈ H1(Ω) such that
a(p, pt) + 〈[Z− iT] γ0,Σ p, γ0,Σ p

t〉Σ = l(pt), ∀pt ∈ H1(Ω),
(3.307)

where, for all p, q ∈ H1(Ω),{
a(p, q) := κ0

−1(ρ−1
r grad p,grad q)L2(Ω) − κ0(λ−1

r p, q)L2(Ω) − i(γ0,Γ p, γ0,Γ q)L2(Γ),

l(q) := κ0
−1〈f, q〉Ω + 〈g, γ0,Γ q〉Γ.

(3.308)
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Such well-posedness result is not new, similar results can be found for instance in [91, Lem.
1] or [44, Lem. 2.1]. The only difference is that the proof below allows the coefficient to have a
non-vanishing imaginary part. The following two lemmas states that the sesquilinear form a can
be decomposed in two parts: a coercive part and a compact part.

Lemma 3.66 (Coercive form). Under Assumption 3.65, the sesquilinear form, defined for all
p, q ∈ H1(Ω), as

a+(p, q) :=κ0
−1(ρ−1

r grad p,grad q)L2(Ω) + κ0(λ−1
r p, q)L2(Ω)

− i(γ0,Γ p, γ0,Γ q)L2(Γ) + 〈[Z− iT] γ0,Σ p, γ0,Σ q〉Σ,
(3.309)

is continuous and coercive on H1(Ω).

Proof. The continuity of the above sesquilinear form follows readily from the boundedness of the
coefficient ρr and λr and the continuity property of Z and T contained in Assumption 3.65. To
prove coercivity, let p ∈ H1(Ω), we have for a λ ∈ R+,

λ<a+(p, p)−=a+(p, p) ≥
(
λ inf

Ω
<(ρr)− inf

Ω
=(ρr)

)
|ρr|−2 κ0

−1‖grad p‖2
L2(Ω)

+
(
λ inf

Ω
<(λr)− inf

Ω
=(λr)

)
|λr|−2 κ0‖p‖2

L2(Ω)

+ ‖γ0,Γ p‖2
L2(Γ) + (βT − λαZ) ‖γ0,Σ p‖2

H1/2(Σ).

(3.310)

Hence, if λ is such that

βT

αZ
> λ > max

(
0, infΩ = (ρr)

infΩ < (ρr)
,

infΩ = (λr)
infΩ < (λr)

)
, (3.311)

for any p ∈ H1(Ω), there exists C > 0 such that

λ<a+(p, p)−=a+(p, p) ≥ C‖p‖2
H1(Ω). (3.312)

�

Lemma 3.67 (Compact operator). Under Assumption 3.65, the operator

K : L2(Ω)→ L2(Ω) (3.313)

such that Kp ∈ H1(Ω) ⊂ L2(Ω) is defined, for all p ∈ L2(Ω), as

a+(Kp, q) = −2κ0(λ−1
r p, q)L2(Ω), ∀q ∈ H1(Ω). (3.314)

is compact in L2(Ω).

Proof. Lemma 3.66 ensures, via application of the Lax-Migram Lemma, that there exists a
constant C such that, for all p ∈ L2(Ω)

‖Kp‖H1(Ω) ≤ C‖p‖L2(Ω). (3.315)

Let (un)∞
n be a bounded sequence in L2(Ω). Using the above inequality (Kun)∞

n is a bounded
sequence in H1(Ω) ⊂ L2(Ω). Using the compacity of the embedding H1(Ω) ↪→ L2(Ω) there is a
subsequence converging strongly in L2(Ω), which implies that K is compact. �
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We now have all the ingredients to establish the following proposition. A similar result was
already stated in [78, Th. 3.1] in [42, Th. 3] and in [91, Lem. 1], but for two sub-domains only
in the latter case.

Proposition 3.68 (Well-posedness of the model problem). Under Assumption 3.65, the
problem (3.304) is well-posed.

Proof. Using the definitions of the coercive form a+ (Lemma 3.66) and the operatorK (Lemma 3.67),
the problem in p ∈ H1(Ω) is equivalent to finding p ∈ L2(Ω) such that

(Id +K)p = b, (3.316)

where by application of the Lax-Milgram Lemma, b ∈ H1(Ω) ⊂ L2(Ω), is the unique solution of

a+(b, pt0) = l(pt0), ∀pt0 ∈ H1(Ω). (3.317)

From Lemma 3.67 the operator K is compact in L2(Ω), the Fredholm alternative is applicable
and the proof reduces to a uniqueness result.

For the proof of uniqueness, let p and q in H1(Ω) be two solutions to (3.307). By linearity,
the difference e = q − p satisfy

a(e, et) + 〈[Z− iT] γ0,Σ e, γ0,Σ e
t〉Σ = 0, ∀et ∈ H1(Ω). (3.318)

Choosing et = e and taking the imaginary part yields

κ0
−1(=

(
ρ−1
r

)
grad e,grad e)

L2(Ω) − κ0(=
(
λ−1
r

)
e, e)

L2(Ω)

− (γ0,Γ e, γ0,Γ e)L2(Γ) − 〈Tγ0,Σ e, γ0,Σ e〉Σ = 0.
(3.319)

We deduce that γ0,Γ e = 0 on Γ on the one hand, and the positivity and injectivity of the
transmission operator T from Assumption 3.65 gives that γ0,Σ e = 0 on Σ on the other hand, so
that the Dirichlet trace of e vanish on the whole boundary ∂Ω. The proof then follows using a
unique continuation result, see [8], and the connectivity of Ω. �

3.4.2 Electromagnetism
We consider a generic bounded, simply connected, Lipschitz domain Ω with a closed Lipschitz
boundary composed of two connected components: one component, denoted Γ, where we impose
a first order absorbing boundary condition; and a second component, denoted Σ, where we
impose a transmission-like boundary condition.

Let F ∈ HΓ(curl; Ω)′ such that div F = 0 in a distributional sense (charge conservation
equation), g ∈ L2(Γ) and x ∈ H−1/2(div; Σ), we consider the following problem

Find E ∈ HΓ(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,
(γ1,Γ − iγ0,Γ ) E = g, on Γ,
(γ1,Σ + [Z− iT] γ0,Σ ) E = x, on Σ.

(3.320)

Here T and Z respectively represent one diagonal block of the operators T0,‖ and Z, corre-
sponding to the boundary of one sub-domain.

In the abstract domain decomposition method that was presented above, we made two main
well-posedness assumptions. The first one (Assumption 3.9) is that the model problem (3.79) is
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well-posed, which would correspond to the above model problem (3.321) with an empty trans-
mission boundary Σ = ∅. The second assumption (Assumption 3.45) is that each of the local sub-
problems (3.218) (appearing in the definition of the scattering operator) are well-posed. These
problems would correspond to the above model problem (3.321) with a transmission boundary
that is always not empty Σ 6= ∅ but the physical boundary Γ may (pure interior sub-domain) or
may not (sub-domain with the exterior physical boundary) be empty. Therefore, when conduct-
ing the analysis, we shall pay attention that it is valid for all of the three following (exclusive)
configurations: Σ = ∅; or Γ = ∅; or Σ 6= ∅ & Γ 6= ∅.

3.4.2.1 Well-posedness of the model problem

We first consider the easier case of the model problem, for which Σ = ∅. Let F ∈ HΓ(curl; Ω)′

such that div F = 0 in a distributional sense (charge conservation equation) and g ∈ L2(Γ), the
model problem reads 

Find E ∈ HΓ(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,
(γ1,Γ − iγ0,Γ ) E = g, on Γ.

(3.321)

We shall show in the remainder of this sub-section that the above problem is well-posed under
the following assumption.

Assumption 3.69. We suppose that the coefficients satisfy

0 < < (µr) < +∞, 0 ≤ = (µr) < +∞,
0 < < (εr) < +∞, 0 ≤ = (εr) < +∞,

in ΩΣ. (3.322)

In particular, we do not assume that the imaginary parts of the coefficients are strictly positive
almost everywhere in Ω, which would considerably simplify the analysis since that would mean
that the medium is purely dissipative. We are rather interested in the case where they vanish
in at least some subsets (of non zero measure) of Ω so that the medium is (at least partly)
propagative.

As for acoustics, the first difficulty in the analysis of this problem is the fact that the
sesquilinear form associated to the original problem is not coercive, hence typically requires
the Fredholm alternative to provide conditions under which the problem has a solution. What
makes the analysis even more technical is that we do not have the compacity of the embedding
H(curl; Ω) ↪→ L2(Ω). This comes from the fact that the curl operator has a large (infinite
dimensional) null space (related to the divergence condition). This requires to use the Helmholtz
decomposition to remove this null-space.

We follow the ideas presented in [6, Sec. 8.3.3], [107, Chap. 4 and 10] and [110, Sec. 5.4.2
and 5.4.3].

We shall prove the well posedness of the above problem using a variational approach, hence
consider the weak form of (3.321) which is rewritten as{

Find E ∈ HΓ(curl; Ω) such that
a(E,Et) = l(Et), ∀Et ∈ HΓ(curl; Ω),

(3.323)

where, for all u,v ∈ HΓ(curl; Ω),{
a(u,v) := κ0

−1(µ−1
r curl u, curl v)L2(Ω) − κ0(εru,v)L2(Ω) − i(γ0,Γ u, γ0,Γ v)L2(Γ),

l(v) := κ0
−1〈F,v〉Ω + 〈g, γ0,Γ v〉Γ.

(3.324)
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The space HΓ(curl; Ω) is made into a Hilbert space with the inner product (·, ·)HΓ(curl;Ω)
defined, for all u,v ∈ HΓ(curl; Ω), as

(u,v)HΓ(curl;Ω) := κ0
−1(curl u, curl v)L2(Ω) + κ0(u,v)L2(Ω) + (γ0,Γ u, γ0,Γ v)L2(Γ). (3.325)

We shall need in what follows the following technical lemma, which we state without proof,
see [6, Th. 3.3.1] and [107, Th. 3.37] for additional details. Note that this result rests in
particular on the simply connected assumption on the domain Ω.

Lemma 3.70 (Extraction of a scalar potential). For any E in L2(Ω),

curl E = 0, in Ω ⇔ ∃ p ∈ H1(Ω) : E = grad p. (3.326)

We can then deduce the following lemma, providing a useful decomposition of elements of
HΓ(curl; Ω), see [6, Eq. (8.29)] and [107, Lem 4.5]. Note that the dependence of the space
HΓ(curl, div εr 0; Ω) on the coefficient εr is required in the proof of Proposition 3.75.

Lemma 3.71 (Helmholtz decomposition). Suppose that εr is uniformly bounded on Ω, we
have

HΓ(curl; Ω) = HΓ(curl, div εr 0; Ω)⊕ gradH1
0 (Ω), (3.327)

where

HΓ(curl, div εr 0; Ω) :=
{

E ∈ HΓ(curl; Ω) | (εrE,grad p)L2(Ω) = 0, ∀p ∈ H1
0 (Ω)

}
. (3.328)

Proof. Suppose E ∈ HΓ(curl; Ω) such as curl E = 0 in Ω with a vanishing tangential trace
γ0,∂Ω E = 0. Then from Lemma 3.70, there exists some p ∈ H1(Ω) such that E = grad p. Since
in addition γ0,∂Ω E = 0 and p is defined up to a constant, we can find a p ∈ H1

0 (Ω). Hence the
space gradH1

0 (Ω) is a non empty subspace of HΓ(curl; Ω).
Since the space gradH1

0 (Ω) is closed in HΓ(curl; Ω), for any E ∈ HΓ(curl; Ω), we can
construct its projection Eg onto gradH1

0 (Ω) by solving

(Eg,grad p)HΓ(curl;Ω) = (εrE,grad p)L2(Ω), ∀p ∈ H1
0 (Ω), (3.329)

which satisfies the conditions of the Lax-Milgram Lemma (from the boundedness of ε). By simple
properties of a projection we also have

(Eg,grad p)HΓ(curl;Ω) = (εrEg,grad p)L2(Ω), ∀p ∈ H1
0 (Ω), (3.330)

hence E0 := E−Eg ∈ HΓ(curl, div εr 0; Ω) and the decomposition holds. �

In addition, we have the following compact embedding result, which we state without proof,
see [6, Th. 8.1.3] and [107, Th. 4.7] for more detail. Importantly, for this result to hold, Σ = ∅.

Lemma 3.72 (Compact embedding). The space HΓ(curl, div εr 0; Ω) is compactly embedded
in L2(Ω).

We show in the following two lemmas that the sesquilinear form a is composed of a coercive
part a+ and a compact perturbation.

Lemma 3.73 (Coercive form). Under Assumption 3.69, the sesquilinear form a+ defined, for
all u,v ∈ HΓ(curl; Ω), as

a+(u,v) := κ0
−1(µ−1

r curl u, curl v)L2(Ω) + κ0(εru,v)L2(Ω) − i(γ0,Γ u, γ0,Γ v)L2(Γ), (3.331)

is continuous and coercive on HΓ(curl; Ω).
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Proof. The continuity of a+ follows readily from the boundedness of the coefficient µr and εr
contained in Assumption 3.69. To prove coercivity, let u ∈ HΓ(curl; Ω), we have for a λ ∈ R+,

λ<a+(u,u)−=a+(u,u) ≥
(
λ inf

Ω
<(µr)− inf

Ω
=(µr)

)
|µr|−2 κ0

−1‖ curl u‖2
L2(Ω)

+
(
λ inf

Ω
<(εr)− sup

Ω
=(εr)

)
κ0‖u‖2

L2(Ω) + ‖γ0,Γ u‖2
L2(Γ).

(3.332)

Hence, if Assumption 3.69 holds, we can take any λ such that

λ > max
(

0, infΩ = (µr)
infΩ < (µr)

,
supΩ= (εr)
infΩ< (εr)

)
, (3.333)

so that for any u ∈ HΓ(curl; Ω), there exists C > 0 such that

λ<a+(u,u)−=a+(u,u) ≥ C‖u‖2
HΓ(curl;Ω). (3.334)

�

Lemma 3.74 (Compact operator). Under Assumption 3.69, the operator

K : L2(Ω)→ L2(Ω) (3.335)

such that Ku ∈ HΓ(curl, div εr 0; Ω) ⊂ L2(Ω) is defined, for all u ∈ L2(Ω), as

a+(Ku,v) = −2κ0(εru,v)L2(Ω), ∀v ∈ HΓ(curl, div εr 0; Ω). (3.336)

is compact in L2(Ω).

Proof. Lemma 3.73 ensures, via application of the Lax-Migram Lemma, that there exists a
constant C such that, for all u ∈ L2(Ω)

‖Ku‖HΓ(curl,div εr 0;Ω) ≤ C‖u‖L2(Ω). (3.337)

Let (un)∞
n be a bounded sequence in L2(Ω). Using the above inequality (Kun)∞

n is a bounded
sequence in HΓ(curl, div εr 0; Ω) ⊂ L2(Ω). Using Lemma 3.72, there is a subsequence converging
strongly in L2(Ω), which implies that K is compact. �

We now have all the ingredients to establish the following proposition.

Proposition 3.75 (Well-posedness of the model problem). Under Assumption 3.69, the
problem (3.321) is well-posed.

Proof. We consider the variational form of the problem given in (3.323), namely{
Find E ∈ HΓ(curl; Ω) such that
a(E,Et) = l(Et), ∀Et ∈ HΓ(curl; Ω).

(3.338)

By decomposing the unknown and test functions, elements of HΓ(curl; Ω), according to the
decomposition stated in Lemma 3.71, we first show that the problem reduces to two uncoupled
problems in HΓ(curl, div εr 0; Ω) and H1

0 (Ω). Indeed, we have the basic properties

curl grad ≡ 0,
(εrE0,grad p)L2(Ω) = 0, ∀p ∈ H1

0 (Ω), E0 ∈ HΓ(curl,div εr 0; Ω),
grad : H1

0 (Ω)→ {u ∈ HΓ(curl; Ω) | γ0,∂Ω u = 0} ,
(3.339)
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and recalling the definitions of the sesquilinear forms a and a+ given respectively in (3.324)
and (3.331), the variational problem (3.323) is shown to be equivalent to:

Find p ∈ H1
0 (Ω) and E0 ∈ HΓ(curl, div εr 0; Ω) such that

−κ0(εr grad p,grad q)L2(Ω) = l(grad q), ∀q ∈ H1
0 (Ω),

a+(E0,Et
0)− 2κ0(εrE0,Et

0)L2(Ω) = l(Et
0), ∀Et

0 ∈ HΓ(curl, div εr 0; Ω).
(3.340)

Since εr has a bounded and strictly uniformly positive real part, by application of the Lax-
Milgram Lemma, the problem in p ∈ H1

0 (Ω) is well-posed. Now, using the definitions of the
coercive form a+ (Lemma 3.73) and the operator K (Lemma 3.74), the problem in E0 ∈
HΓ(curl, div εr 0; Ω) is equivalent to finding E0 ∈ L2(Ω) such that

(Id +K)E0 = b, (3.341)

where by application of the Lax-Milgram Lemma, b ∈ HΓ(curl, div εr 0; Ω) ⊂ L2(Ω), is the
unique solution of

a+(b,Et
0) = l(Et

0), ∀Et
0 ∈ HΓ(curl, div εr 0; Ω). (3.342)

From Lemma 3.74 the operator K is compact in L2(Ω), the Fredholm alternative is applicable
and the proof reduces to a uniqueness result.

For the proof of uniqueness, let E1 and E2 in HΓ(curl; Ω) be two solutions to (3.323). By
linearity, the difference e = E2 −E1 satisfy

a(e,Et) = 0, ∀Et ∈ HΓ(curl; Ω). (3.343)

Choosing Et = e and taking the imaginary part yields

κ0
−1(=

(
µ−1
r

)
curl e, curl e)L2(Ω) − κ0(= (εr) e, e)L2(Ω) − (γ0,Γ e, γ0,Γ e)L2(Γ) = 0. (3.344)

We deduce that γ0,∂Ω e = 0 on ∂Ω = Γ. The proof then follows using a unique continuation
result, see Theorem 8.3.10 in [6] and the proof of Theorem 4.12 in [107]. �

3.4.2.2 Well-posedness of local sub-problems

We now consider the case of local sub-problems where the transmission boundary Σ 6= ∅.

A first idea We now consider the weak form of (3.320) which is written as{
Find E ∈ HΓ(curl; Ω) such that
a(E,Et) + 〈[Z− iT] γ0,Σ E, γ0,Σ Et〉Σ = l(Et) + 〈x, γ0,Σ Et〉Σ, ∀Et ∈ HΓ(curl; Ω),

(3.345)
where a and l where given in (3.324).

We can make the following assumption on the operators T and Z, which is required anyway
for the convergence analysis.

Assumption 3.76. In addition to Assumption 3.69 we suppose that the transmission operators
are such that

• T is a self-adjoint positive isomorphism from H−1/2(curl; Γ) to H−1/2(div; Γ);

• Z is a symmetric continuous operator from H−1/2(curl; Γ) to H−1/2(div; Γ).
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The first idea is to adapt the proof for the model problem above. It is clear that the Helmholtz
decomposition from Lemma 3.71

HΓ(curl; Ω) = HΓ(curl, div εr 0; Ω)⊕ gradH1
0 (Ω), (3.346)

still holds in the case where Σ 6= ∅.
Besides, we can define a coercive sesquilinear form, as stated by the following lemma, which

takes as a model Lemma 3.73.

Lemma 3.77 (Coercive form). Under Assumption 3.69 and if

βT

αZ
> max

(
infΩ = (µr)
infΩ < (µr)

,
supΩ = (εr)
infΩ < (εr)

)
, (3.347)

where αZ is the continuity constant of Z and βT is the coercivity constant of T, the sesquilinear
form, defined for all u,v ∈ HΓ(curl; Ω), as

ã+(u,v) := a+(u,v) + 〈[Z− iT] γ0,Σ u, γ0,Σ v〉Σ, (3.348)

where a+ was defined in (3.331), is continuous and coercive on HΓ(curl; Ω).

Proof. The continuity of the above sesquilinear form follows readily from the boundedness of the
coefficient µr and εr and the continuity property of Z and T contained in Assumption 3.69 and
Assumption 3.76. To prove coercivity, let u ∈ HΓ(curl; Ω), we have for a λ ∈ R+,

λ<ã+(u,u)−=ã+(u,u) ≥
(
λ inf

Ω
<(µr)− inf

Ω
=(µr)

)
|µr|−2 κ0

−1‖ curl u‖2
L2(Ω)

+
(
λ inf

Ω
<(εr)− sup

Ω
=(εr)

)
κ0‖u‖2

L2(Ω)

+ ‖γ0,Γ u‖2
L2(Γ) + (βT − λαZ) ‖γ0,Σ u‖2

H−1/2(curl;Σ).

(3.349)

Hence, if λ is such that

βT

αZ
> λ > max

(
0, infΩ= (µr)

infΩ< (µr)
,

supΩ = (εr)
infΩ < (εr)

)
, (3.350)

for any u ∈ HΓ(curl; Ω), there exists C > 0 such that

λ<ã+(u,u)−=ã+(u,u) ≥ C‖u‖2
HΓ(curl;Ω). (3.351)

�

However, we were not able to state a compacity result such as Lemma 3.72 and as a result
we are not able to define a compact operator K in the model of Lemma 3.74. Indeed, we no
longer have an implicit control on the tangential or normal traces on the transmission interface
Σ (as we do for simple first order absorbing boundary conditions such as the one imposed on Γ
for instance) that is required for the standard compact embedding results to hold.

If we are then not able to prove the existence of a solution by application of the Fredholm
alternative, we are nevertheless able to prove the unicity of the solution.

Proposition 3.78 (Uniqueness result). Under Assumption 3.69 and Assumption 3.76 the
problem (3.320) has a unique solution, if it exists.
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Proof. Let E1 and E2 in HΓ(curl; Ω) be two solutions to (3.323). By linearity, the difference
e = E2 −E1 satisfy

a(e,Et) + 〈[Z− iT] γ0,Σ e, γ0,Σ Et〉Σ = 0, ∀Et ∈ HΓ(curl; Ω). (3.352)

Choosing Et = e and taking the imaginary part yields

κ0
−1(=

(
µ−1
r

)
curl e, curl e)L2(Ω) − κ0(= (εr) e, e)L2(Ω)

− (γ0,Γ e, γ0,Γ e)L2(Γ) − 〈Tγ0,Σ e, γ0,Σ e〉Σ = 0.
(3.353)

We deduce that γ0,Γ e = 0 on Γ on the one hand, and the positivity and injectivity of the
transmission operator T from Assumption 3.76 gives that γ0,Σ e = 0 on Σ on the other hand, so
that the tangential trace of e vanish on the whole boundary ∂Ω. The proof then follows using a
unique continuation result, see Theorem 8.3.10 in [6] and the proof of Theorem 4.12 in [107]. �

It follows from the previous proposition that it only remains to prove the existence of the
solution to the local sub-problems. We provide below two (partial) results (Proposition 3.80 and
Proposition 3.86) to bypass the previously identified difficulty posed by the lack of compacity.
These results are not completely satisfactory in the sense that we do not prove that the local
sub-problems are well-posed in full generality. They are nevertheless a strong indication that the
well-posedness result holds true.

A first partial result The first approach we present rests on the following assumption.

Assumption 3.79. Let F ∈ HΓ(curl; Ω)′ such that div F = 0 in a distributional sense (charge
conservation equation), g ∈ L2(Γ) and x ∈ H−1/2(curl; Σ), we assume that the following (Dirich-
let) problem 

Find E ∈ HΓ(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,
(γ1,Γ − iγ0,Γ ) E = g, on Γ,
γ0,Σ E = x, on Σ,

(3.354)

is well-posed.

If Γ is not empty (or if the imaginary parts of the coefficients εr and µr do not vanish in the
sub-domain Ω) the well-posedness of the above problem can be proven using standard results, see
for instance [107, Chap. 4]. However it may happen that some (interior) sub-domains are such
that Γ = ∅ (and in which the coefficients are real). The problem above can still be well-posed
but in general one must exclude so called interior eigenvalues or resonances, which correspond
to values of κ0 such that there exist non-trivial E elements of

H0(curl; Ω) := {E ∈ H(curl; Ω) | γ0,Σ E = 0} , (3.355)

such that

(µ−1
r curl E, curl Et)L2(Ω) = κ0

2(εrE,Et)L2(Ω), ∀Et ∈ H0(curl; Ω). (3.356)

Using Assumption 3.79, we can properly define the operator

Λi : H−1/2(curl; Σ)→ H−1/2(div; Σ),
x 7→ γ1,Σ E,

(3.357)
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where E ∈ HΓ(curl; Ω) is such that
(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Γ − iγ0,Γ ) E = 0, on Γ,
γ0,Σ E = x, on Σ.

(3.358)

The following proposition states the well-posedness of the local sub-problems.

Proposition 3.80 (Well-posedness of the local sub-problems). Under Assumption 3.69,
Assumption 3.76 and Assumption 3.79, the problem (3.320) is well-posed.

Proof. Let E0 ∈ HΓ(curl; Ω) be the source lifting such that
(
curlµ−1

r curl−κ0
2εr
)

E0 = F, in Ω,
(γ1,Γ − iγ0,Γ ) E0 = g, on Γ,
γ0,Σ E0 = 0, on Σ,

(3.359)

which is uniquely defined from Assumption 3.79. Solving the problem (3.320) is then equivalent
to solve 

Find E ∈ HΓ(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Γ − iγ0,Γ ) E = 0, on Γ,
(γ1,Σ + [Z− iT] γ0,Σ ) E = x− γ1,Σ E0, on Σ.

(3.360)

Using the operator Λi this problem is equivalent to the problem{
Find y ∈ H−1/2(curl; Σ) such that
(Λi + Z− iT)y = x− γ1,Σ E0,

(3.361)

in the sense that having a solution to one problem immediately yields a solution for the other.
Indeed, it is clear that if E is a solution to (3.360), then its trace γ0,Σ E is solution to (3.361).
Reciprocally, if y is solution to (3.361), then E solution to (3.360) is found by solving

(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Γ − iγ0,Γ ) E = 0, on Γ,
γ0,Σ E = y, on Σ,

(3.362)

which is well-posed thanks to Assumption 3.79.
It is therefore enough to prove that the problem (3.361) is well-posed, which stems from the

coercivity of the operator Λi + Z − iT on H−1/2(curl; Σ). Let us now prove this result. Let
y ∈ H−1/2(curl; Σ) and u ∈ HΓ(curl; Ω) such that

(
curlµ−1

r curl−κ0
2εr
)

u = 0, in Ω,
(γ1,Γ − iγ0,Γ ) u = 0, on Γ,
γ0,Σ u = y, on Σ,

(3.363)

so that we have by definition

〈Λiy,y〉Σ = (µ−1
r curl u, curl u)L2(Ω) − κ0

2(εru,u)L2(Ω) − ‖γ0,Γ u‖2
L2(Γ). (3.364)
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It follows that, using in particular the symmetry property of the operator Z from Assump-
tion 3.76,

−= [〈(Λi + Z− iT)y,y〉Σ] = −(=(µ−1
r ) curl u, curl u)L2(Ω) + κ0

2(=(εr)u,u)L2(Ω) + 〈Ty,y〉Σ,
(3.365)

so that using the positivity of the imaginary parts of the coefficients from Assumption 3.69 and
the coercivity property of the operator T from Assumption 3.76,

−= [〈(Λi + Z− iT)y,y〉Σ] ≥ 〈Ty,y〉Σ ≥ βT‖y‖2
H−1/2(curl;Σ). (3.366)

where we denoted by βT the coercivity constant of T. �

Assumption 3.69 on the coefficients of the PDE is natural. Assumption 3.76 on the transmis-
sion operator is required by the convergence analysis. Assumption 3.79 on the well-posedness of
the interior problem may not be satisfied in a general configuration. However, it seems that the
assumption comes from the method of proof rather than being required for a true reason.

A second partial result For the sole purpose of simplifying the discussion, we suppose here
that Γ is empty, so that the only boundary of Ω is Σ. Besides, we shall suppose that Z is
identically zero.

Let us define the bounded open domain Ωe as an exterior strip enclosing the domain Ω such
that Ω ∩ Ωe = ∅ and ∂Ωe = Σ ∪ Γe, see Figure 3.6. Then Ω̃ := Ω ∪ Σ ∪ Ωe is a bounded, simply
connected, Lipschitz domain with boundary Γe that admits a non-overlapping partition made up
of two sub-domains Ω and Ωe. The common interface of the two non-overlapping sub-domains
being Σ.

Ω Ωe

ΣΓe

Figure 3.6: Sketch of the configuration with the exterior strip Ωe.

In addition, let us introduce the real and strictly positive coefficients εr,e and µr,e as bounded
functions of Ωe

0 < < (µr,e) < +∞, = (µr,e) = 0,
0 < < (εr,e) < +∞, = (εr,e) = 0,

in Ωe. (3.367)

We introduce a special type of transmission operator (the sign comes from the fact that the
normal in the definition of γ1,Σ is inward with respect to Ωe)

Te : H−1/2(curl; Σ)→ H−1/2(div; Σ),
x 7→ −γ1,Σ Ee,

(3.368)
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where Ee ∈ HΓ(curl; Ωe) is such that
(
curlµ−1

r,e curl +κ0
2εr,e

)
Ee = 0, in Ωe,

γ0,Γe Ee = 0, on Γe,
γ0,Σ Ee = x, on Σ.

(3.369)

This operator is well defined since the above problem is coercive. Besides, it satisfies the Assump-
tion 3.76 on the transmission operator for the convergence analysis. In fact this is a completely
valid candidate to be used in a domain decomposition method. We shall actually study very
similar operators in Chapter 8.

We claim that for this special type of operator the local sub-problems are well-posed. We will
first prove this claim and then show that the well-posedness result carries over if any compact
perturbation of this operator is used as a transmission operator.

Let F ∈ HΓ(curl; Ω)′ such that div F = 0 in a distributional sense (charge conservation
equation), g ∈ L2(Γ) and x ∈ H−1/2(div; Σ), we consider the problem

Find E ∈ H(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,
(γ1,Σ − iTeγ0,Σ ) E = x, on Σ.

(3.370)

By definition of Te, the problem (3.370) is rewritten as as the following transmission problem

Find E ∈ H(curl; Ω) and Ee ∈ H(curl; Ωe) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,(
curlµ−1

r,e curl +κ0
2εr,e

)
Ee = 0, in Ωe,

γ0,Γe
Ee = 0, on Γe,

γ1,Σ E + iγ1,Σ Ee = x, on Σ,
γ0,Σ Ee = γ0,Σ E, on Σ.

(3.371)

The last condition on Σ implies that in fact it is enough to look for an element Ẽ of H(curl; Ω̃)
with E := Ẽ|Ω and Ee := Ẽ|Ωe

. We shall prove the well posedness of the above problem using a
variational approach, hence consider its the weak form which is written as{

Find Ẽ ∈ HΓe0(curl; Ω̃) such that
ã(Ẽ, Ẽt) = l̃(Ẽt), ∀Ẽt ∈ H(curl; Ω̃),

(3.372)

where we introduced the space

HΓe0(curl; Ω̃) :=
{

E ∈ H(curl; Ω̃) | γ0,Γe
E = 0

}
, (3.373)

and the sesquilinear forms
a(u,v) := κ0

−1(µ−1
r curl u, curl v)L2(Ω) − κ0(εru,v)L2(Ω), ∀u,v ∈ H(curl; Ω),

ae(u,v) := κ0
−1(µ−1

r,e curl u, curl v)L2(Ωe) + κ0(εr,eu,v)L2(Ωe), ∀u,v ∈ H(curl; Ωe),
ã(u,v) := a(u|Ω,v|Ω)− iae(u|Ωe ,v|Ωe), ∀u,v ∈ H(curl; Ω̃).

(3.374)
and

l̃(v) := κ0
−1〈F,v|Ω〉Ω, ∀v ∈ H(curl; Ω̃). (3.375)
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Let us introduce the global coefficients ε̃r and µ̃r defined on Ω̃ and such that{
ε̃r|Ω = εr,

µ̃r|−1
Ω = µ−1

r ,
and

{
ε̃r|Ωe

= −iεr,e,
µ̃r|−1

Ωe
= −iµ−1

r,e .
(3.376)

We can state a similar Helmholtz decomposition as in Lemma 3.71, whose proof is omitted
for the sake of brevity.

Lemma 3.81 (Helmholtz decomposition). We have

HΓe0(curl; Ω̃) = HΓe0(curl, div ε̃r 0; Ω̃)⊕ gradH1
0 (Ω̃), (3.377)

where

HΓe0(curl, div ε̃r 0; Ω̃) :=
{

E ∈ HΓe0(curl; Ω̃) | (ε̃rE,grad p)L2(Ω̃) = 0, ∀p ∈ H1
0 (Ω̃)

}
. (3.378)

By extending the domain Ω to Ω̃ we have gained a control on the tangential trace on the
boundary of the domain under consideration. We are therefore able to state the following com-
pacity result, which stems for instance from [53, Th. 5.1].

Lemma 3.82 (Compact embedding). The space HΓe
(curl, div ε̃r 0; Ω̃) is compactly embedded

in L2(Ω̃).

We show in the following two lemmas that the sesquilinear form ã is composed of a coercive
part ã+ and a compact perturbation.

Lemma 3.83 (Coercive form). Under Assumption 3.69, the sesquilinear form ã+ defined, for
all u,v ∈ HΓe0(curl; Ω̃), as{

ã+(u,v) := a+(u|Ω,v|Ω)− iae(u|Ωe
,v|Ωe

), ∀u,v ∈ H(curl; Ω̃),
a+(u,v) := κ0

−1(µ−1
r curl u, curl v)L2(Ω) + κ0(εru,v)L2(Ω), ∀u,v ∈ H(curl; Ω),

(3.379)
is continuous and coercive on HΓe0(curl; Ω̃).

Proof. The continuity of a+ follows readily from the boundedness of the coefficient µr and εr
contained in Assumption 3.69. To prove coercivity, let u ∈ HΓ(curl; Ω), we have for a λ ∈ R+,

λ<ã+(u,u)−=ã+(u,u) ≥
(
λ inf

Ω
<(µr)− inf

Ω
=(µr)

)
|µr|−2 κ0

−1‖ curl u|Ω‖2
L2(Ω)

+ |µr,e|−2 inf
Ωe

µr,e κ0
−1‖ curl u|Ωe

‖2
L2(Ωe)

+
(
λ inf

Ω
<(εr)− sup

Ω
=(εr)

)
κ0‖u|Ω‖2

L2(Ω)

+ sup
Ωe

εr,e κ0‖u|Ωe
‖2

L2(Ωe).

(3.380)

If Assumption 3.69 holds, we can take any λ such that

λ > max
(

0, infΩ = (µr)
infΩ < (µr)

,
supΩ= (εr)
infΩ < (εr)

)
, (3.381)

so that for any u ∈ HΓe0(curl; Ω̃), there exists C > 0 such that

λ<ã+(u,u)−=ã+(u,u) ≥ C‖u‖2
HΓe0(curl;Ω̃). (3.382)

�
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Lemma 3.84 (Compact operator). Under Assumption 3.69, the operator

K̃ : L2(Ω̃)→ L2(Ω̃) (3.383)

such that K̃u ∈ HΓe0(curl, div ε̃r 0; Ω̃) ⊂ L2(Ω̃) is defined, for all u ∈ L2(Ω̃), as

a+(K̃u,v) = −2κ0(ε̃ru,v)L2(Ω̃), ∀v ∈ HΓe0(curl, div ε̃r 0; Ω̃). (3.384)

is compact in L2(Ω̃).

Proof. It follows the lines of the proof of Lemma 3.74. �

We now have all the ingredients to establish the following proposition.

Proposition 3.85 (Well-posedness of the local sub-problems with Te). Under Assump-
tion 3.69, the problem (3.370) is well-posed.

Proof. We consider the variational form of the problem given in (3.372), namely{
Find E ∈ HΓe0(curl; Ω̃) such that
ã(E,Et) = l̃(Et), ∀Et ∈ HΓe0(curl; Ω̃).

(3.385)

By decomposing the unknown and test functions, elements of HΓe0(curl; Ω̃), according to the
decomposition stated in Lemma 3.81, the problem (3.372) reduces to two uncoupled problems in
HΓe0(curl,div ε̃r 0; Ω̃) and H1

0 (Ω̃) which are
Find p ∈ H1

0 (Ω̃) and E0 ∈ HΓe0(curl, div ε̃r 0; Ω̃) such that
−κ0(ε̃r grad p,grad q)L2(Ω̃) = l̃(grad q), ∀q ∈ H1

0 (Ω̃),
ã+(E0,Et

0)− 2κ0(ε̃rE0,Et
0)L2(Ω̃) = l̃(Et

0), ∀Et
0 ∈ HΓe0(curl, div ε̃r 0; Ω̃).

(3.386)
The coefficient ε̃r is such that the sesquilinear form defined on H1

0 (Ω̃)×H1
0 (Ω̃) by

(p, q) 7→ −κ0(ε̃r grad p,grad q)L2(Ω̃), (3.387)

is coercive. By application of the Lax-Milgram Lemma, it follows that the problem in p ∈ H1
0 (Ω̃)

is well-posed.
Using the definitions of the coercive form ã+ (Lemma 3.83) and the operator K̃ (Lemma 3.84),

the problem in E0 ∈ HΓe0(curl, div ε̃r 0; Ω̃) is equivalent to finding E0 ∈ L2(Ω̃) such that

(Id + K̃)E0 = b, (3.388)

where by application of the Lax-Milgram Lemma, b ∈ HΓe0(curl,div ε̃r 0; Ω̃) ⊂ L2(Ω̃), is the
unique solution of

ã+(b,Et
0) = l̃(Et

0), ∀Et
0 ∈ HΓe0(curl,div ε̃r 0; Ω̃). (3.389)

From Lemma 3.84 the operator K̃ is compact in L2(Ω̃), the Fredholm alternative is applicable and
the proof reduces to a uniqueness result, which was already established (Proposition 3.78). �

To prove the well-posedness of the local sub-problems for a general transmission operator T,
we will again recast the problem on the transmission interface Σ, but instead of using a Dirichlet-
like boundary condition, the idea is to switch to a Robin-like boundary condition based on the
particular transmission operator Te.
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Using Proposition 3.85, we can properly define the operator

Λi,Te : H−1/2(curl; Σ)→ H−1/2(div; Σ),
x 7→ γ1,Σ E,

(3.390)

where E ∈ H(curl; Ω) is such that{(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Σ − iTeγ0,Σ ) E = x, on Σ.

(3.391)

We are then able to state the well-posedness results for compact perturbations of the particular
transmission operator Te.

Proposition 3.86 (Well-posedness of the local sub-problems). Let F ∈ HΓ(curl; Ω)′ such
that div F = 0 in a distributional sense (charge conservation equation) and x ∈ H−1/2(div; Σ).
Under Assumption 3.69, Assumption 3.76 and if

T−Te is compact from H−1/2(curl; Σ) to H−1/2(div; Σ), (3.392)

the problem 
Find E ∈ H(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = F, in Ω,
(γ1,Σ − iTγ0,Σ ) E = x, on Σ.

(3.393)

is well-posed.

Proof. Let E0 ∈ H(curl; Ω) be the source lifting such that{(
curlµ−1

r curl−κ0
2εr
)

E0 = F, in Ω,
(γ1,Σ − iTeγ0,Σ ) E0 = 0, on Σ,

(3.394)

which is uniquely defined from Proposition 3.85. Solving the problem (3.393) is then equivalent
to solve 

Find E ∈ H(curl; Ω) such that(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Σ − iTγ0,Σ ) E = y, on Σ,

(3.395)

where
y = x− (γ1,Σ − iTγ0,Σ ) E0 ∈ H−1/2(div; Σ). (3.396)

Using the operator Λi,Te this problem is equivalent to the problem{
Find z ∈ H−1/2(curl; Σ) such that
(Λi,Te (T−Te)−T)z = i (Λi,Te − Id)y,

(3.397)

in the sense that having a solution to one problem immediately yields a solution for the other.
Let us prove this equivalence.

(⇒) Suppose that E is a solution to (3.395), by definition of Λi,Te
we have

γ1,Σ E = Λi,Te
[(γ1,Σ − iTeγ0,Σ ) E] , (3.398)
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so that we have, using twice the equation on Σ from (3.395),

Λi,Te [(γ1,Σ − iTeγ0,Σ ) E]− iTγ0,Σ E = y,
⇒ Λi,Te [i (T−Te) γ0,Σ E + y]− iTγ0,Σ E = y,

(3.399)

from which we readily find that the trace γ0,Σ E is solution to (3.397).
(⇐) Reciprocally, if z is solution to (3.397), then E solution to (3.395) is found by solving

(
curlµ−1

r curl−κ0
2εr
)

E = 0, in Ω,
(γ1,Γ − iγ0,Γ ) E = 0, on Γ,
(γ1,Σ − iTeγ0,Σ ) E = i(T−Te)z + y, on Σ,

(3.400)

which is well-posed thanks to Proposition 3.85.
The operator involved in problem (3.397) is the sum of a compact operator Λi,Te (T−Te)

and a coercive operator T in H−1/2(div; Σ), hence by Fredholm alternative, the well-posedness of
the associated problem is reduced to a uniqueness result, which was already established (Propo-
sition 3.78). The compacity of the operator Λi,Te

(T−Te) stems from the compacity of the
operator T−Te from H−1/2(curl; Σ) to H−1/2(div; Σ) and the continuity of Λi,Te

. The coercivity
of T is contained in Assumption 3.76. �
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This chapter is devoted to the numerical analysis of the Galerkin approximation of the method
presented in Chapter 3. This is one (our) choice of discretization, which we actually implemented
and tested numerically (see Chapter 7 and Chapter 8 for numerical experiments). Of course,
other discretization methods are possible, we mention in particular mixed-hybrid discretization,
in the spirit of [49].
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The structure of the presentation is similar to that of the continuous setting of the previous
chapter and also makes use of the multi-trace formalism, which was firstly used in this domain
decomposition context in [29, 33]. We introduce discrete variants of the spaces and operators
that were previously defined. The only complication that arises from the discrete setting comes
from the fact that the first order trace is only defined weakly. We therefore need to resort to
variational definitions of the continuous operators so that they are amenable to discretization.
The discrete Galerkin approximation of the model problem is then naturally recast in the form
of a discrete counterpart of the interface problem (3.200).

We also address in this chapter the delicate question of uniform stability with respect to the
discretization parameter of the (geometric) convergence of the iterative domain decomposition
method, which was recognized before this work as an open question in [91, Rem. 3, Chap. 6].
Indeed, we prove for the case of the Helmholtz equation that the convergence rate of the discrete
Jacobi algorithm is uniformly bounded above with respect to the discretization parameter, pro-
vided the transmission operator is itself stable. The more difficult case of Maxwell equations is
not fully covered here, but we provide some elements laying the foundation for future work in
this direction.

The method described in Chapter 3 could be written for any σ ∈ {0, 1/2, 1}, which sets
respectively the interface problem in the trace spaces M0,‖, M1/2,‖ or M1,‖. If one can implement
in practice the method for any of these three cases, we chose to use in this chapter and in our
numerical experiments the formulation for σ = 1. This means that the Lagrange multiplier,
solution of the interface problem on which the iterative algorithm is applied, can be identified
as an element of the dual trace space (in this case M1,h,‖). This is a rather natural choice for
the Galerkin method considered here and is slightly more efficient compared to the other choices
σ ∈ {1/2, 1}, if carefully implemented.

For simplicity and because in practice we do not see any reasonable argument for not doing so,
we only consider in this chapter diagonal transmission operators in the sense of Assumption 3.40.

4.1 Abstract definitions

4.1.1 Generic definitions and tools

To set some definitions, we consider an open, bounded, simply connected, polygonal/polyhedral,
Lipschitz domain O subset of Rd, with d = 1, 2, 3, intended to be either our model domain or a
sub-domain of the partition.

Its (polygonal) boundary is denoted by ∂O with outward unit normal vector ν, and consists
in one single connected component. We suppose that the boundary ∂O is composed of a first
connected component denoted ∂OR, intended to be the boundary on which the Robin boundary
condition is imposed, and several additional components, disconnected from ∂OR, denoted by
∂OT , intended to be transmission boundaries. The definitions we set below can be easily adapted
if either ∂OR or ∂OT are empty.

Discrete functional space Our purpose is to consider Galerkin approximations of our model
problem amenable to numerical computing. To this end, we will consider a discrete family
(Vh(O))h>0, indexed by the discretization parameter h > 0, of finite dimensional sub-sets of the
solution space

Vh(O) ⊂ U∂OR
(D;O), (4.1)
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which we refer to as discrete approximation spaces, such that they satisfy an approximation
property, namely

∀u ∈ U∂OR
(D;O), lim inf

h→0,
uh∈Vh(O)

‖u− uh‖U∂OR
(D;O) = 0. (4.2)

Since these are finite dimensional spaces, they are closed subspaces of the Hilbert space U∂OR
(D;O),

hence Hilbert spaces as well, equipped with the inherited inner product and norm.

Remark 4.1 (Finite element discretization). To construct the family of discrete finite di-
mensional spaces, we have in mind finite element conformal approximation spaces which are built
upon a triangulation of the domain. To this end, one will typically consider a family, indexed
by the mesh parameter h > 0, of regular triangulations Mh(O) of the domain O into (non-
degenerate) closed simplices, generically denoted by K. For all h > 0, the mesh Mh(O) will be
assumed to be conformal: the domain O is exactly resolved by the triangulation, namely

O =
⋃

K∈Mh(O)

K, (4.3)

and such that the intersection of two different elements is either empty, one edge, or one face of
both elements. In addition, we shall require the family (Mh)h>0 to be h-uniformly shape regular:
if ρK is the diameter of the largest ball included in the simplex K and hK is the diameter of the
simplex K, we suppose

lim inf
h→0,

K∈Mh(Ω)

ρK
hK

> 0. (4.4)

Example 1: Helmholtz. In the acoustic setting, the approximation spaces we consider (here
and in our numerical experiments) are constructed as described in Remark 4.1, by first consider-
ing a family of simplicial triangulations of the domain O. The discrete spaces are then generated
by standard conforming Pk Lagrange functions (k ≥ 1) defined on the mesh Mh(O), see [65] for
a general reference.

Example 2: Maxwell. In the electromagnetic setting, the approximation spaces we consider
(here and in our numerical experiments) are also constructed as described in Remark 4.1, by first
considering a family of simplicial triangulations of the domain O. The discrete spaces are then
generated using standard conforming Nedelec edge elements of arbitrary order.

Discrete trace spaces We introduce the natural (finite dimensional) discrete trace space as
the image of Vh(O) by the trace operator γ0,∂O defined in (3.64), namely

X0,h(∂O) := γ0,∂O Vh(O) ⊂ X0(∂O), (4.5)

which is a subset of X0(∂O) by continuity of the trace operator. We equip this space with the
graph norm

‖x0‖X0,h(∂O) := inf
u∈Vh(O)
γ0,∂O u=x0

‖u‖UΓ(D;O), ∀x0 ∈ X0,h(∂O). (4.6)

In addition, we set
X1,h(∂O) := X0,h(∂O)′. (4.7)

If follows that by construction
X1,h(∂O) 6⊂ X1(∂O). (4.8)
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We nevertheless use the same notation as for the continuous setting, namely

〈·, ·〉∂O : X1,h(∂O)×X0,h(∂O)→ C, (4.9)

to denote the duality pairing between X1,h(∂O) and X0,h(∂O). The space X1,h(∂O) is equipped
with the corresponding canonical dual norm, namely

‖x1‖X1,h(∂O) := sup
x0∈X0,h(∂O)

x0 6=0

〈x1, x0〉∂O
‖x0‖X0,h(∂O)

, ∀x1 ∈ X1,h(∂O). (4.10)

Again, we introduce the Cartesian product of the trace spaces as

Xh(∂O) := X0,h(∂O)×X1,h(∂O). (4.11)

Example 1: Helmholtz. In the acoustic setting, the natural trace of the standard Pk-Lagrange
elements in the volume generates the associated Pk-Lagrange elements on the embedded surface.

Example 2: Maxwell. The natural tangential trace of Nedelec edge elements in the volume
generates the associated Nedelec edge elements on the embedded surface.

Trace preserving and h-uniform continuous discrete lifting We assume that we can
construct a particular type of lifting operator, which will be a crucial ingredient in the analysis.

Assumption 4.2. There exist a continuous lifting of the natural trace

Eh,∂O : X0,h(∂O)→ Vh(O), (4.12)

which is trace preserving, namely

∀x0 ∈ X0,h(∂O), γ0,∂O Eh,∂O x0 = x0. (4.13)

To prove h-uniform convergence results, we shall require in addition the following stronger
assumption.

Assumption 4.3. There exists a trace-preserving continuous lifting of the natural trace satisfy-
ing Assumption 4.2 which is h-uniform.

Example 1: Helmholtz. In the acoustic setting, a lifting satisfying the requirements of As-
sumption 4.2 and Assumption 4.3 can be constructed from the Scott-Zhang [126] interpolator.

To construct a uniformly stable lifting which preserves the Dirichlet trace a natural idea is to
compose any continuous right inverse of the Dirichlet trace operator with a discrete interpolator.
The classical Lagrange interpolator [65, 5] fails to provide a practical answer because it lacks the
continuity property for non-smooth functions since it requires point-wise function evaluations.
The Clément interpolator [40] is continuous but fails to preserve the prescribed trace on the
boundary. An interpolator featuring the suitable properties have been proposed by Scott and
Zhang [126] for general conforming Lagrange finite elements of any order in Rd, d = 2, 3. For
the sake of illustration, we briefly recall below the construction of this operator for P1 Lagrange
finite elements on triangles.

For each vertex Mi of the mesh, choose arbitrarily σi an edge connected to Mi. The application
v ∈ P1(σi) 7→ v(Mi) ∈ R is a continuous linear form on P1(σi) ⊂ L2(σi). From Riesz theorem,
there exists a unique ψi ∈ P1(σi) such that, for all v ∈ P1(σi), we have v(Mi) = (ψi, v)L2(σi). Let
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wi be the P1 Lagrange basis function associated to the vertex Mi. There is a natural definition
of an interpolation operator Ph on H1(Ω) such that: for all v ∈ H1(Ω),

Phv :=
∑
i

(ψi, v)L2(σi)wi. (4.14)

From the trace theorem, Ph is a continuous linear mapping from H1(Ω) to Vh(Ω) and is invariant
on Vh(Ω). To preserve the trace on the boundary, we require in addition that for all vertices Mi

on the boundary of Ω, the edge σi is chosen to belong to the boundary. This operator Ph is the
Scott-Zhang operator and satisfies our requirements, see [126, Th. 2.1 and Cor. 4.1] for more
detail.

An extension of this interpolation operator to fractional Sobolev spaces has been given in [27].
For an extension to anisotropic meshes see [4].

Example 2: Maxwell. In the electromagnetic setting, a lifting satisfying the requirements of
Assumption 4.2 and Assumption 4.3 can be constructed implicitly.

The construction of a uniformly stable lifting which preserves the tangential trace can also
be obtained by composing any continuous right inverse of the tangential trace operator with a
discrete interpolator. A discrete interpolator with the correct properties has been constructed
implicitly in a recent paper by Ainsworth, Guzmán and Sayas, see [1]. Note that the construction
is actually based on the Scott-Zhang interpolator.

4.1.2 Discrete approximation of the model problem
We consider again in this chapter an open, bounded, simply connected, polygonal/polyhedral,
Lipschitz domain Ω subset of Rd, with d = 1, 2, 3. Its (polygonal) boundary is denoted by Γ := ∂Ω
with outward unit normal vector ν, and consists in one single connected component. Our aim
is to construct (numerical) approximations of our model problem (3.79) of a wave propagation
problem, for f ∈ UΓ(D; Ω)′ and g ∈ L2(Γ)m0 . Recall that the equivalent variational formulation
of the model problem (3.79), assumed to be well-posed, is written as{

Find u ∈ UΓ(D; Ω) such that
a(u, v) = l(v), ∀v ∈ UΓ(D; Ω),

(4.15)

where, for all u, v ∈ UΓ(D; Ω), we recall the definitions,{
a(u, v) := κ0

−1(a Du,Dv)L2(Ω)m1 − κ0 (nu, v)L2(Ω)m0 − i(γ0,Γ u, γ0,Γ v)L2(Γ)m0 ,

l(v) := κ0
−1(f, v)L2(Ω)m0 + (g, γ0,Γ v)L2(Γ)m0 .

(4.16)

The above (bi)-linear forms are assumed continuous with respect to their arguments. In the
forthcoming analysis, we shall require the continuity constant |||a||| of a, such that

|a(u, v)| ≤ |||a||| ‖u‖UΓ(D;Ω)‖v‖UΓ(D;Ω). ∀u, v ∈ UΓ(D; Ω). (4.17)

We introduce a family of discrete approximation spaces (Vh(Ω))h>0, indexed by the dis-
cretization parameter h > 0, of finite dimensional sub-sets of the solution space

Vh(Ω) ⊂ UΓ(D; Ω), (4.18)

and we are set to study the family of Galerkin approximations of (4.15),{
Find uh ∈ Vh(Ω) such that
a(uh, vh) = l(vh), ∀vh ∈ Vh(Ω).

(4.19)
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For the sake of simplicity we will suppose that the integrals featured in the bilinear and linear
forms can be evaluated exactly. Because of the abstract framework, we shall make the following
assumption.

Assumption 4.4 (Well-posedness of the discrete model problem). For any h > 0, l ∈
UΓ(D; Ω)′ the discrete model problem (4.19) is well-posed: there exists a unique solution uh ∈
Vh(Ω) and a constant 0 < αa,h < +∞ such that

‖uh‖UΓ(D;Ω) ≤ αa,h‖l‖UΓ(D;Ω)′ . (4.20)

Of course, the analysis of such problems often reveals that the above assumption is only valid
for h small enough, which is a caveat that does not invalidate the following theory.

4.1.3 Geometric domain partitioning
Partition For each h > 0, we introduce a domain partitioning of Ω, denoted PΩ,h, into J
non-overlapping, simply connected, polygonal/polyhedral, Lipschitz, open sub-domains Ωj,h,
j ∈ {1, . . . , J},

PΩ,h ≡ (Ωj,h)Jj=1, (4.21)

such that

Ω =
J⋃
j=1

Ωj,h, with Ωj,h ∩ Ωk,h = ∅, if j 6= k. (4.22)

We define the following boundaries and skeleton Σh

Γj,h := ∂Ωj,h, j ∈ {1, . . . , J},
Γjk,h := ∂Ωj,h ∩ ∂Ωk,h, (j, k) ∈ {1, . . . , J}2

, j 6= k,

Σh :=
J⋃
j=1

Γj,h,
(4.23)

and
Γ̃j,h := Γj,h \ Γh, j ∈ {1, . . . , J},
Σ̃h := Σh \ Γh.

(4.24)

When we study the question of h-uniform convergence, we shall require the following assump-
tion.

Assumption 4.5 (h-independent geometric partition). The partition is independent of h

PΩ,h ≡ PΩ,

Ωj,h ≡ Ωj , Γj,h ≡ Γj , j ∈ {1, . . . , J},
Γjk,h ≡ Γjk, (j, k) ∈ {1, . . . , J}2

, j 6= k,

Σh ≡ Σ.

(4.25)

However, we will not consider that Assumption 4.5 holds in general, because this partitioning
approach is not the most convenient from a practical viewpoint, see Remark 4.6. We shall point
out exactly when we require this assumption and emphasize that most of the analysis do not
rely on it.
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Remark 4.6 (Conformal mesh and partition). In practice, as we already remarked, the
discrete sequence of partition and solution spaces is constructed together with a discrete sequence
of meshes and associated finite element approximation spaces. The partition is assumed to be
conformal in the sense that all sub-domains are supposed to be resolved exactly by the triangula-
tion, in the sense of (4.3). Besides, because each Ωj,h is resolved by the triangulation, so is each
boundary Γhj as well as the skeleton Σh.

Two different situations may occur:

1. The first typical situation occurs when the partitioning is done prior to the discretization:
the computational domain is decomposed as a first step in subdomains and, only afterwards,
the mesh is generated in each subdomain separately. In this case the challenge is to obtain a
conformal mesh globally: compatibility between subdomain triangulations has to be enforced
at interfaces. Two examples of this situation are represented in Figure 4.1a and Figure 4.1b.
Each subdomain Ωj,h, and the subdomain partition itself, then remains unchanged as h→ 0.

2. Another approach consists in generating a mesh on the whole computational domain Ω
first, and then subdividing it in subdomains using for instance an automatic graph parti-
tioner such as e.g. Metis [89]. In this manner, conformity of subdomain triangulations
at interfaces is automatically satisfied. However the partition itself has no reason to sta-
bilize for h → 0, and there is no guarantee that each subdomain geometrically converges.
Boundaries of subdomains may get rougher as h → 0. This second situation is depicted
in Figure 4.1a and Figure 4.1b. This is actually the most practical way of proceeding in
real-life applications, however Assumption 4.5 is hardly ever satisfied in this case.

The existence of both these situations, which can have a significant impact on the stability
analysis, is the reason we introduced Assumption 4.5.

Figure 4.1 gives examples of the two types of partition we may consider, for partitions with
and without junction points. The analysis we present here covers type of partitioning (before
and after discretization), albeit the stability analysis will require to suppose that the partition
is independent of the discretization parameter. In this chapter we assume in addition that no
junction are present in the partition.

Discrete broken solution spaces We introduce the local discrete approximation spaces as
the space of local restrictions to the subdomains of global functions

Vh(Ωj,h) := Vh(Ω)|Ωj,h
∀j ∈ {1, . . . , J}, ∀h > 0, (4.26)

from which we can define the following discrete broken solution spaces

Vh(PΩ,h) :=
{

u ∈ L2(Ω)m0 | u|Ωj,h
∈ Vh(Ωj,h), ∀j ∈ {1, . . . , J}

}
, ∀h > 0. (4.27)

We insist that our approach is based on an internal approximation: our approximation spaces
are such that we have, for all h > 0,

Vh(Ω) ⊂ UΓ(D; Ω),
Vh(Ωj,h) ⊂ UΓ(D; Ωj,h), ∀j ∈ {1, . . . , J},
Vh(PΩ,h) ⊂ UΓ(D;PΩ,h).

(4.28)

Besides, by construction, we necessarily have, for all h > 0,

Vh(Ω) ⊂ Vh(PΩ,h), (4.29)
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(a) Without junctions, before discretization. (b) With junctions, before discretization.

(c) Without junctions, after discretization. (d) With junctions, after discretization.

Figure 4.1: Two approaches for partitioning the computational domain: before and after dis-
cretization.

so that
Vh(Ω) ⊂ UΓ(D; Ω) ∩ Vh(PΩ,h), (4.30)

but because of the abstract setting the reverse inclusion UΓ(D; Ω) ∩ Vh(PΩ,h) ⊂ Vh(Ω) does not
necessarily hold, which is the reason why we introduce the following assumption (not restrictive
in practice).

Assumption 4.7 (Partition-conformal discrete approximation space). For each h > 0,
we suppose that the discrete approximation space Vh(Ω) is such that

Vh(Ω) = UΓ(D; Ω) ∩ Vh(PΩ,h). (4.31)

Remark 4.8. For our two target applications, namely Helmholtz and Maxwell equations, the
approximations spaces are built using finite elements, hence will be partition-conformal if the
mesh partition on which the finite elements spaces are built is itself conformal (see Remark 4.6).

4.2 Abstract discrete domain decomposition

4.2.1 Multi-trace formalism
4.2.1.1 Multi-trace spaces

Similarly as in the continuous setting, we introduce discrete global trace spaces whose elements
are collection of traces on all interfaces between two sub-domains.
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Definition 4.9 (Discrete multi-trace spaces). The discrete global multi-trace spaces are
defined as

M0,h,‖
(
Σ̃h
)

:= ×
(j,k)∈J

X0,h(Γjk,h),

M1,h,‖
(
Σ̃h
)

:= ×
(j,k)∈J

X1,h(Γjk,h),

Mh,‖
(
Σ̃h
)

:= ×
(j,k)∈J

Xh(Γjk,h) ≡ M0,h,‖
(
Σ̃h
)
× M1,h,‖

(
Σ̃h
)
.

(4.32)

It is clear that we have

M0,h,‖
(
Σ̃h
)
⊂ M0,‖

(
Σ̃h
)

:= ×
(j,k)∈J

X0(Γjk,h), (4.33)

where M0,×
(
Σ̃h
)

is the continuous multi-trace space defined on the h dependent skeleton Σ̃.
However, we shall keep in mind that

M1,h,‖
(
Σ̃h
)
6⊂ M1,‖

(
Σ̃h
)

:= ×
(j,k)∈J

X1(Γjk,h). (4.34)

We introduce the global trace operator

γ0,h,‖ :=
(
γ0,Γjk,h

)
(j,k)∈J

: Vh(PΩ,h)→ M0,h,‖, (4.35)

which is by construction a continuous and surjective mapping from the broken solution space
into the Dirichlet multi-trace space.

Norms and duality pairings The multi-trace space M0,h,‖ can be endowed with the norms
stemming from its Cartesian product structure. Recalling the definition of the norm on a single
domain given in (4.6), we set,

‖x0‖2
M0,h,‖

:=
∑

(j,k)∈J

‖xjk0 ‖
2
X0,h(Γjk,h), ∀x0 ≡ (xjk0 )(j,k)∈J ∈ M0,h,‖. (4.36)

Recalling the local duality pairing 〈·, ·〉∂O between the two dual trace spaces (4.9) on a single
boundary ∂O, we introduce the duality pairing between multi-trace spaces (which does not
involve any complex conjugation operation)

〈〈·, ·〉〉‖ : M1,h,‖ × M0,h,‖ → C,

(x1, x0) 7→
∑

(j,k)∈J

〈xjk1 , xjk0 〉Γjk,h
. (4.37)

The space M1,h,‖ is equipped with the corresponding canonical dual norm, namely

‖x1‖M1,h,‖
:= sup

x0∈M0,h,‖
x0 6=0

〈〈x1, x0〉〉‖
‖x0‖M0,h,‖

, ∀x1 ∈ M1,h,‖. (4.38)

Besides, we introduce the natural norm on Mh,‖ as follows

‖x‖2
Mh,‖

:= ‖x0‖2
M0,h,‖

+ ‖x1‖2
M1,h,‖

, ∀x ≡ (x0, x1) ∈ Mh,‖. (4.39)
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Lifting operators With the help of Assumption 4.2, it is clear that one can construct a (trace
preserving) continuous lifting operator

Eh,‖ : M0,h,‖ → Vh(PΩ,h). (4.40)

We shall require in the forthcoming analysis the continuity constant of this lifting operator,
denoted |||Eh,‖|||, and such that

‖Eh,‖ x0‖UΓ(D;PΩ,h) ≤ |||Eh,‖||| ‖x0‖M0,h,‖
, ∀x0 ∈ M0,h,‖. (4.41)

4.2.1.2 Cauchy-trace spaces

We define a first subset of the space of discrete multi-trace spaces which can also be reinterpreted
as the space of traces of a function whose restriction in each sub-domain satisfies the PDE (and
physical boundary conditions), very much like in the continuous setting (see Definition 3.18).
However this time we resort to variational definitions, since the first order trace is only defined
weakly here. The bilinear aj was defined in (3.97) and the broken version a was defined in (3.98).
Definition 4.10 (Discrete Cauchy-trace space). For each j = 1, . . . , J , the space of local
discrete Cauchy traces Ch,‖ (Γj,h) is defined as the subset of×k∈Kj

Xh(Γjk,h) such that: for all
x ∈×k∈Kj

Xh(Γjk,h),

x ≡ (xjk0 , xjk1 )k∈Kj
∈ Ch,‖ (Γj,h)

⇔ ∃uj ∈ Vh(Ωj,h) such that{
aj(uj , vj) =

∑
k∈Kj

〈xjk1 , γ0,Γjk,h
vj〉Γjk,h

, ∀vj ∈ Vh(Ωj,h),
xjk0 = γ0,Γjk,h

uj , ∀k ∈ Kj .

(4.42)

The global discrete Cauchy trace space is defined as

Ch,‖
(
Σ̃h
)

:=
J×
j=1

Ch,‖ (Γj,h) , (4.43)

or, equivalently,
x ≡ (x0, x1) ∈ Ch,‖

(
Σ̃h
)

⇔ ∃u ∈ Vh(PΩ,h) such that
{

a(u, v) = 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
x0 = γ0,h,‖u,

(4.44)

which we identify as a subspace of Mh,‖ in a straightforward manner.

4.2.1.3 Single-trace spaces

We introduce a second subspace of the multi-trace space, which is the space of traces that match
across all interfaces. The definition in this discrete setting follows closely the one from the
continuous setting (see Definition 3.20).
Definition 4.11 (Discrete single-trace spaces). The global discrete single-trace spaces are
defined as

S0,h,‖
(
Σ̃h
)

:=
{

x0 = (xjk0 )(j,k)∈J ∈ M0,h,‖ | xjk0 = xkj0 , ∀(j, k) ∈ J
}
,

S1,h,‖
(
Σ̃h
)

:=
{

x1 = (xjk1 )(j,k)∈J ∈ M1,h,‖ | xjk1 = −xkj1 , ∀(j, k) ∈ J
}
,

Sh,‖
(
Σ̃h
)

:= S0,h,‖
(
Σ̃h
)
× S1,h,‖

(
Σ̃h
)
.

(4.45)
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We have, by construction

S0,h,‖ = M0,h,‖ ∩ S0,‖
(
Σ̃h
)
⊂ S0,‖

(
Σ̃h
)
, (4.46)

where S0,‖
(
Σ̃h
)

is the continuous single-trace space defined on the h dependent skeleton Σ̃.
Again, we review some of the properties linked to the discrete single-trace spaces that will

prove useful in what follows. Most of them are inherited from the continuous setting.
First, we have the following important result, which stems from Assumption 4.7 and Propo-

sition 3.21.

Proposition 4.12. Under Assumptions 3.11 and 3.12, we have

S0,h,‖ = γ0,h,‖ Vh(Ω). (4.47)

Proof. From Proposition 3.21, we have

S0,‖ = γ0,h,‖UΓ(D; Ω), (4.48)

from the surjectivity of the trace operator, we have

M0,h,‖ = γ0,h,‖Vh(PΩ,h), (4.49)

and from Assumption 4.7, we have

Vh(PΩ,h) ∩UΓ(D; Ω) = Vh(Ω), (4.50)

Hence, the definition of S0,h,‖ is rewritten as

S0,h,‖ = M0,h,‖ ∩ S0,‖ = γ0,h,‖ (Vh(PΩ,h) ∩UΓ(D; Ω)) = γ0,h,‖Vh(Ω). (4.51)

�

The following lemma, which stems directly from Assumption 4.7 and Corollary 3.14, will help
make clear the difference between the Vh(Ω) (regular) and the Vh(PΩ,h) (broken) versions of the
solution spaces using the single-trace space. It is the discrete analogue of Corollary 3.14.

Lemma 4.13. An element u in Vh(PΩ,h) is an element of Vh(Ω) if, and only if,

γ0,Γjk,h
u|Ωj,h

= γ0,Γkj,h
u|Ωk,h

, ∀(j, k) ∈ J. (4.52)

Proof. We have the trivial inclusion Vh(Ω) ⊂ Vh(PΩ,h). Besides, if u in Vh(PΩ,h) satisfies (4.52)
then using Corollary 3.14, we get that u ∈ UΓ(D; Ω) ∩ Vh(PΩ,h), which is nothing but Vh(Ω)
from Assumption 4.7. �

We deduce the following corollary, which is a characterization of the difference between the
Vh(Ω) (regular) and the Vh(PΩ,h) (broken) versions of the solution spaces using the single-trace
spaces.

Corollary 4.14. We have

∀u ∈ Vh(PΩ,h), γ0,h,‖u ∈ S0,h,‖ ⇔ u ∈ Vh(Ω). (4.53)

Proof. It is clear that one implication (⇐) stems from Proposition 4.12. We need only to prove
the reverse implication (⇒).

Let u ∈ Vh(PΩ,h) such that γ0,h,‖u ∈ S0,h,‖. By Proposition 4.12 of S0,h,‖, there exists
v ∈ Vh(Ω) such that γ0,h,‖(v−u) = 0. It follows that w := v−u ∈ Kerγ0,h,‖ and by Lemma 4.13
we get w ∈ Vh(Ω) so that finally u = v + w does belong to Vh(Ω). �
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In addition, we have the following result, analogue of Proposition 3.23, which will prove useful
in this discrete context.

Proposition 4.15. The discrete single trace spaces are such that

∀x0 ∈ M0,h,‖,
(

x0 ∈ S0,h,‖ ⇔ 〈〈y1, x0〉〉‖ = 0, ∀y1 ∈ S1,h,‖

)
,

∀x1 ∈ M1,h,‖,
(

x1 ∈ S1,h,‖ ⇔ 〈〈x1, y0〉〉‖ = 0, ∀y0 ∈ S0,h,‖

)
.

(4.54)

Proof. It is a trivial adaptation of the proof of Proposition 3.23. �

4.2.1.4 A first equivalent transmission problem

We are now ready to rewrite the (discrete) approximation (4.19) of the model problem (3.79)
This is the purpose of the following proposition, analogue to Proposition 3.24. The broken
sesquilinear and linear forms a and l were defined in (3.98) and (3.101).

Proposition 4.16 (Equivalent discrete transmission problem). If uh ∈ Vh(Ω) is solution
of the discrete model problem (4.19) then there exists x ≡ (x0, x1) ∈ Sh,‖ such that{

a(uh, v)− l(v) = 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
γ0,h,‖uh = x0.

(4.55)

Reciprocally, if uh ∈ Vh(PΩ,h) and x ≡ (x0, x1) ∈ Sh,‖ are such that (4.55) is satisfied then
uh is solution of the discrete model problem (4.19).

Proof. (⇒) Let uh ∈ Vh(Ω) be the solution of the (discrete) approximation (4.19) of the model
problem (3.79). Since uh ∈ Vh(Ω), from Proposition 4.12 we immediately have

x0 := γ0,h,‖uh ∈ S0,h,‖. (4.56)

Now, by Riesz representation theorem, there exists x1 ∈ M1,h,‖ such that

〈〈x1, x
t
0〉〉‖ = a(uh,Eh,‖ xt0)− l(Eh,‖ xt0), ∀xt0 ∈ M0,h,‖. (4.57)

Let us show that x1 is independent of the particular lifting Eh,‖. Let v ∈ Vh(PΩ,h), we have

γ0,h,‖ (v− Eh,‖ γ0,h,‖v) = 0 ∈ S0,h,‖, (4.58)

so that, by application of Corollary 4.14, we know that v− Eh,‖ γ0,h,‖v ∈ Vh(Ω). It follows that

a(uh, v−Eh,‖ γ0,h,‖v)− l(v−Eh,‖ γ0,h,‖v) = a(uh, v−Eh,‖ γ0,h,‖v)− l(v−Eh,‖ γ0,h,‖v) = 0, (4.59)

hence
a(uh,Eh,‖ γ0,h,‖v)− l(Eh,‖ γ0,h,‖v) = a(uh, v)− l(v), (4.60)

and finally, using the surjectivity of the trace γ0,h,‖ from Vh(PΩ,h) into M0,h,‖,

〈〈x1,γ0,h,‖v〉〉‖ = a(uh, v)− l(v), ∀v ∈ Vh(PΩ,h). (4.61)

Let z0 ∈ S0,h,‖, using again Proposition 4.12, there exists vt ∈ Vh(Ω) such that z0 = γ0,h,‖v
t.

