
HAL Id: tel-03118919
https://theses.hal.science/tel-03118919

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transductions: resources and characterizations
Olivier Gauwin

To cite this version:
Olivier Gauwin. Transductions: resources and characterizations. Formal Languages and Automata
Theory [cs.FL]. Université de Bordeaux, 2020. �tel-03118919�

https://theses.hal.science/tel-03118919
https://hal.archives-ouvertes.fr

Université de Bordeaux
Laboratoire Bordelais de Recherche en Informatique

Transductions:

resources and characterizations

Mémoire d’habilitation à diriger des recherches

par

Olivier Gauwin

soutenue le 12 octobre 2020 devant le jury composé de :

Rapporteurs
Hendrik Jan Hoogeboom Universitair docent, Leiden University / LIACS
Sebastian Maneth Heisenberg Professor, Universität Bremen
Jean-Marc Talbot Professeur, Aix Marseille Université / LIF

Examinateurs
Bruno Courcelle Professeur émérite, Université de Bordeaux / LaBRI
Sylvain Lombardy Professeur, Université de Bordeaux / LaBRI
Sylvain Salvati Professeur, Université de Lille / CRIStAL

2

Abstract

Transducers define word-to-word transformations by extending automata with outputs. We
study some decision problems related to transducers.

First, we characterize some resources required by any functional transducer implementing a
given transformation. We begin with two algorithms determining whether a two-way functional
transducer has an equivalent one-way transducer, and synthesizing it in this case. If the trans-
ducer is not one-way definable, another algorithm permits to decide whether it can perform
its reversals only at the borders of the input word (sweeping transducers), and determine the
minimal number of passes over the input. A side result is the minimization of the number of
registers of a particular class of streaming string transducers, a model of one-way transducers
with registers. We also study the memory required when evaluating visibly pushdown transdu-
cers, in particular whether the stack is required, and if so, whether the memory can be bounded
by the degree of nesting of the input word.

Second, we study the algebraic properties of functional transductions. A central result is
an algorithm that takes a one-way transducer (or a bimachine) as input, and decides whether
it belongs to a given decidable congruence class (for instance, aperiodic congruences). A trans-
fer theorem between algebra and logic permits to relate congruence classes with logics. For
instance, aperiodic congruences characterize exactly transductions definable in first-order logic.
We extend this result to infinite words for the special case of aperiodic transductions. As a con-
sequence, it is decidable whether a rational transduction is first-order definable, for the cases of
finite and infinite words.

3

4

Foreword

The present document is the manuscript prepared in view of obtaining the “habilitation à diriger
des recherches”, the French habilitation. It contains a unified presentation of my work related
to transducers between 2010 and 2020. This period mostly corresponds to my current position
at the University of Bordeaux, at the LaBRI, since 2011. Its content results from three main
lines of research, and groups of co-authors:

� the study of visibly pushdown transducers exposed in Section 4.2 is a joint work with
Emmanuel Filiot, Pierre-Alain Reynier and Frédéric Servais.

� the analysis of two-way transducers, presented in Chapter 3 and Section 4.1, was the
subject of the PhD thesis of Félix Baschenis, that I co-supervised with Anca Muscholl
and Gabriele Puppis.

� the algebraic characterization of rational transductions, related in Chapter 5, has been
elaborated during the PhD thesis of Nathan Lhote, that I co-supervised with Emmanuel
Filiot, with the active participation of Anca Muscholl.

The corresponding publications are listed in Section 1.3. During this period, I also worked
on other unrelated topics. I chose not to include them, and opted for a more homogeneous
presentation.

5

6

Contents

1 Introduction 9

1.1 Beauty and the Beast . 9

1.2 Hands-on . 11

1.3 Outline . 12

2 Transducer models 15

2.1 Finite state transducers . 19

2.1.1 Words, languages and relations . 19

2.1.2 Finite state automata . 20

2.1.3 Finite state transducers, and relation classes 22

2.1.4 Definability problems . 23

2.2 Logics for transformations . 26

2.2.1 Logics defining word languages . 26

2.2.2 Logics defining word-to-word transformations 28

2.2.3 Relations with finite state transducers . 28

2.3 Streaming string transducers . 30

2.3.1 Definition . 30

2.3.2 Links with other models . 31

3 Two-way to one-way transducers 35

3.1 Two-way to one-way automata . 37

3.1.1 Crossing sequences: the Shepherdson approach 37

3.1.2 Z-motion elimination: the Rabin-Scott approach 38

3.1.3 Other known constructions . 40

3.2 From automata to transducers . 41

3.2.1 Properties of two-way transducers: primer 41

3.2.2 Lower bounds for one-way definability . 44

3.3 Rabin-Scott approach . 44

3.3.1 Decomposing into elementary z-motions 45

3.3.2 Decision algorithm . 46

3.3.3 Dealing with elementary z-motions . 47

3.4 Shepherdson approach . 49

3.4.1 Results and road map . 49

3.4.2 Sweeping case . 50

3.4.3 General case . 52

7

4 Resource minimization 59
4.1 Resources for regular functions . 61

4.1.1 k-sweeping definability . 61
4.1.2 Sweeping-definability (and bounded-reversal) 65
4.1.3 Register minimization of concatenation-free SST 66

4.2 Resources of pushdown transducers . 68
4.2.1 Pushdown transducers, and streaming setting 68
4.2.2 Bounded memory . 70
4.2.3 An online algorithm for VPT evaluation 71
4.2.4 Height-bounded memory . 72
4.2.5 Online-bounded memory . 74

5 Algebraic characterizations 77
5.1 Rational functions over finite words . 80

5.1.1 Congruences for transductions . 80
5.1.2 Sequential functions . 82
5.1.3 Bimachines . 84
5.1.4 Rational functions . 88
5.1.5 The aperiodic case . 89
5.1.6 Logical transducers . 90

5.2 Rational functions over infinite words . 92
5.2.1 Infinite words and rational functions . 93
5.2.2 Sequential and quasi-sequential transductions 94
5.2.3 Rational transductions . 96
5.2.4 Canonical bimachine . 98
5.2.5 First-order definability . 99

6 Conclusion and Perspectives 101
6.1 Analyzing two-way transducers . 101
6.2 Pushdown and Trees . 106
6.3 Algebra and logics . 108

Open problems 110

Index 112

Bibliography 114

8

Chapter 1

Introduction

In the last few years, I gradually realized that every research topic finds someone interested in.
This sounds naive, but it is somehow reassuring, because for every awkward question that we
leave aside, there may be someone finding it not so awkward. . .

In this introduction, I would like to highlight where the beauty lies around the results
exposed in this manuscript, from my point of view.

1.1 Beauty and the Beast

Beauty in computer science. During my studies, three concepts were particularly appealing
to me in computer science.

The first one was the lambda calculus, probably because it mixed a small abstract language
for writing functional programs, and a simple way to “run” them, on paper. The second one
came a few years later, when I learned about Turing machines, and especially the concept
of universal Turing machine, explaining for instance virtual machines. The third one is the
connection between logic and automata,i.e. how to relate a simple description (through a
logical formula) and a way to check it (an automaton), automatically. To me, it was a kind of
program synthesis, a very powerful construction.

These three points all relate a “mechanical” aspect of computers and programs, to a “des-
criptive” aspect, in an automatic way. This is, I think, quite specific to computer science:
usually, this is typically a human task to implement a description (specification) into a concrete
realization (mechanism).

Beauty in transducers. The results presented in this manuscript concern transducers, that
is, finite-state automata enriched with an output word on each transition, and thus associa-
ting output words to an input word. They constitute a way to implement a word-to-word
transformation, that we name transduction, i.e. the relation defined by the transducer.

One pleasant aspect of transductions comes from their descriptions through logic, alge-
bra, and machines (here, transducers), and equivalences between these models. This is well
known for regular languages, that admit equivalent descriptions through monadic second-order
logic, finite syntactic congruences or monoids (an algebraic characterization), and finite-state
automata [Büc60, Tra61, Myh57, Ner63, RS59], among others. For transducers, this kind of
correspondences appeared progressively. For instance, the class of rational functions is captured
by one-way functional transducers [Büc60, Sch61, EM65, GR66, Niv68, AHU69, Eil74, Cho77,
Ber79], by order-preserving monadic second-order transducers [EH01, CE12, Boj14, Fil15], and
by finite left/right syntactic congruences (or bimachines) [RS91]. This will be explained in
more details in Chapter 2 and Chapter 5. Beyond these correspondences, rational functions

9

(and relations) enjoy many other nice properties and representations, as exposed for instance
in the textbooks [Ber79, Sak09, CE12].

When I started to work on transducers, I discovered other nice constructions. One of them is
described by Hopcroft and Ullman in [HU67], and consists in simulating a deterministic one-way
automaton while running a deterministic two-way transducer. In this construction, the two-way
transducer is capable of leaving a position to the left, perform leftward moves, and then come
back to the initial position. This seems impossible at first sight, and is made possible by the
deterministic nature of the simulated one-way automaton. This construction has been recently
improved by using reversible transducers [DFJL17]. Other important results on transducers
appeared recently, as for instance the decidability of equivalence of deterministic top-down
tree-to-string transducers [SMK18], or the class of polyregular functions [Boj18, BKL19].

Transducers: the Beast. Transducers (and, generally, transformations) introduce addi-
tional challenges. At the “machine” level, a basic tool in proofs involving automata is to pump
automata runs. But transducers have outputs on their transitions, and this must be taken into
account when pumping. This has several consequences. For instance the equivalence problem
for one-way transducers is undecidable [FR68, Gri68, Iba78], and some transducers cannot be
determinized.

We will also study two-way transducers. Allowing reversals in runs is problematic, even
for automata. For instance, it is still open whether two-way non-deterministic automata are
exponentially more succinct than deterministic two-way automata [SS78]. On transducers,
deciding whether a two-way functional transducer has an equivalent one-way transducer was
open until 2013, when it was proved to be decidable [FGRS13].

At the “algebraic” level, languages are characterized by syntactic congruences (for instance).
For transformations, the output must also be taken into account. Schützenberger proposed the
notion of bimachine [Sch61] for rational transductions (the class defined by one-way functional
transducers), and a notion of canonical bimachine, but this one is not minimal, and thus does not
convey all algebraic properties of the transduction [RS91]. For two-way functional transducers,
no algebraic characterization has been proposed yet.

Beauty and the Beast in our contributions. The results exposed in this manuscript are
mainly decision procedures on transducers, that is, algorithms indicating whether a transducer
verifies a given property, as for instance being one-way definable, being first-order definable,
etc. At this point of the manuscript, it is difficult to exhibit where the beauty lies in these
results, but let me try for one result.

A central result in Chapter 3 is an algorithm deciding whether a two-way transducer has
an equivalent one-way transducer. As we have seen, analyzing a two-way run is challenging
because pumping such a run mixes some parts of the run. We managed to isolate this problem
by considering sweeping transducers, that only revert their heads at the borders of the input
word, as a first goal. This way, we define inversions in a run and show that a simple condition on
inversions exactly characterizes sweeping transducers having an equivalent one-way transducer.
Another nice part of the proof, is the notion of components of a loop, that explains how the
parts of a run are mixed when a loop is pumped. This is used to adapt the proof to (general)
two-way transducers, from the proof on sweeping transducers. These two concepts (inversions
and components), and this intermediate stage of sweeping transducers, were circumvented in
our first attempt [FGRS13] and now yield a cleaner proof, with a more computationally efficient
decision procedure.

10

1.2 Hands-on

Beyond the beauty of formal language theory, another source of motivation for me is the link
between a practical issue and its theoretical aspects.

How much input information is required? Back to my PhD, a first instance of such
a link was earliest query answering, that is, finding the first position, when reading an XML
document, from where the query can be answered. This is required when one wants to use
the minimal amount of memory, but it involves a decision procedure, that we managed to infer
using an “automaton” approach [GNT09].

In the present manuscript, we will see how to decide whether a two-way functional transducer
is definable by a one-way transducer. This looks like a “theoretical” question, but it can also be
seen as a way to measure how complex a transformation is: “Do I need to go back in order to
perform this transformation with finite memory?”. We will see several variants of this question,
like “Can I perform this transformation with finite memory by reversing the head only at the
borders? And how many reversals do I need in this case? Is there a global bound on the number
of reversals required for performing this transformation?”. Our algorithms will also synthesize
transducers, for instance a one-way transducer from a two-way transducer, whenever it exists.

How much memory is required? In automata theory, a classical question is: how many
states are needed by any deterministic automaton recognizing a given language? The answer
was given by Myhill and Nerode [Myh57, Ner63] and the minimal automaton obtained is defined
by the right syntactic congruence of the language.

When moving to transducers, a first question is whether there exists an evaluation algorithm
using bounded memory. This is the case iff there exists a deterministic one-way transducer
implementing this transformation, as shown in Chapter 4. Hence, given a functional one-way
transducer, one may want to decide whether there exists an equivalent deterministic one. An
algorithm was proposed in [Cho77] and improved in [BC02]. Starting from a two-way functional
transducer, one can combine the “one-way definability” procedure with that of [Cho77, BC02],
in order to decide whether it can be evaluated with bounded memory.

Now, if we have a deterministic one-way transducer, a minimization procedure exists, similar
to that of regular languages [Cho03]. In the non-deterministic (functional) case, we will see in
Chapter 5 that we need bimachines as deterministic devices, and we can find minimal bimachines
(they are not unique anymore, though).

There are other ways to minimize transducers. One of them is the minimization of the
number of registers of a streaming string transducer, a model of one-way transducer equipped
with registers, and as expressive as two-way transducers [AC10]. We do not show it in full
generality (which is still an open question), but in the case where registers contents cannot
be concatenated (they can only add a constant word to their left and/or their right, not the
content of another register).

We also study visibly pushdown transducers. These are transducers reading words over a
nested alphabet, i.e. letters are either opening or closing. On opening letters, a visibly pushdown
transducer can push a symbol on its stack, and pop on closing letters. Opening and closing
letters mimic opening and closing tags of XML documents. For these transducers, we study
whether the transduction they define can be evaluated with bounded memory, or with a memory
bounded by the height (i.e. degree of nesting) of the input word globally, or at any time point.

11

1.3 Outline

The manuscript is organized as follows (we also list here the related publications).

Chapter 2 introduces the main devices that we will use throughout the manuscript: finite-
state transducers, monadic second-order transducers, and streaming string transducers. It
enumerates some variants of these devices, the corresponding transduction classes, and the
relations between them.

Chapter 3 focuses on the “one-way definability” problem: given a functional two-way trans-
ducer, does there exist an equivalent one-way transducer? We first study the existing proofs
showing that two-way automata can always be translated into one-way automata. Then, we
exhibit some properties of two-way transducers, especially the combinatorics that will be used
in subsequent proofs, and also lower bounds for one-way definability.

Then, we describe two decision procedures for the one-way definability of transducers. The
first one follows the Rabin-Scott proof for automata [RS59], is non-elementary, and has been
presented at LICS’13 [FGRS13]. The second one is elementary and follows Shepherdson’s proof
for automata [She59]. For this latter proof, we proceed in two steps. First, we study the
case of sweeping transducers, as exposed at FSTTCS’15 [BGMP15]. Second, we lift this proof
to arbitrary functional two-way transducers (as presented at LICS’17 [BGMP17]). The whole
proof, in two steps, has been published in the LMCS journal in 2018 [BGMP18].

Chapter 4 is devoted to the resource analysis for evaluating transductions. The first part
tackles the problem of whether a two-way functional transducer has an equivalent sweeping
transducer, and if so, determines how many sweeps are needed. It also addresses the mini-
mization of concatenation-free streaming string transducers, by providing back-and-forth trans-
lations between this model and sweeping transducers. These results have been presented at
ICALP’16 [BGMP16].

The second part focuses on visibly pushdown transducers, in particular how much memory
is needed to evaluate them, compared to the height of the input word (its nesting depth).
Three classes are exhibited: bounded memory (uniform bound on the memory needed), height-
bounded memory (the bound now depends on the height of the input word), and online-bounded
memory (at each input position, the memory is bounded by the current height of the input).
This result has been presented at FSTTCS’11 [FGRS11]. A full version appeared in LMCS in
2019 [FGRS19].

Chapter 5 is the algebraic part of the manuscript. We analyze the algebraic properties of
transductions through some congruences. Our aim is to decide whether a given transduction
is inside a class of congruences (for instance, aperiodic congruences). For functions defined by
deterministic one-way transducers, a minimization procedure [Cho03] exists and preserves alge-
braic properties. When moving to rational functions (defined by non-deterministic functional
one-way transducers), we use bimachines to implement the transductions, and especially study
the canonical ones, and the minimal ones. We devise an decision procedure for deciding whether
a rational function, given as a bimachine, belongs to a (decidable) congruence class. This pro-
cedure has been presented at LICS’16 [FGL16b]. For the special case of aperiodic congruences,
we exhibit a more direct and more efficient algorithm, as presented at FSTTCS’16 [FGL16a].
We also analyze the links with logics, and establish a transfer theorem. In particular, rational
functions with aperiodic congruences are those definable in first-order logic. All these results
are gathered in an article published in LMCS, in 2019 [FGL19].

12

In the second part of the chapter, we describe how these results can be lifted to the case of
infinite words. The decision procedure we obtain is more specific. It only concerns the class of
aperiodic congruences, not any decidable congruence class. The case of infinite words requires
additional developments, for instance we introduce an intermediate class of transductions (quasi-
sequential transductions), and also two new congruences. This work has been presented at
FSTTCS’18 [FGLM18].

Chapter 6 concludes this manuscript. We briefly list the results presented in this manuscript,
and propose some perspectives related to them in more details.

13

14

Chapter 2

Transducer models

Contents

2.1 Finite state transducers . 19

2.1.1 Words, languages and relations . 19

2.1.2 Finite state automata . 20

2.1.3 Finite state transducers, and relation classes 22

2.1.4 Definability problems . 23

2.2 Logics for transformations . 26

2.2.1 Logics defining word languages . 26

2.2.2 Logics defining word-to-word transformations 28

2.2.3 Relations with finite state transducers 28

2.3 Streaming string transducers . 30

2.3.1 Definition . 30

2.3.2 Links with other models . 31

This chapter introduces the main devices used in this manuscript for defining transformations
from words to words. We also refer the reader to the recent surveys [FR16, MP19b] on this
topic. We postpone the algebraic view to Chapter 5, and focus here on the automata and logic
views.

Regular languages machinery. The devices that we will use for transformations are all
derived from language acceptors (logics or automata), and inherit some of their properties.

Two-way automata have been introduced by Rabin and Scott in the seminal paper [RS59].
In Section 3.1, we list various proofs showing that they are not more expressive than one-way
automata, as first proved in this seminal paper, and also by Shepherdson in [She59]. Monadic
second-order logic (MSO) also originates from the 1950s, and the first direct link between MSO
and one-way automata has been quickly identified [Büc60, Tra61]. These results are among the
numerous characterizations of this robust class of languages, the regular languages.

Regular languages enjoy many characterizations and properties, and they probably consti-
tute the most studied class of formal languages. However, from the “machine” point of view,
some questions remain open. This is particularly true concerning two-way automata1. For
instance, it is still open whether non-deterministic two-way automata are exponentially more
succinct than deterministic two-way automata [SS78]2.

1This is part of the minicomplexity framework.
2This is the case for sweeping automata [Sip80], for instance.

15

Fin
ite

st
at

e

tr
an

sd
uc

er
s

M
on

ad
ic

se
co

nd
-o

rd
er

tr
an

sd
uc

er
s
(M

SO
T
)

St
re

am
in

g
st
rin

g

tr
an

sd
uc

er
s
(S

ST
)

deterministic
one-way

transducer

1-register
right-app.

SST

(same object)

functional
one-way

transducer

order-
preserving

MSOT

right-app.
functional

NSST
[Fil15]

(cf page 32)

functional
sweeping

transducer

k-phase
MSOT

concat.-free
functional

NSST
Th. 2.5

Sec. 4.1.3

deterministic
two-way

transducer
MSOT SST

[EH01] [AC10]

functional
two-way

transducer

NMSOT
functions

functional
NSST

[AD11]

two-way
transducer

NMSOT NSST
[AD11]

[Cho77, BC02]

Th. 2.2

[EH01, DFJL17] [EH01] [AD11]

[CK87] [AD11]

Th. 2.3

Th. 2.2

regular
functions

rational
functions

sequential
functions

Colored boxes indicate classes of transformations. Solid lines relate models inside classes, while dashed

arrows indicate definability procedures between classes. Contributions appear in purple.

Figure 2.1: Models of word-to-word transformations.

Three transformation models. In this manuscript, we focus on three models of word-to-
word transducers. These models (and their variants) are depicted in Figure 2.1, by column:

� finite-state transducers are the “transducer” extension of automata. One-way transducers
started to be studied during the 60s [EM65, AHU69, AU70]. One of the first papers on
two-way transducers is [EY71], but Shepherdson already noticed that two-way transducers
are strictly more expressive than one-way transducers in [She59, Note 4].

� MSO transducers (MSOTs) have been introduced by Courcelle [Cou94, CE12]. They rely
on MSO formulas to relate an input structure (here, a word) to an output structure.

� streaming string transducers (SSTs) are one-way transducers equipped with registers
[AC10]. These registers contain words (over the output alphabet) that can be combined

16

and extended when firing transitions, to form the final output word.

Classes of transformations. Each of these models comes with a number of variants, ac-
cording to the features we allow in the model: functionality, determinism, reversals, etc. This
chapter lists the corresponding classes, the relations between them, and the related definability
problems. These are also illustrated in Figure 2.1. Let us give a first overview on the main
classes, starting from the less expressive:

� sequential functions are defined by one-way deterministic finite-state transducers (also
called generalized sequential machines, GSMs). These machines can also be viewed as
SSTs with only one register, and always concatenating to the right in this register (this
property is named right-appending). There is no known restriction on MSOT capturing
this class.

� rational functions are defined by functional one-way finite-state transducers, hence al-
lowing non-determinism. They are also captured by functional right-appending non-
deterministic SSTs, and by MSOTs with the order-preserving restriction, stating that
every move in the output structure is rightwards.

� sweeping functions define an intermediate class between one-way transducers (rational
functions) and two-way transducers (regular functions, hereafter), as they are recognized
by two-way transducers allowing reversals only at the borders of the input word. This
class plays an important role in some of our proofs: our “one-way definability test” is
first explained on sweeping transducers, before being adapted to any two-way transducer.
Moreover, we provide characterizations in term of MSOT restriction, and in terms of
SSTs. It also coincides with the class of functions that can be implemented by a two-way
transducer with a uniform bound on the number of reversals of its runs. A characterization
by regular function expressions has also been exhibited in [BR18].

� regular functions are characterized by deterministic two-way transducers, MSOTs and
SSTs, hence their name. They are also captured by their “functional non-deterministic”
versions: functional two-way transducers, functional NMSOTs, and functional NSSTs
(defined hereafter).

� beyond functions, these devices can be used to recognize relations. The extensions of two-
way transducers and SSTs to the non-deterministic case are natural. For MSOTs, this
corresponds to adding second-order parameters, that are fixed before being interpreted on
the input structure. This time, the expressiveness does not coincide: two-way transducers
form one class of relations, and NMSOTs and NSSTs a second class, and these two classes
are incomparable.

Other devices used in this manuscript. In Chapter 5, we will introduce another device
capturing rational functions, namely bimachines [Sch61]. These are similar to one-way deter-
ministic transducers with a (co-deterministic) look-ahead. Moreover, variants of transducers
using a stack will be introduced and studied in Section 4.2.

Other means to define transformations. There are numerous ways to define transfor-
mations, and enumerating them would require a whole thesis. Let us mention some of them,
related to the questions addressed in this manuscript.

Rewriting systems provide an alternative way of defining a transformation. They usually
start from a word, and apply rewriting rules to obtain new words. Close links between two-way

17

transducers, tree transducers, some rewriting systems and some grammars have been estab-
lished [Raj72, ERS80], and also with pushdown automata [EY71]. Regular function expressions
[AFR14, DGK18, BR18] provide a “regular expression” mechanism for defining word-to-word
functions, and capture exactly regular functions.

Of course many other questions arise when trying to extend the kind of structures under
consideration. For instance, streaming string transducers have been extended to operate on infi-
nite strings [AFT12], with similar logics-automata connections, on trees [AD17] and quantitative
languages [ADD+13, AFM+20].

Transducers are not the only possible extension of automata for defining relations on words.
One can also recognize pairs of words using an automaton with two tapes: one for the input
word and the other for the output word [Ber79, HK91, PS99]. Carton [Car12] studied the
model where the heads of the two tapes are two-way, but move synchronously. The first tape
is read-only and the second one write-only, with the possibility to write a word (not only a
letter) in the current cell of the output tape. It is proved that, in the non-deterministic case,
this model coincides with rational relations, while, in the deterministic case, it coincides to
rational functions (this is more surprising). In other terms, there always exists an equivalent
one-way transducer. Another model consists in having two two-way read-only tapes that are not
synchronous anymore. When firing a transition, a letter is read on each tape, and the chosen
transition indicates the head direction for each head. This model is introduced and studied in
[CES17], together with its alternating extension.

In [RV19], Reynier and Villevalois extend one-way transducers by allowing, on each transi-
tion, two output words. One is prepended to the current output, and the other one appended.
This defines an intermediate class, between rational and regular functions (and relations).

Other questions related to transformations. With each model of machine comes the
question of minimization, i.e. finding an equivalent machine of minimal size. We already
mentioned that these questions are still open for two-way machines (minicomplexity). We will
mention this question for rational functions in Chapter 5.

Each class also defines some specific decision problems, typically deciding the equivalence
of the transformations defined by two devices of that class. In this chapter, we will cite the
related results when defining the classes, even though this problem is usually independent from
the definability of one class in another.

Another point of view is that of the output language: Each device can be considered as
a machine only producing output words, and thus each class of device comes with a class of
output languages. For instance a deterministic two-way transducer can produce the language
{anbncn | n ≥ 0}, which is not context-free, but some context-free languages cannot be produced
by any deterministic two-way transducer [Eng81]3. The output languages of deterministic two-
way transducers are known to be exactly those of matrix grammars of finite index [Raj72], and
also to that of EDT0L of finite index [Lat77]. Some iteration lemmas for this class of languages
have been proved [Roz85, Roz87, Smi14], but are not sufficient to decide one-way definability,
for instance (see Chapter 3).

Alternative semantics. In 2014, Bojańczyk proposed a new semantics for transducers [Boj14].
Instead of interpreting a transducer as a machine recognizing pairs of input/output words, he
proposed to keep track of the link between each output position and the input position where
it has been generated. This is called the origin semantics of transducers, and is well-defined

3Amusingly, the Dyck language with only one type of parentheses is the output of a non-deterministic two-way
transducer, see for instance [Roz85].

18

on finite-state transducers, as well as MSO transducers. Many decision problems become eas-
ier with this semantics [BMPP18, FMRT18], and new characterizations appeared [BDGP17,
DFL18].

The origin semantics is quite restrictive, as it imposes that two transducers are equivalent
iff each output letter is produced at the very same input position. A way to relax this strong
property is to use resynchronizers, as introduced in [FJLW16] (see also [FL15]). Instead of
considering a transduction as a set of pairs of input/output words, they can be defined as a
set of words mixing input and output letters, where each letter is typed (input or output). A
resynchronizer is a transducer operating on such words. Hence it allows to change the origin
information in a controlled way. First results on the decision problems related to resynchronizers
appeared in [FJLW16, BMPP18, DFP18, DFF19], and also in [BKM+19], with additional results
on the synthesis of resynchronizers.

2.1 Finite state transducers

2.1.1 Words, languages and relations

Words and languages An alphabet is a finite set, which elements are called letters. Unless
otherwise stated, we always assume that an alphabet contains at least two elements. A word
over an alphabet Σ is a finite sequence u = a1a2 · · · an of letters ai ∈ Σ, and we denote by Σ∗

the set of all words over Σ, including the empty word ε, and Σ+ when excluding the empty
word. The length n of the word u is written |u|. A word u = a1a2 · · · an has period p if for
every i such that 1 ≤ i ≤ |u| − p, we have ai = ai+p. A word v ∈ Σ∗ is a prefix of u, denoted by
v � u, if u = vw for some word w ∈ Σ∗. In this case we denote by v−1u this word w. We write
u∧v for the longest common prefix of u and v. The longest common prefix of a set L of words
is denoted

∧
L. We define the delay del(u, v) between two words u, v as the pair (u′, v′), such

that (u, v) = (wu′, wv′) where w = u∧v.
We associate with u its domain dom(u) = {1, . . . , n}, and will mostly use it in order to

define the logical structure associated with a word. In that setting, we name domain position
an element of dom(u). We will need another notion to describe the locations between letters
where states of the automata will be assigned. We name positions such locations, and write
pos(u) for the set {0, 1, . . . , n} of positions of u: 0 is placed before the first letter of u, n is after
the last one, and i is between ai and ai+1, for every 1 ≤ i < n. These notions are illustrated in
Figure 2.2. This way we naturally define the factor u[i, j] of u between two positions i and j.
We write u[i] for the ith letter of u. The mirror of a word is obtained by reading it from right
to left, that is: mirror(a1a2 · · · an) := an · · · a2a1 with ai ∈ Σ.

` b a b a

0 1 2 3 4 5

1 2 3 4 5

Input word:

Positions:

Domain:

Figure 2.2: Positions and domain of the word ` bab a.

On two-way devices (automata and transducers), input words will always begin with the
special letter ` and end with the special letter a. These letters are used by the device to identify
the borders of the word. They are part of the alphabet, but only appear at the borders. Hence
any word (on two-way devices) is of the form:

a1a2 · · · an with a1 = `, an = a, and ai /∈ {`,a} for all 1 < i < n

19

q0 q1 q2 q3

`, .
σ, .

a, / σ, / a, .

a, .
σ, .

Figure 2.3: A two-way automaton A.

A language over an alphabet Σ is a set of words over Σ. In Chapter 5 we will also study
languages of infinite words. We defer their definition to that chapter.

Relations and functions In this manuscript we mainly focus on transformations from words
to words. In their most general form, we will study relations where a single word u ∈ Σ∗ can be
mapped to any number of words v ∈ ∆∗. Hence such a relation R is a set of pairs: R ⊆ Σ∗×∆∗.
The domain of R is the set of words u ∈ Σ∗ for which there exists v ∈ ∆∗ verifying (u, v) ∈ R,
and is denoted dom(R). A relation R is functional if for every u ∈ dom(R), there exists only
one v such that (u, v) ∈ dom(R). In this case we consider R as a function, and write R(u) for
the word v such that (u, v) ∈ R. Hence the functions we consider in this manuscript are partial
functions of type Σ∗ → ∆∗. We also name them transductions, independently of the way they
are defined (through a transducer, formula, bimachine, etc). We will generalize them to infinite
words in Section 5.2.

2.1.2 Finite state automata

Two-way automata A two-way automaton is a tuple A = (Q,Σ,`,a, δ, I, F), where:

� Q is a finite set of states,

� Σ is an alphabet, including special letters ` and a,

� δ ⊆ Q× Σ×Q× {/, .} is the transition relation,

� I ⊆ Q is the set of initial states, and

� F ⊆ Q is the set of final states.

The size of a two-way automaton A is |A| = |Q|+ |δ|. Runs of two-way automata enjoy an
intuitive two-dimensional representation, that can be used in order to define them.

Example 2.1. Consider the two-way automaton A depicted in Figure 2.3, where σ denotes any
letter that does not contradicts determinism. This automaton checks whether the last-but-one
letter of a word is an “a”. This is a typical example where deterministic one-way automata
need an exponential number of states (when considering the family of languages increasing the
distance between the letter to check and the end), while deterministic two-way automata remain
of linear size w.r.t. this distance. A run of A on the input word ` aab a is illustrated in
Figure 2.4.

A run ρ of a two-way automaton A is a series of points (x, y) that we name locations, labelled
with states, and connected by transitions. Formally, a location is a pair ` = (x, y) where x is a
position of the input word u (ranging from 0 to |u|) and y is a non-negative integer that we call
level, that denotes the number of times the position x has been previously reached in ρ. As a
consequence, rightward transitions lead to a location at an even level, while leftward transitions
lead to a location at an odd level.

20

(0, 0)
q0

(1, 0)
q0

(2, 0)
q0

(3, 0)
q0

(4, 0)
q0

(4, 1)
q1

(3, 1)
q2

(3, 2)
q3

(4, 2)
q3

(5, 0)
q3

`, . a, . a, . b, .

a, /

b, /

a, .

b, . a, .

` a a b a

Run:

Input word:

Figure 2.4: Run of A on the word ` aab a.

Each location ` of a run ρ is associated with a state, that we write ρ(`). Consecutive locations
in a run must be linked by a transition of the automaton in the following manner:

(x, 2y)
q

(x+1, 2y′)
q′

ax+1, .
if (q, ax+1, q

′, .) ∈ δ

(x, 2y+1)
q′

(x+1, 2y′+1)
q

ax+1, /
if (q, ax+1, q

′, /) ∈ δ

(x, 2y)
q

(x, 2y+1)
q′

ax+1, / if (q, ax+1, q
′, /) ∈ δ

(x, 2y+1)
q

(x, 2y+2)
q′

ax, . if (q, ax, q
′, .) ∈ δ

This discards leftward transitions on `, and also additional transitions once a rightward
transition on a has been performed.

A run ρ is successful if it starts at location (0, 0), ends at location (|u|, 0), and ρ(|u|, 0) is
a final state. We also define the total order � on the locations of a run ρ by letting ` � `′ iff
` appears before `′ in ρ. The language of A, denoted L(A), is the set of words for which a
successful run of A exists.

We name reversal of a run any transition increasing the level by 1. A two-way automaton is
sweeping if it performs reversals only at the borders (` and a) of input words. It is k-sweeping
(for k ∈ N) if it is sweeping and performs at most k reversals per successful run. A two-way
automaton is deterministic if it has a single initial state, and it does not contain two transitions
(q, a, p, d) and (q, a, p′, d′) with (p, d) 6= (p′, d′). It is unambiguous if if admits at most one
successful run per input word.

One-way automata A one-way automaton (or automaton for short) is a special kind of
two-way automaton, containing only rightward transitions. For convenience, we usually omit
the direction in the transitions, thus in Q × Σ × Q. Moreover, end-markers ` and a are only
added when compared with two-way automata. We also sometimes consider a run of a one-way

21

automaton as a series of states, instead of a series of locations associated with a state.

Language classes In Section 3.1 we review some constructions showing that any two-way
automaton is equivalent to some one-way automaton. This means that these two classes have
the same expressivity.

Moreover, any one-way automaton can be determinized using the well-known subset con-
struction. So, neither non-determinism nor two-wayness increases the expressive power of au-
tomata, and they all coincide with the class of regular languages. We will see that the setting
is different when moving to transducers.

2.1.3 Finite state transducers, and relation classes

While automata recognize languages of words, transducers recognize relations between words.
If we denote the input alphabet by Σ, and the output alphabet by ∆, the transducer will define
a relation in Σ∗ ×∆∗.

Formally, a two-way transducer T is a tuple (A, out, t) whereA = (Q,Σ,`,a, δ, I, F) is a two-
way automaton, out : δ → ∆∗ maps every transition of A to an output word, and t : F → ∆∗

associates an output word with every final state. We name A the underlying automaton of
T , out the output function of T , and t the final output function of T . For convenience we
will identify the states, transitions, configurations, and runs of a transducer with those if its
underlying automaton.

Given a run ρ = `0, `1, `2, . . . , `n of T (and thus A) on u, we write out(ρ) for the output of ρ
on u, defined by out(t1)out(t2) · · · out(tn) ∈ ∆∗, where ti is the transition used between `i−1 and
`i in ρ. The relation associated with T , denoted JT K, is the set of pairs (u, v) for which there
exists a successful run ρ of A on u, and v = out(ρ)t(q) where q is the target state of the last
transition of ρ.4 Two transducers are equivalent if they define the same relation. The domain of
T , denoted dom(T), is L(A). The size of a transducer is the size of its underlying automaton
plus the size of its output function (it contains in particular the size of the output words of this
function).

A two-way transducer T is:

� one-way (resp. deterministic, unambiguous, sweeping, k-sweeping) if its underlying au-
tomaton is one-way (resp. deterministic, unambiguous, sweeping, k-sweeping),

� functional if the relation it defines is functional.

Deterministic one-way transducers were also called input-deterministic transducers, or, when t
maps every final state to ε, generalized sequential machines (GSMs) [Eil74, Gin66]. Functional
transducers are sometimes called single-valued in the literature. We only consider real-time
transducers, i.e. transducers that do not have ε-transitions [Sak09]. Two-way transducers are
closed under composition [CJ77].

Relation classes In the following, we say that a relation R ⊆ Σ∗ ×∆∗ is implemented by a
transducer T if JT K = R. Several classical transformation classes are based on the transducers
defined in this section, as depicted in Figure 2.1:

� regular relations (resp. functions) are the relations (resp. functions) for which there exists
a two-way transducer implementing it.

4We do not include t(q) in the definition of out(ρ) in order to be able to concatenate runs.

22

� sweeping relations (resp. functions) are relations (resp. functions) having a sweeping
transducer implementing it (idem for k-sweeping). We name those relations sweeping
definable (or k-sweeping definable, when k is given).

� rational relations (resp. functions) are those for which there exists a one-way transducer
implementing it. For this reason we also name such relations one-way definable.

� sequential functions are functions that can be implemented by a deterministic one-way
transducer (any relation defined by a deterministic transducer is functional, by definition).

Hence, we call sequential functions what is named “subsequential functions”
in [Sch77], as it associates output words with final states. Indeed this class captures
the most “well-behaved” notion of sequentiality between both [LS06]. This clearly appears at
two places in this manuscript: sequential functions are exactly those that can be evaluated with
bounded memory (Proposition 4.2), and have a direct characterization in terms of congruence
(Section 5.1.2).

In this manuscript we mainly focus on functional transformations. The main reason is that
the decision problems we address are often decidable for functions, but undecidable for relations.
We also preferably stick to the “machine-oriented” terminology rather than the class mentioned
above. For instance we preferably write one-way definable, rather than rational.

In Chapter 5, we use bimachines to define rational transductions, instead of using one-way
transducers. We defer their definition and analysis to that chapter, as they do not define another
class of transformations.

2.1.4 Definability problems

When two classes of relations C1 and C2 are introduced, they naturally come with the following
definability problem:

Given a relation in C1, is there an equivalent relation in C2?

For this decision problem to be well defined, each class C must come with an explicit description
of its relations, and this will always be the case for the classes defined in this manuscript (through
transducer models, formulas, finite congruences, etc). Let us review the definability problems
related to these classes.

