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Interactions vagues-fond marin et mécanismes de
formation des vagues scélérates en zone côtière

Résumé

Dans la communauté maritime, le terme de ’vague scélérate’ est utilisé pour les vagues
dont la hauteur dépasse le double de la hauteur significative de l’état de mer ambiant,
et qui apparaissent plus fréquemment que prédit par la distribution de Rayleigh pour
les hauteurs de vagues, fondée sur une hypothèse d’état de mer gaussien. En domaine
océanique, des vagues scélérates ayant causé des pertes de vies humaines et de graves
dommages ont été massivement signalées au cours des dernières décennies. Dans les zones
côtières, une bathymétrie irrégulière peut également provoquer des vagues extrêmes du
fait des interactions entre le fond marin et les vagues.

Dans cette thèse, nous nous concentrons sur trois mécanismes d’interactions vagues-
fond pouvant entrâıner la formation de vagues extrêmes. Le premier scénario est un
phénomène de résonance, connu sous le nom de résonance de Fabry-Perot, qui peut
se développer lorsque des vagues monochromatiques se propagent sur une bathymétrie
comportant deux zones d’ondulations sinusöıdales sur un fond par ailleurs plat. Dans la
zone du résonateur située entre les deux zones de rides, une augmentation significative
de la hauteur de l’onde incidente peut être obtenue si la condition de résonance est
satisfaite. En comparant des simulations numériques avec une condition limite de fond
exacte ou approchée et une solution analytique linéaire asymptotique, nous observons
un décalage de fréquence de résonance pour la condition de résonance dans les cas où
le rapport entre l’amplitude des ondulations et la profondeur de l’eau est grand : la
résonance se produit pour un nombre d’onde plus petit que celui prévu par la théorie
analytique approchée. Cet effet de décalage de fréquence de résonance joue un rôle
secondaire pour la résonance de Bragg, mais il s’avère très important pour la résonance
de Fabry-Perot.

Le second scénario correspond aux instabilités des trains de houle modulés en am-
plitude, appelés communément ’breathers’, qui se propagent sur des fonds irréguliers.
Trois types de profils bathymétriques sont étudiés expérimentalement et numériquement
avec un modèle entièrement non-linéaire et avec l’équation non-linéaire (cubique) de
Schrödinger. Cette étude a permis de montrer que, pour de faibles profondeurs et pour
certaines conditions, l’amplitude de la modulation peut atteindre deux fois l’amplitude
du train initial. Cette amplification en faible profondeur résulte de mécanismes qui
n’existent pas en profondeur constante. Les influences des paramètres pouvant affecter
la dynamique des breathers, y compris le paramètre du breather d’Akhmediev, la pro-
fondeur d’eau, la cambrure de l’onde porteuse, la période de la vague et les pentes du
fond sont analysées.

Le troisième scénario correspond à des trains de vagues irrégulières unidirectionnelles
se propageant sur des profils de fond côtier variables. Lorsqu’un état de mer incident
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en condition d’équilibre passe sur une barre ou une marche submergée, une dynamique
de non-équilibre apparâıt et force l’état de mer à un nouvel équilibre compatible avec la
profondeur finie, caractérisé par des statistiques fortement non-gaussiennes et une prob-
abilité accrue d’occurrence de vagues extrêmes. La combinaison d’expériences à grande
échelle et de simulations complètement non-linéaires permet de mieux comprendre la
réponse dynamique du train de vagues. Les données obtenues ont été analysées en pro-
fondeur en utilisant une combinaison d’approches spectrales, bispectrales et statistiques.

Mots-clés:

vagues côtières extrêmes, vagues scélérates, interactions vagues-fond marin, résonance
de Fabry-Perot, focalisation modulationnelle, vagues non-linéaires.
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Wave-seabed interaction and mechanisms of freak wave
formation in coastal zones

Abstract

In the maritime community, the term ”rogue wave” or “freak wave” is used for waves
whose wave height exceeds twice the significant wave height of the ambient sea state,
and which appear more frequently than predicted by the Rayleigh distribution for wave
height based on a Gaussian sea state hypothesis. In the oceanic domain, rogue waves
that have caused loss of lives and severe damage have been widely reported in recent
decades. In coastal areas, irregular bathymetry can also trigger such high extreme waves
due to seabed-wave interactions.

In this thesis, we focus on three mechanisms or scenarios of wave-bottom interac-
tions that can lead to the formation of high waves. The first scenario is a resonance
phenomenon, known as Fabry-Perot resonance, which can develop when monochromatic
waves propagate over a bathymetry with two areas of sinusoidal undulations on an oth-
erwise flat bottom. In the resonator zone located between the two areas of ripples, a
significant increase in the height of the incident wave can be obtained if the resonance
condition is met. By comparing numerical simulations with either exact or approximated
bottom boundary condition and an asymptotic linear analytical solution, we observe a
shift of the resonance frequency at the resonance condition for cases where the ratio
between the amplitude of the ripples and the water depth is large: resonance occurs
for a smaller wave number than predicted by the approximate analytical theory. This
downshift effect of resonance frequency plays a secondary role for Bragg resonance, but
it is very important and sensitive for Fabry-Perot resonance.

The second scenario corresponds to the instabilities of the amplitude modulated wave
trains, commonly called ”breathers”, which propagate over irregular bottoms. Three
types of bathymetric profiles are studied experimentally and numerically with a fully
nonlinear model and with nonlinear (cubic) Schrödinger equation. This study has shown
that for shallow depths and for certain conditions, the amplitude of the modulation can
reach twice the amplitude than that of the initial train. This shallow depth amplifi-
cation results from mechanisms that do not exist at constant depth. The influences of
parameters that can affect the dynamics of breathers, including the Akhmediev breather
parameter, water depth, steepness of the carrier wave, wave period and bottom slopes
are analysed.

The third scenario corresponds to unidirectional irregular wave trains propagating
on variable coastal bottom profiles. When an incident sea state in equilibrium condition
passes over a submerged bar or step, non-equilibrium dynamics appear and force the sea
state to a new equilibrium compatible with the finite depth. This sea state adaptation
process is characterized by highly non-Gaussian statistics and an increased probability of
extreme wave occurrence. The combination of large-scale experiments and fully nonlinear
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simulations allows a better understanding of the dynamic response of the wave train.
The resulting data were analysed in depth using a combination of spectral, bispectral
and statistical approaches.

Key words:

extreme coastal waves, freak waves, wave-bottom interaction, Fabry-Perot resonance,
modulational focusing, nonlinear waves.
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Part I
General introduction

Le terme ”vague scélérate” est souvent utilisé dans la communauté maritime pour
désigner une vague dont la hauteur dépasse le double de la hauteur significative de
l’état de mer, et qui apparâıt plus fréquemment que prévu pour l’état de mer considéré.
Récemment, ces vagues extrêmes ont suscité l’intérêt de la communauté scientifique, car
de plus en plus de preuves montrent qu’elles se produisent avec une fréquence étonnante.
Les observations faites dans le monde indiquent que des vagues extrêmes peuvent se
produire dans n’importe quelle condition d’état de la mer. Dans les zones côtières,
où l’activité humaine est intense, l’étude des vagues extrêmes est d’une grande im-
portance pour la protection de la vie et la sécurité des biens. Diverses hypothèses et
mécanismes ont été introduits pour expliquer la probabilité d’occurrence inattendue des
vagues scélérates. La formation de vagues scélérates dans les zones côtières pourrait être
intensifiée par l’interaction entre les vagues et le fond marin lorsque les ondes de gravité
de surface se propagent dans un milieu non-homogène. Dans ce contexte, cette étude
de doctorat est consacrée à la recherche sur la formation de vagues scélérates du fait de
la bathymétrie variable des zones côtières. La partie I décrit en détail les motivations
et le contexte de cette étude. Le modèle mathématique de la théorie potentielle et deux
approches de modélisation numérique sont présentés. Dans la partie II, nous abordons
le problème de la diffusion de Bragg, considérant la combinaison de vagues linéaires
et de fond ondulé monochromatique. Les résonances de Bragg et de Fabry-Pérot sont
étudiées en utilisant une solution analytique linéaire asymptotique et des modèles d’ondes
linéaires. Dans la partie III, la focalisation de la modulation est examinée en condition
côtière. Dans ce cas, les vagues faiblement non-linéaires se propagent sur des fonds
fortement variables. Les ”breathers” générés en grande profondeur d’eau entrâınent la
formation de vagues scélérates en zone de faible profondeur en raison des instabilités in-
duites par les variations de profondeur. Ce phénomène est étudié à l’aide d’expériences
à grande échelle et de simulations avec un modèle entièrement non-linéaire et l’équation
de Schrödinger cubique non-linéaire. Dans la partie IV, nous discutons du comporte-
ment non-Gaussien dû aux changements de profondeur d’eau, lorsque des trains d’ondes
irréguliers avec forte non-linéarité se propagent sur des fonds très variables. Ce su-
jet est également étudié expérimentalement à grande échelle et numériquement avec un
modèle entièrement non-linéaire. Les expériences étudiées proviennent de deux groupes
universitaires, dont certaines réalisées durant cette thèse.
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Chapter 1

Introduction

1.1 Research background

1.1.1 Definition of freak waves in oceanic and coastal zones

During my Ph.D. study, I devoted myself to research activities dealing with extreme
and freak waves in coastal areas. The motivation lies in the fact that these waves are
rather dangerous since freak waves may attack marine or coastal structures, and then
disappear at once. In the background of global warming and elevation of mean sea level,
the conditions of coastal areas are believed to change and evolve faster than before.
Human has to gradually retreat from previous coastlines and deal with new ones, some
cities are facing the increasing pressure of being submerged by water flooding during
the last decades. For example, due to the huge environmental burden (mainly due to
the rising sea-level and city sinking), the government of Indonesia has to migrate its
capital from Jakarta to East Kalimantan. This is a sign of enormous impacts on hu-
man life due to environmental change. As was put in the Special Report on the Ocean
and Cryosphere in a Changing Climate (SROCC) of the United Nations’ Intergovern-
mental Panel on Climate Change (IPCC), cities and megacities (including New York
City, Tokyo, Jakarta, Mumbai, Shanghai, Lagos, and Cairo) are ”at serious risk from
climate-related ocean changes”. It is also believed that climate changes will result in
more frequent and stronger storms, posing an increasingly large threat to our coastal
coastlines and maritime structures. People are facing more and more severe challenges
from nature. There are clear necessity and urgency for scientists to better understand
the extreme events in coastal areas and to seek for new paths to live in harmony with
nature.

The term rogue or freak wave is used in the maritime community for waves whose
crest-to-trough height H exceeds a certain threshold of the background sea-state (usually
characterized by its significant wave height Hs), and that appear more frequently than
expected for the sea state. The significant wave height Hs is defined as four times the
standard deviation of the surface elevation. Hereafter, the ratio H/Hs will be referred to
as Abnormal Index (AI). For instance, Dysthe et al. (2008) refer to a freak wave when

3
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AI > 2, while Fedele (2016) considers the threshold as 2.2. To study waves with more
practical meaning in storm conditions, some authors additionally constrain Hs to be
larger than a certain threshold. Oceanographers have made significant efforts to record
and analyze freak waves. More and more emerging evidence shows that freak waves seem
to be more common than expected. Over the past decade, records of freak waves were
massively reported, like in Europe (Didenkulova and Anderson, 2010; O’Brien et al.,
2017; Godoi et al., 2017) and Asia (Glejin et al., 2014; Li et al., 2016). Hundreds of
freak waves under various conditions (deep or shallow water, with or without ambient
currents, different spreading angles, different meteorological conditions) have been re-
ported. Particular attention has been paid to freak waves in coastal areas (Didenkulova
and Anderson, 2010; Nikolkina and Didenkulova, 2011; Didenkulova and Pelinovsky,
2011). These pieces of evidence also imply that freak waves may potentially occur under
a large variety of sea-state conditions.

