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“All models are wrong, but . . . some of them are useful.”

Georges Box
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Abstract

This thesis is dedicated to the estimation of two statistical models: the simul-

taneous regression quantiles model and the blind deconvolution model. It

therefore consists of two parts. In the first part, we are interested in estimat-

ing several quantiles simultaneously in a regression context via the Bayesian

approach. Assuming that the error term has an asymmetric Laplace distri-

bution and using the relation between two distinct quantiles of this distribu-

tion, we propose a simple fully Bayesian method that satisfies the noncross-

ing property of quantiles. For implementation, we use Metropolis-Hastings

within Gibbs algorithm to sample unknown parameters from their full con-

ditional distribution. The performance and the competitiveness of the un-

derlying method with other alternatives are shown in simulated examples.

In the second part, we focus on recovering both the inverse filter and the

noise level of a noisy blind deconvolution model in a parametric setting. Af-

ter the characterization of both the true noise level and inverse filter, we pro-

vide a new estimation procedure that is simpler to implement compared with

other existing methods. As well, we consider the estimation of the unknown

discrete distribution of the input signal. We derive strong consistency and

asymptotic normality for all our estimates. Including a comparison with an-

other method, we perform a consistent simulation study that demonstrates

empirically the computational performance of our estimation procedures.
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Résumé

Cette thèse est consacrée à l’estimation de deux modèles statistiques : le

modèle des quantiles de régression simultanés et le modèle de déconvolu-

tion aveugle. Elle se compose donc de deux parties. Dans la première partie,

nous nous intéressons à l’estimation simultanée de plusieurs quantiles de ré-

gression par l’approche Bayésienne. En supposant que le terme d’erreur suit

la distribution de Laplace asymétrique et en utilisant la relation entre deux

quantiles distincts de cette distribution, nous proposons une méthode simple

entièrement Bayésienne qui satisfait la propriété non croisée des quantiles.

Pour la mise en œuvre, nous utilisons l’algorithme de Gibbs avec une étape

de Metropolis-Hastings pour simuler les paramètres inconnus suivant leur

distribution conditionnelle a posteriori. Nous montrons la performance et la

compétitivité de la méthode sous-jacente par rapport à d’autres méthodes en

fournissant des exemples de simulation.

Dans la deuxième partie, nous nous concentrons sur la restoration du fil-

tre inverse et du niveau de bruit d’un modèle de déconvolution aveugle

bruyant dans un environnement paramétrique. Après la caractérisation du

niveau de bruit et du filtre inverse, nous proposons une nouvelle procédure
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d’estimation plus simple à mettre en œuvre que les autres méthodes exis-

tantes. De plus, nous considérons l’estimation de la distribution discrète in-

connue du signal d’entrée. Nous obtenons une forte cohérence et une nor-

malité asymptotique pour toutes nos estimations. En incluant une compara-

ison avec une autre méthode, nous effectuons une étude de simulation co-

hérente qui démontre empiriquement la performance informatique de nos

procédures d’estimation.
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General introduction

By nature, human beings are used to building and operating mental models

of the reality that surrounds them. Every time we walk or cross the street,

predict that it will rain or make any decision, we use predictive models that

we have built based on the availability of factors or our past experiences.

In science, it is particularly interesting to study physical phenomena whose

characteristics or properties change over time, e.g., the movement of the

planets, the growth of a planet, the growth of a child, the transmission of dis-

ease, seismic waves propagation, the customer flow in a bank, the evolution

of a stock market share, etc. These phenomena are called dynamic systems.

More formally, a dynamic system is a combination of physical elements that

interact with each other according to certain principles or rules.

Now, there is a question that arises here that is "why we study such a system"?

To answer this, let us take the example of growth curves used in health book-

let. They show how the distribution of weight, or height, varies with age.

More precisely, they represent certain percentiles (traditionally the 3rd, 25th,

75th and 97th) of these age-conditional distributions. They thus make it pos-

sible to verify that a child’s growth is "normal" by placing him or her in the

distribution corresponding to his or her age.

This little example shows how this study can make our lives easier by detect-

ing problems that can happen to us and perhaps finding the solutions.
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On the other hand, the dynamic systems can be also defined as an entity in

which certain action or operation is applied on an input X and provides a

certain output Y as a response. We gave this latter definition because almost

all daily observed phenomena have important dynamic aspects that are de-

scribed by a set of inputs and outputs, e.g.: the electrical engine where the

input is the current and the output is the rotation at a certain speed, a com-

puter where the input can be a typed text on the keyboard and the output is

the text displayed on the screen, etc.

Oldly, the scientists studied and analyzed these dynamic systems in an intu-

itive way or by using a prototype. However, the relationship between inputs

and outputs is often complicated or uncertain, e.g., controlling a tanker ship

or a car on ice. In addition, the experimentation prototype has several disad-

vantages in the sense of cost, slowness, unfeasibility and risk.

The alternative to this prototype lies in the formal study of dynamic sys-

tems, which has been, by history, the basis for many advances in understand-

ing reality and in the realization of technologies. Many of these formalisms

have been proposed in the literature to represent the dynamic behavior of a

problem; on the top of them are mathematical formalisms such as the simple

equations and the differential equations. Indeed, when the underlying law of

a dynamic system is defined by a mathematical formalism, we have a math-

ematical model. One should note that a model never represents reality in all

its details but provides an approximation that is much better if we consider

more precise laws and if we have good quality-of-data.
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Establishing a model requires in advance to establish the objective of mod-

eling, e.g., the representation of a biological phenomenon, the simulation of

an electrical network or the prediction of the future behavior of a physical

system, etc. Sometimes, it requires a deep knowledge of the domain, but

other times it does not, e.g., when the model is established automatically by

a machine or computer. Another requirement is that the model must not be

over-complicated. This requirement is very important and represents a very

delicate topic that is highly addressed by the modelers. It is justified by the

principle of parsimony, also known as the Ockham razor, which is one of the

fundamental principles of science. This principle means that models should

not be made excessively complicated if this is not necessary. In other words,

among two models with the same predictive power, the simplest one must

be chosen.

What we just mentioned above does not represent the goal of the modeling.

In fact, modeling aims first at understanding the reality so that the model

can provide additional knowledge on the mechanisms of the studied phe-

nomenon. It aims also at generating solutions that provide examples of the

system behavior. It is then interesting to study and analyze the behavior of

the solutions according to the parameters or the structure of the model (sta-

bility analysis, sensitivity and robustness). But, before providing solutions,

the modeling designs rules or assumptions, also known as the control sys-

tem, that are capable of bringing the system to the desired state or structure.

Once a model is developed and validated, it can be used to answer the fol-

lowing question:
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what will happen if we apply this operation or that modification to the system?

However, for most real systems, the answer to the above question is very

complex to be evaluated analytically. It is, therefore, necessary to proceed

numerically via simulation to estimate the characteristics of the model. By

simulation, we mean the imitation of the behavior of a real process or sys-

tem over time. Through this, we can collect a whole series of data, as if we

were using the real system. Synthetically, the generated data can be used to

study the behavior and performance of the system, and the result of the sim-

ulation can be useful for several purposes, such as prediction, analysis and

decision-making. It should be noted that in most cases, the modeler is not

only interested in a solution but also in a family of solutions (e.g., according

to a parameter or initial conditions). The reasons for the simulation success

nowadays are the availability of increasing computational power, the avail-

ability of softwares and tools designed specifically for simulation and finally,

the need to manipulate increasingly complex models.

In this thesis, we focus on the study of two mathematical models. The first is

the quantile regression model, which is a typical model in popular use today

that allows to study the behavior of the distribution of a response variable

given explanatory ones; this model fits exactly the example of the growth

curves in health booklet we gave previously. We will be specifically inter-

ested in the estimation of simultaneous regression quantiles in a Bayesian

framework, the subject that is not very well-developed to date. Also, we will

address the complexity ("the principle of parsimony") of this model.

The second model is a blind deconvolution model that describes a function-

ing of an input/output system. The study of this model aims at restoring the
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system input from noisy observations (outputs).

In this way, this thesis will be made up of two parts. The first part will be

devoted to the quantile regression model and will consist of two chapters.

Chapter 1 presents the state of art, in the frequentist and Bayesian frame-

work, of the regression of simple quantile as well as the of simultaneous

quantiles, the subject that we address in Chapter 2 in a Bayesian framework.

The second part deals with a blind deconvolution model in the frequentist

setting and consists of Chapters 3 and 4. In Chapter 3 we will recall some

important notions in signal processing that are used in the estimation meth-

ods of blind deconvolution model. We will also provide an overview on

some methods of blind deconvolution. In Chapter 4 we propose a new es-

timation procedure1 for noisy blind deconvolution model where we focus

on characterizing the underlying system and using this characterizations as

assumptions for the model.

Results of simulations and/or real data will be presented throughout this

thesis. In particular, Chapter 2 in Part 1 will concern the empirical validation

of our proposed simultaneous regression quantiles estimation against exist-

ing methods and the same is for Chapter 4 where the simulation results show

the performance of our proposed method for noisy blind deconvolution.

1This procedure is proposed in joint work with Emmanuelle Gautherat.
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Part I

Bayesian quantile regression
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1 Literature overview on quantile

regression

I Introduction

Since the seminal work of Koenker and Basset [33], quantile regression has

received increasing attention from both theoretical and empirical point of

view. As introduced in [33], it is a statistical procedure intended to estimate

and conduct inference about conditional quantile of a response distribution

given a set of covariates.

In regression, when we deal with highly skewed conditional distribution,

traditional mean regression may not explore interesting aspects of the rela-

tionship between the response variable and the available covariates. Fur-

thermore, in the presence of outliers, the evaluation of the response average

becomes much more complicated. These situations are often encountered in

economics, business, epidemiology and many other fields.

An alternative to the traditional mean regression is quantile regression which

provides a more complete description of the conditional response distribu-

tion. Quantile regression was pioneered by Koenker and Basset [33] for sin-

gle quantile fitting in the frequentist framework. Based on their theory, many
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other approaches have emerged in both frequentist and Bayesian frameworks.

In the first instance, most of the approaches were concerned with single

quantile regression. And, when interested in multiple regression quantiles,

these single quantile approaches are used repeatedly. However, this may

lead to the embarrassing crossing quantiles phenomenon (see [11], [57]). Since

then, multiple quantile regression approaches, in both frequentist and Bayesian

context, have been developed taking into consideration the crossing problem

primarily caused by the violation of the monotonicity property of quantiles.

This issue has also motivated us to address the crossing problem of quantiles

by developing a new estimation method for simultaneous quantiles. This

method will be presented in details in Chapter 2 of this manuscript. But, be-

fore that, it is worth to mention some existent approaches for both single and

multiple quantile regression in both frequentist and Bayesian frameworks

and this will be addressed in this chapter.

II Single quantile regression

As mentioned before, estimating regression quantiles has become more ap-

pealing for some data when the mean regression does not hold or the objec-

tive of interest is no longer the mean or, also, when the distribution of the

error term is non-Gaussian (see [33]).

Now, we shall introduce quantile regression as extension of unconditional

quantiles theory. First, let Y be a univariate random variable with unknown
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distribution function F and Y1, . . . , Yn be n variables having the same distri-

bution as Y. Then, the τ−th quantile is defined as

qτ = inf{y; F(y) ≥ τ} = F−(τ),

where F− denotes the generalized inverse of F. If Y is a continuous random

variable, F− coincides with F−1, the inverse function of F, and then

qτ = F−1(τ).

It is well-known that qτ is the solution of the following minimization problem

(see [33])

qτ = argmin
µ∈R

E[ρτ(Y− µ)],

where ρτ(u) = u(τ − 1u<0) is the loss function beeing differentiable for all

u 6= 0.

Proof. To minimize the expected loss E[ρτ(Y − µ)], we take the derivative

with respect to µ and set it to 0:

(τ − 1)
∫ µ
−∞ dF(y) + τ

∫ +∞
µ dF(y) = 0

τ − F(µ) = 0.

Then, the solution is the τ−th quantile, qτ = F−(τ).

Since F is unknown, we take the empirical distribution function defined as

Fn(y) =
1
n

n

∑
i=1
1Yi≤y.

Then, the M-estimator µ̂, defined as
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µ̂ = argmin
µ∈R

1
n ∑

i
ρτ(Yi − µ), (1.1)

is a natural estimator of µ and it corresponds to the τ−th quantile given by:

q̂τ = inf{y; Fn(y) ≥ τ}.

If we take the ordered values {y(1), . . . , y(n)}, q̂τ coincides with the bnτc−th

order statistic, i.e., q̂τ = y(bnτc), where bnτc denotes the greatest integer less

than or equal to nτ, which means that q̂τ satisfies the fundamental property

of quantiles [12]. Indeed, if we denote by n−, n+ and n0 respectively, the

number of yi that lie below, above and on q̂τ. Then, n− ≤ nτ ≤ n− + n0 and

n+ ≤ n(1− τ) ≤ n+ + n0. Moreover, if Y has continous distribution, then

n−
n →

n→∞
τ (see [64]).

Let us turn now to the quantile regression model, defined by:

Y = qτ(X) + ε, (1.2)

where,

• Y is the response variable,

• X denotes an explanatory variable whose distribution is supported by

χd ⊂ Rd, d ≥ 1,

• ε ∼ F, where F is an unknonwn distribution such that P(ε < 0) =

τ, which implies that that qτ(X) corresponds to the conditional τ−th

quantile of Y|X.
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Suppose that (X1, Y1), . . . , (Xn, Yn) are n pairs of independent random vari-

ables following the same distribution as (X, Y). If we consider that qτ belongs

to some class of functionsQ, then mimicking (1.1), we estimate qτ by solving

the following minimization problem:

argmin
qτ∈Q

n

∑
i=1

ρτ(Yi − qτ(Xi)). (1.3)

This context is the germ of quantile regression, as introduced from the fre-

quentist point of view of Koenker and Bassett [33], and will be considered

for the rest of this chapter.

Next, we review different approaches, in both frequentist and Bayesian set-

tings in the literature, that estimate single regression quantiles.

II.1 Frequentist quantile regression

Indeed, Koenker and Bassett’s theory [33] is fundamental for all further quan-

tile regression approaches in both frequentist and Bayesian frameworks. How-

ever, different techniques have been developed in the literature to infer re-

gression quantiles. In this section, we focus on the most popular estimation

approaches of quantile regression from the frequentist point of view.

For linear quantile regression, the τ−th conditional quantile is expressed as

qτ(X) = XTβτ,



14 Literature overview on quantile regression

where X is a vector valued in χd and βτ ∈ Rd. The minimization problem

(1.3) then becomes

β̂τ = argmin
β∈Rd

n

∑
i=1

ρτ(Yi − XT
i β). (1.4)

Koenker and Bassett proposed, in [33], a practical technique that enables to

easily compute linear regression quantiles. This technique consists on solv-

ing Problem (1.4) using linear programming so that it is reformulated as

min
(β,u,v)∈Rd×R2n

+

{τ1′nu + (1− τ)v1′n|Xnβ + u− v = Yn}, (1.5)

where Xn is (n× d)-matrix whose rows are X1, . . . , Xn, Yn = (Y1, . . . , Yn), u

and v correspond to the positive and negative parts of the vector of residuals

Yn−Xnβ. The codes are publicly available in R (R Core Team, 2017) from the

package quantreg (see [32]).

Alternatively, it is shown in Gutenbrunner and Jureckova [25], that linear

quantiles can also be computed by solving the corresponding dual problem

to (1.5)

max
âτ∈[0,1]n

YT
n âτ|XT

n âτ = (1− τ)XT
n 1n,

where âτ is a vector of length n whose elements are defined as

âiτ =

 1 i f Yi > XT
i βτ,

0 i f Yi < XT
i βτ.

The solution âτ of this dual problem is called regression rank-scores. Later

on, the method in [78] considered a distribution-free approach to construct

confidence bands of the conditional quantile of Y|X, qτ(X) = XTβτ = X̃Tβ +
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F−1(τ), X̃ is the covariable vector without including the constant, by directly

constructing confidence bands of F−1(τ), where, here, F is the error distribu-

tion and is supposed to be continuous.

From theoretical point of view, the asymptotic properties for quantile coeffi-

cient estimators such as asymptotic normality and consistency are given in

[25], [33], [35] and [78].

In nonparametric case, we recall that the minimization problem is the follow-

ing

min
qτ∈Q

n

∑
i=1

ρτ(Yi − qτ(Xi)); (1.6)

where Q is a class of functions mapping from χd to R. In this setting, we

quote two approaches that are commonly used for quantile regression fit-

ting: the splines method and the local polynomial method.

In spline methods, Q denotes the space of spline functions of order r with a

sequence of K knots. Note that r and K are both related to the smoothness of

the spline function. In general, cubic splines are used, i.e, r = 3 but it remains

to choose k, which is critical and needs to be carefully addressed. Indeed, a

large K reduces the empirical loss but leads also to overfitting, i.e., small bias

and large variance. On the other hand, a small K leads to low variance but

high bias. Thus, the optimal choice of K is the best trade-off between bias

and variance. An alternative approach considered in [15] consists on adding

a penalty term to the minimization problem (1.6), i.e.,

min
qτ∈Q

n

∑
i=1

ρτ(Yi − qτ(Xi)) + λJ(qτ) (1.7)
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where λ is an extra parameter that controls the smoothness of the resulting

spline and J(qτ) is the penalty term. Various penalty terms were consid-

ered in the literature: for univariate covariable, the method in [50] followed

the traditional spline smoothing by using the quadratic penalty, J(qτ) =∫
|q′′τ(x)|2dx. Unfortunately, the use of quadratic penalty moves the prob-

lem away from linear to quadratic programming, adding further complex-

ity to the optimisation process. Alternatively, another method in [34] used

the penalty J(qτ) =
∫ 1

0 |q
′′
τ(x)|dx where qτ ∈ Q is a linear spline function,

which enables to express (1.7) as a linear programming problem. An ex-

tension to multivariate covariable is found in [27] where the same penalty,

J(qτ) =
∫
|q′′τ(x)|dx, as in [34], is used for constraint B-splines smoothing in

linear and quadratic fits.

Like other nonparametric smoothing approaches, the smoothing parameter

λ plays also an important role in determining the trade-off between data

good fitting and the penalty. For λ too large, there will be much more penalty

on the estimator and thus there is oversmoothness. On the contrary, for small

λ, the penalty has little impact and therefore we risk undersmoothness. A

common way to calibrate λ is by cross-validation. The method in [50] pro-

posed robust cross-validation addressing the tuning of smoothness parame-

ter of quantile splines. To reduce the computation cost, a generalization of

the approximate cross-validation is proposed in [77] proposed.

When assuming that qτ ∈ C1, local polynomial methods are commonly used.

Considering the univariate case, the idea is to locally approximate the quan-

tile function, qτ(X) given as
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qτ(x) ≈ qτ(u) + (x− u)q′τ(u)

≈ β0 + β1(x− u),

for u is the neighborhood of x. Therefore, the minimization problem (1.6)

becomes

min
β∈R2

∑
i

ωi(x)ρτ(Yi − β0 − β1(Xi − x)),

with ωi(x) = Kh(
xi−x

h ) is a weight function, Kh is a kernel function and h

is the bandwidth parameter that controls the smoothness of the estimated

quantile function. As in spline methods, one of the main problems of this

nonparametric technique is the choice of h. The method in [72] proposed an

optimal choice of h as the minimizer of the empirical mean squared error.

II.2 Bayesian quantile regression

Bayesian methods have been successfully emerged to study quantile regres-

sion. This has been of interest since the posterior distributions correspond to

some updated knowledge on the parameters and can be summarized through

Bayesian estimators or provide credible intervals. However, the most chal-

lenging problem, in Bayesian quantile regression, is that the likelihood is not

usually available unless assuming a given distribution for the error terms.

But, whatever the error distribution is, it is still possible to consider misspec-

ified model via a "likelihood tool" expressed in terms of the quantity of in-

terest. This is exactly the case of the Asymmetric Laplace Distribution (ALD)

whose probability density function is given by:

f (y; µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ(y− µ)

σ

}
,
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where µ is the location parameter that corresponds to the τ−th quantile of

the distribution, σ is the scale parameter and τ is the skewness parameter.

We denote this Asymmetric Laplace Distribution by ALD(µ, σ, τ).

It is well-known that MCMC methods are commonly used to conduct Bayesian

inference. Through these methods, samples from the posterior distribution

are generated and then summarized through Bayesian estimators such as the

posterior maximum (MAP) or the posterior mean. The most commonly used

algorithms in MCMC are the Gibbs sampler based on conditional sampling

and the Metropolis-Hastings algorithm based on acceptance-rejection proce-

dure. In the following, we will quote methods that use these algorithms for

Bayesian quantile regression.

In [74], Yu and Moyeed showed that, using the ALD as a "likelihood tool", the

maximum likelihood estimator for µ (i.e., the τ−th quantile), corresponds to

the minimizer of (1.1). For linear quantile regression (qτ(X) = XTβτ), they

misspecified Model (2.1) under the ALD and showed that even for improper

priors on the coefficient βτ, the Bayesian approach yields a proper posterior

distribution. At that instant, the authors were unable to sample directly from

the posterior distributions of the quantile coefficients due to the complexity

of the likelihood function. They used, therefore, Metropolis-Hastings algo-

rithm for posterior samples. Even though the ALD is not the true underlying

error distribution, the Bayesian approach has successfully worked for fitting

quantile regression since it provides satisfactory results. For this reason, the

ALD has emerged successfully as a natural way for Bayesian quantile regres-

sion.
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Since the resulting posterior density of the quantile estimates is not analyti-

cally tractable under the ALD, Kozumi and Kobayashi [39] proposed to use,

for linear quantile regression, the location-scale mixture representation for

the ALD (see also [38]). They showed that this representation enables to

compute tractable full conditional distributions of the unknown parameters,

which allows to develop Gibbs sampling algorithm for posterior inference.

Let us see how full conditional distributions are computed using the location-

scale mixture representation of the ALD.