Relations When considering relations, many decision problems are undecidable, notably uni-
versality (decide whether a given transducer implements Σ∗×∆∗) and thus equivalence (decide
whether two given transducers define equivalent relations) [FR68, Gri68, Iba78]. However, func-
tionality of two-way transducers is decidable [CK86] in PSpace. Indeed, this problem can be
reduced to the emptiness of a one-counter automaton, that tries to build (non-deterministically)
a witness of non-functionality. Such a witness is composed by an input word, and two runs of
the transducer, such that either the outputs of the runs differ in length, or they differ at a
particular position. In both cases this can be checked with a one-counter automaton.5

Concerning definability by a one-way transducer, we proved that this is also undecidable,
even when restricting to sweeping relations:

Theorem 2.1 ([BGMP15, BGMP18]). It is undecidable whether a given sweeping transducer
is one-way definable.

5A similar approach will be used for the proof of Theorem 4.5.

23

The proof of this theorem is based on an encoding of the Post Correspondence Problem
(PCP), and was inspired by the proof by Ibarra that the equivalence of one-way transducers is
undecidable [Iba78].

Consider the instance of PCP given by the alphabets Σ and ∆ and the two morphisms
f, g : Σ∗ → ∆∗. Recall that this instance is a PCP solution iff there exists w ∈ Σ+ such that
f(w) = g(w). We call encoding every pair (w · u,w ·#n) with w ∈ Σ∗, u ∈ ∆∗, and n ∈ N. We
call good encodings those verifying n = |u| and u = f(w) = g(w), and bad encodings the others
(but still encodings). Bad encodings can be recognized by a sweeping transducer, by guessing
and checking the various ways in which an encoding can fail.

The reduction is based on the fact that this sweeping transducer is one-way definable iff the
corresponding PCP instance has no solution. On one hand, its is quite easy to see that if there
is no solution to the PCP instance, all encodings are bad, and the relation is one-way definable.
The most technical part is to prove that if there is a solution to the PCP instance, the sweeping
transducer is not one-way definable. This is obtained by noting that if w is a solution, then wn

also is. This permits to use pumping arguments towards a contradiction, when the transducer
is supposed one-way definable.

Functional transducers: two-way to one-way When restricting to functions instead of
relations, we retrieve decidability:

Theorem 2.2 ([BGMP15, BGMP17, BGMP18]). It can be decided in 2ExpSpace whether a
given functional two-way transducer is one-way definable (in ExpSpace if the two-way trans-
ducer is known to be sweeping).

If so, an equivalent one-way transducer can be built in 3ExpTime (in 2ExpTime for sweep-
ing transducers).

This constitutes the central result presented in Chapter 3, therefore we defer the details to
this chapter. We will refer to the decision problem as one-way definability. Typical examples
of functions that are two-way definable but not one-way definable are provided in the following
example.

Example 2.2. The following functions can be implemented by a two-way transducer, but not
by a one-way transducer (assuming |Σ| > 1):

� fcopy : Σ∗ → Σ∗ such that fcopy(u) = uu,

� the mirror function over Σ∗.

Functional sweeping transducers Sweeping transducers define an intermediate level be-
tween one-way and two-way transducers6, and the related decision problems are also decidable
in the functional case.

Theorem 2.3 ([Bas17, BGMP16]). It can be decided in 2ExpSpace whether a functional
two-way transducer has an equivalent sweeping transducer.

Moreover, for a given k ∈ N and a given functional two-way transducer, it is decidable in
2ExpSpace whether there exists an equivalent k-sweeping transducer. If the input transducer
is already sweeping, then the problem is decidable in ExpSpace.

6even with unary alphabets [Gui16a]

24

These results will also be presented in more details in Section 4.1. As we will see, each of
these results also comes with an algorithm building an equivalent transducer, when it exists (in
3ExpTime for 2ExpSpace decision problems, and 2ExpTime for ExpSpace ones).

Another interesting link between models (presented in Section 4.1) is the following: Func-
tional transductions that can be implemented by a sweeping transducer are exactly those that
can be implemented by a bounded-reversal two-way transducer, that is, a two-way transducer
with a universal bound on the number of reversals per run.

Determinism Let us now consider definability problems related to determinism. For func-
tional two-way transducers, the question is irrelevant, as every functional two-way transducer
can be determinized (i.e. has an equivalent deterministic two-way transducer). A first sketch
of proof appeared in [Eng81], and a full proof in [EH01].7

The uniformization framework generalizes this result to non-functional two-way transducers:
For every two-way transducer T , there exists a deterministic two-way transducer T ′ with the
same domain, such that JT ′K ⊆ JT K. The proof proposed by De Souza [dS13], provides an upper
bounded of four-exponential time. This proof is based on the nice construction by Hopcroft
and Ullman [HU67], that allows a deterministic two-way transducer to simulate a deterministic
one-way automaton: While it is straightforward rightwards, any leftward move of the two-way
transducer may induce non-determinism in the one-way automaton. This non-determinism can
be lifted by entering a leftward-then-rightward mode that modifies the run of the initial two-way
transducer, and is able to find the exact position where it entered this leftward-then-rightward
mode (which seems impossible at first sight).

In the functional case, this result has been strengthened recently, by showing that one
can always find a deterministic and co-deterministic (that is, deterministic when transitions are
interpreted in reverse) two-way transducer (called reversible) as uniformizer, from any functional
two-way transducer [DFJL17]. The main tool of this construction is a clever way to build a
reversible transducer from a co-deterministic one. It is obtained by considering the tree of runs
of the codeterministic transducer on an input, and exploring it using two states of the two-way
transducer. Using this technique, the construction of the reversible transducer from a functional
two-way transducer only requires exponential time, while it required four-exponential time in
[dS13].

When considering one-way transducers, determinism adds a lot of constraints, as only a
bounded amount of output can be stored in the memory (states), when a delay is necessary to
produce it.

Example 2.3. The following function can be defined by a one-way transducer, but not by a
deterministic one:

� flast : Σ+ → Σ+ such that flast(ua) = au, for all a ∈ Σ and u ∈ Σ∗

Theorem 2.4 ([Cho77, BC02, MP19b]). Deciding whether a given functional one-way trans-
ducer has an equivalent deterministic one-way transducer is NLogSpace-complete.

While prior characterizations of sequential functions were known [Gin66, Sch77], the deci-
dability was first proved by Choffrut [Cho77] by showing that deciding sequentiality amounts
to analyze some regular properties of the outputs produced by input words of bounded length.
This can be checked syntactically: A functional one-way transducer T satisfies the twinning
property if for all u1, u2 ∈ Σ∗, for all v1, v2, w1, w2 ∈ ∆∗, for all initial states q0, q

′
0, and for all

co-accessible states q, q′ ∈ Q,

7Checking equivalence of deterministic two-way transducers is decidable in PSpace [Gur82, CK86].

25

if

 q0
u1/v1−−−→T q

u2/v2−−−→T q

q′0
u1/w1−−−−→T q′

u2/w2−−−−→T q′
then del(v1, w1) = del(v1v2, w1w2).

This pattern can be checked in PTime [WK95, BC02]. Its formulation is simple enough to
be formulated in a pattern logic ensuring decidability in PTime [FMR18]. Muscholl and Puppis
showed that the problem is in fact NLogSpace-complete [MP19b].

When we start from a two-way transducer, we can combine the two results:

1. first decide whether it is equivalent to a one-way transducer and if so, build it (in 3Exp-
Time, Theorem 2.2),

2. decide whether this one-way transducer can be determinized (in PTime, Theorem 2.4).

As a consequence:

Corollary 2.1. It is decidable in 3ExpTime whether a functional two-way transducer has an
equivalent deterministic one-way transducer.

An open question arises concerning the complexity of this problem. The 3ExpTime upper
bound is far from the ExpTime lower bound that comes from the usual lower bound on automata
determinization:

Open problem 1 (Functional two-way to deterministic one-way transducer)

Determine the precise complexity of the following problem: Given a functional two-way
transducer, is it equivalent to some deterministic one-way transducer?

We will see in Section 4.2.1 that functions defined by deterministic one-way transducers
correspond exactly to those that can be evaluated with bounded memory, so this question is of
particular interest.

2.2 Logics for transformations

In this manuscript, we use logical formulas to express:

� properties over words, for instance “a word has even length”,

� word-to-word transformations, for instance “every position labelled by a is now labelled
by b”.

In full generality, the logics we present are interpreted over logical structures, that is, a
finite domain, and a fixed set of relations interpreted over this domain. In the case of words,
the domain is the set of domain positions of the word, and the relations are typically one unary
relation φa for each a ∈ Σ, and a binary relation ≤ reflecting the (total) order on the domain
of the word. We simplify the definitions by instantiating them on words only.

2.2.1 Logics defining word languages

Our basic logic over words will be the monadic second-order logic (MSO).

26

MSO syntax Formulas φ of MSO are those yielded by the following grammar:

φ ::= φ ∧ φ′ | ¬φ | ∃x. φ | ∃X. φ | x ∈ X | laba(x) | x ≤ y

where x, y, . . . denote the first-order variables, X,Y, . . . denote the second-order variables, φ, φ′

are MSO formulas, and a is a letter from a fixed alphabet Σ.

From this core syntax, we add the usual syntactic sugar, namely parentheses, universal
quantifiers and other Boolean connectives:

∀x. φ for ¬∃x. ¬φ
∀X. φ for ¬∃X. ¬φ

φ ∨ φ′ for ¬(¬φ ∧ ¬φ′)
φ→ φ′ for ¬φ ∨ φ′

and also:

> for ∀x. (laba(x) ∨ ¬laba(x)) and ⊥ for ¬>

MSO semantics We informally present the semantics of MSO formulas. For a formal presen-
tation, we refer the reader to [Str94], which contains a nice yet precise definition in the case of
words. We use the standard notion of free and bound variables of a formula (here for first-order
and second-order variables), and the notion of closed formula.

An MSO formula φ is interpreted over a word w ∈ Σ∗: if the word w satisfies the formula
φ we write w |= φ. Let us now explain what this means. First-order variables x, y, . . . denote
domain positions of the word, while second-order variables X,Y, . . . denote sets of domain
positions of the word. Hence an interpretation comes with an assignment of variables (that can
also be viewed as an annotation of domain positions with variables [Str94]), and:

� laba(x) holds true if x is assigned to a domain position of w labelled by a,

� x ≤ y holds true if x is assigned to a domain position at the left of the domain position
assigned to y (or to the same domain position),

� x ∈ X holds true if x is assigned to a domain position that belongs to the set of domain
positions assigned to X,

� quantifiers and Boolean connectives are interpreted as usual.

For instance the formula ∃x.∃y. laba(x) ∧ labb(y) ∧ x ≤ y holds true on words having an a
at the left of a b (possibly with other letters in between).

This way, any closed MSO formula φ defines the language of words on which it holds
true. We denote this language by JφK, and say that φ recognizes JφK. We usually write
φ(x1, . . . , xn, X1, . . . , XN) to denote that x1, . . . , xn and X1, . . . , XN are the free variables in
φ. We will also write w |= φ(p1, . . . , pn, P1, . . . , PN) whenever φ holds true on w when each
variable xi (resp. Xi) is assigned to the domain position pi (resp. to the set of domain positions
Pi).

Language classes As discussed in the introduction of this chapter, the set of languages rec-
ognized by closed MSO formulas is exactly the set of languages recognized by one-way automata
[Büc60, Tra61], and is called the set of regular languages.

The most standard subclass of MSO is the first-order logic (FO), i.e. the set of formulas
involving no second-order variables. This will be used in Chapter 5 to define a corresponding
subclass of one-way transducers.

27

2.2.2 Logics defining word-to-word transformations

While the standard presentation of MSO originates from the 60’s, it has been adapted in the
90’s by Courcelle in order to define transformations from logical structures to logical structures
using MSO transducers [Cou94, CE12]. Let us present this framework on the particular case of
word-to-word functions.

MSO transducers The key idea is to use MSO formulas with free first-order variables that
will be interpreted over a fixed number of copies of the input word, in order to introduce new
relations that will define the output word.

Hence an MSO transducer (MSOT) is a tuple composed by:

� a number k of copies of the input word,

� an MSO formula φdom defining the domain of the function,

� k MSO formulas φipos(x), with 1 ≤ i ≤ k. These formulas describe the domain of the
output word, among the k copies of the input w: the domain position p of the ith copy
will be in the output if w |= φipos(p).

� k MSO formulas φilaba
(x), with 1 ≤ i ≤ k. They characterize the labels of the output

word: the domain position p of the ith copy will be labelled by a if w |= φilaba
(p).

� k2 MSO formulas φi,j≤ (x, y), with 1 ≤ i, j ≤ k. These formulas define the order on the
domain of the output word. Hence the domain position p of the ith copy will be to the
left of the domain position p′ of the jth copy if w |= φi,j≤ (p, p′).

Such a definition allows the output structure to be more general than a word, for instance
having several labels at a given domain position, or having an order relation ≤ that is not a
total order. However, given an MSO transducer, it is decidable if it defines a word-to-word
function [Fil15]. In this document we consider only MSO transducers that define word-to-word
transformations.8

MSO transducers can be extended to non-deterministic MSO transducers (NMSOTs), by
using a fixed number m of parameters. Parameters are m additional free second-order variables
used in the formulas defining the output, that become: φipos(x,X1, . . . , Xm), φilaba

(x,X1, . . . , Xm),

φi,j≤ (x, y,X1, . . . , Xm). “Non-determinism” comes from the fact that the interpretation is ob-
tained after assigning any value to these m second-order variables. In particular an NMSOT
may define a non-functional relation.

However, MSOTs, and even NMSOTs, have the linear-size increase property: the size of
the output word is linearly bounded in the size of the input word. Indeed it is bounded by kn
for an input word of length n, where k is the number of copies. This remark is important to
distinguish the expressive power of different models.

In Chapter 5, we will also consider FOT, the “first-order” fragment of MSOT, i.e. MSOT
formulas where no second-order variables occur.

2.2.3 Relations with finite state transducers

Let us now consider the expressive power of MSOTs and NMSOTs, compared to the finite state
transducers introduced so far. We refer the reader to Figure 2.1 for an overview of these links.

8Note that this definition does not allow to assign an image to the empty word ε. An alternative definition
allowing it consists in assigning the labels to the edges of the logical structure (seen as a graph) [EH01]. We
prefer here to assign labels to nodes for clarity.

28

MSOT and two-way transducers The central result here, is the exact correspondence
between functional two-way transducers and MSOTs, established by Engelfriet and Hoogeboom
[EH01]. This was the first “automata-logic” correspondence at this level for transducers, and
renewed the interest of the community for transductions. This is also the main reason why this
class is named regular functions.

The proof is constructive in both directions. From a functional two-way transducer, one can
build an MSO formula encoding the possible moves in the configuration graph of the transducer,
and then build the output word from this, on a given input. The other direction uses an
intermediate model of two-way transducers with MSO jumps: the transducer can jump from
one domain position to another (not necessarily consecutive), but such a jump must be regular,
in the sense that the pair of domain positions of the jump must satisfy an MSO formula with
two free first-order variables. The proof also uses an extension of MSOT transducers, allowing
a regular look-around, which means that the prefix and suffix of the current domain position
can be checked against a regular language when trying to apply a transition.

MSOT and one-way transducers A restriction of MSOT capturing exactly functions de-
finable by one-way transducers has been identified in [Boj14] for the origin semantics, and
reformulated in [Fil15] in the standard setting.

An MSOT is order-preserving if, for every word w in its domain, if w |= φi,j≤ (p, p′) then
p ≤ p′, i.e. domain position p is to the left of domain position p′ in the input word. In other
words, when defining the order relation ≤ of the output word, one only performs rightward
moves in the input word (possibly jumping from one copy to another). A direct construction
from order-preserving MSOT to functional one-way transducers, and conversely, is provided in
[Fil15]. In Chapter 5, we will use an alternative (but equivalent) definition of order-preserving,
closer to one-way transducers.

MSOT and sweeping transducers This correspondence between order-preserving MSOTs
and functional one-way transducers can be generalized in order to capture functional sweeping
transducers [Bas17]. The corresponding MSOT fragment is called k-phase MSOT and expresses
the fact that the copies used by the MSOT can be partitioned into k sets of copies, each set
being one-way, i.e. order-preserving, or ”order-preserving from right to left”.

Formally, an MSOT is k-phase if its copies can be partitioned into k sets C1, . . . , Ck such
that:

� movements inside sets Ch are left-to-right order-preserving if h is odd, and right-to-left
order-preserving if h is even. Formally, if w |= φi,j≤ (p, p′), and copies i and j belong to the
same Ch, and h is odd (resp. even), then p is to the left (resp. right) of (or equals) p′ in
the input word w.

� reversals operate at the extremities of the input word. Hence, if w |= φi,j≤ (p, p′), and i ∈ Ch
while j ∈ C`, then ` = h + 1 and p = p′, and if h is odd (resp. even) then p is the last
(resp. first) position of the input word.

Theorem 2.5. k-phase MSOTs exactly capture k-sweeping transducers.

The details of the construction can be found in [Bas17], and follow the same line as the
correspondence between order-preserving MSOTs and functional one-way transducers [Fil15].

MSOT and deterministic transducers To our knowledge, no fragment of MSOT corres-
ponding to sequential functions has been defined.

29

NMSOT, Hennie machines, and common guess When moving to relations, one could
hope that NMSOTs and two-way transducers coincide. This is however not the case, as a
two-way transducer may not be of linear-size increase, while all NMSOTs are. For instance
the relation that maps a to {an | n ≥ 0} is definable by a two-way transducer, but not by an
NMSOT.

However, two variants of two-way transducers correspond exactly to NMSOTs. The first
one is Hennie machines, as proved in [EH01]. These machines are two-way transducers that
can rewrite their input tape (at the reading position), but with the finite-visit limitation: each
position can be visited only a bounded number of times. In fact, the correspondence also holds
in the deterministic case: deterministic Hennie machines with such capabilities correspond to
MSOT.

The second model equivalent to NMSOT is deterministic two-way transducers with com-
mon guess [BDGP17]. The common guess feature consists in annotating the input word with
some information from a finite alphabet. Hence a two-way transducer with common guess can
perform the transduction that maps an to w#w, with w ∈ {a, b}∗ and |w| = n, while this is
impossible without common guess [EH01]. Our definition of NMSOT is based on an assignment
of parameters (second-order free variables). This can be simulated by a common guess (anno-
tating the input with the assignment information) followed by an MSOT, and conversely. Thus
NMSOTs, and MSOTs with common guess define the same transductions. Now, the proof that
MSOTs and functional two-way transducers have the same expressivity also holds when both
are preceded by a common guess, so functional two-way transducers with common guess and
MSOTs with common guess, and thus NMSOTs, define the same transductions.

2.3 Streaming string transducers

Streaming string transducers [AC10] can be considered as deterministic one-way transducers,
enriched with registers. These registers can be used to build parts of the output word.

2.3.1 Definition

A streaming string transducer (SST) is a tuple (Q,Σ,∆, R, δ,∇, q0, out), where:

� Q is a finite set of states,

� Σ (resp. ∆) is a finite input (resp. output) alphabet,

� R is a finite set of registers (distinct from ∆),

� δ is a finite set of transitions, i.e. functions mapping a state and a letter in Q× Σ, to an
update and a target state in ∇×Q,

� ∇ is the set of register updates, i.e. functions from R to (R]∆)∗, mapping each register
to a word of registers and output letters,

� q0 is the initial state,

� out is a partial output function, mapping some states of Q to a word of registers and
output letters in (R]∆)∗.

During a run, registers will contain some words from ∆∗: we name valuation a function
ν : R → ∆∗ that details the contents of the registers. The configuration of an SST is a pair
(q, ν) composed by a state and a valuation. The initial configuration is (q0, ν0), where ν0 maps
all registers to the empty word ε.

30

MSOT

two-way
transducer

SST

[EH01], through

two-way transducer

with MSO jumps

[EH01]

[AC10]

[AC10] through heap-

based transducer, [DJR18]

[Led13, DJR18]

Figure 2.5: Main known translations between models defining regular functions.

To define how configurations are updated, we naturally extend the domain of valuations
ν to words in (R] ∆)∗, where each register r ∈ R is replaced by ν(r). This way, the word
ν(up(r)) will be the content of the register r after applying the update up ∈ ∇, given a previous
valuation ν. Now, given a current configuration (q, ν), if the transducer reads a letter a, then
it can update its configuration to (q′, ν ′), whenever δ(q, a) = (up, q′) and ν ′(r) = ν(up(r)), for
every register r ∈ R. We denote this by (q, ν)

a−→ (q′, ν ′). A run of the SST over an input word
u = a1 · · · an is a sequence

(q0, ν0)
a1−→ (q1, ν1)

a2−→ · · · (qn, νn)

It is successful if out is defined on qn, and in this case the output of the transducer is νn(out(qn)).
Note that, by definition, SSTs are deterministic. Their non-deterministic version (NSST) is

obtained by allowing transition rules δ to be any relation in Q × Σ × ∇ × Q, not necessarily
functional. We will consider NSSTs in Section 4.1.3, where we try to minimize the number of
registers.

A key restriction for SSTs is the copyless property. An SST is copyless when register contents
cannot be duplicated, i.e. each register r ∈ R appears at most once in the images of all registers
by:

(a) an update, i.e. in up(r1) · · · up(rn) where R = {r1, . . . , rn}, for all up ∈ ∇, and

(b) the output functions, i.e. in out(q), for every q in the domain of out .

An SST is said copyful if it is not copyless. In the whole manuscript, we assume all SSTs to be
copyless, unless otherwise stated.

2.3.2 Links with other models

Let us now detail how SSTs relate to the two other models of transformations introduced so
far: two-way transducers, and MSOTs.

SST and regular functions The main correspondence is that (copyless) SSTs exactly capture
regular functions, i.e. have the same expressiveness as functional two-way transducers and
MSOTs. We illustrate some known translations between these three models in Figure 2.5. This
has been established in [AC10], where an indirect construction from a deterministic two-way

31

transducer to an SST is provided (through an intermediate model of heap-based transducer),
and also a direct construction from SSTs to MSOTs.

Some other translations have been proposed between the three models. In [DJR18] back-and-
forth direct translations between SSTs and deterministic two-way transducers are provided. A
prior direct translation from an SST to a two-way transducer has also been proposed in [Led13].
These two translations from SSTs to deterministic two-way transducers are both exponential. A
first polynomial translation has been proposed recently [DFJL17], and even builds a reversible
two-way transducer.

Capturing rational and sequential functions As SSTs operate in a single left-to-right
pass on the input, the link with one-way transducers is easy to establish. An SST is right-
appending if for all updates up ∈ ∇ and all registers r ∈ R, the word up(r) is of the form r′ · u
with r′ ∈ R and u ∈ ∆∗. This restriction enforces each register to be used as a write-only
output tape. Hence:

� one-register right-appending SSTs exactly capture sequential transductions, i.e. those
definable by deterministic one-way transducers, and

� right-appending functional NSSTs exactly capture rational transductions, i.e. those de-
finable by functional one-way transducers.

Capturing sweeping transducers Between sequential and rational functions lies the class
of functions definable by a sweeping transducer, or equivalently by a k-phase MSOT. This class
is also captured by concatenation-free NSSTs: an NSST is concatenation-free if each register
update contains at most one register name, that is: up(r) ∈ ∆∗ · (R∪{ε}) ·∆∗ for every update
up ∈ ∇ and every register r ∈ R. This will be proved in Section 4.1.3, where a direct translation
between functional sweeping transducers and concatenation-free NSSTs is provided.

Non-determinism One of the nice properties of SSTs, is that the correspondence with MSOT
carries over in the non-deterministic case. Hence, NSSTs exactly capture NMSOTs, as shown
in [AD11]. As we have seen, this is not the case for two-way transducers. It is also proved in
[AD11] that the functionality of an NSST is decidable in PSpace, and that functional NSSTs
are equi-expressive to deterministic SSTs.

Copyful SSTs One could wonder why the copyless restriction is added in the definition of
SSTs. The reason is to retrieve the linear-size increase property of regular functions, and indeed,
as we have seen, this restriction suffices to capture exactly regular functions.

Copyful SSTs can yield outputs of size exponential in the size of the input. Consider for
instance the copyful SST with only one register r on the unary alphabets Σ = ∆ = {a}, that
performs the updates:

� r → a when reading the first letter, and then

� r → r · r when reading the subsequent letters.

This copyful SST implements the function an → a2n−1
. While being more expressive, copyful

SSTs share several interesting properties with their copyless counterpart: functional copyful
NSSTs and copyful SSTs have the same expressive power, they have decidable functionality
and equivalence problems. Also, it is decidable in PTime whether a copyful SST has an equi-
valent copyless SST. These results are obtained via back-and-forth translations (in linear time)
between copyful SSTs and HDT0L Lindenmayer rewriting systems [FR17].

32

In [AFT12] it is proved that copyless SSTs have the same expressiveness as bounded SSTs
where, roughly speaking, an SST is k-bounded if each register content is copied at most k times
at any time point of a run. The proof considers infinite strings, but also holds for finite strings.
This is studied in further details in [DJR18], where translations between k-bounded SSTs and
copyless SSTs are established.

33

34

Chapter 3

Two-way to one-way transducers

Contents

3.1 Two-way to one-way automata . 37

3.1.1 Crossing sequences: the Shepherdson approach 37

3.1.2 Z-motion elimination: the Rabin-Scott approach 38

3.1.3 Other known constructions . 40

3.2 From automata to transducers . 41

3.2.1 Properties of two-way transducers: primer 41

3.2.2 Lower bounds for one-way definability 44

3.3 Rabin-Scott approach . 44

3.3.1 Decomposing into elementary z-motions 45

3.3.2 Decision algorithm . 46

3.3.3 Dealing with elementary z-motions . 47

3.4 Shepherdson approach . 49

3.4.1 Results and road map . 49

3.4.2 Sweeping case . 50

3.4.3 General case . 52

This chapter presents two algorithms for the one-way definability of two-way transducers.
Both of them take some inspiration from classical proofs for automata.

One of the seminal papers on automata theory is the paper by Rabin and Scott, where
the authors investigate several models based on restrictions of Turing machines [RS59]. One
of them is two-way automata, the extension of finite state automata where the input head can
move in both directions. In that paper, they already prove that two-way automata have the
same expressiveness as one-way automata.

Amusingly, an alternative proof of this result has been provided by Shepherdson in the very
same volume of the IBM Journal of Research and Development [She59]. The story is explained
in the paper by Rabin and Scott [RS59]:

“The result, with its original proof, was presented to the Summer Institute of Sym-
bolic Logic in 1957 at Cornell University. Subsequently J. C. Shepherdson commu-
nicated to us a very elegant proof which also appears in this Journal. In view of this
we confine ourselves here to sketching the main ideas of our proof.”

35

Indeed the proof by Shepherdson is easier to formalize, even though both proofs can be
easily sketched using a graphical representation of two-way runs. Both proofs are described in
Section 3.1. We also quickly review some alternative proofs that we did not choose to adapt
when moving to transducers.

It may seem surprising that the one-way definability of two-way transducers remained open
for such a long time. A lot of results have been obtained for sequential transducers, or rational
ones, as discussed in the previous chapter. Moving to regular transductions is challenging, as it
involves two-way transducers, which behaviors are more difficult to understand. For instance,
as we will see in Chapter 5, their algebraic characterization is wide open. However, the “logic-
automata” equivalence obtained by Engelfriet and Hoogeboom [EH01] is a major result in this
field, and somehow paved the way towards this one-way definability problem.

The two proofs exposed in this chapter confirm that one has to face many technicalities
when dealing with two-way transducers. In this manuscript, we hide many internal lemmas
based on combinatorics, and try to give a high-level description, with enough explanations to
get the essence of the proofs.

In Section 3.2 we analyze some general properties of two-way transducers and give a first
flavor of the arguments we will use in both proofs. Section 3.3 contains our first algorithm
for one-way definability, an extension of Rabin-Scott’s algorithm to the transducers setting
[FGRS13]. Its overall complexity is non-elementary. In Section 3.4 we provide a second algo-
rithm, more related to Shepherdson’s proof, yielding an elementary complexity [BGMP18].

Related work. We will review the known constructions proving that two-way automata only
recognize regular languages in Section 3.1.3.

One of the most related results is an iteration lemma for languages generated by two-way
transducers: given a two-way transducer (functional or not), its output language (i.e. the
projection, on the output alphabet, of the relation it defines) is k-iterative for some k ≥ 0. A
language is said k-iterative if there exists N > 0 such that any output word of length greater
than N can be written as u1v1 · · ·ukvkuk+1 such that u1v

n
1 · · ·ukvnkuk+1 is also in the output

language for all n > 0. For instance regular languages are 1-iterative, and context-free languages
are 2-iterative. Brigitte Rozoy proved that languages generated by two-way transducers are k-
iterative [Roz86]. This has also been proved by Tim Smith more recently [Smi14]. The paper
by Brigitte Rozoy has some similarities with our Shepherdson-based approach, in particular
our definitions of flows and effects. However, the one-way definability problem requires to be
more precise than k-iterativity in the analysis of loops. As we will see, we need to “pump” runs
in order get equations that imply some periodicity properties, like for iteration lemmas (even
though we only need 2 places instead of k). But then we need to “undo pumping” while keeping
the periodicity properties, and this part is not needed in iteration lemmas. For this reason we
introduce the decomposition of flows into components, for instance, as we will see.

Oblivious two-way automata are two-way automata such that all inputs of the same length
have the same shape of runs. Every two-way automaton has an equivalent oblivious one [Pet98],
and being oblivious is decidable for deterministic two-way automata [KMP14]. Hence being
oblivious may help when comparing two runs of a given automaton (and thus, transducer). But
the main constructions presented in this chapter deal with a single run, and its pumped versions.
So this would not help us in the present context, but should be kept in mind for others.

In this chapter we also define a family (fn)n≥0 of transductions, that can be recognized by a
two-way transducer of size polynomial in n, but such that any one-way transducer recognizing
it as size at least doubly exponential in n. On the automata side, a tight bound on the gap
between two-way and one-way automata has been established by Kapoutsis [Kap05], improving
a result of Birget [Bir93], and other prior results [MF71, Bar71, Moo71, SS78, Sip80]. The

36

precise complexity is known over unary alphabets [KO11]. Also, upper and lower bounds have
been recently exhibited for the shortest word accepted by a two-way automaton of a given
size [DDO19], and for basic operations on two-way automata [JO17, KO12].

3.1 Two-way to one-way automata

In this section we review some translations of two-way automata to one-way automata. We
focus on two of them, as they will be the basis for deciding whether a two-way transducer is
equivalent to a one-way transducer. The first one is the translation based on crossing sequences
proposed by Shepherdson [She59]. The second one is based on the progressive elimination of
basic zigzags in the shape of the runs, proposed by Rabin and Scott [RS59].

3.1.1 Crossing sequences: the Shepherdson approach

The easiest translation of two-way automata into one-way automata has been proposed by
Shepherdson in 1959. The key idea is to consider, for each position, the sequence of states
reached at this position. This sequence, called crossing sequence, can be bounded, and can be
used as a state of a one-way transducer. Indeed the transition between two consecutive crossing
sequences can be easily checked from the transitions of the two-way transducer.

Normalized runs. A run ρ of a two-way automaton is normalized if it does not reaches twice
the same state at the same position coming from the same direction, i.e. it does not contain
two locations (x, y) and (x, y′) where y and y′ have the same parity, and ρ(x, y) = ρ(x, y′). A
two-way automaton is normalized if all its runs are.

Any two-way automaton can be normalized. Consider a non-normalized successful run
reaching twice the same position x at levels y and y′ of same parity, in the same state q. Then
the run obtained by removing the part of the run between (x, y) and (x, y′) is also a successful
run of the same automaton. Moreover, checking that all runs are normalized can be performed
easily on the crossing sequences. Therefore, we will always assume that two-way automata are
normalized in the sequel.

Crossing sequences. The crossing sequence of a run ρ at a given position x is the tuple
(ρ(x, 0), . . . , ρ(x, h)) of all the states reached by the run ρ at position x, for the h + 1 levels
reached at this position. In Figure 3.1, the crossing sequence (q0, q2, q3) is highlighted, for the
run of the automaton of Figure 2.4 on the word ` aab a at position 3. As we assumed normalized
runs, the length of a crossing sequence is bounded by 2|Q| − 1. We will sometimes refer to the
crossing degree of a crossing sequence for its length, and the crossing degree of a transducer as
the maximal crossing degree of all crossing sequences of its possible runs.

The Shepherdson construction. We now have all the ingredients to define a one-way au-
tomaton A′ from a two-way automaton A, following Shepherdson’s proof [She59]. The states
of A′ are all the possible crossing sequences of size at most 2|QA| + 1 built from the states of
A. The transitions of A′ must check that moving from one crossing sequence to the next one is
allowed by A.

For consecutive crossing sequences of equal length without internal reversal, one only needs
to check that the transition at each level appears in A. This is the case for instance between
the crossing sequences at positions 3 and 4 in Figure 3.1. One has also to permit reversals at
relevant places, for instance when moving from position 2 to 3, or from 4 to 5.

37

(0, 0)
q0

(1, 0)
q0

(2, 0)
q0

(3, 0)
q0

(4, 0)
q0

(4, 1)
q1

(3, 1)
q2

(3, 2)
q3

(4, 2)
q3

(5, 0)
q3

`, . a, . a, . b, .

a, /

b, /

a, .

b, . a, .

` a a b a

Run:

Input word:

Figure 3.1: Highlighting the crossing sequence (q0, q2, q3) of a run at position 3.

The definition of the transitions of A′ is hence a bit technical but clearly possible, from the
transitions of A. We only limit ourselves to intuitions here, but point out a formal proof in Coq
of this construction [DS18].

In fact, the exact order on states in crossing sequences is not required: one could keep only
two sets: the set of states coming from the left, and the set of states coming from the right.
This corresponds to the notion of frontier studied in [Bir93, Kap05], that permits to establish
tight bounds on the number of states.

3.1.2 Z-motion elimination: the Rabin-Scott approach

Rabin and Scott proposed a totally different approach [RS59].

Z-motions. The shape of a two-way run is arbitrary, and at first sight, there is no easy way
to decompose it. Rabin and Scott identified two simple shapes that appear in any two-way run
where a reversal occurs [RS59]. They call them z-motions according to these shapes.

A rightward z-motion is a part of a run delimited by two positions x1, x2 of the input. The
z-motion performs a left-to-right pass from x1 to x2, then a first reversal at x2, then a right-to-
left pass from x2 to x1, then a second reversal at x1, and finally a left-to-right pass from x1 to
x2. A rightward z-motion does the symmetric, by starting from the right.

For instance, the upper part of Figure 3.3 shows a run of a two-way automaton A, and two
leftward z-motions, between states q1 and q2, and between q3 and q4 respectively.

The squeeze operation. The key observation is that each z-motion of a two-way automaton
A can be simulated through a single one-way traversal, non-deterministically: The new run
maintains the three states of the z-motion in parallel, as depicted in Figure 3.2.

� when entering the z-motion, the state q1 of the first pass is known, but the state p5 of

the second pass and the state p6 of the third passes are guessed, and p5
a,.−−→ p6 must be a

transition rule of A;

� during the z-motion simulation, the states of the first and third passes are updated by
following the transition rules of A. The state of the second pass is also updated by
applying transition rules of A, but in reverse.

� when leaving the z-motion, the states p2, p3 of the second and third states must be

validated by a transition rule p2
b,/−→ p3 of A.

38

q1 p1 · · · p2

p3· · ·p4p5

p6 p7 · · · q2

a, .

b, /

a, .

b, .

Figure 3.2: Simulating a z-motion via RAa,b(q1, q2).

Let us name RAa,b(q1, q2) the one-way automaton simulating the z-motion beginning in the
state q1 of A and ending in the state q2 of A, if the z-motion is rightward and surrounded by a
and b letters. We name it LAa,b(q1, q2) if the z-motion it simulates is leftward, and in this case
the input is read to the left. This construction is similar to the crossing sequence approach of
Shepherdson, but restricted to more basic shapes, and thus easier to define.

We can now define a new automaton, that we name squeeze(A), that alternates non-
deterministically between two modes:

� in mode A, it just runs A, but with the possibility to guess whether it enters a z-motion,
in which case it swaps to mode Z.

� in mode Z (in state q1), it simulates a z-motion in one pass, by guessing the ending state
q2, and switching to RAa,b(q1, q2) (or LAa,b(q1, q2), depending on the current direction), and
guesses at each input letter whether the z-motion ends. If so, it either switches to mode
A, or stays in mode Z for a new z-motion.

Global elimination of nested z-motions. The automaton squeeze(A) is however limited
to the elimination of isolated z-motions, so there is not always a one-way run on every input
word. Even worse, a single application of squeeze does not necessarily decrease the degree of
nesting of z-motions, as we can see in the first application of squeeze in Figure 3.3.

The original proof only states that “repeating this derivation operation a sufficient number
of times, a one-way automaton is obtained which defines the same [language as A]” [RS59], as
illustrated in Figure 3.3. In [FGRS13] we proved that it is sufficient to apply squeeze H2 times,
where H = 2|Q|+ 1 is a bound on the length of crossing sequences. Indeed:

� applying squeeze H times decreases the nesting of z-motion sequences by (at least) one,

� and the nesting depth is bounded by H.

Hence every run of A has a corresponding one-way run in squeezeH
2
(A). By removing

leftward transition rules in squeezeH
2
(A), we obtain a one-way automaton recognizing L(A).

Remark 1. The nesting structure of z-motions has a direct formulation in persistent homology,
a domain mostly studied in the computer graphics community [ZC05]. It could be used to
associate each z-motion with the factor of the input word it covers (named persistent interval in
persistent homology), and also inductively on z-motions obtained after successive eliminations.
A result of interest is that, if we consider that one step eliminates all elementary z-motions, then
the number of steps to eliminate all reversals is bounded by the size of the maximal subset of
intersecting intervals. However, in our case, this quantity is unbounded, as observed for instance
in a “stairs” shape of run. A deeper understanding of this theory may still have consequences
in the field of two-way transducers.

39

q1
•

q2•
q3
•

q4•run of A

→

LA(q1, q2) ••

LA(q3, q4)••

q5
•

q6•
run of A1 = squeeze(A)

→

RA1(q5, q6)• •q7
•

q8•
run of A2 = squeeze2(A)

→

RA2(q7, q8)• •run of A3 = squeeze3(A)

Figure 3.3: Z-motions removal by applications of squeeze.

3.1.3 Other known constructions

For sake of curiosity, we quickly review some other constructions proving that two-way automata
can be translated into one-way automata. This section can be safely skipped by the busy reader.

Over-approximation of successful runs. Vardi proposed a kind of “subset construction”
on two-way automata, that permits to build a non-deterministic one-way automaton recognizing
the complement of the language of the two-way automaton [Var89].

