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Titre: La théorie des matrices aléatoires pour l’IA : de la théorie à la pratique

Mots clés: Apprentissage automatique, théorie des matrices aléatoires, concentration de la
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Résumé: De nos jours, l’IA repose en grande
partie sur l’utilisation de données de grande
taille et sur des méthodes d’apprentissage ma-
chine améliorées qui consistent à développer des
algorithmes de classification et d’inférence en
tirant parti de grands ensembles de données de
grande taille. Ces grandes dimensions induisent
de nombreux phénomènes contre-intuitifs, con-
duisant généralement à une mauvaise com-
préhension du comportement de nombreux algo-
rithmes d’apprentissage machine souvent conçus
avec des intuitions de petites dimensions de don-
nées. En tirant parti du cadre multidimen-
sionnel (plutôt que d’en souffrir), la théorie
des matrices aléatoires (RMT) est capable de
prédire les performances de nombreux algo-
rithmes non linéaires aussi complexes que cer-
tains réseaux de neurones aléatoires, ainsi que
de nombreuses méthodes du noyau telles que les
SVM, la classification semi-supervisée, l’analyse
en composantes principales ou le regroupement
spectral. Pour caractériser théoriquement les
performances de ces algorithmes, le modèle de
données sous-jacent est souvent un modèle de
mélange gaussien (MMG) qui semble être une
hypothèse forte étant donné la structure com-
plexe des données réelles (par exemple, des im-
ages). En outre, la performance des algorithmes
d’apprentissage automatique dépend du choix
de la représentation des données (ou des car-
actéristiques) sur lesquelles ils sont appliqués.
Encore une fois, considérer les représentations
de données comme des vecteurs gaussiens semble
être une hypothèse assez restrictive. S’appuyant
sur la théorie des matrices aléatoires, cette thèse
vise à aller au-delà de la simple hypothèse
du MMG, en étudiant les outils classiques
d’apprentissage machine sous l’hypothèse de
vecteurs aléatoires concentrés qui généralisent

les vecteurs Gaussiens. Cette hypothèse est
particulièrement motivée par l’observation que
l’on peut utiliser des modèles génératifs (par
exemple, les GAN) pour concevoir des struc-
tures de données complexes et réalistes telles
que des images, grâce à des transformations Lip-
schitzienne de vecteurs gaussiens. Cela sug-
gère notamment que l’hypothèse de concentra-
tion sur les données mentionnée ci-dessus est
un modèle approprié pour les données réelles
et qui est tout aussi mathématiquement accessi-
ble que les MMG. Par conséquent, nous démon-
trons à travers cette thèse, en nous appuyant
sur les GANs, l’intérêt de considérer le cadre des
vecteurs concentrés comme un modèle pour les
données réelles. En particulier, nous étudions
le comportement des matrices de Gram aléa-
toires qui apparaissent au cœur de divers mod-
èles linéaires, des matrices à noyau qui appa-
raissent dans les méthodes à noyau et également
des méthodes de classification qui reposent sur
une solution implicite (par exemple, la couche
de Softmax dans les réseaux de neurones),
avec des données aléatoires supposées concen-
trées. En particulier, la compréhension du
comportement de ces matrices/méthodes, pour
des données concentrées, nous permet de carac-
tériser les performances (sur des données réelles
si nous les assimilons à des vecteurs concen-
trés) de nombreux algorithmes d’apprentissage
machine, tels que le clustering spectral, les
SVM, l’analyse en composantes principales et
l’apprentissage par transfert. L’analyse de ces
méthodes pour des données concentrées donne
le résultat surprenant qu’elles ont asymptotique-
ment le même comportement que pour les don-
nées de MMG. Ce résultat suggère fortement
l’aspect d’universalité des grands classificateurs
d’apprentissage machine par rapport à la distri-
bution sous-jacente des données.
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Title: Random Matrix Theory for AI: From Theory to Practice
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works, GANs

Abstract: AI nowadays relies largely on us-
ing large data and enhanced machine learning
methods which consist in developing classifica-
tion and inference algorithms leveraging large
datasets of large sizes. These large dimensions
induce many counter-intuitive phenomena, lead-
ing generally to a misunderstanding of the be-
havior of many machine learning algorithms of-
ten designed with small data dimension intu-
itions. By taking advantage of (rather than suf-
fering from) the multidimensional setting, ran-
dom matrix theory (RMT) is able to predict
the performance of many non-linear algorithms
as complex as some random neural networks
as well as many kernel methods such as Sup-
port Vector Machines, semi-supervised classifi-
cation, principal component analysis or spec-
tral clustering. To characterize the performance
of these algorithms theoretically, the underlying
data model is often a Gaussian mixture model
(GMM) which seems to be a strong assump-
tion given the complex structure of real data
(e.g., images). Furthermore, the performance
of machine learning algorithms depends on the
choice of data representation (or features) on
which they are applied. Once again, consid-
ering data representations as Gaussian vectors
seems to be quite a restrictive assumption. Re-
lying on random matrix theory, this thesis aims
at going beyond the simple GMM hypothesis,
by studying classical machine learning tools un-
der the hypothesis of Lipschitz-ally transformed
Gaussian vectors also called concentrated ran-
dom vectors, and which are more generic than
Gaussian vectors. This hypothesis is particu-
larly motivated by the observation that one can
use generative models (e.g., GANs) to design
complex and realistic data structures such as im-

ages, through Lipschitz-ally transformed Gaus-
sian vectors. This notably suggests that mak-
ing the aforementioned concentration assump-
tion on data is a suitable model for real data
and which is just as mathematically accessible
as GMM models. Moreover, in terms of data
representation, the concentration framework is
compatible with one of the most widely used
data representations in practice, namely deep
neural nets (DNNs) representations, since they
consist of a Lipschitz transformation of the in-
put data (e.g., images). Therefore, we demon-
strate through this thesis, leveraging on GANs,
the interest in considering the framework of con-
centrated vectors as a model for real data. In
particular, we study the behavior of random
Gram matrices which appear at the core of vari-
ous linear models, kernel matrices that appear in
kernel methods, and also classification methods
that rely on an implicit solution (e.g., Softmax
layer in neural networks), with concentrated
random inputs. Indeed, these methods are at
the heart of many classifications, regression, and
clustering machine learning algorithms. In par-
ticular, understanding the behavior of these ma-
trices/methods, for concentrated data, allows us
to characterize the performances (on real data
if we assimilate them to concentrated vectors)
of many machine learning algorithms, such as
spectral clustering, SVMs, principal component
analysis, and transfer learning. Analyzing these
methods for concentrated data yields the sur-
prising result that they have asymptotically the
same behavior as for GMM data (with the same
first and second-order statistics). This result
strongly suggests the universality aspect of large
machine learning classifiers w.r.t. the underly-
ing data distribution.
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Notations

Mathematical Symbols

R Set of real numbers.
C Set of complex numbers, we denote C+ the set {z ∈ C,=[z] > 0}.
Mp,n Set of matrices of size p× n.
Mp Set of squared matrices of size p.
Dp Set of diagonal matrices of size p.
(·)T Transpose operator.
tr(·) Trace operator.
diag(·) Diagonal operator, for A ∈ Mn, diag(A) ∈ Rn is the vector

with entries {Aii}n
i=1; for a ∈ Rn, diag(a) ∈ Dn is the diagonal matrix taking

a as its diagonal.
‖ · ‖ Operator (or spectral) norm of a matrix and Euclidean norm of a vector.
‖ · ‖F Frobenius norm of a matrix, ‖A‖F =

√
tr(AAT).

‖ · ‖∞ Infinite norm of a matrix, ‖A‖∞ = maxi,j |Aij|.
dist(·) Distance between elements in a metric space.
P(·) Probability of an event with respect to the underlying probability

measure space (Ω,F , P).
E[·] Expectation operator, E[ f ] =

∫
f dP =

∫
Ω f (x)P(dx)

Var[·] Variance operator, Var[x] = E[x2]− (E[x])2 if the first two moments of x exist
a.s.−→ Almost surely convergence. We say a sequence xn

a.s.−→ x if P(limn→∞ xn = x) = 1
Q(x) Q-function: the tail distribution of standard Gaussian Q(x) = 1

2π

∫ ∞
x exp(−t2/2)dt

O(1), o(1) A sequence un is bounded or converges to zero as n→ ∞, respectively.

Vectors and Matrices

In Identity matrix of size n.
1n (Column) vector of size n with all entries equal to one.
0n (Column) vector of size n with all entries equal to zero.
xi ∈ Rp Input data/feature vector.
zi ∈ Rp Random vector having i.i.d. zero mean and unit variance entries.
X Data/feature matrix having xi as column vectors.
Z Random matrix having zi as column vectors such that E[zi] = 0p.
µ Mean vector.
C Covariance matrix.
K Kernel matrix.
W Weight matrix (in a neural network).
β Regression vector.
Q Resolvent matrix, see Definition 3.
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Artificial intelligence (AI) is known as the set of theories and techniques used to cre-
ate machines capable of simulating human intelligence. One of the most attractive sub-
fields of AI is machine learning (ML) which aims at providing computer algorithms that
“learn” automatically through experience in order to make future decisions without be-
ing explicitly programmed. Basically, ML algorithms leverage on building mathematical
– very often parametric – models which will be optimized based on sample training data
and then used afterwards to perform various AI tasks such as classification, regression,
clustering etc.

Quite naturally, AI finds applications in various domains and hence one of the most
important challenges of ML is to provide algorithms that can be applied to different kind
of data (e.g., images, texts, graphs etc.). By construction, these data can be represented in
different forms and therefore the performance of ML algorithms will rely largely on the
chosen representation. This representation should ideally contain relevant information
about the data in order to achieve learning with simple models and small amount of data.
Historically, a huge amount of works were focused on the design of hand-crafted repre-
sentations (or features) and then providing them to simple ML algorithms to resolve the
desired tasks. But for most tasks and given the various types of data, these approaches
are not easily scaleable to achieve effective AI.

Since the arrival of deep neural networks (DNNs), the ideas of developing hand-
crafted features were immediately left out. Indeed, DNNs have surpassed most of the
approaches by demonstrating their incredible ability to automatically learning relevant

13
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representations from raw data in a wide range of applications, including computer vi-
sion, pattern recognition and natural language processing. Despite their success, a lot of
questions are still unanswered regarding the theoretical foundations of DNNs and which
are very crucial notably for their explainability. For instance, the full characterization of
their learnt representations and/or parameters are still open problems.

One of the main aspects that made DNNs effective in practice is their being over-
parametrized models. Indeed, it has been shown that deep architectures of these models
surpass shallow ones when dealing with n p-dimensional data when both n and p are
large, which is often the case in real life scenarios1. Moreover, most effective DNNs hap-
pen to have a number of parameters N which is at least of order p or even much larger
(e.g., LeNet-5 [LeC98] contains N = 60000 parameters).

In essence, these large dimensions induce many counter-intuitive phenomena that
cause the intuitions of the small dimensions to collapse completely. For better under-
standing of these phenomena, we will provide subsequently in Section 1.1 some illustra-
tive examples which reveal these counter-intuitive aspects. In the particular case when
both p, n → ∞ with p/n → 0 ∈ (0, ∞), random matrix theory (RMT) provides power-
ful tools to assess the performance of various ML algorithms by tacking into account the
effect of these dimensions. Indeed, RMT provides access to the internal mechanism of
a large wide of ML methods thereby allowing a deeper understanding and systematic
improvements of these methods. We shall refer the reader to the thesis of Z. Liao [Lia19]
for applications of RMT to kernel methods, random shallow neural networks and neural
networks dynamics; the thesis of X. Mai [Mai19] which addresses applications of RMT to
semi-supervised learning and support vector machines.

The aforementioned works leverage largely on Gaussian assumptions2 on the pro-
cessed data. One of the major outcome of this thesis it to go beyond the Gaussian hypoth-
esis to address the applicability of RMT to real data which are unlikely close to Gaussian
vectors. In particular, working under the more generic statistical model of concentrated
vectors [LC20], we provide justifications – leveraging on generative adversarial networks
(GANs) – about the relevance of such model for realistic data modelling, and we further
analyze, under the concentration assumption on the data, the behavior of large kernel
matrices (which happen to be at the core of various ML algorithms) as well as some es-
sential components of neural networks such as the last Softmax layer. A major result of
the developed works in this thesis is the universality result stated as:

“Only first and second order statistics of concentrated data matter to describe the
behavior of these methods”

thereby justifying the Gaussianity assumption on data as per the results of [Lia19, Mai19].

Let us now give some illustrative examples of the effect of high-dimensional data
which leads to fundamentally different behaviors of ML algorithms comparing to low-
dimensional data.

1As an example, the MNIST dataset [LeC98] contains n = 70000 images of dimension p = 28× 28 = 784.
2Modelling the data as a k-class of Gaussian mixture model (GMM).
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1.1 Illustrative High-dimensional Examples

In this section we highlight the effect of high dimensions on two classical examples: the
first one describes the behavior of large sample covariance matrices presented in Sub-
section 1.1.1; and the second example describes the behavior of large kernel matrices
presented in Subsection 1.1.2 which are at the core of a wide range of ML algorithms.

1.1.1 Large Sample Covariance Matrices

Covariance matrices are omnipresent in a wide range of signal processing and machine
learning approaches, therefore understanding their behavior is of particular interest to
achieve consistent estimations and inferences. We will present in this subsection a classi-
cal and yet fundamental result from random matrix theory which describes the counter-
intuitive behavior of large covariance matrices.

Let x1, . . . , xn ∈ Rp some i.i.d. random data vectors such that E[xi] = 0 and E[xix
ᵀ
i ] =

Ip. In the case where xi ∼ N (0, Ip), the maximum likelihood estimator for the population
covariance matrix (here Ip) is the sample covariance matrix given by

Σ̂ =
1
n

n

∑
i=1

xix
ᵀ
i =

1
n

XXᵀ (1.1)

where X = [x1, . . . , xn] ∈ Mp,n. In the classical setting where p does not scale with the
number of samples n, we know from the strong law of large numbers that, as n→ ∞

Σ̂
a.s.−→ Ip

In particular, ‖Σ̂− Ip‖
a.s.−→ 0 in operator norm or any matrix norm since they are equiv-

alent in finite dimension. However, it turns out that in the random matrix theory regime
when both p, n→ ∞ with p/n→ c ∈ (0, ∞),

‖Σ̂− Ip‖ 6→ 0

Indeed, in particular, in the under-sampling setting when c > 1 the sample covariance
matrix converges entry-wise to the population matrix since

max
1≤i,j≤p

∣∣∣[Σ̂− Ip
]

ij

∣∣∣ a.s.−→ 0

while there is a clear eigenvalue mismatch between the two quantities which simply un-
folds from

0 = λ1(Σ̂) = . . . = λp−n(Σ̂) ≤ λp−n+1(Σ̂) ≤ . . . ≤ λp(Σ̂)

1 = λ1(Ip) = . . . = λp(Ip)

therefore implies no convergence in spectral norm.

Figure 1.1 depicts the histogram of eigenvalues of Σ̂ for p = 2000 and n = 10000,
as can be seen, instead of having the eigenvalue 1 with multiplicity p one observes a
spreading of the eigenvalues of Σ̂ in the vicinity of 1. This spreading of eigenvalues is
particularly described by the so-called Marčenko-Pastur Law [MP67] which predicts the
limiting eigenvalues distribution of Σ̂ in terms of the ratio c = limn p/n as follows

fMP(x) =
1

2πc

√
(λ+ − x)(x− λ−)

x
+ max

(
1− 1

c
, 0
)

δ(x), 3 (1.2)

3δ denotes here the dirac function.
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Figure 1.1: Histogram of the eigenvalues of Σ̂ = 1
n XXᵀ where X is a random matrix with

i.i.d. N (0, 1) entries. We considered the dimensions p = 2000, n = 10000 and we recall
c = p/n.

where λ± = (1±
√

c)2 are respectively the right and left edges of the limiting distribu-
tion. Indeed, the theorem for Marčenko & Pastur [MP67] states that the random empirical
spectral distribution (e.s.d.) µ of Σ̂ defined in terms of its eigenvalues λ1, . . . , λp as

µ(x) =
1
p

p

∑
i=1

δλi(x) (1.3)

converges, in the random matrix theory regime p, n → ∞ with p/n → c ∈ (0, ∞), to a
deterministic measure µMP

µ
a.s.−→ µMP (1.4)

in distribution4. Essentially, µMP satisfies µMP({0}) = max(0, 1 − c−1) and on (0, ∞)
it has a continuous density function defined on the compact support [(1 −

√
c)2, (1 +√

c)2] by fMP defined in equation 1.2. A detailed statement along with a proof of this
fundamental result is provided in Subsection 2.2.2 of this manuscript.

Remark 1.1 (Universality of the Marčenko-Pastur Law). The Marčenko-Pastur result holds
for any random matrix X having random i.i.d. entries with zero mean, unit variance and finite
fourth order moment whatever the underlying distribution of its entries.

We therefore know from this result that the behavior of the sample covariance matrix
is fundamentally different in high-dimension leading to counter-intuitive phenomena,
which is highlighted here through the behavior of its spectrum. A fundamental question
therefore occurs regarding when data are of high-dimension? It should be noted that high-
dimensionality is relative to the number of observations, which unfolds – through the
above example – from the observation that the limiting Marčenko-Pastur density function
in equation 1.2 depends only on the ratio c = limn

p
n . Specifically, we know from this

result that the eigenvalues of Σ̂ spread from (1 −
√

c)2 to (1 +
√

c)2 instead of being
concentrated around 1. As a result, the eigenvalues deviate on a range of diameter

(1 +
√

c)2 − (1−
√

c)2 = 4
√

c

4In the sense that
∫

ϕ(t)µ(dt) a.s.−→
∫

ϕ(t)µMP(dt) for all bounded continuous test function ϕ.
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For instance, even taking n = 100 p will result in a spread of eigenvalues around 1 with
deviation 4

√
c = 0.4 which is relatively large.

Remark 1.2 (Extensions to structured data models). The Marčenko-Pastur result has been
extended to some structured data models, namely by Bai and Silverstein in [BS10] for data of
the form xi = Σ1/2zi for some positive semi-definite matrix Σ and zi random vectors with i.i.d.
entries of zero mean, unit variance and finite fourth order moment. And also to a more convenient
data model in the context of machine learning which is the Gaussian mixture model (GMM) by
Benaych and Couillet in [BGC16]. The latter result will be presented in more details in Subsec-
tion 2.2.3.

We have highlighted in this subsection the intriguing behavior of the sample covari-
ance matrix when the underlying data are of high-dimension. In particular, we saw that
in the random matrix theory regime when both p, n → ∞ with p/n → c ∈ (0, ∞), the
sample covariance matrix Σ̂ is no longer a consistent estimation of the population co-
variance matrix. In the next subsection, we will present another example of the effect of
dimensionality on kernel methods, which are an essential component in modern machine
learning.

1.1.2 Large Kernel Matrices

Kernel methods are a class of machine learning algorithms which were introduced in
order to avoid transforming raw data into hand-crafted features and rather simply mak-
ing the choice of a kernel function κ(x, y) instead, i.e., a similarity function between pairs
of data samples x and y in their raw representation. One of the nice and very useful
properties of (nonnegative definite) kernel methods is that they implicitly transform the
input data into a high-dimensional feature space without requiring the computation of
the data in that space, but rather computing the inner similarity between pairs of data,
which is known as the kernel trick. However, the considered kernel function in practice
are very often non-linear functions which makes the analysis of the resulting random kernel
matrix non-trivial to tackle from the random matrix theory perspective.

One of the classical algorithms from kernel methods is the so-called kernel spectral
clustering which specifically performs unsupervised classification of a sequence of data
vectors x1, . . . , xn ∈ Rp into k distinct classes. It basically relies on the computation of
large pair-wise kernel matrix K = {κ(xi, xj)}n

i,j=1 and performing a classical k-means
clustering on the dominant eigenspace of the random kernel matrix K.

In order to study the behavior of K and so to determine the information encoded in its
dominant eigenspace, a crucial step requires the linearization of the non-linearity κ(x, y).
Under asymptotically non-trivial growth rate assumptions on the data statistics, which ba-
sically maintains a feasible yet not too easy clustering problem, it has been shown by
Couillet and Benayach in [CBG+16] that for the similarity

κ(x, y) = f
(

1
p
‖x− y‖2

)
for sufficiently smooth function f , the off-diagonal entries of K tend – in the large dimen-
sional regime when p/n → c as p → ∞ – to a limiting constant independently of the
data classes – the between and within class vectors are “equidistant” in high-dimension. This
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intriguing high-dimensional behavior allows one to study K through a Taylor expansion
yielding to a random matrix equivalent of K, thereby giving access to the characterization
of functionals of K and its (informative) eigenspace in the large dimensional setting. The
aforementioned non-trivial assumptions notably permit an accurate approximation of K by
its random matrix equivalent in the large p, n limit.

Couillet and Benaych in [CBG+16] have notably analyzed the behavior of K under the
so-called Gaussian mixture model assumption on data, which is defined in the following.

Definition 1 (Gaussian Mixture Model (GMM)). A sequence of data vectors x1, . . . , xn ∈ Rp

is said to form a k-class Gaussian mixture model of k classes C1, . . . , Ck with distinct means and
covariances {µ`}k

`=1 and {Σ`}k
`=1 respectively, if for xi ∈ C`

xi = µ` + Σ
1
2
` zi with zi ∼ N (0, Ip)

We further define the following quantities which shall be used subsequently

- (Data) n` = |C`| the cardinality of class C` and c` = limn
n`
n ∈ (0, 1).

- (Means) µ̄ = ∑k
`=1 c`µ` and µ̄` = µ` − µ̄.

- (Covariances) Σ̄ = ∑k
`=1 c`Σ` and Σ̄` = Σ` − Σ̄.

Under the GMM model in Definition 1, we recall the growth rate assumptions made
in [CBG+16], which are essentially, as p→ ∞,

- (Data) p/n→ c ∈ (0, ∞) and n`/n→ (0, 1).

- (Means) lim supp max` ‖µ̄`‖ < ∞.

- (Covariances) lim supp max` ‖Σ`‖ < ∞ and lim supp max` 1√
p tr Σ̄` < ∞.

Remark 1.3 (On the non-trivial growth rates). The above assumptions essentially ensure, as
discussed in [CBG+16], that the classification is neither too easy nor too hard as the dimension
grows to infinity. For instance, in the case of binary classification (i.e., k = 2), these assumptions
imply ‖µ1 − µ2‖ = O(1) and 1√

p tr(Σ1 − Σ2) = O(1) as p → ∞. Thus if ‖µ1 − µ2‖ and
1√
p tr(Σ1− Σ2) increase with p, then a simple Bayesian analysis will reveal that the classification

will become too easy even with a trivial algorithm, in contrast, if the two quantities vanish as p
grows large, the classification becomes theoretically impossible whatever the chosen algorithm. In
particular, ‖µ1 − µ2‖ = O(1) unfolds from the following: Consider a Gaussian mixture of two
classes such that C` : x ∼ N (µ`, Ip) for ` ∈ {1, 2} (i.e., Σ1 = Σ2 = Ip). In the case where µ1
and µ2 are perfectly known, one has the following optimal decision by the Neyman-Pearson test,
specifically for some x ∈ C1

(x− µ2)
ᵀ(x− µ2)− (x− µ1)

ᵀ(x− µ1)
C2
≶
C1

log
det(Σ1)

det(Σ2)
= 0

Decomposing x = µ1 + z with z ∼ N (0, Ip), the above test can be equivalently written as

g(z) =
1
p
‖∆µ‖2 +

2
p
(∆µ)ᵀz

C2
≶
C1

0 where ∆µ = µ1 − µ2
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Moreover, since g(z) is a sum of p independent random variables, we have by Lyapunov’s central
limit theorem 2.7, as p→ ∞

ν
− 1

2
g (g(z)−mg)

D−→N (0, 1) with mg =
1
p
‖∆µ‖2, νg =

4
p2 ‖∆µ‖2

Therefore, the asymptotic (as p → ∞) classification performance of x ∈ C1 is non-trivial if and
only if the two quantities mg and √νg are of the same order, as such ‖∆µ‖ must be O(1).

Under the above assumptions a fundamental high-dimensional behavior occurs which
specifically states that the point-wise distance 1

p‖xi − xj‖2 concentrates around the quan-
tity

τ =
2
p

tr Σ

i.e., the between and within class data vectors are “equidistant” in high dimensions, es-
sentially, one has with probability one that

max
1≤i 6=j≤n

∣∣∣∣ 1p‖xi − xj‖2 − τ

∣∣∣∣ a.s.−→ 0

This result unfolds from the decomposition of the pair-wise distance 1
p‖xi − xj‖2 into

asymptotically controllable terms as follows. For some xi ∈ Ca, we denote zi =
xi−µa√

p and

let ψi = ‖zi‖2− 1
p tr Σa. We therefore have the following decomposition by [CBG+16] for

xi ∈ Ca and xj ∈ Cb with a 6= b ∈ [k]

1
p
‖xi − xj‖2 = ‖zi − zj‖2 +

1
p
‖µa − µb‖2 +

2
√

p
(µa − µb)

ᵀ(zi − zj)

= τ +
1
p

tr Σ̄a +
1
p

tr Σ̄b + ψi + ψj − 2zᵀi zj

+
1
p
‖µ̄a − µ̄b‖2 +

2
√

p
(µ̄a − µ̄b)

ᵀ(zi − zj)

From this decomposition, it turns out that, except for τ, all the other terms are at least
of order O(p−

1
2 ). Indeed, it is easily seen that ψi = O(p−

1
2 ) and zᵀi zj = O(p−

1
2 ) while

2√
p (µ̄a − µ̄b)

ᵀ(zi − zj) is of order O(p−1).

This observation notably states that the entries of the kernel matrix K will converge
to the same value f (τ) at a first order approximation, specifically with probability one

max
1≤i 6=j≤n

|Kij − f (τ)| a.s.−→ 0

which suggests that K is approximated at a first order by the rank one matrix f (τ)1n1ᵀn.
However, it should be noted that the uniform convergence on the entries of K does not
imply at all a convergence in the spectral norm as we saw in the example of the sample co-
variance matrix from the previous subsection. Still, a finer Taylor expansion analysis and
control of the vanishing matrices in spectral norm provides the actual mechanism and
information encoded by the kernel matrix. Figure 1.2 visually confirms that the entries
of K converge to the same value f (τ) at a first approximation. We particularly consid-
ered in this figure two classes C1 and C2 such that µ` = (−1)`µ for µ = [2, 0p−1]

ᵀ ∈ Rp
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Figure 1.2: (First line) Kernel matrix with entries Kij = f ( 1
p‖xi − xj‖2) and (second line)

its corresponding second largest eigenvector which contains clustering information. We
considered the kernel function f (t) = exp(−t) and two classes of means −µ and +µ and
identity covariance. µ = [2, 0p−1]

ᵀ ∈ Rp, n = 500 and p ∈ {5, 10, 100, 500}.

and isotropic covariances. As we see from this figure, as p gets large the behavior of the
kernel matrix is fundamentally different from the low-dimension setting, in which case
one visualizes a block-structure of the kernel matrix. In contrast, looking at the second
largest eigenvector of K, we see that the class structure is preserved even in the high-
dimensional setting. Indeed, as explained in [CBG+16], the class information appears in
the second order approximation of K since the first eigenvector with eigenvalue of order
O(n) is proportional to 1n, therefore not informative about the classes. Essentially, when
p, n→ ∞, the kernel matrix K is asymptotically well approximated by a so-called spiked
random matrix of the form5

K = Pf + f ′(τ)ZᵀZ + f ′′(τ)W + op(1)

where Pf is a low-rank informative matrix which contains information about the classes
though the data statistics {µ`}k

`=1 and {Σ`}k
`=1 and also depends on the kernel function

f through its local first and second derivatives at τ. The remaining matrix terms are
non-informative full-rank noise matrices which exhibit a spreading of eigenvalues in the
spectrum of K in the same way as we saw in the previous subsection though the example
of the sample covariance matrix.

Remark 1.4 (On the analysis of the noise random matrices). The analysis of the noise
terms in the approximation of K (e.g., the term f ′(τ)ZᵀZ) comes through generalizations of the
Marčenko-Pastur result to structured data models as we discussed in the previous subsection in
Remark 1.2.

The main consequence of the above approximation is the access to the actual spectral
behavior of K, in particular, through the exact description of its dominant eigenvectors,
thereby accessing the exact theoretical estimation of the performances of kernel spectral
clustering as well as a wide range of kernel methods which rely on such kernel matrices

5The notation A = B + op(1) means that ‖A− B‖ = o(1) as p → ∞ where ‖ · ‖ stands for the spectral
norm.
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Figure 1.3: Examples of images generated by the BigGAN model [BDS18].

K. Indeed, an aftermath of such analysis allows one to “tune” the optimal kenrel function
choice for the considered data. Moreover, based upon this fundamental result, Liao and
Couillet gave the exact performance estimation of kernel LS-SVM in [LC17], while Mai
and Couillet have analyzed and improved semi-supervised learning in [MC17] based on
the analysis of K.

1.2 From GMM to Concentration though GAN

The starting point to obtain the results of the previous section and more fundamentally
to analyze the behavior of ML algorithms is to design so-called deterministic equivalents
which basically encode the behavior of large random matrices. We will recall in the next
chapter fundamental random matrix theory results along with some applications to sim-
ple machine learning models such as spectral clustering with the Gram matrix and clas-
sification with a linear classifier.

So far, the considered assumption on data to design such deterministic equivalents is
a GMM model (see Definition 1) as developed by Benaych and Couillet [BGC16], where
we recalled their main result in Theorem 2.5. However, real data (e.g., images) are un-
likely close to simple Gaussian vectors and therefore one needs a more realistic model to
describe them. Following the well-known quote of R. Feynman: “What I cannot create, I
do not understand”, it is fundamentally important to be able to create real data in order
to fully understand their nature. To this end though, generative models are of particular
interest. In particular, since the advent of Generative Adversarial Nets [GPAM+14], it
is now possible to create neural network models that can generate complex data struc-
tures. Some examples of artificially generated images by the BigGAN model [BDS18]
are depicted in Figure 1.3. In particular, GAN generated data are constructed by apply-
ing successive Lipschitz transformations to high-dimensional Gaussian random vectors.
Schematically,

Real data ≈ GAN data = FL ◦ · · · ◦ F1(z) with z ∼ N (0, Id)

where the Fi’s are essentially Lipschitz transformations.

On the other hand, the fundamental concentration of measure phenomenon [Led05a]
states that Lipschitz-ally transformed Gaussian vectors are concentrated vectors, i.e., they
satisfy the following concentration property: A random vector x ∈ E is said to be con-
centrated if for any 1-Lipschitz function f : E → R, for q ≥ 0 there exists C, σ > 0 such
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that

∀t > 0, P {| f (x)−E f (x)| ≥ t} ≤ Ce−(t/σ)q

Consequently, GAN data are concentrated random vectors by construction, and there-
fore this class of random vectors constitute a more appropriate and convincing statistical
model for realistic data compared to simple Gaussian vectors. The main objective of
this thesis is to exploit the framework of concentrated vectors developed by Louart and
Couillet [LC18b] relying on the earlier works of El Karoui [EK+10b], which is particularly
motivated by the fact that GAN data belong to this class of random vectors, in order to
analyze the behavior of various ML methods. We particularly provide in the following
section some key results from this thesis that concern mainly the study of large Gram
and kernel matrices under the concentration assumption (see Subsections 1.3.1-1.3.2) and
further applications related to neural networks through the study of the Softmax layer in
Subsection 1.3.3.

1.3 Some ML methods under Concentration

In this section we summarize the main findings of this thesis which basically describe
the behavior of standard ML methods under the concentration assumption on data. Pre-
cisely, we will assume throughout the following subsections that data are distributed as
a Mixture of Concentrated Vectors as per the following definition.

Definition 2 (Mixture of Concentrated Vectors (MCV) [LC18b]). Let X = [x1, . . . , xn] ∈
Mp,n be a data matrix which is constituted of n random vectors distributed in k different classes
C1, . . . , Ck, such that the data classes are characterized by the moments, for xi ∈ C`

E [xi] = µ`, E
[
xix

ᵀ
i

]
= Σ` + µ`µ

ᵀ
`

In particular, the data matrix X satisfy a concentration assumption in the sense that, for any 1-
Lipschitz function f : Mp,n → R withMp,n enrolled by the Frobinuous norm ‖ · ‖F, for q > 0
there exists C, σ > 06 independent of p and n such that

∀t > 0, P {| f (X)−E f (X)| ≥ t} ≤ Ce−(t/σ)q

Remark 1.5 (On the concentration of GAN random vectors). We will see in Chapter 3 that
GAN random vectors have notably the same concentration as standard Gaussian vectors which
unfolds from the fact that GAN’s generators networks have controlled Lipschitz norm; i.e., for
Gaussian N (0, Id) inputs (as commonly considered) whose observable diameter does not depend
on the dimension d, the observable diameter of GAN’s outputs does not increase with the data
dimension. Moreover, the concentration of the data matrix X implies the concentration of its
columns vectors xi’s since X 7→ Xji = xi is 1-Lipschitz transformation, where ji ∈ Rn is the
canonical vector defined as (ji)j = δi=j.

In addition to the concentration assumption on data, we will further assume the clas-
sical random matrix theory regime as per the following assumption.

Assumption 1 (Growth rate). As p→ ∞, assume

1. p/n→ c ∈ (0, ∞); |C`|/n→ c` ∈ (0, 1).

2. The number of classes k is bounded.
6σ is called the observable diameter.
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1.3.1 Behavior of Gram Matrices

The first contribution of this thesis concerns the analysis of the behavior of the Gram
matrix defined as G = 1

p XᵀX under the concentration assumption in Definition 2 and the
high-dimensional regime in Assumption 1. In particular, this contribution is presented
in more details in Chapter 3 and is based on the following works:

(C1) MEA. Seddik, C. Louart, M. Tamaazousti, R. Couillet, “Random Ma-
trix Theory Proves that Deep Learning Representations of GAN-data Behave
as Gaussian Mixtures”, International Conference on Machine Learning
(ICML’20), Online, 2020.

(C1’) MEA. Seddik, M. Tamaazousti, R. Couillet, “Pourquoi les matrices aléa-
toires expliquent l’apprentissage ? Un argument d’universalité offert par les
GANs”, Colloque francophone de traitement du signal et des images
(Gretsi’19), Lille, France, 2019.

As will be recalled in Chapter 2, the spectral behavior of G can be analyzed through
its resolvent

R(z) = (G + zIn)
−1

The main result from this contribution is to provide a deterministic equivalent (see Defini-
tion 6) for R(z) which is given by the following Theorem.

Theorem 1.1 (Deterministic Equivalent for R(z)). Under the concentration model in Defini-
tion 2, the growth rate Assumptions 1 and further assume that for all ` ∈ [k], ‖µ`‖ = O(

√
p)7.

Then, R(z) concentrates with an observable diameter of order O(p−
1
2 ). Furthermore,

∥∥ER(z)− R̃(z)
∥∥ = O

(√
log(p)

p

)
, R̃(z) =

1
z

diag
{

In`

1 + δ∗` (z)

}k

`=1
+

1
p z

JΩz Jᵀ

with Ωz = MᵀQ̄(z)M � diag
{

δ∗` (z)−1
δ∗` (z)+1

}k

`=1
where M = [µ1, . . . , µk], J = [j1, . . . , jk]

and Q̄(z) =
(

1
c k ∑k

`=1
Σ`+µ`µ

ᵀ
`

1+δ∗` (z)
+ zIp

)−1
where δ∗(z) = [δ∗1 (z), . . . , δ∗k (z)]

ᵀ is the unique fixed
point of the system of equations for each ` ∈ [k]

δ`(z) =
1
p

tr

(Σ` + µ`µ
ᵀ
` )

(
1

c k

k

∑
j=1

Σj + µjµ
ᵀ
j

1 + δj(z)
+ zIp

)−1
 .

Theorem 1.1 along with the deterministic equivalent of the sample covariance ma-
trix developed in [LC18b] particularly generalize the result of [BGC16] to the class of
concentrated vectors. A remarkable outcome from this result is that the behavior of the
Gram matrix G depends strictly on the first and second statistical moments {µ`}k

`=1 and
{Σ`}k

`=1 of the data thereby providing a universal behavior of ML methods which rely
on the Gram matrix regardless of the data distribution. This universality behavior has
notably been verified (see Chapter 3) using GAN generated images as they satisfy the
concentration assumption by design.

7This hypothesis is less restrictive in the sense that a p-dimensional vector with entries of order O(1)
has an `2-norm of order O(√p). Furthermore, from a technical standpoint, this assumption also explains
the contribution of the class-wise means in the δ`(z)’s subsequently.
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1.3.2 Behavior of Kernel Matrices

The second contribution of this thesis concerns the analysis of large kernel matrices under
the concentration hypothesis. The results of this part are presented in Section 4.1 and are
particularly based on the following work:

(C2) MEA. Seddik, M. Tamaazousti, R. Couillet, “Kernel Random Matrices of
Large Concentrated Data: The Example of GAN-generated Images”, IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP’19),
Brighton, United-Kingdom, 2019.

Specifically, we have analyzed in this work the behavior of large kernel matrices of the
form

K =

{
f
(

1
p
‖xi − xj‖2

)}n

i,j=1

where f : R+ → R+ is supposed to be three times continuously-differentiable in the
vicinity of τ = 2

p tr
(

∑k
`=1 c`Σ`

)
, and the data matrix X = [x1, . . . , xn] ∈ Mp,n is assumed

to be concentrated in the sense of Definition 2. Under these assumptions and further
the non-trivial growth rate assumptions from Subsection 1.1.2, our first result states that
the between and within class data are “equidistant” in high-dimension independently from the
classes, specifically, for some δ > 0 with probability 1− δ

max
1≤i 6=j≤n

{∣∣∣∣ 1p‖xi − xj‖2 − τ

∣∣∣∣} = O

 log
(

p√
δ

) 1
q

√
p


Following the same approach as [EK+10b, CBG+16], the kernel matrix K can therefore
be Taylor expanded entry-wise leading to an approximation of it in spectral norm by a
spiked random matrix model of the form8

K = Pf + f ′(τ)ZᵀZ + f ′′(τ)W + op(1)

where Pf is a low-rank informative matrix which contains information about the classes
though the data statistics {µ`}k

`=1 and {Σ`}k
`=1 and also depends on the kernel function

f through its local first and second derivatives at τ. The remaining matrix terms are
non-informative full-rank noise matrices which exhibit a spreading of eigenvalues in the
spectrum of K, in particular, the behavior of the term f ′(τ)ZᵀZ is described by the de-
terministic equivalent from the previous subsection. See Section 4.1 for more details. As
for the Gram matrix, K exhibits a universal behavior since its random matrix equivalent
depends strictly on the classes statistics {µ`}k

`=1 and {Σ`}k
`=1.

1.3.3 Beyond Kernels to Neural Networks

Kernel matrices appear naturally as a backbone of kernel methods. For instance, it has
been shown in [Lia19] that the MSE9 of random neural networks, the misclassification er-
ror rate of kernel ridge regression and the performance of kernel/random feature-based

8The notation A = B + op(1) means that ‖A− B‖ = o(1) as p → ∞ where ‖ · ‖ stands for the spectral
norm.

9Mean squared error.
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spectral clustering methods, all depend explicitly on the eigenspectrum or on a certain
functional of a particular random kernel/nonlinear Gram matrix. In this subsection, the
aim is to go beyond kernel methods in order to analyze ML methods which have an im-
plicit relationship with the input data, i.e., ML methods which are implicitly determined
by (convex) optimization problems. In particular, relying on [MLC19] which studies the
behavior of logistic regression under the RMT regime and using Gaussian assumptions
on data, we push forward this study by assuming a k-class concentration model (see Def-
inition 2) and therefore considering the more general Softmax classifier. Specifically, this
subsection briefly presents our findings concerning the analysis of the Softmax classifier
under the concentration hypothesis and the high-dimensional regime. This contribution
is particularly detailed in Section 5.1 and is based on the following work:

(C4) MEA. Seddik, C.Louart, R. Couillet, M. Tamaazousti, “The Unexpected
Deterministic and Universal Behavior of Large Softmax Classifiers”, AISTATS
2021.

Specifically, given a set of one-hot-vector10 labels y1, . . . , yn ∈ Rk corresponding to each
data vector x1, . . . , xn ∈ Rp, the Softmax classifier consists in minimizing the following
objective function

L(w1, . . . , wk) = −
1
n

n

∑
i=1

k

∑
`=1

yi` log pi` +
1
2

k

∑
`=1

λ`‖µ`‖2 with pi` =
ϕ(wᵀ

` xi)

∑k
j=1 ϕ(wᵀ

j xi)

where W = [wᵀ
1 , . . . , wᵀ

k ]
ᵀ ∈ Rpk stands for the class-weights vectors, λ`’s are class-wise

regularization parameters and ϕ : R → R+. Cancelling the loss function gradient with
respect to each weight vector w` yields

λ`w` = −
1
n

n

∑
i=1

(
yi`ψ(w

ᵀ
` xi)−

φ(wᵀ
` xi)

∑k
j=1 φ(wᵀ

j xi)

k

∑
j=1

yijψ(w
ᵀ
j xi)

)
xi

with ψ = φ′/φ. Our approach consists in writing the above expression as a contracting
fixed point equation of W . Specifically, for well chosen x̃i and fi, we have

ΛW =
1
n

n

∑
i=1

x̃i fi(x̃ᵀi W) ⇒ W = Ψ(W)

where X̃ = [x̃1, . . . , x̃n] ∈ Mkp,kn, fi(X̃ᵀW) ∈ Rkn and Λ = diag(λ1, . . . , λk)⊗ Ip ∈ Mkp.
Therefore, Ψ is requested to be (1− ε)-Lipschitz for some ε > 0 under some assumptions
on ϕ and the regularization parameters λ`. Due to randomness in the data matrix X, Ψ
is a contraction conditionally on some high-probable event AX (See Section 5.1 for more
details).

Under the concentration hypothesis from Definiton 2 and additional assumptions
on ϕ and (λ`)`∈[k], our first result states that there exists and event AX with P(AX) >
1−Ce−cn for some constants C, c > 0 such that the weights vector W concentrates condi-
tionally onAX with an observable diameter of orderO

(√
log n/n

)
, which we compactly

write as

(W | AX) ∝ Eq

(√
log n

n

)
10Defined as yi` = 1 if xi ∈ C` and yi` = 0 otherwise.
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The further characterization of the statistics of the weights vector W requires the
study of a resolvent of the form

Q =

(
Λ− 1

n
X̃DX̃ᵀ

)−1

where D is some block-diagonal matrix whose entries depend on the data matrix X̃. The
above resolvent is studied through a deterministic equivalent (see Section 5.1 for more
details), which implies the following result.

Theorem 1.2 (Asymptotic statistics of the Softmax weights). Under the concentration hy-
pothesis from Definiton 2 and supposing additional assumptions on ϕ and (λ`)`∈[k]. There exists
a deterministic mapping

Fµ,Σ = Fµ,Σ

(
{µ`, Σ`}k

`=1

)
: Rpk ×Mpk → Rpk ×Mpk

depending only on the data statistics {µ`}k
`=1 and {Σ`}k

`=1, such that the equation

(m, C) = Fµ,Σ(m, C) with m ∈ Rpk, C ∈ Mpk

admits a unique solution (m̄W , C̄W). Furthermore,

‖E[W ]− m̄W‖ = O
(√

log n
n

)
and ‖E[WWᵀ]− C̄W‖∗ = O

(√
log n

n

)

Theorem 1.2 is fundamental in the sense that it states that the Softmax classifier re-
trieves information from the data only through the class-wise means and covariances,
namely the statistics {µ`}k

`=1 and {Σ`}k
`=1, thereby highlighting the universal character of

the Softmax classifier. In particular, our result generalizes the study of Mai and Liao [MLC19]
of the logistic regression classifier studied in their work under a GMM assumption on
data, while we extended their results to a k-class MCV (see Definition 2). Moreover,
based on Theorem 1.2, the performances of the Softmax classifier become theoretically
predictable as per the following corollary.

Corollary 1.1 (Generalization performance of the Softmax classifier). For ` ∈ [k] let some
new test data x ∈ C` and define p`(x) = ϕ(wᵀ

` x)/ ∑j∈[k] ϕ(wᵀ
j x). There exists κ̄` ∈ Rk−1 and

K̄` ∈ Mk−1 both depending only on {µ`}k
`=1 and {Σ`}k

`=1 such that the test error

Et(x ∈ C`) = 1−P(∀j ∈ [k] \ {`} : p`(x) ≥ pj(x))

is asymptotically close to

Ēt(x ∈ C`) = 1−P(Z` ∈ Rk−1
+ ) with Z` ∼ N (κ̄`, K̄`)

In a nutshell, Corollary 1.1 affirms that the generalization error of the Softmax classi-
fier is nothing but the cumulative distribution of a low-dimensional Gaussian vector, the
mean and covariance of which depend strictly on the class wise means and covariances
{µ`}k

`=1 and {Σ`}k
`=1 of the input data. This notably demonstrates the universality prop-

erty of the Softmax classifier regardless of the data distribution as long as it satisfies the
concentration assumptions in Definition 2.
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1.3.4 Summary of Section 1.3

The main core of this thesis concerns the analysis of the methods presented in the previ-
ous subsections under the concentration hypothesis on data as per Definition 2. A major
outcome from these studies is the that the behavior of the studied methods solely depend
on the class-wise means and covariances {µ`}k

`=1 and {Σ`}k
`=1 of data, thereby highlight-

ing the universality aspect of these methods. Our results notably support the validity
of the GMM model in the high-dimensional regime as considered in [BGC16, CBG+16,
Lia19, Mai19], and support the applicability of random matrix theory to the analysis of
AI methods on realistic data as the surprising images generated by GANs. Note that the
universality aspect does not suggest that real data are Gaussian vectors but rather that
ML algorithms (at least for the studied examples) “see” the data only through its first and
second order statistics.

1.4 Outline and Contributions

The rest of the manuscript is organized as follows: In Chapter 2 we provide some essen-
tial background and notions from random matrix theory along with some toy applica-
tions to ML through the so-called spiked models (see Section 2.3). We further provide in
Section 2.4 some basic notions from the concentration of measure theory and recall some
essential results from [LC18b] which will be used throughout the manuscript. In chap-
ter 3 we present our first contribution concerning the analysis of large Gram matrices
under the concentration assumption, from the works:

(C1) MEA. Seddik, C. Louart, M. Tamaazousti, R. Couillet, “Random Ma-
trix Theory Proves that Deep Learning Representations of GAN-data Behave
as Gaussian Mixtures”, International Conference on Machine Learning
(ICML’20), Online, 2020.

(C1’) MEA. Seddik, M. Tamaazousti, R. Couillet, “Pourquoi les matrices aléa-
toires expliquent l’apprentissage ? Un argument d’universalité offert par les
GANs”, Colloque francophone de traitement du signal et des images
(Gretsi’19), Lille, France, 2019.

In Chapter 4, we present our contributions to the analysis of kernel matrices. In particu-
lar, Section 4.1 presents our second contribution from the work:

(C2) MEA. Seddik, M. Tamaazousti, R. Couillet, “Kernel Random Matrices of
Large Concentrated Data: The Example of GAN-generated Images”, IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP’19),
Brighton, United-Kingdom, 2019.

While Section 4.2 presents the analysis of kernel matrices of the type f (Σ̂) where Σ̂ stands
for the sample covariance matrix, along with an application to the Sparse PCA problem.
This work constitutes our third contribution from the work:

(C3) MEA. Seddik, M. Tamaazousti, R. Couillet, “A Kernel Random Matrix-
Based Approach for Sparse PCA”, International Conference on Learning
Representations (ICLR’19), New Orleans, United-States, 2019.

In Chapter 5 we present applications to neural networks. In particular, Section 5.1 treats
the study of the Softmax layer in neural networks which constitutes our fourth contribu-
tion from the work:
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(C4) MEA. Seddik, C.Louart, R. Couillet, M. Tamaazousti, “The Unexpected
Deterministic and Universal Behavior of Large Softmax Classifiers”, AISTATS
2021.