Since uh ∈ Vh(Ω) satisfies the discrete model problem (4.19), we have

〈〈x1, z0〉〉‖ = a(uh, vt)− l(vt) = a(uh, vt)− l(vt) = 0, (4.62)
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which means, from Proposition 4.15, that

x1 ∈ S1,h,‖ and hence x ≡ (x0, x1) ∈ Sh,‖. (4.63)

(⇐) Reciprocally, suppose that there exists uh ∈ Vh(PΩ,h) and x ≡ (x0, x1) ∈ Sh,‖ such
that (4.55) holds. We immediately conclude from γ0,h,‖uh = x0 ∈ S0,h,‖ and Corollary 4.14 that
uh ∈ Vh(Ω). Now testing with elements of Vh(Ω),

a(uh, vh)− l(vh) = a(uh, vh)− l(vh) = 〈〈x1,γ0,h,‖vh〉〉‖ = 0, ∀vh ∈ Vh(Ω), (4.64)

using Proposition 4.15 together with the fact that x1 ∈ S1,h,‖. Hence, uh ∈ Vh(Ω) is the solution
of the discrete model problem (4.19). �

We state now the result on the decomposition of the discrete multi-trace space in the sum of
the discrete single-trace and Cauchy-trace spaces, analogue of Proposition 3.25. A similar result
in a more general setting (with junctions) was already available for the scalar equation only,
see [33, Prop. 7.1].

Proposition 4.17. We have the direct sum

Mh,‖ = Ch,‖ ⊕ Sh,‖. (4.65)

In addition, if we denote by PCh,‖ the projector from Mh,‖ onto Ch,‖ in parallel to Sh,‖, then we
have the following estimate

αPCh,‖
:= sup

x∈Mh,‖
x 6=0

‖PCh,‖x‖
Mh,‖

‖x‖Mh,‖

≤
(

1 + |||a|||2 |||Eh,‖|||2
)1/2[(

1 + α−1
a,h |||a|||

)
|||Eh,‖|||+ α−1

a,h

]
.

(4.66)

Proof.

Null intersection Ch,‖ ∩ Sh,‖ = {0}. Let x ∈ Ch,‖ ∩ Sh,‖. Since x ∈ Ch,‖, we can find
u ∈ Vh(PΩ,h) such that {

a(u, v) = 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
x0 = γ0,h,‖u.

(4.67)

Then since x ∈ Sh,‖, from Proposition 4.16, it follows that u actually satisfies the homogeneous
approximation of model problem (4.19) in the whole of Ω{

u ∈ Vh(Ω),
a(u, v) = 0, ∀v ∈ Vh(Ω).

(4.68)

The well-posedness of this problem (Assumption 4.4) yields u = 0, hence x = 0 by continuity of
the trace operator γ0,h,‖.

Decomposition. Let x ≡ (x0, x1) ∈ Mh,‖. We wish to construct y ∈ Ch,‖ and z ∈ Sh,‖ such
that x = y + z. The proof performs explicitly the projection of x on the subspace Ch,‖ in parallel
to the subspace Sh,‖. We define{

u ∈ Vh(Ω) such that,
a(u, v) = a(Eh,‖ x0, v)− 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(Ω),

(4.69)
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Such a solution exists from the well-posedness of the model problem (4.19) (Assumption 4.4).
Set

y0 := γ0,h,‖(Eh,‖ x0 − u) = x0 − γ0,h,‖u, (4.70)
and define y1 ∈ M1,h,‖ such that

a(u− Eh,‖ x0,Eh,‖ xt0) = −〈〈y1, x
t
0〉〉‖, ∀xt0 ∈ M0,h,‖. (4.71)

By construction, using Definition 4.10 of the discrete Cauchy space Ch,‖, we have

y := (y0, y1) ∈ Ch,‖. (4.72)

Now, set
z ≡ (z0, z1) := x − y. (4.73)

Using Proposition 4.12 together with the fact that u ∈ Vh(Ω), we have

z0 := x0 − y0 = γ0,h,‖u ∈ S0,h,‖. (4.74)

Besides, for any s0 ∈ S0,h,‖, we can test with Eh,‖ s0 ∈ Vh(Ω) in (4.69) (note that Eh,‖ s0 does
belong to Vh(Ω) from Lemma 4.13) and with s0 in (4.71) to obtain

〈〈z1, s0〉〉‖ = 〈〈x1 − y1, s0〉〉‖ = 0, (4.75)

so that, using Proposition 4.15 we obtain z1 ∈ S1,h,‖ and hence:

z ∈ Sh,‖. (4.76)

It is then straightforward to check that

x = y + z, with
{

y ∈ Ch,‖,

z ∈ Sh,‖.
(4.77)

Explicit estimate. We adopt the same notations as for the proof of the decomposition. By
definition of the projector PCh,‖ , we have,

y ≡ (y0, y1) := PCh,‖x, so that ‖PCh,‖x‖2
Mh,‖

= ‖y‖2
Mh,‖

= ‖y0‖2
M0,h,‖

+ ‖y1‖2
M1,h,‖

. (4.78)

By definition of y, we have

‖y0‖M0,h,‖
≤ ‖Eh,‖ x0 − u‖UΓ(D;PΩ,h) ≤

(
|||E‖||| ‖x0‖M0,h,‖

+ ‖u‖UΓ(D;PΩ,h)

)
,

‖y1‖M1,h,‖
≤ |||a||| |||E‖||| ‖Eh,‖ x0 − u‖UΓ(D;PΩ,h) ≤ |||a||| |||E‖|||

(
|||E‖||| ‖x0‖M0,h,‖

+ ‖u‖UΓ(D;PΩ,h)

)
.

(4.79)
Besides, by definition of u we have

‖u‖UΓ(D;PΩ,h) ≤ α
−1
a,h

(
|||a||| |||Eh,‖||| ‖x0‖M0,h,‖

+ ‖x1‖M1,h,‖

)
. (4.80)

We readily obtain the claimed estimate

‖PCh,‖x‖2
Mh,‖
≤
(

1 + |||a|||2 |||Eh,‖|||2
) [(

1 + α−1
a,h |||a|||

)
|||Eh,‖||| ‖x0‖M0,h,‖

+ α−1
a,h ‖x1‖M1,h,‖

]2
,

≤
(

1 + |||a|||2 |||Eh,‖|||2
) [(

1 + α−1
a,h |||a|||

)
|||Eh,‖|||+ α−1

a,h

]2
‖x‖2

Mh,‖
.

(4.81)
�
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4.2.2 Reformulation as an interface problem
In this section, repeating the steps of Chapter 3, we exploit the above characterization (see
Proposition 4.16) of the trace of the solution to equivalently recast the discrete approximation
of the original problem (4.19) as a problem (4.145) posed on the skeleton Σ̃ of the partition.

4.2.2.1 Transmission operators and associated scalar products

We start by introducing the key ingredient of our formulation, the transmission operator from
Definition 3.26, this time as a bilinear form.
Definition 4.18 (Transmission operator). We call transmission operator any continuous and
positive definite bilinear form

t0,h,‖ : M0,h,‖ × M0,h,‖ → C, (4.82)

such that
t0,h,‖(x0, x0) > 0, ∀x0 ∈ M0,h,‖ \ {0}. (4.83)

Besides, we also introduce the following additional continuous bilinear form, representation
of the operator Z introduced in (3.173),

zh : M0,h,‖ × M0,h,‖ → C, (4.84)

such that
∀x0 ∈ M0,h,‖, zh(x0, x0) ∈ R. (4.85)

For the sake of simplicity, and because it will always be the case in practice, we suppose that
these operators are diagonal.
Definition 4.19 (Diagonal operators). The transmission operator t0,h,‖ and the operator zh
will be called diagonal if there exist, for each (j, k) ∈ J, the following local continuous bilinear
forms

tjk0,h,‖ : X0,h(Γjk,h)×X0,h(Γjk,h)→ C,

zjkh : X0,h(Γjk,h)×X0,h(Γjk,h)→ C,
(4.86)

such that
t0,h,‖(x0, y0) :=

∑
(j,k)∈J

tjk0,h,‖(xjk0 , yjk0 ), ∀x0, y0 ∈ M0,h,‖,

zh(x0, y0) :=
∑

(j,k)∈J

zjkh (xjk0 , yjk0 ), ∀x0, y0 ∈ M0,h,‖.
(4.87)

where we adopted the notation x0 ≡ (xjk0 )(j,k)∈J and y0 ≡ (yjk0 )(j,k)∈J.

Scalar product and norm We can then endow the multi-trace space M0,h,‖ with the norm
induced by the previous scalar product. Hence we define

‖x0‖2
t0,h,‖

:= t0,h,‖(x0, x0), ∀x0 ∈ M0,h,‖. (4.88)

Because of the finite dimensional setting, the norms ‖ · ‖M0,h,‖
(defined in (4.36)) and ‖ · ‖t0,h,‖

are always equivalent on M0,h,‖. However, they are not necessarily h-uniformly equivalent. This
is why we introduce the continuity constant

|||t0,h,‖||| := sup
x0,y0∈M0,h,‖

x0,y0 6=0

|t0,h,‖(x0, y0)|
‖x0‖M0,h,‖

‖y0‖M0,h,‖

, (4.89)
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and coercivity constant
βt0,h,‖ := inf

x0∈M0,h,‖
x0 6=0

t0,h,‖(x0, x0)
‖x0‖2

M0,h,‖

. (4.90)

By definition, it follows that
βt0,h,‖ ‖x0‖2

M0,h,‖
≤ ‖x0‖2

t0,h,‖
≤ |||t0,h,‖||| ‖x0‖2

M0,h,‖
, ∀x0 ∈ M0,h,‖. (4.91)

We can define a norm on the multi-trace space M1,h,‖. To do so, using Riesz representation
theorem, we first introduce the operator, T0,h,‖ from M0,h,‖ into its dual

T0,h,‖ : M0,h,‖ → M0,h,‖
′ = M1,h,‖,

x0 7→ x1,
(4.92)

where x1 ∈ M1,h,‖ is such that
t0,h,‖(x0, xt0) = 〈〈x1, x

t
0〉〉‖, ∀xt0 ∈ M0,h,‖. (4.93)

From Definition 4.18, T0,h,‖ is clearly invertible and we can then define
T1,h,‖ := T−1

0,h,‖ : M1,h,‖ → M0,h,‖. (4.94)
The norm on the discrete multi-trace space M1,h,‖ is then defined as

‖x1‖2
t1,h,‖

:= 〈〈x1,T1,‖x1〉〉‖, ∀x1 ∈ M1,h,‖. (4.95)

The following easy lemma states that the norms ‖ · ‖M1,h,‖
(defined in (4.38)) and ‖ · ‖t1,h,‖

are
equivalent (not necessarily h-uniformly equivalent though).
Lemma 4.20. We have

βt0,h,‖ |||t0,h,‖|||−2 ‖x1‖2
M1,h,‖

≤ ‖x1‖2
t1,h,‖

≤ β−1
t0,h,‖

‖x1‖2
M1,h,‖

, ∀x1 ∈ M1,h,‖. (4.96)

Proof. Let x1 ∈ M1,h,‖, we have on the one hand

‖x1‖2
t1,h,‖

= 〈〈x1,T1,‖x1〉〉‖ ≤ ‖x1‖M1,h,‖
‖T1,‖x1‖M0,h,‖

≤ β−1
t0,h,‖

‖x1‖2
M1,h,‖

. (4.97)

On the other hand
‖x1‖2

t1,h,‖
= t1/2,‖(T1,‖x1,T1,‖x1) = ‖T1,‖x1‖2

T0,‖
,

≥ βt0,h,‖‖T1,‖x1‖2
M0,h,‖

≥ βt0,h,‖ |||t0,h,‖|||−2 ‖x1‖2
M1,h,‖

.
(4.98)

�

Generalized Robin operators The transmission operator t0,h,‖ together with the bilinear
form zh are used to combine the two types of traces into so-called generalized Robin multi-traces.
Definition 4.21 (Discrete generalized Robin operators). We introduce the global operators,

R±
1,h,‖ : Mh,‖ → M1,h,‖, (4.99)

where, for any x ≡ (x0, x1) ∈ Mh,‖, we define R±
1,h,‖ as

〈〈R±
1,h,‖x, xt0〉〉‖ = ±

[
〈〈x1, x

t
0〉〉‖ + zh(x0, xt0)

]
− it0,h,‖(x0, xt0), ∀xt0 ∈ M0,h,‖. (4.100)

If the transmission operators are diagonal we can define local Robin operators at a single interface:
for each (j, k) ∈ J and any x ≡ (x0, x1) ∈ X(Γjk,h), we define Rjk,±

1,h,‖ as

〈Rjk,±
1,h,‖x, xt0〉Γjk,h

= ±
[
〈x1, xt0〉Γjk,h

+ zjkh (x0, xt0)
]
−itjk0,h,‖(x0, xt0), ∀xt0 ∈ X0(Γjk,h). (4.101)
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4.2.2.2 Scattering operators

We recall that the scattering operators were introduced in Definition 3.29. We then showed that,
under Assumption 3.40, which we suppose to hold in this chapter, they are diagonal operators
in the form of (3.216), with diagonal components given in Definition 3.44. We are now going to
introduce a discrete version of those scattering operators using only variational definitions, easily
amenable to discretization.

Definition 4.22 (Discrete scattering operator). We define the global scattering operators,

S1,h,‖ : M1,h,‖ → M1,h,‖, (4.102)

where for any x1 ∈ M1,h,‖ we define

〈〈S1,h,‖x1, x
t
0〉〉‖ = −〈〈x1, x

t
0〉〉‖ − 2it0,h,‖(γ0,h,‖u1, xt0), (4.103)

with u ∈ Vh(PΩ,h) such that: for all v ∈ Vh(PΩ,h)

a(u, v) + [zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v)] = 〈〈x1,γ0,h,‖v〉〉‖. (4.104)

If the transmission operators are diagonal, the scattering operators are themselves diagonal and
we have,

S1,h,‖ = diagj∈{1,...,J}

(
Sj1,h,‖

)
,

Sj1,h,‖ : (X1,h(Γjk,h))k∈Kj
→ (X1,h(Γjk,h))k∈Kj

,
(4.105)

where for any x1 ≡ (xjk1 )k∈Kj
∈ (X1,h(Γjk,h))k∈Kj

we define, for any k ∈ Kj,

〈(Sj1,h,‖x1)|Γjk,h
, xt0〉Γjk,h

= −〈xjk1 , xt0〉Γjk,h
− 2itjk0,h,‖(γ0,Γjk,h

uj,h, xt0), ∀xt0 ∈ X0,h(Γjk,h),
(4.106)

with uj,h ∈ Vh(Ωj,h), j ∈ {1, . . . , J}, such that: for all vj,h ∈ Vh(Ωj,h),

aj(uj,h, vj,h) +
∑
k∈Kj

[
zjkh (γ0,Γjk,h

uj,h, γ0,Γjk,h
vj,h) −itjk0,h,‖(γ0,Γjk,h

uj,h, γ0,Γjk,h
vj,h)

]
=
∑
k∈Kj

〈xjk1 , γ0,Γjk,h
vj,h〉Γjk,h

.
(4.107)

The following proposition shows that the above scattering operators are well-defined. Of
course, the result relies on the properties of the transmission operator from Definition 4.18. This
proposition is based on a similar result in a more general setting (with junctions) available for
the scalar equation, see [33, Lem. 4.4].

Proposition 4.23 (Well-posedness of local problems). Let

αs,h,‖ := inf
u∈Vh(PΩ,h)

u 6=0

sup
v∈Vh(PΩ,h)

v 6=0

|a(u, v) + zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v)|
‖u‖UΓ(D;PΩ)‖v‖UΓ(D;PΩ)

. (4.108)

We have, for any h,
αs,h,‖ > 0. (4.109)

As a result, for any linear form l on Vh(PΩ,h), the following problem is well-posed:{
Find u ∈ Vh(PΩ,h) such that :
a(u, v) + [zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v)] = l(v), ∀v ∈ Vh(PΩ,h).

(4.110)
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Proof. Suppose by contradiction that the above inf − sup constant vanishes for some u ∈ Vh(PΩ,h),
then

a(u, v) + zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v) = 0, ∀v ∈ Vh(PΩ,h). (4.111)

Testing by u (see (3.98) for the definition of the sesquilinear form a), we get

κ0
−1(a Du,Du)L2(Ω)m1 − κ0 (nu, u)L2(Ω)m0 − i(γ0,Γ u, γ0,Γ u)L2(Γ)m0

+ zh(γ0,h,‖u, γ0,h,‖u)− it0,h,‖(γ0,h,‖u, γ0,h,‖u) = 0.
(4.112)

Since the imaginary parts of the coefficients a and n are respectively supposed negative and
positive (see (3.78)) and from the property of z0 in (4.85), retaining only the imaginary part
above implies necessarily that

t0,h,‖(γ0,h,‖u, γ0,h,‖u) = 0, (4.113)

so that by the definiteness of t0,h,‖, we have γ0,h,‖u = 0. From Corollary 4.14, we deduce that
u ∈ Vh(Ω) and, testing by v ∈ Vh(Ω) in (4.111) we get

a(u, v) + zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v) = a(u, v) = 0, ∀v ∈ Vh(Ω). (4.114)

The well-posedness of the discrete model problem (4.19) stated in Assumption 4.4 gives that
u = 0 which is a contradiction. �

Again, we point out that such a result is valid for our target applications for h small enough,
but this is not an issue for the abstract analysis.

An important question we shall ask ourselves is the stability of the above constant αs,h,‖
with respect to the mesh parameter h. We can answer this question in the acoustic setting.
The following statement is based on a similar result in a more general setting (with junctions)
available for the scalar equation, see [33, Lem. 4.4].

Example 1: Helmholtz. In the acoustic setting, if the partition is independent of h (see
Assumption 4.5), as well as the transmission operator, the estimate αs,h,‖ defined in (4.108) is
h-uniformly bounded

α?s,‖ := lim inf
h→0

αs,h,‖ > 0. (4.115)

Proof. The proof proceeds by contradiction. Suppose there exists a sequence (hk)k of mesh
parameters converging to 0, associated to a sequence of uhk

∈ Vh(PΩ,h) such that ‖uhk
‖U(D;PΩ) =

1 and

sup
v∈Vh(PΩ,h)

|a(uhk
, v) + zh(γ0,h,‖uhk

, γ0,h,‖v)− it0,h,‖(γ0,h,‖uhk
, γ0,h,‖v)| → 0, as hk → 0.

(4.116)
Since the sequence (uhk

)k is bounded in U(D;PΩ), we can assume that the sequence (uhk
)k

converges towards some u∞ weakly in U(D;PΩ), extracting a sub-sequence if necessary. Since
in this setting U(D;PΩ) is a cartesian product of H1 spaces on each sub-domain, the sequence
(uhk

)k converges strongly towards u∞ in the cartesian product of L2 spaces in each sub-domain,
hence in L2(Ω). The weak convergence of the sequence (uhk

)k implies that, for any v ∈ Vh(PΩ,h),

|a(uhk
, v) + zh(γ0,h,‖uhk

, γ0,h,‖v)− it0,h,‖(γ0,h,‖uhk
, γ0,h,‖v)|

→ |a(u∞, v) + zh(γ0,h,‖u∞, γ0,h,‖v)− it0,h,‖(γ0,h,‖u∞, γ0,h,‖v)| = 0, as hk → 0.
(4.117)
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Arguing as in the proof of Proposition 4.23, if follows that u∞ = 0, and the sequence (uhk
)k

converges strongly towards 0 in L2(Ω). We write, by definition of the norm and of the sesquilinear
form a,

‖uhk
‖2

U(D;PΩ) ≤
(

inf
Ω
<(a)

)2 (
< a(uhk

, uhk
) + κ0 (nuhk

, uhk
)L2(Ω)m0

)
+ κ0‖uhk

‖2
L2(Ω)m0 . (4.118)

From (4.116) we have that < a(uhk
, uhk

) → 0 and since we proved that ‖uhk
‖L2(Ω)m0 → 0, it

follows that ‖uhk
‖U(D;PΩ) → 0, which a contradiction. �

A direct consequence of the well-posedness of the above problem (4.104) is the well-posedness
of the following local sub-problems in each sub-domain, for diagonal operators.

Corollary 4.24. If the transmission operator t0,h,‖ and operator z0 are diagonal, for all j ∈
{1, . . . , J} and any linear form lj on Vh(Ωj,h), the problem

Find uj ∈ Vh(Ωj,h) such that :
aj(uj , vj) +

∑
k∈Kj

[
zjkh (γ0,Γjk,h

uj , γ0,Γjk,h
vj)

−itjk0,h,‖(γ0,Γjk,h
uj , γ0,Γjk,h

vj)
]

= lj(vj) ∀vj ∈ Vh(Ωj,h),
(4.119)

is well posed.

We are then able to provide an equivalent discrete characterization to the one from Proposi-
tion 3.30, which is similar to [33, Lem. 7.2].

Proposition 4.25 (Characterization of the discrete Cauchy trace space). We have the
following characterization of the discrete Cauchy-trace space:

Ch,‖ = Ker
(

R−
1,h,‖ − S1,h,‖R+

1,h,‖

)
. (4.120)

Proof. From Definition 4.21 and Definition 4.22, x ≡ (x0, x1) ∈ Mh,‖ satisfy

R−
1,h,‖x = S1,h,‖R+

1,h,‖x, (4.121)

if, and only if, there exists u ∈ Vh(PΩ,h) such that
a(u, v) + [zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v)]

= 〈〈x1,γ0,h,‖v〉〉‖ + zh(x0, γ0,h,‖v)− it0,h,‖(x0, γ0,h,‖v), ∀v ∈ Vh(PΩ,h),
−
[
〈〈x1, xt0〉〉‖ + zh(x0, xt0)

]
− it0,h,‖(x0, xt0)

= −
[
〈〈x1, xt0〉〉‖ + zh(x0, xt0)

]
+ it0,h,‖(x0, xt0)− 2it0,h,‖(γ0,h,‖u, xt0), ∀xt0 ∈ M0,h,‖.

⇔


a(u, v) + zh(γ0,h,‖u− x0, γ0,h,‖v)− it0,h,‖(γ0,h,‖u− x0, γ0,h,‖v)

= 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
t0,h,‖(x0, xt0) = t0,h,‖(γ0,h,‖u, xt0), ∀xt0 ∈ M0,h,‖,

⇔

{
a(u, v) = 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
γ0,h,‖u = x0,

(4.122)
which yields x ∈ Ch,‖ from Definition 4.10. Note that we used the injectivity property (see (4.83))
of t0,h,‖ to establish the last equivalence. �
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4.2.2.3 Exchange operator

We can extend without difficulty the definition of the exchange operator Π‖ to the discrete trace
spaces. For each σ ∈ {0, 1}, the exchange operator, denoted Π‖, is such that

∀xσ, yσ ∈ Mσ,h,‖,
(
yσ = Π‖xσ ⇔ xjkσ = ykjσ , ∀(j, k) ∈ J

)
, (4.123)

with the convention that xσ ≡ (xjkσ )(j,k)∈J and yσ ≡ (yjkσ )(j,k)∈J.
Therefore, one can convince himself that the properties of the exchange operator carry over

from the continuous setting to the discrete setting. We briefly recall below these properties for
convenience.

Again, it follows from its definition that the exchange operator remains an involution of the
discrete trace spaces (see Proposition 3.33) and defines two complementary projectors Id + Π‖

and Id −Π‖ (see Proposition 3.34).
Proposition 4.26. For each σ ∈ {0, 1}, the exchange operator Π‖ is an involution of Mσ,h,‖,

Π2
‖ = Id in Mσ,h,‖. (4.124)

Proposition 4.27. For each σ ∈ {0, 1}, the two operators 1/2 (Id ±Π‖) are two complementary
projectors in Mσ,h,‖,

1/4[Id ±Π‖]2 = 1/2 [Id ±Π‖] ,
[Id + Π‖] [Id −Π‖] = [Id −Π‖] [Id + Π‖] = 0.

(4.125)

It is then straightforward to establish the following result, counterpart of Proposition 4.28.
Proposition 4.28. We have

x ≡ (x0, x1) ∈ Sh,‖ ⇔

{
x0 ∈ S0,h,‖,

x1 ∈ S1,h,‖,
⇔

{
x0 ∈ Ker (Id −Π‖) ,
x1 ∈ Ker (Id + Π‖) .

(4.126)

Finally, we recall the self-adjointness property of Π‖ already stated in Proposition 3.54.
Proposition 4.29. Let σ ∈ {0, 1}, the exchange operator Π‖ is self-adjoint with respect to the
duality product 〈〈·, ·〉〉‖,

〈〈Π‖x1, y0〉〉‖ = 〈〈x1,Π‖y0〉〉‖, ∀(x1, y0) ∈ M0,h,‖ × M1,h,‖. (4.127)

Proof. For any x0 = (xjk0 )(j,k)∈J ∈ M0,h,‖ and x1 = (xjk1 )(j,k)∈J ∈ M1,h,‖, we have

〈〈Π‖x1, x0〉〉‖ =
∑

(j,k)∈J

〈xkj1 , xjk0 〉Γjk,h
= 〈〈x1,Π‖x0〉〉‖. (4.128)

�

Upon making the following assumption (akin to Assumption 3.36), which we assume to hold
in what follows, we can again characterize the discrete single-trace space.
Assumption 4.30. The bilinear form zh is supposed symmetric

zh(x0, y0) = zh(y0, x0), ∀x0, y0 ∈ M0,h,‖, (4.129)

and such that
zh(x0, Π‖y0) = −zh(Π‖x0, y0), ∀x0, y0 ∈ M0,h,‖. (4.130)

The transmission operator is such that

t0,h,‖(x0, Π‖y0) = t0,h,‖(Π‖x0, y0), ∀x0, y0 ∈ M0,h,‖. (4.131)
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Simple sufficient conditions on diagonal operators to satisfy the above assumption are pro-
vided in the following proposition (see Proposition 3.41 for its counterpart in the continuous
setting).

Proposition 4.31. Suppose that the transmission operators are diagonal in the sense of Defi-
nition 4.19. If each diagonal elements of zh and t0,h,‖ satisfy

zjkh = −zkjh , ∀(j, k) ∈ J, j < k,

tjk0,h,‖ = tkj0,h,‖, ∀(j, k) ∈ J, j < k,
(4.132)

and for all (j, k) ∈ J, zjkh is symmetric, then Assumption 4.30 is satisfied.

We are now able to characterize the discrete single-trace space Sh,‖ (Definition 4.11) as the
kernel of an operator involving the discrete generalized Robin operators R±

1,h,‖ and the exchange
operator Π‖. Albeit in a less general setting (without junctions), this result is similar to [33,
Lem. 4.3] which is derived for the scalar equation.

Proposition 4.32 (Characterization of the discrete single-trace space). We have the
following characterization of the single-trace space (4.45):

Sh,‖ = Ker
(

R±
1,h,‖ −Π‖R∓

1,h,‖

)
. (4.133)

Proof. First note that, for any x ∈ M‖, R+
1,‖x = Π‖R−

1,‖x is equivalent to R−
1,‖x = Π‖R+

1,‖x since
the exchange operator Π‖ is an involution according to Proposition 4.26.

(⇒) Let x ≡ (x0, x1) ∈ S‖. Using again the characterization of the single trace space given in
Proposition 4.28 together with the properties of Assumption 4.30 we obtain successively

{
[Id −Π‖] x0 = 0,
[Id + Π‖] x1 = 0,

⇒


〈〈(Id + Π‖) x1, xt0〉〉‖ = 0, ∀xt0 ∈ M0,h,‖,

zh((Id −Π‖) x0, xt0) = 0, ∀xt0 ∈ M0,h,‖,

t0,h,‖((Id −Π‖) x0, xt0) = 0, ∀xt0 ∈ M0,h,‖,

(4.134)

so that taking an adequate linear combination we get

〈〈(Id + Π‖) x1, x
t
0〉〉‖ + zh((Id −Π‖) x0, xt0)− it0,h,‖((Id −Π‖) x0, xt0) = 0, ∀xt0 ∈ M0,h,‖.

(4.135)
This is rewritten as

〈〈x1, x
t
0〉〉‖ + zh(x0, xt0)− it0,h,‖(x0, xt0)

= −〈〈Π‖x1, x
t
0〉〉‖ + zh(Π‖x0, xt0)− it0,h,‖(Π‖x0, xt0), ∀xt0 ∈ M0,h,‖.

(4.136)

Hence, using the properties from Assumption 4.30 it follows that

〈〈x1, x
t
0〉〉‖ + zh(x0, xt0)− it0,h,‖(x0, xt0)

= −〈〈x1,Π‖xt0〉〉‖ − zh(x0, Π‖xt0)− it0,h,‖(x0, Π‖xt0), ∀xt0 ∈ M0,h,‖.
(4.137)

Using Definition 4.21 of the generalized Robin operators R±
1,h,‖ we obtain

〈〈x1, x
t
0〉〉‖ + zh(x0, xt0)− it0,h,‖(x0, xt0)

= 〈〈R−
1,h,‖x1,Π‖xt0〉〉‖ = 〈〈Π‖R−

1,h,‖x1, x
t
0〉〉‖, ∀xt0 ∈ M0,h,‖.

(4.138)
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Finally, using the self-adjointness of Π‖ (Proposition 3.54), we get

〈〈x1, x
t
0〉〉‖ + zh(x0, xt0)− it0,h,‖(x0, xt0) = 〈〈Π‖R−

1,h,‖x1, x
t
0〉〉‖, ∀xt0 ∈ M0,h,‖, (4.139)

which is rewritten as R+
1,h,‖x = Π‖R−

1,h,‖x.
(⇐) Reciprocally, let x ≡ (x0, x1) ∈ Mh,‖ such that R+

1,h,‖x = Π‖R−
1,h,‖x. It is easy to see that

we can repeat the steps above, in reverse order, up to equation (4.135). By testing respectively
by (Id −Π‖)xt0 and (Id + Π‖)xt0 in (4.135) we get, for any xt0 ∈ M0,h,‖,

〈〈(Id + Π‖) x1, (Id −Π‖)xt0〉〉‖ + zh((Id −Π‖) x0, (Id −Π‖)xt0)
−it0,h,‖((Id −Π‖) x0, (Id −Π‖)xt0) = 0,

〈〈(Id + Π‖) x1, (Id + Π‖)xt0〉〉‖ + zh((Id −Π‖) x0, (Id + Π‖)xt0)
−it0,h,‖((Id −Π‖) x0, (Id + Π‖)xt0) = 0.

(4.140)

Using the properties of Assumption 4.30 and the self-adjointness of Π‖ from Proposition 4.29
this is rewritten as{
〈〈(Id −Π‖) (Id + Π‖) x1, xt0〉〉‖ + zh((Id + Π‖) (Id −Π‖) x0, xt0)− it0,h,‖((Id −Π‖)2x0, xt0) = 0,
〈〈(Id + Π‖)2x1, xt0〉〉‖ + zh((Id −Π‖)2x0, xt0)− it0,h,‖((Id + Π‖)(Id −Π‖)x0, xt0) = 0.

(4.141)
Using the properties of the projectors from Proposition 4.27, we obtain{

t0,h,‖((Id −Π‖)x0, xt0) = 0,
〈〈(Id + Π‖)x1, xt0〉〉‖ + zh((Id −Π‖)x0, xt0) = 0,

∀xt0 ∈ M0,h,‖, (4.142)

hence, using the injectivity property (see (4.83)) of the transmission operator t0,h,‖, yields (4.126).
�

4.2.2.4 Equivalent interface problem

With the help of the discrete scattering operators S1,h,‖ and exchange operator Π‖ we are now
in a position to recast the discrete approximation of the original problem (4.19) as a problem
posed on the skeleton Σ̃h.

Proposition 4.33 (Equivalent discrete interface problem). Let Fh ∈ Vh(PΩ,h) be the
(unique) source lifting such that

a(Fh, v) + zh(γ0,h,‖Fh, γ0,h,‖v)− it0,h,‖(γ0,h,‖Fh, γ0,h,‖v) = l(v), ∀v ∈ Vh(PΩ,h), (4.143)

and define f ≡ (f0, f1) ∈ Mh,‖ such that{
〈〈f1, xt0〉〉‖ = −zh(γ0,h,‖Fh, xt0) + it0,h,‖(γ0,h,‖Fh, xt0), ∀xt0 ∈ M0,h,‖,

f0 := γ0,h,‖Fh.
(4.144)

Consider the problem {
Find x1 ∈ M1,h,‖,

(Id −Π‖S1,h,‖)x1 = Π‖R−
1,h,‖f.

(4.145)
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If uh ∈ Vh(Ω) is solution of the (discrete) approximation (4.19) of the model problem (3.79)
then x1 = R+

1,h,‖y ∈ M1,h,‖ where y ≡ (y0, y1) ∈ Mh,‖ is defined as{
a(uh, vh)− l(vh) = 〈〈y1,γ0,h,‖vh〉〉‖, ∀vh ∈ Vh(PΩ,h),
γ0,h,‖uh = y0,

(4.146)

solves problem (4.145).
Reciprocally, if x1 ∈ M1,h,‖ is solution of the interface problem (4.145) and if v ∈ Vh(PΩ,h) is

the (unique) solution of

a(vh, vth) + zh(γ0,h,‖vh, γ0,h,‖vth)− it0,h,‖(γ0,h,‖vh, γ0,h,‖vth) = 〈〈x1,γ0,h,‖vth〉〉‖, ∀vth ∈ Vh(PΩ,h),
(4.147)

then uh ∈ Vh(PΩ,h) defined as uh := vh + Fh is solution of the (discrete) approximation (4.19)
of the model problem (3.79).

Proof. Let Fh and f ≡ (f0, f1) ∈ Mh,‖ satisfy (4.143) (which are uniquely defined by Proposi-
tion 4.23). Note that by construction, it holds that

+
(
〈〈f1, x

t
0〉〉‖ + zh(f0, xt0)

)
− it0,h,‖(f0, xt0) = 0, ∀xt0 ∈ M0,h,‖,

⇔ R+
1,h,‖f = 0,

(4.148)

and Fh ∈ Vh(PΩ,h) is such that{
a(Fh, vh)− l(vh) = 〈〈f1,γ0,h,‖vh〉〉‖, ∀vh ∈ Vh(PΩ,h),
γ0,h,‖Fh = f0.

(4.149)

(⇒) If uh ∈ Vh(Ω) is solution of the (discrete) approximation (4.19) of the model prob-
lem (3.79), then by Proposition 4.16, we know that y ≡ (y0, y1) defined in (4.146) above belongs
to Sh,‖. Besides, from both (4.146) and (4.149), we get{

a(uh − Fh, vh) = 〈〈y1 − f1,γ0,h,‖vh〉〉‖, ∀vh ∈ Vh(PΩ,h),
γ0,h,‖(uh − Fh) = y0 − f0,

(4.150)

so that by Definition 4.10 of Ch,‖, we have y − f ∈ Ch,‖. From the characterizations of both the
Cauchy trace space stated in Proposition 4.25 and the single trace space stated in Proposition 4.32
we have {

y − f ∈ Ch,‖,

y ∈ Sh,‖,
⇔

{
R−

1,h,‖(y − f) = S1,h,‖R+
1,h,‖(y − f),

R+
1,h,‖y = Π‖R−

1,h,‖y.
(4.151)

Hence using R+
1,h,‖f = 0 we deduce{

R−
1,h,‖y = S1,h,‖R+

1,h,‖y + R−
1,h,‖f,

R+
1,h,‖y = Π‖R−

1,h,‖y.
(4.152)

Eliminating R−
1,h,‖y it is then immediate that

R+
1,h,‖y = Π‖S1,h,‖R+

1,h,‖y + Π‖R−
1,h,‖f. (4.153)
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hence the quantity x1 := R+
1,h,‖y satisfies the interface problem (4.145).

(⇐) Reciprocally, let x1 ∈ M1,h,‖ be solution of the interface problem (4.145) and let vh ∈
Vh(PΩ,h) be the unique solution (by Proposition 4.23) to (4.147). Then, define z ≡ (z0, z1) ∈ Mh,‖
such that {

a(vh, vth) = 〈〈z1,γ0,h,‖vth〉〉‖, ∀vth ∈ Vh(PΩ,h),
γ0,h,‖vh = z0,

(4.154)

so that using (4.149), we get{
a(vh + Fh, vth)− l(vh) = 〈〈z1 + f1,γ0,h,‖vh〉〉‖, ∀vth ∈ Vh(PΩ,h),
γ0,h,‖(vh + Fh) = z0 + f0.

(4.155)

If we set
uh := vh + Fh,

y ≡ (y0, y1) := z + f ≡ (z0 + f0, z1 + f1),
(4.156)

we obtain {
a(uh, vt)− l(vt) = 〈〈y1,γ0,h,‖vt〉〉‖, ∀vt ∈ Vh(PΩ,h),
γ0,h,‖uh = y0.

(4.157)

Using Proposition 4.16 all that remains to prove is that y ∈ Sh,‖. We have, combining (4.147)
and (4.154)

〈〈x1, x
t
0〉〉‖ = +

[
〈〈z1, x

t
0〉〉‖ + zh(z0, xt0)

]
− it0,h,‖(z0, xt0), ∀xt0 ∈ M0,h,‖, (4.158)

so that x1 = R+
1,h,‖z by Definition 4.21 of the generalized Robin operator. We can rewrite (3.200)

as
(Id −Π‖S1,h,‖) x1 = Π‖R−

1,h,‖f,

⇔ (Id −Π‖S1,h,‖) R+
1,h,‖z = Π‖R−

1,h,‖f.
(4.159)

Using Proposition 4.25 we get

R+
1,h,‖z−Π‖R−

1,h,‖z = Π‖R−
1,h,‖f. (4.160)

Hence using R+
1,h,‖f = 0 together with the definition of y we obtain that

R+
1,h,‖y = Π‖R−

1,h,‖y. (4.161)

Proposition 4.32 then gives y ∈ Sh,‖. �

4.3 Iterative discrete domain decomposition methods
4.3.1 Iterative algorithm
Let Fh be the solution of (4.143) with f ≡ (f0, f1) ∈ Mh,‖ defined in (4.144) and set

b1 := Π‖R−
1,h,‖f. (4.162)

In this section, we want to devise (and study the convergence of) an algorithm to solve{
Find x1 ∈ M1,h,‖ such that,
(Id −Π‖S1,h,‖) x1 = b1.

(4.163)
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Having found such a x1 solution of (4.163), a global volume solution uh can be computed by
solving 

Find vh ∈ Vh(PΩ,h) such that,
a(vh, vth) + zh(γ0,h,‖vh, γ0,h,‖vth)

−it0,h,‖(γ0,h,‖vh, γ0,h,‖vth) = 〈〈x1,γ0,h,‖vth〉〉‖, ∀vth ∈ Vh(PΩ,h).
(4.164)

Then the global solution of the discrete model problem (4.19) is uh := vh + Fh.

Relaxed Jacobi algorithm We consider again here the (relaxed) Jacobi algorithm to solve the
interface problem (4.163) on the skeleton. Let x0

1 ∈ M1,h,‖ and a relaxation parameter 0 < r ≤ 1
be given, a sequence (xn1 )n∈N in M1,h,‖ is constructed using the (relaxed) Jacobi algorithm as
follows

xn+1
1 = [(1− r)Id + rΠ‖S1,h,‖] xn1 + r b1, n ∈ N. (4.165)

Constructing this sequence of traces also constructs a sequence of broken solutions (vnh)n∈N in
Vh(PΩ,h) when the action of S1,h,‖ is computed. For each n ∈ N the broken solution vnh satisfy

a(vnh, vth) + zh(γ0,h,‖vnh, γ0,h,‖vth)− it0,h,‖(γ0,h,‖vnh, γ0,h,‖vth) = 〈〈xn1 ,γ0,h,‖vth〉〉‖, ∀vth ∈ Vh(PΩ,h).
(4.166)

The true solution uh of the discrete model problem (4.19) is then (hopefully, if convergence
occurs) the limit as n→∞ of the broken solutions (unh := vnh + Fh)n∈N in Vh(PΩ,h).

4.3.2 Discrete convergence analysis
We now turn to the convergence analysis of the previously described iterative method. In this
discrete setting there are two independent convergence processes. We study here the convergence
with respect to increasing n, the iteration number, of the iterative discrete solution unh ∈ Vh(PΩ,h)
towards the discrete solution uh ∈ Vh(Ω) of (4.19). The convergence with respect to decreasing h,
the discretization parameter, of the discrete solution uh ∈ Vh(Ω) of (4.19) towards the continuous
solution u ∈ UΓ(D; Ω) of (3.79), although a legitimate question, is not addressed here. However,
we shall study the behaviour of the convergence rate as h goes to 0.

The discrete convergence analysis of the relaxed Jacobi algorithm follows closely the one from
the continuous setting in Section 3.3.2. It is clear that the new interface problem (4.163) takes
the form of the abstract problem (3.230). To prove the geometric convergence of the above fixed
point algorithm, we simply need to check that the assumptions of Proposition 3.57 are satisfied
in our particular case where V = M1,h,‖ and A = Π1,×S1,h,‖.

We first state the contraction property of the discrete scattering operator, analogue of Propo-
sition 3.53. A similar result in a slightly different setting (with junctions) but for the scalar
equation only can be found in [33, Lem. 5.1].

Proposition 4.34 (Contraction property of the scattering operator). The scattering
operator S1,h,‖ is a contraction of M1,h,‖, for our particular choices of norm (4.95),

‖S1,h,‖x1‖t1,h,‖
≤ ‖x1‖t1,h,‖

, ∀x1 ∈ M1,h,‖. (4.167)

Proof. Let x1 ∈ M1,h,‖, we have by definition of T0,‖ (see (4.92)) and S1,h,‖ (see (4.22))

S1,h,‖x1 = −x1 − 2iT0,h,‖γ0,h,‖u, (4.168)
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where u ∈ Vh(PΩ,h) is such that

a(u, vh) + zh(γ0,h,‖u, γ0,h,‖vh)− it0,h,‖(γ0,h,‖u, γ0,h,‖vh) = 〈〈x1,γ0,h,‖vh〉〉‖, ∀vh ∈ Vh(PΩ,h).
(4.169)

We have, from the definitions of the norm (4.95) and of T1,‖, see (4.94),

‖S1,h,‖x1‖2
t1,h,‖

= 〈〈−x1 − 2iT0,h,‖γ0,h,‖u, T1,‖
(
−x1 − 2iT0,h,‖γ0,h,‖u

)
〉〉

‖

= 〈〈x1,T1,‖x1〉〉‖ + 4t0,h,‖(γ0,h,‖u, γ0,h,‖u)
+ 2i〈〈T0,‖γ0,h,‖u,T1,‖x1〉〉‖ − 2i〈〈x1,γ0,h,‖u〉〉‖,

= 〈〈x1,T1,‖x1〉〉‖ + 4‖γ0,h,‖u‖2
t0,h,‖

+ 2i〈〈x1,γ0,h,‖u〉〉‖ − 2i〈〈x1,γ0,h,‖u〉〉‖,

= ‖x1‖2
t1,h,‖

+ 4‖γ0,h,‖u‖2
t0,h,‖

+ 4=〈〈x1,γ0,h,‖u〉〉‖.

(4.170)

Besides, by definition of u (testing by u in (4.169)), and the bilinear form a (see (3.98)) we have

=〈〈x1,γ0,h,‖u〉〉‖ = κ0
−1(=(a) Du,Du)L2(Ω)m1 − κ0 (=(n)u, u)L2(Ω)m0

− ‖γ0,Γ u‖2
L2(Γ)m0 − ‖γ0,h,‖u‖2

t0,h,‖
,

(4.171)

which yields since the imaginary parts of the coefficients a and n are respectively supposed
negative and positive (see (3.78)),

‖S1,h,‖x1‖2
t1,h,‖

− ‖x1‖2
t1,h,‖

= κ0
−1(=(a) Du,Du)L2(Ω)m1

− κ0 (=(n)u, u)L2(Ω)m0 − ‖γ0,Γ u‖2
L2(Γ)m0 ≤ 0.

(4.172)

�

Besides, we readily check that the exchange operator Π‖ is an isometry of M1,h,‖, see Propo-
sition 3.54 for the corresponding result in the continuous setting. A similar result valid in the
acoustic setting only (but with junctions) can be found in [33, Lem. 4.3].

Proposition 4.35. The exchange operator Π‖ is an isometry of M1,h,‖, for our particular choice
of norm (4.95),

‖Π‖x1‖t1,h,‖
= ‖x1‖t1,h,‖

, ∀x1 ∈ M1,h,‖. (4.173)

Proof. Using Assumption 4.30 we have

T0,h,‖Π‖ = Π‖T0,h,‖, (4.174)

so that, since T1,h,‖ = T−1
0,h,‖,

T1,h,‖Π‖ = Π‖T1,h,‖. (4.175)
Using the self-adjointness of Π‖ from Proposition 4.35 and the involution property of Π‖ from
Proposition 4.26, we obtain, for all x1 ∈ M1,h,‖,

‖Π‖x1‖2
t1,h,‖

= 〈〈Π‖x1,T1,h,‖Π‖x1〉〉‖ = 〈〈Π‖x1,Π‖T1,h,‖x1〉〉‖ = 〈〈x1,T1,h,‖x1〉〉‖ = ‖x1‖2
t1,h,‖

.

(4.176)
�

Combining both Proposition 4.34 and Proposition 4.35 we get the contraction property we
were looking for. Again, a similar result valid in the acoustic setting only (but with junctions)
can be found in [33, Lem. 5.1].
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Corollary 4.36 (Contraction property). We have

‖Π‖S1,h,‖x1‖t1,h,‖
≤ ‖x1‖t1,h,‖

, ∀x1 ∈ M1,h,‖. (4.177)

The second requirement of Proposition 3.57 to obtain geometric convergence is verified next.
Similar results, valid in the acoustic setting only, can be found in [30, Th. 3] and in [33, Prop.
5.2], for a more general geometric configuration.

Proposition 4.37. The operator Id −Π‖S1,h,‖ is an isomorphism on M1,h,‖.

Proof. Since M1,h,‖ is finite dimensional, we only need to prove injectivity. Let x1 ∈ M1,h,‖ be
such that

(Id −Π‖S1,h,‖) x1 = 0. (4.178)

Define (which exists from Proposition 4.23){
u ∈ Vh(PΩ,h) such that
a(u, v) + zh(γ0,h,‖u, γ0,h,‖v)− it0,h,‖(γ0,h,‖u, γ0,h,‖v) = 〈〈x1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h).

(4.179)
Then let y ≡ (y0, y1) ∈ Mh,‖ such that{

〈〈y1, xt0〉〉‖ = −zh(γ0,h,‖u, xt0) + it0,h,‖(γ0,h,‖u, xt0) + 〈〈x1, xt0〉〉‖, ∀xt0 ∈ M0,h,‖,

y0 = γ0,h,‖u.
(4.180)

By construction {
a(u, v) = 〈〈y1,γ0,h,‖v〉〉‖, ∀v ∈ Vh(PΩ,h),
γ0,h,‖u = y0,

(4.181)

so that y ∈ Ch,‖ and Proposition 4.25 yields(
R−

1,h,‖ − S1,h,‖R+
1,h,‖

)
y = 0. (4.182)

Besides,

〈〈y1, x
t
0〉〉‖ + zh(y0, xt0)− it0,h,‖(y0, xt0) = 〈〈x1, x

t
0〉〉‖, ∀xt0 ∈ M0,h,‖, (4.183)

so that by Definition 4.21 of the generalized Robin operators

R+
1,h,‖y = x1. (4.184)

Now (4.178) is rewritten as (
R+

1,h,‖ −Π‖R−
1,h,‖

)
y = 0, (4.185)

and Proposition 4.32 yields y ∈ Sh,‖. Finally y ∈ Ch,‖ ∩Sh,‖, hence from Proposition 4.17, y = 0
and x1 = R+

1,h,‖y = 0. �

We are now ready to state our discrete convergence result, analogue of Theorem 3.63. Similar
results, valid in the acoustic setting only, can be found in [30, Th. 2] and in [33, Th. 6.1], for a
more general geometric configuration.
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Theorem 4.38 (Geometric convergence of the discrete relaxed Jacobi algorithm). The
sequence of broken solutions (unh)n∈N computed according to (4.166), converges geometrically to
uh the solution of the discrete approximation of the model problem (4.19). Specifically, there exist
C > 0 and 0 < τ < 1, which might depend on h, such that

‖unh − uh‖UΓ(D;PΩ,h) ≤ C τ
n, ∀n ∈ N. (4.186)

Proof. Arguing as in the proof of Theorem 3.56, this is direct application of the abstract re-
sult in Proposition 3.57. The assumptions of the latter result are systematically checked in
Proposition 4.36 and Proposition 4.37. �

Of course this theorem is less important than its counterpart in the continuous setting. In-
deed, if one uses an iterative algorithm applied to a finite dimensional system of equations, one
will always get geometric convergence (or no convergence at all). This is why the forthcom-
ing discrete stability analysis, which addresses the question of the behaviour of the geometric
convergence rate as h goes to 0, is particularly relevant.

4.3.3 Discrete stability
We have seen that in the discrete setting, the relaxed Jacobi algorithm is (geometrically) conver-
gent provided that the transmission operator defines a scalar product on the multi-trace space.
The important question of discrete stability remains, namely can we get h-uniform (geometric)
convergence.

Explicit bounds To provide answers to this question we need explicit bounds with respect to
the discretization parameter h on the convergence rate.

A careful inspection of the proof of Theorem 3.63 (or of the abstract result in Proposition 3.57)
will reveal that the main ingredient we need is an estimate on the continuity constant of the
inverse of the operator Id−Π‖S1,h,‖. From Proposition 4.37 we already know that the following
quantity is strictly positive,

ζh,‖ := inf
x1∈M1,h,‖

x1 6=0

‖(Id −Π‖S1,h,‖)x1‖M1,h,‖

‖x1‖M1,h,‖

> 0. (4.187)

The estimate is provided by the following proposition, similar to [33, Prop. 7.1 and 7.3].

Proposition 4.39 (Explicit discrete estimate). We have

ζh,‖ ≥ 2
βt0,h,‖

|||t0,h,‖|||
(1 + |||zh|||+ |||t0,h,‖|||)−1

(
1 + (1 + |||zh|||) β−1/2

t0,h,‖

)−1

(
1 + |||a|||2 |||Eh,‖|||2

)−1/2[(
1 + α−1

a,h |||a|||
)
|||Eh,‖|||+ α−1

a,h

]−1
> 0.

(4.188)

Proof. Let b1 ∈ M1,h,‖. We need to provide an explicit construction of a1 ∈ M1,h,‖ such that

(Id −Π‖S1,h,‖) a1 = b1, (4.189)

in order to estimate its norm. The construction below follows closely the steps taken in the proof
of the surjectivity of the operator Id −Π‖S1,‖ that was conducted in the continuous setting and
summed up in Remark 3.62.
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1. First we look for a solution to{
Find y ∈ Mh,‖ such that :(

R+
1,h,‖ −Π‖R−

1,h,‖

)
y = b1.

(4.190)

Inspired by (3.285) from the proof of Lemma 3.59, we construct first x0 ∈ M0,h,‖ such that

t0,h,‖(x0, xt0) = i
4 〈〈(Id −Π‖)b1, x

t
0〉〉‖, ∀xt0 ∈ M0,h,‖, (4.191)

and we have, using the fact that 1/2 (Id −Π‖) is a projector,

‖x0‖M0,h,‖
≤ 1

2β
−1/2
t0,h,‖

‖b1‖M1,h,‖
. (4.192)

Then we construct x1 ∈ M1,h,‖ such that

〈〈x1, x
t
0〉〉‖ = 1

4 〈〈(Id + Π‖)b1, x
t
0〉〉‖ − zh(x0, xt0), ∀xt0 ∈ M0,h,‖, (4.193)

and we have, using the fact that 1/2 (Id + Π‖) is also a projector,

‖x1‖M1,h,‖
≤ 1

2‖b1‖M1,h,‖
+ |||zh||| ‖x0‖M0,h,‖

≤ 1
2

(
1 + |||zh||| β−1/2

t0,h,‖

)
‖b1‖M1,h,‖

. (4.194)

Now, set x := (x0, x1) ∈ Mh,‖, so that

‖x‖M‖
≤ 1

2

[
β−1

t0,h,‖
+
(

1 + |||zh||| β−1/2
t0,h,‖

)2
]1/2
‖b1‖M1,h,‖

,

≤ 1
2

(
1 + (1 + |||zh|||) β−1/2

t0,h,‖

)
‖b1‖M1,h,‖

.

(4.195)

Now let us check that it is a solution to (4.190): by definition, we have, for any xt0 ∈ M0,h,‖

〈〈R+
1,h,‖x, xt0〉〉‖ = 〈〈x1, x

t
0〉〉‖ + zh(x0, xt0)− it0,h,‖(x0, xt0) = 〈〈12b1, x

t
0〉〉

‖
,

〈〈R−
1,h,‖x, xt0〉〉‖ = −〈〈x1, x

t
0〉〉‖ − zh(x0, xt0)− it0,h,‖(x0, xt0) = −〈〈12Π‖b1, x

t
0〉〉

‖
,

(4.196)

from which we deduce, using the involution property of the exchange operator Π‖ (Propo-
sition 4.26), (

R+
1,h,‖ −Π‖R−

1,h,‖

)
x = b1. (4.197)

2. From the previous solution x ∈ Mh,‖, Proposition 4.17 yields the existence of y ∈ Ch,‖ and
z ∈ Sh,‖ such that

x = y + z, (4.198)
and we have

‖y‖M‖
≤ αPCh,‖

‖x‖M‖
≤ 1

2 αPCh,‖

(
1 + (1 + |||zh|||) β−1/2

t0,h,‖

)
‖b1‖M1,h,‖

. (4.199)

Using the characterization of the single-trace space Sh,‖ provided by Proposition 4.32, we
have (

R+
1,h,‖ −Π‖R−

1,h,‖

)
z = 0, (4.200)

so that the projection y ∈ Ch,‖ of x satisfies the same equation:(
R+

1,h,‖ −Π‖R−
1,h,‖

)
y = b1. (4.201)
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3. Set
a1 = R+

1,h,‖y, (4.202)

we have

‖a1‖M1,h,‖
≤
(
‖y1‖M1,h,‖

+ (|||zh|||+ |||t0,h,‖|||) ‖y0‖M0,h,‖

)
,

≤ (1 + |||zh|||+ |||t0,h,‖|||) ‖y‖M‖
,

≤ 1
2αPCh,‖

(1 + |||zh|||+ |||t0,h,‖|||)
(

1 + (1 + |||zh|||) β−1/2
t0,h,‖

)
‖b1‖M1,h,‖

.

(4.203)

Using the characterization of the Cauchy trace space Ch,‖ provided by Proposition 4.32,
we obtain from y ∈ Ch,‖,

R−
1,h,‖y = S1,h,‖R+

1,h,‖y. (4.204)

Therefore, we get

(Id −Π‖S1,h,‖) a1 = (Id −Π‖S1,h,‖) R+
1,h,‖y =

(
R+

1,h,‖ −Π‖R−
1,h,‖

)
y = b1, (4.205)

and a1 is the (unique, by Proposition 4.37) solution of the original problem.

We obtained above an estimate using the norm ‖ · ‖M1,h,‖
however we wish to establish a bound

in the norm induced by t0,h,‖. From (4.96) we have

‖a1‖t1,h,‖
≤ 1

2αPCh,‖

|||t0,h,‖|||
βt0,h,‖

(1 + |||zh|||+ |||t0,h,‖|||)
(

1 + (1 + |||zh|||) β−1/2
t0,h,‖

)
‖b1‖t1,h,‖

. (4.206)

The claimed estimate can then readily obtained from the expression of αPCh,‖
provided in Propo-

sition 4.17. �

h-uniform convergence The question of h-uniform stability is settled by the following propo-
sition, similar to [33, Cor. 8.2].

Proposition 4.40. If the partition is independent of h, see Assumption 4.5, and under the
following additional assumptions:

1. In addition to Assumption 4.4, we suppose that the stability constant αa,h of the original
problem is h-uniform, namely

α?a := lim inf
h→0

αa,h > 0, (4.207)

2. In addition to the requirements of Definition 4.18, we suppose that the transmission oper-
ators are h-uniformly stable, namely

|||t0,‖||| := lim sup
h→0

|||t0,h,‖||| < +∞, and β?t0,h,‖
:= lim inf

h→0
βt0 > 0, (4.208)

3. We suppose that the stability constant αs,h,‖ of the decomposed problem, defined in Propo-
sition 4.23, is h-uniform, namely

α?s,‖ := lim inf
h→0

αs,h,‖ > 0, (4.209)
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4. In addition to Assumption 4.2, we suppose that the discrete lifting is h-uniformly stable,
namely

|||E‖||| := lim sup
h→0

|||Eh,‖||| < +∞, (4.210)

the sequence of broken solutions (unh)n∈N computed according to (4.166), converges geometrically
and h-uniformly to uh the solution of the discrete model problem (4.19). Specifically, there exist
C > 0 and 0 < τ < 1, independent of h, such that

‖unh − uh‖UΓ(D;PΩ,h) ≤ Cτ
n, ∀n ∈ N. (4.211)

Proof. At each iteration n ∈ N, we can define an error on the trace εn1 ∈ M1,h,‖ such that

εn1 = xn1 − x1, (4.212)

where the sequence (xn1 )n∈N is computed through (4.165) and x1 is the solution of (4.163). It
follows that, the sequence (εn1 )n satisfies the recurrence relation

εn+1
1 = [(1− r)Id + rΠ‖S1,h,‖] εn1 , n ∈ N, (4.213)

and is such that, for all vt ∈ Vh(PΩ,h),

a(unh − uh, vt) + zh(γ0,h,‖(unh − uh), γ0,h,‖vt)− it0,h,‖(γ0,h,‖(unh − uh), γ0,h,‖vt) = 〈〈εn1 ,γ0,h,‖vt〉〉‖.
(4.214)

We use again the convexity identity (3.233) from the proof of Theorem 3.49 and we get

‖εn+1
1 ‖2

t1,h,‖
= (1−r)‖εn1‖

2
t1,h,‖

+r‖Π‖S1,h,‖ε
n
1‖

2
t1,h,‖

−r(1−r)‖ (Id −Π‖S1,h,‖) εn1‖
2
t1,h,‖

. (4.215)

Since Π‖S1,h,‖ is a contraction in M1,h,‖ from Corollary 4.36, we have

‖Π‖S1,h,‖ε
n
1‖t1,h,‖

≤ ‖εn1‖t1,h,‖
, (4.216)

and from Proposition 4.39 we have

‖εn1‖t1,h,‖
≤ ζh,‖ ‖ (Id −Π‖S1,h,‖) εn1‖t1,h,‖

, (4.217)

hence
‖εn1‖t1,h,‖

≤ τn‖ε01‖t1,h,‖
, (4.218)

where τ =
√

1− r(1− r)ζ2
h,‖ with ζh,‖ defined in (4.187). By the stability of the problem (4.214),

we have
‖unh − uh‖UΓ(D;PΩ,h) ≤

(
α?s,‖

)−1‖εn1‖t1,h,‖
≤
(
α?s,‖

)−1
τn‖ε01‖t1,h,‖

, (4.219)

From problem (4.214) with n = 0, we also get

‖ε01‖t1,h,‖
≤ (|||a|||+ |||zh|||+ |||t0,h,‖|||) ‖u0

h − uh‖UΓ(D;PΩ,h). (4.220)

Finally, we have the estimate

‖unh − uh‖UΓ(D;PΩ,h)

‖u0
h − uh‖UΓ(D;PΩ,h)

≤
(
α?s,‖

)−1 (|||a|||+ |||zh|||+ |||t0,h,‖|||)
(
1− r(1− r)ζ2

h,‖

)n/2
, (4.221)

and the bound is h-uniform from all the above assumptions. �
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Remark 4.41. It should be noted that the stable lifting Eh,‖ is a purely theoretical tool, whose
existence (and stability) are solely required for the purposes of analysis. In particular, the imple-
mentation of the method does not require in general the actual implementation of Eh,‖.

The assumptions of the previous proposition deserves some discussion. The independence of
the partition with respect to h is natural, although it is not observed in general in the numerical
experiments if a graph partitioner is used.

In this abstract setting, the assumption (1) on the h-uniformity of the stability constant αa,h
is also natural, and is in fact independent of the domain decomposition method. In the acoustic
setting, the assumption (1) follows from standard results, for a sufficiently refined mesh, we refer
the reader to [86, Chap. 2] for instance. In the electromagnetic setting, the assumption (1) is
also satisfied, although the analysis is slightly more involved, we refer the reader to [107, Chap.
7].

Assumption (2) on the stability of the transmission operators will not be satisfied by local
operators, which will not be either h-uniformly bounded or inf − sup stable. In contrast, suitable
non-local operators will satisfy such bounds.

The assumption (3) was proved for the acoustic setting in a remark following Proposition 4.23,
for transmission operators independent of h. However, the question of obtaining a proof of a
corresponding result for the electromagnetic setting is yet to be addressed.

Finally, we note that the assumption (4) is valid for standard discretization strategies, such
as standard Lagrange finite elements for the acoustic setting and Nedelec finite elements for the
electromagnetic setting. We refer the reader to the remarks that were made following Assump-
tion 4.3.

Remark 4.42. Arguing as in Section 3.3.3, we remark that h-uniform geometric convergence of
the relaxed Jacobi algorithm guarantees h-uniform geometric convergence of the Gmres counter-
part.

4.4 Matrix and vector representation

In this section we will describe in more concrete terms the implementation of the iterative scheme,
writing all equations in matrix form. This will help gain a real insight on the implementation
details underlying the solution strategy we propose. In this section, we assume that the finite
dimensional spaces are constructed using standard finite element spaces defined on simplicial
mesh triangulations.

Approximation spaces First of all, we set a few matrix notations. Let j ∈ {1, . . . , J}, we
assume to have a finite dimensional basis of Vh(Ωj,h) consisting of N(Ωj,h) := dim Vh(Ωj,h)
shape functions denoted ϕl,Ωj,h

, l ∈ {1, . . . , N(Ωj,h)}. In practice, each ϕl,Ωj,h
will refer to the

usual Pk Lagrange shape functions [65, Sec. 1.2.3] in the acoustic setting or to the volume
Nedelec edge functions [65, Sec. 1.2.8] in the electromagnetic setting.

According to our assumptions, this also defines a basis of X0,h(Γ̃j,h) consisting of N(Γ̃j,h) :=
dim X0,h(Γ̃j,h) shape functions denoted ϕl,Γ̃j,h

, l ∈ 1, . . . , N(Γ̃j,h). Note that we assume that
each shape function on Γ̃j,h is obtained by taking the natural trace (i.e. the Dirichlet or tangential
trace) of some shape function on Ωj,h so that for any m ∈ {1, . . . , N(Γ̃j,h)} there exists a
n ∈ {1, . . . , N(Ωj,h)} such that ϕm,Γ̃j,h

= ϕn,Ωj,h
|Γ̃j,h

.
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With the previous notations, the dimension of the multi-trace space M0,h,‖ will be

M(Σh) := dim M0,h,‖ =
J∑
j=1

N(Γ̃j,h). (4.222)

Let us denote by ψm, m ∈ {1, . . . ,M(Σh)} the basis functions of the multi-trace space M0,h,‖.
The single-trace space S0,h,× is a sub-space of M0,h,‖ whose dimension will be denoted N(Σh) :=
dim S0,h,×. Note that by construction, 2N(Σh) = M(Σh).

Let us denote by ψ̃n, n ∈ {1, . . . , N(Σh)} the basis functions of the single-trace space
S0,h,×. We introduce in addition the (surjective) mapping Φ which associates to each index
m ∈ {1, . . . ,M(Σh)} the (unique) index n := Φ(m) ∈ {1, . . . , N(Σh)} so that the two basis
functions ψm and ψ̃n are associated to the same geometrical element (a node in the acoustic
setting, an edge in the electromagnetic setting).

Matrices For each sub-domain Ωj,h, j ∈ {1, . . . , J}, we introduce the local matrices Aj of size
N(Ωj,h)×N(Ωj,h), such that

(Aj)m,n := aj(ϕn,Ωj,h
, ϕm,Ωj,h

), ∀m,n ∈ {1, . . . , N(Ωj,h)}, (4.223)

where the local sesquilinear form aj is defined in (3.97). The local contributions of the right-hand
side are represented by vectors fj of size N(Ωj,h) defined by

(fj)m := lj(ϕm,Ωj,h
), ∀m ∈ {1, . . . , N(Ωj,h)}, (4.224)

where the local linear form lj is defined in (3.100). We also introduce the local impedance
matrices Tj , of size N(Γ̃j,h)×N(Γ̃j,h), such that

(Tj)m,n :=
∑
k∈Kj

tjk0,h,‖(ϕn,Γ̃j,h
|Γ̃k,h

, ϕm,Γ̃j,h
|Γ̃k,h

), ∀m,n ∈ {1, . . . , N(Γ̃j,h)}, (4.225)

and similarly the local matrices Zj , of size N(Γ̃j,h)×N(Γ̃j,h), such that

(Zj)m,n :=
∑
k∈Kj

zjkh (ϕn,Γ̃j,h
|Γ̃k,h

, ϕm,Γ̃j,h
|Γ̃k,h

), ∀m,n ∈ {1, . . . , N(Γ̃j,h)}. (4.226)

It will be convenient also to define boolean local trace matrices Bj of size N(Γ̃j,h)×N(Ωj,h),
which restrict a vector representing a local solution to the vector representing its trace on the
boundary of the local sub-domain. The entries of these matrices are defined by

(Bj)m,n :=

1, if ϕm,Γ̃j,h
= ϕn,Ωj,h

|Γ̃j,h
,

0, otherwise,
∀m ∈ {1, . . . , N(Γ̃j,h)}, n ∈ {1, . . . , N(Ωj,h)}.

(4.227)
Besides, let us define for each j ∈ {1, . . . , J}, the boolean matrix Rj of size N(Γ̃j,h) ×M(Σh),
which restricts a vector representing a global multi-trace to the vector representing the local
trace contribution on the boundary of the local sub-domain Ωj,h. The entries of these matrices
are defined by

(Rj)m,n :=

1, if m = n−
∑
k<j N(Ωk,h),

0, otherwise,
∀m ∈ {1, . . . , N(Γ̃j,h)}, n ∈ {1, . . . ,M(Σh)}.

(4.228)
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Let us also define the matrix Q of size M(Σh) × N(Σh) which constructs a multi-trace vector
from a single-trace vector. The entries of this matrix are defined by

(Q)m,n :=

1, if n = Φ(m),

0, otherwise,
∀m ∈ {1, . . . ,M(Σh)}, n ∈ {1, . . . , N(Σh)}. (4.229)

The local contributions
Qj := RjQ, ∀j ∈ {1, . . . , J}, (4.230)

will also prove useful.
One can then define the matrices of the local sub-problems

Kj := Aj + B∗
jZjBj − iB∗

jTjBj , ∀j ∈ {1, . . . , J}. (4.231)

From Proposition 4.23, these matrices are invertible.

4.4.1 Scattering operator
Assuming that the above local matrices are assembled for each sub-domain, the evaluation of
the scattering operator S1,h,‖ takes the form of Algorithm 4.1. Note that everything is parallel,
the global multi-trace vectors x and s respectively input and output of the algorithm can be
distributed on the cluster nodes on a distributed-memory architecture.

Algorithm 4.1 Evaluation of the scattering operator S1,h,‖

1: function GlobalScattering(x) . Input size: M(Σh)
2: s← 0 . size: M(Σh)
3: for j = 1, . . . , J do . Parallel loop
4: xj ← Rjx . Local contribution of the multi-trace (size: M(Γ̃j,h))
5: uj ← K−1

j B∗
jxj . Local solve (size: N(Ωj,h))

6: sj ← −xj − 2iTjBjuj . Local scattering (size: N(Γ̃j,h))
7: s← s + R∗

j sj
8: end for
9: return s . Output size: M(Σh)

10: end function

4.4.2 Exchange operator
The definition of the exchange operator Π‖ is rather straightforward because of our assumption
that no junctions are present. To formalize it with our notations, we define

Πjk := R∗
kQkQ∗

jRj . (4.232)

The corresponding definition of the exchange operator is then provided in matrix form by Algo-
rithm 4.2.

4.4.3 Relaxed Jacobi algorithm
The assembly of the local matrices Aj , Tj and the source terms fj can be pre-computed before
starting the iterative algorithm. In addition, the factorization of Kj (LU) shall also be per-
formed. The last pre-computations possible are provided by Algorithm 4.3 which describes the



4.4. MATRIX AND VECTOR REPRESENTATION 151

Algorithm 4.2 Evaluation of the exchange operator Π‖

1: function GlobalExchange(x) . Input size: M(Σh)
2: y← 0 . size: M(Σh)
3: for j = 1, . . . , J do
4: for k ∈ Kj do . Loop on adjacent sub-domains
5: y← y + Πjkx . Transfer of data from sub-domain Ωj to sub-domain Ωk
6: end for
7: end for
8: return y . Output size: M(Σh)
9: end function

computation of the lifting of the source terms represented by the local vectors vj and the com-
putation of the right-hand-side b1 represented by the vector b of the skeleton problem (4.163).
Except for the application of the exchange operator, all the computations are independent and
can be performed in parallel.

Algorithm 4.3 Lifting of the source
1: b← 0 . size: M(Σh)
2: for j = 1, . . . , J do . Parallel loop
3: vj ← K−1

j fj . Local solve (size: N(Ωj,h))
4: b← b− 2i R∗

jTjBjvj . Skeleton problem right-hand-side b1
5: end for
6: b← GlobalExchange(b) . Application of Π‖

After choosing a relaxation parameter r ∈ (0, 1) and maximum number of iterations nmax ∈
N∗, the iterative relaxed Jacobi algorithm (4.165) takes the form of Algorithm 4.4 below. The
only place where communications occurs are in the global exchange step. Of course, this basic
algorithm can be completed by the computation of the residual for instance, and the iterations
can be stopped if it is below a certain tolerance for some norm.

Algorithm 4.4 Relaxed Jacobi algorithm
1: x← 0 . Initialization (size: M(Σh))
2: for n = 1, . . . , nmax do
3: s← GlobalScattering(x) . Application of S1,h,‖ (size: M(Σh))
4: p← GlobalExchange(s) . Application of Π‖ (size: M(Σh))
5: x← (1− r)x + rp + rb . Iteration (size: M(Σh))
6: end for

Having found an approximation x of the solution of the skeleton problem (4.163) via the
relaxed Jacobi algorithm, the global (broken) solution, represented by local vectors uj , can then
be computed thanks to Algorithm 4.5. The local liftings of the source vj have been computed
thanks to Algorithm 4.3.