In order to estimate if a word u of length n is accepted by a two-way automaton A =
(Q,Σ,`,a, δ, I, F), one can try to build a series of sets (Ti)0≤i≤n+1 of states of A, having the
following properties:

� T0 contains the initial states of A: I ⊆ T0,

� Tn+1 contains no final state of A: F ∩ Tn+1 = ∅,

� for 0 ≤ i ≤ n+ 1, if q ∈ Ti and a ∈ Σ then

– if (q, a, q′, /) ∈ δ then q′ ∈ Ti−1 (assuming 0 ≤ i− 1)

– if (q, a, q′, .) ∈ δ then q′ ∈ Ti+1 (assuming i ≤ n)

This is a kind of over-approximation of the accessibility relation, because it does not take
the input into account when crossing a position several times. For instance reading an “a” to
the right, followed by reading a “b” to the left is allowed here.

The key observation is that there exists such a sequence (Ti) iff u /∈ L(A). Indeed, if
u ∈ L(A), i.e. there is a successful run of A, then no such sequence (Ti) exists, as the states

40

of this run will necessarily appear from I ⊆ T0 to Tn+1, and thus F ∩ Tn+1 6= ∅. Conversely,
if u /∈ L(A), one can build such a sequence (Ti) by putting in each Ti all the states reached at
position i in A on u (assuming A is complete). This sequence (Ti) verifies all the properties
above, in particular F ∩ Tn+1 = ∅.

Then, one can easily build a non-deterministic one-way automaton building any sequence
(Ti) on-the-fly, hence recognizing the complement of L(A). This automaton has an exponen-
tial number of states compared to A. The construction is then refined in order to obtain a
deterministic one-way automaton, with O(2|Q|

2
) states.

Another automata-centric translation has been proposed in [GO14], that transforms any two-
way alternating finite automaton into a non-deterministic one-way automaton. This translation
is also exponential, and this is tight.

Finite right congruence. Regular languages are characterized by one-way automata, but
also by other means, notably algebraic ones. Indeed, regular languages correspond to languages
having a finite syntactic monoid, and also to those having a finite right congruence (see Chap-
ter 5). This latter characterization can also be used to show that two-way automata define
regular languages, as explained in [Sak09, p. 173], and taught by Schützenberger.

Regular expressions. Yet another characterization of regular languages involves regular
expressions. A direct translation of two-way automata into regular expression has been proposed
by Hulden [Hul15]. It uses an intermediate word where the input letters are separated by triples
(source state, target state, direction). Somehow, these triples describe the crossing sequence
arising between positions. Regular expressions are used to check the consistency of the crossing
sequence, locally. Then the regular expression is projected in order to recognize the input
language.

Logic. Géraud Sénizergues and I are currently writing two new proofs that two-way automata
recognize regular languages. Both proofs rely on an idea from Géraud Sénizergues: using “words
of words” to encode configurations of two-way automata. The first proof uses the fact that,
for order-2 pushdown automata, the set of configurations that such automata can reach, from
a regular set of configurations, is itself regular [HO07]. The second one uses logic, and more
precisely Muchnik’s theorem [Sem84, MS92] to transfer the MSO-definability of a tree-structure
S∗ to the MSO-definability of its original relational structure S.

3.2 From automata to transducers

Compared to the automata constructions, deciding the one-way definability of two-way trans-
ducers amounts to analyze how the outputs can be produced. In this section we provide some
examples, and a high-level analysis of the one-way definability problem. We exhibit some key
points that any algorithm for this problem has to address, and some lower bounds.

3.2.1 Properties of two-way transducers: primer

Let us consider a first example, to tackle the limits of one-way definability.

Example 3.1. We focus on the fcopy function, already mentioned in Example 2.2, that maps
a word u to uu, over an alphabet Σ = {a, b}.

If dom(fcopy) = Σ∗, then fcopy is not one-way definable: the one-way transducer would have
to store u, which is impossible with finitely many states.

41

Loop L1 Loop L2 2 copies of L1 3 copies of L2

u1 u2 u3 u4 u5
input word:

v1 v2 v3 v4 v5one-way
transducer:

ε ε ε w1
w2

εw3w4
ε

ε ε ε ε

two-way
transducer:

Original run

u1 u2 u2 u3 u4 u4 u4 u5

v1 v2 v2 v3 v4 v4 v4 v5

ε ε ε ε w1 w1 w1
w2

εεεw3w4w4
ε

ε ε ε ε ε ε ε

Pumped run

Figure 3.4: Pumping two loops in a simple run.

However, if dom(fcopy) = (aba)∗, then fcopy becomes one-way definable: a one-way transdu-
cer just needs to output, at each read letter, the next two letters in the sequence (aba)∗, keeping
track of the shift (i.e. emit successively ab, aa and ba).

This provides a first intuition: there is a tight link between one-way definability, and having
outputs with bounded periods inside loops. We will now make this link more explicit.

Loops. When one wants to transform a two-way transducer into a one-way one, the problem
is only to deal with “long” outputs. Indeed, “short” (say, bounded) outputs can be guessed
and checked, and we could reuse the techniques mentioned for automata. And of course, “long”
outputs are due to loops, hence the analysis of loops is the central point here. This is a real
difference with automata constructions, where we did not have to consider them at all.

Usual loops in one-way automata are defined as a part of a run that starts and ends in the
same state, which allows to build a new run on a new input where the corresponding factors (of
the input and the run) are repeated (or “pumped”). When moving to two-way loops, this means
that we need to have the same crossing sequences at the borders of the loop, in order to be able
to pump both the input and the run. Formally, a loop of a run ρ of a two-way transducer over
an input word u is an interval of positions L = [x1, x2] of u with identical crossing sequences in
ρ.

Condition for one-way definability. Roughly speaking, a two-way transducer is not one-
way definable when the run order and the input order are somehow inverted, i.e. when it has to
produce (long) outputs at some position of the input word, but depends on distant (on the right)
positions of the input word. This situation will be captured by Property P in the Rabin-Scott
approach, and by the notion of inversion in the Shepherdson approach.

This situation is depicted in Figure 3.4 in the simplest case, i.e. a run that performs 3
passes on the whole input word, and contains two loops L1 and L2 that produce some output,
for instance w1 6= ε and w4 6= ε. Assume this two-way transducer T is one-way definable (and
that all its runs have this shape). This corresponds to a problematic inversion as described
above: the one-way transducer has to output w4 after w1, but reads u2 (producing w4) before
u4 (producing w1). The one-way transducer must also have loops in order to recognize the same
domain. For simplicity we assume here that they are delimited by exactly the same positions
as the loops of the two-way transducer. Then, when pumping the loop L1 n1 times, and the
loop L2 n2 times, the two transducers must produce the same output, that is:

wn2
1 w2w3w

n1
4 = v1v

n1
2 v3v

n2
4 v5

42

The inverted order between n1 and n2 in both sides of the equation permits to use some
combinatorial tools (that we will expose next). In particular, it ensures that the word w1w2w3w4

(and generally, everything between w1 and w4) has a period bounded by some value depending
only on the size of the two-way transducer (and not the input word). In other words:

∃u, v, p such that w1w2w3w4 = upv and

{
|u| is polynomially bounded in |T |, and
v is a prefix of u.

This condition (the existence of u, v and p) on every run of T is thus necessary for one-way
definability. It is also sufficient. Indeed, an equivalent one-way run has to guess the positions
of the loops (on the fly), the words u and v (there are finitely many), and to output upv
progressively, checking at each read letter that it outputs the right number of letters (as shown
for instance in Example 3.1).

This analysis is limited to runs composed of a single sweep, (and without output in the last
pass). The situation is much more involved in the general case:

� in a Rabin-Scott approach (as detailed in Section 3.3), the treatment of a single z-motion
will be similar to this analysis, but with the intermediate shape of a z-motion outputting
ε on the backward pass. One of the difficulties is to prove that a two-way transducer is
one-way definable iff all its z-motions are (inductively). The squeeze operation and the
construction of the one-way transducer will be very similar to that automata case.

� in a Shepherdson approach (as detailed in Section 3.4), two difficulties arise:

1. with multiple sweeps, there can be several pairs of one-way definable loops like
(L1, L2), but at different levels. As we will see, they have to form “stairs”. This
will induce a notion of “block decomposition”.

2. generally, reversals may appear at inner positions, not only at the border, and in
particular inside loops. It becomes difficult to derive word equations that will ensure
bounded periodicity. We will need to identify components inside loops, and focus on
idempotent loops to circumvent this.

Combinatorics toolbox. Most of the combinatorial parts of the proofs are solved using
Fine-Wilf’s theorem.

Theorem 3.1 (Fine-Wilf’s theorem [FW65]). If w1 = w′1w w′′1 has period p1, w2 = w′2ww
′′
2

has period p2, and the common factor w has length at least p1 + p2 − gcd(p1, p2), then w1, w2,
and w3 = w′1ww

′′
2 have period gcd(p1, p2).

From Fine-Wilf’s theorem, we derive two properties. The first one gives, from the equation
obtained from pumping loops, a bound on the period of the pumped output.

Lemma 3.1. Consider a word equation of the form

v
(n1,n2)
0 vn1

1v
n1
1v
n1
1 v

(n1,n2)
2 vn2

3v
n2
3v
n2
3 v

(n1,n2)
4 = w0 w

n2
1w
n2
1w
n2
1 w2 w

n1
3w
n1
3w
n1
3 w4

where n1, n2 are the unknowns, v1, v3 are non-empty words, and v
(n1,n2)
0 is a word with iterated

factors of the form vn1
0 or vn2

0 (and resp. for v
(n1,n2)
2 and v

(n1,n2)
4). If the above equation holds

for all n1, n2 ∈ N, then

v1v1v1 v
n1
1v
n1
1v
n1
1 v

(n1,n2)
2 vn2

3v
n2
3v
n2
3 v3v3v3

has period gcd(|v1|, |v3|) for all n1, n2 ∈ N.

The second property allows to transfer the properties from the pumped run, to the original run.

Lemma 3.2. Assume that v0 v
n
1v
n
1v
n
1 v2 · · · vk−1 v

n
kv
n
kv
n
k vk+1 has period p for some n > p. Then

v0 v1
n1v1
n1v1
n1 v2 · · · vk−1 vk

nkvk
nkvk
nk vk+1 has period p for all n1, . . . , nk ∈ N.

43

Subruns. A difference between automata and transducers, is that, in the case of transducers,
there may exist parts of runs that are not one-way definable even if the transducer is one-way
definable. So, we will always take care of considering only parts of runs that can be embedded
in a successful run. This can be enforced in all the proofs exposed here, but we skip the details
for clarity.

Normalized runs. Still, some properties on runs of two-way automata transfer to two-way
transducers. Notably, functional two-way transducers can be assumed to be normalized, in
the exact same manner as for two-way automata, but for a different reason. Consider a non-
normalized run, and a crossing sequence with two locations (x, y) and (x, y′) associated with the
same state, with y and y′ of same parity. Then the part of the run between these two locations
must have the empty word as output, otherwise another output word could be produced on
the same input word by repeating this part, which would contradict functionality. The run
obtained by removing this part is also successful (with the same output), and we can discard
the non-normalized run. As for automata, this can be check easily on crossing sequences.

3.2.2 Lower bounds for one-way definability

Before describing some algorithms for deciding one-way definability, let us exhibit some lower
bounds for this problem. The first one is obtained by encoding the emptiness of the intersection
of a set of deterministic finite state automata, which is PSpace-hard.

Proposition 3.1. One-way definability of deterministic two-way transducers is PSpace-hard.

If one wants to build the equivalent one-way transducer, it will be of doubly exponential size
in the worst case.

Proposition 3.2. There exists a family (fn)n∈N of functions from {0, 1}∗ to {0, 1}∗ such that:

� every fn can be implemented by a sweeping transducer of size O(n2), and

� every fn is one-way definable, but

� every one-way transducer implementing fn has at least Ω(22n) states.

Consider for instance the “copy” function fn(u) = uu, but on specific domains:

dom(fn) = {a0w0 · · · a2n−1w2n−1 | ∀i, ai ∈ {0, 1} and wi is the binary encoding of i on n bits}

In other words, w0 = 0n, w1 = 0n−11, . . . , and w2n−1 = 1n. A sweeping transducer of size
O(n2) can implement fn. This transducer uses its first n sweeps to check the wi’s: the jth
sweep checks the jth bits to the right of wi, using the 1 → 0 changes in the (j + 1)th bit as a
hint to change its bit. Then, two additional sweeps are used to copy the input.

It is also possible to implement each fn by a one-way transducer, by simply outputting the
ai’s and storing them, and also storing one wi at a time to check their correctness. It can be
shown that any one-way transducer implementing fn has to store a word of exponential size,
and thus requires a doubly exponential number of states [BGMP18].

3.3 Rabin-Scott approach

Let us now adapt the Rabin-Scott approach to transducers [FGRS13]. From a functional two-
way transducer T , we first define its z-motion transductions RTa,b(q1, q2) and LTa,b(q1, q2), sim-

ilarly to RAa,b(q1, q2) and LAa,b(q1, q2) for the automaton A. Then we exhibit a necessary and

44

sufficient condition for a z-motion transduction to be one-way definable. This Property P is
central to our proof. It consists in a combinatorial condition on all loops of a z-motion trans-
ducer, but we prove that is is semantical, i.e. every z-motion transducer Z ′ equivalent to Z
also verifies Property P. Then we show that if T is one-way definable, then all z-motion trans-
ductions RTa,b(q1, q2) and LTa,b(q1, q2) also are, which permits to use the squeeze operation on T
exactly like we did on automata, and obtain an equivalent transducer with some removed z-
motions. This yields a decision procedure, by successively applying squeeze, each time checking
that Property P holds on all z-motion transducers of the current transducer. If it fails before
H2 applications of squeeze, then T is not one-way definable. Otherwise it is, and squeezeH

2
(T)

is one-way, once its leftward transitions are removed. This section describes these steps.

3.3.1 Decomposing into elementary z-motions

Z-motion transducers. A z-motion transducer is similar to a two-way transducer, but its
successful runs must end in a final state and have a rightward z-motion shape, as depicted in
Figure 3.2.1 Also, the input word is not necessarily surrounded by `,a letters, as z-motion
transducers will be defined from subruns of two-way transducers. A z-motion transduction is a
transduction that can be associated with a z-motion transducer. While z-motion transducers
are not strictly speaking transducers, we use the same terminology, and most of the definitions
apply.

Given a two-way transducer T , we define its z-motion transductions LTa,b(q1, q2) (resp.

RTa,b(q1, q2)), where a, b ∈ Σ and q1, q2 are states of T , as the set of pairs (u, v) obtained
by considering a part of a successful run of T operating on the factor u of the input word,
having a shape of leftward (resp. rightward) z-motion, outputting v, starting in q1 and ending
in q2.2

Property P. Central to our proof is a characterization of one-way definable z-motion trans-
ductions by the following property.

Definition 3.1 (Property P). Let Z be a z-motion transducer. We say that Z satisfies the
property P if for all words u ∈ dom(Z), for all successful runs ρ on u, and for all pairs of loops
(i1, j1) and (i2, j2) of ρ such that j1 ≤ i2, there exist β1, β2, β3, β4, β5 ∈ Σ∗, f, g : N2 → Σ∗ and
constants c1, c

′
1, c2, c

′
2 ≥ 0 such that c1, c2 6= 0 and for all k1, k2 ≥ 0,

f(k1, k2)x0v
η1
1 x1w

η2
1 x2w

η2
2 x3v

η1
2 x4v

η1
3 x5w

η2
3 x6g(k1, k2) = β1β

k1
2 β3β

k2
4 β5

where ηi = kici+c
′
i, i ∈ {1, 2}, and, xi’s, vi’s and w′is are words defined as depicted in Figure 3.5.

Let us briefly give some intuitions behind this word equation. The property will be used
to characterize one-way definability of z-motion transducers, so imagine an equivalent one-way
transducer running in parallel, on the same input u. When pumping the loops of the two-way
transducer, the one-way transducer will have to produce the same output. So there must be
corresponding loops in the one-way transducer. However, they may appear with some shift,
and several occurrences of one loop may correspond to several occurrences of the corresponding
loop. This explains that ηi and ki may differ, and are linearly related. This also explains
the functions f and g: when pumping, parts that are outside the z-motion may be produced
differently in the two transducers.

1The “semantical” restriction on the shape of successful runs is “syntactically” checked when they are removed,
i.e. simulated in a one-way manner, as described later.

2More precisely, in order for LTa,b(q1, q2) to be rightward, we actually define it on the mirror of T . This makes
no significant difference in the proofs.

45

•
i1 j1 i2 j2

x0 v1 x1 w1

x2

x4
v2 x3 w2

v3 x5 w3 x6

Figure 3.5: Output decomposition in property P.

Besides these technicalities, the main point here is the alternating c1 / c2 / c2 / c1 on the
left side (through ki’s), versus c1 / c2 on the right side. This will allow to infer some periodicity
property on the output word, and thus a way to produce it from left to right.

As expected, Property P characterizes one-way definable z-motion transducers:

Proposition 3.3. A z-motion transducer Z is one-way definable iff it satisfies Property P,
and in this case, a corresponding one-way transducer can be built. Moreover, the Property P is
decidable.

The proof of this result is deferred to Section 3.3.3. We focus now on the decision algorithm
itself: from this characterization of z-motions, how to obtain a characterization for the whole
transducer?

3.3.2 Decision algorithm

Squeeze operator. In Section 3.1.2, we defined squeeze(A) as the two-way automaton built
from the two-way automaton A, where some z-motions (selected non-deterministically) are
removed. In the case of transducers, this will not always be possible. However, if a transducer
T is known to be one-way definable, then we will see that squeeze(T) can be defined. This is
maid possible by the following fact.

Proposition 3.4. If T if one-way definable, then all its z-motion transductions LTa,b(q1, q2) and

RTa,b(q1, q2) are also one-way definable.

This is proved by showing that Property P holds in this case, and by applying Proposi-
tion 3.3. The proof is not complex, and follows the explanations following the definition of the
Property P.

Hence, if T is one-way definable, then squeeze(T) is defined in the same manner as for
automata (see Section 3.1.2), the only real difference is how a z-motion is replaced by a one-way
part of run: This will be detailed in Section 3.3.3.

Algorithm. Let us now explicit in Algorithm 1 the decision algorithm for deciding whether a
functional two-way transducer T is one-way definable. This algorithm tries to apply H2 times
the squeeze operator on T . Each time, it checks whether all its z-motion transductions are
one-way definable. Indeed, if at some point this test fails, then we have found a transducer
equivalent to T , that is not one-way definable (by Proposition 3.4), and thus T itself is not one-
way definable. Otherwise, after H2 applications of squeeze, one gets a transducer equivalent to
T , that is one-way once leftward transitions are removed (for the same reason as for automata,
see Section 3.1.2), and thus T is one-way definable.

Testing whether all z-motion transductions of a transducer are one-way definable is decida-
ble: One can define all the z-motion transducers recognizing them, and then check Property P
on them (using Proposition 3.3).

46

Algorithm 1 Deciding one-way definability of a functional two-way transducer, by z-motion
elimination.

1: function OneWayDefinable(functional two-way transducer T) : Boolean
2: i← 0
3: T ′ ← T
4: while all z-motion transductions of T ′ are one-way definable and i ≤H2 do
5: T ′ ← squeeze(T ′)
6: i← i+ 1

return i >H2

Complexity. The time complexity of Algorithm 1 is a tower of exponentials whose height
depends on the size of T , and is thus non elementary. Indeed, the squeeze operator produces
a transducer that is doubly exponential in the size of its input transducer, as we will see later:
it is decomposed in two successive steps, both of which induce an exponential blowup as they
need to guess a word of size polynomial in the size of their input transducer. As squeeze is
applied H = 2|Q|+ 1 times in the worst case, we obtain such a tower.

3.3.3 Dealing with elementary z-motions

In this Section we prove Proposition 3.3, i.e. that for z-motion transducers, Property P char-
acterizes one-way definability, and is decidable.

Property P is semantical and necessary. Property P describes a property of the loops of
a transducer, and as such it seems related to it. But in fact it is related to the transduction itself.
This will allow us to reuse it at any time point during the transformation of the transducer.

Proposition 3.5. Let T and T ′ be two equivalent z-motion transducers. T satisfies Property P
iff T ′ also does.

A first consequence is that Property P is a necessary condition for a z-motion transdu-
cer T to be one-way definable. Indeed, if T is one-way definable, we can take an equivalent
one-way transducer and turn it into a z-motion transducer (by adding two passes producing
ε). It can easily be checked that this latter z-motion transducer satisfies Property P, and by
Proposition 3.5, so does T .

Lemma 3.3. If a z-motion transducer is one-way definable, then it satisfies Property P.

Property P implies one-way definability. Proving the converse of Lemma 3.3 requires
to exploit Property P in order to turn a z-motion transducer into a one-way transducer. This
constitutes the most technical part of the proof.

In order to simplify the proof, in particular the word combinatorics, we proceed in two
steps, by introducing ε-z-motion transducers as intermediate model. An ε-z-motion transducer
is simply a z-motion transducer producing ε in its backward pass. The structure of the proof is
then:

1. we define Property P1 (describing the periodicity of the outputs in loops), show that it is
implied by Property P, and that any z-motion transducer satisfying Property P1 can be
transformed into an equivalent ε-z-motion transducer.

2. similarly, we define Property P2 of ε-z-motion transducers, show that it is also implied by
Property P, and that any ε-z-motion transducer satisfying Property P2 can be transformed
into an equivalent one-way transducer.

47

`w x

t3 y

w′

xy ∈ t1t∗2

Figure 3.6: Decomposition of the output according to Property P1.

We only sketch the first step in this document, the second one follows the same ideas. It is
interesting to explain this step, because it shows how to shift from a property on the existence
of loops (Property P) to a property on the periodicity of the output (Property P1). Property
P1 is depicted in Figure 3.6.

Definition 3.2 (Property P1). Given a z-motion transducer Z, and a pair (u, v) ∈ JT K, we say
that (u, v) satisfies Property P1 if for all runs ρ of Z on u, there exists a position ` of u and
words w,w′, t1, t2, t3 ∈ ∆∗ such that:

� w (resp. x) is the output of ρ on the first pass, before (resp. after) `, and

� y (resp. t3) is the output of ρ on the second pass, on the right of (resp. left of) `, and

� w′ is the output of ρ on the third pass, and

� xy ∈ t1t∗2, and

� |ti| ≤ 4.o.m3.|∆| for every i ∈ {1, 2, 3}, where m is the number of states of Z and o the
size of the longest word in its transition rules.

We say that Z satisfies Property P1 if all (u, v) ∈ JZK satisfy it.

The important point in the definition is the last one, i.e. words ti are “small”, i.e. bounded
in the size of the transducer, independently of the word. This permits to build an equivalent
ε-z-motion transducer.

Proposition 3.6. If a z-motion transducer satisfies Property P1, then one can build an equi-
valent ε-z-motion transducer.

The goal here is to produce the outputs of the first and second pass of the z-motion transducer
Z only during the first pass. This can be obtained by guessing the ti’s, and also guessing the
position `. Before `, w is output, and t3 is checked (running transitions in backward). After `,
it remains to produce xy, i.e. the word in t1t

∗
2 with the same length as xy. This is achieved by

outputting a prefix of t1t
∗
2 progressively. Each time a letter of the input word is read, it outputs

the same amount of letters of t1t
∗
2 as the transitions used by Z on the first and second pass,

and a counter is used to keep track of the current position in t1t
∗
2 (this counter is bounded: it

does not need to distinguish the copies of t2). Then, at the end of the first pass, t3 is output,
and the second pass can be performed without outputting anything.

Property P2 is similar but on ε-z-motion transducers: it states that one can find a position
`1 in the first pass, and a position `2 in the third pass, such that the output between `1 and `2
is of the form t1t

∗
2t3, which permits the construction of an equivalent one-way transducer with

the same kind of technique.

48

Moreover, Property P implies Property P1 and Property P2. These proofs rely on word
combinatorics. They consist in case analyses, some of them being solved using Fine-Wilf’s
theorem (Theorem 3.1).

Proof of Proposition 3.3. We can now plug these ingredients to get a proof that a z-motion
transducer T is one-way definable iff it satisfies Property P. By Lemma 3.3, if Z is one-way
definable, then it satisfies Property P.

For the converse, assume now that T satisfies Property P. As we have seen, this implies
that T also satisfies Property P1, and we can, by Proposition 3.6, build an equivalent ε-z-motion
transducer Z ′. By Proposition 3.5, Z ′ also satisfies Property P, and thus also Property P2.
This allows us to build an equivalent one-way transducer Z ′′.

It remains to show that Property P is decidable. It suffices to build Z ′′ as explained above,
and then check whether Z ′′ is equivalent to Z. Indeed, if Z is one-way definable, they will be
equivalent. If Z is not one-way definable, then they cannot be equivalent, as Z ′′ is one-way.

3.4 Shepherdson approach

As we have seen, the Rabin-Scott approach for deciding one-way definability led to an algorithm
with non-elementary complexity. We study now the Shepherdson approach with the objective
of improving the complexity. The price to pay, is that the proof will be less “compositional”,
and we will have to carefully analyze the loops of two-way transducers, a challenging task.

3.4.1 Results and road map

The Shepherdson approach leads to the following result, that we prove in this section.

Theorem 3.2. There is an algorithm that takes as input a functional two-way transducer T
and outputs in 3ExpTime a one-way transducer T ′ satisfying the following properties:

1. T ′ ⊆ T ,

2. dom(T ′) = dom(T) if and only if T is one-way definable,

3. dom(T ′) = dom(T) can be checked in 2ExpSpace.

Moreover, if T is a sweeping transducer, then T ′ can be constructed in 2ExpTime and dom(T ′) =
dom(T) is decidable in ExpSpace.

In order to prove this theorem, we first focus on the conditions for one-way definability.
We already gave some intuitions on the notions of inversion and decomposition. These will be
explained in further details later.

Theorem 3.3. Given a functional two-way transducer T , an integer B can be computed such
that the following are equivalent:

P1) T is one-way definable,

P2) for every successful run of T and every inversion in it, the output produced amid the
inversion has period at most B,

P3) every successful run of T admits a B-decomposition.

We first prove P1 → P2 → P3 for sweeping transducers, which loops are easier to analyze.
We then analyze the general two-way case, and prove P1 → P2 → P3 → P1 for two-way
transducers. Indeed P3→ P1 is not simpler in the sweeping case. The proof that Theorem 3.3
implies Theorem 3.2 is deferred to the end of this Section.

49

L2 L1

`1

`2 v2

v1 output of T : v1 v1 . . . v2 v2 v2 v2

output of T ′: v2 v2 v2 v2 . . . v1 v1

Figure 3.7: An inversion and the effect of pumping in an equivalent one-way transducer T ′.

3.4.2 Sweeping case

From now on, we fix a functional non-deterministic sweeping transducer T and analyze one of
its successful runs ρ.

Inversions: P1 → P2. The notion of inversion is illustrated in Figure 3.7.

Definition 3.3 (Inversion (sweeping case)). An inversion of the run ρ is a tuple (L1, `1, L2, `2)
such that

1. L1, L2 are loops of ρ,

2. `1 = (x1, y1) and `2 = (x2, y2) are the first positions of factors of ρ in L1 and L2, respec-
tively,

3. x1 > x2, while `2 follows `1 in the run,

4. for both i = 1 and i = 2, out(tr(`i)) is non-empty (where tr(`i) is the part of the run
starting at `i and crossing Li) and

5. there is no loop strictly included in Li producing a non-empty output at the level of tr(`i)
(for both i ∈ {1, 2}).

This definition formalizes the intuitions given in Section 3.2.1: an inversion between the run
order and the input order (Condition 3), producing non-empty outputs (Condition 4).

Condition 5 requires that these inversions are “minimal”, in the sense that they do not
include loops with the same property. This allows to bound the outputs v1 and v2 of both
factors of ρ in L1 (resp. L2) starting at `1 (resp. L2) by the constant B = C|Q|H + 1 where
C is the maximal length of outputs in the transitions of T , and H = 2|Q| − 1 is the maximal
length of a crossing sequence. This will be useful for bounding the period, as it will be bounded
by |v1| and |v2|, and thus by B. Indeed, we can prove the following property, i.e. P1 → P2 (a
slightly stronger statement is used in the complete proof):

Proposition 3.7. If the functional sweeping transducer T is one-way definable, then the fol-
lowing property P2 holds:

For all inversions (L1, `1, L2, `2) of ρ, the period of out(ρ[`1, `2]) is bounded by B.

The proof follows the ideas exposed on a simple case in Section 3.2.1. It uses the combina-
torial properties based on Fine-Wilf’s theorem: Lemma 3.1 to bound the period of the output
in the pumped run, and Lemma 3.2 to lift it to the original run.

50

`0

`2

`1

`4

`3

`5

`2k

`2k+1

Figure 3.8: A non-singleton S∗-equivalence class seen as a series of overlapping inversions.

Run decomposition: P2 → P3. From this property P2, we aim now at building a com-
plete decomposition of the run ρ into “one-way definable” parts. A first step towards such a
decomposition, is to generalize Proposition 3.7 to a series of overlapping inversions, instead of
a single one.

We formalize this through the binary relation S. For every pair of locations `, `′ of ρ, we have
` S `′ iff ` and `′ are inside the same inversion (L1, `1, L2, `2) of ρ, i.e. between `1 and `2. We
denote by S∗ the reflexive and transitive closure of S, which constitutes an equivalence relation.
The relation S∗ may gather distinct inversions together, and in fact it gathers overlapping
inversions, in the intuitive way: the second inversion begins inside the first one. Consider for
instance the situation depicted in Figure 3.8. The inversions (L0, `0, L1, `1) and (L2, `2, L3, `3)
overlap, as `2 is between `0 and `1. As stated above, this permits to extend the bounded
periodicity of the output to a whole equivalence class of S∗:

Lemma 3.4. If ρ satisfies P2 and if ` and `′ are two locations of ρ such that ` precedes `′ in
ρ, and ` S∗ `′, then out(ρ[`, `′]) has period at most B.

However, S∗ may have several equivalence classes. This corresponds to having some series
of inversions that do not overlap, typically on separate levels. Indeed we need a more global
notion of “decomposition” of ρ, as depicted in Figure 3.9. The thick arrows indicate outputs
that are unbounded, but with a bounded period, while dotted lines denote parts with a bounded
output. Let us define a B-decomposition of ρ and show how it applies on the depicted run.

A B-decomposition of ρ is a partition of ρ into B-blocks and B-diagonals, where:

� a B-block is a factor ρ[`, `′] of ρ (like B1 and B2) which output has a period bounded3 by
2B, and such that the output produced in positions between ` = (x, y) and `′ = (x′, y′)
but outside [x, x′] (depicted as dotted lines) is bounded by 2HB.

� a B-diagonal is a factor ρ[`, `′] of ρ (like D1 and D2) made of floors (thick arrows in the
figure), i.e. rightward factors of ρ, that do not overlap vertically and that have a period
bounded by 2B, and separated by factors of ρ (dotted lines) having an output bounded
by 2HB.

3strictly speaking, we allow here a prefix and a suffix of length at most 2B, and the word in-between has
period at most 2B.

51

`0

`1

`2
`3

`4

D1

D2

B1

B2

Figure 3.9: Decomposition of a run into diagonals and blocks.

Now, it remains to show that Property P2 implies a B-decomposition. We already did a
part of the job when studying the overlapping inversions (through the relation S∗). Indeed, we
can show that:

1. every (non-singleton) equivalence class of S∗ defines a B-block,

2. outside these blocks, every part of the run is a B-diagonal.

For the first point, we do not explicit in details how a B-block is “defined” from an equiva-
lence class of S∗, but, roughly speaking, it is the bounding box including all inversions of that
class. This ensures that, on the left and on the right of a B-block (at the same levels), the
output is bounded: otherwise, there would be an inversion in this area, which should have been
included in that bounding box. The bound on the period of B-blocks is given by Lemma 3.4.

The second point is proved in two steps. First, one can show that two distinct B-blocks
cannot overlap vertically (i.e. share some positions of the input word): they would have to
merge. Now, between two blocks, productive loops have to be arranged in a monotonic way
(i.e. a loop has to use input positions after the preceding one, and produce only at one level),
otherwise they would form an inversion, and thus a B-block. This defines the floors. Also, this
permits to bound the length of outputs outside these floors: a large output outside floors would
imply an inversion.

This terminates the proof that P2 → P3 for sweeping transducers. We will prove P3 →
P1 for the general case in the next section.

3.4.3 General case

Let us now prove Theorem 3.3, i.e. P1 → P2 → P3 → P1, for arbitrary functional two-way
transducers (not necessarily sweeping). We fix such a transducer T for this section, and a
successful normalized run ρ of it on an input word u. We also keep the constant H = 2|Q| − 1
as the length of the maximal crossing sequence in ρ. The proof follows the same lines as for
sweeping transducers, but with additional difficulties concerning loops. In order to retrieve
word equations similar to the sweeping case, we define the notions of idempotent loops and their
components.

Idempotent loops and components. Let us analyze slices of runs defined by intervals of
the input word (not necessarily loops), and the way they can be composed. Such a slice on an
interval I can be abstracted by three elements: the two crossing sequences c1, c2 at the borders,
and the internal shape, i.e. how locations at the borders are linked. We name this shape the
flow FI of the interval I, and these three elements its effect EI = (FI , c1, c2).

52

I

0

1

2 0

13

4 2

3

4

ααα

βββ

γγγ

δδδ

ζζζ

I copy of I

ααα

βββ
ααα

γγγ

δδδ
βββ

γγγ

ζζζ
δδδ

ζζζ

I 2 copies of I

ααα

βββ
ααα

γγγ

δδδ
βββ

ααα
γγγ

ζζζ
δδδ

βββ

γγγ

ζζζ
δδδ

ζζζ

Figure 3.10: Pumping a loop in a two-way run.

Formally, the flow FI of the interval I = [x1, x2] of positions of the input word is the graph
which nodes are {0, . . . , h}, where h is the maximal length of the two crossing sequences at x1

and x2, and where an edge y → y′ denotes that there is a factor of the run ρ that starts at (x, y)
and ends at (x′, y′), where x and x′ are at the border of I ({x, x′} ⊆ {x1, x2}). Consider for
instance the interval I on the left of Figure 3.10. The flow FI has nodes {0, . . . , 4} and edges
0→ 1→ 3→ 4→ 2→ 0.

Then we define finite semigroups for flows and effects. Indeed, from two flows F and F ′, one
can define the new flow F ◦ F ′ obtained by plugging F and F ′ if possible, or a special element
⊥ if not. We do not formalize this operation here, but the definition follows the intuition.
For instance the flow FI ◦ FI is illustrated in the middle of Figure 3.10. From two effects
E = (F, c1, c2) and E′ = (F ′, c′1, c

′
2), one defines E � E′ = (F ◦ F ′, c1, c

′
2) whenever c1 = c′2 and

F ◦ F ′ 6= ⊥, and ⊥ otherwise.

We can now use these operations to identify loops of special interest: a loop L is idempotent
if EL = EL � EL and EL 6= ⊥. For instance if we consider I as a loop in Figure 3.10 (it is
the case if it has the same crossing sequences at its borders), we see that I is not idempotent.
For instance 2→ 0 in EI while 2→ 3 in EI � EI (in the middle of the figure). One can check
that EI � EI is itself idempotent. Recall that our goal is to get word equations similar to the
sweeping case when pumping loops. On non-idempotent loops like I in Figure 3.10, some factors
are inverted when pumping, like the red dotted factors. We need one more notion to retrieve
nice word equations: components.

A component of a loop L is a strongly connected component in FL. The main property
of components is that they will “group” factors that will be pumped. We can observe this in
Figure 3.11, where each component is identified with a colour. A tight analysis of components
shows that they form intervals in flows (they do not “interleave”), and that a left-to-right
component starts with k left-to-left edges, then one left-to-right edge, and finally k right-to-
right edges (and symmetrically for right-to-left components). Hence we are allowed to talk
about the crossing factor of a component (the unique factor crossing the interval).

Inversions: P1 → P2. With idempotent loops and components, we can now obtain word
equations similar to the sweeping case. For this we associate with each component the factor
of ρ that will be repeated when pumping. Informally, consider the crossing factor i → j of
the component C (for instance 2 → 0 in the blue component in Figure 3.11). Start from this
edge, and follow the cycle in C (2 → 0 → 1 → 2). Build the corresponding run factor (here it
produces α2α1α3). This will be the pumped factor. Let us name it ρC .

Proposition 3.8. Let L be an idempotent loop of ρ with components C1, . . . , Ck, (listed in

53

L

α1α1α1

α2α2α2

α3α3α3

β1β1β1

β2β2β2

β3β3β3

γ1γ1γ1

L 2 copies of L

α1α1α1

α2α2α2
α1α1α1

α3α3α3
α2α2α2

α1α1α1

α3α3α3
α2α2α2

α3α3α3

β1β1β1

β2β2β2

β1β1β1

β3β3β3
β2β2β2

β1β1β1

β3β3β3
β2β2β2

β3β3β3

γ1γ1γ1 γ1γ1γ1 γ1γ1γ1

Figure 3.11: Pumping an idempotent loop with three components.

increasing order of their domains). Let `i denote the first location of the crossing factor of Ci
in ρ, for 1 ≤ i ≤ k. For all n ∈ N, the run obtained after pumping L n times in ρ is:

ρ0 ρC1
n ρ1 · · · ρk−1 ρCk

n ρk

where

� ρ0 is the prefix of ρ that ends at `1,

� ρk is the suffix of ρ that starts at `k,

� ρi is the factor ρ[`i, `i+1], for all 1 ≤ i < k.

This can be observed in Figure 3.11, where the idempotent loop L has been pumped two
times. The locations `1, `2 and `3 of the three components are indicated by filled dots. Hence
out(ρC1) = α2α1α3. And indeed, in the pumped run, one can observe that the factor α2α1α3 is
repeated, starting from `1. Similarly, out(ρC2) = β2β1β3 and out(ρC3) = γ1.

Let us fix the constants for the general (non-sweeping) case. We take B = C ·H · (23E +
4) + 4C, where C is the maximal size of outputs in transition rules of T , H = 2|Q| − 1 is the
maximal length of crossing sequences, and E = (2|Q|)2H is the size of the effects semigroup of
T . Hence B is doubly exponential in |T |.

Using Ramsey-type arguments on the effects semigroup (in fact, Simon’s factorization forest
theorem [Sim90, Col07]) we can prove that any interval I of input positions on which the output
of ρ exceeds B contains an idempotent loop with non-empty output.

Let us now define inversions in the two-way case. It is very similar to the sweeping case
(Definition 3.3), but we do not include the last condition on the minimality of loops, as it will
better be included in the theorems.

Definition 3.4 (Inversion (two-way case)). An inversion of the run ρ is a tuple (L1, `1, L2, `2)
where:

1. L1 and L2 are idempotent loops,

2. `i is the first location of the crossing factor of a component Ci of Li (for both i ∈ {1, 2}),

3. `1 = (x1, y1) precedes `2 = (x2, y2) in ρ, while x1 > x2,

4. the output of ρ for Ci is non-empty (for both i ∈ {1, 2}).