Moreover, Section 5.2 presents an analysis of α-Dropout in a single hidden-layer network
which basically consists in dropping out features at random an replacing them with some
arbitrary value α. Our analysis exhibits a value of α 6= 0 which maximizes the general-
ization accuracy of the studied network. This analysis is based on the following work:

(C5) MEA. Seddik, R. Couillet, M. Tamaazousti, “A Random Matrix Analysis of
Learning with α-Dropout”, The art of learning with missing values ICML
workshop (ICML’20), Online, 2020.

In the appendix Chapter B, we present some practical contributions conducted during
this thesis. In particular, the work:

(C6) MEA. Seddik, M. Tamaazousti, J. Lin, “Generative Collaborative Networks
for Single Image SuperResolution”, Neurocomputing’2019.

presents deep learning models for single-image super-resolution. The last contribution
presents compression methods for dense neural networks, which is based on the work:

(C7) MEA. Seddik, H.Essafi, A.Benzine, M.Tamaazousti, “Lightweight Neural
Networks from PCA & LDA Based Distilled Dense Neural Networks”, Inter-
national Conference on Image Processing (ICIP’20), Online, 2020.

Finally, Chapter 6 concludes the manuscript and discusses perspectives and the appendix
Chapter C presents the proofs of the different theoretical results of this thesis.
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Random matrix theory, originally, aims to describe the eigenvalue distribution (also
known as the spectral measure) of large random matrices. There exist different ap-
proaches in the literature to analyze these random matrices such as the moments method,
or approaches involving tools from free probabilities, see [Tao12] and the references
therein for an overview. In this manuscript we will consider the Stieltjes transform ap-
proach, which is often presented as the central notion of the theory [BS+98a].

Tackling machine learning applications of random matrix theory, the description of
random matrices eigenvalues distribution is not the central interest, and the objects of
interest are more fundamentally sub-spaces which are described by largest eigenvectors
of random matrices (in the case of unsupervised learning) or quadratic forms involv-
ing random matrices (in the case of supervised learning). Examples (but not limited
to) of machine learning methods which rely on eigenvectors of random matrices are:
principal component analysis (PCA) [WEG87], spectral clustering [VLBB08], some semi-
supervised learning approaches [AMGS12], Least-squared support vector machines [SV99]
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and random neural networks also known as extreme learning machines [HZS06].

Therefore, a more general notion than the Stieltjes transform is of central interest for
machine learning application of the theory. This notion, generally referred to as the re-
solvent of large random matrices and will be the central notion of this manuscript. The
resolvent of a matrix allows the access and consistent estimation of complex functionals
of this matrix (such as the aforementioned quadratic forms), and fundamentally describes
its spectral measure, permits the location and description of its isolated eigenvalues and
eigenvectors, and provides estimations for bilinear forms, therefore permits the estima-
tion of the performances of various machine learning models. We refer the reader to the
works [Mai19, Lia19] where applications of the theory to various machine learning algo-
rithms are presented relying on Gaussian mixture models.

We begin this section by first introducing the fundamental notions from random ma-
trix theory, then give fundamental random matrix theory results and at the end present
extensions involving tools from the concentration of measure theory which will allow the
theory, as we will present subsequently, to find applications using realistic data.

2.1 Fundamental Random Matrix Theory Notions

2.1.1 The resolvent matrix notion

We first introduce the notion of the resolvent matrix.

Definition 3 (Resolvent). For a given symmetric matrix M ∈ Mp, the resolvent Q(z) of M is
defined, for z ∈ C \R+, as

Q(z) ≡ (M − zIp)
−1. (2.1)

We will systematically adopt the following notations for the resolvent matrix through-
out this manuscript.

Notation 1. Let X ∈ Mp,n and z ∈ C \R+, the matrix M in Definition 3, for which we will
define a resolvent, will be either of the form XXᵀ or XᵀX, we will thus denote

Q(z) ≡
(
XXᵀ − zIp

)−1 ∈ Mp, R(z) ≡ (XᵀX − zIn)
−1 ∈ Mn (2.2)

Note that the dependence on z will be some times omitted if there is no ambiguity
and we will simply write Q or R instead of Q(z) or R(z) respectively.

2.1.2 Stieltjes transform and spectral measure

The resolvent Q is naturally related to the empirical spectral measure µ of M, through the
Stieltjes transform mµ, which we will be defined subsequently.

Definition 4 (Empirical spectral measure). For a given symmetric matrix M ∈ Mp, the
empirical spectral measure µ associated to M is defined through the normalized counting measure
of the eigenvalues λ1, . . . , λp of M, specifically,

µ(x) ≡ 1
p

p

∑
i=1

δλi(x). (2.3)
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The spectral measure µ of M is a (random if M is random) probability measure, since
for all x ∈ R, µ(x) ≥ 0 and since

∫
R

µ(x)dx = 1. Therefore, we can define its associated
Stieltjes transform as follows.

Definition 5. (Stieltjes Transform) Given some real probability measure µ with support S(µ),
the Stieltjes transform q(z) is defined, for all z ∈ C \ S(µ), as

q(z) ≡
∫

R

dµ(λ)

λ− z
. (2.4)

Note that the Stieltjes transform q(z) is closely related to its associated resolvent ma-
trix Q through the following algebraic link.

q(z) =
1
p

p

∑
i=1

∫
R

δλi(λ)

λ− z
=

1
p

p

∑
i=1

1
λi − z

=
1
p

tr(Q(z)) (2.5)

The Stieltjes transform q has various benefits and interesting properties, which are:

1. q is complex analytic on its definition domain C \ S(µ).

2. q(z) is bounded for z ∈ C \ S(µ) as

|q(z)| ≤ 1
dist(z,S(µ)) .

3. if =(z) > 0 then =[q(z)] > 0.

4. Since q′(z) =
∫

R
(t− z)−2dt > 0, m is an increasing function with limx→±∞ q(x) = 0

if S(µ) is bounded.

The Stieltjes transform q as its name implies (transform), admits an inverse formula
which notably provides the recovery of is underlying spectral measure µ, as per the fol-
lowing theorem.

Theorem 2.1 (Inverse formula of the Stieltjes transform). Let a, b be some continuity points
of the probability measure µ, therefore the segment [a, b] is measurable with µ and we precisely
have

µ([a, b]) =
1
π

lim
ε→0

∫ b

a
=[q(x + iε)]dx. (2.6)

Moreover, if µ admits a density function f at some point x, i.e., µ(x) is differentiable in a neigh-
borhood of x with limε→0 ε−1µ([x− ε/2, x + ε/2]) = f (x), then we have the inverse formula

f (x) =
1
π

lim
ε→0
=[q(x + iε)]. (2.7)

And finally, if µ has an isolated mass at some point x, then

µ({x}) = − 1
π

lim
ε→0

i ε q(x + iε) (2.8)

The resolvent matrix Q can be viewed as a matrix-valued Stieltjes transform. Indeed,
relying on [HLN+07], the definition of the Stieltjes transform can be extended to p × p
matrix-valued positive measures M(dλ) in the sense that

µv(dλ) ≡ vᵀM(dλ)v, (2.9)
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is a positive real-valued measure for all v ∈ Rp. Using the spectral decomposition M =
U diag{λi}

p
i=1Uᵀ where λ1, . . . , λp stand for the eigenvalues of M, the resolvent matrix

Q(z) of M can be written as

Q(z) =
∫

R

M(dλ)

λ− z
= U diag

{
1

λi − z

}p

i=1
Uᵀ (2.10)

And therefore, Q(z) verifies similar properties as the real-valued Stieltjes transform, in
particular, Q(z) is complex analytic and satisfies ‖Q‖ ≤ dist(z,S(µ))−1.

2.1.3 Cauchy’s integral and statistical inference

Since Q is complex analytic, it benefits form complex analysis tools which allow us to
infer statistical quantities involving complex functionals of M. In particular, we have the
following theorem which provides an elegant bridge between the resolvent and Cauchy’s
integral theorem.

Theorem 2.2 (Cauchy’s integral). Given Γ ⊂ C some positively oriented contour and a complex
function ζ(z) which is analytic in a region containing the contour Γ, we have

• if Γ is surrounding some z′ ∈ C, then ζ(z′) = − 1
2πi

∮
Γ

ζ(z)
z′−z dz;

• otherwise, 1
2πi

∮
Γ

ζ(z)
z′−z dz = 0.

Using this result, one can immediately access linear functionals of the eigenvalues λ1, . . . , λp
of M and using the Stieltjes transform or the resolvent matrix Q(z) by

1
p

p

∑
i=1

ζ(λi) = −
1

2πi

∮
Γ

ζ(z)
1
p

tr(Q(z))dz = − 1
2πi

∮
Γ

ζ(z)q(z)dz (2.11)

for all ζ complex analytic in a compact neighborhood of S(µ), the support of µ.
In addition to estimate funcionnals of the eigenvalues values of M, one can access

its eigenvectors and eigenspaces with similar arguments. Indeed, through the spectral
decomposition of M = UΛUᵀ with U = [u1, . . . , up] ∈ Mp and Λ = diag(λ1, . . . , λp),
we have

Q(z) =
p

∑
i=1

uiu
ᵀ
i

λi − z
. (2.12)

And if some eigenvalue λi is of multiplicity one, we can directly access its corresponding
eigenvector ui through

uiu
ᵀ
i = − 1

2πi

∮
Γi

Q(z)dz, (2.13)

where Γλi a positive oriented contour surrounding the eigenvalue λi. We will be particu-
larly interested in measuring the alignment between ui and some deterministic vector u,
so the evaluation of the quantity

|uᵀui|2 = − 1
2πi

∮
Γλi

uᵀQ(z)udz (2.14)

Note that the resolvent matrix Q provides access to the quantities 1
p ∑i ζ(λi) and |uᵀui|

through scalar quantities and quadratic forms involving Q, i.e., the quantities tr(Q(z))
and uᵀQ(z)u. The estimation of these quantities will be notably possible through the
notion of deterministic equivalent [HLN+07] which will be used as a proxy for statistical
inference. The next subsection provides a description for this notion.
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2.1.4 Deterministic and random equivalents

Throughout this manuscript the matrix M is a large dimensional random matrix, which is
of either the following forms: 1. a sample covariance matrix 1

n XXᵀ; 2. a Gram matrix
1
p XᵀX; 3. a kernel covariance matrix f

( 1
n XXᵀ

)
where f is applied entry-wise; 4. or a

kernel random of the form
{

f
(

1
p‖xi − xj‖2

)}n

i=1
, where X = [x1, . . . , xn] ∈ Mp,n is a

random matrix and f a function with some regularity conditions. In the case of linear
models, i.e., matrices of the form M = 1

n XXᵀ and under some growth rate conditions,
the associated resolvent matrix Q(z) has a deterministic behavior [HLN+07] and there-
fore equivalent in some sense to a deterministic matrix Q̄(z). Whereas, for kernel models
involving some non-linear function f , the internal mechanism of the matrix M is acces-
sible through a random matrix equivalent [EK+10b, CBG+16] M̃ which results from a
linearization of M and will allow the study of M via a deterministic equivalent of the
resolvent of M̃.

The notion of deterministic equivalent of a resolvent matrix Q is related to the existence
of a non-asymptotic deterministic matrix having, in probability or almost surely, the same
scalar observations as the random observations through Q. This character is notably a
manifestation of the concentration of measure phenomenon which we will discuss at the
end of this chapter. We therefore have the following definition for the notion of deter-
ministic equivalents [HLN+07].

Definition 6 (Deterministic Equivalent). A squared deterministic matrix Q̄ ∈ Mp is said to
be a deterministic equivalent for the symmetric random matrix Q ∈ Mp if, for all deterministic
matrix A ∈ Mp and vectors a, b ∈ Rp of bounded norms (operator and Euclidean, respectively),
we have, as p→ ∞, with some probability or almost surely

1
p

tr A(Q− Q̄)→ 0, aᵀ(Q− Q̄)b→ 0 (2.15)

Remark 2.1 (On the definition of deterministic equivalents). Definition 6 can be compactly
expressed thanks to the linear concentration notion introduced by [LC18b, Definition 2.1] that is
particularly adapted with concentration of measure theory presented subsequently in Section 2.4.
Specifically, a deterministic matrix Q̄ ∈ Mp is a deterministic equivalent of a random matrix
Q ∈ Mp if for any bounded linear form u : Mp → R with a unit operator norm (i.e., for all
A ∈ Mp, |u(A)| ≤ ‖A‖) we have

∀t > 0 : P {|u(Q)− u(Q̄)| ≥ t} ≤ α(t)

where α : R+ → [0, 1] is any non-increasing and left continuous concentration function. Note
thatMp could be replaced with any normed space (E , ‖ · ‖) but for convenience we restrict the
notion toMp enrolled with the operator norm ‖ · ‖.

Therefore, Definition 6 allows to access spectral information about the random ma-
trix M. For instance, the Stieltjes transform of its (random) spectral measure and bilinear
forms involving Q(z), the resolvent of M. For instance, if a deterministic equivalent
Q̄(z) for Q(z) exists in the sense of Definition 6, we have that almost surely 1

p tr(Q(z)−
Q̄(z)) → 0 which implies that the Stieltjes transform m of the spectral distribution µ
converges to the deterministic quantity 1

p tr Q̄(z). Similarly, and exploiting Definition 6
using the bilinear form involving Q(z), the (isolated) eigenvectors of M are thus accessi-
ble through the deterministic equivalent Q(z).
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Note that to exhibit such deterministic equivalent, it suffices to have a control of
‖EQ− Q̄‖which generally unfolds from a control of the variance of the quantities 1

p tr(AQ)

and aᵀQb. EQ is also a deterministic equivalent for Q but is not tractable in practice,
however, we can generally find Q̄ such that ‖EQ − Q̄‖ → 0 where Q̄ is computable
through fixed-point equations or in some rare cases in close form, such as the classical
examples of Marchenko-Pastur and the semi-circle laws.

We consider the following notations when a deterministic equivalent Q̄ exists for a
random resolvent matrix Q, and when a random matrix equivalent M̃ exists for a random
matrix M.

Notation 2 (Deterministic equivalent). Let Q ∈ Mp be a random matrix and Q̄ ∈ Mp a
deterministic matrix, we write

Q↔ Q̄ (2.16)

if Q̄ satisfies Definition 6.

Notation 3 (Random equivalent). Let M, M̃ ∈ Mp be two random matrices, we write

M ! M̃ (2.17)

if ‖E[M − M̃]‖ → 0.

Note that we will denote, throughout the manuscript, deterministic equivalents with
an up bar symbol (i.e., Q̄) and the random equivalents with an up tilde symbol (i.e., M̃).

2.2 Fundamental Random Matrix Theory Results

This section presents fundamental random matrix theory results, which provide expla-
nation about some machine learning algorithms. We particularly provide the histori-
cal result of Marchenko-Pastur [MP67] which describes the spectral distribution of large
sample covariance matrices. Since machine learning algorithms are generally applied to
data described by distinct “clusters”, this section will also present the extension of the
Marchenko-Pastur result to mixture models data [BGC16]. The nice thing about random
matrix theory is that it relies on tools from different branches of mathematics such as
complex analysis (as we previously saw), linear algebra and probability theory. We will
first briefly present some essential matrix identities and statistical tools and then provide
the aforementioned results with short sketches of proofs (for readability).

2.2.1 Matrix identities and key lemmas

As we discussed in the previous section, to exhibit a deterministic equivalent Q̄(z) of
a given resolvent random matrix Q(z), one needs to control the quantity ‖E[Q(z) −
Q̄(z)]‖. Since both Q(z) and Q̄(z) are inverse of matrices, the following identity is of
central interest.

Lemma 2.1 (Resolvent identity). Let A and B be some invertible matrices, we have

A−1 − B−1 = A−1(B− A)B−1 (2.18)

Proof. Simply through A−1(B− A)B−1 = A−1BB−1 − A−1AB−1 = A−1 − B−1.
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As we have discussed, the random matrix M can be of the form XXᵀ or XᵀX for some
random matrix X ∈ Mp,n, thus we have the following lemma which relates the resolvent
matrices of XXᵀ and XᵀX.

Lemma 2.2. For X ∈ Mp,n, we have

X(XᵀX − zIn)
−1 = (XXᵀ − zIp)

−1X, (2.19)

for z ∈ C \ {0} distinct from the eigenvalues of XXᵀ.

We also have the following lemma, known as Sylvester’s identity, which provides a
link between the resolvents of XXᵀ and XᵀX through the determinant operator.

Lemma 2.3 (Sylvester’s identity). For X ∈ Mp,n, we have

det(XXᵀ − zIp) = det(XᵀX − zIn)(−z)p−n. (2.20)

Sylvester’s identity notably shows that XXᵀ and XᵀX share the same non-zero eigen-
values except n− p zero eigenvalues of XᵀX if n ≥ p. We thus have the following result
which relates the Stieltjes transforms of the spectral measures µXXᵀ and µXᵀX of the ran-
dom matrices XXᵀ and XᵀX respectively.

Lemma 2.4. Let X ∈ Mp,n with n ≥ p, and z ∈ C \ {0} not an eigenvalue of XᵀX. Denote
Q(z) ≡ (XXᵀ − zIp)−1 and R(z) ≡ (XᵀX − zIp)−1, we have

tr Q(z) = tr R(z) +
n− p

z
. (2.21)

In particular,

µXXᵀ =
n
p

µXᵀX +
n− p

p
δ0. (2.22)

Generally, the key approach to prove random matrix theory results relies on leave-
one-out or perturbation approach to handle the dependencies. This approach consists in
removing some i-th contribution from the resolvent Q of M to build a resolvent Q−i of
M−i deprived of the i-th contribution. The main idea being that Q and Q−i still have the
same behavior but Q−i allows one to handle the dependencies. Technically, Q−i is built
using matrix identities such as the Woodbury identity given in the following lemma.

Lemma 2.5 (Woodbury identity). For M ∈ Mp and U, V ∈ Mp,k, such that M and M +
UVᵀ are invertible, we have

(M + UVᵀ)−1 = M−1 −M−1U(Ik + VᵀMU)VᵀM−1 (2.23)

The perturbation UVᵀ is generally of low rank k and the special case k = 1, U and
V reduces to vectors u, v ∈ Rp respectively. In this case, we simply have the Sherman-
Morrison formula given in the following lemma.

Lemma 2.6 (Sherman-Morrison). Let M ∈ Mp invertible and u, v ∈ Rp such that 1 +
vᵀA−1u 6= 0, we have

(M + uvᵀ)−1 = M−1 − M−1uvᵀM−1

1 + vᵀM−1u
, (M + uvᵀ)−1u =

M−1u
1 + vᵀM−1u

. (2.24)
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We give in the following an example where these identities help to handle the depen-
dencies in random matrices.

Example 1. Suppose that Q(z) =
( 1

n XXᵀ − zIp
)−1 where X = [x1, . . . , xn] ∈ Mp,n and

xi’s are independent random vectors. Further denote Q−i(z) =
( 1

n XXᵀ − 1
n xix

ᵀ
i − zIp

)−1 the
resolvent Q(z) deprived from the i-th vector xi. Using Lemma 2.6 we therefore have the identities

Q(z) = Q−i(z)−
Q−i(z) 1

n xixiQ−i(z)
1 + 1

n xᵀi Q−i(z)xi
, Q(z)xi =

Q−i(z)xi

1 + 1
n xᵀi Q−i(z)xi

(2.25)

where Q−i(z) is independent of xi by construction.

Lemma 2.6 will also be of particular interest when handling informative random ma-
trix models as we will present in Section 2.3. A useful application of Lemma 2.6 is when
replacing M ← M − zIp for z ∈ C, and letting u = γu where γ ∈ R, which leads to the
following rank-1 perturbation lemma for the resolvent of M.

Lemma 2.7 (Perturbation lemma [SB95]). Let A, M ∈ Mp some symmetric matrices, u ∈ Rp,
γ ∈ R and z < 0, then∣∣∣tr A(M + γuuᵀ − zIp)

−1 − tr A(M − zIp)
−1
∣∣∣ ≤ ‖A‖
|=(z)| (2.26)

Note that the bound in Lemma 2.7 does not depend on ‖u‖. In particular, denoting
the (perturbed) resolvent Qγ(z) ≡ (M + γuuᵀ − zIp)−1, and letting A = 1

p Ip, we obtain

1
p

tr Qγ(z) =
1
p

tr Q(z) +O(p−1), (2.27)

which shows, since 1
p tr Q(z) is the Stieltjes transform of the empirical spectral measure

of M, that the spectral measure of M + γuuᵀ is asymptotically close to that of M for any
u, in the large limit of p.

We further have the following fundamental trace Lemma which is at the core of the
study of various random matrix models.

Lemma 2.8 (Trace Lemma [BS08]). Let x ∈ Rp a random vector with i.i.d. entries with zero
mean, unit variance and finite 2k order moment for some k > 1. Let Q ∈ Mp some deterministic
or random (independent of x) matrix, then there exists a constant C > 0 such that

E

[∣∣∣∣ 1p xᵀQx− 1
p

tr Q
∣∣∣∣k
]
≤ C
‖Q‖k

p
k
2

In particular, if lim supp ‖Q‖ < ∞, and x has entries with finite fourth-order moment, we have
by Markov’s inequality and Borel Cantelli Lemma,

1
p

xᵀQx− 1
p

tr Q a.s.−→ 0

Lemma 2.8 basically shows that the quadratic form 1
p xᵀQx concentrates around its ex-

pectation at large p. This result will particularly be exploited in the following Subsection
to prove the fundamental Marčenko-Pastur law.
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2.2.2 The Marčenko-Pastur Law

Having set the principal tools and notions presented previously, we are now in place to
state one of the fundamental random matrix theory results, namely the Marčenko-Pastur
law.

Theorem 2.3 (Marčenko-Pastur law [MP67]). Let X ∈ Mp,n be a random matrix with i.i.d.
entries having zero mean, unit variance and bound fourth order moment. Then, as p, n → ∞
with p/n→ c ∈ (0, ∞), the empirical spectral distribution µ of 1

n XXᵀ satisfies

µ
a.s.−→ µMP

in the weak convergence sense, where µMP is a deterministic measure and particularly satisfies
µMP({0}) = max{0, 1− c−1}, moreover µMP has a continuous density function fMP on the
compact support [(1−

√
c)2, (1 +

√
c)2] defined as

fMP(x) =
1√

2πcx

√
(x− λ−)(λ+ − x)

where λ± = (1±
√

c)2.

Proof. The proof starts by writing the Stieltjes transform m(z) of µ as

m(z) =
1
p

tr
(

1
n

XXᵀ − zIp

)−1

=
1
p

p

∑
i=1

[(
1
n

XXᵀ − zIp

)−1
]

ii

and writing

X =

[
xᵀ1

X−1

]
therefore, for =(z) > 0,[(

1
n

XXᵀ − zIp

)−1
]

11

=

[( 1
n xᵀ1 x1 − z 1

n xᵀ1 X−1
1
n X−1x1

1
n X−1Xᵀ

−1 − zIp−1

)−1
]

11

=
1

−z− z 1
n xᵀ1

( 1
n Xᵀ
−1X−1 − zIn

)−1
x1

where the last equality comes from standard block matrix inverse formula from linear
algebra. Therefore, by Trace Lemma 2.8, as p, n→ ∞[(

1
n

XXᵀ − zIp

)−1
]

11

− 1

−z− z 1
n tr

( 1
n Xᵀ
−1X−1 − zIn

)−1
a.s.−→ 0

Moreover, since

XᵀX = Xᵀ
−1X−1 + x1xᵀ1

we have by Rank-1 perturbation Lemma 2.7[(
1
n

XXᵀ − zIp

)−1
]

11

− 1

−z− z 1
n tr

( 1
n XᵀX − zIn

)−1
a.s.−→ 0
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and recalling Lemma 2.4, we have 1
n tr

( 1
n XᵀX − zIn

)−1
= 1

n tr
( 1

n XXᵀ − zIp
)−1− n−p

z n we
have [(

1
n

XXᵀ − zIp

)−1
]

11

− 1

1− p
n − z− z 1

n tr
( 1

n XXᵀ − zIp
)−1

a.s.−→ 0

Repeating the same procedure for the diagonal entries of
( 1

n XXᵀ − zIp
)−1

up to p, and
averaging, we have for =(z) > 0

m(z)− 1
1− p

n − z− z p
n m(z)

a.s.−→ 0

Therefore, m(z) a.s.−→mMP(z) which is a solution of the fixed point equation (with positive
branch)

mMP(z) =
1

1− c− z− czmMP(z)

thus

mMP(z) =
1− c
2cz

− 1
2c

+

√
(λ+ − z)(z− λ−)

2cz

Finally, by the inverse Stieltjes Transform in Theorem 2.1, we have for x ∈ [λ−, λ+]

lim
ε→0

1
π
=[mMP(x + iε)] =

√
(λ+ − z)(z− λ−)

2πcx

And for x = 0,

lim
ε→0

iε=[mMP(iε)] = (1− c−1)1c>1

which concludes the proof.

2.2.3 Random matrices of mixture models

From the signal processing or machine learning perspectives, one is interested in infer-
ring and identifying patterns from the data. Naturally, this supposes that data are made
by some correlation structures instead of pure noise. Therefore, generalizations of the
Marčenko-Pastur result to structured data models is more relevant for signal processing
and machine learning applications. A first generalization to the sample covariance matrix
model has been proposed by Silverstein and Bai [SC95] which we recall in the following
theorem.

Theorem 2.4 (Sample covariance matrix [SC95]). Let Σ ∈ Mp be some nonnegative definite
matrix with e.s.d. ν → ν̄ in the weak sense. Let Z ∈ Mp,n a random matrix with i.i.d. entries
having zero mean and unit variance. Consider the data matrix

X = Σ
1
2 Z ∈ Mp,n

Then, as p, n→ ∞ with p/n→ c ∈ (0, ∞), the e.s.d. µ of 1
n XXᵀ ∈ Mp satisfies

µ
a.s.−→ µ̄
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in the weak convergence sense, and the Stieltjes transform m̄(z) of µ̄ is the unique solution with
=m̄(z) > 0 of the fixed point equation

m̄(z) =
(
−z + c

∫ t
1 + tm̄(z)

ν̄(dt)
)−1

In particular, the limiting measure µ̄ is continuous on R+ and real analytic.

Moreover, in practice, one can face data with hierarchical structure and thus can be
distributed in different clusters with different covariance profiles, i.e., a mixture model.
Benaych and Couillet [BGC16] have notably extended Theorem 2.4 under the Gaussian
mixture model (see Definition 1) which is more relevant from the machine learning point
of view.

Theorem 2.5 (Gram matrices of Gaussian mixture models [BGC16]). Let Σ1, . . . , Σk ∈ Mp

be some nonnegative definite matrices. Let a data matrix X = [X(1), . . . , X(k)] ∈ Mp,n with

X(`) = [x(`)1 , . . . , x(`)n`
] ∈ Mp,n`

and x(`)i = Σ
1
2
` z(`)i where z(`)i is a random Gaussian vector with

i.i.d. zero mean and unit variance entries. Let the resolvents

Q(z) =
(

1
p

XXᵀ − zIp

)−1

, R(z) =
(

1
p

XᵀX − zIn

)−1

Then, as n1, . . . , nk, p→ ∞ with n`/n→ ca ∈ (0, 1), p/n→ c ∈ (0, ∞) and k being bounded,
we have

Q(z)↔ Q̄(z) = −1
z

(
Ip +

k

∑
`=1

c`
c

g`(z)Σ`

)−1

R(z)↔ R̄(z) = diag {g`(z)1n`}
k
`=1

where g`(z) is the unique solution to the fixed point equation

g`(z) = −
1
z
(1 + ḡ`(z))

−1 , ḡ`(z) = −
1

p z
tr Σ`

(
Ip +

k

∑
a=1

ca

c
ga(z)Σa

)−1

In essence, Theorem 2.5 provides deterministic equivalents for the resolvents Q(z)
and R(z) which is more fundamental, as discussed in Subsection 2.1.3 than just describ-
ing the spectrum of the underlying random matrices. Indeed, such deterministic equiv-
alents can then be used as proxies to infer the performances of the studied methods, an
example of study concerns kernel methods as performed in [CBG+16]. In the next sub-
section, we provide two simple examples to illustrate how these deterministic can be
exploited to study simple machine learning algorithms. In particular, we first provide
a deterministic equivalent for a random matrix model of the form “Information + Noise”
also referred to as spiked models in the random matrix theory community.

2.3 Connections with machine learning through spiked models

In this section, we consider a simple toy example model for the data, namely we consider
data distributed in two classes C1 and C2 with opposite means and isotropic covariances.
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Specifically, we consider a data matrix X = [x1, . . . , xn] ∈ Mp,n such that, for xi ∈ C` for
` ∈ {1, 2}

xi = (−1)`µ + zi with zi ∼ N (0, Ip) (2.28)

where µ ∈ Rp. Without loss of generality, supposing that the data are arranged in classes
in the data matrix X and denoting y = [−1, . . . ,−1,+1, . . . ,+1]ᵀ ∈ Rn the vector of
labels, in matrix from the data matrix is given by

X = µyᵀ + Z with Z = [z1, . . . , zn] ∈ Mp,n (2.29)

The model in equation 2.29 falls within the class of so-called spiked random matrix mod-
els which have been largely studied in random matrix theory [BGN11, BAP+05]. In par-
ticular, exploiting the result of Hachem et al. [HLN+07], one can design deterministic
equivalents (in the sense of Definition 6) for the corresponding resolvents of the sample
covariance and Gram matrices defined respectively as follows, for z ∈ C \R+

Q(z) =
(

1
n

XXᵀ − zIp

)−1

, R(z) =
(

1
n

XᵀX − zIn

)−1

(2.30)

We particularly need the following assumptions subsequently for the design of such de-
terministic equivalents. These assumptions particularly ensure that the above resolvents
are of bounded spectral norm asymptotically when p/n→ (0, ∞) as n→ ∞.

Assumption 2 (Growth rate). As n→ ∞,
1. p/n→ c ∈ (0, ∞); 2. |C`|/n→ ca ∈ (0, 1); 3. ‖µ‖ = O(1).

Exploiting the result of [HLN+07], deterministic equivalents of the above resolvents
are respectively given by

Q(z)↔ Q̄(z) =
(

q−1(z)Ip −
1
n

zr(z)‖y‖2µµᵀ
)−1

R(z)↔ R̄(z) =
(

r−1(z)In −
1
n

zq(z)‖µ‖2yyᵀ
)−1

where (q(z), r(z)) are the unique solution to the fixed point system of equations

q(z) =
−1

z(1 + 1
n tr R̄(z))

, r(z) =
−1

z(1 + 1
n tr Q̄(z))

Since ‖y‖2 = n and denoting ȳ = 1√
n y, we obtain the following result using the Sherman-

Morrison identity from Lemma 2.6.

Theorem 2.6 (Deterministic equivalents for Q(z) and R(z)). Under Assumption 2, deter-
ministic equivalents for Q(z) and R(z) as defined in equation 2.30 are given by

Q(z)↔ Q̄(z) = q(z)Ip −
q2(z)

1 + (c + ‖µ‖2)q(z)
µµᵀ

R(z)↔ R̄(z) = r(z)In −
r2(z)‖µ‖2

1 + (1 + ‖µ‖2)r(z)
ȳȳᵀ

where

q(z) =
1− c− z +

√
(1− c− z)2 − 4zc
2zc

, r(z) =
c− 1− z +

√
(c− 1− z)2 − 4z
2z
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We will provide in the following subsections two simple examples of how these de-
terministic equivalents can be exploited to infer the performances of ML algorithms. In
particular, we first consider an example of unsupervised learning involving the Gram
matrix 1

n XᵀX in Subsection 2.3.1 and then an example of supervised linear ridge regres-
sion involving the sample covariance matrix 1

n XXᵀ in Subsection 2.3.2.

2.3.1 Simple example of unsupervised learning

As we discussed in the introduction, kernel spectral clustering is an unsupervised learn-
ing algorithm which aims at applying a clustering algorithm on the subspace correspond-
ing to the largest eigenvalues of the kernel matrix. In this subsection, we consider the
example of a linear kernel and we will illustrate with this example how Theorem 2.6 can
be exploited in order to infer the performances of such algorithm. We therefore consider
the kernel matrix defined as

K =
1
n

XᵀX (2.31)

From Theorem 2.6, the corresponding deterministic equivalent is

R(z)↔ R̄(z) = r(z)In −
r2(z)‖µ‖2

1 + (1 + ‖µ‖2)r(z)
ȳȳᵀ

which namely shows that the behavior of K involves a noise term r(z)In and a rank-1
informative term ∝ ȳȳᵀ, in terms of spectrum K corresponds to a spiked Marčenko-Pastur
distribution, i.e., the spectrum of K will contain a bulk of eigenvalues with limiting law
corresponding to the Marčenko-Pastur law and an isolated (above some phase transition)
eigenvalue corresponding to the information about the two classes in data. Moreover, the
eigenvector of K corresponding to the isolated eigenvalue will be aligned to the labels
vector ȳ above some phase transition. Let us first determine the isolated eigenvalue in
the spectrum of K.

Isolated eigenvalue. We have the following proposition which provides the asymptotic
largest eigenvalue of K under the high-dimensional regime.

Proposition 2.1 (Isolated spike [BAP+05]). Under Assumption 2, denoting λmax the largest
eigenvalue of K, then

λmax
a.s.−→ λ̄max =

{(
1 + ‖µ‖2) (1 + c

‖µ‖2

)
> (1 +

√
c)2 if ‖µ‖2 ≥

√
c

(1 +
√

c)2 otherwise

Proof. Given the above form of the deterministic equivalent R̄(z), clearly a spike λ > (1+√
c)2 appears in the spectrum of K when R̄(z) gets singular. Indeed, given the expression

of r(z), it is defined for real values in the interval ((1 +
√

c)2, ∞), thus to find the isolated
spike λ it suffices to solve the equation 1 + (1 + ‖µ‖2)r(z) = 0 in z from which we obtain

λ =
(
1 + ‖µ‖2) (1 +

c
‖µ‖2

)
Furthermore, to obtain the condition on ‖µ‖2 under which such a spike gets out of the
right edge λ > (1 +

√
c)2, we need to express z evaluated at the spike λ in terms of

m = ‖µ‖2 and then study the resulting function. Indeed, r(z) satisfies

zr2(z) + (1 + z− c)r(z) + 1 = 0
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Figure 2.1: Histogram of the eigenvalues of the kernel matrix K = 1
n XᵀX with X defined

in equation 2.29. We considered the dimensions p = 1100, n = 1000 and µ = [2, 0p−1]
ᵀ ∈

Rp.

from which we can express the reciprocal function

z(r) =
c− 1
1 + r

− 1
(1 + r)r

Besides, the spike λ satisfies (where we recall m = ‖µ‖2)

r(λ) =
−1

1 + m
, 1 + r(λ) =

m
1 + m

, (1 + r(λ))r(λ) =
−m

(1 + m)2

Therefore, the spike λ gets isolated from the main bulk at the following value

zλ(m) = z(r(λ)) =
(c− 1)(1 + m)

m
+

(1 + m)2

m
which defines a function w.r.t. m that is first decreasing and then increasing for large val-
ues of m. Consequently, the value of m which minimizes the above function corresponds
to the phase transition at which the spike starts to get away from the bulk. Therefore,
solving z′λ(m) = m2−c

m2 = 0 yields to m =
√

c since m ≥ 0.

Proposition 2.1 shows that the largest eigenvalue of K converges to a limiting value
λ̄max which depend on the signal strength only above some condition ‖µ‖2 ≥

√
c, i.e.,

only when the classes are theoretically separable (for a large enough value of ‖µ‖2). Fig-
ure 2.1 depicts the spectrum of the random kernel matrix K, as theoretically predicted,
the spectrum is made of a bulk of eigenvalues converging to the Marčenko-Pastur Law
along with a largest eigenvalue – spike – which corresponds to the informative part of the
model through the signal µ.

Remark 2.2 (On the fluctuations of the spike [BAP+05]). It has been shown in [BAP+05]
that the largest eigenvalue of K concentrates around its converging value, and the underlying con-
verges in law has been determined depending on the condition ‖µ‖2 ≥

√
c. Indeed, when ‖µ‖2 <

√
c it has been shown that p

2
3 (1 +

√
c)−

4
3 c−

1
2 (λmax − (1 +

√
c)2)

D−→T , where T stands for the
Tracy-Widom law. In contrast, when ‖µ‖2 ≥

√
c then with ν =

(
(1+‖µ‖2)2

c − (1+‖µ‖2)2

‖µ‖4

)
p

1
2 we

have ν(λmax − λ̄max)
D−→N (0, 1).
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We will further show in the following that the corresponding eigenvector to the largest
eigenvalue of K gets aligned with the true class labels vector ȳ for sufficiently separable
classes, i.e., when ‖µ‖ is large enough.

Largest eigenvector of K. Let ŷ be the largest eigenvector of K. In particular, ŷi stands
for the score of the datum xi to belong to class C1 if ŷi < 0 or class C2 otherwise. In
order to estimate the performance of spectral clustering on the considered example, one
is interested in evaluating the alignment |ŷᵀȳ|2 between the estimated scores ŷ and the
ground truth ones ȳ. The deterministic equivalent R̄(z) can therefore be exploited to
evaluate the quantity |ŷᵀȳ|2 as discussed in Subsection 2.1.3. Precisely,

|ŷᵀȳ|2 =
−1
2πi

∮
Γλmax

ȳᵀR(z)ȳdz =
−1
2πi

∮
Γλ̄max

ȳᵀR̄(z)ȳdz + op(1) (2.32)

where Γx stands for a sufficiently small positively-oriented complex contour surrounding
x and λ̄max =

(
1 + ‖µ‖2) (1 + c

‖µ‖2

)
is the converging value – as p, n → ∞ – of λmax the

largest eigenvalue of K. Note however that the above equality holds only when λ̄max is
isolated, i.e., when it gets outside the bulk that is only valid if ‖µ‖2 >

√
c, as we saw in

Proposition 2.1. Computing the above complex integral yields to the following result.

Proposition 2.2 (Largest eigenvector [Pau07]). Under Assumption 2, denoting ŷ the eigen-
vector of K corresponding to the largest eigenvalue, then

|ŷᵀȳ|2 a.s.−→ 1− c‖µ‖−4

1 + ‖µ‖−2 · 1‖µ‖2>
√

c

Proof. The result comes simply through the evaluation of the complex integral

|ŷᵀȳ|2 =
−1
2πi

∮
Γλ̄max

ȳᵀR̄(z)ȳdz + op(1)

=
−1
2πi

∮
Γλ̄max

r(z)− r2(z)‖µ‖2

1 + (1 + ‖µ‖2)r(z)
dz + op(1)

= −Resλ̄max

(
r(z)(1 + r(z))

1 + (1 + ‖µ‖2)r(z)

)
+ op(1)

= − lim
z→λ̄max

(z− λ̄max)r(z)(1 + r(z))
1 + (1 + ‖µ‖2)r(z)

+ op(1)

Using the Hospital rule, the above limit can therefore be evaluated as

|ŷᵀȳ|2 =
−r(λ̄max)(1 + r(λ̄max))

(1 + ‖µ‖2)r′(λ̄max)
+ op(1)

It remains thus to evaluate r and r′ at the limiting spike λ̄max =
(
1 + ‖µ‖2) (1 + c

‖µ‖2

)
.

Indeed, we already know that λ̄max satisfies

1 + (1 + ‖µ‖2)r(λ̄max) = 0 ⇒ r(λ̄max) =
−1

1 + ‖µ‖2

And since r(z) satisfies

zr2(z) + (1 + z− c)r(z) + 1 = 0
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|ŷ
ᵀ

ȳ|
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Figure 2.2: Simulated versus limiting values of |ŷᵀȳ|2 for K = 1
n XᵀX with X = Z + µyᵀ.

We considered c = p/n = 1/2, µ = [α, 0p−1]
ᵀ ∈ Rp varying α.

Taking the derivative w.r.t. z and taking z = λ̄max, we end up with

r′(λ̄max) =
−r(λ̄max)(1 + r(λ̄max))

2λ̄maxr(λ̄max) + (1 + λ̄max − c)

Proposition 2.2 provides the asymptotic limit of the alignment |ŷᵀȳ|2 between the true
score labels ȳ and the estimated ones ŷ as the largest eigenvector of the kernel matrix K,
thereby providing the asymptotic performances1 of spectral clustering when both p and
n grow large. Figure 2.2 depicts simulated versus limiting values of |ŷᵀȳ|2 which shows
that as p grow large with the ration c = limp p/n being constant, the simulated alignment
gets more and more closer to its asymptotic estimation.

Remark 2.3 (On other spiked models). Similar results as Proposition 2.2 hold for a wide range
of spiked models, mainly of one of the following forms:

K =
1
n

ZᵀZ + P, K =
1
n

Zᵀ(Ip + P)Z

K =
1
n
(Z + P)ᵀ(Z + P), K =

1
n

TZᵀ(Ip + P)ZT

where T and P are deterministic matrices with P of low rank, and Z ∈ Mp,n a random matrix
having zero mean and unit variance entries.

In the following subsection, we will see how to exploit Theorem 2.6 in order to express
the performances of linear regression to separate the two classes defined by the data
model in equation 2.29.

1Let Ĉi = sign(ŷi) be the estimated class Ci of the datum xi such that ȳi ŷi > 0. Then with probability

one, the accuracy is given by 1
n ∑n

i=1 δCi=Ĉi

a.s.−→Q
(√

ξ
1−ξ

)
with ξ =

1−c‖µ‖−4

1+‖µ‖−2 and Q(x) = 1
2π

∫ ∞
x e−t2/2dt.
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2.3.2 Simple example of supervised learning

We consider in this subsection a linear classifier with an `2 regularization defined by the
following optimization problem

min
w
E(w) = min

w

1
n
‖y− Xᵀw‖2 + γ‖w‖2 (2.33)

where w stands for the weights vector and γ ∈ R+ is the regularization parameter. The
data matrix X is defined in equation 2.29 and y ∈ Rn stands for the vector of labels such
that yi = (−1)` if xi ∈ C` for ` ∈ {1, 2}. The solution to the optimization problem in
equation 2.33 is explicitly given by

w =
1
n

Q(−γ)Xy with Q(z) =
(

1
n

XXᵀ − zIp

)−1

(2.34)

where the resolvent Q(z) appears at the core of the classifier. In particular, one is inter-
ested on the behavior of the (hard) decision function for a new test datum x ∈ C`, for
`{1, 2}, which is defined as

g(x) = xᵀw =
1
n

xᵀQ(−γ)Xy
C1
≶
C2

0 (2.35)

Given the above form of the decision function, it is a simple sum of independent
(not necessarily identically distributed) random variables. Therefore thanks to the Lya-
punov’s central limit theorem [Bil08], which we recall in the following theorem, g(x) has
a Gaussian approximation in the large limit when both p, n→ ∞ with p/n→ c ∈ (0, ∞).

Theorem 2.7 (Lyapunov’s CLT [Bil08]). Let X1, . . . , Xn be independent random variables of
means EXi = µi such that |Xi| have moments of order 2+ ε for some ε > 0 and let the Lyapunov
condition limn→∞

1
s2+ε

n
∑n

i=1 E
[
|Xi − µi|2+ε

]
= 0 hold, with sn = Var

1
2 [∑n

i=1(Xi − µi)]. Then,

1
sn

n

∑
i=1

(Xi − µi)
D−→ N (0, 1)

It suffices thus to estimate the first and second moments of the decision function g(x)
to fully describe its behavior and therefore infer the performances of the linear classifier.
We start by estimating m` = Eg(x) for x ∈ C` independent of the data matrix X. In the
following we will write Q = Q(−γ) and Q̄ = Q̄(−γ) for simplicity.

m` = Eg(x) = E

[
1
n

xᵀQXy
]
=

1
n

n

∑
i=1

E [yixᵀQxi]

The above expectation requires to manage the statistical dependencies between Q and
xi, which can be handled by Example 1, specifically through the identity

Qxi =
Q−ixi

1 + 1
n xᵀi Q−ixi

(2.36)

Moreover, relying on the trace Lemma 2.8, the quadratic form 1
n xᵀi Q−ixi converges2 to the

quantity 1
n tr (E[xixi]Q̄) where Q̄ is the deterministic equivalent of Q from Theorem 2.6.

2The resolvent Q−i has a bounded spectral norm, this will be highlighted in the next section.
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Specifically, we have by the perturbation Lemma 2.7

1
n

xᵀi Q−ixi − cq(−γ)
a.s.−→ 0 (2.37)

Consequently, the expectation of the decision function g(x) can be estimated as

m` −
(−1)`µᵀQ̄(−γ)µ

1 + cq(−γ)
a.s.−→ 0 ⇒ m` −

(−1)`‖µ‖2q(−γ)

1 + (c + ‖µ‖2)q(−γ)
a.s.−→ 0

Let us now turn into the estimation of the variance of g(x). Let Σ = E[xxᵀ] = Ip +
µµᵀ, we have

E
[
(xᵀw)2] = 1

n2 E [yᵀXᵀQxxᵀQXy] =
1
n2 E [yᵀXᵀQΣQXy]

=
1
n2

n

∑
i=1

y2
i E
[
xᵀi QΣQxi

]
+

1
n2 ∑

i 6=j
yiyjE

[
xᵀi QΣQxj

]
Using again the identity in equation 2.36 and the above estimate of the quadratic form
1
n xᵀi Q−ixi, we end up with

E
[
(xᵀw)2]− 1

n
tr (ΣE[Q−iΣQ−i])

(1 + cq(−γ))2 − 1
n2 ∑

i 6=j
yiyj

E
[
xᵀi Q−iΣQ−jxj

]
(1 + cq(−γ))2

a.s.−→ 0

where the term E[Q−iΣQ−i] is handled by the following identities

η(A) =
1
n

tr (ΣE[QAQ]) =
(1 + cq(−γ)) 1

n tr (ΣQ̄AQ̄)

((1 + cq(−γ)))2 − 1
n tr (ΣQ̄ΣQ̄)

∆(A) = E [QAQ] = Q̄AQ̄ +
η(A)

1 + cq(−γ)
Q̄ΣQ̄

Which yield to

1
n

tr (ΣE[Q−iΣQ−i])− cq2(−γ)
a.s.−→ 0

And the remaining term E
[
xᵀi Q−iΣQ−jxj

]
develops thanks to Example 1, through the

identity

Q = Q−i −
Q−i

1
n xix

ᵀ
i Q−i

1 + 1
n xᵀi Q−ixi

Indeed, we have for i 6= j

E
[
xᵀi Q−iΣQ−jxj

]
= E

[
xᵀi Q−ijΣQ−jixj

]
− 1

n
E

[
xᵀi Q−ijΣQ−jixix

ᵀ
i Q−jixj

1 + 1
n xᵀi Q−jixi

]

− 1
n

E

[
xᵀi Q−ijxjx

ᵀ
j Q−ijΣQ−jixj

1 + 1
n xᵀj Q−ijxj

]
+

1
n2 E

[
xᵀi Q−ijxjx

ᵀ
j Q−ijΣQ−jixix

ᵀ
i Q−ijxj

(1 + 1
n xᵀi Q−ijxi)(1 + 1

n xᵀj Q−ijxj)

]

And recalling the convergence of the quadratic form in equation 4.16 and putting all
the pieces together we end up with the following estimation of E

[
(xᵀw)2]
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Figure 2.3: Histogram of the decision function g(x) for new test data x independent from
the training set X, versus its Gaussian approximation as per Theorem 2.8. We consider
the parameters p = 1100, n1 = n2 = 500, γ = 1 · 10−1 and µ = [3, 0p−1]

ᵀ.

E
[
(xᵀw)2]− cq2(−γ)

(1 + cq(−γ))2 −
µᵀ∆(Σ)µ

(1 + cq(−γ))2 +
2cq2(−γ)µᵀQ̄(−γ)µ

(1 + cq(−γ))3
a.s.−→ 0

We therefore have the following result which provides a Gaussian approximation of
the decision function g(x).