4.4.4 GMRES algorithm
We can also solve the linear system given by (4.163) iteratively using the Gmres algorithm. To
define the algorithm, it suffices to provide a definition for a right-hand-side and a matrix-vector
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Algorithm 4.5 Evaluation of the global broken solution
1: for j = 1, . . . , J do . Parallel loop
2: wj ← K−1

j B∗
jRjx . Local solve (size: N(Ωj,h))

3: uj ← vj + wj . Local solution (size: N(Ωj,h))
4: end for

product routine. The right-hand-side is denoted by b and can be computed (offline) according to
Algorithm 4.3. The matrix-vector product procedure, which takes as input a global multi-trace
vector x, is given in Algorithm 4.6.

Algorithm 4.6 Matrix-vector product for the Gmres algorithm
1: function MatVec(x) . Input size: M(Σh)
2: s← GlobalScattering(x) . Application of S1,h,‖ (size: M(Σh))
3: p← GlobalExchange(s) . Application of Π‖ (size: M(Σh))
4: return x− p . Output size: M(Σh)
5: end function

Notice again here that apart from the computation of the global exchange step which ensures
coupling between subdomains, all operations are local to the sub-domains. Having found an
approximation x of the solution of the skeleton problem (4.163) via the Gmres algorithm,
the global (broken) solution, represented by local vectors uj , can then be computed thanks to
Algorithm 4.5.
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In this section we propose several transmission operators with suitable properties that could
be used in the domain decomposition strategy that was previously described. All the operators
we consider in this section are integral operators of convolution type with a singular kernel at the
origin. Roughly speaking, the strength of the singularity is linked to the order of the operator
and should be chosen wisely according the analysis previously developed.

In the domain decomposition method that has been previously described, the interface prob-
lem could be written in any of the three trace spaces: namely in M0,‖, M1/2,‖ or M1,‖, which
correspond to taking respectively σ = 0, 1/2 or 1. It is clear that, depending on this choice we
need different transmission operators, namely respectively T1,‖ for σ = 0, T1/2,‖ or T−1/2,‖ for
σ = 1/2 and T0,‖ for σ = 1. However, to implement a domain decomposition method in practice,
one needs to implement only one type of transmission operator. The question that arises is then:
which type of (non-local) transmission operator should one use?

This choice typically first depends on the type of discretization method at hand, for instance:
• for standard Galerkin discretization, it is more natural to implement either a T0,‖-type

operator or a T1/2,‖-type operator;
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• for some other types of discretization strategies (for instance using a mixed-hybrid ap-
proach), it may be more natural to implement either a T1,‖-type operator or a T−1/2,‖-type
operator.

Then, there are two main routes:

• either construct directly a T0,‖ or a T1,‖-type operator (first strategy): in addition to being
isomorphisms between the adequate trace spaces, such operators must also be self-adjoint
and positive (to be able to define a scalar product on the trace space, see Assumption 3.47).
As we shall see, such operators can be constructed from (almost standard) potential theory;

• or construct a T1/2,‖ or a T−1/2,‖-type operator (second strategy): in addition to being
isomorphisms between the adequate trace spaces, such operators must be respectively such
that

T0,‖ = T1/2,‖
∗T1/2,‖, and T1,‖ = T∗

−1/2,‖T−1/2,‖, (5.1)
are posivite (the self-adjointness is guaranteed by construction). As we shall see, the
construction of such operators is slightly more involved than for the previous ones. Besides,
this type of operator requires the use of auxiliary variables (increasing as a result the size
of the local sub-problem matrices), but can be worth the additional effort.

The operators T0,‖, T1,‖, T1/2,‖ and T−1/2,‖ are global operators a priori defined on the whole
skeleton. However, as we have seen in previous chapters, practical implementations will always
use diagonal operators, where a diagonal element is defined on a single interface between two
adjacent sub-domains. It is therefore enough to describe the construction of a single diagonal
element, since the definition of the global operator from a diagonal element is then straightfor-
ward. This is why in this chapter, we define operators on only one interface, assumed to be
closed and denoted Σ. The diagonal element operator defined on this interface Σ is denoted Tα,
with α ∈ {−1/2, 0, 1/2, 1}.

An integral operator is by nature computationally heavy, mainly because of its convolution
type. In a finite element discretization an integral operator typically appear in the form of a
dense matrix which could make either the computational cost or the memory requirement of the
method prohibitive. Besides, the dense matrix will appear in a larger linear system (of the local
sub-problems), which is sparse. The resulting matrix, with the unusual sparse-dense structure,
is less favorable to numerical computations. In particular the efficiency of state-of-the-art direct
solvers may be severely damaged.

When comparing several options we must therefore not only take into account theoretical
properties, but also assess the ease of implementation and the computational cost associated to
the choice of operator. The main goal, in order to reduce the computational footprint of the
method, is to try to sparsify in some sense the dense operator. Several different strategies can be
considered, for instance compression techniques using the fast multipole method (FMM) or H-
matrices. However, we note that all those techniques could harm the properties of the operators
and as a result the convergence of the algorithms.

The main strategy that was considered in previous works [91, 44] to circumvent this issue
is to truncate the kernel (by a cut-off function). Using compact perturbation arguments, one
could prove that the isomorphism property of the transmission operators outlives the truncation
process. We are however (most of the time) unable to prove that the property of positivity
is kept intact after truncation. As a result, for efficiency reasons, there is a strong interest in
considering a T1/2,‖ or a T−1/2,‖-type operator (second strategy), for which the positivity is not
required, over a T0,‖ or a T1,‖-type operator (first strategy).

The chapter is organized in two parts. In the first part, because they form our starting
point for our attempted constructions in the electromagnetic setting, we recall what operators
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have already been proposed in the acoustic case in previous works on the subject (namely [42,
91, 44]). Our treatment is however slightly more systematic than those references and can be
seen as a complement to those works. In the second part, we discuss how these operators can be
adapted to the electromagnetic setting. In particular, we explain why the construction of suitable
operators is a much more difficult task. This work in the electromagnetic setting, mainly carried
out together with Francis Collino, extends the first ideas presented in [34] where a first integral
operator was presented.

Our presentation in this chapter builds upon some standard results of potential theory. How-
ever, we acknowledge that our discussion is in some places rather formal and lacks a rigorous
treatment in order to justify properly our claims. The main reason we did not pursue in this
direction is that, as we shall see in Chapter 7, the numerical results obtained using the integral
operators described in this chapter are rather disappointing. Nevertheless, we believe that the
ideas presented in this chapter are worth presenting in their own right.

5.1 Acoustic setting
We recall now the non-local operators that have been proposed to be used in the previously
described domain decomposition method for acoustic wave propagation.

In this section, we consider the boundary Σ of a bounded Lipschitz domain Ω− subset of Rd,
d ∈ {2, 3} and we set Ω+ := Rd \ Ω−. We assume that the domain Ω− is connected and simply
connected (all its Betti numbers are zero) so that Σ is also connected and simply connected. We
denote by ν the unit outward normal vector defined on Σ from Ω− to Ω+.

5.1.1 First strategy

In this section, we are set to construct a self-adjoint positive isomorphism so that

T0 : H1/2(Σ)→ H−1/2(Σ),
or T1 : H−1/2(Σ)→ H

1/2(Σ).
(5.2)

5.1.1.1 Gagliardo or Sobolev-Slobodetskii semi-norms

In the acoustic setting, following an original idea proposed by Xavier Claeys, a possible choice
that have been studied [91, Chap. 5] and [44, Sec. 3.1.1], is to use the integral representation of
the Gagliardo or Sobolev-Slobodetskii semi-norms, which defines a semi-norm on H1/2(Σ). Given
any (dimensionless) positive parameters α and β, a first possible choice is then (the semi-norm
is the second term), for any φ, ψ ∈ H1/2(Σ)

〈T0φ, ψ〉Σ := α

∫
Σ
φ(x)ψ(x) dσ(x) + β

k

∫
Σ

∫
Σ

(φ(x)− φ(y))
(
ψ(x)− ψ(y)

)
|x− y|d dσ(x)dσ(y). (5.3)

A great interest of this operator rests in the fact that it can be quasi-localized while retaining
its essential features for this domain decomposition context. By quasi-localization we mean
here that it is possible to restrain its long range action in an attempt to decrease the associated
computational cost. To do so, we can introduce a cut-off function χ ∈ L∞(R+) which is identically
1 on (0, 1

2 ) and identically 0 on (1,+∞). We can then consider, given a characteristic length L,
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the truncated operator defined for any φ, ψ ∈ H1/2(Σ) by

〈T0,Lφ, ψ〉Σ :=α
∫

Σ
φ(x)ψ(x) dσ(x)

+ β

k

∫
Σ

∫
Σ
χ

(
|x− y|
L

) (φ(x)− φ(y))
(
ψ(x)− ψ(y)

)
|x− y|d dσ(x)dσ(y).

(5.4)

The quasi-locality of the operator can be seen by considering φ and ψ with disjoint supports,
separated by a distance greater than L (in the sense of the Euclidian distance in Rd), and noticing
that the above quantity is zero.

Interestingly, the truncated operator retains all its essential properties, in particular its posi-
tivity and isomorphism property [44, Th. 3.1]. Roughly speaking, the proof of this result rests on
the fact that the truncated operator is a compact perturbation of the original operator, thanks
to the compactness of the embedding of H1/2(Σ) in L2(Σ).

5.1.1.2 Potential theory

A different approach that was also considered is to built upon potential theory. In fact, to the
best of our knowledge, only Riesz potentials where studied in this context [91, Chap. 4] and [44,
Sec. 3]. We shall widen slightly the discussion by also considering Bessel potentials that have a
kernel with better decaying properties at infinity.

Green kernel Let us define, for any positive real parameter σ > 0, the Green kernel or funda-
mental solution Gd,σ of the Yukawa equation (also known as the modified Helmholtz equation)
as follows {(

−∆ + σ2)Gd,σ = δ0, in Rd,

lim|x|→+∞ Gd,σ(x) = 0,
(5.5)

where δ0 is the Dirac measure centered at the origin.
For σ = 0 the equation becomes the standard Laplace equation and we define similarly, the

Green kernel or fundamental solution Gd,0 as follows{
−∆Gd,0 = δ0, in Rd,

lim|x|→+∞ Gd,0(x) = 0.
(5.6)

These kernels admit the following expressions in the cases of interest

σ > 0,


G2,σ(x) := K0(σ|x|), x ∈ R2 \ {0}, if d = 2,

G3,σ(x) := exp(−σ|x|)
4π|x| , x ∈ R3 \ {0}, if d = 3,

σ = 0,


G2,0(x) := − 1

2π ln |x|, x ∈ R2 \ {0}, if d = 2,

G3,0(x) := 1
4π|x| , x ∈ R3 \ {0}, if d = 3,

(5.7)

where K0 denotes the modified Bessel function of the second kind of order 0 [54, Sec. 10.25].
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Volume potential From this fundamental solution, we are able to define the following volume
potential, for any f ∈ C+∞

0 (Rd) as an improper integral as follows

Gd,σf(x) :=
∫

Rd

Gd,σ(|x− y|)f(y) dy, ∀x ∈ Rd. (5.8)

The above potential is often referred to as a Bessel potential in the case σ > 0 and as a Riesz
potential in the case σ = 0.

This potential can be extended to elements of H−1
comp(Rd) and defines then a continuous

mapping so that [101, Sec. 6.1] [124, Th. 3.1.2]

Gd,σ : H−1
comp(Rd)→ H1

loc(Rd). (5.9)

Trace operators As we want to establish results on the boundary Σ we will need to make a
short detour and define some notations.

We first define the Dirichlet trace operator γ−
D (respectively γ+

D) as the interior (respectively
exterior) trace operator which is the natural extension to elements of H1(Ω−) (respectively
H1(Ω+)) of the restriction operator

u 7→ u|Σ, (5.10)

for regular fields.
We also introduce the Neumann trace operator γ−

N (respectively γ+
N ) as the interior (re-

spectively exterior) trace operator which is the natural extension to elements of H1(∆; Ω−)
(respectively H1(∆; Ω+)) of the operator

u 7→ ν · (gradu)|Σ,
(respectively u 7→ −ν · (gradu)|Σ),

(5.11)

for regular fields.
In addition, let us denote by {γD} and {γN} the two-sided trace operators defined respectively

as
{γD} := 1

2
(
γ−
D + γ+

D

)
, {γN} := 1

2
(
γ−
N − γ

+
N

)
. (5.12)

We then introduce {γ∗
D} and {γ∗

N} as the respective formal adjoint operators of {γD} and {γN}
(see [101, Eq. (6.14)] for a precise definition).

Besides, let us denote by [γD] and [γN ] the jump of the trace operators defined respectively
as

[γD] := γ+
D − γ

−
D, [γN ] := γ+

N + γ−
N . (5.13)

Surface potentials Having defined the above volume potential, we can therefore define the
so-called single-layer Sd,σ and double-layer Dd,σ potentials as

Sd,σ := Gd,σ{γ∗
D}, Dd,σ := Gd,σ{γ∗

N}. (5.14)

One can give explicit representation of these operators, for any φ ∈ L1(Σ), we have

Sd,σφ(x) =
∫

Σ
Gd,σ(|x− y|)φ(y) dσ(y), x /∈ Σ

Dd,σφ(x) =
∫

Σ
ν(y) · grad Gd,σ(|x− y|)φ(y) dσ(y), x /∈ Σ.

(5.15)
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The surface potentials enjoy the following jump relations [124, Th. 3.3.1]

[γD] Sd,σ = 0, [γD] Dd,σ = Id, in H
1/2(Σ),

[γN ] Sd,σ = −Id, [γN ] Dd,σ = 0, in H−1/2(Σ).
(5.16)

Let u ∈ H1(∆; Ω−)×H1
loc(∆; Ω+) satisfying the homogeneous equation(

−∆ + σ2)u = 0, in Ω− ∪ Ω+, (5.17)

then we have the representation formula [124, Th. 3.1.8]

u = −Sd,σ[γN ]u+Dd,σ[γD]u, in Ω− ∪ Ω+. (5.18)

In light of these results, one sees that the single layer and double layer potentials can be used
as ansatz for the solution of some elliptic boundary value problem. In fact, this forms the basis
of the so called indirect method to devise boundary integral equations as a reformulation of some
boundary value problems.

Boundary integral operators We introduce the associated single-layer Vd,σ and hypersin-
gular Wd,σ boundary integral operators

Vd,σ := {γD}Sd,σ = {γD}Gd,σ{γ∗
D},

Wd,σ := {γN}Dd,σ = {γN}Gd,σ{γ∗
N}.

(5.19)

Explicit integral representation of these operators are available. For Vd,σ the integral represen-
tation is simply, as [124, Eq. (3.32)]

〈Vd,σφ, ψ〉Σ =
∫

Σ

∫
Σ

Gd,σ(|x− y|)φ(y)ψ(x) dσ(x)dσ(y). (5.20)

The integral representation of Wd,σ is more involved, we have [124, Cor. 3.324],

〈Wd,σφ, ψ〉Σ =
∫

Σ

∫
Σ

Gd,σ(|x− y|) [curlΣ φ(y) · curlΣ ψ(x)

+σ2(ν(x) · ν(y))φ(y)ψ(x)
]

dσ(x)dσ(y).
(5.21)

The above integral representations make clear that the underlying operators are self-adjoint.
One can then prove that the boundary integral operators we introduced enjoy the following

mapping properties [101, Th. 6.11] [124, Th. 3.1.16]

Vd,σ : H−1/2(Σ)→ H
1/2(Σ),

Wd,σ : H1/2(Σ)→ H−1/2(Σ).
(5.22)

These mapping properties can be understood, at least formally, from the definition (5.19). The
operator Vd,σ is the composition of, first the adjoint trace operator {γ∗

D}, which takes a trace in
H−1/2(Σ) and lifts it in H−1

comp(Rd) losing half a degree of Sobolev regularity; then the volume
potential Gd,σ, which is a regularizing operator of order 2; and finally the trace operator {γD},
which takes an element of H1

loc(Rd) and computes its trace in H1/2(Σ) losing another half degree
of regularity. For the operator Wd,σ, the reasoning is similar but now the trace operator {γN}
and its formal adjoint {γ∗

N} are deregularizing of order 3/2.
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Moreover, we have the following coercivity results: the bilinear forms (σ > 0)

〈Vd,σ·, ·〉 : H1/2(Σ)×H1/2(Σ)→ C,

〈Wd,σ·, ·〉 : H−1/2(Σ)×H−1/2(Σ)→ C,
(5.23)

are coercive [124, Th. 3.5.4]. Besides, the bilinear forms (σ = 0)

〈Vd,0·, ·〉 : H1/2(Σ)×H1/2(Σ)→ C,

〈Wd,0·, ·〉 : H−1/2(Σ)/C×H−1/2(Σ)/C→ C,
(5.24)

are coercive [124, Th. 3.5.3]. The necessity to remove the constants for the operator Wd,0 is a
manifestation of the non-uniqueness of solutions to the Neumann interior problem for the Laplace
operator.

Equivalent transmission problems It is very instructive to see that the boundary integral
operators Vd,σ and Wd,σ can be reinterpreted as (elliptic) transmission problems in the domain.
Such results are obtained by exploiting the representation formula and the jump relations satisfied
by the surface potentials.

Let x0 ∈ H1/2(Σ) and x1 ∈ H−1/2(Σ), we have for the boundary integral operator Vd,σ

x0 = Vd,σx1,

⇔ x1 = {γD}u0, where


u0 ∈ H1(Ω−)×H1(Ω+),(
−∆ + σ2)u0 = 0, in Ω− ∪ Ω+,

[γD]u0 = 0, on Σ,
[γN ]u0 = −x1, on Σ,

(5.25)

and the boundary integral operator Wd,σ

x1 = Wd,σx0,

⇔ x1 = {γN}u1, where


u1 ∈ H1(Ω−)×H1(Ω+),(
−∆ + σ2)u1 = 0, in Ω− ∪ Ω+,

[γD]u1 = x0, on Σ,
[γN ]u1 = 0, on Σ.

(5.26)

Transmission operators From the above discussion, we see that we have whole families of
possible transmission operators at our disposal. The first two families of operators are the ones
stemming from Bessel potentials (σ > 0), namely the following positive self-adjoint isomorphisms

2σ Vd,σ : H−1/2(Σ)→ H
1/2(Σ),

2
σ
Wd,σ : H1/2(Σ)→ H−1/2(Σ),

(5.27)

respectively as a T1 and a T0-type operators. Note that we chose to rescale the operators by
suitable constants (in part to make them dimensionless) and in fact we will often take in our
numerical experiments σ = κ0 where κ0 is the wavenumber of the propagative problem we are
trying to solve. It is clear by the above theory that any positive constant would work and we do
not claim that this choice is optimal. However, this rescaling appears to be somehow sensible in
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our numerical experiments and will be further motivated by the forthcoming modal analysis in
spherical geometries.

Besides, one can consider the following positive self-adjoint isomorphisms resulting from Riesz
potentials (σ = 0)

2κ0 Vd,0 : H−1/2(Σ)→ H
1/2(Σ),

Id + 2
κ0

Wd,0 : H1/2(Σ)→ H−1/2(Σ),
(5.28)

respectively as a T1 and a T0-type operators. Note that we had to add an identity term to ensure
the injectivity of the operator constructed from Wd,0 (this is related to the kernel of the Laplace
operator with Neumann boundary conditions). Again any other positive linear combinations
of the two terms can be considered. To make the operators dimensionless, we chose to rescale
them by the only characteristic length at our disposal, namely the wavenumber κ0 of our original
problem.

In previous works, only the operator which corresponds with our notations to σ = 0 and
α Id + 4β

κ0
Wd,0, α and β being two positive real parameters, is mentioned [44, Sec. 3.1.2]. We

see that a larger class of operators is in fact available (in particular the choice Wd,σ, σ > 0 is
interesting).

Comparison of Riesz and Bessel potentials The two kernels possess the same asymptotic
behaviour at the origin |x| ∼ 0. Roughly speaking, this is because the strength of the associated
singularity at |x| ∼ 0 is linked to the principal part of the differential operator, which is the
same. As a result, the order of the corresponding pseudo-differential operator (behaviour at
infinity |ξ| → +∞ in Fourier space) will be the same and the integral operators will have the
mapping properties we are looking for.

The main difference between Bessel and Riesz potentials will come from the asymptotic
behaviour at infinity |x| → +∞. In the later case, we no longer have the exponential decay as
|x| goes to +∞. Qualitatively, this will entail a change of behaviour at the origin (|ξ| ∼ 0 in
Fourier space) of the associated pseudo-differential operator which will affect the propagative
modes when we solve our boundary value problem. We shall see the implications of this more
quantitatively when we will conduct a modal analysis on simple geometries. In particular, it will
make things more complicated when trying to generalize this to the Maxwell setting.

Notice however that the analytical expressions of the Riesz kernels are somewhat simpler
compared to their respective Bessel counterparts, in particular in view of numerical computations.
Indeed, in practice during the actual assembly of the matrices associated to the integral operators,
a substantial time is spent in the evaluation of the special functions of the kernels. In this respect,
the Riesz potentials have a (slight) advantage.

Discussion of the practical use of these operators Using the above operators in a prac-
tical implementation of the domain decomposition method can be somehow advantageous since
actual libraries to compute the boundary integral operators are already available, for instance
BemTool1. Indeed, they are only a minor modifications (from the propagative to the dissipative
version) of standard operators classically used to solve (mainly) unbounded scattering problems
by means of integral equations.

The major drawback of these operators constructed from potential theory is their non-locality.
To circumvent this issue, the operators built upon the Gagliardo semi-norms can be quasi-
localized by truncation of the kernel so as to reduce the computational cost. Importantly this
process retains the required properties of positivity and bijectivity. We could let the above

1https://github.com/xclaeys/BemTool
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operator undergo the same kind of treatment and hope for the same result. However, we are
then unfortunately unable to prove that the operator remains positive (the isomorphism property
can be derived in the same manner as before). Other strategies could be considered, for instance
the use of compression techniques such as H-matrices. Still, on the analysis point of view, it
remains to prove that the procedure does not damage the positivity (and bijectivity) of the
operator. This difficulty motivates the next section.

5.1.2 Second strategy
In this section, we are set to construct an isomorphism so that

T1/2 : H1/2(Σ)→ L2(Σ),
or T−1/2 : L2(Σ)→ H−1/2(Σ).

(5.29)

A transmission operator T0 or T1 can then be constructed as

T0 := T∗
1/2T1/2 : H1/2(Σ)

T1/2−→ L2(Σ)
T∗

1/2−→ H−1/2(Σ),

T1 := T∗
−1/2T−1/2 : H−1/2(Σ)

T−1/2−→ L2(Σ)
T∗

−1/2−→ H
1/2(Σ).

(5.30)

By construction, these operators T0 and T1 will be self-adjoint and positive.

5.1.2.1 Gagliardo or Sobolev-Slobodetskii semi-norms

We mention briefly that it is again possible to use the integral representation of the Gagliardo
or Sobolev-Slobodetskii semi-norms, this time on H

1/4(Σ) [91, Chap. 5] and [44, Sec. 3.2.1] to
provide a suitable transmission operator. Given any (dimensionless) positive parameters α and
β, a possible operator is then,

(T1/2φ, ψ)Σ := α

∫
Σ
φ(x)ψ(x) dσ(x) + β√

k

∫
Σ

∫
Σ

(φ(x)− φ(y))
(
ψ(x)− ψ(y)

)
|x− y|d−1/2

dσ(x)dσ(y).

(5.31)
For the case d = 2, it can be proven that this operator is indeed and isomorphism from H

1/2(Σ)
into L2(Σ), see [44, Lem. 3.3]. The result of the case d = 3 remains to be rigorously given.

We can again consider the truncated version of the above operator, defined by

(T1/2,Lφ, ψ)Σ :=α
∫

Σ
φ(x)ψ(x) dσ(x)

+ β√
k

∫
Σ

∫
Σ
χ

(
|x− y|
L/2

) (φ(x)− φ(y))
(
ψ(x)− ψ(y)

)
|x− y|d−1/2

dσ(x)dσ(y).

(5.32)
The fact that this truncated operator (for d = 2) satisfies the requirement of the theory is given
in [44, Th. 3.4].

5.1.2.2 Potential theory

The idea is to construct operators from potentials of fractional powers of the positive operator
(σ2 −∆)s/2, σ ≥ 0. The real s will be considered in the open interval (1, 3). Indeed, there
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actually exists an analytic expression of the associated fundamental solution [112, Ex. 2.2], for
s 6= d,

σ > 0, Gd,s,σ(x) := 21−s/2

(2π)d/2Γ( s2 )

(
|x|
σ

)(s−d)/2
K|(s−d)/2|(σ|x|),

σ = 0, Gd,s,0(x) :=
Γ(d−s

2 )
2sπd/2Γ( s2 )

1
|x|d−s ,

(5.33)

where Kν is the modified Bessel function of the second kind [54, Sec. 10.25]. For the special
case s = d = 2, the expressions were given in (5.7). At the origin these functions have the same
asymptotic behaviour

Gd,s,σ ∼ Gd,s,0, as r → 0+. (5.34)

Besides, we have the following asymptotic behaviour at infinity

Gd,s,σ(r) ∼ 1
(2π)

d−1
2 2 s

2

σ−1
(σ
r

) d−s+1
2

e−σr, as r → +∞. (5.35)

It follows that Gd,s,σ is a locally integrable function and we can define the volume potential for
any f ∈ C+∞

0 (Rd) as
Gd,s,σf(x) =

∫
Rd

Gd,s,σ(|x− y|)f(y) dy. (5.36)

As far as we know, there does not exist a potential theory for fractional powers of the Yukawa
(or Laplace) operator. Nevertheless, in view of the results that we already presented (which
correspond to the case s = 2), we are led to define, at least formally, for σ > 0,

(Vd,s,σφ, ψ)Σ = σs−1
∫

Σ

∫
Σ
CsGd,s,σ(|x− y|)φ(y)ψ(x) dσ(x)dσ(y). (5.37)

and

(Wd,s,σφ, ψ)Σ = σs−3
∫

Σ

∫
Σ
CsGd,s,σ(|x− y|) [curlΣ φ(y) · curlΣ ψ(x)

+σ2(ν(x) · ν(y))φ(y)ψ(x)
]

dσ(x)dσ(y),
(5.38)

with the renormalization constant
Cs =

2
√
πΓ( s2 )

Γ( s−1
2 )

, (5.39)

which is strictly positive if s > 1.

Remark 5.1. The choice of this renormalization constant deserves some comments. It stems
from the fact that the singularity of the kernel at the origin depends only on the difference d− s
and as a matter of fact we have

Gd−1,s−1,σ = CsGd,s,σ. (5.40)

It is therefore possible to provide an alternative interpretation of the above potentials. For d = 3,
if we consider the case where Σ is a 2D plane, then the operator V3,s,σ defined above can be
reinterpreted as exactly the potential associated to (σ2 −∆)(s−1)/2 on this plane. In Fourier
space, we are then assured to have the correct scaling of the principal symbol of the integral
operator, hence the desired asymptotic behavior, at least for this particular geometry. The modal
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analysis for the sphere in 3D in the next chapter will actually prove that it is also the correct
asymptotic for the spherical geometry, see in particular Proposition 6.36.

Besides, the renormalization includes the constants introduced in (5.27), so that we have

Vd,2,σ = 2σVd,σ, and Wd,2,σ = 2
σ
Wd,σ. (5.41)

We expect the operator Vd,s,σ (respectively Wd,s,σ) to be a pseudo differential operator of
order s−1 (respectively s−3) for some real s. This suggests (but remains to be proved rigorously)
that, for σ > 0,

Wd,5/2,σ map continuously H1/2(Σ) into L2(Σ),
Vd,3/2,σ map continuously H−1/2(Σ) into L2(Σ),

(5.42)

so that they respectively make potential candidates for T1/2 or T−1/2-type transmission operators.

Static case For reasons previously exposed, we main be interested to consider the limit case
σ = 0. Since the kernel Gd,s,σ is still defined for σ = 0, we can extend the definition of the
previous operators as follows:

(Vd,s,0φ, ψ)Σ = κ0
s−1

∫
Σ

∫
Σ
CsGd,s,0(|x− y|)φ(y)ψ(x) dσ(x)dσ(y). (5.43)

and

(Wd,s,0φ, ψ)Σ = κ0
s−3

∫
Σ

∫
Σ
CsGd,s,0(|x− y|) curlΣ φ(y) · curlΣ ψ(x) dσ(x)dσ(y). (5.44)

Again, we expect the operator Vd,s,0 (respectively Wd,s,0) to be a pseudo differential operator
of order s − 1 (respectively s − 3) for some real s. This suggests (but remains to be proved
rigorously) that

Id +Wd,5/2,0 map continuously H1/2(Σ) into L2(Σ),
Vd,3/2,0 map continuously H−1/2(Σ) into L2(Σ),

(5.45)

so that they respectively make potential candidates for T1/2 or T−1/2-type transmission operators.
In [44, Sec. 3.1.2], the T1/2-type operator

Id + βi Wd,5/2,0, (5.46)

is considered, where β is a real parameter, so that the T0-type operator(
Id + iβ Wd,5/2,0

)∗(Id + iβ Wd,5/2,0
)

= Id + β2 W ∗
d,5/2,0Wd,5/2,0, (5.47)

is indeed a self-adjoint and positive operator, since W ∗
d,5/2,0 −Wd,5/2,0 = 0 from the symmetry of

Wd,5/2,0. For Σ smooth enough and in 2D only (d = 2), a proof that the operator

α Id + β̃ W2,5/2,0 : H1/2(Σ) → L2(Σ), (5.48)

for two parameters α ∈ R∗
+ and β̃ ∈ C \ R−, is an isomorphism is given in [44, Lem. 3.7]. The

proof assumes that Σ is C1,α regular, α > 0. The result is first proven for the circle, and then
extended for a general curve using a compact perturbation technique.
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5.1.3 Conclusion on possible transmission operators for Helmholtz
Because we considered many different candidate operators in our discussion above, we quickly
sum up below which are the ones we find the most interesting.

The use of Gagliardo or Sobolev-Slobodetskii semi-norms was proposed in previous works,
see the T0-type operator in (5.4) and the T1/2-type operator in (5.32). The main interest of those
operators is that we can prove that they retain their positivity and essential properties required
for the convergence analysis even after truncation of their kernel. However, these operators are
not commonly implemented and were as a result not considered in our numerical experiments.

Standard potential theory for the Helmholtz equation led us to suggest to use (for σ > 0)

2σ Vd,σ or 2κ0 Vd,0 as a T1 operator,
2
σ
Wd,σ or Id + 2

κ0
Wd,0 as a T0 operator.

(5.49)

The operators Vd,σ and Wd,σ have integral representations given in (5.20) and (5.21) and are
(or are close to operators) implemented in standard boundary element codes. However, we were
not able to prove that they retain their properties if localization strategies or other compression
techniques are applied to reduce their computational cost.

We will report several numerical results obtained using the operator (d ∈ {2, 3})

TBessel
0 = 2

κ0
Wd,κ0 (5.50)

in what follows.
Fractional powers of the Yukawa operator led us to suggest to use (for σ > 0)

Wd,5/2,σ or Id +Wd,5/2,0 as a T1/2 operator,
Vd,3/2,σ or Vd,3/2,0 as a T−1/2 operator.

(5.51)

See (5.37), (5.38), (5.43) and (5.44) for the variational definitions. These operators are in contrast
less standard. Their kernels involve special functions that are costly to evaluate numerically and
present non-classical (strong) singularities that require dedicated care in practical implementa-
tions. On the other hand, their are amenable to quasi-localization by truncation while retaining
the required properties for the theory to apply.

Following [91], we tested in our numerical experiments in two-dimensions the operator

TRiesz
0 =

(
Id + i W2,5/2,0

)∗(Id + i W2,5/2,0
)

= Id +W ∗
2,5/2,0W2,5/2,0, (5.52)

It is amenable to localization by truncation, while retaining the important properties required
by the convergence analysis. This is why we tested this operator in our numerical experiments.

5.2 Electromagnetic setting
We now turn to the construction of suitable transmission operators for the (three-dimensional:
d = 3) electromagnetic setting. The main idea is to try to generalize the operators that have
been devised in the acoustic setting.

Unfortunately there is no obvious generalization of the operators constructed previously from
the Gagliardo semi-norms. In fact, we are not aware of explicit integral representations for a
semi-norm on H−1/2(Σ) to begin with. As a result, the integral operators that we are about to
present are all built upon potential theory.
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The main impediment we are faced with is that the transmission operator we wish to construct
is not a (somewhat simple) pseudo differential operator of order 1 as it was the case in the acoustic
setting. On the contrary, a suitable operator should be at the same time a pseudo differential of
order 1 and -1 respectively for the two distinct components that make up a trace quantity. In
fact, during our construction process we will need to keep in mind at all times the Helmholtz
decomposition of trace fields and construct an operator whose action is opposite (in some sense)
on the two components.

To explain this process in more detail, we first consider the simpler case of the half-space, for
which we are able to understand more precisely what we need to do. In a second part, we will use
standard potential theory for Maxwell’s equations to provide a first class of possible transmission
operators, for which we are unfortunately unable to provide a (quasi) localisation process that
provably preserve positivity. In the last remaining section, we will construct an alternative that
should be amenable to (quasi) localization with preserved positivity.

5.2.1 Fourier analysis on the half-space case
In this section we compute the Fourier symbol of a simple operator which has all the character-
istics of the transmission operators we wish to construct: namely, self-adjointness, positivity and
isomorphism. The simple geometrical setting allows for explicit computations which we found
very instructive. Similar computations as the ones presented below can be found in [80, 87] for
instance.

We consider the interface Σ = R2 × {0} separating the two half-spaces of R3 and we set
Ω+ := R2×R∗

+. The unit normal vector pointing outward of Ω is denoted ν. Let σ > 0 be a fixed
positive real parameter. We then define the (dimensionless) positive self-adjoint isomorphism

Λ : H−1/2(curl; Σ)→ H−1/2(div; Σ),
φ 7→ σ−1γτ curl u

(5.53)

where u ∈ H(curl; Ω+) is the unique solution of{
curl curl u + σ2u = 0, in Ω+,

γtu = φ, on Σ.
(5.54)

The trace operators γτ and γt used above are to be understood as the continuous extensions to
the space H(curl; Ω+) of the respective trace mappings defined for regular fields as u 7→ u × ν
and u 7→ ν × (u× ν).

Let φ be any element of H−1/2(curl; Σ) and u ∈ H(curl; Ω+) be the solution of (5.54). First
notice that u is equivalently solution of

−∆u + σ2u = 0, in Ω+,

div u = 0, in Ω+,

γtu = φ, on Σ,
(5.55)

where ∆ is the (vectorial) Hodge-Laplacian operator.
To solve the above system, we perform a partial Fourier transform in the x1 and x2 directions.

The Fourier transform of u (respectively φ) is denoted û ≡ (û1, û2, û3) (respectively φ̂ ≡ (φ̂1, φ̂2)).
We find that 

− d2

dx2
3
û + (σ2 + |k|2) û = 0,

ik1û1 + ik2û2 + d
dx3

û3 = 0,
û1 = φ̂1, and û2 = φ̂2, at x3 = 0,

(5.56)
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where k ≡ (k1, k2) denotes the Fourier variable. It follows that
û1 = φ̂1e

−(σ2+|k|2)1/2
x3 ,

û2 = φ̂2e
−(σ2+|k|2)1/2

x3 ,

û3 = (σ2 + |k|2)−1/2
(

ik1φ̂1 + ik2φ̂2

)
e−(σ2+|k|2)1/2

x3 .

(5.57)

It is then a simple computation to show that the Fourier transform Λ̂φ ≡ ((Λ̂φ)1, (Λ̂φ)2) of Λφ
reads (Λ̂φ)1 = σ−1(σ2 + |k|2)−1/2

[
(σ2 + k2

2)φ̂1 − k1k2φ̂2

]
,

(Λ̂φ)2 = σ−1(σ2 + |k|2)−1/2
[
−k1k2φ̂1 + (σ2 + k2

1)φ̂2

]
.

(5.58)

This yields the Fourier symbol of Λ which can be written in matrix form

Λ̂ = σ−1(σ2 + |k|2)−1/2
[
σ2 + k2

2 −k1k2
−k1k2 σ2 + k2

1

]
(5.59)

It is possible to diagonalize the symbol on the basis given by the following normalised eigenvectors

ecurl = |k|−1
[
k2
−k1

]
, egrad = |k|−1

[
k1
k2

]
, (5.60)

with respective eigenvalues

λcurl =
√

1 + |k|
2

σ2 , λgrad = 1√
1 + |k|

2

σ2

. (5.61)

If we define the change of basis matrix

P = |k|−1
[
−k2 k1
k1 k2

]
(5.62)

we obtain the Fourier symbol of Λ in diagonalized form

Λ̂ = P


√

1 + |k|
2

σ2
1√

1 + |k|
2

σ2

PT . (5.63)

This simple computation on this simple geometry leads to make two crucial remarks, that
remains true in a more general configuration:

• A natural decomposition of tangential fields, the so-called Helmholtz-Hodge decomposition,
as a sum of a curl and a gradient should be considered;

• An isomorphism between the trace spaces H−1/2(curl; Σ) and H−1/2(div; Σ) should de-
regularize (respectively regularize) the curl (respectively grad) part of the tangential field
by exactly one order of Sobolev regularity.

Notice also that this operator behaves similarly as the identity operator for the low frequencies
|k| ∼ 0 in Fourier space.

One readily sees from these remarks that the generalization to the electromagnetic setting of
the previous work for the Helmholtz equation is a fairly delicate task.
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5.2.2 Helmholtz-Hodge decomposition of trace spaces
For a simply connected and regular enough interface Σ, we have the following Helmholtz-Hodge
decomposition

H−1/2(curl; Σ) = gradΣ H
1/2(Σ) + curlΣ H

3/2(Σ),
H−1/2(div; Σ) = gradΣ H

3/2(Σ) + curlΣ H
1/2(Σ).

(5.64)

As we already hinted, this decomposition will play a central role in the construction of suitable
transmission operators for Maxwell equations.

As we already mentioned, for a less regular interface Σ (in particular for polyhedra surfaces
that we are naturally led to consider in this work), such a decomposition still holds but requires
more involved concepts that we do not wish to introduce in this manuscript. We refer the
interested reader to [22, Th. 2], [23, Th. 3.4], [85, Th. 2.2] and the references therein for more
detail.

5.2.3 First strategy: using standard potential theory
In this section and the next one, we consider the boundary Σ of a bounded Lipschitz domain Ω−

subset of R3 (we are only interested in the three-dimensional case) and we set Ω+ := R3 \ Ω−.
We assume that the domain Ω is connected and simply connected (all its Betti numbers are zero)
so that Σ is also connected and simply connected.

We are set to construct a self-adjoint positive isomorphism so that

T0 : H−1/2(curl; Σ)→ H−1/2(div; Σ),
or T1 : H−1/2(div; Σ)→ H−1/2(curl; Σ).

(5.65)

The above results on Helmholtz-Hodge decompositions of the trace spaces (and the simple
computation in the half-space case) reveals that (at least formally) such an operator should
de-regularize (respectively regularize) the curl (respectively grad) part of the tangential field by
exactly one order of Sobolev regularity. We can write, schematically,

H−1/2(curl; Σ)

H−1/2(div; Σ)

T0

= gradΣ H
1
2 + curlΣ H

3
2

= gradΣ H
3
2 + curlΣ H

1
2

+1 −1

Again for Maxwell equations we will rely on potential theory. This idea was already investi-
gated in a work prior to this thesis which can be found in [34]. Note that in this latter work the
operator that was proposed was continuous from H−1/2(div; Σ) to H−1/2(curl; Σ) which therefore
corresponds in our parlance to an operator T1.

The potential theory for Maxwell’s equation rests on the one established for the scalar case.
Indeed, the Cartesian components of Maxwell solutions satisfy the scalar Helmholtz equation
with Sommerfeld radiation condition [46, Th. 6.4 and 6.7]. We are interested by a coercive
version of this theory but the main principles are the same.

Volume potential From the fundamental solution of Yukawa equation, we are able to define
the following vectorial volume potential, for any f ∈ C+∞

0 (R3)3 as an improper integral as follows

G3,σf(x) :=
∫

R3
G3,σ(|x− y|)f(y) dy, ∀x ∈ R3. (5.66)
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This potential can be extended to elements of H−1
comp(R3)3 and defines then a continuous

mapping so that [25, Lem. 4]

G3,σ : H−1
comp(R3)3 → H1

loc(R3)3
. (5.67)

Trace operators We first define the tangential trace operator γ−
t (respectively γ+

t ) as the
interior (respectively exterior) trace operator which is the natural extension to elements of
H(curl; Ω−) (respectively H(curl; Ω+)) of the operator

u 7→ ν × (u|Σ × ν), (5.68)

for regular fields.
We also introduce the trace operator γ−

τ (respectively γ+
τ ) as the interior (respectively ex-

terior) trace operator which is the natural extension to elements of H(curl2; Ω−) (respectively
H(curl2; Ω+)) of the operator

u 7→ (curlu)|Σ × ν,
(respectively u 7→ −(curlu)|Σ × ν),

(5.69)

for regular fields.
In addition, let us denote by {γt} and {γτ} the two-sided trace operators defined respectively

as
{γt} := 1

2
(
γ−
t + γ+

t

)
, {γτ} := 1

2
(
γ−
τ − γ+

τ

)
. (5.70)

Besides, let us denote by [γt] and [γτ ] the jump of the trace operators defined respectively as

[γt] := γ+
t − γ−

t , [γN ] := γ+
τ + γ−

τ . (5.71)

Surface potentials We introduce the vectorial single-layer potential S3,σ, extension to vecto-
rial fields of the scalar single-layer potential Sσ acting on each of the Cartesian components so
that

∆S3,σ = σ2S3,σ. (5.72)
It follows that this surface potential admits the following explicit representation, for any φ ∈
L1(Σ)3,

S3,σφ(x) =
∫

Σ
G3,σ(|x− y|)φ(y) dσ(y), x /∈ Σ. (5.73)

Besides, we introduce the two vectorial potentials

T3,σ := σ S3,σ − σ−1 grad div S3,σ,

K3,σ := curl S3,σ (ν×).
(5.74)

Using the relation [25, Lem. 5]
divS3,σ = Sσ divΣ, (5.75)

we obtain an alternative expression for T3,σ

T3,σ = σ S3,σ − σ−1 grad Sσ divΣ . (5.76)

The surface potentials enjoy the following jump relations [25, Th. 7]

[γt] T3,σ = 0, [γt] K3,σ = −Id, in H−1/2(curl; Σ),
[γτ ] T3,σ = −σ Id, [γτ ] K3,σ = 0, in H−1/2(div; Σ).

(5.77)
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Let u ∈ H(curl2; Ω−)×Hloc(curl2; Ω+) satisfying the homogeneous equation (and Silver-Müller
radiation condition at infinity)(

curl curl +σ2)u = 0, in Ω− ∪ Ω+, (5.78)

then we have the Stratton-Chu representation formula [25, Th. 6]

u = −σ−1 T3,σ[γτ ]u−K3,σ[γt]u, in Ω− ∪ Ω+. (5.79)

Boundary integral operators From the potential S3,σ we can define the vectorial single-layer
V3,σ boundary integral operator

V3,σ := {γt} S3,σ. (5.80)

An explicit integral representation of the operator V3,σ is available: we have

〈V3,σφ,ψ〉Σ =
∫

Σ

∫
Σ

G3,σ(|x− y|)φ(y) ·ψ(x) dσ(x)dσ(y). (5.81)

From the potentials T3,σ and K3,σ, we introduce the boundary integral operators

U3,σ := {γt} T3,σ,

K3,σ := σ−1 {γτ} K3,σ.
(5.82)

Using the relation γt grad = gradΣ γD we obtain

U3,σ := σ V3,σ − σ−1 gradΣ Vσ divΣ,

K3,σ := σ (ν×) V3,σ (ν×)− σ−1 curlΣ Vσ curlΣ
(5.83)

and in fact these two operators are linked by the relation

K3,σ = (ν×) U3,σ (ν×). (5.84)

Explicit integral representations of the boundary integral operators are available (although not
trivial to establish). For the operator U3,σ, we have

〈U3,σφ,ψ〉Σ =σ

∫
Σ

∫
Σ

G3,σ(|x− y|) φ(y) ·ψ(x) dσ(x)dσ(y)

+ σ−1
∫

Σ

∫
Σ

G3,σ(|x− y|) divΣ φ(y) divΣψ(x) dσ(x)dσ(y).
(5.85)

And for the operator K3,σ we have

〈K3,σφ,ψ〉Σ =σ

∫
Σ

∫
Σ

G3,σ(|x− y|) (ν(y)× φ(y)) · (ν(x)×ψ(x)) dσ(x)dσ(y)

+ σ−1
∫

Σ

∫
Σ

G3,σ(|x− y|) curlΣ φ(y) curlΣψ(x) dσ(x)dσ(y).
(5.86)

The above integral representations make clear that the operators U3,σ and K3,σ are self-
adjoint. Besides, one can prove that they are positive isomorphisms between the trace spaces

U3,σ : H−1/2(div; Σ)→ H−1/2(curl; Σ),
K3,σ : H−1/2(curl; Σ)→ H−1/2(div; Σ),

(5.87)
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which follows from the coerciveness of the bilinear form (σ > 0)

〈U3,σ·, ·〉 : H−1/2(div; Σ)×H−1/2(div; Σ)→ C,

〈K3,σ·, ·〉 : H−1/2(curl; Σ)×H−1/2(curl; Σ)→ C.
(5.88)

Roughly speaking, one can see the operator U3,σ as a dissipative (or coercive) counterpart
of the boundary integral operator classically referred to as the EFIE operator. On the other
hand, the operator K3,σ (or rather its propagative version) is the basis of operator (or Calderón)
preconditioning of the previous EFIE operator, even though the discretization of the precondi-
tioner is a rather tricky task. We mention this to point out that such operators are therefore
already well-known in the integral equation community. Besides, similarly as for the scalar case,
several libraries are available to compute matrix representation of these operators using standard
boundary elements.

Note that because of the relation (5.84), the matrix representations in the basis given re-
spectively by standard (low order) Raviart-Thomas and Nedelec boundary elements of the two
operators U3,σ and K3,σ are the same. We shall comment more on this when we consider
discretization strategies.

Equivalent transmission problems Exploiting the representation formula and the jump
relations satisfied by the surface potentials we can again reinterpret the action of the boundary
integral operator U3,σ as (elliptic) transmission problems in the domain.

Let x0 ∈ H−1/2(curl; Σ) and x1 ∈ H−1/2(div; Σ), we have for the boundary integral operator
V3,σ

x0 = U3,σx1,

⇔ x0 = {γt}u0, where


u0 ∈ H(curl; Ω−)×H(curl; Ω+),(
curl curl +σ2)u0 = 0, in Ω− ∪ Ω+,

[γt]u0 = 0, on Σ,
σ−1[γτ ]u0 = −x1, on Σ,

(5.89)

and the boundary integral operator K3,σ

x1 = K3,σx0,

⇔ x1 = σ−1{γτ}u1, where


u1 ∈ H(curl; Ω−)×H(curl; Ω+),(
curl curl +σ2)u1 = 0, in Ω− ∪ Ω+,

[γt]u1 = −x0, on Σ,
[γτ ]u1 = 0, on Σ.

(5.90)

Transmission operators The above results encourage us to propose the following (rescaled)
operators

2 U3,σ : H−1/2(div; Σ)→ H−1/2(curl; Σ),
2 K3,σ : H−1/2(curl; Σ)→ H−1/2(div; Σ),

(5.91)

respectively as a T1 and a T0-type operators. This last operator is the one that we used in our
numerical experiments.
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It is easy to see that yet another operator could be a suitable candidate, which is the operator
admitting the following explicit integral representation,

〈Ǩσφ,ψ〉Σ = 2σ
∫

Σ

∫
Σ

G3,σ(|x− y|) φ(y) ·ψ(x) dσ(x)dσ(y)

+ 2σ−1
∫

Σ

∫
Σ

G3,σ(|x− y|) curlΣ φ(y) curlΣψ(x) dσ(x)dσ(y).
(5.92)

This operator is slightly less common than the previous ones, which is the only reason why we
did not use it in our numerical experiments.

We mentioned previously that a domain decomposition method based on similar non-local
operators for electromagnetic scattering was already proposed in [34] (in the simple spherical
geometry which allows explicit calculus by means of separation of variables). Since their formu-
lation involved an operator from H−1/2(div; Σ) to H−1/2(curl; Σ), the authors suggested to use
the transmission operator 2 U3,σ.

Static case By mimicking what has been done in the scalar setting, we could be tempted to
propose the operator arising from the limit case σ = 0. However, it is clear from the above explicit
integral representations that the operators are simply not defined for σ = 0. Nevertheless, since
the kernel G3,0 still makes sense, we could consider (slightly abusing notation),

〈2 K3,0φ,ψ〉Σ = 2κ0

∫
Σ

∫
Σ

G3,0(|x− y|) (ν(y)× φ(y)) · (ν(x)×ψ(x)) dσ(x)dσ(y)

+ 2κ0
−1
∫

Σ

∫
Σ

G3,0(|x− y|) curlΣ φ(y) curlΣψ(x) dσ(x)dσ(y).
(5.93)

Of course, the other variants discussed above could be considered, as well as other (positive)
linear combinations.

As we shall understand from the modal analysis presented in the next chapter, the above
operator does not have an adequate behaviour for propagative modes, even tough it is perfectly
sound choice as far as the theoretical requirements are concerned.

5.2.4 Second strategy: quasi-localizable operators
In this section, we are set to construct an isomorphism so that

T1/2 : H−1/2(curl; Σ)→ L2
t (Σ),

or T−1/2 : L2
t (Σ)→ H−1/2(div; Σ).

(5.94)

A transmission operator T0 or T1 can then be constructed as

T0 := T∗
1/2T1/2 : H−1/2(curl; Σ)

T1/2−→ L2
t (Σ)

T∗
1/2−→ H−1/2(div; Σ),

T1 := T∗
−1/2T−1/2 : H−1/2(div; Σ)

T−1/2−→ L2
t (Σ)

T∗
−1/2−→ H−1/2(curl; Σ).

(5.95)

By construction, these operators T0 and T1 will be self-adjoint and positive. The main interest
in considering this alternative route is to be able to apply the quasi-localization process by
truncation of the kernel that was described previously.

According to the Helmholtz-Hodge decomposition we can write, schematically,



174 CHAPTER 5. INTEGRAL IMPEDANCE OPERATORS

H−1/2(curl; Σ)

L2
t (Σ)

H−1/2(div; Σ)

T0 = T∗
1/2T1/2

T1/2

T∗
1/2

= gradΣ H
1
2 + curlΣ H

3
2

= gradΣ H1 + curlΣ H1

= gradΣ H
3
2 + curlΣ H

1
2

+ 1
2 − 1

2

+ 1
2 − 1

2

Vector potentials of the fractional Yukawa operator The construction of candidate
transmission operators T1/2 will be based again on potentials of the fractional powers of the
Yukawa positive operator (σ2 −∆)s/2, σ ≥ 0 and s ∈ (1, 3).

The previous analysis led us to introduce three potentials, all based on the fundamental
solution Gd,s,σ defined in (5.33). We define, for σ > 0

〈V3,s,σφ,ψ〉Σ := κ0
s−1

∫
Σ

∫
Σ
CsG3,s,σ(|x− y|)φ(y) ·ψ(x) dσ(x)dσ(y),

〈QG
3,s,σφ,ψ〉Σ := κ0

s−3
∫

Σ

∫
Σ
CsG3,s,σ(|x− y|) divΣ φ(y) divΣψ(x) dσ(x)dσ(y),

〈QC
3,s,σφ,ψ〉Σ := κ0

s−3
∫

Σ

∫
Σ
CsG3,s,σ(|x− y|) curlΣ φ(y) curlΣψ(x) dσ(x)dσ(y),

(5.96)

with the renormalization constant (see Remark 5.1),

Cs =
2
√
πΓ( s2 )

Γ( s−1
2 )

, (5.97)

which is strictly positive if s > 1.
Because of the positivity of the operator from which they are built, these potentials will

remain positive. We expect (but it remains to prove it rigorously) that, for some real s

V3,s,σ is an operator or order 1− s,
QG

3,s,σ is an operator or order 3− s, selectively acting on the gradΣ part,
QC

3,s,σ is an operator or order 3− s, selectively acting on the curlΣ part.
(5.98)

Of course, since we want to deal with fields that are not particularly regular, we will not be able
to choose too large values for s. To continue the discussion below, we assume that the above
conjecture holds true.

5.2.4.1 First ideas

Many different operators can be constructed from these ingredients and we have considered many
variants.

Perhaps the first operator that comes to mind is σ > 0

V3,3/2,σ + QC
3,5/2,σ. (5.99)

To see why this could be a valid candidate, notice that the first term is regularising of half an
order (− 1

2 ) while the second term is de-regularising of half an order (+ 1
2 ), but acts only on the

curlΣ part of the tangential fields. The principal term for the gradΣ part will be the first one,
while for the curlΣ part it will be the second term. Notice that any other linear combination
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could be considered in (5.99), which would give two (strictly positive) additional parameters to
tweak. We do not feature such parameters explicitly here and in the following for the sake of
simplicity.

In the same spirit, if we were to construct an operator T−1/2, one could propose

V3,5/2,σ + QG
3,3/2,σ. (5.100)

The operators from (5.99) or (5.100) could be used in practice. However, they have two
main drawbacks. The first one comes from the special function of the kernel of Gd,s,σ which is
expensive to evaluate numerically. The second issue comes from the singularity of the two kernels
involved, which are (in three dimensions) of strength 3

2 and 1
2 . These types of singularities are

not-standard and require special quadrature rules. Besides, a singularity of order 3
2 is quite

severe and would require very special care to be evaluated numerically with accuracy.

Riesz potentials To address the first issue it was proposed in the scalar setting to consider
the limit case σ = 0, hence another candidate is

V3,3/2,0 + QC
3,5/2,0. (5.101)

We recover then the Riesz potentials, for which the kernel does not involve any special function
but only the singularity of the correct order. However, as we already mentioned the potential
V3,3/2,0 suffers from a bad behaviour for low order, propagative modes. This issue will become
blatant when we will conduct our modal analysis in the next chapter. We believe that such a
matter is unacceptable if one would like to have some efficiency.

One needs a replacement for the operator V3,3/2,0. Remember that the role of this operator is
to regularise the gradΣ part of the tangential field. The idea is then to propose an operator that
is the composition of a (positive) regularizing operator and a (positive) de-regularizing operator
of adequate orders but acting specifically on the gradΣ part of the fields. This is the reason why
we propose (

Id − κ0
−2 gradΣ divΣ

)−1QG
3,3/2,0 + QC

3,5/2,0. (5.102)

To see why this is a valid candidate operator, notice that the first term is composed of two
positive operators of orders +2 and − 3

2 which makes an operator of order + 1
2 acting only on the

gradΣ part of tangential fields. The second term QC
3,5/2,0 is retained from (5.101) since it already

has the correct action on the curlΣ part of tangential fields.
The operator in (5.102) is valid from a theoretical point of view, however it also suffers from

two issues. The first one is the strong singularity of order 3
2 that is still present in the first term.

The second one will appear if one tries to discretize it with standard boundary elements. Indeed,
the usual elements are the Raviart-Thomas and Nedelec elements which are respectively divΣ
and curlΣ conforming (but not both). Therefore, we forecast that careless discretization of the
operator may lead to trouble because of the presence at the same time of the operators QG

3,3/2,0
and QC

3,5/2,0. All-in-all, the operator in (5.102) does not appear to be a valuable improvement
over the operator in (5.99). However, the ideas behind the construction of this operator are
similar to the ones used in the next section.

5.2.4.2 A viable candidate?

We discuss briefly here the reasons that led us to propose a possible candidate which is the one
that we actually implemented and tested numerically.
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Definition The idea is to replace the term
(
Id − κ0

−2 gradΣ divΣ
)−1QG

3,3/2,0 in (5.102) with a
better behaved operator (with a weaker singularity). Consider(

Id − κ0
−2 gradΣ divΣ

)−1/2QG
3,5/2,0 + QC

3,5/2,0. (5.103)

The first term has again the required behaviour and only involves kernels with a singularity of
order 1

2 . However, it now involves a square root operator which is, at first sight, difficult to
evaluate.

The trick is then to let

TG1/2 :=
(
Id − κ0

−2 gradΣ divΣ
)−1/2QG

3,5/2,0,

TC1/2 := QC
3,5/2,0,

(5.104)

so that we can define T0 as

T0 =
(

TG1/2

)∗
TG1/2 +

(
TC1/2

)∗
TC1/2. (5.105)

It follows that, T0 can be evaluated as

T0 =
(

QG
3,5/2,0

)∗ (
Id − κ0

−2 gradΣ divΣ
)−1 QG

3,5/2,0 +
(

QC
3,5/2,0

)∗
QC

3,5/2,0, (5.106)

which no longer involves square root operators.

Truncation After truncation of the kernels, which is the main reason that pushes us to con-
struct this operator, we may loose the injectivity property. To avoid this pitfall, a possible
workaround is to add a (positive) compact operator to restore the desired behaviour. In the
scalar setting, it was enough to simply add an identity term. It is however no longer an option
in the electromagnetism case because it is not a compact operator and we would loose the iso-
morphism property (recall that we need an operator that is of order −1/2, i.e. regularizing, for
the gradΣ part of the field). A better option is to add a (positive) regularizing operator such as

(1− κ0
−2 gradΣ divΣ)−1

, (5.107)

which has the required properties and is only a compact perturbation. Finally, the operator that
we considered reads

TRiesz
0 =

(
Id − κ0

−2 gradΣ divΣ
)−1

+
(

QG
3,5/2,0

)∗ (
Id − κ0

−2 gradΣ divΣ
)−1 QG

3,5/2,0

+
(

QC
3,5/2,0

)∗
QC

3,5/2,0.

(5.108)

5.2.5 Conclusion on possible transmission operators for Maxwell
Because we considered many different candidate operators in our discussion above, we quickly
sum up below which are the ones we find the most interesting.

Standard potential theory for Maxwell equations led us to suggest to use (for σ > 0)

2U3,σ as a T1 operator,
2K3,σ as a T0 operator.

(5.109)
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See (5.83) for the definitions of the operators U3,σ and K3,σ. These operators have integral
representations given in (5.85) and (5.86) and are (or are close to operators) implemented in
standard boundary element codes. However, we were not able to prove that they retain their
properties if localization strategies or other compression techniques are applied to reduce their
computational cost.

We will report several numerical results obtained using the operator

TBessel
0 = 2K3,κ0 (5.110)

in what follows. The choice σ = κ0 is motivated in particular by the modal analysis conducted
in the next chapter.

Fractional powers of the Yukawa operator led us to suggest to use (for σ > 0)

V3,3/2,σ + QC
3,5/2,σ as a T1/2 operator,

V3,5/2,σ + QG
3,3/2,σ as a T−1/2 operator.

(5.111)

See (5.96) for the definitions of these operators. These operators are in contrast less standard.
Their kernels involve special functions that are costly to evaluate numerically and present non-
classical (strong) singularities that require dedicated care in practical implementations. For both
these reasons, we did not test these operators in our numerical experiments. On the other hand,
their are amenable to quasi-localization by truncation while retaining the required properties for
the theory to apply.

Finally, we proposed an operator constructed from Riesz potentials which reads

TRiesz
0 = Θ−1 +

(
QG

3,5/2,0

)∗
Θ−1 QG

3,5/2,0 +
(

QC
3,5/2,0

)∗
QC

3,5/2,0, (5.112)

where we used as a short-hand, the notation

Θ = Id − κ0
−2 gradΣ divΣ. (5.113)

This operator involves weaker (albeit non-standard) singularities and the kernels do not involve
special functions. It is amenable to localization by truncation, while retaining the important
properties required by the convergence analysis. This is why we tested this operator in our
numerical experiments. However, its discretization will prove to be somehow troublesome and
computationally costly.
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Chapter 6

Modal analysis in spherical
geometries
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The purpose of this chapter is to study more precisely some of the integral operators that were
described in the previous chapter in a particular configuration allowing for explicit computations.
We chose to study the spherical geometry that allows for analytical expressions of tangential fields
using the Hilbert basis built upon (scalar and vector) spherical harmonics.

Modal analysis provides valuable insights on the convergence of domain decomposition al-
gorithms and its main mechanisms. As we shall see in the following, all the operators involved
are diagonalized in the aforementioned Hilbert basis — including the integral operators, this is
one of the main tasks we are tackling in this chapter — and this decoupling allows for a fine
understanding of their different contribution. One can essentially infer the convergence rate
of the (relaxed) Jacobi algorithm from these decompositions (unfortunately, understanding the

179
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convergence of the Gmres algorithm is less straightforward). In particular, following standard
practice, we are brought to distinguish three main group of modes, namely, by increasing mode
number: the propagative modes, the grazing modes and the evanescent modes. Depending on
the transmission operator that is chosen, one of these groups will be the culprit for the slowing of
the convergence. One then understands that we can also use modal analysis as a tool to design
suitable transmission operators. For instance, some of the operators with adequate theoretical
properties that we first considered turned out to be poorly designed after their modal decom-
position was performed. Besides, since the definition of the candidate transmission operators
often involve parameters that are available for tuning, one can use the modal analysis to try to
optimize in some sense the operators to make them more efficient.

The results presented in this chapter mainly comes from a joint work with Francis Collino.
We mention that modal analysis was used in the acoustic setting in [44, Sec. 4 and 5] and [91,
Chap. 3] to analyse and improve (through parameter optimization) the performance of several
transmission operators in the context of domain decomposition but for a circular geometry (in
2D). Similar techniques were also already used in the electromagnetic setting in [34] to study a
dissipative version of the EFIE operator and in [59, Sec. 3.3], [61, Sec. 4] for their special, Padé-
based, transmission operator. We also refer the interested reader to [110, Sec. 2.4 and 5.4.1]
and finally to [128] which provides some interesting results on layer potentials in the spherical
harmonic basis.

For the sake of clarity, we restrict the discussion to three transmission operators. These
operators are all T0-type operators and were all implemented and used in our numerical exper-
iments (see next chapter). The first one is the identity operator of Després; the second one is
TBessel

0 = 2K3,σ defined in (5.82) and stems from classical potential theory; and the third one is
TRiesz

0 defined in (5.112) and stems from (less standard) Riesz potentials. As we shall see, the last
two operators are positive self-adjoint isomorphisms from H−1/2(curl;SR) to H−1/2(div;SR) so
that the analysis of Chapter 3 is applicable. The first operator, the identity, is the simplest choice
one could make and is used as a point of comparison. If the convergence analysis we performed
in Chapter 3 is not directly applicable for this choice of transmission operator (Assumption 3.47
does not hold) other methods of proof can be used to obtain the convergence of the iterative
methods considered, see [49] for instance.

This chapter contains two sections. In the first section we conduct the modal analysis of
the domain decomposition method and show that the use of non local operators with suitable
properties is mandatory for achieving geometric convergence of the relaxed Jacobi algorithm.
Numerical results are provided to illustrate the analysis. All the technical proofs regarding the
diagonalization results are gathered in the second section. We are in particular able to prove
in the spherical setting that the operators proposed in the preceding chapter enjoy the required
properties to obtain the geometric convergence.

A note on our notations In this chapter, we consider Σ = SR the sphere of radius R in R3

(d = 3), and we note

Ω+ =
{

x ∈ R3
∣∣∣ |x| > 1

}
, and Ω− =

{
x ∈ R3

∣∣∣ |x| < 1
}
. (6.1)

The domain Ω+ (respectively Ω−) will be referred to as the exterior (respectively interior) domain.
Besides, we denote by S2 the unit sphere and by r̂ the outward unit normal vector.

The results of this chapter are established for a uniform and homogeneous medium charac-
terized by its wavenumber κ = ω

√
µε (see (3.63) for the definitions of these quantities). Besides,

we shall use from time to time Maxwell’s equations in the form of a first order system for which
some of the proofs of the following results are slightly easier. This will requires the use of the
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impedance parameter Z defined as

Z :=
√
µ

ε
. (6.2)

6.1 Modal analysis of the domain decomposition method
In this section we analyse the domain decomposition method in the non-overlapping two-domain
decomposition of the whole of R3 into Ω− ∪SR ∪Ω+. The particular geometry allows to perform
a rather acute analysis of the convergence rate of the relaxed Jacobi algorithm.

6.1.1 Algorithm under study
We consider, in this particular two-domain partition, the interface problem (3.222) and the
associated relaxed Jacobi algorithm (3.225) (for σ = 1) from Chapter 3. We specify below our
notations for this particular setting.

Interface problem By linearity it is enough to study the homogeneous problem, which cor-
responds to study the convergence of the error. We therefore consider the interface problem{

Find x ∈ H−1/2(div;SR)2 such that,
(Id −ΠS) x = 0,

(6.3)

where the exchange operator Π and the scattering operator S have the block representation in
H−1/2(div;SR)2

Π :=
[

0 Id
Id 0

]
, and S :=

[
S− 0
0 S+

]
, (6.4)

with the local scattering operators S− and S+ such that (r̂ is the outward unit normal vector to
SR)

S∓ : J 7→ ±(κµ)−1 (curl E± × r̂) |r=R − iT0 r̂× (curl E± × r̂) |r=R, (6.5)
where E± is solution to{

(curl curl−κ2)E± = 0, in Ω±,

∓(κµ)−1 (curl E± × r̂) |r=R − iT0 r̂× (curl E± × r̂) |r=R = J, on SR,
(6.6)

and
lim
r→∞

r
(

(κµ)−1 curl E+ × r̂− i r̂× (E+ × r̂)
)

= 0. (6.7)

Here T0 is supposed to be a generic transmission operator intended to represent either the
identity Id, TBessel

0 = 2K3,κ or TRiesz
0 (see (5.112)).

Iterative algorithm Given a couple of traces x0 in H−1/2(div;SR)2 (the initial error) and a
relaxation parameter r ∈ (0, 1) the relaxed Jacobi algorithm is,

xn+1 = [(1− r)Id + rΠS] xn, n ∈ N. (6.8)

We denote by
Ar = (1− r)Id + rΠS, (6.9)

the iteration operator.
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6.1.2 Diagonalization of the transmission operators
The modal analysis that we conduct below rests on the existence of an Hilbertian basis of
L2
t (SR) given by the vector spherical harmonics. The family of vector spherical harmonics
{Ψ`,m,Φ`,m}`,m, with ` ∈ N∗ and −` ≤ m ≤ ` (see Definition 6.12) forms a complete or-
thonormal system for the hermitian inner product in L2

t (S2).
We assume that the transmission operator T0 is diagonalized by the vector spherical harmon-

ics so that {
T0Ψ`,m = T̂Ψ

` Ψ`,m,

T0Φ`,m = T̂Φ
` Φ`,m,

∀` ∈ N∗, −` ≤ m ≤ `. (6.10)

Note that the eigenvalues T̂Ψ
` and T̂Φ

` do not depend on m and have therefore 2`+ 1 multiplic-
ity. This holds true for the transmission operators we are interested in, as stated by the two
proposition below.

Operator stemming from potential theory We have the following diagonalization result
for the transmission operator TBessel

0 = 2K3,κ defined in (6.92). The proof of this result can be
found in Section 6.2.3, see in particular Proposition 6.22.

Proposition 6.1. The transmission operator TBessel
0 = 2K3,κ is a continuous mapping from

H−1/2(curl;SR) to H−1/2(div;SR) and is diagonalized by Ψ`,m and Φ`,m. The respective eigen-
values, with 2`+ 1 multiplicity, read{

tBessel,Ψ(`) = 2ψ`(iκR)ξ`(iκR),
tBessel,Ψ(`) = 2ψ′

`(iκR)ξ′
`(iκR),

∀` ∈ N∗, (6.11)

where ψ` and ξ` are the spherical Ricatti-Bessel functions (see Section 6.2). These eigenvalues
are all real and strictly positive

tBessel,Ψ(`) > 0, tBessel,Φ(`) > 0, ∀` ∈ N∗, (6.12)

and satisfy the following asymptotic behaviour at infinity

tBessel,Ψ(`) ∼
(

`

κR

)−1
, tBessel,Φ(`) ∼ `

κR
, as `→∞. (6.13)

Operator based on Riesz potentials We have the following diagonalization result for the
transmission operator TRiesz

0 defined in (5.112). The proof of this result can be found in Sec-
tion 6.2.4, see in particular Corollary 6.33.

Proposition 6.2. The transmission operator TRiesz
0 is a continuous mapping from H−1/2(curl;SR)

to H−1/2(div;SR) and is diagonalized by Ψ`,m and Φ`,m. The respective eigenvalues, with 2`+ 1
multiplicity, read
t,Riesz,Ψ(`) =

(
1 + `(`+ 1)

(κR)2

)−1

+
(

1 + `(`+ 1)
(κR)2

)−1 (
`(`+ 1)
(κR)1/2

Γ( 1
4 + `)

Γ( 7
4 + `)

)2

,

tRiesz,Φ(`) = 1 +
(
`(`+ 1)
(κR)1/2

Γ( 1
4 + `)

Γ( 7
4 + `)

)2

,

∀` ∈ N∗.

(6.14)
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These eigenvalues are all real and strictly positive

tRiesz,Ψ(`) > 0, tRiesz,Φ(`) > 0, ∀` ∈ N∗, (6.15)

and satisfy the following asymptotic behaviour at infinity

tRiesz,Ψ(`) ∼
(

`

κR

)−1
, tRiesz,Φ(`) ∼ `

κR
, as `→∞. (6.16)

6.1.3 Diagonalization of the scattering operators
For any J ∈ H−1/2(curl;SR), we define the operator Λ+ as

Λ+ : J 7→ −κ−1 (curl E× r̂) |r=R, (6.17)

such that 
(curl curl−κ2)E = 0, in Ω+,

r̂× (E× r̂) |r=R = J, on SR,

limr→∞ r (curl E× r̂− iκr̂× (E× r̂)) = 0.
(6.18)

Similarly, for any J ∈ H−1/2(curl;SR), we define the operator Λ− as

Λ− : J 7→ κ−1 (curl E× r̂) |r=R, (6.19)

such that {
(curl curl−κ2)E = 0, in Ω−,

r̂× (E× r̂) |r=R = J, on SR.
(6.20)

Remark 6.3 (Eigenvalues of the interior Maxwell problem). It is worth noting that while
the operator Λ+ is well-defined for any wavenumber κ, one must exclude a countable set of values
of the wavenumber κ to be ensured of the well-posedness of the operator Λ− (see [110, Th. 5.3.2]
and the discussion thereafter). These values of the wavenumber κ correspond to the eigenvalues
of the interior Maxwell problem inside SR for which the problem (6.20) becomes ill-posed. For
simplicity, we suppose in the remainder of this chapter that κ lies outside this set of eigenvalues.

We have the following diagonalization result for these operators. The proof of this result can
be found in Section 6.2.2, see in particular Proposition 6.19.