However, the concept of a freak wave is somewhat ill-defined due to the complexity
and variety of freak wave mechanisms. By using Monte Carlo simulations of ocean
surface waves, based on the simple superposition of second order corrected random
phase sinusoidal making up typical wave spectra, Gemmrich and Garrett (2008) argued
that the reported freak waves are not necessarily freakish, possibly they are merely
consequences of linear superposition. However, current freak wave definition does not
distinguish the “classical” extreme waves which are described by conventional physics
and statistics from the “freak” extreme waves, in which new mechanisms should be
taken into account (Hansom et al., 2015). In stormy sea states, it is just a matter of
probability to encounter waves with AI > 2, but should all these waves be considered
as freak waves? In general, the answer is no since it is in our expectation to meet
large waves in energetic sea states. One of the key characteristics of a freak wave is its
abnormality. The abnormality refers to the significant differences in height between the
large waves and their neighbors which make them (i.e. the freak wave events) hard to
be foreseen by casual observers. For instance, strongly localized high waves happening
in relatively calm sea states (’walls of water’), waves with moderate crests but very deep
troughs (so-called ’holes in the sea’), or even wave packets with three adjacent large
waves (known as ’three sisters’) are commonly considered as freak waves (Kharif and
Pelinovsky, 2003). These waves accord better to the meanings of terminologies of ”freak”
and ”rogue”. Such waves, which usually appear very locally in space and time, are tricky
to track and predict. This is because spatial wave information is at least as important
as temporal information. However, in-situ measurements (arrays of buoys) provide very
limited information regarding the spatial variation of the wave field. Sometimes they are
more troublesome to us compared to ”classical” extreme waves since we have no idea
whether or to what extent we should reinforce our marine structures and ships. The
necessity of distinguishing ”classical” and ”freak” extreme waves in practice has been
discussed in Haver (2004). Since it is our intention to study mechanisms leading to high
wave formation instead of redefining freak waves, in this thesis we stick to the definition
AI > 2 for freak waves, and we no longer make a clear distinction for ”classical” and
”freak” extreme waves.
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1.1.2 Possible physical mechanisms leading to freak waves

Various possible mechanisms at the origin of freak waves have been put forward based on
different conditions and assumptions (Onorato et al., 2013; Adcock and Taylor, 2014).
Chien et al. (2002) summarized previous hypotheses on freak wave formation and cate-
gorized them into internal and external causes. The outer factors include i. continuous
wave energy accumulation obtained from the storms; ii. wave energy concentration due
to refraction, reflection, and diffraction which are caused by the change of bathymetry;
iii. interaction with currents or surges caused by different storms. The inner evolu-
tion mechanisms include i. linear/nonlinear energy superposition due to dispersion; ii.
nonlinear wave-wave interaction; iii. self-focusing due to modulational instability.

In Kharif et al. (2009), the freak wave mechanisms are reorganized according to
nonlinearity and dispersion:

1) quasi-linear mechanisms, including (spatial) geometrical focusing in finite water
depth, (spatial-temporal) focusing due to dispersion, wave-current interaction,
crossing sea-states;

2) nonlinear mechanisms in infinite and finite water depths, mainly referring to the
so-called modulational instability;

3) nonlinear mechanisms in shallow water depth where modulational instability is
absent or non-dominant, wave-bottom interaction, and focusing due to nonlinear
dispersion could also result in freak waves.

As indicated above, extreme waves may happen regardless of the water depth condi-
tion. Obviously, the extreme events occurring in coastal areas are more likely to result in
disastrous consequences for structures, navigation and crew safety compared to the ones
happen offshore in the open ocean. In the coastal areas, the wave-bottom interaction
is more and more involved as the water depth decreases. It is natural for researchers
to consider the role of wave-bottom interaction, and how significant this interaction is
in the process of extreme wave formation. The author is aware of external factors like
meteorological conditions which are also important for freak wave formation (see the
concept of ”dynamical swell” in Cavaleri et al. (2016), for instance), but they are left for
future studies and this Ph.D. thesis focuses on water-bottom interaction mechanisms.

1.2 Outline of content of the Ph.D. manuscript

In this study, we focused on three scenarios of wave-bottom interactions that may result
in the formation of extreme waves. Regarding the interaction of waves with variable
bottom profiles, the Bragg scattering (interaction between monochromatically undulated
bottom and linear sinusoidal waves) and modulational focusing (interaction between
sloping bottoms and weakly nonlinear side-band modulated waves) are studied. Then,
water depth transition effects are discussed for nonlinear irregular waves propagating over



6 Chap. 1: Introduction

step or bar bottom profiles. These topics are investigated by using a combination of large-
scale experiments and fully nonlinear simulations, except for Bragg scattering where
we focus on linear simulations. Three-dimensional nonlinear processes are significantly
different from uni-directional (long-crested) ones, the dimensionality also plays a very
important role in the formation of high waves. Here, with the primary aim to investigate
the effects related to uneven bottom profiles, we restrict ourselves solely to uni-directional
cases. Considering the effect of wave directionality (e.g. short-crested seas) is a topic
left for future research.

Part I introduces the background and motivation of this Ph.D. study. The nonlinear
water wave problem is briefly reviewed, together with the boundary limitations and the
corresponding assumptions. The so-called Zakharov formulation of the problem using
the free surface potential is also introduced. The Zakharov formulation retains the full
nonlinearity of surface waves. Two numerical models that solve the water wave problem
in a highly accurate manner are then introduced. One modeling approach to incorporate
breaking effects within the framework of potential wave theory is also presented.

In part II we discuss the wave resonance mechanisms between incident waves and
backward-scattered waves due to periodic variations of the bottom. The Fabry-Perot
resonance is considered in the linear wave framework. First, the asymptotic theory is
compared with the simulation results of the linear version of the Whispers3D models
with both exact and first-order approximated bottom boundary conditions (BBC). It
is found that the frequency (wave-number) downshift dominates the Fabry-Perot res-
onance condition when the relative ripple amplitude is large. Then the wave-number
downshift effects are further discussed under different approximated BBCs. The exact,
first-order, and second-order approximation of bottom boundary conditions are imple-
mented in Whispers3D and solved in a semi-analytical manner to simulate a large num-
ber of runs. For comparison, different variants of the mild-slope equation family are also
used and compared, including the classical mild-slope equation (MSE), the extended
MSE (EMSE), and modified MSE (MMSE). The sensitivity of the Fabry-Perot reso-
nance to various aspects and assumptions related to wave modeling is discussed through
a comparison of seven models in total.

In part III, the instabilities of breather-type solutions that appear as the wave trains
propagate in a dissipative media over strongly non-uniform bottoms are studied. This
topic has been investigated through several experimental campaigns in a large wave
flume in Taiwan, with a broad range of wave conditions. In this part, we report several
representative experimental cases conducted in the ’mid-size tank’. These cases permit
to discuss the effects of numerous factors, including the bottom slope, gradient transition,
breather type, incident wave nonlinearity and relative water depth, during the adaptation
of incident breathers to the solutions that meet the actual experimental conditions. A
numerical simulation study is also included, considering both a fully nonlinear model and
a non-conservative cubic nonlinear Schrödinger equation with variable coefficients. The
capabilities of the two models in describing the evolution and instability characteristics
of breathers are discussed.

Part IV presents the depth transition effects on irregular sea-states. As an incident
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equilibrium or near-equilibrium sea state passes over a submerged step or bar, non-
equilibrium dynamics appears and forces the sea state to a new, finite-depth equilibrium
along with strong non-Gaussian statistics and intensified occurrence probability of large
wave events. The non-equilibrium dynamics is studied by the powerful combination of
large-scale experiments and fully nonlinear numerical simulations. Two sets of exper-
iments are studied in this part: the experimental campaign in the ’mid-size’ tank of
Tainan Hydraulics Laboratory and the experiments reported in Trulsen et al. (2020).
The data analysis approaches are thoroughly reviewed, including spectral, bispectral,
statistical and grouping analyzes of the recorded free surface time series. These ap-
proaches are adopted to characterize the sea state adaptation process. The deviation of
the characteristic properties from Gaussian expectation is discussed, in particular the
statistical distributions of the free surface elevation and the wave heights are included.
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Chapter 2

Mathematical modeling of water
wave problem

Waves surround us in forms of sound, radio, light and so on. Among them, water
waves are good representative examples of waves since they are very common and can
be observed with bare eyes. But from the scientific point of view, water waves are
intricate manifestations of mechanical waves. Ocean waves vary from mild oscillations
of the surface to powerful, roaring, and wild billows. Water waves are complex because,
on one hand, they are characterized as dispersive and nonlinear. On the other hand,
the boundaries of the water body can be very different, being permeable or solid, fixed
or mobile. Let alone the water waves interact with other media of factors, like winds,
ambient currents or solid obstacles.

The Navier-Stokes (N-S) equations are the most celebrated tool for describing water
waves in a deterministic way under the assumption that water is a Newtonian and in-
compressible homogeneous fluid. However, the analytical properties of the N-S equations
are not yet fully clear. The difficulties in fully understanding the N-S equations do not
prevent researchers and engineers from applying it for practical issues. Via reasonable
assumptions for particular situations, the original N-S equations can be reduced to sim-
pler forms or approximate models, which can be solved analytically or numerically. For
instance, the small-amplitude assumption (linear wave theory) and long-wave assump-
tion (shallow water theory) are commonly used in practice. For a historical review of
wave theories, see for example (Craik, 2004). With a growing need for more sophisti-
cated wave models, more nonlinear and dispersive properties of waves should be taken
into consideration. For gravity waves in open seas or in laboratory wave facilities, the
viscosity can be typically ignored except for particular topics or applications (e.g. in
the vicinity of a body in water). With an additional assumption of irrotational flow, the
potential wave theory, with which high accuracy for nonlinearity and dispersion can be
reached, is applicable. The three topics in this Ph.D. thesis will be studied based on the
potential wave theory.

9
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2.1 The potential wave theory and the corresponding as-
sumptions

We will consider the two-dimensional water wave problem in the vertical plane (x, z) of
a Cartesian coordinate system with z-axis positive upward and having its origin at the
undisturbed free surface. As is indicated in Figure (I.2.1), the fluid domain is labeled
as Ω, the free surface elevation is η(x, t) forming a time-dependent movable boundary
Γ1 : z = η(x, t). The still water depth is a time-independent function denoted as h(x),
and the fixed bottom boundary is Γ2 : z = −h(x).

Ω Γ2

Γ1
𝑂

𝑧

𝑥𝜂

ℎ

Figure I.2.1: Sketch of the fluid domain and definitions of main notations.