Theorem 2.8 (Gaussian Approximation of g(x)). Under Assumption 2, for x ∈ C` for ` ∈
{1, 2}, we have

(ν−m2
`)
− 1

2 (g(x)−m`)
D−→N (0, 1)

where

m` =
(−1)`‖µ‖2q(−γ)

1 + (c + ‖µ‖2)q(−γ)

ν =
cq2(−γ)

(1 + cq(−γ))2 +
µᵀ∆(Σ)µ

(1 + cq(−γ))2 −
2cq2(−γ)µᵀQ̄(−γ)µ

(1 + cq(−γ))3

Theorem 2.8 states that the considered linear classifier is asymptotically equivalent
to the thresholding of two monovariate Gaussian random variables. Figure 2.3 depicts
simulated values of g(x) along with its asymptotic theoretical Gaussian prediction where
a perfect matching is observed. In particular, the generalization performance of the clas-
sifier can be expressed thanks to the Gaussian tail function Q(x) = 1√

2π

∫ ∞
x e−u2/2du as

per the following Corollary to Theorem 2.8.

Corollary 2.1 (Generalization Performance of the linear classifier). Under the setting and
Assumptions of Theorem 2.8, for ` ∈ {1, 2}, with probability one

P
{
(−1)`g(x) < 0 | x ∈ C`

}
−Q

 m`√
ν−m2

`

→ 0
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The same analysis as the one presented in this subsection can be adopted to analyse
a wide range of standard classifiers such as LS-SVM [LC17] and even some more so-
phisticated methods such as the logistic regression algorithm [MLC19]. The core of this
analysis leverages the design of a deterministic equivalent for the resolvent Q. In the
next section, we will recall some recent results from Louart and Couillet [LC18b] which
provide a systematic approach to design such deterministic equivalents leveraging on
concentration assumptions on data, and which particularly generalizes the Gaussian as-
sumption of the result of Benaych and Couillet [BGC16] recalled in Theorem 2.5. As
discussed in the introduction and will be presented in more details in the next chapter,
the concentration assumption is of particular interest in practice since it provides a real-
istic modeling for real data, in particular, for GAN data which satisfy the concentration
assumption by construction.

2.4 Extensions with concentration of measure theory

The previous results are extensible to a richer class of random vectors, namely to the
class of random concentrated vectors [Led05a]. As we discussed in the introduction, this
class for random vectors are more appropriate for real data modelling since GANs data
fall constructively within this class. In this section, we will briefly recall some essential
concentration notions and properties, then we will provide their application to design a
deterministic equivalent for the sample covariance matrix following the same approach
developed in [LC18b].

2.4.1 The notion of concentrated vectors

Being the central tool of this manuscript, we introduce the notion of random concentrated
vectors. Note that several and more advanced concentration notions have been recently
developed in [LC18b] in order to specifically analyze the behavior of large sample covari-
ance matrices, but for simplicity, we restrict ourselves in this manuscript to the sufficient
so-called q-exponentially concentrated random vectors.

Definition 7 (Concentrated vector). Given a set of indices S, a sequence of normed vector
spaces (Es, ‖ · ‖s)s∈S, a sequence of random vectors Zs ∈ Es, a sequence of positive numbers
σs, we say that Zs is q-exponentially concentrated with an observable diameter of order
O(σs) if there exists two constants C, c > 0 such that for all sequence of 1-Lipschitz mappings
fs : Es → R:

∀s ∈ S, ∀t > 0 : P {| fs(Zs)−E[ fs(Zs)]| ≥ t} ≤ Ce−c(t/σs)q
(2.38)

We note then Zs ∝ Eq(σs); when σs = O(1), we write Zs ∝ Eq.

Therefore, concentrated vectors are defined through the concentration of any 1-Lipschitz
real scalar “observation”. One of the most important examples of concentrated vectors
are standard Gaussian vectors. Precisely, we have the following proposition. Note also
that more examples such as uniform and Gamma distribution result in random vectors
which satisfy the concentration property as per Definition 7, see [Led05a].

Proposition 2.3 (Gaussian vectors [Led05a]). Let d ∈ N and Zd ∼ N (0, Id). Then Zd is a
2-exponentially concentrated vector independently on the dimension d, i.e. Zd ∝ E2.
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But the richness of concentrated random vectors lies in their fundamental stability
property through Lipschitz operations, which naturally generates wide families of con-
centrated random vectors.

Proposition 2.4 (Stability through Lipschitz transformations). It is easily deduced from Def-
inition 7 that given a sequence of positive numbers Ls > 0 and a sequence of Ls-Lipschitz trans-
formations φs : (Es, ‖ · ‖s)→ (Fs, ‖ · ‖′s),

if Zs ∝ Eq(σs), then φs(Zs) ∝ Eq(Lsσs) (2.39)

Proof. This comes simply by, for all fs : Fs → R, 1-Lipschitz, 1
Ls

fs ◦ φs is 1-Lipschitz, and
one can employ inequality 2.38 to t

Ls
which provides the result.

As we saw previously, we need to establish the concentration of quadratic forms of
the form 1

p xᵀQx with Q deterministic or independent from x. To this end, we will need
the following property.

Proposition 2.5. Let Xn ∈ R be a random variable depending on some integer n ∈N, satisfying
Xn ∝ Eq(σn) with σn → 0 as n → ∞ and lim supn |EXn| < ∞. The square of Xn remains
concentrated and we specifically have

X2
n −EX2

n ∝ Eq(σn) + E q
2
(σ2

n)

Proof. From the algebraic identity X2
n − (EXn)2 = (Xn −EXn)2 + 2(Xn −EXn)EXn, one

has

P
{
|X2

n − (EXn)
2| ≥ t

}
≤ P

{
|Xn −EXn| ≥

√
t
2

}
+ P

{
|Xn −EXn| ≥

t
4 |EXn|

}
Applying the identities (where X′n is an independent copy of Xn)

P
{
|X2

n −mX2
n
| ≥ t

}
≤ 2P

{
|X2

n − (X′n)
2| ≥ t

}
≤ 4P

{
|X2

n − (EXn)
2| ≥ t/2

}
where mX2

n
is a median of X2

n, and the final result comes from the fact that the expectation
and median of X2

n are asymptotically close to each other as n→ ∞. Indeed, we have

|EXn −mXn | ≤ E|Xn −mXn | = O
(∫ ∞

0
e−c(t/σn)q

dt
)
= O(σn)→ 0

The same reasoning holds also for X2
n which concludes the proof.

The following Lemma exploits Proposition 2.5 to provide the concentration of the
quadratic form 1

p xᵀQx for some concentrated vector x ∈ Rp and bounded matrix Q ∈
Mp (in spectral norm).

Lemma 2.9 (Trace Lemma with concentration). Let x ∈ Rp be a random vector such that
x ∝ Eq and Q ∈ Mp some deterministic (or random independent of x) matrix with bounded
spectral norm. Then,

1
p

xᵀQx− 1
p

tr (E [xxᵀ] Q) ∝ Eq

(
1
√

p

)
+ E q

2

(
1
p

)
In particular, there exists a constant C > 0 such that

E

[∣∣∣∣ 1p xᵀQx− 1
p

tr (E [xxᵀ] Q)

∣∣∣∣k
]
≤ Cp−

k
2
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Proof. The proof comes simply by rewriting 1
p xᵀQx = ‖ 1√

p Q
1
2 x‖2. Since, x → ‖ 1√

p Q
1
2 x‖

isO
(

1√
p

)
-Lipschitz we have ‖ 1√

p Q
1
2 x‖ ∝ Eq

(
1√
p

)
, and the final concentration comes by

Proposition 2.5. Moreover, the control of the k-th moment follows from the identity

E|X|k =
∫ ∞

0
k tk−1P {|X| ≥ t} dt

for some random variable X.

We will see in the next subsection how this result is exploited to design a deterministic
equivalent for the sample covariance matrix.

2.4.2 Resolvent of the sample covariance matrix

In this subsection, we will consider a data matrix X = [x1, . . . , xn] ∈ Mp,n such that
X ∝ Eq and we further suppose that the columns of X are independent and have the
same second order statistic E[xix

ᵀ
i ] = Σ ∈ Mp with bounded spectral norm. As we saw

previously, the analysis of the behavior of the sample covariance matrix Σ̂ = 1
n XXᵀ is

related to the analysis of its resolvent, defined for z ∈ C \R−3 as

Q(z) =
(
Σ̂ + zIp

)−1
=

(
1
n

XXᵀ + zIp

)−1

(2.40)

The resolvent matrix Q(z) notably satisfies several bounds which are of particular in-
terest in the analysis of its behavior as we will see subsequently. Indeed, we recall the
following Lemma from [LC18b].

Lemma 2.10 (The resolvent bounds). The resolvent Q(z) satisfies the following bounds. For
z ∈ R+, we have

1. ‖Q(z)‖ ≤ 1
z

2. ‖Q(z)Σ̂‖ ≤ 1 3. ‖Q(z)X‖ ≤
√

n
z

Proof. The upper bound for 1. comes from the smallest eigenvalue of Σ̂ + zIp being larger
than z. 2. follows from the identity Q(z)Σ̂ + zQ(z) = Ip and since Q(z) is symmetric
positive definite. Finally, 3. follows from combining 1. and 2., giving the bound

‖Q(z)
1
n

XXᵀQ(z)‖ ≤ 1
z

Now we provide the intuition behind the design of a deterministic equivalent for
Q(z), we refer the reader to [LC18b] for a detailed proof. From a low-dimensional
perspective (i.e., p fixed as n → ∞), one would think that Q(z) would be close to(
Σ + zIp

)−1. This happens to be completely wrong in the random matrix theory regime,
when both p, n → ∞ with p/n → c ∈ (0, ∞). However, one can establish that Q(z) is
equivalent to some matrix of the form Q̄(z) =

(
Σ̃ + zIp

)−1, in the sense of Definition 6,

3For convenience, we shall consider the notation of the resolvent with “+z” instead of “−z”.
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for some well-chosen deterministic matrix Σ̃ ∈ Mp. In order to find the explicit expres-
sion for Σ̃, we start by expressing the difference between Q̄(z) and E[Q(z)], thanks to the
resolvent identity in Lemma 2.1, as follows

Q̃(z)−E[Q(z)] = E

[
Q(z)

(
1
n

XXᵀ − Σ̃

)
Q̄(z)

]
=

1
n

n

∑
i=1

E
[
Q(z)

(
xix

ᵀ
i − Σ̃

)
Q̄(z)

]
The next step now consists in handling the statistical dependencies between Q(z) and xi,
this is made possible, as we saw in the previous Section, thanks to the Schur identities
from Example 1. In particular, first using the identity

Q(z)xi =
Q−i(z)xi

1 + 1
n xᵀi Q−i(z)xi

We obtain

Q̃(z)−E[Q(z)] =
1
n

n

∑
i=1

E
[(

Q(z)xix
ᵀ
i −Q(z)Σ̃

)
Q̄(z)

]
=

1
n

n

∑
i=1

E

[(
Q−i(z)xix

ᵀ
i

1 + 1
n xᵀi Q−i(z)xi

−Q(z)Σ̃

)
Q̄(z)

]

And thanks to the identity

Q(z) = Q−i(z)−
1
n

Q−i(z)xix
ᵀ
i Q−i(z)

1 + 1
n xᵀi Q−i(z)xi

We end up having

Q̃(z)−E[Q(z)] =
1
n

n

∑
i=1

E

[
Q−i(z)

(
xix

ᵀ
i

1 + 1
n xᵀi Q−i(z)xi

− Σ̃

)
Q̄(z)

]

+
1
n2

n

∑
i=1

E
[
Q−i(z)xix

ᵀ
i Q−i(z)Σ̃Q̄(z)

]
where the second line term happens to be of vanishing spectral norm due to the addi-
tional factor 1/n and since the matrix 1

n ∑n
i=1 E

[
Q−i(z)xix

ᵀ
i Q−i(z)Σ̃Q̄(z)

]
has a bounded

spectral norm thanks to Lemma 2.10. Moreover, again by Lemma 2.10, since Q−i(z) has
a bounded spectral norm and is independent from xi, the quadratic form 1

n xᵀi Q−i(z)xi

converges to its expectation 1
n tr (ΣE[Q−i(z)]) thanks to Lemma 2.9. Quite naturally, one

would expect that the deterministic matrix Σ̃ should be

Σ̃ =
Σ

1 + 1
n tr (ΣE[Q−i(z)])

so that the difference Q̃(z) − E[Q(z)] would be of vanishing spectral norm. Conse-
quently, the term 1

n tr (ΣE[Q−i(z)]) would naturally be close to 1
n tr (ΣQ̄(z)), therefore

defining the deterministic equivalent Q̄(z) of the resolvent Q(z) through an implicit fixed
point equation rather than computing the expectation of Q−i(z) which is hard to compute
explicitly in general cases. The deterministic equivalent Q̄(z) is therefore given by

Q(z)↔ Q̄(z) =
(

Σ

1 + δ(z)
+ zIp

)−1



52CHAPTER 2. RANDOM MATRIX THEORY & CONCENTRATION OF MEASURE THEORY

where δ(z) is the unique4 solution to the fixed point equation

δ(z) =
1
n

tr

(
Σ

(
Σ

1 + δ(z)
+ zIp

)−1
)

Looking carefully to the above expression of Q̄(z), we see that there is an additional term
δ(z) comparing to what one would expect in a low-dimensional regime, i.e., the deter-
ministic equivalent being

(
Σ + zIp

)−1. Indeed, when p is fixed as n→ ∞, we particularly
have δ(z) ≈ 1

n tr (ΣE[Q−i(z)])→ 0, which recovers the low-dimensional case.

Remark 2.4 (On the concentration of 1
n xᵀi Q−i(z)xi). Note that Lemma 2.9 it not good enough

to establish the concentration of 1
n xᵀi Q−i(z)xi. Indeed, Q−i(z) being random demands to bound

a probability involving xi. Specifically, one should decompose the calculus as

P

{∣∣∣∣ 1n xᵀi Q−i(z)xi −
1
n

tr (ΣE[Q−i(z)])
∣∣∣∣ ≥ t

}
≤ E

[
P

{∣∣∣∣ 1n xᵀi Q−i(z)xi −
1
n

tr (ΣQ−i(z))
∣∣∣∣ ≥ t

2
| X−i

}]
+ P

{∣∣∣∣ 1n tr Σ (Q−i(z)−E [Q−i(z)])
∣∣∣∣ ≥ t

2

}
where X−i ∈ Mp,n−1 is the data matrix X prevented from its i-th column xi. Therefore, the
concentration of 1

n xᵀi Q−i(z)xi follows after handling the above two terms (see [LC18b, Proposi-
tion 3.4]).

Under the more general case of a mixture of k-class concentrated vectors (see Def-
inition 2), a deterministic equivalent of the sample covaraince matrix is given by the
following result.

Theorem 2.9 (Deterministic equivalent of the sample covariance matrix [LC18b]). Let a
data matrix X = [x1, . . . , xn] ∈ Mp,n be satisfying Definition 2 and let Assumption 1 hold with
‖µ`‖ = O(√p) for all ` ∈ [k]. Then the resolvent of the sample covariance matrix defined as

Q(z) =
( 1

n XXᵀ + zIp
)−1 admits a deterministic equivalent Q̄(z) given by

Q(z)↔ Q̄(z) =

(
k

∑
`=1

c`(Σ` + µ`µ
ᵀ
` )

1 + δ`(z)
+ zIp

)−1

where (δ1(z), . . . , δk(z)) are the unique solution to system of fixed point equations defined for
each j ∈ [k] as

δj(z) =
1
n

(Σj + µjµ
ᵀ
j )

(
k

∑
`=1

c`(Σ` + µ`µ
ᵀ
` )

1 + δ`(z)
+ zIp

)−1


Theorem 2.9 generalizes the result of Benaych and Couillet [BGC16] (recalled in The-
orem 2.5) to the more general class of concentrated vectors. However, the above expres-
sion of the deterministic equivalent involve strictly the class-wise means and covariances
of the data namely the quantities {µ`}k

`=1 and {Σ`}k
`=1, thereby demonstrating the uni-

versality aspect of the behavior of the sample covariance matrix w.r.t. data distributions

4See in [LC18b, Proposition 3.8] for more details about the existence and uniqueness of the fixed point
equation solution.
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satisfying the concentration assumption in Definition 2. We will see in the next chap-
ters, that this universality aspect goes far beyond the sample covariance matrix to more
sophisticated non-linear ML methods such as kernel methods and the Softmax layer in
neural networks.
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Chapter 3

Universality of Large Random
Matrices

This chapter is based on the following works:

(C1) MEA. Seddik, C. Louart, M. Tamaazousti, R. Couillet, “Random Ma-
trix Theory Proves that Deep Learning Representations of GAN-data Behave
as Gaussian Mixtures”, International Conference on Machine Learning
(ICML’20), Online, 2020.

(C1’) MEA. Seddik, M. Tamaazousti, R. Couillet, “Pourquoi les matrices aléa-
toires expliquent l’apprentissage ? Un argument d’universalité offert par les
GANs”, Colloque francophone de traitement du signal et des images
(Gretsi’19), Lille, France, 2019.
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This Chapter contains two main parts. The first part will highlight the importance of
modeling real data as concentrated vectors, the second part will consist in studying the
behavior of large Gram matrices with concentrated inputs.

3.1 GAN Data are Concentrated Data

Concentrated random vectors are particularly interesting from a practical standpoint for
real data modeling. In fact, unlike simple Gaussian vectors, the former do not suffer from
the constraint of having independent entries which is quite a restrictive assumption when
modeling real data such as images or their non-linear features (e.g., DL representations).
The other modeling interest of concentrated vectors lies in their being already present in
practice as alternatives to real data. Indeed, adversarial neural networks (GANs) have

55
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Figure 3.1: A generative adversarial model involves two networks; a Generator which
transforms noise vectors to generated images and a Discriminato which seeks to identify
real images from fake ones.

the ability nowadays to generate random realistic data (for instance realistic images) by
applying successive Lipschitz operations to standard Gaussian vectors [GPAM+14].

A GAN architecture involves two networks, a generator model which maps random
Gaussian noise to new plausible synthetic data and a discriminator model which clas-
sifies real data as real (from the dataset represented by pdata) or fake (for the generated
data). The discriminator D is updated directly through a binary classification problem,
whereas the generator G is updated through the discriminator based on the following
Min-Max objective

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼N (0,Id) [log (1−D(G(z)))]

As such, the two models are trained alternatively in an adversarial manner, where the
generator seeks to better deceive the discriminator and the former seeks to better iden-
tify the fake data [GPAM+14].

In particular, once both models are trained (when they reach a Nash equilibrium), DL
representations of GAN-data –and GAN-data themselves– are schematically constructed
in practice as follows:

Real Data ≈ GAN Data = FN ◦ · · · ◦ F1(z), (3.1)

where z ∼ N (0, Id), d stands for the input dimension of the generator model, N the
number of layers, and the Fi’s either Fully Connected Layers, Convolutional Layers,
Pooling Layers, Up-sampling Layers and Activation Functions, Residual Layers or Batch
Normalizations. All these operations happen to be Lipschitz applications. Precisely,

• Fully Connected Layers and Convolutional Layers: These are affine operations
which can be expressed as

Fi(x) = Wix + bi,

for Wi the weight matrix and bi the bias vector. Here the Lipschitz constant is the
operator norm (the largest singular value) of the weight matrix Wi, that is ‖Fi‖lip =

supu 6=0
‖Wiu‖2
‖u‖2

.
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• Pooling Layers and Activation Functions: Most commonly used activation func-
tions and pooling operations are

ReLU(x) = max(0, x),
MaxPooling(x) = [max(xS1), . . . , max(xSq)]

ᵀ,

where Si’s are patches (i.e., subsets of [dim(x)]). These are at most 1-Lipschitz op-
erations with respect to the Frobenius norm. Specifically, the maximum absolute
sub-gradient of the ReLU activation function is 1, thus the ReLU operation has a
Lipschitz constant of 1. Similarly, we can show that the Lipschitz constant of Max-
Pooling layers is also 1.

• Residual Connections: Residual layers act the following way

Fi(x) = x +F (1)
i ◦ · · · ◦ F

(`)
i (x),

where the F (j)
i ’s are Fully Connected Layers or Convolutional Layers with Activa-

tion Functions, and which are Lipschitz operations. ThusFi is a Lipschitz operation
with Lipschitz constant bounded by 1 + ∏`

j=1 ‖F
(j)
i ‖lip.

• Batch Normalization (BN) Layers: They consist in statistically standardizing [IS15]
the vectors of a small batch B = {xi}b

i=1 ⊂ Rd as follows: for each xk ∈ B

Fi(xk) = diag

 a√
σ2
B + ε

 (xk − µB1d) + b

where µB = 1
db ∑b

k=1 ∑d
i=1[xk]i, σ2

B = 1
db ∑b

k=1 ∑d
i=1([xk]i − µB)

2, a, b ∈ Rd are pa-
rameters to be learned and diag(v) transforms a vector v to a diagonal matrix with
its diagonal entries being those of v. Thus BN is a Lipschitz transformation with
Lipschitz constant ‖Fi‖lip = supi |

ai√
σ2
B+ε
|.

Therefore, as illustrated in Figure B.2, since standard Gaussian vectors are concen-
trated vectors as mentioned in Proposition 2.3 and since the notion of concentrated vec-
tors is stable by Lipschitz transformations thanks to Proposition 2.4, GAN-data (and their
DL representations) are concentrated vectors by design given the construction in Equa-
tion (3.1). Moreover, in order to generate data belonging to a specific class, Conditional
GANs have been introduced [MO14]; once again data generated by these models are con-
centrated vectors as a consequence of the following Corollary.

Corollary 3.1. Let G1, . . . ,Gn : Rd → Rp a set of n Lipschitz applications with Lipschitz
constants ‖Gi‖lip. Let G : Rd×n → Rp×n be defined for each X ∈ Rd×n as

G(X) = [G1(X:,1), . . . ,Gn(X:,n)].

Then, for Z ∈ Md,n

Z ∝ Eq ⇒ G(Z) ∝ Eq

(
sup

i
‖Gi‖lip

)
. (3.2)
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Figure 3.2: Deep learning representations of GAN-data are constructed by applying suc-
cessive Lipschitz operations to Gaussian vectors, therefore they are concentrated vectors
by design, since Gaussian vectors are concentrated and thanks to the Lipschitz stability
in Proposition 2.4

Proof. This is a consequence of Proposition 2.4 since the map G is supi ‖Gi‖lip-Lipschitz
with respect to (w.r.t.) the Frobenius norm. Indeed, for X, H ∈ Rd×n : ‖G(X + H) −
G(X)‖2

F ≤ ∑n
i=1 ‖Gi‖2

lip · ‖H:,i‖2 ≤ supi ‖Gi‖2
lip · ‖H‖2

F.

Indeed, a generator of a Conditional GAN model can be seen as a set of multiple gen-
erators where each generates data of a specific class conditionally on the class label (e.g.,
BigGAN model [BDS18]).

Yet, in order to ensure that the resulting Lipschitz constant of the combination of
the above operations does not scale with the network or data size, so to maintain good
concentration behaviors, a careful control of the learned network parameters is needed.
This control happens to be already considered in practice in order to ensure the stabil-
ity of GANs during the learning phase, notably to generate realistic and high-resolution
images [RLNH17, BDS18]. The control of the Lipschitz constant of representation net-
works is also needed in practice in order to make them robust against adversarial exam-
ples [SZS+13, GAA+17]. This control is particularly ensured through spectral normaliza-
tion of the affine layers [BDS18], such as Fully Connected Layers, Convolutional Layers
and Batch Normalization. Indeed, spectral normalization [MKKY18] consists in applying
the operation W ←W/σ1(W) to the affine layers at each backward iteration of the back-



3.1. GAN DATA ARE CONCENTRATED DATA 59

0 200 400 600 800 1,000
1

2

3

4

5

6

σ∗ = 2

σ∗ = 3

σ∗ = 4

Iterations

La
rg

es
ts

in
gu

la
r

va
lu

e
σ 1

Without SN

With SN

Theoretical bound

Figure 3.3: Behavior of the largest singular value of a weight matrix in terms of the iter-
ations of a random walk (see proposition 3.1), without spectral normalization in (black)
and with spectral normalization in (red). The (blue) lines correspond to the theoretical
bound

√
σ2
∗ + η2d1d0 for different σ∗’s. We took d0 = d1 = 100 and η = 1/d0.

propagation algorithm, where σ1(W) stands for the largest singular value of the weight
matrix W . [BDS18], have notably observed that, without spectral constraints, a subset of
the generator layers grow throughout their GAN training and explode at collapse. They
thus suggested the following spectral normalization –which happens to be less restric-
tive than the standard spectral normalization W ← W/σ1(W) [MKKY18]– to the affine
layers:

W ←W − (σ1(W)− σ∗) u1(W)v1(W)ᵀ (3.3)

where u1(W) and v1(W) denote respectively the left and right largest singular vectors of
W , and σ∗ is an hyper-parameter fixed during training.

To get an insight about the influence of this operation and to ensure that it controls
the Lipschitz constant of the generator, the following proposition provides the dynamics
of a random walk in the space of parameters along with the spectral normalization in
Equation (3.3). Indeed, since stochastic gradient descent (SGD) consists in estimating the
gradient of the loss function on randomly selected batches of data, it can be assimilated
to a random walk in the space of parameters [ASD18].

Proposition 3.1 (Lipschitz constant control). Let σ∗ > 0 and G be a neural network composed
of N affine layers, each one of input dimension di−1 and output dimension di for i ∈ [N], with
1-Lipschitz activation functions. Assume that the weights of G at layer i + 1 are initialized as
U ([− 1√

di
, 1√

di
]), and consider the following dynamics with learning rate η:

W ←W − ηE, with Ei,j ∼ N (0, 1)

W ←W −max(0, σ1(W)− σ∗) u1(W)v1(W)ᵀ.
(3.4)
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Then, ∀ε > 0, the Lipschitz constant of G is bounded at convergence with high probability as:

‖G‖lip ≤
N

∏
i=1

(
ε +

√
σ2
∗ + η2didi−1

)
. (3.5)

Proof. Since the Lipschitz constant of a composition of Lipschitz functions is bounded
by the product of their Lipschitz constants, we consider the case N = 1 and a linear
activation function. In this case, the Lipschitz constant corresponds to the largest singular
value of the weight matrix. We consider the following notations for the proof

W̄t = Wt − ηEt with [Et]i,j ∼ N (0, 1)

Wt+1 = W̄t −max(0, σ̄1,t − σ∗) ū1,tv̄
ᵀ
1,t

where σ̄1,t = σ1(W̄t), ū1,t = u1(W̄t) and v̄1,t = v1(W̄t). The effect of spectral normaliza-
tion is observed in the case where σ∗ > σ̄1,t, otherwise the Lipschitz constant is bounded
by σ∗. We therefore have

‖W̄t‖2
F ≤ ‖Wt‖2

F + η2d1d0 (3.6)

‖Wt+1‖2
F = ‖W̄t‖2

F + σ2
∗ − σ̄2

1,t (3.7)

• If ‖Wt+1‖F ≥ ‖Wt‖F, we have by equation 3.6 and equation 3.7

‖W̄t‖2
F ≤ ‖W̄t‖2

F + σ2
∗ − σ̄2

1,t + η2d1d0 ⇒ ‖W̄t‖ = σ̄1,t ≤
√

σ2
∗ + η2d1d0 = δ

And since ‖Wt+1‖ ≤ ‖W̄t‖, we have ‖Wt+1‖ ≤ δ.

• Otherwise, if there exits τ such that ‖Wτ+1‖F < ‖Wτ‖F, then for all ε > 0 there
exists an iteration τ′ ≥ τ such that ‖Wτ′‖ ≤ δ + ε. Indeed, otherwise we denote
εt = ‖Wt‖2 − δ2 and εt > 0 for all t ≥ τ. And if for all t ≥ τ, ‖Wt+1‖F ≤ ‖Wt‖F, we
have by equation 3.6 and equation 3.7

‖Wt‖2
F − ‖Wt+1‖2

F ≥ ‖W̄t‖2 − δ2 ≥ ‖Wt+1‖2 − δ2 = εt+1

Integrating the above expression from τ to T − 1 ≥ τ, we end up with

‖Wτ‖2
F − ‖WT‖2

F ≥
T−1

∑
t=τ

εt ⇒ 0 ≤ ‖WT‖2
F ≤ ‖Wτ‖2

F −
T−1

∑
t=τ

εt,

therefore, when T → ∞, εt has to tend to 0 otherwise the right hand-side of the last
inequality will tend to −∞ which is absurd.

Proposition 3.1 shows that the Lipschitz constant of a neural network is controlled
when trained with the spectral normalization in Equation (3.3). In particular, recalling
the notations in Proposition 3.1, in the limit where di → ∞ with di

di−1
→ γi ∈ (0, ∞) for

all i ∈ [N] and choosing the learning rate η = O(d−1
0 ), the Lipschitz constant of G is of

orderO(1) if it has finitely many layers N and σ∗ is constant. Therefore, with this spectral
normalization, it can be assumed that ‖G‖lip = O(1) when dimensions grow. Figure 3.3
depicts the behavior of the Lipschitz constant of a linear layer with and without spectral
normalization in the setting of Proposition 3.1, which confirms the obtained bound.
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3.2 Random Gram Matrices of Concentrated Data

Now we turn to the analysis of the behavior of large Gram matrices assuming the data
being concentrated vectors.

3.2.1 Motivation

As it represents the canonical form of similarity, the Gram matrix is at the core of var-
ious machine learning algorithms. Moreover, it provides a natural way to quantify the
quality of a given representation. Indeed, the performance of machine learning methods
depends strongly on the choice of the data representation (or features) on which they are
applied. This data representation should ideally contain relevant information about the
learning task in order to achieve learning with simple models and small amount of sam-
ples. In this sense, the simplest machine learning model is naturally a linear classifier
which relies on the Gram matrix, and considering a small amount of data put us natu-
rally in the random matrix theory regime where both p and n are large and comparable.
In terms of representation learning, Deep neural networks [RHW+88] have particularly
shown impressive results by automatically learning representations from raw data (e.g.,
images). However, due to the complex structure of deep learning models, the characteri-
zation of their hidden representations is still an open problem [B+09].

Specifically, quantifying what makes a given deep learning representation better than
another is a fundamental question in the field of Representation Learning [BCV13]. Rely-
ing on [MBM11] a data representation is said to be good when it is possible to build simple
models on top of it that are accurate for the given learning problem. Authors in [MBM11]
have notably quantified the layer-wise evolution of the representation in deep networks
by computing the principal components of the Gram matrix G` = {φ`(xi)

ᵀφ`(xj)}n
i,j=1 at

each layer for n input data x1, . . . , xn, where φ`(x) is the representation of x at layer ` of
the given DL model, and the number of components controls the model simplicity. In
their study, the impact of the representation at each layer is quantified through the pre-
diction error of a linear classifier trained on the principal subspace of G`.

Pursuing on this idea, given a certain representation model x 7→ φ(x), we aim in
this study at theoretically analyzing the large dimensional behavior, and in particular the
spectral information (i.e., eigenvalues and dominant eigenvectors), of the correspond-
ing Gram matrix G = {φ(xi)

ᵀφ(xj)}n
i,j=1 in order to determine the information encoded

(i.e., the sufficient statistics) by the representation model on a set of real data x1, . . . , xn.
Indeed, standard classification and regression algorithms –along with the last layer of
a neural network [YKYR18]– retrieve the data information directly from functionals or
the eigenspectrum of G1. To this end, though, one needs a statistical model for the rep-
resentations given the distribution of the raw data (e.g., images) which is generally un-
known and not analytically tractable. Yet, as we have shown in the previous section,
due to recent advances in generative models since the advent of Generative Adversar-
ial Nets [GPAM+14], it is now possible to generate complex data structures by apply-
ing successive Lipschitz operations to Gaussian random vectors. In particular, GAN-data
are used in practice as substitutes of real data for data augmentation [ASE17]. On the
other hand, the fundamental concentration of measure phenomenon [Led05a] tells us

1For instance, spectral clustering uses the dominant eigenvectors of G, while support vector machines
use functionals (quadratic forms) involving G.
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that Lipschitz-ally transformed Gaussian vectors satisfy a concentration property. Pre-
cisely, defining the class of concentrated vectors x ∈ E through concentration inequalities
of f (x), for any real Lipschitz observation f : E → R, implies that deep learning rep-
resentations of GAN-data fall within this class of random vectors, since the mapping
x 7→ φ(x) is Lipschitz. Thus, GAN-data are concentrated random vectors and thus a
more appropriate statistical model of realistic data, as we demonstrated in the previous
section.

Targeting classification applications by assuming a mixture of concentrated random
vectors model (see Definition 2), this study describes the spectral behavior of Gram matri-
ces G in the large n, p regime. Precisely, we show that these matrices have asymptotically
(as n, p → ∞ with p/n → c < ∞) the same first-order behavior as for a Gaussian Mix-
ture Model (GMM). As a result, by generating images using the BigGAN model [BDS18]
and considering different commonly used deep representation models, we show that the
spectral behavior of the Gram matrix computed on these representations is the same as
on a GMM model with the same p-dimensional means and covariances. A surprising
consequence is that, for GAN data, the aforementioned sufficient statistics to characterize
the quality of a given representation network are only the first and second order statistics
of the representations. This behavior is shown by simulations to extend beyond random
GAN-data to real images from the Imagenet dataset [DDS+09].

3.2.2 Model and Main Results

3.2.2.1 Mixture of Concentrated Vectors

In this section, we assume data to be a mixture of concentrated random vectors with con-
trolled O(1) Lipschitz constant (e.g., DL representations of GAN-data as we discussed in
the previous section). Precisely, let x1, . . . , xn be a set of mutually independent random
vectors in Rp. We suppose that these vectors are distributed as one of k classes of distri-
bution laws L1, . . . ,Lk with distinct means {µ`}k

`=1 and “covariances” {Σ`}k
`=1 defined

respectively as

µ` = Exi∼L` [xi], Σ` = Exi∼L` [xix
ᵀ
i ]. (3.8)

For some q > 0, we consider a q-exponential concentration property on the lawsL`, in the
sense that for any family of independent vectors y1, . . . , ys sampled fromL`, [y1, . . . , ys] ∈
Eq (see Definition 7). Without loss of generality, we arrange the xi’s in a data matrix
X = [x1, . . . , xn] such that, for each ` ∈ [k]

x1+∑`−1
j=1 nj

, . . . , x∑`
j=1 nj
∼ L`(µ`, Σ`)

where n` stands for the number of xi’s sampled from L`. In particular, we have the
concentration of the data matrix X as in the following assumption

Assumption 3 (Concentrated data). We assume X ∝ Eq for some q > 1.

Such a data matrix X can be constructed through Lipschitz-ally transformed Gaussian
vectors (q = 2), with controlled Lipschitz constant, thanks to Corollary 3.1. In particular,
DL representations of GAN-data are constructed as such, as shown in Section 3.1. We
further introduce the following notations that will be used subsequently.

M = [µ1, . . . ,µk] ∈ Rp×k, J = [j1, . . . , jk] ∈ Rn×k, Z = [z1, . . . , zn] ∈ Rp×n,
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where j` ∈ Rn stands for the canonical vector selecting the xi’s of distribution L`, defined
by (j`)i = 1xi∼L` , and the zi’s are the centered versions of the xi’s, i.e. zi = xi − µ` for
xi ∼ L`(µ`, Σ`).

3.2.2.2 Behavior of the Gram matrix of concentrated vectors

Now we study the behavior of the Gram matrix G = 1
p XᵀX in the large n, p limit and

under the model of the previous section. Indeed, G appears as a central component in
many classification, regression and clustering methods. Precisely, a finer description of
the behavior of G provides access to the internal functioning and performance evaluation
of a wide range of machine learning methods such as Least Squares SVMs [A+02], Semi-
supervised Learning [CSZ09] and Spectral Clustering [NJW02]. Indeed, the performance
evaluation of these methods has already been studied under GMM models in [LC17,
MC17, CBG+16] through RMT. On the other hand, analyzing the spectral behavior of G
for DL representations quantifies their quality –through its principal subspace [MBM11]–
as we have discussed in the introduction. In particular, the Gram matrix decomposes as

G =
1
p

JMᵀM Jᵀ +
1
p

ZᵀZ +
1
p
(JMᵀZ + ZᵀM Jᵀ). (3.9)

Intuitively G decomposes as a low-rank informative matrix containing the class canoni-
cal vectors through J and a noise term represented by the other matrices and essentially
ZᵀZ. Given the form of this decomposition, RMT predicts –through an analysis of the
spectrum of G and under a GMM model [BGC16]– the existence of a threshold ξ function
of the ratio p/n and the data statistics for which the dominant eigenvectors of G contain
information about the classes only when ‖MᵀM‖ ≥ ξ asymptotically (i.e., only when the
means of the different classes are sufficiently distinct). See Subsection 2.3.1 for an illus-
trative example.

As we saw in Chapter 2, in order to characterize the spectral behavior (i.e., eigenvalues
and leading eigenvectors) of G under the concentration assumption in Assumption 3 on
X, we will be interested in studying the behavior of its resolvent defined as, for z ∈
C \R−

R(z) = (G + zIn)
−1 (3.10)

Practically speaking for spectral clustering with G, since R(z) and G share the same
eigenvectors with associated eigenvalues 1

λi+z for R(z) with {λi}n
i=1 the eigenvalues of

G, the projector matrix corresponding to the top m eigenvectors U = [u1, . . . , um] of G
can be calculated through a Cauchy integral UUᵀ = −1

2πi

∮
γ R(−z)dz where γ is an ori-

ented complex contour surrounding the top m eigenvalues of G. See Subsection 2.1.3 for
more details.

To study the behavior of R(z), we look for a so-called deterministic equivalent [HLN+07]
(see Definition 6) R̃(z) for R(z). In the following, we present our main result which gives
such a deterministic equivalent under the concentration assumption on X in Assump-
tion 3 and under the following assumptions.

Assumption 4. As p→ ∞,

1. p/n→ c ∈ (0, ∞),
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2. The number of classes k is bounded,

3. ‖µ`‖ = O(
√

p) and E‖xi‖ = O(
√

p).

Theorem 3.1 (Deterministic Equivalent for R(z)). Under the model described in Section 3.2.2.1
and Assumptions 3-4, we have R(z) ∈ Eq(p−1/2). Furthermore,

R(z)↔ R̄(z) =
1
z

diag
{

In`

1 + δ∗` (z)

}k

`=1
+

1
p z

JΩz Jᵀ

Specifically,

‖ER(z)− R̄(z)‖ = O
(√

log(p)
p

)

with Ωz = MᵀQ̄(z)M � diag
{

δ∗` (z)−1
δ∗` (z)+1

}k

`=1
and Q̄(z) =

(
1

c k ∑k
`=1

Σ`
1+δ∗` (z)

+ zIp

)−1
where

δ∗(z) = [δ∗1 (z), . . . , δ∗k (z)]
ᵀ is the unique fixed point of the system of equations for each ` ∈ [k]

δ`(z) =
1
p

tr

Σ`

(
1

c k

k

∑
j=1

Σj

1 + δj(z)
+ zIp

)−1


Sketch of proof. The first step of the proof is to show the concentration of R(z). This comes
from the fact that the application X 7→ R(z) is 2z−3/2 p−1/2-Lipschitz w.r.t. the Frobenius
norm, thus we have by Proposition 2.4 that R(z) ∈ Eq(p−1/2).

The second step consists in estimating ER(z) through a deterministic matrix R̃(z).
Indeed, R(z) can be expressed as a function of Q(z) = (XXᵀ/p + zIp)−1 as R(z) =
z−1(In−XᵀQ(z)X/p), where the statistical dependency between X and Q(z) is handled
through Propositions C.1 and C.2 and finally exploiting the result of [LC19] which shows
that EQ(z) can be estimated through Q̄(z) as per Theorem 2.9, we obtain the estimator
R̄(z) for ER(z).

A more detailed proof is provided the appendix in Section C.1.

Remark 3.1 (Equivalence between Theorem 3.1 and Theorem 2.5 ). Note that Theorem 3.1
and Theorem 2.5 are equivalent when M = 0 with the change of variable cjgj(z) = 1

1+δj(z)
. In

particular, Theorem 2.5 supposes a Gaussian mixture model with zero means while we generalize
this result to non-zero means which appear through the matrix of means M.

This result allows specifically to (i) describe the limiting eigenvalues distribution of G,
(ii) determine the spectral detectability threshold mentioned above (See Subsection 2.3.1
in the case of binary unsupervised clustering), (iii) evaluate the asymptotic “content” of
the leading eigenvectors of G (see again Subsection 2.3.1) and, much more fundamen-
tally, (iv) infer the asymptotic performances of machine learning algorithms (See Sub-
section 2.3.2) that are based on simple functionals of G (e.g., LS-SVM, spectral clustering
etc.). Looking carefully at Theorem 3.1 we see that the spectral behavior of the Gram
matrix G computed on concentrated vectors only depends on the first and second order
statistics of the laws L` (their means µ` and “covariances” Σ`). This suggests the surpris-
ing result that G has the same behavior as when the data follow a GMM model with the
same means and covariances. The asymptotic spectral behavior of G is therefore universal
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Figure 3.4: (Top) GAN generated images using the BigGAN model [BDS18]. (Bottom)
Real images selected from the Imagenet dataset [DDS+09]. We considered n = 1500
images from k = 3 classes which are {mushroom, pizza, hamburger}.

with respect to the data distribution laws which satisfy the aforementioned concentration
properties (for instance DL representations of GAN-data). We illustrate this universality
result in the next section by considering data as CNN representations of GAN generated
images.

3.2.2.3 Application to GAN-generated Images

This section presents experiments that confirm the result of Theorem 3.1. In particular,
we compare, in the first part, the eigenvalues distribution and the largest eigenvectors
of the Gram matrix computed on deep learning representations with those of the Gram
matrix computed on Gaussian data with the same first and second order moments. In the
second part of this section, we evaluate the performance of a linear SVM model on the
principal subspace of the Gram matrix (computed on the representations or on the corre-
sponding Gaussian data) by varying the number of components in the same vein as the
work of montavon2011kernel. In the following, all representation networks are standard
convolutional neural networks pre-trained on the Imagenet dataset deng2009imagenet,
in particular, we used pre-trained models of the Pytorch deep learning framework.

Spectrum and Dominant Eigenspace of the Gram Matrix. We consider n = 1500 data
x1, . . . , xn ∈ Rp as CNN representations –across popular CNN architectures of different
sizes p– of GAN-generated images using the generator of the Big-GAN model [BDS18].
We further use real images from the Imagenet dataset [DDS+09] for comparison. In par-
ticular, we empirically compare the spectrum of the Gram matrix of this data with the
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Figure 3.5: (Top) Spectrum and leading eigenspace of the Gram matrix for CNN repre-
sentations of GAN generated images using the BigGAN model [BDS18]. (Bottom) Spec-
trum and leading eigenspace of the Gram matrix for CNN representations of real images
selected from the Imagenet dataset [DDS+09]. Columns correspond to the three repre-
sentation networks which are resnet50, vgg16 and densenet201. We used n = 1500 images
and considered k = 3 classes as depicted in Figure 3.4.

Gram matrix of a GMM model with the same means and covariances. We also consider
the leading 2-dimensional eigenspace of the Gram matrix which contains clustering in-
formation as detailed in the previous section. Figure 3.4 depicts some images generated
using the Big-GAN model (Top) and the corresponding real class images from the Ima-
genet dataset (Bottom). The Big-GAN model is visually able to generate highly realistic
images which are by construction concentrated vectors, as discussed in Section 3.1 and
therefore satisfy the assumptions of Theorem 3.1.

Figure 3.5 depicts the spectrum and leading 2D eigenspace of the Gram matrix com-
puted on CNN representations of GAN generated and real images (in gray), and the
corresponding GMM model with same first and second order statistics (in green). The
Gram matrix is seen to follow the same spectral behavior for GAN-data as for the GMM
model which is a natural consequence of the universality result of Theorem 3.1 with re-
spect to the data distribution. Besides, and perhaps no longer surprisingly, we further
observe that the spectral properties of G for real data (here CNN representations of real
images) are conclusively matched by their Gaussian counterpart.
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Figure 3.6: Spectrum of the Gram matrix for CNN representations in (black) and
the corresponding Gaussian data (in green) for GAN generated images using the Big-
GAN model [BDS18] (Top) and for real images randomly selected from the Ima-
genet dataset [DDS+09] (Bottom). The considered represenation network are resnet18,
resnet101, densenet161, vgg19, alexnet and googlenet. We used n = 600 images selected
among k = 6 classes {hamburger, mushroom, pizza, strawberry, coffee, daisy} (100 im-
ages per class).

Figure 3.6 shows more results about the Gram matrix spectrum of the representations
(in black) and the corresponding Gaussian data (in green), by considering more repre-
sentation networks and using k = 6 classes for both GAN images and real images, which
confirms the result of Theorem 3.1. This both theoretically and empirically confirms that
the proposed random matrix framework is fully compliant with the theoretical analysis
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of real machine learning datasets. As a consequence, recalling the work of [MBM11],
the quality of a given representation is quantified through the prediction accuracy of a
linear classifier trained on the principal Gram matrix eigenvectors of the representations
computed on a set of samples. Given our result in Theorem 3.1, and the fact that the top
m eigenvectors U = [u1, . . . , um] of G are related to the resolvent matrix R(z) through
the Cauchy integral UUᵀ = −1

2πi

∮
γ R(−z)dz where γ is an oriented complex contour sur-

rounding the top m eigenvalues of G, we should expect that the prediction accuracy of a
linear classifier trained on the principal eigenvectors of G be the same for the representa-
tions themselves as for the corresponding Gaussian data with the same first and second
order moments. Therefore, the purpose of the following section is to show simulations
which confirm this result.

Linear SVM Performance on the Dominant k-dimensional Eigenspace of G. Now we
compare the performance of a linear SVM model trained on the dominant Gram matrix’s
k-dimensional eigenspace of the representations versus the corresponding Gaussian data
with the same first and second order moments. Experiments were made in the following
settings:

• Data types: We do the experiments for both GAN generated images using the
BigGAN model [BDS18] and for real images randomly selected for the Imagenet
dataset [DDS+09]. In both cases we consider n = 6000 images.

• Classes: We consider k = 6 classes which are: hamburger, mushroom, pizza, straw-
berry, coffee and daisy.

• Representation networks: We consider 9 representation networks pre-trained on
the Imagenet dataset [DDS+09] which are: vgg16 (p = 4096), vgg19 (p = 4096),
resnet18 (p = 512), resnet50 (p = 2048), resnet101 (p = 2048), densenet161 (p = 2208),
densenet201 (p = 1920), alexnet (p = 4096) and googlenet (p = 2048).

Figure 3.7 depicts the train and test accuracy of a linear SVM trained on the top k
eigenvectors of G, for the representations (of GAN generated images) and the corre-
sponding Gaussian data, for different values of k. As we can notice, the performance
of the SVM model on the representations matches its performance on the corresponding
Gaussian data with the same first and second order statistics as predicted by Theorem 3.1.
This matching seems to extend beyond GAN images (which are concentrated vectors) to
real images as depicted in Figure 3.8. As a consequence, our results suggest that the qual-
ity of a given representation network can be quantified through their first two statistical
moments.

3.2.3 Central Contribution

The central contributions parts of this work are to highlight the universality aspects of
large random matrices on real data, by studying the behavior of the Gram matrix for a
large class of random vectors, the so-called concentrated vectors, which are much richer
than Gaussian vectors. The concentration assumption is particularly motivated by the
fact that realistic data can be generated using GANs by Lipschitz transformations of
Gaussian vectors, which fall within the class of concentrated vectors. Particularly, by
generating images across GANs, we have shown in this work that the spectral behavior
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Figure 3.7: Train and test accuracy of a linear SVM model trained on the top k eigenvec-
tors of the Gram matrix, computed on the representations of GAN generated images. We
generated with the BigGAN model [BDS18] n = 6000 images belonging to the 6 classes
{hamburger, mushroom, pizza, strawberry, coffee, daisy} (1000 images per class). We con-
sidered 9 representation networks which are vgg16, vgg19, resnet18, resnet50, resnet101,
densenet161, densenet201, alexnet and googlenet. Lines represent the performance of the
SVM model on the representations themselves whereas dotes represent the performance
of the SVM model on Gaussian data with the same first and second order moments. We
used a train vs test split of 2/3 and 1/3 respectively.

of the Gram matrix is the same on the generated data as on a Gaussian mixture model,
thereby making the estimation of machine learning algorithms (which are based on the
Gram matrix) predictable through random matrix theory for real data if we can assim-
ilate them to GAN generated data. In the next chapter we will go beyond the simple
Gram matrix to the more general setting of kernel matrices, which constructively lead to
non-linear ML methods, and therefore additional notions shall be introduced in order to
break the non-linearity.