Let ω be an exponential latent variable with 1/σ as scale parameter, ω ∼

E(1/σ), and Z be a standard normal variable. The variables ω and Z are

independent. Therefore, if ε ∼ ALD(0, σ, τ), we can represent ε as a mixture

of Gaussian variable:

ε = γτω + δτ

√
σωz,

where γτ = 1−2τ
τ(1−τ)

and δ2
τ = 2

τ(1−τ)
. With this result, the distribution of the

error, given ω, is Gaussian, i.e., ε|ω ∼ N (γτω, σδ2
τω). Hence, in the linear

case, we can rewrite Model (2.1) as

Y = XTβτ + γτω + ε∗, (1.8)

with ε∗|ω ∼ N (0, δ2
τσω). With the classical conjugate Gaussian prior for βτ,

namely βτ ∼ N(d+1)(β0, Σ0), and the inverse gamma for σ, σ ∼ IG(a, b), a >

0, b > 0 where IG(a, b) and assuming that ω ∼ E(1/σ), the full conditional

distributions of the parameters are then

βτ|Yn, Xn, ωn, σ ∼ N(d+1)(β̂0, Σ̂0),
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ω−1|Yn, Xn, βτ, σ ∼ GIG(ψ, φ),

σ|Yn, Xn, ωn, βτ, σ ∼ IG(â, b̂),

where ωn = (ω1 . . . , ωn), Yn = (Y1, . . . , Yn), Xn is the n × (d + 1) covari-

able matrix, Σ̂0 = (X′nVXn + Σ−1
0 )−1, β̂0 = Σ̂0(XnV(Yn − γτωn) + Σ−1

0 β0),

GIG(ψ, φ) denotes the Generalized Inverse Gaussian distribution with ψ =
√

γ2
τ+2δ2

τ

∑n
i=1 |yi−xiβτ |

and φ = γ2
τ+2δ2

τ

δ2
τσ

as shape and scale parameters, â = a + n
2 and

b̂ = b0 + ∑n
i=1

(yi−xiβτ−γτωi)
2

δ2
τωi

.

Many further Bayesian quantile regression approaches used this representa-

tion for the sake of computing full conditional distributions like in [2], [4],

[5], [7] and [75].

Indeed, the methods in [39] and [75] extended Yu and Moyeed’s method [74]

to Tobit model, when dealing with censored data; For continuous dependent

variable case, we quote the methods in [2] that used adaptive lasso quantile

regression for variable selection, in [4] that generalized quantile regression to

deal with dichotomous response data and in [5] that generalized the adapta-

tive lasso in [2] also for dichotomous data.

Note that we also have used the Gaussian representation of the ALD in our

Bayesian inference (see Chapter 2).

In nonparametric Bayesian quantile regression, there are different approaches,

some of which used the ALD tool and others estimated the likelihood. For ex-

ample, Kottas and Gelfand [36] estimated the error distribution using Dirich-

let Process Mixture. Specifically, they used a mixture of uniform distributions

for the case of τ = 1/2, whereas Kottas et al. [37] used Mixture of multivari-

ate normal distributions for any τ ∈ [0, 1].
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Other likelihood tools are studied in the literature such as the empirical like-

lihood in [40]. Yang and He [70] used this empirical likelihood for quantile

regression and showed that the resultant posterior from any fixed prior is

asymptotically normal.

We can also find in the literature Bayesian nonparametric models for the er-

ror distribution like the idea of polya tree used to develop quantile pyramid

process [28].

II.3 Crossing quantile problem

All these aforementioned methods, from both frequentist and Bayesian point

of views, are well adapted to infer a single quantile regression. However,

there are many applications where tackling several quantiles at the same time

is needed. Unfortunately, repeatedly applying approaches that deal with sin-

gle quantile regression, in a separate fashion, may not be satisfactory. The

problem here is that the separate estimation of a set of quantiles may break

the monotonicity property of the conditional quantiles. In other terms, in

such case, quantile curves may cross when, for a given covariable, the pre-

dicted value of the response variable at level τ1 is smaller than its value at

level τ2 when τ2 is lower than τ1.

To illustrate the problem of crossing quantiles, let us consider quantile re-

gression for a real application.

In North Atlantic basin, the analysis of the strongest tropical storms 1 in-

cludes fitting linear quantile regression models to the maximum wind speed

(Wmax) against the year (Year) of storm occurrence over a range of τ values

in [0, 1]. Figure 1.1 shows the plot of the North Atlantic storm data during the

1The data is available from http://weather.unisys.com/hurricanes
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FIGURE 1.1: Estimated quantiles at τ = 0.1 and τ = 0.2 along
the period 1950-2018 fitted by single quantile regression for

North Atlantic Tropical storm data.

period 1950-2018. The estimated quantiles have been plotted at τ = 0.1 and

τ = 0.2 using the single quantile technique of Koenker and Basset [33]. We

use quantreg package in R software ([32]) for implementing the underlying

method.

Figure 1.2 illustrates nonparametric estimates of conditional quantile func-

tions at τ = 0.15, 0.25, 0.5, 0.6 for motorcycle data2 using spline method. The

data consists of the measurements of the acceleration of a motorcycle rider’s

head as a function of time in the first moment after an impact. We fit cu-

bic spline functions separately with 15 internal knots. We use splines and

quantreg packages in R for implementation. The fitted conditional quantile

functions that have close orders (0.15, 0.25) and (0.5, 0.6) cross in different

regions: below 10 milliseconds, between 20 and 30 milliseconds and above

55 milliseconds.
2The motorcycle data is available in MASS package in R
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FIGURE 1.2: B-spline estimates of quantiles regression at τ =
0.15, 0.25, 0.5, 0.6 for motorcycle data.

Therefore, it is to be noted that the estimated quantile curves cross each other,

in both linear and nonlinear examples presented above, when quantile levels

are very close and hence, the monotonicity property of quantiles regression

is not fulfilled.

Neverthless, Yu and Jones [72], who proposed a local polynomial method to

fit a single quantile regression, has also proposed a double kernel approach

whose empirical results showed that, when repeatedly estimating several

quantiles, the quantile estimators do not cross. However, this method is com-

putationally expansive.

Other approaches, in both frequentist and Bayesian frameworks, have ad-

dressed the crossing problem seeking the simultaneous estimation of multi-

ple quantiles. We will present some of these approaches is the next section.
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III Simultaneous quantile regression

Since in real applications, it is often needed to estimate different quantiles of

the response distribution simultaneously, the basic requirement for this con-

cept is that quantile estimates respect the natural ordering of quantile levels.

For this reason, noncrossing quantile regression approaches have received

much attention from both frequentist and Bayesian point of views.

In this section, we present the most relevant frequentist and Bayesian ap-

proaches, in the literature, that preserve the noncrossing property of quantile

estimates.

III.1 Frequentist simultaneous quantile regression

In the literature, different methods addressed the crossing issue from a fre-

quentist point of view and most of them are derived from the classical opti-

mization problem of quantile regression,

min
qτ∈Q

n

∑
i=1

ρτ(Yi − qτ(Xi)), (1.9)

under additional noncrossing constraints.

This traced back to He [26] who considered linear quantiles for a location-

scale model

Y = XTβ + (XTγ)e,

where e is any error distribution whose median is zero and X is a multidi-

mensional covariate. Based on relating all quantile functions to the condi-

tional median, He computed the median of Y on X to obtain β̂ and thus the

absolute values of the residuals |ri|, with ri = yi − xTi β̂, then he regressed
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|ri| on xi to obtain the median regression coefficient γ̂ and the fitted val-

ues, si = |xTγ̂e|, of the residuals. The conditional quantile estimate is then

q̂τ(x) = xT(β̂ + cτγ̂) where cτ = argmin
c

∑n
i=1 ρτ(ri − csi). Under the as-

sumption that si > 0, He derived basic properties of the estimates, β̂ and γ̂,

based on the work of Koenker and Bassett [33] such as the consistency and

the monotonicity property of conditional quantiles. However, even for lin-

ear regression quantiles, the corresponding model of He can be much more

general.

Thus, a more general development of noncrossing linear regression quantiles

is addressed further by Liu et al. [46] who proposed a stepwise method based

on additional constraints in the estimation procedure. Indeed, with a current

quantile regression function at a given quantile level, they added constraints

of the form:

q̂τk(x) + δ0 ≤ qτk+1(x), k = 1, . . . , s, (1.10)

where δ0 is some given small positive number, so that the next quantile re-

gression function does not cross with the current one. They also extended

this to nonparametric quantiles considering qτ(x) as a kernel function. An

embarrassing drawback of this method is that, as noted by Bondell et al. [8],

the estimation of quantile curves depends on the grid of quantiles.

Fortunatly, Bondell et al. showed in [8] that, for linear quantile functions

and for x ∈ [0, 1]d, the number of constraints can be reduced when em-

ploying a new reparametrization in their model while ensuring the non-

crossing. This reparametrization is based on transforming quantile coeffi-

cients, βτ1
, . . . , βτs

, into γτ1
, . . . , γτs

, where γτ1
= (γ0,τ1 , . . . , γd,τ1) = βτ1 and

γτk
= (γ0,τk , . . . , γd,τk

) = βτk − βτk−1 , for k = 2, . . . , s. Thus, setting γ−j,τk
and

γ+
j,τk

to the negative and the positive part of γj,τk , j = 1, . . . , d, the constraints
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in (1.10) are reduced to γ0,τk − ∑d
j=1 γ−j,τk

≥ 0, to ensure noncrossing. An

extension to nonparametric quantiles is also studied in [8] using smoothing

splines.

As commonly known, spline methods are the most popular, in the literature,

for nonparametric quantile regression. We quote Muggeo et al.’s approach

[48] who proposed a stepwise estimation procedure using cubic spline to en-

sure both monotonicity and noncrossing of the estimated quantile curves. In

their work, the authors considered the regression quantile qτk(x, z) = xTβτk
+

∑J
j=1 bj,kBj(z), k = 1, . . . , s, where bj,k and Bj are respectively the spline coef-

ficients and basis functions, J is number of basis functions and z is a covari-

ate of interest. Then, they imposed strong inequality constraints on quantile

coefficients, θτk < θτk+1 , where θτk = (βτk
, b1,k, . . . , bJ,k). To guarantee the

smoothness of the estimated quantile curves, they used low rank B-spline

basis with L2 penalty on their coefficients since, as discussed in Bondell et al.

[8], the quantile smoothing parameters increase the amount of computation

without improving the estimation performance.

In this thesis, our proposed simultaneous quantile regression, will be com-

pared with Muggeo et al.’s method for nonparametric case. We have used

available code in quantregGrowth package in R software (see [47] for more de-

tails). We will detail this in chapter 2.

There are also methods based on considering interesting functional spaces for

regression quantiles. Among others, Sangnier et al. [57] proposed a simulta-

neous estimation of multiple quantiles based on vector-valued reproducing

kernel Hilbert space (RKHS). They supposed that qτ(X) ∈ H = { f + b, f ∈
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KK, ‖ f ‖KK ≤ c, b ∈ Rs} where, b is the intercept, KK is an RKHS associated

to the kernel valued matrix K, ||.||KK is the norm on KK and c is a positive

real number. The choice of the kernel matrix K is very important since it

controls the regularity of the estimation of f by ‖ f ‖KK ≤ c. In order to min-

imize the burden of crossing, they considered a decomposable kernel ma-

trix, K : (x, x′) → k(x, x′)B where k : χ × χ → R is a scalar kernel and

B =
(
exp{−γ(τj − τi)

2}
)

1≤i,j≤s is a symmetric and semi-definite positive

(s.d.p.) (p× p)-matrix. Here, the matrix B encodes the relationship between

the different conditional quantile functions and thus, controls the noncross-

ing of quantile curves. In this thesis, our proposed method for nonparametric

Bayesian quantile regression, presented in Chapter 2, uses as prior the kernel

valued matrix used by Sangnier et al..

Besides splines and RKHS methods, one can find in the literature many other

approaches that are not based on solving the commonly known optimization

problem for quantile regression. They are, instead, based on the estimation

of the conditional distribution function F in a first step then invert it to obtain

noncrossing quantile estimates.

Dette and Volgushev [13] proposed to invert the estimate of the conditional

distribution function, say F̂, and monotonizing it with respect to τ. This

monotonization is based on a non-decreasing rearrangement when introduc-

ing an increasing distribution function G so that the estimate of the condi-

tional quantile is F̂−1(τ) = G−1 ◦ Ĥ−1
x (τ) where

Ĥ−1
x (τ) =

1
Nhd

N

∑
i=1

∫ τ

−∞
kd

(
F̂(G−1( i

N ))− u
hd

)
du
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is a smoothed non-decreasing function, kd is a symmetric density and hd de-

notes a bandwidth converging to 0.

Later on, Chernozhukov et al. improved this, in [11], by only rearranging

non-monotonic quantile functions q̂∗τk
(x), for k ∈ {1, . . . , s}, and this is done

by inverting the estimate of the conditional distribution given by F̂(y|x) =∫ 1
0 (1{q̂∗τk

(x)≤y})du. In this work, it is proved that the rearranged estimates

have, theoretically, smaller error than the initial ones.

Also in the context of inverting the conditional distribution function, we cite

among others, Yu and Jones [72] who proposed a kernel-weighted local linear

CDF and Yu [73] who extended this to nonlinear additive regression using a

rule of thumb to impose constraints for monotonicity.

Next, we shall present, from the literature, an overview on Bayesian methods

that estimate regression quantiles simultaneously.

III.2 Bayesian simultaneous quantile regression

In the Bayesian framework, noncrossing quantile estimates are mostly pro-

vided through simultaneous quantile inference. In the literature, some of the

approaches consist on approximating the conditional distribution while oth-

ers assume the ALD as a likelihood tool for the Bayesian procedure.

In what follows, we present some of these Bayesian approaches. We start

with those dealing with non-ALD likelihood and then, we go on those tack-

ing the ALD as a likelihood tool.
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Some of the non-ALD methods are based on modeling the noncrossing quan-

tile function and then deriving approximately the likelihood of the model.

For linear regression quantiles, where qτ(X) = XTβ(τ), Reich et al. [55]

proposed a two-stage method, where at the first stage, they used Koenker

and Basset’s method [33] to estimate quantile coefficients. Then, they ana-

lyzed the obtained estimates, β̂(τ), in a second stage, using Bernstein poly-

nomial basis function, β̂(τ) = ∑M
k=1 Bk(τ)αj,k, j = 1, . . . , d, where Bk are the

basis functions, αjk denote their coefficients and M is their number. As in

[8], the reparametrized αj,k to δj,k then modeled the δj,k with respect to a

latent variable δ∗j,k with Gaussian prior so that ∑d
j=1 Xijδj,k ≥ 0 and thus,

q̂τ(X) = XTβ̂(τ) is nondecreasing in τ. This second stage is built once as-

suming that the first stage quantile coefficient estimates follow a Normal

distribution with covariance obtained from asymptotic results, and mean

modeled through the Bernstein polynomial basis. In this method, the like-

lihood is approximated by computing conditional quantiles, qτ(X), on a grid

of quantile levels, τk, k = 1, . . . , 100, equally spaced in [0, 1], and tacking

p(yi/xi) ≈ 1
qτk+1 (xi)−qτk (xi)

. However, this is not a closed form for the like-

lihood which leads to computational difficulty. Later, Reich et al., in [53],

considered Gaussian model and used a piecewise Gaussian basis function to

model qτ(X) and by doing so, in one stage, they used a Gaussian prior for

the quantile function over all quantile levels. Fortunately, this choice of basis

function enables to have a closed-form of the likelihood and also to obtain

smooth quantile functions. A little later, Reich and Smith considered, in [54],

a location-scale model for quantile regression given as Yi = XT
i α0 + (XT

i α1)εi,

so that the regression quantile is qτ(X) = XT
i α0 + (XT

i α1)q0(τ), where q0(τ)

denotes the τ−th quantile of ε. To ensure quantile monotonicity, they used
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basis functions to model q0(τ) on a grid of quantile levels and choose the

centered Gaussian prior on the quantile coefficients. This enabled them to ex-

press the likelihood through a closed-form and thus to proceed with MCMC

sampling.

Also, for a univariate explanatory variable with a bounded and convex do-

main, Tokdar showed in [65] that a linear quantile, qτ(X) = β0(τ) + Xβ(τ),

is monotonically increasing if and only if β0(τ) and β(τ) are linear combina-

tion of two monotonic increasing functions in τ ∈ [0, 1], η1(τ) and η2(τ). Us-

ing logistic transformation, they reparametrized η1(τ) and η2(τ) to a smooth

Gaussian process to ensure the quantile monotonicity and then specify clas-

sical priors on the parameters to continue the Bayesian formulation. How-

ever, the likelihood cannot be derived by inverting the quantile function but

it is approximated on a grid of quantile levels. And recently, Yang and Tok-

dar [69] extended this method to the multidimensional case with arbitrary

bounded convex explanatory space.

Unlike these aforementioned methods, there are also other approaches in the

literature that use pseudo-likelihoods for the Bayesian procedure. Jeffreys

[30] was the first who proposed the so-called substitution likelihood to deal

with Bayesian median regression. This was extended further by Dunson and

Taylor [14] for quantile regression where the substitution likelihood, charac-

terized by θ = (θ1, . . . , θs), the vector of s quantiles, is given by:

L(θ) =

 n

u1(θ), . . . , us+1(θ)

 s+1

∏
l=1

∆τ
ul(θ)
l
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where

 n

u1(θ), . . . , us+1(θ)

 = n!
u1(θ)!...us+1(θ)!

, θs+1 = ∞, ∆τ1 = τ1, ∆τl =

τl− τl−1, l = 2, . . . , s and ul(θ) = ∑n
i=1 1]θl−1,θl ]

(yi). Considering linear regres-

sion quantiles, θi = XTβi, i = 1, . . . , s, they specified a truncated Gaussian

prior for the βi such that θi belong to an order-restriction space, where the re-

striction implies XTβ1 < . . . < XTβs and then they used Metropolis-Hastings

algorithm for posterior computation.

Now it is the time to mention the broadly emerged Bayesian approaches

based on the ALD as a likelihood tool, especially, when Yu and Moyeed [74]

argued that it yields to satisfactory results even if the ALD is a misspecifica-

tion. Among others, Sriram et al. [62] gave a more formal justification ad-

dressing the ALD issue, in Bayesian quantile regression, showing posterior

consistency under some general conditions. However, this result does not

mean that the estimates credible intervals constructed from the posterior are

valid. This issue was handled later by Sriram et al. [63] where they showed

that, asymptotically, it is suitable that 95% of the credible interval contains

the true parameters 95% of the time. It is also shown that if the sample size

increases, the length of the credible interval decreases. Shortly after, Yang et

al. [71] and Sriram [61] proposed a correction to MCMC iterations in order

to asymptotically build valid intervals. We note that the inference in [63] is

based on pseudo-ALD given by

L(q, œ) =
s

∏
j=1

1
σn

j
exp

{
−

n

∑
i=1

s

∑
j=1

ρτj(Yi − qτj(Xi))

σj

}
;

the embarrassing issue in this method is that this pseudo-ALD does not co-

incide with any probability density function and this is, actually, in line with

the optimization problem addressed in the frequentist context.
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Later, Rodrigues and Fan [56] proposed a two-stage method for both linear

and nonparametric quantile regression. In the first stage, the authors used

the standard Bayesian quantile regression [74] fitted separately at different

quantile levels. The second stage consists of using Gaussian process prior for

quantiles in order to control noncrossing constraints. Here they used the

induced quantile notion, i.e., any quantile qτ(X) can be derived from the

location parameter, qp(X), of the ALD (ALD(qp(X), σ, p) , p = p1, . . . , ps,

p 6= τ);

qτ(X|p) =

 qp(X) + σ
1−p log( τ

p ) i f 0 ≤ τ ≤ p

qp(X)− σ
p log( 1−τ

1−p ) i f p ≤ τ ≤ 1.

An obvious property of the estimators is that all of them are monotonically

ordered. The authors provided also asymptotic property that these estima-

tors are consistent. However, this method is not fully Bayesian and still af-

fected by the first outputs of the first stage since different likelihoods are used

for initial estimates. In Chapter 2, we will compare our proposed approach,

also based on the induced quantile idea, with that of Rodrigues and Fan [56].

These cited approaches do not really infer regression quantiles simultane-

ously. Indeed, the simultaneous estimation of regression quantiles takes place

when the likelihood is expressed through all the quantiles of interest so that

it includes sufficient information for a further simultaneous update. More-

over, the approaches consisting of two steps are not truly fully Bayesian.
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IV Our contributions

In this part of this thesis, we introduce a fully Bayesian method that estimates

different quantiles simultaneously. Unlike, the other Bayesian methods, this

proposed method is not based on misspecification, so that the ALD is the true

underlying response distribution. We used the relation between quantiles of

the ALD distribution and Metropolis-Hastings within Gibbs algorithm for

implementation. The proposed method provides parallel quantile functions

and thus the noncrossing is a natural result. It remains to be verified that

the constants of the regression quantiles respect the order of quantile levels.

We do not provide theoretical justification for this issue, but our numerical

results show, using specific empirical criteria, that the estimated regression

quantiles respect quantile level ordering, hence the good performance of the

method.
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2 Bayesian estimation of joint

quantile regression

I Introduction

One should note that the advantages of simultaneous quantile fitting go much

beyond avoiding the crossing issue. Although monotone estimates is a min-

imum requirement for drawing a plausible inference and thus, simply main-

taining noncrossing surely ensures quantile monotonicity. Quantile fitted

curves will overall be separated from one another, especially for quantiles at

the tails. As data is scarce in these regions, and information from other parts

of the distribution is not shared, extreme quantile estimates may present

higher errors. Therefore, borrowing information across quantile levels oc-

curs more efficiently when a simultaneous fitting is addressed.

As mentioned in Chapter 1, many Bayesian approaches that estimate multi-

ple quantiles using the ALD distribution consist on misspecification, i.e., the

ALD is not the true underlying distribution of Y|X, and besides, they are not

fully Bayesian approaches, such as all two-stage approaches ([53], [55], [56]).

Moreover, it is evident that, when the ALD is the true distribution, all meth-

ods should provide parallel estimated curves due to the relation between the
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quantiles of the ALD [76]. We, in this chapter, propose a fully Bayesian ap-

proach for the simultaneous estimation of multiple quantile curves and, we

restrict the case to assume that the errors follow an ALD distribution. We will

implement the method and study its performance empirically using MCMC

methods, in particular, Metropolis-Hastings within Gibbs sampler. We show

that using the link between two quantiles of the ALD distribution, this ap-

proach practically provides parallel and thus noncrossing estimated quantile

curves for both linear and nonparametric cases. Even though noncrossing is

guaranteed, it is essential to make sure that the quantile constants respect the

quantile level ordering. This will be addressed empirically through numeri-

cal study.

This Chapter is organized as follows. Section II describes the whole method

presenting the general model and establishing the relationship between the

quantiles of the ALD distribution that is used in the estimation procedure.

Also, prior distributions are specified for the linear and nonparametric quan-

tile regression model. For the linear case, we present two different versions

of the model, one with overparameterization and the other with much more

parsimony. The full conditional distributions are tackled in Section III for the

different cases and the different model versions. We also give the algorithm

associated with this method and we present, in particular, the location-scale

mixture of the ALD distribution. Section IV is dedicated to the comparison

between the overparameterized and the parsimonious models in the linear

case. To illustrate the performance and the flexibility of our method, simu-

lated examples are studied in Section V. Concluding remarks are stated in

Section VI.
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II Simultaneous Bayesian estimation of quantiles

II.1 Model

We recall that we consider the quantile regression model given by

Yi = qp(Xi) + εi, i = 1, . . . , n, (2.1)

with (εi)i
i.i.d.∼ ALD(µ = 0, σ, p) and where µ, σ and p respectively are the

location, the scale and the asymmetry parameters. This leads to assume that

the response variable Yi, given the covariable Xi, follows an ALD distribu-

tion;

Yi|(qp(Xi), σ, p) ∼ ALD(qp(Xi), σ, p) ∀i = 1, . . . , n,

whose probability density function (p.d.f.) is given by

f (yi; qp(xi), σ, p) =
p(1− p)

σ
exp

{
−

ρp(yi − qp(xi))

σ

}
, (2.2)

with ρp(u) = u(p− 1u<0) is the loss function. The explanatory variables Xi’s

are supposed to be i.i.d. distributed according to an arbitrary continuous

distribution, PX, whose support is X d, X ⊂ R, d ≥ 1. In what follows, the

function qp(X), the paramters σ, p and PX are supposed to be unknown.