Proposition 6.4. The operators Λ± are diagonalized by Ψ`,m and Φ`,m. The respective eigen-
values Λ̂Ψ

±,` and Λ̂Φ
±,`, with 2`+ 1 multiplicity, read

Λ̂Ψ
−,` = −ψ`(κR)

ψ′
`(κR) ,

Λ̂Φ
−,` = +ψ′

`(κR)
ψ`(κR) ,

and


Λ̂Ψ

+,` = +ξ`(κR)
ξ′
`(κR) ,

Λ̂Φ
+,` = −ξ

′
`(κR)
ξ`(κR) .

∀` ∈ N∗. (6.21)

These eigenvalues are such that

=(Λ̂Ψ
−,`) = =(Λ̂Φ

−,`) = 0 and =(Λ̂Ψ
+,`) < 0, =(Λ̂Φ

+,`) < 0, ∀` ∈ N∗, (6.22)

and satisfy the following asymptotic behaviour at infinity

Λ̂Ψ
±,` ∼ −

κR

`
, Λ̂Φ

±,` ∼ + `

κR
, `→ +∞. (6.23)
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From the definitions of the operators Λ± and the scattering operators S±, we formally have

S± = −(Λ± + iT0)(Λ± − iT0)−1
, (6.24)

so that the eigenvalues of the local scattering operators S− and S+ are, for α ∈ {Ψ,Φ},

Ŝα±,` =
−Λ̂α±,` − iT̂α`
Λ̂α±,` − iT̂α`

, ∀` ∈ N∗. (6.25)

Note that neither T̂α` nor Λ̂α±,` vanish (we actually need to suppose that κ is not an eigenvalue of
the interior problem so that it is true for the operator Λ−). We introduce the ratio (well-defined
since by assumption T̂α` > 0)

Ẑα±,` = −
Λ̂α±,`
T̂α`

, ∀` ∈ N∗. (6.26)

and we can rewrite

Ŝα±,` = −
Ẑα±,` − i
Ẑα±,` + i

, ∀` ∈ N∗. (6.27)

We recall now some simple properties of the Cayley transform from complex analysis.
Lemma 6.5 (Cayley transform). The complex transform

z 7→ z − i
z + i , (6.28)

has the following properties
1. the upper half-plane, i.e. {z = x + iy ∈ C with x ∈ R and y > 0}, is mapped to the open

unit disk, i.e. {z ∈ C with |z| < 1};

2. the real line is mapped to the unit circle minus the point 1, i.e. {z ∈ C with |z| = 1, z 6= 1};

3. the point 1 is mapped to the point −i and the point −1 is mapped to the point i;

4. the origin 0 is mapped to the point −1 and the ‘infinity’ is formally mapped to the point 1.
We stress that, ultimately, much of the analysis boils down to the above lemma and the

properties of the Cayley transform, allowing to get a rather deep understanding of the convergence
of the relaxed Jacobi algorithm. For instance, from this lemma we recover in this particular
setting the contraction property of the scattering operators.
Corollary 6.6 (Contraction property of local scattering operators). Let α ∈ {Ψ,Φ} and
` ∈ N∗. If T̂α` is real and strictly positive,

T̂α` > 0, (6.29)

then we have
|Ŝα−,`| = 1, and |Ŝα+,`| < 1. (6.30)

Proof. Let α ∈ {Ψ,Φ}. From energy conservation results, see Proposition 6.20, we know that
Λ̂α` has a non-positive imaginary part. Since by assumption T̂α` is real and strictly positive, Ẑα`
does belong to the upper half-plane. It follows from Lemma 6.5 that Ŝα±,` does belong to the
unit disk and we recover that the scattering operators are contraction operators. �

Of course the assumption that T̂α` is real and strictly positive is a direct consequence of
Assumption 3.47. It is trivially satisfied by the identity operator and was verified for the other
two transmission operators in Proposition 6.23 and Corollary 6.35.
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6.1.4 Modal convergence analysis
We now arrive to the main purpose of this chapter which is to study the modal behaviour of the
iteration operator involved in our domain decomposition method.

From the above diagonalization results of the scattering operators by the vector spherical
harmonics, it is clear that the iteration operator Ar is completely represented by the countable
family of two-by-two matrices

Aα
r,` =

[
1− r r Ŝα−,`
r Ŝα+,` 1− r

]
, ∀` ∈ N∗, α ∈ {Ψ,Φ}. (6.31)

The derivation of a meaningful estimate for the convergence factor of the relaxed Jacobi
algorithm is not completely straightforward. We only cite the main result below and we refer
the reader to [91, Sec. 3.1.3] and [44, Sec. 4.1.2] for a more comprehensive discussion.

If n is the iteration number, the approach consists in using an estimate for the norm

‖
(
Aα
r,`

)n‖ := sup
`
|
(
Aα
r,`

)n|2, where |
(
Aα
r,`

)n|2 := sup
|x|=1

|
(
Aα
r,`

)n
x|, (6.32)

where | · |2 is the matrix norm subordinate to the euclidian norm | · | in C2.

Lemma 6.7. If we set (using the standard convention regarding the definition of the square root
in C)

τr,` := max
±,α

∣∣∣∣(1− r)± r√Ŝα+,`Ŝα−,`∣∣∣∣ , ∀` ∈ N∗, (6.33)

we have the estimate

τnr,` ≤ |
(
Aα
r,`

)n|2 ≤ (τr,` + rn)τn−1
r,` , ∀` ∈ N∗. (6.34)

Proof. See [91, Lem. 5] and [44, Lem. 4.1]. �

We point out that the quantity τr,` is the maximum eigenvalue of AΨ
r,` and AΦ

r,`.
The above lemma states that the computation of the quantity τr,` is enough to analyse the

convergence of the relaxed Jacobi algorithm. From this point we understand that it all boils
down to study the product Ŝα+,`Ŝα−,`.

Lemma 6.8. If the eigenvalues of the transmission operators have the correct asymptotic be-
haviour

T̂Ψ
` ∼

(
`

κR

)−1
, T̂Φ

` ∼ `

κR
, as `→∞. (6.35)

then there exists a positive constant δ such that

lim
`→∞

ŜΨ
+,`Ŝ

Ψ
−,` = lim

`→∞
ŜΦ

+,`Ŝ
Φ
−,` = −1, and sup

`,α
|Ŝα+,`Ŝα−,` − 1| > δ. (6.36)

Proof. From Proposition 6.21, the eigenvalues of the Electric-to-Magnetic operators Λ± satisfy,
at infinity

Λ̂Ψ
±,` ∼ −

κR

`
, and Λ̂Φ

±,` ∼ + `

κR
, `→ +∞. (6.37)

Using the assumption (6.35), it follows that

lim
`→∞

ẐΨ
±,` = 1, and lim

`→∞
ẐΦ

±,` = −1, (6.38)
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so that, using Lemma 6.5,

lim
`→∞

ŜΨ
±,` = i, and lim

`→∞
ŜΦ

±,` = −i, (6.39)

hence lim`→∞ ŜΨ
+,`Ŝ

Ψ
−,` = lim`→∞ ŜΦ

+,`Ŝ
Φ
−,` = −1. Besides, there exists a L ≥ 0, such that for all

` ≥ L and α ∈ {Ψ,Φ}, |Ŝα+,`Ŝα−,` − 1| > 1. An appropriate δ is then

δ = min

1, min
1≤`≤L,
α∈{Ψ,Φ}

|Ŝα+,`Ŝα−,` − 1|

 > 0. (6.40)

�

We could actually relax the assumption (6.35), and only require the existence of two positive
real constants Cα, α ∈ {Ψ,Φ}, such that

T̂Ψ
` ∼ CΨ

(
`

κR

)−1
, T̂Φ

` ∼ CΦ
`

κR
, as `→∞. (6.41)

The limits lim`→∞ ŜΨ
+,`Ŝ

Ψ
−,` and lim`→∞ ŜΦ

+,`Ŝ
Φ
−,` would then belong to the unit circle minus the

point 1 and the rest of the discussion, including the next theorem, would follow without much
additional difficulties.

Again the assumption that T̂α` has the correct asymptotic behaviour is a direct consequence
of Assumption 3.47. It is trivially not satisfied by the identity operator and was verified for
the other two transmission operators in Proposition 6.24 and Proposition 6.37 with Cα = 1,
α ∈ {Ψ,Φ}, in both cases.
Theorem 6.9 (Geometric convergence of the relaxed Jacobi algorithm). If

T̂Ψ
` > 0, T̂Φ

` > 0, ∀` ∈ N∗,

T̂Ψ
` ∼

(
`

κR

)−1
, T̂Φ

` ∼ `

κR
, as `→∞.

(6.42)

then the estimate (6.33) satisfies
sup
`
τr,` < 1, (6.43)

and the relaxed Jacobi algorithm given in (6.8) converges geometrically.
Proof. The two assumptions on the spectrum of the transmission operator yield, according to
both Lemma 6.6 and Lemma 6.8, the existence of ε > 0 such that for ` ∈ N∗ and α ∈ {Ψ,Φ}∣∣∣∣√Ŝα+,`Ŝα−,`∣∣∣∣ < 1, and sup

`,α

∣∣∣∣√Ŝα+,`Ŝα−,` − 1
∣∣∣∣ > ε. (6.44)

Using again the identity (3.233), we get for ` ∈ N∗ and α ∈ {Ψ,Φ},∣∣∣∣(1− r) + r
√
Ŝα+,`Ŝ

α
−,`

∣∣∣∣2 ≤ (1− r) + r

∣∣∣∣√Ŝα+,`Ŝα−,`∣∣∣∣2 − r(1− r)∣∣∣∣1−√Ŝα+,`Ŝα−,`∣∣∣∣2
≤ 1− r(1− r)ε2 < 1.

(6.45)

We deduce that the estimate (6.33) satisfies

sup
`
τr,` < 1, (6.46)

and Lemma 6.7 yields the geometric convergence of the relaxed Jacobi algorithm. �
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Note that the condition is only sufficient to ensure the geometric convergence. While it is
not a priori necessary, it is possible to show, for this particular geometry, negative results such
as the impossibility of a geometric convergence for the relaxed Jacobi algorithm if the symbol of
the transmission operator does not have an adequate asymptotic behaviour for large `. We refer
the reader to [91, Prop. 4] and [44, Th. 4.6] where such results are established in the acoustic
setting in 2D (see also [91, Rem. 1]).

6.1.5 Numerical illustration
We consider now the particular case of a sphere SR of radius R = 2 and a wavenumber κ = 5
(used in the definition of TRiesz

0 ), this value being also used for the parameter σ = 5 of the
operator TBessel

0 = 2K3,σ.

Eigenvalues of the transmission operators We report in Figure 6.1 the eigenvalues of
all these three candidate transmission operators. Beware that we represented the inverse of
the eigenvalues associated to Ψ`,m to showcase the asymptotic rate as ` grows. We observe
numerically that these asymptotic rates for both non-local operators are the ones we were looking
for. Notice in addition how all these operators have their eigenvalues close to 1 for small values
of `.
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Figure 6.1: Eigenvalues associated to each Ψ`,m (left) and Φ`,m (right) of some transmission
operators with respect to the mode number `. Fixed parameters κ = σ = 5, R = 2.

Eigenvalues of the iteration operator Figure 6.2 reports the eigenvalues of the iteration
operator Ar in the complex plane for the three transmission operators Id, TBessel

0 = 2K3,σ and
TRiesz

0 .
For the case r = 1 (left column), we visualize that all the eigenvalues are inside the unit circle

(featured with a dashed line). Note also that the accumulation points (which correspond to large
mode numbers `) are close to the points i and −i for the two non-local operator but seem to be
−1 and 1 for the identity operator.
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For the case r = 0.5 (right column), we visualize the effect of the relaxation. For the non-local
operators, the accumulation points of the eigenvalues of the iteration operator are now strictly
inside the unit circle, while the eigenvalues associated to the identity operator still accumulate
near 1.

This is numerical evidence that the eigenvalues are `-uniformly bounded away from the critical
point 1 for the two non-local operators TBessel

0 and TRiesz
0 . This indicates in particular that the

convergence factor of the relaxed Jacobi algorithm is strictly below one for these two operators.
One understands however that the relaxation is mandatory to obtain the geometric convergence.
In contrast, for the identity operator the eigenvalues are arbitrarily close to the critical point 1,
even with the relaxation.

Modal convergence factor We report in Figure 6.3 the modal convergence factor τr,` of the
relaxed Jacobi algorithm for a relaxation parameter r = 0.5.

For low mode number ` the convergence factor is very small (in fact close to r) which stems
from the fact that all these transmission operators act as the identity for these (propagative)
modes.

Notice that the asymptotic behaviour as ` increases is very different for the identity operator
compared to the two others. This is a feature of any local transmission operator, or an operator
with not the adequate order: the evanescent modes are not adequately taken into account and
we have sup` τr,` = 1 in this case. In contrast for the two non-local operators that we advocate,
the asymptotic convergence factor is very good. This is of course due to the correct order of the
transmission operator, in fact they were designed exactly for this purpose.

Finally, we note that the behaviour of all these operators is not so good for the grazing modes
` ∼ κR. If for the non-local operators the maximum convergence factor is obtained for those
modes, even for the identity operator we observe a local maximum. This is a general observation
for propagative problems that is actually true in more generality than this particular setting.
This is especially troublesome since these modes often carry a non negligible part of energy. To
some extent, one can mitigate the effect of those modes as we describe in the next paragraph.

6.1.6 Optimization
As we already mentioned the operator TRiesz

0 defined (5.112) can be parametrized:

TRiesz
0 [α, β, γ] := α Θ−1 + β

(
QG

0,5/2

)∗
Θ−1 QG

0,5/2 + γ
(

QC
0,5/2

)∗
QC

0,5/2, (6.47)

where α, β and γ are three strictly positive constants and still remain in the validity range of the
theory. One can expect that choosing judiciously the values of these parameters could improve
the convergence factor of the domain decomposition algorithm.

Direct optimization is difficult, but from the analytical expression of the eigenvalues we can
apply optimization algorithms1 to try to obtain those values. The result of this process in the
case R = 2 and κ = 5 is provided in Figure 6.4. The optimized values of the above parameters
in this particular case are α = 0.57, β = 1.5 and γ = 0.42. Note that these values greatly varies
with respect to κR.

Compare Figure 6.2e with Figure 6.4a, the eigenvalues are more ‘condensed’ and far away
from the critical point (1, 0). In Figure 6.4b the enhancement is well indicated by the decrease of
the maximum convergence rate. Notice that the convergence factors for the lowest order mode
(` = 1), the grazing modes (` ∼ κR) and the asymptotic convergence factor (` → ∞) are very
similar. This situation reminds of similar observations in [91, Sec. 3.2.3].

1We used the Optim.jl package in Julia, see [106].
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Figure 6.2: Eigenvalues of the (iteration) operator Ar associated to each Ψ`,m and Φ`,m in the
complex plane for some transmission operators and for two values of the relaxation parameters
r = 1 (left column) and r = 1/2 (right column). Fixed parameters κ = σ = 5, R = 2.
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Figure 6.3: Modal convergence factor τr,` for some transmission operators. Fixed parameters
κ = σ = 5, R = 2, r = 0.5.
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Figure 6.4: Result of a possible optimization process on TRiesz
0 [α, β, γ]. Fixed parameters κ =

σ = 5, R = 2, r = 0.5.
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We remark that it is also possible to parametrize in some sense the operator TBessel
0 , since,

for this particular spherical geometry, we have

TBessel
0 = TBessel

0 [1, 1, σ], (6.48)

where (d = 3 and s = 2)
TBessel

0 [α, β, σ] := α V3,2,σ + β QC
3,2,σ, (6.49)

with α and β two strictly positive constants, that could be tuned. We would get some similar
improvements.

Of course the optimization is conducted in this particular ideal geometry and there are no
guarantees that these optimized parameters are sensible values when the geometry changes (see
also [91, Sec. 3.2.3.3] on this matter). Besides this optimization is only valid for the (relaxed)
Jacobi algorithm. To simplify the discussion in what follows, we will only use the operator TRiesz

0
defined in (5.112), i.e. keep α = β = γ = 1 and the operator TBessel

0 = 2K3,σ. In some sense, one
could argue that this choice consists in choosing the optimal asymptotic convergence factor for
large `.

6.2 Diagonalization results
We show in this section that some boundary operators defined on the sphere SR of radius R
are diagonalized by the basis of spherical harmonics and we provide analytic expressions of
the corresponding eigenvalues. We consider three different operators: the so-called Electric-to-
Magnetic maps which take the tangential trace of the electric field and compute the (rotated)
tangential trace of the corresponding magnetic field; the operator from standard potential theory
TBessel

0 = 2K3,σ that we used as a transmission operator; and a class of integral operators which
includes Riesz potentials that are involved in the definition of the other transmission operator
we are considering TRiesz

0 .

6.2.1 Modal decompositions in spherical coordinates
In this sub-section, we gather some standard definitions and set some notations regarding Hilbert
basis in spherical geometries. We only cite important properties that will be used in what follows.
We then give classical results stating that solutions to Maxwell equations admit special convergent
expansions in spherical coordinates.

6.2.1.1 Scalar spherical harmonics

We first recall the definition of Legendre polynomials P`, for ` ∈ N, power series solution of
Legendre differential equation, defined on [−1, 1] by

d
dx

[
(1− x2) d

dxP`(x)
]

+ `(`+ 1)P`(x) = 0, P0(x) = 1. (6.50)

One then defines the associated Legendre functions Pm` , for −` ≤ m ≤ `, defined on [−1, 1]
as [54, p. 14.2],

Pm` (x) = (−1)m(1− x2)
m/2 dm

dxmP`(x). (6.51)

Our definition of the (scalar) spherical harmonic Y`,m is as follows.
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Definition 6.10 ([54, p. 14.30]). The scalar spherical harmonics are defined for ` ∈ N, −` ≤
m ≤ `, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π as

Y`,m(θ, φ) =
(

2`+ 1
4π

(`− |m|)!
(`+ |m|)!

)1/2
P

|m|
` (cos θ)eimφ. (6.52)

The interest in such objects becomes clear in light of the following proposition.

Proposition 6.11 ([110, Th. 2.4.1 and 2.4.4] and [46, Th. 2.7]). The scalar spherical harmonic
Y`,m of order ` is the eigenfunction of the Laplace-Beltrami operator associated with the eigenvalue
−`(`+ 1) with 2`+ 1 multiplicity

∆S2Y`,m + `(`+ 1)Y`,m = 0. (6.53)

The family (Y`,m)`,m forms a complete orthonormal system for the hermitian inner product in
L2(S2) (orthogonal system also in H1(S2)).

In fact, for any real s, the hermitian product and the associated norm in Hs(S2) are given
by [110, Eq. (2.5.5)]

(u, v)Hs(S2) =
+∞∑
`=0

∑̀
m=−`

(`(`+ 1))su`,mv`,m,

‖u‖2
Hs(S2) =

+∞∑
`=0

∑̀
m=−`

(`(`+ 1))s|u`,m|2.

(6.54)

for any u and v in Hs(S2) represented by their respective coefficients (u`,m)`,m and (v`,m)`,m in
the basis of the spherical harmonics.

6.2.1.2 Vector spherical harmonics

Our definition of the vector spherical harmonics Ψ`,m and Φ`,m is as follows — notice our choice
of rescaling, which is not completely standard but is somewhat more pleasant to handle when
computing norms of tangential fields.

Definition 6.12. The vector spherical harmonics are defined for ` ∈ N∗, −` ≤ m ≤ ` as

Ψ`,m = (`(`+ 1))−1/2 gradS2 Y`,m,

Φ`,m = (`(`+ 1))−1/2 curlS2 Y`,m.
(6.55)

These two quantities are related through the simple identity

Φ`,m = Ψ`,m × r̂, (6.56)

where r̂ is the outward unit normal vector to the unit sphere S2.
The following proposition establishes in particular the Helmholtz-Hodge decomposition for

tangential fields on the unit sphere.

Proposition 6.13 ([110, Th. 2.4.8] and [46, Th. 6.23]). The family {Ψ`,m,Φ`,m}`,m forms a
complete orthonormal system for the hermitian inner product in L2

t (S2).
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Given two vectors f and g in L2
t (S2) represented by their respective coefficients {fG`,m, fC`,m}`,m

and {gG`,m, gC`,m}`,m, we can compute their hermitian products or norms in some spaces as follows.
The hermitian product and the associated norm in L2

t (S2) are given by [110, Eq. (5.3.43) and
(5.3.43)]

(f ,g)L2
t (S2) =

+∞∑
`=1

∑̀
m=−`

(
fG`,mg

G
`,m + fC`,mg

C
`,m

)
,

‖f‖2
L2

t (S2) =
+∞∑
`=1

∑̀
m=−`

(
|fG`,m|2 + |fC`,m|2

)
.

(6.57)

The hermitian product and the associated norm in H−1/2(div;S2) are given by [110, Eq. (5.3.52)]

(f ,g)H−1/2(div;S2) =
+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))1/2

fG`,mg
G
`,m + (`(`+ 1))−1/2

fC`,mg
C
`,m

)
,

‖f‖2
H−1/2(div;S2) =

+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))1/2|fG`,m|2 + (`(`+ 1))−1/2|fC`,m|2

)
.

(6.58)

The hermitian product and the associated norm in H−1/2(curl;S2) are given by [110, Eq. (5.3.53)]

(f ,g)H−1/2(curl;S2) =
+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))−1/2

fG`,mg
G
`,m + (`(`+ 1))1/2

fC`,mg
C
`,m

)
,

‖f‖2
H−1/2(curl;S2) =

+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))−1/2|fG`,m|2 + (`(`+ 1))1/2|fC`,m|2

)
.

(6.59)

6.2.1.3 Spherical Bessel functions

We recall below several definitions of spherical Bessel functions, to avoid any possible confusion
with existing literature in the choice of notations.

Definition 6.14. The spherical Bessel functions are defined, for ` ∈ N and complex arguments
z ∈ C, as ([54, p. 10.47])

j`(z) =
√

π

2z Jn+1/2(z),

y`(z) =
√

π

2z Yn+1/2(z),

h
(1)
` (z) =

√
π

2zH
(1)
n+1/2(z),

h
(2)
` (z) =

√
π

2zH
(2)
n+1/2(z).

(6.60)

Definition 6.15. The Riccati-Bessel functions are defined, for ` ∈ N and complex arguments
z ∈ C, as

ψ`(z) = zj`(z),
χ`(z) = zy`(z),

ξ`(z) = zh
(1)
` (z),

ζ`(z) = zh
(2)
` (z).

(6.61)

6.2.1.4 Modal decomposition of solutions of Maxwell equations

The following proposition states that solutions of Maxwell equations in spherical coordinates can
be written as expansions of spherical wave functions.
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Proposition 6.16 ([46, Th. 6.24 and Th. 6.25]). A divergence-free solution of the vector
Maxwell equation in the domain delimited by two spheres of radius Ri and Re with Ri < Re
admits a convergent expansion representation in spherical coordinates as

f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

curl
((
fC,ψ`,m ψ`(κr) + fC,χ`,m χ`(κr)

)
Y`,m(θ, φ)r̂

)

+
+∞∑
`=1

∑̀
m=−`

κ−1 curl curl
((
fG,ψ`,m ψ`(κr) + fG,χ`,m χ`(κr)

)
Y`,m(θ, φ)r̂

)
.

(6.62)

A divergence-free solution of the vector Maxwell equation in the interior of the sphere SR of
radius R admits a convergent expansion representation in spherical coordinates as

f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

fC`,m curl (ψ`(κr)Y`,m(θ, φ)r̂)

+
+∞∑
`=1

∑̀
m=−`

fG`,mκ
−1 curl curl (ψ`(κr)Y`,m(θ, φ)r̂) .

(6.63)

A divergence-free solution of the vector Maxwell equation in the exterior of the sphere SR of
radius R satisfying the Silver-Müller radiation condition at infinity admits a convergent expansion
representation in spherical coordinates (with a correct time-dependence) as

f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

fC`,m curl (ξ`(κr)Y`,m(θ, φ)r̂)

+
+∞∑
`=1

∑̀
m=−`

fG`,mκ
−1 curl curl (ξ`(κr)Y`,m(θ, φ)r̂) .

(6.64)

It will be convenient to compute the curl of such expansions, which is the purpose of the
following lemma.

Lemma 6.17. Let f be a vector field admitting a convergent expansion representation in spherical
coordinates in the form of

f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

fC`,m curl (f`(κr)Y`,m(θ, φ)r̂)

+
+∞∑
`=1

∑̀
m=−`

fG`,mκ
−1 curl curl (f`(κr)Y`,m(θ, φ)r̂) ,

(6.65)

where f` is any of the Ricatti-Bessel functions ψ`, χ`, ξ` or ζ`. Then we have

curl f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

fC`,m curl curl (f`(κr)Y`,m(θ, φ)r̂)

+
+∞∑
`=1

∑̀
m=−`

fG`,mκ curl (f`(κr)Y`,m(θ, φ)r̂) ,

(6.66)
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Proof. We need only to prove that

κ−1 curl curl curl (f`(κr)Y`,m(θ, φ)r̂) = κ curl (f`(κr)Y`,m(θ, φ)r̂) . (6.67)

Let us introduce g` such that f`(z) = zg`(z), so that g` is any of the spherical Bessel functions
j`, y`, h(1)

` or h(2)
` . Then w`,m := g`(κr)Y`,m(θ, φ) satisfies the Helmholtz equation [46, Th. 2.9]

− (∆ + κ2)w`,m = 0. (6.68)

From curl grad ≡ 0, we have

curl
[
r(∆ + κ2)w`,mr̂ + gradw`,m

]
= 0, (6.69)

hence
curl

[
κ2 rw`,mr̂ + ∆(rw`,mr̂)

]
= 0, (6.70)

or again, since ∆ = grad div− curl curl,

curl
[
κ2 rw`,mr̂ + curl curl(rw`,mr̂)

]
= 0, (6.71)

which are finally rewritten

curl
[
κ2 (f`(κr)Y`,m(θ, φ)r̂) + curl curl (f`(κr)Y`,m(θ, φ)r̂)

]
= 0. (6.72)

�

We will also need in what follows the expression of the tangential trace of such decompositions,
which can be easily deduced from the following proposition.

Proposition 6.18. Let f be a vector field admitting a convergent expansion representation in
spherical coordinates in the form of

f(r, θ, φ) =
+∞∑
`=1

∑̀
m=−`

fC`,m curl (f`(r)Y`,m(θ, φ)r̂)

+
+∞∑
`=1

∑̀
m=−`

fG`,mκ
−1 curl curl (f`(r)Y`,m(θ, φ)r̂) .

(6.73)

The tangential trace r̂ × (f × r̂)|SR
of f on the sphere SR with radius R admits the following

convergent expansion

r̂× (f × r̂)|SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (
fC`,mf`(R)Φ`,m + fG`,mκ

−1f ′
`(R)Ψ`,m

)
. (6.74)

Proof. If u = ur r̂+uθθ̂+uφφ̂ denotes a vector vector field in R3 in spherical coordinates (r̂, θ̂, φ̂),
we have

curl u = 1
r sin θ

(
∂(sin θuφ)

∂θ
− ∂uθ

∂φ

)
r̂

+ 1
r

(
−∂(ruφ)

∂r
+ 1

sin θ
∂ur
∂φ

)
θ̂ + 1

r

(
∂(ruθ)
∂r

− ∂ur
∂θ

)
φ̂.

(6.75)
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Besides, if u denotes a scalar field on the sphere SR, the two following surface differential operators
admit the expressions [110, Eq. (2.4.181) and (2.4.182)]

gradSR
u = ∂u

∂θ
θ̂ + 1

sin θ
∂u

∂φ
φ̂,

curlSR
u = 1

sin θ
∂u

∂φ
θ̂ − ∂u

∂θ
φ̂.

(6.76)

From (6.75) and (6.76) we compute

curl (frY`,mr̂) = 1
r

1
sin θ f`

∂Y`,m
∂φ

θ̂ − 1
r
f`
∂Y`,m
∂θ

φ̂,

= r−1f` curlSR
Y`,m,

(6.77)

and
r̂× [curl curl (frY`,mr̂)× r̂] = 1

r

∂f`
∂r

∂Y`,m
∂θ

θ̂ + 1
r

1
sin θ

∂f`
∂r

∂Y`,m
∂φ

φ̂,

= r−1f ′
` gradSR

Y`,m.

(6.78)

The result then follows readily by definition of the spherical harmonics. �

6.2.2 Electric-to-Magnetic operators
We first study the so-called Electric-to-Magnetic maps, akin to Dirichlet-to-Neumann maps but
for the electromagnetic setting.

For any J ∈ H−1/2(curl;SR), we define the exterior Electric-to-Magnetic operator Λ+ as

Λ+ : J 7→ −iZ (H× r̂) |r=R, (6.79)

such that 
curl E− iκZH = 0, in Ω+,

curl H + iκZ−1E = 0, in Ω+,

r̂× (E× r̂) |r=R = J, on SR,

limr→∞ r (ZH× r̂− r̂× (E× r̂)) = 0.

(6.80)

Similarly, for any J ∈ H−1/2(curl;SR), we define the interior Electric-to-Magnetic operator Λ−
as

Λ− : J 7→ iZ (H× r̂) |r=R, (6.81)

such that 
curl E− iκZH = 0, in Ω−,

curl H + iκZ−1E = 0, in Ω−,

r̂× (E× r̂) |r=R = J, on SR.

(6.82)

Note that the denomination ‘Electric-to-Magnetic’ is convenient but slightly abusive since we
included the factor iZ in the above definitions.

We suppose that these operators are well-defined, see Remark 6.3.
We are now able to state our first diagonalization result.
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Proposition 6.19 ([110, Eq. (5.3.88)]). The Electric-to-Magnetic operators Λ± are diagonalized
by Ψ`,m and Φ`,m. The respective eigenvalues Λ̂Ψ

±,` and Λ̂Φ
±,`, with 2`+ 1 multiplicity, read

Λ̂Ψ
−,` = −ψ`(κR)

ψ′
`(κR) ,

Λ̂Φ
−,` = +ψ′

`(κR)
ψ`(κR) ,

and


Λ̂Ψ

+,` = +ξ`(κR)
ξ′
`(κR) ,

Λ̂Φ
+,` = −ξ

′
`(κR)
ξ`(κR) ,

∀` ∈ N∗. (6.83)

Proof. By Proposition 6.16, the fields (E+,H+) solutions of (6.80) and (E−,H−) solutions
of (6.82) are necessary of the form of (6.64) and (6.63) respectively. We denote by {EΨ

±,`,m, E
Φ
±,`,m}`,m

and {HΨ
±,`,m,H

Φ
±,`,m}`,m the corresponding coefficients with obvious convention and we have from

the equations inside the domain and Lemma 6.17{
EΦ

±,`,m − iZHΨ
±,`,m = 0,

HΦ
±,`,m + iZ−1EΨ

±,`,m = 0.
(6.84)

From Proposition 6.18 we have
r̂× (E− × r̂) |SR

=
+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (
EΦ

−,`,mψ`(κR)Φ`,m + EΨ
−,`,mψ

′
`(κR)Ψ`,m

)
,

r̂× (E+ × r̂) |SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (
EΦ

+,`,mξ`(κR)Φ`,m + EΨ
+,`,mξ

′
`(κR)Ψ`,m

)
,

(6.85)
and, similarly, using the relation Φ`,m = Ψ`,m × r̂,

H− × r̂|SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (−HΦ
−,`,mψ`(κR)Ψ`,m +HΨ

−,`,mψ
′
`(κR)Φ`,m

)
,

−H+ × r̂|SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (+HΦ
+,`,mξ`(κR)Ψ`,m −HΨ

+,`,mξ
′
`(κR)Φ`,m

)
.

(6.86)
Using the relations between the coefficients, we can rewrite

H− × r̂|SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2
Z−1 (iEΨ

−,`,mψ`(κR)Ψ`,m − iEΦ
−,`,mψ

′
`(κR)Φ`,m

)
,

−H+ × r̂|SR
=

+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2
Z−1 (−iEΨ

+,`,mξ`(κR)Ψ`,m + iEΦ
+,`,mξ

′
`(κR)Φ`,m

)
.

(6.87)
The above expressions for the eigenvalues are readily obtained by identification. �

We immediately deduce from the analytic expressions of the eigenvalues the following propo-
sition. This result can be interpreted as expressing energy conservation, see also [110, Th. 5.3.5].

Proposition 6.20. The eigenvalues of the Electric-to-Magnetic operators Λ± satisfy

=(Λ̂Ψ
−,`) = =(Λ̂Φ

−,`) = 0 and =(Λ̂Ψ
+,`) < 0, =(Λ̂Φ

+,`) < 0. (6.88)
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Proof. Since ψ` is real valued, the result for Λ− is immediate. As for Λ+, the result follows from
(see for instance [110, Th. 2.6.1]):

=
(
ξ′
`(κR)
ξ`(κR)

)
= 1
|ξ`(κR)|2

> 0. (6.89)

�

From the expression of the eigenvalues, we also deduce the asymptotic behaviour for large `
of the Electric-to-Magnetic operators, as stated in the following proposition.

Proposition 6.21. The eigenvalues of the Electric-to-Magnetic operators Λ± satisfy, at infinity{
Λ̂Ψ

±,` ∼ −κR` ,
Λ̂Φ

±,` ∼ + `
κR ,

`→ +∞. (6.90)

Proof. From [46, Eq. (2.37) and (2.38)] we have, for z ∈ C,{
ψ`(z) ∼ z`+1

(2`+1)!! ,

ψ`(z) ∼ (`+ 1) z`

(2`+1)!! ,
and

{
ξ`(z) ∼ −i (2`−1)!!

z` ,

ξ`(z) ∼ i` (2`−1)!!
z`+1 ,

`→ +∞, (6.91)

with the notation (2`+ 1)!! = 1 · 3 · · · (2`+ 1). The result is then readily established. �

Numerical illustration We represent the eigenvalues of the operators Λ± for κ = 5 in Fig-
ure 6.5 for a sphere SR of radius R = 2. The range on the y-axis was purposely restricted and
leaves some eigenvalues out of scope to better serve readability.

We recover numerically the result that the imaginary part of the interior Magnetic-to-Electric
operator is identically zero, while it is negative for the exterior one. The regularizing (respec-
tively de-regularizing) action of the operators Λ± on Ψ`,m (respectively Φ`,m) is clear from the
asymptotic behaviour for large ` of the real parts (or modulus) of their eigenvalues that one can
infer from the graph. Note also that the eigenvalues in modulus are close to 1 for low mode
numbers `.

6.2.3 Operator stemming from potential theory
In this section we consider the operator TBessel

0 = 2K3,σ, which is one of the transmission
operator stemming from potential theory that we presented in the preceding chapter (and one
of the operators we tested numerically). Notice that a modal analysis of a similar operator was
already conducted in [34].

We recall the variational definition of K3,σ, valid for σ ∈ C:

〈K3,σφ,ψ〉SR
=σ

∫
SR

∫
SR

Gσ(|x− y|) (ν(y)× φ(y)) · (ν(x)×ψ(x)) dσ(x)dσ(y)

+ σ−1
∫
SR

∫
SR

Gσ(|x− y|) curlSR
φ(y) curlSR

ψ(x) dσ(x)dσ(y).
(6.92)

Proposition 6.22. The operator K3,σ given in (6.92) is diagonalized by Ψ`,m and Φ`,m. The
respective eigenvalues, with 2`+ 1 multiplicity, read{

kΨ
` = ψ`(iσR)ξ`(iσR),
kΦ
` = ψ′

`(iσR)ξ′
`(iσR),

∀` ∈ N∗. (6.93)
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Figure 6.5: Real part, imaginary part and modulus (from top to bottom) of the eigenvalues of the
operators Λ− (left column) and Λ+ (right column) with respect to the mode number `. Fixed
parameters κ = 5, R = 2.
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Proof. To prove this result, we use the reinterpretation of the integral operator in the form of a
transmission problem (see (5.90)). For any J ∈ H−1/2(curl;SR), we have

K3,σJ := 1
2

(
(H+ × r̂) |SR

+ (H− × r̂) |SR

)
, (6.94)

where (E+,H+) and (E−,H−) defined respectively in Ω+ and Ω− are (here dimensionless)
solutions to 

curl E± − σH± = 0, in Ω±,

curl H± + σE± = 0, in Ω±,

(H− × r̂) |r=R − (H+ × r̂) |r=R = 0, on SR,

r̂× (E− × r̂) |r=R − r̂× (E+ × r̂) |r=R = −J, on SR,

limr→∞ r (H+ × r̂− r̂× (E+ × r̂)) = 0.

(6.95)

In this coercive case, we would be able to state a result similar to Proposition 6.16: introduc-
ing the coefficients {EΨ

±,`,m, E
Φ
±,`,m}`,m and {HΨ

±,`,m,H
Φ
±,`,m}`,m, the solutions (E+,H+) in the

exterior domain are of the formE+ =
∑+∞
`=1

∑`
m=−`

[
EΦ

+,`,m curl (ξ`(iσr)Y`,mr̂) + EΨ
+,`,m(iσ)−1 curl curl (ξ`(iσr)Y`,mr̂)

]
,

H+ =
∑+∞
`=1

∑`
m=−`

[
HΦ

+,`,m curl (ξ`(iσr)Y`,mr̂) +HΨ
+,`,m(iσ)−1 curl curl (ξ`(iσr)Y`,mr̂)

]
.

(6.96)
and the solutions (E−,H−) in the interior domain are of the formE− =

∑+∞
`=1

∑`
m=−`

[
EΦ

−,`,m curl (ψ`(iσr)Y`,mr̂) + EΨ
−,`,m(iσ)−1 curl curl (ψ`(iσr)Y`,mr̂)

]
,

H− =
∑+∞
`=1

∑`
m=−`

[
HΦ

−,`,m curl (ψ`(iσr)Y`,mr̂) +HΨ
−,`,m(iσ)−1 curl curl (ψ`(iσr)Y`,mr̂)

]
.

(6.97)
From the equations inside the two domains Ω± and Lemma 6.17, we have{

iEΦ
±,`,m −HΨ

±,`,m = 0,
iHΦ

±,`,m + EΨ
±,`,m = 0.

(6.98)

Using Proposition 6.18, from the continuity requirement on the tangential component of H, we
get

HΦ
−,`,mψ`(iσR)−HΦ

+,`,mξ`(iσR) = 0,
HΨ

−,`,mψ
′
`(iσR)−HΨ

+,`,mξ
′
`(iσR) = 0,

(6.99)

so that, using the above relations, we have

EΨ
−,`,mψ`(iσR)− EΨ

+,`,mξ`(iσR) = 0,
EΦ

−,`,mψ
′
`(iσR)− EΦ

+,`,mξ
′
`(iσR) = 0.

(6.100)

Now, using Proposition 6.13 and introducing the families {JΨ
`,m, J

Φ
`,m}`,m, we can expand J as

(the rescaling of the coefficients is chosen adequately in order to simplify some expressions in the
following)

J =
+∞∑
`=1

∑̀
m=−`

R−1(`(`+ 1))1/2 (
JΨ
`,mΨ`,m + JΦ

`,mΦ`,m

)
, (6.101)
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so that using again Proposition 6.18, from the continuity requirement on the tangential compo-
nent of E, we get

EΦ
−,`,mψ`(iσR)− EΦ

+,`,mξ`(iσR) = −JΦ
`,m,

EΨ
−,`,mψ

′
`(iσR)− EΨ

+,`,mξ
′
`(iσR) = −JΨ

`,m.
(6.102)

Eliminating the coefficients EΨ
−,`,m and EΦ

−,`,m using the relations we obtained previously we
write (

ξ′
`(iσR)
ψ′
`(iσR)ψ`(iσR)− ξ`(iσR)

)
EΦ

+,`,m = −JΦ
`,m,(

ξ`(iσR)
ψ`(iσR)ψ

′
`(iσR)− ξ′

`(iσR)
)
EΨ

+,`,m = −JΨ
`,m,

(6.103)

which can be further simplified using the Wronskian identities

ψ`(z)χ′
`(z)− ψ′

`(z)χ`(z) = 1,
ψ`(z)ξ′

`(z)− ψ′
`(z)ξ`(z) = i.

(6.104)

into
EΦ

+,`,m = −iψ′
`(iσR)JΦ

`,m,

EΨ
+,`,m = +iψ`(iσR)JΨ

`,m.
(6.105)

By definition, we have

K3,σJ := − 1
2R
∑+∞
`=1

∑`
m=−` (`(`+ 1))1/2

(
HΦ

−,`,mψ`(iσR) +HΦ
+,`,mξ`(iσR)

)
Ψ`,m

+ 1
2R
∑+∞
`=1

∑`
m=−` (`(`+ 1))1/2

(
HΨ

−,`,mψ
′
`(iσR) +HΨ

+,`,mξ
′
`(iσR)

)
Φ`,m,

(6.106)
which, using again the continuity of H at the interface, is readily simplified into

K3,σJ := 1
R

∑+∞
`=1

∑`
m=−` (`(`+ 1))1/2

(
−HΦ

+,`,mξ`(iσR)Ψ`,m +HΨ
+,`,mξ

′
`(iσR)Φ`,m

)
,

(6.107)
and further, using again the relations between the coefficients of H and E,

K3,σJ :=
∑+∞
`=1

∑`
m=−`R

−1(`(`+ 1))1/2
(
−iEΨ

+,`,mξ`(iσR)Ψ`,m + iEΦ
+,`,mξ

′
`(iσR)Φ`,m

)
,

(6.108)
and finally, we get

K3,σJ :=
∑+∞
`=1

∑`
m=−`R

−1(`(`+ 1))1/2
(
ψ`(iσR)ξ`(iσR)JΨ

`,mΨ`,m + ψ′
`(iσR)ξ′

`(iσR)JΦ
`,mΦ`,m

)
.

(6.109)
Hence, since we can choose any J above, we readily obtain the claimed eigenvalues. �

Properties of the eigenvalues We can check directly on the analytical expression of the
eigenvalues that the operator K3,σ has indeed the correct properties.

Proposition 6.23 (Positivity). The eigenvalues are all real and strictly positive

kΨ
` > 0, kΦ

` > 0, ∀` ∈ N∗. (6.110)
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Proof. Let ` ∈ N∗. From Rayleigh’s formulas [54, p. 10.49], we have, for complex arguments
z ∈ C,

j`(z) = z`
(
−1
z

d
dz

)` sin z
z

,

y`(z) = z`
(
−1
z

d
dz

)` cos z
z

,

(6.111)

so that using the relation h
(1)
` (z) = j`(z) + iy`(z) and Definition 6.15 of the Riccati-Bessel

functions we obtain, for a real x

ψ`(ix) = (ix)`+1
(
− 1
x

d
dx

)` sinh x
x

,

ξ`(ix) = −(ix)`+1
(
− 1
x

d
dx

)`
e−x

x
.

(6.112)

By induction on `, one can prove that for any ` ∈ N∗,

sign
[(
− 1
x

d
dx

)` sinh x
x

]
= 1, and sign

[(
− 1
x

d
dx

)`
e−x

x

]
= (−1)`. (6.113)

The sign of kα` , α ∈ {Ψ,Φ}, is then readily checked to be positive. �

Proposition 6.24 (Asymptotic behaviour). We have at infinity

2kΨ
` ∼

(
`

σR

)−1
, 2kΦ

` ∼
`

σR
, as `→∞. (6.114)

Proof. Recall that from [46, Eq. (2.37) and (2.38)] we have, for z ∈ C,{
ψ`(z) ∼ z`+1

(2`+1)!! ,

ψ`(z) ∼ (`+ 1) z`

(2`+1)!! ,
and

{
ξ`(z) ∼ −i (2`−1)!!

z` ,

ξ`(z) ∼ i` (2`−1)!!
z`+1 ,

`→ +∞, (6.115)

with the notation (2`+ 1)!! = 1 · 3 · · · (2`+ 1). The result is then readily established. �

Numerical illustration We represent the (positive and real) eigenvalues of the operator K3,σ
for σ = 5 in Figure 6.6 for a sphere SR of radius R = 2. The regularizing (respectively de-
regularizing) action of K3,σ on Ψ`,m (respectively Φ`,m) is clear from the asymptotic behaviour
for large ` that one can infer from the graph. Note also that the eigenvalues are close to 1/2 for
low mode numbers `, which will give 1 for the operator 2K3,σ from our choice of renormalization
by the factor 2.

6.2.4 A general integral operator
We now study a general integral operator of convolution type, with a kernel that is rotation
invariant. In particular, following an original idea of Francis Collino, we prove the relationship
between the eigenvalues of the scalar and vector versions of this integral operator with the same
kernel. We then apply this result to Riesz potentials. These operators are not used ‘as is’ in the
method but are rather essential ingredients to the construction of some transmission operators.
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Figure 6.6: Eigenvalues of the operator K3,σ with respect to the mode number `. Fixed param-
eters σ = 5, R = 2.

6.2.4.1 A first diagonalization result

Let K be a radial kernel defined on R+, by which we mean that it is rotation invariant. Given
a scalar field f defined on the sphere SR of radius R, we define the scalar operator PK as

PKf(x) =
∫
SR

K(|x− y|)f(y)ds(y). ∀x ∈ SR, (6.116)

and, similarly, given a tangential vector field f defined on the sphere SR, we define the vector
operator PK as

PKf(x) =
∫
SR

K(|x− y|)f(y)ds(y), ∀x ∈ SR. (6.117)

We will rely on the following lemma.

Lemma 6.25. The unique vector field JΨ
`,m in L2

t (S2) satisfying{
divS2 JΨ

`,m = Y`,m,

curlS2 JΨ
`,m = 0,

(6.118)

is
JΨ
`,m = −(`(`+ 1))−1/2 Ψ`,m. (6.119)

Similarly, the unique vector field JΦ
`,m in L2

t (S2) satisfying{
curlS2 JΦ

`,m = Y`,m,

divS2 JΦ
`,m = 0,

(6.120)

is
JΦ
`,m = (`(`+ 1))−1/2 Φ`,m. (6.121)
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Proof. From the following identities [110, Eq. (2.4.184), (2.4.187) and (2.4.193)]

divS2 curlS2 = curlS2 gradS2 = 0,
divS2 gradS2 = − curlS2 curlS2 = ∆S2 ,

(6.122)

it is straightforward to check that (6.119) and (6.121) are indeed respective solutions to (6.118)
and (6.120). The unicity follows from Proposition 6.13 which states that any vector tangent field
in L2

t (S2) can be decomposed on the basis of vector spherical harmonics. �

We are going to apply this lemma to the potential PK . Before doing so we first need to
establish two technical lemmas.

Lemma 6.26. We have, on SR,

divS2 PKf = PK−L[K] divS2 f , (6.123)

where L[K] is defined as

L[K](r) = 1
2

( r
R

)2
K(r) +R−2

∫ r

0
sK(s)ds, ∀r ∈ R, r > 0. (6.124)

Proof. Let u = ur r̂ + uθθ̂ + uφφ̂ a vector field in R3 in spherical coordinates (r̂, θ̂, φ̂). The
expression for the divergence of u at a point (r, θ, φ) in this basis is

div u = 1
r2 ∂r(r

2ur) + 1
r

divS2 u. (6.125)

Let x ∈ SR and x̂ = x
|x| , we have

divS2 PKf(x) = |x| div PKf(x)− |x|−1∂|x|(|x|2PKf · x̂)(x). (6.126)

We are going to compute each term separately.

1. Computation of div PKf(x). Recall that for a scalar field a and a vector field u in R3 the
following identity holds

div(au) = a div(u) + grad(a) · u, (6.127)

from which we deduce

divx (K(|x− y|)f(y)) = K(|x− y|) divx f(y) + gradx K(|x− y|) · f(y),
= gradx K(|x− y|) · f(y),

(6.128)

so that
div PKf(x) =

∫
SR

gradx K(|x− y|) · f(y) ds(y). (6.129)

Using gradx K(|x − y|) = −grady K(|x − y|) and the fact that the field f(y) is tangent
to SR we get successively

div PKf(x) =
∫
SR

−grady K(|x− y|) · f(y) ds(y),

=
∫
SR

R−1 gradS2 K(|x− y|) · f(y) ds(y),
(6.130)
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from which we readily obtain

div PKf(x) =
∫
SR

R−1K(|x− y|) divS2 f(y) ds(y),

= R−1 PK divS2 f .
(6.131)

2. Computation of ∂|x|(|x|2PKf · x̂)(x). Let y ∈ SR and ŷ = y
|y| , we have

∂|x|(|x|2K(|x− y|)) = |x|2∂|x|(|x− y|)K ′(|x− y|) + 2|x|K(|x− y|), (6.132)

Now
∂|x|(|x− y|) = |x− y|−1 (|x| − |y|x̂ · ŷ) , (6.133)

and since |x| = |y| = R and (1− x̂ · ŷ) = |x−y|2

2R2 , we get

∂|x|(|x− y|) = |x− y|
2R , (6.134)

so that, by definition of L[K], we obtain

∂|x|(|x|2K(|x− y|)) = R

|x− y|

(
1
2 |x− y|2K ′(|x− y|) + 2|x− y|K(|x− y|)

)
,

= R3L[K]′(|x− y|)
|x− y| .

(6.135)

Now we compute

∂|x|(|x|2PKf · x̂)(x) =
∫
SR

∂|x|
(
|x|2K(|x− y|)

)
f(y) · x̂ ds(y),

=
∫
SR

R3L[K]′(|x− y|)
|x− y| x̂ · f(y) ds(y),

(6.136)

and from ŷ · f(y) = 0, we get

∂|x|(|x|2PKf · x̂)(x) =
∫
SR

R3L[K]′(|x− y|)
|x− y| (x̂− ŷ) · f(y) ds(y),

=
∫
SR

R2L[K]′(|x− y|)
|x− y| (x− y) · f(y) ds(y),

=
∫
SR

−R2 grady L[K](|x− y|) · f(y) ds(y).

(6.137)

Using again the fact that the field f is tangent to SR we finally obtain

∂R(RPKf · r̂)(x) =
∫
SR

−R gradS2 L[K](|x− y|) · f(y) ds(y),

=
∫
SR

RL[K](|x− y|) divS2 f(y) ds(y),

= RPL[K] divS2 f(x).

(6.138)

Finally we have
divS2 PKf = PK divS2 f − PL[K] divS2 f . (6.139)

�
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Lemma 6.27. We have, on SR,

curlS2 PKf = PK curlS2 f . (6.140)

Proof. Let x ∈ SR, we have

curlS2 PKf(x) = x · curl PKf(x), (6.141)

so that
curlS2 PKf(x) =

∫
SR

curlx (K(|x− y|)f(y)) · x ds(y). (6.142)

Recall that for a scalar field a and a vector field u in R3 the following identity holds

curl(au) = a curl(u) + grad(a)× u, (6.143)

from which we deduce

curlx (K(|x− y|)f(y)) = K(|x− y|) curlx f(y) + gradx K(|x− y|)× f(y),
= gradx K(|x− y|)× f(y),

(6.144)

so that
curlS2 PKf(x) =

∫
SR

(gradx K(|x− y|)× f(y)) · x ds(y). (6.145)

Using the fact that gradx K(|x− y|) is directed along x− y, we deduce

curlS2 PKf(x) =
∫
SR

(gradx K(|x− y|)× f(y)) · (x + y− x) ds(y),

=
∫
SR

(gradx K(|x− y|)× f(y)) · y ds(y).
(6.146)

Using gradx K(|x − y|) = −grady K(|x − y|) and a simple property of the triple product we
get

curlS2 PKf(x) =
∫
SR

grady K(|x− y|) · (y× f(y)) ds(y). (6.147)

Since y× f(y) is tangent to SR we write

curlS2 PKf(x) =
∫
SR

R−1 gradS2 K(|x− y|) · (y× f(y)) ds(y). (6.148)

Finally, we obtain

curlS2 PKf(x) =
∫
SR

−R−1K(|x− y|) divS2 (y× f(y)) ds(y),

=
∫
SR

K(|x− y|) curlS2 f(y) ds(y),

= PK curlS2 f(x).

(6.149)

�

We are now able to state the following abstract diagonalization result.
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Proposition 6.28. Assuming that the two scalar potentials are diagonalized by the scalar spher-
ical harmonics, such that

PKY`,m = pK(`) Y`,m,
PL[K]Y`,m = pL[K](`) Y`,m,

(6.150)

where L[K] is given in (6.124), the operator PK given in (6.117) is diagonalized by Ψ`,m and
Φ`,m. The respective eigenvalues, with 2`+ 1 multiplicity, read

pΨ
K(`) = pK(`)− pL[K](`) and pΦ

K(`) = pK(`). (6.151)

Proof. Using Lemmas 6.27 and 6.27 and the properties of the spherical harmonic Y`,m, we have,
on SR,

divS2 PKΦ`,m = PK−L[K] divS2 Φ`,m = (`(`+ 1))−1/2
PK−L[K] divS2 curlS2 Y`,m = 0,

and curlS2 PKΦ`,m = PK curlS2 Φ`,m = −(`(`+ 1))−1/2
PK∆S2Y`,m,

= (`(`+ 1))1/2
PKY`,m = (`(`+ 1))1/2

pΦ
K(`)Y`,m,

(6.152)
besides,

divS2 PKΨ`,m = PK−L[K] divS2 Ψ`,m = (`(`+ 1))−1/2
PK−L[K]∆S2Y`,m,

= −(`(`+ 1))1/2
PK−L[K]Y`,m = −(`(`+ 1))1/2

pΨ
KY`,m,

and curlS2 PKΨ`,m = PK curlS2 Ψ`,m = (`(`+ 1))−1/2
PK curlS2 gradS2 Y`,m = 0.

(6.153)

The result is then a strict application of Lemma 6.25 which yields that

PKΦ`,m = pΦ
K(`)Φ`,m,

PKΨ`,m = pΨ
K(`)Ψ`,m.

(6.154)

�

We will also use the scalar potential PK composed with surface differential operators. The
corresponding diagonalization result is stated in the following proposition.

Proposition 6.29. Assume that the scalar potential PKα is diagonalized by the scalar spherical
harmonics, such that

PKY`,m = pK(`) Y`,m. (6.155)
The operator curlS2 PK curlS2 is diagonalized by Φ`,m with associated eigenvalues

pCK(`) = `(`+ 1)pK(`), (6.156)

and
Ψ`,m ∈ Ker (curlS2 PK curlS2) . (6.157)

Similarly, the operator −gradS2 PK divS2 is diagonalized by Ψ`,m with associated eigenvalues

pGK(`) = `(`+ 1)pK(`), (6.158)

and
Φ`,m ∈ Ker (gradS2 PK divS2) . (6.159)
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Proof. The fact that
Ψ`,m ∈ Ker (curlS2 PK curlS2) ,
Φ`,m ∈ Ker (gradS2 PK divS2) ,

(6.160)

readily follows from
divS2 curlS2 = curlS2 gradS2 = 0. (6.161)

Besides, we compute using simple properties of the scalar and vector spherical harmonics

curlS2 PK curlS2 Φ`,m = (`(`+ 1))−1/2 curlS2 PK curlS2 curlS2 Y`,m,

= −(`(`+ 1))−1/2 curlS2 PK∆S2Y`,m = (`(`+ 1))1/2 curlS2 PKY`,m,

= (`(`+ 1))1/2
pK(`) curlS2 Y`,m = `(`+ 1)pK(`)Φ`,m(y).

(6.162)
The corresponding proof for gradS2 PK divS2 is similar. �

6.2.4.2 Application to Riesz potentials

We now apply the previous rather general results to the specific case of Riesz potentials for which
the diagonalization of the scalar potential is known explicitly.

Diagonalization results Recall that the kernel G3,s,0, for a real s in the open interval (1, 3),
is written (we consider d = 3 in this chapter)

G3,s,0(r) =
Γ( 3−s

2 )
2sπ 3

2 Γ( s2 )
rs−3, ∀r ∈ R+. (6.163)

Proposition 6.30. Let s ∈ (1, 3). The operator PG3,s,0 given in (6.116) with K = G3,s,0 is
diagonalized by Y`,m. The respective eigenvalues gs(`), with 2`+ 1 multiplicity, read

gs(`) = Rs−1 Γ( s−1
2 )

2
√
πΓ( s2 )

Γ( 3
2 + `− s

2 )
Γ( 1

2 + `+ s
2 )
. (6.164)

Proof. Let s ∈ (1, 3), x,y ∈ SR and x̂ = x
|x| = x

R , ŷ = y
|y| = y

R . We have

G3,s,0(|x− y|) =
Γ( 3−s

2 )
2sπ 3

2 Γ( s2 )
|x− y|s−3 =

Γ( 3−s
2 )

8π 3
2 Γ( s2 )

Rs−3
(

1− x̂ · ŷ
2

) s−3
2

. (6.165)

Let us first study the kernel
(

1−x̂·ŷ
2

) s−3
2 . Using the orthogonality of Legendre polynomials

∫ 1

−1
P`(t)Pn(t)dt = 2

2`+ 1δ`,n, (6.166)

we write (
1− x̂ · ŷ

2

) s−3
2

=
+∞∑
`=0

c`P`(x̂ · ŷ), (6.167)

where

cn := 2n+ 1
2

∫ 1

−1
Pn(t)

(
1− t

2

) s−3
2

dt, ∀n ∈ N. (6.168)
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Besides, using the addition theorem [46, Th. 2.8],

Pn(x̂ · ŷ) = 4π
2n+ 1

n∑
p=−n

Yn,p(x̂)Yn,p(ŷ), ∀n ∈ N, (6.169)

we obtain (
1− x̂ · ŷ

2

) s−3
2

=
+∞∑
n=0

cn
4π

2n+ 1

n∑
p=−n

Yn,p(x̂)Yn,p(ŷ). (6.170)

Finally, using the orthogonality of the spherical harmonics, we readily obtain that∫
S2

(
1− x̂ · ŷ

2

) s−3
2

Y`,m(ŷ)dσ(ŷ) =
+∞∑
n=0

cn
4π

2n+ 1

n∑
p=−n

Yn,p(x̂)
∫
S2
Yn,p(ŷ)Y`,m(ŷ)dσ(ŷ),

=
[

2π
∫ 1

−1
Pn(t)

(
1− t

2

) s−3
2

dt
]
Y`,m(x̂).

(6.171)
Back to the potential PG3,s,0 , we write

PG3,s,0Y`,m(x) =
∫
SR

G3,s,0(|x− y|)Y`,m(y)dσ(y),

=
Γ( 3−s

2 )
8π 3

2 Γ( s2 )
Rs−1

∫
S2

(
1− x̂ · ŷ

2

) s−3
2

Y`,m(ŷ)dσ(ŷ),

=
[

Γ( 3−s
2 )

4
√
πΓ( s2 )R

s−1
∫ 1

−1
P`(t)

(
1− t

2

) s−3
2

dt
]
Y`,m(x),

(6.172)

which confirms that the spherical harmonics are indeed eigenfunctions of PG3,s,0 . The eigenvalues,
which have 2` + 1 multiplicity, can be computed explicitly using Bonnet recursion formula [54,
p. 18.9], for x ∈ [−1, 1], ` ≥ 1,

(`+ 1)P`+1(x) = (2`+ 1)xP`(x)− ` P`−1(x), (6.173)

together with the initialization

P0(x) = 1, P1(x) = x. (6.174)

If we denote by

pβ` :=
∫ 1

−1
P`(t)

(
1− t

2

)β
dt, (6.175)

we find the recurrence relation, for ` ≥ 1,

(`+ 1)pβ`+1 − (2`+ 1)pβ` + 2(2`+ 1)pβ+1
` + `pβ`−1 = 0. (6.176)

It is a tedious (hence omitted) computation to show by induction that

pβ` = 2Γ(β + 1)
Γ(−β)

Γ(`− β)
Γ(2 + `+ β) . (6.177)

Using this expression with β = s−3
2 , one gets to the desired result. �
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We consider now the following three operators, parametrized by the real index s supposed to
belong to the open interval (1, 3),

〈V3,s,0φ,ψ〉SR
=

2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1
∫
SR

∫
SR

G3,s,0(|x− y|)φ(y) ·ψ(x) dσ(x)dσ(y),

〈QG
3,s,0φ,ψ〉SR

=
2
√
π Γ( s2 )

Γ( s−1
2 )

κs−3
∫
SR

∫
SR

G3,s,0(|x− y|) divSR
φ(y) divSR

ψ(x) dσ(x)dσ(y),

〈QC
3,s,0φ,ψ〉SR

=
2
√
π Γ( s2 )

Γ( s−1
2 )

κs−3
∫
SR

∫
SR

G3,s,0(|x− y|) curlSR
φ(y) curlSR

ψ(x) dσ(x)dσ(y).

(6.178)
We have, with our notations, for s ∈ (1, 3),

V3,s,0 =
2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1 PG3,s,0 ,

QG
3,s,0 = −

2
√
π Γ( s2 )

Γ( s−1
2 )

κs−3R−2 gradS2 PG3,s,0 divS2 ,

QC
3,s,0 =

2
√
π Γ( s2 )

Γ( s−1
2 )

κs−3R−2 curlS2 PG3,s,0 curlS2 .

(6.179)

Proposition 6.31. Let s ∈ (1, 3). The operator V3,s,0 is diagonalized by Ψ`,m and Φ`,m. The
respective eigenvalues, with 2`+ 1 multiplicity, read

vΨ
s (`) = vs(`) + s2 − 1

2(κR)2 vs+2(`) and vΦ
s (`) = vs(`), (6.180)

where
vs(`) = (κR)s−1 Γ( 3

2 + `− s
2 )

Γ( 1
2 + `+ s

2 )
. (6.181)

Proof. Let s ∈ (1, 3). We can compute explicitly the kernel L[G3,s,0] from (6.124): for r ∈ R+,
we have(

Γ( 3−s
2 )

2sπ 3
2 Γ( s2 )

)−1

L[G3,s,0](r) = R−2 1
2r

s−1 +R−2
∫ r

0
ts−2dt = s+ 1

2(s− 1)
rs−1

R2 , (6.182)

which rewrites

L[G3,s,0](r) =
(

Γ( 3−s
2 )

2sπ 3
2 Γ( s2 )

)(
Γ( 1−s

2 )
2s+2π

3
2 Γ( s+2

2 )

)−1
s+ 1

2(s− 1)R
−2 G0,s+2(r). (6.183)

Using the recurrence relation Γ(z + 1) = zΓ(z) of the Gamma function [54, (5.5.1)], valid for
z ∈ C, the prefactor simplifies into

L[G3,s,0](r) = −s(s+ 1)
2R2 G0,s+2(r). (6.184)

From Proposition 6.30 we have

PL[G3,s,0]Y`,m = −s(s+ 1)
2R2 gs+2(`)Y`,m,

PG3,s,0Y`,m = gs(`)Y`,m.
(6.185)
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Using now Proposition 6.28 one gets, for all ` ∈ N∗, −` ≤ m ≤ `,

V3,s,0Φ`,m =
2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1
(
gs(`) + s(s+ 1)

2R2 gs+2(`)
)

Φ`,m,

V3,s,0Ψ`,m =
2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1 gs(`) Ψ`,m,

(6.186)

which simplifies into

V3,s,0Φ`,m = (κR)s−1
(Γ( 3

2 + `− s
2 )

Γ( 1
2 + `+ s

2 )
+ s(s+ 1)

2
Γ( s2 )

Γ( s−1
2 )

Γ( s+1
2 )

Γ( s+2
2 )

Γ( 3
2 + `− s+2

2 )
Γ( 1

2 + `+ s+2
2 )

)
Φ`,m,

V3,s,0Ψ`,m = (κR)s−1 Γ( 3
2 + `− s

2 )
Γ( 1

2 + `+ s
2 )

Ψ`,m.

(6.187)
One finally gets to (6.180) by using once again the recurrence relation of the Gamma function. �

Proposition 6.32. Let s ∈ (1, 3). The operator QC
3,s,0 is diagonalized by Φ`,m. The associated

eigenvalues with 2`+ 1 multiplicity, read

qCs (`) = `(`+ 1)
(κR)2 vs(`), ∀` ∈ N∗, (6.188)

and
Ψ`,m ∈ Ker QC

3,s,0, ∀` ∈ N∗, −` ≤ m ≤ `. (6.189)

Similarly, the operator QG
3,s,0 is diagonalized by Ψ`,m. The associated eigenvalues with 2` + 1

multiplicity, read

qGs (`) = `(`+ 1)
(κR)2 vs(`), ∀` ∈ N∗, (6.190)

and
Φ`,m ∈ Ker QG

3,s,0, ∀` ∈ N∗, −` ≤ m ≤ `. (6.191)

Proof. Let s ∈ (1, 3). From Proposition 6.30 we have, for all ` ∈ N∗, −` ≤ m ≤ `,

PG3,s,0Y`,m = gs(`)Y`,m. (6.192)

Using now Proposition 6.29 one readily get Ψ`,m ∈ Ker QC
3,s,0 and Φ`,m ∈ Ker QG

3,s,0; besides,
for all ` ∈ N∗, −` ≤ m ≤ `,

QC
3,s,0Φ`,m =

2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1 `(`+ 1)
(κR)2 gs(`) Φ`,m,

QG
3,s,0Ψ`,m =

2
√
π Γ( s2 )

Γ( s−1
2 )

κs−1 `(`+ 1)
(κR)2 gs(`) Ψ`,m,

(6.193)

which simplify to the desired result. �

We can now apply the above results to the transmission operator TRiesz
0 defined in (5.112).
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Corollary 6.33. The operator TRiesz
0 is diagonalized by Ψ`,m and Φ`,m. The respective eigen-

values, with 2`+ 1 multiplicity, read{
tRiesz,Ψ(`) = θ`

−1 + θ`
−1 qG5/2(`)

2
,

tRiesz,Φ(`) = 1 + qC5/2(`)
2
,

∀` ∈ N∗, (6.194)

where
θ` := 1 + `(`+ 1)

(κR)2 , ∀` ∈ N∗. (6.195)

Proof. Recall the definition of the transmission operator

TRiesz
0 = Θ−1 +

(
QG

3,5/2,0

)∗
Θ−1 QG

3,5/2,0 +
(

QC
3,5/2,0

)∗
QC

3,5/2,0, (6.196)

where
Θ = Id − κ−2 gradSR

divSR
. (6.197)

Using simple properties of the surface differential operators together with Proposition 6.11, we
obtain

ΘΨ`,m = θ`Ψ`,m,

ΘΦ`,m = Ψ`,m.
∀` ∈ N∗, −` ≤ m ≤ `. (6.198)

The result is then a direct application of Proposition 6.32. �

Properties of the eigenvalues The explicit formulas for the eigenvalues give us insights on
the properties of the associated operators. This is especially valuable since we were not able to
prove some of these properties for a general surface Σ.

We begin with the easiest property, namely the positivity of the eigenvalues, hence of the
associated integral operators.

Proposition 6.34 (Positivity). For s ∈ (1, 3), the following eigenvalues are all real and strictly
positive

vs(`) > 0, vΨ
s (`) > 0, vΦ

s (`) > 0, qGs (`) > 0, qCs (`) > 0, ∀` ∈ N∗. (6.199)

Proof. The (strict) positivity, for s < 5, and any ` ∈ N∗ of vs(`) defined in (6.181) stems from the
positivity of the Gamma function Γ for positive real arguments (which can be seen for instance
from its integral representation, see [54, (5.9.1)]) The positivity of the other eigenvalues, for s in
the interval (1, 3), follows readily. �

As a direct corollary, we readily obtain the following result for the eigenvalues of our trans-
mission operator TRiesz

0 .

Corollary 6.35. The eigenvalues of TRiesz
0 are all real and strictly positive

tRiesz,Ψ(`) > 0, tRiesz,Φ(`) > 0, ∀` ∈ N∗. (6.200)

The asymptotic behaviour of the eigenvalues is given by the following proposition, which
explains our choice of renormalization coefficients and our claim (5.98) on the order of the
integral operators considered.
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Proposition 6.36 (Asymptotic behaviour). Let s ∈ (1, 3). We have, at infinity

vs(`) ∼ vΨ
s (`) ∼ vΦ

s (`) ∼
(

`

κR

)1−s

, `→∞,

qGs (`) ∼ qCs (`) ∼
(

`

κR

)3−s

, `→∞.
(6.201)

Proof. We recall the Stirling formula

Γ(1 + x) ∼ 1√
2πx

(x
e

)x
, x→∞. (6.202)

The claimed result then stems from, as `→∞,

Γ( 3
2 + `− s

2 )
Γ( 1

2 + `+ s
2 )

=
Γ( 1

2 + `+ s
2 − (s− 1))

Γ( 1
2 + `+ s

2 )
∼
(
− 1

2 + `+ s
2
)(− 1

2 +`+ s
2

)
−(s−1)(

− 1
2 + `+ s

2
)(− 1

2 +`+ s
2

) ∼ `(1−s). (6.203)

�

As a direct corollary, we readily obtain the following result for the eigenvalues of our trans-
mission operator TRiesz

0 .

Corollary 6.37. We have, at infinity

tRiesz,Ψ(`) ∼
(

`

κR

)−1
, tRiesz,Φ(`) ∼ `

κR
, as `→∞. (6.204)

Proof. We have, by direct application of Proposition 6.36,

qG5/2(`) ∼ qC5/2(`) ∼
(

`

κR

)1/2

, `→∞. (6.205)

and

θ` = 1 + `(`+ 1)
(κR)2 ∼

(
`

κR

)2
, `→∞. (6.206)

so that

tRiesz,Ψ(`) = θ`
−1 + θ`

−1 qG5/2(`)
2 ∼

(
`

κR

)−1
, `→∞,

tRiesz,Φ(`) = 1 + qC5/2(`)
2 ∼ `

κR
, `→∞.

(6.207)

�

From the previous result, we are also able to prove the mapping properties of the operator
TRiesz

0 in this spherical setting.

Proposition 6.38 (Mapping properties). The transmission operator TRiesz
0 is a continuous

mapping from H−1/2(curl;SR) to H−1/2(div;SR).
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Proof. Let J ∈ H−1/2(curl;SR) and denote by (Jα`,m)
`,m

for α ∈ {Ψ,Φ} its associated coefficients
on the basis Ψ`,m and Φ`,m so that

J =
+∞∑
`=1

∑̀
m=−`

(
JΨ
`,mΨ`,m + JΦ

`,mΦ`,m

)
, (6.208)

Since the operator TRiesz
0 is diagonalized on the same basis according to Corollary 6.33, we have

TRiesz
0 J =

+∞∑
`=1

∑̀
m=−`

(
tRiesz,Ψ
` JΨ

`,mΨ`,m + tRiesz,Φ
` JΦ

`,mΦ`,m

)
, (6.209)

By definition of the norm on H−1/2(div;SR)

‖TRiesz
0 J‖2

H−1/2(div;SR) =
+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))+1/2|JΨ

`,m|2|t
Riesz,Ψ
` |2

+(`(`+ 1))−1/2|JΦ
`,m|2|t

Riesz,Φ
` |2

)
.

(6.210)

From Proposition 6.37, there exists a constant C, independent of `, such that

|tRiesz,Ψ
` |2 ≤ C (`(`+ 1))−1

, |tRiesz,Φ
` |2 ≤ C (`(`+ 1)), (6.211)

hence

‖TRiesz
0 J‖2

H−1/2(div;SR) =
+∞∑
`=1

∑̀
m=−`

(
(`(`+ 1))−1/2|JΨ

`,m|2 + (`(`+ 1))+1/2|JΦ
`,m|2

)
,

≤ C ‖J‖2
H−1/2(curl;SR).