70 CHAPTER 3. UNIVERSALITY OF LARGE RANDOM MATRICES

Figure 3.8: Train and test accuracy of a linear SVM model trained on the top k eigenvec-
tors of the Gram matrix, computed on the representations of Real images. We randomly
sampled n = 6000 images belonging to the 6 classes {hamburger, mushroom, pizza,
strawberry, coffee, daisy} (1000 images per class) of the Imagenet dataset [DDS+09].
We considered 9 representation networks vgg16, vgg19, resnet18, resnet50, resnet101,
densenet161, densenet201, alexnet and googlenet. Lines represent the performance of the
SVM model on the representations themselves whereas dotes represent the performance
of the SVM model on Gaussian data with the same first and second order moments. We
used a train vs test split of 2/3 and 1/3 respectively.
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This chapter is composed of two main parts. The first part analyzes the behavior of
kernel matrix of the for K = { 1

p‖xi − xj‖2} where the xi’s are supposed to be concen-
trated. The second part analyzes the behavior of kernel matrices of the form f (Σ̂) where
Σ stands for the sample covariance matrix.

4.1 Kernel Spectral Clustering

This section is based on the following work:

(C2) MEA. Seddik, M. Tamaazousti, R. Couillet, “Kernel Random Matrices of
Large Concentrated Data: The Example of GAN-generated Images”, IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP’19),
Brighton, United-Kingdom, 2019.

Kernel matrices generalize the inner product similarity of Gram matrices by introducing
a non-linear function in order to capture non-linearties from data. the objective of this
section is to analyze the behavior of these matrices under the concentration hypothesis
and supposing the high-dimensional RMT regime.

71
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4.1.1 Motivation

Gram matrices fall within the larger class of kernel matrices since they correspond to the
particular case of inner-product similarity. In order to retrieve non-linear structures from
data, the used methods for achieving classical classification or regression tasks rely on
non-linear approaches including neural networks [KSH12, LC18c] and algorithms that
are based on kernel methods, such as kernel-based support vector machines [LC17],
semi-supervised classification [MC17], kernel-based PCA [STC19b] and spectral cluster-
ing [AKC18, CBG+16].

Due to their non-linear design, these methods are particularly difficult to analyze the-
oretically. For practical large and numerous data, the study of kernel-based methods re-
lies on the characterization of kernel matrices K ∈ Rn×n in the large dimensional regime
(i.e., p/n → c0 as n → ∞). Under asymptotically non-trivial growth rate assumptions
on the data statistics (i.e., maintaining a feasible get not too easy problem), the entries
Kij = f (xᵀi xj/p) or Kij = f (‖xi − xj‖2/p) of K tend to a limiting constant independently
of the data classes – the between and within class vectors are “equidistant” in high-dimension.
This observation allows one to study K through a Taylor expansion, thereby giving ac-
cess to the characterization of functionals of K or its (informative) eigenvalue-eigenvector
pairs in the large dimensional regime.

Indeed, such an analysis was initiated in [EK+10b] where it has been shown that K
has a linear behavior in the large p, n asymptotics. Under a k-class Gaussian mixture
model, it has been shown in [CBG+16] that the normalized Laplacian matrix associated
with K behaves asymptotically as a so-called spiked random matrix, where some of the
isolated eigenvalues and eigenvectors contain clustering information. In particular, the
authors in [CBG+16] demonstrated that the obtained theoretical model agrees with em-
pirical results using the popular MNIST dataset [LeC98], thereby suggesting a sort of
universality of spectral clustering regarding the underlying data distribution.

The aim of this study is to confirm this observation by relaxing the Gaussianity as-
sumption to the class of concentrated vectors leveraging on the observation that GAN
data fall within this class of random vectors as presented in Section 3.1. In this study, we
analyze the kernel matrix K under a k-class concentration mixture model [LC19]. Precisely,
we prove that K behaves (up to centering) asymptotically as a spiked random matrix in
the large p large n regime, thereby generalizing the results of [CBG+16] to a broader class
of distributions. We particularly confirm our theoretical findings by considering the in-
put data as popular CNN representations of images generated by the BigGAN model
[BDS18], where the latter is trained to fit the manifold distribution of the well-known
Imagenet dataset. We further consider real images for comparison.

4.1.2 Model and Main Results

We consider the same concentration assumptions as for the analysis of the Gram matrix
in the previous chapter, but we use slightly different notations and assumptions. Con-
sider n independent random vectors x1, . . . , xn ∈ Rp distributed in k classes represented
by k distributions L1, . . . ,Lk supposedly all distinct. We consider the hypothesis of q-
exponential concentration, meaning that there exists q ≥ 2 such that for all s ∈ N, any
` ∈ [k] and any family of independent vectors y1, . . . , ys following the distribution L`, we
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Figure 4.1: Histogram of distances with Alexnet representations for both GAN images
(on the left) and real images (on the right). We can notice a perfect match between the
representations and the corresponding GMM data. Note that, for real images, the pair-
wise distances concentrate around a constant quantity as per Lemma 4.1, this comes from
the fact that real images are hardly separable compared to GANs ones.

Figure 4.2: Histogram of distances across different representation networks for both GAN
images (on top) and real images (on bottom). We can notice a perfect match between the
representations and the corresponding GMM data. Note that, for real images, the pair-
wise distances concentrate around a constant quantity as per Lemma 4.1, this comes from
the fact that real images are hardly separable compared to GANs ones.
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Figure 4.3: (Left) Kernel matrix of Alexnet representations for GAN images (top) and
Real images (bottom) with the corresponding GMM data (right). We can notice a perfect
matching between the kernel matrix of the representations and the corresponding kernel
with GMM data. We further note (at least for Real images) that all the entries of the
kernel matrix tend to the same value f (τp) as a first order approximation. The kernel
matrix is defined as Kij = f (‖xi− xj‖2/p) where the xi’s stand for the representations (or
the corresponding GMM data) and we have chosen f (t) = exp(−t).

have the concentration [y1, . . . , ys] ∝ Eq (see Definition 7). In particular, we consider the
concentration of X ≡ [x1, . . . , xn] ∈ Mp,n as per the following assumption

Assumption 5 (Data concentration). X ∝ Eq.

For ` ∈ [k], we denote by µ` the mean of the distribution L`, Σ` denotes its covariance
matrix, defined respectively as

µ` ≡ Ex∼L` [x], Σ` ≡ Ex∼L` [xxᵀ]− µ`µ
ᵀ
` , (4.1)

and n` stands for the number of vectors among the xi’s following L`. Let µ ∈ Rp and
Σ ∈ Rp×p be respectively defined as

µ ≡
k

∑
`=1

n`

n
µ`, Σ ≡

k

∑
`=1

n`

n
Σ` (4.2)

We further denote µ̄` ≡ µ` − µ and Σ̄` ≡ Σ` − Σ.
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Figure 4.4: Kernel matrix of CNN representations of GAN data using different repre-
sentations networks. The kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the
xi’s stand for the representations (or the corresponding GMM data) and we have chosen
f (t) = exp(−t).

We shall consider the following set of assumptions on the data statistics and the kernel
function in the large dimensional regime, meaning that both p and n grow at controlled
joint rate. These assumptions notably guarantee the non-triviality of spectral clustering
under the considered regime as we have shown in the introduction (see Subsection 1.3.2).

Assumption 6 (Growth rate). As p→ ∞, consider the following conditions:

• (Data) p
n → c0 ∈ (0, ∞), n`

n → c0 ∈ (0, 1).

• (Means) lim supp max` ‖µ̄`‖ < ∞ and lim supp maxi
1√
p E‖xi‖ < ∞.

• (Covariances) lim supp max` ‖Σ̄`‖ < ∞, lim supp maxa,b
1√
p tr Σ̄` < ∞,

lim supp maxa,b
1
p tr Σ̄aΣ̄b < ∞.

Assumption 7 (Kernel function). Let τ ≡ 2
p tr Σ and let f : R+ → R+ be a three-times

continuously differentiable function in a neighborhood of the values taken by τ and such that
lim infn f (τ) > 0.

Without loss of generality, for each ` ∈ [k], we arrange the xi’s in X as

x1+∑`−1
j=1 nj

, . . . , x∑`
j=1 nj
∼ L`(µ`, Σ`)
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Figure 4.5: Kernel matrix of CNN representations of Real data using different repre-
sentations networks. The kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the
xi’s stand for the representations (or the corresponding GMM data) and we have chosen
f (t) = exp(−t).

and define the kernel matrix K as the translation-invariant random matrix

K ≡
{

f
(

1
p
‖xi − xj‖2

)}n

i,j=1
(4.3)

4.1.2.1 Behavior of Large Kernel Matrices

Between and Within Class Data are “equidistant” in High-dimension. The first key
and fundamental result states that the between and within class vectors are “equidistant”
in the high-dimensional regime. Namely, we have the following lemma under the q-
exponential concentration hypothesis and Assumption 6.

Lemma 4.1. Denote τ ≡ 2
p tr Σ and let Assumption 6 hold. Then for any δ > 0, we have with

probability at least 1− δ

max
1≤i 6=j≤n

{∣∣∣∣ 1p‖xi − xj‖2 − τ

∣∣∣∣} = O
(

log( p√
δ
)1/q

√
p

)
(4.4)

Proof. For xi ∼ La(µa, Σa), denote

zi ≡
xi − µa√

p
and ψi ≡ ‖zi‖2 −E

[
‖zi‖2] = ‖zi‖2 − 1

p
tr Σa
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Figure 4.6: (Left) Spectrum of the kernel matrix of Alexnet representations for GAN im-
ages (top) and Real images (bottom) with the corresponding GMM data (right). We can
notice a perfect matching between the spectrum of the kernel matrix of the representa-
tions and the corresponding spectrum with GMM data. The kernel matrix is defined as
Kij = f (‖xi − xj‖2/p) where the xi’s stand for the representations (or the corresponding
GMM data) and we have chosen f (t) = exp(−t).

Let a 6= b ∈ [k], xi ∼ La(µa, Σa) and xj ∼ Lb(µb, Σb), we decompose the normalized
euclidean distance between xi and xj as

1
p
‖xi − xj‖2 = ‖zi − zj‖2 +

1
p
‖µa − µb‖2 +

2
√

p
(µa − µb)

′(zi − zj)

= τ +
1
p

tr Σ̄a +
1
p

tr Σ̄b + ψi + ψj − 2z′izj

+
1
p
‖µ̄a − µ̄b‖2 +

2
√

p
(µ̄a − µ̄b)

′(zi − zj)

First, we show the asymptotic concentration of each stochastic term in the previous
decomposition. Recalling the q-exponentially concentration assumption, each xi is q-
exponentially concentrated (since it can be seen as a 1-Lipschitz transformation of X),
precisely xi ∝ Eq. Thus, since x 7→ x−µa√

p is 1√
p -Lipschitz, we obtain

zi =
xi − µa√

p
∝ Eq

(
1
√

p

)
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Figure 4.7: Spectrum of the kernel matrix for CNN representations of GAN data using
different representations networks. The kernel matrix is defined as Kij = f (‖xi− xj‖2/p)
where the xi’s stand for the representations (or the corresponding GMM data) and we
have chosen f (t) = exp(−t).

We have by proposition 2.5 in [LC18b] the q-exponentially concentration of the concate-
nation [zi, zj] since zi and zj are independent, namely

[zi, zj] ∝ Eq

(
1
√

p

)
Moreover, since [x, y] 7→ x± y is 2-Lipschitz, we get

zi ± zj ∝ Eq

(
1
√

p

)
(4.5)

Now, since z → 2√
p (µ̄a − µ̄b)

′z is ( 4√
p lim supn max` ‖µ̄`‖)-Lipschitz and recalling from

Assumptions 6 that lim supn max` ‖µ̄`‖ < ∞, we obtain

2
√

p
(µ̄a − µ̄b)

′(zi − zj) ∝ Eq

(
1
p

)
(4.6)

By the polarization identity z′izj =
1
4

[
‖zi + zj‖2 − ‖zi − zj‖2], recalling the concentration

in equation 4.5 and applying Proposition 2.5 (involving the assumption 1√
n E‖xi‖ < ∞)
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Figure 4.8: Spectrum of the kernel matrix for CNN representations of Real data using
different representations networks. The kernel matrix is defined as Kij = f (‖xi− xj‖2/p)
where the xi’s stand for the representations (or the corresponding GMM data) and we
have chosen f (t) = exp(−t).

and Proposition 2.4, we have

‖zi ± zj‖2 ∝ Eq

(
1
√

p

)
+ E q

2

(
1
p

)
Once again, by Proposition 2.4, we obtain

z′izj ∝ Eq

(
1
√

p

)
+ E q

2

(
1
p

)
(4.7)

Similarly, we also have

ψi ∝ Eq

(
1
√

p

)
+ E q

2

(
1
p

)
Now that we have established the concentration of each stochastic term, we determine
the order of their maximum values. By equation 4.6, there exists two absolute constants
C and σ such that

P

{
| 2
√

p
(µ̄a − µ̄b)

′(zi − zj)| ≥ t
}
≤ C e−(p t/σ)q

,
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Figure 4.9: Two largest eigenvectors of the kernel matrix of Alexnet representations for
GAN images (top) and real images (bottom) with the corresponding largest eigenvectors
with GMM data and the theoretical predictions. The kernel matrix is defined as Kij =
f (‖xi − xj‖2/p) where the xi’s stand for the representations (or the corresponding GMM
data) and we have chosen f (t) = exp(−t).

by the union bound, we have in particular the concentration of the maximum over i, j ∈
[n]

P

{
max

i,j
| 2
√

p
(µ̄a − µ̄b)

′(zi − zj)| ≥ t
}
≤ C n2 e−(p t/σ)q

,

which implies that, for δ > 0, we have with probability at least 1− δ

max
i,j
| 2
√

p
(µ̄a − µ̄b)

′(zi − zj)| = O
(

log(p/
√

δ)1/q

p

)
(4.8)

Recalling the concentration of the dot product z′izj in equation 4.7, there exists two abso-
lute constants C and σ such that

P
{
|z′izj| ≥ t

}
≤ C

(
e−(p/σ)q/2tq/2

+ e−(p/σ)q/2tq
)

,

thus for t ≤ 1 (only the q-concentration domains for small deviations) and by the union
bound over i, j ∈ [n]

P

{
max

i,j
|z′izj| ≥ t

}
≤ 2 C n2 e−(p/σ)q/2tq

,
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Figure 4.10: Two largest eigenvectors of the kernel matrix for CNN representations for
GAN images with the corresponding largest eigenvectors with GMM data and the the-
oretical predictions. The kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the
xi’s stand for the representations (or the corresponding GMM data) and we have chosen
f (t) = exp(−t).

hence, for δ > 0, the following holds with probability at least 1− δ

max
i,j
|z′izj| = O

(
log(p/

√
δ)1/q

√
p

)
(4.9)

equivalently we have the concentration of the remaining stochastic term

max
i,j
|ψi + ψj| = O

(
log(p/

√
δ)1/q

√
p

)
(4.10)

Recalling the considered setting, we further have

1
p

tr Σ̄` = O(p−1/2),
1
p
‖µ̄a − µ̄b‖2 = O(p−1).

Combining the different orders yields the final result.

Random Matrix Equivalent for K. From the observation of Lemma 4.1, all the off-
diagonal entries of the kernel matrix K tend to the same quantity f (τ) asymptotically.
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Figure 4.11: Two largest eigenvectors of the kernel matrix for CNN representations for
Real images with the corresponding largest eigenvectors with GMM data and the the-
oretical predictions. The kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the
xi’s stand for the representations (or the corresponding GMM data) and we have chosen
f (t) = exp(−t).

Figure 4.12: Largest eigenspace of the kernel matrix of Alexnet representations for GAN
images (left) and real images (right) and the corresponding GMM data. The kernel ma-
trix is defined as Kij = f (‖xi − xj‖2/p) where the xi’s stand for the representations (or
the corresponding GMM data) and we have chosen f (t) = exp(−t).
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Figure 4.13: Largest eigenspace of the kernel matrix for CNN representations of GAN
images and the corresponding GMM data. The kernel matrix is defined as Kij = f (‖xi −
xj‖2/p) where the xi’s stand for the representations (or the corresponding GMM data)
and we have chosen f (t) = exp(−t).

Figure 4.14: Largest eigenspace of the kernel matrix for CNN representations of real
images and the corresponding GMM data. The kernel matrix is defined as Kij =
f (‖xi − xj‖2/p) where the xi’s stand for the representations (or the corresponding GMM
data) and we have chosen f (t) = exp(−t).

Therefore, K can be Taylor expanded entry-wise and we show in the following that it
asymptotically has (up to centering) the same behavior as a spiked random matrix.

Before introducing this asymptotic equivalent and for subsequent use, we introduce
the following quantities

M = [µ̄1, . . . , µ̄k] ∈ Mp,k, t =
{

tr Σ̄`√
p

}k

`=1
∈ Rk, J = [j1, . . . , jk] ∈ Mn,k

T =

{
tr Σ̄aΣ̄b

p

}k

a,b=1
∈ Mk, Z = [z1, . . . , zn] ∈ Mp,n, P = In −

1
n

1n1ᵀn

where j` ∈ Rn stands for the canonical vector of the class represented by L`, defined by
(j`)i = δxi∼L` . The vectors zi are defined as zi ≡ (xi − µ̄`)/

√
p for each ` ∈ [k]. We will

further denote the matrix Z`, the columns of which are the z′is in class corresponding to
L`.
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Figure 4.15: Kernel spectral clustering on Alexnet representations using GAN images
(top) and real images (bottom). The kernel matrix is defined as Kij = f (‖xi − xj‖2/p)
where the xi’s stand for the representations (or the corresponding GMM data) and we
have chosen f (t) = exp(−t).

The coming result states that there exists a random matrix K̃ such that PKP ! K̂, i.e,
PKP admits as a random equivalent K̃ asymptotically, where K̃ has a tractable behavior
from the random matrix theory standpoint.

Theorem 4.1 (Asymptotic Random Matrix Equivalent). Let Assumptions 5, 6 and 7 hold
and let K̃ be defined as

K̃ = −2 f ′(τ) [PZᵀZP + U AUᵀ] + F(τ)P, F(τ) = ( f (0)− f (τ) + τ f ′(τ))

A =

 A11 Ik − f ′′(τ)
2 f ′(τ) t

Ik 0k×k 0k×1

− f ′′(τ)
2 f ′(τ) tᵀ 01×k − f ′′(τ)

2 f ′(τ)

 , ψi = ‖zi‖2 −E‖zi‖2 = ‖zi‖2 − 1
p

tr Σ`

A11 = MᵀM − Ξ− f ′′(τ)
2 f ′(τ)

[ttᵀ + 2T ], Φ = ZᵀM −
{

Zᵀ
` µ̄`1

ᵀ
k

}k
`=1

U =

[
J − 1ncᵀ
√

p
, PΦ, Pψ

]
, Ξ =

{
‖µ̄a‖2 + ‖µ̄b‖2

2

}k

a,b=1

Then

PKP ! K̃
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Figure 4.16: Kernel spectral clustering on CNN representations using GAN images. The
kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the xi’s stand for the representa-
tions (or the corresponding GMM data) and we have chosen f (t) = exp(−t).

Specifically, for δ > 0, there exists Cδ > 0 such that for all γ > 0

‖PKP− K̂‖ ≤ Cδ p−1/2+γ log(p)γ with probability at least 1− δ.

Proof. See Subsection C.2.1 in the Appendix.

Theorem 4.1 shows that, up to centering by P, the kernel matrix K has asymptotically
the same behavior as K̃. In particular, the obtained approximation in operator norm im-
plies that PKP and K̃ share the same eigenvalues (by Weyl’s inequality [EI98, Thm 4.1])
and same isolated eigenvectors asymptotically. Therefore, the asymptotic spectral prop-
erties of K (i.e., the classification performance of algorithms involving K) may be studied
through its equivalent K̃.

Indeed, note that K̃ is made of a sum of a random matrix PZᵀZP and a maximum
(k− 1)-rank matrix containing linear combinations of the class-wise canonical vectors j`
weighted by the inner-products between class means MᵀM and class covariance-products
and traces (through t and T). The matrix K̃ can then be identified as a spiked random ma-
trix model [BGN12]. Note however that, unlike the standard spiked random matrices,
the low-rank part of K̃ depends statistically on the noise part and the latter is a mixture
between random matrices made of concentrated vectors. In particular, the spectrum of
K̃ is composed of a bulk along with up to k− 1 isolated eigenvalues, and the associated
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Figure 4.17: Kernel spectral clustering on CNN representations using real images. The
kernel matrix is defined as Kij = f (‖xi − xj‖2/p) where the xi’s stand for the representa-
tions (or the corresponding GMM data) and we have chosen f (t) = exp(−t).

eigenvectors are aligned with the eigenvectors in U, therefore with linear combinations
of the class canonical vectors j1, . . . , jk. Consequently, characterizing the asymptotic per-
formance of spectral clustering relies on the characterization of the isolated eigenvectors
of K̃. In fact, these eigenvectors are informative if their associated eigenvalues are far away
from the main eigenvalue bulk. The latter is due to the presence of the random Gram ma-
trix PZᵀZP for which the spectrum is described by Theorem 3.1 for concentrated vectors.

As for the Gram matrix, we see from Theorem 3.1 and Theorem 4.1 that the spectral
behavior of the kernel matrix K depends only on the first and second order statistics of the
laws L`, namely their means µ` and covariances Σ`. Typically, K have the same behavior
when data is described by a GMM model with the same means and covariances. The
asymptotic spectral behavior of K is therefore universal w.r.t. the data distribution laws
which fall within the introduced class of concentrated vectors. This notably explains the
observations in [CBG+16] in which the obtained theoretical model, under GMM assump-
tions, fit with empirical results using the MNIST dataset [LeC98].

In the following, we provide the conditions under which the informative eigenvalues
become visible in the spectrum of K̃ which provide access to the performances of kernel
spectral clustering. Having Theorem 3.1 which describes the noise term PZᵀZP, we can
determine the conditions under which the spikes can be visible outside the main bulk
of PZᵀZP, and the result concerning the isolated eigenvectors. We however need to
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introduce the following resolvent from Theorem 2.9

Qδ ≡
(

k

∑
`=1

c`
k

Σ`

1 + δ`(z)
+ zIp

)−1

(4.11)

where δ`(z) is the unique solution of the fixed point equation δ`(z) = 1
n tr(Σ`Qδ). We

further need the following technical assumption on the class-wise covariances to ensure
that PZᵀZP does not produce non-informative isolated eigenvalues.

Assumption 8 (Spikes control). Denote λ`
1, . . . , λ`

p the eigenvalues of Σ`, for each ` ∈ [k]. As

n→ ∞, 1
p ∑

p
i=1 δλ`

i

D−→ ρ` with support S`, and max1≤i≤p dist(λ`
i ,S`)→ 0.

Now we can state the theorem that ensures the presence of informative eigenvalues in
the spectrum of K̃, and gives the characterization of the corresponding isolated eigenvec-
tors, which results from standard random matrix techniques [BGN12].

Theorem 4.2 (Isolated eigenvalues). Suppose that Assumptions 5-6-8 hold and let Λz be the
matrix defined for z ∈ C+ as

Λz = ατ(z)Ik −
[

ατ(z)
(

zMᵀQδ M + Ξ +
f ′′(τ)
f ′(τ)

T
)
+

f ′′(τ)
2 f ′(τ)

ttᵀ
]

Γz

where

ατ(z) ≡ 1 +
f ′′(τ)

2zc0 p f ′(τ)

k

∑
`=1

η`(z) tr Σ2
`

Γz ≡
1
z

{
caηa(z)cbηb(z)

∑k
`=1 c`η`(z)

}k

a,b=1

− 1
z
D{c`η`(z)}k

`=1 +
2
z
(Ik −D(η))ᵀ

η`(z) ≡
1

1 + δ`(z)

Let λ∗ be at an infinitesimal distance from the bulk support S of PZᵀZP, such that ατ(λ∗) 6= 0
and Λλ∗ has a zero eigenvalue of multiplicity m∗. Then PKP produces m∗ spikes asymptotically
close to

ρ∗ ≡ −2 f ′(τ)λ∗ + F(τ)

Furthermore, the eigenspace projector corresponding to the (asymptotically converging to ρ∗) iso-
lated eigenvalues of PKP has a non-vanishing projection onto span(j1, . . . , jk).

Theorem 4.2 gives the conditions under which the spikes can be observed in the spec-
trum of K̃, and states that the corresponding eigenvectors are aligned to some extent to
the class canonical vectors j1, . . . , jk, which is important for spectral clustering. We refer
the reader to [CBG+16] for the performances characterization of kernel spectral cluster-
ing in the k-class Gaussian mixture model case as the behavior of K is universal.

4.1.2.2 Application to GAN-generated Images

The objective of this subsection it to present simulations to validate our findings con-
cerning the behavior of large kernel matrices. To highlight this aspect, we evaluate the
kernel matrix on x1, . . . , xn being CNN representations of GAN-generated images and
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we further use real images for comparison. Specifically, we consider the same setting as
the previous chapter, i.e., GAN images are generated by the BigGAN model [BDS18] and
then represented using several representation models pretrained on the Imagenet dataset
[DDS+09]. Moreover, real images are samples from the Imagenet dataset [DDS+09].

GAN architecture & real images: We consider as a setting of our experiments the Big-
GAN model [BDS18] which takes as input a Gaussian noise vector of dimension d = 140
and a one-hot-vector to generate a specific class image of dimension 256× 256× 3. We
particularly consider k = 3 classes which are {pizza, mushroom, hamburger}. Examples of
the generated images are shown in Figure 3.4. Real images are sampled from the same
classes from the Imagenet dataset [DDS+09]. In both cases, we use n = 3000 images (i.e.,
n` = 1000 for each class C`) in all our experiments.

CNN representation: We consider popular CNN representations pretrained on the
Imagenet dataset [DDS+09]. Specifically, we consider 9 representation networks which
are: vgg16 (p = 4096), vgg19 (p = 4096), resnet18 (p = 512), resnet50 (p = 2048), resnet101
(p = 2048), densenet161 (p = 2208), densenet201 (p = 1920), alexnet (p = 4096) and
googlenet (p = 2048).

GMM data: For both GAN and real data (i.e., CNN representations of GAN and
real images respectively) we build the corresponding GMM data of class C` as x′i =

µ̂` + Σ̂1/2
` zi with zi ∼ N (0, Ip) where µ̂` and Σ̂` are respectively the empirical estimates

of µ` and Σ`.

The key point in the analysis of the kernel matrix K is the behavior of the quantity
1
p‖xi − xj‖2. In Figure 4.1, we have depicted the histogram of this quantity for both GAN
and real images using the alexnet (p = 4096) representation. As we can notice, in both
cases the histogram of 1

p‖xi − xj‖2 matches its Gaussian counterpart 1
p‖x′i − x′j‖2. More-

over, for real data, this quantity seems to converge to the same value as per Lemma 4.1.
We do not observe the same behavior for GAN data which may be the consequence of
the fact that GANs have low entropy, i.e., GAN data are easily separable compared to
real data. Figure 4.2 depicts the same histogram using other representations from which
we obtain the same conclusions.

As a consequence, the entries of the kernel matrix K converge to the same value, as
we can visually observe from Figure 4.3 (at least for real images). Still we observe the
same behavior of the kernel matrix for GAN data/real data versus their GMM counter-
parts. Figure 4.4 shows more examples using the different CNN representation for GAN
images, and Figure 4.5 depicts other representations of real images (where we observe
that the entries K converge to the same quantity as p grows).

More interestingly, we see from Figure 4.6 that the spectrum of K when computed
on the representations of both GAN and real images, matches perfectly the spectrum of
its GMM counterpart. A result which stays valid across all the representation networks
for GAN images in Figure 4.7 as well as real images 4.8. As proved by Theorem 4.1, the
kernel matrix K behaves as spiked random matrix model which can be also observed
from these figures. In particular, the matching between the representations themselves
and the corresponding GAN data demonstrates the universal behavior of the kernel matrix
K. This universal behavior goes beyond the spectrum of K and is also observed through
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the largest eigenvectors of K which contain information about the classes as per Theo-
rem 4.2. In particular, we can see from Figure 4.9 that the largest eigenvectors computed
on the alexnet representations are perfectly aligned with their GMM counterparts, and
also for the other representations using GAN images (see Figure 4.10) and real images
(see Figure 4.11). The corresponding eigenspaces are also depicted in Figure 4.12 for the
alexnet representation network and the other representation networks in Figure 4.13 and
Figure 4.14.

Since kernel spectral clustering consists in applying the k-means algorithm on the
largest subspace of the kernel matrix, we depicted in Figure 4.15 the result of k-means
for alexnet representations and the corresponding GMM data along with the obtained
accuracies. As we can see, the behavior of k-means on the representations is almost the
same as on the corresponding GMM data which confirms the universal aspect of K. This
observation holds for the remaining considered representation networks for both GAN
images in Figure 4.16 and real images 4.17. Note that the accuracies obtained with GAN
data are almost equal to 100% which is a consequence of the fact that GAN data are easily
separable, while this is not true for real data as depicted in Figure 4.17.

4.1.3 Central Contribution and perspectives

We have studied in this work large kernel matrices for a wide class of random inputs, i.e.,
concentrated data, which are more generic than Gaussian mixtures as we have shown in
the first part of this manuscript. Our study has notably shown the universality aspect
of kernel spectral clustering (based on the kernel matrix K) by highlighting the fact that
the asymptotic behavior of kernel matrices, for concentrated inputs, depend on the first
and second moments statistics, thereby match the behavior of a GMM model as empir-
ically observed in [CBG+16]. Moreover, since the performance of spectral clustering is
predictable for a GMM model [CBG+16], it is thereby predictable for concentrated data
as well and thus for complex data as deep learning representations of the surprising re-
alistic images generated by GANs. In the next section, we will provide the analysis of a
different form of kernel matrices which fundamentally differ from this section by the fact
that their entries concentrate around different values. Thereby, making the conclusions
considerably different, we further apply our result to the problem of Sparse PCA which
yield to an effective PCs recovery method.

4.2 Sparse Principal Component Analysis

This section is based on the following work:

(C3) MEA. Seddik, M. Tamaazousti, R. Couillet, “A Kernel Random Matrix-
Based Approach for Sparse PCA”, International Conference on Learning
Representations (ICLR’19), New Orleans, United-States, 2019.

This section presents the analysis of kernel matrices of the form f (Σ̂) where Σ̂ is the
sample covariance matrix. The behavior of these matrices if fundamentally different from
those of the previous section, indeed, the entries of f (Σ̂) concentrate around different
values which makes the analysis a bit different. In particular, we apply our analysis to
the Sparse PCA problem which results in competitive method to the existing methods in
the state-of-the-art.
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4.2.1 Motivation

Principal component analysis (PCA) is extensively used in data analysis and machine
learning applications. It is a dimension reduction technique that aims to project a given
dataset onto principal subspaces spanned by the leading eigenvectors of the sample co-
variance matrix [WEG87], which represent the principal modes of variance. Basically, the
statistical interpretation of PCA lies in the fact that most of the variance in the data is
captured by these modes. Consequently, PCA reduces the dimension of the feature space
while keeping most of the information in the data. It is well-known [And63] that PCA
performs efficiently in the traditional data setting where the number of features is small
and the number of samples is large.

Consider a data matrix X ∈ Mp,n consisting of n centered samples, each sample
having p features. The standard PCA method requires the computation of the sample
covariance matrix Σ̂ = XXᵀ/n and estimates the first principal components u1, u2, . . .
(i.e., the successive dominant eigenvectors of Σ = E[XXᵀ/n]) by the ordered eigenvec-
tors û1, û2, . . . of Σ̂. Authors in [JL09] demonstrated that, in the high dimensional regime
where n, p → ∞ with p/n → c > 0, the principal component û1 estimated by standard
PCA is inconsistent. Essentially, if p/n 9 0 then ‖û1− u1‖2 9 0 in the high-dimensional
asymptotic regime (see Subsection 2.3.1 for more details). As discussed in the back-
ground Chapter 2 of this manuscript, this phenomenon is well investigated within the
field of random matrix theory for covariance models of the form Σ̂ = 1

n Σ1/2ZZᵀΣ1/2,
where Σ is a positive semi-definite matrix and Z is a p × n matrix with random i.i.d.
entries. Essentially relying on the so-called spiked models (see Subsection 2.3) of ran-
dom matrix theory, where Σ is a low-rank perturbation of the identity matrix, namely
Σ = Ip + ∑k

i=1 ωiuiu
ᵀ
i with k fixed with respect to p, n. Authors in [BAP+05] and [Pau07]

notably exhibited a phase transition phenomenon: as p/n → c, if ωi <
√

c the estimated
principal component ûi using standard PCA is (almost surely) asymptotically orthogo-
nal to the true principal component ui (i.e., ûᵀ

i ui → 0); on the other hand, if ωi >
√

c,
lim infn |ûᵀ

i ui| > 0. This phase transition phenomenon has attracted recently much atten-
tion within the random matrix community [BGN11, CDMF09, FP07, KY13].

The inconsistency of standard PCA in high dimensions motivated the idea to look for
more structural information on the principal components. In particular, considering that
the principal components are sparse in an appropriate basis (e.g., in the wavelet domain),
a large body of works have emerged and proposed improved PCA approaches that ac-
count for sparsity. One of the most consistent sparse PCA methods in the literature is the
covariance thresholding (CT) algorithm [KNV15]. Based on the intuition that the small
entries of the empirical covariance matrix Σ̂ induce noise in its principal components, this
method consists in applying the popular soft-thresholding function (with threshold τ > 0);

soft(· ; τ) : t 7→ sign(t) · (|t| − τ)+, (4.12)

entry-wise to the empirical covariance matrix Σ̂ and performing PCA on the resulting
matrix. Authors in [DM14, DM16] have theoretically demonstrated that the covariance
thresholding algorithm recovers the sought-for principal components with high proba-
bility under controlled growth rates between p, n and the sparsity level. In this work,
we particularly show that the soft-thresholding method in fact falls within a broader
class of kernel-based1 PCA algorithms that are particularly suited to sparse PCA recov-

1Note that kernel-based terminology is used to highlight that our work falls within the framework of
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ery. This method consists in considering the matrix f (Σ̂) instead of Σ̂ where f is a func-
tion applied entry-wise to Σ. By imposing some constraints on f , most importantly that
f ′(0) = f ′′(0) = 0, we show that sparse PCA can be performed with provably high accu-
racy for sufficiently large n, p.

There has been a wide range of approaches to tackle the sparse PCA problem. Mainly,
three classes of approaches emerge in the literature. Most popular techniques are opti-
mization based algorithms [dGJL05, MWA06, ZS07, ZHT06, WGR+09], where the idea is
to see the problem of sparse PCA through an optimization perspective, and to propose
methods to solve the latter by either considering a different formulation – e.g. semi-
definite programming (SDP) or convex relaxations – or adding penalties to the original
optimization problem such as a LASSO regularization. The second class of approaches
covers matrix decomposition-based techniques [APD14, PDK13, SH08], where sparse
principal components are extracted through solving a low rank matrix approximation
problem based on Singular Value Decomposition. Finally, most consistent sparse PCA
methods adopt thresholding-based approaches: initial heuristics used factor rotation
techniques and thresholding of eigenvectors to obtain sparsity [CJ95]. Based on the well-
known power method, [YZ13] introduced an efficient sparse PCA approximation to ob-
tain the exact level of required sparsity, by truncating to zero the principal components it-
eratively except for their largest entries. A step further, under a spiked covariance model
(see Section 4.2.2), [M+13] proposed a very efficient iterative thresholding approach for
estimating principal subspaces in the sparse setting. Similarly, assuming a single-spike
model, [KNV15] proved that, when the sparsity level s ≥ Ω(

√
n), a standard SDP ap-

proach cannot recover consistently the sparse spike; in particular, the authors presented
empirical results suggesting that for s = O(

√
n), recovery is possible by a simple covari-

ance thresholding algorithm. More recently, [DM16] analyzed and theoretically proved,
under a spiked model, that indeed the covariance thresholding algorithm [KNV15] suc-
ceeds with high probability under controlled growth rates between p, n and s.

In this work, while restricting ourselves to a setting where p and n grow at a con-
trolled joint rate, we provide an elementary argument, based on a matrix-wise Taylor
expansion controlled through a concentration of measure approach, that generalizes the
CT method to a large family of kernel-based methods, by means of a kernel random
matrix approach [EK+10b, EK10a]. Concretely, we study kernel random matrices of
the form f (XXᵀ/n) where X = Σ1/2Z and Z is a random matrix with concentrated
columns. [EK+10b] studied kernel matrices of the form f (XᵀX/n) (i.e., the so-called
inner-product kernel matrices), which is equivalent to the case Σ = Ip when considering
the form f (XXᵀ/n). In particular, we elaborate from El Karoui’s study by Taylor expand-
ing f (XXᵀ/n) in the vicinity of Σ entry-wise and controlling the resulting matrices via
concentration arguments.

4.2.2 Model and Main Results

Consider a data matrix X ∈ Mp,n defined as

X ≡ Σ1/2Z =
(

Ip + P
)1/2 Z, (4.13)

kernel random matrices and should not be confused with the standard kernel PCA.
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where Z ∈ Mp,n some random matrix, P = ∑k
i=1 ωiuiu

ᵀ
i and U = [u1, . . . , uk] ∈ Mp,k

is isometric. Here, k refers to the number of principal components (or eigenvectors)
u1, . . . , uk ∈ Rp to be evaluated, with ω1 > . . . > ωk > 0 the corresponding eigen-
values respectively. We define the quantity βp ≡ maxi ‖[Σ1/2]·,i‖.

We consider the following concentration and growth rate assumptions.

Assumption 9 (Concentrated data). Z ∝ E2 with EZ = 0 and E[ZZᵀ/n] = Ip.

Assumption 10 (Growth rate). There exists B > 0 independent of p, n such that maxij |[Σp]ij| <
B. Besides, there exists ε > 0 such that βp ≤ B′ n

1
4−ε for all p, n and for some absolute constant

B′ > 0.

Under these assumptions, our main technical result is as follows:

4.2.2.1 Random Matrix Equivalent

Theorem 4.3 (Asymptotic Equivalent). For f a three-times continuously differentiable func-
tion, define the matrices F and F̃ respectively by2

F ≡
{

f

([
1
n

XXᵀ
]

ij

)}p

i,j=1

, F̃ ≡ f (Σ) +
2

∑
k=1

f (k)(Σ)
k!

�
[

Σ1/2
(

1
n

ZZᵀ − Ip

)
Σ1/2

]�k
.

Then

F ! F̃

Specifically, for η > 0, there exists an absolute constant Cη > 0 such that with probability at
least 1− η

‖ F − F̃ ‖ ≤ Cη

β6
p p

n3/2√η
. (4.14)

For a general smooth function f , the kernel random matrix f (Σ̂) is particularly dif-
ficult to analyze through the usual tools of random matrix theory, such as the moment
or Stieltjes transform-based methods [Tao12]. Rather than directly analyzing such a ker-
nel random matrix, Theorem 4.3 gives an asymptotic random equivalent to it, in operator
norm, that has mainly two properties. First, the approximation matrix F̃ contains “sim-
ple” objects that have already been analyzed in random matrix theory – in particular, the
term (ZZᵀ/n− Ip) in the expression of F̃. Second, the approximation in operator norm
implies (by Weyl’s inequality [EI98, Theorem 4.1]) that, when ‖F − F̃‖op → 0, F and F̃
have the same eigenvalues and same “isolated” eigenvectors asymptotically (see Corol-
lary 4.2 subsequently).

Before sketching a proof for Theorem 4.3, we need the following technical Lemma
which establishes the concentration of the entries of the noise term (ZZᵀ/n− Ip).

Lemma 4.2 (A Concentration Result). For all i, j ∈ [p], the bilinear form

gij(Z) ≡ [Σ1/2]i,·

(
1
n

ZZᵀ − Ip

)
[Σ1/2]·,j (4.15)

2 f and f (k) are applied entry-wise and �k stands for the element-wise k-th power.
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satisfies

gij(Z) ∝ E1

(
β2

p

n

)
+ E2

(
β2

p√
n

)
. (4.16)

Proof. Denoting by vi the i-th column vector of the matrix Σ1/2, we have by the polariza-
tion identity, for all M Hermitian,

vᵀ
i Mvj =

1
4
[(vi + vj)

ᵀM(vi + vj)− (vi − vj)
ᵀM(vi − vj)].

It thus suffices to prove the result for the quadratic form

g(Z) = vᵀ
(

1
n

ZZᵀ − Ip

)
v

where v ∈ Rp. Noticing that vᵀZZᵀv = ‖vᵀZ‖2 and E
[ 1

n vᵀZZᵀv
]
= vᵀv, we need

to prove the concentration of the random variable ‖vᵀZ‖2. In fact, since vᵀZ is a Con-
centrated vector, by Definition, ‖vᵀZ‖ ∝ E2(‖v‖) since M 7→ vᵀM and u 7→ ‖u‖ are
respectively ‖v‖-Lipschitz and 1-Lipschitz functions. We get the final result by Proposi-
tion 2.5.

Now we turn to the main ingredients to prove Theorem 4.3.

Sketch of Proof of Theorem 4.3. The main idea of the proof relies on the following intuition:
for large n, the entries of ZZᵀ/n− Ip and its successive Hadamard products tend to zero
at controllable rate. The concentration of measure framework then allows for the control
of non-linear functions of the entries of ZZᵀ/n − Ip thanks to the previous Lemma. A
Taylor expansion of F around f (Σ) then leads to controlling the operator norm of

f (3)(ξn)� [Σ1/2
p (ZZᵀ/n− Ip)Σ

1/2]�3

for ξn a matrix with entries in the set [[XXᵀ/n]ij, [Σ]ij] (or [[Σ]ij, [XXᵀ/n]ij]). This follows
precisely from exploiting Lemma 4.2 twice, to control the fluctuations of the entries of
both ξn (by the conditions on maxij |[Σ]ij| and βp) and [Σ1/2(ZZᵀ/n − Ip)Σ1/2]�3, with
the bound provided in the theorem statement, thereby completing the proof. A detailed
proof of Theorem 4.3 is provided in the Appendix.

In order to simplify our arguments concerning the analysis of Sparse PCA, we make
the additional assumption that both p and n are large an comparable. We further suppose
that the deterministic quantities ωi’s and βp are bounded as n→ ∞. Specifically, we make
the following set of assumptions

Assumption 11 (RMT Growth rate). As n→ ∞,

A1 p/n→ c ∈ (0, ∞),

A2 lim supn maxi ωi < ∞; specifically lim supn βp < ∞.

Under this setting, we have the following important corollary to Theorem 4.3.
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Corollary 4.1. Define the matrices F and F̃ as in Theorem 4.3 and let Assumptions A1 and A2
hold. Then, for η > 0

F = F̃ +Oη(n−
1
2 ), (4.17)

where X = Om
η (n−α) stands for the fact that P

{
‖X‖ ≥ C n−α η−

1
2m

}
≤ η for some absolute

constant C > 0 and non-negative integer m.

As a consequence of Corollary 4.1, we have, by the sin(Θ) theorem of [DK70], the
corollary below concerning the eigenvectors of the matrices F and F̃.

Corollary 4.2. Let v1, . . . , vk and ṽ1, . . . , ṽk denote respectively the k principal eigenvectors of F
and F̃. Denote by ∆i = ωi −ωi+1 for i ∈ [k− 1]. Then for η > 0, we have

max
i∈[k]

min
y∈{+1,−1}

∆2
i ‖vi − yṽi‖2 = Oη(n−1). (4.18)

4.2.2.2 Application to sparse PCA

Before presenting our results concerning the behavior of kernel matrices of the form f (Σ̂)
in the context of sparse PCA, we introduce in following a particular notion of sparsity for
large matrices that will be used subsequently.

When considering a large-dimensional random matrix setting, the notion of sparsity
for such matrices is particularly attached to the choice of the matrix norm.3 [EK08] in-
troduced a definition (ε-sparsity) for sparsity of matrices that is compatible with spectral
analysis, and specifically adapted to the operator norm. The ε-sparsity definition requires
some notions from graph theory that we present in the following:

• To each p× p symmetric matrix M, we define its corresponding adjacency matrix
as A(M) = {1Mij 6=0}

p
i,j=1, which corresponds to a graph Gp with p vertices.

• A walk is said to be closed on this graph if it starts and finishes at the same vertex
and the number of edges traversed by a walk defines the length of this walk. Denote
Cp(k) the set of closed walks of length k on Gp.

We these notions, we are now in place to introduce the definition of the ε-sparse notion.

Definition 8 (ε-sparse matrices [EK08, Definition 1]). A sequence of covariance matrices
{Σp}∞

p=1 is said to be ε-sparse if the sequence of their associated graphs {Gp}∞
p=1 satisfies, for

all k ∈ 2N,
|Cp(k)| ≤ Ck pε(k−1)+1

where ε ∈ [0, 1], Ck > 0 independent of p and |S| denotes the cardinality of the set S .

The ε-sparsity is both useful and convenient to our study for the following reasons:
1) it is adapted to the analysis of the operator norm of large sparse matrices (as we give
concentration results on the operator norm); 2) it is also more general than other sparsity
notions such as in [BL08]. In the latter, the authors developed a natural permutation-
invariant notion of sparsity which is more specific than Definition 8 as pointed out in the
introduction of their article. Furthermore, note that both sparsity notions (Definition 8
and the one in [BL08]) provide equivalent bounds for ε < 1

2 and when considering the
large dimensional p ∼ n setting (see subsection 2.4 in [BL08]); this is precisely the setting
considered in Theorem 4.4 introduced subsequently (cf. µ > 0).

3Considering the identity matrix (which is a sparse matrix), ‖Ip‖ = 1 while ‖Ip‖F =
√

p→ ∞.
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Remark 4.1. As Definition 8 is based on a graph defined by its corresponding adjacency matrix,
we have the following property: given an ε-sparse matrix M and a function f such that f (0) = 0
and f (x) 6=x 6=0 0, the matrix f (M), resulting from the application of f entry-wise to M, remains
ε-sparse; this is simply a consequence of A(M) = A( f (M)).

To get an insight on our coming results, consider the scenario where U contains
finitely many non-zero entries. In this case, the perturbation matrix P in equation 4.13
contains finitely many non-zero entries (say s) on each line and a simple enumeration
shows that |Cp(k)| ≤ p sk−1, thus P is 0-sparse in the sense of Definition 8. Similarly, Ip is
0-sparse and by the additive stability4 of the ε-sparsity notion, Σ remains 0-sparse. More
generally, if we assume that it exists ε ∈ [0, 1

2 ) such that the population covariance matrix
Σ is ε-sparse, we have the following set of consequences. By Corollary 4.1, choosing f
in such a way that f ′(0) = f ′′(0) = 0 ensures that the terms f ′(Σ)� . . . and f ′′(Σ)� . . .
vanish in the expression of F̃. Indeed, for k ∈ {1, 2}

(i) Only finitely entries of f (k)(Σ) do not vanish, precisely by Remark 4.1, since

A( f (k)(Σ)) = A(Σ),

the matrix5 f (k)(Σ) is also (almost) ε-sparse.

(ii) The matrix F(k) =
[
Σ1/2 ( 1

n ZZᵀ − Ip
)

Σ1/2]�k
has entries of order O(n−k/2). As a

result,6 we have for η > 0 and for all m > 0, maxi,j |F(k)
ij | = Om

η

(
n−

k
2+

1
m

)
.

Since in addition the operator norm of Σ1/2(ZZᵀ/n − Ip)Σ1/2 is typically of order
O(1) (see e.g., [BS+98a]), it is then easily seen that, for each k ≥ 1, the operator norm of
the Hadamard product f (k)(Σ)� F(k) vanishes (see Lemma C.7 in the Appendix). In par-
ticular, note that the non-zero entries of Σ are controlled through the maximum entry of
F(k) which is vanishing asymptotically, as mentioned in item (ii) above. On the opposite
f (Σ) does not vanish since it has entries bounded away from zero (as long of course as
f 6= 0). We precisely have the following result.