In all subsequent sections, any quantity in bold represents a vector, capital

letters denote random variables or vectors whereas lowercase letters denote

observed values of the corresponding random vectors.
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II.2 Bayesian procedure

II.2.1 Likelihood

To infer simultaneously s distinct quantiles with a fully Bayesian approach,

say qτ1 , . . . , qτs with distinct orders τ1, . . . , τs, of the conditional distribution

of Y|X, one needs to characterize the likelihood through all these s unknown

quantiles.

As explained below, this is done first by partitioning the whole sample into s

sub-samples, which requires a sufficient number of observations, second by

using the relation between any two quantiles of the ALD distribution, and

third by rewriting the whole likelihood into s terms where the j-th term only

depends on qτj .

1. Consider the following partition of the whole sample into s sub-samples:

(XIj , YIj) =
{
(Xi, Yi)i∈Ij

}
, ∀j ∈ {1, . . . , s},

where Ij = {(j− 1)r + 1, . . . , jr} with Ij
⋂

Ik = ∅, ∀j 6= k and j, k ∈

{1, . . . , s}; we suppose, without loss of generality, that r =
n
s

is integer.

2. To characterize the likelihood through all quantiles of interest, we use

the relation that links any τ−th quantile to the p−th quantile of the

ALD(qp(X), σ, p) (see for e.g. [76] and [1]):

qτ(X) = qp(X) + σg(τ, p), (2.3)

where g(τ, p) = 1
1−p log( τ

p )10<τ≤p − 1
p log( 1−τ

1−p )1p<τ<1.
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3. From Equation (2.3), we rewrite the model given by (2.1) as follows:

YIj = qτj,Ij
− σgτj,p + εIj , ∀j = 1, . . . , s, (2.4)

where

YIj = (Yij)ij∈Ij ,

qτj,Ij
= (qτj(Xij))ij∈Ij ,

gτj,p = (g(τj, p)1ij∈Ij)ij∈Ij ,

εIj = (εij)ij∈Ij .

Then, the likelihood associated to the model given by Equation (2.1) is

rewritten as the product of s likelihoods, each one only depends on one

sub-sample:

L(qτ1,I1
, . . . , qτs,Is

, σ, p; xI1 , . . . , xIs , yI1 , . . . , yIs) =

s

∏
j=1

∏
ij∈Ij

p(1− p)
σ

exp

−ρp

(
yij − (qτj(xij)− σg(τj, p))

)
σ

 .

II.2.2 Priors

In this section, we specify the prior distributions for all unknown quantities.

It worth mentioning that even PX is not our primary interest, it is unknown,

and therefore it should require a prior; but since any prior on PX that is inde-

pendent of the prior on ((qτj,Ij
)j=1,...,s, σ, p), would disappear upon marginal-

ization of the posterior of (PX, (qτj,Ij
)j=1,...,s, σ, p) relatively to PX, we drop it

in the sequel. Thus, it suffices to choose a prior distribution for σ, p and qτj,Ij

for j = 1, . . . , s; we note that our choice of priors is quite classical.
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1. For the quantiles, we distinguish between the linear and nonparametric

settings.

(a) Linear case i.e. qτj(X) = XTβτj
= β

(0)
τj + XTβ(x)

τj
, j ∈ {1, . . . , s},

where XT denotes the transpose of X and β(x)
τj
∈ Rd.

We propose to study two model versions: one ignores that the

model is under ALD assumption so that the slopes, β(x)
τ1

, . . . , β(x)
τs

,

of the different quantiles, are distinct and the model is overparam-

eterized, and the second version take into account the ALD as-

sumption which means that, according to Equation (2.3), all quan-

tiles have the same slope that is equal to the slope of the p−th

quantile so that the quantiles curves are parallel and the model is

much more parsimonious. Therefore, Model (2.1) will be rewrit-

ten, into these two versions, with more details in Section III where

the full conditional distributions are computed for each. Before

reaching that, we shall specify prior distributions on parameters

for both the overparameterized and the parsimonious models.

i. Overparameterization

Let us consider the unknown parameter vector β̃ = (β(0)
τ1 , β(x)

τ1
,. . .,

β
(0)
τs , β(x)

τs
) of dimension s(d + 1). For this parameter vector, we

choose a zero-mean Gaussian distribution as prior:

β̃ ∼ Ns(d+1)(0, Σ̃0),

with Σ̃0 is an s(d+ 1)× s(d+ 1) invertible and positive definite

square matrix.

ii. Parsimony
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Due to Equation (2.3), one should note that distinct quantiles

differ only by the intercept β
(0)
τj , so that all quantiles of interest

have the same slope (β(x)
τ1

= . . . = β(x)
τs

= β(x)
p ); then we con-

sider the unknown vector parameter β̌ = (β
(0)
τ1 , . . . , β

(0)
τs , βp)

of dimension s + d with Gaussian prior distribution,

β̌ ∼ Ns+d(0, Σ̌0),

where Σ̌0 is a positive definite square matrix of dimension s +

d.

(b) Nonparametric case

We set h to be the function defined on [0, 1] × X d, by h(τ, x) =

qτ(x). We put a Gaussian process prior on h, i.e., h ∼ GP(0, k)

with a zero-mean function and a covariance function k : [0, 1]2 ×

X 2d → R; following [57], we choose k to be decomposable taking

the following form:

k((τi, x), (τj, x′)) = kx(x, x′) exp(−c(τj − τk)
2), (2.5)

where kx(x, x′) = exp
(
−b‖x− x′‖2), b and c are positive hyperpa-

rameters and ‖ · ‖ is the Euclidean norm onRd. Here, k((τi, x), (τj, x′)),

i 6= j, encodes the relation between the conditional quantiles qτi(x)

and qτj(x
′). As explained by [57], if c → 0, the quantile curves are

parallel so they do not cross. If c → +∞, the quantiles are learned

independently and then they may cross. Therefore, the choice of c

is important to control the occurrence of crossing.
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2. σ ∼ IG(a0, b0), a0 > 0, b0 > 0, where IG denotes the Inverse Gamma

distribution with positive hyperparameters a0 and b0.

3. p ∼ Beta(α0, λ0), α0, λ0 > 0.

III Computations

Now, we are interested in generating posterior samples of the conditional

quantiles. Since this is not possible directly from the posterior distribution,

we are going to use MCMC methods. In particular, as shown by [39], to

explicitly compute the full conditional distributions required for Gibbs sam-

pler, we shall make use of the location-scale mixture of the ALD distribution

[38].

Let ω be an exponential latent variable with parameter 1/σ, denoted by

E(1/σ), and Z be a standard normal variable such that ω and Z are inde-

pendent. If ε has an ALD distribution, ε ∼ ALD(0, σ, p), then it can be

represented as a mixture of normal variable,

ε = γpω + δp
√

σωz, (2.6)

where γp =
1− 2p

p(1− p)
and δ2

p =
2

p(1− p)
. Exploiting this augmented data

structure, the model defined by the system of equations given by (2.4) ad-

mits, conditionally on ωIj = (ωi)i∈Ij

i.i.d.∼ E(1/σ), the following Gaussian

representation:

YIj = qτj,Ij
− σgτj,p + γpωIj + δp

√
σωIj zIj , j = 1, . . . , s, (2.7)

where zIj = (zi)i∈Ij

i.i.d.∼ N (0, 1).
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This location-scale mixture representation of the ALD allows to easily sample

regression coefficients through Gibbs sampler ([39], [7]).

III.1 Full conditional distributions

From the equations given in (2.7) and the priors defined in Section II.2.2, we

follow [7] to derive the full conditional distributions of ωn = (ω1, . . . , ωn)

and (qτj,Ij
)j=1,...,s. Yet, the full conditionals of σ and p are not tractable. To

handle this, we include a Metropolis-Hasting step to the Gibbs sampler.

For further details, we set Yn = (Yi)i=1,...,n to be the vector of observations

and Xn = (Xi)i=1,...,n to be the covariable matrix.

1. For all j = 1, . . . , s, and i ∈ Ij, set νi = ω−1
i and considering the distri-

bution ωi ∼ E(1/σ) as a prior on ωi, one gets

νi|(yi, qτj(xi), σ, p) ∼ IGauss(Ψi, φp)

with

Ψi =

√
γ2

p + 2δ2
p

(yi − qτj(xi) + σg(τj, p))2 , φp =
γ2

p + 2δ2
p

δ2
pσ

,

where IGauss stands for the Inverse Gaussian distribution with Ψi > 0

and φp > 0 as location and shape parameters.

2. The conjugate Gaussian prior on quantiles provides Gaussian full con-

ditional distributions in both parametric and nonparametric cases.

(a) Linear case. In order to derive the full conditional distributions

for overparameterized and parsimonious models, let us first intro-

duce the notation gn = (g(τj, p)1i∈Ij)1≤j≤s used in both models.
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i. Overparameterization

Setting X̃ = (X̃i,k)1≤i≤n,1≤k≤s(d+1) to be the n× s(d + 1) design

matrix defined by

X̃i,k = 1i∈Ij

(
1k=(d+1)(j−1)+1 + Xi,k1k∈{(d+1)(j−1)+2,...,(d+1)j}

)
,

allows to rewrite the systems of equations (2.7) into the fol-

lowing format:

Yn = X̃β̃− σgn + γpωn + ε∗n,

with ε∗n ∼ Nn(0, Σ∗) and where Σ∗ = diag(δ2
pσωn). We note

that the matrix X̃TX̃ is not invertible.

With this zero-mean Gaussian prior distribution, the full con-

ditional distribution of β̃ is given by:

β̃|(x̃, yn, ωn, σ, p) ∼ Ns(d+1)(µ̂β̃, Σ̂β̃)

with

µ̂β̃ =
(

x̃TΣ∗ x̃ + Σ̃−1
0

)−1
x̌TΣ∗(yn + σgn − γpωn),

Σ̂β̃ =
(

x̃TΣ∗ x̃ + Σ̃−1
0

)−1
.

ii. Parsimony

Here, a different design matrix with different dimension is

considered. Set X̌ = (X̌i,l)1≤i≤n,1≤l≤s+d, the underlying n ×
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(s + d) design matrix defined by

X̌i,l =

 1i∈Il i f l ∈ 1, . . . s,

Xi,l−s i f l ∈ s + 1, . . . , s + d

Then, the system of equations (2.7) can be rewritten as:

Yn = X̌β̌− σgn + γpωn + ε∗n,

with ε∗n ∼ Nn(0, Σ∗) and where Σ∗ = diag(δ2
pσωn). Imple-

mented similarly to that in the overparameterization case, the

full conditional distribution on β̌ is Gaussian:

β̌|(x̌, yn, ωn, σ, p) ∼ Ns+d(µ̂β̌, Σ̂β̌),

with

µ̂β̌ =
(

x̌TΣ∗ x̌ + Σ̌−1
0

)−1
x̌TΣ∗(yn + σgn − γpωn),

Σ̂β̌ =
(

x̌TΣ∗ x̌ + Σ̌−1
0

)−1
.

(b) Nonparametric case. We shall use another extra notations:

hn =
(

hτj,Ij

)
j=1,...,s

=

((
h(τj, xi)

)
i∈Ij

)
j=1,...,s

,

kn(τ, x) =
(
(k(τj, xij)ij∈Ij)j=1,...,s

)
.
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This allows to rewrite the system of equations (2.7) into the follow-

ing vector format:

Yn = hn − σgn + γpωn + ε∗n. (2.8)

Combining (2.8) with the Gaussian process prior on h leads to the

following joint distribution of (Yn, hn) conditional on (xn, ωn, σ, p):

 Yn

hn

 ∼ N2n


 −σgn + γpωn

0n

 ,

 kn(τ, x)+ Σ∗ kn(τ, x)

kn(τ, x) kn(τ, x)


 .

Finally, classical calculations lead to the desired full conditional

distribution:

hn|(xn, yn, ωn, σ, p) ∼ N (µ̂h, Σ̂h),

where

µ̂h = kn(τ, x)(kn(τ, x)+ Σ∗)−1(yn − γpωn + σgn),

Σ̂h = kn(τ, x)− kn(τ, x)(kn(τ, x)+ Σ∗)−1kn(τ, x).

3. The full conditional distribution, πσ of σ|yn, xn, ωn, p is proportional to

1
(
√

σ)n+a0+1

exp
{
−1

2
(Yn − qτ,n + σgn − γpωn)

T(Σ∗)−1(Yn − qτ,n + σgn − γpωn)

}
, (2.9)

where qτ,n =
(

qτj,Ij

)
j=1,...,s

.
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4. The full conditional, πp of p|yn, xn, ωn, σ is proportional to

pα0(1− p)λ0

exp
{
−1

2
(Yn − qτ,n + σgn − γpωn)

T(Σ∗)−1(Yn − qτ,n + σgn − γpωn)

}
. (2.10)

III.2 Algorithm

Since it is not possible to generate σ and p directly from their full conditional

distribution by equations (2.9) and (2.10), they are simulated by incorporat-

ing a random walk Metropolis-Hastings step within the Gibbs sampler, as

described below.

For a subset E ⊂ R, denote by NE(·, ·) the truncated version on E of the

corresponding Gaussian distribution. Note that the choice of the truncated

Gaussian distribution is classical and provides high Metropolis-Hastings ra-

tio.

Algorithm 1 Metropolis-Hastings step

1: Initialization t = 0: σ(0) = σ0, p(0) = p0.
2: Loop t = t + 1 :

1. • σprop|σ(t) ∼ N]0,∞](σ
(t), sdσ),

• ασ = min {1, PσQσ}

• u1 ∼ U[0,1] ⇒ σ(t+1) =

{
σprop i f α > u1
σ(t) otherwise

2. • pprop|p(t) ∼ N]0,1[(p(t), sdp),

• αp = min
{

1, PpQp
}

• u2 ∼ U[0,1] ⇒ p(t+1) =

{
pprop i f α > u2
p(t) otherwise



48 Bayesian estimation of joint quantile regression

It worth mentioning that the values of the scale parameters sdσ and sdp are

calibrated to quickly achieve the equilibrium of the random walk Metropolis-

Hastings step; in fact, they are chosen neither too small nor too large so that

the acceptance rate becomes practically stable.

The conditional posterior ratios of σ and p, are given by

Pσ =
πσ

(
σprop|yn, xn, ((qτj,Ij

)j=1,...,s)
(t+1), ω

(t+1)
n , p(t)

)
πσ

(
σ(t)|yn, xn, ((qτj,Ij

)j=1,...,s)(t+1), ω
(t+1)
n , p(t)

)
Pp =

πp

(
pprop|yn, xn, ((qτj,Ij

)j=1,...,s)
(t+1), ω

(t+1)
n , p(t)

)
πp

(
p(t)|yn, xn, ((qτj,Ij

)j=1,...,s)(t+1), ω
(t+1)
n , p(t)

) ,

where πσ(·|·) and πp(·|·) are respectively given up to a constant in equations

(2.9) and (2.10), and the transition probabilities are given by

Qσ =
fN[0,∞[(σ

(t),sdσ)

fN[0,∞[(σprop,sdσ)
=

1− φ(
−σprop

sdσ
)

1− φ(−σ(t)

sdσ
)

,

Qp =
fN[0,1[(p(t),sdp)

fN[0,1[(pprop,sdp)
=

φ(
1−pprop

sdp
)− φ(

−pprop
sdp

)

(φ(1−p(t)
sdp

)− φ(−p(t)
sdp

))
,

where fNE(·,·) denotes the pdf of NE(·, ·) and φ(.) denotes the cumulative

distribution function of the standard normal distribution.

IV Empirical comparison in linear case

As mentioned in the previous sections, we propose to study the linear quan-

tile regression by two different ways, overparameterization and parsimony

approaches. In this section, we shall show, through a numerical example,

that the parsimony approach provides better results than that with overpa-

rameterization.
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IV.1 Numerical example

We generate n observations issued from the model Y = 1 + 2X + ε with

ε ∼ ALD(0, σ = 0.5, p = 0.25) and X ∼ U[−1,1]. We consider three quan-

tiles of interest of orders τ1 =0.1, τ2 =0.15 and τ3 =0.25. We denote by

βτ = (β
(0)
τ , β

(1)
τ ), τ ∈ {τ1, τ2, τ3}, the quantiles coefficients where β

(0)
τ de-

notes the intercept while β
(1)
τ is the slope. The true quantile coefficients are

β0.1 =(0.389, 2), β0.15 =(0.659, 2) and β0.25 =(1,2), respectively.

For both approaches, we evaluate the estimation performance for different

values of the number of observations, n = 500, 1000, 2000. Runs are made

with 10000 iterations, one third of which is burn-in. For the hyperparameters,

we set: a0 = 1 and b0 = 0.01 for the Gamma prior distribution of σ, α0 = 2

and λ0 = 2 for the Beta prior of p. We will discuss in next subsection the form

of the covariances matrices, Σ̃0 and Σ̌0 of the Gaussian prior distribution of β̃

and β̌, respectively. The proposals parameters of the Metropolis-Hasting step

are chosen to be sdσ = 0.03 and sdp = 0.01. For the output of the algorithm,

we denote by θ̂, the posterior mean of the parameter θ, θ̂ ∈ {β̂(0)
τ , β̂

(1)
τ , σ̂, p̂},

τ = τ1, τ2, and q̂(X)τ = β̂
(0)
τ + Xβ̂

(1)
τ the resulting posterior mean, estimate

of the τ−th quantile function.

IV.1.1 Choice of Σ̃0 and Σ̌0

Essentially, the prior covariance matrices Σ̃0 and Σ̌0 encode the linear re-

lation between the components of β̃ and β̌ respectively, and thus, the lin-

ear relation between the conditional quantiles. Due to equation (2.3), for p

fixed, the absolute value of the distance between two intercepts, β
(0)
τk and

β
(0)
τl , k, l ∈ 1, 2, 3, is equal to σ|g(τk, p) − g(τl, p)|. Therefore, due to the ex-

pression of g, a possible choice for the covariance matrices, Σ̃0 and Σ̌0, is
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such that, cov(β
(0)
τk , β

(0)
τl ) = ξ| log

(
τk
τj

)
| where ξ is a positive real number,

Var(β
(0)
τk ) = Var(β

(1)
τk ) = 1 and, all slopes are independent from each other

and from the intercepts.

Another choice for Σ̃0 and Σ̌0 is the classical identity matrix, (Σ̃0 = Id6 and

Σ̌0 = Id4). These choices will be compared to each other through the estima-

tion results given in the next subsection.

IV.1.2 Estimation results

For estimated quantile curves, the crossing is evaluated through the crossing loss

criterion (see [57]) that measures how big is the difference between q̂τl(X)

and q̂τk(X), when q̂τl(X) < q̂τk(X) τk < τl, k, l ∈ {1, 2, 3}, that is,

crossing loss =
1
n

n

∑
i=1

max (0, q̂τk(Xi)− q̂τl(Xi)) , τk < τl. (2.11)

The numerical results are presented in Table 2.1 below. Speaking of the choice

of the covariance matrix, according to Table 2.1, it is clear that, for both over-

parameterization and parsimony, there are no significant changes in the es-

timation of the different parameters whatever is the value of ξ. The same

occurs when Σ̃0 = Id6 and Σ̌0 = Id4. However, in the case of overparam-

eterization, the choice of ξ has an impact on crossing occurrence when n is

small. As shown in Table 2.1, for n =500, the crossing loss is equal to 0.0005

for ξ =300 and it decreases to be negligible (3.6×10−8) for ξ =100; for this

latter choice, the total number of crossing (the number of data point below

q̂τk(X) that are above q̂τl(X) when τk < τl) is small relative to n. Yet, for

a very small value of ξ (0.1), the crossing loss is null, which means that no

crossing occurs. The same occurs for Σ̃0 = Id6. In the case of parsimony, the
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noncrossing holds whatever n is small or large and whatever the form of Σ̌0

is.

n p̂ σ̂ β̂0.1 β̂0.15 β̂0.25 crossing loss

O
ve

rp
ar

am
et

ri
za

ti
on

ξ = 300

500 0.2472 0.5223 (0.1993, 1.7777) (0.8208 ,2.0886) (0.9896, 1.9013) 5×10−4

1000 0.256 0.5228 (0.2762,1.7956) (0.5834,1.8537) (0.921,2.0546) 0

2000 0.2469 0.4951 (0.4189, 1.954) (0.6997, 1.9334) (0.9677, 1.9243) 0

ξ = 100

500 0.2463 0.522 (0.1992, 1.7773) (0.8157, 2.0789) (0.989, 1.9054) 3.6×10−8

1000 0.2557 0.5238 (0.2734,1.7851) (0.5875,1.8552) (0.9222,2.0621) 0

2000 0.249 0.4986 (0.412, 1.9427) (0.6982, 1.9353) (0.9684, 1.9183) 0

ξ = 0.1

500 0.245 0.5199 (0.2077, 1.7051) (0.8015, 2.0116) (0.976, 1.855) 0

1000 0.2563 0.522 (0.2728,1.7608) (0.5856,1.8326) (0.9187,2.0384) 0

2000 0.2466 0.495 (0.4193, 1.9312) (0.699, 1.9253) (0.9668, 1.908) 0

Id6

500 0.2471 0.526 (0.1944, 1.688) (0.7972, 2.0066) (0.9788, 1.8609) 0

1000 0.2559 0.5231 (0.2764,1.75) (0.5829,1.8328) (0.9173,2.0398) 0

2000 0.2482 0.4961 (0.4157, 1.9266) (0.6961, 1.9235) (0.9683, 1.906) 0

Pa
rs

im
on

y

ξ = 300

500 0.2377 0.5091 (0.4146, 1.8584) (0.7078, 1.8584) (0.7985, 1.8584) 0

1000 0.2552 0.525 (0.3242,1.9438) (0.6546,1.9438) (1.1321,1.9438) 0

2000 0.2475 0.496 (0.4168, 1.9311) (0.6182,1.9311) (1.0471,1.9311) 0

ξ = 100

500 0.2361 0.5083 (0.4187, 1.8564) (0.7098, 1.8564) (0.7944, 1.8564) 0

1000 0.254 0.5219 (0.3299,1.9432) (0.6568,1.9432) (1.13141.9432) 0

2000 0.2466 0.4943 (0.4196, 1.9301) (0.6182,1.9301) (1.0468,1.9301) 0

ξ = 0.1

500 0.2366 0.5086 (0.4146, 1.8569) (0.7012, 1.8569) (0.7858, 1.8569) 0

1000 0.2549 0.5244 (0.3254,1.9423) (0.6514,1.9423) (1.12265,1.9423) 0

2000 0.2473 0.4954 (0.417, 1.9304) (0.6161, 1.9304) (1.0453, 1.9304) 0

Id4

500 0.238 0.5109 (0.4108 ,1.8559) (0.6991,1.8559) (0.7859,1.8559) 0

1000 0.2543 0.5225 (0.3259,1.9421) (0.6534,1.9421) (1.1258,1.9421) 0

2000 0.251 0.4955 (0.4165, 1.9287) (0.6145, 1.9287) (1.0488, 1.9287) 0

TABLE 2.1: Estimation results and crossing evaluation
of overparameterized and parsimonious models for n =
500, 1000, 2000 and for different prior covariance matrices

(ξ =300, 100, 0.1) and Σ0 = Id, where Σ0 ∈ {Σ̃0, Σ̌0}).