Considering that the flow is irrotational, the water wave problem can be formulated
in terms of the velocity potential φ(x, z, t). Then, assuming the fluid is incompressible
and homogeneous, with constant density ρ in space and time, the continuity equation in
the fluid domain Ω results in a Laplace equation on φ(x, z, t):

φxx + φzz = 0, in Ω, (I.2.1)

where the subscripts denote partial derivatives.
The assumption of an inviscid fluid ensures that, at the free surface boundary Γ1,

the pressure equals the atmospheric pressure which is here regarded as constant on
the water-air interface (ignoring also the surface tension). Without loss of generality,
the atmospheric pressure is chosen as zero for convenience. The Dynamic Free Surface
Boundary Condition (DFSBC), resulting from the Bernoulli condition written on the
free surface, is:

φt +
1

2

(
(φx)2 + (φz)

2
)

+ gη = 0, on Γ1. (I.2.2)

where g is the acceleration of gravity.
The Kinematic Free Surface Boundary Condition (KFSBC) expresses the imperme-

able condition of the free surface (particles of the fluid cannot ”jump” out of the free
surface), and is expressed as:

ηt + φxηx − φz = 0, on Γ1. (I.2.3)
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At the bottom, an impermeability condition is also satisfied, implying that the com-
ponent of the velocity normal to the bottom is zero. The Bottom Boundary Condition
(BBC) for the fixed bottom is:

φxhx + φz = 0, on Γ2. (I.2.4)

Finally, lateral boundary conditions (applied at the dash lines in Figure (I.2.1))
also need to be specified as, for example, periodicity, Dirichlet or Neumann boundary
conditions depending on the situation to be modeled. Eq. (I.2.1) to (I.2.4) constitute the
nonlinear potential water wave problem. The main difficulties in solving this problem
are that, on one hand, the two FSBCs are nonlinear and coupled. On the other hand,
the FSBCs are applied at the free surface η which evolves as a function of time and is
one of the unknowns of the problem.

2.2 The formulations of Zakharov equations

It was shown (e.g. Zakharov, 1968; Craig and Sulem, 1993) that the potential wave
problem can be reformulated as a conservative Hamiltonian system (it is also referred
to as Zakharov/Craig-Sulem formulation, ZCS). The Hamiltonian (total energy of the
fluid) is expressed as a functional of the free surface elevation η(x, t) and the free surface
potential φ̃(x, t) ≡ φ(x, z = η(x, t), t).

The FSBCs Eq. (I.2.2) and Eq. (I.2.3) on Γ1 are then formulated using only free
surface variables:




ηt = −φ̃xηx + w̃

(
1 + η2

x

)
+ 2νvηxx (I.2.5)

φ̃t = −gη − 1

2
φ̃2
x +

1

2
w̃2
(
1 + η2

x

)
− 2νvφ̃zz +

Psurf
ρ

(I.2.6)

where w̃ ≡ φz(x, z = η(x, t), t) represents the vertical velocity at the free surface. The
derivatives of φ̃(x, t) are deduced using the chain rule.

Note that two kinds of dissipative terms are included in Eq. (I.2.5) and Eq. (I.2.6),
which could be activated when necessary. Following the work of Dias et al. (2008), two
terms associated with kinematic viscosity νv are included to model the general dissipation
in a numerical wave tank. The term Psurf/ρ in Eq. (I.2.6) represents an additional source
of dissipation for modeling depth-induced breaking, its formulation will be introduced
in Section (3.3).

Now, the two coupled equations describe the evolution of η and φ̃ in time, once
w̃ is determined from (η, φ̃). Solving the vertical velocity at the free surface from a
Boundary Value Problem (BVP) on the fluid domain is known as a Dirichlet-to-Neumann
(DtN) problem, or DtN operator. The DtN problem is of fundamental importance for
the Zakharov formulation and has been extensively studied. One approach is to use
spectral representations in the horizontal direction(s), known as Higher Order Spectral
(HOS) method. This method was derived independently by West et al. (1987) and by
Dommermuth and Yue (1987) for the flat bottom condition. The variable bottom case
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is studied by Liu and Yue (1998) accounting for arbitrary order for both free surface and
bottom. A recent study by Gouin et al. (2016) shows that it is possible to consider the
orders of nonlinearity differently for the free surface and the bottom boundary conditions.
But inevitably, the implementation of these methods is in conjunction with truncation
of DtN operator. The truncation of the DtN is not amiable for very short waves since
simulations could be prone to numerical instabilities (Ambrose et al., 2014).

Direct numerical methods solving the complete formulation of water waves exist, for
example, the Boundary Integral Equations Method (BIEM). It projects the problem on
the boundary surface of the fluid domain using Green’s function (see e.g. Grilli et al.,
1989; Wang et al., 1995; Fochesato et al., 2007). The BIEM is accurate in the description
of nonlinear waves including overturning waves when a Lagrangian approach is used to
track the free surface. It is mainly used for local-scale wave-structure interaction, but
for a large-scale domain, such a method is computationally expensive.

Another approach is represented by Boussinesq-type models, where the potential is
approximated by a power series of the vertical coordinate, for mild bottom variation
case (Madsen et al., 2002), arbitrary bottom profile with improved dispersion property
(Madsen et al., 2006) with the velocity formulation. Later, the potential formulation
version of Madsen et al. (2006)’s work was put forward by Bingham et al. (2009). These
models are popular since both the accuracy and efficiency are acceptable. The restriction
of these models is also clear: with high-order spatial derivatives involved, the numerical
schemes play an important role and the practical application to real uneven bathymetry
cases in two horizontal dimensions remains challenging.

Recently, new approaches were introduced to retain the full nonlinearity of the prob-
lem by adopting a spectral method to represent the vertical structure of the potential.
One option is to represent the vertical velocity potential by using a series of local modes
(known as Hamiltonian Coupled-Mode System, HCMS), as done by Athanassoulis and
Belibassakis (2007) for arbitrary but uniform water depth, and by Belibassakis and
Athanassoulis (2011) for arbitrary bottom profiles. Recently Papoutsellis et al. (2018)
numerically implemented the work of Belibassakis and Athanassoulis (2011), therein,
they showed that the evolution and propagation of nonlinear waves are well described.
In another approach, the velocity potential is projected on a polynomial basis, using the
set of orthogonal Chebyshev polynomials of the first kind, following the work of Tian
and Sato (2008). It has been shown in Yates and Benoit (2015) that using a spectral
method in the vertical direction is more efficient than using finite difference schemes.
This model can be regarded as fully nonlinear and fully dispersive (if the maximum order
of polynomials adopted is high enough) and is applicable for arbitrary bottom profiles
without restriction on the magnitude of the bottom slope. This code has been validated
for different cases (Raoult et al., 2016; Zhang and Benoit, 2019; Simon et al., 2019),
showing very good performance regarding the accurate prediction of wave propagation
and acceptable computational burden. It should be noticed that these approaches man-
age to keep all nonlinear properties of the potential wave problem just as the direct
numerical methods, in the meantime, the computational effort is considerably reduced.

Two highly accurate numerical codes are adopted in this Ph.D. study of simulation



2.2 The formulations of Zakharov equations 13

the nonlinear water wave problem in the form of Eq. (I.2.5) and Eq. (I.2.6). One is the
numerical realization of the Boussinesq-type model introduced by Bingham et al. (2009),
the other is the fully nonlinear numerical model introduced by Yates and Benoit (2015);
Raoult et al. (2016). The latter is called Whispers3D (for Wave and Hydrodynamics
Integrated SPectral Element Research Software). Both numerical models are briefly
presented in the next chapter.
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Chapter 3

Description of two nonlinear
numerical wave models

In this chapter, a short presentation of the two nonlinear phase resolving models used
in the course of this Ph.D. are given. These models were available at the beginning at
the Ph.D. thesis. They have been used for the simulations presented in the following
parts of the manuscript, with some developments and adaptations from my side for the
presented applications.

3.1 Boussinesq-type model

In the Boussinesq-type model for highly nonlinear and dispersive water waves using
potential formulation (Bingham et al., 2009), the velocity potential φ is expanded around
a certain elevation ẑ(x) in the water column using a power series of the vertical coordinate
z:

φ(x, z, t) ≈
4NB+1∑

n=0

1

n!
(z − ẑ)n φ̂(n), (I.3.1)

where NB is related to the order of the model, with possible values NB = 1 or 2. We
use the notation φ̂(n) ≡ ∂nφ/∂zn|z=ẑ for n = 0, 1, 2, 3, ..., ∞, with ẑ being usually fixed
at the middle of the water column to optimize the dispersion properties. We define
ŵ ≡ φ̂(1) as the vertical velocity at the chosen elevation.

This model has been intensively studied in the literature (Madsen et al., 2006; Bing-
ham et al., 2009), the basic ideas are briefly recalled here. Introducing Eq. (I.3.1) into
the Laplace equation in Eq. (I.2.1) and assuming ẑ is a function of a slow variable δx
(with δ � 1), the velocity potential φ can be formulated as an expression of φ̂(0) and ŵ.
In the NB = 2 version of the model, the expression of φ is truncated at order O(δ2) and
the highest order derivatives involved is 4NB + 1 = 9. The accuracy of the truncation
can be significantly improved by adopting the enhancement technique with which new
expansion variables (φ∗, ŵ∗) are obtained by applying the L-operators:

φ̂(0) = Lp (ẑ∇) φ̂∗, ŵ = Lw (ẑ∇) ŵ∗, (I.3.2)
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where Lp (ẑ∇) = L0 +∇ẑ ·L1∇ and Lw (ẑ∇) = L0 +∇ẑ ·L2∇. The coefficients of a linear
operator L0 (ẑ∇) are computed to let the high-order derivatives from 2NB+2 to 4NB+1
vanish. The shoaling enhancement operators L1 (ẑ∇) and L2 (ẑ∇) are used to optimize
the linearized shoaling behavior of the model. The expressions of these L-operators can
be found in Bingham et al. (2009).

Now the velocity potential φ is expressed as a function of φ̂∗ and ŵ∗ via Eq. (I.3.2).
The expressions of the potential at the free surface and at the bottom can be derived
using the chain rule. With the Dirichlet boundary condition at the free surface φ|z=η = φ̃

and the BBC Eq. (I.2.4) expressed in terms of φ̂∗ and ŵ∗, a linear system is established.
The potential φ can be obtained from the solutions of the linear system, φ̂∗ and ŵ∗.
Finally, the vertical velocity at the free surface w̃ is computed to advance the model in
time.

The numerical solution procedure is based on the finite difference method for the
spatial derivative and the explicit fourth-order Runge-Kutta scheme for the time inte-
gration. In the horizontal direction, a stencil of seven points is used in order to apply
up to fifth-order derivative operators. In practice, the model is coded with MATLAB.

In the linearized NB = 2 model and considering uniform water depth, the dispersion
relationship is given explicitly by:

C2
NB

gh
=

1 +
∑2NB

n=0 D2n (kh)2n

1 +
∑2NB+1

n=0 E2n (kh)2n
, (I.3.3)

where CNB
denotes the phase velocity. The coefficients D2n and E2n depend on the

expansion level ẑ(x)/h(x), they are given in Madsen et al. (2006) (their Eq. (25)). In
order to evaluate the dispersion property of this model, Eq. (I.3.3) has to be compared
to the exact Airy phase velocity in flat bottom condition, namely:

C2
Airy

gh
=

tanh kh

kh
. (I.3.4)

3.2 Whispers3D model

The modeling approach of Whispers3D is presented in previous works (Yates and Benoit,
2015; Raoult et al., 2016) and summarized hereafter. First, a change of the vertical
coordinate from z ∈ [−h(x), η(x, t)] to s ∈ [−1, 1] is applied, transforming the varying
domain to a rectangular one:

s(x, z, t) =
2z + h(x)− η(x, t)

h(x) + η(x, t)
. (I.3.5)

The nonlinear potential water wave problem is then reformulated in the new (x, s, t)-
space with ϕ(x, s(x, z, t), t) ≡ φ(x, z, t). Using the set of Chebyshev polynomials Tn(s), n =
0, 1, ..., NT , as an expansion basis for s ∈ [−1, 1], the potential φ(x, z, t) is approximated
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in the transformed (x, s) domain as:

ϕ(x, s(x, z, t), t) ≈ ϕNT
(x, s(x, z, t), t) =

NT∑

n=0

an(x, t)Tn(s), (I.3.6)

where the an(x, t), n = 0, 1, ..., NT coefficients are now the main unknowns of the prob-
lem.