Theorem 4.4 (Sparse PCA). Let µ > 0 and suppose Σ is a 1
2+µ -sparse matrix. For f a three-

times continuously differentiable function such that f ′(0) = f ′′(0) = 0 and for η > 0, we have
for all ε ∈ (0, µ

2(3+2µ)
)

F = f (Σ) +Ob1/εc
η

(
n

−µ
2(2+µ)

+ε
(

2− 1
2+µ

))
. (4.19)

Proof. See Section C.2.2.

Remark 4.2. Theorem 4.4 gives a general result concerning the estimation of ε-sparse covariance
matrices (more precisely, element-wise functionals of sparse covariance matrices). In particular,
the spiked model in equation 4.13 with U sparse corresponds to the particular case when µ→ ∞;
in this case, for η > 0 and for all ε ∈ (0, 1/4), F = f (Σ) +Ob1/εc

η (n−
1
2+2ε).

One may then perform a PCA on F for some function f with f ′(0) = f ′′(0) = 0 (we
denote by these two conditions in the following). But, while Σ = Ip +P is a low rank per-
turbation of the identity (therefore having only k eigenvalues strictly greater than 1 with

4See Fact .1 in [EK08].
5Given M ∈ Mp, its corresponding adjacency matrix is defined as A(M) = {1Mij 6=0}

p
i,j=1.

6See proof of Lemma C.7.
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Figure 4.18: The function f (t) = t(1− et2
) along with its derivatives.

k being fixed w.r.t. p), f (Σ) is likely more complex and not a mere low rank deformation
of the identity. Now, if Σ has all its non-zero entries greater than a certain threshold τ, an
appropriate choice for f that avoids the deformation of Ip + P is such that and f (t) = t
for all |t| > τ.

Such a convenient choice is

f (t) = t(1− e−at2
), (4.20)

for some a > 0, which is depicted along with its derivatives in Figure 4.18 for a = 1. This
function notably satisfies

f ′(t) = 1 + e−at2
(2at2 − 1)⇒ f ′(0) = 0,

f ′′(t) = −2ate−at2 (
2at2 − 3

)
⇒ f ′′(0) = 0.

Note that a compromise in the choice of a must be made that both maintains a close
approximation of the identity by f on a large range and rather small values of f ′′ in the
vicinity of zero. Interestingly, it can be verified that the extrema of f ′ are independent
of a but are found at ±

√
3
2a and thus smaller values of a create sharper f ′ in the vicinity of

zero. Similarly, the extrema of f ′′ are found at ±
√

3±
√

6
2a ∝ 1/

√
a, and precisely given by the four

values 2
√

3a(3±
√

6)e−
1
2 (3±

√
6) ∝

√
a. Thus smaller a induce larger maxima for f ′′ but no sharper

slope.

4.2.2.3 Experimental Validation

In this section, we provide some experiments in the context of sparse PCA. Precise setting
given in caption of Figure 4.19. The spectrum of the sample covariance matrix (in gray) is
quite different from that of the population covariance Σ. One instead observes a “bulk”
of eigenvalues spread in the vicinity of 1. The limiting measure of these eigenvalues is
given by the Marčenko-Pastur density function

fMP(x) =
1

2πc

√
(λ+ − x)(x− λ−)

x
+ max

(
1− 1

c
, 0
)

δ(x), 7 (4.21)

7δ denotes here the dirac function.
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Figure 4.19: (Left) Spectrum of Σ̂ (up) and f (Σ̂) (bottom) for p = 2048 and n = 7500.
Limiting Marčenko-Pastur density [MP67] in blue versus spectrum of Σ in black, with
ω1 = 2; estimated largest eigenvalue in red. (Right) Alignment between estimated PC
and GT (the “Three Peak” example of [JL09] in the “Symmlet 8” wavelet basis), in terms
of √

p/n. We considered ω1 = 5 and thus the phase transition for standard PCA occurs at√
p/n = 5, thereby suggesting another phase transition for f -PCA. Curves obtained from 500

realizations of Z with random i.i.d. N (0, 1) entries.

which is represented by the blue curve in Figure 4.19 (left). Furthermore, one observes
a gap between the true spike and the estimated spike (in red) through the sample co-
variance matrix. This phenomenon is well-understood in random matrix theory. In par-
ticular, the extreme eigenvalue in our setting converges almost surely to the quantity
(1 + ω1)

(
1 + c

ω1

), where we recall that c = limn p/n.

However, thanks to sparsity, the spectrum of F = f (Σ̂) closely matches that of Σ, as
suggested by Theorem 4.4. In particular, the extreme eigenvalue, which corresponds to
the principal component, is consistently estimated. Figure 4.19 (right) depicts the align-
ment between the estimated principal component and ground truth, by standard PCA (in
blue) and our method (in black), in terms of

√
p/n. Our method retrieves the principal

component even when the spike is not visible in the spectrum of Σ̂; namely beyond the
phase transition

√
p/n ≥ ω1. In fact, the standard PCA result is too noisy compared with

the one when considering f (Σ̂), as depicted in Figure 4.20.

Higher Rank Case. In this paragraph, we provide further experiments by considering
a rank three case and by using the “Three Peak”, “Piece Poly” and “Step New” signals
of Johnstone et al. [JL09], in the “Symmlet 8” wavelet basis, as principal components.
We compare the estimated PCs by our method with the kernel function in equation 4.20
to the estimated ones through standard PCA and the CT method [DM16]. As shown in
Figure 4.22, the proposed method retrieves consistently the principal components com-
pared to a standard PCA. In particular, we obtain results that are similar to the ones
obtained by the CT method while generalizing it to the class of smooth functions with
f ′(0) = f ′′(0) = 0.

Other choices of the kernel function f . In this paragraph, we consider functions of
the form f (t) = αt3 + βt2 + γt where α, β, γ ∈ R are some parameters to fix in order to
allow or not the conditions f ′(0) = f ′′(0) = 0. In particular, we set different parameters
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Figure 4.20: Principal component recovery (in orange) by standard PCA (up) and our
method (down) for the “Three Peak” example of johnstone2009consistency. The signal is
sparse in the “Symmlet 8” wavelet basis. We use p = 2048, ω1 = 5 for the strength of the
spike and different values of n.

choices for α, β and γ in order to validate these conditions. Figure 4.23 depicts different
PC recovery using the f -PCA method with the considered class of functions. As we can
observe from this figure, the “cleanest” signal recovery is obtained when α 6= 0, β =
0, γ = 0 (i.e., when f ′(0) = f ′′(0) = 0) thereby validating our theoretical conditions on
the kernel function f for a consistent sparse PCA recovery. Note that these conditions
are necessary but not sufficient in the sense that f has to be linear for large values of t (In
particular, this is the case for the function f given by equation 4.20). In fact, the outcome
provided by f -PCA for f (t) = αt3 with α 6= 0 is not optimal as the obtained signal is
deformed (due to the unverified linearity condition), compared to the GT one.

Complexity and Performance of f -PCA. In terms of complexity, as our method con-
sists in computing the sparse eigenvectors of a p× p matrix which can be done by power
method, the complexity of estimating the principal component is about O(ps) where s
is the sparsity level. And regarding the performance w.r.t. state-of-the-art methods, Fig-
ure 4.21 depicts the performances of standard PCA, different state-of-the-art sparse PCA
methods and our method, in terms of total projections score (left) and total projections er-
ror (right), for different values of the amplitudes ωi’s. We refer, in this figure, to standard
PCA as PCA, TpowPCA for the method in [YZ13], ITSPCA for the method in [M+13], CT
refers to the method in [DM16] and finally we refer to our method as f -PCA. The total
projections score S and error E are given respectively by

S =
1
k

k

∑
i=1

(uᵀ
i ûi)

2, E = ‖UUᵀ − ÛÛᵀ‖F, (4.22)

where U = [u1, . . . , uk] are the ground truth principal components and Û = [û1, . . . , ûk]
are the estimated ones.

As suggested theoretically and verified experimentally, our proposed method strongly
attenuates the “noise component” of the sample covariance matrix and thus consistently
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Figure 4.21: Performances of standard PCA, different state-of-the-art sparse PCA meth-
ods and our method in term of total projections score (left) and total projections error
(right) for different values of the amplitudes ωi. The PCs ui, for i ∈ [4] are the “Three
Peak”, “Piece Poly”, “Step New” and “Sing” signals of johnstone2009consistency. We
use p = 2048 and n = 1024. The soft-parameters a and τ (respectively for our method
and CT) are selected by cross-validation using a validation set of size n. The selected
parameters are a = 20 and τ = 0.1.

estimates the principal components. In particular, in term of total projections score, PCA
is the most inconsistent. In general, ITSPCA, CT and our method give equivalent re-
sults. The same holds when considering the total projections error as a metric, except
that TpowPCA performs inconsistently, compared to PCA, for small values of ampli-
tudes due to the initialization step from the PCA eigenvectors.

Discussion. The mostly used concurrent methods to PCA in a sparse context are iter-
ative truncated power methods (such as the TPower [YZ13] algorithm or the ITSPCA
[M+13] approach). These algorithms, despite great observed performances, as compared
to standard PCA, suffer from two limitations. First, they are usually initialized from the
PCA eigenvectors themselves and may not converge to good estimates. For weak sig-
nals, PCA is so impacted by noise that the mentioned initialization limitation may lead
to non convergent or dramatically erroneous outcomes of the method. The proposed
approach deals precisely with this limitation by strongly attenuating the “noise compo-
nent” of the sample covariance matrix. In particular, our approach gives equivalent re-
sults to the CT method while generalizing it to the class of smooth functions f such that
f ′(0) = f ′′(0) = 0, in the considered regime. The second limitation concerns the choice
of the hyper-parameters; in fact, TPower and ITSPCA need to set up an arbitrary deter-
ministic threshold value that maintains at each iteration step only most powerful compo-
nents. The proposed method as well as CT need also to set up a “soft” parameter (a and τ
respectively). But, on the basis of [CS13, KC17], we believe that our present investigation
can be extended to the asymptotically non-trivial setting where ωi = O(1/

√
p) (in which

case the dominant eigenmodes scale at a similar rate with residual noise); this setting
may likely allow to exhibit and estimate optimal hyper-parameter choices. Notably, this
setting has already been used in [TAKC18] in a different context, for hyper-parameters
estimation.

4.2.3 Central Contribution and Perspectives

We tackled in this work the problem of sparse PCA in the large dimensional setting
through a random matrix perspective, thereby generalizing recent ideas to a broader
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Figure 4.22: Multiple principal components (k = 3) recovery (in orange) with stan-
dard PCA (left), the CT method (middle) and our method (right) where the PCs are
considered to be the “Three Peak”, “Piece Poly” and “Step New” signals of john-
stone2009consistency, in the “Symmlet 8” wavelet basis. We use p = 2048, n = 1024
and the spikes strengths are set respectively as ω1 = 100, ω2 = 75 and ω3 = 50. In
particular, we note the similarity between the results obtained by our method and CT.
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Figure 4.23: PC recovery (in orange) by f -PCA with the function f (t) = αt3 + βt2 + γt for
different values of the parameters (α, β, γ) ∈ R3. We consider the “Three Peak” example
of johnstone2009consistency which is sparse in the “Symmlet 8” wavelet basis. We use
p = 2048, n = 256 and ω1 = 5. In particular, we notice that the “cleanest” signal is
obtained when α 6= 0, β = 0, γ = 0 which validate our theoretical conditions f ′(0) =
f ′′(0) = 0.
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kernel-based method. Our analysis of this problem has yielded insights into how the
principal components can be consistently estimated. Namely, given a spiked covariance
model Σ̂ and a smooth function f , we gave in this work sufficient conditions on f to con-
sistently estimate the principal components through the matrix f (Σ̂). Our result is based
on the concentration assumption which generalizes the Gaussian case. However, the pro-
posed method needs to set up a “soft” parameter (a). Based on [CS13, KC17], the present
work can be extended to the asymptotically non-trivial setting where ωi = O(1/

√
p) (in

which case the dominant eigenmodes scale at a similar rate with residual noise); which
may likely allow to exhibit and estimate optimal hyper-parameter choices.
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In the previous chapter, we have mainly presented kernel methods which explicitly
depend on the input data, even when coupled with a classifier such as LS-SVM [LC17].
This Chapter will present methods that go beyond kernel matrices and which appear as
sub-components of neural networks. Specifically, this chapter is composed of two main
sections. The first section provides an analysis of the Softmax layer in neural networks,
while the second section addresses questions about the Dropout operation in neural net-
works.

5.1 A random matrix analysis of Softmax layers

This section is based on the following work:

(C4) MEA. Seddik, C.Louart, R. Couillet, M. Tamaazousti, “The Unexpected
Deterministic and Universal Behavior of Large Softmax Classifiers”, AISTATS
2021.
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5.1.1 Motivation

The intricate nature of deep neural network training leaves little insight on the specific
information encoded into the inter-layer connectivity weights of a fully trained network,
thereby so far not allowing for particularly useful interpretation and control of their per-
formances [YKYR18].

At the very source of these difficulties are the multiple non-linearities and the im-
plicit optimization scheme involved in the network design: the activation functions in
the intermediate layers as well as the soft or hard final decision layer [LWL+17]. For
lack of a tractable comprehensive analysis, literature studies have mostly focused on in-
dividual components which, when isolated, become tractable. For instance, the effect
of non-linearities in a single-hidden layer network was analysed in [PW17, LC18c], the
learning dynamics in elementary network designs in [SMG13, dCPS+18] and the overall
understanding of the geometry of the loss surface in a largely approximated version of a
deep neural net in [PB17, CHM+15].

These works are however restricted to the analysis either of the intermediate layers
of practical neural nets, or oversimplify the network to an extent that makes the results
rather impractical. The present study instead focuses on the training of the weights of
the last decision layer, by specifically studying the widely used Softmax component in
neural networks classifiers. The Softmax classifier has the property, which we will see
to be of importance here, to be optimal for Gaussian mixture inputs with equal covari-
ance [YW19]. Specifically, assuming the feature representations of the data fixed at the
penultimate layer of the network, and modelling these features as concentrated random
vectors [Led05b] (which is a natural assumption as concentrated random vectors enjoy
the property to be stable through Lipschitz maps, and thus through the action of inter-
mediate neural network layers [SLTC20]), in this work we have studied the statistical
behavior of this last layer once trained (see Figure 5.1).

From a technical standpoint, as the Softmax classifier training corresponds to a (possi-
bly non-convex) optimization problem, our analysis of the Softmax weights is performed
by first expressing the optimization problem as a contracting fixed point equation, and
then showing that the assumed concentration properties of the data features naturally trans-
fer to the solution of the fixed-point equation, and thus to the Softmax weights. This has
the major consequence that, as n, p → ∞, the Softmax weights tend to have a deter-
ministic behavior which we express explicitly as a function of the data statistics and the
Softmax parameters.

Our most fundamental findings may be summarized as follows: 1. the above deter-
ministic behavior exhibits a surprising universality of the Softmax classifier, in the sense
that the large dimensional statistics of the weights solely depend on the statistical means
and covariances of the input data features; 2. this suggests in turn that, quite counter-
intuitively, at least as far as the last Softmax classification layer is concerned, no further
discriminative feature of the data is extracted and, possibly most outstandingly, the Soft-
max layer treats the input data as if they were Gaussian random vectors; this, in passing, sup-
ports the Gaussianity assumption on the data representations commonly considered in
the literature [HRU+17, PRU+18]; 3. combined to the aforementioned optimality of the
Softmax classifier on Gaussian mixture models with strongly discriminative class-wise
means, this compellingly supports an overall classification optimality of the Softmax
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Figure 5.1: Illustration of the Softmax classifier with concentrated random vectors [Led05b,
LC18b] (belonging to some space X ) as input data, i.e., satisfying the property
P (|ϕ(x)−Eϕ(x)| > t) ≤ C e−(t/σ)q

, for all 1-Lipschitz ϕ : X → R (see Definition 7).
GAN data as well as their deep network-based representations are practical examples of
such random vectors [SLTC20].

classifier on large dimensional representations of real data. A similar behavior was al-
ready pointed out, yet not well understood, by the authors in [MVPC13, GCM18]; 4. Our
findings are supported both theoretically and practically by considering the input data
features as CNN-representations of images generated by the BigGAN model [BDS18].

5.1.2 Model setting: the Softmax classifier

Let (x1, y1), . . . , (xn, yn) be a set of n labeled data associated to one of k classes C1, . . . , Ck,
where xi ∈ Rp and yi ∈ Rk is one-hot encoded vectors such that yi` = 1 if xi ∈ C`. The
xi’s are assumed to be the input of an `2-regularized Softmax classifier with regulariza-
tion parameters (λ`)`∈[k] ∈ R+, which aims to determine the class-wise weight vectors
w1, . . . , wk ∈ Rp minimizing the loss1, for some real-valued function φ : R→ R:

L(w1, . . . , wk) = −
1
n

n

∑
i=1

k

∑
`=1

yi` log pi` +
1
2

k

∑
`=1

λ`‖w`‖2 with pi` =
φ(wᵀ

` xi)

∑k
j=1 φ(wᵀ

j xi)

In particular, the classical Softmax classifier corresponds to the case where φ(t) =
et [GP17]. Cancelling the loss function gradient with respect to each weight vector w`

yields

λ`w` = −
1
n

n

∑
i=1

(
yi`ψ(w

ᵀ
` xi)−

φ(wᵀ
` xi)

∑k
j=1 φ(wᵀ

j xi)

k

∑
j=1

yijψ(w
ᵀ
j xi)

)
xi, ` ∈ [k], (5.1)

where ψ ≡ φ′/φ. Denoting a` = wᵀ
` x for some data vector x with corresponding one-

hot label vector y. The expression of equation 5.1 can be obtained using the chain rule

1Biases are not introduced in the present formulation as their effect is known to be negligible in prac-
tice [KXR+19] and would only decrease the readability and accessibility of our results.
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through the following derivations.

∂L
∂aj

= −∑
`

y`
1
p`

∂p`
∂aj

= −yjψ(aj) + pj ∑
`

y`ψ(a`)

where we used the fact that ∂pi
∂ai

= φ′(ai)
φ(ai)

pi(1− pi) if i = j and ∂pi
∂aj

= − φ′(aj)

φ(aj)
pi pj otherwise.

Under the concentration assumptions on the data matrix X ≡ [x1, . . . , xn] ∈ Mp,n and
on ψ, and assuming p, n large, we subsequently show that the vector W ≡ [wᵀ

1 , . . . , wᵀ
k ]

ᵀ ∈
Rpk has a well defined behavior, which in turn allows us to accurately predict the perfor-
mances of the Softmax classifier.

5.1.3 Assumptions & Main Results

We first characterize the data classes: if yi` = 1, then xi ∈ Rp is a random vector with

E[xi] ≡ µ`, Exi [xix
ᵀ
i ]− µ`µ

ᵀ
` ≡ Σ`.

The vectors x1, . . . , xn are further assumed to be independent and are such that X =
[x1, . . . , xn] ∈ Mp,n satisfies a concentration property as stated by the following assump-
tion.

Assumption 12 (Concentrated data). Letting X = [x1, . . . , xn], X ∝ E2.

In the terms of Definition 7, Assumption 12 holds here for s = (p, n) with S = N2. In
order to be able to transfer the concentration of X to the Softmax weights w1, . . . , wk, a
further condition is needed: the number of data n must scale with the data dimension p,
i.e., S = {(p, n) ∈ N2, κp ≤ n ≤ Kp} for some K > κ > 0.2 This is summarized by the
request:

Assumption 13 (Growth rate). n = O(p) and p = O(n).

Concentrated vectors satisfy a host of interesting properties (the reader being referred
to [Led05b] for a detailed account and to [LC18c] for their application to random matrix
asymptotics, closer to the present work). We merely stress here one of these properties,
of central importance to the present work, and which fundamentally justifies the appear-
ance of Gaussian-like behaviors in large neural networks, even when the neural network
input is far from Gaussian [KGC18, NBA+18].

Theorem 5.1 (CLT for concentrated vectors [Kla07, FGP07]). Let X ∈ Rp be a random vector
with E[X] = 0 and E[XXᵀ] = Ip, and σ be the uniform measure on the sphere S p−1 ⊂ Rp of
radius 1. Then, if X ∝ E2, there exists two constants C, c > 0 and a set Θ ⊂ S p−1 such that
σ(Θ) ≥ 1−√pCe−c

√
p and ∀θ ∈ Θ:

sup
t∈R

|P(θᵀX ≥ t)− G(t)| ≤ p−1/4

for G the cumulative distribution function of an N (0, 1) random variable.

2Formally, in the present setting, it is sufficient that p ≤ 1
κ n. However, to obtain simpler expressions, it

is convenient to assume, in addition, that n ≤ Kp.
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5.1.3.1 Concentration of the weights vector of the Softmax classifier

Having set the assumptions and main technical tools, we turn now to the characterization
of the the statistical behavior of the Softmax classifier weights W = [wᵀ

1 , . . . , wᵀ
k ]

ᵀ ∈ Rpk,
as a result, accesses the asymptotic performances of the classifier. To this end, our ap-
proach is to first write the implicit defining equation 5.1 of W under the formal form
W = Ψ(W), for Ψ : Rpk → Rpk to characterize, and then to transfer the concentration of
X (Assumption 12) to a concentration of W .

For the concentration of X to propagate into W defined through the formal form
W = Ψ(W), Ψ is required to have contracting properties, which in turn will enforce
structural conditions on the operator φ and on the regularizers (λ`)`∈[k]. Specifically Ψ is
requested to be (1− ε)-Lipschitz (for some ε > 0) so to ensure, thanks to the Banach fixed
point theorem, the existence and uniqueness of W ∈ Rpk. However, being a random map
depending on X, Ψ is only contracting under the (asymptotically highly probable) event
AX that the norm of X is not too large. Indeed, we can rewrite equation 5.1 as

ΛW =
1
n

X̃ f (X̃ᵀW) (5.2)

where Λ = diag(Λ1, . . . , Λk)⊗ Ip, f (X̃ᵀW) ∈ Rkn concatenates the elements fi(x̃ᵀi W) ∈

Rk, X̃ = (x̃1, . . . , x̃n) ∈ Mkp,kn, where we introduced x̃i =

 xi
. . .

xi

 ∈ Mpk,k

∀i ∈ [n], and the functions:

fi : Rk −→ Rk

v 7−→
[

φ(v`)

∑k
j=1 φ(vj)

k

∑
j=1

yijψ(vj)− yi`ψ(v`)

]
1≤`≤k

.

Rewriting (5.5) as W = Ψ(W), one sees that Ψ is contracting if ‖dΨ w‖ ≤ 1 − ε
for some ε > 0. Now, since ‖dΨ w‖ ≤ 1

n‖Λ−1‖‖X̃‖2‖d f X̃ᵀw‖ we first need ‖d f ‖∞ =
supv∈Rk ‖d f v‖ to be bounded, that is ensured by:

Assumption 14 (Regularity). ‖ φ′

φ ‖∞ ≤ ∞ and ‖ φ′ ′

φ ‖∞ ≤ ∞.

Besides, we also need to be able to bound 1
n‖X̃‖2 = 1

n‖X‖2. The spectral norm being
lower than the Frobenius norm (involved in Assumption 1 giving the concentration of X̃),
it is a 1-Lipschitz observation of X̃ thus there exists two constants C, c > 0 (independent
of p, n), such that:

P

(∣∣∣∣ 1√
n
‖X̃‖ − 1√

n
E[‖X̃‖]

∣∣∣∣ ≥ t
)
≤ Ce−cnt2

. (5.3)

This concentration inequality proves that the random variable 1√
n‖X̃‖ is almost deter-

ministic and equal to 1√
n E[‖X̃‖]. Bounding this last quantity necessities the following

result: ∣∣E[‖X̃‖]− ‖E[X̃]‖
∣∣ = O(

√
p + n), (5.4)

It suffices to have a bound on ‖E[X̃]‖ which comes from the following assumption:
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Assumption 15. sup1≤`≤k ‖µ`‖ ≤ O(1)

This assumption implies that ‖E[X̃]‖ = O(
√

n), and we can deduce from equation 5.4
that E[‖X̃‖] = O(

√
n) (recall from Assumption 2 that p = O(n)).

Remark 5.1. For classification problems, if ∀a, b ∈ [k], a 6= b, ‖µa − µb‖ � 1 then the
classification becomes trivial in the large dimensional regime, a reasonable assumption then is
‖µa− µb‖ ≤ O(1). However, in cases where sup1≤`≤k ‖µ`‖ is of order O(

√
p), it is still possible

to work with the data matrix X̃ − 1
n X̃1n1ᵀn that satisfies Assumption 15 but has the drawback

that the columns are then dependent. However, this is not a big issue since this dependence is very
small and it can be managed thanks to some technical consideration that we want to avoid here.

Now, assuming

Assumption 16. 1
n E[‖X‖]2‖d f ‖∞‖Λ−1‖ < 1.

and noting ε = 1
2 −

1
2‖Λ−1‖‖ f ′‖∞E[‖X̃‖/

√
n]2, it can be deduced from equation 5.3

that the event:

AX =

{
1
n
∣∣‖X̃‖2 −E[‖X̃‖]2

∣∣ ≤ ε

2‖Λ−1‖‖d f ‖∞

}
has a very high probability to happen (bigger than 1− Ce−cn for two constant C, c > 0)
and it satisfies AX ⊂ {‖dΨ‖∞ ≤ 1− ε}. As a consequence, our fixed point W is uniquely
determined under the event AX that appears in the following theorem which provides
the concentration of the weights vector W as stated by the following Theorem.

Theorem 5.2 (Concentration of W [?]). Under the previous Assumptions, there exist two con-
stants C, c > 0 and an event AX with P(AX) > 1− Ce−cn such that3

(W | AX) ∝ E2

(√
log n/n

)
.

Remark 5.2. The concentration of the random vector W is far from being trivial because W is not
explicitly written as a Lipschitz transformation of X and additional tools are necessary to prove
the concentration of W . The complete proof will be provided in an extended version of this paper.

Since their observable diameter (
√

log n/n) vanishes at large n, it therefore entails
from Theorem 5.2 that the random weights vector W tend to be deterministic as p, n grow
large. In particular, W concentrates around its expectation which can be estimated in
terms of the data statistics as we will see subsequently. Indeed, the subsequent result
further characterizes the first and second order statistics of W at large p, n.

Theorem 5.3 (Asymptotic statistics of W). Define the statistics

mW ≡ E[W ], CW ≡ [WWᵀ]−mWmᵀ
W .

Then, under Assumptions 12 and 13 and additional assumptions on φ and (λ`)`∈[k] (Assump-
tions 14, 15 and 16), there exists a deterministic mapping Fµ,Σ = Fµ,Σ(µ1, . . . , µk, Σ1, . . . , Σk) :

3Formally, the random vector W is a measurable mapping Ω → Rpk, where (Ω,F , P) is the underlying
probability space. If P(A) > 0, for A ∈ F , the random vector (W | A) is the measurable mapping A → Rpk

such that, ∀ω ∈ A, (W | A)(ω) = W(ω). The statistics of (W | A) are then computed in the probability
space (A,F ∧A, PA), where F ∧A = {B ∩A, B ∈ F} and ∀B ∈ F , PA(B) = P(B)/P(A).
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Rpk ×Mpk −→ Rpk ×Mpk depending only on the statistics µ1, . . . , µk and Σ1, . . . , Σk of X,
such that the equation

(m, C) = Fµ,Σ(m, C) with m ∈ Rpk, C ∈ Mpk

admits a unique solution (m̄W , C̄W). Besides,

‖m̄W −mW‖ ≤ O
(√

log n/n
)

and ‖C̄W − CW‖∗ ≤ O
(√

log n/n
)

.

The central outcome of Theorem 5.3 is that, under the data concentration Assump-
tion 12, the behavior of the Softmax classifier only depends on the class-wise means and co-
variances of the input data. This arises as a direct consequence of the Lipschitz character of
the Softmax classifier which preserves concentration (by the stability result of Remark ??),
and of the presence of a projection of the parameter vectors w` onto the concentrated data xi
at the core of the optimization formulation: according to Theorem C.1, these projections
induce an asymptotic Gaussian behavior with mean and variance depending only on the
first statistics of the data and the weights vector W .

We now provide the main ingredients to obtain the result of Theorem 5.3, which
mainly unfolds from two essential steps: (i) the control of the statistical dependencies
between W and X, and (ii) the estimation of the statistics mW and CW of the weight vec-
tor W . We start by reformulating (5.1) in the compact and convenient form as we saw
previously

ΛW =
1
n

n

∑
i=1

x̃i fi(x̃ᵀi W) (5.5)

(i) Control of the statistical dependencies. Applying the expectation operator both
sides to (5.5), the main technical difficulty arises from the evaluation of E[x̃i fi(x̃ᵀi W)] due
to the elaborate dependencies between the weight vector W and the data x̃i. Note that
x̃ᵀi W a priori has no reason of being Gaussian (even in the limit) and the performances of
the Softmax classifier may depend on high order statistics of X. These statistical depen-
dencies are dealt with by introducing a mapping W−i : [0, 1] → Rpk, defined for i ∈ [n],
as the unique solution to:

∀t ∈ [0, 1] : ΛW−i(t) =
1
n ∑

j 6=i
x̃j f j(x̃ᵀj W−i(t)) +

1
n

tx̃i fi
(
x̃ᵀi W−i(t)

)
. (5.6)

This mapping can be seen as a path between the weights vector W = W−i(1) of the
Softmax classifier and W−i(0) which is completely independent of x̃i and which will be
simply denoted W−i.

Using the inverse function theorem, the mapping t 7→ W−i(t) is differentiable, we
then deduce the following central close form formula:

W ′
−i(t) =

1
n

Q−i(t)x̃iχ
′
i(t) with Q−i(t) ≡

(
Λ− 1

n
X̃−iD(i)(t)X̃ᵀ

−i

)−1

∈ Mkp, (5.7)

where χi(t) ≡ t fi
(

x̃ᵀi W−i(t))
)
, D(i)

j (t) ≡ d f j x̃
ᵀ
j W−i(t) ∈ Mk, D(i)(t) ∈ Mkn is a block-

diagonal matrix with block-diagonal matrices D(i)
j (t) ∈ Mk for j ∈ [n], and finally
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X̃−i ≡ (x̃1, . . . , x̃i−1, 0, , x̃i+1, . . . , x̃n) ∈ Mpk,kn (X̃−i is independent of x̃i).

Relying on concentration of measure arguments [LC20], the random vector Q−i(t)x̃i
is almost constant in terms of t and thus almost equal to Q−i(0)x̃i. Moreover, the fact
that Q−i(0) (also simply denoted Q−i) is independent of x̃i allows us to integrate the
identity (5.7) to obtain the core result of the analysis of the Softmax weights relating W
and W−i.

Theorem 5.4. Under the event AX, we have W −W−i +
1
n Q−i x̃i fi(x̃ᵀi W) ∝ E2

( 1
n

)
. In partic-

ular, we have the bound:

E

[∥∥∥∥W −W−i +
1
n

Q−i x̃i fi(x̃ᵀi W)

∥∥∥∥] ≤ O

(√
log n
n

)
. (5.8)

Specifically, we have the following concentration inequality, for some constants C, c >
0:

∀t > 0 : P

(∥∥∥∥x̃ᵀi W − x̃ᵀi W−i +
1
n

x̃ᵀi Q−i x̃i fi(x̃ᵀi W)

∥∥∥∥ ≥ t | AX

)
≤ Ce−cnt2/ log n. (5.9)

(ii) Estimation of the mean and covariance of the Softmax weights. By breaking the
statistical dependencies of the problem through W−i, we may now access and estimate
the statistics mW and CW . This precisely comes from a deterministic approximation of
the quadratic form 1

n x̃ᵀi Q−i x̃i in (5.9) in the large n, p limit, a result inspired by [LC20]:

Proposition 5.1. For any ` ∈ [k], let n` be the number of columns of X in class C` and, for any
block diagonal matrix ∆ = diag(∆`)1≤`≤k ∈ Mk2 (∀` ∈ [k], ∆` ∈ Mk), then

Q(t)↔ Q̄(∆) ≡
(

Λ−
k

∑
a=1

na

n
Γa(∆a)⊗ Sa

)−1

=

 Q̄1,1(∆) . . . Q̄1,k(∆)
...

. . .
...

Q̄k,1(∆) . . . Q̄k,k(∆)

 ∈ Mkp

where Γ`(∆a) = E
[
(Ik − D−i

j (0)∆a)−1D−i
j (0)

]
for xj in class C` and S` = E[xjx

ᵀ
j ]. Specifi-

cally, the fixed point equation

∆` =

[
1
n

Tr (S`Q̄a,b(∆))

]
1≤a,b≤k

admits a unique solution ∆ ∈ Mk2 that satisfies, for any xi is in class ` ∈ [k],

∀t > 0 : P

(∥∥∥∥ 1
n

x̃ᵀi Q−i x̃i − ∆`

∥∥∥∥ ≥ t | AX

)
≤ Ce−cnt2/ log n for some constants C, c > 0.

From this result, using the identity (5.9), we then obtain an estimation for x̃ᵀi W :

Proposition 5.2. For any v ∈ Rk, there exists a unique point gi(v) ∈ Rk satisfying:

gi(v) = v− ∆i fi(gi(v)),

and, for some constants C, c > 0,

P
(∥∥x̃ᵀi W − gi(x̃ᵀi W−i)

∥∥ ≥ t | AX
)
≤ Ce−cnt2/ log n.
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Therefor, letting hi = fi ◦ gi, by Hölder’s inequality [Fin92], since x̃i is concentrated,∥∥∥∥∥mW −
1
n

n

∑
i=1

Λ−1E[x̃ihi(x̃ᵀi W−i)]

∥∥∥∥∥ = O

(√
log n

n

)
∥∥∥∥∥CW −

1
n2

n

∑
i=1

Λ−1E[x̃ihi(x̃ᵀi W−i)hi(x̃ᵀi W−i)
ᵀ x̃ᵀi ]Λ

−1

∥∥∥∥∥
∗
= O

(√
log n

n

)

Knowing from Theorem C.1 that x̃ᵀi W−i is asymptotically Gaussian, E[x̃ihi(x̃ᵀi W−i)] and
E[x̃ihi(x̃ᵀi W−i)hi(x̃ᵀi W−i)

ᵀ x̃ᵀi ] can be explicitly evaluated (for instance using Stein’s Lemma
[LN08]), and only depend on the statistical means and covariances of x̃1, . . . , x̃n and
of W−i (which has the same statistics as W). Their exact expressions are provided in
the appendix in Section C.3.1. Finally, let us introduce the 2k functions m1, . . . , mk :
Rkp ×Mkp → Rkp and c1, . . . , ck : Rkp ×Mkp →Mkp defined, ∀i ∈ [n], by

mk(i)(mW , CW) = Λ−1E[x̃ihi(x̃ᵀi W−i)]

ck(i)(mW , CW) =
1
n

Λ−1E[x̃ihi(x̃ᵀi W−i)hi(x̃ᵀi W−i)
ᵀ x̃ᵀi ]Λ

−1,

where k(i) denotes the class of x̃i and mW and CW are respectively the mean and covari-
ance of W . The mappings (m`)1≤`≤k and (σ`)1≤`≤k are uniquely determined by the means
µ1, . . . , µn and the covariances Σ1, . . . , Σn. In particular, the deterministic pair (m̄W , C̄W),
defined as the unique solution of

m̄W =
k

∑
`=1

n`

n
m`(m̄W , C̄W) and C̄W =

k

∑
`=1

n`

n
c`(m̄W , C̄W), (5.10)

is a good approximation for (mW , CW) as stated in Theorem 5.3.

Once the Softmax classifier is trained, the probability for a new datum x to belong to
class ` ∈ [k] is explicitly given by p`(x) = φ(wᵀ

` x)/ ∑j∈[k] φ(wᵀ
j x). As a consequence of

Theorem C.1, wᵀ
` x has a high probability to be Gaussian (since x is concentrated and w`

has a deterministic behavior). The performances of the Softmax classifier are therefore
theoretically tractable.

Corollary 5.1 (Generalization performance of the Softmax classifier). For ` ∈ [k], there
exists κ̄` ∈ Rk−1 and K̄` ∈ Mk−1 both depending only on µ1, . . . , µk and Σ1, . . . , Σk such that
the misclassification error Et(x ∈ C`) of a new datum x belonging to class ` ∈ [k] defined as
Et(x ∈ C`) ≡ 1−P(∀j ∈ [k] \ {`} : p`(x) ≥ pj(x)) is asymptotically approximated as

Et(x ∈ C`)− 1 + P(Z` ∈ Rk−1
+ )

a.s.−→ 0 with Z` ∼ N (κ̄`, K̄`). (5.11)

In essence, Corollary 5.1 states that the generalization performance of the Softmax
classifier reduces to the cumulative distribution of a low-dimensional Gaussian vector,
the mean and covariance of which only depend on the class-wise means and covariances
of the input data. This demonstrates the remarkable universality property of the Softmax
classifier with respect to the data distribution, which we recall is only requested to satisfy
a very loose concentration behavior (Assumption 12). The exact expressions of κ̄` and K̄`,
along with a justification of the corollary, are given subsequently.
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Let us decompose the matrix SW = E[WW T] followingly:

SW =

 S1,1
W . . . S1,k

W
...

...
Sk,1

W . . . Sk,k
W

 ∈ Mkp,

where for all a, b ∈ [k], Sa,b
W ∈ Mp, so that we can introduce the low-dimensional random

vector z ∼ N (`, K`) with:

` ≡ µᵀ
`mW and K` ≡ (Tr((Σ` + µ`µ

ᵀ
` )S

a,b
W ))1≤a,b≤k − µᵀ

`mWmᵀ
Wµ`. (5.12)

The expected misclassification error Et(x ∈ C`) on a test data x belonging to class
` ∈ [k] expresses followingly:

Et(x ∈ C`) = 1−P(∀j ∈ [k] \ {`} : p`(x) ≥ pj(x)) where pj(x) =
φ(wᵀ

j x)

∑k
h=1 φ(wᵀ

h x)
.

Since x and w are both concentrated and independent Theorem C.1 allows us to assume
that for all j ∈ [k], x̃ᵀW = (wᵀ

j x)1≤j≤k ∼ N (`, K`) (the objects ` and K` where intro-
duced in equation C.10). To simplify the problem, we are going to make the additional
hypothesis that φ is increasing since in that case

∀j ∈ [k] \ {`} : p`(x) ≥ pj(x)⇐⇒ wᵀ
` x1k − x̃ᵀW ∈ Rk

+

Since the `th coordinate of x̃ᵀW is, by definition, equal to wᵀ
` x, only the k − 1 other are

interesting. Let us then introduce the Gaussian vector Z` ∈ Rk−1 defined for all j ∈ [k] \ `
as: [Z`]j = (w` −wj)

ᵀx. Such a vector Z` has then the mean¯≡` P` and the covariance
K̄ ≡ PK`PT with:

P = 1k−1eᵀ` − I−`k ∈ Mk−1,k

where 1k−1 ∈ Rk−1 is a vector full of 1, e` is the `th vector of the canonical basis of Rk (full
of zeros with a one in the `th coordinate) and I−`k is the identity matrix ofMk deprived
of the `th row. We can then express

Et(x ∈ C`) = 1−P(Z` ∈ Rk−1
+ )

5.1.3.2 Experimental validation

This section provides an experimental setup to support our theoretical findings. The in-
put data X = [x1, . . . , xn] are independent Resnet154 representations of size p = 512
[SIVA17] of images generated by the BigGAN generative adversarial network model
[BDS18]: as such, being the composition of two neural networks (BigGAN and Resnet15)
applied to random standard Gaussian noise (as per the BigGAN model), X is concen-
trated by construction and satisfies Assumption 12, as requested (see [SLTC20] for a de-
tailed analysis of the Lipschitz properties of these networks). Under this setting, Fig-
ure B.9 depicts the learned Softmax weights against their expected large n, p asymptotics
as per Theorem 5.3. Despite the finite p, n setting of the simulation, a perfect match is
observed between the learned weights and the theoretical predictions. Further experi-
ments are performed on real images from the ImageNet dataset [DDS+09], which again
show a perfect match between theory and practice, thereby strongly suggesting that the
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Figure 5.2: Learned weights (in blue circles) versus their theoretical estimations (in
red crosses) as per Theorem 5.3. The used data are Resnet18 [SIVA17] representations
(p = 512) of images generated by the BigGAN model [BDS18] which are concentrated
vectors [SLTC20]. We considered k = 3 classes which are: hamburger, mushroom, pizza.
n = 3000 and the regularization constants λ1, λ2, λ3 = 1.5. The data are normalized such
that their norm is 0.1 · √p to ensure AX.

conclusions of Theorem 5.3 extend to real data.

Figure 5.5 next displays the class-wise scores of a practical Softmax classifier on an in-
dependent test set against their estimated statistics according to Corollary 5.1. An almost
perfect match is again observed between empirical values and theoretical statistics. Fur-
ther experiments report similar outputs for real ImageNet data. We importantly stress
that, as per Corollary 5.1, the theoretical estimates were obtained using only the empirical
class-wise means and covariances of the input data. Figure 5.5 thus confirms the theoretically
predicted universality of the Softmax classifier. A Python implementation is attached for
reproductivity of these experiments.

We provide further experiments using real images from the Imagenet dataset [DDS+09].
Figure B.9 depicts the learned Softmax weights against their expected large p, n asymp-
totics as predicted by Theorem 3.2. As for GAN generated images, we observe a perfect
match between the learned weights and the theoretical predictions. An almost perfect
match is also observed for the scores (between the practical scores and their theoretical
counterparts) as depicted in Figure 5.5, thereby strongly suggesting that the conclusions
of Theorem 5.3 extend to real data.

4We used its Pytorch implementation [PGM+19] pre-trained on the Imagenet dataset [DDS+09].
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Figure 5.3: Scores (in blue) versus their theoretical estimations (in red) as per Corol-
lary 5.1, with the theoretical means (through κ̄`) and standard deviations (through K̄`),
on a test set independent from the training set. The used data are Resnet18 [SIVA17]
representations (p = 512) of images generated by the BigGAN model [BDS18] which
are concentrated vectors [SLTC20]. We considered k = 3 classes which are: hamburger,
mushroom, pizza. n = 3000 and the regularization constants λ1, λ2, λ3 = 1.5. The data are
normalized such that their norm is 0.1 · √p to ensure AX.

5.1.4 Central Contribution

As a consequence of Corollary 5.1, we have demonstrated that, even though the Soft-
max classifier has a non-linear nature, a property supposedly useful to extract “deep”
non-linear features, for n, p rather large, the input data are in fact treated as if they were
distributed as a mere Gaussian mixture model. This large dimensional universality phe-
nomenon fundamentally revisits the conventional insights acquired along the years on
non-linear classification methods.

As an aftermath, the Softmax classifier being optimal for Gaussian mixture inputs
with common covariance, our study is strongly suggestive of the optimality of Softmax
as the last layer of a deep neural network classifier.

Yet, the present study assumes a clear-cut separation between a back-end network
training isolated from the front-end Softmax layer (as depicted in Figure 5.1). A thorough
validation of the equivalence between full network training and this divided approach is
a necessary final step to confirm the claimed optimality and anticipate the performances
of Softmax classification.

On the other hand, our analysis leverages on the contracting fixed point approach by
adding regularization parameters to the the weight vectors. Another approach would be
to consider different regularization techniques such as the Dropout operation in neural
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Figure 5.4: Learned weights (in blue circles) versus their theoretical estimations (in red
crosses) as per Theorem 3.2 of the Main Paper. The used data are Resnet18 [SIVA17] repre-
sentations (p = 512) of real images from the Imagenet dataset [DDS+09]. We considered
k = 3 classes which are: hamburger, mushroom, pizza. n = 3000 and the regularization
constants λ1, λ2, λ3 = 1.5. The data are normalized such that their norm is 0.1 · √p to
ensure AX.

networks. In the next section, we will provide an analysis of such layer on a one hidden-
layer network.

5.2 A random matrix analysis of Dropout layers

This section is based on the following work:

(C5) MEA. Seddik, R. Couillet, M. Tamaazousti, “A Random Matrix Analysis of
Learning with α-Dropout”, The art of learning with missing values ICML
workshop (ICML’20), Online, 2020.

5.2.1 Motivation

Many practical datasets contain samples with missing features which impair the behavior
of machine learning models. Improperly handling these missing values results in biased
predictions. While various imputation techniques exist in the literature, such as impu-
tation of the global mean, the simplest is zero imputation, by which the missing features
are simply replaced by zeros. Neural networks have been notably shown to be affected
when trained on zero-imputed data [HLM15, ŚST+18, YLK+19].

In neural networks, zero imputation can be seen as applying a Dropout [SHK+14] op-
eration to the input data features, or equivalently as applying a binary mask entry-wise
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Figure 5.5: Scores (in blue) versus their theoretical estimations (in red) as per Corol-
lary 3.3 of the Main Paper, with the theoretical means (through κ̄`) and standard de-
viations (through K̄`), on a test set independent from the training set. The used data
are Resnet18 [SIVA17] representations (p = 512) of real images from the Imagenet
dataset [DDS+09]. We considered k = 3 classes which are: hamburger, mushroom, pizza.
n = 3000 and the regularization constants λ1, λ2, λ3 = 1.5. The data are normalized such
that their norm is 0.1 · √p to ensure AX.

to the data. The Dropout operation is commonly used as a regularization technique ap-
plied to certain hidden layers of a neural network during its training phase. However,
since zero imputation is known to alter the behavior of neural networks [YLK+19], the
Dropout operation must result in the same deleterious effects. Dropping features with
other values than zero may thus improve the Dropout in neural networks and mitigate
the effects of zero imputation [WWL13, SB16].

To prove and quantify the benefits of a α-Dropout approach, in this contribution we
study a one hidden layer neural network with α-Dropout, i.e., in which the missing or
dropped features are replaced by a fixed real value α. Training only the output layer, the
network (sometimes referred to as an extreme learning machine [HZS06]) reduces to a
ridge-regression classifier learnt on α-imputed data. Specifically, under the instrumental,
yet instructive, setting of a network trained on a set of n data samples of p-dimensional
features (or equivalently p neurons) distributed in two classes, we retrieve the exact gen-
eralization performance when both p and n grow large. A major outcome of our study
is the identification of the optimal value of α which maximizes the generalization perfor-
mances of the classifier.

5.2.2 Model and Main Results

Let the training data d1, . . . , dn ∈ Rq be independent vectors drawn from two distinct
distribution classes C1 and C2 of respective cardinality n1 and n2 (and we denote n =
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n1 + n2). We suppose the di’s pass through a first (fixed) random neural network layer
with Lipschitz activation σ : Rq → Rp in such a way that σ(di) is a concentrated random
vector [LC18c]. This random projection is then followed by a random α-Dropout, i.e.,
entries of the feature vector σ(di) are dropped uniformly at random and replaced by
some fixed value α ∈ R. Letting µ ∈ Rp, we further suppose for simplicity of exposition
that for di ∈ Ca,

E[σ(di)] = (−1)aµ, E[σ(di)σ(di)
ᵀ] = Ip + µµᵀ.

Remark 5.3. As we saw in Chapter 3, this assumption could be largely relaxed but simplifies the
interpretation of our results.

Overall, after the α-Dropout layer, the feature vector x̃i ∈ Ca may thus be written

x̃i = ((−1)aµ + zi)� bi + α
(
1p − bi

)
, (5.13)

for a ∈ {1, 2}, where µ ∈ Rp, zi is a concentrated random vector with zero mean and
identity covariance, and bi is a random binary mask vector with i.i.d. entries bij ∼ Ber(ε).
That is, features are discarded with an average dropout rate ε, as performed in the classi-
cal Dropout procedure in neural networks [SHK+14].

The model equation 5.13 thus describes a single hidden layer network with α-Dropout
(dropped features are replaced by α) applied to a two-class mixture of concentrated ran-
dom vectors of mean (−1)aµ for di in class Ca and isotropic covariance. As shown in
Chapter 3, from a random matrix perspective, the asymptotic performance of the neural
network under study is strictly equivalent to that of features x̃i modelled as in equa-
tion 5.13 but with zi ∼ N (0, Ip) thanks to the universality result, an assumption we will
make from now on.