Here, expressing the covariance matrix of the prior Gaussian distribution

with respect to the quantile orders does not have any effect on the quality

of the estimation; indeed, the information that it keeps about the quantile
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coefficients is already involved in the model due to the relation, given by

equation (2.3), between the quantiles of the ALD distribution. This allows

using the identity matrix as a simple and classic choice for the covariance

matrix of the prior Gaussian distribution. Besides that, for small n, results of

the estimation based on overparameterization are not good compared to that

of the estimation based on parsimony. Table 2.1 shows that the estimated val-

ues of the quantile coefficients are not close to the true values when n is small

(n =500, 1000) while with parsimony, the estimated quantile coefficients are

close enough from the true ones even for small n.

Based on all these results, we can say that the estimation based on the overpa-

rameterization guarantees neither good estimation, for small n, nor parallel

estimated quantile curves unlike the estimation with fewer parameters. Since

our main objective, in this chapter, is to ensure noncrossing in simultaneous

quantile regression, the estimation based on considering the same slope for

all quantiles, we adopted the estimation with parsimony that provides good

parallel estimators of quantile curves since it is suitable to guarantee the non-

crossing.

V Simulation study

In this section, we study the performance of our method in both linear and

nonparametric quantile regression cases. For the model given by (2.1), we

shall consider three different designs for the p−th quantile:

1. Univariate linear quantile: qp(X) = 1 + 2X, with X ∼ U[−1,1];
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2. Multivariate linear quantile: qp(X) = 1 + XTβp, with βp ∈ Rd, d = 10

and either Xl ∼ U[−1,1] or Xl ∼ N (0, 1), ∀l ∈ {1, . . . , d};

3. Non linear quantile: for X ∼ U[0,1],

qp(X) = cos(5
2 πX exp{−3

2 X}) +
[

1
4 exp{2(X− 0.5)} − exp{−1}(1

4 +
X
2 )
]
1(X<0.5)

+
[

1
4 exp{−2(X− 0.5)} − (1

4 +
X
2 ) exp{−1} − (1

2 − X)
]
1(X≥0.5)

;

For all designs, we generate independently 300 observations issued from the

model defined in Equation (2.1). All runs of Metropolis-Hastings within

Gibbs algorithm consist in 20000 iterations, one third of which is burn-in.

The prior hyperparameters are chosen as follows: for the inverse Gamma on

σ, a0 = 1 and b0 = 0.01, for the Beta prior on p, α0 = 2 and λ0 = 2 and

Σ̌0 is set to be the identity matrix for linear quantile and c = 0.1, b = 5 for

the nonparametric case. The choice of c = 0.1 and b = 5 is a typical one; in-

deed, whatever the value of τ is, c = 0.1 minimizes the empirical root mean

integrated square error, RMISE, i.e., c = argmin
√

1
n ∑n

i=1(qτ(Xi)− q̂τ(Xi))2,

where q̂τ stands for the posterior mean quantile regression. In order to test

the robustness of our procedure with respect to the model parameters, dif-

ferent values of σ and p are considered for the three designs.

The first design is a very simple example and is carried out just to check

the convergence of the algorithm from different tools: the R̂ of Gelman and

Rubin diagnostic, the autocorrelation analysis and the posterior plots of the

different parameters.

Through the second design, we use the crossing loss criterion (see [57]) to

illustrate the noncrossing performance of different approaches: our method,
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denoted by "SBQR", the frequentist single quantile method of [33], denoted

by "K&B", the Bayesian single quantile regression method of [74], denoted by

"Y&M" and the simultaneous Bayesian method of [54], denoted by "R&S"; in

addition we use the RMISE to evaluate their estimation performance.

These other methods are performed using available codes in R Core Team

(2017): rq function available in quantreg package [32] for "K&B", bayesQR

function in bayesQR package [6] for "Y&M" and qreg function in BSquare

package [60] for "R&S".

For design 3, we compare our "SBQR" method with both the nonparametric

quantile regression method of [48], denoted by "M&ST", and the simultane-

ous noncrossing method of [1], denoted by "F&R". We have implemented

"M&ST" with quantregGrowth R package (see [47]) and "F&R" with an own

made code in R. We use features of the RMISE criterion to show how well

perform "SBQR" among the other considered methods.

Note that n = 300, the number of observations, is chosen carefully in order

to illustrate the intended objectives in all designs.

V.1 Design 1: Univariate linear quantile regression

The i.i.d. sample ε1, . . . , εn is generated according to ALD(0, σ = 0.1, p =

0.25). We propose to infer three quantiles that are close, namely quantiles of

order τ = 0.2, 0.3 and 0.4 respectively.

We fix sdσ = sdp = 0.1. To evaluate the convergence of our algorithm, we

use three different seeds and starting parameters values to run three different

chains and calculate the Gelman’s R̂ convergence diagnostic. Besides, we use
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other convergence diagnostics such as the autocorrelation analysis and the

posterior plots.

As shown in the top panel of figures 2.1, 2.2 and 2.3, all posterior distribu-

tions shrink at the true parameters value. Furthermore, in the middle panel

of figures 2.1, 2.2 and 2.3, the decrease of the empirical autocorrelation of pos-

terior samples proves that the underlying chains are stationary. The bottom

panels of Fig 2.1, 2.2 and 2.3 show that the R̂ goes to 1 through the iterations,

which confirms the convergence of the algorithm.
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FIGURE 2.1: Trace and density plot (top), autocorrelation plot
(middle) and R̂ evolution through iterations (bottom) of σ̂ (left

panel) and p̂ (right panel).
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FIGURE 2.2: Trace and density plot (top), autocorrelation plot
(middle) and R̂ evolution (bottom) of the intercept β̂

(0)
0.2 (left

panel) and the slope β̂
(0)
0.3 of the 0.2−th and 0.3−th quantile re-

spectively.
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FIGURE 2.3: Trace and density plot (top), autocorrelation plot
(middle) and R̂ evolution (bottom) of the intercept β̂

(0)
0.4 (left

panel) of the 0.4−th quantile and the slope β̂p.
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V.2 Design 2: Multivariate Linear quantile regression

The second design is dedicated to the multivariate linear case; hence we con-

sider the model given by (2.1) with ε1, . . . , εn
i.i.d.∼ ALD(µ = 0, σ = 0.5, p =

0.25), X ∈ Rd, d = 10, Xk ∼ U[−1,1], k = 1, . . . , d and βp =( 1.6, 2.2, 2.8, 3.4, 4,

4.5, 5.1, 5.7, 6.3, 6.9).

As commonly known, crossing quantiles is a practical problem that often oc-

curs when there is a large number of covariates. We propose to infer the

quantiles of order τ1 = 0.1 and τ2 = 0.12, since they are close and to study

the crossing phenomenon throughout the following four methods: "K&B",

"Y&M", "R&S" and "SBQR".

To achieve the desired posterior distribution through MCMC methods, we

perform Y&M and R&S with a different number o iteration: 1000 for Y&M

and 10000 for R&S. For "R&S", we use the logistic base distribution with 4 ba-

sis functions. For "SBQR", we fix sdσ = sdp = 0.01 and Σ̌0 to be the identity

matrix.

To compare the methods, we make use of the crossing loss criterion (see [57])

that measures how far q̂0.12(X) goes below q̂0.10(X);

crossing loss =
1
n

n

∑
i=1

max (0, q̂0.10(X i)− q̂0.12(X i)) . (2.12)

For a given approach, the less the crossing loss is, the better is the method.

As shown in Table 2.2, the crossing loss, by "K&B", is significantly of 0.43%,

which corresponds to 34 data points of q̂0.1(X) that are above q̂0.12(X). This

percentage is considerably weakened when applying the separate Bayesian
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method "Y&M" (0.38%), but still have crossing quantiles (26 data points of

q̂0.1(X) are above q̂0.12(X)). However, for simultaneous estimation methods,

as our proposed "SBQR" or "R&S" methods, the crossing loss becomes zero;

this means that the simultaneous quantile estimation has the potential to

make quantile crossing vanish. Moreover, the estimated quantiles are in the

right order. While simultaneous approaches control the monotonicity prop-

erty of quantiles, in a certain sense, separate approaches do not, and they

provide more than 8% of violation according to results previously discussed

(11.33% of violation by "K&B" and 8.66% of violation by "Y&M").

Method nb.crossing crossing loss RMISE(0.10) RMISE(0.12)

"K&B" 34 0.0043 0.3565 0.3218

"Y&M" 26 0.0038 0.3344 0.3362

"R&S" 0 0 0.2449 0.2849

"SBQR" 0 0 0.1989 0.2383

TABLE 2.2: Table of criteria: crossing loss and RMISE

To go further, we compute the RMISE for each quantile order and for all

methods. Among the latter, the "SBQR" has roughly the smallest RMISE in

both quantile levels τ = 0.1 and τ = 0.12. The fact is that "R&S" may over

smooth when estimating simultaneously the quantiles and here, for this lin-

ear case, the over smoothness is reflected on the flexibility of the method

(high RMISE).

To see if the covariable support has an impact on results, we consider another

simulation set in which X ∼ Nd(0d, Idd), i.e., support(X)= R
d. Table 2.3

shows that "SBQR" behaves like in the previous example: a zero crossing loss

and the smallest RMISE among all the methods.
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Method nb.crossing crossing loss RMISE(0.10) RMISE(0.12)

"K&B" 38 0.0037 0.2356 0.2151

"Y&M" 5 0.0005 0.4569 0.4391

"R&S" 0 0 0.2865 0.3189

"SBQR" 0 0 0.2218 0.2102

TABLE 2.3: Table of criteria: crossing loss and RMISE for nomal
covariate case

We also consider another case with a different pair of quantile orders: τ1 =

0.7 and τ2 = 0.8. We turn back to the support [−1, 1]d for X. Table 2.4 shows

similar results as the ones obtained for τ1 = 0.10 and τ2 = 0.12. Thus, "SBQR"

still have the best behaviour among the other methods in term of crossing

loss and RMISE.

Method nb.crossing crossing loss RMISE(0.7) RMISE(0.8)

"K&B" 6 0.0041 0.4255 0.7177

"Y&M" 1 0.0009 0.403 0.7013

"R&S" 0 0 0.224 0.3791

"SBQR" 0 0 0.2065 0.2708

TABLE 2.4: Table of criteria: crossing loss and RMISE for uni-
form covariate case

It should be noted that the estimation of σ and p by "SBQR" is quite good

in terms of the closeness of their estimated values to the true ones in the

different treated cases.

V.3 Design 3: Non parametric quantile regression

Considering the third design with X ∼ U[0,1] and ε ∼ ALD(µ = 0, σ =

0.05, p = 0.75), we are interested in estimating quantile functions for orders

τ =0.10, 0.12, 0.15 and 0.20. We fix sdp = 0.05, sdσ = 0.005 and we compare

our "SBQR" method with two others: the "M&ST" method with a three order
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cubic B-splines and the "F&R" approach with smoothness parameter value

equal to 0.1.

For each value of τ, we evaluate the performance of these methods through

the RMISE criterion. Table 2.5 shows that the RMISE values are significantly

smaller for "SBQR" than the ones for "M&ST" and "F&R". It worth noting

then, that our method is significantly better than the two others in quantiles

estimation; in addition, it provides a good estimation of σ (σ̂ = 0.0535) and p

(p̂ = 0.7744).

Method RMISE(0.10) RMISE(0.12) RMISE(0.15) RMISE(0.20)

"M&ST" 0.1416 0.1397 0.1072 0.0774

"F&R" 0.1520 0.1033 0.0821 0.0664

"SBQR" 0.0692 0.0768 0.0777 0.0660

TABLE 2.5: RMISE at different quantile levels computed for
M&ST, F&R and SBQR methods

Figure 2.4 gives the quantile curves estimators. While our "SBQR" method

(left panel) provides quantile curves estimates that are close to the true ones

(red dashed lines), the 0.1−th quantile curve estimate given by "F&R" method

(middle panel) is fairly distant from the true curve especially when x ∈

[0.2, 0.6]. The same happens for "M&ST" method when x ∈ [0.7, 1]. How-

ever, there is no scarred crossing by any of these three methods since they are

tackling simultaneous quantile estimation techniques.
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FIGURE 2.4: Estimated quantile curves (black solid lines)
against the true ones (red dashed lines) for SBQR method
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FIGURE 2.5: Estimated quantile curves (black solid lines)
against the true ones (red dashed lines) for F&R method
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FIGURE 2.6: Estimated quantile curves (black solid lines)
against the true ones (red dashed lines) for M&ST method

The issue that makes "F&R"’s method less flexible in simultaneous quantiles

fitting is that the second stage final estimators are quite affected by the first

stage output that may be badly estimated. For "M&ST", the estimators are

constructed iteratively, when solving the minimization problem, by adding

constraints so that each subsequent quantile function do not cross with the

previous one; this may cause overestimation of quantile curves and thus, it

can explain the flexibility of the underlying method.

VI Conclusion

This proposed estimation procedure "SBQR" for simultaneous Bayesian quan-

tile regression guarantees the fundamental property of noncrossing. Asum-

ing that the ALD is the underlying data distribution, this method enables to
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characterize the likelihood function by all quantiles of interest using the rela-

tion that links two distinct quantiles. A Metropolis-Hastings within Gibbs al-

gorithm is used for the implementation after using the mixture normal repre-

sentation of the ALD distribution. By studying the linear case for this simul-

taneous quantile regression, we have faced two versions of modeling: one

based on overparameterization, when assuming that the quantiles have dis-

tinct slopes, and the other based on more fewer parameters (the parsimony)

when we assume that all quantiles have the same slope. We have shown

that with the parsimonious model the proposed method provides better re-

sults than with the overparameterized model. Our simulation studies show

good results that reflect the good performance of the method and guarantee

the convergence of the algorithm. Against the crossing problem of estimated

quantiles, our method has good performance compared with single quantile

estimation methods like [33] and [74] methods. From the RMISE point of

view, our method is very competitive in both parametric and nonparametric

cases. Moreover, it is the first step for a the only fully Bayesian estimation of

multiple quantiles.
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Part II

Blind deconvolution
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3 Literature overview on blind

deconvolution

I Introduction

Signal processing has become an essential science nowadays. All measure-

ments and information processing applications use signal processing tech-

niques to extract the desired information. Thus, signal processing, initially

designed to extract the signal during measurements, is widely applied in

various and varied applications. A popular one is the restoration of a sig-

nal distorted in transmission through a communication channel, called also

deconvolution. We can quote, for example, the identification of a telephone

channel in digital communication, the removal of the effects of microphones

and channels in speech recognition, the deblurring of distorted image, the

dereverberation of acoustic recordings, seismic exploration of the ground,

etc.... In this field, a received signal Yt can be considered as the convolution

of the transmitted signal Xt with the transmission channel ut, also called fil-

ter. In signal processing, the process of recovery of an input signal convolved

with a filter is known as deconvolution. The deconvolution provides then a

prototypical example of an inverse problem. When only the output signal

Yt is known, the process is called blind deconvolution and the objective is

to identify the transmission channel (the filter) and the input signal from the
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output signal recorded at the receiver.

The objective of this chapter, including the blind deconvolution, is to re-

view the main theoretical notions of signal processing that have been useful

throughout this work. We expect that this chapter will provide those un-

familiar with these concepts with all the information necessary for a good

understanding of this thesis work. We will then present the principles of

blind deconvolution as well as some methods from different points of view

that are used for this.

II Convolution system

We will first focus on the direct problem, i.e., the convolution.

Most of the signals we perceive are modified not only by the environments

they pass through but also by our means of perception. For example, two

close but distinct stars, observed through a telescope, can only be identified

as two distinct entities if they are distant enough from each other, i.e., if the

distance between the two stars is higher than the resolution of the device

(telescope). Similarly, in seismology, the response of a seismometer, with a

small shock, will never give a very small electrical signal at the output, but an

oscillating signal, certainly transient and of considerable duration compared

with the input signal.

In these two examples, an original signal (star, hammer stroke) has been

modified and transformed by a physical system (telescope, seismometer)

which finally gives us an output signal different from the original signal.

Figure 3.1 below, describes this phenomenon.
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FIGURE 3.1: Convolution schema

In general, a system can be considered as an operator applied to one or more

input signals Xt, involving some physical or mathematical transformations,

to provide one or more output signals Yt. In signal processing, this opera-

tion is called filtering. The corresponding convolution model to the system

described above is given by

Yt = (u ∗ X)t, (3.1)

where Xt is the input signal, u denotes the filter, ∗ denotes the mathematical

convolution operator and Yt is the observed output signal. A system is gen-

erally characterized by the number and the type of the input signal Xt, either

continuous (t ∈ R) or discrete (t ∈ Z), as well as by the type of the filter u

(see Section II.2).

II.1 Signal types

Most of the physical signals that surround us are continuous and called ana-

log signals or continuous-time signal. An analog signal is represented as a

smooth function x of t where t is defined on R+, the time space.

However, with the progress of informatics, digital computers and the pow-

erful computational tools provided today, the traditional analytical analysis
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of analog signals has given way to the digital analysis of discrete signals. In-

deed, as shown by Shanon [59], an analog signal with maximum frequencies

Fmax can be represented, without loss of information, by a discrete sequence

of analog signal values taken at regular times nTe, with n ∈ N, if and only if

the sampling frequency Fe = 1/Te of the digital signal is at least greater than

2Fmax:

Xt ≈ Xn ⇔ Fe ≥ 2Fmax.

Te and Fe are respectively the sampling step and frequency. Even though

modelling an analog signal by a discrete sequence is an approximation, we

can still build the analog signal using its discretized version. We note that

this process is guided with a certain error that usually we try to make as

small as possible ([66]).

According to Fourier (1807), a signal can be seen as a linear combination of

elementary sine waves (signals). A sine signal is entirely defined by three

characteristics which are:

• its amplitude A,

• its frequency F or its period T = 1/F,

• its phase φ,

and it is represented then as

Xt = A sin(
2π

T
t + φ).
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The underlying signal can be associated with its following complex repre-

sentation,

Aej( 2π
T t+φ),

where ejθ = cos(θ) + jsin(θ) (De Moivre’s formula). The Complex expo-

nential notation is the most used as it facilitates mathematical operations on

signals.

Finally, the method we have developed (see Chapter 4) deals with complex-

valued digital signals so from now on, we focus on digital signal processing.

II.2 Filter types

In a convolutional system, a filter controls the weighting of past (causal part

ut, t > 0) and future (anti-causal part ut, t < 0) inputs. In digital signal

processing, there are two types of filters depending on the support of the

impulse response1:

• Finite impulse response filter (FIR): it corresponds to an the impulse

response that includes L + 1 components. In this case the convolution

model is given as

Yt =
k0+L

∑
k=k0

ukXt−k, k0 ∈ Z, L > 0. (3.2)

For a FIR u with k ∈ N, the model is called "L order moving average"

denoted by MA(L). Indeed, for such a system, the output signal is given

as the weighted average of the current input signal and the L passed

input signals. Thus, this system is causal and it is well adapted when
1The impulse response Yt defines the response of a linear time-invariant system when the

input signal is an impulse, i.e., Xt = δ(t).
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modeling signals with limited (finite) duration, for e.g., in seismology,

the source function (signal) of seismic motion.

• Infinite impulse response filter (IIR): it extends the FIR to an infinite

number of components. In this case the convolution Model (3.2) be-

comes

Yt = ∑
k∈Z

ukXt−k. (3.3)

Since an IIR filter has an infinite number of components, it can only be

implemented by an approximation that uses finite number of compo-

nents.

A particular example of IIR filter is the M order autoregressive model,

AR(M), defined as

Yt =
M

∑
k=1

θkYt−k + Xt. (3.4)

For this model, the output signal is calculated from the current input

signal Xt and M previous output signals weighted by the sequence of

the coefficients θk. It has also a causal representation as an MA(∞):

Yt =
+∞

∑
k=0

ukXt−k.

The advantage of such systems is that they are able to model signals

with infinite duration from only a finite number of parameters θk.

III The deconvolution

Let us move on the deconvolution problem. As we mentioned previously,

the deconvolution is the inverse problem associated to the convolution. It
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consists on recovering the input signal Xt from the output signal and the fil-

ter u (see Figure 3.2 below).

FIGURE 3.2: The deconvolution schema

Hence, inverting the convolution model in (3.1) leads to the deconvolution

model, defined by

Xt = (Y ∗ θ)t,

where θ = (θt)t∈Z denotes the inverse of the filter u = (ut)t∈Z, i.e., (θt)t∈Z

satisfies

∑
t∈Z

utθk−t = δk,

where δk is the Kroneker symbol.

Addressing the deconvolution problem with known inverse filter is called

equalization; it is used mainly for the reception systems in telecommunica-

tions to correct the transmission channel, by directly identifying the inverse

filter without identifying the filter itself. We shall present, in the next, some

properties of the inverse filter.
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III.1 Inverse filter

To guarantee the invertibility of u, it suffices that x 7→ ∑t uteitx is continuous

in C and not vanishing on [0, 2π] (see [17] ). In addition, the latter condition

implies that both u and θ are in l1(Z).

It is proved also in [42], for a moving average model, that any non-zero filter

that has no characteristic roots on the unit circle, admits an inverse.

Indeed, taking B to be the backward shift operator, i.e., BkX = Xt−k and

denoting by B− to be the forward shift , i.e., B−kXt = Xt+k, we can then

rewrite Model (3.2) as

Yt = φ(B)X,

where φ(B) = 1+ u1B + u2B2 + . . . + uLBL. We denote by βi ∈ C, i ∈ 1, . . . L,

the roots of φ(B), so that

φ(B) =
L

∏
i=1

(B− βi) = −
L

∏
i=1

(βi − B) =
L

∏
i=1

(−βi)
L

∏
i=1

(1− B
βi
).