(6.212)

�

Numerical illustration We illustrate the previous analysis with the numerical representation
of these eigenvalues. We report in Figure 6.7 the eigenvalues of the inverse of some integral
operators V3,s,σ with respect to the mode number `. We represented the eigenvalues for three
values of s ∈ {3/2, 2, 5/2} (from top to bottom in the Figure), and for two values of σ ∈ {0, 5}.
For these particular results, the sphere SR has a radius R = 2 and we set κ = 5 (we chose σ = 5
so that it is equal to κ).

Of course, we do not have analytical expressions for the eigenvalues of V3,s,σ for σ > 0.
Inspecting the proof of Proposition 6.30, one finds that their computation can be performed
numerically as it boils down to evaluate

2
√
π Γ( s2 )

Γ( s−1
2 )

(κR)s−1
∫ 1

−1
2πP`(t)G3,s,σ

(√
2(1− t)

)
dt (6.213)

which is what we did here.
We chose to represent the inverse of the eigenvalues for better visualization, since these

operators V3,s,σ are all regularizing, their eigenvalues tend to 0 which makes less interpretable
graphs. We observe numerically that the eigenvalues are indeed strictly positive and have the
expected asymptotic behaviour for large `: respectively powers of `/κR in {1/2, 1, 3/2} for s in
{3/2, 2, 5/2}.
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Figure 6.7: Eigenvalues associated to each Ψ`,m (left column) and Φ`,m (right column) of some
integral operators with respect to the mode number `. Fixed parameters κ = σ = 5, R = 2.
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A key observation to make is that, for σ = 0, the eigenvalues of the inverse operators asso-
ciated to low mode numbers ` are very small. Hence the ones of the operators V3,s,0 are very
large, which is not a desirable behaviour, and it gets worse as κR increases. In contrast, for
σ > 0, we observe that the eigenvalues associated to low mode numbers ` are (close to) 1, which
is adequate and stems from the rapid decay at infinity of the associated Kernel. We have already
commented on this aspect in the preceding chapter.

We remark that these graphs are numerical evidence that the Bessel operators (σ > 0) are
indeed compact perturbations of the Riesz operators (σ = 0).

Finally notice that the eigenvalues associated to either Ψ`,m (left column) or Φ`,m (right
column) are very similar. One can barely notice the discrepancy for the smallest values of the
mode number `.
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In this chapter, we consider the discretization of some integral operators defined in Chapter 5
and provide some illustrative numerical results on very simple geometries. In the continuity of
the numerical analysis performed in Chapter 4, we consider conformal Galerkin discretization
strategies.

This chapter is divided into two parts. The first part concerns the acoustic setting, in two
and three dimensions. Our results can be seen as a complement to the work (in the 2D case)
presented in [91, Chap. 8]. We report results using four transmission operators. The first
two are local operators: the identity operator Id of Després; and a positive operator based on
second order surface differential operators. The other two are non-local operators that satisfy
the theoretical requirements of the convergence analysis of Chapter 3: the operator TBessel

0 =
2
κ0

Wd,κ0 , where Wd,κ0 was defined in (5.21) which stems from standard potential theory; and

217
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the operator TRiesz
0 = Id +W ∗

2,5/2,0W2,5/2,0 already numerically tested in [91], where W2,5/2,0 was
defined in (5.44), which is based on Riesz potentials.

The second part is devoted to the electromagnetic setting, in three dimensions. We discuss
the three operators that were already considered in Chapter 6. The first one is the basic refer-
ence given by the local identity operator Id of Després. The other two are non-local operators
that satisfy the theoretical requirements of the convergence analysis of Chapter 3: the operator
TBessel

0 = 2K3,κ0 , defined in (5.82), which stems from standard potential theory; and the operator
TRiesz

0 , defined in (5.112), which is based on Riesz potentials.
For all these transmission operators we briefly give some details on their implementation in

practice. However, we discuss in more depth the discretization of the operator TRiesz
0 which

caused some difficulties that can be of interest. As we shall see, the nature of the issue lies in
the lack of discrete inf − sup condition for the L2 duality between standard (low-order) Raviart-
Thomas and Nedelec surface finite elements. This fact is well-known in the integral equation
community, it arises especially when devising efficient preconditioners of the so called EFIE
equation. Fortunately, a remedy is available, it is based on Buffa-Christiansen dual finite elements
constructed on a barycentric refinement of the mesh [24]. It is interesting to see here a different
application of these elements in the context of domain decomposition. We believe that our
encountering of this problem is not fortuitous and one would almost inevitably stumble on it
when trying to derive integral operators with the correct properties for a transmission operator.
In this respect, even though the outcome of our numerical tests were somehow disappointed, the
discussion of the issue seems of importance.

The numerical experiments reported in this chapter aims at illustrating the interest of using
non-local operators satisfying the requirements of the convergence theory of Chapter 3. Overall,
we illustrate numerically the theoretical results of the convergence analysis when a transmission
operator satisfying the adequate properties is used. Importantly, we show the h-uniform conver-
gence rate of both the relaxed Jacobi and the Gmres algorithms if a non-local operator is used
as transmission operator. This is not true if one uses a local operator, one can observe in some
cases a strong deterioration of the convergence rate as the mesh is refined. In particular, we show
the slow convergence of the relaxed Jacobi algorithm when using local operators, which is due to
the highly oscillating modes. The Gmres algorithm succeeds to some extent in mitigating the
effect of those modes.

If the numerical results illustrate the theoretical analysis, from an application standpoint,
the performance of the non-local operators in 3D is somehow disappointing (in 2D, they are very
efficient). Our interpretation is that the boundary element method that is used to approximate
the integral operators is inadequate in this context.

The research code that was used to run the tests was developed specifically to test the method
and uses standard (low-order) finite elements. The code is primarily written in Julia [16]. The
meshes are generated by Gmsh [77] which is conveniently interfaced with the Julia code through
the Julia API. The computation of every integral operators considered in this work is performed
by external routines written in C++ or Fortran by Xavier Claeys and Francis Collino, as
indicated in what follows. These routines were also interfaced with the Julia code. The code
was validated on standard scattering test cases.

A word of warning: in all the numerical experiments we present below and in subsequent
chapters, the tuning of the parameters associated to each operator is not optimal (this stands
also for the operators we advocate) and is guided by simple heuristics. As a matter of fact, we
shall hardly change them between different test cases. We therefore acknowledge that, in some
cases, we might be wary of the results as it would be possible to obtain much better convergence
that what is reported here by simply adjusting a few parameters. Our point of view is that a
robust method should not be too much sensitive on the choice of its parameters. This way of
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proceeding simplifies in some sense the discussion but one could argue against it.

7.1 Acoustic setting
In the acoustic setting, we report and compare results using four transmission operators:

• two local operators:

– the identity operator Id of Després;
– a positive operator based on second order surface differential operators, namely

Id − 1
2κ02 ∆Σ; (7.1)

• two non-local operators that satisfy the theoretical requirements of the convergence analysis
of Chapter 3:

– the operator, for d ∈ {2, 3},

TBessel
0 = 2

κ0
Wd,κ0 (7.2)

where Wd,κ0 was defined in (5.19) and stems from standard potential theory. To the
best of our knowledge, this operator was not previously tested numerically;

– in the two dimensional case only, the operator

TRiesz
0 = Id +W ∗

2,5/2,0W2,5/2,0, (7.3)

where W2,5/2,0 was defined in (5.44), which is based on Riesz potentials. This operator
was already tested in [91], but the values of the parameters of the version used in our
numerical experiments are different than the ones used in this reference. Although
this operator can be quasi-localized by truncation, we use the full operator in our
numerical experiments. It is included in this analysis for the sake of comparison.

7.1.1 Discretization strategy
The discretization of the integral operators in the acoustic setting follows standard practice,
see [124, Chap. 4] for a reference.

The (elliptic) hypersingular operator Wd,κ0 in the definition of TBessel
0 is a variation of a rather

standard operator. As a result, and it is a strong advantage, several freely available codes are
available to compute the matrices of Wd,κ0 in both 2D and 3D. We chose to use the BemTool
library 1, mainly developed by Xavier Claeys and written in C++.

The operator W2,5/2,0 in the definition of TRiesz
0 is uncommon and requires specific quadra-

ture routines. The matrices of this operator are computed thanks to a Fortran routine written
by Francis Collino, only available for the 2D case. This operator was already used in previous
work [91] were extensive results in other configurations were reported. In contrast to this refer-
ence, the parameters involved in the definition of this operator are not optimized in the results
we present.

1https://github.com/xclaeys/BemTool

https://github.com/xclaeys/BemTool
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7.1.2 Numerical experiments
The purpose of this section is to provide some numerical results in the acoustic setting illustrat-
ing the convergence of domain decomposition methods using the integral operators previously
described.

7.1.2.1 Test case and implementation details

We consider a model test case in 2D or 3D, that will be repeatedly used in the following (Chap-
ters 7, 8 and 11). Of course, we shall also consider several variations of this test case.

Test Case Helmholtz. The domain Ω is a disk d = 2 or ball d = 3 of radius R = 1 with a
boundary denoted Γ := ∂Ω and an outward unit normal vector ν. The model problem we consider
is 

Find u ∈ H1(Ω) such that(
−div 1

ρr
grad−κ0

2

λr

)
u = 0, in Ω,(

ρ−1
r ∂ν − iκ0

)
u =

(
ρ−1
r ∂ν − iκ0

)
uinc, on Γ,

(7.4)

where uinc is a plane wave in the direction d which is always set to be the unit vector in the x
direction, and is written at a point x

uinc(x) := eiκ0d·x. (7.5)

By default, the medium of propagation is supposed uniform (ρr ≡ 1 and λr ≡ 1) and the reference
wavenumber is set to the value κ0 = 1.

By default, the domain Ω is partitioned into J = 2 non-overlapping domains Ωj, j ∈ {1, 2},
separated by a circular or spherical interface Σ at R = 0.5.

We provide below various figures reporting convergence results for the relaxed Jacobi algo-
rithm and the restarted Gmres algorithm for this test case. To simplify the discussion, the
relaxation parameter of the Jacobi algorithm is taken to be r = 1

2 throughout all the numerical
experiments presented in this work. For the same reason of simplification of the discussion, the
restart of the Gmres algorithm is set to 20 iterations. Increasing this number typically yields
faster convergence but increases the burden on the memory of the machine induced by the larger
Krylov subspaces.

For both these iterative algorithms, the relative errors that are reported are computed in the
broken H1 norm, defined at the iteration n as

(relative error)2 =
∑J
j=1 ‖unh − uh‖2

H1(Ωj,h)∑J
j=1 ‖u0

h − uh‖2
H1(Ωj,h)

, (7.6)

where unh is the volume solution at iteration n, u0
h is the initial volume solution (taken to be zero

in practice) and uh is the exact discrete volume solution of the full (undecomposed) problem.
This choice of volume (energy) norm deserves some comments. First, it is not completely

standard practice, since the quantity that is in general reported is usually the L2 (or rather the
`2) norm of the residual of the linear system, which stems from a problem posed on the interface.
This is justified by the fact that this quantity is easy to compute and readily available in standard
implementations of the Gmres algorithm.

Instead of the norm of the residual, we chose to represent an error in the volume of the
domain, computed in the natural energy norm. The reason for this is that our choice of norm is
completely independent of the choice of transmission operator and is not too much sensible to
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the mesh partition. Of course, it is not possible to monitor the convergence that way in real-life
applications since the computation of the norm requires access to the exact discrete solution, but
our focus here is on the (fair) comparison of different methods.

In all test runs that were performed throughout this work, the convergence was stopped if a
maximum number of 104 iterations (sometimes increased to 105) was not enough to get to the
set tolerance. Besides, when we report a number of iterations to achieve a certain tolerance for
the relative error, this tolerance is set to 10−8.

7.1.2.2 Convergence history

2D The full convergence history of the relative broken H1 error for the Jacobi and Gmres
algorithms are provided for this test case in Figure 7.1 as an illustrative example of typical
convergence.

0 100 200 300 400
10−12

10−9

10−6

10−3

100

Iteration number n

R
el

at
iv

e
er

ro
r

0thorder

2ndorder

TBessel
0

TRiesz
0

(a) Relaxed Jacobi algorithm
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(b) Gmres algorithm

Figure 7.1: Helmholtz 2D. An example of convergence history. Fixed parameters κ0 = 1, Nλ =
40, disk of radius R = 1.

For the Jacobi algorithm, we note that the convergence associated to Després transmission
condition seems to be stalling. In fact, the convergence does not stop, but becomes really slow.

We observe on this first example an important effect that is rather general and which is
the presence of seemingly different convergence regimes. For instance for the Després condition
(operator Id), we notice a first short regime (10 first iterations) of rather fast convergence, a
second part with a slower rate (up to iteration 100) and a third regime of very slow convergence.
For the other operators we observe two main regimes, the first one being quite fast while the
asymptotic regime is slightly slower.

The presence of such regimes can be explained by Fourier analysis. In fact, if we were to
decompose the source term (a plane wave) in the Hilbert basis, we would realize that most of the
energy is concentrated on the propagative modes, since they have the largest coefficients in the
expansion (the highest coefficients corresponds to the modes that are close to the wavenumber
κ0). As for the evanescent modes, their energy (and coefficient) decreases (exponentially) as the
number of the mode increases. The first regime can therefore be interpreted for all operators
as the convergence of the propagative modes which are mainly present in the components of
the error at the beginning of the convergence and have relatively small convergence rates. At
some point, the main modal contribution in the error will come from the modes that have the
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smallest convergence rate, hence control the rest of the convergence. And in fact those modes
are very different in nature when we consider local operators (0th and 2nd orders) or non local
ones (TBessel

0 and TRiesz
0 ). For local operators the modes with the smaller convergence rate are

the evanescent modes while for the non local ones they are the grazing modes. In both cases,
these are the modes that yield the asymptotic convergence rate that we observe.

This effect is corroborated by the results in Figure 7.2, which represents the modulus of the
absolute error between the exact discrete solution (the finite element solution of the undecom-
posed problem) and the discrete solution obtained using the DD algorithm. The convergence of
the Jacobi algorithm was stopped for a relative residual of 10−6 which is enough to get to the
asymptotic regime. The test case is the same, but with a higher frequency κ0 = 10 (and a mesh
constructed to have Nλ = 40 points per wavelength) for a better visualization.

(a) Operator 0thorder (b) Operator 2ndorder

(c) Operator TBessel
0 (d) Operator TRiesz

0

Figure 7.2: Helmholtz 2D. Absolute error modulus. Fixed parameters κ0 = 10, Nλ = 40, disk of
radius R = 1, Jacobi algorithm.

We observe that for the local operators, the error is highly concentrated near the interface,
rapidly decreasing away from it, which are characteristics of evanescent modes. In contrast, for
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the two integral operators, the main components seem to come from grazing modes: oscillatory
modes concentrated near the interface and slowly decreasing away from it.

3D The full convergence history of the relative broken H1 error for the Jacobi and Gmres
algorithms are provided for this test case in Figure 7.3 as an illustrative example of typical
convergence.
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(a) Relaxed Jacobi algorithm
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Figure 7.3: Helmholtz 3D. An example of convergence history. Fixed parameters κ0 = 1, Nλ =
40, ball of radius R = 1.

The convergence of the algorithm in the case of the identity operator is very similar to the 2D
case. This is not true for the second-order operator which performs rather well, even better than
the non-local operator for the Gmres algorithm. In comparison to the 2D case, the non-local
operator seems to struggle a little to converge for the relaxed Jacobi algorithm. The situation is
less clear than in the 2D case, but such results do not contradict the analysis.

7.1.2.3 h-uniform geometric convergence

The purpose of the subsequent numerical experiments is to illustrate the main theoretical result
on geometric convergence, namely the fact that (suitable) non-local operators allow for uniform
convergence rate with respect to the mesh parameter h. This is an important feature for a DD
method to have that can save flops and time in several situations. Firstly, when the domain of
propagation is large with respect to the wavelength of the problem, the mesh needs to be refined
to limit the pollution effect. Besides, realistic meshes are not uniform in general and may exhibit
local refinements to capture geometrical details or domain heterogeneities. Finally, for some
applications, computations are often done with one single mesh that is used to compute different
solutions at different frequencies. This is due to the fact that the engineering time required to
mesh some geometries can be quite large in proportion of the total time dedicated to run the
test case. In particular producing good quality meshes is not a simple task that is quite time
consuming for engineers. As a result, the mesh can be uniformly quite refined for the lowest
frequencies considered.

2D We report the number of iterations to reach convergence with respect to mesh refinement
in Figure 7.4 for the (relaxed) Jacobi and Gmres algorithms. The refinement of the mesh is



224 CHAPTER 7. NUMERICAL RESULTS USING INTEGRAL OPERATORS

indicated by the number of points per wavelength Nλ which is inversely proportional to the
typical mesh size. In Figure 7.4b we also report the number of Gmres iterations that are
required to achieve the same error to solve the full (undecomposed) linear system (line plot
labelled ‘No DDM’). This is to be read as an indication of the conditioning of the original linear
system rather than an actual method of resolution. We see that this iteration count has a growth
which is approximately quadratic with respect to Nλ, illustrating the deterioration of the matrix
conditioning as the mesh is refined.
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Figure 7.4: Helmholtz 2D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, 2D, disk of radius R = 1.

For the two local operators the convergence is not uniform with respect to the mesh refinement
and a large number of iterations is required to get to the set tolerance. The growth of the iteration
count appears to be quasi quadratic with respect to Nλ for the Jacobi algorithm and quasi linear
for the Gmres algorithm. For small mesh size the convergence may not even be reached within
105 iterations. In contrast, the non-local operators TBessel

0 and TRiesz
0 exhibit uniform convergence

in all cases, with a very moderate number of iterations required to reach the set tolerance.

3D Figure 7.5 reports the number of iterations to reach convergence with respect to mesh
refinement in the 3D case. For the Jacobi algorithm, no results are presented for the identity
operator because it would not converge to the required precision in under 105 iterations.

Again, for the Jacobi algorithm with the second operator the convergence is not uniform with
respect to the mesh refinement. The growth of the iteration count appears to be quasi quadratic
with respect to Nλ. In comparison, as predicted by the theory, the iteration count associated to
the non-local operator TBessel

0 does not grow.
For the Gmres algorithm, the iteration count associated to the identity operator grows sub-

linearly, similarly as for the 2D case. And again, the number of Gmres iterations required to
solve the full (undecomposed) linear system (line plot labelled ‘No DDM’) grows (super) linearly
with Nλ. For the two other operators, the iteration count is reduced and does not clearly grow.
This was expected for the non-local operator TBessel

0 but seems surprising for the second order
operator, especially in view of the results in the 2D case. Such efficiency might be due to the
specific test case, with the spherical geometry.
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Figure 7.5: Helmholtz 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, ball of radius R = 1.

7.2 Electromagnetic setting
We turn now to the discretization strategy of the domain decomposition method applied to
Maxwell equations. We compare the three operators that were already considered in Chapter 6
together with a naive local operator based on second order tangential differential operators,
namely

• a local operator:

– the identity operator Id of Després;
– a positive operator based on second order surface differential operators, namely

Id − 1
2κ02 curlΣ curlΣ; (7.7)

• two non-local operators that satisfy the theoretical requirements of the convergence analysis
of Chapter 3:

– the operator TBessel
0 = 2K3,κ0 , defined in (5.82), which stems from standard potential

theory.
– the operator TRiesz

0 , defined in (5.112), which is based on Riesz potentials.

The discretization of the operator K3,κ0 using standard boundary elements is fairly straight-
forward and similar in spirit to the acoustic setting that was just described. In contrast, the
discretization strategy that shall be adopted for the TRiesz

0 operator is much more involved. This
is due to a commonly uncountered difficulty in the numerical analysis of electromagnetic integral
equations, namely the lack of a discrete inf − sup condition on the duality between standard
Nedelec and Raviart-Thomas (or equivalently Rao-Wilton-Glisson) boundary elements. A rem-
edy was found by Buffa and Christiansen in their celebrated paper [24] that rely on an L2-dual
finite element subspace constructed on the dual mesh (see also [2, 93]). We shall try to explain
where lies the difficulty and then exploit their technique in our context.
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7.2.1 Discretization strategy
7.2.1.1 Variational formulations

Since the discretization strategy consists in using a Galerkin formulation, the volume unknown
E ∈ H(curl; Ω), solution of the interior local sub-problems, will be approximated using standard
(in our case, first order) volume Nedelec edge elements (on tetrahedrons). The tangential trace
ν × (E× ν) ∈ H−1/2(curl; Σ) on the interface will naturally be approximated by surface Nedelec
edge elements (on triangles).

Operator TBessel
0 The operator 2K3,σ is defined variationally, for any φ,ψ ∈ H−1/2(curl; Σ),

by
〈K3,σφ,ψ〉Σ =σ

∫
Σ

∫
Σ

Gσ(x− y) (ν(y)× φ(y)) · (ν(x)×ψ(x)) dσ(x)dσ(y)

+ σ−1
∫

Σ

∫
Σ

Gσ(x− y) curlΣ φ(y) curlΣψ(x) dσ(x)dσ(y).
(7.8)

The two variables φ and ψ can be approximated using Nedelec finite elements. Since this is a
discrete subspace of the continuous space for which the above operator is coercive, the discrete
approximation of the operator is also a continuous and positive isomorphism from the discrete
approximation space to its dual.

Operator TRiesz
0 Let a φ ∈ H−1/2(curl; Σ) be given. At least formally, and at the price of

introducing three auxiliary variables, one can write the following variational system to compute
the action of the operator TRiesz

0 : we seek TRiesz
0 φ, ϕ0, ϕc and ϕg, such that

〈TRiesz
0 φ,ψ〉Σ =

∫
Σ
ϕ0 ·ψ +

∫∫
Σ×Σ

curlΣϕc curlΣψ
|x− y|1/2 +

∫∫
Σ×Σ

divΣϕg divΣψ

|x− y|1/2 ,∫
Σ

(
ϕ0 ·ϕt0 + divΣϕ0 divΣϕ

t
0
)

=
∫

Σ
φ ·ϕt0,∫

Σ
ϕc ·ϕtc =

∫∫
Σ×Σ

curlΣ φ curlΣϕtc
|x− y|1/2 ,∫

Σ

(
ϕg ·ϕtg + divΣϕg divΣϕ

t
g

)
=
∫∫

Σ×Σ

divΣ φ divΣϕ
t
g

|x− y|1/2 ,

(7.9)

for all test functions ψ, ϕt0, ϕtc and ϕtg elements of suitable test spaces.
By construction, the tangential trace φ of the volume unknown is approximated by Nedelec

surface finite elements. As a result, we can readily spot a possible issue regarding the discretiza-
tion of the right-hand-side of the fourth equation in the previous system. Indeed, the Nedelec
finite elements are not divΣ conforming (they are actually constructed to be curlΣ conforming).
By symmetry (that stems from the symmetry of the operator), since the associated test variable
ψ will also be approximated by Nedelec finite elements, the discretization of the third term in
the right-hand-side of the first equation in the system might also be problematic.

Discarding for the moment this issue, we now address the delicate question of the choice
of approximation spaces for the auxiliary variables ϕc, ϕ0 and ϕg. Note that these unknowns
are respectively elements of L2(Σ), H1/2(Σ) and H1(Σ). The unknown ϕc needs to be curlΣ
conforming, which can be seen from the presence of the second term in the right-hand-side of
the first equation. It follows that a natural choice is to use Nedelec elements for both ϕc and
ϕtc. Similarly, from the left-hand-sides of the second and fourth equations, we shall require the
unknowns ϕ0 and ϕg (and their associated test functions respectively ϕt0 and ϕtg) to be divΣ
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conforming. A natural choice would then be to use Raviart-Thomas finite elements. However,
this choice for ϕ0 and ϕt0 leads to another issue, as the bilinear form associated to both the first
term in the right-hand-side of the first equation and the right-hand-side of the second equation
does not satisfy a discrete Babuska-Brezzi inf − sup condition. We shall give some more detail
on the nature of this problem in the next sub-section and give a possible remedy.

7.2.1.2 Buffa-Christiansen space

Because of its ubiquity, we take a short detour in order to clearly expose the issue and a possible
solution as proposed by A. Buffa and S. Christiansen in [24].

The problem stems from the lack of discrete stability of the bilinear form (ν is the outward
unit normal vector to Σ)

(ϕ,ϕt) 7→
∫

Σ
(ν ×ϕ) · ϕt, (7.10)

if ϕ spans either the Raviart-Thomas or equivalently the Nedelec finite element spaces. Actually,
the associated matrix has a non-zero kernel.

To cope with this difficulty we rely on the discrete approximation space described in [24]
which is L2-dual to the Nedelec finite element space and divΣ-conforming. More precisely, we
rely on the result given by Proposition 3.14 in [24] which states that the L2 duality between
the Nedelec and this new space does satisfy a discrete inf − sup condition. In the following, we
refer to this space (and the associated finite elements) as the Buffa-Christiansen space (and finite
elements). We point out that we use here the divΣ-conforming version of the dual space, i.e.
adopting the notations of [24], our Buffa-Christiansen space is Y 1

h × ν, which is L2 dual to the
Nedelec space X1

h × ν.

Numerical illustration We propose below a little numerical experiment to try to illustrate
the issue and its solution. To do so, we consider a revealing (albeit simple) generalized eigenvalue
problem.

Let us denote by Mα, for α ∈ {NED,RT,BC}, the matrix associated to the bilinear form

(ϕα,ϕNED) 7→
∫

Σ
ϕα · ϕNED, (7.11)

where ϕNED, ϕRT, ϕBC span respectively the Nedelec, Raviart-Thomas and Buffa-Christiansen
finite element spaces. Here Σ is taken to be the unit sphere S2.

The two eigenvalue problems we consider are, for α ∈ {RT,BC},[
0 Mα

MT
α 0

] [
ϕNED
φNED

]
= λα

[
MNED 0

0 MNED

] [
ϕNED
φNED

]
, (7.12)

where ϕNED and φNED are elements of the Nedelec space. We report in Figure 7.6 the sorted
eigenvalues λα, for α ∈ {RT,BC}.

We clearly see a non-zero null-space associated to the case α = RT with approximately a
third of the eigenvalues below machine precision. In contrast for α = BC, the eigenvalues stay
bounded away from zero. The eigenvalues of the continuous problem are −1 and 1, we observe
that the quality of the approximation is rather similar in both cases (expect for the kernel). If
the mesh is refined (not illustrated here) the situation stays the same.
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Figure 7.6: Sorted eigenvalues λα, for α ∈ {RT,BC}, of the two generalized eigenvalue problems
illustrating the lack of discrete stability of the bilinear form (ϕ,ϕt) 7→

∫
Σ(ν ×ϕ) · ϕt.

7.2.1.3 Appropriate discretization of TRiesz
0

It is straightforward to see that by choosing the Buffa-Christiansen space to approximate the
unknown ϕ0 and its dual variable ϕt0 we readily solve one of our aforementioned issue. It turns
out that this space is also the key to solve the other difficulty. The first step to do so, is to
represent the tangential trace φ by an element of the Buffa-Christiansen space, denoted ξg,
which is by construction divΣ conforming. This new representation is then simply substituted in
the right-hand-side of the fourth equation of the above system, which by construction also satisfy
a discrete inf − sup condition. To retain the symmetry of the operator, we are led to introduce
yet another unknown, denoted ϑg, also approximated by Buffa-Christiansen elements, to deal
with the discretization of the third term in the right-hand-side of the first equation of the above
system.

Finally, at the expense of having now five auxiliary unknowns, we consider the following
variational definition of the transmission operator: we seek TRiesz

0 φ, ϕ0, ϕc, ϕg, ξg and ϑg, such
that 

〈TRiesz
0 φ,ψ〉Σ =

∫
Σ
ϕ0 ·ψ +

∫∫
Σ×Σ

curlΣϕc curlΣψ
|x− y|1/2 +

∫
Σ
ϑg ·ψ,∫

Σ

(
ϕ0 ·ϕt0 + divΣϕ0 divΣϕ

t
0
)

=
∫

Σ
φ ·ϕt0,∫

Σ
ϕc ·ϕtc =

∫∫
Σ×Σ

curlΣ φ curlΣϕtc
|x− y|1/2 ,∫

Σ
ξg · ξtg =

∫
Σ
φ · ξtg,∫

Σ

(
ϕg ·ϕtg + divΣϕg divΣϕ

t
g

)
=
∫∫

Σ×Σ

divΣ ξg divΣϕ
t
g

|x− y|1/2 ,∫
Σ
ϑg · ϑtg =

∫∫
Σ×Σ

divΣϕg divΣ ϑ
t
g

|x− y|1/2 ,

(7.13)

for all test functions ψ, ϕt0, ϕtc, ϕtg, ξtg and ϑtg. The unknowns TRiesz
0 φ and ϕc are sought as
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elements of the Nedelec space while the unknowns ϕ0, ϕg, ξg and ϑg are sought as elements
of the Buffa-Christiansen space. Similarly, the test functions ψ and ϕtc span the Nedelec space
while the test functions ϕt0, ϕtg, ξtg and ϑtg span the Buffa-Christiansen space.

A careful inspection would reveal that the above system does define a self-adjoint operator. It
would remain to prove rigorously that it is indeed a positive isomorphism, uniformly continuous
with respect to the mesh parameter.

7.2.1.4 Singular quadrature

The numerical integration of the singularity in the operator 2K3,κ0 is standard and can be tackled
using different strategies, for instance Sauter-Schwab techniques, see [124].

In contrast, the singularity that is present (several times) in the definition of the operator
TRiesz

0 is more challenging. The strategy that is adopted in the routine implemented by Francis
Collino rests in part on the works of Lenoir and Salles [92]. However, while their method
allows to evaluate singular integrals analytically, the implementation uses their technique when
a singularity needs to be evaluated but switches to numerical approximation otherwise.

7.2.2 Numerical experiments
The purpose of this section is to provide some numerical results in the electromagnetic set-
ting illustrating the convergence of domain decomposition methods using the integral operators
previously described.

7.2.2.1 Test case and implementation details

We consider a model test case in 3D, that will be repeatedly used in the following (Chapters 7, 8
and 11). Of course, we shall also consider several variations of this test case.

Test Case Maxwell. The domain Ω is a ball of radius R = 1 with a boundary denoted Γ := ∂Ω
and an outward unit normal vector ν. The model problem we consider is

Find u ∈ HΓ(curl; Ω) such that(
curl 1

µr
curl−κ0

2εr

)
u = 0, in Ω,

(µ−1
r curl u)× ν − iκ0ν × (u× ν) = (µ−1

r curl uinc)× ν − iκ0ν × (uinc × ν), on Γ,
(7.14)

where uinc is a plane wave in the direction d which is always set to be the unit vector in the x
direction, and is written at a point x

uinc(x) := (0, 0,−1)T eiκ0d·x. (7.15)

By default, the medium of propagation is supposed uniform (µr ≡ 1 and εr ≡ 1) and the reference
wavenumber is set to the value κ0 = 1.

By default, the domain Ω is partitioned into J = 2 non-overlapping domains Ωj, j ∈ {1, 2},
separated by a spherical interface Σ at R = 0.5.

We provide below various figures reporting convergence results for the relaxed Jacobi algo-
rithm and the restarted Gmres algorithm for this test case. The relative errors that are reported
are now computed in the broken H(curl) norm, defined at the iteration n as

(relative error)2 =
∑J
j=1 ‖unh − uh‖2

H(curl;Ωj,h)∑J
j=1 ‖u0

h − uh‖2
H(curl;Ωj,h)

, (7.16)
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where unh is the volume solution at iteration n, u0
h is the initial volume solution (taken to be zero

in practice) and uh is the exact discrete volume solution of the full (undecomposed) problem.

7.2.2.2 Convergence history

The full convergence history of the relative broken H(curl) error for the Jacobi and Gmres
algorithms are provided for this test case in Figure 7.7 as an illustrative example of typical
convergence.
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(a) Relaxed Jacobi algorithm
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Figure 7.7: Maxwell 3D. An example of convergence history. Fixed parameters κ0 = 1, Nλ = 40,
ball of radius R = 1.

Looking at those graphs, the interest in using non-local operators, which are much more
costly, is not clear. It appears the operator TRiesz

0 performs the worst. Again, we emphasize
that this is not in contradiction with the convergence theory of Chapter 3 or the modal analysis
of Chapter 6 (note that in these numerical experiments, the wavenumber is considerably lower
than for the numerical illustrations of the modal analysis).

7.2.2.3 h-uniform linear convergence

We report the number of iterations to reach convergence with respect to mesh refinement in
Figure 7.8 for the (relaxed) Jacobi and Gmres algorithms. The refinement of the mesh is
indicated by the number of points per wavelength Nλ which is inversely proportional to the
typical mesh size.

In Figure 7.8b we also report the number of GMRES iterations that are required to achieve
the same error to solve the full (undecomposed) linear system (line plot labelled ‘No DDM’).
There is only one point, which corresponds to the coarsest mesh, since the algorithm was not
able to converge in under 105 iterations as the mesh was refined. Similarly, as in the acoustic
setting, no results are presented for the Jacobi algorithm for the identity operator because it
would not converge to the required precision in under 105 iterations.

We observe the robustness of the non-local operators with respect to the mesh refinement.
Unfortunately, we cannot observe the deterioration of the convergence of the relaxed Jacobi algo-
rithm associated with the zeroth-order local operator since no results are available for this case.
When the Gmres algorithm is used, the very mild deterioration of the results for the identity
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Figure 7.8: Maxwell 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, ball of radius R = 1.

operator is not pronounced enough to conclude. We see again that the Gmres algorithm is able
to mitigate the effect of the evanescent modes (which are the ones damaging the convergence of
the relaxed Jacobi algorithm) quite effectively.

In contrast, the deterioration of the convergence for the second-order operator is very clear,
the growth in iteration count is quadratic for the relaxed Jacobi algorithm and linear for the
Gmres algorithm.

7.2.2.4 On the performance of the non-local operators

Overall, the results in 3D using non-local operators both for the Helmholtz and Maxwell equations
are somehow disappointing at this point. We stress though that the results do not contradict
the theory. If those non-local operators do have all the required theoretical properties to ensure
convergence of the domain decomposition algorithms, they somehow perform poorly in practice,
especially in view of their rather heavy computational cost.

If it is essential to bear in mind that these tests are rather academic, and we nevertheless
expect some robustness when the test configuration changes, we acknowledge that those results
raise legitimate questions. We could first suspect implementation errors, given in particular
the complexity of the implementation of the operator TRiesz

0 . We performed numerous tests to
investigate the issue, which are not reported here because of their low interest. We checked for
instance the agreement of the eigenvalues of the operators computed numerically with the values
computed using the analytical expressions found in Chapter 6.

The main conclusion of our investigations is that the poor efficiency of the non-local operators
is due to the discretization strategy that is used to compute them. We suspect, without being
able to argue rigorously, that the discrepancy in the approximation properties of, on one side,
the finite element method (FEM) used to solve the local sub-problems, and on the other side,
the boundary element method (BEM) used to compute the transmission operators do not cope
well with each other. In other words, the issue originates from a pure discrete effect, that is only
observed in 3D.

Although it may not be related, this is reminiscent of another discrete effect affecting the
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convergence of the domain decomposition method and not completely understood, that was
observed in [91, Sec. 7.2.1.1] when a lumped mass matrix was used to approximate the identity
term present in the transmission operator TRiesz

0 .

A new approach needed? The poor performance of the non-local operators we considered
so far is however a good motivation to look for new ways to construct non-local operators (with
adequate properties), which is the purpose of the next chapter. As a matter of fact it is during
our investigations of the issue that we thought of the new approach. The new class of non-local
operators considered next is not based on integral operators and is found to perform rather well
in practice. Besides such operators are easy to implement and have a moderate computational
cost, making them a promising approach.
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In this chapter we propose a novel realization of a suitable non-local transmission operator
based on elliptic auxiliary problems that are solved in the vicinity of the interface on which
the boundary operator is defined. This idea appears to be new. We emphasize that the main
principle behind this construction is rather general (we will provide an abstract definition) and
could be applied in other contexts than the ones we are primarily interested in (namely the
acoustic and the electromagnetic settings), for instance for elasticity.

If the underlying continuous operator is of very similar theoretical nature as the operators
based on integral representations discussed in the preceding chapters, it presents a certain number
of advantages in comparison. To begin with, most (if not all) of the computational technology
required to implement a domain decomposition method using this operator should be already
at hand (that is mainly the finite element method). This is in contrast to integral operators
which require to interface (or implement) a boundary element code. This feature might be a

233
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definitive advantage for someone wishing to implement a domain decomposition method in an
already available finite element code, which does not necessarily have the technology for integral
operators (singular quadratures for instance). In fact, it is our intuition that it is precisely
because the realization of this operator solves similar problems as the original problem that
makes it so efficient in practice in our numerical experiments (particularly for low frequency
problems).

The computational footprint of the operator is naturally reduced by solving the auxiliary
problems only in close vicinity of the boundary on which the operator is defined. Moreover,
this truncation process is guaranteed to preserve the essential properties of the operator. Again,
this is in contrast to integral operators for which the quasi-localization process (sometimes)
invalidates our theoretical proofs. In addition, we remark that some of the tools that could
be used to reduce the computational complexity of using integral operators, namely the fast
multipole method (FMM) or H-matrices, are again quite advanced technology compared to
what is needed here.

Another motivation for using the operator described in this chapter appears when considering
heterogeneous problems. The definition of the operator is in fact much more natural than for
integral operators for instance. If some parameters appear in its definition, their tuning can be
performed by following rather simple heuristics that we shall try to justify in this chapter. In
particular, note that because the domain of the auxiliary problem is located around the interface
of interest, we need to impose a boundary condition on the fictitious boundary we introduced.
In this chapter, we shall compare on a model (but representative) problem, the different options
to choose from.

This chapter is organized as follows. We first provide in Section 8.1 a definition of this
novel transmission operator in the abstract framework introduced in Chapter 3. This abstract
definition is particularized for the two main applications we have in mind, namely the Helmholtz
and Maxwell equations. We then study in Section 8.2 some of the parameters that come in the
definition of this transmission operator in the particular geometric configuration of the half-space.
This permits explicit computations using Fourier analysis and allows to get some insights on the
mechanisms at play. We finally provide in Section 8.3 some numerical results that highlight the
rather good performance of this new operator.

8.1 Definition at the continuous level
8.1.1 Abstract definition
We consider the boundary Σ of a bounded Lipschitz domain Ω− subset of Rd, d ∈ {2, 3} and we
set Ω+ := Rd \ Ω−. We assume that the domain Ω− is connected and simply connected (all its
Betti numbers are zero) so that Σ is also connected and simply connected. We denote by ν the
unit outward normal vector defined on Σ from Ω− to Ω+.

Besides, we introduce two strips Bi ⊂ Ω− and Be ⊂ Ω+ so that Bi (respectively Be) has two
disconnected (and not intersecting) boundaries Σ and Σi (respectively Σe), see Figure 8.1. We
do not exclude the case Σi = ∅ for which we have Bi = Ω−. We denote by νi (respectively νe)
the outward unit normal vector to Bi (respectively Be).

Strong formulation We suppose (this is not restrictive) that the coefficients a and n of the
model problem are defined in Bj , for j ∈ {i, e}. Because its definition depends on the coefficient
a, recalling (3.29), we define a variant of the γ1 operator as (simple formal substitution a→ <(a))

γ̃1,κ := κ0
−1 γD∗,κ <(a) D, κ ∈ {Σ,Σi,Σe}. (8.1)
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Ω− Bi Be

ΣiΣΣe

Figure 8.1: Definitions of the domain in which the auxiliary problems are defined.

This variant γ̃1,κ obviously enjoys the same mapping properties as the original operator γ1,κ .
We define two operators, for j ∈ {i, e}

Tj : X0(Σ)→ X1(Σ),
x0 7→ γ̃1,Σ uj ,

(8.2)

where 
uj ∈ UΣj

(D;Bj) such that
[L<(a) + κ0

2<(n)]uj = 0, in Bj ,
[γ̃1,Σj

+ γ0,Σj
]uj = 0, on Σj ,

γ0,Σ uj = x0, on Σ.

(8.3)

Compared to the model wave propagation problems we considered previously, this problem is
elliptic (by the positivity assumption on the real part of the coefficients a and n), hence the above
definition makes sense. This is further justified below, by adopting a variational approach.

Weak formulation To provide a weak formulation of the above operator we first need to
define the subspace

UΣj ,Σ0(D;Bj) :=
{
u ∈ UΣj

(D;Bj) | γ0,Σ u = 0
}
, j ∈ {i, e}. (8.4)

Let j ∈ {i, e}, for all u, v ∈ UΣj
(D;Bj), we define

aBj
(u, v) := κ0

−1(<(a) Du,Dv)L2(Bj)m1 +κ0 (<(n)u, v)L2(Bj)m0 +(γ0,Σj
u, γ0,Σj

v)
L2(Σj)m0 . (8.5)

Now, let us consider the mapping

y0 ∈ X0(Σ) 7→ uy0 ∈ UΣj (D;Bj), (8.6)

such that {
aBj

(uy0 , v) = 0, ∀v ∈ UΣj ,Σ0(D;Bj),
γ0,Σ uy0 = y0.

(8.7)

The well-posedness of the problem appearing in (8.7) stems from the surjectivity of the trace
operator γ0,Σ which allows to get a lifting of the inhomogeneous source term imposed at the es-
sential boundary condition. The well-posedness of the said problem is then readily obtained from
Lax-Milgram Lemma, since the bilinear form aBj

is coercive on UΣj
(D;Bj) from our positivity

assumption on the real part of the coefficients a and n.
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An equivalent variational formulation of (8.2) is: for any x0 ∈ X0(Σ), we define Tjx0 ∈ X1(Σ)
as the unique solution of

〈Tjx0, xt0〉Σ = aBj (ux0 , uxt
0
), ∀xt0 ∈ X0(Σ). (8.8)

Transmission operators The required properties for a candidate transmission operator are
all inherited from those of the auxiliary problem, which can be clearly seen from (8.8). This is
the purpose of the following proposition.

Proposition 8.1. The operator Tj, j ∈ {i, e}, is a self-adjoint positive isomorphism from X0(Σ)
to X1(Σ).

Proof. Let j ∈ {i, e}. Recalling the symmetry, positivity and boundedness of the coefficients (3.78),
we immediately obtain the symmetry, continuity and coerciveness of the bilinear form aBj .

Indeed, from (8.8) and the symmetry of the bilinear form aBj
we have, for any x0, xt0 ∈ X0(Σ),

〈Tjx0, xt0〉Σ = aBj (ux0 , uxt
0
) = aBj (uxt

0
, ux0) = 〈Tjxt0, x0〉Σ, (8.9)

hence Tj is self-adjoint.
Besides, from (8.8) and the continuity and coerciveness of the bilinear form aBj

we have,

min (1, a−, n−) ‖ux0‖
2
UΣj

(D;Bj) ≤ 〈Tjx0, x0〉Σ ≤ max (1, a+, n+) ‖ux0‖
2
UΣj

(D;Bj). (8.10)

Using the continuity of the trace operator as well as the well-posedness of the problem (8.7), we
deduce the existence of two strictly positive constants c− > 0 and c+ > 0 such that

c− ‖x0‖2
X0(Σ) ≤ 〈Tjx0, x0〉Σ ≤ c+ ‖x0‖2

X0(Σ). (8.11)

�

It is easy to see from the discussion above that any linear combination of Ti and Te would
work as a transmission operator, hence we let

TAux
0 := αiTi + αeTe, (8.12)

for any αi ≥ 0, αe ≥ 0. Besides, it is natural to require αi + αe = 1. For no more than simple
reasons of symmetry, we chose in our numerical simulations αi = αe = 1

2 .
Of course, if one implements a domain decomposition method that requires a T1,‖-type

transmission operator it is possible to use

TAux
1 := βiT −1

i + βeT −1
e , (8.13)

for any βi ≥ 0, βe ≥ 0 such that βi + βe = 1.

Alternative definitions Besides using different values of αi ≥ 0 and αe ≥ 0, one could
alter the definitions of Ti and Te in a number of different ways without harming their essential
properties.

For a start, as we already mentioned, other (positive) coefficients can be chosen in the equation
in (8.3) and in (8.7). Our intuition (which was corroborated to some extend by our numerical
experiments) is that our choice to use <(a), <(n) and κ0 as we did is somewhat sensible. In some
sense, this is justified by the commonly mentioned heuristic to use a transmission operator that
is close to, or somehow resembles, the exact propagative Dirichlet-to-Neumann operator, if we
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adopt the terminology of the acoustic setting. By sticking to the real parts of the coefficients
of the original equation, we obtain an operator whose principal part is the same (or close to,
if the imaginary parts do not vanish) as the exact propagative Dirichlet-to-Neumann operator
(one must also require that αi + αe = 1). This reasoning does not motivate to keep the lower
order term in the acoustic setting, but it does indeed in the electromagnetic case since the curl
operator has a non-zero null space. In some sense, keeping this term is the same as choosing
Bessel potentials over Riesz potentials when we discussed integral operators. Finally, note that
we do not claim that the choice of coefficients we made is optimal, but it is a reasonable rule of
thumb to start from.

Another possible modification that one can think of is to consider a different kind of boundary
condition on Σi (and Σe). For instance homogeneous Neumann (a natural boundary condition in
a Galerkin discretization) or homogeneous Dirichlet (which eliminates some degrees of freedom
of the auxiliary problems) boundary conditions. It appears that the choice we made, namely a
Robin boundary condition, is worth the (slight) additional complexity of implementation. We
shall get back on this aspect in a subsequent section.

Finally, we have some liberty in the definition of the strips Bi and Be. Obviously, to make
the transmission operator the least expensive to compute, one would like to choose it as thin
as possible (ideally a few layers of cells in a mesh). Roughly speaking, because the source of
the auxiliary problem is only present on the boundary Σ and the problem is purely dissipative,
the solution is exponentially decaying away from it. As a result, having a large domain (thicker
than the skin-depth of the problem) does not necessarily affect much the operator. We shall also
discuss this important aspect in what follows.

8.1.2 Application to standard propagation problems

We briefly give below the definition of the above abstract transmission operators in view of
application to either Helmholtz or Maxwell equations.

Example 1: Helmholtz. In the acoustic setting, the two operators are a elliptic (or dissipative)
version of conventional Dirichlet-to-Neumann maps. They are written, for j ∈ {i, e},

Tj : H1/2(Σ)→ H−1/2(Σ),
x0 7→ κ0

−1<
(
ρ−1
r

)
∂νj

pj ,
(8.14)

where 
pj ∈ H1(Bj) such that[
−div<

(
ρ−1
r

)
grad +κ0

2<
(
λ−1
r

)]
pj = 0, in Bj ,

<
(
ρ−1
r

)
∂νj pj + κ0 pj = 0, on Σj ,

pj = x0, on Σ.

(8.15)

We denoted by νj the outward unit vector to Bj either on Σ or on Σj.

Example 2: Maxwell. In the electromagnetic setting, the two operators are a elliptic (or
dissipative) version of conventional Electric-to-Magnetic maps. They are written, for j ∈ {i, e},

Tj : H−1/2(curl; Σ)→ H−1/2(div; Σ),
x0 7→ κ0

−1<
(
µ−1
r

)
curl Ej × νj,Σ,

(8.16)
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where 
Ej ∈ HΣj

(curl;Bj) such that[
curl<

(
µ−1
r

)
curl +κ0

2< (εr)
]

Ej = 0, in Bj ,
<
(
µ−1
r

)
curl Ej × νj + κ0 νj × (Ej × νj) = 0, on Σj ,

νj × (Ej × νj) = x0, on Σ.

(8.17)

Again, we denoted by νj the outward unit vector to Bj respectively on Σ and on Σj.

In both cases, provided there exists a continuous right inverse to respectively the Dirichlet
trace and the tangential trace, the above problems are well posed using the Lax-Milgram Lemma.

Note that one could rather use a different coefficient instead of <(ρ−1
r ), for instance <(ρr)−1

or |ρr|−1, which are different if the imaginary part does not vanish. Of course, this comment
also stands for the other coefficients and apply to both the acoustic and electromagnetic settings.
This may later have a strong influence on the efficiency of the domain decomposition method
associated to the transmission operator. However, as far as the convergence theory is concerned,
any positive coefficient can be chosen.

Connection with the previously defined integral operators If the medium of propaga-
tion is

1. unbounded: the strips are extended to the whole domain so that we have Bi = Ω− and
Be = Ω+ = Rd \ Ω−,

2. uniform: the (positive) coefficients <(n) and <(a) are constant in the whole of Rd so that
we can define the positive and real parameter κ = κ0

√
<(n)
<(a) ,

then the connection with the previously defined integral operators is possible. Indeed, we (for-
mally) have in this case, in the acoustic setting

(2κVd,κ)−1 = 1
2 (Ti + Te) ,

2
κ
Wd,κ = 1

2
(
T −1
i + T −1

e

)−1
,

(8.18)

where Vd,κ and Wd,κ were defined in (5.19), and already reinterpreted as equivalent transmission
problems in (5.25) and in (5.26); and in the electromagnetic setting

(2U3,κ)−1 = 1
2 (Ti + Te) ,

2K3,κ = 1
2
(
T −1
i + T −1

e

)−1
,

(8.19)

where U3,κ and K3,κ were defined in (5.82), and already reinterpreted as equivalent transmission
problems in (5.89) and in (5.90).

Of course in practice the operators Ti and Te will necessarily be computed in a bounded
domain so the above identities will not be true. Besides we propose to use a standard finite
element method to compute these operators whereas the integral operators require a boundary
element method, which does make a significant difference in practice.
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8.2 Quantitative analysis for a model problem
We have already commented on the parameters on which one can play to modulate the action
of the operators Ti and Te. We provide in this section some more quantitative computations to
study precisely their influence. The two main questions we are trying to answer are:

• What is the effect on the operators of the type of boundary condition (among Dirichlet,
Neumann and Robin) that is imposed on the fictitious boundaries Σi and Σe?

• What is the asymptotic behaviour of the operators if the width of the strips Bi and Be
shrinks to 0?

8.2.1 The periodic wave-guide
Model problem We consider the theoretical (because unbounded) configuration of an infinite
wave guide of width L, see Figure 8.2. The domain of the problem is

Ω :=
{

(x, y) ∈ R2 | − L

2 < x <
L

2

}
. (8.20)

We consider the Helmholtz equation in 2D in the wave-guide with periodic boundary conditions
(in absence of source terms) {

(−∆− κ2)u = 0, in Ω,
u(−L2 , y) = u(L2 , y), y ∈ R,

(8.21)

where we require the solution u to satisfy the Sommerfeld radiation condition at infinity

lim
r→+∞

(∂r − iκ) u = 0, r = |x|. (8.22)

Partition The domain Ω is divided in the upper Ω+ and lower Ω− regions

Ω+ :=
{

(x, y) ∈ R2 | y > 0
}
, and Ω− :=

{
(x, y) ∈ R2 | y < 0

}
, (8.23)

and the interface is denoted

Σ :=
(
−L2 ,

L

2

)
× {0}. (8.24)

Transmission operator To define our domain decomposition we need to introduce our trans-
mission operator. The domain of the auxiliary problem that defines the transmission operator is
now bounded in the y-direction, for a positive parameter δ > 0, let

B±,δ := {(x, y) ∈ Ω± | 0 ≤ |y| ≤ δ} . (8.25)

We consider the operators, indexed by the truncation parameter δ and the type of boundary
condition ∗ ∈ {D,N,R},

T (∗)
±,δ : x0 7→ ∓κ−1∂yv

(∗)
± |y=0, (8.26)
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Figure 8.2: Sketch of the periodic wave guide configuration.

where v(∗)
± solves the (elliptic) problem

(
−∆ + κ2) v(∗)

± = 0, in B±,δ,

v
(∗)
± (−L2 , y) = v

(∗)
± (L2 , y), |y| ≤ δ,

v
(∗)
± (x, 0) = x0(x), −L2 ≤ x ≤

L
2 ,

and at y = ±δ,


v

(D)
± (x, δ) = 0,
∂yv

(N)
± (x, δ) = 0,

[±∂y + κ]v(R)
± (x, δ) = 0,

− L

2 ≤ x ≤
L

2 .

(8.27)

The transmission operator is then, for ∗ ∈ {D,N,R},

T (∗)
δ := 1

2

(
T (∗)

+,δ + T (∗)
−,δ

)
. (8.28)

In the following, our main interest lies in the impact on the convergence of the domain decom-
position algorithms of both the type of boundary conditions (either Dirichlet (D), Neumann (N)
or Robin (R)) that is imposed on the fictitious boundaries and the width δ > 0.

Interface problem We consider, in this particular two-domain partition, the interface prob-
lem (3.222) and the associated relaxed Jacobi algorithm (3.225) (for σ = 1) from Chapter 3. We
specify below our notations for this particular setting.

By linearity it is enough to study the homogeneous problem, which corresponds to study the
convergence of the error. We therefore consider the interface problem, for ∗ ∈ {D,N,R} (the
dependence in δ will be kept implicit in the notations),{

Find x ∈ H−1/2(Σ)2 such that,(
Id −ΠS(∗)) x = 0,

(8.29)

where the exchange operator Π and the scattering operator S(∗) have the block representation

Π :=
[

0 Id
Id 0

]
, and S(∗) :=

[
S(∗)

− 0
0 S(∗)

+

]
, (8.30)
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with the local scattering operators S(∗)
− and S(∗)

+ such that

S(∗)
± : x0 7→

(
±κ−1∂y − iT (∗)

δ

)
u

(∗)
± |y=0, (8.31)

where u(∗)
± is solution to {

(−∆− κ2)u(∗)
± = 0, in Ω±,(

∓κ−1∂y − iT (∗)
δ

)
u

(∗)
± |y=0 = x0, on Σ,

(8.32)

and
lim

r→+∞
(∂r − iκ) u(∗)

± = 0, r = |x|. (8.33)

Iterative algorithm Given a couple of traces x0 in H−1/2(Σ)2 (the initial error) and a relax-
ation parameter r ∈ (0, 1) the relaxed Jacobi algorithm is,

xn+1 =
[
(1− r)Id + rΠS(∗)

]
xn, n ∈ N. (8.34)

8.2.2 Symbol of the transmission operator
Similarly as in Chapter 6, because of the separable geometry, we are able to conduct a quantitative
study. Exploiting the periodic boundary conditions in the x direction, the main tool for this is
the Hilbert basis

(
eikmx

)
m∈N

of L2(Σ) where we introduced the mode numbers

km = m
2π
L
, m ∈ N. (8.35)

By symmetry, we need only to study the operator in the upper half-region. The system
defining the operator T (∗)

+,δ becomes, for each mode m ∈ N,{(
−∂2

y + µ2
m

)
v̂

(∗)
m = 0, in B+,δ,

v̂
(∗)
m (0) = x̂0,m, at y = 0,

and at y = δ,


v̂

(D)
m (δ) = 0,
∂y v̂

(N)
m (δ) = 0,

[∂y + κ]v̂(R)
m (δ) = 0,

(8.36)

where
µ2
m = k2

m + κ2, m ∈ N, (8.37)

and (v̂(∗)
m )m∈N are the coefficients of v(∗) on the modal basis

(
eikmx

)
m∈N

. We introduced in
addition the coefficients (x̂0,m)m∈N of the decomposition of x0 on the same modal basis. It
follows that

v̂(∗)
m ∈ vect

{
y 7→ eµmy, y 7→ e−µmy

}
, m ∈ N, (8.38)

where we chose µm :=
√
k2
m + κ2 and it remains to determine the two constants by using the

boundary conditions at y = 0 and y = δ. We consider successively the three types of boundary
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conditions and find that,

v̂(D)
m (y) = x̂0,m

e−µm(y−δ) − eµm(y−δ)

eµmδ − e−µmδ
, 0 ≤ y ≤ δ,

v̂(N)
m (y) = x̂0,m

e−µm(y−δ) + eµm(y−δ)

eµmδ + e−µmδ
, 0 ≤ y ≤ δ,

v̂(R)
m (y) = x̂0,m

(µm + κ)e−µm(y−δ) + (µm − κ)eµm(y−δ)

(µm + κ)eµmδ + (µm − κ)e−µmδ
, 0 ≤ y ≤ δ.

(8.39)

It is convenient to rewrite the three cases in the following common notation

v̂(∗)
m (y) = x̂0,m

e−µmy + α
(∗)
m eµmy

1 + α
(∗)
m

, 0 ≤ y ≤ δ, (8.40)

where α(∗) is given by 
α(D)
m = −e−2µmδ,

α(N)
m = e−2µmδ,

α(R)
m = κ−1µm − 1

κ−1µm + 1e
−2µmδ,

(8.41)

By symmetry, the symbol of the transmission operator T (∗)
δ is then (the dependence in δ will be

kept implicit in the notations),

T̂ (∗)
m = κ−1µm

1− α(∗)
m

1 + α
(∗)
m

, m ∈ N. (8.42)

8.2.3 Modal convergence factor
Symbol of the propagative DtN operator We consider the operators

Λ± : x0 7→ ∓κ−1∂yu|y=0, (8.43)

where u solves the (propagative) problem in the sub-domain Ω±
(
−∆− κ2)u = 0, in Ω±,

u(−L2 , y) = u(L2 , y), on ∂Ω± \ Σ,
u(x, 0) = x0(x), −L2 ≤ x ≤

L
2 ,

(8.44)

with suitable decay at infinity y → +∞ (Sommerfeld radiation condition).
By symmetry, we need only to study the operator in the upper half-region. The system

associated to Λ+ becomes, for each mode m ∈ N,{(
−∂2

y + ξ2
m

)
ûm = 0, in Ω+,

ûm(0) = x̂0,m, at y = 0,
(8.45)

where
ξ2
m = k2

m − κ2, m ∈ N, (8.46)
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and (ûm)m∈N are the coefficients of u on the modal basis
(
eikmx

)
m∈N

. We introduced in addition
the coefficients (x̂0,m)m∈N of the decomposition of x0 on the same modal basis. From the decay
assumption at infinity and the Dirichlet boundary condition at y = 0, it follows that

ûm(y) = x̂0,me
−ξmy, 0 ≤ y, m ∈ N, (8.47)

where we chose (out time convention is e−iωt)

ξm :=
{
−i
√
κ2 − k2

m, if km ≤ κ,√
k2
m − κ2, if κ ≤ km,

m ∈ N. (8.48)

By symmetry, the symbol of the operators Λ± is then

Λ̂±,m = κ−1ξm =


−i
√

1−
(
km

κ

)2
, if km ≤ κ,

km

κ

√
1−

(
κ
km

)2
, if κ ≤ km,

m ∈ N. (8.49)

Remark 8.2. It may happen (for countable discrete values of L) that there exists a m such that
km = κ, which means that the problem under consideration is ill-posed. We exclude such cases
in what follows.

Symbol of the scattering operators From the definitions of the operators Λ(∗)
± and the

scattering operators S(∗)
± , we formally have

S(∗)
± = −

(
Λ± + iT (∗)

δ

)(
Λ± − iT (∗)

δ

)−1
, (8.50)

so that the symbol of the local scattering operators S(∗)
± are, for ∗ ∈ {D,N,R},

Ŝ
(∗)
±,m =

−Λ̂(∗)
±,m − iT̂ (∗)

m

Λ̂(∗)
±,m − iT̂ (∗)

m

, ∀m ∈ N. (8.51)

We introduce the ratio (well-defined since T̂ (∗)
m > 0)

Ẑ
(∗)
±,m = −

Λ̂(∗)
±,m

T̂
(∗)
m

, ∀m ∈ N, (8.52)

and we can rewrite

Ŝ
(∗)
±,m = −

Ẑ
(∗)
±,m − i

Ẑ
(∗)
±,m + i

, ∀m ∈ N. (8.53)

We can distinguish two regimes

• The propagative regime km < κ for which

Λ̂±,m ∈ −iR+, and since T̂ (∗)
m ∈ R+, we have Ẑ

(∗)
±,m ∈ iR+. (8.54)

Hence

Ŝ
(∗)
±,m = −

Ẑ
(∗)
±,m − 1

Ẑ
(∗)
±,m + 1

∈ [−1, 1] . (8.55)
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• The evanescent regime km > κ for which

Λ̂±,m ∈ R+, and since T̂ (∗)
m ∈ R+, we have Ẑ

(∗)
±,m ∈ R+. (8.56)

Hence

Ŝ
(∗)
±,m =

Ẑ
(∗)
±,m − i

Ẑ
(∗)
±,m + i

, |Ŝ(∗)
±,m| = 1. (8.57)

Modal convergence factor Arguing as in Chapter 6, for each ∗ ∈ {D,N,R}, the modal
factor of convergence of the algorithm (8.34) can be estimated by

τ̂ (∗)
m = max

±

∣∣∣∣(1− r)± r√Ŝ(∗)
+,mŜ

(∗)
−,m

∣∣∣∣ , (8.58)

Asymptotic analysis δ → ∞: for a fixed mode m ∈ N Although it is not our primary
interest we first comment on the limit δ →∞ for a fixed mode m ∈ N. It is immediate to check
that for ∗ ∈ {D,N,R}

T̂ (∗)
m ∼ µm

κ
, as δ →∞. (8.59)

We simply remark that the limit is independent of the type of boundary condition. This is not
surprising considering that when δ is large the boundary on which the condition is imposed is
rejected far away from the source of the problem which is dissipative.

Asymptotic analysis δ → 0: for a fixed mode m ∈ N From the previous expressions, we
obtain the following asymptotic behaviours, for each mode m ∈ N,

T̂ (D)
m ∼ (δκ)−1

, as δ → 0,
T̂ (N)
m ∼ δκ, as δ → 0,
T̂ (R)
m ∼ 1, as δ → 0.

(8.60)

From these asymptotic behaviours, one infers that the transmission operator using a Robin
boundary condition is — to say the least — better behaved in the limit δ → 0 than the one using
either Dirichlet or Neumann boundary conditions. For a fixed mode m, the transmission condi-
tion with the operator using Robin boundary conditions degenerates to the Després conditions.
In fact, for the transmission operator T (R)

δ we have that the convergence factor associated to
each mode m ∈ N is bounded away from 1, uniformly with respect to the truncation parameter
δ. More precisely, it is a simple (but tedious, hence omitted) computation to show that there
exists a positive constant C(R)

m depending only on m (not on δ) such that

τ̂ (R)
m ≤ 1− C(R)

m , ∀δ > 0. (8.61)

Of course, this result is not uniform with respect to the mode m and we cannot conclude from
this that the convergence factor of the associated algorithm is uniformly bounded with respect
to δ. As a matter of fact, we give below evidence that such a result, namely global uniformity of
the convergence factor with respect to δ, does not hold.
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In contrast, for the transmission operators T (D)
δ and T (N)

δ , it can be shown1 that

propagative regime km ≤ κ,


τ̂

(D)
m = 1−

[
2r
√

1−
(
km

κ

)2
κ

]
δ +O(δ2),

τ̂
(N)
m = 1−

2r
1+
(

km
κ

)2√
1−
(

km
κ

)2
κ

 δ +O(δ2),

evanescent regime km ≥ κ,


τ̂

(D)
m = 1−

[
2r(1− r)

((
km

κ

)2 − 1
)
κ2
]
δ2 +O(δ3),

τ̂
(N)
m = 1−

2r(1− r)

((
km

κ

)2
+1
)2(

km
κ

)2
−1

κ2

 δ2 +O(δ3).

(8.62)
The above result implies that the global convergence factor converges to 1 at least as fast as
O(δ2) when using either the Dirichlet or the Neumann boundary conditions.

8.2.4 Global convergence
The global convergence factor of the algorithm (8.34) can be estimated by

τ̂ (∗) := sup
m∈N

τ̂ (∗)
m . (8.63)

From the previous analysis we know already that in the case ∗ ∈ {D,N},

lim
δ→0

τ̂ (D) = lim
δ→0

τ̂ (N) = 1. (8.64)

Unfortunately we were not able to derive analytic expressions for this global convergence
factor. However, we studied the asymptotic analysis m→ +∞ for a fixed δ and proved that also
for ∗ = R we have necessarily limδ→0 τ̂

(R) = 1.

Asymptotic analysis m → +∞: δ > 0 fixed This amounts to study the limit km → +∞.
It is immediate to check that for ∗ ∈ {D,N,R} and a fixed δ > 0

T̂ (∗)
m ∼ Λ̂(∗)

m ∼ km
κ
, as m→∞. (8.65)

It is then straightforward to show that there exists a positive constant τ̂∞ (independent of the
boundary condition chosen) such that for each ∗ ∈ {D,N,R}

τ̂ (∗)
m → τ̂∞ < 1, as m→∞. (8.66)

We see here a manifestation of the effect of choosing an operator with the “right” order that
adequately deals with the highest frequency modes. Notice that the limit is independent of the
type of boundary condition. This is not surprising as the highest modes “do not see”, in some
sense, the boundary condition.

1We used the symbolic computing Python package SymPy [102] through the Julia binding Sympy.jl to derive
the modal convergence factor estimates.
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Asymptotic analysis m→ +∞ and δ = m−1/2 Guided by numerical experiments, we studied
the double limit δ → 0 and m→ +∞ such that δ = m−1/2 for the convergence factor associated
to the operator T (R)

δ . It can be shown that

τ̂ (R)
m = 1−

[
2r(1− r)

(
2π
L

+ L

2π

)2
]
δ +O(δ2). (8.67)

The above result implies that the global convergence factor converges to 1 at least as fast as
O(δ) when using the Robin boundary condition and

lim
δ→0

τ̂ (R) = 1. (8.68)

8.2.5 Mocking the effect of the discretization
We are however unable to consider at the same time both the limit δ → 0 and m → ∞, as the
double asymptotic leads to undetermined behaviour. This is the motivation for the following
analysis.

The idea is to mock the effect of discretization. To do so, we filter the admissible modes that
belong to the bandwidth of the discrete problem. This amounts in this case to take m ≤ M in
the definition of km for some integer M . Typically, one consider M such that (Nyquist-Shannon
criteria)

kM = 2π
λ
M ≤ π

h
, (8.69)

where h > 0 is the typical mesh parameter. In our setting, we make the particular choice to have
M such that

δkM = γ, (8.70)

where the positive constant γ > 0 is supposed to be fixed and we consider the limit

M → +∞ ⇔ δ → 0. (8.71)

In some sense, this would correspond in a discrete setting to study the effect of mesh refinement
h→ 0 for a transmission operator whose associated auxiliary problem is defined in a strip made
of a fixed number of layers of cells as h→ 0.

We obtain the following asymptotic behaviours
T̂

(D)
M ∼ tanh−1(γ) Λ̂M ,
T̂

(N)
M ∼ tanh(γ) Λ̂M ,
T̂

(R)
M ∼ tanh(γ) Λ̂M ,

as M → +∞. (8.72)

It is then straightforward to show that for each ∗ ∈ {D,N,R} there exists a positive constant
τ̂

(∗)
∞ such that

τ̂
(∗)
M → τ̂ (∗)

∞ < 1, as M →∞. (8.73)

Again, one sees here the interest of using non-local operators which are pseudo-differential oper-
ators of the correct order. This time the limit does depend on the type of boundary condition.
However, what is really important here, is to notice that, in this discrete setting, taking the
truncation parameter δ to 0 as the discretization parameter goes to 0 (or equivalently M →∞),
does not affect the convergence factor for the highest modes present in the computation.
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8.2.6 Numerical investigations
We provide numerical computations to obtain more insight and corroborate the previous analysis.

Modal convergence factor We first report in Figure 8.3 the gap between 1 and the con-
vergence factor τ̂ (∗)

m with respect to the mode number δ for different values of δ and for each
∗ ∈ {D,N,R}. The parameters of the problem are L = 1, the wavenumber is κ = 11π and the
relaxation parameter for the Jacobi algorithm is r = 0.5. It follows that the propagative region
corresponds to m ∈ N such that m 2π

L ≤ κ = 11π, hence m ≤ 11
2 . Therefore for this configuration,

6 modes can propagate through the waveguide, the rest are evanescent.
These plots must be read as follows: the convergence is controlled by the mode m with the

lowest value on the vertical axis, which corresponds to the mode with a convergence factor which
is the closest to one. We see that as δ decreases this minimum value also decreases and the
convergence is damaged in all three cases.

Notice that the predicted asymptotic behaviours for the cases using either Dirichlet or Neu-
mann boundary conditions are indeed numerically corroborated. We observe a linear increase
of the convergence factor in the propagative region and a quadratic increase in the evanescent
region. Besides, the mode number for the lowest point seems to be roughly constant as δ changes.

In contrast for the case with Robin boundary condition, the convergence factor stays constant
in the propagative region as δ changes. In the evanescent regime, we observe a linear increase
of the convergence factor with respect to δ. Notice that the lowest point moves to the right as δ
decreases, which means the most problematic mode (as far as convergence is concerned) changes
as δ changes. To investigate this effect more precisely we report the mode numbers at which
the maximum modal convergence factor is reached with respect to the width δ of the strips in
Figure 8.4. Again, this corroborates the previous analysis, where such mode numbers where
found to be proportional to δ−1/2.

We report in Figure 8.5 the gap between 1 and the convergence factor τ̂ (∗) with respect to
the width of the strip δ. The quantity τ̂ (∗) is computed from τ̂

(∗)
m as

τ̂ (∗) = max
0≤m≤Mmax

τ̂ (∗)
m , (8.74)

with Mmax = 105 in this case. Since the parameters of the problem are kept the same as
before, the value Mmax appears sufficient considering that only the first 120 modes were plotted
on Figure 8.3. For δ large enough we observe that the convergence factor is constant and is
actually the same for all three cases. Both these effects were predicted by the previous analytical
analysis and can be explained by the dissipative nature of the auxiliary problems and the fact
that for δ large enough the boundary on which the Dirichlet, Neumann of Robin condition
imposed is far away from the source of the problem. What is staggering is the fact that at some
point the convergence factor actually decreases when the width of the strip is diminished for
the transmission operators associated either to Neumann or Robin boundary conditions. This
effect may be due to our somehow contrived example and we shall not comment more on it.
For sufficiently small δ, the asymptotic is attained and we obtain numerically that the modal
convergence factor for the relaxed Jacobi algorithm has the following asymptotic behavior: there
exist three positive constants C(∗) > 0, for ∗ ∈ {D,N,R} such that

τ̂ (D) ∼ 1− C(D) δ2,

τ̂ (N) ∼ 1− C(N) δ2,

τ̂ (R) ∼ 1− C(R) δ,

as δ → 0. (8.75)
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Figure 8.3: Convergence factor with respect to mode number m for different values of δ and the
different types of boundary conditions.
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Figure 8.4: Mode number m associated to the maximal modal convergence factor with respect
to the truncation parameter δ.
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Figure 8.5: Modal convergence factor with respect to the truncation parameter δ.
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We observe that, for δ small enough, the convergence factor tends to 1 as fast as O(δ2) for the
transmission operators associated to Dirichlet and Neumann boundary condition, while a slower
asymptotic of O(δ) is observed numerically for the transmission operator associated to Robin
boundary condition.