In a matrix form, the training features X̃ = [x̃1, . . . , x̃n] ∈ Mp,n can be compactly
written

X̃ = Bε � (Z + µyᵀ) + α
(
1p1ᵀn − Bε

)
, (5.14)

where Z has i.i.d.N (0, 1) entries, [Bε]ij ∼ Ber(ε) and y ∈ Rn stands for the vector of class
labels with yi = −1 for x̃i ∈ C1 and yj = 1 for x̃j ∈ C2.

For reasons that will be clarified latter, as depicted in Figure 5.6, we shall consider the
standardized5 data matrix X ≡ X̃Pn√

ε+α2ε(1−ε)
, with Pn = In − 1

n 1n1ᵀn, i.e.,

X =
(Bε � (Z + µyᵀ))Pn + αBεPn√

ε + α2ε(1− ε)
. (5.15)

Under the features data model in equation 5.15, we aim in the following to study the
generalization performance of a (fully connected) linear layer applied to the features xi’s
which is thus equivalent to optimizing (with an `2 regularization term)

E(w) =
1
n
‖y− Xᵀw‖2 + γ‖w‖2, (5.16)

5Centring by the empirical mean and dividing by the standard deviation
√

ε + α2ε(1− ε) as in batch
normalization layers [IS15].
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Figure 5.6: Illustration of the model under study in equation 5.15. It consists in a one-
hidden-layer network followed by an α-Dropout layer and a Batch normalization (BN)
layer where the output is given by a linear layer.

the solution of which is explicitly given by, for z ∈ C \R−

w =
1
n

Q(γ)Xy, Q(z) ≡
(

1
n

XXᵀ + zIp

)−1

. (5.17)

The associated (hard) decision function for a new datum feature vector x ∈ Ca, for
a ∈ {1, 2}, then reads

g(x) ≡ xᵀw =
1
n

xᵀQ(γ)Xy
C1
≶
C2

0. (5.18)

The model in equation 5.15 coupled with the ridge loss function in equation 5.16 is
that of an extreme learning machine trained with α-Dropout through the random matrix
Bε.

In mathematical terms, studying the generalization performance under a large di-
mensional network regime consists in studying the statistical behavior of the resolvent
matrix Q(z) defined in equation 5.17. The main technicality precisely arises from the
unconventional presence of the matrix Bε in the model. In the following, we derive a
deterministic equivalent for Q(z) which is the basic technical ingredient for the further
analysis, as a function of α and ε, of the network generalization performance. Let us first
present some technical growth rate assumptions before deriving a deterministic equiva-
lent for Q(z).

Assumption 17 (Growth rate). As n→ ∞,

1. q/n→ r ∈ (0, ∞) and p/n→ c ∈ (0, ∞);

2. For a ∈ {1, 2}, na
n → ca ∈ (0, 1);
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3. ‖µ‖ = O(1).

Remark 5.4. Assumption 17 along with the standardization in equation 5.15 ensure particularly
that the operator norm of Q(z) is bounded asymptotically.

5.2.2.1 Deterministic equivalent

Now we provide the key technical tool to express the performances of the network under
investigation, i.e., a deterministic equivalent for Q(z). Let A = P(Bε�(µyᵀ))√

ε+α2ε(1−ε)
be the signal

part of the the model equation 5.15, form [HLN+07], a deterministic equivalent of Q(z)
is given by

Q̄(z) ≡
(

q−1(z) +
1

1 + cq(z)
1
n

E[AAᵀ]

)−1

with q(z) ≡ 1 + cq(z)
1 + z(1 + cq(z))

And by Assumption 17 (‖µ‖ = O(1)), we have

1
n

E[AAᵀ] =
ε

1 + α2(1− ε)
µµᵀ +

1− ε

1 + α2(1− ε)
diag(µ�2) +O‖·‖(n−

1
2 )

= aµµᵀ + b diag(µ�2) +O‖·‖(p−
1
2 )

Therefore, by Lemma 2.6, we have (we denote r(z) = 1
1+cq(z) )

Q̄(z) =
(

q−1Ip + br(z)diag(µ�2) + ar(z)µµᵀ
)−1

=
(

q−1Ip + br(z)diag(µ�2)
)−1

︸ ︷︷ ︸
Dz

− ar(z)DzµµᵀDz

1 + ar(z)µᵀDzµ

where q(z) = 1+cq(z)
1+z(1+cq(z)) is a second order equation in q(z). Therefore, we have

Proposition 5.3. Under Assumption 17,

Q(z)↔ Q̄(z) ≡ Dz −
ε

1+α2(1−ε)
DzµµᵀDz

1 + cq(z) + ε
1+α2(1−ε)

µᵀDzµ
,

where Dz ≡ q(z)diag

{
1+cq(z)

1+cq(z)+ (1−ε)q(z)
1+α2(1−ε)

µ2
i

}p

i=1

, and q(z) is given by

q(z) ≡ c− z− 1 +
√
(c− z− 1)2 + 4 z c
2 z c

.

Proposition 5.3 shows that the deterministic equivalent Q̄(z) involves two terms: a di-
agonal matrix Dz (describing the noise part of the data model) and an informative scaled
rank-1 matrixDzµµᵀDz. We see through the expression of Q̄(z) that the informative term
is linked to the noise term (through Dz) if ε 6= 1, and for small values of ε or equivalently
large values of α the “energy” of the informative term is transferred to the noise term
which will result in a poor classification accuracy on the train set, still we will subse-
quently see that for a fixed value of ε, there exists a value of α which will provide optimal
classification rates on the test set. We will next use the property that aᵀQ(z)b ' aᵀQ̄(z)b
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for all large n, p and deterministic bounded vectors a, b, to exploit Q̄(z) as a proxy for
the performance analysis (which is precisely related to a bilinear form on Q(z)) of the
α-Dropout neural network.

Further, let us introduce the following quantities which will be used subsequently.
First, we have under Assumption 17, the statistics of the feature vector xi, for xi ∈ Ca, are:

ma ≡ E [xi] = (−1)a
√

ε

1 + α2(1− ε)
µ,

Cε ≡ E
[
xix

ᵀ
i

]
= Ip +

ε

1 + α2(1− ε)
µµᵀ

+
1− ε

1 + α2(1− ε)

(
diag(µ�2 + 2αµ)− α2

p
1p1ᵀp

)
.

(5.19)

The above statistics are derived as follows. Let x = b � (z + µ) + αPb. Denote
E[Pb] = E[b− 1

p ∑n
i=1 bi1p] = 0, we have E[b� (z + µ)] = b� µ and E[bbᵀ] = ε1p1ᵀp +

(1− ε)Ip ≡ Cb. Therefore,

E[αPb(αPb)ᵀ] = α2PCbPᵀ

E[b� (z + µ)(b� (z + µ))ᵀ] = Cb � (Ip + µµᵀ)

E[b� (z + µ)(αPb)T] = α diag(µ)CbP

Hence,

E[xxᵀ] = Cb � (Ip + µµᵀ) + α diag(µ)CbP + αPCb diag(µ) + α2PCbPᵀ

Since ‖µ‖ = O(1), as in Assumption 17, we have

Cb � (Ip + µµᵀ) = εIp + (1− ε)Ip + εµµᵀ + (1− ε)diag(µ�2) = Ip + εµµᵀ + (1− ε)diag(µ�2)

diag(µ)CbP = (1− ε)diag(µ)P = (1− ε)diag(µ)− 1− ε

p
µ1ᵀp = (1− ε)diag(µ) +O‖·‖(p−

1
2 )

PCbP = (1− ε)P

Thus

E [xxᵀ] = (1 + α2(1− ε))Ip + εµµᵀ − α2(1− ε)

p
1p1ᵀp + (1− ε)diag(µ�2)

+ 2α(1− ε)diag(µ) +O‖·‖(p−
1
2 )

Therefore,

ma ≡ E [xi] = (−1)a
√

ε

1 + α2(1− ε)
µ (5.20)

Cε ≡ E
[
xix

ᵀ
i

]
= Ip +

ε

1 + α2(1− ε)
µµᵀ 1− ε

1 + α2(1− ε)

(
diag(µ�2) + 2α diag(µ)

)
(5.21)

− α2(1− ε)

p(1 + α2(1− ε))
1p1ᵀp +O‖·‖(p−

1
2 ). (5.22)

We will also need in the following the quantity

δ(z) ≡ 1
n

Tr (CεQ̄(z)) . (5.23)
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5.2.2.2 Generalization Performance of α-Dropout

The generalization performance of the classifier relates to misclassification errors

P (g(x) > 0 | x ∈ C1) , P (g(x) < 0 | x ∈ C2)

where g(·) is the decision function previously defined in equation 5.18.
Since the Dropout is deactivated at inference time, the statistics of x correspond to the

setting where ε = 1, and thus

E[x] = (−1)aµ, C1 = E[xxᵀ] = Ip + µµᵀ.

Further, define the following quantities which shall be used subsequently

η(A) ≡
(1 + δ(γ)) 1

n Tr (CεQ̄(γ)AQ̄(γ))

(1 + δ(γ))2 − 1
n Tr (CεQ̄(γ)CεQ̄(γ))

,

∆(A) ≡ Q̄(γ)

(
A +

η(A)

1 + δ(γ)
Cε

)
Q̄(γ).

By Lyapunov’s central limit theorem [Bil08], the decision function has the following
Gaussian approximation as n→ ∞.

Theorem 5.5 (Gaussian Approximation of g(x)). Under Assumption 17, for x ∈ Ca with
a ∈ {1, 2},

ν−
1
2 (g(x)−ma)

D−→ N (0, 1)

where

ma ≡ (−1)a
√

ε

1 + α2(1− ε)

µᵀQ̄(γ)µ

1 + δ(γ)

ν ≡ 1
(1 + δ(γ))2

(
η(C1) +

ε

1 + α2(1− ε)
×
[

µᵀ (∆(C1)− Q̄(γ)) µ− 2 η(C1)µ
ᵀQ̄(γ)µ

1 + δ(γ)

])
.

Proof. See Subsection C.3.2.1.

In a nutshell, Theorem 5.5 states that the one hidden layer network classifier with α-
Dropout is asymptotically equivalent to the thresholding of two monovariate Gaussian
random variables, the means and variances of which depend on µ, Cε and the parameters
α and ε. As such, we have the corresponding (asymptotic) classification errors:

Corollary 5.2 (Generalization Performance of α-Dropout). Under the setting of Theorem 5.5,
for a ∈ {1, 2}, with probability one

P ((−1)a g(x) < 0 | x ∈ Ca)−Q
(

ma√
ν

)
→ 0

with Q(x) = 1√
2π

∫ ∞
x e−u2/2du the Gaussian tail function.

Corollary 5.2 can therefore be exploited to find the optimal value of α∗ which mini-
mizes the test misclassification error, since Q′(x) < 0 the optimal value α∗ satisfies the
equation 1

ma

∂ma
∂α = 1√

ν
∂
√

ν
∂α which can be solved numerically.
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Figure 5.7: Histogram of the decision function g(x) when applied to the training data (a)
and test data (b). The curves represent the Gaussian approximations as per Theorem 5.5
and Theorem 5.6 for test and training data respectively. We used the parameters µ = 5·u

‖u‖
with u = [10, 10,−10,−10, v] where v ∼ N (0, Ip−4) , p = 125, n1 = n2 = 1000, γ =
1 · 10−2, ε = 0.25 and α = 2.

5.2.2.3 Training Performance of α-Dropout

It is instructive to compare the generalization versus training performances of the net-
work classifier with α-Dropout. Following similar arguments as in [LC18c], the central
limit argument of the previous section also holds for g(x) with x ∈ Ca taken from the
training set X.

Theorem 5.6 (Training performance of α-Dropout). Under Assumption 17, for x ∈ Ca with
a ∈ {1, 2} a column of X, with probability one,

P ((−1)a g(x) < 0 | x ∈ Ca)−Q

(
m̄a√

ν̄− m̄2
a

)
→ 0

where

m̄a ≡
δ(γ)

1 + δ(γ)
+

(−1)aε

1 + α2(1− ε)

µᵀQ̄(γ)µ

(1 + δ(γ))2

ν̄ ≡
(

δ(γ)

1 + δ(γ)

)2

+
η(Cε)

(1 + δ(γ))4 +
ε

1 + α2(1− ε)

× µᵀ
(

δ(γ)Q̄(γ)

(1 + δ(γ))3 +
∆(Cε)

(1 + δ(γ))4 −
2 η(Cε)Q̄
(1 + δ(γ))5

)
µ.

Proof. See Subsection C.3.2.2.

5.2.3 Experiments

Gaussian Approximation of the Decision Function. We complete this study by sim-
ulations to validate our theoretical findings. Figure 5.7 depicts histograms showing the
distribution of g(x) for both (a) training and (b) test data. As we can see, these distri-
butions are well approximated by monovariate Gaussians as per Theorem 5.5 and The-
orem 5.6. Since the α-Dropout removes features at random from the training data, the
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Figure 5.8: (a) Training and (b) Test misclassification errors as per Theorem 5.6 and Corol-
lary 5.2 respectively. We used the parameters µ = 4 · [ 1√

4
, 1√

4
,− 1√

4
,− 1√

4
, 0ᵀp−4]

ᵀ, p = 125,

n1 = n2 = 1000 and γ = 1 · 10−2. Simulations are obtained through 100 Monte-Carlo
runs of independent realizations of the matrix X as in equation 5.15.

misclassification error happens to be larger on the training set compared to the test set.
Notably, the difference between the training and test error arises theoretically from the
term κ ≡

√
ε

1+α2(1−ε)
as m̄a ≈ κma, therefore, for small values of ε the training error is

larger than the test error, which shows the regularization effect of the Dropout.

Training and Test Performances. Figure 5.8 depicts the theoretical (a) training (through
Theorem 5.6) and (b) test (through Corollary 5.2) misclassification errors, for different
values of ε and in terms of α, and their simulated counterparts. We can notice from these
plots that the training error increases with α and is minimal for α = 0. In contrast, the
test misclassifaction error is convex in terms of α and therefore the lowest generalization
error corresponds to an optimal value α 6= 0. We also remark that the optimal value of α
increases in terms of ε which is counterintuitive since we excpect and α near to 0 for large
values of ε, but actually, the test misclassification error in terms of α gets more and more
flatter as ε increases.

5.2.4 Central Contribution and Perspectives

Leveraging on random matrix theory, we have analyzed the effect of the α-Dropout layer
on a one layer neural network, which allowed us to have a deeper understanding of the
impact of this layer. We have notably exhibited an optimal Dropout operation (dropping
our features with some α 6= 0) in terms of the generalization error of the studied classifier.
Although, our analysis was presented on a simple binary classification task, it can be
straightforwardly generalized to a more realistic data model as the mixture of k-class
model [LC18b, SLTC20]. Under a k-class model it may be beneficial to consider an α` per
class C` as the classes may be constructed with different statistics. Following the same
approach one can derive the test misclassification error as per Corollary 5.2 in terms of
scalar quantities involving the data statistics, and therefore exploit the formulas to find
the optimal values of α`’s. Other perspectives of this work concern its application to real
data and using multi-layer neural network architectures.
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Chapter 6

Conclusions & Perspectives

6.1 Conclusions

The first notable result from this thesis, presented in Section 3.1, sheds light on the fact
that artificially generated data through Generative Adversarial Nets (GANs) are random
vectors which fall within the class of concentrated vectors. Consequently, real data can
be modelled by this class of random vectors – and also since they generalize Gaussian
vectors – if we can assimilate them to GAN data. Motivated by this first result, we have
further investigated in this thesis three main ML methods, under the Mixture of Concen-
trated Vectors hypothesis for the input data model, where each data-class is described
by its first and second order moments {µ`}k

`=1 and {Σ`}k
`=1. Indeed, relying on random

matrix theory (RMT) and supposing the high-dimensional regime when the number of
input data and their dimension are both large and comparable, we have first analyzed in
Section 3.2 the spectral behavior of large Gram matrices which are at the core of various
linear methods. As non-linearities appear in various ML methods, we have also investi-
gated in Section 4.1 kernel methods through the analysis of large kernel matrices. Lastly,
we have studied, through the example of the Softmax classifier in Section 5.1, ML meth-
ods which are implicitly defined by (convex) optimization problems.

As an aftermath of our analysis of these methods, we have emphasized that their
effective performances – when applied to large dimensional data – solely depend on
the class-wise means and covariances of the input data, namely the statistics {µ`}k

`=1 and
{Σ`}k

`=1, a result which we have empirically verified through extensive experiments us-
ing CNN representations of GAN-generated images. This constitutes a major outcome
of this thesis in the sense that it highlights the universality aspect of large ML classifiers
regardless of their input data distribution. As a consequence, the universality aspect no-
tably supports the validity of the Gaussian Mixture Model in the random matrix theory
regime, thereby justifying the Gaussian mixture hypothesis on data as assumed in the
works [Lia19, Mai19]. From a practical standpoint, RMT allows therefore for systematic
analyzes and improvements of a wide range of ML classifiers which rely on the aforemen-
tioned methods – through the estimation of their asymptotic performances – on realistic
data, such as deep learning representations of the surprising images generated artificially
by GANs.

To provide an example of such analyzes and improvements through RMT, we have
investigated in Section 4.2 the problem of sparse PCA where we have notably generalized
recent ideas to tackle this problem by means of a broader class of random kernel matri-
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ces. Specifically, our analysis has provided insights into how the principal components
can be consistently recovered through a random kernel matrix f (Σ̂), where Σ̂ is a spiked
covariance model and f a smooth function. Another example of such RMT analyzes and
improvements concerns the analysis of the Dropout in neural networks. Indeed, as we
presented in Section 5.2, we saw that the RMT analysis of a one-hidden-layer network
with an α-Dropout layer has yielded insights about the effect of the Dropout operation,
thereby improving it by suggesting dropping out features and replacing them with some
α 6= 0 in order to minimize the generalization error of the studied network.

6.2 Limitations and Perspectives

As we discussed in the previous section, the main outcomes of this thesis are twofold:
The first outcome concerns the fact that GAN generated data are concentrated vectors
by design, while the second outcome being the universality aspect of the studied ML
methods, i.e., ML methods which rely on Gram matrices, kernel matrices or for which
their solutions are explicit or implicitly defined through convex optimization problems.
Yet, these findings have limitations, so we discuss in the following some potential future
research directions in the same vein as our actual preliminary findings.

Validity of concentrated vectors for data modelling: So far in our experiments through-
out this manuscript, we have considered as data CNN representations of GAN generated
images. More fundamentally, we have shown that the framework of concentrated vec-
tors is justified by the fact that GAN data fall within this class of random vectors. Hence,
a first limitation concerns the fact that not all types of data can be generated by GANs,
therefore modelling them as concentrated vectors is not straightforward. Indeed, texts
(and thus their embeddings) are an example of such data types. However, in the natural
language processing (NLP) paradigm, text generation is performed using Recurrent Neu-
ral Networks (RNNs) [SMH11]. Specifically, text data are generated sequentially starting
from some hidden state z0 ∼ N (0, Id) and then computing at every time step t the new
hidden state as zt = RNN(zt−1, wt−1) where wt stands for the embedding of t-th word
in the processed sentence and RNN is the generator network. Consequently, studying
this mechanism along with the RNN dynamics may yield to highlight that the learned
word embeddings wt are concentrated vectors, since the involved operations are Lips-
chitz transformations and the starting hidden state h0 is a concentrated vector. Another
and more revolutionary way of building text embeddings for NLP relies on more in-
volved and huge neural networks architectures known as transformers which are based on
the so-called attention modules [VSP+17]. The basic and fundamental operation of these
architectures is the self-attention operation, which is a sequence-to-sequence operation
and basically consists in transforming a sequence of input vectors w1, . . . , wt to another
output sequence y1, . . . , yt as yi = ∑j αijwj where the weights αij are function of the input
sequences wi’s (e.g., αij = wᵀ

i wj or as commonly used αij = exp(wᵀ
i wj)/ ∑j exp(wᵀ

i wj)
involving the Softmax activation). Therefore, a first idea would be to study through the
tools of RMT the mechanism of this operation which might explain the concentration
property of the resulting learned word embeddings wi’s.
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Generalizations of the k-class Mixture of Concentrated Vectors Model: We assumed
throughout this manuscript that data are made of distinct classes which are represented
by their respective statistical means and covariances. This model does not take into ac-
count the between-class correlations or the fact that data have some hierarchical structure
(e.g., the class animals is made of several sub-classes: cats, dogs, etc.). A possible gener-
alization of our findings is to include these correlations/hierarchical structure and study
their influence so as to understand the behavior of ML methods in some specific appli-
cations that are sensitive to between-classe correlations. Concretely, a possible idea is to
generalize the notion of hierarchical Gaussian mixture models [OP16, LM07] by relax-
ing the Gaussianty assumption to the class of concentrated vectors. Such generalization
might also find applications in transfer learning in the vein of [YC08] as the target domain
is very often different from the source domain, hence this difference shall be considered
by modelling the underlying statistical dependencies.

On the analysis of more complex classifiers relying on non-convex optimization prob-
lems: As we discussed previously, the universality behavior concerns mostly ML meth-
ods which rely on Gram matrices, kernel matrices or for which their solutions are explicit
or implicitly defined through convex optimization problems. However, the most succes-
sive ML methods nowadays rely on non-convex optimization problems which is the case
of multi-layer neural networks. The main difficulty when studying these methods is the
non-convex nature and the use of the backpropagation algorithm which make the anal-
ysis more challenging. However, using tools from information theory [SZT17], it has been
shown that when building and training a neural network for a given task (e.g., classifi-
cation), the mutual information between its input and successive hidden layers decreases
across its internal layers. Roughly speaking, neural networks learn to produce hidden
representations that are less correlated with the input by basically keeping the most rele-
vant information across layers to solve the considered task, i.e., as long as there is a high
correlation between the considered hidden layer and the desired target output. Relying
on this intuition, efforts have been made to develop new alternatives to the end-to-end
backpropagation algorithm [BEO19, PL20, MLK20, DYP20, LOV19]. Basically, these al-
ternatives suggest to rather train the models layer-wise, i.e., training one layer at a time
which might provide more flexibility and accessibility to theoretical analysis. A common
approach for such alternatives relies on the Information Bottlenech (IB) principle which
consists in minimizing the following objective

min
p(h | x)

I(x; h)− γI(h; y)

where x stands for the input, y is the target label, h is the hidden feature vector, I stands
for the mutual information and γ > 0 is an hyperparameter. As such, optimizing IB is
equivalent to minimizing the mutual information (i.e., dependence) between the input x
and the hidden variable h while maximizing the mutual information between h and the
desired target y. Specifically, h plays the role of the hidden representations of x in the neu-
ral network. Still, from a practical standpoint, a first issue appears from the fact that the
mutual information is generally hard to compute. Authors in [MLK20] have very recently
proposed an alternative to overcome this issue by considering the Hilbert-Schmidt Inde-
pendent Criteria (HSIC) instead of the mutual information. Specifically, given some data
matrix X = [x1, . . . , xn] ∈ Mp,n and their corresponding targets Y = [y1, . . . , yn] ∈ Mk,n.
Further supposing that the hidden features are given by some parametric transformation
H = f (X; Θ) ∈ Mq,n of the input matrix X. The HSIC between X and H is particularly
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given by

HSIC(X, H) =
1

(n− 1)2 tr (KX KH)

where KX ∈ Mn is the kernel matrix having entries (KX)ij = κ(xi, xj) for some kernel
κ. Therefore, exploiting this formalism and RMT tools of the analysis of kernel matrices,
one could gain new insights about the internal mechanism of this learning approach. In
particular, two research directions might be interesting to explore:

1. A first direction concerns the analysis of the dynamics of a two hidden layers
(or possibly networks with multiple layers) with the HSIC principale. Concretely,
leveraging on RMT, an idea would be to study the involved functionals of the large
kernel matrices KX and KH to get access to the dynamics of the studied network in
the same vein as [LC18a]. Indeed, RMT analyses may provide statistical descrip-
tions of the local or global extrema, thereby leading to a theoretical understanding
of the model performances as well as improvements of the studied method through
optimal hyperparameter tuning. Such an analysis could be first considered using
a one-layer network with non-linear activation in order to analyze and understand
the effect of non-linearity on the network dynamics, as investigated in [AS17] with
the standard gradient descent approach.

2. Another direction of research, which might be more challenging, is to exploit the
layer-wise learning approach to describe the encoded information or encoded sufficient
statistics by neural networks layers weights in the same vein as our analysis of the
Softmax layer in Section 5.1. A possible idea is to start by performing preliminary
empirical studies to understand the correlations between the learned weights and
the corresponding layers representations using the HSIC principle. Since we have
identified, through the analysis of the Softmax layer in Section 5.1, that the last layer
retrieves information from the network representations through their class-wise
means and covariances, one could intuitively obtain the same conclusions layer-
wise and characterize the encoded statistics in the internal layers weights. Such an
analysis might be very useful for the understanding of the mechanism of neural
networks and might explain their incredible ability to build hierarchical and dis-
criminative representations.

As a concluding remark, we forcefully believe that the present manuscript scratches
the surface of a much more ambitious endeavor. Most effective AI tools nowadays (e.g.,
deep neural networks) lack explainability even if they have demonstrated incredible
super-human performances. However, there are several industrial domains (e.g., medi-
cal, transport or military) where explainability is foregrounded and is as crucial as perfor-
mance, hence such inexplainable AI tools are left aside in these critical domains. To gain
more confidence in these tools, RMT creates a new bridge, from theory and progressively
to practice, which gradually explains and improves AI methods and makes them more
accessible, understandable, reliable, hence opening a new way for research and industry
along with the current explosion of AI by deep learning. In that sense, pushing forward
the development of theoretical tools for the precise understanding of AI methods is of
crucial interest to achieve more effective and trustworthy AI.



Appendix A

Synthèse de la thèse en Français

L’intelligence artificielle (IA) est connue comme l’ensemble des théories et des techniques
utilisées pour créer des machines capables de simuler l’intelligence humaine. L’un des
sous-domaines les plus intéressants de l’IA est l’apprentissage machine (ML) qui vise à
fournir des algorithmes informatiques qui "apprennent" automatiquement par l’expérience
afin de prendre des décisions futures sans être explicitement programmés. Fondamen-
talement, les algorithmes ML s’appuient sur la construction de modèles mathématiques
- très souvent paramétriques - qui seront optimisés sur la base d’échantillons de don-
nées d’apprentissage et utilisés ensuite pour effectuer diverses tâches d’IA telles que la
classification, la régression, le regroupement, etc.

Tout naturellement, l’IA trouve des applications dans divers domaines et, par con-
séquent, l’un des défis les plus importants de la ML est de fournir des algorithmes qui
peuvent être appliqués à différents types de données (par exemple, des images, des
textes, des graphes, etc.). Par construction, ces données peuvent être représentées sous
différentes formes et, par conséquent, la performance des algorithmes de ML dépendra
largement de la représentation choisie. Cette représentation devrait idéalement contenir
des informations pertinentes sur les données afin de permettre l’apprentissage avec des
modèles simples et une petite quantité de données. Historiquement, un grand nombre de
travaux se sont concentrés sur la conception de représentations (ou de caractéristiques)
artisanales, puis sur leur fourniture à des algorithmes de ML simples pour résoudre les
tâches souhaitées. Mais pour la plupart des tâches et étant donné les différents types de
données, ces approches ne sont pas facilement extensibles pour obtenir une IA efficace.

Depuis l’arrivée des réseaux neuronaux profonds (DNN), l’idée de développer des
caractéristiques artisanales a été immédiatement écartée. En effet, les DNN ont surpassé
la plupart des approches en démontrant leur incroyable capacité à apprendre automa-
tiquement des représentations pertinentes à partir de données brutes dans un large éven-
tail d’applications, y compris la vision par ordinateur, la reconnaissance de formes et le
traitement du langage naturel. Malgré leur succès, de nombreuses questions restent sans
réponse concernant les bases théoriques des DNN et qui sont très cruciales notamment
pour leur explicabilité. Par exemple, la caractérisation complète de leurs représentations
et/ou paramètres appris est encore un problème ouvert.

L’un des principaux aspects qui ont rendu les DNN efficaces dans la pratique est le fait
qu’ils soient des modèles sur-paramétrés. En effet, il a été démontré que les architectures
profondes de ces modèles surpassent les architectures peu profondes lorsqu’il s’agit de
données multi-dimensionnelles (un échantillon de n données de dimension p) lorsque ces
deux grandeurs n et p sont de grande taille, ce qui est souvent le cas dans les scénarios de
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la vie réelle1. En outre, les DNN les plus efficaces se trouvent à avoir un certain nombre
de paramètres N qui sont au moins de l’ordre de p ou même beaucoup plus grands (par
exemple, LeNet-5 [LeC98] contient des paramètres N = 60000).

En substance, ces grandes dimensions induisent de nombreux phénomènes contre-
intuitifs qui font que les intuitions des petites dimensions s’effondrent complètement.
Pour une meilleure compréhension de ces phénomènes, nous fournirons ultérieurement
quelques exemples illustratifs qui révèlent ces aspects contre-intuitifs. Dans le cas par-
ticulier où les deux p, n → ∞ avec p/n → 0 ∈ (0, ∞), la théorie des matrices aléatoires
(RMT) fournit des outils puissants pour évaluer la performance de divers algorithmes
de ML en tenant compte de l’effet de ces dimensions. En effet, la RMT donne accès au
mécanisme interne d’un grand nombre de méthodes de ML, permettant ainsi une com-
préhension plus approfondie et des améliorations systématiques de ces méthodes. Nous
renvoyons le lecteur à la thèse de Z. Liao [Lia19] pour les applications de RMT aux méth-
odes du noyau, aux réseaux neuronaux aléatoires peu profonds et à la dynamique des
réseaux neuronaux ; la thèse de X. Mai [Mai19] qui traite des applications de RMT à
l’apprentissage semi-supervisé et aux SVMs.

Les travaux susmentionnés s’appuient largement sur des hypothèses gaussiennes2

concernant les données traitées. L’un des principaux résultats de cette thèse est d’aller
au-delà de l’hypothèse gaussienne pour aborder l’applicabilité de RMT à des données
réelles qui ne sont probablement pas proches des vecteurs gaussiens. En particulier, en
travaillant sous le modèle statistique plus générique des vecteurs concentrés [LC20], nous
fournissons des justifications – en nous appuyant sur les réseaux adversaires générateurs
(GAN) – sur la pertinence d’un tel modèle pour la modélisation réaliste des données,
et nous analysons en outre, sous l’hypothèse de concentration sur les données, le com-
portement des grandes matrices de noyaux (qui se trouvent être au coeur de divers algo-
rithmes ML) ainsi que certains composants essentiels des réseaux neuronaux tels que la
dernière couche Softmax. Un résultat majeur des travaux développés dans cette thèse est
le résultat d’universalité énoncé comme :

"seulement les moments d’ordre un et deux importent pour décrire le comportement
de ces méthodes"

justifiant ainsi l’hypothèse de la gaussianité des données selon les résultats de [Lia19,
Mai19].

En effet, le premier résultat notable de cette thèse, présenté dans la section 3.1, met en
lumière le fait que les données générées artificiellement par le biais des Generative Ad-
versarial Nets (GAN) sont des vecteurs aléatoires qui entrent dans la classe des vecteurs
concentrés. Par conséquent, les données réelles peuvent être modélisées par cette classe
de vecteurs aléatoires – et aussi puisqu’ils généralisent les vecteurs gaussiens – si nous
pouvons les assimiler aux données des GAN. Motivés par ce premier résultat, nous avons
étudié plus en détail dans cette thèse trois méthodes principales de ML, sous l’hypothèse
du mélange de vecteurs concentrés pour le modèle de données d’entrée, où chaque classe
de données est décrite par ses moments de premier et de second ordre {µ`}k

`=1 et {Σ`}k
`=1.

En effet, en s’appuyant sur la théorie des matrices aléatoires (RMT) et en supposant le
régime de grande dimension i.e., lorsque le nombre de données d’entrée et leur dimen-
sion sont à la fois grands et comparables, nous avons d’abord analysé dans la section 3.2
le comportement spectral des grandes matrices de Gram qui sont au cœur de diverses
méthodes linéaires. Comme des non-linéarités apparaissent dans diverses méthodes de

1À titre d’exemple, MNIST [LeC98] contient n = 70000 images de dimension p = 28× 28 = 784.
2Modèlisant les données comme un mélange Gaussien de k classes.



131

ML, nous avons également étudié dans la section 4.1 les méthodes à noyaux par l’analyse
de grandes matrices à noyaux. Enfin, nous avons étudié, à travers l’exemple du classifica-
teur Softmax dans la section 5.1, les méthodes de ML qui sont définies par des problèmes
d’optimisation (convexes) implicites.

Suite à notre analyse de ces méthodes, nous avons souligné que leurs performances
effectives – lorsqu’elles sont appliquées à des données de grande dimension – seulement
dépendent des classes moyennes et covariances des données d’entrée, à savoir les statis-
tiques {µ`}k

`=1 et {Σ`}k
`=1, un résultat que nous avons empiriquement vérifié par des ex-

périences approfondies en utilisant les représentations CNN des images générées par un
GAN. Ceci constitue un résultat majeur de cette thèse dans le sens où il met en évidence
ł’aspect d’universalité des grands classificateurs ML indépendamment de la distribution
des données d’entrée. En conséquence, l’aspect d’universalité soutient notamment la va-
lidité du modèle de mélange gaussien dans le régime de la théorie des matrices aléatoires,
justifiant ainsi l’hypothèse de mélange gaussien sur les données telle que supposée dans
les travaux [Lia19, Mai19]. D’un point de vue pratique, la théorie des matrices aléatoires
permet ainsi d’analyser et d’améliorer systématiquement un large éventail de classifi-
cateurs ML qui s’appuient sur les méthodes susmentionnées – par l’estimation de leurs
performances asymptotiques – sur des données réalistes, telles que des représentations
approfondi des images surprenantes générées artificiellement par les GANs.

Pour fournir un exemple de telles analyses et améliorations par RMT, nous avons
étudié dans la section 4.2 le problème de l’ACP parcimonieuse où nous avons notam-
ment généralisé des idées récentes pour s’attaquer à ce problème à travers l’analyse
d’une classe plus large de matrices à noyaux aléatoires. Plus précisément, notre analyse
a permis de comprendre comment les composantes principales peuvent être récupérés
de manière cohérente grâce à une matrice à noyau aléatoire de la forme f (Σ̂), où Σ̂ est
un modèle de covariance à pics et f une fonction lisse. Un autre exemple d’analyse et
d’amélioration à travers la théorie des matrices aléatoires concerne l’analyse du Dropout
dans les réseaux de neurones. En effet, comme nous l’avons présenté dans la section
5.2, nous avons vu que l’analyse RMT d’un réseau à une couche cachée avec une couche
α-Dropout a permis de comprendre l’effet de l’opération Dropout, l’améliorant ainsi en
suggérant d’abandonner des caractéristiques des données et de les remplacer par une
valeur α 6= 0 afin de minimiser l’erreur de généralisation du réseau étudié.

En conclusion générale, les outils d’IA les plus efficaces de nos jours (par exemple,
les réseaux de neurones profonds) manquent d’explicabilité même s’ils ont démontré
des performances surhumaines incroyables. Cependant, il existe plusieurs domaines in-
dustriels (par exemple, le médical, le transport ou le militaire) où l’explicabilité est au
premier plan et est aussi cruciale que la performance, c’est pourquoi ces outils d’IA inex-
plicables sont laissés de côté dans ces domaines critiques. Pour gagner plus de confiance
dans ces outils, la théorie des matrices aléatoires crée un nouveau pont, de la théorie
et progressivement vers la pratique, qui explique et améliore progressivement les méth-
odes d’IA et les rend plus accessibles, compréhensibles, fiables, ouvrant ainsi une nou-
velle voie pour la recherche et l’industrie en même temps que l’explosion actuelle de l’IA
par les méthodes d’apprentissage profond. En ce sens, faire avancer le développement
d’outils théoriques pour la compréhension précise des méthodes d’IA est d’un intérêt
crucial pour parvenir à une IA plus efficace et plus fiable.
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B.1 Generative Collaborative Networks for Super-resolution

This section is based on the following work:

(C6) MEA. Seddik, M. Tamaazousti, J. Lin, “Generative Collaborative Networks
for Single Image SuperResolution”, Neurocomputing’2019.

B.1.1 Motivation

The super-resolution problem (Psr) consists in estimating a high resolution (HR) image
from its corresponding low resolution (LR) counterpart. Psr finds a wide range of ap-
plications and has attracted much attention within the community of computer vision
[NM14, YYDN07, ZY12]. Generally, the considered optimization objective of supervised
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Figure B.1: When super-resolving images from a different domain (e.g., satellite images
on the right) than the ImageNet domain (e.g., general objects on the left), the VGG loss
introduced by [LTH+16] is no longer relevant. We propose a method that outperforms
the SRGAN method [LTH+16] when super-resolving satellite images. Our method falls
within a large class of methods which constitutes our proposed Generative Collaborative
Networks framework.

methods to solve Psr is the minimization of the mean squared error (MSE) between the
recovered HR image and ground-truth. This class of methods are known to be subopti-
mal to reconstruct texture details at large upscaling factors. In fact, since MSE consists
in a pixel-wise images differences, its ability to recover high texture details is limited
[LTH+16, GSBB11, WBSS04, WSB03]. Furthermore, the minimization of MSE maximizes
the Peak Signal-to-Noise-Ratio (PSNR) metric, which is commonly used for the evalua-
tion of Psr methods [YMY14].

In order to correctly recover finer texture details when super-resolving at large up-
scaling factors, a recent (state-of-the-art) work [LTH+16] defined a perceptual loss which
is a combination of an adversarial loss and a VGG loss. The former encourages solu-
tions perceptually hard to distinguish from the HR ground-truth images, while the latter
consists in using high-level feature maps of the VGG network [SZ14] pre-trained on Ima-
geNet [DDS+09]. When considering the problem of super-resolving images from a target-
domain different than ImageNet (e.g., satellite images), the features produced by the pre-
trained VGG network on the source domain (ImageNet) are suboptimal and no longer
relevant for the target domain. In fact, transfer-learning methods are known to be effi-
cient only when the source and target domains are close enough [TLBH17a, TLBH+17b,
KQD18]. In this work, we present a general framework which we call Generative Collab-
orative Networks (GCN), where the main idea consists in optimizing the generator (i.e.,
the mapping of interest) in the feature space of a network which we shall refer to as a
features extractor network. The two networks are said to be collaborative in the sense that
the features extractor network “helps” the generator by constructing (here, learning) rel-
evant features. In particular, we applied our framework to the problem of single image
super-resolution, and we demonstrated that it results in a method that is more adapted
(compared to SRGAN [LTH+16]) when super-resolving images from a domain that is
“far” from the ImageNet domain.
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The problem of super-resolution has been tackled with a large range of approaches.
In the following, we will consider the problem of single image super-resolution (Psisr) and
thus the approaches that recover HR images from multiple images [BS98b, FREM04] are
out of the scope of this paper. First approaches to solve Psisr were filtering-based meth-
ods (e.g., linear, bicubic or Lanczos [Duc79] filtering). Even if these methods are generally
very fast, they usually yield overly smooth textures solutions [WBSS04]. Most promis-
ing and powerful approaches are learning-based methods which consist in establishing
a mapping between LR images and their HR counterparts (supposed to be known). Ini-
tial work was proposed by Freeman et al. [FJP02]. This method has been improved in
[DZSW11, ZEP10] by using compressed sensing approaches. Patch-based methods com-
bined with machine learning algorithms were also proposed: in [TDVG13, TDSVG14]
upsampling a LR image by finding similar LR training patches in a low dimensional
space (using neighborhood embedding approaches) and a combination of the HR patches
counterparts are used to reconstruct HR patches. A more general mapping of example
pairs (using kernel ridge regression) was formulated by Kim and Kwon [KK10]. Similar
approaches used Gaussian process regression [HS11], trees [SPP15] or Random Forests
[SLB15] to solve the regression problem introduced in [KK10]. An ensemble method-
based approach was adopted in [DTVG15] by learning multiple patch regressors and
selecting the most relevant ones during the test phase.

Convolutional neural networks (CNN)-based approaches outperformed other Psisr
approaches, by showing excellent performance. Authors in [WLY+15] used an encoded
sparse representation as a prior in a feed-forward CNN, based on the learned itera-
tive shrinkage and thresholding algorithm of [GL10]. An end-to-end trained three layer
deep fully convolutional network, based on bicubic interpolation to upscale the input
images, was used in [DLHT14, DLHT16] and achieved good Psisr performances. Fur-
ther works suggested that enabling the network to directly learn the upscaling filters,
can remarkably increase performance in terms of both time complexity and accuracy
[DLT16, SCH+16]. In order to recover visually more convincing HR images, Johnson et
al. [JAFF16] and Bruna et al. bruna2015super used a closer loss function to perceptual
similarity. More recently, authors in [LTH+16] defined a perceptual loss which is a com-
bination of an adversarial loss and a VGG loss. The latter consists in minimizing the
error between the recovered HR image and ground-truth in the high-level feature space
of the pre-trained VGG network [SZ14] on ImageNet [DDS+09]. This method notably
outperformed CNN-based methods for the problem Psisr.

B.1.2 Proposed Methods

B.1.2.1 Proposed Framework

Consider a problem P of learning a mapping function F , parameterized by θF , that
transforms images from a domain X to a domain Y , given a training set of N pairs
{(xi, yi)}N

i=1 ∈ X × Y . Denote by pX and pY the probability distributions respectively
over X and Y . In addition, we introduce a given features extractor function denoted Φ,
parameterized by θΦ, that maps an image y ∈ Y to a certain euclidean feature space SΦ
of dimensionality d. The mappings F and Φ are typically feed-forward Convolutional
Neural Networks. The Generative Collaborative Networks (GCN) framework consists in
learning the mapping function F by minimizing a given loss function1 in the space of

1`2-loss is considered in the following.
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features SΦ, between the generated images (through F ) and ground-truth. Formally,

θ̂F = arg min
θF

λ1

N d

N

∑
i=1

d

∑
j=1

(
Φj (yi)−Φj (F (xi))

)2
+ λ2 Ω(θF ), (B.1)

where Ω(θF ) is a certain regularization term (detailed below) on the weights θF and λ1
and λ2 are summation coefficients. The two networks F and Φ are collaborative in the
sense that, the latter learns specific features of the domain Y and “helps” the former, as it
is learned in the space SΦ. An important question arises about how to learn the mapping
Φ. In following, we describe different classes of methods depending on the learning
strategy of Φ. In fact, the features extractor function Φ can take different forms and
be learned by different strategies. In particular, we distinguish two learning strategies
(illustrated in Figure B.2), which we shall call disjoint-learning and joint-learning. The four
following cases belong to the disjoint-learning strategy:

(1.a) When Φ is the identity operator (Φ = Id). In that case, the objective in equation B.1
becomes a simple pixel-wise MSE loss function. We refer to this class of methods
by P/mse.

(1.b) When Φ corresponds to a random feature map neural network, that is to say, the
weights θΦ are set randomly according to a given distribution µ. We refer to this
class of methods by P/ran.

(1.c) When Φ is a part of a model that solves a reconstruction problem (jointly with an
auxiliary mapping function Ψ : SΦ → Y), by minimizing the pixel-wise `2-loss
function between the reconstructed images (through Ψ) and ground-truth:

(θ̂Φ, _) = arg min
(θΦ,θΨ)

1
N dim(Y)

N

∑
i=1

dim(Y)

∑
j=1

(
(yi)j − (Ψ ◦Φ(yi))j

)2 . (B.2)

Notably, this strategy allows for the learning of reconstruction features which are
different from classification-based features. We refer to this class of methods by
P/rec.

(1.d) When Φ is trained to solve a multi-label classification problem [LTH+16], that is to
say, when labels are available for the domain Y . More precisely, it exists a dataset
{(yi, ci)}n

i=1 ∈ Y ×{1, . . . , m} of n images labelled among m classes and Φ is learned
to minimize the following objective:

(θ̂Φ, _) = arg max
(θΦ,θΨ)

P {Ψ ◦Φ(yi) = ci | yi ; i ∈ {1, . . . , m}} , (B.3)

where Ψ : SΦ → {1, . . . , m}. We refer to this class of methods by P/cla.

The features extractor function Φ can also be trained jointly with the desired mapping
function F . Indeed, as in the GANs paradigm, one can use a discriminator to distinguish
the generated images (through F ) and ground-truth, and thus learn more relevant and
specific features for the problem of interest P . In particular, the joint-learning strategy
contains two cases:

(2.a) When Φ is a part of a discriminator. D = Ψ ◦ Φ : Y → {0, 1} that classifies the
generated images (through F ) and ground-truth. D is optimized in an alternating
manner along with F to solve the adversarial min-max problem [SCT+16]:

min
θF

max
(θΦ,θΨ)

Ey∼pY [log Ψ ◦Φ(y)] + Ex∼pX [log {1−Ψ ◦Φ ◦ F (x)}] . (B.4)
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Standard methods P/mse P/cla P/rec P/dis P/dis, rec
Existence 3[GSBB11] 3[DB16] 7 7 7

Adversarial methods P/adv, mse P/adv, cla P/adv P/adv, rec
Existence 3[YP16] 3[LTH+16] 7 7

Table B.1: Existent loss functions of the proposed GCN framework.

The adversarial loss (second term of equation B.4) can thus be seen as a regulariza-
tion of the parameters θF by affecting this quantity to Ω(θF ) in equation B.1. This
regularization “pushes” the solution of the problem in equation B.1 to the manifold
of the images in the domain Y . We refer to this class of methods by P/adv. When
λ2 = 0, we refer to it by P/dis.

(2.b) When Φ is a part of a discriminator and an auto-encoder. Namely, by optimizing
its weights θΦ to solve simultaneously, an adversarial problem as in equation B.4;
through D = Ψ1 ◦Φ : Y → {0, 1}, and a reconstruction problem as in equation B.2;
through a mapping Ψ2 : SΦ → Y . We refer to this class of methods by P/adv,rec or
P/dis,rec depending on the value of λ2 in equation B.1.

B.1.2.2 Existing Loss Functions

The natural way to learn a mapping from a manifold to another is to use P/mse methods.
It is well known [GSBB11, LTH+16, WSB03, WBSS04] that this class of methods lead to
overly-smooth and poor perceptual quality solutions. In order to handle the mentioned
perceptual quality limitation, a variety of methods have been proposed in the literature.
First methods used generative adversarial networks (GANs) for generating high percep-
tual quality images [DCF+15, MCL15], style transfer [LW16] and inpainting [YCL+16],
namely the class of methods P/adv with λ1 = 0. Authors in [YP16] proposed to use
P/mse with an adversarial loss (λ1 > 0 and λ2 > 0) to train a network that super-
resolves face images with large upscaling factors. Authors in [BSL15, JAFF16] and in
[DB16] used P/cla by considering respectively Φ =VGG19 and Φ =AlexNet networks
as fixed features extractors (learned disjointly from the mapping of interest), which result
in a more perceptually convincing results for both super-resolution and artistic style-
transfer [GEB15, GEB16]. More recently, authors in [LTH+16] used P/cla,adv by consid-
ering Φ =VGG19 as a fixed features extractor combined with an adversarial loss (λ2 > 0).
To the best of our knowledge, as summarized in table B.1, the use of the other learning
strategies of Φ; namely (1.c), (2.a) and (2.b), have not been explored in the literature. We
particularly apply these strategies in the context of Single Image Super-Resolution, which
results in methods that are more suitable (comparing to the SRGAN method [LTH+16]) to
super-resolution domains that differ from the ImageNet domain. The proposed methods
as well as the corresponding experiments are presented in the following section.