54

L2 L1

`1

`2

Figure 3.12: An example of an inversion (L1, `1, L2, `2) of a two-way run.

u1 # u2 # u3 # u4

`1

`2

`3

`4

`5

Figure 3.13: A decomposition of a run of a two-way transducer.

The definition permits situations that were not encountered in the sweeping case. Consider
for instance the situation in Figure 3.12, where the non-empty outputs are indicated by red
arrows. These producing factors are not “inverted”, but will be when pumping. Still, this
constitutes an inversion because in the definition, the inversion must occur on the crossing
factors of the components, while the producing factor may be anywhere in the components (not
necessarily inverted).

With this definition of inversions, we aim now at proving P1 → P2 with the following
property P2, similar to the sweeping case.4

Proposition 3.9. If T is one-way definable, then the following property P2 holds:

For all inversions (L1, `1, L2, `2) of ρ, the period of out(ρ[`1, `2]) is bounded by B.

Like in the sweeping case (and the simple case in Section 3.2.1), the proof relies on Lemma 3.1
to bound the period of the output in the pumped run, and Lemma 3.2 to lift it to the original
run. Here, minimal loops must be defined with extra care (to replace the last condition of
inversion in the sweeping case), as more complex situations may arise.

Run decomposition: P2 → P3. Let us now show that P2, as expressed in Proposition 3.9,
implies P3, i.e. a decomposition of the run. The proof of that part is very similar to the
sweeping case, except the definition of the decomposition (diagonals and blocks), and some
adaptations of the proof, that we survey here.

A B-decomposition of a run ρ of a two-way transducer (see Figure 3.13) is still a partition
of ρ into B-blocks and B-diagonals, where:

4We propose here a slightly weaker (and simpler) statement than in the complete proof, for sake of clarity.

55

`

`z

`′

Figure 3.14: A diagonal.

`

`′

Figure 3.15: A block.

� a B-diagonal (as depicted in Figure 3.14) is a factor of ρ delimited by locations ` = (x, y)
and `′ = (x′, y′), such that for every position x′′ in [x, x′], one can find a location `x′′ at
that position such that the output of ρ[`, `′] before `x′′ with positions after x′′ is bounded
by B, and also the output of ρ[`, `′] after `x′′ with positions before x′′ (dotted lines in
Figure 3.14).

� a B-block (see Figure 3.15) is a factor of ρ delimited by locations ` = (x, y) and `′ = (x′, y′)
which output has a period bounded by B,5 and such that the parts of this factor to the
left (resp. right) of [x, x′] have an output bounded by B (dotted lines in Figure 3.15).

B-blocks and B-diagonals have a different formulation than in the sweeping case, but in
fact capture similar factors. In particular, on a “sweeping run” the definitions coincide.

Now, assume that P2 holds (every inversion has an output with bounded period, Proposi-
tion 3.9), and let us build a B-decomposition (P3). As for the sweeping case, we define the
binary relation S between locations involved in an inversion, and its reflexive transitive closure
S∗. Proving that the output in a S∗-class is bounded is exactly like in the sweeping case. In
order to show that such a class defines a B-block, one must prove that outputs to the left
(resp. right) of the block are bounded, and this requires once again Simon’s factorization forest
theorem [Sim90, Col07]. Proving that these B-blocks do not overlap vertically is done as in the
sweeping case. And finally, proving that we have B-diagonals outside B-blocks uses a similar
line, once more with Ramsey-like arguments to show that one can find an idempotent loop when
outputs are larger than B. This concludes the proof that P2 → P3.

Building the one-way transducer: P3 → P1. We complete the proof of Theorem 3.3 by
proving that P3 → P1. Let T be a functional two-way transducer, and D be the language of
words u ∈ dom(T) such that all successful runs of T on u admit a B-decomposition. We have
proved (through P2) that if T is one-way definable (P1), then D = dom(T) (P3).

We describe now a procedure to build a one-way transducer T ′ from T . This transducer is
a kind of “one-way best effort”, that will guess-and-check B-decompositions. In that sense:

1. it will always be correct w.r.t. T , i.e. JT ′K ⊆ JT K, and

2. its domain dom(T ′) is the set of words having some successful run of T having a B-
decomposition, thus D ⊆ dom(T ′).

This will prove that P3 → P1: if P3 holds then D = dom(T), and thus JT ′K = JT K, and T is
one-way definable (P1).

We roughly describe how the one-way transducer T ′ can be built from the two-way trans-
ducer T . While reading the input word, T ′ guesses a B-decomposition (as in Figure 3.13),
meaning that it switches between two modes: a “diagonal mode” and a “block” mode.

5as in the sweeping case, we allow a bounded prefix and suffix around this factor of bounded period

56

Before describing these modes, imagine that T ′ updates a set of pieces of two-way runs that
are dynamically and non-deterministically guessed and checked, of output size bounded by B,
and T ′ has at most H = 2|Q| − 1 of such pieces. They will be used in some places to (try to)
complete a run. Let us name this the “bag” of T ′.

Assume that T ′ enters in “diagonal mode” at location ` (illustrated in Figure 3.14). The
definition of a diagonal allows to build “stairs” (similar to the diagonals in the sweeping case):
parts of the two-way run (“floors”) may produce unbounded outputs, but they appear one after
the other in the input order, and parts of the run in-between have an output bounded by B.
Hence it suffices for T ′ to (progressively) guess the positions of the floors, and guess and check
the bounded output in-between using its bag, and emit those outputs when moving from one
floor to the next.

Assume now that T ′ enters a “block” mode, as depicted in Figure 3.15. It has to guess
the period (bounded by B) of the output, and produce it progressively, by respecting both the
periodicity and the size of the output, as we have already seen for instance in Example 3.1. The
“bag” must be used when the two-way run uses input positions outside the block (to the left or
to the right). In that case both periods must match: the period coming from the bag, and the
period guessed for the block. The output can then be emitted for that part (from the definition
of blocks, it is bounded by B, as it is placed to the left and to the right of blocks).

Hence, every successful run of T ′ corresponds to a successful run of T with a B-decomposition,
with the same output. This shows that P3 → P1.

Decidability and complexity. Now that we have proved Theorem 3.3, let us prove the main
result of this section, i.e. Theorem 3.2. We have seen how to build a one-way transducer T ′
with the same properties as in the theorem. It remains to analyze the complexity.

When proving P3 → P1, we defined the language D of all words inside dom(T) for which
all successful runs of T have a B-decomposition. We have seen that T is one-way definable iff
dom(T) ⊆ D, i.e. iff dom(T) ∩DC = ∅, where DC denotes the complement of D. We will use
this criterion for deciding one-way definability.

We can in fact build in 2ExpSpace (in ExpSpace if T is sweeping) a non-deterministic
one-way automaton A accepting DC , i.e. all words u for which there exists a successful run
ρ on u and an inversion of ρ such that no p ≤ B is a period of the output of the inversion
(or u is outside dom(T)). The automaton A has to guess the run and the inversion on-the-fly,
and also guess for each 1 ≤ p ≤ B, a value d ≤ B witnessing non-periodicity, i.e. the dth and
the (d + p)th letters of the output inside the inversion differ. Hence each state of A requires
2ExpSpace (or ExpSpace in the sweeping case). Now, one-way definability reduces to deciding
dom(T) ∩ L(A) = ∅, and thus is decidable in 2ExpSpace (ExpSpace if T is sweeping).

57

58

Chapter 4

Resource minimization

The present chapter focuses on the following question:

How many resources are needed to perform a transformation on a word?

This formulation is quite vague, and, to get into precise decidability problems, one needs to
specify: the input (how is the transformation given?), and a definition (or measure) of the
resources. This chapter is divided into two parts, depending on the input we consider: regular
functions (through two-way transducers, or streaming string transducers), and then pushdown
transducers.

Regular functions. In Section 4.1 we study how much resources are needed to evaluate
regular functions, and more precisely transductions defined by two-way transducers or streaming
string transducers (SSTs). The previous chapter was devoted to a single decidability question:
does a two-way transducer admit an equivalent one-way transducer? Hence it constitutes a
first answer to resource measurement, as it tells us whether a regular transduction needs to
read (parts of) its input several times. However, when the two-way transducer is not one-way
definable, we may want to know how it needs to process the input. In particular, we address in
Section 4.1 the following questions:

1. does the two-way transducer need to reverse its head in the middle (i.e. not at the border)
of the input (sweeping-definability)?

2. if not, how many times does it need to process each input position (number of sweeps)?

3. does a two-way transducer have an equivalent one with a bound on the number of reversals
it performs on any word (reversal-bounded)?

4. can we build an equivalent SST with a minimum number of registers (register minimiza-
tion)?

We first propose a procedure to decide if a two-way transducer is k-sweeping, when k is given
as an input. Then, we show that a two-way transducer is sweeping-definable iff if is k-sweeping,
for a k that depends only on the transducer, that we exhibit. Moreover, we establish a tight
connection between being k-bounded reversal and being k-sweeping. This permits to answer
to the first three questions. We address the last question in a restricted case, where the SST
is non-deterministic, functional, but cannot concatenate the contents of two registers (named
concatenation-free fNSST). This minimization relies on back-and-forth translations between
concatenation-free fNSSTs and sweeping transducers.

59

Related work. Several direct translations between SSTs and two-way transducers have been
recently proposed [DFJL17, DJR18, Led13], as already mentioned in Section 2.3.2. They can
be used to relate registers of an SST and passes of a two-way transducer, but, as for now,
minimization of these resources is still an open problem. The register minimization of SSTs has
been addressed by Alur and Raghothaman [AR13] on a model related to deterministic SSTs
(named additive cost register automata) on a unary alphabet, where registers contain integers,
and updates are additions/subtractions. Daviaud, Reynier and Talbot [DRT16] propose an
algorithm to compute the minimal number of registers of a deterministic SST, where updates
are right-appending1. This model is as expressive as usual one-way transducers, but their model
differs to ours in that the outputs are formed over an infinitary group. Moreover, both [AR13]
and [DRT16] consider only deterministic SSTs, while we address (functional) non-deterministic
ones, which may use less registers.

In this work we do not focus on the number of states of transducers, as we adopt a more
“online” view. The state space minimization is an orthogonal problem, and already difficult on
two-way automata (minicomplexity), as already exposed in Chapter 2.

Pushdown transducers In Section 4.2, we consider resource requirements for pushdown
transducers. Our main motivation here, is to transform XML documents. Visibly pushdown
transducers (VPT) are an adequate model for specifying such transformations. They operate
on nested words, i.e. words where each letter is either a call (on which a VPT can only push)
or a return (on which a VPT can only pop)2. This mimics opening and closing XML tags. A
VPT reads such a word, uses its stack according to the types of letters, and outputs letters
while firing transitions, like one-way transducers. XML transformations languages, like XSLT
[Cla99] or XQuery [BCF+07], are usually functional and non-deterministic (when translated to
transducers). For this reason we only consider functional non-deterministic VPTs.

In terms of resources, we focus on the amount of memory needed to perform the transduction
defined by a VPT. Some simple transformations, like swapping the first and the last letters,
require to store the whole input: these are typical transformations that we would like to avoid
(or at least, detect). We identify three classes of transductions defined by VPTs, for which we
can restrict the memory usage:

1. the first class is BM, the class of transductions that can be evaluated with bounded me-
mory, i.e. memory that do not depend on the input word. We show that being in BM is
decidable in CoNPTime for VPTs, in PTime for (non-pushdown) one-way transducers
(it is the same as having an equivalent sequential transducer), and undecidable for (non-
visibly) pushdown transducers. Bounded memory is very restrictive in this context, as it
does not even allow to check that documents are well-nested [SS07].

2. the second class is HBM, which stands for height-bounded memory. It consists in trans-
ductions defined by VPTs, for which there exists an evaluation algorithm using an amount
of space bounded by the height (and not the length) of the input nested word. The height
of the nested word is, roughly speaking, its nesting depth when call/return letters are
seen as brackets, or equivalently, the depth of the corresponding tree. For the class HBM,
we provide a property named height twinning property (HTP) that captures all VPTs in
HBM, and show that HTP is decidable in CoNPTime. Transductions in HBM can be
evaluated with space exponential in the height of the input word.

1i.e. of the form r1 ← r2 · u, where r1 and r2 are registers, and u a word.
2for simplicity, we discard here internal letters, that correspond to letters not interacting with the stack,

similar to XML empty-element tags.

60

3. the third class is OBM, for online bounded memory. This corresponds to transductions
defined by VPTs for which there exists an algorithm which space usage only depends, at
each time point, on the current height of the input. The current height is, informally, the
number of active brackets (i.e., open and non-matched) when call/return letters are seen as
brackets. Like for HBM, we provide a property named matched twinning property (MTP)
which captures exactly all VPTs in OBM, and show that it is decidable in CoNPTime.
We also show that the amount of memory (for VPTs in OBM) can be limited to be
quadratic in the current height. We will also see that all deterministic VPTs are in
OBM, but the converse is false, in the sense that there exist VPTs in OBM that have no
equivalent deterministic VPT.

Related work. VPTs are the “transducer” extension of visibly pushdown automata (VPAs,
[AM09, Alu], also called input-driven pushdown automata [Meh80], or nested-word automata).
Given a VPA, one may ask, in view of the central questions of this chapter, whether the
stack is needed, i.e. whether it recognizes a regular language. This is known to be decidable in
PTime [Srb09, LS19], already for the larger class of deterministic pushdown automata (all VPAs
can be determinized) [Ste67, Val75]. In terms of minimization, deterministic VPAs cannot be
minimized in a canonical way [AKMV05], and minimization is NP-complete [GMR20].

VPTs enjoy many desirable properties [FRR+18]. In particular functionality, and the equi-
valence of functional VPTs are both decidable, and VPTs are closed under regular look-ahead.
The link with logics is established when allowing VPTs to operate in a two-way manner: two-
way VPTs (with the single-use restriction) are exactly as expressive as MSOTs from nested
words to words [DFRT16]. This class is also captured by streaming tree transducers, defined
as streaming string transducers operating on a nested word, and equipped with a stack (and
registers, as for SSTs) [AD17].

In terms of static analysis, VPTs can express Core XPath filters, and the height of the input
word has been proved to be a lower bound for these filters [GKS07], and thus applies for VPTs.
Other results and algorithms have been proposed for different settings, for instance allowing
quantitative models [AKL10, AMS17].

4.1 Resources for regular functions

4.1.1 k-sweeping definability

Let us consider the k-sweeping definability problem, that is: given a functional two-way trans-
ducer, is there an equivalent k-sweeping transducer?

This problem is an extension of the one-way definability problem, which corresponds to
the case k = 1. We present a procedure for deciding k-sweeping definability for any k, that
extends the Shepherdson approach for one-way definability described in Section 3.4. In that
approach, we have seen that the core concepts for one-way definability are inversions and block
decompositions. Recall that, roughly, a transducer is one-way definable iff every run has a block
decomposition, in which every inversion has a bounded period.

Let us fix a functional two-way transducer T , and one of its runs ρ on an input word u.
Note that our definition of two-way transducers requires that a successful run ends at the right
border a of the input word. In this chapter we allow runs also to end at the left border `: for
instance a 2-sweeping run starts and ends at the left of the word. This allows to talk about
k-sweeping transducers, even for even k’s. In fact, more generally, the results and proofs in this
section would also hold symmetrically for transducers starting at the right of the input word.

61

`1

`2 `3
`4

`5

`6

Figure 4.1: A 3-inversion.

Outline. The outline of the construction is to generalize inversions to k-inversions, such that
a transducer is k-sweeping definable iff all its k-inversions are “safe”. Intuitively, a k-inversion
is a series of k successive inversions, that are alternatively left-to-right and right-to-left. Such
a k-inversion is “safe” if (at least) one of these inversions has an output with bounded period,
which will permit to do it one-way. If all k-inversions are safe, then globally each k-inversion
will require at most k sweeps.

Generalized inversions. Before defining k-inversions, we define co-inversions, i.e. inver-
sions from right to left, hence very similar to usual left-to-right inversions. Compared with
Definition 3.4, only the order between x1 and x2 changes.

Definition 4.1 (Co-inversion). A co-inversion of the run ρ is a tuple (L1, `1, L2, `2) where:

1. L1 and L2 are idempotent loops,

2. `i is the first location of the crossing factor of a component Ci of Li (for both i ∈ {1, 2}),

3. `1 = (x1, y1) precedes `2 = (x2, y2) in ρ, while x1 < x2,

4. the output of ρ for Ci is non-empty (for both i ∈ {1, 2}).

We define k-inversions as a series of k inversions / co-inversions. On Figure 4.1, a 3-inversion
is depicted, through its locations `i.

Definition 4.2 (k-inversion). A k-inversion of the run ρ of the two-way transducer T is a
sequence ¯̀= (L1, `1, L2, `2), . . . , (L2k−1, `2k−1, L2k, `2k) such that:

� `i strictly precedes `i+1 in ρ, for all 1 ≤ i ≤ 2k − 1,

� for all even i such that 0 ≤ i < k, (L2i+1, `2i+1, L2i+2, `2i+2) is an inversion of ρ,

� for all odd i such that 0 ≤ i < k, (L2i+1, `2i+1, L2i+2, `2i+2) is a co-inversion of ρ.

This generalizes the definition of inversion (Definition 3.4), as an inversion is exactly a 1-
inversion. In the same way, we generalize the fact that “an inversion has a bounded period” to
“a k-inversion has an inversion (or co-inversion) with a bounded period”. Formally, we will say
that a k-inversion ¯̀ is B-safe if the output of ρ between `2i+1 and `2i+2 is bounded by B for
some i ∈ {0, . . . , k − 1}.

We denote by L
(k)
T the language of words u ∈ dom(T) such that all k-inversions of all

successful runs of T on u are B-safe. In turn, this generalizes the language D introduced to

prove P3→P1 in Section 3.4.3, in the sense that D = L
(1)
T .

62

`1

`2

`3 `4

u # v

Figure 4.2: A safe 2-inversion.

Characterization. We can now provide a characterization of k-sweeping definable transduc-
tions.

Theorem 4.1. A functional two-way transducer T is k-sweeping definable iff L
(k)
T = dom(T),

and this can be decided in 2ExpSpace. Moreover, one can construct in 3ExpTime an unam-
biguous k-sweeping transducer T ′ equivalent to T|L(k)

T
.

If the given transducer is already sweeping, the decision procedure is in ExpSpace and the
construction is in 2ExpTime.

Example 4.1. For instance, consider the function on Σ = {a, b,#} that maps every input word
of the form u#v (with u, v ∈ {a, b}∗) to (ab)|uvv|(ba)|uuv|. It will be our running example for
k-sweeping definability. This transduction can be implemented by a 3-sweeping transducer, that
outputs “ab” for every letter of the first pass, and of the second pass on v, and outputs “ba”
for every letter of the second pass on u, and of the third pass. This transduction can also be
realized in 2 passes, where on the first pass, the transducer outputs “ab” on every letter of u,
and “abab” on every letter of v, and then, on the second pass, outputs “ba” on every letter of v,
and then “baba” on every letter of u. By Theorem 4.1, every 2-inversion is safe. For example,
the 2-inversion of Figure 4.2 is safe, as the output of ρ[`3, `4] has a bounded period.

Note that in the case of an initial sweeping transducer, the 2ExpTime upper bound is
tight, as we have proved in Proposition 3.2 that there exists families of sweeping-definable
transductions requiring a double exponential blowup to get an equivalent one-way transducer.
In this case we also obtain a first minimization algorithm:

Corollary 4.1. When a transduction is given by a sweeping transducer, one can compute in
ExpSpace the minimum number of passes needed by any sweeping transducer implementing it.

The end of this section is a sketch of the proof of Theorem 4.1. We first generalize the notion
of run decomposition, and relate this to B-safe k-inversions. Then we show how to build the
k-sweeping transducer T ′ that simulates all possible B-decompositions. Finally, we show that

being k-sweeping definable implies L
(k)
T = dom(T).

Run decomposition. Recall that in the proof of one-way definability (Theorem 3.3), having
a B-decomposition, for a successful run, (P3) is equivalent to having a bound on the period of
the output of every inversion (P2).

A k-B-decomposition of a successful run ρ of a two-way transducer T is a sequence of
locations ¯̀= `0, `1, . . . , `k of ρ such that:

� `0 (resp. `k) is the first (resp. last) location of ρ, and `i strictly precedes `i+1 in ρ, for all
0 ≤ i < k,

� for all even indexes i, with 0 ≤ i < k, and all inversions (L, `, L′, `′) of ρ, with `, `′ between
`i and `i+1 in ρ, the output of ρ[`, `′] has period at most B,

� for all odd indexes i, with 1 ≤ i < k, and all co-inversions (L, `, L′, `′) of ρ, with `, `′

between `i and `i+1 in ρ, the output of ρ[`, `′] has period at most B.

63

`0

`1

`2

u # v

Figure 4.3: A 2-B-decomposition.

In other words, a k-B-decomposition is a partition of ρ into k parts, that are alternatively
containing inversions with periodicity of the output bounded by B, and co-inversions with the
same property.

Example 4.2. Let us illustrate this definition on our running example for k-sweeping defina-
bility (Example 4.1). A typical 2-B-decomposition is `0, `1, `2 as depicted in Figure 4.3. Intui-
tively, it means that ρ[`0, `1] can be done in one left-to-right pass, and ρ[`1, `2] in a right-to-left
pass.

In fact, it almost follows from the definitions that, for every u ∈ dom(T), u ∈ L(k)
T iff every

successful run of T on u has a k-B-decomposition. In order to obtain a decision procedure, we
encode k-decompositions as words, by annotating the input. Hence, given a run ρ of T on u, and
a sequence ¯̀= `0, `1, . . . , `m of locations of ρ, we define 〈u, ρ, ¯̀〉, obtained from u by annotating
it with the crossing sequence at each position, and also with the m-tuple ȳ = (y1(x), . . . , ym(x)),
where yi(x) is y′ if `i = (x, y′), or ⊥ if `i does not appear at position x. In the sequel, m will
always be bounded by k, and every yi(x) is also bounded by the crossing degree of T .

We show that the language F
(k)
T of all words 〈u, ρ, ¯̀〉 corresponding to k-B-decompositions

of runs of T can be recognized by a one-way automaton of size triply exponential in |T |, that can

be built on-the-fly in double exponential space. The same holds for the complement F
(k)
T of F

(k)
T .

The proof reduces the problem to one-way definability (and thus Theorem 3.2), by studying the
transducers Ti that behave like T between `i and `i+1, and output nothing outside this interval.
These transducers must be one-way definable, alternatively left-to-right and right-to-left.

We can now decide in 2ExpSpace whether L
(k)
T = dom(T), as stated in Theorem 4.1: We

always have L
(k)
T ⊆ dom(T), so it remains to test whether L

(k)
T ⊇ dom(T). We have seen that

L
(k)
T coincides with the words having a k-B-decomposition, and thus with the projection of F

(k)
T

on its first component. Thus L
(k)
T ⊇ dom(T) iff F

(k)
T ∩ {〈u, ρ, ¯̀〉 | u ∈ dom(T)} = ∅ which can

be checked in double exponential space by building the automaton recognizing F
(k)
T on-the-fly.

Building T ′. Let us show the right-to-left implication of Theorem 4.1 by building a k-sweeping

transducer T ′ equivalent to T , assuming that L
(k)
T = dom(T). The main idea is to guess a k-B-

decomposition, and between each of the corresponding location, build the one-way transducer
obtained in Theorem 3.2 to perform one pass, and concatenate all these “one-way transducers”
to build the k-sweeping transducer T ′.

The main difficulty here is to be able to consider all these parts of the run independently:
The naive approach would plug parts of different runs that could not form a real run together.
To circumvent this, we define a lexicographical order on runs ρ, and a notion of maximal k-B-
decomposition ¯̀. Hence we can identify a canonical run ρ and k-B-decomposition ¯̀ among all
〈u, ρ, ¯̀〉 associated with a given input u. These can be filtered using a one-way automaton of
size doubly exponential in T . Hence, T ′ guesses on-the-fly a run ρ and a k-B-decomposition ¯̀,
checks in parallel that these are canonical, builds a one-way transducer Ti (left-to-right or right-
to-left) using Theorem 3.2 inside each of the k parts of the decomposition, and concatenates

64

`0

`′0

`1 `′1

`2

`′2 `3 `′3 `4

`′4`5

`′5

X0

X2

X4

Figure 4.4: A 6-inversion, and related intervals Xi used in the proof of Proposition 4.1.

them to form T ′. The triple exponential size of T ′ comes from using Theorem 3.2 (double
exponential if T is sweeping).

k-sweeping implies safe k-B-decompositions. To complete the proof of Theorem 4.1, it

remains to show that, if T has an equivalent k-sweeping transducer T ′, then L
(k)
T = dom(T).

In other terms, for every input word u, every run ρ of T on it, and every k-inversion ¯̀ =
(L1, `1, L2, `2), . . . , (L2k−1, `2k−1, L2k, `2k) of ρ, there is an inversion (or co-inversion) among ¯̀

having an output with a period bounded by B. Intuitively, we have to identify two locations
`2i+1, `2i+2 such that the output of ρ between them is entirely covered by a single pass of T ′.

This point is more technical than it seems, because there is no a priori one-to-one corre-
spondence between the run ρ of T and a run of T ′: they are not “synchronized”, have different
shapes, etc. The correspondence is established by pumping both L2i+1 and L2i+2, and also some
loops in T ′ that yield the same output. In fact we need to pump all loops of ¯̀and find correspon-
dences with loops of T ′. Then we use combinatorial tools to show that (L2i+1, `2i+1, L2i+2, `2i+2)
is B-safe.

4.1.2 Sweeping-definability (and bounded-reversal)

In the previous section, we described a procedure to decide, for a given two-way transducer,
whether there exists an equivalent k-sweeping transducer, and thus minimize the number of
passes of any sweeping transducer.

Sweeping definability. Let us now focus on the same problem but when k is not given, i.e.
on deciding whether a given two-way transducer is sweeping definable. Given Theorem 4.1, it
suffices to exhibit an upper bound on such a k.

Proposition 4.1. A functional two-way transducer is sweeping definable iff it is k-sweeping
definable for k = 2H(23E + 1).

We recall that H = 2|Q| − 1 is the maximal length of a crossing sequence, and that E =
(2|Q|)2H is the size of the effects semigroup (see Section 3.4.3). We prove Proposition 4.1 by
contradiction, assuming that T is not k-sweeping definable for k = 2H(23E + 1). We show that

in this case, it is not m-sweeping definable, for every m > 0. By Theorem 4.1, L
(k)
T 6= dom(T),

which means, as we have seen, that there exists a run ρ and a k-inversion in ρ which is not
B-safe. To each pair of successive inversion/co-inversion of this k-inversion, we associate the
interval of positions of the input word visited in the inversion, the co-inversion, and the run

65

in-between (denoted Xi in Figure 4.4). As ρ is H-crossing, we can take one such interval every
H (after sorting them by their maximal position), and obtain a subset X of such intervals that
are pairwise disjoint, and such that |X | = 23E + 1. Now, using Simon’s factorization forest
theorem [Sim90, Col07], we can show that, among the leftmost positions of intervals in X , three
of them delimit consecutive idempotent loops. By pumping these loops, we can build runs of T
with m-inversions that are, themselves, not B-safe. By Theorem 4.1, this means that T is not
m-sweeping definable, and this holds for every m > 0.

The decidability is a direct consequence of Theorem 4.1 and Proposition 4.1.

Theorem 4.2. It is decidable whether a functional two-way transducer is sweeping definable.

Bounded reversal. When considering arbitrary runs of functional two-way transducers, we
can observe that the number of reversals is not bounded, even if the crossing degree is bounded.
This is typically illustrated by the shape of “stairs”, like in Figure 3.13 for instance.

In fact, two-way transducers having a bounded number of reversals in all of their runs
corresponds exactly to sweeping definable transducers.

Theorem 4.3. Every functional two-way transducer with at most k − 1 reversals per run can
be transformed into an equivalent k-sweeping transducer, and conversely.

As a consequence, functions that can be implemented by a functional two-way transducers
with a bounded number of reversals per run are exactly those definable by sweeping transducers.

One direction is straightforward: if a transducer is k-sweeping for some k, it is clearly (k−1)-
reversal bounded. The other direction is more involved, and amounts to show how reversals of
a transducer with k − 1 reversals per run can be performed at the borders of the input word,
instead of inner positions. For now, let us assume that this transducer T is unambiguous (we
will discuss later how to lift this condition). The main idea is to keep the original run of T ,
but, on inner reversals, keep the current direction until the next border, and then come back to
the position where we left the inner reversal, and continue the original run. The difficulty here
is to identify the position of the inner reversal when we come back to it. We solve this problem
by maintaining, in the sweeping transducer S, the whole crossing sequence of the original run,
also pointing the position of the current run of T (i.e. the current level) in it. This is somehow
similar to Shepherdson’s construction (see Section 3.1.1) but on every pass of S. This ensures
that a simulated run, if successful, is a correct one for T . By unambiguity of T , it is exactly the
successful run of T on the input word, and this holds for every pass of the sweeping transducer
S, which, in turn, ensures that S is unambiguous, and thus equivalent to T . It remains to deal
with the case where T is not unambiguous. In this case, we use the same construction, but
keep sets of crossing sequences in the states of S, in order to only consider the least run of T
on u, and thus recover the properties of unambiguity.

Corollary 4.2. It is decidable whether a functional two-way transducer has an equivalent one
with a bounded number of reversals.

This is a direct consequence of Theorem 4.3 and Theorem 4.2.

4.1.3 Register minimization of concatenation-free SST

Let us now consider resources of functional non-deterministic streaming string transducers
(fNSSTs), and more precisely the number of registers required to implement a transduction.
This problem is open for SSTs in general. We focus here on a particular case, where the
concatenation of registers is forbidden in register updates.

66

r ← a · r · b

x

a

b

SST:

sweeping transducer:

Figure 4.5: Corresponding steps in an R-sweep and in a concatenation-free SST.

Recall from Section 2.3 that an fNSST T has a set of registers R and that these are updated
through updates up ∈ ∇ in such a way that, for a register r ∈ R, up(r) ∈ (∆]R)∗, where ∆ is
the output alphabet. An fNSST is concatenation-free if every update uses at most one register
in its image, i.e. up(r) ∈ ∆∗ · (R ∪ {ε}) ·∆∗, for every r ∈ R and every up ∈ ∇. Moreover we
will consider sweeping transducers starting (and ending) at the right of the input word, and
name them R-sweeping transducers.

Theorem 4.4. Every concatenation-free fNSST with k registers can be translated into an equi-
valent 2k-pass R-sweeping transducer, and conversely.

The conversion of a concatenation-free fNSST to an equivalent 2k-pass R-sweeping transdu-
cer is in ExpTime, while the converse is in 2ExpTime.

Assuming (for now) that there is no swap between registers, and that transducers are un-
ambiguous, the key observation is the following:

the way the output is produced in a sweep starting from the right (i.e. right-to-left
then left-to-right, named R-sweep in the following) is exactly the same as updates
of a register.

This is illustrated in Figure 4.5: if, at position x, the sweep outputs a on its first pass and b
on the second, then an fNSST with one register r can update it with a · r · b. And this holds
in the other direction: from an fNSST with one register r and such an update, we can build an
R-sweeping transducer outputting a on its first pass, and b on the second at this position.

When several registers are used, its suffices to use one sweep per register. Consider for
instance the function u 7→ u ·mirror(u) · u over {a, b}∗. It requires 4 sweeps for any R-sweeping
transducer, and 2 registers for any concatenation-free fNSST implementing it. We show this
correspondence in Figure 4.6. The fNSST is composed by two registers r1 and r2, where r1 is
used to store the input u, and r2 the word mirror(u) · u, using the following updates, for every
σ ∈ {a, b}:

r1 ← r1 · σ r2 ← σ · r2 · σ

We only use one state q, and set out(q) = r1r2. On the R-sweeping transducer, the first sweep
simulates r1, by outputting ε in the first pass (to the left of r1 in the update), and σ in the
second pass (to the right of r1 in the update). The second sweep simulates r2, following the
same principle: it outputs σ in both passes (to the left and right of r2 in the update).

Swapping registers, and unambiguity. Some details have to be considered, though. First,
registers of an fNSST may swap, as for instance in the update r1 ← r2 · a. Let us explain why
this is not problematic when the fNSST is concatenation-free. The sweeping transducer first
guesses which final state q will be reached, and hence which registers will be used in the output
out(q). Assume for instance that out(q) = a ·r2 ·b ·r1. The sweeping transducer outputs a, then
performs a sweep that will output the content of r2 in the fNSST, then b, then an additional

67

a b a a

ε

ε

a

aa

ab

baab

aba

abaaba

abaa

aabaabaa
register r1:

register r2:

εεεε

a b a a

aaba

a b a a

sweep for r1:

sweep for r2:

input word:

SST:

sweeping
transducer:

Figure 4.6: Corresponding runs of a sweeping transducer and of an SST.

sweep outputting the content of r1 in the fNSST. The first sweep, outputting the content of r2,
may at some point have to swap to (the simulation of) r1, if for instance the update r2 ← r1

happens. As the fNSST is both copyless and concatenation-free, this is not problematic: there
is at most one register to simulate at a time.

For now we assumed that both the fNSST and the sweeping transducer are unambiguous.
This is necessary in the translations (in both directions) presented above. In particular the
sweeping transducer simulating an fNSST checks, at every pass, that the guessed run of the
fNSST is the correct one, and then stays coherent from one pass to the other. This argument
is very similar to the one presented for the bounded-reversal case (Theorem 4.3), and can be
lifted in a similar way, by establishing a lexicographical order on runs. In the other direction,
the fNSST simulating a sweeping transducer uses a crossing sequence construction to simulate
all the sweeps in one pass, and check at the end that the run is the correct one.

In terms of complexity, the conversion of a concatenation-free fNSST is in PTime when it
is unambiguous, and becomes in ExpTime when it is not. The conversion of an R-sweeping
transducer is in ExpTime when it is unambiguous (due to the crossing sequence construction),
and in 2ExpTime when it is not.

Finally, as consequence of Theorem 4.4 and Corollary 4.1, we obtain:

Corollary 4.3. Given a concatenation-free fNSST, one can compute the minimal number of
registers required by any concatenation-free fNSST implementing it.

Let us conclude with the following remark: concatenation-free fNSSTs have the same ex-
pressive power as fNSSTs with a bounded number of register concatenations in all runs. Indeed,
in that case, every register concatenation can be replaced by a new register.

4.2 Resources of pushdown transducers

We now move to a richer transducer model including a stack, and study related resource re-
quirements.

4.2.1 Pushdown transducers, and streaming setting

Nested words. Up to now, we considered finite words on a finite alphabet Σ, as simple
sequences of elements in Σ. A nested alphabet is a finite alphabet Σ partitioned into three
disjoint sets Σc, Σr and Σι that we call respectively call, return and internal alphabets. A
nested word is a word over a nested alphabet. The set of well-nested words Σ∗wn over the nested

68

alphabet Σ is the smallest set of words containing Σ∗ι , and such that for all c ∈ Σc, all r ∈ Σr,
and all u, v ∈ Σ∗wn, curv ∈ Σ∗wn.

The current height hc(u) of a prefix u of a well-nested word is the number of unmatched
calls: if u is well-nested and c ∈ Σc, then hc(u) = 0, and hc(vcu) = hc(v) + 1. The height h(u)
of u is its maximal current height while reading it: h(u) = maxv�u hc(v).

Visibly pushdown automata and transducers. A visibly pushdown automaton (VPA) A
is a tuple (Q,Σ,Γ, δ, I, F) where Q, I and F are states defined as for automata, Σ is a nested
alphabet, Γ is a finite set of stack symbols, and δ = δc]δr]δι is the transition relation, partitioned
into call, return and internal transition relations: δc ⊆ Q× Σc × Γ×Q, δr ⊆ Q× Σr × Γ×Q,
and δι ⊆ Q× Σι ×Q. A VPA is deterministic if:

� for every (q, c) ∈ Q×Σc, there exists at most one (γ, q′) ∈ Γ×Q such that (q, c, γ, q′) ∈ δc,

� for every (q, r, γ) ∈ Q×Σr × Γ, there exists at most one q′ ∈ Q such that (q, r, γ, q′) ∈ δr,

� and for every (q, ι) ∈ Q× Σι, there exists at most one q′ ∈ Q such that (q, ι, q′) ∈ δι.

A configuration of A is a pair (q, σ) where q ∈ Q is the current state, and σ ∈ Γ∗ is the
current stack content (the bottom of the stack is placed on the left, and we write ⊥ for the
empty stack). A run of A on a well-nested word u = u1 · · ·un is a sequence of configurations
(qi, σi)0≤i≤n such that, for all 1 ≤ i ≤ n, either:

� (qi−1, ui, γ, qi) ∈ δc and σi = σi−1γ, or

� (qi−1, ui, γ, qi) ∈ δr and σi−1 = σiγ, or

� (qi−1, ui, γ, qi) ∈ δι and σi = σi−1.

Given a run on u, we associate with each pair of successive configurations (qi−1, σi−1), (qi, σi)
the transition rule ti permitting it. Such a run is successful if q0 ∈ I, qn ∈ F and σ0 = σn = ε.

A visibly pushdown transducer (VPT) T is a pair (A, out) where A is a visibly pushdown
automaton, and out : δ → ∆∗ is the output function of T . A run ρ of T on a well-nested word
u = u1 · · ·un is a run (qi, σi)0≤i≤n of A on u, and its associated output is out(t1) · · · out(tn)
where ti is the transition rule associated with (qi−1, σi−1), (qi, σi), for every 1 ≤ i ≤ n.

A VPT is deterministic if its associated VPA is. We will also require that the VPT are
reduced, in the following sense. A configuration (q, σ) of a VPT T (i.e. of its underlying VPA)
is accessible (resp. VPA co-accessible) if there exists a word u and a run of T on u starting in a
configuration (qI ,⊥) with qI ∈ I (resp. starting in (q, σ)) and ending in (q, σ) (resp. ending in
(qF ,⊥) for some qF ∈ F). A VPT is reduced if every accessible configuration is also co-accessible.
From a given VPT, one can always compute an equivalent reduced VPT in polynomial time
[CRT15]. For the other automata-related notions, we use the same terminology as in the context
of other automata and transducers, with definitions adapted in a straightforward manner. We
will mostly consider functional VPTs in this manuscript. Functionality of VPTs can be decided
in polynomial time [FRR+18], but the determinizability question is still open:

Open problem 2 (VPT determinization)

Find an algorithm that, given a functional VPT, decides whether there exists an equivalent
deterministic VPT.