Inverting φ(B) requires finding the inverse of
(

1− B
βi

)
. Hence, using Taylor

series, one can gets

1. If |βi| = 1→ 1
|βi|

= 1 the inverse of
(

1− B
βi

)−1
do not exist,

2. If |βi| > 1 → 1
|βi|

< 1 →
(

1− B
βi

)−1
= ∑∞

k=0

(
1
βi

)k
Bk; this Taylor serie

converges and thus,
(

1− B
βi

)−1
exists,

3. If |βi| < 1→ 1
|βi|

> 1→
(

1− B
βi

)
= 1

βi
(βi − B) = − B

βi

(
1− βiB−1)(

1− B
βi

)−1
= − βi

B
(
1− βiB−1)−1

= − βi
B ∑∞

k=0 βk
i B−k = −∑∞

k=1 βk
i B−k =

−∑−1
k=−∞

(
1
βi

)k
Bk; it is convergent and thus,

(
1− B

βi

)−1
exists.
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However, the convolution of (Yt)t∈Z with θ provides an infinite order au-

toregressive process, which is non-causal [42] only if all the roots of its char-

acteristic polynomial φ(B) are outside the unit circle. We note also that the

autoregressive models are always invertible.

III.2 Ill-posed inverse problem

It is well known that an inverse problem is well-posed if its solution satisfies

the following three conditions: existence, singularity and stability. However,

this is not the case for the deconvolution since it is non-identifiable and thus

it does not have a single solution. This is due to the fact that, through the

filtering operation, we lose information on the input signal which makes its

exact restoration impossible.

On the other hand, any little perturbation (the presence of noise) on the out-

put signal leads to different deconvolution signals (input signals) with poor

quality.

Consequently, the filtering operation is often accompanied by a certain loss

of information on the system’s input signal. Thus, regularizing the deconvo-

lution is important to extract as much information as possible.

III.3 Blind deconvolution

Suggested by its name, blind deconvolution is a deconvolution problem. It is

called blind when neither the filter nor the input signal is known (see Figure
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3.3). Thus, blind deconvolution is an ill-posed inverse problem (see [3] and

[68]).

FIGURE 3.3: Blind deconvolution schema

Technically, blind deconvolution consists in estimating two quantities (the

input signals and the filter) from a single signal. In this case, it is known that

this inversion admits an infinity of solutions, unless we introduce additional

information (assumptions).

Thus, depending on the assumptions made about the system or the input

signal, we distinguish two different methods of blind deconvolution that are

commonly used :

• the spectral deconvolution that uses empirical spectral functions (see

[41], [44]),

• the high order moment methods that use the statistical properties of the

random input signal (see [31]),

These techniques require that the source signal (Xt)t∈Z is either a sequence

of i.i.d. random variables or a stationary process with finite moments. How-

ever, when X is discrete we can not apply these methods to restore it.
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Fortunately, there are other methods in the literature that use extra assump-

tions when dealing with discrete signals. We present some of them in the

next section.

IV Blind deconvolution approaches

According to the literature, blind deconvolution is studied either by physics

or by probabilistic perspectives. In physics, the reconstruction of the input

signal is carried out using statistical tools without estimating the filter. In-

deed, these techniques are based on physical and observed measurements,

for e.g., the autocorrelation and cross-correlation measurements in phase

retrieval2 (see [67], [29]), in order to recover the underlying signal. In the

presence of noise, denoising tools are also used before the signal deblurring

restoration step (see [9]).

On the other hand, the probabilistic assessments focus on the estimation of

the filter or its inverse in order to recover the distribution of the input signal.

In this setting, as we have mentioned in Section III.2, the blind deconvolution

model is ill-posed and does not yield a unique solution and thus, there is a

need to consider extra assumptions on the model, which is also the case when

the model involve additional noise.

The noisy blind deconvolution is defined as follows,

Yt = (u ? X)t + σ0Wt = ∑
k∈Z

ukXt−k + σ0Wt, ∀t ∈ Z (3.5)

2The phase retrieval is the problem of recovering one or multiple input signals from the
autocorrelation measurements.
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where (Xt)t∈Z is an unobservable input signal, u = (ut)t∈Z ∈ l1(Z) is an

unknown filter and (σ0 Wt)t∈Z is a noisy process with σ0 > 0 is the noise

level.

Because of the illness of Model (3.5), particular attention has restricted the

study to the discrete signals with finite support, called alphabet in signal

theory (see [49], [3], [10], [17], [18], [16], [24]).

In this setting, the probabilistic research is split into two groups. The first

group considers (3.5) as a Bayesian model and focuses on developing Monte

Carlo algorithms to calculate the posterior distribution of the input signal.

We can refer to [10], [23], [45], [42] and [68] for this setting.

In [10], Chen & Liu addressed the problem of estimation of discrete-valued

signals that are blurred by an unknown FIR filter and contaminated by an

additive Gaussian white noise with unknown variance. They assumed that

the input signals are stationary Markov chains with known state space (al-

phabet) but unknown initial and transition probabilities. They used Gibbs

sampler to calculate the estimates of the unknown quantities.

This has been generalized in [45] by the introduction of a new sequential im-

porting sampling to implement the Bayesian approach. In these two works,

the authors advocate fully Bayesian approaches that treat the filter as an ad-

ditional random quantity that is treated through its posterior distribution.

In contrast, Li and Shedden [42] used the order statistics method to estimate

the filter in a separate step before the signal restoration. In [68], Wipf and

Zhang used variational Bayesian strategy to find the maximum a posterior

(MAP) of the distribution of X, u|Y in the case of Gaussian noise. They used

a particular joint prior prior on the input signal X, the filter u and the noise
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level σ0.

The second group uses frequentist approaches based on convolving the in-

verse filter with the observed signal Yt in order to restore Xt.They aim to

jointly estimate the inverse filter and the input signal; this is usually done by

minimizing a specific cost function.

In the non-noisy case, Li [43] proposed to minimize in s ∈ l1(Z) the following

cost function

g(s) = E

(
p

∏
i=1

(Z(s)t − ai)
2

)
, (3.6)

in s that denotes a possible inverse filter, where Z(s)t = (Y ∗ s)t and the

ai denote the p points of the support of Xt. Li dealt with real or complex

valued signal, independent but not necessarily identically distributed and

assumed that the signal support is finite, known and with known p. Under

these assumptions, he proved the consistency of the inverse filter estimate.

This work has been extended further by Gamboa and Gassiat [17] for discrete

real signal not necessarily independent and identically distributed. When

the alphabet is unknown, they used the discreteness of the signal as prior

information to prove the consistency of the inverse filter and the cardinal of

the alphabet estimates.

Further, Gassiat and Gautherat [19] generalized Gamboa and Gassiat’s method

[17] for noisy model, i.e., when the output signal is distorted by an additive

noisy σ0Wt with unknown level σ0. Therefore, they argued that the estimate

of the inverse filter and the noise level (θ̂, σ̂) is minimiser of an empirical

criterion build using the pseudo moments of Z(s), i.e., E(Φ(Z(s))) where
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Φ = (1, Φ1, . . . , Φ2p) is a set of real or complex functions;

(θ̂, σ̂) = argmin
(θ,σ)∈(Θ×R+)

Jn(s, σ), with Jn(s, σ) = Hn(s, σ) + δ(n)2σ, (3.7)

where Hn(s, σ) is the estimate of the determinant of a Hankel or Toeplitz ma-

trix build using the pseudo-moments of Z(s) and δ(n) is sequence of positive

real numbers such that δ(n) →
n→+∞

0. By taking advantage of the discreteness

of Xt and the presence of additive noise, the authors proved that the esti-

mates of u and σ0 behave asymptotically better than in Li [43]. In [20] the

same authors studied the convergence rate of both the inverse filter and the

signal estimates in a parametric framework for noisy and non-noisy casess.

Later, Gautherat [22] estimated the support points and their corresponding

probability, and established their asymptotic distribution. The problem in

this method is computational since the algorithm they used requires a start-

ing point that is near to the true value to avoid a local minimizer.

V Our contribution

This part of this thesis is devoted to present the advantage of providing an

estimation procedure for the inverse filter, the noise level, the signal support

points and their probabilities under some assumptions. In Chapter 4, we pro-

pose a joint work with E. Gautherat on a new estimation procedure based on

her work in [22] that addresses this problem. In our work, we consider the

noisy blind deconvolution model assuming that the distribution of the noise

is Gaussian. Unlike the methods mentioned above, our procedure is more

exact since it consists on finding a critical zero of an empirical function using
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Hankel matrix built from the pseudo-moments as in [19] and [20]. Theoreti-

cally, we have proven the consistency and the asymptotic distribution of all

the estimates. Moreover, from a practical point of view, we propose a good

algorithm that finds appropriate starting points which enables to provides

better estimators of the unknown quantities.
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4 A new estimation procedure in

noisy blind deconvolution model

I Introduction

In this chapter, we provide a new estimation procedure for the inverse filter

and the noise level of a noisy blind deconvolution model. This procedure

basically enables to restore the unknown discrete distribution of the input

signal by finding the roots of an empirical function of the inverse filter and

the noise level.

Let us consider the noisy blind deconvolution model given by:

Yt = (u ? X)t + σ0Wt = ∑
k∈Z

ukXt−k + σ0Wt, ∀t ∈ Z (4.1)

where (Xt)t∈Z is an unobservable finite discrete complex-valued process, u =

(ut)t∈Z ∈ l1(Z) is an unknown invertible filter and (σ0 Wt)t∈Z is a noisy

process with unknown level σ0 > 0. We denote by θ = (θt)t∈Z the inverse of

the filter u. Indeed, we suppose that x 7→ ∑t uteitx is continuous and does not

vanish on [0, 2π] so that u is invertible as well as both u and θ are in l1(Z).

Based on n observations (Y1, . . . , Yn) issued from Model (4.1), the objective

is to recover the distribution of the input process (Xt)t∈Z that requires the
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estimation of both the noise level σ0 and the filter u.

The Chapter is organized as follows. In Section II, we present the assump-

tions on the model defined by (4.1) and we give some characterizations on the

noise level, the inverse filter and the distribution of the input signal. These

characterizations are used in Section III to present our estimation procedure.

In Section IV, we present our theoretical results about the strong consistency

and the asymptotic distribution of all the estimates. The proofs are given later

in Section VII. In Section V we present our simulation study where we em-

pirically demonstrate the performance of our estimation procedure including

a comparison of our numerical results with those given in [19]. Finally, we

make discussion and give some concluding remarks, in Section VI.

II Assumptions and characterization

All along this chapter, we are going to use the following notations. Random

variables without index, like X, W, W̃ . . . , are used to refer to any Xt, Wt, W̃t,

. . ., with t ∈ Z. The notation ‖ · ‖ denotes either the l2-norm or the Euclidean

norm depending on the natural space to which the element ” · ” belongs.

II.1 Assumptions

We consider three types of assumptions on the output signal, the noise and

the inverse filter.

(H1) X is a discrete complex-valued random variable with finite support A

and distributed according to Π.
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b. The cardinality of A, denoted card(A) = p ≥ 2, is known.

c. A = {a1, . . . , ap} ∈ Cp is unknown. The aj’s of A are ordered lex-

icographically, i.e., with notations Re and Im for real and imagi-

nary parts of a complex number for any j, k in {1, . . . , p},

aj < ak ⇐⇒


Re(aj) < Re(ak)

or

Re(aj) = Re(ak), Im(aj) < Im(ak)

.

d. For all positive n, ∀j1, . . . , jn ∈ {1, . . . , p}, P(X1 = aj1 , . . . , Xn =

ajn) > 0.

e. Π = (π1, . . . , πp) unknown such that πj = P(X0 = aj), ∀j ∈

{1, . . . , p}.

(H2) W is a Gaussian complex-valued random variable.

a. W = WR + iW I , where WR and W I are real-valued random vari-

ables with 0-mean and 1/2-variance.

b. (WR
t )t∈Z and (W I

t )t∈Z are independent and they are sequences of

independent random variables.

c. WR and W I are both independent of X.

(H3) θ belongs to a parametrized set Θ.

a. θ ∈ Θ = {s(ξ) ∈ l1(Z), ξ ∈ K}, where K ⊂ R
d is compact and

s : K 7→ l1(Z).

b. s ∈ C1(K) is known while ξ is unknown.
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c. s : K 7→ l1(Z) is injective and satisfies

∀ξ, ξ̃ ∈ K such that sk(ξ) = rsk−l(ξ̃), ∀k ∈ Z =⇒


r = 1,

l = 0

ξ = ξ̃

.

Remark 1. In Assumption (H3), the set of inverse filters Θ is expressed through

an unknown vector ξ. Since the true inverse filter is assumed to belong to Θ,

it means that it exists ξ0 ∈ K such that θ = s(ξ0). Hence, estimating the

inverse filter θ reduces to estimate the vector-valued parameter ξ0.

Remark 2. Moreover since s is supposed to be injective from K in l1(Z) and

θ ∈ Θ , it entails that ξ0 satisfying s(ξ0) = θ is in the interior ofK. In addition,

Assumption (H3) c. guarantees the identifiability of the model; in particular,

it avoids problems of scale (r = 1) and delay (l = 0).

II.2 Constrast function

For any s satisfying (H3), let us define D(s) the (p + 1) × (p + 1) Hankel

matrix whose entries are the conjugate moments of the filtered observations

(s ? Y)t.

First, to fix the idea, we consider the non noisy case, i.e., σ0 = 0. On the one

hand under the process (s ? Y)t = (s ? u ? X)t takes at most p support points

if and only if s = θ up to scale and delay. On the other hand when s = θ, the

determinant of D(s) is null if and only if X has at most p support points, i.e.,

det(D(θ)) = det
(
(E(Xk

t Xt
j
))j,k=0,...,p

)
= 0

m

Xt has at most p support points (4.2)
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where Xt denotes the conjugate of Xt. Hence, it is natural to define the esti-

mate of θ as the argument that makes null the determinant of the empirical

counterpart of D(s) (see Gamboa and Gassiat [17]).

Back to the noisy case, i.e., σ0 6= 0 is unknown, we aim to consider a criteria

that is similar to (4.2) and able to characterize both the noise level σ0 and the

inverse filter θ.

Due to the infinite divisibility of the Gaussian distribution, we note that for

any σ > 0 and any W̃ and ˜̃W as independent copies of W, we have

(s ? Y)t
distrib
= (s ? u ? X)t + i1Iσ>σ0 |σ2

0 − σ2|1/2(s ? W̃)t + σ(s ? ˜̃W)t. (4.3)

Then, we can define D̃(σ, s) the (p + 1) × (p + 1)-matrix whose element at

the j−th row and k−th column is set to be

E[((s ? u ? X)t + i1Iσ>σ0 |σ2
0 − σ2|1/2(s ? W̃)t)k

((s ? u ? X)t + i1Iσ>σ0 |σ2
0 − σ2|1/2(s ? ˜̃W)t)j ] . (4.4)

Again due to (4.2), it is obvious to note that

det(D̃(σ0, θ)) = 0

m

Xt has at most p support points
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Hence, the natural criteria to characterize both σ0 and θ, is the real-valued

contrast function J defined by:

∀σ ≥ 0, ∀s ∈ Θ, J(σ, s) = det(D̃(σ, s)). (4.5)

Note that due to the definition of D̃(σ, s), the contrast function J is based on

the filtered non-observable process Xt that cannot be directly usable in the

estimation problem. Note also that (4.5) guarantees that the pair (σ0, θ) is a

zero of J but possibly not unique.

Hence, the next step is to express D̃(σ, s) as a transformation of D(s) (since

D(s) depends only on the available process (s ? Y)t) in a way that both the

true noise level and the inverse filter are precisely characterised.

To do this, we define d̃(σ, s) the (p + 1)2-vector whose (j(p + 1) + (k + 1))-

th component is the entry at row j and column k of the matrix D̃(s, σ); in the

same way we define the (p+ 1)2-vector d(s) whose components are obtained

from the entries of D(s). Then, from (4.3) and (4.5), simple calculations leads

to

d̃(σ, s) = A(σ‖s‖)d(s), (4.6)

where A(σ‖s‖) is a (p + 1)2 × (p + 1)2-matrix whose properties are listed in

Lemma 1 below. It is worth to mention that the derivation of the closed form

of A extends the work of Gassiat and Gautherat [19]. In particular, it leads to

get an explicit expression of the contrast function for any positive σ.

Lemma 1. Assuming (H2),

1. ∀σ > 0, ∀s ∈ Θ, the (p+ 1)2× (p+ 1)2-matrix A(σ‖s‖) is a lower trian-

gular block matrix with (p + 1)× (p + 1) sub-matrices, whose element
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at row k and column l in the (j, m)-th block is defined by

 (−1)j−m(k
l)(

j
m)γj−m,l−k(σ‖s‖)k−l+j−m, for j ≥ m and k ≥ l

0 otherwise,

with γm,l = E((W1)
l(W1)

m) = 1Im=lm! and m! is factorial m.

In particular, A(σ‖s‖) has one on its diagonal;

2. ∀s ∈ Θ, σ 7→ A(σ‖s‖) is C∞ on R∗+;

3. ∀σ ∈ R∗+, ‖s‖ 7→ A(σ‖s‖) is C∞ on R∗+.

The fact that A has an explicit form for any positive σ, is the key point of the

new procedure we propose to estimate the level of noise and the inverse filter.

Hence, it is worthwhile to mention that for any σ > 0, any s ∈ Θ, A(σ‖s‖) is a

Hankel matrix whose entries are conjugate moments of the filtered Gaussian

σ(s ? ˜̃W)t (see (4.4)). Actually, in previous papers (see for e.g., [20] and [21,

22]), since A was not explicitly given, then no explicit expression for J(s, σ)

was available; this has led to argmin-type estimation procedure based on a

penalized contrast function.

Actually, because in previous works there is no knowledge about A for all

σ > σ0, authors had to deal with t Moreover, like this contrast function is

very sharp, the minimum of square of its is very difficult to found. With this

new characterization, an other way is now possible.

Finally recall the characterization of all true quantities θ, σ0, a and Π through

the function J. They were established in Gassiat and Gautherat [20] for θ and

σ0 and in Gautherat [21, 22] for a and Π in a more general setting.

Properties 1.



90 A new estimation procedure in noisy blind deconvolution model

1. Under assumptions (H1) c−e and (H2) a, c, the true level of noise σ0

and the true inverse filter θ = s(ξ0) satisfy

∀σ < σ0, J(σ, s(ξ)) > 0, ∀ξ ∈ K (4.7)

J(σ0, s(ξ)) = 0 iff s(ξ) = θ up to scale an delay. (4.8)

2. Under (H1) c, d, the ai’s are the complex roots of the equation:
p

∑
j=0

v?j aj = 0, where v? denotes the eigenvector associated with the small-

est eigenvalue of D̃(σ0, θ).

3. Under (H1) a, c, d, the distribution Π = (π1, . . . , πp) is uniquely deter-

mined as the solution of the following linear system:

E(Xk
0) = ∑

p
j=1 πjak

j , ∀k = 0, . . . , p− 1.

Note that assertion 1 in Properties 1 implies that

σ0 = min{σ > 0; ∃s ∈ l1(Z) : J(σ, s) = 0}.

III Estimation procedures

Recall that we have at hand n ∈ N
∗ observations Y1, . . . , Yn issued from

Model (4.1). For all ξ ∈ K, let us consider š(ξ) the truncated sequence of

s(ξ) defined as šk(ξ) = sk(ξ)1I|k|≤k(n), ∀k ∈ Z, where k(n) is a sequence of

nonnegative integers increasing with n.

For any ξ, denote also by dn(š(ξ)) the empirical conjugate moment vector of

dimension (p + 1)2, whose general term is defined as the empirical version
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of the (p + 1)2-vector d(s̄(ξ)), i.e. for j, k = 0, . . . , p,

dj(p+1)+k+1,n(š(ξ)) =
1

n− 2k(n)

n−k(n)

∑
t=1+k(n)

((š(ξ) ? Y)t)
k((š(ξ) ? Y)t)

j.

Then, similarly to (4.6), for all ξ ∈ K and σ ≥ 0, define the (p + 1)2-vector

d̃n(σ, š(ξ)):

d̃n(σ, š(ξ)) = A(σ‖š(ξ)‖)dn(š(ξ)), (4.9)

where A(·) is the matrix defined in Lemma 1. Next, define Jn as the empirical

version of J (see (4.5)):

∀ξ ∈ K, ∀σ ≥ 0, Jn(σ, š(ξ)) = det(D̃n(σ, š(ξ))),

where D̃n(σ, š(ξ)) is the ((p+ 1)× (p+ 1))-matrix with element d̃j(p+1)+k+1,n(σ, š(ξ))

at row j and column k.

Mimicking relation (4.8) in Properties 1, the estimators of σ0 and ξ0 are de-

fined as a zero of the function Jn whereas those of the aj’s and πj’s are plug-in

estimates using assertions 2 and 3 in Properties 1.

In the definition below, we precisely define all of our estimates.

Definition 1.

1. (σ̂0, ξ̂0 ) is the solution of

 Jn(σ̂0, š(ξ̂0)) = 0,

σ̂0 = min {σ ∈ R+; ∃ξ ∈ K : Jn(σ, š(ξ)) = 0} .

2. θ̂ = š(ξ̂0).

3. The components of â = (â1, . . . , âp) ∈ Cp are the roots of the equation
p

∑
j=0

v̂?j âj in C[X], where v̂? = (v̂?0 , . . . , v̂?p) is the eigenvector associated
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with the smallest eigenvalue of the matrix D̃n(σ̂0, š(ξ̂0)). (â1, . . . , âp)

are given in lexicographic order.

4. Π̂ = (π̂1, . . . , π̂p) is uniquely determined as the solution in [0, 1]p of

d̃k+1,n(σ̂0, š(ξ̂0)) = ∑
p
j=1 π̂j âk

j , ∀k = 0, . . . , p− 1.

Roughly speaking, the idea is to look for the parameters that make the input

predictors most concentrated.

It should be noted that our estimation procedure for σ and ξ differs from the

well-known Z-estimation; indeed, even if dn(š(ξ)) is the empirical version

of the conjugate moment vector d(s(ξ)) and A(σ‖s(ξ)‖) is an Hankel matrix

with elements defined as expectation, the vector d̃n(σ, š(ξ)) does not corre-

spond to the empirical counterpart of d̃(σ, s(ξ)) since it involves A(σ‖š(ξ)‖)

which is not the empirical counterpart of A(σ‖s(ξ)‖).

We end this part by proving the existence of (σ̂0, ξ̂0) that satisfies the first item

in Definition 1 for any positive n. Actually we are able to prove this existence

only for some values of p; hence for some p we will give the proof of this

existence whereas for other p values, we conjecture this existence. Never-

theless, it should be noted that for a value of p covered by the conjecture, we

illustrate with simulations that the function σ 7→ Jn(σ, š(ξ)) admits a positive

zero even for ξ different from the true one.