Then, the approximation Eq. (I.3.6) of ϕ is inserted into the governing equations
composed of the Laplace equation, a new Dirichlet FSBC with ϕNT

|s=1 = φ̃ on the
free surface, and the BBC expressed in the (x, s) coordinate system. The so-called
Chebyshev-tau method, a variant of the Galerkin method, is used to project the Laplace
equation onto the Tn polynomials for n = 0, 1, ..., NT − 2 eliminating the s coordinate
and resulting in a set of NT −1 equations on the an coefficients at each location x. These
NT − 1 equations are supplemented with the Dirichlet FSBC and the BBC, so that a
system of NT + 1 linear equations with NT + 1 unknowns (an, n = 0, ..., NT ) at each
abscissa is formed.

In this model the order of horizontal spatial derivatives does not exceed 2, which is
highly beneficial for numerical implementation. These spatial derivatives are evaluated
using high order finite difference formulas, using stencils composed typically of Nsten = 5
to 9 nodes.

The solutions of the linear system are the an coefficients from which the free surface
vertical velocity w̃ can be computed:

w̃(x) =
2

h(x) + η(x)

NT∑

n=0

an(x)n2. (I.3.7)

An explicit third-order Runge-Kutta scheme (SSP-RK3) is used for time marching
of Eq. (I.2.5) and Eq. (I.2.6). In the Whispers3D code, one can balance the accuracy
of results and efficiency of simulation via the choice of the parameters NT , Nsten, and
discretization in space and time. The implementation of the code is done in Fortran.

The dispersion relation of the linear model in constant water depth was derived
analytically in Benoit et al. (2017):

C2
NT

gh
=

1 +
∑NT−2

n=1 αn (kh)2n

1 +
∑NT−1

n=1 βn (kh)2n
, (I.3.8)

where the coefficients αn and βn for different values of NT can be found in Tab. 1 of
Benoit et al. (2017).

The dispersion properties of Boussinesq-type model and Whispers3D are plotted in
Figure (I.3.1), showing the relative error on wave phase celerity with respect to the Airy
dispersion relation for linear waves over a flat bottom (Eq. (I.3.4)). Is is observed that,
as expected, the dispersion properties of both models improve with increasing approx-
imation order, i.e. NB for the Boussinesq model, and NT for Whispers3D. Dispersion
errors of both models remain low for kh < π if a value of NT greater than 5 to 6 is used



18 Chap. 3: Description of two nonlinear numerical wave models

in Whispers3D. For larger values of kh (above, say, 30), using larger values of NT in
Whispers3D (e.g. NT > 7) allows to get a better representation of the celerity of deep
water waves in comparison with the Boussinesq-type model. For instance, with NT = 10
the relative error on wave celerity from Whispers3D remains below 2.5% for kh up to
100.

10-2 10-1 100 101 102
10-10

10-8

10-6

10-4

10-2

100

Figure I.3.1: Comparison of the dispersive property between the Boussinesq-type model
(with NB = 1, 2), the Whispers3D model (with NT ∈ [3, 20]) and exact Airy solution.
The two vertical dash lines divide the relative water depth kh into shallow water region
(kh < π/10), intermediate water depth region, and deep water region (kh > π).

3.3 Inclusion of wave breaking effect in Whispers3D

Due to the limitation of potential theory, it is not possible to model the breaking events
in the same manner as in nature. Instead, it is achieved in Whispers3D by adding an
artificial pressure-like term Psurf/ρ in Eq. (I.2.6) to dissipate the energy of breaking
wave events. The breaking wave dissipation is activated only for waves that exceed a
breaking criterion. There are a variety of approaches to detect breaking inception, and
three of them are implemented in Whispers3D (Simon et al., 2019).

Here a relatively simple detection method, called the geometric method, is adopted
based on the local slope of the free surface. In 2D simulation cases, individual waves are
separated using the zero-crossing method. The angle of the wave slope with respect to
the horizontal axis is defined as β = ηx, as shown in Figure (I.3.2). A wave starts to break
when β > βb and the breaking process of this wave stops when β < βf . The breaking
thresholds [βb, βf ] depend on the type of breaking waves. Following the calibration of
Cienfuegos et al. (2010) for a Boussinesq-type model, βb takes a value between 28◦ and
32◦ for spilling breakers and between 35◦ and 36◦ for plunging breakers. The angle of
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termination of breaking is suggested to be set βf to approximately 10◦.
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Figure I.3.2: Sketch of the geometric parameters for the wave breaking model

Guignard and Grilli (2001) introduced a dissipation method in analogy to a hydraulic
jump propagating over a flat bottom. The dissipation method adopted here is a variation
of this method, which was proposed by Papoutsellis et al. (2019). The difference is
that the dissipation is applied on the wave front only, i.e. x ∈ [xc, xt] (red zone in
Figure (I.3.2)), instead of the whole wavelength as in Guignard and Grilli (2001). The
pressure Psurf consists of three terms:

Psurf = νb(t)S(x)ηt(x, t), (I.3.9)

where S(x) is a spatial smoothing function of sinusoidal shape. νb(t) is evaluated from
the following expression:

νb(t) = µb

(
ρgC

hH3

4hcht

)[∫ xt

xc

S(x) (ηt(x, t))
2 dx

]−1

, (I.3.10)

where µb is a calibration constant reflecting the intensity of breaking waves with sub-
script ’b’ for breaking, C denotes the local phase velocity, H = hc − ht is the breaking
wave height, as indicated in Figure (I.3.2). In practice, Svendsen et al. (1978) recom-
mended selecting µb around 1.5. Simon et al. (2019) have chosen µb varying in [0.9, 1.2],
as properly calibrated values in reproducing different breaking wave experiments. In
addition, the breaking dissipation is gradually activated in time (over a few time steps)
in order to avoid numerical instability caused by an abrupt activation of the dissipative
term.

The detailed breaking modeling strategy in Whispers3D is presented in Simon et al.
(2019), together with comparisons of several combinations of breaking criteria and dissi-
pation methods against a set of four experiments in wave flume (one with regular waves
and three with irregular waves) considering various shapes of coastal bottom profile.
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Part II
Bragg scattering due to

undulated bottoms

Dans cette partie, on étudie la résonance de Bragg de vagues monochromatiques se
propageant dans un domaine comportant deux zones d’ondulations sinusöıdales sur un
fond par ailleurs plat. Elle est connue sous le nom de résonance de Fabry-Pérot (F-P)
et appartient à la classe I2 de résonance de Bragg. Dans le domaine situé entre les deux
zones d’ondulations (appelé résonateur), une augmentation significative des amplitudes
de vague aura lieu si les conditions de résonance sont remplies. La solution analy-
tique linéaire asymptotique (ALAS) du problème des ondes linéaires avec la condition
limite au fond (BBC) approximative du premier ordre a été fournie par Couston et al.
(2015). La condition de résonance F-P est double: (1) le nombre d’onde des ondulations
du fond est deux fois supérieur à celui des ondes sinusöıdales incidentes (condition de
résonance de Bragg); (2) le résonateur est d’une longueur particulière. L’ALAS prévoit
que, pour une bathymétrie avec les longueurs de deux zones d’ondulations et la distance
entre eux prescrites, les amplitudes de vague dans le résonateur augmentent de manière
exponentielle avec ε = δ/h (δ étant l’amplitude des ondulations du fond, et h la pro-
fondeur d’eau moyenne). Les effets de l’approximation du premier ordre de la BBC
ont été discutés sur la base des simulations utilisant Whispers3D (intégré en temps)
avec soit la BBC exacte, soit la BBC approchée de premier ordre. Il a été démontré
que, pour des valeurs importantes de ε, le nombre d’onde de résonance est réduit et
influence de manière significative la manifestation de la résonance. Cette partie du tra-
vail a été publiée dans l’article Zhang and Benoit (2019), reproduit dans le chapitre 2.
Comme étape supplémentaire dans l’étude des effets de diminution du nombre d’onde
de résonance, le modèle Whispers3D avec BBC exacte, de premier ordre ou de second
ordre a été résolu de manière semi-analytique. Trois versions des équations de pente
douce introduites par Berkhoff (1972); Kirby (1986a); Chamberlain and Porter (1995)
sont également incluses pour comparaison. Ces modèles se distinguent principalement
par leurs hypothèses faites pour la BBC. En effectuant un grand nombre de tests avec
différents ε et nombres d’onde incidents, le nombre d’onde de résonance F-P et le facteur
d’amplification des amplitudes sont comparés entre différents modèles dans le chapitre 3.
Enfin, les principales conclusions sont résumées dans le chapitre 4.
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L’homme d’une vertu supérieure est comme l’eau. L’eau excelle à faire du bien aux
êtres et ne lutte point. Elle habite les lieux que déteste la foule. C’est pourquoi il (le

sage) approche du Tao.
Tao Te King - Le Livre de la voie et de la vertu
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aI separated 1st-order incident
wave amplitude

a
(n)
I,B, a

(n)
I,F nth-order incident bound and

free wave amplitudes
an coefficient of Chebyshev

polynomials in Whispers3D
aR separated 1st-order reflected

wave amplitude

a
(n)
R,B, a

(n)
R,F nth-order reflected bound

and free wave amplitudes
A general coefficient in Premise
A complex incident wave am-

plitude function
B general coefficient in Premise
B complex reflected wave am-

plitude function
C phase velocity of wave in ac-

tual water depth
C̄ phase velocity of wave for the

mean water depth
Cg group velocity of wave in ac-

tual water depth
C̄g group velocity of wave for

the mean water depth
d bottom ripple amplitude
D general coefficient in Premise

EFP normalized wave amplitude
within the resonator

f vertical structure of poten-
tial for constant water depth

F vertical structure of poten-
tial for variable water depth

g acceleration due to gravity
h mean water depth in F-P

bathymetry case
hhump height of a parabolic hump

h̃ actual water depth in F-P
bathymetry case

kb bottom ripple wave-number
kB theoretical Bragg resonance

wave-number

kI separated incident wave-
number

kR separated reflected wave-
number

kn wave-number of nth order
free mode

k̄ wave-number for the mean
water depth

L1, L2 length of patch 1 and 2
Lb bottom ripple wavelength

Lhump parabolic hump length
Lr resonator length in F-P

bathymetry case
N1, N2 number of ripples in patch 1

and 2
Nsten stencil size in Whispers3D
NT maximum order of Cheby-

shev polynomial used in
Whispers3D

RB
j Bragg reflection coefficient of

patch j
RFP reflection coefficient of F-P

case
RB
j complex Bragg reflection co-

efficient of patch j
TBj Bragg transmission coeffi-

cient of patch j
T Bj complex Bragg transmission

coefficient of patch j
T FP transmission coefficient of F-

P case
u0 coefficient in MSE model

u1, u2 coefficients in MMSE model
Ws normalized parabolic hump

length
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δ bottom ripple function
ε relative ripple amplitude
η free surface elevation
θI phase of the separated 1st-

order incident wave

θ
(n)
I,B, θ

(n)
I,F phase of the separated nth-

order incident bound and free
wave

θR phase of the separated re-
flected 1st-order wave

θ
(n)
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(n)
R,F phase of the separated nth-

order reflected bound and free
wave

κ detune wave-number parame-
ter of kB

φ(x, z, t) velocity potential
Φ(x) velocity potential on the free

surface, prescribed solution of
mild-slope equation family

φ̂(z, t) time-independent velocity po-
tential, prescribed solution of
Whispers3D