For a given k ∈ N and a given VPT T , we define FST(T , k) the one-way transducer equi-
valent to T , but restricted to input words of height less than k. Its states are configurations
(q, σ) of T where q is a state of T and σ ∈ Γ∗, with |σ| ≤ k.

69

Turing transducers. In this section we are interested in measuring the space complexity
of any algorithm implementing certain kinds of functional transductions. Let us define Turing
transducers, a machine model that corresponds to programs implementing transductions.

A Turing transducer is a Turing machine with the following architecture:

� a read-only left-to-right input tape over some finite alphabet Σ,

� a write only left-to-right output tape over some finite alphabet ∆, and

� a working tape over some finite alphabet Σ′.

The transitions of this machine are deterministic, and the space complexity is measured on the
working tape only.

We say that a Turing transducer computes a (partial) function f : Σ∗ → ∆∗ if, for all words
u ∈ dom(f), when u is placed on the input tape, the computation halts in some accepting state
and the content of the output tape is f(u), while for all words u /∈ dom(f), when u is placed
on the input tape, the computation halts in some rejecting state. In that case we say that f is
computable by this Turing transducer.

4.2.2 Bounded memory

We say that a partial function f : Σ∗ → ∆∗ is bounded memory (BM) if there exists a constant
k ≥ 0 and a Turing transducer that computes f , and runs in space complexity at most k.

Finite state transducers. Recall that deterministic transducers are one-way transducers
with a deterministic underlying automaton, and they can append a suffix to their output once
the last state is reached. For finite state (one-way) transducers, deterministic transducers can
clearly be evaluated with bounded memory (only the current state needs to be stored). The
converse also holds:

Proposition 4.2. Let T be a functional one-way transducer. Then JT K is in BM iff T has an
equivalent deterministic transducer. This is decidable in PTime.

Indeed, if JT K is in BM, we can consider the Turing transducer M with memory bounded
by k computing it. As M is deterministic, we can consider it as a deterministic transducer with
states of the form (q, u) where q is the state of M , and u the content of the working tape (with
|u| ≤ k). The PTime complexity comes from the decision procedure for sequentiality, based on
the twinning property [WK95, BC02, BCPS03].

Pushdown transducers. The situation differs for pushdown transducers.

Proposition 4.3. It is undecidable whether a transduction defined by a non-deterministic push-
down transducer is in BM.

Indeed, this decision problem is harder than testing regularity of non-deterministic push-
down automata, which is known to be undecidable [BHPS61, GR63]. This is witnessed by the
reduction that, given a pushdown automaton A, associates the transduction T computing the
identity on L(A). Then JT K is in BM iff L(A) is regular (with the same kind of construction
as for finite-state transducers above).

In the deterministic case, the regularity test of pushdown automata becomes decidable
[Ste67, Val75], thus the previous proof does not apply. The BM membership is in fact open.

Open problem 3 (Deterministic pushdown transducers in bounded memory)

Is the following problem decidable: Given a deterministic pushdown transducer T , is JT K
in BM?

70

Visibly pushdown transducers. For visibly pushdown transducers, the membership to BM
becomes decidable again.

Proposition 4.4. If T is a functional VPT with n states, then JT K is BM iff

� for all u ∈ dom(T), h(u) ≤ n2 and

� JFST(T , n2)K is BM.

Moreover, this is decidable in CoNPTime.

This means that being bounded memory is very restrictive for visibly pushdown transducers:
it can only accept words of bounded height (this is obtained by standard pumping arguments).
A decision procedure could be obtained by building FST(T , n2) and then using Proposition 4.2,
but this device is of exponential size. We will see in Section 4.2.4 that, for VPTs with input words
of bounded height, being BM and HBM is equivalent, and HBM can be tested in CoNPTime.

Bounded memory is a very strong restriction, that makes little sense when dealing with
nested words: in general they need at least an unbounded stack to be parsed. We now consider
larger classes, observing how much memory is needed, compared to the stack height.

4.2.3 An online algorithm for VPT evaluation

In this section, we describe an evaluation algorithm, that takes a functional VPT T as input,
reads an input word u letter by letter, and outputs progressively JT K(u). This algorithm will
be used later to obtain upper bounds for the classes HBM and OBM of VPTs.

Naive version. Let us start with a naive approach. Recall that T is functional but non-
deterministic: the algorithm has to store potential candidates for the output. Recall also that
a VPT is reduced if all its accessible configurations are also co-accessible. The first step of
the algorithm is to compute an equivalent reduced VPT, and this can be obtained in PTime
[CRT15]. Hence from now on we assume T to be reduced. A consequence of being reduced and
functional is that, if two runs of T reach a common configuration (q, σ), then they produced
the same output word v so far. This means that we can just store triples (q, σ, w) where
(q, σ) ∈ Q× Γ∗ is a configuration of T , and w ∈ ∆∗ is (the prefix of) a candidate output word.

At the beginning, this set is {(q,⊥, ε) | q ∈ I}. At each incoming letter of u, each configu-
ration is updated (or dies) according to the transition rules of T , appending new output letters
to words w. Once the input word has been read, final configurations share the same output w,
which can be yielded.

This algorithm has two main weaknesses. The first one is that the number of stored candi-
dates may be exponential in the size of the input. The second one is that all candidate output
words are stored until the end. They could be output on-the-fly, if they share a common prefix.
We address these two issues in the sequel.

Storing configurations. In order to avoid the exponential blowup, we use a DAG to store
the set of alive configurations in a compact manner. Let us illustrate this on an example.
Consider the VPT T1 represented in Figure 4.7 (a). The DAG obtained after reading c (resp cc,
ccr1) is illustrated in Figure 4.7 (b) (resp. (c), (d)). Each configuration (q, σ, w) is stored along
a branch of the DAG: the current state q is at the leaf, the output w is stored on the edges, and
the stack content σ is obtained by concatenating stack symbols in the node of the branch. For
instance, in the DAG of Figure 4.7 (c), the branch

#
ε−→ (q0,⊥)

b−→ (q0, γ2)
a−→ (q0, γ1)

71

q0 q1

c/a, γ1

c/b, γ2

r1/ε, γ1

r1/ε, γ1

r2/ε, γ2

#

(q0,⊥)

(q0, γ1) (q0, γ2)

ε

a b

#

(q0,⊥)

(q0, γ1) (q0, γ2)

(q0, γ1) (q0, γ2)

ε

a b

a
b a

b

#

(q0,⊥)

(q1, γ1) (q1, γ2)

ε

aa ba

(a) VPT T1. (b) After reading c. (c) After reading cc. (d) After reading ccr1.

Figure 4.7: Data structure used by the online algorithm.

p3 p2 p1 i q1 q2 q3
c/a, γ

c/a, γ

r/c, γ

r/c, γ

r/c, γ c/b, γ

c/b, γ

r/c, γ

r/c, γ

r′/c, γ

c/b, γc/a, γ

Figure 4.8: A functional VPT with Σc = {c}, Σr = {r, r′} and Σι = {a, b}.

encodes the configuration (q0, γ2γ1, ba) of the VPT of Figure 4.7 (a).

The structure is updated in order to maintain this invariant. In particular, when a leaf
cannot be updated w.r.t. an incoming input letter, it is removed from the structure, and also
the orphaned nodes it created. Note that this DAG structure requires the VPT to be reduced.

Progressive output. When an input letter is read, the DAG is updated as explained above,
and then a bottom-up phase computes the longest common prefix of all the outputs stored
in the DAG. This prefix is output by the algorithm, and removed from the DAG. Once the
prefix u′ of the input u has been processed, let out6=(u′) denote the length of the longest output
among those of all configurations stored in the DAG after the update. We can measure the
space complexity using this quantity.

Proposition 4.5. Let T be a functional VPT. One can build in PTime a Turing transducer
which computes JT K, and that uses space in O((hc(u′) + 1) · out6=(u′)) on the working tape, after
reading a prefix u′ of a well-nested word u ∈ Σ∗.

4.2.4 Height-bounded memory

As we have seen in Section 4.2.2, being bounded memory is very restrictive in the context of
nested words. We relax this notion here by allowing a space usage that depends on the height
of the input word (but not on its length).

We say that a (partial) function f : Σ∗ → ∆∗ is height-bounded memory if there exists
a function θ : N → N such that f is computable by a Turing transducer that runs in space
complexity at most θ(h(u)), on any input u.

For instance, the VPT in Figure 4.7 (a) is HBM but not BM: it stack content suffices to
determine the output. Another example of functions in HBM but not in BM is the set of
functions whose domain only includes (depth-first) encodings of ranked trees. If the maximal
rank is k, then the length of the input word u is at most kh(u). Let us now exhibit a function
which is not HBM. This is typically the case when one can pump two candidate runs horizontally
(i.e. with identical height), with different outputs, as for instance in the VPT in Figure 4.8
including dashed arrows.

72

Link with deterministic VPTs. Clearly, any function f implemented by a deterministic
VPT is HBM. This is for instance witnessed by Proposition 4.5, where out6=(u′) = 0 for all
prefixes u′ when T is deterministic, as the output can be produced progressively (only one
candidate). The converse does not hold, however. Consider for instance the VPT in Figure 4.8
with plain arrows. It encodes a unary tree, so it is in HBM as explained above. Moreover, it is
not deterministic, due to the decision on the last letter r vs r′.

This means that there is a strict hierarchy:

BM (determinizable VPTs (HBM (functional VPTs

For the first inclusion, recall that BM is also the set of functions definable by a deterministic
one-way transducer (by Proposition 4.2 and Proposition 4.4).

Horizontal twinning property. For functional one-way transducers, BM is captured by
sequentiality, and this can be decided through a twinning property in PTime [WK95, BC02,
BCPS03]. We define a variant of this property in order to capture HBM functions.

A functional VPT T satisfies the horizontal twinning property (HTP) if for all u1, u2 ∈ Σ∗

such that u2 is well-nested, for all v1, v2, w1, w2 ∈ ∆∗, for all q0, q
′
0 ∈ I, for all q, q′ ∈ Q, and for

all σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′) are co-accessible,

if

 (q0,⊥)
u1/v1−−−→ (q, σ)

u2/v2−−−→ (q, σ)

(q′0,⊥)
u1/w1−−−−→ (q′, σ′)

u2/w2−−−−→ (q′, σ′)
then del(v1, w1) = del(v1v2, w1w2).

Recall that del(u, v) is the delay between u and v, as defined on page 19. Intuitively, the
HTP ensures that, on two runs on the same input, the delays cannot increase when traversing
well-nested words (i.e. “moving horizontally”). This suffices to capture exactly HBM functions.

Theorem 4.5. Let T be a functional VPT.

1. JT K is HBM iff T satisfies the HTP,

2. this is decidable in CoNPTime, and

3. in this case, the algorithm presented in Section 4.2.3 runs in space complexity exponential
in the height of the input word.

Let us give some insights on the proofs. For (1), assume that T satisfies the HTP. The
proof is by induction on the length of the input u′ read so far, in a manner similar to [BC02].
The main difference is the additional case where a well-nested factor has a width (when seen
as a tree) greater than |Q|2, where we exploit the HTP in full generality. Conversely, if T does
not satisfy the HTP, then we can show that FST(T ,K) does not satisfy the twinning property
for some bound K on the heights of the input words, which means (by Proposition 4.2), that
JFST(T ,K)K is not BM, and thus T not HBM (otherwise it would be bounded by f(h(u)) for
some f , and thus bounded on all words of height at most K).

For (2), deciding HTP on a VPT T is reduced to the emptiness of a pushdown automaton
with 2 counters making at most 1 reversal (increasing and then decreasing), which is decidable
in CoNPTime [FRR+18]. Indeed, not satisfying the HTP is only possible by two ways: either
|v2| 6= |w2| (in the premises of the HTP), or v2w2 6= ε and v2[i] 6= w2[i] for some i. Each
condition can be checked using two counters and one reversal. The stack is used to check that
u2 is well-matched.

The space complexity of (3) is derived from the proof of (1).

Note that this exponential bound is tight. Consider for instance the function that maps
f(t, a) to f(t, a) and f(t, b) to f(t̄, b) where f, a, b are letters from Σ = ∆, t is the (depth-first,

73

•
(p, p′)

•
(p, p′)

•
(q, q′)

•
(q, q′)

height

input
u1 u2 u3 u4

Figure 4.9: Premisses of the matched twinning property (MTP).

left-to-right) encoding of a binary tree over {0, 1}, and t̄ is the encoding of the complement of
t, i.e. 0s are replaced by 1s, and conversely. This function is in HBM as this is the encoding
of a ranked tree. However it cannot be evaluated with a Turing transducer with a polynomial
amount of space because there is a doubly exponential number of such binary trees of a given
height, and such a tree has to be stored (or, at least, identified).

4.2.5 Online-bounded memory

While height-bounded memory allows an evaluation with a memory that do not depend on the
length of the input, but only on its height, this can be considered as too permissive. This is
witnessed for instance by the fact that, if a function operates on encodings of ranked trees, it
can store the whole input in memory, and remains in HBM. We define a third class of functions,
similar to HBM, but where the amount of space is bounded by the current height hc(u′) of the
prefix u′ of u at any time, not the global height h(u).

A function f : Σ∗ → ∆∗ is online-bounded memory (OBM) if there exists a Turing transducer
M computing it, and a function θ : N→ N such that, just after processing a prefix u′ of a well-
nested word u ∈ Σ∗, the memory used in the working tape of M is less than θ(hc(u′)).

For instance, consider the function that maps cnrn to ancn and cnr′rn−1 to bncn (for any
n > 0). We claim that this function is OBM, thanks to the following algorithm. First, the
number of c’s is stored when reading cn, and until the first return symbol is read. This costs
log(n), and at this time point n is the current height. If the first return symbol is r, it outputs
anc, otherwise bnc. Then the memory is flushed, and a c is emitted each time an r is read.

Functions definable by deterministic VPTs are clearly OBM. The converse is still not true:
The previous example is OBM, but cannot be implemented with a deterministic VPT. Thus
we obtain the following inclusions:

BM (determinizable VPTs (OBM (HBM (functional VPTs

The inclusion OBM ⊂ HBM is by definition. Its strictness is illustrated for instance by the
VPT in Figure 4.8 including only plain arrows. As we have seen, it defines a function in HBM
(it only involves ranked trees), but is not in OBM, as the whole input needs to be stored until
the last letter.

Matched twinning property. In order to decide whether the function defined by a VPT is
OBM, we follow the same approach as for HBM, by defining an appropriate twinning property
(see Figure 4.9).

74

A functional VPT T satisfies the matched twinning property (MTP) if for all ui ∈ Σ∗ and
vi, wi ∈ ∆∗ (i ∈ {1, . . . , 4}) such that u3 is well-nested and u2u4 is well-nested and, for all
i, i′ ∈ I, for all p, q, p′, q′ ∈ Q, and for all σ1, σ2 ∈ Γ∗, for all σ′1, σ

′
2 ∈ Γ∗, such that (q, σ1) and

(q′, σ2) are co-accessible:

if

 (i,⊥)
u1/v1−−−→ (p, σ1)

u2/v2−−−→ (p, σ1σ
′
1)

u3/v3−−−→ (q, σ1σ
′
1)

u4/v4−−−→ (q, σ1)

(i′,⊥)
u1/w1−−−−→ (p′, σ2)

u2/w2−−−−→ (p′, σ2σ
′
2)

u3/w3−−−−→ (q′, σ2σ
′
2)

u4/w4−−−−→ (q′, σ2)

then del(v1v3, w1w3) = del(v1v2v3v4, w1w2w3w4).
Observe that if a VPT satisfies the MTP, it also satisfies the HTP, by taking u3 = u4 = ε.

While the HTP allows to pump “horizontally”, the MTP also allows to pump “vertically”.

Theorem 4.6. Let T be a functional VPT.

1. JT K is OBM iff T satisfies the MTP,

2. this is decidable in CoNPTime, and

3. if this is the case, JT K is computable by a Turing transducer using quadratic space in the
current height of the input.

The proofs follow the same lines as for HBM (cf Theorem 4.5), with more involved develop-
ments. For instance, we use a recent result by Aleksi Saarela [Saa19] on word combinatorics, in
order to derive more delays when the conditions of the MTP do not hold.

75

76

Chapter 5

Algebraic characterizations

Contents

5.1 Rational functions over finite words 80

5.1.1 Congruences for transductions . 80

5.1.2 Sequential functions . 82

5.1.3 Bimachines . 84

5.1.4 Rational functions . 88

5.1.5 The aperiodic case . 89

5.1.6 Logical transducers . 90

5.2 Rational functions over infinite words 92

5.2.1 Infinite words and rational functions . 93

5.2.2 Sequential and quasi-sequential transductions 94

5.2.3 Rational transductions . 96

5.2.4 Canonical bimachine . 98

5.2.5 First-order definability . 99

In the previous chapters, we mainly focused on a “machine” approach to transductions,
through two-way transducers or streaming string transducers (with a short excursion to logic).
In this chapter, we adopt the “algebraic” and “logic” point of view on transductions, still
focusing on definability problems.

Languages. For languages, this shift from automata to algebra and logic has been established
in the early days of formal language theory, in several ways. For instance the syntactic congru-
ence provides an algebraic tool to characterize regular languages: the Myhill-Nerode theorem
states that a language is regular iff its syntactic right congruence has finite index [Ner63], or
equivalently iff it is recognized by a finite monoid [Myh57]. Moreover this congruence defines
the minimal deterministic automaton recognizing the language. Another well-known connec-
tion has been established, this time between logic and automata: a language is regular iff it is
recognized by an MSO formula [Büc60, Tra61].

Such correspondences have also been proven for subclasses of regular languages [Str94], for
instance star-free languages. These languages correspond to counter-free automata, aperiodic
(finite) syntactic congruences, and to languages defined by first-order formulas [Sch65, MP71].
Self-contained proofs of these relations are available in [DG08] (and [DGK08] for classes below).1

In this chapter we will describe other congruence classes with several characterizations.

1Another class is the extension of first-order logic with deterministic transitive closure, captured by two-way
multi-head deterministic automata with nested pebbles [EH07].

77

A
lg
eb

ra
ic

ch
ar

ac
te

riz
at

io
n

Fin
ite

st
at

e

tr
an

sd
uc

er
s

M
on

ad
ic

se
co

nd
-o

rd
er

tr
an

sd
uc

er
s
(M

SO
T
)

St
re

am
in

g
st
rin

g

tr
an

sd
uc

er
s
(S

ST
)

finite right
syntactic

congruence

deterministic
one-way

transducer

1-register
right-app.

SST

[Cho79] (same object)

finite
left/right

synt. congr.

functional
one-way

transducer

order-
preserving

MSOT

right-app.
functional

NSST

[RS91]

[Fil15]

[Cho77, BC02]

rational
functions

sequential
functions

Figure 5.1: Models of finite word to finite word transformations, including algebraic models.

For transductions, the situation is more complex, and almost nothing is known beyond
rational functions [Ber79]. We characterize transductions through congruence classes C, (as
for instance the class A of aperiodic congruences): a transduction is C-rational if it can be
implemented by a transducer such that the transition congruence of its underlying automaton
is in C. Our goal here, is to decide whether a transduction is C-rational, given a decidable
congruence class C. In Figure 5.1, we extend Figure 2.1 on transductions classes by adding
algebraic characterizations, for sequential and rational functions. Let us depict the situation.

Sequential transductions. Sequential functions, i.e. functions definable by deterministic
one-way transducers2, benefit from a minimization procedure that yields a canonical transdu-
cer. Its transition congruence can be defined in a way similar to the language case, once outputs
have been moved “to the left” on transitions (that is, outputs are produced as early as possi-
ble) [Cho79, Cho03, BC02]. This leads to an algorithm deciding, given a congruence class C
and a sequential transducer, whether there exists an equivalent transducer which is and deter-
ministic and has a transition congruence in C. However, this is not sufficient to decide whether
the corresponding sequential function is C-rational: there may be equivalent transducers in C,
but none of them is deterministic.

Rational functions. Algebraic characterizations, when operating on automata, need deter-
ministic devices. An early result by Elgot and Mezei shows that each rational transduction
is the composition of a co-deterministic transducer (that is, deterministic while reading from
right to left) with a deterministic transducer [EM65]. Schützenberger defined the notion of
bimachine, that can be considered as deterministic transducers with a co-deterministic regular
look-ahead [Sch61]3. A notion of canonical bimachine has been proposed in [RS91], but this one
is not minimal in the algebraic sense: A transduction can have a bimachine with congruences
in a congruence class C, but not its canonical bimachine.

2Recall that we associate outputs to transitions of a run, but also to its first and last states. These were often
named subsequential functions [Sch77].

3The name bimachine has been proposed by Eilenberg [Eil74].

78

Infinite words. For infinite words, some logic-automata connections still hold, but the si-
tuation is more intricate on the algebraic side, already at the “language” level [Wil93, PP04].
For instance there is no Myhill-Nerode theorem (i.e. no unique minimal automaton) nor even
a canonical automaton. Still, it has been shown in [BC04] how to decide whether a rational
function on infinite words is sequential4 (realized by a transducer with a deterministic under-
lying Muller automaton). In [Wil16], Wilke describes a notion of bimachine for infinite words,
restricted to total letter-to-letter rational functions. A connection between counter-free letter-
to-letter bimachines and temporal logics is established. These bimachines over infinite words
use the notion of prophetic automaton as right automaton (or regular look-ahead) as proposed
by Carton and Michel [CM03, Car10]. Also, the equivalence between star-free expressions and
aperiodic languages holds for infinite words [Per84], based on a syntactic congruence defined
in [Arn85], which leads to the decidability of first-order definability for regular languages of
infinite words. The connection between aperiodic two-way transducers and aperiodic SSTs over
infinite words is established in [DKT16].

Contributions. In the first part of the chapter, we propose an algorithm for deciding whether
a rational transduction on finite words is C-rational, given a decidable congruence class C. This
is obtained by proving that there is only a finite number of minimal bimachines, and by finding
a way to enumerate them. We also consider the special case of aperiodic congruences, for which
we prove that the canonical bimachine is aperiodic iff the transduction is. Furthermore, we
establish a transfer theorem between algebra and logic, which is used to extend the results on
languages to transductions, in particular the decidability of being definable in first-order logic,
but also in other logics having an algebraic counterpart.

The second part of the chapter deals with the extension to infinite words. We first show how
deterministic transducers over infinite words can be minimized. Then, we extend the notion
of bimachines to infinite words, and show that this captures the class of rational functions.
We define two right congruences (or equivalently, regular look-aheads), that capture enough
information from the suffix of the input word in order to have a bimachine recognizing the
function, and coarse enough to obtain an aperiodic bimachine, when the function is. This
way, we obtain a canonical bimachine for any rational function over infinite words, and also
a decision procedure for deciding whether such a function is aperiodic. We also show that
aperiodic functions correspond to those definable in first-order logic on infinite words. As a side
result, we show that the result by Elgot and Mezei stating that a rational function over finite
words is the composition of a deterministic and a co-deterministic rational function, also holds
for infinite words, in both directions (one of them was proved in [Car10]).

Further related work. In this chapter, we classify functions based on congruence classes,
where congruences are those of the underlying automata of the transducers (or bimachines). An
alternative way of classifying functions is to use the notion of continuity of a class of languages:
the function belongs to a given class if it preserves this class by inverse image. This is explored
in [CKLP15, CCP17]. For length-preserving rational functions, it was proved in [LMSV99]
that aperiodic non-deterministic5 rational functions correspond to length-preserving first-order
definable functions. This result has then been generalized to other varieties [MSTV06]. Non-
deterministic bimachines are studied in [SY06], in terms of expressiveness, not from an algebraic
point of view. Regular functions have no algebraic characterization so far, but it has been proved

4for functions mapping infinite words to infinite words, while in our setting we need functions mapping infinite
words to finite or infinite words.

5Here, “aperiodic non-deterministic” means that the automaton obtained after minimization of the underlying
automaton is aperiodic.

79

that first-order definable regular functions are those definable by aperiodic streaming string
transducers [FKT14], and also by aperiodic two-way transducers [CD15] (see also [DJR18] for
direct translations between these models). Still, deciding whether a regular function is first-
order definable is open.

Open problem 4 (Regular functions in FOT)

Is it decidable whether a regular function (given, for instance, by a functional two-way
transducer) is definable in FOT?

The particular case where input and output alphabets are unary is treated in [CG14], and
rotating and sweeping transducers in [Gui16b] (see also [Gui18] for an overview). Biautomata
[KP12] share some similarities with bimachines, but are different devices, as their left and right
heads share information on the current state.

5.1 Rational functions over finite words

5.1.1 Congruences for transductions

Words. Let us define the prefix distance between two words u and v as ‖u, v‖ = |u|+|v|−2|u∧v|
(recall that u∧v stands for the longest common prefix of u and v).

Automata. Given a one-way automaton A, we note q
u−→A q′ whenever there is a run of A

on u from a state q to a state q′. We omit A when it is clear from the context. A state q of
A is said accessible if there exists a word u and an initial state q0 of A such that q0

u−→A q.
An automaton is said accessible if all its states are accessible. In this chapter we always
assume automata to be one-way, deterministic, and complete (i.e. for every state p
and letter a, there is a state q and a transition rule p

a−→A q). Any one-way automaton can be
made complete in PTime.

Transducers. We take in this chapter a definition of transducers that slightly differs from the
one used in the other chapters, allowing initial outputs. A (one-way) transducer T is a tuple
(A, out, i , t) where A = (Q,Σ,`,a, δ, I, F) is still a one-way automaton, out is still an output
function out : δ → ∆∗, and where two output functions are added for the initial and final states:
i : I → ∆∗ and t : F → ∆∗.

Given a word u ∈ Σ∗ and a run q0q1 · · · q|u| of A on u, we write q0
u|v−−→T q|u| to denote

the corresponding run of T on u, where v = out(q0, u[1], q1) · · · out(q|u|−1, u[|u|], q|u|). If q0 ∈ I
and q|u| ∈ F then the run is accepting, and (u,w) ∈ JT K with w = i(q0)vt(q|u|) (also written
as JT K(u) = w, as T is functional). As usual, a transducer is said unambiguous (resp. deter-
ministic) if its underlying automaton is unambiguous (resp. deterministic), and a function is
said rational (resp. sequential) if it is realized by a functional (resp. deterministic) transducer.
Let us recall that functionality is decidable in PTime and that every functional transducer has
an equivalent unambiguous transducer [Ber79]. Because of the presence of the output func-
tions i and t , our notion of deterministic transducers is often called “subsequential” in the
literature [Sch77].

Congruences. Let ∼ denote an equivalence relation on Σ∗, and [u]∼ the equivalence class of
the word u ∈ Σ∗ (also written [u] when it is clear from the context). The relation ∼ has finite
index when its quotient Σ∗/∼ = {[u]∼ | u ∈ Σ∗} is finite.

80

Given two equivalence relations ∼1, ∼2 over Σ∗, the relation ∼1 is said finer than ∼2 (or ∼2

is coarser than ∼1) if for every pair of words u, v, if u ∼1 v then u ∼2 v. We denote this fact
by writing ∼1 v ∼2.

A right congruence (resp. left congruence) over Σ∗ is an equivalence relation over Σ∗ such
that, for every pair of words u, v ∈ Σ∗, and every letter a ∈ Σ, if u ∼ v then ua ∼ va (resp.
au ∼ av). An equivalence relation is a congruence if it is both a left congruence and a right
congruence. The intersection of two right (resp. left) congruences ∼1,∼2 over a common
alphabet is also a right (resp. left) congruence that we denote by ∼1 u ∼2.

We say that a congruence ∼ recognizes a language L ⊆ Σ∗ if L is a union of equivalence
classes C of ∼, that is: L =

⋃
c∈C{u | [u] = c}.

Syntactic congruence. One of the most fundamental congruences associated with a language
L is its syntactic congruence ≡L defined by:

u≡Lv ⇐⇒ (∀w`, wr ∈ Σ∗, w` · u · wr ∈ L ⇐⇒ w` · v · wr ∈ L)

The relation ≡L is indeed a congruence, and recognizes L. More importantly, it is the coarsest
congruence among all those recognizing L. One can even show (using the transition congruence
below) that a language is regular iff its syntactic congruence has finite index.

Transition congruence. Let us now consider two congruences associated with an automaton
A with states Q (recall that A is assumed one-way, deterministic and complete).

The transition congruence ≈A of A is defined by:

u≈Av ⇐⇒ (∀p, q ∈ Q, p u−→A q ⇐⇒ p
v−→A q)

The relation ≈A is a congruence. Let L denote the language recognized by A: in this case ≈A
recognizes L.

The right transition congruence ∼A of A (with initial state q0) is defined by:

u∼Av ⇐⇒ (∀q ∈ Q, q0
u−→A q ⇐⇒ q0

v−→A q)

This relation is a right congruence. We can see in this definition that an equivalence class of
∼A is strongly related with the state q reached when reading a member of the class. Hence
we will often identify a state q and the class [u]∼A of words u leading to q, and write [u]A for
simplicity. We also use ∼A to compare automata: given two automata A1 and A2, we say
that A1 is finer than A2 (written A1 v A2) iff ∼A1 v ∼A2 . With this definition, the minimal
deterministic automaton recognizing L is also the coarsest deterministic automaton recognizing
L (up to isomorphism).

Congruence classes. Given an alphabet Σ, a congruence class C is a set of congruences
of finite index over Σ which is both: 1) closed under intersection, and 2) closed under taking
coarser congruences.6

In the following we will consider definability problems related to congruences, so we need
to agree on a finite representation of them. A congruence ∼ of finite index over Σ can be fully
described by a morphism µ : Σ∗ → M , where M is a finite monoid, and µ is such that u ∼ v

6The notion of recognizability by a congruence is equivalent to the notion of recognizability by a stamp
(surjective morphism from a free monoid to a finite monoid). However the notion of variety of stamps defined
in [PS05] differs slightly from our notion of congruence class (such a variety is always a congruence class in our
setting, but not the converse).

81

iff µ(u) = µ(v). This morphism can itself be fully described by a function f : Σ → M . From
now on, we always assume that a congruence is described by such a monoid and morphism. A
congruence class C is said decidable if the following problem is decidable: given a congruence
∼ (described by a monoid and morphism), decide if ∼ is in C.

In the sequel we may refer to the following decidable congruence classes:

� the class F of all finite congruences,

� the class I of idempotent congruences: a congruence ∼ is idempotent if for every word u,
u ∼ u2,

� the class A of aperiodic congruences: a congruence ∼ is aperiodic if there exists n such
that, for every word u, un ∼ un+1.

� the class DA which gathers the languages definable in first-order logic with two variables
[TW98]. A congruence ∼ is in DA if there exists n such that for any words u, v, w, we
have: (uvw)nv(uvw)n ∼ (uvw)n.

� the class J of J -trivial congruences. The Green relation J is defined by: uJ v whenever
there exists u′, u′′, v′, v′′ such that u ∼ v′vv′′ and v ∼ u′uu′′. A congruence ∼ is J -trivial
if for all words u, v in Σ∗, if uJ v then u = v.

C-automata and C-transducers. Given a congruence class C, we will say that an automa-
ton A is a C-automaton if its transition congruence ≈A is in C. A C-transducer is a transducer
whose underlying automaton is a C-automaton. We say that a function is C-rational (resp.
C-sequential) if it is realized by a functional (resp. deterministic) C-transducer.

Definability. Let us now focus on the following definability problem:

Given a functional one-way transducer recognizing a function f , and a congruence
class C, is f C-rational?

We always assume here, that C is decidable. We will first focus on the subset of sequential
functions, for which the problem is simpler to address.

5.1.2 Sequential functions

The situation for sequential functions is somehow similar to that of regular languages, with an
additional subtlety.7 Given a regular language L and a congruence class C, one can decide if
there exists a congruence in C recognizing L by taking a deterministic automaton recognizing
L, minimizing it, and testing if this automaton has a transition congruence in C.

For sequential functions, Choffrut provided a minimization algorithm [Cho03], that we des-
cribe hereafter. As for languages, using this minimization procedure on a deterministic trans-
ducer recognizing a function f , and testing if this new transducer is in C, permits to decide if
f is C-sequential:

Theorem 5.1. Let C be a decidable congruence class. It is decidable whether a sequential
function, given by a one-way transducer, is C-sequential.

7Recall that what we name “sequential” functions here are usually named “subsequential”, as they can output
an additional word at the beginning (resp. end) of a run, depending on the initial (resp. final) state.

82

0

1

2

a | ε

a | a

a | ε

a | ε

Figure 5.2: An I-transducer.

functions

transducers

C sequential A

C sequential A

C-seq.
f1

min(f1)

f2

min(f2)T2

6= ∅ for C = I (Ex. 5.1)

Th. 5.1

A-seq.
f3

T3det(T3)

Th. 5.2

= ∅ (Theorem 5.2)

Figure 5.3: Situation for sequential transductions.

C + sequential 6= C-sequential. The subtlety is that it does not permit to decide if f is
C-rational. Indeed, being C-rational and sequential is not sufficient for being C-sequential. In
other terms, there are classes C and functions f that are C-rational (there is a transducer in
C recognizing f), sequential (there is a deterministic transducer recognizing f), but are not
C-sequential (i.e. there is no transducer recognizing f which is both in C and sequential). Let
us exhibit such a class and function.

Example 5.1. Consider the function f over alphabets Σ = ∆ = {a} such that f(ε) = f(a) = ε
and f(an) = a for all n > 1. Clearly, this function is sequential, with a transducer that outputs
a on the second input letter, and ε on all others.

As a class, we consider the class I of idempotent congruences defined before. We provide in
Figure 5.2 a (non-deterministic) I-transducer recognizing f .

Now, we claim that there is no deterministic I-transducer recognizing f . Assume for con-

tradiction that such a transducer exists, and let p
a|ε−→ q be its accepting run over a. We have

i(p) = t(p) = ε since f(a) = ε. As f(aa) = a and a ∼ aa (∼ is idempotent), we have q
a|a−−→ q,

and thus f(aaa) = aa, which is a contradiction.

The global picture is depicted in Figure 5.3, and for now we described the leftmost part.
For the class A of aperiodic congruences (on the right part), the situation is a bit simpler:

Theorem 5.2. A sequential function is A-sequential if and only if it is A-rational.

This property is proved by checking that the determinization algorithm in [BC02] preserves
aperiodicity. Together with Theorem 5.1, we obtain a procedure to decide A-sequential and
A-rationality of sequential functions.

83

Minimization. Let us give some intuitions about why Theorem 5.1 holds. The minimization
procedure proposed by Choffrut [Cho03] is based on the following ingredients, defined from a
function f : Σ∗ → ∆∗:

� a new function f̂ : Σ∗ → ∆∗ defined by:

f̂(u) =
∧
{f(uw) | w ∈ u−1dom(f)}

f̂(u) outputs the longest common prefix of all the possible continuations of u in the
domain, which is the maximal output that can be produced, and this is done at any time
point.

� the syntactic congruence of f , denoted by ∼f , and defined by:

u ∼f v iff
1) for any w ∈ Σ∗, uw ∈ dom(f) ⇐⇒ vw ∈ dom(f) and

2) for any w ∈ u−1dom(f), f̂(u)−1f(uw) = f̂(v)−1f(vw), for any words u, v.

Condition 1) ensures that∼f recognizes dom(f), while Condition 2) checks that the output

for any w is the same after reading u and v, once their specific outputs f̂(u) and f̂(v)
have been removed.

The minimal transducer Tf is defined from ∼f in a natural way:

� its underlying automaton has the classes of ∼f as states, with initial state [ε], final states

{[u] | u ∈ dom(f)}, and transition rules [u]
a−→ [ua] for all u ∈ Σ∗ and a ∈ Σ.

� the outputs are defined by: out([u]
a−→ [ua]) = f̂(u)−1f̂(ua), which means that when

reading a letter a after u, Tf outputs the maximal output for ua, given that it has already

output the maximal output for u. For the initial and final states we take i([ε]) = f̂(ε) and
t([u]) = f̂(u)−1f(u), for u ∈ dom(f).

With this definition, f is C-sequential iff Tf is a C-transducer. Moreover, Tf can be computed
in PTime from any sequential transducer realizing f [Cho03]. This completes the sketch of
proof for Theorem 5.1.

5.1.3 Bimachines

Having a deterministic device is a major feature for establishing algebraic properties. This is
the reason why the result for sequential functions was easily obtained from the minimization
procedure of deterministic transducers, and why regular languages (that can all be described
by deterministic automata) have a simple algebraic characterization, by finite congruences.
However, no simple deterministic device captures rational functions, so their algebraic charac-
terization is more challenging. Still, Elgot and Mezei showed that any rational function is the
composition of a left-to-right sequential transducer, and a sequential right-to-left transducer
[EM65, Section 7].

Schützenberger proposed the model of bimachines in [Sch61], which was also developed (and
named) later by Eilenberg [Eil74]. A bimachine B is composed by two automata: a deterministic
left-to-right automaton L (called left automaton), and a deterministic right-to-left automatonR
(called right automaton). An output function gives, from the pair of states of the two automata
at a given position, the word output at that position. This would rather be considered nowadays
as a deterministic automaton with a regular co-deterministic look-ahead, but the bimachine is
a completely symmetrical device. Bimachines are exactly as expressive as functional one-way
transducers, i.e. capture rational functions.

84

Reutenauer and Schützenberger defined a canonical bimachine Bf associated with any ra-
tional function f [RS91]. In this section we show how it is defined. We start from a bimachine
B realizing a function f :

1. one can define a canonical right automaton for this function, i.e. a right automaton R
that depends on f , but not on B. We write it Rf .

2. when the right automaton R is fixed, one can minimize the left automaton L of B, that
we write Left(R). This is called left-minimization, and yields a new bimachine written
Left(B). Symmetrically, we can define the right-minimization Right(B).

3. from this, one defines the canonical bimachine Bf with right automaton Rf , and left
automaton Left(Rf).

A C-bimachine is a bimachine whose left and right automata are both C-automata. We will
see (in Section 5.1.4) that unfortunately canonical bimachines do not gather all the algebraic
properties of a function, i.e. there exist C-rational functions f such that Bf is not a C-bimachine.
Hence, we will need another procedure. This procedure heavily relies on the core operations
described above: left-minimization and canonical right automaton. For this reason we describe
their definitions and basic properties here.

Right automaton, left congruence, bimachine. A right automaton R is a one-way au-
tomaton with a single initial state, and with backward deterministic transitions (also called
co-deterministic). It is interpreted as reading the input word from right to left deterministi-
cally. Equivalently, it can also be interpreted as a deterministic automaton operating on the
mirror of the word (also swapping initial and final states). The left transition congruence ∼R
associated with R is also defined in the exact symmetric way as transition congruences of one-
way automata, and in particular is a left congruence. In the following, we name left automaton
a deterministic one-way automaton.