B.1.3 Experiments for Single Image Super-Resolution

B.1.3.1 Proposed Methods

In this section, we consider the problem of Single Image Super-Resolution (Psisr). In
particular, we suppose we are given N pairs {(ILR

i , IHR
i )}N

i=1 of low-resolution images
and their high-resolution counterparts. Recalling our GCN framework (presented in the
previous section) the proposed methods for the problem Psisr are: Psisr/rec, Psisr/dis,
Psisr/dis,rec, Psisr/adv and Psisr/adv,rec. We show in the following that the most con-
vincing results are given by Psisr/adv,rec. In particular, we show on a dataset of satellite
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images (different from the ImageNet domain) that our method Psisr/adv,rec outperforms
the SRGAN method [LTH+16] by a large margin on the considered domain. Note that,
as our goal is to show the irrelevance of the VGG loss for some visual domains (different
from ImageNet), we do not consider the well-known SR benchmarks (e.g., Set5, Set14,
B100, Urban100) for the evaluation, as these benchmarks are relatively close to the Im-
ageNet domain. The evaluation of the different methods is based on perceptual metrics
[ZIE+18] which we recall in the following section.

B.1.3.2 Evaluation Metrics

The evaluation of super-resolution methods (more generally image regression-based meth-
ods) requires comparing visual patterns which remains an open problem in computer
vision. In fact, classical metrics such as L2/PSNR, SSIM and FSIM often disagree with
human judgments (e.g., blurring causes large perceptual change but small L2 change).
Thus, the definition of a perceptual metric which agrees with humans perception is an
important aspect for the evaluation of Psisr methods. Zhang et al. [ZIE+18] recently eval-
uated deep features across different architectures (Squeeze [IHM+16], AlexNet [KSH12]
and VGG [SZ14]) and tasks (supervised, self-supervised and unsupervised networks)
and compared the resulting metrics with traditional ones. They found that deep features
outperform all classical metrics (e.g., L2/PSNR, SSIM and FSIM) by large margins on
their introduced dataset. As a consequence, deep networks seem to provide an embed-
ding of images which agrees surprisingly well with humans judgments.

Zhang et al. [ZIE+18] compute the distance between two images x, y with a network2

Φ in the following way:

dΦ(x, y) = ∑
l

1
HlWl

∑
h,w
‖wl � (Φl(x)hw −Φl(y)hw)‖2

2, (B.5)

where Φl(·) are the extracted features from layer l and unit-normalized in the channel
dimension. wl is a re-scaling vector of the activations channel-wise at layer l. Hl and Wl
are respectively the height and width of the lth feature map.

Thus, we compute the perceptual error (PE) of a Psisr method (a mapping F ) on a
given test-set of N low-resolution images and their high-resolution counterparts Π =
{(ILR

i , IHR
i )}N

i=1 as the mean distances between the generated images (through F ) and
ground-truth as follows:

PEΦ(Π) =
1
N

N

∑
i=1

dΦ(F (ILR
i ), IHR

i ). (B.6)

Note that we use the implementation of [ZIE+18] to compute the perceptual distances
dΦ(·, ·) using six variants which are based on the networks Squeeze [IHM+16], AlexNet
[KSH12] and VGG [SZ14] and their “perceptual calibrated” versions. The best method is
considered to be the one which minimizes the maximum amount of PEs across different
networks Φ ∈ {Squ, Squ-l, Alex, Alex-l, VGG, VGG-l}.

2The considered networks are Squeeze[IHM+16], AlexNet[KSH12] and VGG[SZ14] and their "percep-
tual calibrated" versions which we refer to respectively as Squeeze-l, AlexNet-l and VGG-l. See [ZIE+18]
and the provided Github project within for further details.
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B.1.3.3 Experiments

The overall goal of this section is to validate our statement about the relevance of the VGG
loss when super-resolving images from a different domain than the ImageNet domain. To
highlight this aspect, we first present the considered datasets, architectures and training
details. Then we select the more appropriate method (across the GCN framework meth-
ods) for the Psisr problem based on perceptual metrics [ZIE+18]. Finally, we compare our
proposed method to some baselines and the state-of-the-art SRGAN method [LTH+16],
on three different datasets (detailed in the following section). We show in particular that
our method outperforms SRGAN on the satellite images domain.

Datasets. The idea of replacing the MSE pixel-wise content loss on the image by a loss
function that is closer to perceptual similarity is not new. Indeed, [LTH+16] defined a
VGG loss on the feature map obtained by a specific layer of the pre-trained VGG19 net-
work and shows that it fixes the inherent problem of overly smooth results which comes
with the pixel-wise loss. Nevertheless, VGG19 being trained on ImageNet, their method
would not perform particularly well on different images, the distribution of which is far
away from that of ImageNet.

Therefore, we propose a similar method where the difference is that our features ex-
tractor is not pre-trained, but trained jointly with the generator. This removes the afore-
mentioned limitation since the features extractor is trained on the same dataset as the
generator and thus extract relevant features.

To show that, we trained our different networks (i.e., with different features extrac-
tors) on three distinct datasets (examples of images of these datasets are shown in Fig-
ure B.3):

• A subset of ImageNet [DDS+09], for which we sampled 70, 000 images. Since VGG19
was trained on ImageNet for many (more than 300K) iterations, we expect to have
similar or worse results than the state-of-the-art method SRGAN from [LTH+16] on
this database.

• The Describable Textures Dataset (DTD) [CMK+14], containing 5, 600 images of tex-
tural patterns. These data are relatively close to ImageNet and we show that our
method gives convincing results relatively close to SRGAN.

• A dataset containing satellite images3, which we generated by randomly cropping
256× 256 images on a 7205× 7205 satellite image which result in 235, 183 images.
We particularly show that our method significantly outperforms SRGAN on this
dataset. We refer to this dataset by Sat.

All experiments are performed with a scale factor of 4× between low- and high-
resolutions images and the formers are obtained during the training by down-scaling
the original images by a factor 1/4.

Architectures. Our overall goal is to prove that the proposed GCN framework, is adapted
to train a generative mapping model and that it surpasses the MSE loss in keeping per-
ceptual similarity in the generated image (whereas the MSE loss tends to smooth things

3Can be found in http://www.terracolor.net/sample_imagery.html

http://www.terracolor.net/sample_imagery.html
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out and lose high frequency details). As opposed to [LTH+16]’s work, our framework
does not require to have a pre-trained network, like VGG, to extract helpful features for
training. In this paper, we focus on the Super Resolution problem. Therefore, we chose
our mapping function F , or generator, to be that of Ledig et al. [LTH+16]: a feed-forward
CNN parametrized by θF , composed of 10 residual blocks. These blocks are made of two
convolutional layers with 3 × 3 kernels and 64 features maps, each followed by batch
normalization and PReLU as activation. The image’s size is then increased of a factor 4
by two trained upsamplings. The architecture of all the used discriminators follows the
guidelines of Radford et al. [RMC15] as it is composed of convolutional layers, followed
by a batch normalization and a LeakyReLU (α = 0.2) activation. This block is repeated
eight times and each time the number of 3× 3 kernels increases by a factor 2 (ranging
from 64 to 512), a strided convolution is used to reduce the image resolution by 2. Two
dense layers and a sigmoid activation then return the discrimination probability. In the
case of an auto-encoder (every Reconstruction problem), we follow the same architecture
for the encoder and a symmetric one for the decoder. Figure B.4 depicts an overview of
the architectures for both the generator and the discriminator.

Training details and parameters. All networks were trained4 on a NVIDIA Geoforce
GTX 1070 GPU using the considered datasets, which do not contain the (1000) testing
images shown as results. We scaled the range of both the LR input images and the HR
images to [−1, 1], which explains the tanh activation for the last layer of the generator.
All variants of our networks, which differ in their features extractor, were trained from
scratch (for the generator and the features extractor) with mini batches of 10 images. We
used the Adam optimizer with a learning rate of 2 · 10−4 and a decay of 0. The generator
and the feature extractor are updated alternatively. As we realized training was stable
and quite fast, we trained with only 5, 000 update iterations to pinpoint the best method
among the different GCNs. Finally, the regularization parameters in our global loss are
set by default as λ1 = 1 and λ = 10−3. As a reminder, our goal here is, given a generator
architecture (or mapping function F ), to find the best strategy to train it, following our
GCNs paradigms. The best method is then further compared to baselines.

Features Extractor Selection. As we said above, we investigated the ability of different
features extractor to construct relevant perceptual feature maps for training and improv-
ing the rendering quality of the generator. In order to select the best learning strategy
given a certain dataset, we train the generator on each dataset using the different learn-
ing strategies: Psisr/rec, Psisr/dis, Psisr/dis,rec, Psisr/adv and Psisr/adv,rec. Note that, the
features extractor for all the considered methods correspond to the first layer of the dis-
criminators (or encoder-decoders). In fact, as the problem Psisr consists in recovering
low-level perceptual cues, we limited our study to the first layer.

Table B.2 summarizes the results of the proposed Psisr methods in terms of low-level
metrics (L2 and SSIM) and perceptual metrics [ZIE+18] which are given by Eq. equa-
tion B.6. We notice from this table that the method Psisr/adv, rec performs relatively well
on the datasets ImageNet and Sat in terms of perceptual metrics. While Psisr/dis, rec
gives better results on the DTD dataset. The main difference between these two methods
is that the former considers an adversarial loss on the objective function while the latter
does not consider the adversarial term. This explains the reason why Psisr/adv, rec does

4A Keras implementation is provided in https://github.com/melaseddik/GCN

https://github.com/melaseddik/GCN
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not perform well on DTD. In fact, texture images belong to a complex manifold and their
distribution is relatively hard to fit by a generative model.

Figure B.5 shows qualitative results of the different proposed methods on the different
presented datasets. Generally, the methods which were trained with an additional adver-
sarial loss (Psisr/adv and Psisr/adv,rec) output images of higher quality (on the datasets
ImageNet and Sat) as GANs were introduced to do just so: generate images that follow
the distribution of the dataset. Among these two adversarial methods, it seems to us (as
suggested by the quantitative results of table B.2) that Psisr/adv,rec (column (c) of Figure
B.5) is able to detect and render more details, due to its ability to generate more rele-
vant features as the features extractor Φ is learned to solve a multi-task problem; namely
a discrimination and a reconstruction problem, in particular, this method allows for the
learning of both classification and reconstruction-based features. We will thus further
investigate the Psisr/adv,rec method for the comparison to the baseline and the state-of-
the-art method SRGAN [LTH+16], on the satellite images domain.

Psisr/adv, rec against baseline methods on the satellite images domain. Our main ob-
jective is to show that the VGG loss function (namely, the SRGAN method [LTH+16]) is
no longer relevant when super-resolving images from a domain different than the Ima-
geNet domain. In particular, by considering the satellite images domain, we show in this
section that the selected method from the previous section (Psisr/adv, rec) outperforms
some baselines, which are Psisr/mse (pixel-wise MSE loss) and Psisr/adv,mse (pixel wise
MSE loss combined with an adversarial loss), and the state-of-the-art super-resolution
method, SRGAN [LTH+16]. Note that all the methods use the same architectures (de-
picted in figure B.4) for the generator and discriminator and are trained on the same
domain (here, on satellite images). Our purpose being to show the relevance of the pro-
posed method on a domain “far” from the ImageNet domain, we do not consider stan-
dard SR benchmarks, which are raltively “close” to the ImageNet domain.

Table B.3 presents quantitative results, in terms of classical metrics (L2 and SSIM) and
perceptual metrics given by equation B.6, of the different methods on the Sat dataset.
As we can notice, our method Psisr/adv, rec outperforms the other methods in terms of
perceptual metrics. Knowing that the perceptual metrics agree with human judgments
[ZIE+18], these results validate the effectiveness of the Psisr/adv, rec method. Note also
that even if SRGAN [LTH+16] is optimized to minimize a VGG loss, it does not give the
lowest perceptual errors in terms of the perceptual metrics VGG and VGG-l, this is due
to the fact that the VGG features are not relevant for the satellite images domain. In ad-
dition, Psisr/adv, rec gives the lowest perceptual errors in terms of the perceptual metrics
Alex and Alex-l which agrees with a human perception. In fact, AlexNet network may
more closely match the architecture of the human visual cortex [YD16].

Figure B.6 shows some qualitative results of different methods on a patch of an image
from the Sat dataset. As we can notice, the Psisr/adv, rec method gives the perceptually
closest result to the ground-truth image, which agrees with the quantitative results of
table B.3.

Further results. In this section, we provide further qualitative and quantitative com-
parisons to the considered baselines of the previous section. In particular, we consider
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all the presented datasets for the comparisons. Qualitative results are provided in figure
B.7. SRGAN performs better on ImageNet, which is not that surprising considering our
features extractor was trained much less than VGG19 used in [LTH+16] and the VGG
features being more relevant for images from the ImageNet domain. Nonetheless, we
do have sharper images than the MSE based methods, although we show some artifact
(especially on the boat) which we attribute to the competition between the content and
adversarial losses. On DTD though, we can see the benefit of our method over a pre-
trained VGG loss. Indeed, SRGAN is blurrier on both the house (first row) and the cliff
(third row), in spite of having less artifacts than our method. On the “cracks” example
(second row), SRGAN even totally obliterates the details in the center. Finally, results on
the dataset Sat, which is the most different dataset compared to ImageNet, are the most
compelling. Our method generates super resolved images that are really close to the
real high resolution images, while we can clearly see imperfections on SRGAN’s results
because of VGG19 which was not trained to detect perceptual features on satellite images.

Quantitative results are summarized in Table B.4. As shown in [LTH+16, ZIE+18],
the standard quantitative measures such as L2 and SSIM fail to highlight image quality
according to the human visual system. In fact, while the results of Psisr/mse are overly
smooth perceptually, it has the lowest L2 and SSIM errors on Sat. However, perceptual
metrics agree with what we assess qualitatively: SRGAN performs best on ImageNet but
not on Sat, the distribution of which is the farthest from ImageNet. Actually, SRGAN
ranks third of all four methods on Sat, just before Psisr/adv,mse, while still performing
best on DTD which still is pretty close to ImageNet. This shows that the VGG features
become less and less relevant as the dataset’s distribution part from ImageNet. On the
other hand, our training framework allows to construct relevant features on any (never
seen) dataset. Thus our method Psisr/adv,rec performs best on Sat. Our method perform-
ing better than Psisr/adv,mse also shows that our framework helps finding detail preserv-
ing features. Figure B.7 provides the results of the different baselines and our method on
some examples of the considered datasets. We notice from these images that our method
Psisr/adv, rec recovers finer details on the different datasets while it outperforms the con-
sidered baselines on satellite images.

Table B.5 summarizes the results of the different methods on the considered datasets
through the paper. From these results, we make the following conclusions:

• When the considered domain is far enough from the ImageNet domain, the VGG
loss introduced by [LTH+16] is no longer relevant.

• The VGG network can not be fine-tuned when considering a domain for which
there is no available labels for the images (e.g., satellite images). Thus, the SRGAN
method cannot be exploited efficiently in this case.

• Our framework results in a method (Psisr/adv, rec) that outperforms some baselines
and the SRGAN method on the satellite images domain.

• Even on a domain close to the ImageNet domain (e.g., texture images), one can find
within our framework methods which give almost similar results to the SRGAN
method, while the later is based on VGG features and thus need to train the VGG
network on the whole ImageNet dataset.
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B.1.4 Central Contribution and Discussions

In this work, we have proposed a general framework named Generative Collaborative
Networks (GCN) which generalizes the existing methods for the problem of learning a
mapping between two domains. The GCN framework highlights that there is a learning
strategy of mappings that is not explored in the literature. In particular, the optimiza-
tion of these mappings in the feature space of a features extractor network, which is
mutually learned at the same time as the considered mapping (joint-learning strategy).
The GCN framework was evaluated in the context of super-resolution on three datasets
(ImageNet [DDS+09], DTD [CMK+14] and satellite images). We have shown that the
proposed joint-learning strategy leads to a method that outperforms the state of the art
[LTH+16] which uses a pre-trained features extractor network (VGG19 on ImageNet).
Specifically, this holds when the domain of interest is “far” from the ImageNet domain
(e.g., satellite images or images from the medical domain5). However, note that even for
domains close to the ImageNet domain, the proposed method gives convincing (almost
similar to [LTH+16]) results without using the whole ImageNet dataset to learn the fea-
tures extractor network (as performed in [LTH+16]).

We systematically designed the proposed methods by using the first layer of the fea-
tures extractor networks, while it could be interesting to evaluate in more detail the im-
pact of this choice regarding the learning strategy. Moreover, the impact of the selected
layer may also depend on the considered dataset. More generally, the GCN framework
offers a large vision on the wide variety of existing loss functions used in the literature
of learning mappings-based problems (e.g., super-resolution, image completion, artistic
style transfer, etc.). In fact, we show that these loss functions can be simply reformulated,
in the proposed framework, as a certain combination of a particular type of features ex-
tractor networks (P/rec, P/dis, P/dis,rec, P/adv andP/adv,rec) and a particular learning
strategies (joint-learning or disjoint-learning). Therefore it will be interesting to explore this
promising framework in other learning mappings-based problems.

B.2 Neural Networks Compression

This section is based on the following work:

(C7) MEA. Seddik, H.Essafi, A.Benzine, M.Tamaazousti, “Lightweight Neural
Networks from PCA & LDA Based Distilled Dense Neural Networks”, Inter-
national Conference on Image Processing (ICIP’20), Online, 2020.

B.2.1 Motivation

Neural networks are the most effective machine learning methods nowadays, and since
they generally require millions of parameters, their implementation in an IoT environ-
ment is quite ineffective. Indeed, IoT requires machine learning models with limited
amount of parameters since the edge devices have limited resources (computation ca-
pacity, storage, bandwidth,. . . ). This requirement among others have triggered intensive
research activities and led to the emergence of new computing paradigms, i.e. edge com-
puting [Sat17] which has emerged as an answer to the need for shifting the computing

5This domain is particularly relevant for the proposed framework as it seems very far from the ImageNet
domain. Unfortunately, we have not found a big amount of publicly available data (to the best of our
knowledge) for medical images which prevented us from considering this domain through the paper.
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from cloud to decentralized processing units close to the data sources [ASEA19]. The
authors in [MMH+19] give a survey of works dealing with machine learning at the net-
work edge. AI at the edge [LLP+19] is a concrete example of leveraging the computing
and storage resources near the places where data is produced. The authors in [VTWA18]
present a set of approaches proposed for embedding deep learning into the edge com-
puting devices. They also present some applications that can fit with the edge computing
paradigm and can take benefit from the edge network. However, the accuracy of deep
learning models depends largely on the hyper-parameters of the network in particularly
the number and the size of layers.

Nevertheless, big models are resources consuming which can impede the embed-
ding of AI technologies in IoT devices with constrained resources. To tackle this issue
some interesting solutions were proposed, model compression was among the first pro-
posed methods. Model compression methods use well proved compression techniques
for reducing the storage volume required by neural networks without impacting their
performance. For instance the algorithm presented in [HMD15] is composed of three
methods applied in pipeline: first pruning (selection of the important weights of the net-
work) method is applied, followed by quantization and Huffman coding (compression
without lost). Compression methods are useful for reducing the required storage space
of network models but inefficient for reducing the computation power which is one of
the main critical aspects of the IoT devices. Recent methods targeting the production of
smaller models, with the accuracy near of lager ones, was investigated [MFLG19].

In this study, we present two methods for distilling a given large dense neural net-
work into a smaller one. The proposed methods are based on knowledge distillation con-
cept [YJBK17], where a large (teacher) pre-trained network is used to train a smaller (stu-
dent) network. They have the advantage to produce models that consume less storage
and computing resources; the knowledge distillation approach is a kind of transfer learn-
ing approach which is commonly used in various machine learning problems [TLBH+19,
MTS+19]. In [MFLG19] the authors show that the accuracy of the student network model
depends highly on the ratio size between the two network models (teacher and student),
higher is this ratio (gap size between teacher and student is large), smaller is the accu-
racy. To alleviate this problem the authors suggest, instead of distilling the student model
directly from the teacher model, to use succession of teacher assistants based knowledge
distillation approach where the models are distilled step by step until obtaining the final
model. The proposed methods in this paper are notably complementary to the methods
in [HMD15, MFLG19].

B.2.2 Proposed Methods

B.2.2.1 Setting & Notations

Consider a dense neural network, which we refer to as the teacher network (TN), com-
posed of L layers and constructed in the following way, for ` ∈ [L]:

(TN) :

{
h(0) = x ∈ Rp0 ,
h(`) = f`

(
W (`)h(`−1) + b(`)

)
∈ Rp` ,

(B.7)

where, x corresponds to the input data features, f` denotes the `-th layer activation, h(`)

stands for the features of x extracted at layer `, W (`) ∈ Rp`×p`−1 and b(`) ∈ Rp` are respec-
tively the weight matrix and bias at each layer `. TN is typically of large size, meaning
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that the hidden features dimensions p` are relatively large. In the following, we will
present two methods that construct a small network size, which we refer to as the stu-
dent network (SN), based on the TN learned features. The two methods target different
learning problems, depending if TN solves a supervised problem or an unsupervised
one.

B.2.2.2 Neural Nets PCA-based Distillation (Net-PCAD)

Given a set of n training samples X = [x1, . . . , xn] ∈ Rp0×n on which TN was ini-
tially trained to perform some arbitrary learning task. The Net-PCAD method con-
sists in performing a PCA [STC19b] at each hidden layer of TN, and then training a
SN to perform the same learning task as TN along with the task of mapping its hid-
den features at each layer with the reduced features of TN. Formally, we denote by
H` = [h(`)

1 , . . . , h(`)
n ] ∈ Rp`×n where h(`)

i stands for the features of xi at layer `. There-
fore, a PCA is performed at each layer ` in order to reduce the dimension of the hidden
features p`, relying on the top k` largest eigenvectors of the sample covariance matrix:

C` =
1
n

n

∑
i=1

h̄(`)
i h̄(`)

i
ᵀ (B.8)

where h̄(`)
i = h(`)

i −
1
n ∑n

j=1 h(`)
j are the centred hidden features. We denote by U` ∈

Rp`×k` the matrix containing the k` largest eigenvectors of C`. Consequently, the student
network (SN) is composed of L layers and has the following structure:

(SN) :

{
h̃(0) = x ∈ Rp0 ,
h̃(`) = f`

(
W̃ (`)h̃(`−1) + b̃(`)

)
∈ Rk` ,

(B.9)

with the convention k0 = p0 and where, x corresponds to the input data features, h̃(`)

stands for the features of x extracted at layer `, W̃ (`) ∈ Rk`×k`−1 and b̃(`) ∈ Rk` are respec-
tively the weight matrix and bias at each layer `.

Given the initial learning problem of TN which corresponds to a loss functionLproblem,
SN is therefore optimized with the following loss function, where the Homoscedastic
loss [KGC18] is considered since the optimization problem for SN can be formulated as a
multi-task problem.

L = e−σproblemLproblem + σproblem +
L−1

∑
`=1

e−σ`Lmse(h̃(`), Uᵀ
` h(`)) + σ` (B.10)

where Lmse denotes the mean squared error loss function, σproblem and σ`’s are the Ho-
moscedastic loss parameters which are learned during the training of the student net-
work. A full description of the Net-PCAD method is provided as a pseudo-code algo-
rithm in Algorithm 1.

B.2.2.3 Neural Nets LDA-based Distillation (Net-LDAD)

If the initial learning problem of the TN is a supervised classification problem, one can
take advantage of the fact that the data belong to K different classes {Cj}K

j=1 and therefore
project the hidden features of the TN in structured low-dimensional spaces. Linear Dis-
criminant Analysis (LDA) is a dimension reduction technique that specifically reduces
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Algorithm 1: Net-PCAD description.
Input: A trained teacher network TN, a data matrix X and the learning problem

loss Lproblem.
Output: Trained student network SN.
for `← 1 to L− 1 do

1. Extract the representations H` of X from TN;
2. Compute U` through a PCA on H`;

end
Train the student network SN with L as in equation B.10;

the dimension of data relying on their classes structure [TGIH17]. LDA is closely related
to PCA but differs from the latter by the fact that it explicitly attempts to model the differ-
ence between the classes of the data, while PCA does not take into account any difference
in class labels. Therefore, the idea behind Net-LDAD is to exploit the labels information
layer-wise in the training of the student network from the teacher network. Specifically,
we compute at each layer ` of the TN the within class scatter matrix as:

S(`)
w =

K

∑
j=1

∑
x∈Cj

(h(`)
x −m(`)

j )(h(`)
x −m(`)

j )ᵀ (B.11)

where h(`)
x is the representation of x at layer ` of the TN and m(`)

j = 1
|Cj| ∑x∈C| h

(`)
x . And

the between class scatter matrix at each layer ` is given by:

S(`)
b =

K

∑
j=1
|Cj|(m(`)

j −m(`))(m(`)
j −m(`))ᵀ (B.12)

where m(`) = 1
n ∑x∈X h(`)

x . Therefore, the projection matrix of LDA at each layer ` is

computed as the k` largest eigenvectors of (S(`)
w )−1S(`)

b . We denote by V` ∈ Rp`×k` such a
projection matrix. Similarly to the PCA case, the student network is therefore trained to
minimize the following objective:

L = e−σclassificationLclassification + σclassification

+
L−1

∑
`=1

e−σ`Lmse(h̃(`), Vᵀ
` h(`)) + σ`

(B.13)

where Lclassification is typically a categorical cross entropy loss function since the initial
learning problem of the TN is supposed to be a classification problem. A full description
of the Net-LDAD method is provided as a pseudo-code algorithm in Algorithm 2.

B.2.3 Experiments

In this section, we present experiments which highlight the effectiveness of the proposed
methods to train student networks that are smaller in size w.r.t.a given large size dense
teacher network. In particular, we consider three teacher networks composed of L = 4
dense layers which are trained to perform a classification problem respectively on the
datasets MNIST [YCC98], Fashion-MNIST [XRV17] and CIFAR10 [KH10]. Therefore, we
train the corresponding student networks by successively reducing their hidden dimen-
sions using the presented methods Net-PCAD and Net-LDAD. Note that, for simplicity,
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Algorithm 2: Net-LDAD description.
Input: A trained teacher network TN, a data matrix X and the learning problem

loss Lproblem.
Output: Trained student network SN.
for `← 1 to L− 1 do

1. Extract the representations H` of X from TN;
2. Compute V` through a LDA on H`;

end
Train the student network SN with L as in equation B.13;

we reduce all the hidden dimensions to a constant value k and we vary k in all our ex-
periments. Table B.6 presents the considered architectures for the teacher and student
networks.

Figure B.8 depicts the training Homoscedastic loss of the student networks for dif-
ferent values of k and across the different considered datasets using our methods Net-
PCAD and Net-LDAD. Note from this figure that both methods yield generally to a sta-
ble learning of the student networks, and the classification problem gets much easier as k
increases. However, note that a careful choice of k must be made in order to get a smooth
learning loss (e.g., see k = 200 on the Fashion-MNIST dataset).

Figure B.9 depicts the learned Homoscedastic parameters once the student networks
have been trained for different values of k. We can observe from this figure (at least for
the datasets MNIST and Fashion-MNIST), that the weight e−σclassification is much larger than
the weights on the hidden features for the Net-PCAD method, while all weights have
the same order of magnitude for the Net-LDAD method. This can be interpreted by the
fact that LDA finds layer wise a low dimensional space where data can be classified and
therefore “helps” the classification learning problem. This is not the case regarding the
curves for the CIFAR10 dataset, since it is a “hard” classification problem given the ar-
chitecture of the teacher network (TN gets 45% accuracy).

In terms of the test accuracy, we note from Figure B.10 that learning the students net-
works with our methods improves largely their generalization capacities compared with
learning them from scratch, and one can see that they even surpass the teacher network
on the CIFAR10 dataset. As a summary, Net-PCAD and Net-LDAD yield to better gen-
eralization performances of the student networks as the learning problem gets harder
in the sense of the teacher network test accuracy, knowing that classifying MNIST is an
easy problem (TN gets 98%), Fashion-MNIST medium (TN gets 88%) while classifying
CIFAR10 is a harder learning problem (TN gets 45%).

Table B.7 summarizes the performances of the learned student networks using the
Net-PCAD method6, in terms of the forward execution time and test accuracy. As we
can notice, Net-PCAD yields to an accurate speedup of inference time (depending on the
choice of k) while not degrading the accuracy of the learned student networks w.r.t.the
teacher network and even surpassing the teacher network’s accuracy in the case of hard
classification problems (see CIFAR10).

6Net-LDAD gets similar results.
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B.2.4 Central Contribution and Discussions

In this work we presented two methods to distillate a given teacher network (TN) into a
student network (SN). Our methods improve the performance of SN compared to learn-
ing SN from scratch and even surpasses TN performances when the learning problem
gets hard, therefore the resulting learned SN is suited to be implemented in an edge IoT
device which requires limited resources. Note that the presented methods need to setup
an hyper-parameter k` which will be addressed in an extended version of this work.
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Figure B.2: Overview of the GCN framework with examples of the two learning strate-
gies. The GCN framework consists in optimizing a generator in the feature space of an
extractor as illustrated in (a). The extractor can be trained beforehand and used to opti-
mize the generator, which we refer to as disjoint-learning strategy (b). The extractor can
also be optimized jointly with the generator, i.e., using a joint-learning strategy (c).
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Figure B.3: Examples of images from the considered datasets.

Figure B.4: Overview of the used architectures for the generator and the discriminator.
We have considered the same architectures as that of Ledig et al. [LTH+16].
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Low-level Perceptual metrics
Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l

Im
ag

eN
et

Psisr/dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358
Psisr/rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388
Psisr/dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353
Psisr/adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432
Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
T

D

Psisr/dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421
Psisr/rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420
Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392
Psisr/adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473
Psisr/adv, rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481

Sa
t

Psisr/dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355
Psisr/rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395
Psisr/dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372
Psisr/adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419
Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table B.2: Results of the proposed Psisr methods in terms of traditional metrics (L2 and
SSIM) and the perceptual error (PE) given by Eq. equation B.6 on different datasets. As
we can notice, the method Psisr/adv, rec outperforms the other methods in the datasets
ImageNet and Sat, while Psisr/dis, rec gives the best results on DTD.

Low-level Perceptual metrics
Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l

Sa
t

Psisr/mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419
Psisr/adv, mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347
SRGAN [LTH+16] 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412
Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table B.3: Comparison of our method Psisr/adv, rec with baselines and the SRGAN
method [LTH+16] on the satellite images domain, in terms of classical metrics (L2 and
SSIM) and perceptual metrics [ZIE+18].

Low-level Perceptual metrics
Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l

Im
ag

eN
et Psisr/mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349

Psisr/adv, mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384
SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342
Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
TD

Psisr/mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434
Psisr/adv, mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430
SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393
Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392

Table B.4: Comparison of our methods Psisr/adv, rec and Psisr/dis, rec with baselines and
the SRGAN method [LTH+16] on the datasets ImageNet (a subset of 200,000 randomely
selected images) and DTD, in terms of classical metrics (L2 and SSIM) and perceptual
metrics [ZIE+18].
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HR (REF) Psisr/mse Psisr/adv,mse SRGAN

Psisr/rec Psisr/dis,rec Psisr/adv Psisr/adv,rec
Figure B.6: Results of different Psisr methods on a patch of an image from the Sat dataset.

Low-level Perceptual metrics
Methods L2 SSIM Squ Squ-l Alex Alex-l VGG VGG-l

Im
ag

eN
et

Psisr/mse 0.017 0.146 1.568 0.280 1.435 0.391 2.064 0.349
Psisr/adv, mse 0.020 0.156 1.634 0.241 1.397 0.329 2.223 0.384
SRGAN 0.028 0.170 1.303 0.177 1.084 0.225 2.045 0.342
Psisr/dis 0.018 0.147 1.606 0.279 1.470 0.398 2.088 0.358
Psisr/rec 0.020 0.162 1.723 0.301 1.595 0.425 2.243 0.388
Psisr/dis, rec 0.017 0.147 1.587 0.279 1.420 0.382 2.052 0.353
Psisr/adv 0.028 0.202 1.820 0.222 1.554 0.322 2.598 0.432
Psisr/adv, rec 0.016 0.141 1.533 0.263 1.362 0.368 1.994 0.340

D
TD

Psisr/mse 0.029 0.185 1.972 0.342 1.856 0.470 2.479 0.434
Psisr/adv, mse 0.025 0.188 1.880 0.268 1.586 0.349 2.512 0.430
SRGAN 0.031 0.191 1.557 0.209 1.298 0.241 2.308 0.393
Psisr/dis 0.027 0.184 1.873 0.327 1.739 0.440 2.401 0.421
Psisr/rec 0.027 0.183 1.851 0.320 1.726 0.438 2.398 0.420
Psisr/dis, rec 0.023 0.167 1.703 0.292 1.576 0.404 2.260 0.392
Psisr/adv 0.036 0.227 2.077 0.281 1.812 0.375 2.770 0.473
Psisr/adv, rec 0.046 0.236 2.089 0.277 1.793 0.344 2.796 0.481

Sa
t

Psisr/mse 0.011 0.134 1.873 0.245 1.855 0.411 2.536 0.419
Psisr/adv, mse 0.082 0.197 1.458 0.205 1.466 0.352 2.125 0.347
SRGAN 0.228 0.188 1.510 0.220 1.361 0.282 2.230 0.412
Psisr/dis 0.011 0.129 1.484 0.210 1.508 0.356 2.121 0.355
Psisr/rec 0.060 0.168 1.705 0.245 1.762 0.423 2.260 0.395
Psisr/dis, rec 0.011 0.138 1.493 0.215 1.435 0.351 2.108 0.372
Psisr/adv 0.030 0.214 1.719 0.181 1.627 0.306 2.711 0.419
Psisr/adv, rec 0.018 0.183 1.359 0.140 1.310 0.220 2.115 0.344

Table B.5: Comparison of the proposed Psisr methods in terms of traditional metrics
(L2 and SSIM) and the perceptual error (PE) given by equation B.6 on all the considered
datasets. In terms of perceptual metrics, the proposed Psisr methods rank in the second
position after SRGAN [LTH+16] on the datasets ImageNet and DTD, while they outper-
form all the baselines on the satellite images domain which is far from the ImageNet
domain.

Layer Teacher Student
Dense 1 p0 × 1024 p0 × k
Dense 2 1024× 512 k× k
Dense 3 512× 256 k× k
Dense 4 256× 10 k× 10

Table B.6: Architectures of the teacher and student networks. The dimensions of the
weight matrix at each dense layer are shown for both networks.
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Figure B.8: Training loss of the student network when trained using Net-PCAD (left) and
Net-LDAD (right) in terms of the training epochs, for different values of k, and across
three different datasets.

Figure B.9: The learned Homoscedastic loss parameters using Net-PCAD (left) and Net-
LDAD (right) in terms of k and across three different datasets. The weights correspond-
ing to the reduced features mapping loss are of the same order of magnitude for Net-
LDAD as the classification loss, which is a consequence of the fact that LDA is classes
dependent.
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Figure B.10: Test accuracy of the student network in orange trained using Net-PCAD
(left) and Net-LDAD (right), and test accuracy of the student network in blue trained
from scratch, in terms of k and across three different datasets. The test accuracy of the
teacher corresponds to the dashed red lines.

Student
Dataset Teacher k = 50 100 200
MNIST 2.23s 0.38s 0.45s 0.65s

98% 97% 97.5% 97.8%
FASHION 2.23s 0.38s 0.45s 0.65s

88% 87.5% 88.5% 88.5%
CIFAR10 4.63s 0.75s 0.92s 1.35s

45% 50% 50.1% 50.3%

Table B.7: Forward execution time in seconds (and corresponding test accuracies in %) of
the teacher network and the student network for different values of k, the forward pass is
applied (on a i7-7700HQ CPU @ 2.80GHz) to the train set of the respective datasets using
a batch size of 50000 images.
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C.1 Proofs of Chapter 3

C.1.1 Setting of the proof

For simplicity, we will only suppose the case k = 1 and we consider the following nota-
tions that will be used subsequently.

x̄ = Exi, C = E[xix
ᵀ
i ], X0 = X − x̄1ᵀn, C0 = E[X0Xᵀ

0 /n].

Let
X−i = (x1, . . . , xi−1, 0, xi, . . . , xn)

the matrix X with a vector of zeros at its ith column.
Denote the resolvents

R =

(
XᵀX

p
+ zIn

)−1

, Q =

(
XXᵀ

p
+ zIp

)−1

, Q−i =

(
XXᵀ

p
−

xix
ᵀ
i

p
+ zIp

)−1

(C.1)

157
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And let

Q̃ =

(
1
c

C
1 + δ

+ zIp

)−1

, (C.2)

where δ is the solution to the fixed point equation

δ =
1
p

tr

(
C
(

1
c

C
1 + δ

+ zIp

)−1
)

.

C.1.2 Basic tools

Lemma C.1 ([Led05a]). Let z ∈ Eq(1 |Rp, ‖ · ‖) and M ∈ Eq(1 |Rp×n, ‖ · ‖F). Then, for some
numerical constant C > 0

• E ‖z‖ ≤ ‖Ez‖+ C
√

p, E ‖z‖∞ ≤ ‖Ez‖∞ + C
√

log p.

• E ‖M‖ ≤ ‖EM‖+ C
√

p + n, E ‖M‖F ≤ ‖EM‖F + C
√

pn.

Lemma C.2. Denote Qx̄ = (x̄x̄ᵀ + zIp)−1, we have:

Qx̄ x̄ =
x̄

‖x̄‖2 + z
and ‖Q̃x̄‖, x̄Q̃x̄ = O(1).

Moreover, if ‖x̄‖ ≥ √p, ‖Q̃x̄‖ = O(p−1/2).

Proof. Since zQx̄ = Ip −Qx̄ x̄x̄ᵀ :

zQx̄ x̄ = x̄− ‖x̄‖2Qx̄ x̄,

and we recover the first identity of the Lemma.
And since the matrix C0 is nonnegative symmetric, we have :

Q̃x̄ =

(
1
c

C0 + x̄x̄ᵀ

1 + δ
+ zIp

)−1

x̄ ≤ c(1 + δ)x̄
‖x̄‖2 + zc(1 + δ)

.

Therefore, x̄Q̃x̄ = c(1+δ)‖x̄‖2

‖x̄‖2+zc(1+δ)
= O(1) and:

‖Q̃x̄‖ = c(1 + δ)‖x̄‖
‖x̄‖2 + zc(1 + δ)

≤


‖x̄‖

z
= O(1) if ‖x̄‖ ≤ 1,

c(1 + δ)

‖x̄‖ = O(1) if ‖x̄‖ ≥ 1.

Proposition C.1. x̄ᵀE[Q]x̄ = x̄ᵀQ̃x̄ +O
(√

log p
p

)
Proof. Let us bound:

∣∣x̄ᵀQx̄− x̄ᵀQ̃x̄
∣∣ ≤ c−1

1 + δ

∣∣∣∣E [x̄Qxix
ᵀ
i Q̃x̄

(
1
p

xᵀi Q−ixi − δ

)]
+

1
p

E
[
x̄ᵀQ−ixix

ᵀ
i QCQ̃x̄

]∣∣∣∣
Now let us consider a supplementary random vector xn+1 following the same low as
the xi’s and independent of X. We divide the set I = [n + 1] into two sets I 1

2
and I 2

2
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of same cardinality (b n+1
2 c ≤ #I 1

2
, #I 2

2
≤ d n+1

2 e), we note X 1
2
= (xi | i ∈ I 1

2
), X 2

2
=

(xi | i ∈ I 2
2
) and we introduce the diagonal matrices ∆ = diag

(
1
p xᵀi Q−ixi − δ | i ∈ I 1

2

)
,

D = diag
(

1 + 1
p+1 xᵀi Qxi | i ∈ I 2

2

)
. We have the bound:

∣∣∣∣E [x̄Qxix
ᵀ
i Q̃x̄

(
1
p

xᵀi Q−ixi − δ

)]∣∣∣∣
=

∣∣∣∣E [(1 +
1
p

xᵀn+1Qxn+1

)
xn+1Q+(n+1)xix

ᵀ
i Q̃x̄

(
1
p

xᵀi Q−ixi − δ

)]∣∣∣∣
=

1
p2

∣∣∣E [1ᵀDXᵀ
2
2
Q+(n+1)X 1

2
∆Xᵀ

1
2
Q̃x̄
]∣∣∣

≤

√∣∣∣∣E [ 1
p3 1ᵀDXᵀ

2
2
Q+(n+1)X 1

2
∆2Xᵀ

1
2
Q+(n+1)X 2

2
D1
]

E

[
1
p

x̄ᵀQ̃X 1
2
Xᵀ

1
2
Q̃x̄
]∣∣∣∣

≤

√√√√∣∣∣∣∣E
[∥∥∥∥ 1

p
Xᵀ

2
2
Q+(n+1)X 1

2

∥∥∥∥2

‖D‖2 ‖∆‖2

]
E
[
x̄Q̃CQ̃x̄

]∣∣∣∣∣ ≤ O
(√

log p
p

)
,

thanks to Lemma C.1 and Lemma C.2 (the spectral norm of ∆ and D is just an infinity
norm if we see them as random vectors of Rn). We can bound 1

p

∣∣E [x̄ᵀQ−ixix
ᵀ
i QCQ̃x̄

]∣∣
the same way to obtain the result of the proposition.

Proposition C.2. ‖E[xᵀi Q−iX−i]− x̄ᵀQ̃x̄1ᵀ
1+δ ‖ = O(

√
log p)

Proof. Considering u ∈ Rn such that ‖u‖ = 1:∣∣∣∣E[xᵀi Q−iX−iu]−
x̄ᵀQ̃x̄1ᵀu

1 + δ

∣∣∣∣
=

∣∣∣∣∣∣∣
n

∑
j=1
j 6=i

ujE

 xᵀi Q −i
−j

xj

1 + 1
p xᵀj Q−j

−i
xj
−

xᵀi Q̃xj

1 + δ


∣∣∣∣∣∣∣

≤
√

n

∣∣∣∣∣∣E
 xᵀi Q −i

−j
xj

1 + 1
p xᵀj Q−j

−i
xj
−

xᵀi Q −i
−j

xj

1 + δ

∣∣∣∣∣∣+
∣∣∣∣ 1
1 + δ

E

[
xᵀi Q −i

−j
xj − xᵀi Q̃xj

]∣∣∣∣ (where i 6= j)

≤
√

n
∣∣∣∣E [x̄ᵀQxj

(
1
p

xᵀj Q−j
−i

xj − δ

)]∣∣∣∣+√n
∣∣∣∣E [x̄ᵀQ −i

−j
x̄− x̄ᵀQ̃x̄

]∣∣∣∣ ,

where the first term is treated the same way as we did in the proof of Proposition C.1 and
the second term is bounded thanks to Proposition C.1

C.1.3 Main body of the proof

Proof of Theorem 3.1. Recall the definition of the resolvents R and Q in Equation (C.1).
The first step of the proof is to show the concentration of R. This comes from the fact that
the application Φ : X 7→ (XᵀX + zIn)−1 is 2z−3/2-Lipschitz w.r.t. the Frobenius norm.
Indeed, by the matrix identity A− B = A(B−1 − A−1)B, we have

Φ(X)−Φ(X + H) = Φ(X)(HᵀX + (X + H)ᵀH)Φ(X + H)
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And by the bounds ‖AB‖F ≤ ‖A‖ · ‖B‖F, ‖Φ(X)Xᵀ‖ ≤ z−1/2 and ‖Φ(X)‖ ≤ z−1, we
have

‖Φ(X + H)−Φ(X)‖F ≤
2

z3/2 ‖H‖F.

Therefore, given X ∈ Eq(1 |Rp×n, ‖ · ‖F) and since the application X 7→ R = Φ(X/
√

p)
is 2z−3/2 p−1/2-Lipschitz, we have by Proposition 2.4 that R ∈ Eq(p−1/2 |Rn×n, ‖ · ‖F).

The second step consists in estimating ER(z) through a deterministic matrix R̃. In-
deed, by the identity (MᵀM + zI)−1Mᵀ = Mᵀ(MMᵀ + zI)−1, the resolvent R can be
expressed in function of Q as follows

R =
1
z

(
In −

XᵀQX
p

)
, (C.3)

thus a deterministic equivalent for R can therefore be obtained through a deterministic
equivalent of the matrix XᵀQX. However, as demonstrated in [LC19], the matrix Q has
as a deterministic equivalent the matrix Q̃ defined in equation C.2. In the following, we
aim at deriving a deterministic equivalent for 1

p XᵀQX in function of Q̃. Let u and v be
two unitary vectors in Rn, and let us estimate

∆ ≡ E

[
uᵀ
(

XᵀQX
p
− XᵀQ̃X

p

)
v
]
=

1
p

E

[
uᵀXᵀQCQ̃Xv

1 + δ
− 1

p
uᵀXᵀQXXᵀQ̃Xv

]

With the following matrix identities (to explore the independence of the columns of X):

Q = Q−i −
1
p

Q−ixix
ᵀ
i Q , Qxi =

Q−ixi

1 + 1
p xᵀi Q−ixi

, A− B = A(B−1 − A−1)B

and the decomposition QXXᵀ = ∑n
i=1 Qxix

ᵀ
i , we obtain:

∆ =
1
p2 E

[
n

∑
i=1

uᵀXᵀQ−iCQ̃Xv
1 + δ

−
uᵀXᵀQ−ixix

ᵀ
i Q̃Xv

1 + 1
p xᵀi Q−ixi

− 1
p

uᵀXᵀQ−ixix
ᵀ
i QCQ̃Xv

1 + δ

]

=
1
p2

n

∑
i=1

E

[
uᵀXᵀ

−iQ−iCQ̃X−iv
1 + δ

−
uᵀXᵀ

−iQ−ixix
ᵀ
i Q̃X−iv

1 + 1
p xᵀi Q−ixi

+
uix

ᵀ
i Q−iCQ̃X−iv

1 + δ
+

viuᵀXᵀ
−iQ−iCQ̃xi

1 + δ
+ uivi

xᵀi Q−iCQ̃xi

1 + δ

−
uix

ᵀ
i Q−ixix

ᵀ
i Q̃X−iv

1 + 1
p xᵀi Q−ixi

−
viuᵀXᵀ

−iQ−ixix
ᵀ
i Q̃xi

1 + 1
p xᵀi Q−ixi

− uivi
xᵀi Q−ixix

ᵀ
i Q̃xi

1 + 1
p xᵀi Q−ixi

− 1
p

uᵀXᵀQ−ixix
ᵀ
i QCQ̃Xv

1 + δ

]

We can show with Holder’s inequality and the concentration bounds (mainly the fact that
1
p xᵀi Q−ixi concentrates around δ) developed in [LC19], that most of the above quantities
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vanish asymptotically. As a toy example, we consider the following term:∣∣∣∣∣ 1
p2

n

∑
i=1

E

[
uᵀXᵀ

−iQ−iCQ̃X−iv
1 + δ

−
uᵀXᵀ

−iQ−ixix
ᵀ
i Q̃X−iv

1 + 1
p xᵀi Q−ixi

]∣∣∣∣∣
=

∣∣∣∣∣ 1
p2

n

∑
i=1

E

[
uᵀXᵀ

−iQ−ixix
ᵀ
i Q̃X−iv

δ− 1
p xᵀi Q−ixi

(1 + δ)(1 + 1
p xᵀi Q−ixi)

]∣∣∣∣∣
≤
∣∣∣∣∣ 1

p2

n

∑
i=1

E

[
(uᵀXᵀ

−iQ−ixi)(xᵀi Q̃X−iv)
(

δ− 1
p

xᵀi Q−ixi

)]∣∣∣∣∣
≤

∣∣∣∣∣∣ 1p
n

∑
i=1

(
E

[(
1
√

p
uᵀXᵀ

−iQ−ixi

)3
]

E

[(
1
√

p
xᵀi Q̃X−iv

)3
]

E

[(
δ− 1

p
xᵀi Q−ixi

)3
]) 1

3
∣∣∣∣∣∣

= O
(

1
√

p

)
Similarly, we can show that:∣∣∣∣∣ 1

p2

n

∑
i=1

E

[
uix

ᵀ
i Q−iCQ̃X−iv

1 + δ
+

viuᵀXᵀ
−iQ−iCQ̃xi

1 + δ

+uivi
xᵀi Q−iCQ̃xi

1 + δ
− 1

p
uᵀXᵀQ−ixix

ᵀ
i QCQ̃Xv

1 + δ

]∣∣∣∣∣ = O
(

1
√

p

)
Finally, the remaining terms in ∆ can be estimated as follows:

∆ =
1
p2

n

∑
i=1

E

[
−

uix
ᵀ
i Q−ixix

ᵀ
i Q̃X−iv

1 + 1
p xᵀi Q−ixi

−
viuᵀXᵀ

−iQ−ixix
ᵀ
i Q̃xi

1 + 1
p xᵀi Qxi

− uivi
xᵀi Q−ixix

ᵀ
i Q̃xi

1 + 1
p xᵀi Q−ixi

]
+O

(
1
√

p

)

= − 2
p

δuᵀ1x̄ᵀQ̃x̄1ᵀv
1 + δ

− δ2uᵀv
1 + δ

+O
(√

log p
p

)
Where the last equality is obtained through the following estimation:

1
p2

n

∑
i=1

E

[
viuᵀXᵀ

−iQ−ixix
ᵀ
i Q̃xi

1 + 1
p xᵀi Q−ixi

]
=

1
p

n

∑
i=1

E

viuᵀXᵀ
−iQ−ixi

(
1
p xᵀi Q̃xi(1 + δ)− δ

(
1 + 1

p xᵀi Q̃xi

))
(

1 + 1
p xᵀi Q−ixi

)
(1 + δ)


+

1
p

n

∑
i=1

viδE[uᵀXᵀ
−iQ−ixi]

(1 + δ)

With the following bound:∣∣∣∣ 1p xᵀi Q̃xi(1 + δ)− δ

(
1 +

1
p

xᵀi Q̃xi

)∣∣∣∣
=

∣∣∣∣ 1p xᵀi Q̃xi(1 + δ)− δ(1 + δ) + δ(1 + δ)− δ

(
1 +

1
p

xᵀi Q̃xi

)∣∣∣∣
≤
∣∣∣∣ 1p xᵀi Q̃xi − δ

∣∣∣∣ (1 + 2δ),



162 APPENDIX C. PROOFS

we have again with Holder’s inequality and Proposition C.2:

1
p2

n

∑
i=1

E

[
viuᵀXᵀ

−iQ−ixix
ᵀ
i Q̃xi

1 + 1
p xᵀi Qxi

]
=

1
p

n

∑
i=1

viδuᵀ1x̄ᵀQ̃x̄
1 + δ

+O
(√

log p
p

)

Now that we estimated ∆, it remains to estimate E[ 1
p XᵀQ̃X]. Indeed, given two unit

norm vectors u, v ∈ Rn we have:

E

[
1
p

uᵀXᵀQ̃Xv
]
=

1
p

n

∑
i,j=1

uivjE[xᵀi Q̃xj] =
1
p

n

∑
i=1

n

∑
j=1
j 6=i

uivj x̄ᵀQ̃x̄ +
n

∑
i=1

uiviδ

=
1
p

x̄ᵀQ̃x̄uᵀ11ᵀv + (δ− 1
p

x̄ᵀQ̃x̄)uᵀv =
1
p

x̄ᵀQ̃x̄uᵀM1vᵀ + δuᵀv +O
(

1
p

)
since we have x̄ᵀQ̃x̄ = O(1) by Lemma C.2; we introduced the matrix M1 = 11ᵀ. There-
fore we have the following estimation:

1
p

E [XᵀQX] =
δ

1 + δ
In +

1
p

(
1− δ

1 + δ

)
x̄ᵀQ̃x̄M1 +O‖·‖

(√
log p

p

)

where A = B +O‖·‖(α(p)) means that ‖A− B‖ = O(α(p)). Finally, since R concentrates
around its mean, we can then conclude:

R =
1
z

(
In −

1
p

XᵀQX
)
=

1
z

1
1 + δ

In +
δ− 1

pz(δ + 1)
x̄ᵀQ̃x̄M1 +O‖·‖

(√
log p

p

)
.