φ̂I(z, t) time-independent velocity po-
tential imposed on lateral
boundary

ϕ(x, s) velocity potential in trans-
formed domain

ϕNT
(x, s) approximation of velocity po-

tential in transformed domain
ω angular wave frequency
ωB Bragg resonance frequency

corresponding to kB
Ω detune wave frequency pa-

rameter of ωB
Ωc cut-off frequency in ALAS



Chapter 1

Introduction

1.1 Bibliography survey of Bragg scattering problem

The problem of wave reflection by periodic seabed topography has been exten-
sively studied since it was discovered. This phenomenon, firstly experimentally
demonstrated by Davies (1982), is called Bragg scattering due to its close analogy
in crystallography. In the attempts of explaining water wave Bragg scattering the-
oretically, Davies and Heathershaw (1984) adopted a regular perturbation method
to expand the problem in powers of a small parameter ε (ratio of ripple amplitude d
and mean water depth h) and solved the problem at the lowest order. The reflected
waves appear at second-order as forced solutions, so this model is only capable of
predicting infinitesimal reflection coefficients. However in cases near the resonance
condition (i.e. when the incident wavelength is twice that of the bottom ripples)
where reflected waves are of the same order as that of incident waves, the model
is no longer valid. In the work of Davies and Heathershaw (1984), this is solved
by considering an artificial correction that ensures energy conservation law. The
experiments reported in Davies and Heathershaw (1984) covered different number
of ripples (1, 2, 4, 10) and relative ripple amplitudes (d/h = 0.08 to 0.32, with
d being the dimensional ripple amplitude, and h the mean water depth). This
experimental data have frequently been used to validate theoretical and numerical
models since published.

Mei (1985) used a multiple-scale perturbation method to achieve a better pre-
diction of the reflected and transmitted waves near resonance condition cases. His
analytical solution is still at the lowest order, but includes the reflected wave effect,
thus it is applicable for strong reflection cases. The theory of Mei showed good
agreement with the experimental data of Davies and Heathershaw (1984). Then
Kirby (1986a) provided a relatively more general model by extending the usual
Mild-Slope Equation (MSE) (Berkhoff, 1972, 1976). This model, known as Ex-
tended Mild-Slope Equation (EMSE), considers not only the slowly varying mean
water depth as in mild-slope equations, but also the rapidly varying, arbitrary,
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small-amplitude deviation from the mean water depth. It is generally applicable
for both resonant and non-resonant scattering cases with undulated bottoms. In
the cases where the resonant scattering is weak, the slow, non-resonant scattering
effects due to slow change of average water depth become important. The EMSE
reduces to the theory of Mei (1985) when considering constant mean water depth.
The BBC in Kirby (1986a)’s formulation is still of first-order approximation, the
corrugation amplitude is assumed to remain small compared to their wavelength.
The cases with oblique incidence were studied theoretically by Mei et al. (1988),
and numerically by Dalrymple and Kirby (1986). Yu and Mei (2000) pointed
out the unreliability of using Bragg scattering mechanism for shore protection: it
might indeed result in attenuation or suppression of waves after the sandbars, but
amplification is also possible when considering reflection from the shoreline.

The high-order effects of Bragg scattering mechanics have been discussed by
several authors. First, according to the number of components in the wave-bottom
interaction, Liu and Yue (1998) suggested classifying triad interaction of two sur-
face waves and one bottom wave as Class I Bragg resonance. The quartet inter-
actions containing two surface waves and two bottom waves (Class II) or three
surface waves and one bottom wave (Class III) are classified as High-Order Bragg
(HOB) resonances. For doubly sinusoidal beds, both Class I and Class II resonance
could manifest. Belzons et al. (1991) and Guazzelli et al. (1992) showed exper-
imental evidence of significant higher-order Bragg resonant interactions between
linear waves and doubly sinusoidal beds. Sub-harmonic reflection is significant
even for small bottom undulation amplitudes. In these experiments, the relative
ripple amplitudes of the doubly sinusoidal beds were relatively large, varying from
d/h = 0.13 to 0.4 for three bottom setups. A clear trend was observed for the
Class I resonance peaks, as the relative ripple amplitude increases, the resonance
peak shifts towards lower wave-number. This downshift of wave-number is also
observed in the 10-ripple and d/h = 0.16 case of Davies and Heathershaw (1984).
Guazzelli et al. (1992) conducted numerical computations based on a full potential
theory of linear waves by decomposing the smooth wavy bottom into a number of
steps. Including evanescent modes in conjunction with step-wise approximation of
the bed, the computation of Guazzelli et al. (1992) showed good agreement with
the experimental data. For the Class II Bragg, the super-harmonic wave could also
result in HOB resonance, but it is relatively less appealing since high-frequency
waves are less sensitive to bottom profile. A three-scale asymptotic analytical the-
ory for Class II Bragg resonance was provided by Rey et al. (1996) showing good
agreement with the experimental data of Guazzelli et al. (1992). The Class III
Bragg resonance is predicted by Liu and Yue (1998). It is different from Class I
and II because in Class III resonance the frequency of the resonant wave, which
can be either reflected or transmitted, is a sum or difference of the incident wave
frequencies. It should be mentioned that this Class III HOB resonance could
result in significant spectral evolution, generation infragravity waves and affect-
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ing the bottom profile. The corresponding asymptotic theory was put forward
by Alam et al. (2010) in a general three-dimensional context (waves are oblique
with respect to the bottom undulations). Recently Class III resonance has been
confirmed in a laboratory wave tank (Peng et al., 2019). Bragg resonance could
also develop due wave-flow interaction. The wave-current Bragg resonance was
studied by Kirby (1988). Using also multiple-scale expansion, he found that the
presence of a current shifts the resonant frequency by possibly significant amounts
and enhances the reflection effect by bar fields due to the additional effect of the
perturbed current field. The effect of current on Bragg resonance for both regular
waves and irregular waves have been investigated experimentally by, for example,
Magne et al. (2005). More recently, Bragg scattering effects on irregular wave
trains by small-amplitude topography in the presence of an irrotational (almost
uniform) current was studied by Ardhuin and Magne (2007). Bragg resonance of
surface and interfacial waves has also been studied (Elandt et al., 2015), its cloak-
ing effect is discussed since it can potentially protect offshore floating structures
(Couston et al., 2017).

Meanwhile, researchers are also interested in the nonlinear effects associated
with the finite amplitude of surface waves and bottom bars. Hara and Mei (1987)
conducted experiments to verify the existence of cut-off detuning frequency and
provided an extended linear theory with second-order effects (of the bottom bars
and of the free surface waves) included. They found that even for low-steepness
surface waves, the inclusion of second-order effects of bottom bars improves the
agreement with experimental measurements (for d/h ≈ 0.2). Kirby (1986b) put
forward a theory of weakly nonlinear Stokes waves at third order of wave amplitude
on the basis of the works of Kirby and Dalrymple (1983) and Kirby (1986a). But
the application of this theory is limited by the validity range of Stokes theory.
For relatively deep water, the bottom effect is insignificant; however, for relatively
shallow water depth, Stokes theory is no longer valid. O’Hare and Davies (1993)
adopted a successive-application-matrix model, and compared it with the EMSE
model. Two models showed similar behavior, while the former is slightly closer
to experimental data of Guazzelli et al. (1992) (EMSE model underestimated the
sub-harmonic resonance). Especially for large bottom ripple amplitude case (with
d/h up to 0.4), the simulated resonance peaks shift towards lower wave-numbers.

Chamberlain and Porter (1995) presented a new form of the mild-slope equa-
tion, the so-called Modified Mild-Slope Equation (MMSE), which retains the second-
order terms of bottom variations O(hxx, |hx|2) on the basis of the mild-slope as-
sumption |hx| � kh (h is the water depth and k the corresponding wave-number).
Thus, the MMSE model is applicable to larger ripple amplitude cases. Good agree-
ment was achieved when the MMSE model was adopted to simulate the 4-ripple
and d/h = 0.32 case of Davies and Heathershaw (1984). The wave-number k in the
EMSE of Kirby (1986a) corresponds to the mean water depth; however, the wave-
number in the MMSE model follows the actual bathymetry. The approximated
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version of the mild-slope equation and the extended mild-slope equation can be
derived from the MMSE if the corresponding assumptions are made. Porter and
Staziker (1995) improved the MMSE model to include the evanescent modes and
discontinuity of bottom slope by adding an interfacial matching condition, known
as the ’mass-conserving matching condition’ or the ’jump condition’. Porter and
Porter (2001) extended the MMSE model to three-dimensional case. L. Zhang
and Edge (1999) presented a Hybrid Method (HM) for the cases with steep undu-
lation bars consisting of two or more slow and rapid oscillations. In the HM, the
rapidly varying components are expanded with respect to the slow varying com-
ponents and the higher-order terms neglected in Kirby (1986a) are retained for
steep undulations. The HM reduces to MMSE of Chamberlain and Porter (1995)
when the rapidly-varying components are removed. Liu et al. (2012) studied the
MMSE analytically by adopting recursive formulae for calculating arbitrary order
derivatives of the terms which are proportional to the bottom curvature and to
the square of the slope. Analytical Taylor series solutions of the MMSE for differ-
ent piece-wise smooth bathymetries can be constructed. Liu et al. (2019) showed
that the MMSE model can be solved analytically as waves propagate over singly
periodic sinusoidal ripples by separating the sinusoidal ripples into four monotonic
subintervals and transforming into an explicit MMSE. The solutions in the form
of Frobenius series have been constructed. Very recently, Liu et al. (2020) studied
the Bragg scattering phenomenon as linear waves propagate over a finite array of
trapezoidal bars with significant depth transitions and showed analytical solutions
in terms of Taylor series to the MMSE.

The Bragg scattering problem has been investigated with more accurate and
computationally expensive numerical models. Liu and Yue (1998) adopted the
HOS method based on Dommermuth and Yue (1987), which is accurate up to
fourth order for both free-surface and bottom steepness. Dalrymple and Kirby
(1986) and L. Zhang and Edge (1999) adopted the BIEM for linear wave problem,
and considered the exact BBC. A very significant improvement of the method
has been put forward in Athanassoulis and Belibassakis (1999) by including an
additional sloping-bottom mode in the standard representation. This enhanced
coupled-mode theory, being equivalent to the complete linearized problem, is very
efficient. Madsen et al. (2006) used a Boussinesq-type model to consider the ex-
act BBC to study all three classes of Bragg resonances. They used linear wave
model for Class I and Class II resonances, and fully nonlinear model for Class
III resonance. To conclude, the bottom nonlinearity can be multi-fold: (1) the
downward shift of Bragg resonance condition, so-called wave-number (frequency)
downshift (for Class I Bragg resonance); (2) the relatively significant second-order
sub-harmonic resonance (for Class II Bragg resonance); (3) a more involved role
of evanescent modes in the interference process, which also results in changes of
Bragg condition (for all classes of Bragg resonance).