A bimachine B is a tuple (L,R, out, outl, outr) where L and R are left and right automata
with states QL and QR, and final states FL and FR, respectively. We require that L and
R have the same domain.8 The function out : QL × Σ × QR → Σ∗ is the output function,
outl : FR → Σ∗ is the left final function and outr : FL → Σ∗ is the right final function. Given
two states l ∈ QL and r ∈ QR, the output function is extended to words in the following way:
out(l, ε, r) = ε, and out(l, uv, r) = out(l, u, r′)out(l′, v, r), provided that l

u−→L l′ and r′
v←−R r.

The function realized by B is the function JBK with the same domain as L and R, and such
that JBK(u) = outl(r)out(l0, u, r0)outr(l) where l0

u−→L l and r
u←−R r0 are accepting runs of L

and R, respectively. Intuitively, out can be read as a function reading an input letter annotated
with the states of L and R, and producing an output at that position accordingly. The global
output on u is then the concatenation of the outputs of each letter of u.

Example 5.2. The bimachine depicted in Figure 5.4 swaps the first and last letter of words in
{a, b}∗. The left automaton stores the first letter, and the right automaton the last one. The
output is defined, for every c ∈ {a, b}, by out(l0, c, rc) = out(lc, c, r0) = c and out(l, c, r) = c in
all other cases. Moreover outl(r) = outr(l) = ε for all states l, r.

8This requirement was not present in the original paper [RS91]. As a consequence, the results in that paper
were limited to total functions (see [RS91, Section 5.2]), while we can consider here the usual setting of partial
functions.

85

l0

la

lb

a

b

a, b

a, b r0

ra

rb

a

b

a, b

a, b

l0 la la la la

a a b b

r0rbrbrbrb

b a b a

ω ω ω ω

input:

output:Left automaton Right automaton

Figure 5.4: Automata of a bimachine B, and a run of B on the word aabb.

Left-minimization. Given two bimachines B1 and B2 with respective left automata L1,L2

and right automata R1,R2, we say that B1 is finer than B2 (or B2 coarser than B1), denoted
B1vB2, if L1 v L2 and R1 v R2. A bimachine B is minimal if there is no equivalent bimachine
strictly coarser than B (but other incomparable bimachines may exist).

Consider a bimachine B realizing a function f , with right automatonR. The left-minimization
consists in building a minimal9 left automaton Leftf (R) among all those which, associated with
R, define a bimachine realizing f . We usually write Left(R) instead of Leftf (R), for clarity.

Recall that in the sequential case (Section 5.1.2), the minimal deterministic transducer
outputs the longest word among all those obtained from a word with the same prefix. The
approach here is the same, but on the input word annotated with the equivalence class [w]R of
R on the current suffix w of the input. We define the functions f̂[w]R , for any w, by:

f̂[w]R(u) =
∧
{f(uv)| v ∈ [w]R ∩ u−1dom(f)}

which denotes the longest possible output after reading u, given that the suffix v will be in
[w]R. Like for sequential functions, we define a right congruence ∼L from f̂[w]R , by:

u ∼L v iff

{
∀w ∈ Σ∗, uw ∈ dom(f)⇔ vw ∈ dom(f) and,

if uw ∈ dom(f), then f̂[w]R(u)−1f(uw) = f̂[w]R(v)−1f(vw)

and the left automaton Left(R) is built from ∼L in the natural way. Symmetrically, the right
automaton Right(L) is defined from a given left automaton L. From a bimachine B, we define
the bimachine Left(B) similar to B except that its left automaton is replaced by Left(R), and
output functions are adapted accordingly. Right(B) is defined similarly: the right automaton
of B is replaced by Right(L). The following properties can be proved:

Proposition 5.1. Given a bimachine B realizing a function f , with a left automaton L and a
right automaton R,

1. Left(B) and Right(B) are well-defined, and equivalent to B,

2. L v Left(R) and R v Right(L),

3. Left(B) (resp. Right(B)) is minimal among all bimachines equivalent to B having R as
right automaton (resp. L as left automaton),

4. Left(Right(B)) and Right(Left(B)) are minimal bimachines realizing f . Moreover they
are comparable with B, so B v Left(Right(B)) and B v Right(Left(B)),

5. Left(Right(B)) and Right(Left(B)) can be computed in PTime from B.

86

L R

Left(R)

Right(Left(R))

v
v
···

v
···

v
··
·

v
v
··
·

fi
n

er
fi

n
er

left automata right automata

Figure 5.5: Combining left-minimization and right-minimization from a bimachine with au-
tomata L and R.

We represent some of these properties in Figure 5.5, for a given rational function f . The
left part represents left automata, and the right part right automata. The line joining L and
R represents a bimachine B realizing f , with L,R as automata. Left automata are (partially)
ordered by v , with the finer left automata at the top. Right automata are ordered in the
opposite way, which is natural, as the finer a left automaton is, the coarser an associated right
automaton can be (and symmetrically). We can observe for instance that B v Right(Left(B)),
as L v Left(R) and R v Right(Left(L)). We use arrows to indicate Left and Right operations.

We have seen how to define a minimal left automaton, given a fixed right automaton. Let
us now look how we can canonically define a right automaton from f .

Canonical right automaton. We define a canonical right automaton: it can be considered
as the minimal (co-deterministic) amount of look-ahead information needed in order to have a
deterministic left automaton using its information and realizing the function. As expected, the
canonical right automaton relies on a left congruence.

The left congruence of a function f : Σ∗ → ∆∗ is defined by:

u↼fv if

{
∀w ∈ Σ∗, wu ∈ dom(f)⇔ wv ∈ dom(f) and
sup{‖f(wu), f(wv)‖| wu ∈ dom(f)} <∞

These conditions state that u and v must have the same prefixes in the domain, and, over
any of these prefixes w, f outputs almost the same word on wu and wv, i.e. up to a word of
bounded length. The relation ↼f is indeed a left congruence, and it is of finite index for any
rational function f [RS91]. The canonical right automaton of a rational function f , written
Rf , is based on ↼f (we write here [u] instead of [u]↼f

, for clarity): its set of states is Σ∗/↼f

with initial state [ε], final states {[u] | u ∈ dom(f)} and transitions [au]
a←− [u], for all a ∈ Σ∗

and u ∈ Σ∗. Symmetrically, one can define the right congruence of a function ⇀f and the
canonical left automaton of f , written Lf . The canonical right automaton is coarser than any
right automaton for f (and symmetrically):

9As a deterministic automaton, this can be understood as both “in the number of states”, or “with the coarsest
transition congruence”.

87

Proposition 5.2. If B is a bimachine realizing f , with left automaton L and right automaton
R, then L v Lf and R v Rf .

Canonical bimachine. We have all the ingredients to define the canonical bimachine Bf
associated with the rational function f . It is defined as Bf = (Leftf (Rf),Rf , out, outl, outr)
where:

out([u]∼L , σ, [w]Rf
) = f̂[σw]Rf

(u)−1f̂[w]Rf
(uσ)

outl([w]Rf
) = f̂[w]Rf

(ε) for w ∈ dom(f)

outr([u]∼L) = f̂[ε]Rf
(u)−1f(u) for u ∈ dom(f)

This bimachine is clearly canonical: it is built upon the canonical right automaton Rf , and
its left-minimization Left(Rf), so it does not depend on the initial bimachine (or transducer)
realizing f . Reutenauer and Schützenberger showed that Bf is effectively computable from any
transducer or bimachine realizing f [RS91].

5.1.4 Rational functions

C-bimachines vs C-transducers. Recall that a function is C-rational if it can be realized
by a C-transducer, i.e. a one-way transducer with a transition congruence in C. This can be
lifted to bimachines:

Proposition 5.3. A function is C-rational iff it can be realized by some C-bimachine.

Indeed, from a bimachine B with left automaton L and right automaton R, one can build
(in PTime) a one-way transducer with a transition congruence coarser than ≈B (defined as
≈L u ≈R) by taking L × R as underlying automaton. Conversely, from a transducer T , one
can build (in ExpTime) a bimachine with a transition congruence coarser than that of T , by
taking ≈T as right automaton R, and Left(R) as left automaton.

Canonicity does not suffice. Now, it is tempting to think that a function f is C-rational iff
its canonical bimachine Bf is a C-bimachine. Unfortunately, this does not hold for some classes
C, as for instance the idempotent congruences I:

Example 5.3. Consider the I-transducer in Figure 5.2 and the function f it defines, as al-
ready described in Example 5.1. We have seen that f is I-rational (and sequential, but not
I-sequential), and we show that Bf is not a I-bimachine. As a sequential function, its canonical
right automaton Rf is the trivial automaton with a single state. Thus Left(Rf) is the underly-
ing automaton of the minimal deterministic transducer of f . As f is not I-sequential, Left(Rf)
is not in I, and neither is Bf (which left automaton is Left(Rf)).

We will see in Section 5.1.5 that for the class A of aperiodic congruences, the canonical
bimachine is aperiodic iff the function is.

Decision procedure. At this point, for an arbitrary (decidable) class C of congruences, we
still do not have an algorithm to decide C-rationality. We will manage to obtain it by proving
that the number of minimal bimachines10 is finite (as conjectured in [RS91]).

We have seen in Proposition 5.2 that for any bimachine with automata L,R realizing f ,
R v Rf and L v Lf , meaning that canonical left and right automata are v -upper bounds over
all left and right automata realizing f . In fact, Left(R) and Right(L) form v -lower bounds,
when we consider only minimal bimachines:

10up to state equivalence and output shifting, i.e. by identifying B1 and B2 once B1 v B2, B2 v B1, and they
both realize the same function f .

88

Lf Right(Lf)

Left(Rf) Rf

R

Right(Left(R))
Left(R)

v
···

v
v

···
v

v
··
·
v

v
v

··
·

v

fi
n

er
fi

n
er

left automata right automata

Figure 5.6: A view on minimal bimachines of a rational function.

Proposition 5.4. If B is a minimal bimachine realizing f with left automaton L and right
automaton R, then Left(Rf) v L and Right(Lf) v R.

In Figure 5.6 we depict minimal bimachines in the same way as in Figure 5.5, with the upper
and lower bounds for left and right automata. As there is only a finite number of automata
coarser than Left(Rf) and Right(Lf), respectively, we obtain:

Theorem 5.3. Given a rational function f , the set of minimal bimachines realizing f is finite
(up to equivalence and renaming). One can compute a set of representatives of each class of
minimal bimachines, when f is given by a one-way transducer or a bimachine. As a consequence,
C-rationality is decidable.

The set of representatives is obtained by computing Right(Lf) and Rf , and for each R
such that Right(Lf) v R v Rf , add Right(Left(B)) to the representatives, where B has L,R as
automata (L is arbitrary, it disappears in Left(B)). Once the set of representatives is computed,
it suffices to check whether one of them is a C-bimachine for deciding C-rationality of f .

The situation is illustrated in Figure 5.7. In [FGL19], we define a single bimachine Bf,C
from f , that is in C iff f is C-rational. Its left automaton Lf,C is obtained by intersecting
the congruences of all left automata L coarser than Left(Rf), while its right automaton is
Right(Lf,C). This provides another way of deciding C-rationality.

5.1.5 The aperiodic case

Let us now consider the special case of aperiodic rational functions, i.e. the case where C = A.
Here the situation is simpler:

Theorem 5.4. If f is aperiodic (i.e. A-rational), then so are all its minimal bimachines, and
in particular the canonical bimachine Bf .

As the right automaton of the canonical bimachine Bf is coarser than any right automaton
of a bimachine realizing f (by Proposition 5.2), the right automaton of Bf is aperiodic, if f is.

89

functions

bimachines

C(6= A) A

C(6= A) A
minimal bimachines
(finite by Th. 5.3)

f1

B1

Prop. 5.3

B′1
Left(Right(.))

Right(Left(.))

Prop. 5.1

Left(Right(.))

Right(Left(.))

Prop. 5.1

Bf1,C

f2

B2
(can be
inside A)

Left(Right(.))

Right(Left(.))

Prop. 5.1

Bf2

Th. 5.4

Figure 5.7: Situation for rational transductions.

Proving the same property for the left automaton of Bf requires a specific development, based
on this fact: when f is aperiodic, and viewed as a composition of a deterministic transducer,
and a co-deterministic transducer [EM65], then these two transducers are A-sequential. Then,
it can be shown that all minimal bimachines are A-bimachines, once f is aperiodic.

Proposition 5.5. Deciding if a function, given by a bimachine, is aperiodic is PSpace-
complete.

The lower bound comes from the PSpace-hardness of aperiodicity for languages [CH91].
For the upper bound, computing the minimal bimachine Left(Right(B)) from B can be done in
PTime, and testing its aperiodicity is in PSpace [Ste85, CH91]. It is unknown whether the
problem remains in PSpace when starting from a transducer instead of a bimachine:

Open problem 5 (Aperiodicity of one-way transducers in PSpace)

Determine whether the following problem is decidable in PSpace: Given a one-way trans-
ducer realizing a function f , decide if f is aperiodic.

5.1.6 Logical transducers

We have seen how to decide whether a rational function is C-rational. Let us now study how to
lift this algebraic characterization to a logical characterization. This can be achieved through
a transfer theorem, which would be ideally11:

Given a fragment F of MSO equivalent to a congruence class C of languages, a
rational function is C-rational iff it is definable in F (as a fragment of MSOT).

We will obtain such a result, but with additional assumptions on C and F . These assumptions
are verified by the major classes for which such a correspondence holds, as for instance C = A
and F = FO. This will imply a decision procedure for deciding whether a rational function is
definable in such fragments F . All the fragments we consider include the total order < over the
domain, so we usually omit it, and write FO for FO[<] for instance.

F-transducers. In Section 2.2.2, we defined MSO transducers (MSOTs) by interpreting out-
put predicates over several copies of the input. These correspond exactly to regular functions,

11we name fragment of MSO any subset of formulas in MSO.

90

i.e. functions definable by two-way transducers [EH01]. In [Boj14, Fil15], is was shown that
order-preserving MSOTs exactly capture rational functions, i.e. functions definable by one-way
transducers. We give here a more direct definition of MSOTs that is equivalent to order-
preserving MSOTs (introduced in Section 2.2.3), but more similar to one-way transducers.
They operate on pointed words, that we define now.

A pointed word over an alphabet Σ is a pair (u, i) where u ∈ Σ+ and i ∈ dom(u). Equiv-
alently, we will see it as a logical structure over the signature {c, (a(x))a∈Σ, x < y} where c
is a constant symbol. MSOc formulas (resp. Fc formulas) are formulas obtained by taking
an MSO formula (resp. F formula) and substituting some occurrences of first-order variables
inside predicates by c. Given a MSOc sentence ψ, we write (u, i) |= ψ when u satisfies ψ using
the usual semantics of MSO, and c is interpreted as i. The set of such pointed words (u, i)
defines the pointed language JψK of ψ. Using pointed words avoids to dedicate a variable as a
free variable, and this makes fragments with restrictions on variables more expressive, as for
instance for F = FOT2, the first-order fragment of MSOT where only two variables are allowed.

An order-preserving MSO transducer (1MSOT) over Σ,∆ is a tuple:

T = (V, φdom, (ψv)v∈V)

where V is a finite set of words over ∆, φdom is an MSO sentence over Σ, and each ψv, for v ∈ V ,
is an MSOc sentence. It defines a function (a relation in a more general case) in Σ∗ → ∆∗ with
domain JφdomK and such that: JT K(u) = v1 · · · v|u| where (u, i) |= ψvi , for i ∈ dom(u). Hence,
ψv holds at pointed positions where v can be output. We will always assume that JT K is indeed
functional and well-defined. We also only consider functions that do not contain the empty
word in their domain. As already mentioned in Section 2.2.3, a function is definable by an
1MSOT iff it is rational [Boj14, Fil15].

Given a fragment F of MSO, an F-transducer over Σ is a 1MSOT (V, φdom, (ψv)v∈V) where
φdom is an F-sentence, and ψv is an Fc-sentence for every v ∈ V . If f is realized by an F-
transducer, then we say that f is F-definable. In particular we write 1FOT for the first-order
fragment of 1MSOT.

C-transducers vs F-transducers. Now that we have defined F-transducers, i.e. our “logi-
cal” transducers, we would like to establish a link with “machine” transducers, i.e. C-transducers.
Let us define four conditions on F that will be sufficient to prove this correspondence:

1. Fc-formulas over an alphabet Σ and F-formulas over the extended alphabet Σ] Σ̇ define
the same pointed languages.

2. A language over the alphabet Σ is definable by an F-formula over Σ if and only if it is
definable by an F-formula over a larger alphabet Σ ∪ Γ.

3. F-languages are closed under pointed concatenation, meaning that for any two F-languages
L1, L2 over an alphabet Σ and a fresh symbol], L1 ·] · L2 is an F-language over Σ] {]}.

4. {ε} is an F-language.

Theorem 5.5. If C is a congruence class equivalent to a fragment F verifying conditions
(1)-(4), then:

a function is a C-rational iff it is F-definable.

The proof of this theorem uses an intermediate model using pairs of F-formulas that are
interpreted on pointed words, where the left (resp. right) formula is interpreted on the prefix

91

(resp. suffix) of the input preceding (resp. succeeding) the pointed position, with an additional
test on the letter at the pointed position. This models is closer to bimachines, and thus it is easily
shown to be equivalent to C-bimachines (without final outputs), which are themselves shown
equivalent to C-transducers (provided that the class {ε} can be defined in C over any alphabet).
Finally, it is shown that under conditions (1)-(4), pairs of F-formulas and F-transducers coincide
in expressiveness.

It can be checked that conditions (1)-(4) are verified by the congruence classes A, DA and
J, introduced in Section 5.1.1. Moreover, for each of these classes, a correspondence with a
logical fragment has already been established:

� the first-order fragment FO of MSO consisting in MSO formulas where second-order vari-
ables are not allowed, and the class A of aperiodic congruences [Sch65, MP71],

� the fragment FO2 of FO where only two variables are allowed, and the class of congruences
DA,

� the set BΣ1 of formulas being a Boolean combination of existential FO formulas, and the
class J of J -trivial congruences.

Moreover all these congruence classes are decidable (their corresponding equations can be
checked on the syntactic congruence of the considered language), so we can combine these
decision procedures and Theorem 5.5 to show that:

Theorem 5.6. Given a one-way transducer realizing a function f , the following three decision
problems are decidable:

� Is f FO-definable?

� Is f FO2-definable?

� Is f BΣ1-definable?

We have seen that conditions (1)-(4) are sufficient, but they are probably not necessary.
For instance, the logic FO[+1] does not satisfy condition (3), but there is good hope that
FO[+1]-definability is decidable.

Open problem 6 (FO[+1]-definability of one-way transducers)

Determine if the following problem is decidable: given a one-way transducer realizing a
function f , decide if f is FO[+1]-definable.

5.2 Rational functions over infinite words

The previous section presented a procedure to decide algebraic properties of rational functions,
i.e. whether a rational function over finite words is C-rational, for a given congruence class C
(as for instance C = A in the aperiodic case). In turn, this provided a procedure for deciding
whether a rational function is expressible in some logical fragment of MSO, whenever this
fragment has a corresponding decidable congruence class. The present section aims at lifting
these results to rational functions over infinite words, i.e. functions mapping infinite words to
finite or infinite words.

92

Outline. We start by defining infinite words, and rational functions over such structures in
Section 5.2.1. Then, in Section 5.2.2, we analyze two classes: sequential and quasi-sequential
transductions. Bimachines are introduced in Section 5.2.3, and the canonical bimachine in
Section 5.2.4, permitting to decide aperiodicity. The link with logics is then established in
Section 5.2.5.

5.2.1 Infinite words and rational functions

Words and languages. An infinite word over a finite alphabet Σ is an infinite sequence
of letters of Σ (or equivalently, a function from N to Σ). The set of infinite words over Σ is
denoted Σω, and we call Σ∞ = Σ∗ ∪ Σω the set containing all finite and infinite words over Σ.
Among infinite words, we will usually consider regular ones, i.e. those of the form uvω with
u, v ∈ Σ∗ (called ultimately periodic). We define a normal form for these regular words: uvω

is in normal form if v has minimal length and is minimal in the lexicographic order among all
possible decompositions of uvω, and v is not a suffix of u (if v 6= ε). Note that this normal form
also applies to finite words, by taking v = ε.

Most of the notions defined on finite words (in Section 2.1.1) are implicitly adapted to infinite
words in the natural way, in particular the domain of a word, the prefix and suffix relations,
etc. We prefer to focus on the differences. As a convention, we try to use the letters u, v, w, . . .
for finite words (and also words in Σ∞) and x, y, z, . . . for infinite words.

Given an infinite word x ∈ Σω, we denote by Inf(x) the set of letters of Σ appearing infinitely
often in x. The closure L of L ⊆ Σ∞ is the set {u ∈ Σ∞ | ∀i ∈ N, i ≤ |u|, ∃w s.t. u[1, i]w ∈ L}
i.e. the set of words such that any finite prefix has a continuation in L.

Automata. We use automata on infinite words with Muller acceptance conditions, and simply
call them automata in the sequel. A Muller automaton over Σ is a tuple A = (Q, δ, I, F) where
Q is a finite set of states, δ ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is the set of initial
states, and F ⊆ P(Q) is the final condition.

A run of A over a word w ∈ Σ∞ is itself a word r ∈ Q∞ of length |w| + 1, (with the
convention that ∞ + 1 = ∞) such that for any 1 ≤ i < |r|, we have (r[i], w[i], r[i + 1]) ∈ δ. A
run r is called initial if r[1] ∈ I, final if r ∈ Qω and Inf(r) ∈ F , and accepting if it is both initial
and final. A word is accepted by A if there exists an accepting run over it, and the language
recognized by A is the set of words it accepts, denoted by JAK ⊆ Σω. A language L ⊆ Σω is
ω-regular if it is accepted by some automaton.

Like in the finite case, we will use automata to define bimachines, hence we need some notions
of “left-to-right determinism” and “right-to-left determinism”. An automaton is deterministic
if it has a single initial state, and at most one initial run per word. A left automaton is a
deterministic automaton with no final condition (that is, F = P(Q)). A right automaton is an
automaton for which every infinite word has exactly one final run. These were introduced in
[CM03] under the name prophetic automata, where it is proved that any ω-regular language can
be recognized by such a right automaton, while it is well-known that it can also be recognized
by a deterministic automaton (with Muller conditions). We will always assume that automata
(except right automata) are trim, without loss of generality.

Transducers. We define transducers on top of automata in the usual way: A transducer T
over alphabets Σ,∆ is a tuple (A, outi, out) where A is an automaton over Σ, outi : Q → ∆∗

is the initial function and out : δ → ∆∗ is the output function. If r is an accepting run of A
on an infinite word x ∈ Σω, and v = out(r[1], x[1], r[2])out(r[2], x[2], r[3]) · · · then we say that

93

(x, outi(r[1])v) is realized by T . Then JT K denotes all such pairs realized by T , and we name it
the transduction realized by T .

In the sequel we only consider functional transducers, so we just name them “transducers”.
Functionality can be decided [Gir86] in PTime [Pri02, BCPS03]. A transduction (on infinite
words) is rational iff it can be realized by a transducer. A deterministic transducer is a trans-
ducer with a deterministic underlying automaton. A transduction is sequential if it is realized
by a deterministic transducer.

Congruences. In our setting, right congruences will only operate on finite words. Left con-
gruences are extended to infinite words with the same constraint: an equivalence relation ≈
over Σω is a left congruence if, for all x, y ∈ Σω and all a ∈ Σ, x ≈ y → ax ≈ ay. We will
only consider left congruences of finite index and such that each class is an ω-regular language.
The definition of a congruence does not change: it is a left congruence and a right congruence,
hence on finite words only.

Let us now define some congruences associated with automata. Given an automaton A with
state space Q, the right congruence associated with A is defined for u, v ∈ Σ∗ by u ∼A v if
∀q ∈ Q, there is an initial run of A over u reaching q if and only if there is one over v. Note
that for a left automaton, there is a bijection (up to adding a sink state) between Q and the
equivalence classes of A. Similarly, the left congruence associated with A is defined for x, y ∈ Σω

by x ≈A y if ∀q ∈ Q there is a final run of A over x from q if and only if there is one over
y. Given a right automaton there is a bijection between Q and the equivalence classes of ≈A.
Finally, the transition congruence of A is defined for u, v ∈ Σ∗ by u ≡A v if ∀p, q ∈ Q, there is
a run over u from p to q if and only if there is one over v. Like in the final case, an automaton
is called aperiodic if its transition congruence is aperiodic. A language is called aperiodic if
there exists an aperiodic automaton recognizing it. A transducer is aperiodic if its underlying
automaton is aperiodic and in that case the transduction it realizes is called aperiodic.

5.2.2 Sequential and quasi-sequential transductions

In this section, some key algebraic objects are defined, notably the syntactic congruence of
a function. Using this, we characterize sequential transductions. We then characterize quasi-
sequential transductions, which are somehow sequential transductions on infinite words, allowed
to add a final output “after” the computation.

f̂ and f . From a function f : Σω → ∆∞, we define two new functions:

� f̂ : Σ∗ → ∆∞ is defined by: f̂(u) =
∧
{f(ux) | ux ∈ dom(f)}. It is exactly the same as

in the finite case, except that its range is now over both finite and infinite words: f̂(u)
outputs the longest prefix of the output once u has been read.

� f : Σω → ∆∞ is defined by: f(x) = limn f̂(x[1, n]), for x ∈ dom(f). Intuitively, f outputs
what can be output by considering only prefixes of the input. For instance, like sequential
transductions, it cannot detect if there is an infinite number of a’s in the input. We call
f the sequential extension of f . In particular, if f is sequential, then f extends f over
dom(f).

Example 5.4. We present three rational functions that constitute our running examples.

1. fab maps each word over {a, b} with a finite number of a’s to the subsequence of ab-factors.
For instance fab(abbab

ω) = abab and fab(b
ω) = ε, while (abb)ω /∈ dom(fab).

� f̂ab just extracts the ab-factors, as for instance fab(babbaba) = abab.

94

� fab is defined over dom(fab) = {a, b}ω and fab((ba)ω) = limn f̂ab((ba)n) = limn(ab)n−1 =
(ab)ω.

2. f#a maps a word x over {a, b} to aω if x contains an infinite number of a’s, and to bω

otherwise.

� reading a finite prefix u does not give any insight on the output, thus f̂#a(u) = ε.

� f#a(x) = ε for every x ∈ {a, b}ω, as it is based on f̂#a.

3. fblocks maps u1# . . .#un#v where v does not contain #, to a
|u1|
1 # . . .#a

|un|
n #w where

ui ∈ {a, b}∗, ai is the last letter of ui (if any), w = aω if v has an infinite number of a’s,
and w = bω otherwise.

� f̂blocks(u1# . . .#un#v) = a
|u1|
1 # . . .#a

|un|
n # whenever v does not contain # (for the

same reason as for f#a),

� fblocks(u1# . . .#un#v) = a
|u1|
1 # . . .#a

|un|
n # whenever v does not contain #.

Syntactic congruence. Given a transduction f , we define its syntactic congruence ∼f over
Σ∗ by u ∼f v if:

1. ∀x ∈ Σω, ux ∈ dom(f)⇔ vx ∈ dom(f), and

2. either f̂(u) and f̂(v) are both regular with the same period (in normal form), or they are
both finite and ∀x ∈ Σω such that ux, vx ∈ dom(f), f̂(u)−1f(ux) = f̂(v)−1f(vx).

It can be checked that ∼f is a right congruence. Intuitively, u ∼f v means that (1) u and v,

as prefixes, behaves identically w.r.t. dom(f), and (2) f̂(u) and f̂(v) are infinite and identical
up to a finite prefix, or they are finite and the remaining output for f(ux) and f(vx) is the
same for all x, once f̂(u) and f̂(v) are removed. Hence it is very similar to the finite case, the
main difference being the domain dom(f).

Based on the syntactic congruence ∼f , one can define a transducer Tf , also in the same vein
as in the finite case (with some additional technicalities). It can be proved that Tf realizes f ,
and can be computed in PTime if f is given by a deterministic transducer.

Sequential transductions. We can now characterize sequential transductions:

Theorem 5.7. A rational function f over infinite words is sequential iff:

1. ∼f has finite index, and

2. f |dom(f) = f .

We will see that condition (1) is equivalent to the weak twinning property in [BC04], hence
this theorem adapts a result from [BC04] to transducers that can output finite words (not only
infinite ones). Condition (2) states somehow that the output can be produced progressively,
i.e. does not depend on an infinitary condition. When removing it, one obtains a new class of
transductions with interesting properties: quasi-sequential transductions.

95

Quasi-sequential transductions. We name quasi-sequential transduction any rational trans-
duction f which syntactic congruence ∼f has finite index. This is comparable with the notion
of deterministic transducers on finite words, that can append a word to the output depend-
ing on the final state. Here, quasi-sequential transductions have a similar characterization by
transducers allowed to append an output word in ∆∞ according to the reached final condition
(assuming the run produced a finite output so far). We do not elaborate on this “machine”
view, but rather to the algebraic properties of quasi-sequential transductions.

We will see that quasi-sequential transductions are exactly those satisfying the weak twinning
property defined in [BC04]. In order to define this notion, we need to identify constant states:
a state is constant if all the final runs from this state produce the same word. Recall that
del(u, v) measures the delay between words u and v, as defined in Section 4.2.4 page 72. A

transducer T satisfies the weak twinning property if for any initial runs p1
u|α1−−−→ q1

v|β1−−→ q1 and

p2
u|α2−−−→ q2

v|β2−−→ q2 the following property holds:

� If q1, q2 are not constant then del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2).

� If q1 is not constant, q2 is constant and produces the regular word γ, then either β1 = ε
or i(p1)α1β

ω
1 = i(p2)α2β2γ.

Note that if q2 is constant and β2 6= ε then γ = βω2 .
One key result in [BC04] is a determinization procedure for transducers over infinite words

(that we call subset construction with delays) that terminates iff the transducer satisfies the
weak twinning property. In fact one can show that, in this case, the resulting transducer
realizes exactly f . This will be used later to compute a canonical look-ahead. We can state the
following characterization of quasi-sequential transductions:

Theorem 5.8. If T is a transducer over infinite words, then the following statements are
equivalent:

1. T satisfies the weak twinning property,

2. the transducer S obtained from T by the subset construction with delays is finite,

3. f is quasi-sequential.

If these statements hold, then S is aperiodic when T is.

The equivalence between (1) and (2) is proved in [BC04].

5.2.3 Rational transductions

We have seen that sequential transductions can produce their output in a deterministic manner,
and are not able to take infinitary conditions on the input into account. Quasi-sequential
functions extend them a bit, by being able to produce their output in a non-progressive manner.

In this section, we consider the whole class of rational functions over infinite words. In order
to have a deterministic device (on which algebraic properties can be studied), we generalize
bimachines from finite to infinite words.

Bimachines. A bimachine on infinite words over alphabets Σ, ∆ is similar to the finite case,
but using a right automaton on infinite words implies some minor changes. Formally, a bi-
machine is a tuple B = (L,R, out, outl) where L = (QL, δL, {l0}) and R = (QR, δR, I, F) are
respectively a left and a right automaton, out : QL × Σ×QR → ∆∗ is the output function and

96

outl : I → ∆∗ is the left final function. We add the semantic restriction that JLK = JRK (a left
automaton can only recognize closed languages). In order to define the output produced by B
on an infinite word u ∈ JRK, let us define the word vi produced when reading the position i of
u. We have: vi = out(l, u[i], r) where l is the unique state of L reached after reading u[1, i− 1]
from the state l0 (if defined), and r is the state of the unique final run of R on u[i + 1,] (this
denotes the suffix of u starting at position i + 1), if defined. Then the output produced by
B on u is outl(r0)v1v2 · · · where r0 is the leftmost state of the unique final run of R on u (if
defined). Hence bimachines on infinite words are defined in a similar way as in the finite case,
except that the right automaton works a bit differently, and no right final condition is used.
The transduction JBK realized by B is defined over JRK.

Left minimization. In the finite case we defined the bimachine Left(R) from a right au-
tomaton R. This was based on the additional functions f̂[w]R . We adapt these definitions quite

naturally, and also the definition of f from the previous section:

� f̂x : Σ∗ → ∆∞ defined by f̂x(u) = ∧{f(uy) | y ≈R x}. Recall that ≈R is the left
congruence associated with R.

� f
R

: Σω → ∆∞ defined by f
R

(x) = limn f̂x[n+1,](x[1, n]).

Intuitively, f̂x(u) is the longest output that can be safely produced after reading the prefix

u, provided that the suffix will be in the class of x, while f
R

(x) applies f̂ to prefixes of x
progressively.

The next step, as in the finite case, is the definition of a right congruence from the definition
of f̂ . We call it the R-syntactic congruence of f and define it over Σ∗ by letting u ∼Rf v if:

1. ∀x ∈ Σω, ux ∈ dom(f) ⇐⇒ vx ∈ dom(f), and

2. for any x ∈ Σω, either f̂x(u) and f̂x(v) are both infinite with the same ultimate period (in
normal form) or they are both finite and f̂x(u)−1f(ux) = f̂x(v)−1f(vx).

Now, from a right automaton R, we define Left(R) based on ∼Rf , and the bimachine BRf =

(Left(R),R, outf,Rl , outf,R) where outf,Rl and outf,R output a maximal amount of information
on finite parts, and one period per input letter otherwise:

� outf,R([u], a, [x]R) =


f̂ax(u)−1f̂x(ua) if f̂x(ua) is finite

β if f̂ax(u) = αβω, β 6= ε

α if f̂ax(u) is finite, f̂ax(u)−1f̂(ua) = αβω

and β 6= ε

� outf,Rl ([x]R) =

{
f̂x(ε) if f̂x(ε) is finite

α if f̂x(ε) = αβω, β 6= ε

As in the sequential case, BRf can be computed in PTime from a bimachine realizing f with
right automaton R. One can show that if a transducer with an underlying automaton A has
a left congruence ≈A coarser than ≈R for some right automaton R, then ∼A v ∼Rf and BRf
realizes f . This is used to transfer algebraic properties between transducers and bimachines.
The proof also uses the fact that, from a left congruence, one can compute in 2ExpTime a right
automaton recognizing it:

Theorem 5.9. A function over infinite words is rational (resp. rational and aperiodic) iff it
can be realized by a bimachine (resp. an aperiodic bimachine).

97

5.2.4 Canonical bimachine

In this section we define a canonical bimachine for any rational function over infinite words.
By canonical, we mean that two bimachines realizing the same function will have the same
canonical bimachine. Our goal is not only to define such a machine, but also that this machine
can be used to decide the algebraic properties we are interested in (here, aperiodicity).

We have seen in the previous section how to “left-minimize” a right automaton R. Thus, the
missing piece is to define a canonical right automaton. This one has to fulfill two constraints:
being coarse enough to preserve algebraic properties, and being fine-grained enough to find a
corresponding deterministic left automaton (hence a bimachine).

We proceed in two steps:

1. we define the delay congruence
∆
≈f , the coarsest left congruence such that any right au-

tomaton R recognizing it satisfies that fR is quasi-sequential. In other terms, this permits
to have a deterministic transducer with a look-ahead recognizing the rational function.
Hence this is not fine enough to define a bimachine.

2. we introduce the ultimate congruence
∪
≈f . This congruence, when used as look-ahead,

transforms any “quasi-sequential transducer” into a deterministic one.

Hence, by taking the intersection of these two left congruences, we obtain a left congruence that
is fine enough to transform any transducer into a deterministic one, when this left congruence is
used as look-ahead. We will see that this left congruence is coarse enough, in that it is aperiodic
when f is.

Delay congruence. We have already defined a notion of delay between a pair of (finite) words.
(see Section 4.2.4 page 72). We generalize it to infinite words in the natural way, and extend it
with respect to a function, by considering the delays between possible outputs. For two infinite
words x, y ∈ Σω and a transduction f , we define delf (x, y) = {del(f(ux), f(uy)) | ux, uy ∈
dom(f)}.

The delay congruence
∆
≈f of a function f is the left congruence obtained by setting x

∆
≈f y

for x, y ∈ Σω if (1) for all u ∈ Σ∗, ux ∈ dom(f) iff vx ∈ dom(f) and (2) |delf (x, y)| < ∞. This
left congruence originates from [RS91, BLN12].

The delay congruence has some key properties:

1. when used as a look-ahead, it transforms any rational function into a quasi-sequential
function,

2. if f is aperiodic, then so is
∆
≈f ,

3. if A (resp. R) is the underlying automaton (resp. right automaton) of a transducer (resp.

bimachine) realizing f , then ≈A (resp. ≈R) is finer than
∆
≈f .

Ultimate congruence. The ultimate congruence of a rational function f is defined, for x, y ∈
Σω by taking x

∪
≈f y whenever, for all u ∈ Σ∗:

� ux ∈ dom(f)⇔ uy ∈ dom(f)

� if ux ∈ dom(f) then f̂(u) = f(ux) ⇐⇒ f̂(u) = f(uy). Moreover, if f̂(u) = f(ux) then
f(ux) = f(uy).

98

The equality f̂(u) = f(ux) expresses that no look-ahead on x would help outputting f(ux) (in
a deterministic way). The following properties of the ultimate congruence will be useful for our
decision procedure:

� if f is quasi-sequential, then
∪
≈f has finite index,

� if f is aperiodic, then so is
∪
≈f ,

�

∪
≈f can be computed in 2ExpTime from a bimachine realizing f .

Canonical bimachine. Let us now define how the delay congruence and the ultimate congru-
ence are composed in order to define the canonical bimachine. This is basically an intersection
(product construction), but where the ultimate congruence has access to the state (equivalence
class) of the delay congruence.

Given two right automata R1 = (Q1, δ1, I1, F1) over Σ and R2 = (Q2, δ2, I2, F2) over Σ×Q1,
the right automaton R1 ./ R2 is defined as (Q1×Q2, δ{1,2}, I1×I2, F1×F2) with F1×F2 = {P1×
P2 | P1 ∈ F1, P2 ∈ F2} and δ{1,2} = {((s1, s2), a, (r1, r2) | (s1, a, r1) ∈ δ1, (s2, (a, r1), r2) ∈ δ2}.

Given a left congruence ≈, we name canonical automaton associated with ≈ the right au-
tomaton obtained by (an adaptation of) the procedure described in [CM03], that builds a Büchi
automaton recognizing a language from its syntactic congruence. We obtain the following result:

Theorem 5.10. Let f be a rational function, R1 the canonical automaton associated with the

delay congruence
∆
≈f , and R2 the canonical automaton associated with the ultimate congruence

∪
≈fR1

. Then the bimachine BR1./R2
f :

� realizes f , and

� is aperiodic if f is.

As a consequence, given a bimachine realizing f , it is decidable whether f is aperiodic.

For this reason we name BR1./R2
f the canonical bimachine associated with f . This bimachine

permits to decide the aperiodicity of the function, but cannot be used to decide the membership
to any class of congruences, as we did in the finite case. In this sense it is “canonical for
aperiodicity”.