Proposition 1. Assume (H2). For any n ∈ N∗, for any integer p ≥ 2 such that

p(p+1)
2 is an odd number, it exists (σ̂0, ξ̂0) solution of the system in Assertion

1 of Definition 1. The proof of this is given is Appendix.
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Conjecture 1. For any n ∈ N
∗, for any integer p ≥ 2 such that p(p+1)

2 is

an even number, it exists (σ̂0, ξ̂0 ) solution of the system in Assertion 1 of

Definition 1.

IV Asymptotic Results

Up to now, for any function F with one or more arguments, set ∂rF(y) be the

value at y of the r-th differential of F and set ∂
ri1

,...,ril
i1,...,il

F(y) be the value at y of

the (
l

∑
k=1

rik)-th partial derivative of F, where rik is the order of the derivative

with respect to its ik-th coordinate. For v a column vector, denote by vT its

transpose.

Some other extra assumptions are needed to establish the consistency and

the asymptotic distribution of all our estimates.

(H3) d. k(n) = o(
√

n), ∑
|k|>k(n)

|sk(ξ)| = o(
1√
n
)∀ξ ∈ K as n → +∞

(H3) e. The application ξ ∈ K 7→ s(ξ) is twice continuously differentiable.

For any i = 1, . . . , d, (∂1
i sk(ξ0))k∈Z and (∂2

i sk(ξ0))k∈Z are in l1(Z). More-

over,
(
(∂1

1sk(ξ0))k∈Z, . . . , (∂1
dsk(ξ0))k∈Z

)
and (sk(ξ0))k∈Z are linearly in-

dependent.

(H4)
√

n
(
dn(š(ξ0))− d(s(ξ0)), ∂1(dn ◦ š)(ξ0)− ∂1(d ◦ s)(ξ0)

) L−−−−→
n→ +∞

N (0, Γ).

Denote by Γ1 the asymptotic covariance of
√

n (dn(š(ξ0))− d(s(ξ0))).

The proof of all results are postponed in Appendix.

Theorem 1. Suppose that assumptions (H1)-(H3) a-d hold, then as n goes to

infinity, σ̂0 converges almost surely (a.s.) to σ0 and
∥∥∥ξ̂0 − ξ0

∥∥∥ converges a.s.

to 0.
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Corollary 1. Suppose that assumptions (H1)-(H3) a-d hold, as n goes to infin-

ity, then both ‖â− a‖ and
∥∥∥Π̂−Π

∥∥∥ converge a.s. to 0.

Before giving the asymptotic distribution of our estimates, let us introduce

an extra notation. Denote by v(b) the vector in Cp+1 ∩ {‖ · ‖ = 1} associated

with b ∈ Cp such that ∑
p
j=0 vj(b)bj = 0; in particular, note that v(a) = v∗.

Theorem 2. Under assumptions (H1)-(H4), as n tends to infinity, then
√

n
(

ξ̂0 − ξ ; σ̂0 − σ0

)T
converges in distribution to the (d+ 1)-centered Gaus-

sian distribution with variance-covariance matrix Γσ0,ξ0 given by

N∂1h(d̃(σ0, θ))A(σ0‖θ‖) Γ1

(
N∂1h(d̃(σ0, θ))A(σ0‖θ‖)

)T
,

where

α = −∂1
1 J(σ0, θ)

N =
1
α

 ∂2
2 J(σ0, s(ξ0))

−1 ∂1,1
1,2 J(σ0, s(ξ0))

1

 ,

h(d) = det
((

dj(p+1)+i+1

)
i,j=0,...,p

)
.

Corollary 2. Suppose that (H1)-(H4) hold, as n tends to infinity, one obtains

•
√

n(â− a) converges in distribution to the centered Gaussian distribu-

tion with variance-covariance matrix Γa,

•
√

n(Π̂ −Π) converges in distribution to the centered Gaussian distri-

bution with variance-covariance matrix ΓΠ,
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where

Γa =
1

4|v?p|4
C−1 B R A(σ0‖θ‖) Γ1A(σ0‖θ‖)TB̄T R̄TC−1,

ΓΠ = G R A(σ0‖θ‖) Γ1A(σ0‖θ‖)T R̄T GT
,

with

• C = diag(K1, . . . , Kp), with Kj = E (∏
p
i=1,i 6=j |X0 − ai|2),

• B is a p × (p + 1)2-matrix whose element at row l and column i(p +

1) + j + 1 is Bl,i(p+1)+j+1 =
(

∂1
l vi(a) v∗j + ∂1

l vj(a)v∗i
)

, ∀l ∈ {1, . . . , p}

and (i, j) ∈ {0, . . . , p}2,

• R =
(

Id(p+1)2 + ∂1,1
1,2d̃(σ0, s(ξ0))∂

1h(d̃(σ0, s(ξ0)))N
)

where Idd is the iden-

tity matrix of size d,

• G = L−1(Proj + F C−1

2|v∗p|2
B),

• L =
(

ai
j

)
i=0,...,p−1;j=1,...,p

, where i denotes the rows and j the columns,

• F =

(
0Tp
(

πj i ai−1
j

)
i=2,...,p, j=1,...,p

)′
, where i denotes the rows, j de-

notes the columns,

• Proj is the projection of C(p+1)2
on Cp, i.e., ∀w ∈ C(p+1)2

, with Proj(w) =

v, v = (w1, . . . , wp)′.

Remark 3. It is worth noting that our estimation procedures allow to derive

the asymptotic distribution of the vector (σ̂0 − σ0, ξ̂0 − ξ0) whereas the pe-

nalized estimation methods do not (see [20] and relation (16) in [22] for the

asymptotic distribution of (ξ̂0 − ξ0) and (σ̂0 − σ0), respectively).
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V Simulation study

In this section, we illustrate the performance of our estimation procedure

over simulated data with p = 3. We note that in this case p(p+1)
2 = 6 is even

(see conjecture 1 ). So, we consider the three classical models: the mixture

model, the second order autoregressive model and the second order moving

average model.

To avoid scale and delay problems on θ̂ = (θ̂k)|k|≤k(n), we fix them by setting

‖θ̂‖ = 1 and θ̂−k(n) ≥ θ̂t, ∀|t| ≤ k(n).

• M1 : Mixture model

Yt = Xt + σ0Wt,

where the true inverse filter θ has only one component; θt = st(ξ0) =

10(t), ∀t ∈ Z.

• M2 : Second order Autoregressive model AR(2)

Yt =
0

∑
k=−∞

ukXt−k + σ0Wt,

which leads to the finite true inverse filter such that

Xt = ∑
l∈Z

θt−l

0

∑
k=−∞

ukXt−k ⇔ Xt =
2

∑
k=0

θk

0

∑
k=−∞

ukXt−k,

with (θ0, θ1, θ2) = (s1(ξ0), s2(ξ0), s3(ξ0)) = (0.8571,−0.2857, 0.4286).

• M3 : Second order Moving Average model MA(2)

Yt =
2

∑
k=0

ukXt−k + σ0Wt,
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which leads to the following infinite inverse filter (θ0, θ1, θ2, . . .) =(0.829,

0.497, 0.232, 0.099, 0.041, 0.017, 0.007, 0.003, 0.001, 0,. . . ).

V.1 Parameter settings

We generate data from models M1, M2 and M3 with two values of σ0, 0.05

and 1.To illustrate the asymptotic performance of our method, we deal with

different sample size (n = 50; 100; 500; 1000; 2000). We choose the trunca-

tion parameter, k(n),= 1, 2 for M1 and M2, and k(n) = 4 for M3. This choice

of truncation is based on the fact that the mixture model M1 is over-estimated

when k(n) ≥ 1, since it involves only one filter component. The same occurs

with Model M2 when k(n) ≥ 2. For the moving average model M3, there is

always under-estimation since the inverse filter is infinite; therefore, we only

present results for k(n) = 4, which means that we only consider the first

nine components of the inverse filter, i.e., θ = (θi)i=1,...,9, since for i > 9 the

components are negligible.

Before discussing the obtained simulation results, we first provide a graphi-

cal illustration of the roots of the function Jn.

V.2 Illustration of the empirical contrast function roots

Taking the second order autoregressive model M2 with σ0 = 0.05, k(n) = 1

and fixed ξ, we show graphically that there exists a root for the function

Jn(σ, š(ξ)) as conjectured for p = 3, since p(p+1)
2 is even.

Figure 4.1 presents the plot, for different n, of the function σ → Gn(σ) =

sign(Jn(σ, š(ξ))) × log(|Jn(σ, š(ξ))| + 1), which has the same roots as the

function σ → Jn(σ, š(ξ)). For the left panel, ξ corresponds to the true ξ0,
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i.e., š(ξ0) = (0.8571,−0.2857, 0.4286) while for the right panel, ξ differs from

ξ0 and is such that š(ξ) = (1, 0, 0).

FIGURE 4.1: Graph of Gn with k(n) = 1. Second order autore-
gressive, σ0 = 0.05.

The two graphics show the existence of zeros of the function Gn; for the left

panel, it is worthwhile to note the convergence is achieved very quickly and

accurately which is not the case for the right one since that the chosen ξ is far

from the true value.

V.3 Implementation

For each model, we use the Mont Carlo technique to estimate the inverse

filer θ, the noise level σ0, the support points ai, i = 1, 2, 3, and their prob-

abilities πi. We run N = 100 independent simulations of n observations;

each run provides an estimate for all parameters. For negative estimate of

πi, ∀i ∈ {1, 2, 3}, we discard the simulation. We denote by Nelim the total

number of discarded simulations. The final estimate of each parameter is

then the average Ê of the estimated values issued from the N − Nelim runs.

We also compute the variability of each estimator using the empirical stan-

dard deviation std.
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V.3.1 Starting points

Through the algorithm described above, we use the function "fsolve" in MAT-

LAB version 2017b to implement our estimation procedure. This function

solves non nonlinear systems given a starting point as input argument and

searches for a zero near to the chosen starting point. This choice is then cru-

cial since it has impact on the estimation results. For this reason, we have

developed an algorithm that searches a good starting point by only using the

data.

Algorithm 2 Initial value Algorithm

1: Initialization

• σstep ' 10−3

• s = 0, σs = σinit = 0

• σmax = 1000 σstep

• Θ = {θ ∈ R2k(n)+1, ‖θ‖ = 1, θ(1) > |θ(i)|, ∀i = 2, . . . , 2k(n) + 1}

• θinit = θc = θ0 ∈ Θ

2: Loop 1 While σs < σmax and θinit = θ0

1. σs+1 = σs + σstep

2. t = 0

3. Loop 2 While t < T and θc = θ0

(a) t = t + 1

(b) θt ∼ U[−1/2,1/2]2k(n)+1 such that θt ∈ Θ

(c) (σ∗, θ∗, J∗n) = f solve(Jn, (σs+1, θt))

(d) if |J∗n | ≤ 10−4 and θ∗ ∈ Θ then θc = θt

4. θinit = θc, s=s+1

3: if σs = σmax then (σinit, θinit) is a "non convenient initial value"
else σinit = σs and (σinit, θinit) is the "chosen initial value"

In this algorithm, starting with a very small fixed σ, we randomly simulate θ

on the unit sphere until we get Jn(σ, θ) "close" to zero. Otherwise, we slightly
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increase σ and repeat the process; this algorithm is given below and the ob-

tained numerical results are stated in Tables 4.1-4.10.

V.4 The results

• Mixture model (M1)

As shown in Table 4.1, for σ0 = 0.05 and k(n) = 1, the estimation of

(σ, θ) becomes better as long as n increases whereas the support points

and their corresponding probabilities have good estimates spacialy for

small n. This result is valid also for k(n) = 2 as it is shown in Table 4.3.

In addition, for both cases, k(n) = 1 and k(n) = 2, and when n is large,

there is no discarded simulations (Nelim = 0).

However, Table 4.2 shows that, when σ = 1 and k(n) = 1, the number

of discarded simulations is significant even for large n (Nelim = 26).

Table 4.4 shows the same result for k(n) = 2 since Nelim = 23 for

n = 2000. In addition to that, the estimation of σ, θ, ai and πi, i =

1, . . . , 3, is less good than that with small σ, and this is probably due to

the significant variability in the estimation (see std column in Tables 4.2

and 4.4).

Subsequently, for any positive k(n), this mixture model is always over-

estimated. Therefore, it requires a large number of observations to

achieve the convergence in the estimation. Therefore, the more trun-

cated, the more we have to increase n in order to provide good estimate.
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true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.001 0.001 0.001 0.001 0.001

θ0,init - 0.716 0.788 0.765 0.847 0.967

θ1,init - -0.436 -0.435 0.436 -0.444 0.213

θ2,init - -0.436 -0.435 0.436 -0.293 -0.139

Ê ± std

σ̂ 0.05 0.248 ± 0.275 0.136 ± 0.194 0.053 ± 0.002 0.0528 ± 0.003 0.059 ± 0.009

θ̂0 1 0.924 ± 0.119 0.969 ± 0.084 0.900 ± 0.00003 1 ± 0.00005 1 ± 0.0001

θ̂1 0 0.113 ± 0.244 0.050 ± 0.170 0.0008 ± 0.005 -0.000006 ± 0.007 -0.002 ± 0.016

θ̂2 0 0.102 ± 0.224 0.025 ± 0.151 -0.0001 ± 0.007 -0.0008 ± 0.006 0.001 ± 0.007

â1 -2 -i -2.200 -0.997 i ± 0.379 -2.083 -1.012 i ± 0.254 -2 -1 i ± 0.009 -2 -1 i ± 0.010 -2 -1 i ± 0.015

â2 -1 +3 i -1.036 + 2.948 i ± 0.447 -1.020 +2.993 i ± 0.251 -1 + 3.001 i ± 0.010 -0.999 + 2.999 i ± 0.011 -0.999 + 2.999 i ± 0.012

â3 4+i 3.431 + 1.130 i ± 1.317 3.821 +1.046 i ± 0.740 4 + 1 i ± 0.012 4 + 1 i ± 0.010 4 + 1 i ± 0.012

π̂1 0.6 0.550 ± 0.088 0.584 ± 0.060 0.600 ± 0.021 0.600 ± 0.014 0.603 ± 0.010

π̂2 0.25 0.274 ± 0.080 0.258 ± 0.060 0.250 ± 0.017 0.251 ± 0.014 0.247 ± 0.009

π̂3 0.15 0.176 ± 0.071 0.158 ± 0.041 0.151 ± 0.015 0.149 ± 0.010 0.149 ± 0.007

Nelim - 4 1 0 0 0

TABLE 4.1: Estimates of the mixture model for σ0 = 0.05,
k(n) = 1 and different n

true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.25 0.25 0.25 0.25 0.25

θ0,init - 0.830 0.852 0.957 0.948 0.867

θ1,init - -0.225 -0.312 -0.172 -0.037 -0.091

θ2,init - 0.511 0.420 -0.233 0.316 0.490

Ê ± std

σ̂ 1 0.950 ± 0.115 0.996 ± 0.268 1.008 ± 0.068 1.044 ± 0.169 1.167 ± 0.281

θ̂0 1 0.848 ± 0.125 0.902 ± 0.112 0.991 ± 0.032 0.988 ± 0.041 0.962 ± 0.062

θ̂1 0 0.181 ± 0.323 0.058 ± 0.277 -0.009 ± 0.094 -0.009 ± 0.063 -0.046 ± 0.217

θ̂2 0 0.169 ± 0.320 0.122 ± 0.283 -0.007 ± 0.093 0.0006 ± 0.139 0.015 ± 0.146

â1 -2 - i -2.566 -0.968 i ± 1.251 -2.309 -1.033 i ± 0.595 -2.005 -0.994 i ± 0.172 -1.998 -1 i ± 0.153 -2.043 -1.086 i ± 0.536

â2 -1+3 i -1.237 + 2.416 i ± 1.505 -1.128 + 2.742 i ± 1.036 -1 + 2.948 i ± 0.394 -0.942 + 2.855 i ± 0.554 -0.860 + 2.535 i ± 0.8882

â3 4 + i 3.118 + 1.303 i ± 1.660 3.472 + 1.183 i ± 1.233 3.943 + 1.040 i ± 0.262 3.883 + 0.972 i ± 0.671 3.574 + 0.933 i ± 1.076

π̂1 0.6 0.481 ± 0.125 0.527 ± 0.105 0.593 ± 0.051 0.592 ± 0.037 0.553 ± 0.118

π̂2 0.25 0.331 ± 0.120 0.304 ± 0.097 0.257 ± 0.050 0.252 ± 0.025 0.296 ± 0.120

π̂3 0.15 0.188 ± 0.089 0.169 ± 0.053 0.150 ± 0.017 0.156 ± 0.039 0.152 ± 0.033

Nelim - 18 15 8 19 26

TABLE 4.2: Estimates of the mixture model for σ0 = 1, k(n) = 1
and different n.
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true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.001 0.001 0.001 0.001 0.001

θ0,init - 0.981 0.868 0.872 0.865 0.863

θ1,init - -0.112 0.127 0.402 0.304 0.079

θ2,init - -0.148 0.078 -0.238 0.132 0.177

θ3,init - 0.057 -0.123 -0.143 -0.220 -0.320

θ4,init - 0.022 -0.457 0.040 -0.308 0.338

Ê ± std

σ̂ 0.05 0.063 ± 0.067 0.061 ± 0.294 0.062 ± 0.094 0.052 ± 0.002 0.052 ± 0.002

θ̂0 1 0.995 ± 0.044 0.909 ± 0.141 0.995 ± 0.052 1 ± 0.00002 1 ± 0.00002

θ̂1 0 0.003 ± 0.042 0.070 ± 0.179 0.004 ± 0.045 -0.001 ± 0.005 -0.0004 ± 0.004

θ̂2 0 0.004 ± 0.045 0.0548 ± 0.161 0.004 ± 0.0476 0.0002 ± 0.004 -0.00007 ± 0.004

θ̂3 0 0.005 ± 0.030 0.055 ± 0.154 0.006 ± 0.043 0.0001 ± 0.004 0.0001 ± 0.004

θ̂4 0 0.004 ± 0.052 0.114 ± 0.225 0.004 ± 0.041 -0.0003 ± 0.004 0.0004 ± 0.005

â1 -2 - i -2.016 -1.0012 i ± 0.178 -2.262 -0.952 i ± 0.500 -2.014 -0.996 i ± 0.133 -1.999 -1 i ± 0.009 -2 -1 i ± 0.009

â2 -1 + 3 i -1.016 + 2.992 i ± 0.184 -1.047 + 2.947 i ± 0.462 -1.007 + 2.989 i ± 0.128 -0.999 + 3 i ± 0.009 -1 + 3 i ± 0.009

â3 4 + i 3.940 + 0.996 i ± 0.604 3.401 + 1.146 i ± 1.271 3.970 + 1.013 i ± 0.317 4 + 1 i ± 0.011 4 + 1 i ± 0.010

π̂1 0.6 0.589 ± 0.072 0.568 ± 0.0699 0.599 ± 0.027 0.601 ± 0.017 0.600 ± 0.012

π̂2 0.25 0.251 ± 0.061 0.260 ± 0.071 0.252 ± 0.028 0.250 ± 0.015 0.251 ± 0.009

π̂3 0.15 0.160 ± 0.051 0.172 ± 0.074 0.149 ± 0.016 0.149 ± 0.0125 0.150 ± 0.008

Nelim - 1 2 0 0 0

TABLE 4.3: Estimates of the mixture model for σ0 = 0.05,
k(n) = 2 and different n.

true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.25 0.25 0.25 0.25 0.25

θ0,init - 0.986 0.753 0.898 0.918 0.843

θ1,init - -0.045 0.252 0.171 -0.278 -0.021

θ2,init - -0.031 0.234 -0.227 0.231 -0.071

θ3,init - 0.156 0.403 0.333 -0.117 -0.454

θ4,init - 0.005 -0.389 0.035 -0.119 0.277

Ê ± std

σ̂ 1 0.919 ± 0.104 1.013 ± 0.096 1.021 ± 0.095 1.054 ± 0.167 1.045 ± 0.131

θ̂0 1 0.686 ± 0.122 0.765 ± 0.155 0.973 ± 0.070 0.972 ± 0.076 0.983 ± 0.047

θ̂1 0 0.125 ± 0.346 0.162 ± 0.268 0.022 ± 0.109 -0.006 ± 0.125 0.008 ± 0.074

θ̂2 0 0.159 ± 0.279 0.174 ± 0.255 0.017 ± 0.118 -0.003 ± 0.102 0.011 ± 0.079

θ̂3 0 0.137 ± 0.309 0.127 ± 0.291 0.027 ± 0.119 -0.009 ± 0.110 0.012 ± 0.123

θ̂4 0 0.196 ± 0.357 0.148 ± 0.279 -0.004 ± 0.083 0.0198 ± 0.112 0.006 ± 0.069

â1 - 2 - i -3.270 -0.703 i ± 1.874 -2.877 -0.726 i ± 1.822 -2.071 -1.016 i ± 0.329 -2.042 -1.018 i ± 0.302 -2.034 -1.008 i ± 0.242

â2 -1 + 3 i -1.614 + 2.226 i ± 2.426 -1.609 + 2.279 i ± 1.649 -1.063 + 2.908 i ± 0.390 -0.945 + 2.827 i ± 0.639 -0.960 + 2.877 ± 0.496

â3 4 + i 2.742 + 1.1446 i ± 2.689 2.919 + 1.574 i ± 1.747 3.847 + 1.045 i ± 0.558 3.888 + 1.010 i ± 0.517 3.882 + 1.012 i ± 0.490

π̂1 0.6 0.383 ± 0.142 0.452 ± 0.124 0.582 ± 0.053 0.574 ± 0.082 0.585 ± 0.075

π̂2 0.25 0.408 ± 0.145 0.364 ± 0.124 0.267 ± 0.055 0.272 ± 0.072 0.263 ± 0.060

π̂3 0.15 0.210 ± 0.102 0.184 ± 0.072 0.152 ± 0.019 0.154 ± 0.032 0.152 ± 0.028

Nelim - 5 10 1 16 23

TABLE 4.4: Estimates of the mixture model for σ0 = 1, k(n) = 2
and different n.
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• Second order Autoregressive model (M2)

The estimation of the different parameters of the autoregressive model

is quite good when k(n) = 1 and for both σ = 0.05 (see Table 4.5) and

σ = 1 (see Table 4.6). The problem here is when we over-estimate the

parameters i.e. when k(n) = 2, and when n is small, the estimation is

damaged. However, it is improved when n increases. As in the mixture

model, discarded simulations are noticed when σ0 is large (σ0 = 1) for

both k(n) = 1 and k(n) = 2.