Interpretation as an iteration count It is enlightening to re-interpret the behavior of
the convergence factor in terms of the (perhaps more revealing) required number of iterations.
From (8.75), we expect the following asymptotic growth in the number of iterations to get to a
specific tolerance 

N
(D)
it ∼ N

(D)
0 δ−2,

N
(N)
it ∼ N

(N)
0 δ−2,

N
(R)
it ∼ N

(R)
0 δ−1,

as δ → 0, (8.76)

where the positive constants N (∗)
0 depend on C(∗) and on the required tolerance.
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Figure 8.6: Relative iteration count to reach a set tolerance of 10−8 in relative error with respect
to the ratio λ

δ , with λ = 2π
κ for the different types of boundary conditions.

This is illustrated in Figure 8.6, where we report the relative iteration count to reach a set
tolerance of 10−8 in relative error with respect to the ratio λ

δ , with λ = 2π
κ . This is a relative

iteration count since we have rescaled the plot by the number of iterations required to reach
the set tolerance for sufficiently large δ (note that this number is actually the same for each
∗ ∈ {D,N,R} according to the previous discussion). As a result the vertical coordinate indicates
how much the truncation of the strip at δ has affected the iteration count. More precisely, it
represents by how much one needs to multiply the asymptotic iteration count for δ → ∞ in
order to get the iteration count for the value of δ that is read on the horizontal axis. Besides,
the horizontal coordinate represents the quantity λ

δ , where λ = 2π
κ is the wavelength of the

propagative problem we are trying to solve. This represents he relative size of the width of
the strip with respect to the typical length of the problem under consideration. In a discrete
setting, if one chooses to take a strip of one layer of cells around the interface (this is the smallest
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domain that one can take in practice), this ratio represents in some sense the number of points
per wavelength of the mesh.

It is striking to see that, for this particular case (κ = 11π), the iteration count is not affected
until the width of the strip gets to about a fourth of a wavelength. Although making a parallel
might be questionable, this is not without reminding similar observations in the truncation of
the kernel of integral operators as were reported in [44, Fig. 11] for instance. We observe again
on this graph the fact that as the width get smaller, the iteration count actually temporarily
decreases for the transmission operators associated to Neumann and Robin boundary conditions.
At some point, the number of iterations does get to an asymptotic behaviour. We observe
a quadratic growth of the number of iterations for the operators associated to Dirichlet and
Neumann boundary conditions and a linear growth for the operator associated to Robin boundary
condition.
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Figure 8.7: Iteration count to reach a set tolerance of 10−8 in relative error with respect to the
ratio λ

δ , with λ = 2π
κ for various values of κ in the case of a Robin boundary condition.

We further investigate the observed behaviour with respect to the frequency of the problem
under consideration. We report in Figure 8.7 the iteration count to reach a set tolerance of
10−8 in relative error with respect to the ratio 2π

κδ for various values of the frequency κ in the
case of Robin boundary conditions only. Since this is no longer a relative iteration count, we
observe, as one can expect, that increasing the frequency increases the iteration count for a
fixed δ. Moreover, we see that the tipping point after which the truncation starts to affect the
convergence is fairly constant with respect to the frequency. This supports the claim that the
truncation at δ should be taken as a (relatively small) fraction of the wavelength of the problem
under consideration.

The slight advantage of using a Neumann rather than a Dirichlet boundary condition is
not negligible but may be due to the particular setting. The previous analytic analysis as well
as this numerical evidence strengthen our conviction that the transmission operator associated
to the Robin boundary condition is a better choice than the ones using either Dirichlet or
Neumann boundary conditions. We believe that the reasons for the observed better behaviour
in this particular setting are profound and can be extrapolated to some extend in more general
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configurations.

8.3 Numerical results
We provide in this section numerical results illustrated the interest in using the transmission
operators we introduced in this chapter.

8.3.1 Influence of the strip width
We first illustrate on an actual mesh partition how the different types of auxiliary problems
one can define (width of the strips, type of boundary condition on the fictitious boundary)
actually influence the convergence of the iterative solvers. Recall that we asked ourselves two
main questions: How the shrinking of the width of the strips Bi and Be in which the auxiliary
problems are posed influence the convergence of the domain decomposition algorithm? What is
the best boundary condition to apply on the fictitious boundaries Σi and Σe that bounds the
strips? Without any surprise, our numerical results corroborate the findings of Section 8.2.
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Figure 8.8: Iteration count to reach a set tolerance of 10−8 in relative error with respect to the
ratio λ

δ , with λ = 2π
κ0

for the different types of boundary conditions.

This is illustrated in Figure 8.8, where we report the relative iteration count to reach a set
tolerance of 10−8 in relative error (H1 norm) with respect to the ratio λ

δ , with λ = 2π
κ0

. The
domain is an annulus (or flat torus) comprised between the radius Ri = 0.5 and Re = 3.5. This
is a configuration without junction points, the interface being placed at RΣ = 2 (after the mesh
was constructed). The mesh is kept the same in all the computations that appear on the plot,
with a fixed number of points per wavelength Nλ = 400 for a wavenumber κ0 = 1. The only
parameters that change are the width of the strip that defines the auxiliary problem and the
type of boundary condition on the fictitious boundary that is introduced. The construct the
strips, the mesh elements are nibbled one by one from the transmission boundary, following an
heuristic in order to correspond to the set width. This results in a very rough fictitious interface.
For the larger width considered, the auxiliary problem is solved in a domain that is almost as
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large as the full domain of propagation, the fictitious boundary is close to the physical boundary.
We stress that the mesh is very refined for the frequency considered. As a result, it may not be
feasible to get to strips that small in more realistic situations.

The results exhibit a growth in iteration count as the width of the strip get smaller. The
qualitative behaviour is similar to the previous analytical study in the planar geometry (infinite
wave-guide).

For the Jacobi algorithm we observe a quasi-quadratic growth for sufficiently smaller δ for the
Dirichlet and Neumann boundary conditions. In contrast, for the Robin condition, the growth is
only linear. Besides, in this latter case the asymptotic behaviour is reached for a much smaller
width δ. In fact the iteration count does not seem to be affected by the truncation until the width
is smaller than 1

50 of the wavelength while the tipping point is about a tenth for the Neumann
condition and around an eighth for the Dirichlet condition. For large enough strips, the choice
of boundary condition does not matter, which we mainly explain by the dissipative nature of the
auxiliary problem.

For the Gmres we observe a quasi-linear growth for sufficiently smaller δ for the Dirichlet and
Neumann boundary conditions. In contrast, for the Robin condition, the number of iterations
only mildly increases and the growth rate is clearly sub-linear.

The worst choice of condition on the fictitious boundary of the auxiliary problem is undeniably
to use Dirichlet condition. Despite the temporary gain in the case of the Neumann condition,
we observe again a clear advantage in using a Robin condition since it exhibits a much smaller
asymptotic growth rate.
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Figure 8.9: Iteration count to reach a set tolerance of 10−8 in relative error with respect to the
ratio λ

δ , with λ = 2π
κ0

for the Robin boundary condition.

Influence of the wavenumber We further investigate the observed behaviour with respect
to the frequency of the problem under consideration. We report in Figure 8.9 the iteration count
to reach a set tolerance of 10−8 in relative error with respect to the ratio 2π

κ0δ
for various values of

the frequency κ0 in the case of Robin boundary conditions only. The geometry of the problem is
kept the same but the number of points per wavelength is fixed to Nλ = 100 for each wavenumber
κ0 considered. For a fixed wavenumber, the mesh is kept the same as the ratio λ

δ varies. Notice
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that because we investigated higher frequencies the mesh is less refined compared to the previous
test case.

We observe that as the wavenumber increases, the increase in the number of iterations is
approximately uniform with respect to the ratio λ

δ . This supports the idea that the width of the
auxiliary problem strip can be chosen as a fraction of the wavelength. We observe numerically
in the case considered that one can choose this width as small as 1

50 of the wavelength with only
a few more iterations required to reach the tolerance.

8.3.2 Convergence history

As we did for the integral operators, we report the full convergence history of the relative broken
H1 and H(curl) error for the Jacobi and Gmres algorithms as an illustrative example of typical
convergence. For the two dimensional acoustic setting, we consider our first test case which we
recall consists in a disk of radius R = 1 that is partitioned into 2 domains separated by a circular
interface at R = 0.5. The results are reported in Figure 8.10. For the three dimensional cases,
the domain is a ball of radius R = 1 split into two domains separated by a spherical interface at
R = 0.5. The results for the acoustic and electromagnetic settings are respectively reported in
Figure 8.11 and Figure 8.12. In both cases, the wavenumber if taken to be κ0 = 1.

These figures are the enriched versions (with the results using the operators based on elliptic
auxiliary problems) of respectively Figure 7.1, Figure 7.3 and Figure 7.7. We therefore refer the
reader to the comments made in Chapter 7 before resuming the discussion.
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Figure 8.10: Helmholtz 2D. An example of convergence history. Fixed parameters κ0 = 1,
Nλ = 40, disk of radius R = 1.

We clearly see that the newly defined operator based on elliptic auxiliary problems outper-
forms all the other transmission operators we are considering (the only exception is the simi-
lar performance with the second order local operator in 3D for Helmholtz). This includes 2D
Helmholtz where the results using the integral operators were already quite satisfying; but it
is especially true for the case of Maxwell equations in 3D: the number of Gmres iterations re-
quired to achieve (almost) machine precision is an order of magnitude lower than for the other
operators.
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Figure 8.11: Helmholtz 3D. An example of convergence history. Fixed parameters κ0 = 1,
Nλ = 40, ball of radius R = 1.
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Figure 8.12: Maxwell 3D. An example of convergence history. Fixed parameters κ0 = 1, Nλ = 40,
3D, ball of radius R = 1.
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8.3.3 h-uniform geometric convergence
As we did for the integral operators, we now study the number of iterations required to reach
convergence with respect to mesh refinement, for both the relaxed Jacobi and GMRES algo-
rithms. The refinement of the mesh is indicated by the number of points per wavelength Nλ
which is inversely proportional to the typical mesh size. In the results given below, the iteration
counts that are reported correspond to the number of the iteration for which the relative error
in the broken relative energy norms (H1 for Helmholtz, H(curl) for Maxwell) is below 10−8.

For the two dimensional acoustic setting, the results are reported in Figure 8.13. The results
for the acoustic and electromagnetic settings in 3D are respectively reported in Figure 8.14 and
Figure 8.15.

These figures are the enriched versions (with the results using the operators based on elliptic
auxiliary problems) of respectively Figure 7.4, Figure 7.5 and Figure 7.8. We therefore refer the
reader to the comments made in Chapter 7 before resuming the discussion.
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Figure 8.13: Helmholtz 2D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, disk of radius R = 1.

According to these results, the operators based on elliptic auxiliary problems outperform (in
the electromagnetic setting, rather spectacularly) the integral operators, in all three configura-
tions considered. We shall point out that we noticed during our numerical experiments that this
difference is especially true because the problems are rather low frequency (which is required
here to truly investigate the dependency with respect to the mesh parameter). Importantly, we
observe that the iteration count for the operator based on elliptic auxiliary problems is fairly
independent to the discretization parameter, as expected.

Besides, we notice that the iteration counts for the integral operators actually decreases (in
most cases) as the mesh is refined. This can be explained to some extend by realizing that the
continuous operators behind the two operators present in the plots are somehow similar while the
two discretization methods are radically different. Indeed, roughly speaking, similar (continuous)
elliptic problems are hidden behind both operators, the main difference being the boundedness
of the domain of the problem. However, for the integral operators, the discretization method
uses a standard boundary element method while for the other ones, a standard finite element
method is used. As the mesh is refined the operators get closer in some sense and we observe
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Figure 8.14: Helmholtz 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, ball of radius R = 1.
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Figure 8.15: Maxwell 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, ball of radius R = 1.
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similar behaviours. In addition, we believe that the observed better behaviour for the operators
using explicit auxiliary problems is due to the fact that it is actually discretized by the same
method as for the propagative problems.

8.3.4 Frequency
We now report the dependency of the iteration count with respect to the wavenumber κ0. See
Figure 8.16 for the two-dimensional results for the Helmholtz equation, where results are reported
for both the relaxed Jacobi and the Gmres algorithms The three-dimensional results are reported
in Figure 8.17 for both the acoustic and electromagnetic settings, only for the Gmres algorithm.
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Figure 8.16: Helmholtz 2D. Number of iterations with respect to the wavenumber κ0. Fixed
parameters J = 2, Nλ = 30, disk of radius R = 1.

As the wavenumber κ0 increases, the discrete (as well as the continuous) problem gets harder.
This is indicated again by the increase in the iteration count of the GMRES algorithm for the
undecomposed problem (line plot labelled ‘No DDM’). For this case, the growth is linear (at
least for the acoustic setting) with respect to κ0. In contrast, for all the impedance operators
under study, we notice a sub-linear growth of the number of iteration with respect to κ0. We
see numerically that the domain decomposition method mitigates to some extent the effect of an
increase in the frequency of the propagation problem.

8.3.5 Scalability of the method: strong scaling
We finally study the dependency of the method with respect to the number of subdomains J of
the mesh partition.

The results of a strong scaling test in 2D are provided in Figure 8.18 which reports the
iteration count with respect to J varying from 2 to 64 subdomains. The interfaces are concentric
circles, with linearly increasing radii. As a result, the computational charge is not equilibrated
among sub-domains.

We observe numerically a significant increase in the number of iterations required to achieve
the set tolerance. This is true for all transmission operators considered. This suggests that,
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Figure 8.17: Number of iterations with respect to the wavenumber κ0. Fixed parameters J = 2,
Nλ = 20, sphere of radius R = 1. Gmres algorithm.
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Figure 8.18: Helmholtz 2D. Number of iterations with respect to the number of subdomains J .
Fixed parameters κ0 = 10, Nλ = 40, Gmres algorithm, disk of radius a = 1.
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when the partitioning is performed in consecutive layers, the number of sub-domains should be
kept moderate.
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Chapter 9

Continuous setting
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In this new part and chapter, we extend the formalism and analysis to allow for the presence
of junction points, i.e. points where three (or more) sub-domains abut.

The breakthrough ideas and theoretical foundation that made possible the treatment of junc-
tion points originate mainly from the work of Xavier Claeys, notably in [29] (and re-exploited
in [33]), but are adapted here to our abstract formalism. We closely follow, in particular in this
chapter, the approach (and notations) that were used in Part I of this manuscript so that to
precisely highlight these new key ideas. As the reader will soon realize, the definitions of the
Cauchy trace space and the scattering operators that we are going to introduce in this chapter
are formally very similar to the ones provided in Chapter 3. The main meaningful difference lies
in the definition of the single trace space (and, as a result, will require to replace the exchange
operator by a new operator realizing the communication between sub-domains). In fact, the
striking difference between Chapter 3 and this chapter is that, to define our multi-trace space,
we shift from considering a collection of traces at interfaces between two sub-domains to a col-
lection of traces at boundaries of sub-domains in order to define our multi-trace space. In the
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previously described method from Chapter 3 the characterization of the so-called single traces,
i.e. continuous traces, was particularly natural and easy. Moreover such a characterization could
be done locally at each interface in the form of interface matching conditions. The key point is
to realize that in the presence of junctions, this local characterization as matching conditions at
every interface is somewhat obsolete and shall be abandoned. However, the space of collections
of boundary traces of elements of UΓ(D; Ω) does still make sense: this will be our new definition
of the single-trace space.

Our aim is to retain the characteristic feature of the class of domain decomposition we consider
namely the interface problem formulation (see Proposition 3.24) involving a scattering operator
(solving the equation in each sub-domain) and an exchange operator (that performs commu-
nications between sub-domains). An immediate and important consequence of the paradigm
shift we just described is that the so-called exchange operator that realizes communications be-
tween sub-domains (recall that it was intimately linked to the single trace space) can no longer
be defined as a local operator that simply exchanges data through an interface shared by two
sub-domains. Since we will require however that a candidate substitute for this operator still
performs communications between sub-domains (this is the operator that performs the coupling
of the sub-domains), we refer to it as a communication operator to emphasize that it no longer
performs a standard exchange of data at the interface.

The breakthrough idea comes from the realization that the exchange operator Π‖ actually de-
fines an (orthogonal, for the scalar product stemming from the transmission operator) projector
Id + Π‖ (respectively Id−Π‖) onto the single trace space S0,‖ (respectively S1,‖). In a partition
without junctions, defining either this particular communication operator or the orthogonal pro-
jectors is very natural and straightforward. However, in a partition that contains junctions, the
proper definition (within the multi-trace formalism) of a communication operator seems neces-
sarily intricate. On the other hand, defining orthogonal projectors (for a given scalar product)
onto the single trace spaces remains natural (and moreover easy to do after discretization). This
is why the new definition of a communication operator explicitly involves an orthogonal projector
whose actual computation takes the form of an auxiliary global problem posed on the skeleton of
the partition (see Remark 9.24 for more detail). As a result, in the approach which is developed
below, the exchange of information or transmission condition at interfaces is somewhat elusive as
it is only implicitly defined through the auxiliary global problem. However, as we shall see, this
change of point of view is fertile as it allows to deal with more general partitions, including parti-
tions with interior cross points. Moreover, we shall show that the method described in Chapter 3
is actually a particular case of the new approach presented in this chapter, in the absence of
interior cross points. In particular the communication operator is exactly the previous standard
exchange operator, independently of the choice of the projectors (hence of the underlying scalar
product).

Solving the global auxiliary problem posed on the full skeleton could appear frightening at first
sight, in particular in view of a parallel implementation of the method. Indeed, the exchange
operator is, a priori, fully non-local and its action is expensive to compute if no particular
attention is given. However, the nature of the problem, namely its positivity and definiteness
makes the situation far more favorable than it may seems. In particular, one could resort to
iterative methods to solve this problem, for instance a preconditioned conjugate gradient method.
As we shall explain, the matrix-vector product required to implement an iterative algorithm only
requires communications with neighbouring sub-domains, exactly as in standard methods. The
only difference is that this time, we will need to have several communications, as many as we
need to have iterations in this inner iterative algorithm, for an actual exchange (as far as the
outer global DD method is concerned) to take place. Fortunately, the nature of the problem
makes the additional system well conditioned.
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Our change of paradigm has also important consequences on the transmission operators we
can consider in order to preserve the theory. As a matter of fact, one shall chose the transmission
operator as the scalar product that defines the orthogonal projector that is used in the defini-
tion of the communication operator. This is sufficient to ensure the consistency between the
decomposed problem and the original problem. The question of the necessity of this choice (in
particular in a discrete setting) is not fully settled. Besides, since we no longer look at interfaces
between two sub-domains, we no longer require any type of two-sided symmetry with respect
to interfaces in the transmission operators. As a result, it is natural to define a block diagonal
transmission operator whose blocks (one for each sub-domain) are built independently in each
sub-domain. This is another valuable feature of the new approach.

Let us now replace our work in the literature associated to the Multi-Trace Formalism (MTF)
which we recall was initially introduced in the context of boundary integral equations. We point
out that there already exists some literature making connections between the MTF and domain
decomposition methods [7, 35, 31, 55]. Note that the former framework of Part I stems from the
local MTF [83, 84], as was clearly demonstrated in [39, Sec. 7]. In contrast, the framework we
are about to describe comes from the global version of the MTF [32, 38].

9.1 A motivating numerical experiment
To further motivate the forthcoming analysis, we report here some numerical experiments con-
ducted by Francis Collino on a model problem designed specifically to study cross points.

The test case consists of a 2D disk of radius R = 1 which is regularly split into J pie wedges
pointing at the center of the disk. Therefore, by construction, there are J boundary cross points
and one single interior cross point (the center of the disk) which is shared by all sub-domains.
To avoid the specific difficulty posed by nodal discretizations, the discretization strategy that
is chosen here rests on a formulation in H(div). This choice means that in the finite element
formulation no degree of freedom is associated to the interior cross-point, which simplifies in
many ways the definition of the transmission conditions.

Formulation of the model problem We consider our usual model problem for the Helmholtz
equation on the unit disk in 2D. Let g ∈ L2(Γ) and suppose we are set to solve the model problem,
naturally posed in H1(Ω), {

−∆p− κ0
2p = 0, in Ω,

(∂ν − iκ0) p = g, on Γ.
(9.1)

Instead of looking directly for p we will consider a formulation in H(div; Ω), for its gradient
u := grad p. The problem in u is written as{

−grad div u− κ0
2u = 0, in Ω,

div u− iκ0u · ν = −iκ0g, on Γ.
(9.2)

Such a problem is naturally posed in

HΓ(div; Ω) :=
{

u ∈ L2(Ω)2 | div u ∈ L2(Ω), u · ν ∈ L2(Γ)
}
. (9.3)

The variational form of the problem is written as{
Find u ∈ HΓ(div; Ω) such that
a(u, ut) = −iκ0 (g, ut · ν)L2(Γ), ∀ut ∈ HΓ(div; Ω),

(9.4)
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where for all u,ut ∈ HΓ(div; Ω), we define

a
(
u, ut

)
:=
(
div u, div ut

)
L2(Ω) − κ0

2(u, ut
)
L2(Ω)2 − iκ0

(
u · ν, ut · ν

)
L2(Γ). (9.5)

The unknown u and the test function will be both discretized using standard (low-order) Raviart-
Thomas finite elements. Note that this formulation has many drawbacks, starting from an
increased computational cost, but in this way, the natural trace u ·ν is piecewise constant on the
boundary, with one degree of freedom associated to each edge and there will be no issue in the
definition of the exchange operator due to the presence of the cross point.

The domain decomposition methods compared We briefly describe here the three domain
decomposition methods that we compare.

• The first method is a straightforward extension of the method described previously, where
the transmission operator is simply a scalar coefficient which corresponds to Després-like
transmission conditions;

• The second method is also a straightforward extension of the method described previously,
but uses non-local transmission operators defined on each interface. These transmission
operators are constructed by solving elliptic auxiliary problems in the sub-domains adjacent
to the interface on which they are defined, in the spirit of the operators introduced in
Chapter 8. However, due to the formulation that is adopted, the operators are constructed
from Neumann-to-Dirichlet maps and are therefore regularizing.

• The third method compared corresponds to the newly proposed method and will be de-
scribed in what follows. It uses non-local transmission operators satisfying the requirements
of the forthcoming (geometric) convergence analysis. These operators are also regularizing
and are computed by solving elliptic auxiliary problems within each sub-domain.

We believe that the first two approaches are the simplest and most natural extensions of
the previously defined domain decomposition method that one can consider. In particular, the
purpose of the second method is to investigate whether or not it is possible to obtain geometric
convergence with non-local transmission operators in presence of junction points.

Convergence history of iterative algorithms We report in Figure 9.1 the convergence
histories of the three domain decomposition methods for the relaxed Jacobi algorithm and in
Figure 9.2 the corresponding results for the Gmres algorithm. The results are provided for three
different mesh refinements.

We see, as expected, the deterioration of the convergence of the iterative algorithms when the
Després transmission conditions are used. This was also observed in the absence of cross-points,
so this is not a surprise.

The results using the non-local transmission operators also bear a deterioration, albeit less
severe, with finer meshes. This result, which contrast with the previous results, was feared but
is a strong motivation for the forthcoming analysis. Note that the effect is attenuated for the
Gmres algorithm, especially for the 3 sub-domains configuration.

On the contrary, the new approach exhibits a perfectly uniform convergence with respect to
the mesh size and converges faster than the other two strategies.



9.1. A MOTIVATING NUMERICAL EXPERIMENT 267

0 100 200 300 400 500

10−7

10−5

10−3

10−1

Iteration n

R
el

at
iv

e
er

ro
r

Nλ = 20

Nλ = 40

Nλ = 80

(a) Després transmission operator. J = 3.
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(b) Després transmission operator. J = 6.
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(c) Non-local transmission operator. J = 3.
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(d) Non-local transmission operator. J = 6.
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(e) New approach. J = 3.
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(f) New approach. J = 6.

Figure 9.1: Convergence history for the Jacobi algorithm. With 3 (left) and 6 (right) sub-
domains.



268 CHAPTER 9. CONTINUOUS SETTING

0 20 40 60 80 100

10−9

10−7

10−5

10−3

10−1

Iteration n

R
el

at
iv

e
er

ro
r

Nλ = 20

Nλ = 40

Nλ = 80

(a) Després transmission operator. J = 3.
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(b) Després transmission operator. J = 6.
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(c) Non-local transmission operator. J = 3.
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(d) Non-local transmission operator. J = 6.

0 20 40 60 80 100

10−9

10−7

10−5

10−3

10−1

Iteration n

R
el

at
iv

e
er

ro
r

Nλ = 20

Nλ = 40

Nλ = 80

(e) New approach. J = 3.
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(f) New approach. J = 6.

Figure 9.2: Convergence history for the Gmres algorithm. With 3 (left) and 6 (right) sub-
domains.
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(a) Després transmission operator. J = 3.
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(b) Després transmission operator. J = 6.
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(c) Non-local transmission operator. J = 3.
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(d) Non-local transmission operator. J = 6.
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(f) New approach. J = 6.

Figure 9.3: Eigenvalues of the iteration matrices. With 3 (left) and 6 (right) sub-domains.
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Eigenvalues of the iteration matrix To try to explain those results, we represent in Fig-
ure 9.3 the eigenvalues of the iteration operators that are involved in the three domain decom-
position methods. Note that for the two methods adopting the previously defined strategy, the
iteration operator corresponds to Id −Π‖S1,‖. The iteration operator takes also the same form
in the new approach, as we shall see.

When the Després conditions are used, we see an accumulation near the origin which will
damage the convergence of both the Gmres and the relaxed Jacobi algorithms, as expected.

When the non-local transmission operator is used in conjonction of the previous approach, we
see that the clusters are next to the two points (1, 1) and (1,−1), which demonstrates that the
evanescent modes are well taken into account. However, we see that a few isolated eigenvalues,
close to the shifted unit circle, exist, and seem to get closer to the origin as the mesh is refined.
This is particularly visible on the configuration with 6 sub-domains.

In contrast, with the new approach, the eigenvalues seem to be uniformly bounded away from
the critical points.

Nature of the error We represent in Figure 9.4 the distribution of the error between the
exact discrete solution and the discrete solution (obtained with the relaxed Jacobi algorithm).
More precisely, the absolute value of the error is represented as the elevation along the z axis,
after linear interpolation on the nodes of the mesh. For a better representation, the magnification
factor is different for each figure, as indicated by the actual maximum and minimal values of the
error on the colorbar. The convergence is stopped before machine precision is reached. In some
sense, the nature of the remaining error gives us insight on the components that are troublesome
for the convergence.

When Després transmission conditions are used, we see that the error is highly concentrated
along each interface and decreases very rapidly away from them. The most likely interpretation
is that the main components in the error consist in some sense of “evanescent waves”. Note also
that the ratio between the maximum and minimum values of the error is very large.

In contrast, the error is highly peaked at the cross point and (slowly) decreasing away from
it when the non-local operator is used. The transmission interfaces seem less visible. Note also
that the ratio between the maximum and minimum values of the error is much smaller than for
the Després transmission conditions.

As for the non-local transmission operator used in conjunction with the new approach, the
error is more evenly distributed in the domain, albeit slightly accumulating near the interfaces.
More importantly, no accumulation of the error at the cross point can be observed in contrast to
the result using also a non-local transmission operator but with the standard exchange operator
(Figure 9.4b).

Conclusion on these numerical experiments To sum up, although this is by no means a
rigorous proof, these numerical experiments appear to be a numerical counter-example to the
claim that the straightforward extension of the iteration operator Id −Π‖S1,‖ is continuously
invertible on the multi-trace space in presence of junction points. Indeed, if it was true, one
would expect h-uniform geometric convergence of the iterative algorithms. As a consequence, we
do not expect that a result on geometric convergence akin to Theorem 3.63 exists for a general
configuration. The fact that available proofs (in absence of junction points) failed to yield the
result in a general configuration is maybe not fortuitous, after all. Obviously these numerical
experiments clearly highlighted that convergence of the algorithms is however indeed possible and
do not contradict the convergence results that have been already established, even in presence
of junctions, see [49, 78]. This assessment is the starting point and the main motivation for the
subsequent approach.
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(a) Després transmission operator.

(b) Non-local transmission operator.

(c) New approach.

Figure 9.4: Nature of the error using different approaches (6 sub-domains configuration). The
absolute value of the error on the solution is represented as the elevation (after linear interpolation
on the nodes of the mesh). Different magnification factors are used for the three figures.
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9.2 Abstract domain decomposition method
We stress that in this Chapter, we do not suppose that Assumption 3.11 holds, therefore allowing
the presence of interior junction points. However, to make the presentation clearer and avoid
many technicalities due to the physical boundary conditions, we still require Assumption 3.12
to hold, namely we still exclude the presence of boundary cross points (cross points at physical
boundary). For instance we allow the example configuration of Figure 3.1b but exclude the one
of Figure 3.1a.

The definitions and notations introduced in Section 3.1 are independent of the type of par-
tition and will still be in use in this chapter. Recall that we use the index × in place of ‖

to differentiate what has a meaning in a configuration that may admit cross-points versus a
configuration that excludes cross-points.

9.2.1 Multi-trace formalism
We provide an alternative to the definitions of Section 9.2.1 that allows the treatment of junction
points.

9.2.1.1 Multi-trace spaces

We introduce global trace spaces whose elements are a collection of traces on the sub-domain
boundaries, with the exception of physical boundaries (hence no longer on interfaces as in Defi-
nition 3.16).

Definition 9.1 (Multi-trace spaces). The global multi-trace spaces are defined as

M0,×
(
Σ̃
)

:=
J×
j=1

X0(Γ̃j),

M1/2,×
(
Σ̃
)

:=
J×
j=1

X1/2(Γ̃j),

M1,×
(
Σ̃
)

:=
J×
j=1

X1(Γ̃j),

M×
(
Σ̃
)

:=
J×
j=1

X(Γ̃j) ≡ M0,×
(
Σ̃
)
× M1,×

(
Σ̃
)
.

(9.6)

Note that because Assumption 3.12 is still assumed to hold, each manifold Γ̃j is necessarily
closed.

Again, we shall omit in the following the dependence in the skeleton (M× := M×
(
Σ̃
)
. . . ) for

the sake of simplicity.

Remark 9.2 (Making the link with the free junction case). For each σ ∈ {0, 1}, an
element of Mσ,× is a tuple composed of exactly J elements (the number of sub-domains in the
partition), while an element of Mσ,‖ is a tuple composed of exactly card J elements (the number
of non-empty interfaces between exactly two sub-domains).

However, if Assumption 3.11 and Assumption 3.12 hold, we can identify the two spaces in a
straightforward manner. The key point is to see that if we do not allow the presence of junction
points, the interfaces Γjk are all closed manifolds of dimension d − 1 and the boundary Γj
of Ωj is made of the reunion of several connected components Γjk for k ∈ Kj. As a result, the
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Figure 9.5: Visual representation of the components of the multi-trace spaces.

identification stems from the continuity and surjectivity properties of the trace operators on closed
manifolds and suitably “gathering” and “dividing” traces of different connected components, see
Figure 9.5.

More precisely, elements of Mσ,‖ are identified as elements of Mσ,× by “gathering” together
the (disconnected) pieces that belong to a single sub-domain:

For any (xjkσ )(j,k)∈J ∈ Mσ,‖,

let xjσ ∈ Xσ(Γj), ∀j ∈ {1, . . . , J}, such that xjσ|Γjk
:= xjkσ , ∀(j, k) ∈ J,

then (xjσ)Jj=1 ∈ Mσ,×.

(9.7)

Similarly, elements of Mσ,× are identified as elements of Mσ,‖ by “dividing” boundary traces
into (disconnected) single interface pieces:

For any (xjσ)Jj=1 ∈ Mσ,×.

let xjkσ ∈ Xσ(Γjk), ∀(j, k) ∈ J, such that xjkσ := xjσ|Γjk
, ∀(j, k) ∈ J,

then (xjkσ )(j,k)∈J ∈ Mσ,‖,

(9.8)

We emphasize that if Assumption 3.11 and Assumption 3.12 do not hold, the identification
above is, in general, no longer possible: “gathering” and “dividing” traces is no longer permitted
as we may break out of the natural trace spaces. However the identification remains possible for
regular enough functions, that is for instance elements of Mσ,‖ ∩ M1/2,‖ and Mσ,× ∩ M1/2,×.

Note that it is not possible to define a suitable multi-trace space M0,‖ on the geometric config-
uration represented in Figure 9.5c whereas there is no trouble with our new definition of M0,×.
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Trace operators By construction, the following global trace operators are continuous map-
pings from the broken solution spaces into the multi-trace spaces

γ0,× : U(D;PΩ)→ M0,×,

u 7→
(
γ0,Γ̃j

u|Ωj

)J
j=1

,

γ1,× : U(D,La;PΩ)→ M1,×,

u 7→
(
γ1,Γ̃j

u|Ωj

)J
j=1

,

γ× : U(D,La;PΩ)→ M×,

u 7→
(
γΓ̃j

u|Ωj

)J
j=1

.

(9.9)

In addition, from Assumption 3.2, the mappings γ0,× and γ1,× are surjective. It is clear that,
up to a re-ordering of the elements, we can make the identification γ× ≡ (γ0,×,γ1,×).

Norms and duality pairings In the definitions below, and systematically in the remainder
of this document, we shall use the following notations for elements of the multi-trace spaces

x0 = (xj0)Jj=1, y0 = (yj0)Jj=1 ∈ M0,×,

x1 = (xj1)Jj=1, y1 = (yj1)Jj=1 ∈ M1,×,

x1/2 = (xj1/2
)J
j=1

, y1/2 = (yj1/2
)J
j=1

∈ M1/2,×,

x = (xj)Jj=1 ≡ (x0, x1), y = (yj)Jj=1 ≡ (y0, y1) ∈ M×,

(9.10)

The multi-trace spaces can be endowed with the norms stemming from their Cartesian product
structure. Recalling the definitions of the norms on a single domain given in (3.31), (3.33)
and (3.50), we set, for each σ ∈ {0, 1/2, 1},

‖xσ‖2
Mσ,×

:=
J∑
j=1
‖xjσ‖

2
Xσ(Γj,h). (9.11)

Besides, we introduce the natural norm on M× as follows

‖x‖2
M×

:= ‖x0‖2
M0,×

+ ‖x1‖2
M1,×

, ∀x ≡ (x0, x1) ∈ M×. (9.12)

Recalling the local duality pairing 〈·, ·〉∂O between the two dual trace spaces (3.28) on a
single boundary ∂O, we introduce the duality pairing between multi-trace spaces (which does
not involve any complex conjugation operation)

〈〈·, ·〉〉× : M1,× × M0,× → C,

(x1, x0) 7→
J∑
j=1
〈xj1, x

j
0〉Γ̃j

.
(9.13)

Recalling our definition (3.49) of the inner product (·, ·)∂O on the pivot trace space X1/2(∂O) on
a single boundary ∂O, we also equip the (pivot) multi-trace space with its natural scalar product
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(and associated norm) which reads

((·, ·))× : M1/2,× × M1/2,× → C,

(x1/2, x1/2) 7→
J∑
j=1

(xj1/2
, yj1/2

)
Γ̃j

.
(9.14)

Recalling the definition (3.73) of the bilinear form [·, ·]∂O on X(∂O) for a single boundary ∂O,
we finally define the skew symmetric bilinear form

[[·, ·]]× : M× × M× → C,

(x, y) 7→
J∑
j=1

[xj , yj ]Γ̃j
= 〈〈y1, x0〉〉× − 〈〈x1, y0〉〉×.

(9.15)

9.2.1.2 Cauchy-trace spaces

Similarly to Definition 3.18, we define a first subset of the space of multi-trace spaces which is
the space of traces of a function whose restriction in each sub-domain satisfies the homogeneous
PDE and physical boundary conditions on Γ (see (3.130)). In particular, note that no boundary
condition on the transmission interface is imposed in the following definition and that the two
traces associated to the two sides of a single interface between two sub-domains need not satisfy
a matching condition.
Definition 9.3. Recall that, for each j = 1, . . . , J , we introduced in (3.130) the subspace S (Ωj)
of solutions of the homogeneous PDE in Ωj. For each j = 1, . . . , J , the local space of Cauchy
traces is defined as

C× (Γj) :=
{

xj ∈ X(Γj)
∣∣∣ ∃uj ∈ S(Ωj), xj := γΓj

uj

}
. (9.16)

The global Cauchy trace space, subspace of M×, is defined as

C×
(
Σ̃
)

:=
J×
j=1

C× (Γj) . (9.17)

Again, because elements of the Cauchy traces are related to local solutions that satisfy the
original equation in each sub-domain, it is natural that they satisfy some sort of energy con-
servation result, as stated in the following Proposition. We refer the reader to the discussion
preceding Proposition 3.19 for the meaning of energy balance in our setting. A similar result in
a slightly different setting (in the whole space) can be found in [29, Lem. 6.1].
Proposition 9.4 (Energy balance interpretation). The energy decreases globally in Ω, which
translates as

i[[x, x]]× < 0, ∀x ∈ C×. (9.18)
Proof. Let

x = (xj)Jj=1 ∈ C×, xj = (xj0, x
j
1), ∀j ∈ {1, . . . , J}. (9.19)

For each j ∈ {1, . . . , J}, by definition of the local Cauchy trace space C× given in (9.16), let
uj ∈ UΓ(D; Ωj) be such that

(
La − κ0

2n
)
uj = 0, in Ωj ,

(γ1,Γ − iγ0,Γ )uj = 0, on Γ,
γΓ̃j

uj = xj , on Γ̃j .
(9.20)
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We have, using Lemma 3.6 and the first Green identity (3.104)

i 1
2 [xj , xj ]Γj

= =〈γ1,Γj
uj , γ0,Γj

uj〉Γj
,

= =
[
−κ0

−1(Lauj , uj)L2(Ωj)m0 + κ0
−1(a Duj ,Duj)L2(Ωj)m1

−〈γ1,Γ uj , γ0,Γ uj〉Γ
]
.

(9.21)

From (9.20), we obtain

i 1
2 [xj , xj ]Γj

=
[
−κ0(=(n)uj , uj)L2(Ωj)m0 + κ0

−1(=(a) Duj ,Duj)L2(Ωj)m1

−‖γ0,Γ uj‖2
L2(Γ)m0

]
≤ 0,

(9.22)

from the assumption (3.78). This proves that the energy is conserved locally in each sub-domain,
the global result follows by summing over all sub-domains. �

9.2.1.3 Single-trace spaces

We now introduce the single trace spaces, which are, again in this setting, spaces of traces of
functions that are “globally regular” in some (Sobolev) sense in the whole of Ω. In contrast
to Definition 3.20, we use as a definition the characterization given by Proposition 3.21. We
emphasize that we adopt here an approach that is fundamentally different from the one of
Chapter 3.

First, let us define the following global trace operators (see in particular Assumption 3.2 for
the definition of the local traces)

γD,× : U(D;PΩ)→ M0,×,

u 7→
(
γD,Γ̃j

u|Ωj

)
j∈{1,...,J}

,

γD∗,× : U(D∗;PΩ)→ M1,×,

u 7→
(
γD∗,Γ̃j

u|Ωj

)
j∈{1,...,J}

.

(9.23)

Of course from (3.64), we have γD,× = γ0,×. However, we introduced the operator γD,× to
respect the symmetry in our notations.
Definition 9.5. The global single-trace spaces are defined as

S0,×
(
Σ̃
)

:= γD,× UΓ(D; Ω),
S1,×

(
Σ̃
)

:= γD∗,× UΓ(D∗; Ω),
S×
(
Σ̃
)

:= S0,×
(
Σ̃
)
× S1,×

(
Σ̃
)
.

(9.24)

Remark 9.6. Observe that, contrary to Definition 3.20, we have not used matching conditions
at every interface to define the single-trace spaces. However, we still have

S0,× =
{

x0 = (xj0)Jj=1 ∈ M0,× | xj0|Γjk
= xk0 |Γjk

, ∀(j, k) ∈ J
}
,

S1,× =
{

x1 = (xj1)Jj=1 ∈ M1,× | xj1|Γjk
= −xk1 |Γjk

, ∀(j, k) ∈ J
}
,

(9.25)

where the restriction operation is to be understood in a suitable weak sense, which would be quite
delicate to give a meaning to in our abstract setting. It follows that we shall not rely on the above
matching conditions when devising our domain decomposition method.
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The following lemma, which rests on Assumption 3.3, is in some sense a generalization to the
case of junction points of Lemma 3.13.

Lemma 9.7. We have
KerγD,× ⊂ U(D; Ω),
KerγD∗,× ⊂ U(D∗; Ω).

(9.26)

Proof. We give the proof of the first result, the proof of the other one takes a very similar route.
Let u ∈ KerγD,×. For any j ∈ {1, . . . , J}, we have by definition of the multi-trace operator

γD,× that u|Ωj
∈ Ker γD,Γ̃j

. By Assumption 3.3, there exists a sequence (φnj )
n∈N

of elements of
D(Ωj)m0 that converges to u|Ωj

in U(D; Ωj). For each n ∈ N, let φn be such that φn|Ωj
= φnj .

By construction it is clear that all elements of the sequence (φn)n∈N belong to D(Ω)m0 . This
sequence is a Cauchy sequence, since we have

‖φp − φq‖2
U(D;Ω) =

J∑
j=1
‖φpj − φ

q
j‖

2
U(D;Ωj),

≤ 2
J∑
j=1

(
‖φpj − u|Ωj‖

2
U(D;Ωj) + ‖u|Ωj − φ

q
j‖

2
U(D;Ωj)

)
,

(9.27)

and each term on the right-hand-side converges to 0 by assumption on (φnj )
n∈N

. Hence the
sequence (φn)n∈N converges in U(D; Ω) (which is complete) say to v. Besides it converges to u
in L2(Ω)m0 . By uniqueness of the limit, it follows that u = v ∈ U(D; Ω) and we are done. �

We deduce the following corollary, which completes Definition 9.5. It is a characterization
of the difference between the U (regular) and the U (broken) versions of the solution spaces
using the single-trace spaces. This result is the analogue of Corollary 3.22 and the two proofs
are similar. Notice however that the arguments are different, we use Definition 9.5 instead of
Proposition 3.21 and Lemma 9.7 instead of Lemma 3.13.

Corollary 9.8. We have

(i) ∀u ∈ UΓ(D;PΩ), γD,×u = γ0,×u ∈ S0,× ⇔ u ∈ UΓ(D; Ω),
(ii) ∀u ∈ UΓ(D∗;PΩ), γD∗,×u ∈ S1,× ⇔ u ∈ UΓ(D∗; Ω),
(iii) ∀u ∈ UΓ(D,La;PΩ), γ×u ∈ S× ⇔ u ∈ UΓ(D,La; Ω).

(9.28)

Proof. It is clear that one implication (⇐) stems from Definition 9.5. We need only to prove the
reverse implication (⇒).

(i) Let u ∈ UΓ(D;PΩ) such that γ0,×u ∈ S0,×. By Definition 9.5 of S0,×, there exists
v ∈ UΓ(D; Ω) such that γ0,×(v − u) = 0. It follows that w := v − u ∈ Kerγ0,× = KerγD,× and
by Lemma 9.7 we get w ∈ UΓ(D; Ω) so that finally u = v + w does belong to UΓ(D; Ω).

(ii) Let u ∈ UΓ(D∗;PΩ) such that γ1,×u ∈ S1,×. By Definition 9.5 of S1,×, there exists
v ∈ UΓ(D∗; Ω) such that γ1,×(v− u) = 0. It follows that w := v− u ∈ Kerγ1,× = KerγD∗,× and
by Lemma 9.7 we get w ∈ UΓ(D∗; Ω) so that finally u = v + w does belong to UΓ(D∗; Ω).

(iii) Let u ∈ UΓ(D,La;PΩ) such that γ×u ∈ S×, which is rewritten as from Definition 9.5
as γ0,×u ∈ S0,× and γ1,×u ∈ S1,×. We just proved in (i) that from γ0,×u ∈ S0,× we have
u ∈ UΓ(D; Ω). If we let v ∈ L2(Ω)m1 such that for each j ∈ {1, . . . , J}, v|Ωj

= aDu|Ωj
, we have

γ1,×v ∈ S1,× and we just proved in (ii) that then v ∈ UΓ(D∗; Ω). Hence we get aDu ∈ UΓ(D∗; Ω)
and we have u ∈ UΓ(D,La; Ω). �
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The following proposition is the counterpart of Proposition 3.23 and states that the single
trace spaces are orthogonal in some sense, providing as a result a helpful characterization of the
spaces. Such a result was proven for in [28, Prop. 2.1], [36, Prop. 2.1] and [29, Prop. 4.1] for
the acoustic setting and in [37, Prop. 3.1] for the electromagnetic setting.

Proposition 9.9. The single trace spaces are such that:

∀x0 ∈ M0,×,
(

x0 ∈ S0,× ⇔ 〈〈y1, x0〉〉× = 0, ∀y1 ∈ S1,×

)
,

∀x1 ∈ M1,×,
(

x1 ∈ S1,× ⇔ 〈〈x1, y0〉〉× = 0, ∀y0 ∈ S0,×

)
,

∀x ∈ M×,
(

x ∈ S× ⇔ [[x, y]]× = 0, ∀y ∈ S×

)
.

(9.29)

Proof. Let x ≡ (x0, x1) ∈ M×. By definition,

x ∈ S× ⇔

{
x0 ∈ S0,×,

x1 ∈ S1,×,
(9.30)

and it is clear that

[[x, y]]× = 0, ∀y ∈ S× ⇔

{
〈〈y1, x0〉〉× = 0, ∀y1 ∈ S1,×,

〈〈x1, y0〉〉× = 0, ∀y0 ∈ S0,×,
(9.31)

so the last result is equivalent to the first two. We give the proof for the first one, it relies on
the first Green identity written in local domains and in the whole of Ω. The proof for the second
result follows the same route and is omitted for the sake of brevity.

(⇒) Let x0 ≡ (xj0)j∈{1,...,J} ∈ S0,×, there exists u0 ∈ UΓ(D; Ω) such that γD,Γ̃j
u0 = xj0 for all

j = 1, . . . , J . Let y1 ≡ (yj1)j∈{1,...,J} ∈ S1,×, there exists u1 ∈ UΓ(D∗; Ω) such that γD∗,Γ̃j
u1 = yj1

for all j = 1, . . . , J . We have, applying the first Green identity (3.65) twice (locally and globally)

〈〈y1, x0〉〉× :=
J∑
j=1
〈yj1, x

j
0〉Γ̃j

=
J∑
j=1
〈γD∗,Γ̃j

u1, γD,Γ̃j
u0〉Γ̃j

,

=
J∑
j=1

[
(u1,Du0)L2(Ωj)m1 − (D∗u1, u0)L2(Ωj)m0 − 〈γD∗,Γ u1, γD,Γ u0〉Γ

]
,

= (u1,Du0)L2(Ω)m1 − (D∗u1, u0)L2(Ω)m0 − 〈γD∗,Γ u1, γD,Γ u0〉Γ = 0.

(9.32)

(⇐) Let x0 ≡ (xj0)j∈{1,...,J} ∈ M0,× such that 〈〈y1, x0〉〉Σ = 0, ∀y1 ∈ S1,×. For each j =
1, . . . , J , we introduce local liftings uj0 ∈ UΓ(D; Ωj) such that γD,Γ̃j

uj0 = xj0. Let u0 ∈ UΓ(D;PΩ)
and v1 ∈ L2(Ω)m1 be such that

u0|Ωj = uj0, and v1|Ωj = Duj0. (9.33)

For any u1 ∈ UΓ(D∗; Ω) with vanishing trace γD∗,Γ u1 = 0 on Γ, we set y1 ≡ (yj1)j∈{1,...,J} ∈ S1,×
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with yj1 = γD∗,Γ̃j
u1 for all j = 1, . . . , J . We have,using once again the first Green identity (3.65)

(D∗u1, u0)L2(Ω)m0 =
J∑
j=1

(D∗u1, u
j
0)L2(Ωj)m0 ,

=
J∑
j=1

[
−〈γD∗,Γ̃j

u1, γD,Γ̃j
uj0〉Γ̃j

+ (u1,Duj0)L2(Ωj)m1

]
,

=
J∑
j=1

[
−〈yj1, x

j
0〉Γ̃j

+ (u1,Duj0)L2(Ωj)m1

]
,

= −〈〈y1, x0〉〉× + (u1, v1)L2(Ω)m1 = (u1, v1)L2(Ω)m1 .

(9.34)

Which proves that v1 = Du0 weakly on the whole of Ω, hence u0 ∈ UΓ(D; Ω) and x0 ∈ S0,×. �

Remark 9.10. Notice that the proof of the similar result (Proposition 3.23) in absence of junc-
tion points was considerably easier. Similarly, for regular enough functions (for which the re-
striction on parts of the boundary can be properly defined) the orthogonality property can be easily
deduced (see Remark 9.6). Indeed, let

x0 ≡ (xj0)Jj=1 ∈ M0,× ∩ M1/2,× and x1 ≡ (xj1)Jj=1 ∈ M1,× ∩ M1/2,×, (9.35)

we first establish the identity

〈〈x1, x0〉〉× = ((x1, x0))× =
J∑
j=1

(xj1, x
j
0)Γ̃j

=
J∑
j=1

∑
k∈Kj

(xj1|Γjk
, xj0|Γjk

)Γjk
,

=
J∑
j=1

∑
k∈Kj

j<k

[
(xj1|Γjk

, xj0|Γjk
)Γjk

+ (xk1 |Γjk
, xk0 |Γjk

)
Γjk

]
.

(9.36)

Now, if x0 ∈ S0,× and x1 ∈ S1,×, it follows from Definition 9.5 that 〈〈x1, x0〉〉× = 0. Reciprocally,
let x0 ∈ M0,× such that for any x1 ∈ S1,×, we have 〈〈x1, x0〉〉× = 0. We obtain

〈〈x1, x0〉〉× =
J∑
j=1

∑
k∈Kj

j<k

〈xjk1 |Γjk
, xjk0 |Γjk

− xkj0 |Γkj
〉Γjk

= 0, (9.37)

which holds for any x1, so that xjk0 |Γjk
= xkj0 |Γkj

for any (j, k) ∈ J and finally x0 ∈ S0,×.
The other result can be obtained analogously.

9.2.1.4 Characterization of the trace of the solution

We are now ready to characterize the solution of the model problem (3.79) entirely through its
trace. This is the purpose of the following Proposition, counterpart of Proposition 3.24 but now
allowing interior junction points.

Proposition 9.11 (Equivalent decomposed problem). Let F ∈ UΓ(D;PΩ) be any source
lifting such that (the choice is not unique){

(La − κ0
2n)F |Ωj = f |Ωj , in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )F = g, on Γ.
(9.38)
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Let u ∈ UΓ(D,La;PΩ). Then, u is solution of the model problem (3.79) if, and only if,

γ×u ∈ (C× + γ×F ) ∩ S×. (9.39)

Proof. (⇒) Let u be a solution of the model problem (3.79):
Find u ∈ UΓ(D; Ω) such that
(La − κ0

2n)u = f, in Ω,
(γ1,Γ − iγ0,Γ )u = g, on Γ.

(9.40)

Since u satisfies the PDE in Ω in a distributional sense, by testing for each j ∈ {1, . . . , J} with
a test function in C∞

0 (Ωj) (extended by zero outside Ωj), the restriction u|Ωj , which ought to
be in UΓ(D; Ωj), satisfies the PDE in each sub-domain Ωj . The physical boundary condition on
Γ is not affected by the decomposition since we exclude the case of boundary junction points
(Assumption 3.12). We get{

(La − κ0
2n)u|Ωj = f |Ωj , in Ωj , ∀j ∈ {0, . . . , J},

(γ1,Γ − iγ0,Γ )u = g, on Γ.
(9.41)

Given any F ∈ UΓ(D;PΩ) satisfying (9.38), by Definition 9.3 of the Cauchy trace space C× we
get

γ×(u− F ) ∈ C×. (9.42)
Besides u is explicitly sought as an element of UΓ(D; Ω) and in addition u satisfy the PDE in

the whole of Ω and by Assumption 3.10 necessarily u ∈ UΓ(D,La; Ω). By Definition 9.5 on the
single trace space S× we get

γ×u ∈ S×. (9.43)
(⇐) Conversely, suppose that u ∈ UΓ(D,La;PΩ) is such that

γ×(u− F ) ∈ C×,

γ×u ∈ S×,
(9.44)

for any F ∈ UΓ(D;PΩ) satisfying (9.38). From

γ×(u− F ) ∈ C×, (9.45)

using Corollary 9.8 we have that{
(La − κ0

2n)u|Ωj
= f |Ωj

, in Ωj , ∀j ∈ {0, . . . , J},
(γ1,Γ − iγ0,Γ )u = g, on Γ.

(9.46)

From
γ×u ∈ S×, (9.47)

by Definition 9.5 on the single trace space S× we get that u ∈ UΓ(D,La; Ω). It follows that
(La − κ0

2n)u makes sense in L2(Ω)m0 and we can write for any test function φ ∈ D(Ω)m0

((La − κ0
2n)u, φ)L2(Ω)m0 =

J∑
j=1

((La − κ0
2n)u|Ωj , φ|Ωj )

L2(Ωj)m0 ,

=
J∑
j=1

(f |Ωj , φ|Ωj )
L2(Ωj)m0 = (f, φ)L2(Ω)m0 ,

(9.48)

where we could write the last equality thanks to Assumption 3.10. Finally, using the same
argument for the physical boundary condition on Γ, u is solution of the model problem (3.79). �
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As in Proposition 3.25, we are again able to write a decomposition of the multi-trace space
using the single and Cauchy trace spaces. Such a result was proven in the case of constant
coefficients for instance in [32, Prop. 6.1] for the acoustic setting and in [37, Prop. 6.1] for the
electromagnetic setting. The extension to variable coefficients for the acoustic setting is available
in [29, Prop. 6.1].

Proposition 9.12. We have the direct sum

M× = C× ⊕ S×. (9.49)

Proof.
Null intersection C× ∩ S× = {0}. Let x ≡ (xj)Jj=1 ∈ C× ∩ S×. First, since x ∈ C×,

from Definition 9.3 of the Cauchy trace space C×, for all j ∈ {1, . . . , J}, we can find a lifting
uj ∈ UΓ(D; Ωj) such that {

(La − κ0
2n)uj = 0, in Ωj ,

(γ1,Γ − iγ0,Γ )uj = 0, on Γ,
(9.50)

and
γΓ̃j

uj = xj , on Γ̃j . (9.51)

Now let u ∈ UΓ(D;PΩ) such that

u|Ωj
= uj , ∀j ∈ {1, . . . , J}, (9.52)

we remark that u belongs in fact to UΓ(D,La;PΩ) (so that its trace γ× is well defined) and by
construction it is such that

γ×u = x ∈ C× ∩ S×. (9.53)
From Proposition 9.11, it follows that u actually satisfies the homogeneous model problem (3.79)
in the whole of Ω

γ×u ∈ C× ∩ S× ⇔


u ∈ UΓ(D; Ω),
(La − κ0

2n)u = 0, in Ω,
(γ1,Γ − iγ0,Γ )u = 0, on Γ.

(9.54)

The well-posedness of this problem (Assumption 3.9) yields u = 0, hence x = γ×u = 0.
Decomposition. Let x ≡ (x0, x1) ∈ M× with x0 ≡ (xj0)Jj=1 and x1 ≡ (xj1)Jj=1. We wish to

construct y ∈ C× and z ∈ S× such that x = y + z. The proof performs explicitly the projection
of x on the subspace C× in parallel to the subspace S×. To construct y, we proceed in two steps

1. Lifting of x0: define {
v ∈ UΓ(D,La;PΩ) such that,
γ0,×v = x0.

(9.55)

Any such lifting will work, a particular lifting can be constructed for instance by solving
coercive (note the change of sign in the equation and the real parts of the coefficients) local
problems (which are well-posed):

∀j ∈ {1, . . . , J},


v|Ωj

∈ UΓ(D; Ωj) such that,
(L<(a) + κ0

2<(n))v|Ωj
= 0, in Ωj ,

(γ1,Γ − iγ0,Γ )v|Ωj = 0, on Γj ∩ Γ,
γ0,Γj v|Ωj = xj0, on Γ̃j .

(9.56)
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2. Lifting of x1: define (see (3.83) and (3.98) for the definition of the sesquilinear forms){
w ∈ UΓ(D; Ω) such that,
a(w,wt) = a(v, wt)− 〈〈x1,γ0,×w

t〉〉‖, ∀wt ∈ UΓ(D; Ω).
(9.57)

Such a solution w ∈ UΓ(D; Ω) exists from the well-posedness of the model problem (3.79)
(Assumption 3.9).

Let
y ≡ (y0, y1) := γ×(v − w). (9.58)

Notice that, using the first Green identity (3.104) in each sub-domain Ωj in (9.57), we have

∀j ∈ {1, . . . , J},
{

(La − κ0
2n)(v|Ωj

− w|Ωj
) = 0, in Ωj ,

(γ1,Γ − iγ0,Γ )(v|Ωj − w|Ωj ) = 0, on Γj ∩ Γ.
(9.59)

It follows that v − w ∈ UΓ(D;PΩ) satisfies the PDE in each sub-domain Ωj (and the physical
boundary condition), Definition 9.3 of the Cauchy trace space C× yields y ∈ C×.

Now, let
z ≡ (z0, z1) := x − y. (9.60)

We have, by construction,

z0 = x0 − y0 = x0 − (γ0,×v − γ0,×w) = γ0,×w. (9.61)

Since w ∈ UΓ(D; Ω), by Definition 9.5 z0 = γ0,×w ∈ S0,×. To prove that z1 ∈ S1,×, we take any
s0 ∈ S0,× and we denote by us0 ∈ UΓ(D; Ω) any lifting such that γ0,×us0 = s0, which exists by
Definition 9.5. Using again the first Green identity (3.104) in each sub-domain, we have that

〈〈γ1,×(v − w), s0〉〉× = a(v − w, us0), ∀s0 ∈ S0,×. (9.62)

Hence, we deduce from (9.57) that

〈〈z1, s0〉〉× = 〈〈x1 − y1, s0〉〉× = 〈〈x1 − γ1,×(v − w), s0〉〉× = 0, ∀s0 ∈ S0,×. (9.63)

Therefore, using Proposition 9.9, we obtain z1 ∈ S1,× and z ∈ S×. Finally we have the con-
structed the decomposition

x = y + z, with
{

y ∈ C×,

z ∈ S×.
(9.64)

�

Remark 9.13. Note that the mechanism of the proof for the null intersection is very similar to
the one in Chapter 3. In contrast, even though the general idea for the proof of the decomposition
remains the same, the arguments used are significantly different. In particular, we are no longer
able to explicitly interpret the underlying problem as a transmission problem since the notion of
a jump is more delicate in the present setting. Note though that the problem (3.161) is stricly
equivalent to the problem (9.56), while the problem (3.162) has the same variational formulation
as problem (9.57).
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9.2.2 Reformulation as an interface problem
In this section, repeating the steps of Chapter 3, we exploit the above characterization (see
Proposition 9.11) of the trace of the solution to equivalently recast the original problem (3.79)
as a problem posed on the skeleton Σ̃ of the partition (see (9.99)).

9.2.2.1 Transmission operators and associated scalar products

Again, we start by introducing a key ingredient of our formulation, the transmission operators.
Note that we have been unable in this new setting to introduce an equivalent operator to the
operator Z from (3.173) in Chapter 3.

Definition 9.14 (Transmission operators). We call transmission operators any continuous
and injective mapping such that

T0,× : M0,× → M1,×,

T1,× : M1,× → M0,×.
(9.65)

Scalar products We have equipped our multi-trace spaces with the norm stemming from
the Cartesian product structure of the multi-trace space. We now introduce different, albeit
equivalent, norms.

Unless stated otherwise, we shall assume that the following assumption holds, thereby allow-
ing us to define a scalar product (and associated norm) on the multi-trace spaces.

Assumption 9.15. We suppose that the transmission operators are self-adjoint positive definite
isomorphisms between the multi-trace spaces. In addition, we suppose to have the following
relation

T1,× = (T0,×)−1
. (9.66)

We can equip the multi-trace spaces M0,× and M1,×respectively with the following scalar
products

t0,×(x0, y0) := 〈〈T0,×x0, y0〉〉×, ∀x0, y0 ∈ M0,×,

t1,×(x1, y1) := 〈〈y1,T1,×x1〉〉×, ∀x1, y1 ∈ M1,×.
(9.67)

Norms We can then endow the multi-trace spaces M0,× and M1,×with the norms induced by
the previous scalar products. Hence we define

‖x0‖2
T0,×

:= t0,×(x0, x0), ∀x0 ∈ M0,×,

‖x1‖2
T1,×

:= t1,×(x1, x1), ∀x1 ∈ M1,×.
(9.68)

Remark 9.16. Since the transmission operators are supposed to be continuous and coercive
(by assumption 9.15), the norms defined in (9.68) are equivalent to the ones previously defined
in (9.11).

Generalized Robin operators We introduce similar operators as in Chapter 3. As before,
the transmission operators are used to combine the two types of traces in the so-called gener-
alized impedance multi-trace operator (Definition 9.17, counterpart of Definition 3.27), which
in turn are used in the definition of the scattering operators (Definition 9.19, counterpart of
Definition 3.29).
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Definition 9.17 (Generalized Robin operators). For each σ ∈ {0, 1}, we introduce the
global operators,

R±
σ,× : M× → Mσ,×,

x ≡ (x0, x1) 7→
{
±T1,×x1 − ix0, if σ = 0,
±x1 − iT0,×x0, if σ = 1,

(9.69)

9.2.2.2 Scattering operators

The definition of the scattering operators can be straightforwardly deduced in our new formalism
from the one of Chapter 3. The required modifications are only minor but we stated them
regardless for the sake of completeness.

Because of the abstract setting, we need again to first make the following assumption (which
puts constraints on the transmission operators) before proceeding.

Assumption 9.18. For each σ ∈ {0, 1} and for any xσ ∈ Mσ,×, f ∈ L2(Ω)m0 , g ∈ L2(Γ)m0 , the
transmission operators are such that the following problem is well-defined:

Find uσ ∈ UΓ(D;PΩ) such that
(La − κ0

2n)uσ|Ωj = f |Ωj , in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )uσ = g, on Γ,
R+
σ,×γ×uσ = xσ, on Σ̃.

(9.70)

Upon satisfying the above assumption, we can now safely define the scattering operators.

Definition 9.19 (Scattering operators). For each σ ∈ {0, 1}, we define the global scattering
operators,

Sσ,× : Mσ,× → Mσ,×,

xσ 7→ R−
σ,×γ×uσ,

(9.71)

where uσ ∈ UΓ(D;PΩ) is such that
(La − κ0

2n)uσ|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,×γ×uσ = xσ, on Σ̃.

(9.72)

From the above definition, we readily obtain a characterization of the Cauchy trace space C×
(Definition 9.3) as the kernel of an operator involving the generalized Robin operators Rσ

±,× and
the scattering operator Sσ,×.

Proposition 9.20 (Characterization of the Cauchy trace space). For each σ ∈ {0, 1}, we
have the following characterization of the Cauchy-trace space (9.3):

C× = Ker
(
R−
σ,× − Sσ,×R+

σ,×
)
. (9.73)

Proof. (⇒) Let x ∈ C×. From Definition 9.3 of the Cauchy trace space C×, there exists u ∈
UΓ(D; Ωj) such that γ×u = x and{

(La − κ0
2n)u|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J}

(γ1,Γ − iγ0,Γ )|Ωj = 0, on Γ ∩ Γj .
(9.74)
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If, for any σ ∈ {0, 1}, we let y := R+
σ,×γ×u = R+

σ,×x, by Definition 9.19 of the scattering operator
Sσ,×, we have R−

σ,×γ×u := Sσ,×y which is rewritten as R−
σ,×x = Sσ,×R+

σ,×x.
(⇐) Let σ ∈ {0, 1} and x ∈ M× be such that R−

σ,×x = Sσ,×R+
σ,×x. By Assumption 9.18,

there exists uσ ∈ UΓ(D; Ωj) such that
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,×γ×uσ = R+

σ,×x, on Σ̃,
(9.75)

and from Definition 9.19 of the scattering operator Sσ,× we have R−
σ,×γ×uσ := Sσ,×R+

σ,×x. It
follows that {

R+
σ,×γ×uσ = R+

σ,×x,

R−
σ,×γ×uσ = R−

σ,×x.
(9.76)

It remains to prove that γ×uσ = x. We give the proof for σ = 1, the other proof follows the same
lines. By Definition 9.17 of the generalized Robin operators R±

σ,×, the system (9.75) is rewritten
as {

γ1,×u1 − iT0,×γ0,×u1 = x1 − iT0,×x0,

−γ1,×u1 − iT0,×γ0,×u1 = −x1 − iT0,×x0,
(9.77)

so that taking linear combinations we get{
T0,× (γ0,×u1 − x0) = 0,
(γ1,×u1 − x1) = 0,

⇒

{
γ0,×u1 = x0,

γ1,×u1 = x1,
⇒ γ×u1 = x, (9.78)

using the injectivity assumption on the transmission operator T0,× (Definition 9.14). �

9.2.2.3 Communication operator

We define below an operator that plays the role of a communication operator in that it couples all
local sub-problems together and will be used in the algorithm to exchange information between
the subdomains. However, contrary to its counterpart Π‖ (Definition 3.31) in Chapter 3, this
communication operator Πσ,× is no longer local and does not simply swap data at an interface.
This is the reason why we no longer refer to it as an exchange operator, but prefer the term
communication. We emphasize that the definition of this new operator is the key difference with
the previous formalism that allows to make the leap forward in the clean treatment of junction
points.

Helped by the following lemma, which is a direct consequence of Proposition 9.9, we are able
to introduce orthogonal projectors onto the single trace spaces in Definition 9.22 before defining
the communication operators in Definition 9.23.
Lemma 9.21. For any σ ∈ {0, 1}, the space Sσ is a closed subspace of Mσ,×.
Definition 9.22 (Orthogonal projectors). For each σ ∈ {0, 1}, in the Hilbert space equipped
with the norm stemming from the transmission operator (Mσ,×, ‖ · ‖Tσ,×

), we introduce the fol-
lowing orthogonal projectors

Pσ,× : Mσ,× → Sσ and P⊥
σ,× : Mσ,× → S⊥

σ satisfying Id = P⊥
σ,×+Pσ,×. (9.79)

Definition 9.23 (Communication operators). We define the communication operators as

Π0,× := Id − 2P0,× : M0,× → M0,×,

Π1,× := 2P1,× − Id : M1,× → M1,×.
(9.80)
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To compare with the theory of Chapter 3, observe that what was previously a property (see
Proposition 3.34) is now a definition (Definition 9.22).

We emphasize that the orthogonal projectors, and therefore the communication operators,
depend on our choice of norms (9.68) hence are intrinsically linked to the transmission opera-
tors (9.65).

The formal change of sign between the different values of σ will be explained when we explore
the connections between the above operators and the usual communication operator Π‖ given
in Definition 3.31 (see Section 9.2.3).
Remark 9.24 (Practical computation of the projection). In practice, given xσ ∈ Mσ,×,
for any σ ∈ {0, 1}, one can compute Pσ,×xσ ∈ Sσ by solving the following coercive problem

tσ,×(Pσ,×xσ, yσ) = tσ,×(xσ, yσ), ∀yσ ∈ Sσ. (9.81)

Of course this problem is global and is posed on the whole skeleton Σ̃. Here the choice of the
scalar product tσ,×(·, ·) does matter: it should be chosen so that the orthogonal projection in (9.81)
is easy to compute. This variational problem makes the operator Πσ,× a priori non-local. For
certain choices of impedance, this communication operator may couple distant subdomain that
are not a priori adjacent. This will be a salient feature of this new strategy, and a key difference
in comparison with existing literature and the method described in Chapter 3.

Admittedly, this non-locality raises a computational difficulty. We remark however that the
variational problem (9.81) is symmetric positive definite. Current literature offers very efficient
scalable two level DDM preconditioners for tackling such a problem, see [127, §4.3], [113, §2.1]
or [58, §6.4]. We shall present in the following the strategy that was adopted to solve (9.81) in
practice in our numerical experiments, which is based on a (preconditioned) conjugate gradient
algorithm. The key point being that the DD algorithm remains fully parallelizable, in particular on
distributed-memory architectures, with only communications between neighbouring sub-domains.
Remark 9.25. For future reference, we give alternative expressions of the projectors in terms
of the communication operators:

P1,× = 1
2 (Id −Π1,×) and P1,×

⊥ = 1
2 (Id + Π1,×) ,

Pσ,× = 1
2 (Id + Π0,×) and P0,×

⊥ = 1
2 (Id −Π0,×) ,

(9.82)

The following proposition is immediate from the definition of the communication operators
Πσ,× by simple properties of projectors.
Proposition 9.26 (Isometric property). Let σ ∈ {0, 1}, the communication operator Πσ,×
is an involution

Π2
σ,× = Id, in Mσ,×, (9.83)

and an isometry of Mσ,×, for the norm induced by Tσ,×,

‖Πσ,×xσ‖Tσ,×
= ‖xσ‖Tσ,×

, ∀xσ ∈ Mσ,×. (9.84)

As a consequence of Proposition 9.9 we have the following important decompositions. A
similar result in a slightly different geometric configuration (in the whole space) and for the
acoustic setting is available in [29, Prop. 4.2].
Proposition 9.27 (Orthogonal decompositions of multi-trace spaces). For the scalar
products on the multi-trace spaces (9.67), the following direct sums hold and are orthogonal:

M0,× := S0,×⊕T1,× S1,×,

M1,× := S1,×⊕T0,× S0,×.
(9.85)
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Proof. We prove the first result, the proofs for the other results are similar.
Decomposition Let x0 ∈ M0,× and set

y0 := P0,×x0, z0 := x0 − y0. (9.86)

By definition of the orthogonal projector (9.79), we have y0 ∈ S0,× and

t0,×(y0, s0) = t0,×(x0, s0), ∀s0 ∈ S0,×, ⇔ 〈〈T0,×z0, s0〉〉× = 0, ∀s0 ∈ S0,×. (9.87)

From Proposition 9.9, we have T0,×z0 ∈ S1,× hence z0 ∈ T1,×S1,×.
Orthogonality Let x0 ∈ S0,× and y1 ∈ S1,×, then y1 ∈ S1,×. We have, by definition (9.67),

t0,×(x0,T1,×y1) = 〈〈T0,×x0,T1,×y1〉〉×. (9.88)

As direct consequence of (9.66) and the self-adjoint properties of the operators T0,× and T1,×,
we get

t0,×(x0,T1,×y1) = 〈〈y1, x0〉〉×. (9.89)
Finally, using Proposition 9.9

t0,×(x0,T1,×y1) = 0. (9.90)
�

Remark 9.28. It is clear that, if Assumption 3.11 holds, the multi-trace spaces M0,‖, M1,‖ and
M‖ from Definition 3.16 satisfy similar decompositions. We have

M0,‖ := S0,‖⊕T1,‖ S1,‖,

M1,‖ := S1,‖⊕T0,‖ S0,‖.
(9.91)

Again, we can characterize the single-trace space S× (Definition 9.5) as the kernel of an op-
erator involving the generalized Robin operators Rσ

±,× and the communication operator Πσ,×.
The following proposition, which follows from Proposition 9.27, is the counterpart of Proposi-
tion 3.37. A similar result in a slightly different setting (in the whole space) was proven for
instance in [29, Prop. 5.4] for the acoustic setting.