5.2.5 First-order definability

As we have seen, the algebraic notion of aperiodicity is decidable for rational functions over
infinite words. As in the finite case, we will see that this transfers to logics.

First, let us remark that MSO logics for languages of infinite words can be defined in the
same way as in the finite case, with some extra care, as for instance the fact that the output
must belong to ∆∞, while several copies of the input are available. This also holds for 1MSOT,
i.e. order-preserving MSO transducers.

Despite these technicalities, the same techniques can be adapted, and we obtain the same
correspondence between aperiodic rational functions and first-order definable order-preserving
transductions (1FOT).

Proposition 5.6. A rational transduction over infinite words is aperiodic iff it can be realized
by a 1FOT transducer.

Together with Theorem 5.10, this gives a procedure to decide whether a rational function is
definable by a first-order transducer:

Theorem 5.11. Given a bimachine (or a transducer) realizing a rational function f over infi-
nite words, it is decidable whether f is realizable by a 1FOT transducer.

99

Complexity. Throughout this chapter, complexity was not our main concern. Our decision
procedures all rely on a fixed number of compositions of steps, and each of them can be per-
formed in a fixed number of exponentials in time complexity. Thus, all the procedures presented
in this chapter have an elementary time complexity.

100

Chapter 6

Conclusion and Perspectives

In this last chapter we take a final tour on the results presented in this manuscript, while
modestly proposing some possible extensions and new directions.

6.1 Analyzing two-way transducers

We have seen in Chapter 3 and Section 4.1 how to analyze a two-way transducer, in order to
answer the following questions:

� is it definable by a one-way transducer?

� if not, is it definable by a sweeping transducer? How many sweeps are needed in this case?

� equivalently, is it definable by a concatenation-free SST? How many registers are needed
in this case?

Improving Rabin-Scott and Sherpherdson approaches. In Section 3.3 we presented the
Rabin-Scott proof that two-way automata can be simulated by one-way automata. We have
seen in Section 3.3 how this could be adapted to transducers, through the one-way definability
problem. The major drawback of this proof lies in its time complexity: it is non-elementary.

Any attempt to recover elementary complexity would require to combine several steps of
z-motion elimination in one step. This may be for instance obtained by removing several nested
z-motions in one step, or by combining the guesses on the periods. At this point, we are tempted
to conclude like Rabin and Scott did in their paper [RS59]: the Shepherdson approach seems
an easier way.

Concerning the Shepherdson approach exposed in Section 3.4, the main open question here
is to fill the complexity gap between the PSpace lower bound, and 2ExpSpace upper bound
for deciding whether a two-way transducer is one-way definable. Our proof somehow builds a
“best-effort” one-way transducer1. One may be tempted to look for a “direct criterion” on the
two-way transducer, i.e. something like a twinning property on two-way runs. This is difficult
to imagine so far, partly because one needs to quantify over all possible periods (in some range).
Ismael Jecker proposed other new ideas that could yield an ExpSpace upper bound, but this
work has not been published yet.

1The transducer T ′ described on page 56, is the “best under-approximation” of T among all transducers which
domain can be pumped in the same way as T . This has been formalized in [BGMP18, Corollary 8.7].

101

Output language. The expressive power of two-way transducers can be also considered on
the output side, i.e. by considering the language of words that such a device can output. This
output language may be not regular, and even not context-free. It is however k-iterative, as
already mentioned in the introduction of Chapter 3: for every two-way transducer T , there
exists k and N in N such that every output word of T of length greater than N can be written
as u1v1u2v2 · · ·ukvk (with v1v2 · · · vk 6= ε), and u0v

i
1u1v

i
2 · · ·uk−1v

i
kuk is also an output word of

T , for every i [Roz86, Smi14].2 For instance, k = 1 implies that the output language is regular,
k = 2 that it is context-free, etc. So it would be interesting to determine such a k:

Open problem 7 (Degree of iterativity of two-way transducers’ output languages)

Is the following problem decidable: Given a two-way transducer (functional or not), deter-
mine the smallest k such that its output language is k-iterative.

As a side question, one may wonder how this smallest k increases when composing two
two-way transducers? This would require a close inspection of the proof of closure by compo-
sition [CJ77]. Another variation would be to study the output of the iterated composition of
two-way transducers (see for instance [BFH+06] for sequential one-way transducers).

Determinism. The decision procedures we proposed were analyzing a non-deterministic (but
functional) two-way transducer, and deciding whether it has an equivalent non-deterministic
one-way transducer. We have seen in Proposition 4.2 that using bounded memory corresponds
to being definable by a sequential transducer. Hence one may want to directly decide whether
a two-way transducer has an equivalent deterministic one-way transducer (Open question 1).
One can solve it by using the two-way to one-way procedure, followed by the sequentiality
test [Cho77, BC02]. But one can hope for a better complexity. For instance, the resulting
deterministic one-way transducer has to fulfill the twinning property, and this may add enough
constraints to simplify our decision procedure.

One can go one step further by considering multi-sequential functions. These are functions
that can be implemented by a finite union of deterministic transducers. Given a functional trans-
ducer, it is decidable whether it defines a multi-sequential function [CS86], in PTime [JF18].
This even holds when the transducer is not functional, i.e. defines a relation [JF18]. A “weak
twinning property” permits to characterize such relations. This raises the question whether this
can be extended to regular functions:

Open problem 8 (Two-way to multi-sequential one-way transducers)

Is the following problem decidable: Given a two-way transducer (possibly non-functional),
is it equivalent to a multi-sequential (one-way) transducer?

This last question is of special interest, because multi-sequential relations are exactly those
that can be evaluated with bounded memory [JF18].

Uniformization. This also relates to uniformization. Let us recall that a function f uni-
formizes a binary relation r if dom(f) = dom(r) and f ⊆ r. As we have seen on page 25,
one can always uniformize any two-way transducer (that may not be functional) by a reversible
two-way transducer [dS13, DFJL17]. This is not true anymore when targeting deterministic
transducers (i.e. sequential functions), because sequential uniformization is already undecid-
able for rational functions [CL15]. This is depicted in Figure 6.1. Note that this “sequential

2This is in contrast with, for instance, multiple context-free languages, which were proved not to be k-iterative
for any k [KKM+14].

102

R
el
at

io
ns

Fu
nc

tio
ns

automatic
relation

automatic
function

finite-valued
rational
relation

sequential
function

rational
relation

rational
function

non-det.
two-way

transducer

reversible
transducer

dec. [BL69, CL15]

dec. [CL15]

undec. [CL15]

true [Kob69]

dec. [FJLW16]

undec.
[CL15]

Open problem 9

true [dS13, DFJL17]

An edge R
true−−→ F means that, given a relation r ∈ R, it is always possible to uniformize it by a function

f ∈ F . If not, dec. and undec. edges indicate whether the corresponding decision problem is decidable

or not.

Figure 6.1: Overview of uniformization results.

uniformization” becomes decidable for finite-valued rational functions [FJLW16], and for au-
tomatic relations3 [CL15]. Instead of targeting sequential functions, one may target rational
functions. A one-way transducer can always be uniformized by a functional one-way transdu-
cer [Kob69]. This problem seems open when one allows a two-way transducer for defining the
relation.

Open problem 9 (Uniformization of two-way transducers by functional one-way)

Can any two-way transducer (possibly not functional) be uniformized by a functional one-
way transducer? If not, is the corresponding decision problem decidable?

Finite-valued transductions We mainly focused on functional transductions. A natural
extension is to consider finite-valued relations, that is, binary relations for which there exists
k such that each element of their domain has at most k images. Some interesting results have
already been obtained.

For instance, one can minimize the number of registers of right-appending streaming string
transducers being “finite-valued”, in the specific sense that they remain deterministic, except
the output function that becomes finite-valued (see [Rey15, page 84] and [DRT16]). This result
is obtained thanks to a generalization of the twinning property.

Independently from the minimization of the number of registers, another ambitious challenge
about finite-valued SSTs is to obtain a decomposition theorem, that is, to show that every finite-
valued SST is equivalent to a union of functional transducers. This would imply, in particular,
that finite-valued SSTs and two-way transducers have the same expressive power. In [GMPS17],
such a decomposition is proven for finite-valued SSTs with one register. To my knowledge, it is

3A binary relation is automatic if it is recognized by an automaton reading a pair of input/output letters
when firing a transition. A padding symbol is used when lengths differ.

103

still open when an arbitrary number of registers is allowed.

Open problem 10 (Decomposition theorem for finite-valued SSTs)

Is every finite-valued SST equivalent to a finite union of functional SSTs?

The same problem is also open for finite-valued two-way transducers4. In fact, it is shown
in [GMPS17] that, if the decomposition theorem holds for finite-valued SSTs, then it also does
for finite-valued two-way transducers. Equivalence of finite-valued SSTs (resp. finite-valued
two-way transducers) has been proved to be decidable by another technique [MP19a, CK86]. A
decomposition theorem for one-way transducers has been established by Weber in [Web96] (see
also [SdS10]).

In view of the main results of the present manuscript, a first step towards their generalization
to finite-valued transducers would be:

Open problem 11 (Finite-valued two-way to one-way transducers)

Is the following problem decidable: Given a finite-valued two-way transducer, decide whether
there exists an equivalent one-way transducer.

Limited transducers Limited automata [Hib67, Pig19] constitute a slight extension of two-
way automata. A d-limited automaton is a one-tape Turing machine where each cell is allowed to
be rewritten only during its first d visits. 1-limited automata capture regular languages [WW86],
while d-limited automata, with d > 1, capture context-free languages, even over a unary alpha-
bet [PP13]. One could define transducers on this basis: A limited transducer would be a limited
automaton with output words on its transitions, that would be concatenated progressively in a
write-only one-way output tape. Clearly, 1-limited transducers can express all regular relations,
as two-way transducers are 1-limited transducers. The converse seems less obvious.

Open problem 12 (1-limited transducers)

Do 1-limited transducers (resp. functional 1-limited transducers) exactly capture regular
relations (resp. regular functions)?

Polyregular functions In 2018, Bojańczyk introduced polyregular functions [Boj18], a class
of word-to-word functions that strictly subsumes regular functions, and allows outputs of size
polynomial in the size of the inputs (in contrast with the linear-size increase of regular functions).
Polyregular functions enjoy several characterizations. One of them is two-way transducers,
extended with pebbles having a stack discipline [EM02]. Interestingly, k-pebble transducers
exactly define polyregular functions with output size in O(nk), and, for a given polyregular
function, one can minimize the number of pebbles [Lho20]. In particular, for k = 1 one re-
trieves regular functions, hence it is decidable whether a polyregular function is regular. Other
equivalent models are, among others, string-to-string MSO interpretations [BKL19], and regular
list functions [BDK18].

Open problem 13 (Polyrational functions)

Define the class of polyrational functions as those definable by a one-way transducer with
pebbles (with stack discipline). Has this class good algorithmic and closure properties?
Does it enjoy equivalent characterizations, like a generalization of order-preserving, on MSO
interpretations? Is the definability decidable, from polyregular to polyrational functions?
This would generalize the one-way-definability procedures presented in Chapter 3.

4The decidability of the finite-valuedness of two-way transducers has been recently proved [YY19].

104

For instance, the function that outputs all suffixes of a word is polyrational (and not regular),
but the one that outputs all prefixes does not seem so. Closely related, a recent paper [DFG20]
studies marble transducers, a restriction of two-way pebble transducers (with stack discipline)
where pebbles (named marbles5) are only put to the left of the current position. This model is
proved to be equivalent to copyful SSTs.

State complexity One of the most widely open problem concerning two-way automata is
state complexity, usually referred as minicomplexity. In 1978, Sakoda and Sipser conjectured
that there exist nondeterministic two-way automata for which equivalent deterministic two-way
automata require an exponential number of states [SS78]. This conjecture has also consequences
in terms of complexity classes (see e.g. [KP15]).

Still, some results have been obtained when restricting or extending the source or target
class. For instance, the conjecture does not hold when the non-deterministic two-way automaton
can make its non-deterministic choices only at the borders of the word (i.e. when reading the
end-markers) [GGP14].

Restated on transducers, the Sakoda-Sipser conjecture becomes:

Open problem 14 (State complexity of deterministic two-way transducers)

Is there an exponential gap in the number of states, from functional two-way transducers,
to deterministic two-way transducers?

To my knowledge, the translations from functional two-way transducers to deterministic ones use
crossing sequences and are thus exponential [Eng81] or the correspondence with MSOT [EH01],
and no lower bound has been established. The constraint of yielding the output could help
proving this conjecture on transducers (rather than automata) along.

Measuring two-wayness A question that naturally comes to mind when reasoning about
two-way devices is: how many reversals are needed? For two-way automata, the answer is simply
zero, because they are one-way definable. For two-way transducers, it is generally unbounded
(for instance when reversing the input by blocks). We have described in Chapter 4 an algorithm
deciding whether a functional two-way transducer can be implemented by an equivalent one with
a uniformly bounded number of reversals (Corollary 4.2).

Beyond this bounded-vs-unbounded dichotomy, there may exist other measures to explore,
like z-motion nesting degree. But a more direct measure is the number of registers of streaming
string transducers.

Open problem 15 (Register minimization of SSTs)

Is the following problem decidable: Given a regular function f (given for instance as a two-
way transducer, or an SST) and k ≥ 0, can f be implemented by an SST with k registers?

We have seen in Corollary 4.3 that this problem is decidable for concatenation-free NSSTs. As
presented in the introduction of Chapter 4, this also holds for right-appending SSTs [DRT16,
Rey15], and SSTs over a unary alphabet [AR13].

Two-way transducers over infinite words. In Section 5.2 we investigated the algebraic
properties of rational functions over infinite words. These were defined by Muller transducers,
that is, one-way transducers with Muller acceptance condition. Like in the finite case, a two-way
extension of transducers gives raise to the class of regular functions over infinite words, with

5a notion introduced in [EHvB99] for trees.

105

equivalent models: two-way Muller transducers with regular look-ahead, MSOTs over infinite
strings, and (functional, copyless) streaming string transducers [AFT12].

Recently, the decidability of the computability of regular functions over infinite words has
been proved [DFKL19]6. Here, computability means that the output can be progressively
produced by a Turing machine on an output tape. This result reuses some properties of two-
way loops exposed in Chapter 3, in particular idempotent loops. This naturally leads to the
following question:

Open problem 16 (Two-way to one-way transducers over infinite words)

Is the following problem decidable: Given a regular function over infinite words (given by
a two-way Muller transducer with regular look-ahead), is it rational (that is, is there an
equivalent one-way Muller transducer)?

6.2 Pushdown and Trees

Two-way VPTs to one-way VPTs Another way to generalize two-way transducers is to
equip them with a stack [GHI67]. In Chapter 4, we studied visibly pushdown transducers
(VPTs), that is, one-way transducers equipped with a visible stack: each input letter indicates
the operation (push/pop) on the stack. In particular we focused on the amount of memory
required for evaluating the associated transduction. One step further is to consider two-way
VPTs.

Open problem 17 (Two-way to one-way VPTs)

Is the following problem decidable: Given a functional two-way VPT, is it definable by a
one-way VPT?

This problem is a generalization of the one-way definability of two-way transducers detailed in
Chapter 3. Adding a stack breaks some parts of the proofs described in this manuscript. For
instance two-way VPTs cannot be normalized in order to assume bounded crossing.

Numerous properties are already known about two-way VPTs [DFRT16, DFT19], including
an equivalence with MSOT on nested words (when adding a single use restriction), and with
copyless VPAs with registers (à la SSTs) [AD17]. Note that at the automaton level, two-way
VPAs and one-way VPAs are known to be equi-expressive [MV09, DFRT16].7

VPTs to two-way transducers In terms of streamability, we could adapt our definition,
and say that streamability corresponds to being “two-way sequential”: the memory remains
bounded, but we are allowed to read the input several times, in a deterministic manner. For
words, every functional two-way transducer can be made deterministic [EH01] and even re-
versible [DFJL17], so this new streamability reduces to being definable by a functional two-way
transducer. The question, for one-way VPTs, becomes:

Is the following problem decidable: Given a VPT (functional or not), is it definable
by a two-way transducer?

In fact the question is easily solved: In order to be definable by a two-way transducer, a VPT
must have a regular domain (as two-way transducers do). And every VPT with a regular domain

6and extended to the case of data values (infinite alphabet) in [EFR20].
7In [BG17], a double-exponential lower bound is established, to convert two-way pushdown automata of

constant height to one-way pushdown automata of constant height. However it does not apply to VPAs, as the
constant-height restriction bounds their expressiveness to regular languages.

106

is rational, i.e. has an equivalent one-way transducer (because its domain can only contain words
of bounded height, similarly to Proposition 4.4). And this is of course also sufficient for being
definable by a two-way transducer. So a VPT is definable by two-way transducer iff it is rational,
iff its domain is regular. The latter is decidable in PTime [Srb09].

This is somehow counter-intuitive, because two-way transducers can output languages that
are context-free and not regular. For instance they can output the Dyck language of well-nested
words with one type of parentheses [Roz86]. The point is that they do not produce it in a
comparable manner: VPTs heavily rely on their domain, but not two-way transducers (when
we consider the output language).

The situation is exactly the same when we start from a two-way VPT, because the regularity
of the domain imposes that the height of the words in the domain is bounded.

Two-way vs one-way on trees. Visibly pushdown automata (resp. transducers) can also be
used as tree automata (resp. transducers), by processing the depth-first linearization of the tree
(resp. potentially also outputting the linearization of a tree [RT16]8). The “historical” models
of tree automata are different, as they operate from the leaves to the root (for bottom-up tree
automata), or from the root to the leaves (top-down tree automata) [CDG+07].

Tree-walking automata constitute the “two-way” version of tree automata. When at a
given node of a tree, a tree-walking automaton is allowed to move to its parent, or to one of
its children, as indicated by a transition rule. Surprisingly, this “two-way” extension is less
expressive than the “one-way” version: some regular tree languages are accepted by no tree-
walking automata [BC08], because a tree-walking automaton can get “lost” in the tree. When
extended with look-around, and restricted by a single-use discipline, tree-walking transducers
recover the exact expressive power of tree-to-tree MSO [BE00, CE12] (another method uses
pebbles instead [EHS07]).

However, on trees, several incomparable “one-way” transducer models compete. Indeed,
top-down and bottom-up tree transducers are incomparable [Eng75]. Let us instantiate the
one-way definability problem on top-down tree transducers:

Open problem 18 (Tree-walking to top-down tree transducers)

Is the following problem decidable: Given a single-use tree-walking transducer with look-
around, does it have an equivalent top-down tree transducer?

Interestingly, memory requirements for transformations defined by tree-walking transducers
started to be studied. In [EIM19], it is shown that by composing them, one can always keep the
space usage linear in the output (and input) size, for instance. Definability and uniformization
questions have also been considered on tree transducers, see e.g. [LW17, LS19].

On trees, other finite-state devices as expressive as tree-to-tree MSO transductions exist.
Let us mention macro tree transducers with regular look-ahead [EM99], and also streaming tree
transducers [AD17]. Both are “one-way” models, and thus can be considered as generalizations
of SSTs on words, even though tree transformations are much more complex to analyze than
word transformations. Consequently, many questions on word transformations can be adapted,
as for instance the minimization of parameters of macro tree transducers, resp. of registers of
streaming tree transducers.

8see also [MS18] for the case of top-down tree-to-string transducers.

107

6.3 Algebra and logics

In Chapter 5, we have considered the “algebraic” side of transductions, and the correspondence
with some logics. In particular we have described an algorithm for deciding whether a rational
function belongs to a given decidable congruence class (as for instance aperiodic congruences),
and to an associated logic (for instance FOT). Then, we proved that the decidability also holds
for transductions over infinite words, for the special case of aperiodic congruences and FOT.

Algebraic characterization of regular functions As already stated in Open Problem 4,
the next challenge is to obtain such characterizations for regular functions. This problem is
wide open. In particular, we lack a deterministic device like bimachines for two-way transducers
(when considering the problem on machines). A first step could be to obtain this characteri-
zation for functions only performing a “back-and-forth” sweep on the input, and then try to
move to sweeping transducers (which is, as we have seen, the same class as bounded-reversal
transducers: both properties could help at the algebraic level).

A series of recent papers considered reversible automata and transducers [LPP17a, LPP17b,
DFJL17, GKMP18]. Reversible means that the device is both deterministic and co-deterministic
(that is, leftwards deterministic). Given the nature of bimachines, and their usage in our proofs,
one could think of studying transductions definable by reversible one-way transducers, which
form a strict subclass of rational transductions, and hope for a simpler proof of characterization.
However, even at the level of languages, there is no unique minimal reversible automaton, given
a regular reversible language [LPP17a]9. And for regular functions, it makes no sense, because
they are all reversible [DFJL17].

Some notions of semigroups or monoids have been defined for two-way automata [Bir89,
Bir90, MSTV06, CD15] and for streaming string transducers [FKT14, DJR18], but they still do
not lead to the definition of a deterministic device like bimachines. Beyond this “transducers”
view (and their congruences), one may look for an alternative way to define word functions, more
suitable to algebraic characterizations. One can think for instance of monoid programs [Bar89,
GMS17], which both subsume monoid morphisms in terms of language recognition, and are less
machine-oriented.

A recent trend is to use Hilbert’s basis theorem in order to prove the decidability of equiva-
lence (or functionality) for some classes of transducers [BDSW17, SMK18, BPS18, Boj19], or
Ehrenfeucht’s conjecture [MP19a]. Whether this method could help solve the aforementioned
decidability problems is also to be investigated.

The algebraic approach also applies to richer structures, like trees [ÉW10, FSM11], but the
situation is even more complex in this case.

Separation and covering of transductions First-order definability can be classified as a
membership problem: is a function of class C also in a given class C′? Such membership problems
also apply on languages (rather than functions).

One of their generalizations is the separation problem. Consider two languages A,B from
a class C (for instance, regular languages). A language S from a class C′ (for instance, star-free
languages) separates A,B if it contains A and does not intersect B. S is called a separator of
A,B. The separation of C by C′ is said decidable if there exists a procedure that takes A,B
from C as inputs, and decides whether there exists a separator of A,B in C′. This is the case in
our example: a procedure deciding the separation of regular languages by star-free languages is
described in [PZ14].

9but one can build a reversible automaton from a minimal one [Lom02].

108

Separation has been generalized to covering problems [PZ18]. Recently, separation and
covering have been successfully used, for instance, for deciding membership of a regular language
in some levels of the quantifier alternation hierarchy in first-order logic [PZ19]. Indeed, deciding
separation requires a deep understanding of the expressive power of the separator class. This
sometimes leads to undecidability results, as for instance the undecidability of the separation
of visibly pushdown languages by regular languages [Kop16], and of the separation of regular
tree languages by deterministic tree-walking automata [Boj17].

It seems that separation could be defined and studied on word-to-word functions too: a
separator fS from a word-to-word function class C′ separates two word-to-word functions fA, fB
of a class C if fA ⊆ fS and fS ∩ fB = ∅, when functions are described as input/output pairs.
This implies in particular that dom(S) separates dom(A), dom(B). So, if the separation of C
by C′ is decidable, so is the separation of the corresponding domain classes. But the converse
is probably false: the domains could be separable, but not the functions, because this adds
additional constraints to the transition system.

The separation of regular functions by rational functions is obvious. Given two regular
functions fA and fB, if fA is one-way definable then fA and fB are separable by a rational
function iff fA ∩ fB = ∅, which is decidable (in this case, fA is a separator). Otherwise, if fA is
not one-way definable, then no function containing it is, so fA and fB are not separable by a
rational function. As one-way definability is decidable (Theorem 2.2), the separation of regular
functions by rational functions also is.

It seems less obvious to separate rational functions by first-order definable functions.

Open problem 19 (Separation of functions)

Is the separation of rational functions by FOT functions decidable?

The separation of regular functions by first-order definable functions is a generalization of
Open problem 4. A further step would be to consider covering problems instead of separation
problems.

To conclude...

Of course these perspectives are not exhaustive and reflect a personal point of view. For
instance, alternative ways of defining transductions, as listed on page 17, also yield a number
of open problems. A quantitative approach to transductions also conveys new problems and
techniques [Ans90, Lom16, DL19, DG19, LMT19], as well as the setting of infinite alphabets
(data values) [BS20].

Also, we followed a quite “theoretical” line, while sequential transducers are algorithms.
They appeared as a way to abstract compilers, and for natural language processing. Hence,
other lines of research follow a more “practical” view on transducers, and may deserve a joint
effort with the “algorithms” community, for instance. Another way to move towards practical
applications would be a certified implementation of our procedures (and more generally, of
standard results on transducers), by means of a proof assistant like Coq [Coq, DS18].

109

110

Open problems

1 Open problem (Functional two-way to deterministic one-way transducer) 26

2 Open problem (VPT determinization) . 69
3 Open problem (Deterministic pushdown transducers in bounded memory) 70

4 Open problem (Regular functions in FOT) . 80
5 Open problem (Aperiodicity of one-way transducers in PSpace) 90
6 Open problem (FO[+1]-definability of one-way transducers) 92

7 Open problem (Degree of iterativity of two-way transducers’ output languages) . 102
8 Open problem (Two-way to multi-sequential one-way transducers) 102
9 Open problem (Uniformization of two-way transducers by functional one-way) . . 103
10 Open problem (Decomposition theorem for finite-valued SSTs) 104
11 Open problem (Finite-valued two-way to one-way transducers) 104
12 Open problem (1-limited transducers) . 104
13 Open problem (Polyrational functions) . 104
14 Open problem (State complexity of deterministic two-way transducers) 105
15 Open problem (Register minimization of SSTs) 105
16 Open problem (Two-way to one-way transducers over infinite words) 106
17 Open problem (Two-way to one-way VPTs) . 106
18 Open problem (Tree-walking to top-down tree transducers) 107
19 Open problem (Separation of functions) . 109

111

Index

aperiodic, 82, 83, 89, 90, 92, 94, 97–99
automaton

k-sweeping, 21, 22
deterministic, 21, 22, 70, 80, 81, 84, 85, 87
left automaton, 84–89
Muller, 93, 94
one-way, 20–22, 25, 27, 35, 37, 39–42, 57,

64, 80, 81, 85
right automaton, 84–89
sweeping, 21, 22
two-way, 20–22, 35–38, 40, 41, 44, 46, 69
unambiguous, 21, 22
visibly pushdown, 61, 69, 106

bimachine, 17, 23, 78, 84–90, 92
canonical, 85, 88, 89
minimal, 86, 88, 89

bounded memory, 60, 70–74
height-bounded memory, 60, 61, 71–75
online-bounded memory, 61, 71, 74, 75

component, 53, 55, 62
congruence, 81–84, 89, 92, 94

congruence class, 81, 82, 92
left congruence, 81, 85, 87
right congruence, 81, 86, 94, 95, 97
syntactic congruence, 81, 92
transition congruence, 81, 82, 85, 88

crossing sequence, 37, 42, 44, 50, 52–54, 64–66,
68

delay, 19, 26, 73, 75, 96, 98

effect, 52–54

finite-valued, 103, 104
first-order logic (FO), 27, 90, 92
first-order transducer (FOT), 28, 80, 91, 108,

109
order-preserving, 91, 99

flow, 52, 53

idempotent, 53, 54, 62, 66

inversion, 49, 54–56, 61–65

language, 20, 22, 27

ω-regular, 93, 94

regular, 27, 29, 77, 82, 84

loop, 42, 50, 52–54, 62, 66

monadic second-order logic (MSO), 15, 16, 26–
29, 77, 90–92, 99

monadic second-order transducer (MSOT), 16,
17, 28–32, 61, 78, 90, 91, 105, 106

k-phase, 16, 29, 32

order-preserving, 16, 17, 78, 91, 99, 104

quasi-sequential, 96, 98, 99

rational function, 16–18, 23, 24, 32, 36, 41–47,
49, 50, 55–57, 61, 64, 78, 79, 84, 85,
87–92, 102, 103, 107–109

regular function, 16–18, 22, 29, 31, 32, 36, 59,
79–81, 90, 102, 104, 107–109

relation, 17, 20, 22–24, 28, 30, 36, 103

functional, 20, 24

reversal, 21, 25, 37, 66

sequential function, 16, 17, 23, 32, 36, 70, 73,
78, 82, 83, 102, 103

streaming string transducer (SST), 16–18, 30–
33, 59–61, 66–68, 77–79, 103–107

concatenation-free, 16, 32, 59, 67, 68, 101,
105

copyful, 31, 32, 105

copyless, 31–33, 68

right-appending, 16, 17, 32, 60, 78, 103

sweeping function, 17, 23, 65, 66

transducer

k-sweeping, 22, 24, 59, 61, 63–65

bounded-reversal, 25, 68

deterministic, 16, 17, 20, 22, 23, 25, 26,
30–32, 41, 44, 60, 70, 73, 78, 82, 84,
96, 102

112

functional, 16, 17, 22–26, 29–32, 44, 46, 47,
49, 50, 52, 56, 61, 63, 65, 66, 71, 73,
80, 82, 84, 103, 104

Muller, 93–99, 105, 106
one-way, 16, 17, 22–27, 29, 30, 32, 37, 41–

49, 56, 57, 59, 60, 63, 64, 69, 70, 73,
78, 82, 84, 88–92, 101, 104, 107

R-sweeping, 67, 68
reversible, 25, 32, 102
sweeping, 16, 17, 22–25, 29, 32, 44, 49, 50,

52, 59, 63, 65–68, 101, 108
two-way, 16, 17, 22–26, 29–32, 35–37, 41–

47, 49, 52, 55, 56, 59–63, 65, 66, 69,
77, 80, 91, 101–104, 106, 107

unambiguous, 22, 63, 66–68
visibly pushdown, 8, 60, 61, 69, 71–75, 106,

107
transduction, 20, 94
twinning property, 25, 70, 73, 101–103

horizontal twinning property, 60, 73, 75
matched twinning property, 61, 74, 75
weak twinning property, 96

word, 19–21, 26, 27, 29, 68, 80, 93
infinite word, 20, 93–99
nested word, 61, 68, 71, 72

z-motion, 38, 39, 43, 45–47, 101, 105

113

114

Bibliography

[AC10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS, pages 1–12, 2010. (Cited pages 11, 16, 30, and 31)

[AD11] Rajeev Alur and Jyotirmoy V. Deshmukh. Nondeterministic streaming string trans-
ducers. In Automata, Languages and Programming, pages 1–20. Springer Berlin
Heidelberg, 2011. (Cited pages 16 and 32)

[AD17] Rajeev Alur and Loris D’Antoni. Streaming tree transducers. Journal of the ACM,
64(5):31:1–31:55, 2017. (Cited pages 18, 61, 106, and 107)

[ADD+13] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions and cost register automata. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, pages 13–22.
IEEE Computer Society, 2013. (Cited page 18)

[AFM+20] Rajeev Alur, Dana Fisman, Konstantinos Mamouras, Mukund Raghothaman, and
Caleb Stanford. Streamable regular transductions. Theoretical Computer Science,
807:15–41, 2020. (Cited page 18)

[AFR14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators
for string transformations. In Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS
’14, pages 9:1–9:10. ACM, 2014. (Cited page 18)

[AFT12] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of
infinite strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science, LICS, pages 65–74, 2012. (Cited pages 18, 33, and 106)

[AHU69] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. A general theory of translation.
Mathematical systems theory, 3(3):193–221, Sep 1969. (Cited pages 9 and 16)

[AKL10] Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online
algorithms with weighted automata. ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.
(Cited page 61)

[AKMV05] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congru-
ences for visibly pushdown languages. In Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Proceedings, volume 3580 of Lecture
Notes in Computer Science, pages 1102–1114. Springer, 2005. (Cited page 61)

[Alu] Rajeev Alur. Nested words page: https://www.cis.upenn.edu/~alur/nw.html.
(Cited page 61)

115

https://www.cis.upenn.edu/~alur/nw.html

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. Journal of
the ACM, 56(3):16:1–16:43, 2009. (Cited page 61)

[AMS17] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Automata-Based
Stream Processing. In 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 112:1–112:15. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017. (Cited page 61)

[Ans90] Marcella Anselmo. Two-way automata with multiplicity. In Automata, Languages
and Programming, 17th International Colloquium, ICALP’90, Proceedings, volume
443 of Lecture Notes in Computer Science, pages 88–102. Springer, 1990. (Cited
page 109)

[AR13] Rajeev Alur and Mukund Raghothaman. Decision problems for additive regu-
lar functions. In Proceedings of the 40th International Conference on Automata,
Languages, and Programming - Volume Part II, ICALP’13, pages 37–48. Springer-
Verlag, 2013. (Cited pages 60 and 105)

[Arn85] André Arnold. A syntactic congruence for rational omega-language. Theoretical
Computer Science, 39:333–335, 1985. (Cited page 79)

[AU70] A.V. Aho and J.D. Ullman. A characterization of two-way deterministic classes of
languages. Journal of Computer and System Sciences, 4(6):523 – 538, 1970. (Cited
page 16)

[Bar71] Bruce H. Barnes. A two-way automaton with fewer states than any equivalent one-
way automaton. IEEE Transactions on Computers, 20(4):474–475, 1971. (Cited
page 36)

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989. (Cited page 108)

[Bas17] Félix Baschenis. Minimizing resources for regular word transductions. PhD thesis,
Université de Bordeaux, 2017. (Cited pages 24 and 29)

[BC02] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over finite
and infinite words. Theoretical Computer Science, 289(1):225–251, 2002. (Cited
pages 11, 16, 25, 26, 70, 73, 78, 83, and 102)

[BC04] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over infinite
words: The general case. Theory of Computing Systems, 37(4):483–502, 2004. (Cited
pages 79, 95, and 96)

[BC08] Miko laj Bojańczyk and Thomas Colcombet. Tree-walking automata do not rec-
ognize all regular languages. SIAM Journal on Computing, 38(2):658–701, 2008.
(Cited page 107)

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernàndez, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An XML query language, W3C recommen-
dation, 2007. (Cited page 60)

116

[BCPS03] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: an efficient procedure for deciding functionality and sequen-
tiality. Theoretical Computer Science, 292(1):45 – 63, 2003. Selected Papers in
honor of Jean Berstel. (Cited pages 70, 73, and 94)

[BDGP17] Miko laj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which
Classes of Origin Graphs Are Generated by Transducers. In Ioannis Chatzi-
giannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2017), vol-
ume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 114:1–
114:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. (Cited pages 19 and 30)

[BDK18] Miko laj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and
first-order list functions. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, pages 125–134. ACM, 2018. (Cited
page 104)

[BDSW17] Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial
automata: Zeroness and applications. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017.
(Cited page 108)

[BE00] Roderick Bloem and Joost Engelfriet. A comparison of tree transductions defined
by monadic second order logic and by attribute grammars. Journal of Computer
and System Sciences, 61(1):1–50, 2000. (Cited page 107)

[Ber79] Jean Berstel. Transductions and context-free languages, volume 38 of Teubner Stu-
dienbücher : Informatik. Teubner, 1979. (Cited pages 9, 10, 18, 78, and 80)

[BFH+06] Henning Bordihn, Henning Fernau, Markus Holzer, Vincenzo Manca, and Carlos
Mart́ın-Vide. Iterated sequential transducers as language generating devices. The-
oretical Computer Science, 369(1-3):67–81, 2006. (Cited page 102)

[BG17] Zuzana Bednárová and Viliam Geffert. Two double-exponential gaps for automata
with a limited pushdown. Information and Computation, 253:381–398, 2017. (Cited
page 106)

[BGMP15] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way
definability of sweeping transducer. In 35th IARCS Annual Conference on Foun-
dation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
volume 45 of LIPIcs, pages 178–191. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2015. (Cited pages 12, 23, and 24)

[BGMP16] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Mini-
mizing resources of sweeping and streaming string transducers. In 43rd Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2016, vol-
ume 55 of LIPIcs, pages 114:1–114:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016. Full version available at https://hal.archives-ouvertes.fr/

hal-01274992. (Cited pages 12 and 24)

[BGMP17] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Untwisting
two-way transducers in elementary time. In 32nd Annual ACM/IEEE Symposium

117

https://hal.archives-ouvertes.fr/hal-01274992
https://hal.archives-ouvertes.fr/hal-01274992

on Logic in Computer Science, LICS 2017, pages 1–12, 2017. (Cited pages 12
and 24)

[BGMP18] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way
definability of two-way word transducers. Logical Methods in Computer Science,
Volume 14, Issue 4, 2018. (Cited pages 12, 23, 24, 36, 44, and 101)

[BHPS61] Yehoshua Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kom-
munikationsforschung, 14:143–172, 1961. Reprinted in Y. Bar-Hillel. (1964). Lan-
guage and Information: Selected Essays on their Theory and Application, Addison-
Wesley 1964, 116–150. (Cited page 70)

[Bir89] Jean-Camille Birget. Concatenation of inputs in a two-way automaton. Theoretical
Computer Science, 63(2):141–156, 1989. (Cited page 108)

[Bir90] Jean-Camille Birget. Two-way automaton computations. Informatique Théorique
et Applications, 24:47–66, 1990. (Cited page 108)

[Bir93] Jean-Camille Birget. State-complexity of finite-state devices, state compressibility
and incompressibility. Mathematical Systems Theory, 26(3):237–269, 1993. (Cited
pages 36 and 38)

[BKL19] Miko laj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-string interpreta-
tions with polynomial-size output. In 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 106:1–
106:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited pages 10
and 104)

[BKM+19] Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Vincent Penelle, and
Gabriele Puppis. On synthesis of resynchronizers for transducers. In 44th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
volume 138 of LIPIcs, pages 69:1–69:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. (Cited page 19)

[BL69] J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-
order theory of successor. Journal of Symbolic Logic, 34(2):166–170, 1969. (Cited
page 103)

[BLN12] Adrien Boiret, Aurélien Lemay, and Joachim Niehren. Learning rational functions.
In Proceedings of the 16th International Conference on Developments in Language
Theory (DLT), pages 273–283, 2012. (Cited page 98)

[BMPP18] Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-
equivalence of two-way word transducers is in PSPACE. In 38th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2018, volume 122 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. (Cited page 19)

[Boj14] Miko laj Bojańczyk. Transducers with origin information. In Automata, Languages,
and Programming - 41st International Colloquium, ICALP, volume 8573 of Lecture
Notes in Computer Science, pages 26–37. Springer, 2014. (Cited pages 9, 18, 29,
and 91)

118

[Boj17] Miko laj Bojańczyk. It is undecidable if two regular tree languages can be separated
by a deterministic tree-walking automaton. Fundamenta Informaticae, 154(1-4):37–
46, 2017. (Cited page 109)

[Boj18] Miko laj Bojańczyk. Polyregular functions. CoRR, abs/1810.08760, 2018. (Cited
pages 10 and 104)

[Boj19] Miko laj Bojańczyk. The Hilbert method for transducer equivalence. SIGLOG News,
6(1):5–17, 2019. (Cited page 108)