The full nonlinearity of the bottom ripple can be studied by using Floquet the-
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ory which has no small-amplitude assumption on the bottom ripples. In the work
of Howard and Yu (2007), the normal mode problem of basins with specially corru-
gated bottoms has been studied and compared with an asymptotic solution. The
effects of evanescent modes are also discussed. In their work, a special shape of the
bottom corrugation is chosen for the convenience of the mathematical derivation.
Higher-order Bragg resonances of water waves was discussed in Yu and Howard
(2010), where the wave-number of the surface wave is an integer multiple of half of
the bottom corrugation wave-number. In their work, the terms second- and high-
order resonances are in the sense described by Guazzelli et al. (1992). Then, Yu
and Zheng (2012) presented the way of imposing a Robin boundary condition to
study a more realistic case where the bottom is of a three-part flat-corrugated-flat
profile for Class I Bragg resonance study. They did not only show results of the
Bragg scattering in the vicinity of the first-order resonance tongue but also higher-
order ones. In the latter cases, non-trivial wave reflection due to bottom ripples is
also possible. Then Yu and Howard (2012) showed that for an arbitrary periodic
bottom profile, the Floquet theory is applicable by representing the bottom profile
with a Fourier series. With such a method it is made possible to consider more
general bottom profiles, the sinusoidal shape being of course included. Recently
this theory has been confirmed experimentally (Weidman et al., 2015).

In this part of the thesis, a variation of Class I Bragg resonance (classified as
Class I2 Bragg resonance), the Fabry-Perot (F-P) resonance case is studied. An
optical Fabry-Perot cavity consists of two partially reflecting mirrors surrounding a
dielectric medium. The F-P resonance was discussed for water waves only recently
in Couston et al. (2015) within the framework of linear potential flow theory. In
such a case, both surface waves and bottom ripples are sinusoidal. Two separated
patches of singly-sinusoidal ripples are set in analogy to the partially reflecting
mirrors. Four wave components (two bottom waves and two surface waves) exist
in F-P resonance, but unlike Class II Bragg resonance, the two bottom waves are
uncorrelated. The study of Couston et al. (2015) was based on linear wave and
small-amplitude ripple assumption, as in Mei (1985). When the F-P resonance
condition is met, significant enhancement of incident wave is achieved within the
flat region between two patches of ripples, called the ’resonator’. As one of the
two subjects of this part, the effects associated with the finite-amplitude bottom
ripples on the F-P resonance are studied in detail while the assumption of linear
surface wave remains. The main findings are presented in a journal paper in Physi-
cal Review E entitled Effect of finite amplitude of bottom ripples on F-P resonance
of water waves by Zhang and Benoit (2019). In this paper, it is shown that the fre-
quency (wave-number) downshift which is induced by the finite-amplitude bottom
ripples plays an important role in the F-P resonance condition. This downshift
dominates the enhancement rate of incident waves achieved within the resonator.
This journal paper is included in Chapter 2 as it is. Then the second objective
of this part of work is to further investigate the significance of different BBC as-
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sumptions on the wave-number downshift. The study of the effects associated with
BBC will be investigated by using a full potential theory of linear waves (using the
linearized version of Whispers3D) as a benchmark. Various approximated mod-
els with different degrees of assumptions on the BBC are considered, including
the asymptotic linear analytical theory, Whispers3D with first- or second-order
approximated BBC, MSE, EMSE and MMSE. In Chapter 3, this investigation is
given as supplementary materials to the PRE paper (Zhang and Benoit, 2019). In
Chapter 4, the main findings of this part of work are summarized.

1.2 Bibliography survey of wave separation technique

The separation of incident waves and reflected ones is of great importance for many
practical purposes, such as the evaluation of the efficiency of breakwaters, the cal-
ibration of wave-absorption zones, or the design of active wave absorption paddle
movements, etc. In the study of Bragg or F-P resonance, the wave separation
technique is necessary for evaluating the reflection and transmission coefficients
from the time series measured in experiments or simulations. The first study is
provided by Goda and Suzuki (1976), who estimated the incident and reflected
wave amplitudes via Fourier analysis of two time series recorded simultaneously
at two different locations. This method is valid for unidirectional linear regular
as well as irregular waves, but the distance between the two wave gauges should
not be even integer of half (spectral-peak) wavelength. This 2-gauges method was
then extended to 3-gauges (Mansard and Funke, 1980) and N-gauges (Zelt and
Skjelbreia, 1993) for increased accuracy. For some purposes like the generation of
signals for active absorption devices, it is more convenient to do the separation
directly in the time domain. Frigaard and Brorsen (1995) put forward a 2-gauges
approach, the Separating the Incident and the Reflected Waves (SIRW) method,
by using a relatively small digital filter. Then, Baldock and Simmonds (1999)
extended this method for cases with sloping bottom by considering linear shoaling
of waves to determine wave amplitudes and phase changes. This approach could
be useful for other linear separation methods. Based on Morlet wavelet trans-
formation, Ma et al. (2010) proposed another time-domain separation approach,
valid for linear regular or irregular waves over either flat or sloping bottoms. This
approach was extended to the three-dimensional case in Ma et al. (2011).

For nonlinear waves, in general, both bound modes (travelling with carrier
wave’s celerity) and free modes (travelling with their own celerities) are present in
time series. They are separable due to different phase velocities. Lin and Huang
(2004) considered this property and put forward an N-gauges (at least 4-gauges,
and more reliable for 5-gauges or even more) method for separating high-order
regular incident and reflected waves. Liu and Li (2016) improved the method of Lin
and Huang (2004) with a least-square method for better resolution of the incident
and reflected strongly nonlinear regular waves in shallow waters, and extended it
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to obliquely-incidence conditions. As was noticed by Andersen et al. (2017), the
work of Lin and Huang (2004) adopted Stokes linear dispersion which makes their
work only reliable for second-order. For higher-order cases possible errors may
come from amplitude dispersion. In Andersen et al. (2017), this limitation has
been largely released by choosing the dispersion relationship of Stokes V theory
or stream function theory according to their applicability. With the consideration
of wave-wave interactions, the irregular waves are more tricky to be incorporated.
Recently the nonlinear separation method has been extended to bichromatic waves
(Andersen et al., 2019) and narrow-banded irregular waves (Eldrup and Andersen,
2019).

First, the basic technique of Goda and Suzuki (1976) for reflection evaluation
is reviewed here, which has been widely used for wave flume tests. Consider
the synthesized profiles of the incident and reflected waves for a specific angular
frequency ω:

η(xm, t) = aI cos (εI − ωt) + aR cos (εR + ωt), (II.1.1)

where aI and aI denotes the incident and reflected amplitudes, εI = kxm + θI ,
εR = kxm + θR, θI denotes initial phase of incident wave, and θR for reflected
wave. The wave-number k as a function of water depth and angular frequency is
identical for both two components, and is computed from dispersion relationship.
The unknown parameters aI , aR, εI , and εR are computed in frequency domain.
This method is applicable for irregular wave analysis when this technique is applied
for all frequency components of the spectrum.

By the time this dissertation was written, the state-of-art separation technique
for regular nonlinear wave is provided by Andersen et al. (2017). This is introduced
for our study of Class I Bragg resonance and F-P resonance (sometimes considered
as Class I2 Bragg resonance). This approach perfectly covers our study purpose at
the present stage. But it should be noticed that for Class III Bragg resonances, the
bichromatic separation approach (Andersen et al., 2019) should be adopted rather
than regular nonlinear wave separation. Here the essentials of the approach for
regular waves separation is briefly reviewed. In the time domain the free surface
elevation η measured at probe m is written as:

η(xm, t) = err(t) + a
(1)
I cos

(
kIxm − ωt+ θ

(1)
I

)
+ a

(1)
R cos

(
kRxm + ωt+ θ

(1)
R

)

+
N∑

n=2

{
a

(n)
I,B cos

[
n (kIxm − ωt) + θ

(n)
I,B

]
+ a

(n)
R,B cos

[
n (kRxm + ωt) + θ

(n)
R,B

]}

+
N∑

n=2

[
a

(n)
I,F cos

(
k(n)xm − nωt+ θ

(n)
I,F

)
+ a

(n)
R,F cos

(
k(n)xm + nωt+ θ

(n)
R,F

)]
,

(II.1.2)

where err(t) denotes the time evolution of all modes higher than the chosen order
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N as well as noise, a
(1)
I , a

(1)
R are the first-order amplitudes for incident and reflected

waves, a
(n)
I,B, a

(n)
R,B are the nth-order amplitudes for incident and reflected bound

waves, and a
(n)
I,F , a

(n)
R,F are the nth-order amplitudes for incident and reflected free

waves, respectively. In analogy with wave-number, the phases θ
(1)
I , θ

(1)
R , θ

(n)
I,B, θ

(n)
R,B,

θ
(n)
I,F , θ

(n)
R,F are defined in the same way. kI and kR are the to-be-determined wave-

numbers as functions of the water depth h, angular frequency ω and also the
corresponding amplitudes, using Stokes V or stream function theory. Assuming
that free components are of much smaller energy compared to other components,
the linear theory is adopted for high-order free waves, thus k(n) is the wave-number
determined by Stokes linear dispersion relationship:

(nω)2 = gk(n) tanh(k(n)h). (II.1.3)

Since the incident and reflected wave amplitudes are unknown, this method
starts with an initial guess from linear dispersion, then computes wave amplitudes
for all components with latest computed wave-number in an iterative manner in
the Fourier space. The computation stops when the convergence of wave-number
is reached. The advantage of this method is that the incident and reflected wave-
numbers are computed separately and could take different values: this is more
realistic for finite wave amplitude cases. More detailed description of the to-be-
solved matrix and the accuracy of this method can be found in Andersen et al.
(2017). This method has been implemented independently using Matlab during
this PhD work.



Chapter 2

Finite-amplitude bottom ripple
effects on Bragg/Fabry-Perot
resonance conditions

This chapter contains the article Effect of finite amplitude of bottom ripples on
F-P resonance of water waves, published in Physical Review E in 2019.

In this paper, we present a study regarding the effect of finite amplitude of
bottom ripples on the F-P resonance mechanism in the linear wave theory frame-
work, by testing a wide range of ripple amplitude with a highly accurate numerical
model. Three systems are considered, called A, B and C. In system A, the linear
water wave problem is solved with the exact BBC applied on the real bottom
profile, while in system B we consider the linear water wave problem with the
first-order approximation of the BBC applied at the mean level of bottom profile.
Both systems A and B are implemented and numerically simulated with the lin-
earized version of Whispers3D. System C starts from the same problem as system
B, but it is solved analytically using additional assumptions and a multiple-scale
expansion method. The leading order solution, which will be referred to as Asymp-
totic Linear Analytical Solution (ALAS), was presented recently by Couston et al.
(2015).