C.2 Proofs of Chapter 4

C.2.1 Proofs of Section 4.1

Let us Taylor-expand Kij in the vicinity of τ, i.e.,

Kij = f (τ) + f ′(τ)
(

1
p
‖xi − xj‖2 − τ

)
+

1
2

f ′′(τ)
(

1
p
‖xi − xj‖2 − τ

)2

+
1
6

f (3)(ζn
ij)

(
1
p
‖xi − xj‖2 − τ

)3

,

where ζn
ij ∈ b

1
p‖xi − xj‖2, τc.

• Control of the third order random matrix: First, we show that the third order matrix
term vanishes in operator norm. Indeed, exploiting the concentration

1
p
‖xi − xj‖2 − τ ∈ O

(
e−(n ·)

q/2
+ e−(

√
n ·)q

+ e−(n ·)
q
)

,

we have for all s ∈ 2N∗

E| 1
p
‖xi − xj‖2 − τ|s = O(n−s/2).
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Let K(3) be the matrix with entries
(

1
p‖xi − xj‖2 − τ

)3
, we have in particular

E‖K(3)‖2
F =

n

∑
i,j=1

E| 1
p
‖xi − xj‖2 − τ|6 = O(n2 n−3) = O(n−1).

On the other hand, if f (3) is bounded in a neighborhood of τ, we have with probability at
least 1− δ that maxi 6=j f (3)(ζn

ij) is bounded. Indeed, since

max
1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − τ

}
= O

(
n−1/2 log

(
n√
δ

)1/q
)

,

we also have

max
1≤i 6=j≤n

|ζn
ij − τ| = O

(
n−1/2 log

(
n√
δ

)1/q
)

,

which shows that ζn
ij is bounded, so is maxi 6=j f (3)(ζn

ij) with probability at least 1− δ. Thus

E‖ f (3)(ζn)� K(3)‖2
F ≤ max

i 6=j
f (3)(ζn

ij)
2 E‖K(3)‖2

F = O(n−1),

in particular, involving Markov’s inequality and since the operator norm is bounded by
the Frobenius norm, we conclude that ‖ f (3)(ζn)� K(3)‖op isO(n−1/2) with probability at
least 1− δ.

•Control of the second order random matrix: First, let us show that the matrix with entries
Eij = 1i 6=j(ψi + ψj)z

ᵀ
i zj is vanishing in operator norm. Denote Σ = ZZ − diag(ZZ), we

can then express E as
E = Σ diag(ψ) + diag(ψ)Σ

Fix γ ∈ (0, 1/2), we first show that ‖Σ‖op = O (log(n)γ). Indeed, since ‖diag(Z′Z)‖op
is bounded it remains to control Z′Z in operator norm. Involving an ε-net argument, we
have

‖Z′Z‖op ≤
1

1− 2ε
max
u∈E

u′Z′Zu =
1

1− 2ε
max
u∈E
‖Zu‖2

2

Recalling the q-exponential concentration, we have Z ∈ O(e−(
√

n ·)q
), and since Z 7→

‖Zu‖2 is 1-Lipschitz, ‖Zu‖2 ∈ O(e−(
√

n ·)q
) and thanks to Proposition 2.5, we have

‖Zu‖2
2 ∈ O(e−(n ·)

q/2
+ e−(

√
n ·)q

)

Thus, there exits two absolute constants M and σ such that for all t ≥ 2E‖Zu‖2
2, we have

P
{
‖Zu‖2

2 ≥ t
}
≤ M(e−(n t/σ)q/2

+ e−(
√

n t/σ)q
)

To control the maximum over the ε-net E , we need to bound its cardinality. In fact, we
have the following Lemma

Lemma C.3 (Cardinality of an ε-net). There exists an ε-net E of the unit sphere in n diment-
sions, satisfying:

|E | ≤
(

1 +
2
ε

)n
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Thus, we have by the union bound

P

{
max
u∈E
‖Zu‖2

2 ≥ t
}
≤ Men log(1+2/ε)(e−(n t/σ)q/2

+ e−(
√

n t/σ)q
) ≡ p(t)

In particular, for t = O(log(n)γ) and for all q ≥ 2

n log(1 + 2/ε)

(n t
σ )

q/2 = O
(

n1−q/2

log(n)q γ/2

)
→ 0 and

n log(1 + 2/ε)

(
√

n t
σ )

q = O
(

n1−q

log(n)q γ

)
→ 0

which shows that ‖ZᵀZ‖op = O(log(n)γ) with probability 1−O(e−(n log(n)γ)q/2
).

It remains to control diag(ψ) in operator norm, we have for all k ∈ 2N

E tr
(

diag(ψ)k
)
=

n

∑
i=1

Eψk
i = O(n1−k/2),

thus by Markov’s inequality, we can show that ‖diag(ψ)‖op = O(n−1/2+1/k) for all k ∈
2N. Finally, since the operator norm is subadditive, we conclude that

‖
{

1i 6=j(ψi + ψj)z
ᵀ
i zj
}n

i,j=1 ‖op = O
(

n−1/2+γ log(n)γ
)
→ 0

The kernel random matrix K can thus be expanded as

K = f (τ)′ + f ′(τ)

[
ψᵀ + ψᵀ +

{
ta

1na√
p

}k

a=1

ᵀ +

{
tb

1ᵀnb√
p

}k

b=1

+

{
‖m̄a − m̄b‖2 1na 1

ᵀ
nb

p

}k

a,b=1
+ 2

{
1
√

p
Zᵀ

a (m̄a − m̄b)1
ᵀ
nb

}k

a,b=1

−2
{

1
√

p
1na(m̄a − m̄b)

ᵀZb

}k

a,b=1
− 2ZᵀZ

]

+
f ′′(τ)

2

[
ψ2ᵀ + (ψ2)ᵀ +

{
t2

a
1na√

p

}k

a=1

ᵀ +

{
t2
b

1ᵀnb√
p

}k

b=1

+ 2
{

tatb
1na 1

ᵀ
nb

p

}k

a,b=1
+ 2ψ

{
tb

1ᵀnb√
p

}k

b=1
+ 2

{
ta

1na√
p

}k

a=1
ψᵀ

+
2
√

p
diag{ta1na}k

a=1ψᵀ +
2
√

p
ψᵀ diag{tb1nb}k

b=1

+4
{

tr(CaCb)
1na 1

ᵀ
nb

p2

}k

a,b=1
+ 2ψψᵀ

]
+ ( f (0)− f (τ) + τ f ′(τ))In +O‖·‖(n−1/2+γ log(n)γ)

where ψ ≡ [ψ1, . . . , ψn]ᵀ ∈ Rn, t` ≡ p−
1
2 tr C̄`, Z ≡ [z1, . . . , zn] ∈ Rp×n and

Z` = [zn1+...+n`−1+1, . . . , zn1+...+n`
] the restriction of Z to the mixture µ`.
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In particular, the centered kernel matrix expresses as follows:

K̄ = PKP = f ′(τ)P

[{
‖m̄a − m̄b‖2 1na 1

ᵀ
nb

p

}k

a,b=1
+ 2

{
1
√

p
Zᵀ

a (m̄a − m̄b)1
ᵀ
nb

}k

a,b=1

−2
{

1
√

p
1na(m̄a − m̄b)

ᵀZb

}k

a,b=1
− 2ZᵀZ

]
P

+
f ′′(τ)

2
P

[
2
{

tatb
1na 1

ᵀ
nb

p

}k

a,b=1
+ 2ψ

{
tb

1ᵀnb√
p

}k

b=1
+ 2

{
ta

1na√
p

}k

a=1
ψᵀ

+4
{

tr(CaCb)
1na 1

ᵀ
nb

p2

}k

a,b=1
+ 2ψψᵀ

]
P

+ ( f (0)− f (τ) + τ f ′(τ))P +O‖·‖(n−1/2+γ log(n)γ)

where P = In − 1
n
ᵀ
.

Introduce the following notations:

M = [m̄1, . . . , m̄k] ∈ Rp×k, t =
{

1
√

p
tr C̄`

}k

`=1
∈ Rk

T =

{
1
p

tr C̄aC̄b

}k

a,b=1
∈ Rk×k, J = [j1, . . . , jk] ∈ Rn×k

Φ = ZᵀM− {Zᵀ
` m̄`}k

`=1 ∈ Rn×k, U = P
[

1
√

p
J, Φ, ψ

]
∈ Rn×(2k+1)

A11 = MᵀM− f ′′(τ)
2 f ′(τ)

ttᵀ − f ′′(τ)
f ′(τ)

T −
{
‖m̄a‖2 + ‖m̄b‖2

2

}k

a,b=1

A =

 A11 Ik − f ′′(τ)
2 f ′(τ) t

Ik 0k×k 0k×1

− f ′′(τ)
2 f ′(τ) tᵀ 01×k − f ′′(τ)

2 f ′(τ)


The centred kernel matrix K̄ can be approximated by

K̃ = −2 f ′(τ) [PZᵀZP + UAUᵀ] + ( f (0)− f (τ) + τ f ′(τ))P (C.4)

such that

‖K̄− K̃‖2 = O(n−1/2+γ log(n)γ)→ 0 (C.5)

C.2.2 Proofs of Section 4.2

C.2.2.1 Proof of Theorem 4.3

Proof. We first need the following key Lemma.

Lemma C.4 (A Moment Result). For gij(X) ≡ [Σ1/2
p ]i,·

( 1
n XXᵀ − Ip

)
[Σ1/2

p ]·,j, we have, for
all k ∈N and for some absolute constant Ck > 0,

E|gij(X)|2k ≤ Ck
β4k

p

nk . (C.6)
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Proof. Given a random variable Z, we have

∀m > 0, E|Z|m =
∫ ∞

0
m tm−1P{|Z| ≥ t}dt,

whenever the right hand side is finite. Applying this identity to the random variable
gij(X) with m = 2k and exploiting the concentration property in Lemma 4.2 yields the
result.

The proof starts by a Taylor expansion of Fij in the vicinity of [Σp]ij, i.e.,

Fij =
2

∑
k=0

f (k)(σij)

k!
F(k)

ij +
f (3)(ξn

ij)

6
F(3)

ij

where σij = [Σp]ij, ξn
ij ∈

⌊
[YYᵀ/n]ij, σij

⌋
,1 and F(k) is the matrix with entries

F(k)
ij ≡ [Σ1/2

p (n−1XXᵀ − Ip)Σ1/2
p ]kij = gij(X)k.

We have by Lemma 4.2 that [YYᵀ/n]ij concentrates around σij, so that ξn
ij is bounded by

σij + ε, for all ε > 0, with high probability2 (note that the condition maxij |σij| < B ensures
that σij is bounded and the condition on βp ensures the quasi-exponential concentration
of [YYᵀ/n]ij around σij; see considered Assumptions above), formally

P
{
|ξn

ij| ≥ σij + ε
}
≤ P

{
|gij(X)| ≥ ε

}
≤ Ke

− n
β2

p
min(c1 ε, c2 ε2

β2
p
)

≤ Ke−K′ n
1
2 +2ε min(c1ε,K′c2ε2n−

1
2 +2ε) ≡ pn → 0,

where K′ > 0. And since f (3) is continuous, we deduce that f (3)(ξn
ij) is in particular

bounded by
A ≡ max

x∈[σij−ε,σij+ε]
| f (3)(x)|,

with probability 1− pn. Knowing that the operator norm is bounded by the Frobenius
norm, we look for a control of the Frobenius norm of the tailing term. We have

‖ f (3)(ξn)� F(3)‖2
F ≤ A2‖F(3)‖2

F. (C.7)

By Lemma C.4, for all k ∈N

E‖F(k)‖2
F =

p

∑
i,j=1

E
[
|gij(X)|2k

]
≤ Ck

p2β4k
p

nk ,

for some absolute constant Ck > 0. Thus, by Markov’s inequality, we have for all η > 0

P

{
‖F(k)‖F ≥

p β2k
p

n
k
2

√
Ck

η

}
≤ η.

Recalling Eq. equation C.7, we have with probability at least 1− η

‖ f (3)(ξn)� F(3)‖F ≤ C
p β6

p

n
3
2
√

η
.

1The notation ba, bc stands for the interval [a, b] if a < b or [b, a] otherwise.
2For a given asymptotic variable n, we say that an event En occurs with high probability when it exist a

function ψ(n) quasi-exponentially decreasing in n such that P{En} ≥ 1− ψ(n).
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C.2.2.2 Proof of Theorem 4.4

Proof. The proof needs the introduction of the following two lemmas, that can be found
in [EK08] and which are a consequence of the ε-sparsity notion3

Lemma C.5. Given an ε-sparse p×p real symmetric matrix M and calling m = maxij |Mij|, we
have, for all k ∈ 2N

‖M‖op ≤ (Mk)1/k = O(m pε(1−1/k)+1/k). (C.8)

Lemma C.6. Given two real symmetric matrices M and N with |Mij| ≤ Nij. Then, we have
‖M‖op ≤ ‖N‖op.

First, we show that when Σp is ε-sparse, the Hadamard product f (k)(Σp)� F(k) is of
vanishing operator norm for k ≥ 1, precisely

Lemma C.7. Let µ > 0, suppose Σp is a 1
2+µ -sparse matrix. For f a real and differentiable

function, k ∈ {1, 2} such that f (k)(0) = 0 and for η > 0, we have for all ε ∈ (0, k(2+µ)−2
2(3+2µ)

)

‖ f (k)(Σp)� F(k)‖op = Ob1/εc
η

(
n

2−k(2+µ)
2(2+µ)

+ε
(

2− 1
2+µ

))
.

Proof. We start by proving that the matrix F(k) has entries of order O(n−k/2). In fact, we
have by Lemma C.4, for all m ∈N∗

E|F(k)
ij |

2m = E|gij(X)|2km = O(n−km),

thus applying Markov’s inequality to the random variable |F(k)
ij |2m yields to the following

tail control.

P{|F(k)
ij | ≥ t} ≤

E|F(k)
ij |2m

t2m ≤ C n−km t−2m,

where C is an absolute constant. Recalling Assumption A1 and by the union bound, we
have

P{max
ij
|F(k)

ij | ≥ t} ≤
p

∑
i,j=1

P{|F(k)
ij | ≥ t} ≤ p2 P{|F(k)

ij | ≥ t} ≤ C n2−km t−2m,

which implies for η > 0 and for all m > 0

max
ij
|F(k)

ij | = O
m
η

(
n−

k
2+

1
m

)
(C.9)

Besides, let M be the matrix defined as M ≡ maxij |F(k)
ij | · f (k)(Σp), we have

|[ f (k)(Σp)� F(k)]ij| ≤ Mij,

3Through the identity (Mk) ≤ maxij |Mij|k · |Cp(k)|.
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thus, one has by Lemma C.6

‖ f (k)(Σp)� F(k)‖op ≤ ‖M‖op = max
ij
|F(k)

ij | · ‖ f (k)(Σp)‖op.

In particular, since f (k)(Σp) is 1
2+µ -sparse (by Remark 4.1), we have by Lemma C.5 and

by equation C.9, for some η > 0

‖ f (k)(Σp)� F(k)‖op = O2m
η

(
n

1
2+µ (1−

1
2m )+ 1

2m−
k
2+

1
2m
)

,

choosing ε = 1
2m < k(2+µ)−2

2(3+2µ)
yields the final result.

When considering f such that f ′(0) = f ′′(0) = 0, the result holds by Corollary 4.1
and Lemma C.7. In fact, the dominant order corresponds to k = 1 in Lemma C.7. Which
completes the proof.

C.3 Proofs of Chapter 5

C.3.1 Proofs of Section 5.1

This section provides the exact computation of the fixed point equation in Theorem 5.3.
We start by introducing the main tools to perform the calculations.

Theorem C.1 giving the central limit theorem for concentrated vectors was originally
proven for uniform distributions on convex subspaces of Rp, but it was quickly under-
stood that the result is true for a larger class of random vectors satisfying a so-called “thin
shell property” (see [Fre19] for a simple and complete proof of this inference). The thin
shell property expresses the fact that a random vector X lies principally on a thin shell
around a sphere with the following inequality satisfied for some ε > 0

P

(∣∣∣∣‖X‖√p
− 1
∣∣∣∣ ≥ ε

)
≤ ε.

For a concentrated random vector X ∝ E2, such that E[XXT] = Ip and
√

p = O(E[‖X‖])4

the norm being a 1-Lipschitz observation, we know (as in equation 5.3) that there exist
two constants C, c > 0 such that:

P (|‖X‖ −E[‖X‖]| ≥ ε) ≤ Ce−cε2
.

Integrating this concentration inequality for ε ∈ [0, ∞) with Fubini Theorem, we have
∀r ≥ 2:

E

[∣∣∣∣ ‖X‖E[‖X‖] − 1
∣∣∣∣r] ≤ C(r/2c)r/2E[‖X‖]r.

Therefore, since E[‖X‖] ≤
√

E[‖X‖2] =
√

p = O(E[‖X‖]), we can deduce from Hölder’s
inequality that:

E

[∣∣∣∣ ‖X‖2

E[‖X‖]2 − 1
∣∣∣∣] ≤

√√√√E

[∣∣∣∣ ‖X‖E[‖X‖] − 1
∣∣∣∣2
]

E

[∣∣∣∣ ‖X‖E[‖X‖] + 1
∣∣∣∣2
]
= O(1/

√
p),

4This is a very loose hypothesis needed to set that ‖X‖
E[‖X‖] is sufficiently concentrated. Generally if

√
p�

E[‖X‖], that means that one can obtain a better concentration than X ∝ E2
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from which we conclude that: E [‖X‖]2 = E
[
‖X‖2]+ O(

√
p) and therefore E [‖X‖] =

√
p + O(p1/4). Choosing ε = p−1/4 yields from the concentration of ‖X‖ to the existence

of some constant K > 0 such that:

P

(∣∣∣∣‖X‖√p
− 1
∣∣∣∣ ≥ Kp−1/4

)
≤ Ce−cp1/2 ≤ Kp−1/4,

for p large enough. We can then infer (see [Fre19]), that the projections on small dimen-
sional vector spaces of a concentrated vector are Gaussian vectors with high probability.

Theorem C.1 (CLT for concentrated vectors [Kla07, FGP07]). Given a random vector X ∈
Rp, and noting G, the cumulative distribution function of a Gaussian variable of zero mean and
unit variance. If X ∝ E2, E[X] = 0 and E[XXT] = Ip, then for any integer kinN, small
compared to p, for any η ∈ (0, 1), there exists two constants C, c > 0 and a set Θ ⊂ S p−1

such that σ(Θ) ≥ 1−√pCe−c
√

p and ∀θ = (θ1, . . . , θk) ∈ Θk, there exists a Gaussian vector
Z ∼ N (0, θᵀθ) such that:

∀a ∈ Rk : sup
t∈R

|P(aᵀθᵀX ≥ t)−P(aᵀZ ≥ t)| ≤ Cp−1/4.

We need a simple preliminary Lemma to state our Stein-like formula for concentrated
vectors from Theorem C.1.

Lemma C.8. Given two random variables X, Y ∈ Rk, if:

sup
t∈R

|P(aᵀX ≥ t)−P(aᵀY ≥ t)| ≤ ε,

then for any differentiable mapping f : Rk → R integrable and bounded around ∞ by f∞:

|E [ f (X)]−E [ f (Y)]| ≤
f∞ +

∫
| f |

ε

Proof. Let us prove it in the case k = 1:

|E [ f (X)]−E [ f (Y)]| ≤
∣∣∣∣∫ ∞

t=−∞
f (t)(dPX(t)− dPY(t))

∣∣∣∣
≤ |[ f (t)(P(X ≥ t)−P(Y ≥ t))]∞−∞|

+

∣∣∣∣∫ ∞

t=−∞
f ′(t)((P(X ≥ t)−P(Y ≥ t))dt

∣∣∣∣
≤

f∞ +
∫
| f |

ε

We have the following Stein-like [LN08] theorem for concentrated vectors which is
the central tool to express the fixed point mappings in equation (8) of the Main Paper.

Proposition C.3. Let x ∈ Rp be a random vector satisfying the concentration x ∝ E2 (denote
m ≡ E[x] and C ≡ E[xxᵀ]) and let f : Rp → R be some three times differentiable function such
that f , f ′ and f ′ ′ satisfy the hypotheses of Lemma C.8 with f∞,

∫
| f |, f ′∞,

∫
| f ′|, f ′ ′∞,

∫
| f ′ ′| =

O(1). Then, there exists a subset Θ ⊂ Sp−1 such that: σ(Θ) ≥ 1− Ce−cp/ log p and ∀w, v, u ∈
Θ:

E[ f (wᵀx)vᵀx] = E[ f (wᵀx)]vᵀm + E[ f ′(wᵀx)]vᵀCw + O
(

1
n1/4

)
E[ f (wᵀx)vᵀxxᵀu] = E[ f (wᵀx)]vᵀ(mmᵀ + C)u + E[ f ′(wᵀx)]vᵀ (Cwmᵀ + mwᵀC) u

+ E[ f ′ ′(wᵀx)]vᵀCwwᵀCu + O
(

1
n1/4

)
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Proof. Let us first consider a random vector z with zero mean and identity covariance
satisfying z ∝ E2. Considering the subset Θ ⊂ Sp−1 mentioned in Theorem C.1 (for
k = 3), we know that σ(Θ) ≥ 1− Ce−cp1−ε

for two constants C, c > 0 and furthermore for
any θ = (w, v, u) ∈ Θ3, and some Gaussian random vector Z ∼ N (0, θᵀθ):

∀a ∈ R2 : sup
t∈R

∣∣P(aᵀθᵀi z ≥ t)−P(aᵀZ ≥ t)
∣∣ = O

(
1

n1/4

)
.

Given a mapping g : R→ R, we know thanks to Lemma C.8 and Stein’s identity:

wᵀE[g(wᵀz)z] = E[g(eᵀ1 Z)eᵀ1 Z] + O
(

1
n1/4

)
= E[g′(wᵀz)]‖w‖2 + O

(
1

n1/4

)
,

where e1 = (1, 0). Second, if we note θ̃ = (w, ṽ, ũ) = QR, the QR- decomposition of θ,
and Q = (q1, q2, q3) (of course, q1 = e1), we know that eᵀ1 Z and qᵀ

2 Z are independent (Z
is Gaussian and E[eᵀ1 Zqᵀ

2 Z] = eᵀ1 θᵀθq2 = wᵀṽ = 0). We can therefore estimate:

ṽᵀE[g(wᵀz)z] = E[g(eᵀ1 Z)]E[qᵀ
2 Z] + O

(
1

n1/4

)
= O

(
1

n1/4

)
.

Combing those 2 estimations, we see that for any differentiable function g E[g(wᵀz)vᵀz] =
E[g′(wᵀz)]vᵀw. Therefore if we take for g the mapping t 7→ f (wᵀm + t) (satisfying
f (wᵀx) = g(wᵀC1/2z)), we get the the identity:

E[ f (wᵀx)vᵀx] = E[g(wᵀC1/2z)vᵀm] + E[g(wᵀC1/2z)]vᵀC1/2w + O
(

1
n1/4

)
= E[ f (wᵀx)]vᵀm + E[g′(wᵀC1/2z)]vᵀCw + O

(
1

n1/4

)
With the same method, let us first compute:

ṽᵀE[g(wᵀz)zzᵀ]w = E[g(wᵀz)wz]E[zᵀṽ] = O
(

1
n1/4

)
= wᵀE[g(wᵀz)zzᵀ]ũ.

Second:

ṽᵀE[g(wᵀz)zzᵀ]ũ = E[g(wᵀz)]E[ṽᵀzzᵀũ] + O
(

1
n1/4

)
= E[g(wᵀz)]ṽᵀũ + O

(
1

n1/4

)
.

Third:

wᵀE[g(wᵀz)zzᵀ]w = E[g(wᵀz)wᵀzwᵀz] = E[g(wᵀz) + g′(wᵀz)wᵀz]‖w‖2+

= E[g(wᵀz)]‖w‖2 + E[g′ ′(wᵀz)]‖w‖4 + O
(

1
n1/4

)
.

Therefore, E[g(wᵀz)ṽᵀzzᵀṽ] = E[(g(wᵀz)]ṽᵀũ + E[g′ ′(wᵀz)]ṽᵀwwᵀũ, and we can con-
clude as before that:

ṽᵀE[ f (wᵀx)xxᵀ]u = ṽᵀmE[ f (wᵀx)]mᵀu + ṽᵀmE[g(wᵀC1/2z)zᵀ]C1/2u

+ ṽᵀC1/2E[g(wᵀC1/2z)z]mu + ṽᵀC1/2E[g(wᵀC1/2z)zzᵀ]C1/2u + O
(

1
n1/4

)
= E[ f (wᵀx)]ṽᵀ(mmᵀ + C)u

+ E[ f ′(wᵀx)]ṽᵀ(Cwmᵀ + mCwᵀ)u

+ E[ f ′ ′(wᵀx)]ṽᵀCwwᵀCu + O
(

1
n1/4

)
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Let us now employ Proposition C.3 to express the mappings (defined here for a ran-
dom vector xi in the class C`)

m`(mW , CW) = Λ−1E[x̃ihi(x̃ᵀi W−i)]

c`(mW , CW) =
1
n

Λ−1E[x̃ihi(x̃ᵀi W−i)hi(x̃ᵀi W−i)
ᵀ x̃ᵀi ]Λ

−1,

from the class-wise means and covariances of x1, . . . , xn and mW and CW (that are respec-
tively the mean and covariance of W but also of W−i). We are going to fix successively xi
and W−i to be able to compute the expectations appearing in the formulations of m` and
c` (it is made possible since xi and W−i are independent). Although it is not fully rigorous,
we employ Proposition C.3 as if the estimations of E[ f (wᵀx)vᵀx] and E[ f (wᵀx)vᵀxxᵀu]
for w, v and u belonging to a big subset of Sp−1 of measure bigger than 1− Ce−cp−1/4

implied that the result would be true for all vectors w, v, u ∈ Sp−1. It is of course not
rigorously correct, however, in practice, for the vectors w, v and u we are considering, it
appears to be valid.

To simplify the expression of the derivative in x̃i of hi(x̃ᵀi W), let us replace our couple
of variables (x̃i, W) ∈ Rp×k × Rpk by the variables (xi, W̃) ∈ Rp × Rp×k where W̃ =
(w1, . . . , wk). We have then hi(x̃ᵀi W) = hi(W̃ᵀxi). Given a twice differentiable mapping
φ : Rk → R and ψ : v 7→ φ(W̃ᵀv) we have the identities:

∇ψ(v) = W̃∇φ(W̃ᵀv) and d2v = W̃d2φW̃ᵀvW̃ᵀ

Now, let us follow our new notations and try to compute m`(mW , CW) ≡ E−i
[√

nEi[xih`(W̃
ᵀ
−ixi)

ᵀ]
]
,

where we noted h` : Rk → Rk, the mapping hi for k(i) = ` (recall that k(i) provides the
class of xi. Let us decompose the matrix SW = E[WW T] followingly:

SW =

 S1,1
W . . . S1,k

W
...

...
Sk,1

W . . . Sk,k
W

 ∈ Mkp,

where for all a, b ∈ [k], Sa,b
W ∈ Mp, so that we can introduce the low-dimensional random

vector z ∼ N (`, K`) with:

` ≡ µᵀ
`mW and K` ≡ (Tr((Σ` + µ`µ

ᵀ
` )S

a,b
W ))1≤a,b≤k − µᵀ

`mWmᵀ
Wµ`. (C.10)

With such a choice, z has the same distribution as x̃ᵀi W−i for k(i) = `. Then we can
compute thanks to Proposition C.3:

m`(mW , CW) = µ`E
[

h`(W̃ᵀxi)
ᵀ
]
+ Σ`E−i

[
W̃−iEi[dhᵀi W̃ᵀxi]]

]
= µ`E[h`(z)ᵀ] + Σ`mWE[dhᵀi z] + O‖·‖

(
1

n1/4

)
,

since ‖CW‖ ≤ O(
√

log n/n) (because ‖W‖ ∝ E2(
√

log n/n) on AX).
To estimate the mapping σ`, let us note for simplicity H : v 7→ h`(W̃ᵀ

−iv)h
`(W̃ᵀ

−iv)
ᵀ ∈

Mk,k, we know that: ∇Ha,b(v) = W̃−i J(W̃
ᵀ
−iv)a,b and d2Ha,bv = W̃−iK(W̃

ᵀ
−iv)a,bW̃ᵀ

−i,
where we introduce for any u ∈ Rk the objects:

J(u)a,b = h`a(u)∇h`b(u) + h`b(u)∇h`a(u) ∈ Rk

K(u)a,b = ∇h`a(u)∇h`b(u)
ᵀ + h`b(u)d

2h`au + h`a(u)d
2h`bu ∈ Mk
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Following the same strategy as previously, we can show thanks to Proposition C.3 that
with the decomposition:

c`(mW , CW) =

 c`(mW , CW)1,1 . . . c`(mW , CW)1,k
...

...
c`(mW , CW)k,1 . . . c`(mW , CW)k,k

 ∈ Mkp,

for any a, b ∈ [k] and ` ∈ [k] such that k(i) = `:

Λc`(mW , CW)a,bΛ =
1
n

E[Ha,b(xi)xix
ᵀ
i ]

=
1
n

Σ`m̃WE[J(z)a,b]µ
ᵀ
` +

1
n

µ`E[J(z)a,b]
ᵀm̃ᵀ

WΣ`

+
1
n

Σ`

(
m̃WE[K(z)a,b]m̃

ᵀ
W + ∑

1≤c,d≤k
Sc,d

W (E[K(z)a,b])c,d

)
Σ`

+
1
n

E[h`a(z)h
`
b(z)](µ`µ

ᵀ
` + Σ`) + O‖·‖

(
1

n1/4

)
We are then left to estimating the derivatives of h to be able to compute m` and c`. From
the implicit expression of gi given by Proposition 4.3 one can deduce the formulas, for
u, v ∈ Rk:

dgiv = −(∆id fig(v)− Ik)
−1 and d2giv · u = dgiv∆i(d2 fig(v) · u)dgiv

Then, recalling the identity hi = fi ◦ gi, one can derive from the upper formulas the
expression of the differentiates of hi thanks to the identities for u, v ∈ Rk:

dhiv = ∆−1
i (dgiv− Ik) and d2hiv · u = ∆−1

i d2giv · u

C.3.2 Proofs of Section 5.2

C.3.2.1 Proof of Theorem 5.5

Proof of Theorem 5.5. For clarity, we simply write Q(z) = Q and δ(z) = δ removing the
dependence on z, and let the resolvent Q−i which is Q without the i-th datum xi defined
as

Q−i =

(
1
n

XXᵀ − 1
n

xix
ᵀ
i + zIp

)−1

(C.11)

And let

m ≡
√

ε

1 + α2(1− ε)
µ (C.12)

Estimation of E[g(x)] Using the identity Qxi =
Q−ixi

1+ 1
n xiQ−ixi

, we have for x ∈ Ca

E [xᵀw] =
1
n

E [xᵀQXy] =
1
n

n

∑
i=1

yiE [xᵀQxi] =
1
n

n

∑
i=1

yiE

[
xᵀQ−ixi

1 + 1
n xᵀi Q−ixi

]

=
1
n

n

∑
i=1

yiE

[
xᵀQ−ixi

1 + δ

]
+O

(
1√
n

)
= (−1)a µᵀQ̄m

1 + δ
+O

(
1√
n

)
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Estimation of E[g(x)2]

E
[
(xᵀw)2] = 1

n2 E [yᵀXᵀQxxᵀQXy] =
1
n2 E [yᵀXᵀQC1QXy]

=
1
n2

n

∑
i,j=1

yiyjE
[
xᵀi QC1Qxj

]
=

1
n2

n

∑
i=1

y2
i E
[
xᵀi QC1Qxi

]
+

1
n2 ∑

i 6=j
yiyjE

[
xᵀi QC1Qxj

]
=

1
n2

n

∑
i=1

y2
i E

[
xᵀi Q−iC1Q−ixi

(1 + δ)2

]
+

1
n2 ∑

i 6=j
yiyjE

[
xᵀi Q−iC1Q−jxj

(1 + δ)2

]
+O

(
1√
n

)

=
1
n

Tr (CE [Q−iC1Q−i])

(1 + δ)2 +
1
n2 ∑

i 6=j
yiyjE

[
xᵀi Q−iC1Q−jxj

(1 + δ)2

]
+O

(
1√
n

)

And using the identity Q = Q−i −
Q−i

1
n xix

ᵀ
i Q−i

1+ 1
n xᵀi Q−ixi

, the second term develops as

1
n2 ∑

i 6=j
yiyjE

[
xᵀi Q−iC1Q−jxj

(1 + δ)2

]

=
1
n2 ∑

i 6=j
yiyjE

[
xᵀi Q−ijC1Q−jixj

(1 + δ)2

]
− 1

n3 ∑
i 6=j

yiyjE

[
xᵀi Q−ijC1Q−jixix

ᵀ
i Q−jixj

(1 + δ)3

]

− 1
n3 ∑

i 6=j
yiyjE

[
xᵀi Q−jixjx

ᵀ
j Q−ijC1Q−jixj

(1 + δ)3

]
+

1
n4 ∑

i 6=j
yiyjE

[
xᵀi Q−ijxjx

ᵀ
j Q−ijC1Q−jixix

ᵀ
i Q−ijxj

(1 + δ)4

]
+O

(
1√
n

)

=
mᵀE[Q−ijC1Q−ji]m

(1 + δ)2 − 2 Tr(E[CQC1Q))

n(1 + δ)3 mᵀQ̄m +
1

n2(1 + δ)4 (m
ᵀQ̄m)2mᵀE[QC1Q]m +O

(
1√
n

)

where the term E [QAQ] is handled by

η(A) ≡ 1
n

Tr (CεE [QAQ]) =
(1 + δ) 1

n Tr (CεQ̄AQ̄)

(1 + δ)2 − 1
n Tr (CεQ̄CεQ̄)

∆(A) ≡ E [QAQ] = Q̄AQ̄ +
η(A)

1 + δ
Q̄CεQ̄

Putting all together yields to

E
[
(xᵀw)2] = η(C1)

(1 + δ)2 +
mᵀ∆(C1)m
(1 + δ)2 − 2η(C1)mᵀQ̄m

(1 + δ)3 +O
(

1
n2

)

C.3.2.2 Proof of Theorem 5.6

Proof of Theorem 5.6. Using the previous notations and matrix identities, for xi ∈ Ca a
sample from the training set X, we have:
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Estimation of E[g(xi)]

E[xᵀi w] =
1
n

E[xᵀi QXy] =
1
n

n

∑
j=1

yjE[xᵀi Qxj]

=
1
n

E

[
xᵀi Q−ixi

1 + 1
n xᵀi Q−ixi

]
+

1
n ∑

j 6=i
yjE

[
xᵀi Q−jixj

(1 + δ)2

]
+O

(
1√
n

)
=

δ

1 + δ
+ (−1)a mᵀQ̄m

(1 + δ)2 +O
(

1√
n

)
Estimation of E[g(xi)

2]

E
[
(xᵀi w)2] = 1

n2 E
[
yᵀXᵀQxix

ᵀ
i QXy

]
=

1
n2 E

[
yᵀXᵀQ−ixix

ᵀ
i Q−iXy

(1 + δ)2

]
+O

(
1√
n

)
=

1
n2

n

∑
j,k=1

yjykE

[
xᵀj Q−ixix

ᵀ
i Q−ixk

(1 + δ)2

]
+O

(
1√
n

)

=
1
n2

n

∑
j=1

y2
j E

[
xᵀj Q−ixix

ᵀ
i Q−ixj

(1 + δ)2

]
+

1
n2 ∑

j 6=k
yjykE

[
xᵀj Q−ixix

ᵀ
i Q−ixk

(1 + δ)2

]
+O

(
1√
n

)

=
1
n2 E

[
(xᵀi Q−ixi)

2

(1 + δ)2

]
+

1
n2 ∑

j 6=i
y2

j E

[
xᵀj Q−ixix

ᵀ
i Q−ixj

(1 + δ)2

]
+

1
n2 ∑

j 6=i
yjyiE

[
xᵀj Q−ixix

ᵀ
i Q−ixi

(1 + δ)2

]

+
1
n2 ∑

i 6=j 6=k
yjykE

[
xᵀj Q−ixix

ᵀ
i Q−ixk

(1 + δ)2

]
+O

(
1√
n

)

=

(
δ

1 + δ

)2

+
1
n2 ∑

j 6=i
E

[
xᵀj Q−ijxix

ᵀ
i Q−ijxj

(1 + δ)4

]
+

1
n2 ∑

j 6=i
yjyiE

[
xᵀj Q−ijxix

ᵀ
i Q−ixi

(1 + δ)3

]

+
1
n2 ∑

i 6=j 6=k
yjykE

[
xᵀj Q−ijxix

ᵀ
i Q−ikxk

(1 + δ)4

]
+O

(
1√
n

)

=

(
δ

1 + δ

)2

+
1
n Tr

(
CεE[Q−ijCεQ−ij]

)
(1 + δ)4 +

δmᵀQ̄m
(1 + δ)3

+
1
n2 ∑

i 6=j 6=k
yjyk

E
[

xᵀj Q−ijCεQ−ikxk

]
(1 + δ)4 +O

(
1√
n

)

where we have previously estimated the term 1
n2 ∑i 6=j 6=k yjykE[xᵀj Q−ijCεQ−ikxk] as

1
n2 ∑

i 6=j 6=k
yjykE[xᵀj Q−ijCεQ−ikxk] = mᵀE[Q−ijkCεQ−ijk]m−

2 Tr(E[CεQCεQ))

n(1 + δ)
mᵀQ̄m +O

(
1√
n

)
Hence, putting all together we get

E[g(xi)
2] =

(
δ

1 + δ

)2

+
η(Cε)

(1 + δ)4 +
δmᵀQ̄m
(1 + δ)3 +

mᵀ∆(Cε)m
(1 + δ)4 − 2ηmᵀQ̄m

(1 + δ)5 +O
(

1√
n

)
=

(
δ

1 + δ

)2

+
η(Cε)

(1 + δ)4 + mᵀ
(

δQ̄
(1 + δ)3 +

∆(Cε)

(1 + δ)4 −
2η(Cε)Q̄
(1 + δ)5

)
m +O

(
1√
n

)
and the CLT is obtained with similar arguments than louart2018random.
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C.3.2.3 Optimality

Denote

a =
ε

1 + α2(1− ε)
, b = 1 + cq, d =

1− ε

ε

And suppose, for some β > 0 and some integer s

µ = β
s

∑
i=1

(−1)i
√

s
ei

where e1, . . . , es are the s-first canonical vectors of Rp, with [ei]i = 1. The expression of
the test missclassification error involves the following terms which depend on α:

µᵀQ̄µ, µᵀ∆µ

Let us first expression µᵀQ̄µ, which develops as

q1 ≡ µᵀQ̄µ = µᵀDzµ− a(µᵀDzµ)2

b + aµᵀDzµ

where

d1 ≡ µᵀDzµ = qb
p

∑
i=1

µ2
i

b + aqdµ2
i
=

qbβ2

b + aqd β2

s

The term µᵀ∆µ involves the quantity η which reduces to

η =
(1 + δ)cq2

(1 + δ)2 − cq2

And thus µᵀ∆µ develops as

µᵀ∆µ = µᵀQ̄C1Q̄µ +
η

1 + δ
µᵀQ̄CεQ̄µ

where µᵀQ̄C1Q̄µ is given by

µᵀQ̄C1Q̄µ = µᵀQ̄2µ + (µᵀQ̄µ)2

And

q2 ≡ µᵀQ̄2µ = µᵀ
(
Dz −

aDzµµᵀDz

b + aµᵀDzµ

)2

µ

= µᵀD2
z µ− 2aµᵀD2

z µµᵀDzµ

b + aµᵀDzµ
+

a2µᵀD2
z µ(µᵀDzµ)2

(b + aµᵀDzµ)2

where

d2 ≡ µᵀD2
z µ = q2b2

p

∑
i=1

µ2
i

(b + aqdµ2
i )

2
=

q2b2β2

(b + aqd β2

s )
2

And the remaining term µᵀQ̄CεQ̄µ develops as

µᵀQ̄CεQ̄µ = µᵀQ̄2µ + a(µᵀQ̄µ)2 + adµᵀQ̄ diag
(
µ�2 + 2αµ

)
Q̄µ
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where it remains to express µᵀQ̄ diag
(
µ�2 + 2αµ

)
Q̄µ which develops as

µᵀQ̄ diag
(
µ�2 + 2αµ

)
Q̄µ = µᵀQ̄ diag

(
µ�2) Q̄µ + 2αµᵀQ̄ diag (µ) Q̄µ

with

q3 ≡ µᵀQ̄ diag
(
µ�2) Q̄µ = µᵀ

(
Dz −

aDzµµᵀDz

b + aµᵀDzµ

)
diag

(
µ�2) (Dz −

aDzµµᵀDz

b + aµᵀDzµ

)
µ

= µᵀ
(
Dz diag

(
µ�2)− aDzµµᵀDz

b + aµᵀDzµ
diag

(
µ�2))(Dz −

aDzµµᵀDz

b + aµᵀDzµ

)
µ

= µᵀ
(
Dz diag

(
µ�2)Dz −

aDzµµᵀDz

b + aµᵀDzµ
diag

(
µ�2)Dz −Dz diag

(
µ�2) aDzµµᵀDz

b + aµᵀDzµ

+
aDzµµᵀDz

b + aµᵀDzµ
diag

(
µ�2) aDzµµᵀDz

b + aµᵀDzµ

)
µ

= µᵀDz diag
(
µ�2)Dzµ− µᵀ aDzµµᵀDz

b + aµᵀDzµ
diag

(
µ�2)Dzµ− µᵀDz diag

(
µ�2) aDzµµᵀDz

b + aµᵀDzµ
µ

+ µᵀ aDzµµᵀDz

b + aµᵀDzµ
diag

(
µ�2) aDzµµᵀDz

b + aµᵀDzµ
µ

and

d3 ≡ µᵀDz diag
(
µ�2)Dzµ = q2b2

p

∑
i=1

µ4
i

(b + aqdµ2
i )

2
=

q2b2 β2

s

(b + aqd β2

s )
2

Similarly µᵀQ̄ diag (µ) Q̄µ develops as

q4 ≡ µᵀQ̄ diag (µ) Q̄µ = µᵀDz diag (µ)Dzµ− µᵀ aDzµµᵀDz

b + aµᵀDzµ
diag (µ)Dzµ

− µᵀDz diag (µ)
aDzµµᵀDz

b + aµᵀDzµ
µ + µᵀ aDzµµᵀDz

b + aµᵀDzµ
diag (µ)

aDzµµᵀDz

b + aµᵀDzµ
µ

with

d4 ≡ µᵀDz diag (µ)Dzµ = q2b2
p

∑
i=1

µ3
i

(b + aqdµ2
i )

2
=

q2b2 β2
√

s

(b + aqd β2

s )
2

Thus, putting all together, we have

kε ≡ µᵀQ̄CεQ̄µ = q2 + aq2
1 + ad

q3 + 2q4

√
ε
a − 1
1− ε


k1 ≡ µᵀQ̄C1Q̄µ = q2 + q2

1

h ≡ µᵀ∆µ = k1 +
η

1 + δ
kε

where

q1 = d1 −
ad2

1
b + ad1

, q2 = d2 −
2ad2d1

b + ad1
+

a2d2d2
1

(b + ad1)2

q3 = d3 −
2ad1d3

b + ad1
+

a2d2
1d3

(b + ad1)2 , q4 = d4 −
2ad1d4

b + ad1
+

a2d2
1d4

(b + ad1)2
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And finally

d1 =
qbβ2

b + aqd β2

s

, d2 =
q2b2β2

(b + aqd β2

s )
2

, d3 =
q2b2 β2

s

(b + aqd β2

s )
2

, d4 =
q2b2 β2

√
s

(b + aqd β2

s )
2

Therefore, the mean and variance of the decision are given by

m` = (−1)`
√

a
q1

1 + δ

ν =
1

(1 + δ)2

(
η + a

[
h− q1 −

2ηq1

1 + δ

])
with the change of variable a← ε

1+α2(1−ε)
, the optimal α is provided by

∂

∂a
Q
(

m`√
ν

)
= 0

Since Q′(x) = − 1√
2π

e−
x2
2 , the above equation reduces to

√
ν

∂m`

∂a
−m`

∂
√

ν

∂a
= 0
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[ŚST+18] Marek Śmieja, Lukasz Struski, Jacek Tabor, Bartosz Zieliński, and Prze-
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