Proposition 9.29 (Characterization of the single-trace space). For each σ ∈ {0, 1}, we
have the following characterization of the single-trace space (9.24):

S× = Ker
(
R±
σ,× −Πσ,×R∓

σ,×
)
. (9.92)

Proof. First note that, for any σ ∈ {0, 1} and any x ∈ M×, R+
σ,×x = Πσ,×R−

σ,×x is equiva-
lent to R−

σ,×x = Πσ,×R+
σ,×x since the exchange operator Πσ,× is an involution according to

Proposition 9.26.
We prove the result for σ = 1, the other proof formally takes the same route. For all

x ≡ (x0, x1) ∈ M× ≡ M0,× × M1,× we have, from (9.79)

x1 ∈ S1,× ⇔ P1,×
⊥x1 = 0, (9.93)

and from (9.79), together with Proposition 9.27,

x0 ∈ S0,× ⇔ T0,×x0 ∈ T0,×S0,× = S1,×
⊥ ⇔ P1,×T0,×x0 = 0. (9.94)

Hence, by simple properties of projectors, we have

x ∈ S× ⇔ P1,×
⊥x1 + iP1,× T0,×x0 = 0. (9.95)
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This is rewritten as, using the expressions of the projectors in term of the communication operator
Π1,× from (9.82)

x ∈ S× ⇔ (Π1,× + Id)x1 + i(Π1,× − Id) T0,×x0 = 0,
⇔ x1 − iT0,×x0 = Π1,×(−x1 − iT0,×x0).

(9.96)

Finally, using Definition 9.17 of the generalized Robin operators, we get

x ∈ S× ⇔
(
R±

1,× −Π1,×R±
1,×
)

x = 0. (9.97)

�

9.2.2.4 Equivalent interface problem

With the help of the scattering operators Sσ,× and exchange operator Πσ,× we are now in a
position to recast the original problem (3.79) as a problem for the trace of the solution posed on
the skeleton Σ̃. Importantly, it takes formally the same form as before (see Proposition 3.38).
Unsurprisingly its proof follows very closely the one of its counterpart of Chapter 3 because it
relies on the two characterisations (Propositions 9.20 and 9.29) of the Cauchy trace space C×
and single trace space S×, but we restate it here for completeness.
Proposition 9.30 (Equivalent interface problem). Let σ ∈ {0, 1}. Let Fσ ∈ UΓ(D;PΩ) be
the (unique) source lifting such that

(La − κ0
2n)Fσ|Ωj = f |Ωj , in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )Fσ = g, on Γ,
R+
σ,×γ×Fσ = 0, on Σ̃.

(9.98)

Consider the problem {
Find xσ ∈ Mσ,×,

(Id −Πσ,×Sσ,×) xσ = Πσ,×R−
σ,×γ×Fσ.

(9.99)

If u ∈ UΓ(D; Ω) is solution of the model problem (3.79), then its trace xσ := R+
σ,×γ×u satisfies

the interface problem (9.99).
Reciprocally, if xσ ∈ Mσ,× is solution of the interface problem (9.99) and if vσ ∈ UΓ(D;PΩ)

is the (unique) solution of
(La − κ0

2n)vσ|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )vσ = 0, on Γ,
R+
σ,×γ×vσ = xσ, on Σ̃,

(9.100)

then u ∈ UΓ(D;PΩ) defined as uσ := vσ + Fσ is solution of the model problem (3.79).
Proof. Let Fσ be the unique solution (by Assumption 9.18) of (9.98), then it satisfies (9.38). We
will rely on the characterization given by Proposition 9.11, which states that u ∈ UΓ(D,La; Ω)
is solution of the model problem (3.79) if, and only if,

γ×u ∈ (C× + γ×Fσ) ∩ S×. (9.101)

(⇒) Let u ∈ UΓ(D; Ω) be the solution of the model problem (3.79), then γ×u ∈ (C× + γ×Fσ)∩
S×. From Propositions 9.20 and 9.29 we have{

γ×(u− Fσ) ∈ C×,

γ×u ∈ S×,
⇔

{
R−
σ,×γ×(u− Fσ) = Sσ,×R+

σ,×γ×(u− Fσ),
R+
σ,×γ×u = Πσ,×R−

σ,×γ×u.
(9.102)
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hence using R+
σ,×γ×Fσ = 0 from (9.98) we deduce{

R−
σ,×γ×u = Sσ,×R+

σ,×γ×u+ R−
σ,×γ×Fσ,

R+
σ,×γ×u = Πσ,×R−

σ,×γ×u.
(9.103)

Eliminating R−
σ,×γ×u it is then immediate that

R+
σ,×γ×u = Πσ,×Sσ,×R+

σ,×γ×u+ Πσ,×R−
σ,×γ×Fσ, (9.104)

hence its trace xσ := R+
σ,×γ×u satisfies the interface problem (9.99).

(⇐) Reciprocally, let xσ ∈ Mσ,× be solution of the interface problem (9.99) and let vσ ∈
UΓ(D;PΩ) be the unique solution (by Assumption 9.18) to (9.100). Then, by definition of the
Cauchy trace space C× (Definition 3.18), its trace γ×vσ ∈ C×. If we set uσ := vσ + Fσ, we
readily obtain γ×(uσ−Fσ) ∈ C×. Besides, using xσ = R+

σ,×γ×vσ from (9.100), we rewrite (9.99)
as

(Id −Πσ,×Sσ,×) xσ = Πσ,×R−
σ,×γ×Fσ, ⇔ (Id −Πσ,×Sσ,×) R+

σ,×γ×vσ = Πσ,×R−
σ,×γ×Fσ.

(9.105)
Using Proposition 9.20 we get

R+
σ,×γ×vσ −Πσ,×R−

σ,×γ×vσ = Πσ,×R−
σ,×γ×Fσ. (9.106)

Finally, using the fact that R+
σ,×γ×Fσ = 0 from (9.98) and the definition of uσ yield

R+
σ,×γ×uσ = Πσ,×R−

σ,×γ×uσ. (9.107)

Proposition 9.29 then gives γ×uσ ∈ S×. Finally we indeed have γ×uσ ∈ (C× + γ×Fσ)∩ S×. �

Remark 9.31. Again, it is perhaps worth mentioning an alternative equivalent interface prob-
lem, exchanging the order of composition of Sσ,× and Πσ,×. Let σ ∈ {0, 1} and consider instead
the alternative interface problem{

Find xσ ∈ Mσ,×,

(Id − Sσ,×Πσ,×) xσ = R−
σ,×γ×Fσ.

(9.108)

If u ∈ UΓ(D; Ω) is solution of the model problem (3.79), then its trace xσ := R−
σ,×γ×u satisfies the

interface problem (9.108). Reciprocally, if xσ ∈ Mσ,× is solution of the interface problem (9.108)
and if vσ ∈ UΓ(D;PΩ) is the (unique) solution of (9.100) then u ∈ UΓ(D;PΩ) defined as uσ :=
vσ + Fσ is solution of the model problem (3.79).

9.2.2.5 Block diagonal transmission operators

Again, we now investigate the particular case of block diagonal transmission operators. We
emphasize that also in this new framework this sub-case is in fact the only case of practical
interest as any other alternative would prevent us to get any parallelization of the domain
decomposition algorithm. It is interesting to note though that the theory does not rest on this
assumption. As a result, one would typically impose the following additional requirement (which
is not restrictive) on the transmission operators.
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Assumption 9.32 (Block diagonal transmission operator). The operator Tσ,×, σ ∈ {0, 1},
viewed as an operator matrix of size J × J , is diagonal

Tσ,× = diagj∈{1,...,J}

(
Tj
σ,×

)
, (9.109)

where, for all j ∈ {1, . . . , J}, we have

Tj
0,× : X0(Γj)→ X1(Γj),

Tj
1,× : X1(Γj)→ X0(Γj).

(9.110)

We provide an example of a diagonal transmission operator in Figure 9.6. This sketch cor-
respond to the top-right geometrical configuration that is given in Figure 3.1c. The non-zero
operators are represented by the hatched areas. For comparison, the sketches of admissible
transmission operators for the previous formalism were provided in Figure 3.4.

Γ13

Γ23

Γ31

Γ32

Γ34

Γ43

Γ13 Γ23 Γ31 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(a) Top right geometric partition in Figure 3.1c.

Γ12

Γ21

Γ23

Γ32

Γ34

Γ43

Γ11 Γ21 Γ23 Γ32 Γ34 Γ43

Ω1

Ω2

Ω3

Ω4

Ω1 Ω2 Ω3 Ω4

(b) Bottom geometric partition in Figure 3.1c.

Figure 9.6: Sketch of the operator matrix of diagonal transmission operators of the top right
geometric partition in Figure 3.1c. The non-zero operators are featured by the hatched areas.

Furthermore, the diagonal structure of the transmission operators implies a diagonal structure
for the scattering operator. To see that we first introduce local versions of the Robin operators
at an interface.

Definition 9.33 (Local generalized Robin operators). For each σ ∈ {0, 1} and j ∈
{1, . . . , J}, we introduce the local operators,

Rj,±
σ,× : X(Γ̃j)→ Xσ(Γ̃j),

x ≡ (x0, x1) 7→
{
±Tj

1,×x1 − ix0, if σ = 0,
±x1 − iTj

0,×x0, if σ = 1,
(9.111)

Then, for each σ ∈ {0, 1}, we have

Sσ,× = diagj∈{1,...,J}

(
Sjσ,×

)
, (9.112)

where the local scattering operators are given in the following definition.
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Definition 9.34 (Local scattering operator). For each σ ∈ {0, 1} and j ∈ {1, . . . , J}, we
define the local scattering operators,

Sjσ,× : Xσ(Γ̃j)→ Xσ(Γ̃j),
xjσ 7→ Rj,−

σ,× γΓ̃j
uσ,j ,

(9.113)

where, for all j ∈ {1, . . . , J}, uσ,j ∈ UΓ(D; Ωj) is such that
(La − κ0

2n)uσ,j |Ωj
= 0, in Ωj ,

(γ1,Γ − iγ0,Γ )uσ,j = 0, on Γ,
Rj,+
σ,× γΓ̃j

uσ,j = xjσ, on Γ̃j .
(9.114)

It is now clear that applying the scattering operator consists in solving local problems locally
in each subdomain (hence hopefully in parallel), thereby insuring that the PDE is satisfied
locally. It is the communication operator that couples all sub-domains together by exchanging
information, thereby insuring the global continuity of the solution.

Besides, we note that satisfying Assumption 9.18 now amounts to satisfy the following as-
sumption.
Assumption 9.35 (Well-posedness of local sub-problems). For each σ ∈ {0, 1}, j ∈
{1, . . . , J} and for any xjσ ∈ Xσ(Γj), f ∈ L2(Ω)m0 , g ∈ L2(Γ)m0 , the transmission operators are
such that the following local sub-problems are well-defined:

Find uσ,j ∈ UΓ(D; Ωj) such that
(La − κ0

2n)uσ,j = f |Ωj
, in Ωj ,

(γ1,Γ − iγ0,Γ )uσ,j = g, on Γj ∩ Γ,
Rj,+
σ,× γΓj uσ,j = xjσ, on Γj .

(9.115)

9.2.3 The case of no junctions
We investigate briefly the relations between the interface problems (3.200) and (9.99), as well as
the operators involved when, as we shall assume in this section, Assumption 3.11 holds (as well
as Assumption 3.12). Beyond all the similarities between the two formalisms, the two methods
can actually be equivalent.

First, recall from Remark 9.2 that one can identify the two multi-trace spaces M× and M‖.
Using the same process, the spaces C× and C‖ (respectively S× and S‖) can also be identified.

We shall study only the case where diagonal transmission operators are used, in the sense
of Assumption 3.40 and Assumption 9.32. A moment of thought will reveal that, in order
to have some sort of equivalence between the two formalisms, the main requirement on the
transmission operators is to satisfy the kind of symmetry with respect to each interface stated
in Proposition 3.41. This motivates the following assumption.
Assumption 9.36 (Compatibility condition on the transmission operators). For each
σ ∈ {0, 1}, there exists a family of operators

(
Tjk
σ,‖

)
(j,k)∈J

of self-adjoint positive definite iso-
morphisms satisfying (3.213) such that the operator Tσ,‖ is diagonal in the form of (3.210). In
addition, this family

(
Tjk
σ,‖

)
(j,k)∈J

defines another family of operators
(

Tj
σ,×

)J
j=1

satisfying(
Tj
σ,×xjσ

)
|Γjk

= Tjk
σ,‖

(
xjσ|Γjk

)
, ∀xjσ ∈ Xσ

(
Γ̃j
)
, ∀(j, k) ∈ J. (9.116)

such that the operator Tσ,× is diagonal in the sense of (9.109).
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It is straightforward to show that if Assumption 9.36 holds, the Robin trace operators, de-
fined respectively in Definition 3.27 and Definition 9.17, and the scattering operators, defined
respectively in Definition 3.29 and Definition 9.19, are equivalent. Of course, the scalar product
and norms on the respective multi-trace spaces also coincide. The much more obscure point is
the agreement between the exchange and communication operators, which is the subject of the
following proposition.

Proposition 9.37 (Equivalence between the exchange and communication operators).
If Assumption 3.11 and Assumption 9.36 hold, then we have

Πσ,× ≡ Π‖, ∀σ ∈ {0, 1}, (9.117)

with Π‖ as in Definition 3.31 and Πσ,× as in Definition 9.23.

Proof. Suppose first that σ = 1. It is straightforward to check that the operator

P1,‖ := 1
2 (Id −Π‖) , (9.118)

is a projector. Moreover, the single trace space S1,‖ is included in its range.
Since Assumption 9.36 holds, the transmission operator T0,‖ is diagonal and Proposition 3.41

gives us that it commutes with the exchange operator Π‖ (Assumption 3.36 holds). It follows
that T0,‖S0,‖ is included in the kernel of the projector P1,‖. From the decomposition of the
multi-trace space (9.91), we have that Rg P1,‖ = S1,‖ and Ker P1,‖ = T0,‖S0,‖.

Using the same arguments, T1,‖ commutes with Π‖. It follows (see Proposition 3.54) that
Π‖, hence the projector P1,‖, is self-adjoint with respect to the scalar product induced by T1,‖.
As a result, the projector P1,‖ is an orthogonal projector with respect to this scalar product.
Therefore, P1,‖ ≡ P1,× and Π‖ ≡ Π1,×.

For the cases σ ∈ {0} the arguments are similar but notice that, for instance for σ = 0, we
need to introduce (note the formal change of sign)

P0,‖ := 1
2 (Id + Π‖) , (9.119)

to have a projector on the single trace space S0,‖. This explains the formal change of sign in
Definition 9.23 of the communication operators. �

To sum up, we can state the following proposition which shows that the method introduced in
this chapter is actually a true generalization to the configuration with cross points of the method
described in Chapter 3.

Proposition 9.38 (Equivalence between the two formalisms). If Assumption 3.11 and
Assumption 9.36 hold, the interface problems (3.200) and (9.99) are equivalent.

9.3 Iterative domain decomposition methods
Again, one can see (at last) the purpose of our reformulation of the model problem (3.79) in
the form of the interface problem (9.99) when we consider iterative solvers to provide an actual
practical way of computing a solution. Indeed, iterative methods will construct sequences of
(broken) solutions by solving independently (hence hopefully in parallel) local sub-problems and
exchanging or communicating information between sub-domains.
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9.3.1 Iterative algorithm
Let σ ∈ {0, 1}, Fσ be the solution of (9.98), and define

bσ := Πσ,×R−
σ,×γ×Fσ. (9.120)

In this section, we want to devise (and study the convergence of) an algorithm to solve{
Find xσ ∈ Mσ,× such that,
(Id −Πσ,×Sσ,×) xσ = bσ.

(9.121)

Recall that, according to Proposition 9.11, having found such a xσ solution of (9.121), the global
volume solution of the model problem (3.79) can be computed as

uσ := vσ + Fσ, (9.122)

where vσ ∈ UΓ(D;PΩ) is such that
(La − κ0

2n)vσ|Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},
(γ1,Γ − iγ0,Γ )vσ = 0, on Γ,
R+
σ,×γ×vσ = xσ, on Σ̃,

(9.123)

which is well-posed according to Assumption 9.18.

Richardson algorithm We can use again for problem (9.121) a fixed point iteration algorithm,
counterpart of (3.225), which is not strictly speaking a Jacobi algorithm any more but rather a
Richardson algorithm. Let x0

σ ∈ Mσ,× and a relaxation parameter 0 < r ≤ 1 be given, a sequence
(xnσ)n∈N in Mσ,× is constructed as follows

xn+1
σ = [(1− r)Id + rΠσ,×Sσ,×] xnσ + r bσ, n ∈ N. (9.124)

Constructing this sequence of traces also constructs a sequence of broken solutions (vnσ )n∈N in
UΓ(D;PΩ) when the action of Sσ,× is computed. For each n ∈ N the broken solution vnσ satisfy

(La − κ0
2n)vnσ |Ωj = 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )vnσ = 0, on Γ,
R+
σ,×γ×v

n
σ = xnσ, on Σ̃.

(9.125)

The true solution of the original problem is then (hopefully, if convergence occurs) the limit of
the broken solutions (unσ := vnσ + Fσ)n∈N in UΓ(D;PΩ).

It is clear that this new algorithm is formally very close to its counterpart from Chapter 3.

9.3.2 Convergence analysis
We now turn to the convergence analysis of the previously described iterative method.

It is clear that the new interface problem (9.121) takes the form of the abstract prob-
lem (3.230). To prove the geometric convergence of the above fixed point algorithm, we simply
need to check that the assumptions of Proposition 3.57 are satisfied in our particular case where
V = Mσ,× and A = Πσ,×Sσ,×.

To prove the property of contraction of Πσ,×Sσ,×, we first need to establish the following
lemma, which rests in particular on Assumption 9.15.
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Lemma 9.39. For each σ ∈ {0, 1}, we have,

‖R−
σ,×x‖2

Tσ,×
− ‖R+

σ,×x‖2
Tσ,×

= 2i[[x, x]]×, ∀x ∈ M×. (9.126)

Proof. We prove the equality for σ = 1, the other proof is similar. Let x ≡ (x0, x1) ∈ M×. By
Definition 9.17 of the generalized Robin operator R+

1,× and by definition of the norms (9.68) we
have

‖R+
1,×x‖2

T1,×
= ‖x1 − iT0,×x0‖2

T1,×
,

= 〈〈x1 − iT0,×x0, T1,×(x1 − iT0,×x0)〉〉×,
(9.127)

using Assumption 9.15 we obtain

‖R+
1,×x‖2

T1,×
= 〈〈x1 − iT0,×x0, T1,×x1 + ix0〉〉×, (9.128)

so that using again Assumption 9.15 and the self-adjointness of T0,×, we get

‖R+
1,×x‖2

T1,×
= ‖x1‖2

T1,×
+ ‖x0‖2

T0,×
− i〈〈x1, x0〉〉× + i〈〈x1, x0〉〉×,

= ‖x1‖2
T1,×

+ ‖x0‖2
T0,×

− 2=〈〈x1, x0〉〉×.
(9.129)

Finally using Lemma 3.6, we obtain

‖R+
1,×x‖2

T1,×
= ‖x1‖2

T1,×
+ ‖x0‖2

T0,×
− i[[x, x]]×. (9.130)

Similarly,
‖R−

1,×x‖2
T1,×

= ‖x1‖2
T1,×

+ ‖x0‖2
T0,×

+ i[[x, x]]×. (9.131)

�

We are now able to prove the property of contraction of the scattering operator Sσ,× (Defi-
nition 9.19). A similar result in a slightly different setting (in the whole space but for the scalar
equation only) can also be found in [29, Lem. 7.1].

Proposition 9.40 (Contraction property of the scattering operator). Let σ ∈ {0, 1}, the
scattering operator Sσ,× is a contraction of Mσ,×, for our particular choice of norm (9.68),

‖Sσ,×xσ‖Tσ,×
≤ ‖xσ‖Tσ,×

, ∀xσ ∈ Mσ,×. (9.132)

Proof. Let σ ∈ {0, 1} and xσ ∈ Mσ,×. Let us introduce uσ ∈ UΓ(D;PΩ) be such that
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,×γ×uσ = xσ, on Σ̃,

(9.133)

which is well defined thanks to Assumption 9.18. Set y = γ×uσ, by Definition 9.19 of the
scattering operator Sσ,× we have

R−
σ,×y = Sσ,×xσ, (9.134)

and we also have by construction
xσ = R+

σ,×y. (9.135)
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It follows that
‖Sσ,×xσ‖Tσ,×

− ‖xσ‖Tσ,×
= ‖R−

σ,×y‖Tσ,×
− ‖R+

σ,×y‖Tσ,×
(9.136)

Using Lemma 9.39, we obtain

‖Sσ,×xσ‖Tσ,×
− ‖xσ‖Tσ,×

= 2i[[x, x]]×. (9.137)

Applying the energy conservation results of Proposition 9.4 we finally get

‖Sσ,×xσ‖Tσ,×
− ‖xσ‖Tσ,×

≤ 0. (9.138)

�

Combining both Proposition 9.40 and Proposition 9.26 we get the contraction property we
were looking for.

Corollary 9.41 (Contraction property). Let σ ∈ {0, 1}, we have

‖Πσ,×Sσ,×xσ‖Tσ,×
≤ ‖xσ‖Tσ,×

, ∀xσ ∈ Mσ,×. (9.139)

It remains to prove the isomorphism property of the operator Id −Πσ,×Sσ,× which is the
subject of the following proposition. Once more, the approach follows closely the one from
Chapter 3 but is restated in the new formalism for the sake of completeness.

We begin with the following lemma, counterpart of Lemma 3.59.

Lemma 9.42. For each σ ∈ {0, 1}, the operator R+
σ,× − Πσ,×R−

σ,× (respectively the operator
R−
σ,× −Πσ,×R+

σ,×) is surjective from M× ≡ (M0,×,M1,×) onto Mσ,×.

Proof. First note that, for any σ ∈ {0, 1}, the result for the operator R−
σ,× − Πσ,×R+

σ,× is
equivalent to the result for the operator R+

σ,× − Πσ,×R−
σ,× since the communication operator

Πσ,× is an involution according to Proposition 9.26.
We prove the results for σ = 1, the proof for the other case formally takes the same route.
Let y1 ∈ M1,×. We seek x ≡ (x0, x1) ∈ M× such that

R+
1,×x −Π1,×R−

1,×x = y1 (9.140)

which, using successively Definition 9.17 of the generalized Robin operators R±
1,× and Defini-

tion 9.22 of the orthogonal projectors P1,× and P1,×
⊥, is equivalent to

(x1 − iT0,×x0)−Π1,× (−x1 − iT0,×x0) = y1,

⇔ (Id + Π1,×) x1 + (Id −Π1,×) (−iT0,×x0) = y1,

⇔ P1,×
⊥x1 + P1,× (−iT0,×x0) = 1

2y1.

(9.141)

Using the usual properties of the projectors P1,× and P1,×
⊥ it is then immediate to check that

a solution is at hand if x0 and x1 satisfy{
−iT0,×x0 = 1

2 P1,× y1,

x1 = 1
2 P1,×

⊥ y1,
⇔

{
x0 = i

2 (T0,×)−1P1,× y1,

x1 = 1
2 P1,×

⊥ y1.
(9.142)

�
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As a direct corollary to Propositions 9.12, 9.29 and Lemma 9.42 we have the following easy
result. Notice that the cornerstone to establish this result is the decomposition M× = C× ⊕ S×
from Proposition 9.12.

Corollary 9.43. For each σ ∈ {0, 1}, the operator R+
σ,× −Πσ,×R−

σ,× (respectively the operator
R−
σ,× −Πσ,×R+

σ,×) is a bijection from C× to Mσ,×.

Proof. Let σ ∈ {0, 1}. Again, first note that the result for the operator R−
σ,× − Πσ,×R+

σ,× is
equivalent to the result for the operator R+

σ,× − Πσ,×R−
σ,× since the communication operator

Πσ,× is an involution according to Proposition 9.26.
From Lemma 9.42, the operator R+

σ,× −Πσ,×R−
σ,× is surjective from M× onto Mσ,×. From

Proposition 9.29 we know that its kernel is S×. From Proposition 3.25 we have that M× =
C× ⊕ S×. It follows that the operator R+

σ,× −Πσ,×R−
σ,× is invertible on C×. �

We are finally able to verify that we satisfy in our particular setting the required additional
assumption of the abstract result contain in Proposition 3.57. This will be a direct consequence
of the following lemma.

Lemma 9.44. Let σ ∈ {0, 1} and bσ ∈ Mσ,×. Consider the two problems{
Find xσ ∈ Mσ,× such that :
(Id −Πσ,×Sσ,×) xσ = bσ,

(9.143)

and {
Find y ∈ C× such that :(
R+
σ,× −Πσ,×R−

σ,×
)

y = bσ.
(9.144)

If xσ ∈ Mσ,× is solution to the problem (9.143), then there exists y ∈ C× solution to the
problem (9.144) such that xσ = R+

σ,×y.
Reciprocally, if y ∈ C× is solution to the problem (9.144) then xσ = R+

σ,×y ∈ Mσ,× is solution
to the problem (9.143).

Proof. Let σ ∈ {0, 1} and bσ ∈ Mσ,×.
(⇒) Suppose to have xσ ∈ Mσ,× a solution to the problem (9.143) and let uσ ∈ UΓ(D;PΩ) be

such that 
(La − κ0

2n)uσ|Ωj
= 0, in Ωj , ∀j ∈ {1, . . . , J},

(γ1,Γ − iγ0,Γ )uσ = 0, on Γ,
R+
σ,×γ×uσ = xσ, on Σ̃,

(9.145)

which is well defined thanks to Assumption 9.18 and set

y := γ×uσ ∈ M×, so that by construction xσ = R+
σ,×y. (9.146)

By Definition 9.3 of the Cauchy trace space C× we also have y ∈ C× and the characterization of
this space given in Proposition 9.20 yields(

R−
σ,× − Sσ,×R+

σ,×
)

y = 0. (9.147)

Finally, equation (9.143) is rewritten as(
R+
σ,× −Πσ,×R−

σ,×
)

y = bσ, (9.148)
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which finally proves that y ∈ C× solves (9.144).
(⇐) Suppose to have y ∈ C× a solution to the problem (9.144) and set xσ := R+

σ,×y. Using
the characterization of the Cauchy trace space C× given in Proposition 9.20 we have(

R−
σ,× − Sσ,×R+

σ,×
)

y = 0. (9.149)

Then, equation (9.144) is readily rewritten as

(Id −Πσ,×Sσ,×) xσ = bσ, (9.150)

�

Proposition 9.45. For each σ ∈ {0, 1}, the operator Id−Πσ,×Sσ,× is an isomorphism on Mσ,×.

Proof. Injectivity Let σ ∈ {0, 1} and xσ ∈ Mσ,× be such that

(Id −Πσ,×Sσ,×) xσ = 0. (9.151)

Using Lemma 9.44, there exists necessarily a y ∈ C‖ such that xσ = R+
σ,×y and(

R+
σ,× −Πσ,×R−

σ,×
)

y = 0. (9.152)

Using the characterization of S× given in Proposition 9.29 we get from this last equation that
y ∈ S× so that in fact y ∈ C‖ ∩ S×, which is reduced to the singleton {0} from Proposition 9.12.
Finally from y = 0 we obtain xσ = R+

σ,×y = 0.
Surjectivity Let σ ∈ {0, 1} and bσ ∈ Mσ,×. From Lemma 9.44 we know that to find a

xσ ∈ Mσ,× such that
(Id −Πσ,×Sσ,×) xσ = bσ, (9.153)

it is enough to find a y ∈ C‖ such that(
R+
σ,× −Πσ,×R−

σ,×
)

y = bσ, (9.154)

and set xσ = R+
σ,×y. The above problem in y is uniquely solvable by application of Corollary 9.43

and we are done. �

Note that a similar result in a slightly different geometric configuration (in the whole space)
and for the acoustic setting was already established in [29, Cor. 7.1]. We are now ready to state
the following important convergence result, see also [29, Sec. 7.3].

Theorem 9.46 (Geometric convergence of the fixed point iteration algorithm). The
sequence of broken solutions (unσ)n∈N computed according to (9.125), converges geometrically to
u the solution of the model problem (3.79). Specifically, there exist C > 0 and 0 < τ < 1 such
that

‖unσ − u‖UΓ(D;PΩ) ≤ Cτ
n, ∀n ∈ N. (9.155)

Proof. Arguing as in the proof of Corollary 3.63, this is a direct application of Proposition 3.57
whose two assumptions are verified in Proposition 9.41 and Proposition 9.45. �

Remark 9.47. Arguing as in Section 3.3.3, we remark again that geometric convergence of the
relaxed Jacobi algorithm guarantees geometric convergence of the Gmres counter-part.
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This chapter is devoted to the numerical analysis of the Galerkin approximation of the domain
decomposition method that was described in the previous chapter with one important caveat: we
do not impose any (geometrical) restriction on the (non-overlapping) partition in sub-domains.
In particular, we allow the presence of both interior and boundary junction points. Again, we
point out that this is one (our) choice of discretization strategy, which we actually implemented
and tested numerically (see Chapter 11 for numerical experiments). The ideas presented in this
chapter originate from the work of Xavier Claeys for the acoustic setting and are largely based
on those described in [33] (which in turn was based upon [29]). We adapted here the proofs
to our abstract formalism which allows to seamlessly extend the results to the electromagnetic
setting.
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The discretization strategy from Chapter 4 of the method described in Chapter 3 used the
formulation for σ = 1. This means that the Lagrange multiplier, solution of the interface
problem on which the iterative algorithm is applied, can be identified as an element of the
dual trace space (in this case M1,‖ or M1,h,‖). This is a rather natural choice for the Galerkin
method considered here and is slightly more efficient compared to the other choices σ ∈ {1/2, 1},
if carefully implemented. In contrast, we consider in this chapter a discretization strategy of the
method presented in Chapter 9 based on the formulation for σ = 0. This means that the Lagrange
multiplier, solution of the interface problem on which the iterative algorithm is applied, can be
identified as an element of the natural (or primal) trace space (in this case M0,× or M0,h,×). This
choice is more natural here because of the new way data is communicated between sub-domains.

10.1 Abstract discrete domain decomposition
In this chapter, we consider the most general configuration for the partitioning. We suppose
that the sub-domains are non-overlapping and that the partition is conformal (in the sense of
Assumption 4.7), but we do not suppose that Assumption 3.11, nor Assumption 3.12 hold, i.e.
we allow for the presence of both interior and boundary junction points.

The definitions and notations introduced in Section 3.1 and Section 4.1 are independent of
the type of partition and will still be in use in this chapter. Recall that we use the index × in
place of ‖ to differentiate what has a meaning in a configuration that may admit cross-points
versus a configuration that excludes cross-point.

10.1.1 Multi-trace formalism
This time, because we allow the presence of junction points in the partition, the definitions below
are not a straightforward discretization of the continuous spaces of Chapter 9. The multi-trace
formalism is particularly adapted to this general setting, in fact it was created for this exact
purpose.

10.1.1.1 Multi-trace spaces

We introduce discrete global trace spaces whose elements are collection of traces on the whole
boundary Γj,h of each sub-domain Ωj,h (including, this time, the physical boundary).

Definition 10.1 (Discrete multi-trace spaces). The discrete global multi-trace spaces are
defined as

M0,h,× (Σh) :=
J×
j=1

X0,h(Γj,h),

M1,h,× (Σh) :=
J×
j=1

X1,h(Γj,h),

Mh,× (Σh) :=
J×
j=1

Xh(Γj,h) ≡ M0,h,× (Σh)× M1,h,× (Σh) .

(10.1)

Beware this time that these discrete spaces are not subsets of the continuous spaces M0,× (Σ \ Γ),
M1,× (Σ \ Γ), M1/2,× (Σ \ Γ) and M× (Σ \ Γ) introduced in the previous chapter. This is because
we excluded in the continuous setting the part of the boundary of the sub-domains which was part
of the physical boundary (and we were in the restrictive configuration that excludes boundary
cross points).
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A representation of the components of such multi-trace spaces is available in Figure 10.1.

Ω1 Ω2

Ω3

Γ

x1
x2

x3

Figure 10.1: Visual representation of the components of a multi-trace space for a partition with
both boundary and interior junction points, for instance

(
x1, x2, x3) ∈ M0,h,×

We introduce the following global trace operator γ0,h,× which is a continuous and surjective
mapping from the broken solution space into the Dirichlet multi-trace space

γ0,h,× :=
(
γ0,Γj,h

)J
j=1 : Vh(PΩ,h)→ M0,h,×. (10.2)

Again γ0,h,× is different from its continuous version γ0,× because of the presence of the physical
boundary in our multi-trace spaces.

Norms and duality pairings The multi-trace space M0,× can be endowed with the norms
stemming from its Cartesian product structure. Recalling the definition of the norm on a single
domain given in (4.6), we set,

‖x0‖2
M0,h,×

:=
J∑
j=1
‖xj0‖

2
X0,h(Γj,h), ∀x0 ≡ (xj0)j∈{1,...,J} ∈ M0,h,×. (10.3)

Recalling the local duality pairing 〈·, ·〉∂O between the two dual trace spaces (4.9) on a single
boundary ∂O, we introduce the duality pairing between multi-trace spaces (which does not
involve any complex conjugation operation)

〈〈·, ·〉〉× : M1,h,× × M0,h,× → C,

(x1, x0) 7→
J∑
j=1
〈xj1, x

j
0〉Γj,h

.
(10.4)

The space M1,h,× is equipped with the corresponding canonical dual norm, namely

‖x1‖M1,h,×
:= sup

x0∈M0,h,×
x0 6=0

〈x1, x0〉∂O
‖x0‖M0,h,×

, ∀x1 ∈ M1,h,×. (10.5)

Besides, we introduce the natural norm on Mh,× as follows

‖x‖2
Mh,×

:= ‖x0‖2
M0,h,×

+ ‖x1‖2
M1,h,×

, ∀x ≡ (x0, x1) ∈ Mh,×. (10.6)
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Lifting operators With the help of Assumption 4.2, it is clear that one can construct a (trace
preserving) continuous lifting operator

Eh,× : M0,h,× → Vh(PΩ,h). (10.7)

We shall require in the forthcoming analysis the continuity constant of this lifting operator,
denoted |||Eh,×|||, and such that

‖Eh,× x0‖UΓ(D;PΩ,h) ≤ |||Eh,×||| ‖x0‖M0,h,×
, ∀x0 ∈ M0,h,×. (10.8)

10.1.1.2 Cauchy-trace spaces

We first define the discrete version of the Cauchy trace space from Definition 9.3, resorting to
weak formulations in this discrete setting. The bilinear aj was defined in (3.97) and the broken
version a was defined in (3.98).
Definition 10.2 (Discrete Cauchy-trace space). For each j = 1, . . . , J , the local space
of discrete Cauchy traces Ch,× (Γj,h) is defined as the subset of Xh(Γj,h) such that: for all
x ∈ Xh(Γj,h),

x ≡ (xj0, x
j
1) ∈ Ch,× (Γj,h)

⇔ ∃uj ∈ Vh(Ωj,h) such that{
aj(uj , vj) = 〈xj1, γ0,Γj,h

vj〉Γj,h
, ∀vj ∈ Vh(Ωj,h),

xj0 = γ0,Γj,h
uj .

(10.9)

The global discrete Cauchy trace space is defined as

Ch,× (Σh) :=
J×
j=1

Ch,× (Γj,h) , (10.10)

or, equivalently,

x ≡ (x0, x1) ∈ Ch,× (Σh)

⇔ ∃u ∈ Vh(PΩ,h) such that
{

a(u, v) = 〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
x0 = γ0,h,×u,

(10.11)
which we identify as a subspace of Mh,× in a straightforward manner.

10.1.1.3 Single-trace spaces

Our definition of the single-trace space is again here fundamentally different from the one of
Chapter 4 (or Chapter 3). Indeed, it is clear that a generalization of Definition 4.11, using simple
matching conditions at each interface, is not possible since we now include the physical boundary
in the definition of the multi-trace spaces. However, our new definition exploits what were
previously properties of the single-trace space. To see this, we refer the reader to Proposition 4.12
and Proposition 4.15.
Definition 10.3 (Discrete single-trace spaces). The global discrete single-trace spaces are
defined as

S0,h,× (Σh) := γ0,h,× Vh(Ω),
S1,h,× (Σh) :=

{
x1 ∈ M1,h,× | 〈〈x1, x0〉〉× = 0, ∀x0 ∈ S0,h,×

}
,

Sh,× (Σh) := S0,h,× (Σh) × S1,h,× (Σh) .
(10.12)
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The definition of S0,h,× should be compared with Definition 9.5 from the previous chapter in
the continuous setting, it is similar in spirit. Note that S1,h,× can be seen as the annihilator of
S0,h,× in M1,h,× for the duality induced by 〈〈·, ·〉〉×, since it consists of all the functionals of M1,h,×
whose restriction to S0,h,× vanishes. As a result it is isomorphic to the orthogonal complement
of S0,h,×.

The following lemma is a direct corollary of Lemma 9.7.

Lemma 10.4. We have
Kerγ0,h,× ⊂ Vh(Ω). (10.13)

Proof. Let uh ∈ Vh(PΩ,h) such that γ0,h,×uh = 0. From Lemma 9.7, we have uh ∈ UΓ(D; Ω) so
that from Assumption 4.7, uh ∈ UΓ(D; Ω) ∩ Vh(PΩ,h) = Vh(Ω). �

We deduce the following corollary, which completes Definition 10.3 and makes clear the
difference between the Vh(Ω) (regular) and the Vh(PΩ,h) (broken) versions of the solution spaces
using the single-trace space.

Corollary 10.5. We have

∀u ∈ Vh(PΩ,h), γ0,h,×u ∈ S0,h,× ⇔ u ∈ Vh(Ω). (10.14)

Proof. It is clear that one implication (⇐) stems from Definition 10.3. We need only to prove
the reverse implication (⇒).

Let u ∈ Vh(PΩ,h) such that γ0,h,×u ∈ S0,h,×. By Definition 10.3 of S0,h,×, there exists
v ∈ Vh(Ω) such that γ0,h,×(v − u) = 0. It follows that w := v − u ∈ Kerγ0,h,× and by
Lemma 10.4 we get w ∈ Vh(Ω) so that finally u = v + w does belong to Vh(Ω). �

10.1.1.4 A first equivalent transmission problem

We are now ready to rewrite the (discrete) approximation (4.19) of the model problem (3.79) This
is the purpose of the following proposition, analogue to Proposition 9.11. The broken sesquilinear
and linear forms a and l were defined in (3.98) and (3.101). The result is formally very similar
to Proposition 4.16, and so are the proofs. However the arguments are from different origins.

Proposition 10.6 (Equivalent discrete transmission problem). If uh ∈ Vh(Ω) is solution
of the discrete model problem (4.19) then there exists x ≡ (x0, x1) ∈ Sh,× such that{

a(uh, v)− l(v) = 〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
x0 = γ0,h,×uh.

(10.15)

Reciprocally, if uh ∈ Vh(PΩ,h) and x ≡ (x0, x1) ∈ Sh,× are such that (10.15) is satisfied then
uh is solution of the discrete model problem (4.19).

Proof. (⇒) Let uh ∈ Vh(Ω) be the solution of the (discrete) approximation (4.19) of the model
problem (3.79). Since uh ∈ Vh(Ω), from Definition 10.3 we immediately have

x0 := γ0,h,×uh ∈ S0,h,×. (10.16)

Now, we introduce x1 ∈ M1,h,× such that

〈〈x1, x
t
0〉〉× = a(uh, xt0)− l(xt0), ∀xt0 ∈ M0,h,×. (10.17)
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Let us show that x1 is independent of the particular lifting Eh,×. Let v ∈ Vh(PΩ,h), we have

γ0,h,× (v− Eh,× γ0,h,×v) = 0 ∈ S0,h,×, (10.18)

so that, by application of Corollary 10.5, we know that v−Eh,× γ0,h,×v ∈ Vh(Ω). It follows that

a(uh, v− Eh,× γ0,h,×v)− l(v− Eh,× γ0,h,×v) = a(uh, v− Eh,× γ0,h,×v)− l(v− Eh,× γ0,h,×v) = 0,
(10.19)

hence
a(uh,Eh,× γ0,h,×v)− l(Eh,× γ0,h,×v) = a(uh, v)− l(v), (10.20)

and finally, using the surjectivity of the trace γ0,h,× from Vh(PΩ,h) into M0,h,×,

〈〈x1,γ0,h,×vt〉〉× = a(uh, vt)− l(vt), ∀vt ∈ Vh(PΩ,h). (10.21)

Let z0 ∈ S0,h,×, using Definition 10.3, there exists vt ∈ Vh(Ω) such that z0 = γ0,h,×v
t. Since

uh ∈ Vh(Ω) satisfies the discrete model problem (4.19), we have

〈〈x1, z0〉〉× = a(uh, vt)− l(vt) = a(uh, vt)− l(vt) = 0, (10.22)

which means, from Definition 10.3, that

x1 ∈ S1,h,× and hence x ≡ (x0, x1) ∈ Sh,×. (10.23)

(⇐) Reciprocally, suppose that there exists uh ∈ Vh(PΩ,h) and x ≡ (x0, x1) ∈ Sh,× such
that (4.55) holds. We immediately conclude from γ0,h,×uh = x0 ∈ S0,h,× and Corollary 10.5 that
uh ∈ Vh(Ω). Now testing with elements of Vh(Ω),

a(uh, vh)− l(vh) = a(uh, vh)− l(vh) = 〈〈x1,γ0,h,×vh〉〉× = 0, ∀vh ∈ Vh(Ω), (10.24)

using Definition 10.3 together with the fact that x1 ∈ S1,h,×. Hence, uh ∈ Vh(Ω) is the solution
of the discrete model problem (4.19). �

We state now the result on the decomposition of the discrete multi-trace space in the sum of
the discrete single-trace and Cauchy-trace spaces, analogue of Proposition 9.12. The following
result on the decomposition of the discrete multi-trace spaces is based on similar results available
for the acoustic setting, see [33, Prop. 7.1].

Proposition 10.7. We have the direct sum

Mh,× = Ch,× ⊕ Sh,×. (10.25)

In addition, if we denote by PCh,× the projector from Mh,× onto Ch,×, then we have the following
estimate

αPCh,×
:= sup

x∈Mh,×
x 6=0

‖PCh,×x‖
M×

‖x‖M×

≤
(

1 + α−2
Mh,×

|||a|||2 |||Eh,×|||2
)1/2

[(1 + αa,h |||a|||)|||Eh,×|||+ αa,h].

(10.26)

Proof.



10.1. ABSTRACT DISCRETE DOMAIN DECOMPOSITION 305

Null intersection Ch,× ∩ Sh,× = {0}. Let x ∈ Ch,× ∩ Sh,×. Since x ∈ Ch,×, we can find
u ∈ Vh(PΩ,h) such that {

a(u, v) = 〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
x0 = γ0,h,×u.

(10.27)

Then since γ0,h,×u = x0 ∈ S0,h,×, u ∈ Vh(Ω) from Proposition 4.12 and since x1 ∈ S1,h,×,
〈〈x1,γ0,h,×v〉〉× = 0 for all v ∈ Vh(Ω) from Proposition 4.15. Hence we proved that{

u ∈ Vh(Ω),
a(u, v) = 0, ∀v ∈ Vh(Ω).

(10.28)

The well-posedness of this problem (Assumption 4.4) yields u = 0, hence x = 0 by continuity of
the trace operator γ0,h,×.

Decomposition. Let x ≡ (x0, x1) ∈ Mh,×. We define{
u ∈ Vh(Ω) such that,
a(u− Eh,× x0, v) = −〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(Ω),

(10.29)

Such a solution exists from the well-posedness of the model problem (4.19) (Assumption 4.4).
Now define y1 ∈ M1,h,× such that

a(u− Eh,× x0,Eh,× xt0) = −〈〈y1, x
t
0〉〉×, ∀xt0 ∈ M0,h,×, (10.30)

By construction, using Definition 10.2, we have

y := (γ0,h,×(Eh,× x0 − u), y1) ∈ Ch,×. (10.31)

Besides, Proposition 4.12 yields

〈〈x1 − y1, z0〉〉× = 0, ∀z0 ∈ S0,h,×, (10.32)

so that, using Proposition 4.15 and again Proposition 4.12 together with the fact that u ∈ Vh(Ω),
we have

z := (γ0,h,×u, x1 − y1) ∈ Sh,×. (10.33)
It is then straightforward to check that

x = y + z, with
{

y ∈ Ch,×,

z ∈ Sh,×.
(10.34)

Explicit estimate. We adopt the same notations as for the proof of the decomposition. By
definition of the projector PCh,× , we have,

y ≡ (y0, y1) := PCh,×x, so that ‖PCh,×x‖2
M×

= ‖y‖2
M×

= ‖y0‖2
M0,×

+ ‖y1‖2
M1,×

. (10.35)

By definition of y, we have

‖y0‖M0,×
≤ ‖Eh,× x0 − u‖UΓ(D;PΩ,h),

‖y1‖M1,×
≤ α−1

Mh,×
|||a||| |||E||| ‖Eh,× x0 − u‖UΓ(D;PΩ,h).

(10.36)
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Besides, by definition of u we have

‖u‖UΓ(D;PΩ,h) = ‖u‖UΓ(D;Ω) ≤ αa,h
(
|||a||| |||Eh,×||| ‖x0‖M0,×

+ ‖x1‖M1,×

)
. (10.37)

We readily obtain the claimed estimate

‖PCh,×x‖2
M×
≤
(

1 + α−2
Mh,×

|||a|||2 |||Eh,×|||2
) [

(1 + αa,h |||a|||) |||Eh,×||| ‖x0‖M0,×
+ αa,h ‖x1‖M1,×

]2
,

≤
(

1 + α−2
Mh,×

|||a|||2 |||Eh,×|||2
)

[(1 + αa,h |||a|||)|||Eh,×|||+ αa,h]2 ‖x‖2
M×
.

(10.38)
�

10.1.2 Reformulation as an interface problem
In this section, repeating the steps of Chapter 4, we exploit the above characterization (see
Proposition 10.6) of the trace of the solution to equivalently recast the discrete approximation
of the original problem (4.19) as a problem (10.85) posed on the skeleton Σ of the partition.

10.1.2.1 Transmission operators and associated scalar products

We start by introducing the key ingredient of our formulation, the transmission operator.

Definition 10.8 (Transmission operator). We call transmission operator any continuous and
positive definite bilinear form

t0,h,× : M0,h,× × M0,h,× → R, (10.39)

such that
t0,h,×(x0, x0) > 0, ∀x0 ∈ M0,h,× \ {0}. (10.40)

For the sake of simplicity, and because it will always be the case in practice, we suppose that
this operator is diagonal.

Definition 10.9 (Diagonal operator). The transmission operator t0,h,× will be called diagonal
if there exist, for each j ∈ {1, . . . , J}, the following local continuous bilinear forms

tj0,h,× : X0,h(Γj,h)×X0,h(Γj,h)→ C, (10.41)

such that

t0,h,×(x0, y0) :=
J∑
j=1

tj0,h,×(xj0, yj0), ∀x0, y0 ∈ M0,h,×, (10.42)

where we adopted the notation x0 ≡ (xj0)Jj=1 and y0 ≡ (yj0)Jj=1.

Scalar product and norm We can then endow the multi-trace space M0,h,× with the norm
induced by the previous scalar product. Hence we define

‖x0‖2
t0,h,×

:= t0,h,×(x0, x0), ∀x0 ∈ M0,h,×. (10.43)
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Because of the finite dimensional setting, the norms ‖ · ‖M0,h,×
(defined in (10.3)) and ‖ · ‖t0,h,×

are always equivalent on M0,h,×. However, they are not necessarily h-uniformly equivalent. This
is why we introduce the continuity constant

|||t0,h,×||| := sup
x0∈M0,h,×

x0 6=0

‖x0‖t0,h,×

‖x0‖M0,h,×

, (10.44)

and coercivity constant

βt0,h,× := inf
x0∈M0,h,×

x0 6=0

‖x0‖t0,h,×

‖x0‖M0,h,×

. (10.45)

By definition, it follows that

βt0,h,× ‖x0‖M0,h,×
≤ ‖x0‖t0,h,×

≤ |||t0,h,×||| ‖x0‖M0,h,×
, ∀x0 ∈ M0,h,×. (10.46)

Generalized Robin operators The transmission operator is used to combine the two types
of traces into so-called generalized Robin multi-traces.

Definition 10.10 (Discrete generalized Robin trace). We introduce the global operators,

R±
0,h,× : Mh,× → M0,h,×, (10.47)

where, for any x ≡ (x0, x1) ∈ Mh,×, we define R±
0,h,× as the unique solutions of the following

variational problem

t0,h,×(R±
0,h,×x, xt0) = ±〈〈x1, x

t
0〉〉× − it0,h,×(x0, xt0), ∀xt0 ∈ M0,h,×. (10.48)

If the transmission operators are diagonal we can define local Robin operators at a single interface:
for each (j, k) ∈ J and any x ≡ (x0, x1) ∈ X(Γj,h), we define Rj,±

0,h,× as the unique solution of
the following variational problem,

tj0,h,×(Rj,±
0,h,×x, xt0) = ±〈x1, xt0〉Γj,h

− itj0,h,×(x0, xt0), ∀xt0 ∈ X0(Γj,h). (10.49)

10.1.2.2 Scattering operators

We are now going to introduce a discrete version of the scattering operator S0,× from Defini-
tion 9.19 using only weak formulations.

Definition 10.11 (Discrete scattering operator). We define the global scattering operators,

S0,h,× : M0,h,× → M0,h,×, (10.50)

where for any x0 ∈ M0,h,× we define

S0,h,×x0 = −x0 − 2iγ0,h,×uh, (10.51)

with uh ∈ Vh(PΩ,h) such that: for all vh ∈ Vh(PΩ,h)

a(uh, vh)− it0,h,×(γ0,h,×uh, γ0,h,×vh) = t0,h,×(x0, γ0,h,×vh). (10.52)
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If the transmission operators are diagonal, the scattering operators are themselves diagonal and
we have,

S0,h,× = diagj∈{1,...,J}

(
Sj0,h,×

)
,

Sj0,h,× : X0,h(Γj,h)→ X0,h(Γj,h),
(10.53)

where for any xj0 ∈ X0,h(Γj,h) we define,

Sj0,h,×xj0 = −xj0 − 2iγ0,Γj,h
uj,h, (10.54)

with uj,h ∈ Vh(Ωj), j ∈ {1, . . . , J}, such that: for all vj,h ∈ Vh(Ωj),

aj(uj,h, vj,h)− itj0,h,×(γ0,Γj
uj,h, γ0,Γj

vj,h) = tj0,h,×(xj0, γ0,Γj
vj,h). (10.55)

The following proposition shows that the above scattering operators are well-defined. Of
course, the result relies on the properties of the transmission operator from Definition 10.8. This
proposition is based on a similar result available for the scalar equation, see [33, Lem. 4.4].

Proposition 10.12 (Well-posedness of local problems). Let

αs,h := inf
u∈Vh(PΩ,h)

u 6=0

sup
v∈Vh(PΩ,h)

v 6=0

|a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v)|
‖u‖UΓ(D;PΩ)‖v‖UΓ(D;PΩ)

. (10.56)

We have, for any h,
αs,h > 0. (10.57)

As a result, for any linear form l on Vh(PΩ,h), the following problem is well-posed:{
Find u ∈ Vh(PΩ,h) such that :
a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v) = l(v), ∀v ∈ Vh(PΩ,h).

(10.58)

Proof. Suppose by contradiction that the above inf − sup constant vanishes for some u ∈ Vh(PΩ,h),
then

a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v) = 0, ∀v ∈ Vh(PΩ,h). (10.59)

Testing by u (see (3.98) for the definition of the sesquilinear form a), we get

κ0
−1(a Du,Du)L2(Ω)m1 − κ0 (nu, u)L2(Ω)m0

− i(γ0,Γ u, γ0,Γ u)L2(Γ)m0 − it0,h,×(γ0,h,×u, γ0,h,×u) = 0.
(10.60)

Since the imaginary parts of the coefficients a and n are respectively supposed negative and
positive (see (3.78)), retaining only the imaginary part above implies necessarily that

t0,h,×(γ0,h,×u, γ0,h,×u) = 0, (10.61)

so that by the definiteness of t0,h,×, we have γ0,h,×u = 0. From Corollary 10.5, we deduce that
u ∈ Vh(Ω) and, testing by v ∈ Vh(Ω) in (10.59) we get

a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v) = a(u, v) = 0, ∀v ∈ Vh(Ω). (10.62)

The well-posedness of the discrete model problem (4.19) stated in Assumption 4.4 gives that
u = 0 which is a contradiction. �
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Again, we point out that such a result is valid for our target applications for h small enough,
but this is not an issue for the abstract analysis.

A direct consequence of the well-posedness of the above problem (10.52) is the well-posedness
of the following local sub-problems in each sub-domain, for diagonal operators.

Corollary 10.13. If the transmission operator t0,h,× are diagonal, for all j ∈ {1, . . . , J} and
any linear form lj on Vh(Ωj,h), the problem{

Find uj ∈ Vh(Ωj,h) such that :
aj(uj , vj)− itj0,h,×(γ0,Γj,h

uj , γ0,Γj,h
vj) = lj(vj) ∀vj ∈ Vh(Ωj,h),

(10.63)

is well posed.

We are able to provide an equivalent discrete characterization to the one from Proposi-
tion 9.20, which is similar to [33, Lem. 7.2].

Proposition 10.14 (Characterization of the discrete Cauchy trace space). We have the
following characterization of the Cauchy-trace space (10.2):

Ch,× = Ker
(

R−
0,h,× − S0,h,×R+

0,h,×

)
. (10.64)

Proof. From Definition 10.10 and Definition 10.11, x ≡ (x0, x1) ∈ Mh,× satisfy

R−
0,h,×x = S0,h,×R+

0,h,×x, (10.65)

if, and only if, there exists u ∈ Vh(PΩ,h) such that
a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v)

= 〈〈x1,γ0,h,×v〉〉× − it0,h,×(x0, γ0,h,×v), ∀v ∈ Vh(PΩ,h),
−〈〈x1, xt0〉〉× − it0,h,×(x0, xt0)

= −〈〈x1, xt0〉〉× + it0,h,×(x0, xt0)− 2it0,h,×(γ0,h,×u, xt0), ∀xt0 ∈ M0,h,×.

⇔

{
a(u, v)− it0,h,×(γ0,h,×u− x0, γ0,h,×v) = 〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
t0,h,×(x0, xt0) = t0,h,×(γ0,h,×u, xt0), ∀xt0 ∈ M0,h,×,

⇔

{
a(u, v) = 〈〈x1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
γ0,h,×u = x0,

(10.66)

which yields x ∈ Ch,× from Definition 10.2. Note that we used the injectivity of t0,h,× to establish
the last equivalence. �

10.1.2.3 Communication operator

Following the approach adopted in Section 9.2.2.3 we start by defining the orthogonal projector
onto the single trace space S0,h,×.

Definition 10.15 (Discrete orthogonal projector). In the Hilbert space
(

M0,h,×, ‖ · ‖t0,h,×

)
,

we introduce the following orthogonal projectors

P0,h,× : M0,h,× → S0,h,× and P0,h,×
⊥ : M0,h,× → S0,h,×

⊥,

satisfying Id = P0,h,×
⊥ + P0,h,×.

(10.67)



310 CHAPTER 10. DISCRETE SETTING

The communication operator is then defined from the projection operator, as stated below.

Definition 10.16 (Communication operator). We define the communication operator as

Π0,h,× := 2P0,h,× − Id : M0,h,× → M0,h,×. (10.68)

We emphasize again that the orthogonal projector P0,h,×, and therefore the communication
operator Π0,h,×, depend on our choice of norm (10.43) hence are intrinsically linked to the
transmission operator t0,h,× introduced in (10.39).

Remark 10.17 (Practical computation of the projection). We refer the reader to Re-
mark 9.24 for some important discussion on the practical computation of this projection. In
practice, given x0 ∈ M0,h,× one can compute P0,h,×x0 ∈ S0,h,× by solving the following coercive
problem

t0,h,×(P0,h,×x0, y0) = t0,h,×(x0, y0), ∀y0 ∈ S0,h,×. (10.69)

Note that we can give alternative expressions of the projectors in terms of the communication
operators:

P0,h,× = 1
2 (Id + Π0,h,×) and P0,h,×

⊥ = 1
2 (Id −Π0,h,×) . (10.70)

The following proposition is immediate from the definition of the communication operator
Π0,h,× by simple properties of projectors. Note that the following two propositions are based on
a similar result valid in the acoustic setting only which can be found in [33, Lem. 4.3].

Proposition 10.18 (Isometric property). The communication operator Π0,h,× is an involu-
tion

Π0,h,×
2 = Id, in M0,h,×, (10.71)

and an isometry of M0,h,×, for the norm induced by t0,h,×,

‖Π0,h,×x0‖t0,h,×
= ‖x0‖t0,h,×

, ∀x0 ∈ M0,h,×. (10.72)

We are now able to characterize the discrete single-trace space Sh,× (Definition 10.3) as the
kernel of an operator involving the discrete generalized Robin operators R±

0,h,× and the exchange
operator Π0,h,×.

Proposition 10.19 (Characterization of the discrete single-trace space). We have the
following characterization of the single-trace space (10.12):

Sh,× = Ker
(

R±
0,h,× −Π0,h,×R∓

0,h,×

)
. (10.73)

Proof. First note that for any x ∈ Mh,×, R+
0,h,×x = Π0,h,×R−

0,h,×x is equivalent to R−
0,h,×x =

Π0,h,×R+
0,h,×x since the exchange operator Π0,h,× is an involution according to Proposition 10.18.

Let x ≡ (x0, x1) ∈ Mh,× ≡ M0,h,× ×M1,h,×. First, we have the characterization of S0,h,× from
the orthogonal projector (10.67)

x0 ∈ S0,h,× ⇔ P0,h,×
⊥x0 = 0. (10.74)

Second, we identify the annihilator of S0,h,× in M0,h,×, denoted S1,h,×, with the orthogonal
complement of S0,h,× with respect to the scalar product t0,h,×, denoted S0,h,×

⊥. Let us define
x⊥

0 ∈ M0,h,× such that

t0,h,×(x⊥
0 , xt0) = 〈〈x1, x

t
0〉〉×, ∀xt0 ∈ M0,h,×, (10.75)
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which is well defined from Definition 10.8. By Definition 10.3 of S1,h,×, we have

t0,h,×(x⊥
0 , xt0) = 〈〈x1, x

t
0〉〉× = 0, ∀xt0 ∈ S0,h,×, (10.76)

so that
x1 ∈ S1,h,× ⇔ x⊥

0 ∈ S0,h,×
⊥ ⇔ P0,h,×x⊥

0 = 0. (10.77)

Hence, by simple properties of projectors, we have from (10.74) and (10.77),

x ∈ Sh,× ⇔ P0,h,×x⊥
0 − iP0,h,×

⊥x0 = 0. (10.78)

This is rewritten as, using the expressions of the projectors in term of the communication operator
Π0,h,× from (10.70)

x ∈ Sh,× ⇔ (Id + Π0,h,×)x⊥
0 − i(Id −Π0,h,×)x0 = 0,

⇔ x⊥
0 − ix0 = Π0,h,×(−x⊥

0 − ix0).
(10.79)

Using Definition 10.10 of the generalized Robin operators, we have, for all xt0 ∈ M0,h,×,

t0,h,×(R±
0,h,×x, xt0) = ±〈〈x1, x

t
0〉〉× − it0,h,×(x0, xt0) = t0,h,×(±x⊥

0 − ix0, xt0), (10.80)

so that using the injectivity property of t0,h,× we have

R±
0,h,×x = ±x⊥

0 − ix0. (10.81)

Finally, we get
x ∈ Sh,× ⇔

(
R+

0,h,× −Π0,h,×R−
0,h,×

)
x = 0. (10.82)

�

10.1.2.4 Equivalent interface problem

With the help of the discrete scattering operators S0,h,× and exchange operator Π0,h,× we are
now in a position to recast the discrete approximation of the original problem (4.19) as a problem
posed on the skeleton Σh. The result is formally very similar to Proposition 4.33, and so are the
proofs. The main difference lies in the different kind of space the interface problems are posed.

Proposition 10.20 (Equivalent discrete interface problem). Let Fh ∈ Vh(PΩ,h) be the
(unique) source lifting such that

a(Fh, v)− it0,h,×(γ0,h,×Fh, γ0,h,×v) = l(v), ∀v ∈ Vh(PΩ,h), (10.83)

and define f ≡ (f0, f1) ∈ Mh,× such that{
〈〈f1, xt0〉〉× = +it0,h,×(γ0,h,×Fh, xt0), ∀xt0 ∈ M0,h,×,

f0 := γ0,h,×Fh.
(10.84)

Consider the problem {
Find x0 ∈ M0,h,×,

(Id −Π0,h,×S0,h,×)x1 = Π0,h,×R−
0,h,×f.

(10.85)
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If uh ∈ Vh(Ω) is solution of the (discrete) approximation (4.19) of the model problem (3.79)
then x0 = R+

0,h,×y ∈ M0,h,× where y ≡ (y0, y1) ∈ Mh,× is defined as{
a(uh, vh)− l(vh) = 〈〈y1,γ0,h,×vh〉〉×, ∀vh ∈ Vh(PΩ,h),
γ0,h,×uh = y0,

(10.86)

solves problem (10.85).
Reciprocally, if x0 ∈ M0,h,× is solution of the interface problem (10.85) and if v ∈ Vh(PΩ,h)

is the (unique) solution of

a(vh, vth)− it0,h,×(γ0,h,×vh, γ0,h,×vth) = t0,h,×(x0, γ0,h,×vth), ∀vth ∈ Vh(PΩ,h), (10.87)

then uh ∈ Vh(PΩ,h) defined as uh := vh + Fh is solution of the (discrete) approximation (4.19)
of the model problem (3.79).

Proof. Let Fh and f ≡ (f0, f1) ∈ Mh,× satisfy (10.83) (which are uniquely defined by Proposi-
tion 10.12). Note that by construction, it holds that

+ 〈〈f1, x
t
0〉〉× − it0,h,×(f0, xt0) = 0, ∀xt0 ∈ M0,h,×,

⇔ R+
0,h,×f = 0,

(10.88)

and Fh ∈ Vh(PΩ,h) is such that{
a(Fh, vh)− l(vh) = 〈〈f1,γ0,h,×vh〉〉×, ∀vh ∈ Vh(PΩ,h),
γ0,h,×Fh = f0.

(10.89)

(⇒) If uh ∈ Vh(Ω) is solution of the (discrete) approximation (4.19) of the model prob-
lem (3.79), then by Proposition 10.6, we know that y ≡ (y0, y1) defined in (10.86) above belongs
to Ch,×. Besides, from both (10.86) and (10.89), we get{

a(uh − Fh, vh) = 〈〈y1 − f1,γ0,h,×vh〉〉×, ∀vh ∈ Vh(PΩ,h),
γ0,h,×(uh − Fh) = y0 − f0,

(10.90)

so that by Definition 4.10 of Ch,×, we have y − f ∈ Ch,×. From the characterizations of both
the Cauchy trace space stated in Proposition 10.14 and the single trace space stated in Proposi-
tion 10.19 we have{

y − f ∈ Ch,×,

y ∈ Ch,×,
⇔

{
R−

0,h,×(y − f) = S0,h,×R+
0,h,×(y − f),

R+
0,h,×y = Π0,h,×R−

0,h,×y.
(10.91)

Hence using R+
0,h,×f = 0 we deduce{

R−
0,h,×y = S0,h,×R+

0,h,×y + R−
0,h,×f,

R+
0,h,×y = Π0,h,×R−

0,h,×y.
(10.92)

Eliminating R−
0,h,×y it is then immediate that

R+
0,h,×y = Π0,h,×S0,h,×R+

0,h,×y + Π0,h,×R−
0,h,×f. (10.93)

hence the quantity x0 := R+
0,h,×y satisfies the interface problem (10.85).
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(⇐) Reciprocally, let x0 ∈ M0,h,× be solution of the interface problem (10.85) and let vh ∈
Vh(PΩ,h) be the unique solution (by Proposition 10.12) to (10.87). Then, define z ≡ (z0, z1) ∈
Mh,× such that {

a(vh, vth) = 〈〈z1,γ0,h,×vth〉〉×, ∀vth ∈ Vh(PΩ,h),
γ0,h,×vh = z0,

(10.94)

so that using (10.89), we get{
a(vh + Fh, vth)− l(vh) = 〈〈z1 + f1,γ0,h,×vh〉〉×, ∀vth ∈ Vh(PΩ,h),
γ0,h,×(vh + Fh) = z0 + f0.

(10.95)

If we set
uh := vh + Fh,

y ≡ (y0, y1) := z + f ≡ (z0 + f0, z1 + f1),
(10.96)

we obtain {
a(uh, vt)− l(vt) = 〈〈y1,γ0,h,×vt〉〉×, ∀vt ∈ Vh(PΩ,h),
γ0,h,×uh = y0.

(10.97)

Using Proposition 10.6 all that remains to prove is that y ∈ Ch,×. We have, combining (10.87)
and (10.94)

t0,h,×(x0, xt0) = +〈〈z1, x
t
0〉〉× − it0,h,×(z0, xt0), ∀xt0 ∈ M0,h,×, (10.98)

so that x0 = R+
0,h,×z by Definition 10.10 of the generalized Robin operator. We can rewrite (9.99)

as
(Id −Π0,h,×S0,h,×) x0 = Π0,h,×R−

0,h,×f,

⇔ (Id −Π0,h,×S0,h,×) R+
0,h,×z = Π0,h,×R−

0,h,×f.
(10.99)

Using Proposition 10.14 we get

R+
0,h,×z−Π0,h,×R−

0,h,×z = Π0,h,×R−
0,h,×f. (10.100)

Hence using R+
0,h,×f = 0 together with the definition of y we obtain that

R+
0,h,×y = Π0,h,×R−

0,h,×y. (10.101)

Proposition 10.19 then gives y ∈ Ch,×. �

Remark 10.21. The interface problem is set in M0,h,×, the natural trace space, while the corre-
sponding problem in Chapter 4 was set in the dual trace space M1,h,‖, so to speak. Our numerical
implementations of both methods reflect this. It is entirely possible to write a similar interface
problem in M1,h,×, however this would require a different communication operator, based on a
projector onto S1,h,× (and not onto S0,h,×).

The reason for our choice is that it is easier to implement a projector onto the single-trace
space S0,h,× rather than onto S1,h,× (in the context of a Galerkin approximation based on standard
finite elements). Indeed, it is easy to characterize the single-trace space S0,h,× in a finite element
context, by requirying all the degrees of freedom associated to the same physical element (vertex,
edge) to be equal. Besides, the size of the finite dimensional space S0,h,× is in general marginally
smaller than the space S1,h,×, due to the junctions points.

A drawback is the presence of the transmission operator in the right-hand-side of the local
problems, which makes the local resolution more expensive. This could be enough to justify a
different implementation and could be worth investigating in a future work.
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10.2 Iterative discrete domain decomposition methods
10.2.1 Iterative algorithm
Let Fh be the solution of (10.83) with f ≡ (f0, f1) ∈ Mh,× defined in (10.84) and set

b0 := Π0,h,×R−
0,h,×f. (10.102)

In this section, we want to devise (and study the convergence of) an algorithm to solve{
Find x0 ∈ M0,h,× such that,
(Id −Π0,h,×S0,h,×) x0 = b0.

(10.103)

Having found such a x0 solution of (10.103), a global volume solution uh can be computed by
solving{

Find vh ∈ Vh(PΩ,h) such that,
a(vh, vt)− it0,h,×(γ0,h,×vh, γ0,h,×vt) = t0,h,×(x0, γ0,h,×vt), ∀vt ∈ Vh(PΩ,h).

(10.104)

Then the global solution of the discrete model problem is uh := vh + Fh.

Richardson algorithm Again, one of the simplest iterative method to solve (10.103) is the
Richardson algorithm. Let x0

0 ∈ M0,h,× and a relaxation parameter 0 < r ≤ 1 be given, a sequence
(xn0 )n∈N in M0,h,× is constructed using the Richardson algorithm as follows

xn+1
0 = [(1− r)Id + rΠ0,h,×S0,h,×] xn0 + r b0, n ∈ N. (10.105)

Constructing this sequence of traces also constructs a sequence of broken solutions (vnh)n∈N in
Vh(PΩ,h) when the action of S0,h,× is computed. For each n ∈ N the broken solution vnh satisfy

a(vnh, vt)− it0,h,×(γ0,h,×vnh, γ0,h,×vt) = t0,h,×(xn0 , γ0,h,×vt), ∀vt ∈ Vh(PΩ,h). (10.106)

The true solution of the original problem is then (hopefully, if convergence occurs) the limit of
the broken solutions (unh := vnh + Fh)n∈N in Vh(PΩ,h).

10.2.2 Discrete convergence analysis
We now turn to the convergence analysis of the previously described iterative method. As we
already remarked in Chapter 4, in this discrete setting there are two independent convergence
processes. We study here the convergence with respect to increasing n, the iteration number, of
the iterative discrete solution unh ∈ Vh(PΩ,h) towards the discrete solution uh ∈ Vh(Ω) of (4.19).
The convergence with respect to decreasing h, the discretization parameter, of the discrete so-
lution uh ∈ Vh(Ω) of (4.19) towards the continuous solution u ∈ UΓ(D; Ω) of (3.79), although a
legitimate question, is not addressed here. However, we shall study the behavior of the conver-
gence factor as h goes to 0.

It is clear that the new interface problem (10.103) takes the form of the abstract prob-
lem (3.230). To prove the geometric convergence of the above fixed point algorithm, we simply
need to check that the assumptions of Proposition 3.57 are satisfied in our particular case where
V = M0,h,× and A = Π0,h,×S0,h,×. A similar result in a slightly different setting can be found
in [33, Lem. 5.1].



10.2. ITERATIVE DISCRETE DOMAIN DECOMPOSITION METHODS 315

Proposition 10.22 (Contraction property of the scattering operator). The scattering
operator S0,h,× is a contraction of M0,h,×, for our particular choices of norms (10.43),

‖S0,h,×x0‖t0,h,×
≤ ‖x0‖t0,h,×

, ∀x0 ∈ M0,h,×. (10.107)

Proof. Let x0 ∈ M0,h,×, we have by definition of S0,h,× (see (10.50))

S0,h,×x0 = −x0 − 2iγ0,h,×u, (10.108)

where u ∈ Vh(PΩ,h) is such that

a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v) = t0,h,×(x0, γ0,h,×v), ∀v ∈ Vh(PΩ,h). (10.109)

We have, by definition of the norm (10.43),

‖S0,h,×x0‖2
t0,h,×

=t0,h,×(−x0 − 2iγ0,h,×u, −x0 − 2iγ0,h,×u)

=t0,h,×(x0, x0) + 4t0,h,×(γ0,h,×u, γ0,h,×u)
− 2it0,h,×(x0, γ0,h,×u) + 2it0,h,×(γ0,h,×u, x0),

:=‖x0‖2
t0,h,×

+ 4‖γ0,h,×u‖2
t0,h,×

+ 4= t0,h,×(x0, γ0,h,×u).