The simulation results showed that, for finite amplitude bottom ripples, the F-
P resonance does not manifest according to the resonance condition predicted by
ALAS. However, for a slightly decreased incident wave-number, the resonance was
recovered with good correspondence with ALAS in terms of maximum amplifica-
tion of waves in the resonator, even for the largest ripple amplitude considered in
our tests. This so-called wave-number downshift appears to play a non-trivial role
in the formation of resonance because the resonance condition becomes increas-
ingly strict as ripple amplitude increases. In particular, we demonstrate that the
effect of finite amplitude of bottom ripples is related to the form of the dispersion
relation of water waves, which is a nonlinear function of the local water depth.
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Effect of finite amplitude of bottom corrugations on Fabry-Perot resonance of water waves
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Recently, the mechanism of Fabry-Perot (F-P) resonance in optics was extended to monochromatic water
waves propagating in a domain with two patches of sinusoidal corrugations on an otherwise flat bottom.
Assuming small-amplitude surface waves, an asymptotic linear analytical solution (ALAS) was derived by L.
A. Couston et al. Phys. Rev. E 92, 043015 (2015). When resonance conditions are met, the ALAS predicts large
amplification of the incident waves in the resonator area between the two patches of corrugations. Based on the
ALAS, the amplitude of these standing waves is expected to increase exponentially with the relative amplitude
of bottom corrugations (δ = d/h, where d is the corrugation amplitude and h the still water depth). In the present
work, we examine the effects associated with the assumptions made in deriving the ALAS regarding the effect of
a finite amplitude of bottom corrugation (i.e., finite value of δ), still in the linear wave framework. F-P resonance
is studied by means of highly accurate numerical simulations, considering either the exact linear water wave
problem (system A) or an approximate problem with a first-order expansion of the bottom boundary condition
(system B). The numerical model is first validated on a Bragg resonance case, through comparisons with the
ALAS, experimental measurements, and existing numerical simulations, showing its ability to represent well
the so-called wave-number downshift of Bragg resonance (i.e., the slight decrease in the incident wave number
where maximum resonance is reached in comparison with the value predicted by the ALAS). We then analyze
how this downshift affects the F-P resonance, especially when the corrugations are of finite amplitude, i.e., δ

varying from 0.05 to 0.4. The wave-number downshift appears to have a strong effect on the F-P resonance for
δ > 0.1: very low wave amplification manifests for the wave number predicted by the ALAS. However, when
the incident wave number is slightly decreased (by an amount increasing with δ) the F-P resonance case can
be recovered, and the maximum amplification values are found to be close to the predictions from the ALAS
(e.g., up to a factor of about 27 for δ = 0.4). The variations of the reflection coefficient and enhancement factor
obtained from systems A and B as a function of the incident wave number are discussed and compared to ALAS
predictions. In particular, it is found that the resonance peak is extremely narrow when δ = 0.2 and 0.4.

DOI: 10.1103/PhysRevE.99.053109

I. INTRODUCTION AND OBJECTIVES

In optics, a Fabry-Perot (F-P) etalon is an interference
device first described by two young French physicists at
the University of Marseille (France) at the end of the 19th
century [1]. Typically it consists of two parallel highly re-
flecting mirrors with a small interval; the incident light waves
passing through will form interference fringes after a series of
reflections. In the past century, the F-P resonance mechanism
has been comprehensively studied and applied to different
fields of physics [2,3].

In analogy to light waves, water waves can constructively
interfere when propagating over a region with a constant water
depth superimposed on two sets of small periodic bottom
corrugations or bars. Recently, Couston et al. [4] studied
water wave F-P resonance within the framework of linear
potential wave theory. Based on the asymptotic linear theory,
they found that significant amplification of incident regular
waves with particular wave numbers can be expected over the
flat-bottom area between two sets of bottom corrugations.

The mechanism behind this resonance is the well-known
Bragg scattering (or resonance), which has been extensively

*benoit@irphe.univ-mrs.fr

studied. By applying linear perturbation method, Davies [5]
and Davies and Heathershaw [6] have shown theoretically
that simple harmonic waves will be scattered due to wave-
bottom interactions when passing through a finite number of
sinusoidal rigid bars on an otherwise flat bottom. Experimen-
tal demonstrations confirming the effects of sandbars [6,7]
were available soon after the theory was introduced. When
the incident wavelength is twice that of the sandbars, Bragg
resonance takes place. However, Davies and Heathershaw’s
regular perturbation method [6] fails when it is close to the
resonance condition (i.e., the reflection coefficient becomes
unbounded for resonance condition for a large number of
bars). By considering two wave components with opposite
propagation directions on the surface and introducing a cut-
off frequency, Mei [8] developed an analytical approximate
theory via multiple-scale perturbation method. This theory
is able to predict the resonance. The leading order of Mei’s
theory agrees reasonably well with Heathershaw’s experi-
ments with the same linearization assumptions adopted by
Davies [7]. Yu and Mei [9] also pointed out the unreliability
for shore protection using Bragg resonance: it may result
in suppression of waves after the sandbars, but amplifica-
tion is also possible when considering reflection from the
shoreline.

2470-0045/2019/99(5)/053109(10) 053109-1 ©2019 American Physical Society
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Higher-order Bragg resonance can be defined by the num-
ber of components participating in the interactions. The afore-
mentioned case is denoted class I Bragg resonance, which
is second-order triad interactions (one bottom and two sur-
face waves). In class II Bragg resonance, doubly sinusoidal
corrugations on the bottom and two surface wave compo-
nents interact [10,11]. Note that the F-P resonance, which
includes two corrugation modes on the bottom, involves only
second-order interactions. Such resonances are classified as
I2 Bragg resonance (see [12]). In class III, monochromatic
sinusoidal corrugations and three surface wave components
are included [13]. The aforementioned high-order Bragg
resonances are third-order quartet wave-bottom interactions.
Higher-order nonlinearities of incident waves and bottom
corrugations can be included by keeping more terms in the
perturbation methods [10,14]. However, the increase in accu-
racy comes at the expense of simplicity of formulations.

With a family of special shapes of bottom corrugations,
the constraints on the bottom steepness and/or amplitude
can be released by using Floquet theory for linear wave
motion [15–17]. Recently an experimental demonstration of
this theory was realized [18]. However, in this case the bottom
corrugations are no longer sinusoidal perturbations.

Alternatively, the nonlinearities associated with surface
waves and bottom corrugations were also studied by using
different numerical models solving the water wave problem
to different target orders. For instance, using a boundary
integral equation method, Dalrymple and Kirby [19] placed
the bottom elements directly on the bars, keeping an exact
bottom elevation in a linear wave framework. Kirby [20]
extended the mild-slope equation of Berkhoff to the Bragg
resonance case considering not only the bars on the seabed,
but also the variable mean elevation of the bottom. Porter [21]
extended the equation to the three-dimensional (3D) case. The
high-order spectral (HOS) method developed by Dommer-
muth and Yue [22] was used to study the high-order Bragg
resonance with the fourth-order (for both bottom and free
surface) model [13].

The present work mainly focuses on a better understanding
of the effects associated with the modeling of the bottom
boundary condition on Bragg and F-P resonances within
the linear wave theory framework, by taking advantage of
an accurate and efficient numerical model. The linearized
water wave problem as well as the assumptions associated
with Bragg resonance, the F-P resonance condition, and the
asymptotic linear analytical solution (ALAS) of the problem
are recalled in Sec. II. The numerical model is introduced and
validated against Bragg resonance experiments in Sec. III.
Then the model is applied to study the F-P resonance in
Sec. IV, considering various relative corrugation amplitudes,
with most attention paid to the influence of the bottom bound-
ary condition. The main conclusions and outlook for future
work are summarized in Sec. V.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING

A. Bathymetry for Bragg and Fabry-Perot cases

Considering long-crested plane waves, the problem is
formulated in a two-dimensional (2D) Cartesian coordinate

system (x, z), with the x axis coinciding with the still water
level and the z axis pointing upwards. The elevation of the
impermeable bottom is expressed as

z = −h̃(x) = −h + ζ (x), (1)

where h > 0 is a constant water depth and ζ (x) describes the
elevation of the bottom corrugations. These corrugations are
assumed to have a sinusoidal shape over one zone (Bragg
case) or two distinct zones (Fabry-Perot case) of finite length.
In the latter case, these zones are labeled 1 and 2, respectively,
and we assume that the bars have the same wavelength Lb

(and wave number kb = 2π/Lb) and the same amplitude d .
Each patch is composed of an integer number of bars Nj , thus
covering a distance Lj = NjLb between the abscissa xs

j and
xe

j = xs
j + NjLb. The perturbation of the bottom elevation for

each patch j ( j = 1, 2) thus reads

ζ (x) = d sin
[
kb

(
x − xs

j

) − θ j
]
, x ∈ [

xs
j, xe

j

]
, (2)

where θ j is the phase of the corrugation patch j, chosen here
to be either 0 or π in order to have a continuous bottom
profile. The distance between the two patches, denoted Lr ,
is called the resonator length. Without loss of generality, we
set xs

1 = 0 for the first patch (the second one then starting
at xs

2 = N1Lb + Lr). A representation of the F-P resonator
configuration is shown in Fig. 1.

We consider monochromatic incident waves coming from
x = −∞ with amplitude a and wave number k in the region
of uniform water depth h, associated with a wave period T
and an angular frequency ω = 2π/T . The nondimensional
parameter μ = kh is used as a measure of the relative water
depth (or dispersive effects), and ka measures the steepness
of water waves (or nonlinear effects). The slope of the bottom
corrugations is characterized by kbd , and the nondimensional
corrugation amplitude is defined as δ = d/h.

B. Linear mathematical modeling approaches

1. Exact linear model: System A

The fluid is assumed inviscid and homogeneous with a
constant density. The flow is assumed irrotational, so that
a velocity potential φ can be introduced. The velocity field
is then �u = ∇φ. The surface tension is neglected and the
atmospheric pressure at the free surface is assumed uniform
and constant in time (set here to 0 without loss of generality).

We further assume that surface waves are of small ampli-
tude compared to both the wavelength and the mean water
depth, i.e., ka � 1 and a/h � 1. In this case, the free surface
boundary conditions can be linearized and applied at the
still water level z = 0. The governing equations for φ thus
simplify to

φxx + φzz = 0, −h̃(x) � z � 0, (3a)

−ω2φ + gφz = 0, z = 0, (3b)

−ζxφx + φz = 0, z = −h̃(x), (3c)

where g is the acceleration due to gravity, and subscripts
denote partial derivatives (e.g., φx = ∂φ

∂x ). The free surface
elevation η is obtained via η(x, t ) = −φt (x, z = 0, t )/g. In
this system, no assumption is made regarding the amplitude of
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FIG. 1. Sketch of the problem setup for F-P resonance.

the bars, implying that the bottom boundary condition (BBC),
Eq. (3c), is applicable for arbitrary δ and hereafter referred
to as the exact BBC. System (3) is called “system A” in the
following.

2. Linear model with a small bar amplitude: System B

As marine sandbars are usually of small amplitude with a
stabilized pattern provided the sea state is steady, it is often
reasonable to assume that the nonlinearity of the bars is small,
i.e., δ � 1. With this assumption, the exact BBC, Eq. (3c),
can be approximated, using a truncated Taylor expansion of
the potential around the mean elevation z = −h and omitting
second- and higher-order terms in δ, as

−(ζφx )x + φz = 0, z = −h. (4)

Hereafter, Eq. (4), now applied at the uniform elevation
z = −h, is referred to as the approximate BBC, and the system
composed of Eqs. (3a), (3b), and (4) is called “system B.”
Note that with this approximate system, the Laplace equation,
Eq. (3a), has to be solved over a rectangular domain of
constant height h.