We can conclude that our estimation procedure fits well the autoregres-

sive model since convergence is attained easily when k(n) = 1 and

when k(n) = 2 with large n.

true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.0010 0.0010 0.0010 0.0010 0.0010

θ0,init - 0.6914 0.9184 0.7423 0.7558 0.9268

θ1,init - -0.2476 0.0526 -0.4589 0.6548 -0.0818

θ2,init - -0.6787 -0.3922 -0.4882 -0.0111 0.3665

Ê ± std

σ̂ 0.05 0.0489 ± 0.0048 0.0499 ± 0.0037 0.0511 ± 0.0024 0.0510 ± 0.0013 0.05225 ± 0.0038

θ̂0 0.8571 0.8570 ± 0.0021 0.8574 ± 0.0017 0.8572 ± 0.0018 0.8572 ± 0.0015 0.8572 ± 0.0015

θ̂1 -0.2857 -0.2855 ± 0.0029 -0.2852 ± 0.0032 -0.2854 ± 0.0029 -0.2854 ± 0.0024 -0.2865 ± 0.0034

θ̂2 0.4286 0.4289 ± 0.0034 0.4283 ± 0.0026 0.4286 ± 0.0028 0.4285 ± 0.0023 0.4279 ± 0.0042

â3 -2 - i -2.001 -0.998 i ± 0.0144 -2.001 - i ± 0.011 -2.0004 -0.9997 i ± 0.0067 -2.0003 - i ± 0.0052 -1.999 - i ± 0.0062

â2 -1 +3 i -0.999 + 2.999 i ± 0.0251 -1.002 + 3.001 i ± 0.016 -1.001 + 3 i ± 0.0097 -1 + 3 i ± 0.0077 -0.999 + 2.999 i ± 0.0075

â1 4 + i 4.001 + 0.999 i ± 0.035 4 + 1.001 i ± 0.023 4 + 1.001 i ± 0.013 4 + 1 i ± 0.01 4.002 + 1 i ± 0.012

π̂1 0.6 0.5981 ± 0.064 0.6060 ± 0.0518 0.6008 ± 0.0232 0.5993 ± 0.0139 0.6016 ± 0.0117

π̂2 0.25 0.2502 ± 0.0637 0.2537 ± 0.0441 0.2496 ± 0.0204 0.2493 ± 0.0145 0.2489 ± 0.01

π̂3 0.15 0.1517 ± 0.0502 0.1403 ± 0.0361 0.1496 ± 0.0171 0.1514 ± 0.0113 0.1495 ± 0.0082

Nelim - 0 0 0 0 0

TABLE 4.5: Estimates of autoregressive model for σ0 = 0.05,
k(n) = 1 and different n
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true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.25 0.25 0.5 0.25 0.25

θ0,init - 0.889 0.968 0.967 0.772 0.909

θ1,init - -0.126 -0.246 -0.230 -0.014 -0.216

θ2,init - -0.440 -0.056 -0.111 -0.635 -0.357

Ê ± std

σ̂ 1 0.923 ± 0.125 0.967 ± 0.077 1.003 ± 0.089 1.024 ± 0.076 1.013 ± 0.0363

θ̂0 0.8571 0.794 ± 0.069 0.818 ± 0.058 0.838 ± 0.028 0.836 ± 0.043 0.838 ± 0.034

θ̂1 -0.2857 -0.210 ± 0.295 -0.288 ± 0.145 -0.294 ± 0.089 -0.291 ± 0.114 -0.304 ± 0.0350

θ̂2 0.4286 0.379 ± 0.302 0.448 ± 0.149 0.439 ± 0.101 0.430 ± 0.129 0.450 ± 0.040

â3 -2 - i -2.475 -0.892 i ± 2.213 -2.118 -0.824 i ± 1.254 -2.065 -0.930 i ± 1.019 -2.083 -1.015 i ± 0.716 -1.981 -0.982 i ± 0.098

â2 -1 + 3 i -1.247 + 2.583 i ± 2.472 -1.067 + 2.590 i ± 1.246 -1.039 + 2.824 i ± 0.907 -0.977 + 2.858 i ± 1.349 -0.967 + 2.923 i ± 0.198

â1 4 + i 4.044 + 1.020 i ± 1.808 3.721 + 1.029 i ± 0.887 3.928 + 0.981 i ± 0.452 3.961 + 1.039 i ± 0.532 3.904 + 0.1 i ± 0.197

π̂1 0.6 0.535 ± 0.111 0.561 ± 0.080 0.592 ± 0.050 0.594 ± 0.041 0.595 ± 0.015

π̂2 0.25 0.296 ± 0.097 0.281 ± 0.067 0.256 ± 0.035 0.254 ± 0.022 0.254 ± 0.014

π̂3 0.15 0.170 ± 0.065 0.157 ± 0.038 0.152 ± 0.025 0.152 ± 0.033 0.151 ± 0.008

Nelim - 2 0 3 0 1

TABLE 4.6: Estimates of autoregressive model for σ0 = 1,
k(n) = 1 and different n.

true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.0010 0.0010 0.0010 0.0010 0.0010

θ0,init - 0.8787 0.8148 0.8100 0.8438 0.9228

θ1,init - -0.2112 -0.4699 -0.456 -0.0356 -0.0625

θ2,init - -0.1224 0.1721 0.1684 0.4083 -0.2029

θ3,init - 0.1569 0.2553 0.3273 0.0474 -0.0302

θ4,init - -0.379 -0.1434 -0.011 -0.3431 -0.3201

Ê ± std

σ̂ 0.05 0.1993 ± 0.2339 0.0976 ± 0.1896 0.0811 ± 0.15671 0.07 ± 0.1088 0.0519 ± 0.0031

θ̂0 0.8571 0.8123 ± 0.071 0.8470 ± 0.0419 0.8528 ± 0.0239 0.8533 ± 0.0258 0.8568 ± 0.0017

θ̂1 -0.2857 -0.2873 ± 0.0609 -0.2876 ± 0.0197 -0.2897 ± 0.0227 -0.2883 ± 0.0159 -0.286 ± 0.0021

θ̂2 0.4286 0.4034 ± 0.0866 0.416 ± 0.0774 0.4235 ± 0.0267 0.4256 ± 0.0219 0.429 ± 0.0026

θ̂3 0 0.1118 ± 0.2001 0.0274 ± 0.1043 0.0132 ± 0.0702 0.007 ± 0.0426 -0.000004 ± 0.0026

θ̂4 0 -0.0779 ± 0.1441 -0.0209 ± 0.0828 -0.0089 ± 0.0493 -0.0102 ± 0.0659 -0.000005 ± 0.0020

â3 -1 - i -2.355 -1.187 i ± 0.722 -2.0686 -1.041 i ± 0.430 -2.019 -1.012 i ± 0.121 -2.023 -1.020 i ± 0.23 -2 -1 i ± 0.006

â2 -1 + 3 i -1.077 + 3.328 i ± 1.254 -0.960 + 3 i ± 0.653 -1.002 + 3.012 i ± 0.095 -1.004 + 3.054 i ± 0.512 -1 + 2.999 i ± 0.008

â3 4 + i 4.155 + 1.215 i ± 0.861 4.231 + 0.808 i ± 3.12 4.012 + 1.02 i ± 0.145 4.023 + 1.012 i ± 0.177 3.998 + 1 i ± 0.012

π̂1 0.6 0.552 ± 0.092 0.591 ± 0.054 0.595 ± 0.027 0.6 ± 0.023 0.602 ± 0.012

π̂2 0.25 0.284 ± 0.077 0.259 ± 0.054 0.254 ± 0.025 0.249 ± 0.016 0.249 ± 0.009

π̂3 0.15 0.164 ± 0.060 0.150 ± 0.038 0.151 ± 0.015 0.151 ± 0.023 0.150 ± 0.007

Nelim - 1 0 0 0 0

TABLE 4.7: Estimates of autoregressive model for σ0 = 0.05,
k(n) = 2 and different n.
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true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.25 0.25 0.5 0.5 0.5

θ0,init - 0.843 0.664 0.950 0.918 0.943

θ1,init - -0.195 0.400 0.202 0.124 0.109

θ2,init - 0.374 -0.488 0.205 0.346 0.092

θ3,init - 0.103 -0.266 -0.110 0.024 0.253

θ4,init - -0.318 0.299 -0.060 -0.150 0.162

Ê ± std

σ̂ 1 0.905 ± 0.113 1.030 ± 0.111 1.196 ± 0.103 1.258 ± 0.127 1.258 ± 0.102

θ̂0 0.8571 0.682 ± 0.080 0.697 ± 0.079 0.708 ± 0.060 0.686 ± 0.062 0.696 ± 0.055

θ̂1 -0.2857 -0.317 ± 0.175 -0.349 ± 0.152 -0.368 ± 0.075 -0.414 ± 0.113 -0.366 ± 0.069

θ̂2 0.4286 0.378 ± 0.109 0.350 ± 0.095 0.342 ± 0.110 0.343 ± 0.136 0.353 ± 0.121

θ̂3 0 0.304 ± 0.188 0.285 ± 0.187 0.267 ± 0.180 0.185 ± 0.208 0.235 ± 0.236

θ̂4 0 -0.272 ± 0.206 -0.303 ± 0.155 -0.301 ± 0.175 -0.328 ± 0.142 -0.278 ± 0.216

â3 -2 - i -3.699 -0.811 i ± 3 -3.210 -1.273 i ± 2.055 -2.810 -1.160 i ± 2.928 -2.718 -1.517 i ± 1.087 -2.713 -1.385 i ± 0.980

â2 -1 + 3 i -1.697 + 2.766 i ± 4.127 -1.464 + 3.659 i ± 2.926 -1.151 + 3.998 i ± 2.462 -1.060 + 3.778 i ± 1.850 -1.143 + 3.855 i ± 1.865

â3 4 + i 4.404 + 1.532 i ± 2.567 4.998 + 1.496 i ± 2.452 4.717 + 1.455 i ± 0.943 4.585 + 1.381 i ± 0.812 4.568 + 1.441 i ± 0.916

π̂1 0.6 0.409 ± 0.114 0.444 ± 0.093 0.488 ± 0.087 0.467 ± 0.060 0.499 ± 0.069

π̂2 0.25 0.361 ± 0.099 0.349 ± 0.087 0.318 ± 0.073 0.336 ± 0.063 0.316 ± 0.053

π̂3 0.15 0.229 ± 0.082 0.207 ± 0.075 0.194 ± 0.068 0.198 ± 0.055 0.186 ± 0.050

Nelim - 7 2 3 3 5

TABLE 4.8: Estimates of autoregressive model for k(n) = 2 for
different n

• Moving average (M3)

Tables 4.9 and 4.10 below present the results of the estimation of the

moving average model M3 where the inverse filter is namely infinite,

while only the first nine components are estimated (k(n) = 4) since,

as of the tenth one, the components are significantly meaningless. It is

very clear that for both small and large positive σ0, the estimators of θ

and σ0 are very close to their true values. However, the estimates of

the support points are far from the true ones but, their associated prob-

abilities are close to their true values. In addition to that, the number

of eliminated simulations, in both σ0 = 0.05 and σ0 = 1 cases, is not

significant.

This result means that the restoration of the input signal was not suc-

cessful even though the inverse filter and noise level were well esti-

mated. This can be explained by the truncation effect of an infinite
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filter. Such a model was handled by Li and Shedden [42] that used

the Bayesian approach where the posterior distribution of the signal is

restored as well as estimating the unknown filter coefficient.

true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 0.0001 0.0001 0.0001 0.0001 0.0001

θ0,init - 0.6 0.6 0.6 0.6 0.6

θ1,init - 0.4 0.4 0.4 0.4 0.4

θ2,init - 0.2 0.2 0.2 0.2 0.2

θ3,init - 0.1 0.1 0.1 0.1 0.1

θ4,init - 0.05 0.05 0.05 0.05 0.05

θ5,init - 0 0 0 0 0

θ6,init - 0 0 0 0 0

θ7,init - 0 0 0 0 0

θ8,init - 0 0 0 0 0

Ê ± std

σ̂ 0.05 0.0452 ± 0.0069 0.0490 ± 0.0064 0.0509 ± 0.0028 0.0528 ± 0.0057 0.0525 ± 0.0040

θ̂0 0.8288 0.8284 ± 0.0019 0.8285 ± 0.0013 0.8286 ± 0.0009 0.8287 ± 0.0014 0.8286 ± 0.0010

θ̂1 0.4973 0.4973 ± 0.0019 0.4975 ± 0.0016 0.4974 ± 0.0013 0.4972 ± 0.0018 0.4975 ± 0.0015

θ̂2 0.2321 0.2328 ± 0.0032 0.2325 ± 0.0018 0.2323 ± 0.0014 0.2324 ± 0.0022 0.2320 ± 0.0021

θ̂3 0.0995 0.1002 ± 0.0036 0.0998 ± 0.0030 0.0996 ± 0.0013 0.0995 ± 0.0018 0.0996 ± 0.0015

θ̂4 0.0411 0.0417 ± 0.0040 0.0411 ± 0.0026 0.0411 ± 0.0017 0.0412 ± 0.0023 0.0412 ± 0.0018

θ̂5 0.0167 0.0169 ± 0.0042 0.0168 ± 0.0028 0.0167 ± 0.0015 0.0166 ± 0.0025 0.0172 ± 0.0023

θ̂6 0.0067 0.0073 ± 0.0035 0.0069 ± 0.0025 0.0068 ± 0.0014 0.0069 ± 0.0022 0.0070 ± 0.0015

θ̂7 0.0027 0.0035 ± 0.0030 0.0027 ± 0.0026 0.0026 ± 0.0014 0.0025 ± 0.0021 0.0024 ± 0.0017

θ̂8 0.0011 0.0015 ± 0.0030 0.0008 ± 0.0019 0.0008 ± 0.0013 0.0010 ± 0.0029 0.0006 ± 0.0023

â3 -1 + 3 i -3.3189 + 1.6523i ± 0.0316 -3.3151 + 1.6535i ± 0.0208 -3.3136 + 1.6576i ± 0.0095 -3.3141 + 1.6579i ± 0.0080 -3.3146 + 1.6573i± 0.0056

â2 -2 - i -0.8320 - 2.4841i ± 0.0237 -0.8300 - 2.4862i ± 0.0179 -0.8286 - 2.4862i ± 0.0064 -0.8280 - 2.4861i ± 0.0056 -0.8283 - 2.4858i ± 0.0042

â1 4 + i 2.4817 + 4.1386i ± 0.0403 2.4818 + 4.1441i ± 0.0261 2.4868 + 4.1436i ± 0.0125 2.4874 + 4.1436i ± 0.0139 2.4861 + 4.1429i ± 0.0094

π̂1 0.25 0.2605 ± 0.0746 0.2497 ± 0.0410 0.2482 ± 0.0184 0.2513 ± 0.0142 0.2500 ± 0.0096

π̂2 0.60 0.5950 ± 0.0840 0.6001 ± 0.0467 0.5990 ± 0.0193 0.6010 ± 0.0166 0.6002 ± 0.0109

π̂3 0.15 0.1445 ± 0.0631 0.1502 ± 0.0384 0.1528 ± 0.0176 0.1478 ± 0.0112 0.1498 ± 0.0071

Nelim - 0 0 0 0 0

TABLE 4.9: Estimates of moving average model for k(n) = 4
and σ0 = 0.05
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true values n = 50 n = 100 n = 500 n = 1000 n = 2000

σinit - 1 1 1 1 1

θ0,init - 0.6 0.6 0.6 0.6 0.6

θ1,init - 0.4 0.4 0.4 0.4 0.4

θ2,init - 0.2 0.2 0.2 0.2 0.2

θ3,init - 0.1 0.1 0.1 0.1 0.1

θ4,init - 0.1 0.1 0.1 0.1 0.1

θ5,init - 0.01 0.01 0.01 0.01 0.01

θ6,init - 0.001 0.001 0.001 0.001 0.001

θ7,init - 0.0001 0.0001 0.0001 0.0001 0.0001

θ8,init - 0 0 0 0 0

Ê ± std

σ̂ 1 1.0229 ± 0.0788 1.0388 ± 0.0954 1.0404 ± 0.0770 1.0362 ± 0.0410 1.0343 ± 0.0304

θ̂0 0.8288 0.6988 ± 0.0939 0.7275 ± 0.0851 0.7772 ± 0.0393 0.7839 ± 0.0165 0.7850 ± 0.0102

θ̂1 0.4973 0.4858 ± 0.0920 0.5048 ± 0.0624 0.5228 ± 0.0182 0.5231 ± 0.0091 0.5232 ± 0.0128

θ̂2 0.2321 0.2739 ± 0.0780 0.2737 ± 0.0687 0.2688 ± 0.0243 0.2727 ± 0.0167 0.2725 ± 0.0163

θ̂3 0.0995 0.1512 ± 0.0884 0.1426 ± 0.0564 0.1428 ± 0.0313 0.1529 ± 0.0175 0.1553 ± 0.0156

θ̂4 0.0411 0.1063 ± 0.0803 0.1105 ± 0.0753 0.0959 ± 0.0566 0.0850 ± 0.0349 0.0802 ± 0.0370

θ̂5 0.0167 0.0212 ± 0.0760 0.0179 ± 0.0690 0.0332 ± 0.0434 0.0432 ± 0.0232 0.0470 ± 0.0242

θ̂6 0.0067 0.0208 ± 0.0788 0.0029 ± 0.0436 0.0020 ± 0.0279 -0.0003 ± 0.0163 -0.0007 ± 0.0129

θ̂7 0.0027 0.0460 ± 0.1301 0.0302 ± 0.1082 0.0025 ± 0.0267 -0.0003 ± 0.0097 -0.0008 ± 0.0067

θ̂8 0.0011 0.2021 ± 0.2395 0.1355 ± 0.2159 0.0202 ± 0.0971 0.0042 ± 0.0443 0.0006 ± 0.0063

â3 -1 + 3 i -3.7502 + 0.9237i ± 2.0951 -3.6762 + 1.3120i ± 1.3953 -3.3293 + 1.5460i ± 0.4833 -3.2560 + 1.5074i ± 0.1609 -3.2505 + 1.5055i ± 0.0902

â2 -2 - i -1.2785 - 2.8357i ± 1.9693 -1.1818 - 2.9028i ± 1.1911 -0.9631 - 2.5007i ± 0.3983 -0.9225 - 2.4467i ± 0.1465 -0.9269 - 2.4343i ± 0.0700

â1 4 + i 1.8358 + 3.8790i ± 2.4040 2.0122 + 3.9898i ± 1.5473 2.2033 + 3.9701i ± 0.4911 2.2277 + 3.8766i ± 0.1788 2.2076 + 3.8796i ± 0.1235

π̂1 0.25 0.3172 ± 0.1134 0.2997 ± 0.0842 0.2566 ± 0.0258 0.2540 ± 0.0149 0.2527 ± 0.0085

π̂2 0.60 0.5093 ± 0.1306 0.5352 ± 0.1086 0.5928 ± 0.0282 0.5952 ± 0.0163 0.5975 ± 0.0100

π̂3 0.15 0.1734 ± 0.0758 0.1650 ± 0.0512 0.1505 ± 0.0127 0.1508 ± 0.0084 0.1498 ± 0.0059

Nelim - 0 1 0 0 0

TABLE 4.10: Estimates of moving average model for k(n) = 4
and σ0 = 1

V.5 Computational comparison

In this section, we compare our estimation procedure, here namedM2, with

the estimation method proposed by Gassiat and Gautherat [19], namedM1.

To do so, we consider a second order autoregressive model with a real-valued

signal, p = 2 and true inverse filter θ = (0.8571,−0.2857, 0.4286); so we adapt

our method to the real case. We use Algorithm 2 to provide suitable starting

points for implementing our method.

To evaluate the performance of both methods in signal restoration, we shall

use the signal-to-noise ratio SNR1, whose higher values generally mean that
1The signal-to-noise ratio is an indicator of the quality of the information transmission. It

is the power ratio between signal and noise and it is generally expressed in decibels dB.
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there is more useful information (the signal) than unwanted data (the noise).

Table 4.11 below presents the results of SNR and parameter estimation by

both methodsM1 andM2 for σ0 = 0.1 and σ0 = 1. According to this, when

the noise level is small (σ0 = 0.1) the SNR is high and is about 46. On the op-

posite, for a large noise level (σ0 = 0.1) the SNR is small (SNR= 0.46), which

means that there is more noise than signal and thus detecting the source sig-

nal becomes much more difficult. This is reflected in the unsatisfactory re-

sults by both M1 and M2. However, regarding the parameter estimation,

our methodM2 works better than methodM1 when n increases in the case

of σ0 = 1. And, for σ0 = 0.1, M2 is always better than the method M1

and performs very well in terms of estimated values and standard deviation,

even for a small n.

σ0 SNR n Method Ê(θ̂0)± std(θ̂0) Ê(θ̂1)± std(θ̂1) Ê(σ̂0)± std(σ̂0)

0.1 46 100 M1 0.7500± 0.0647 −0.1767± 0.0668 0.0000± 0.0000

0.1 46 100 M2 0.8553± 0.0095 −0.2879± 0.0205 0.1004± 0.0100

0.1 46 500 M1 0.7591± 0.0140 −0.1860± 0.0154 0.0000± 0.0000

0.1 46 500 M2 0.8580± 0.0049 −0.2941± 0.0187 0.1035± 0.0031

0.1 46 1000 M1 0.7639± 0.0128 −0.1923± 0.0142 0.0000± 0.0000

0.1 46 1000 M2 0.8573± 0.0080 −0.2837± 0.0151 0.1009± 0.0139

1 0.46 500 M1 0.5913± 0.2537 −0.0916± 0.2652 0.9407± 0.1015

1 0.46 500 M2 0.1423± 0.6017 −0.4147± 0.2475 0.8607± 0.5653

1 0.46 5000 M1 0.7529± 0.1211 −0.2450± 0.1353 1.0022± 0.0612

1 0.46 5000 M2 0.5491± 0.5060 −0.3259± 0.2020 0.9646± 0.3915

1 0.46 15000 M1 0.7771± 0.1294 −0.2576± 0.1206 1.0302± 0.0651

1 0.46 15000 M2 0.7159± 0.3757 −0.2928± 0.1476 0.9844± 0.0387

TABLE 4.11: Results of SNR and the parameter estimation for
AR(2) with σ0 = 0.1, 1 by bothM1 andM2.
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We should note that the estimation method in Gassiat and Gautherat [19]

needs to calibrate some parameters since it is based on the minimization of

a penalized contrast function while our method does not. Moreover, M1

suffers from the problem of chosen the starting point near the true value and

thus could provide a local minimum, which is not the case in our method,

since Algorithm 2 allows to randomly and adaptively select a "good" starting

point.

On the other hand, a noticeable drawback of our method is that it can provide

a significant variability, i.e., large standard deviation.

VI Discussion and conclusion

• Choice of the Hankel matrix

In our method, it is possible to deal with the Toeplitz matrix instead

of the Hankel matrix of the (s ? Y)t since the characterizations of θ

and σ0 given by relations (4.8) and (4.7) also hold for the Toeplitz ma-

trix. More generally for the same reason, it would be possible to con-

sider any (p + 1)2-vector built on the moment of type (E((φ1((s(ξ) ?