[BPS18] Adrien Boiret, Radoslaw Piórkowski, and Janusz Schmude. Reducing transducer
equivalence to register automata problems solved by “Hilbert method”. In 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, volume 122 of LIPIcs, pages 48:1–48:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. (Cited page 108)

[BR18] Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular
function expressions. In Developments in Language Theory, pages 96–108. Springer
International Publishing, 2018. (Cited pages 17 and 18)

[BS20] Miko laj Bojańczyk and Rafa l Stefański. Single-use automata and transducers for
infinite alphabets. In 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. (Cited page 109)

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschr.
f. math. Logik und Grundlagen d. Math., 6:66–92, 1960. (Cited pages 9, 15, 27,
and 77)

[Car10] Olivier Carton. Right-sequential functions on infinite words. In Computer Science
- Theory and Applications, 5th International Computer Science Symposium in Rus-
sia, CSR 2010, volume 6072 of Lecture Notes in Computer Science, pages 96–106.
Springer, 2010. (Cited page 79)

[Car12] Olivier Carton. Two-way transducers with a two-way output tape. In Developments
in Language Theory, pages 263–272, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg. (Cited page 18)

[CCP17] Michaël Cadilhac, Olivier Carton, and Charles Paperman. Continuity and rational
functions. In 44th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2017, volume 80 of LIPIcs, pages 115:1–115:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. (Cited page 79)

[CD15] Olivier Carton and Luc Dartois. Aperiodic Two-way Transducers and FO-
Transductions. In 24th EACSL Annual Conference on Computer Science Logic (CSL
2015), volume 41 of Leibniz International Proceedings in Informatics (LIPIcs), pages
160–174. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015. (Cited pages 80
and 108)

[CDG+07] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent Jacquemard,
Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata techniques and
applications. Available on: http://tata.gforge.inria.fr, 2007. release October,
12th 2007. (Cited page 107)

119

http://tata.gforge.inria.fr

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Cambridge University Press, 1st edition,
2012. (Cited pages 9, 10, 16, 28, and 107)

[CES17] Olivier Carton, Léo Exibard, and Olivier Serre. Two-way two-tape automata. In De-
velopments in Language Theory, pages 147–159. Springer International Publishing,
2017. (Cited page 18)

[CG14] Christian Choffrut and Bruno Guillon. An algebraic characterization of unary two-
way transducers. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014. Proceedings, Part I, volume 8634 of Lecture
Notes in Computer Science, pages 196–207. Springer, 2014. (Cited page 80)

[CH91] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSpace-complete.
Theoretical Computer Science, 88(1):99–116, 1991. (Cited page 90)

[Cho77] Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions
sous-séquentielles en tant que relations rationnelles. Theoretical Computer Science,
5(3):325–337, 1977. (Cited pages 9, 11, 16, 25, 78, and 102)

[Cho79] Christian Choffrut. A generalization of ginsburg and rose’s characterization of
G-S-M mappings. In Automata, Languages and Programming, 6th Colloquium,
ICALP’79, Proceedings, volume 71 of Lecture Notes in Computer Science, pages
88–103. Springer, 1979. (Cited page 78)

[Cho03] Christian Choffrut. Minimizing subsequential transducers: a survey. Theoretical
Computer Science, 292(1):131–143, 2003. (Cited pages 11, 12, 78, 82, and 84)

[CJ77] Michal Chytil and Vojtech Jákl. Serial composition of 2-way finite-state transducers
and simple programs on strings. In Proceedings of the Fourth Colloquium on Au-
tomata, Languages and Programming, pages 135–147. Springer-Verlag, 1977. (Cited
pages 22 and 102)

[CK86] Karel II Culik and Juhani Karhumäki. The equivalence of finite valued transducers
(on HDT0L languages) is decidable. Theoretical Computer Science, 47(3):71–84,
1986. (Cited pages 23, 25, and 104)

[CK87] Karel II Culik and Juhani Karhumäki. The equivalence problem for single-valued
two-way transducers (on npdtol languages) is decidable. SIAM Journal on Com-
puting, 16(2):221–230, 1987. (Cited page 16)

[CKLP15] Michaël Cadilhac, Andreas Krebs, Michael Ludwig, and Charles Paperman. A cir-
cuit complexity approach to transductions. In Mathematical Foundations of Com-
puter Science 2015 - 40th International Symposium, MFCS 2015, volume 9234 of
Lecture Notes in Computer Science, pages 141–153. Springer, 2015. (Cited page 79)

[CL15] Arnaud Carayol and Christof Löding. Uniformization in automata theory. In
Logic, Methodology and Philosophy of Science - Proceedings of the 14th Interna-
tional Congress, 2015. (Cited pages 102 and 103)

[Cla99] James Clark. XSL Transformations (XSLT) version 1.0, W3C recommendation,
1999. (Cited page 60)

[CM03] Olivier Carton and Max Michel. Unambiguous büchi automata. Theoretical Com-
puter Science, 297(1-3):37–81, 2003. (Cited pages 79, 93, and 99)

120

[Col07] Thomas Colcombet. Factorisation forests for infinite words. In Fundamentals of
Computation Theory (FCT), volume 4639 of LNCS, pages 226–237. Springer, 2007.
(Cited pages 54, 56, and 66)

[Coq] The Coq proof assistant. https://coq.inria.fr/. (Cited page 109)

[Cou94] Bruno Courcelle. Monadic second-order definable graph transductions: a survey.
Theoretical Computer Science, 126(1):53 – 75, 1994. (Cited pages 16 and 28)

[CRT15] Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot. Trimming visibly
pushdown automata. Theoretical Computer Science, 578(C):13–29, 2015. (Cited
pages 69 and 71)

[CS86] Christian Choffrut and Marcel Paul Schützenberger. Décomposition de fonctions
rationnelles. In STACS 86, 3rd Annual Symposium on Theoretical Aspects of Com-
puter Science, Proceedings, volume 210 of Lecture Notes in Computer Science, pages
213–226. Springer, 1986. (Cited page 102)

[DDO19] Egor Dobronravov, Nikita Dobronravov, and Alexander Okhotin. On the length of
shortest strings accepted by two-way finite automata. In Developments in Language
Theory - 23rd International Conference, DLT 2019, Proceedings, volume 11647 of
Lecture Notes in Computer Science, pages 88–99. Springer, 2019. (Cited page 37)

[DFF19] Maŕıa Emilia Descotte, Diego Figueira, and Santiago Figueira. Closure properties
of synchronized relations. In 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, volume 126 of LIPIcs, pages 22:1–22:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited page 19)

[DFG20] Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register transducers
are marble transducers. CoRR, abs/2005.01342, 2020. (Cited page 105)

[DFJL17] Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On Reversible
Transducers. In 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017), volume 80 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 113:1–113:12. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017. (Cited pages 10, 16, 25, 32, 60, 102, 103, 106, and 108)

[DFKL19] Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote.
Deciding the computability of regular functions over infinite words. CoRR,
abs/1906.04199, 2019. (Cited page 106)

[DFL18] Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for word transductions
with synthesis. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, pages 295–304. ACM, 2018. (Cited page 19)

[DFP18] Maŕıa Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing
classes of word relations. In 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 123:1–123:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. (Cited page 19)

[DFRT16] Luc Dartois, Emmanuel Filiot, Pierre-Alain Reynier, and Jean-Marc Talbot. Two-
way visibly pushdown automata and transducers. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 217–226.
ACM, 2016. (Cited pages 61 and 106)

121

[DFT19] Luc Dartois, Emmanuel Filiot, and Jean-Marc Talbot. Two-way Parikh automata
with a visibly pushdown stack. In Foundations of Software Science and Computa-
tion Structures - 22nd International Conference, FOSSACS 2019, volume 11425 of
Lecture Notes in Computer Science, pages 189–206. Springer, 2019. (Cited page 106)

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas], volume 2
of Texts in Logic and Games, pages 261–306. Amsterdam University Press, 2008.
(Cited page 77)

[DG19] Manfred Droste and Paul Gastin. Aperiodic weighted automata and weighted
first-order logic. In 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, volume 138 of LIPIcs, pages 76:1–76:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited page 109)

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments of
first-order logic over finite words. International Journal of Foundations of Computer
Science, 19(3):513–548, 2008. (Cited page 77)

[DGK18] Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular transdu-
cer expressions for regular transformations. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, page 315–324.
Association for Computing Machinery, 2018. (Cited page 18)

[DJR18] Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic string transducers.
International Journal of Foundations of Computer Science, 29(5), 2018. (Cited
pages 31, 32, 33, 60, 80, and 108)

[DKT16] Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi. FO-definable
transformations of infinite strings. In 36th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2016,
volume 65 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2016. (Cited page 79)

[DL19] Louis-Marie Dando and Sylvain Lombardy. From Hadamard expressions to weighted
rotating automata and back. Theoretical Computer Science, 787:28–44, 2019. (Cited
page 109)

[DRT16] Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twin-
ning property for minimisation of cost register automata. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’16, pages
857–866. ACM, 2016. (Cited pages 60, 103, and 105)

[dS13] Rodrigo de Souza. Uniformisation of two-way transducers. In Language and Au-
tomata Theory and Applications, pages 547–558. Springer Berlin Heidelberg, 2013.
(Cited pages 25, 102, and 103)

[DS18] Christian Doczkal and Gert Smolka. Regular language representations in the con-
structive type theory of coq. Journal of Automated Reasoning, 61(1-4):521–553,
2018. (Cited pages 38 and 109)

[EFR20] Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. On computability of data
word functions defined by transducers. In Foundations of Software Science and

122

Computation Structures - 23rd International Conference, FOSSACS 2020, Proceed-
ings, volume 12077 of Lecture Notes in Computer Science, pages 217–236. Springer,
2020. (Cited page 106)

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions
and two-way finite-state transducers. ACM Transactions on Computational Logic
(TOCL), 2(2):216–254, 2001. (Cited pages 9, 16, 25, 28, 29, 30, 31, 36, 91, 105,
and 106)

[EH07] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles cap-
ture first-order logic with transitive closure. Logical Methods in Computer Science,
3(2), 2007. (Cited page 77)

[EHS07] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML transformation
by tree-walking transducers with invisible pebbles. In Proceedings of the Twenty-
Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 63–72. ACM, 2007. (Cited page 107)

[EHvB99] Joost Engelfriet, Hendrik Jan Hoogeboom, and Jan-Pascal van Best. Trips on trees.
Acta Cybernetica, 14(1):51–64, 1999. (Cited page 105)

[Eil74] Samuel Eilenberg. Automata, languages, and machines. Volume A. Pure and applied
mathematics. Academic Press, 1974. (Cited pages 9, 22, 78, and 84)

[EIM19] Joost Engelfriet, Kazuhiro Inaba, and Sebastian Maneth. Linear-bounded compo-
sition of tree-walking tree transducers: linear size increase and complexity. Acta
Informatica, 2019. (Cited page 107)

[EM65] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata.
IBM Journal of Research and Development, 9(1):47–68, 1965. (Cited pages 9, 16,
78, 84, and 90)

[EM99] Joost Engelfriet and Sebastian Maneth. Macro tree transducers, attribute gram-
mars, and MSO definable tree translations. Information and Computation,
154(1):34–91, 1999. (Cited page 107)

[EM02] Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers with
nested pebbles. In Mathematical Foundations of Computer Science 2002, 27th In-
ternational Symposium, MFCS 2002, Proceedings, volume 2420 of Lecture Notes in
Computer Science, pages 234–244. Springer, 2002. (Cited page 104)

[Eng75] Joost Engelfriet. Bottom-up and top-down tree transformations - A comparison.
Mathematical Systems Theory, 9(3):198–231, 1975. (Cited page 107)

[Eng81] Joost Engelfriet. Three hierarchies of transducers. Mathematical systems theory,
15(1):95–125, 1981. (Cited pages 18, 25, and 105)

[ERS80] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, L sys-
tems, and two-way machines. Journal of Computer and System Sciences, 20:150–
202, 01 1980. (Cited page 18)

[ÉW10] Zoltán Ésik and Pascal Weil. Algebraic characterization of logically defined tree
languages. International Journal of Algebra and Computation (IJAC), 20(2):195–
239, 2010. (Cited page 108)

123

[EY71] R.W. Ehrich and S.S. Yau. Two-way sequential transductions and stack automata.
Information and Control, 18(5):404 – 446, 1971. (Cited pages 16 and 18)

[FGL16a] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Aperiodicity of rational
functions is PSpace-complete. In 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2016, pages
13:1–13:15, 2016. (Cited page 12)

[FGL16b] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. First-order definability of
rational transductions: An algebraic approach. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 387–396,
2016. (Cited page 12)

[FGL19] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and algebraic charac-
terizations of rational transductions. Logical Methods in Computer Science, 15(4),
2019. (Cited pages 12 and 89)

[FGLM18] Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, and Anca Muscholl. On canonical
models for rational functions over infinite words. In 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2018, volume 122 of LIPIcs, pages 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. (Cited page 13)

[FGRS11] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais.
Streamability of nested word transductions. In IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2011,
volume 13 of LIPIcs, pages 312–324. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2011. (Cited page 12)

[FGRS13] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From
two-way to one-way finite state transducers. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 468–477. IEEE Computer Society,
2013. (Cited pages 10, 12, 36, 39, and 44)

[FGRS19] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais.
Streamability of nested word transductions. Logical Methods in Computer Science,
15(2), 2019. (Cited page 12)

[Fil15] Emmanuel Filiot. Logic-automata connections for transformations. In Logic and
Its Applications, pages 30–57. Springer Berlin Heidelberg, 2015. (Cited pages 9, 16,
28, 29, 78, and 91)

[FJLW16] Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence
and uniformisation problems for finite transducers. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, volume 55 of LIPIcs,
pages 125:1–125:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. (Cited
pages 19 and 103)

[FKT14] Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. First-order
definable string transformations. In 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014, volume 29
of LIPIcs, pages 147–159. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.
(Cited pages 80 and 108)

124

[FL15] Diego Figueira and Leonid Libkin. Synchronizing relations on words. Theory of
Computing Systems, 57(2):287–318, 2015. (Cited page 19)

[FMR18] Emmanuel Filiot, Nicolas Mazzocchi, and Jean-François Raskin. A pattern logic
for automata with outputs. In Developments in Language Theory, pages 304–317.
Springer International Publishing, 2018. (Cited page 26)

[FMRT18] Emmanuel Filiot, Sebastian Maneth, Pierre-Alain Reynier, and Jean-Marc Talbot.
Decision problems of tree transducers with origin. Information and Computation,
261:311–335, 2018. (Cited page 19)

[FR68] Patrick C. Fischer and Arnold L. Rosenberg. Multitape one-way nonwriting au-
tomata. Journal of Computer and System Sciences, 2(1):88 – 101, 1968. (Cited
pages 10 and 23)

[FR16] Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for func-
tions of finite words. SIGLOG News, 3(3):4–19, 2016. (Cited page 15)

[FR17] Emmanuel Filiot and Pierre-Alain Reynier. Copyful streaming string transducers.
In Reachability Problems - 11th International Workshop, RP 2017, volume 10506 of
Lecture Notes in Computer Science, pages 75–86. Springer, 2017. (Cited page 32)

[FRR+18] Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais, and
Jean-Marc Talbot. Visibly pushdown transducers. Journal of Computer and System
Sciences, 97:147–181, 2018. (Cited pages 61, 69, and 73)

[FSM11] Sylvia Friese, Helmut Seidl, and Sebastian Maneth. Earliest normal form and min-
imization for bottom-up tree transducers. International Journal of Foundations of
Computer Science, 22(7):1607–1623, 2011. (Cited page 108)

[FW65] N.J. Fine and H.S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16:109–114, 1965. (Cited page 43)

[GGP14] Viliam Geffert, Bruno Guillon, and Giovanni Pighizzini. Two-way automata making
choices only at the endmarkers. Information and Computation, 239:71–86, 2014.
(Cited page 105)

[GHI67] James N. Gray, Michael A. Harrison, and Oscar H. Ibarra. Two-way pushdown
automata. Information and Control, 11(1):30 – 70, 1967. (Cited page 106)

[Gin66] Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, Inc., New York, NY, USA, 1966. (Cited pages 22 and 25)

[Gir86] Françoise Gire. Two decidability problems for infinite words. Information Processing
Letters, 22(3):135–140, 1986. (Cited page 94)

[GKMP18] Bruno Guillon, Martin Kutrib, Andreas Malcher, and Luca Prigioniero. Reversible
pushdown transducers. In Developments in Language Theory - 22nd International
Conference, DLT 2018, Proceedings, volume 11088 of Lecture Notes in Computer
Science, pages 354–365. Springer, 2018. (Cited page 108)

[GKS07] Martin Grohe, Christoph Koch, and Nicole Schweikardt. Tight lower bounds for
query processing on streaming and external memory data. Theoretical Computer
Science, 380:199–217, July 2007. (Cited page 61)

125

[GMPS17] Paul Gallot, Anca Muscholl, Gabriele Puppis, and Sylvain Salvati. On the decom-
position of finite-valued streaming string transducers. In 34th Symposium on Theo-
retical Aspects of Computer Science, STACS 2017, volume 66 of LIPIcs, pages 34:1–
34:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. (Cited pages 103
and 104)

[GMR20] Olivier Gauwin, Anca Muscholl, and Michael Raskin. Minimization of visibly push-
down automata is NP-complete. Logical Methods in Computer Science, Volume 16,
Issue 1, 2020. (Cited page 61)

[GMS17] Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. The power of programs over
monoids in DA. In 42nd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2017, volume 83 of LIPIcs, pages 2:1–2:20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. (Cited page 108)

[GNT09] Olivier Gauwin, Joachim Niehren, and Sophie Tison. Earliest query answering for
deterministic nested word automata. In Fundamentals of Computation Theory, 17th
International Symposium, FCT 2009, volume 5699 of Lecture Notes in Computer
Science, pages 121–132. Springer, 2009. (Cited page 11)

[GO14] Viliam Geffert and Alexander Okhotin. Transforming two-way alternating finite
automata to one-way nondeterministic automata. In Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014. Proceedings,
Part I, volume 8634 of Lecture Notes in Computer Science, pages 291–302. Springer,
2014. (Cited page 41)

[GR63] Seymour Ginsburg and Gene F. Rose. Some recursively unsolvable problems in algol-
like languages. Journal of the ACM, 10(1):29–47, January 1963. (Cited page 70)

[GR66] Seymour Ginsburg and Gene F. Rose. A characterization of machine mappings.
Canadian Journal of Mathematics, 18:381–388, 1966. (Cited page 9)

[Gri68] T. V. Griffiths. The unsolvability of the equivalence problem for ε-free nondeter-
ministic generalized machines. Journal of the ACM, 15(3):409–413, 1968. (Cited
pages 10 and 23)

[Gui16a] Bruno Guillon. Input- or output-unary sweeping transducers are weaker than their
2-way counterparts. RAIRO - Theoretical Informatics and Applications, 50(4):275–
294, 2016. (Cited page 24)

[Gui16b] Bruno Guillon. Two-wayness: automata and transducers. PhD thesis, Université
Paris Diderot, Paris 7 and Università degli Studi di Milano, 2016. (Cited page 80)

[Gui18] Bruno Guillon. On nondeterministic two-way transducers. In Tenth Workshop on
Non-Classical Models of Automata and Applications, NCMA 2018, pages 11–27.
Österreichische Computer Gesellschaft, 2018. (Cited page 80)

[Gur82] Eitan M. Gurari. The equivalence problem for deterministic two-way sequential
transducers is decidable. SIAM Journal on Computing, 11(3):448–452, 1982. (Cited
page 25)

[Hib67] Thomas N. Hibbard. A generalization of context-free determinism. Information and
Control, 11(1):196 – 238, 1967. (Cited page 104)

126

[HK91] Tero Harju and Juhani Karhumäki. The equivalence problem of multitape finite
automata. Theoretival Computer Science, 78(2):347–355, 1991. (Cited page 18)

[HO07] Matthew Hague and C.-H. Luke Ong. Symbolic backwards-reachability analysis for
higher-order pushdown systems. In Foundations of Software Science and Computa-
tional Structures, 10th International Conference, FOSSACS 2007, volume 4423 of
Lecture Notes in Computer Science, pages 213–227. Springer, 2007. (Cited page 41)

[HU67] J. E. Hopcroft and J. D. Ullman. An approach to a unified theory of automata.
Bell System Technical Journal, 46(8):1793–1829, 1967. (Cited pages 10 and 25)

[Hul15] Mans Hulden. From two-way to one-way finite automata - three regular expression-
based methods. In Implementation and Application of Automata - 20th Interna-
tional Conference, CIAA 2015, volume 9223 of Lecture Notes in Computer Science,
pages 176–187. Springer, 2015. (Cited page 41)

[Iba78] Oscar H. Ibarra. The unsolvability of the equivalence problem for epsilon-free
NGSM’s with unary input (output) alphabet and applications. SIAM J. Comput.,
7(4):524–532, 1978. (Cited pages 10, 23, and 24)

[JF18] Ismaël Jecker and Emmanuel Filiot. Multi-sequential word relations. International
Journal of Foundations of Computer Science, 29(2):271–296, 2018. (Cited page 102)

[JO17] Galina Jirásková and Alexander Okhotin. On the state complexity of operations on
two-way finite automata. Information and Computation, 253:36–63, 2017. (Cited
page 37)

[Kap05] Christos A. Kapoutsis. Removing bidirectionality from nondeterministic finite au-
tomata. In Mathematical Foundations of Computer Science 2005, 30th International
Symposium, MFCS 2005, Proceedings, volume 3618 of Lecture Notes in Computer
Science, pages 544–555. Springer, 2005. (Cited pages 36 and 38)

[KKM+14] Makoto Kanazawa, Gregory M. Kobele, Jens Michaelis, Sylvain Salvati, and Ryo
Yoshinaka. The failure of the strong pumping lemma for multiple context-free
languages. Theory of Computing Systems, 55(1):250–278, 2014. (Cited page 102)

[KMP14] Martin Kutrib, Andreas Malcher, and Giovanni Pighizzini. Oblivious two-way finite
automata: Decidability and complexity. Information and Compututation, 237:294–
302, 2014. (Cited page 36)

[KO11] Michal Kunc and Alexander Okhotin. Describing periodicity in two-way determinis-
tic finite automata using transformation semigroups. In Developments in Language
Theory - 15th International Conference, DLT 2011. Proceedings, volume 6795 of
Lecture Notes in Computer Science, pages 324–336. Springer, 2011. (Cited page 37)

[KO12] Michal Kunc and Alexander Okhotin. State complexity of operations on two-way
finite automata over a unary alphabet. Theoretical Computer Science, 449:106–118,
2012. (Cited page 37)

[Kob69] Kojiro Kobayashi. Classification of formal languages by functional binary transduc-
tions. Information and Control, 15(1):95–109, 1969. (Cited page 103)

[Kop16] Eryk Kopczyński. Invisible pushdown languages. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS’16, pages 867–872.
ACM, 2016. (Cited page 109)

127

[KP12] Ondrej Kĺıma and Libor Polák. On biautomata. RAIRO - Theoretical Informatics
and Applications, 46(4):573–592, 2012. (Cited page 80)

[KP15] Christos A. Kapoutsis and Giovanni Pighizzini. Two-way automata characteriza-
tions of l/poly versus NL. Theory of Computing Systems, 56(4):662–685, 2015.
(Cited page 105)

[Lat77] Michel Latteux. EDT0L, systèmes ultralinéaires et opérateurs associés, 1977. T.R.
100, Université Lille. (Cited page 18)

[Led13] Jérémy Ledent. Internship report - streaming string transducers, 2013. Université
de Bordeaux. (Cited pages 31, 32, and 60)

[Lho20] Nathan Lhote. Pebble minimization of polyregular functions. In Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’20 (to
appear). ACM, 2020. (Cited page 104)

[LMSV99] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert Vollmer.
The descriptive complexity approach to LOGCFL. In 16th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume 1563 of LNCS, pages
444–454. Springer, 1999. (Cited page 79)

[LMT19] Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot. Determinisation of
finitely-ambiguous copyless cost register automata. In 44th International Sympo-
sium on Mathematical Foundations of Computer Science, MFCS 2019, volume 138
of LIPIcs, pages 75:1–75:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. (Cited page 109)

[Lom02] Sylvain Lombardy. On the construction of reversible automata for reversible lan-
guages. In Automata, Languages and Programming, 29th International Colloquium,
ICALP 2002, Proceedings, volume 2380 of Lecture Notes in Computer Science, pages
170–182. Springer, 2002. (Cited page 108)

[Lom16] Sylvain Lombardy. Two-way representations and weighted automata. RAIRO -
Theoretical Informatics and Applications, 50(4):331–350, 2016. (Cited page 109)

[LPP17a] Giovanna J. Lavado, Giovanni Pighizzini, and Luca Prigioniero. Minimal and re-
duced reversible automata. Journal of Automata, Languages and Combinatorics,
22(1-3):145–168, 2017. (Cited page 108)

[LPP17b] Giovanna J. Lavado, Giovanni Pighizzini, and Luca Prigioniero. Weakly and
strongly irreversible regular languages. In Proceedings 15th International Confer-
ence on Automata and Formal Languages, AFL 2017, volume 252 of EPTCS, pages
143–156, 2017. (Cited page 108)

[LS06] Sylvain Lombardy and Jacques Sakarovitch. Sequential? Theoretical Computer
Science, 356(1-2):224–244, 2006. (Cited page 23)

[LS19] Christof Löding and Christopher Spinrath. Decision Problems for Subclasses of Ra-
tional Relations over Finite and Infinite Words. Discrete Mathematics & Theoretical
Computer Science, Vol. 21 no. 3 , 2019. (Cited pages 61 and 107)

[LW17] Christof Löding and Sarah Winter. Synthesis of deterministic top-down tree trans-
ducers from automatic tree relations. Information and Computation, 253:336–354,
2017. (Cited page 107)

128

[Meh80] Kurt Mehlhorn. Pebbling moutain ranges and its application of dcfl-recognition.
In Automata, Languages and Programming, 7th Colloquium, ICALP 1980. Proceed-
ings, volume 85 of Lecture Notes in Computer Science, pages 422–435. Springer,
1980. (Cited page 61)

[MF71] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,
and formal systems. In 12th Annual Symposium on Switching and Automata Theory
(SWAT 1971), pages 188 – 191, 1971. (Cited page 36)

[Moo71] Frank R. Moore. On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Computers, 20(10):1211–1214, 1971. (Cited page 36)

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata. Number 65 in
M.I.T. Press research monographs. The MIT Press, 1971. (Cited pages 77 and 92)

[MP19a] Anca Muscholl and Gabriele Puppis. Equivalence of finite-valued streaming string
transducers is decidable. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, volume 132 of LIPIcs, pages 122:1–122:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited pages 104 and 108)

[MP19b] Anca Muscholl and Gabriele Puppis. The many facets of string transducers (invited
talk). In 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, volume 126 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. (Cited pages 15, 25, and 26)

[MS92] A. Muchnik and A. L. Semenov. Automata on infinite objects, monadic theories,
and complexity, 1992. (Cited page 41)

[MS18] Sebastian Maneth and Helmut Seidl. Balancedness of MSO transductions in poly-
nomial time. Information Processing Letters, 133:26–32, 2018. (Cited page 107)

[MSTV06] Pierre McKenzie, Thomas Schwentick, Denis Thérien, and Heribert Vollmer. The
many faces of a translation. Journal of Computer and System Science, 72(1):163–
179, 2006. (Cited pages 79 and 108)

[MV09] P. Madhusudan and Mahesh Viswanathan. Query automata for nested words. In
Mathematical Foundations of Computer Science 2009, 34th International Sympo-
sium, MFCS 2009. Proceedings, volume 5734 of Lecture Notes in Computer Science,
pages 561–573. Springer, 2009. (Cited page 106)

[Myh57] John Myhill. Finite automata and the representation of events. In Fundamental
Concepts in the Theory of Systems (WADC publication; ASTIA No. AD155741),
page 112–137. Wright Patterson AFB, Ohio, 1957. (Cited pages 9, 11, and 77)

[Ner63] Anil Nerode. Linear automaton transformations. Journal of Symbolic Logic,
28(2):173–174, 1963. (Cited pages 9, 11, and 77)

[Niv68] Maurice Nivat. Transduction des langages de Chomsky. Annales de l’Institut
Fourier, 28:339–455, 1968. (Cited page 9)

[Per84] Dominique Perrin. Recent results on automata and infinite words. In Mathematical
Foundations of Computer Science 1984, MFCS’84, volume 176 of Lecture Notes in
Computer Science, pages 134–148. Springer, 1984. (Cited page 79)

129

[Pet98] Holger Petersen. The head hierarchy for oblivious finite automata with polynomial
advice collapses. In Mathematical Foundations of Computer Science 1998, pages
296–304, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. (Cited page 36)

[Pig19] Giovanni Pighizzini. Limited automata: Properties, complexity and variants. In
Descriptional Complexity of Formal Systems - 21st IFIP WG 1.02 International
Conference, DCFS 2019, Proceedings, volume 11612 of Lecture Notes in Computer
Science, pages 57–73. Springer, 2019. (Cited page 104)

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite words - automata, semigroups, logic
and games, volume 141 of Pure and applied mathematics series. Elsevier Morgan
Kaufmann, 2004. (Cited page 79)

[PP13] Giovanni Pighizzini and Andrea Pisoni. Limited automata and regular languages. In
Descriptional Complexity of Formal Systems - 15th International Workshop, DCFS
2013. Proceedings, volume 8031 of Lecture Notes in Computer Science, pages 253–
264. Springer, 2013. (Cited page 104)

[Pri02] Christophe Prieur. How to decide continuity of rational functions on infinite words.
Theoretical Computer Science, 276(1-2):445–447, 2002. (Cited page 94)

[PS99] Maryse Pelletier and Jacques Sakarovitch. On the representation of finite determi-
nistic 2-tape automata. Theoretical Computer Science, 225(1-2):1–63, 1999. (Cited
page 18)

[PS05] Jean-Éric Pin and Howard Straubing. Some results on C-varieties. ITA, 39(1):239–
262, 2005. (Cited page 81)

[PZ14] Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic.
In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Sci-
ence Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 75:1–75:10. ACM, 2014. (Cited page 108)

[PZ18] Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Com-
puter Science, 14(3), 2018. (Cited page 109)

[PZ19] Thomas Place and Marc Zeitoun. Going higher in first-order quantifier alternation
hierarchies on words. Journal of the ACM, 66(2):12:1–12:65, 2019. (Cited page 109)

[Raj72] Vaclav Rajlich. Absolutely parallel grammars and two-way finite-state transducers.
Journal of Computer and System Sciences, 6(4):324 – 342, 1972. (Cited page 18)

[Rey15] Pierre-Alain Reynier. Contributions to timed systems and transducers. Habilitation
à diriger des recherches (habilitation thesis). Laboratoire d’informatique fondamen-
tale de Marseille, Aix-Marseille Université, France, 2015. (Cited pages 103 and 105)

[Roz85] Brigitte Rozoy. About two-way transducers. In Fundamentals of Computation
Theory, FCT ’85, volume 199 of Lecture Notes in Computer Science, pages 371–
379. Springer, 1985. (Cited page 18)

[Roz86] Brigitte Rozoy. Outils et résultats pour les transducteurs boustrophédons. ITA,
20(3):221–249, 1986. (Cited pages 36, 102, and 107)

[Roz87] Brigitte Rozoy. The Dyck language D′1
∗ is not generated by any matric grammar

of finite index. Information and Computation, 74(1):64–89, 1987. (Cited page 18)

130

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, 1959. (Cited pages 9, 12, 15,
35, 37, 38, 39, and 101)

[RS91] Christophe Reutenauer and Marcel-Paul Schützenberger. Minimization of rational
word functions. SIAM Journal of Computing, 20(4):669–685, 1991. (Cited pages 9,
10, 78, 85, 87, 88, and 98)

[RT16] Pierre-Alain Reynier and Jean-Marc Talbot. Visibly pushdown transducers with
well-nested outputs. International Journal of Foundations of Computer Science,
27(2):235–258, 2016. (Cited page 107)

[RV19] Pierre-Alain Reynier and Didier Villevalois. Sequentiality of string-to-context trans-
ducers. In 46th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2019, volume 132 of LIPIcs, pages 128:1–128:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. (Cited page 18)

[Saa19] Aleksi Saarela. Word equations with kth powers of variables. Journal of Combina-
torial Theory, Series A, 165:15 – 31, 2019. (Cited page 75)

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009. (Cited pages 10, 22, and 41)

[Sch61] Marcel-Paul Schützenberger. A remark on finite transducers. Information and
Control, 4(2-3):185–196, 1961. (Cited pages 9, 10, 17, 78, and 84)

[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. In-
formation and Control, 8(2):190–194, 1965. (Cited pages 77 and 92)

[Sch77] Marcel-Paul Schützenberger. Sur une variante des fonctions séquentielles. Theoret-
ical Computer Science, 4(1):47 – 57, 1977. (Cited pages 23, 25, 78, and 80)

[SdS10] Jacques Sakarovitch and Rodrigo de Souza. Lexicographic decomposition of k -
valued transducers. Theory of Computing Systems, 47(3):758–785, 2010. (Cited
page 104)

[Sem84] A. L. Semenov. Decidability of monadic theories. In Mathematical Foundations of
Computer Science 1984, pages 162–175. Springer Berlin Heidelberg, 1984. (Cited
page 41)

[She59] J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959. (Cited pages 12, 15, 16,
35, and 37)

[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer Science,
72(1):65–94, 1990. (Cited pages 54, 56, and 66)

[Sip80] Michael Sipser. Lower bounds on the size of sweeping automata. Journal of Com-
puter and System Sciences, 21(2):195 – 202, 1980. (Cited pages 15 and 36)

[Smi14] Tim Smith. A pumping lemma for two-way finite transducers. In Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS
2014, volume 8634 of Lecture Notes in Computer Science, pages 523–534. Springer,
2014. (Cited pages 18, 36, and 102)

131

[SMK18] Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence of deterministic
top-down tree-to-string transducers is decidable. Journal of the ACM, 65(4):21:1–
21:30, 2018. (Cited pages 10 and 108)

[Srb09] Jiŕı Srba. Beyond language equivalence on visibly pushdown automata. Logical
Methods in Computer Science, 5(1:2):1–22, 2009. (Cited pages 61 and 107)

[SS78] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way
finite automata. In Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing (STOC), page 275–286. Association for Computing Machinery, 1978.
(Cited pages 10, 15, 36, and 105)

[SS07] Luc Segoufin and Cristina Sirangelo. Constant-memory validation of streaming
XML documents against DTDs. In Proceedings of the 11th International Conference
on Database Theory (ICDT’07), pages 299–313. Springer Berlin Heidelberg, 2007.
(Cited page 60)

[Ste67] Richard E. Stearns. A regularity test for pushdown machines. Information and
Control, 11(3):323–340, 1967. (Cited pages 61 and 70)

[Ste85] Jacques Stern. Complexity of some problems from the theory of automata. Infor-
mation and Control, 66(3):163–176, 1985. (Cited page 90)

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Progress in Computer Science and Applied Series. Birkhäuser, 1994. (Cited pages 27
and 77)

[SY06] Nicolae Santean and Sheng Yu. Nondeterministic bimachines and rational relations
with finite codomain. Fundamenta Informaticae, 73(1-2):237–264, 2006. (Cited
page 79)

[Tra61] Boris A Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 140(326-329):122–123, 1961. (Cited pages 9, 15, 27, and 77)

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one
quantifier alternation. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, pages 234–240, 1998. (Cited page 82)

[Val75] Leslie G. Valiant. Regularity and related problems for deterministic pushdown
automata. Journal of the ACM, 22(1):1–10, 1975. (Cited pages 61 and 70)

[Var89] Moshe Y. Vardi. A note on the reduction of two-way automata to one-way automata.
Information Processing Letters, 30(5):261–264, 1989. (Cited page 40)

[Web96] Andreas Weber. Decomposing A k -valued transducer into k unambiguous ones.
Informatique Théorique et Applications, 30(5):379–413, 1996. (Cited page 104)

[Wil93] Thomas Wilke. An algebraic theory for regular languages of finite and infinite words.
IJAC, 3(4):447–490, 1993. (Cited page 79)

[Wil16] Thomas Wilke. Past, present, and infinite future. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, volume 55 of LIPIcs,
pages 95:1–95:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. (Cited
page 79)

132

[WK95] A. Weber and R. Klemm. Economy of description for single-valued transducers.
Information and Computation, 118(2):327 – 340, 1995. (Cited pages 26, 70, and 73)

[WW86] K. Wagner and G. Wechsung. Computational Complexity, volume 21 of Mathematics
and its Applications. Springer, 1986. (Cited page 104)

[YY19] Di-De Yen and Hsu-Chun Yen. Characterizing the valuedness of two-way finite
transducers. In Developments in Language Theory - 23rd International Conference,
DLT 2019, Proceedings, volume 11647 of Lecture Notes in Computer Science, pages
100–112. Springer, 2019. (Cited page 104)

[ZC05] Afra Zomorodian and Gunnar E. Carlsson. Computing persistent homology. Dis-
crete & Computational Geometry, 33(2):249–274, 2005. (Cited page 39)

133

	Introduction
	Beauty and the Beast
	Hands-on
	Outline

	Transducer models
	Finite state transducers
	Words, languages and relations
	Finite state automata
	Finite state transducers, and relation classes
	Definability problems

	Logics for transformations
	Logics defining word languages
	Logics defining word-to-word transformations
	Relations with finite state transducers

	Streaming string transducers
	Definition
	Links with other models

	Two-way to one-way transducers
	Two-way to one-way automata
	Crossing sequences: the Shepherdson approach
	Z-motion elimination: the Rabin-Scott approach
	Other known constructions

	From automata to transducers
	Properties of two-way transducers: primer
	Lower bounds for one-way definability

	Rabin-Scott approach
	Decomposing into elementary z-motions
	Decision algorithm
	Dealing with elementary z-motions

	Shepherdson approach
	Results and road map
	Sweeping case
	General case

	Resource minimization
	Resources for regular functions
	k-sweeping definability
	Sweeping-definability (and bounded-reversal)
	Register minimization of concatenation-free SST

	Resources of pushdown transducers
	Pushdown transducers, and streaming setting
	Bounded memory
	An online algorithm for *VPT evaluation
	Height-bounded memory
	Online-bounded memory

	Algebraic characterizations
	Rational functions over finite words
	Congruences for transductions
	Sequential functions
	Bimachines
	Rational functions
	The aperiodic case
	Logical transducers

	Rational functions over infinite words
	Infinite words and rational functions
	Sequential and quasi-sequential transductions
	Rational transductions
	Canonical bimachine
	First-order definability

	Conclusion and Perspectives
	Analyzing two-way transducers
	Pushdown and Trees
	Algebra and logics

	Open problems
	Index
	Bibliography