(10.110)

Besides, by definition of u (testing by u in (10.109)) and the bilinear form a (see (4.16)) we have

= t0,h,×(x0, γ0,h,×u) = κ0
−1(=(a) Du,Du)L2(Ω)m1 − κ0 (=(n)u, u)L2(Ω)m0

− ‖γ0,Γ u‖2
L2(Γ)m0 − ‖γ0,h,×u‖2

t0,h,×
,

(10.111)

which yields, since the imaginary parts of the coefficients a and n are respectively supposed
negative and positive (see (3.78)),

‖S0,h,×x0‖2
t0,h,×

− ‖x0‖2
t0,h,×

= κ0
−1(=(a) Du,Du)L2(Ω)m1

− κ0 (=(n)u, u)L2(Ω)m0 − ‖γ0,Γ u‖2
L2(Γ)m0 ≤ 0.

(10.112)

�

Combining both Proposition 10.18 and Proposition 10.22 we get the contraction property we
were looking for.

Corollary 10.23 (Contraction property). We have

‖Π0,h,×S0,h,×x0‖t0,h,×
≤ ‖x0‖t0,h,×

, ∀x0 ∈ M0,h,×. (10.113)

The second requirement of Proposition 3.57 to obtain geometric convergence is verified next.
A similar result valid in the acoustic setting only can be found in [33, Prop. 5.2].

Proposition 10.24. The operator Id −Π0,h,×S0,h,× is an isomorphism on M0,h,×.

Proof. Since M0,h,× is finite dimensional, we only need to prove injectivity. Let x0 ∈ M0,h,× be
such that

(Id −Π0,h,×S0,h,×) x0 = 0. (10.114)
Define (which exists from Proposition 10.12){

u ∈ Vh(PΩ,h) such that
a(u, v)− it0,h,×(γ0,h,×u, γ0,h,×v) = t0,h,×(x0, γ0,h,×v), ∀v ∈ Vh(PΩ,h).

(10.115)



316 CHAPTER 10. DISCRETE SETTING

Then let y ≡ (y0, y1) ∈ Mh,× such that{
〈〈y1, xt0〉〉× = it0,h,×(γ0,h,×u, xt0) + t0,h,×(x0, xt0), ∀xt0 ∈ M0,h,×,

y0 = γ0,h,×u.
(10.116)

By construction {
a(u, v) = 〈〈y1,γ0,h,×v〉〉×, ∀v ∈ Vh(PΩ,h),
γ0,h,×u = y0,

(10.117)

so that y ∈ Ch,× and Proposition 10.14 yields(
R−

0,h,× − S0,h,×R+
0,h,×

)
y = 0. (10.118)

Besides,
〈〈y1, x

t
0〉〉× − it0,h,×(y0, xt0) = t0,h,×(x0, xt0), ∀xt0 ∈ x0, (10.119)

so that by Definition 10.10 of the generalized Robin operators

R+
0,h,×y = x0. (10.120)

Now (10.114) is rewritten as (
R+

0,h,× −Π0,h,×R−
0,h,×

)
y = 0, (10.121)

and Proposition 10.19 yields y ∈ Sh,×. Finally y ∈ Ch,× ∩ Sh,×, hence from Proposition 10.7,
y = 0 and x0 = R+

0,h,×y = 0. �

We finally give the geometric convergence result. A similar result valid in the acoustic setting
only can be found in [33, Th. 6.1].

Theorem 10.25 (Geometric convergence of the discrete Richardson algorithm). The
sequence of broken solutions (unh)n∈N computed according to (10.106), converges geometrically
to uh the solution of the discrete approximation of the model problem (4.19). Specifically, there
exist C > 0 and 0 < τ < 1, which might depend on h, such that

‖unh − uh‖UΓ(D;PΩ,h) ≤ C τ
n, ∀n ∈ N. (10.122)

Proof. Arguing as in the proof of Corollary 3.56, this is direct application of the abstract re-
sult in Proposition 3.57. The assumptions of the latter result are systematically checked in
Proposition 10.23 and Proposition 10.24. �

Of course, as we already remarked in Chapter 4, this theorem is less important than its
counterpart in the continuous setting. Indeed, if one uses an iterative algorithm applied to a finite
dimensional system of equations, one will always get geometric convergence (or no convergence
at all). This is why the forthcoming discrete stability analysis, which addresses the question of
the behavior of the geometric convergence factor as h goes to 0, is particularly relevant.

10.2.3 Discrete stability
We have seen that in the discrete setting, the Richardson algorithm is (geometrically) conver-
gent provided that the transmission operator defines a scalar product on the multi-trace space.
The important question of discrete stability remains, namely can we get h-uniform (geometric)
convergence.
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Explicit bounds To provide answers to this question we need explicit bounds with respect to
the discretization parameter h on the convergence factor.

Again, the main ingredient we need is an estimate on the continuity constant of the inverse
of the operator Id −Π0,h,×S0,h,×. From Proposition 10.24 we already know that the following
quantity is strictly positive,

ζh,× := inf
x0∈M0,h,×

x0 6=0

‖(Id −Π0,h,×S0,h,×)x0‖M0,h,×

‖x0‖M0,h,×

> 0. (10.123)

The estimate is provided by the following proposition, similar to [33, Prop. 7.1 and 7.3].

Proposition 10.26 (Explicit discrete estimate). We have

ζh,× ≥ 2
βt0,h,×

|||t0,h,×|||
(1 + |||t0,h,×|||)−1

(
1 + β−1

t0,h,×

)−1/2

(
1 + |||a|||2 |||Eh,×|||2

)−1/2[(
1 + α−1

a,h |||a|||
)
|||Eh,×|||+ α−1

a,h

]−1
> 0.

(10.124)

Proof. Let b0 ∈ M0,h,×. We need to provide an explicit construction of a0 ∈ M0,h,× such that

(Id −Π0,h,×S0,h,×) a0 = b0, (10.125)

in order to estimate its norm. The construction below follows closely the steps taken in the proof
of Proposition 4.39, itself based on Remark 3.62.

1. First we look for a solution to{
Find y ∈ Mh,× such that :(

R+
0,h,‖ −Π0,h,×R−

0,h,‖

)
y = b0.

(10.126)

Inspired by (9.142) from the proof of Lemma 9.42, we construct first x0 ∈ M0,h,× such that

t0,h,‖(x0, xt0) = i
2 〈〈P0,h,×

⊥b0, x
t
0〉〉×, ∀xt0 ∈ M0,h,×, (10.127)

and we have, using the fact that P0,h,×
⊥ is a projector,

‖x0‖M0,h,×
≤ 1

2β
−1/2
t0,h,×

‖b0‖M0,h,×
. (10.128)

Then we construct x1 ∈ M0,h,× such that

〈〈x1, x
t
0〉〉× = 1

2 〈〈P0,h,×b0, x
t
0〉〉×, ∀xt0 ∈ M0,h,×, (10.129)

and we have
‖x1‖M0,h,×

≤ 1
2‖b0‖M0,h,×

. (10.130)

Now, set x := (x0, x1) ∈ Mh,×, so that

‖x‖M‖
≤ 1

2

(
1 + β−1

t0,h,×

)1/2
‖b0‖M0,h,×

. (10.131)
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Now let us check that it is a solution to (10.126): by definition, we have, for any xt0 ∈ M0,h,×

t0,h,‖(R+
0,h,‖x, xt0) = 〈〈x1, x

t
0〉〉× − it0,h,‖(x0, xt0) = 〈〈12b0, x

t
0〉〉

×
,

t0,h,‖(R−
0,h,‖x, xt0) = −〈〈x1, x

t
0〉〉× − it0,h,‖(x0, xt0) = −〈〈12Π0,h,×b0, x

t
0〉〉

×
,

(10.132)

from which we deduce, using the involution property of the exchange operator Π0,h,×
(Proposition 10.18), (

R+
0,h,‖ −Π0,h,×R−

0,h,‖

)
x = b0. (10.133)

2. From the previous solution x ∈ Mh,×, Proposition 10.7 yields the existence of y ∈ Ch,× and
z ∈ Sh,× such that

x = y + z, (10.134)
and we have

‖y‖M‖
≤ αPCh,×

‖x‖M‖
≤ 1

2 αPCh,×

(
1 + β−1

t0,h,×

)1/2
‖b0‖M0,h,×

. (10.135)

Using the characterization of the single-trace space Sh,× provided by Proposition 10.19, we
have (

R+
0,h,‖ −Π0,h,×R−

0,h,‖

)
z = 0, (10.136)

so that the projection y ∈ Ch,× of x satisfies the same equation:(
R+

0,h,‖ −Π0,h,×R−
0,h,‖

)
y = b0. (10.137)

3. Set
a0 = R+

0,h,‖y, (10.138)
we have

‖a0‖M0,h,×
≤
(
‖y1‖M0,h,×

+ |||t0,h,×||| ‖y0‖M0,h,×

)
,

≤ (1 + |||t0,h,×|||) ‖y‖M‖
,

≤ 1
2αPCh,×

(1 + |||t0,h,×|||)
(

1 + β−1
t0,h,×

)1/2
‖b0‖M0,h,×

.

(10.139)

Using the characterization of the Cauchy trace space Ch,× provided by Proposition 10.19,
we obtain from y ∈ Ch,×,

R−
0,h,‖y = S0,h,×R+

0,h,‖y. (10.140)
Therefore, we get

(Id −Π0,h,×S0,h,×) a0 = (Id −Π0,h,×S0,h,×) R+
0,h,‖y =

(
R+

0,h,‖ −Π0,h,×R−
0,h,‖

)
y = b0,

(10.141)
and a0 is the (unique, by Proposition 10.24) solution of the original problem.

We obtained above an estimate using the norm ‖ · ‖M0,h,×
however we wish to establish a bound

in the norm induced by t0,h,×. From (10.46) we have

‖a0‖t0,h,×
≤ 1

2αPCh,×

|||t0,h,×|||
βt0,h,×

(1 + |||t0,h,×|||)
(

1 + β−1
t0,h,×

)1/2
‖b0‖t0,h,×

. (10.142)

The claimed estimate can then readily obtained from the expression of αPCh,×
provided in Propo-

sition 10.7. �
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h-uniform convergence The question of h-uniform stability is settled by the following propo-
sition, similar to [33, Cor. 8.2].

Proposition 10.27. If the partition is independent of h, see Assumption 4.5, and under the
following additional assumptions:

1. In addition to Assumption 4.4, we suppose that the stability constant αa,h of the original
problem is h-uniform, namely

α?a := lim inf
h→0

αa,h > 0, (10.143)

2. In addition to the requirements of Definition 10.8, we suppose that the transmission oper-
ators are h-uniformly stable, namely

|||t0,×||| := lim sup
h→0

|||t0,h,×||| < +∞, and β?t0,h,×
:= lim inf

h→0
βt0 > 0, (10.144)

3. We suppose that the stability constant αs,h of the decomposed problem, defined in Proposi-
tion 10.12, is h-uniform, namely

α?s,× := lim inf
h→0

αs,h > 0, (10.145)

4. In addition to Assumption 4.2, we suppose that the discrete lifting is h-uniformly stable,
namely

|||E||| := lim sup
h→0

|||Eh,×||| < +∞, (10.146)

the sequence of broken solutions (unh)n∈N computed according to (10.106), converges geometrically
and h-uniformly to uh the solution of the discrete model problem (4.19). Specifically, there exist
C > 0 and 0 < τ < 1, independent of h, such that

‖unh − uh‖UΓ(D;PΩ,h) ≤ Cτ
n, ∀n ∈ N. (10.147)

Proof. At each iteration n ∈ N, we can define an error on the trace εn0 ∈ M0,h,× such that

εn0 = xn0 − x0, (10.148)

where the sequence (xn0 )n∈N is computed through (10.105) and x0 is the solution of (10.103). It
follows that, the sequence (εn0 )n satisfies the recurrence relation

εn+1
0 = [(1− r)Id + rΠ0,h,×S0,h,‖] εn0 , n ∈ N, (10.149)

and is such that, for all vt ∈ Vh(PΩ,h),

a(unh − uh, vt)− it0,h,‖(γ0,h,×(unh − uh), γ0,h,×vt) = 〈〈εn0 ,γ0,h,×vt〉〉×. (10.150)

We use again the convexity identity (3.233) from the proof of Theorem 3.49 and we get

‖εn+1
0 ‖2

t0,h,×
= (1− r)‖εn0‖

2
t0,h,×

+ r‖Π0,h,×S0,h,‖ε
n
0‖

2
t0,h,×

− r(1− r)‖ (Id −Π0,h,×S0,h,‖) εn0‖
2
t0,h,×

.

(10.151)
Since Π0,h,×S0,h,‖ is a contraction in M0,h,× from Corollary 10.23, we have

‖Π0,h,×S0,h,‖ε
n
0‖t0,h,×

≤ ‖εn0‖t0,h,×
, (10.152)
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and from Proposition 10.26 we have

‖εn0‖t0,h,×
≤ ζh,× ‖ (Id −Π0,h,×S0,h,‖) εn0‖t0,h,×

, (10.153)

hence
‖εn0‖t0,h,×

≤ τn‖ε00‖t0,h,×
, (10.154)

where τ =
√

1− r(1− r)ζ2
h,× with ζh,× defined in (10.123). By the stability of the prob-

lem (10.150), we have

‖unh − uh‖UΓ(D;PΩ,h) ≤
(
α?s,×

)−1‖εn0‖t0,h,×
≤
(
α?s,×

)−1
τn‖ε00‖t0,h,×

, (10.155)

From problem (10.150) with n = 0, we also get

‖ε00‖t0,h,×
≤ β−1/2

t0,h,×
(|||a|||+ |||t0,h,×|||) ‖u0

h − uh‖UΓ(D;PΩ,h). (10.156)

Finally, we have the estimate

‖unh − uh‖UΓ(D;PΩ,h)

‖u0
h − uh‖UΓ(D;PΩ,h)

≤ β−1/2
t0,h,×

(
α?s,×

)−1 (|||a|||+ |||t0,h,×|||)
(
1− r(1− r)ζ2

h,×
)n/2

, (10.157)

and the bound is h-uniform from all the above assumptions. �

Remark 10.28. Again, it should be noted that the stable lifting Eh,× is a purely theoretical tool,
whose existence (and stability) are solely required for the purposes of analysis. In particular, the
implementation of the method does not require in general the actual implementation of Eh,×.

The assumptions of the previous proposition deserves some discussion. We refer the reader to
the comments made following Proposition 4.40 which also apply in this setting. Note in particular
that the stability of the constant αs,h,× with respect to the mesh parameter h is available for
the scalar equation, see [33, Lem. 4.4].

Remark 10.29. Arguing as in Section 3.3.3, let us remark once again that h-uniform geometric
convergence of the relaxed Jacobi algorithm guarantees h-uniform geometric convergence of the
Gmres counter-part.

10.3 Matrix and vector representation
In this section we will describe in more concrete terms the implementation of the iterative scheme,
writing all equations in matrix form. This will help gain a real insight on the implementation
details underlying the solution strategy we propose. In this section, we assume that the finite
dimensional spaces are constructed using standard finite element spaces defined on simplicial
mesh triangulations.

Approximation spaces First of all, we set a few matrix notations.
Let j ∈ {1, . . . , J}, we assume to have a finite dimensional basis of Vh(Ωj,h) consisting of

N(Ωj,h) := dim Vh(Ωj,h) shape functions denoted ϕl,Ωj,h
, l ∈ {1, . . . , N(Ωj,h)}. In practice,

each ϕl,Ωj,h
will refer to the usual Pk Lagrange shape functions [65, Sec. 1.2.3] in the acoustic

setting or to the volume Nedelec edge functions [65, Sec. 1.2.8] in the electromagnetic setting.
According to our assumptions from Chapter 4, this also defines a basis of X0,h(Γj,h) consisting

of N(Γj,h) := dim X0,h(Γj,h) shape functions denoted ϕl,Γj,h
, l ∈ 1, . . . , N(Γj,h). Note that we
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assume that each shape function on Γj,h is obtained by taking the natural trace (i.e. the Dirichlet
or tangential trace) of some shape function on Ωj,h so that for any m ∈ {1, . . . , N(Γj,h)} there
exists a n ∈ {1, . . . , N(Ωj,h)} such that ϕm,Γj,h

= ϕn,Ωj,h
|Γj,h

.
With the previous notations, the dimension of the multi-trace space M0,h,× will be

M(Σh) := dim M0,h,× =
J∑
j=1

N(Ωj,h). (10.158)

Let us denote by ψm, m ∈ {1, . . . ,M(Σh)} the basis functions of the multi-trace space M0,h,×.
The single-trace space S0,h,× is a sub-space of M0,h,× whose dimension will be denoted N(Σh) :=
dim S0,h,×. Note that by construction, N(Σh) < M(Σh).

Let us denote by ψ̃n, n ∈ {1, . . . , N(Σh)} the basis functions of the single-trace space
S0,h,×. We introduce in addition the (surjective) mapping Φ which associates to each index
m ∈ {1, . . . ,M(Σh)} the (unique) index n := Φ(m) ∈ {1, . . . , N(Σh)} so that the two basis
functions ψm and ψ̃n are associated to the same geometrical element (a node in the acoustic
setting, an edge in the electromagnetic setting).

Matrices For each sub-domain Ωj,h, j ∈ {1, . . . , J}, we introduce the local matrices Aj of size
N(Ωj,h)×N(Ωj,h), such that

(Aj)m,n := aj(ϕn,Ωj,h
, ϕm,Ωj,h

), ∀m,n ∈ {1, . . . , N(Ωj,h)}, (10.159)

where the local sesquilinear form aj is defined in (3.97). The local contributions of the right-hand
side are represented by vectors fj of size N(Ωj,h) defined by

(fj)m := lj(ϕm,Ωj,h
), ∀m ∈ {1, . . . , N(Ωj,h)}, (10.160)

where the local linear form lj is defined in (3.100). We also introduce the local impedance
matrices Tj , of size N(Γj,h)×N(Γj,h), such that

(Tj)m,n := tj0,h,×(ϕn,Γj,h
, ϕm,Γj,h

), ∀m,n ∈ {1, . . . , N(Γj,h)}. (10.161)

It will be convenient also to define boolean local trace matrices Bj of size N(Γj,h)×N(Ωj,h),
which restrict a vector representing a local solution to the vector representing its trace on the
boundary of the local sub-domain. The entries of these matrices are defined by

(Bj)m,n :=

1, if ϕm,Γj,h
= ϕn,Ωj,h

|Γj,h
,

0, otherwise,
∀m ∈ {1, . . . , N(Γj,h)}, n ∈ {1, . . . , N(Ωj,h)}.

(10.162)
Besides, let us define for each j ∈ {1, . . . , J}, the boolean matrix Rj of size N(Γj,h) ×M(Σh),
which restricts a vector representing a global multi-trace to the vector representing the local
trace contribution on the boundary of the local sub-domain Ωj,h. The entries of these matrices
are defined by

(Rj)m,n :=

1, if m = n−
∑
k<j N(Ωk,h),

0, otherwise,
∀m ∈ {1, . . . , N(Γj,h)}, n ∈ {1, . . . ,M(Σh)}.

(10.163)
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Let us also define the matrix Q of size M(Σh) × N(Σh) which constructs a multi-trace vector
from a single-trace vector. The entries of this matrix are defined by

(Q)m,n :=

1, if n = Φ(m),

0, otherwise,
∀m ∈ {1, . . . ,M(Σh)}, n ∈ {1, . . . , N(Σh)}. (10.164)

The local contributions
Qj := RjQ, ∀j ∈ {1, . . . , J}, (10.165)

will also prove useful. Finally, we introduce a diagonal matrix D

D := diag
(

1
mult(n)

)N(Σh)

n=1
. (10.166)

where we defined
mult(n) := card

{
l ∈ {1, . . . ,M(Σh)} | n = Φ(l)

}
, (10.167)

which corresponds to the number of sub-domains to which the degree of freedom indexed by n
is associated to.

One can then define the matrices of the local sub-problems

Kj := Aj − iB∗
jTjBj , ∀j ∈ {1, . . . , J}. (10.168)

From Proposition 10.12, these matrices are invertible.

10.3.1 Scattering operator
Assuming that the above local matrices are assembled for each sub-domain, the evaluation of
the scattering operator S0,h,× takes the form of Algorithm 10.1. Note that everything is parallel,
the global multi-trace vectors x and s respectively input and output of the algorithm can be
distributed on the cluster nodes on a distributed-memory architecture.

Algorithm 10.1 Evaluation of the scattering operator S0,h,×

1: function GlobalScattering(x) . Input size: M(Σh)
2: s← 0 . size: M(Σh)
3: for j = 1, . . . , J do . Parallel loop
4: xj ← Rjx . Local contribution of the multi-trace (size: M(Γj,h))
5: uj ← K−1

j B∗
jTjxj . Local solve (size: N(Ωj,h))

6: sj ← −xj − 2iBjuj . Local scattering (size: N(Γj,h))
7: s← s + R∗

j sj
8: end for
9: return s . Output size: M(Σh)

10: end function

10.3.2 Communication operator
The definition of the communication operator Π0,h,× requires to solve a projection problem.
This projection step in the algorithm is a global coercive problem posed on the skeleton of the
partition. We discuss here, first, the naive assembly of the full operator and then we propose an
efficient algorithm to solve the problem by means of a conjugate gradient algorithm.



10.3. MATRIX AND VECTOR REPRESENTATION 323

Explicit expression of the communication operator From the definitions of the above
matrices, we can introduce the Galerkin matrix of the full transmission operator t0,h,× on M0,h,×.
It is of size M(Σh)×M(Σh) and admits the expression

TΣh
:=

J∑
j=1

R∗
jTjRj , (10.169)

and its restriction on S0,h,×, of size N(Σh)×N(Σh), reads

T̃Σh
:= Q∗TΣh

Q. (10.170)

The orthogonal projection (for the scalar product defined by the transmission operator, see
Definition 10.15) from the global multi-trace space M0,h,× onto the single-trace space S0,h,× can
be computed as follows. For a given vector x of size M(Σh) representing an element of M0,h,×,
the problem to solve is rewritten as: Find y such that

Q∗TΣh
Q y = Q∗TΣh

x, (10.171)

where y is a vector of size N(Σh) representing the projection P0,h,×x in S0,h,×. Recalling
the definition of the communication operator Π0,h,× from (10.68), the matrix representing this
operator can then be written as

2 (Q∗TΣh
Q)−1Q∗TΣh

− Id. (10.172)

A naive implementation of the method consists in assembling the above matrix by computing
the inverse of T̃Σh

using a direct method, which is expensive to compute. In addition, the inverse
of this (sparse, since block-diagonal) matrix is, at first glance, a dense matrix, and even though
the dimension of the domain (the skeleton) is reduced (from d to d − 1), the required storage
may be rather large. Fortunately the evaluation of the above matrix need not to be realized in
practice, as indicated below.

A preconditioned conjugate gradient algorithm A possibility to solve the global prob-
lem (10.171) is to use an iterative method. Since the problem is symmetric positive definite, a
natural choice is to use a conjugate gradient algorithm. At each iteration of the outer domain
decomposition algorithm, the projection problem will therefore be solved iteratively using an
inner CG algorithm. It turns out that it is possible to solve the projection problem using this
method rather efficiently provided we use a preconditioner on the inner CG. The preconditioner
that we propose (and used in our numerical experiments) is

DQ∗T−1QD. (10.173)

Note that we need to compute the inverse of the local transmission operator matrices, but it is
not more expensive than solving the local problems. Besides, the (Cholesky) factorization can
be done once for all. The presence of the diagonal matrix D follows heuristic considerations and
is found to improve the efficiency of the preconditioner.

To solve the projection problem (10.171) with the CG algorithm, the matrix Q∗T−1Q need
not to be (and is not) fully assembled, it is enough to be able to evaluate its action, as indicated
in Algorithm 10.2. Similarly, the matrix-vector product routine associated to the precondi-
tioner (10.173) can be found in Algorithm 10.3. We can then define in Algorithm 10.4 the
routine that evaluates the action of Π0,h,×.
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Algorithm 10.2 Evaluation of Q∗TΣh
Q for the CG algorithm

1: function MatVec(x) . Input size: M(Σh)
2: y← 0 . size: N(Σh)
3: for j = 1, . . . , J do
4: yj ← Q∗

jTjQjx . Parallel
5: y← y + yj . Reduction
6: end for
7: return y . Output size: N(Σh)
8: end function

Algorithm 10.3 Preconditioner for the CG algorithm
1: function MatVec(x) . Input size: M(Σh)
2: y← 0 . size: N(Σh)
3: for j = 1, . . . , J do
4: yj ← DQ∗

jT
−1
j QjDx . Parallel

5: y← y + yj . Reduction
6: end for
7: return y . Output size: N(Σh)
8: end function

Algorithm 10.4 Evaluation of the communication operator Π0,h,×

1: function GlobalExchange(x) . Input size: M(Σh)
2: y← 0 . size: N(Σh)
3: for j = 1, . . . , J do
4: yj ← Q∗

jTjRjx . Parallel
5: y← y + yj . Reduction
6: end for
7: z← Q(Q∗TΣh

Q)−1y . Using preconditioned CG to compute the inverse
8: return 2z− x . Output size: M(Σh)
9: end function
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The key point is that the end result is a projection step routine that is naturally parallel
(with the same level of parallelization as the outer algorithm) and which converges in only a few
iterations. The communications occur at the reduction steps as indicated in the algorithms. We
note that only neighbouring sub-domains (i.e. sub-domains that share at least a vertex in the
acoustic setting, or an edge in the electromagnetic setting) need to communicate, exactly as in the
usual domain decomposition algorithms. As a result, we insists that no all-to-all communication
is required in the domain decomposition algorithm.

10.3.3 Richardson algorithm
The assembly of the local matrices Aj , Tj and the source terms fj can be pre-computed before
starting the iterative algorithm. In addition, the factorizations of Kj (LU) and Tj (Choleksy)
shall also be performed. The last pre-computations possible are provided by Algorithm 10.5
which describes the computation of the lifting of the source terms represented by the local vectors
vj and the computation of the right-hand-side b0 represented by the vector b of the skeleton
problem (10.103). Except for the application of the exchange operator, all the computations are
independent and can be performed in parallel.

Algorithm 10.5 Lifting of the source
1: b← 0 . size: M(Σh)
2: for j = 1, . . . , J do . Parallel loop
3: vj ← K−1

j fj . Local solve (size: N(Ωj,h))
4: b← b− 2i R∗

jBjvj . Skeleton problem right-hand-side b0
5: end for
6: b← GlobalExchange(b) . Application of Π0,h,×

After choosing a relaxation parameter r ∈ (0, 1) and maximum number of iterations nmax ∈
N∗, the iterative Richardson algorithm (10.105) takes the form of Algorithm 10.6 below. The
only place where communications occurs are in the global exchange step. Of course, this basic
algorithm can be completed by the computation of the residual for instance, and the iterations
can be stopped if it is below a certain tolerance for some norm.

Algorithm 10.6 Richardson algorithm
1: x← 0 . Initialization (size: M(Σh))
2: for n = 1, . . . , nmax do
3: s← GlobalScattering(x) . Application of S0,h,× (size: M(Σh))
4: p← GlobalExchange(s) . Application of Π0,h,× (size: M(Σh))
5: x← (1− r)x + rp + rb . Iteration (size: M(Σh))
6: end for

Having found an approximation x of the solution of the skeleton problem (10.103) via the
Richardson algorithm, the global (broken) solution, represented by local vectors uj , can then
be computed thanks to Algorithm 10.7. The local liftings of the source vj have been computed
thanks to Algorithm 10.5.

10.3.4 GMRES algorithm
We can also solve the linear system given by (10.103) iteratively using the Gmres algorithm. To
define the algorithm, it suffices to provide a definition for a right-hand-side and a matrix-vector
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Algorithm 10.7 Evaluation of the global broken solution
1: for j = 1, . . . , J do . Parallel loop
2: wj ← K−1

j B∗
jTjRjx . Local solve (size: N(Ωj,h))

3: uj ← vj + wj . Local solution (size: N(Ωj,h))
4: end for

product routine. The right-hand-side is denoted by b and can be computed (offline) according to
Algorithm 10.5. The matrix-vector product procedure, which takes as input a global multi-trace
vector x, is given in Algorithm 10.8. Notice again here that apart from the computation of the
global exchange step which ensures coupling between subdomains, all operations are local to the
sub-domains. Having found an approximation x of the solution of the skeleton problem (10.103)
via the Gmres algorithm, the global (broken) solution, represented by local vectors uj , can then
be computed thanks to Algorithm 10.7.

Algorithm 10.8 Matrix-vector product for the Gmres algorithm
1: function MatVec(x) . Input size: M(Σh)
2: s← GlobalScattering(x) . Application of S0,h,× (size: M(Σh))
3: p← GlobalExchange(s) . Application of Π0,h,× (size: M(Σh))
4: return x− p . Output size: M(Σh)
5: end function
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In this chapter, we investigate numerically the performance of the method presented in the
previous two chapters on more realistic mesh partitions generated by an automatic graph parti-
tioner.

After some details on the implementation and the test cases in Section 11.1, we provide
some extensive testing both for the acoustic (2D and 3D) and electromagnetic (3D) settings.
Some illustrative convergence history results are provided in Section 11.2. We then investigate
the stability of the convergence with respect to mesh refinement in Section 11.3, which has
been a strong leitmotiv throughout this work, and the numerical results confirm the theoretical
predictions. To study more precisely the robustness of the approach with increasingly more
complex problems, we report results with respect to increasing frequency in Section 11.4 and
for heterogeneous media (only in 2D) in Section 11.5. The scalability of the method is then
investigated in Section 11.6 with strong and weak scaling tests. If the method is not optimal in
the sense that the number of iteration grows with the number of sub-domains, we observe that
the increase remains moderate and is an acceptable result for wave propagation problems.
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We provide in Section 11.7 some results to compare the previous and new strategies in the case
of boundary junction points only (i.e. there are no interior junction points). Note importantly
that in the case where there are no junction points, the two methods are actually identical (with
the caveat that the Lagrange multipliers on the physical boundary, that are introduced in the
second strategy, need to be eliminated, see Section 9.2.3) so there is no interest in performing
a comparison. Besides, in the case of interior junction points, because of our choice of using
a nodal discretization method, there does not exist a natural and straightforward cross-point
treatment (see [71] on this matter) and therefore the comparison of the two strategies is actually
not possible because one is simply not properly defined.

In a last section, we report some numerical results to sustain our claim that the projection step
introduced in the new approach is not prohibitive. In a first part, we show the sparsity pattern
of the newly defined communication operator. This is a visual representation of the actual
communications of data that take place between sub-domains. We observe that far apart sub-
domains are only weakly coupled by the coercive problem posed on the skeleton that is implicitly
defined behind the projection step. In a second part, we report the number of conjugate gradient
iterations that are necessary to actually solve this coercive problem. We see that the solution,
which can take place in parallel, requires only a moderate number of iterations, provided that the
system is preconditioned. This is not the only way to solve the skeleton problem, other methods
could be applied, hopefully even more efficiently but that will be the subject of future works.

Although we do not claim that the approach we advocate is the fastest or the least expensive
strategy in a general configuration, we stress that the overall impression given by our numerical
experiments is a general robustness of the domain decomposition approach when the operator
based on elliptic auxiliary problem is used, and which rests on strong theoretical foundations.
Besides, the treatment of junction points previously described provides a satisfactory solution
for nodal based discretization strategies even if less computationally expensive transmission op-
erators (e.g. local operators) are preferred.

11.1 Implementation details and test cases
The method presented in the previous two chapters was also implemented in the research code
written in Julia that was briefly described in Chapter 7. We gather here some general informa-
tion that apply to the numerical experiments reported in this chapter.

11.1.1 Test cases and mesh partitioning
We use again here the tests cases described in Chapter 7. However the way the partitioning
of the mesh is performed is radically different. One of the big advantages of allowing junction
points is our ability to deal with much more general mesh partitions.

The meshes used in the numerical experiments below are all generated by Gmsh [77] and
partitioned using the autimatic graph partitionner Metis [89] through the Julia API. In some
sense, despite the simplicity of the model problems we consider, the way the partitioning is
performed is somehow closer to realistic applications than the partitions we used up to now. Of
course, the partitioner naturally generates junctions points (and junctions curves in 3D), of both
boundary and interior types, see Figure 11.1 for examples of 2D mesh partitions we consider.

The automatic partitioning aims at constructing equilibrated partitions (comparable number
of cells in all sub-domains) with minimal contact surfaces between sub-domains. These are very
desirable features in view of distributed computing, in particular for load balancing and to min-
imize communications between cores. However, this choice has many important consequences.
First, we emphasize that as a result we do not have any control on the geometry of the partition,
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(a) J = 4. (b) J = 16. (c) J = 128.

Figure 11.1: Examples of 2D mesh partitions.

in particular on the smoothness of the interfaces which is therefore really rough (variations of
the size of the mesh cells and re-entrant corners). Also note that in the partitions, almost all
junctions, points or curves, are shared by exactly three sub-domains. Configurations with four
(or more) sub-domains hardly ever happen. Notice finally that the geometry of the skeleton
changes when the mesh is refined. This happens in our numerical experiments when we increase
the number of points per wavelength Nλ or when we increase the wavenumber κ0 (Nλ being
fixed).

11.1.2 Transmission operators
We report and compare results using transmission operators that were already considered in
Chapter 7 and Chapter 8.

Note that with the new approach it is no longer necessary to define a transmission operator by
interface Γjk := ∂Ωj ∩∂Ωk between two sub-domains Ωj and Ωk. We need only one transmission
operator per sub-domain Ωj defined on its boundary Γj := ∂Ωj . The definition of transmission
operators based on local tangential operators or on integral operators is straightforward and
restricted to the said boundary Γj . However, for the operator based on the resolution of an
elliptic auxiliary problem, the domain of resolution can be limited to one single sub-domain
Ωj (and no longer on the two sub-domains on both sides of the interface). This corresponds
to use αi = 1 and αe = 0 in (8.12). This is obviously more economical and it also means
fewer communications in the pre-processing step for a parallel implementation on a distributed
architecture.

In the acoustic setting, we compare results for four transmission operators

• two local operators:

– the identity operator Id of Després;
– a positive operator based on second order surface differential operators, namely

Id − 1
2κ02 ∆Σ; (11.1)

• two non-local operators that satisfy the theoretical requirements of the convergence analysis
of Chapter 3:
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– the operator, for d ∈ {2, 3},
TBessel

0 = 2
κ0

Wd,κ0 (11.2)

where Wd,κ0 was defined in (5.19) and stems from standard potential theory.
– the operator TAux

0 , defined in (8.12) (with αi = 1 and αe = 0), which is based on the
resolution of auxiliary elliptic problems.

In the electromagnetic setting, we compare results for four transmission operators

• a local operator:

– the identity operator Id of Després;
– a positive operator based on second order surface differential operators, namely

Id − 1
2κ02 curlΣ curlΣ; (11.3)

• two non-local operators that satisfy the theoretical requirements of the convergence analysis
of Chapter 3:

– the operator TBessel
0 = 2K3,κ0 , defined in (5.82), which stems from standard potential

theory.
– the operator TAux

0 , defined in (8.12) (with αi = 1 and αe = 0), which is based on the
resolution of auxiliary elliptic problems.

11.2 Convergence history
Similarly as was done in the numerical results in the free-junction setting, we first report con-
vergence histories for both the Richardson (the fixed point iteration algorithm does no longer
identify with the Jacobi algorithm) and Gmres algorithms.

We consider our acoustic and electromagnetic test cases from Chapter 7. The only difference
being now that the domain is split roughly (using a mesh partitioner) into four quarters in 2D,
see Figure 11.1a; and in eight parts in 3D. The interest of such partitioning is the presence of
pure interior junction points where at least three domains share a common vertex.

The full convergence history in the relative H1 error (7.6) is provided in Figure 11.2 for the
acoustic 2D results and in Figure 11.3 for the acoustic 3D results. The full convergence history
in the relative H(curl) error (7.16) is provided in Figure 11.4 for the Maxwell 3D results.

Note that we recover qualitatively the previous results observed in a two-domain configuration
without junction points. The local operators perform the worst while we notice that the non-local
operators TE0 have the best overall performance, with the non-local operators TB0 somewhere in-
between. Moreover, the Gmres attenuates the discrepancies between the transmission operators
compared to the Richardson algorithm.

11.3 h-uniform geometric convergence
We present now the influence of mesh refinement on the number of iterations to reach a set
tolerance, for the different transmission operators under study and the two iterative algorithms.
The refinement of the mesh is indicated by the number of points per wavelength Nλ which is
inversely proportional to the typical mesh size. We also report the number of GMRES iterations
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Figure 11.2: Helmholtz 2D. An example of convergence history. Fixed parameters κ0 = 5, J = 4,
Nλ = 40.
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Figure 11.3: Helmholtz 3D. An example of convergence history. Fixed parameters κ0 = 5, J = 4,
Nλ = 40.
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Figure 11.4: Maxwell 3D. An example of convergence history. Fixed parameters κ0 = 5, J = 4,
Nλ = 40

that are required to achieve the same error to solve the full (undecomposed) linear system (line
plot labelled ‘No DDM’). Recall that this is to be read as an indication of the conditioning of
the original linear system rather than an actual method of resolution.

It shall be noted that this numerical test does not fall exactly in the theory developed pre-
viously as far as the stability with respect to the mesh parameter is concerned. This is due
to the use of an automatic mesh partitioner, which produces different geometries for different
meshes. The skeleton and therefore the geometry of the interfaces between sub-domains may
change greatly when Nλ changes. Moreover, the transmission interfaces get rougher as the mesh
is refined, with geometrical details of the size of the mesh cells. This situation is different from
the previously reported results of Chapter 7 and Chapter 8 where the underlying interface was
converging to a perfect sphere as the mesh was refined.

Helmholtz 2D We report the number of iterations to reach convergence with respect to mesh
refinement in Figure 11.5 for the Richardson and Gmres algorithms. We see that the iteration
count ‘No DDM’ has a growth which is approximately quadratic with respect to Nλ, illustrating
the deterioration of the matrix conditioning as the mesh is refined. For the local operators the
convergence is not uniform with respect to mesh refinement and a large number of iterations
is required to get to the set tolerance. The growth of the iteration count appears to be quasi
quadratic with respect to Nλ for the Richardson algorithm and quasi linear for the Gmres
algorithm. For small mesh size the convergence may not even be reached within 105 iterations.
In contrast, the non-local operators TBessel

0 and TAux
0 exhibit uniform convergence in all cases,

with a very moderate number of iterations required to reach the set tolerance.

Helmholtz 3D We report the number of iterations to reach convergence with respect to mesh
refinement in Figure 11.6 for the Richardson and Gmres algorithms. Again in this case, we
clearly identify the non-uniformity of the convergence with respect to the number of point per
wavelength for the zeroth order local operator. On the contrary, the non-local operators TBessel

0
and TAux

0 exhibit h-uniform convergence. It shall be noticed however the quasi-uniformity of the
convergence for the second order operator if the Gmres algorithm is used, which is not explained,
while the deterioration is quadratic when the Richardson algorithm is used.
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Figure 11.5: Helmholtz 2D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, J = 4, disk of radius R = 1.
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Figure 11.6: Helmholtz 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, J = 8, sphere of radius R = 1.
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Figure 11.7: Maxwell 3D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, J = 8, sphere of radius R = 1.

Maxwell 3D We report the number of iterations to reach convergence with respect to mesh
refinement in Figure 11.7 for the Richardson and Gmres algorithms. We see for this case the
increased difficulty of the original problem that can be deduced for the large number of Gmres
iterations required to solve the undecomposed problem. For the two local operators the number
of iterations depend strongly on the mesh refinement, while for the non-local operator based on
the resolution of auxiliary problems, the convergence is independent of the mesh size. It seems
however, that the iteration count actually increases when the mesh is refined for the non-local
operator TE0 . This is not fully understood and may be due to the increasing roughness and
geometrical singularities of the transmission interface, although we note that such an effect was
not observed for the non-local operators based on integral formulations in the acoustic setting.

11.4 Influence of the frequency
We now study the dependency of the iteration counts with respect to the wavenumber κ0 when
the Gmres algorithm is used. In addition, we provide results with the Jacobi algorithm only
for the acoustic 2D case. To keep the test simple, we chose to keep a fixed number of points
per wavelength as the frequency changes, so that the size of the linear system increases as the
frequency changes but pollution effect is not taken into account here.

The results for the acoustic setting are given in Figure 11.8 for the two-dimensional case and
in Figure 11.9 for the three-dimensional case. The corresponding results for the electromagnetic
setting can be found in Figure 11.10.

As the wavenumber κ0 increases, the discrete (as well as the continuous) problem gets harder.
This is indicated again by the increase in the iteration count of the GMRES algorithm for the
undecomposed problem (line plot labelled ‘No DDM’). For this case, the growth is linear with
respect to κ0. In contrast, for all the impedance operators under study, we notice a sub-linear
growth of the number of iteration with respect to κ0. The iteration count is especially moderate
for the non-local operators. Notice also that the difference in iteration counts between the integral
operator based on the potential theory and the non-local operator based on the resolution of
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auxiliary problems is diminished as the frequency increases.
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Figure 11.8: Helmholtz 2D. Number of iterations with respect to the wavenumber κ0. Fixed
parameters J = 4, Nλ = 30, disk of radius R = 1.

11.5 Influence of domain heterogeneity
We provide some results in heterogeneous medium for the Helmholtz equation in 2D. The nature
of the test case is slightly different to the previous ones and is motivated by scattering problems
for coated objects. More precisely, we study the evolution of the iteration count with respect to
different contrast in µr and εr respectively. The domain is a circular strip contained between the
circles of radius R = 1 and R = 1.5. The medium characteristics change at R = 1.25:

• for R > 1.25, µr and εr are constant equal to 1 and is intended to represent the vacuum;

• for R < 1.25, either µr or εr take a lower or higher value and is intended to represent the
coating material.

At R = 1.5, the usual first order absorbing boundary condition is applied. Besides, two different
boundary conditions are considered at the object boundary R = 1, either the sound-hard (Dirich-
let) or the sound-soft (Neumann) boundary conditions. As a result, this test has the additional
benefit to highlight that these two boundary conditions can also be taken into account seamlessly
by the new method. The source of the problem comes from an impinging plane wave, as the one
defined previously for the usual test case considered.

The partition is composed of J = 20 sub-domains so that some interfaces are cut by the
discontinuity in the medium and the results are provided for the Gmres algorithm. When no
results are provided, it means that the algorithm did not converge in under 105 iterations.

In Figure 11.11 the frequency in the vacuum is taken to be κ0 = 1 with Nλ = 640 points per
wavelength (the vacuum one). The value of the relative coefficients µr and εr is higher in the
material.

In Figure 11.12 the frequency in the vacuum is taken to be κ0 = 32 with Nλ = 20 points
per wavelength (the vacuum one). The value of the relative coefficients µr and εr is lower in the
material (notice the inverse in the horizontal axis label in the plots).
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Figure 11.9: Helmholtz 3D. Number of iterations with respect to the wavenumber κ0. Fixed
parameters J = 8, Nλ = 20, sphere of radius R = 1.
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Figure 11.10: Maxwell 3D. Number of iterations with respect to the wavenumber κ0. Fixed
parameters J = 8, Nλ = 20, sphere of radius R = 1.
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It is clear that the local operator perform the worse, even though as the strength of the
discontinuity increases, the difference is dimished in the case where the frequency is higher inside
the material. The best results are obtained for the non-local operator based on the resolution of
the auxiliary problems and this is particularly true for the case where the frequency is smaller
inside the material. Notice that in some cases, the algorithm using the non-local operator based
on an integral formulation simply did not converge in under 105 iterations.

11.6 Scalability of the method
We now study the dependency of the method with respect to the number of subdomains J of
the mesh partition for the Helmholtz equation. The numerical experiments presented now are
obtained on the test cases presented in Chapter 7.

11.6.1 Strong scaling
We start with a strong scaling test in 2D, which consists in increasing the number of sub-
domains for a fixed size problem. The results at a rather high frequency (κ0 = 20) are provided
in Figure 11.13a and at a lower frequency (κ0 = 2) in Figure 11.13b. These figures report the
iteration count with respect to J varying from 2 to 1024 subdomains. In both cases the Gmres
algorithm is used.

One can notice a sub-linear increase in the number of iterations to get to a converged solu-
tion for all the transmission operators under study. Notice that for the strong scaling test the
undecomposed linear system is kept the same as J is increased. It follows that at some point
it is no longer useful to split the initial domain into too many pieces and one is better off with
moderate size sub-problems.

Interestingly, we see in Figure 11.13b that the number of iterations levels out for the coercive
DtN operator, in a regime where the size of the sub-problems gets really small compared to the
wavelength of the problem.

11.6.2 Weak scaling
A weak scaling test was also performed, this time with a domain increasing in size as the number
of sub-domains J grows for both the 2D and 3D cases. More precisely, the size of the domain
is chosen to grow like J1/d where d is the dimension of ambiant space, so as to keep a fixed size
(in terms of DOFs) for the local subdomains. In 2D the domain is a disk of radius increasing
from R = 1 to R = 16, and in 3D the domain is a sphere of radius increasing from R = 1 to
R = 3.7. The frequency is set κ0 = 5 and the Gmres algorithm is used. Notice that the number
of points per wavelength is kept constant, despite the fact that the size of the problem increases,
as a result the pollution effect is not taken into account here.

The growth of the number of iteration to reach the set tolerance also appears to scale like
J1/d and the phenomenon seems to apply to all the transmission operators considered. This
non-optimality can be understood in this wave context from the fact that the waves need to
travel longer as the size of the global domain increases.

11.7 Comparison with the previous method
We present below a comparison of the new approach with a communication operator based
on a projection against the more usual method where the exchange is defined localy. This
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(d) Contrast in εr, Dirichlet.

Figure 11.11: Helmholtz 2D. Evolution of the iteration count for heterogeneous medium. Fixed
parameters κ0 = 1, Nλ = 640, J = 20, Gmres algorithm.
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(d) Contrast in εr, Dirichlet.

Figure 11.12: Helmholtz 2D. Evolution of the iteration count for heterogeneous medium. Fixed
parameters κ0 = 32, Nλ = 20, J = 20, Gmres algorithm.
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(a) κ0 = 20, Nλ = 50, R = 1
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(b) κ0 = 2, Nλ = 100, R = 4

Figure 11.13: Helmholtz 2D. Number of iterations with respect to the number of subdomains J
(Strong scaling). Disk of radius R, Gmres algorithm.
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Figure 11.14: Helmholtz 2D. Number of iterations with respect to the number of subdomains J
(Weak scaling). Fixed parameters κ0 = 5, Nλ = 40, disk of increasing radius. Gmres algorithm.
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Figure 11.15: Helmholtz 3D. Number of iterations with respect to the number of subdomains
J (Weak scaling). Fixed parameters κ0 = 2, Nλ = 30, sphere of increasing radius. Gmres
algorithm.
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Figure 11.16: Maxwell 3D. Number of iterations with respect to the number of subdomains
J (Weak scaling). Fixed parameters κ0 = 2, Nλ = 30, sphere of increasing radius. Gmres
algorithm.
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comparison is carried out in the configuration with only boundary cross-points. Indeed, the two
methods are identical in absence of cross-points (with the caveat that the Lagrange multipliers
defined on the physical boundary in the new approach shall be first eliminated), hence not
worth comparing. Besides, in the presence of interior cross-points, the definition of the discrete
transmission conditions is not straightforward and natural for our nodal finite element method.

This comparison is conducted for the 2D Helmholtz equation only. The test case is constructed
from the one described in Chapter 7 and consists in a disk of radius R = 1, split roughly (using
a mesh partitioner) in half, which creates two sub-domains and two junction points with the
physical boundary. Note that in this case there are no degrees of freedom (DOF) that are shared
with more than two subdomains.

It is worth noting that actually, this setting is not covered by our analysis of Chapter 3 of
Chapter 4 due to the presence of boundary junction points. However, the extension of the method
with the local exchange operator is straightforward. The transmission interface is restricted to
the common interface between the two sub-domains, on which the transmission operators are
defined. Note that this interface is not a closed manifold, which complicates the functional
analysis and invalidates the convergence analysis we conducted.

On the other side, the newly proposed method is well-defined, see Chapter 10, and the
(geometric) convergence result stands.

h-uniform geometric convergence We report the number of iterations to reach convergence
with respect to mesh refinement in Tables 11.1 and 11.2 respectively for the Richardson and
Gmres algorithms. In Table 11.2 we also report the number of GMRES iterations that are
required to achieve the same error to solve the full (undecomposed) linear system (column labelled
‘No DDM’). We see that this iteration count has a growth which is approximately quadratic with
respect to Nλ, illustrating the deterioration of the matrix conditioning as the mesh is refined.

For the local operators the convergence is not uniform with respect to mesh refinement and
a large number of iterations is required to get to the set tolerance. For small mesh size the
convergence may not even be reached within 105 iterations. The growth appears to be quasi
linear with respect to Nλ.

For the (elliptic) hypersingular operator TB0 used in conjunction with the local exchange
operator (Π‖), the convergence is not uniform with respect to the mesh size. The number
of iterations slightly increases as the typical mesh size decreases, especially for the Richardson
algorithm. This is a very interesting effect and may be due to the loss of continuity of the integral
operator defined on open curves. These observations are moreover in agreement with the results
reported in [91, Sec. 9.2]. In contrast, when used with the newly introduced communication
operator (Π0,×), the integral operator is defined on closed curves and is a continuous mapping
between the trace spaces — we recover the uniform convergence.

The other non-local operator TE0 exhibit uniform convergence for both strategies, with a very
moderate number of iterations required to reach the set tolerance. In fact, in terms of iteration
count, it outperforms all other operators. It seems that this operator has the correct properties
(in contrast to the other non-local operator which is based on integral formulations) to ensure a
stable convergence of the algorithm.

From those results, we do believe that it should be possible to derive a convergence analysis
and state a geometrical convergence result for a domain decomposition method based on the
usual point-to-point exchange operator even in the presence of boundary junction points. These
numerical results are at least some evidence to support this claim. In contrast, we believe that
there is no hope to extend such a result in the presence of interior junction points. The numerical
results (using a mixed-hybrid finite element formulation) presented at the beginning of Chapter 9
support this idea.
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local (Π‖) projection (Π0,×)
Nλ 0thord 2ndord TBessel

0 TAux
0 0thord 2ndord TBessel

0 TAux
0

20 9845 799 159 52 10121 818 158 61
40 44068 591 154 55 44417 582 154 62
80 · 3260 176 54 · 3256 172 61
160 · 12804 190 54 · 12853 145 61
320 · 50522 272 54 · 50615 169 61
640 · · 387 54 · · 151 61

Table 11.1: Helmholtz 2D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, J = 2, Richardson algorithm.

No DDM local (Π‖) projection (Π0,×)
Nλ ∅ 0thord 2ndord TBessel

0 TAux
0 0thord 2ndord TBessel

0 TAux
0

20 44 16 16 16 15 42 52 22 18
40 227 59 60 33 16 102 76 30 19
80 654 105 73 39 16 163 80 32 19
160 2474 179 533 40 16 279 392 32 19
320 9559 295 1605 48 16 464 · 34 18
640 41888 475 314 47 16 730 359 34 19

Table 11.2: Helmholtz 2D. Number of iterations with respect to the number of mesh points per
wavelength Nλ. Fixed parameters κ0 = 1, J = 2, Gmres algorithm.

No DDM local (Π‖) projection (Π0,×)
κ0 ∅ 0thord 2ndord TBessel

0 TAux
0 0thord 2ndord TBessel

0 TAux
0

1 149 51 53 32 15 81 57 30 19
2 268 91 40 36 18 110 48 35 26
4 811 126 114 41 27 136 123 44 39
8 1563 133 147 46 33 154 154 49 48
16 2926 160 152 54 40 192 157 59 56
32 5846 183 168 59 48 213 189 67 64

Table 11.3: Helmholtz 2D. Number of iterations with respect to the wavenumber κ0. Fixed
parameters J = 2, Nλ = 30, Gmres algorithm.
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Influence of the frequency We report the number of iterations to reach convergence with
respect to the wavenumber κ0 in Table 11.3 for the Gmres algorithm. As the wavenumber κ0
increases, the discrete (as well as the continuous) problem gets harder. This is indicated again
by the increase in the iteration count of the GMRES algorithm for the undecomposed problem
(column ‘No DDM’). For this case, the growth is linear with respect to κ0. In contrast, for all
the impedance operators under study, we notice a sub-linear growth of the number of iteration
with respect to κ0. The increase in the iteration count is especially moderate for the non-local
operators.

Comparison of the two approaches If we compare the two alternatives of using a local
exchange operator Π‖ or a non-local communication operator Π0,× for a fixed impedance op-
erator, we notice for this test case, a small but not significant advantage of the local exchange
operator. This is due to the fact that the method using the non-local communication operator
requires a Lagrange multiplier at each DOF of the boundaries of the subdomains, even on the
boundary on which a physical condition is imposed. This feature is essential for some impedance
operators defined by integral operators that require a closed boundary to be properly defined, as
the hypersingular operator for instance. However, when used in conjunction to a local operator,
this introduces somewhat redundant and unnecessary DOFs, that could be eliminated, hence a
larger linear system and a worse convergence. The only counter-example to this effect is the
hypersingular operator TE0 for the reason that was previously alluded to, namely the loss of con-
tinuity on open curves. For this operator, the performance is better when used in conjunction
with the non-local communication operator Π0,×.

11.8 Exchange operator
The purpose of this last section is to provide some numerical evidence to support our claim that
the projection step that occurs in the definition of the newly introduced communication operator
is not prohibitive.

11.8.1 Sparsity patterns
The actual transmission of information between sub-domains that is induced by the projection-
based communication operator is somehow elusive. We provide below a visual interpretation of
such transmissions of data that we find instructive.

We represent in Figure 11.17 the sparsity patterns (i.e. the absolute value of the non-zero
coefficients) of the communication operator matrices (see (10.172) for the definition of these
matrices) for several transmission operators: the Euclidian inner product Id, the identity 0thorder
and the elliptic hypersingular operator TBessel

0 and for several different partitions J ∈ {2, 3, 4, 8}
of the same mesh.

The utilisation of the Euclidian inner product Id deserves some comments. This is a pure
discrete operator define algebraicaly, which consists in using literaly an identity matrix as a
transmission operator. It is therefore close to the operator which would be obtained for a
lumped mass matrix. We include this operator in this comparison because it possess interesting
properties.

The domain is a disk or radius R = 1, the wavenumber of the problem is κ0 = 1 and the
mesh is constructed to have roughly Nλ = 20 DOFs per wavelength (the size of the problem is
deliberately small to be able to actually represent the matrix of the communication operator).
The number of sub-domains ranges from J = 2 to J = 8 on the same mesh, which as a result
increases the size of the skeleton (hence the number of elements in the exchange operator matrix).
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As expected, the patterns for Id is really sparse, while the ones for 0thorder is denser and the
patterns for TBessel

0 is almost completely dense.

• Id: we can formally decompose the exchange matrix associated to Id in two parts: the
diagonal part whose non-zero elements correspond to degrees of freedom on the physical
boundary (which are not boundary junction points); and the off-diagonal part which is
symmetric and which corresponds to exchange between sub-domains for degrees of freedom
belonging to more than one-subdomain. For two subdomains (J = 2) we can clearly visually
identify the standard point-to-point exchange. For more sub-domains, we notice columns
(and lines) with more than one single non-zero element.

• 0thorder: for the exchange matrix associated to Després transmission conditions, we first
notice the loss of symmetry. The exchange matrix is in fact self-adjoint with respect to
the scalar product induced by the mass matrix. The identity blocks that were present in
the matrix associated to Id and which correspond to degrees of freedom on the physical
boundary are still present. Besides, some of the off-diagonal part remain the same as
for Id, these correspond to interior degrees of freedom on the transmission boundary that
belong to exactly two sub-domains. The main difference with the previous operator comes
from the non-zero columns stemming from cross-points. For two sub-domains, there are
only two boundary cross points which are shared by two sub-domains. For the other
geometrical configurations, there are interior cross points in addition to boundary cross
points. We clearly visualize here that only the cross-points (interior or boundary) have
global contributions on the whole skeleton. This feature is a manifestation of the coupling
of all the sub-domains through the cross-points. Very similar sparsity patterns can be
observed for second order operators.

• TBessel
0 : again, the matrix is not symmetric for the same reason given above. Besides,

one can again locate the degrees of freedom that belong to the physical boundary, by the
diagonal identity blocks. The main difference from the previous operator is the fact that all
the degrees of freedom that belong to a true transmission boundary (hence geometrically
belong to at least two sub-domains) have global contributions on the whole skeleton. What
is perhaps more surprising is the fact that no information is sent from the degrees of freedom
that belong to the physical boundary to the other degrees of freedom, but they do receive
some data from the other ones. Notice that the blocks corresponding to pure interior
sub-domains (such cases occurs for J = 8) are, as a result, fully populated. Very similar
sparsity patterns can be observed for other non-local operators.

We report in Figure 11.18 the sparsity pattern of the exchange matrices for the transmission
operator TAux

0 for two frequencies κ0 = 10 and κ0 = 40. The domain is a disk or radius a = 1
partitioned into J = 10 subdomains, with a mesh constructed in order to have roughly Nλ = 10
(respectively Nλ = 2) DOFs per wavelength for κ0 = 10 (respectively κ0 = 40). Again, the size
of the problem is dramatically small for the frequencies considered (and not realistic) but this is
for the sake of illustration. Notice however that the sizes of the two matrices are comparable.

The purpose of this figure is to show that, even for non-local transmission operators, the
exchange matrix can become sparse as the relative size of the domain increases with respect
to the wavelength of the problem 2π

κ0
(which we recall is taken as the characteristic length of

the dissipative problems associated to the non-local operators). For the case with the largest
frequency (κ0 = 40), some sub-domains (that do not share common degrees of freedom) are
not directly coupled (although they are indirectly by their common neighbours). Obviously
this remark stands only in a discrete setting and the effect is due to finite precision arithmetic.
Finally, we point out that a similar effect can be observed on the exchange matrices associated
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to transmission operator based on local operators such as 0thorder and 2ndorder, namely the
apparent direct de-coupling of far apart sub-domains (which were at first sight coupled by global
contributions stemming from cross points).

11.8.2 Inner conjugate gradient
We investigate numerically (in 2D) in the following our claim that the (preconditionned) inner
CG algorithm that is used in order to solve the projection problem only requires a few iterations
to complete.

We report in Figure 11.19 the evolution of the maximum number of iterations to reach
convergence for the inner CG solver with respect to mesh refinement. The maximum is taken
over all solves during one run of the outer GMRES algorithm. In Figure 11.20 the evolution
with respect to the wavenumber κ0 is investigated. Finally, Figure 11.21 and Figure 11.23 report
respectively the evolution of the maximum number of iterations of inner CG in a strong and
weak scaling tests, namely with respect to increasing number of sub-domains J in the partition.

We observe a clear but moderate increase in the number of required iterations when the mesh
is refined (the discrete size of the problem increases). In contrast, the maximum iteration count
stays fairly constant as the wavenumber of the problem increases. As far as the strong and weak
scaling tests are concerned, we notice that the maximum number of iterations steadily increases
as we increase the number of problems but sort of levels off once we reach about ten sub-domains.

We see that the operator TBessel
0 is consistently more advantageous than the other non-local

operator TAux
0 as less iterations of inner CG are required. As for the local operators, they

generally exhibit lower iteration counts in comparison to non-local operators (except for the
second order operator in the strong and weak scaling tests).

Note that we did not report inner CG iteration counts associated to the transmission operator
Id as the projection can in this case be computed explicitly without requiring the inner algorithm.
As a matter of fact, if one would nevertheless use a CG algorithm to solve the associated problem,
the algorithm would converge to machine precision in exactly one iteration.

Finally, we remark that we observed numerically that the (relative) tolerance of the inner
CG algorithm needs to be smaller than the (relative) tolerance of the outer algorithm in order
to be able to (globally) converge. In all our numerical experiments, we set the tolerance of the
inner algorithm to machine precision (10−14) as a safety measure, but we remark that it should
be possible to save a few inner iterations by using a larger tolerance at the start of the outer
iterations or if the required global precision is not too small. This speculation has however not
been investigated further.
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(a) Id, J = 2. (b) 0thorder, J = 2. (c) TBessel
0 , J = 2.

(d) Id, J = 3. (e) 0thorder, J = 3. (f) TBessel
0 , J = 3.

(g) Id, J = 4. (h) 0thorder, J = 4. (i) TBessel
0 , J = 4.

(j) Id, J = 8. (k) 0thorder, J = 8. (l) TBessel
0 , J = 8.

Figure 11.17: Sparsity pattern of exchange matrices. The darker the element, the bigger. The
saturation scales logarithmically from 10−12 (white) to 1 (black). The red lines delimit sub-
domain contributions. Disk of radius a = 1, κ0 = 1, Nλ = 20
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(a) TAux
0 , J = 10, κ0 = 10, Nλ = 10.

(b) TAux
0 , J = 10, κ0 = 40, Nλ = 2.

Figure 11.18: Sparsity pattern of exchange matrices. The darker the element, the bigger. The
saturation scales logarithmically from 10−12 (white) to 1 (black). The red lines delimit sub-
domains contributions. Disk of radius a = 1.
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Figure 11.19: Helmholtz 2D. Maximum number of iterations of inner CG with respect to the
number of mesh points per wavelength Nλ. Fixed parameters κ0 = 1, J = 4, disk of radius
R = 1.
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Figure 11.20: Helmholtz 2D. Maximum number of iterations of inner CG with respect to the
wavenumber κ0. Fixed parameters J = 4, Nλ = 30, disk of radius R = 1.
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Figure 11.21: Helmholtz 2D. Maximum number of iterations of inner CG with respect to the
number of subdomains J (Strong scaling). Fixed parameters κ0 = 20, Nλ = 50, disk of radius
R = 1.
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Figure 11.22: Helmholtz 2D. Maximum number of iterations of inner CG with respect to the
number of subdomains J (Strong scaling). Fixed parameters κ0 = 2, Nλ = 100, disk of radius
R = 4.
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Figure 11.23: Helmholtz 2D. Maximum number of iterations of inner CG with respect to the
number of subdomains J (Weak scaling). Fixed parameters κ0 = 5, Nλ = 40, disk of increasing
radius as J1/d.
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Conclusion and outlook

Outcomes and main conclusions
A unified formalism for wave propagation problems We proposed a new abstract for-
malism that unifies the analysis of convergence of a wide class of non-overlapping domain de-
composition methods for time-harmonic wave propagation problems. As we have shown, the
formalism encompasses both the acoustic and electromagnetic settings, and should be able to
be extended to elasticity without much difficulties. We proved the geometric convergence of
standard fixed point algorithms, provided non-local transmission operators with simple suitable
properties are used.

Stable convergence The geometric convergence proof follows at the discrete level for standard
discretization methods, and the convergence rate is proved to be stable with the mesh parameter.
This is in contrast with transmission conditions based on local operators for which the discrete
convergence factor tends to 1 as the mesh is refined.

A novel treatment of junction points We have developed, within the abstract formalism,
a new approach that applies to general geometric configurations, including those with junctions,
that is found to generalize the pre-existing approach. The new method can be applied with
various transmission operators, including local ones, provided these transmission operators define
a scalar product on the trace space.

The geometric convergence proof is recovered if suitable non-local transmission operators
are used, and stays stable with respect to the discretization parameter. Besides, the method
remains amenable to straightforward parallelization, including the case of distributed-memory
architectures.

Novel non-local transmission operators We have proposed several non-local transmission
operators suited to the electromagnetic setting which possess explicit integral representations.
Somehow unexpectedly, the straightforward discretization of these operators using the boundary
element method produced disappointing results in regards to the computation cost.

This motivated to investigate alternative routes to design well-suited non-local transmission
operators. A successful alternative strategy is proposed, based on the resolution of elliptic
auxiliary problems in the vicinity of the transmission interfaces. Non-local transmission operators
built from those auxiliary problems possess many advantages:

1. They satisfy the theoretical requirements of the convergence analysis hence imply guar-
anteed h-stable (geometric) convergence on arbitrary partitions, including ones with junc-
tions;
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2. Their definition is generic, with simple adaptations to the acoustic or electromagnetic
settings, including the case of heterogeneous media. Their parameters are easy to choose
and do not require complicated tuning to get efficiency. Besides, they are applicable to
sub-domains of arbitrary geometry, including ones with rough boundaries generated by
automatic graph partitioners, without any additional treatment;

3. Their implementation in practice is straightforward with a computational cost that remains
moderate, for instance using standard finite elements, and does not require sophisticated
technologies.

If we do not claim that they yield the fastest convergence in every situation — and we ac-
knowledge that competitive alternatives exist with regards to this criteria — we believe that the
robustness of the strategy is unmatched, at the expense of a moderate but increased computa-
tional cost.

Outlook and possible extensions
The approach that has been developed to tackle the difficulties generated by the presence of
junctions in general partitions is rather new. We believe that further work in this direction are
required to obtain a mature method. Besides, many interesting questions can be addressed, for
instance: How to couple the strategy with integral equations (FEM-BEM coupling)? How to
cope with non-conformal meshes? Can we improve the convergence with a second level?

Projection onto the single-trace space The computation of an orthogonal projection is
at the heart of the evaluation of the new communication operator and it may be the main
computational bottleneck of the new approach if no particular care is taken. Fortunately, the
favorable nature of the problem should make it easy to tackle and we have already presented a first
possible route based on a preconditioned conjugate gradient algorithm that proved successful.
However, some other different approaches can be proposed, which could be even more efficient.

Distributed parallelism Our research code was initially built to test out ideas and is un-
fortunately not (yet) able to run on a distributed memory machine. Yet, leveraging such dis-
tributed architecture is actually one of the main purpose of domain decomposition. This is why
a distributed-memory implementation of the method able to run more industrial-like test cases
to further test the approach would be a nice addition to this work.
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Titre : Méthodes de décomposition de domaine sans recouvrement avec opérateurs de transmission non-locaux
pour des problèmes de propagation d’ondes harmoniques

Mots clés : Méthodes de décomposition de domaine, ondes harmoniques, points de jonction.

Résumé : Les premiers travaux de B. Després, puis M.
Gander, F. Magoules et F. Nataf ont montré qu’il est
nécessaire, du moins dans le contexte des équations
d’ondes, d’utiliser des conditions de transmission de
type impédante pour le couplage des sous-domaines
afin d’obtenir la convergence des méthodes de décom-
position de domaine sans-recouvrement. L’approche
standard considérée dans la littérature utilise un opé-
rateur d’impédance local permettant une convergence
algébrique dans les meilleurs cas. Des travaux ulté-
rieurs dus à F. Collino, S. Ghanemi et P. Joly puis F.
Collino, P. Joly et M. Lecouvez ont permis de montrer
que l’utilisation d’opérateurs d’impédance non-locaux,
comme par exemple des opérateurs intégraux avec des
noyaux singuliers adaptés, peut permettre une conver-
gence géométrique des méthodes de décomposition de
domaine.
Cette thèse prolonge ces travaux (qui ont principale-
ment concerné l’équation de Helmholtz scalaire) pour
dans un premier temps étendre l’analyse au cas de
la propagation d’ondes électromagnétiques. De plus,
l’analyse numérique de la méthode est pour la pre-
mière fois effectuée, démontrant la stabilité du taux de
convergence par rapport au paramètre de discrétisa-

tion, et ainsi la robustesse de l’approche. Plusieurs opé-
rateurs intégraux sont ensuite proposés comme opé-
rateurs de transmission pour les équations de Max-
well dans le même esprit que ceux construits pour le
cas de l’acoustique. Une alternative aux opérateurs in-
tégraux, fondée sur la résolution de problèmes auxi-
liaires elliptiques, est par ailleurs proposée et étudiée.
De nombreuses expériences numériques ont été me-
nées, illustrant le haut potentiel de cette nouvelle ap-
proche. À partir de récents travaux de X. Claeys, la
dernière partie de ce travail consiste à exploiter le
formalisme multi-trace afin d’étendre l’analyse au cas
des partitions comportant des points de jonction, pro-
blème ayant attiré beaucoup d’attention récemment.
Cette nouvelle approche met en jeu un nouvel opé-
rateur permettant la communication d’informations
entre sous-domaines, qui a vocation à remplacer l’opé-
rateur point-à-point classique. Une preuve de conver-
gence géométrique de l’algorithme itératif associé, éga-
lement uniforme par rapport au paramètre de discréti-
sation, est disponible et l’on montre que l’on retrouve
l’algorithme classique en l’absence de point de jonc-
tion.

Title : Non overlapping domain decomposition methods with non-local transmission operators for harmonic
wave propagation problems

Keywords : Domain decomposition methods, harmonic waves, junction points.

Abstract : The pioneering work of B. Després then M.
Gander, F. Magoules and F. Nataf have shown that
it is mandatory, at least in the context of wave equa-
tions, to use impedance type transmission conditions in
the coupling of subdomains in order to obtain conver-
gence of non-overlapping domain decomposition me-
thods (DDM). In the standard approach considered in
the literature, the impedance operator involved in the
transmission conditions is local and leads to algebraic
convergence of the DDM in the best cases. In later
works, F. Collino, S. Ghanemi and P. Joly then F.
Collino, P. Joly and M. Lecouvez have observed that
using non local impedance operators such as integral
operators with suitable singular kernels could lead to
a geometric convergence of the DDM.
This thesis extends these works (that mainly concer-
ned the scalar Helmholtz equation) with the extension
of the analysis to electromagnetic wave propagation.
Besides, the numerical analysis of the method is per-
formed for the first time, proving the stability of the
convergence rate with respect to the discretization pa-

rameter, hence the robustness of the approach. Several
integral operators are then proposed as transmission
operators for Maxwell equations in the spirit of those
constructed for the acoustic setting. An alternative to
integral operators, based on the resolution of elliptic
auxiliary problems, is also advocated and analyzed.
Extensive numerical results are conducted, illustrating
the high potential of the new approach. Based on a
recent work by X. Claeys, the last part of this work
consists in exploiting the multi-trace formalism to ex-
tend the convergence analysis to the case of partitions
with junction points, which is a difficult problem that
attracted a lot of attention recently. The new approach
relies on a new operator that communicates informa-
tion between sub-domains, which replaces the classical
point-to-point exchange operator. A proof of geometri-
cal convergence of the associated iterative algorithm,
again uniform with respect to the discretization para-
meter, is available and we show that one recovers the
standard algorithm in the absence of junction points.
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