Y)0))
kφ1((s(ξ) ? Y)0)j])k,j=1,...,p where φ1 is any complex injective func-

tion defined on C. The main difference would lie in the non-trivial

determination of A defined in (4.6). It also could be extend to some

entropy distance which allows to distinguish variables which have less

than p point of support than the others (see [19]).

• Gaussian noise

The Gaussian assumption on the noise could be relaxed; actually only

an infinitely divisible distribution is needed to establish a relation like
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(4.3); nevertheless, in any cases one should get an explicit expression of

A which could be non trivial since in particular it requires the calcula-

tions of the γj,k’s.

Thus, we have proposed a method that focuses on the recovery of both the

inverse filter and the noise level of a noisy blind deconvolution model in a

parametric setting. With a deeper investigation into the characterization of

this model, we have provided a new estimation procedure that is simpler

to implement compared with other existing methods. Through this proce-

dure, we have estimated discrete distribution of the input signal and also de-

rived the strong consistency and asymptotic normality for all our estimates.

We perform a consistent simulation study that demonstrates empirically the

computational performance of our estimation procedures including a com-

parison with another method.
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General conclusion

Ensuring the quantile monotonicity is a challenging problem in quantile re-

gression, since it requires a general and unique model that simultaneously

estimates multiple quantiles with different levels. In the first part of this the-

sis, we present different methods in both the frequentist and the Bayesian

frameworks that addressed the monotonicity issue. In Chapter 2, we ad-

dressed the crossing problem of quantile under a Bayesian paradigm and we

proposed new modelling strategy to solve this problem. We assumed that

the error of the quantile regression model follows the asymmetric Laplace

distribution (ALD) and we used the relation between any two quantiles of

the ALD, which allows to characterise the likelihood of the model through all

the quantiles of interest. By our estimation procedure and using Metropolis-

Hastings within Gibbs algorithm, we fitted parametric as well as non para-

metric quantile functions in the linear and the non linear case respectively.

Through simulation study, we showed that our method performs better than

other existent ones in terms of convergence (see our obtained diagnostics re-

sults) and flexibility (based on our RMISE interpretation). So, this work is the

first step for a first fully Bayesian estimation of multiple quantiles.

As future perspectives, we envisage extending this work to deal with any

conditional distribution of Y |X, not necessarily ALD. Indeed, when we deal

with other data distribution, the relation between any two quantiles is no

longer the same as that of the ALD. Therefore, we believe that attention
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should be considered in establishing a general relation that links any two

quantiles of any distribution. Furthermore, It is also of great interest to theo-

retically study the asymptotic behaviour (posterior convergence) of our esti-

mators resulting from this procedure, first under ALD model likelihood and

then generalized this to any model distribution.

A little further from quantile regression but certainly in the modelling paradigm,

we proposed, in the second part of this thesis, a new estimation procedure for

noisy blind deconvolution model where the objective is to recover the input

signal once the inverse filter and the noise level are estimated. The method

we proposed consists first on characterizing the distribution of the input sig-

nal, the noise and the inverse filter. Second, it consists on providing a contrast

function defined through the noise level and the inverse filter and finally find

the roots of its empirical counterpart that correspond to the estimates of the

inverse filter and the noise level. We further proved the existence of the roots

of the underlying empirical function when the cardinal p of the input signal

support is such that p(p+1)
2 is even. We also provide asymptotic properties of

the obtained estimators.

For this part, our perspectives for the futur are the following: first, prove the

existence of roots of the empirical function for any p ≥ 2; this means prove

the conjecture 1 to any value of p ≥ 2 and second, from computational point

of view, adjust our procedure so that we can compute an infinite inverse fil-

ters. Indeed, as shown by our simulation results, our proposed procedure

was unable to reconstruct the input signal when we dealt with the second

order Moving average model whose inverse filter is infinite.
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Finally, we would like to end this manuscript by claiming that applying tech-

niques, such as those we proposed in this thesis to either the simultaneous

quantile regression or the blind deconvolution models, is very appealing,

and we believe this is a promising research area in these fields. Addition-

ally, we believe attention should be considered in developing interpretable

and manageable models, as they are vital for expanding the knowledge to a

greater audience so that it becomes an easily accessible tool.
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Appendix

VII Proofs of Chapter 4

VII.1 Proof of Proposition 1

For the sake of clarity, let us introduce some notations. Let Empt be the em-

pirical mean with respect to t going from 1 + k(n) to n − k(n), i.e., Empt =

1
n−2k(n) ∑

n−k(n)
t=1+k(n) and set ⊗p

l=0Emptl
= Empt0

× . . .×Emptp . The random vari-

ables W̃(k) for k = 0, . . . , p are independent versions of W and EW̃(k)
denotes

the expectation with respect to the distribution of W̃(k). Since we consider

any ξ ∈ K, we will sometimes omit the dependence on ξ and ofter we will use

š instead of š(ξ). Set (š ?Y)tk,j = (š ?Y)tk − (š ?Y)tj and W̃(k,j) = W̃(k)− W̃(j).

For convenience, set d̃j(p+1)+k+1,n = d̃j,k,n and recall that

Jn(σ, š(ξ)) = ∑
π∈Sp+1

ε(π)
p

∏
l=0

d̃n,π(l),l(σ, š(ξ)),

where the sum is taken over Sp+1 the set of permutations of {0, . . . , p} and

ε(π) is the sign of the permutation π.

The next step is to rewrite Jn in a convenient way; roughly speaking, we aim

to exchange the determinant and the empirical mean, mimicking what hap-

pens when dealing with J. This rewriting is stated as the following lemma

whose proof is postponed after ending the proof Proposition 1.
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Lemma 2. Under (H2), one obtains for any s ∈ Θ, for any σ > 0 and for any

n ∈ N∗,

Jn(σ, š) =
1

(p + 1)!

⊗p
l=0Emptl

E
W̃(l)

∏
0≤j<k≤p

(
(i(σ− σ0)‖š‖+ iσ0‖š‖)W̃(k,j) + (š ? Y)tk,j

)
(
(i(σ− σ0)‖š‖+ iσ0‖š‖)W̃(k,j) + (š ? Y)tk,j

)
.

Since D̃n(σ, š) is a Hermitian matrix, its determinant is real and due to Lemma

2, σ ∈ R+ 7→ Jn(σ, š) is a polynomial in R[X] with degree at most p(p + 1).

Due to Eq (4.9), we first derive c0 the constant term of σ ∈ R+ 7→ Jn(σ, š) as

follows

c0 = Jn(0, š(ξ)) = det((dj(p+1)+k+1,n(š)j,k)

=
1

(p + 1)!
⊗p

l=0 Emptl ∏
0≤j<k≤p

|(š ? Y)tk,j |
2 > 0 a.s.,

since (š ? Y)tk,j has more than p support points.

Therefore, to prove Proposition 1, it suffices to show that there exists σ such

that Jn(σ, š) < 0.

Next, let us study cp(p+1) the coefficient of the highest degree term of σ ∈

R+ 7→ Jn(σ, š).

cp(p+1) =
1

(p + 1)!
⊗p

l=0 Emptl
E

W̃(l)
∏

0≤j<k≤p
i2‖š‖2|W̃(k,j)|2

= (−1)p(p+1)/2(‖š‖2)p(p+1)det
[
(EW̃(W̃(j)W̃(k)))j,k=0,...,p

]
= (−1)p(p+1)/2(‖š‖2)p(p+1)det

[
(γj,k)j,k=0,...,p

]
= (−1)p(p+1)/2‖š‖2p(p+1)

p

∏
k=0

k!,
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since det
(
(γj,k)j,k=0,...,p

)
= ∏

p
k=0 k! > 0. It means that for p such that p(p +

1)/2 odd, cp(p+1) < 0 and hence Jn(σ, š(ξ)) σ→+∞−→ −∞ that achieves the proof

of Proposition 1.

Proof of Lemma 2: Set



ϕ(x, y) = (i(σ− σ0)‖š‖+ iσ0‖š‖)y + x

φ(x, y) = (i(σ− σ0)‖š‖+ iσ0‖š‖y + x

Mt = (š ? Y)t

R = W̃,

and note that dj,k,n(σ, š) = EmptE
R ϕj(Mt, R)φk(Mt, R). In addition, R(k) for

k = 0, . . . , p are independent versions of R and ER is the expectation with

respect to R. Denote by τ some permutation in Sp+1. Then,

Jn(σ, š)

= det
((
EmptE

R ϕj(Mt, R)φk(Mt, R)
)

j,k=0,...,p

)
= det

((
Emptk

E
R(k)

ϕj(Mtk , R(k))φk(Mtk , R(k))
)

j,k=0,...,p

)
= det

((
Emptτ(k)

E
R(τ(k))

ϕj(Mtτ(k) , R(τ(k)))φk(Mtτ(k) , R(τ(k)))
)

j,k=0,...,p

)
= ∑π∈Sp+1

ε(π)∏
p
k=0Emptτ(k)

E
R(τ(k))

[
ϕπ(k)(Mtτ(k) , R(τ(k)))φk(Mtτ(k) , R(τ(k)))

]
= ∑π∈Sp+1

ε(π)⊗p
l=0

(
Emptτ(l)

E
Rτ(l)

)
∏

p
k=0

(
ϕπ(k)(Mtτ(k) , R(τ(k)))

)
∏

p
k′=0

(
φk′(Mtτ(k′) , R(τ(k′)))

)
= ⊗p

l=0Emptτ(l)
E

Rτ(l)
(

∑π∈Sp+1
ε(π)∏

p
k=0 ϕπ(k)(Mtτ(k) , R(τ(k)))

)
∏

p
k=0

(
φk(Mtτ(k) , R(τ(k)))

)
= ⊗p

l=0Emptτ(l)
E

Rτ(l)
det
(
(ϕj(Mtτ(k) , R(τ(k))))j,k=0,...,p

)
∏

p
k=0

(
φk(Mtτ(k) , R(τ(k)))

)
= ⊗p

l=0Emptl
E

R(l)
ε(τ)det

(
(ϕj(Mtk , R(k)))j,k=0,...,p

)
∏

p
k=0

(
φk(Mtτ(k) , R(τ(k)))

)
.
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Taking the sum over all permutations τ in the right-hand side of the last

equation leads to

⊗p
l=0Emptl

E
R(l)

det
(
(ϕj(Mtk , R(k)))j,k=0,...,p

)
∑

τ∈Sp+1

ε(τ)
p

∏
k=0

φk(Mtτ(k) , R(τ(k)))

= ⊗p
l=0Emptl

E
R(l)

det
(
(ϕj(Mtk , R(k)))j,k=0,...,p

)
det
(
(φk(Ntj , R(j))j,k=0,...,p

)
= ⊗p

l=0Emptl
E

R(l)
∏

0≤j<k≤p

(
ϕ(Mtk , R(k))− ϕ(Mtj , R(j))

) (
φ(Mtj , R(j))− φ(Mtk , R(k))

)
.

That achieves the proof of Lemma 2 since the cardinality of Sp+1 is equal to

(p + 1)!

VII.2 Proof of the asymptotic results

We first give a very useful tool which is a combination of existing results ob-

tained by Gautherat [21] (see Lemma 5.3.1 p.130) and Gassiat and Gautherat

[20] (see Lemma 4.1. p. 1695):

Lemma 3. Under assumptions (H1)-(H4) , one gets

i) ∀σ ∈ R∗+, ∀ξ ∈ K, Jn(σ, š(ξ)) a.s.−−−→
n→∞

J(σ, s(ξ)).

ii) ∀n ∈ N, ∀ξ ∈ K, σ ∈ R+ 7→ Jn(σ, š(ξ)) is differentiable and

∂1
1 Jn(σ0, š(ξ0))

a.s.−−−→
n→∞

∂1
1 J(σ0, θ) = −α < 0.

iii) The function s(ξ) ∈ Θ 7→ ∂1 Jn(σ0, š(ξ)) is continuous on Θ.

iv) ∀n ∈ N, (σ, ξ) 7→ Jn(σ, š(ξ)) is twice differentiable in (σ0, ξ0). The first

and second derivatives of (σ, ξ) 7→ Jn(σ, š(ξ)) calculated in (σ0, ξ0)

converge almost surely to the first and second derivative of (σ, ξ) 7→

J(σ, s(ξ)) calculated in (σ0, ξ0).
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v) The asymptotic distribution of
√

n
(
∂1

2 Jn(σ0, š(ξ0)), Jn(σ0, š(ξ0))
)

is a cen-

tered Gaussian vector whose covariance matrix is

∂1h(d(σ0, θ))A(σ0‖θ‖) Γ1 A(σ0‖θ‖)T∂1h(d(σ0, θ))T.

Proof of Lemma 3 The proof of iv) of Lemma 3 follows directly the one of

Theorem 4.1 in Gassiat and Gautherat [20] whereas points i), ii) and v) come

directly from Lemma 4.1 in Gassiat and Gautherat [20] (the only changes are

the complex-valued signal and noise). Point iii) is derived using the trun-

cated version of s combined with the polynomial structure of Jn.

Proof of Theorem 1.

• Consistency of σ̂0. Let Vσ0 be some neighborhood of σ0 and consider any

σ1 in Vσ0 such that σ1 < σ0. From (4.7), σ1 satisfies J(σ1, s(ξ)) > 0 ∀ξ. On the

other hand, due to assertion ii) of Lemma 3, it exists σ2 in Vσ0 , such that both

σ2 > σ0 and J(σ2, θ) < 0 are valid; hence for any σ ∈]σ0, σ2[, J(σ, θ) < 0.

Assertion i) in Lemma 3 implies that

Jn(σ1, š(ξ0))
a.s.−−−→

n→∞
J(σ1, θ),

Jn(σ2, š(ξ0))
a.s.−−−→

n→∞
J(σ2, θ).

Let 0 < ε < inf{J(σ1, θ), |J(σ2, θ)|}. Then, it exists a positive integer N0 such

that for all n > N0, Jn(σ1, š(ξ0)) > 0 and Jn(σ2, š(ξ0)) < 0. Thus, from ii) in

Lemma 3, ∀n > N0, it exists σ̃n ∈]σ1, σ2[ satisfying Jn(σ̃n, š(ξ0)) = 0; we set

σ̃n defined by σ̃n = inf{σn ∈]σ1, σ2[ : Jn(σn, š(ξ0)) = 0}. From Assertions

i) and ii) in Lemma 3 combined with a Taylor expansion of σ 7→ Jn(σ, š(ξ0))
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evaluated at σ0

Jn(σ̃n, š(ξ0)) = Jn(σ0, š(ξ0)) + (σ̃n − σ0) ∂1
1 Jn(σ0, š(ξ0))(1 + o(1)),

leads to σ̃n
a.s.−−−→

n→∞
σ0. Since for all n > N0 and all σ < σ1, Jn(σ, š(ξ0)) > 0, it

implies that for n large enough (n > N0) σ̂0 is such that σ̂0 > σ1. In the sequel

consider only large n, i.e., n > N0. By definition of σ̂0, one has σ̂0 < σ̃n. Since

we consider only σ lying in the compact set [σ1, σ2], any subsequence σ̃0,n of

σ̂0 converges and denote by σ̃0 its limit that satisfies σ̃0 ≤ σ0.

Suppose that σ̃0 < σ0. Since Jn(σ̃0,n, š(ξ0)) = 0 and Jn(σ̃0,n, š(ξ0))
a.s.−−−→

n→∞

J(σ̃0, θ), it follows that J(σ̃0, θ) = 0, which contradicts the definition of σ0

(see relation (4.7)); hence σ̃0 = σ0. The consistency of σ̂0 is then achieved

since our argument remains valid whatever the subsequence σ̃0,n of σ̂0 is.

• Consistency of ξ̂0. Consider only σ’s in [σ1, σ2]. Since K is a compact set,

any subsequence (ξ̃n)n of ξ̂0 converges and denote by ξ̃0 its limit inK. Asser-

tion i) in Lemma 3, the a.s.-convergence of σ̂0 and the continuity of Jn and s

lead to Jn(σ̂0, š(ξ̃n))
a.s.−−−→

n→∞
J(σ0, s(ξ̃0)). This implies that ξ̃0 is equal to ξ0 since

J(σ0, s(ξ̃0)) = 0 ⇐⇒ s(ξ̃0) = θ. Using the same arguement as for σ̂0, the

consistency of ξ̂0 in l2(Z) is achieved.

Suppose now there exists ξ0 an accumulation point which is different from

ξ̃0. Then it exists another subsequence ξn of ξ̂0 which converges to ξ0. Using

the same tricks as previously, one gets s(ξ0) = θ which proves the uniqueness

of ξ̃0.

This achieves the proof.

Proof of Corollary 1. This proof comes directly from the proof of Theorem

3.2 in the unpublished work Gautherat [22]. It requires only the consistency

of σ̂0 and ξ̂0.
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Proof of Theorem 2. In the sequel, all partial derivatives of functions Jn(σ, š(ξ))

and J(σ, s(ξ)) are considered with respect to either σ or the vector ξ. The def-

inition of σ̂0 leads to Jn(σ̂0, š(ξ̂0)) = 0 as well as J2
n(σ̂0, š(ξ̂0)) = 0.

It entails that both ∂1
1 J2

n(σ̂0, š(ξ̂0)) = 0 and ∂1
2 J2

n(σ̂0, š(ξ̂0)) = 0d. For sim-

plicity’s sake, set Jn = Jn(σ0, š(ξ0)), ∂
ri
i ∂

ri
i Jn = Jn(σ0, š(ξ0)), i = 1, 2 and

∂
ri,rj
i,j Jn = ∂

ri,rj
i,j Jn(σ0, š(ξ0)), i, j = 1, 2. We then apply the Delta method, intro-

duced in [52] with J2
n evaluated in (σ0, ξ0), since

 ∂1
2 J2

n(σ̂0, š(ξ̂0))

∂1
1 J2

n(σ̂0, š(ξ̂0))

 =

 2Jn(σ̂0, š(ξ̂0))∂
1
2 Jn(σ̂0, š(ξ̂0))

2Jn(σ̂0, š(ξ̂0))∂
1
1 Jn(σ̂0, š(ξ̂0))

 =

 0d

0

 .

Setting An = ∂1
2 Jn(∂1

2 Jn)T+ Jn∂2
2 Jn, Bn = ∂1

2 Jn∂1
1 Jn + Jn∂1,1

1,2 Jn and dn = (∂1
1 Jn)2 +

Jn∂2
1 Jn, we consider the following Taylor expansion at the first order of J2

n at

(σ0, ξ0):

 0d

0

 =

 2Jn∂1
2 Jn

2Jn∂1
1 Jn

+


An Bn

BT
n dn


 ξ̂0 − ξ0

σ̂0 − σ0

 (1 + o(1))

Then, from the Schur complement (see [51], page 11, formula 0.7.2. or Searle

[58]), we obtain

 ξ̂0 − ξ0

σ̂0 − σ0

 (1 + o(1))

=

 Jn A−1
n ∂1

2 Jn +
Jn

dn−BT
n A−1

n Bn

(
A−1

n BnBT
n A−1

n ∂1
2 Jn − A−1

n Bn∂1
1 Jn
)

Jn
dn−BT

n A−1
n Bn

(
−BT

n A−1
n ∂1

2 Jn + ∂1
1 Jn
)

 .
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Rewrite the top-term in the previous right-hand equation as follows,

Jn A−1
n ∂1

2 Jn +
Jn

dn − BT
n A−1

n Bn

(
A−1

n BnBT
n A−1

n ∂1
2 Jn − A−1

n Bn∂1
1 Jn

)
= Jn(T1 +T2 +T3),

where

T1 = A−1
n (Idd −

(∂1
1 Jn)2

dn − BT
n A−1

n Bn
)∂1

2 Jn,

T2 = A−1
n

BnBT
n A−1

n ∂1
2 Jn

dn − BT
n A−1

n Bn
,

T3 = −A−1
n

∂1
1 Jn

dn − BT
n A−1

n Bn
∂1,1

1,2 Jn.

Rewrite the approximation of the vector (ξ̂0 − ξ0, σ̂0 − σ0)
T as follows

Jn

 T1 + T2 + T3

1
dn−BT

n A−1
n Bn

(
−BT

n A−1
n ∂1

2 Jn + ∂1
1 Jn
)
 .

Due to Lemma 3 and the continuity of Jn in ξ, one has An
P−a.s.−−−→
n→∞

0, Bn
P−a.s.−−−→
n→∞

0, dn
P−a.s.−−−→
n→∞

(∂1
1 J(σ0, θ))2 = α2 > 0, An

Jn

P−−−→
n→∞

∂2
2 J(σ0, s(ξ0)), Bn

Jn

distrib−−−→
n→∞

W,

where W is a d-dimensional non degenerate random vector and dn
Jn

P−a.s.−−−→
n→∞

±∞. As n large enough, it entails that

√
n

 ξ̂0 − ξ0

σ̂0 − σ0

 distrib

=

√
nJn


(∂2

2 J(σ0,s(ξ0)))
−1∂1,1

1,2 J(σ0,s(ξ0))

α

1
α

 .(4.10)

Note that h(d̃n(σ0, š(ξ0))) = Jn(σ0, š(ξ0)), where h is the determinant func-

tion. Then, due to Assumption (H3) d, and due to the Taylor expansion of h
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at d̃(σ0, θ), one obtains

Jn = ∂1h(d̃(σ0, θ))A(σ0‖θ‖)(dn(š(ξ0))− d(s(ξ0)) + o(
1√
n
)). (4.11)

Set M = A(σ0‖θ‖)Γ1A(σ0‖θ‖)T and

N =


1
α (∂2

2 J(σ0, s(ξ0)))
−1 ∂1,1

1,2 J(σ0, s(ξ0))

1
α

, then due to (4.10), (4.11) and

v) of Lemma 3 one gets,

√
n

 ξ̂0 − ξ0

σ̂0 − σ0

 distrib−−−→
n→∞

N
(

0d+1, N∂1h(d̃(σ0, θ)) M ∂1h(d̃(σ0, θ))TNT
)

.

Proof of Corollary 2. Following the proof of Theorem 3.3 in Gautherat [22],

it remains to obtain an equivalent for
√

n(d̃n(σ̂0, š(ξ̂0))− d̃(σ0, s(ξ0))). As n

large enough, this term is equivalent in distribution to

(
Id(p+1)2 + ∂1d̃(σ0, θ)∂1h(d̃(σ0, θ))N

)
A(σ0, ‖θ‖)

√
n(dn(š(ξ0))− d(s(ξ0))).

On the other hand, one has

√
n(â− a) =

(
C−1

2|v∗p|2
B

)
√

n(d̃n(σ̂0, š(ξ̂0))− d̃(σ0, s(ξ0))), (4.12)

√
n(Π̂−Π) = L−1

(
Proj + F

C−1

2|v∗p|2
B

)
√

n(d̃n(σ̂0, š(ξ̂0))− d̃(σ0, s(ξ0))).

(4.13)

Relations (4.12) and (4.13) entail the results. All matrices used here are de-

fined in the statement of both Theorem 2 or Corollary 2.
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