3. Asymptotic linear model: System C

To obtain an analytical solution of system B, Mei [8]
adopted a multiple-scale expansion method and solved the
leading-order problem. By introducing fast variables (x, t )
and slow variables (x′ = εx, t ′ = εt ), assuming that ε is a
small parameter, the multiple-scale expansion of the velocity
potential φ(x, x′, z, t, t ′) reads

φ = εφ(1) + ε2φ(2) + O(ε3), (5)

where the terms at order O(ε3) and higher have been ne-
glected. Assuming that the second-order term φ(2) is small
compared to φ(1), the first-order potential φ(1) can be ex-
pressed over the jth patch as

φ(1) = f (z)[A j (x
′, t ′)e−ikx + B j (x

′, t ′)eikx]eiωt + c.c., (6)

where c.c. denotes the complex conjugate. A j and B j are
the slowly varying complex amplitudes of the incident and
reflected waves over patch j, and

f (z) = − ig

2ω

cosh k(h + z)

cosh kh
(7)

gives the vertical dependence of the potential for the (assumed
uniform) water depth h.

Applying Eqs. (5)–(7) to system B and enforcing the solv-
ability and compatibility conditions (see [12] for details) for
φ(2), the following system is obtained, governing the evolution
of amplitudes A j and B j over patch j (hereafter referred to as
“system C”),

∂A j

∂t ′ + CgB
∂A j

∂x′ = −�ceiθ j B j, (8a)

∂B j

∂t ′ − CgB
∂B j

∂x′ = �ce−iθ j A j, (8b)

where the angular frequency ωB = ω(kB) and the group celer-
ity CgB = Cg(kB) of incident waves at resonant Bragg wave
number kB = kb/2 (with corresponding wavelength LB =
2Lb) are computed from linear wave theory for the water depth
h (note that subscript B is used for the “Bragg resonant” case
as predicted by the ALAS). �c denotes the so-called “cutoff
frequency”

�c = ωB

4

kbd

sinh kbd
. (9)

The wave number k and frequency ω of incident waves are
assumed to vary in the vicinity of the Bragg resonance values,
i.e., k = kB + κ with κ � kB, and ω = ωB + � with � =
κCgB � ωB.

The time variation of complex amplitude can be written
explicitly, e.g., A j (x′, t ′) = Aj (x′)ei�t ′

and ∂A j/∂t ′ = i�A j

for the periodic steady state. Over the flat-bottom sections, the
right-hand sides of Eqs. (8a) and (8b) are 0, which means that
the incident and reflected waves are no longer coupled and
that they propagate at the speed of their own group velocity.

One interesting feature of system C is that it can be solved
analytically: its solution (i.e., the ALAS) is the envelopes of
the amplitudes of incident and reflected waves, as functions
of the slow variable x′. The ALAS provides reasonable results
near the resonance condition when applied to the experiments
by Heathershaw [7] on Bragg resonance.

This ALAS was recently extended to the case of two
patches by Couston et al. [4] to study the F-P resonance.
The main results are the global reflection and transmission
coefficients (for the set of two patches), which are recalled
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below:

RFP
ALAS

∣∣
xs

1
=

√√√√
(
RB

1

)2 + (
RB

2

)2 − 2RB
1 RB

2 cos γ

1 + (
RB

1 RB
2

)2 − 2RB
1 RB

2 cos γ
, (10a)

T FP
ALAS

∣∣
xe

2
=

√√√√
[
1 − (

RB
1

)2][
1 − (

RB
2

)2]
1 + (

RB
1 RB

2

)2 − 2RB
1 RB

2 cos γ
, (10b)

where RB
j = B j (xs

j )/A j (xs
j ) = RB

j exp (iαB
j ) and T B

j =
A j (xe

j )/A j (xs
j ) = T B

j exp (iβB
j ) are the (complex) reflection

and transmission coefficients for a single patch (Bragg)
case, they are functions of �/�c (see [4] for more details),
evaluated at the beginning xs

j and the end xe
j of the jth patch,

respectively, and

γ = π − 2θ1 + 2kLr − αB
1 − αB

2 . (11)

In addition to Bragg resonance condition (i.e., k = kB), the
wave energy will be trapped within the resonator when γ in
Eq. (11) is an integer multiple of 2π , which gives a condition
on the possible values of the resonator length when k = kB:

kbL(m)
r = (2m + 1)π + θ1 + θ2, with m ∈ N. (12)

This is denoted the F-P resonance condition, under which
the standing waves with the highest achievable amplitude are
expected between the two patches. The nondimensional am-
plitude of the standing waves within the resonator is defined
as the enhancement factor EFP in [4]

EFP
ALAS = A1

(
xe

1

) + B1
(
xe

1

)
A1

(
xs

1

) = (
1 + RB

2

)T FP
ALAS

T B
2

. (13)

The aforementioned results indicate that large amplifica-
tion of the incident waves could take place in the resonator
area, with enhancement factors greater than 2 or even larger
depending on the incident wave conditions and bottom char-
acteristics. For instance, in the case simulated in [4], the
following setup is chosen: N1 = 11, N2 = 15, θ1 = θ2 = 0,
kbh = 1.64, kbd = 0.164 (i.e., δ = 0.1), and kbLr = 11π [i.e.,
m = 5 in the F-P resonance condition, Eq. (12)].

Considering each patch individually, with the Bragg con-
dition satisfied, the reflection and transmission coefficients
are RB

1 ≈ 0.597 and T B
1 ≈ 0.803 for the first patch and RB

2 ≈
0.734 and T B

2 ≈ 0.679 for the second patch. Relatively strong
reflection of incident waves is expected, based on the principle
of energy conservation, and waves passing through a single
patch are of smaller amplitude. In the F-P case with precisely
chosen resonator length kbLr = 11π , the overall reflection
and transmission coefficients are RFP

ALAS ≈ 0.245 and T FP
ALAS ≈

0.970. The standing waves in the resonator are amplified by a
factor of EFP

ALAS ≈ 2.476.
In Fig. 2, we show the relationship between EFP

ALAS and
δ (keeping N1 = 11, N2 = 15, θ1 = θ2 = 0, kbh = 1.64, and
kbLr = 11π fixed). It can be observed that within the linear
framework, EFP

ALAS increases exponentially as the amplitude
of bars increases. As δ becomes larger, one can anticipate that
the results from the ALAS will become unrealistic, mainly
for two reasons: on one hand, the standing waves will be of a
high amplitude so that nonlinear effects due to the finite wave

0 0.1 0.2 0.3 0.4 0.5
100

101

102

FIG. 2. Enhancement factor EFP
ALAS as a function of the nondi-

mensional corrugation amplitude δ = d/h. The water depth, setup of
two patches, and length of the resonator are the same as those used
in [4].

amplitude will be significant; on the other hand, these waves
might become too steep to preserve their shape and wave
breaking should occur. Regarding the ALAS, the assumption
on the smallness of the bottom slope is violated, and so is the
assumption of linearity of the water waves over the resonator
area.

III. NUMERICAL MODELING AND VALIDATION IN THE
BRAGG RESONANCE CASE

A. Description of the numerical model

The numerical simulations of systems A and B are per-
formed with a highly accurate code, called WHISPERS-3D. This
code is developed to solve the fully nonlinear potential wave
problem with variable bottom conditions, in the form of two
coupled nonlinear equations, corresponding to the two nonlin-
ear free surface boundary conditions (FSBCs). In dimensional
form for the case of a single horizontal dimension [23], they
are expressed as

ηt = −ηx�̃x + w̃[1 + (ηx )2], (14a)

�̃t = −gη − 1
2 (�̃x )2 + 1

2 w̃2[1 + (ηx )2], (14b)

where �̃(x, t ) ≡ �(x, z = η(x, t ), t ) is the free surface veloc-
ity potential and w̃(x, t ) ≡ �z(x, z = η(x, t ), t ) is the vertical
velocity at the free surface. Note that these equations involve
only free surface variables, though a 2D vertical (x, z) situa-
tion is modeled.

In order to march Eqs. (14) in time, the vertical velocity
w̃(x, t ) has to be determined as a function of [η(x, t ), �̃(x, t )],
corresponding to a so-called Dirichlet-to-Neumann prob-
lem. The modeling approach used is presented in previous
works [24,25] and summarized hereafter. Following Tian and
Sato [26], a spectral approach is used in the vertical to
approximate the velocity potential. Using the set of orthogonal
Chebyshev polynomials of the first kind, denoted Tn(s), n =
0, 1, . . . , NT , with s ∈ [−1, 1], as an expansion basis, the
potential is approximated at any given time t (omitted for
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brevity hereafter) as

�(x, z) = ϕ(x, s) ≈
NT∑

n=0

an(x)Tn(s), (15)

where s(x, z, t ) is the scaled vertical coordinate allowing us
to map the water column z ∈ [−h̃(x), η(x, t )] into the fixed
range s ∈ [−1, 1], and the an coefficients (n = 0, 1, . . . , NT )
depend upon the local abscissa x (and time t).

The main steps involved in solving the Dirichlet-to-
Neumann problem and integrating Eqs. (14) in time are sum-
marized as follows: (i) first, the system of governing equations
composed of the Laplace equation, a Dirichlet FSBC on the
potential, and the BBC is expressed in the (x, s) coordinate
system; (ii) then the approximation given in Eq. (15) is
inserted into these equations; (iii) the so-called Chebyshev-
tau method, a variant of the Galerkin method, is used to
project the Laplace equation onto the Tn polynomials for n =
0, 1, . . . , NT − 2, eliminating the s coordinate and giving a set
of NT − 1 equations on the an coefficients at each location x;
(iv) two additional equations are obtained by considering the
Dirichlet FSBC and the BBC so that a system of NT + 1 linear
equations with NT + 1 unknowns (an, n = 0, . . . , NT ) at each
abscissa is formed; and (v) once this linear system is solved
for the an coefficients, the vertical velocity at the free surface
is obtained as

w̃(x, t ) = 2

h̃(x) + η(x, t )

NT∑
n=1

an(x, t )n2, (16)

allowing Eqs. (14) to be integrated in time.
In WHISPERS-3D, horizontal derivatives are approximated

using fourth-order finite-difference formulas using stencils
of five nodes on a regular grid and an explicit third-order
Runge-Rutta scheme (SSP-RK3) is used for time marching.
The maximum order NT of polynomials in Eq. (15) determines
the accuracy of the model. With this representation of the
potential, the model exhibits a geometric convergence as a
function of NT , so that a high accuracy of the vertical structure
of the flow can be obtained with a limited number of terms,
usually in the range NT ∈ [5, 10]. This property was carefully
verified for a number of cases with regular or irregular waves
over flat or variable bottom conditions [24,25].

The linearized version of the numerical model, solving the
system of Eqs. (3), was extensively studied in [27], for both
flat and variable bottom profiles. The dispersion relation of the
linear model was derived analytically [27],

C2
NT

gh
= 1 + ∑NT −2

p=1 αpμ
2p

1 + ∑NT −1
p=1 βpμ2p

, (17)

where CNT denotes the approximation of the phase celerity of
the waves given by the model at order NT . The computational
method for obtaining the analytical expressions of αp and βp

coefficients can be found in [27].
In order to illustrate the resolving capability of the

model for the water depth conditions considered here (μ =
kh ≈ kBh = 0.82), the evolution of the relative error |CNT −
CAiry|/CAiry on the phase celerity of the linearized version of
the model with respect to the exact Airy phase celerity under
flat-bottom conditions [given by C2

Airy/(gh) = tanh(μ)/μ)] is
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FIG. 3. Relative error on the phase celerity of the linear version
of the numerical model (with respect to the exact Airy celerity) for
the relative water depth μ = 0.82 as a function of the maximum
order of polynomials NT .

plotted as a function of NT in Fig. 3. It is shown that this error
decreases exponentially with increasing NT . For this relative
water depth μ = 0.82, the difference between CNT and CAiry

drops below the machine precision as NT exceeds 12. In the
simulations performed hereafter, a value of NT = 7 will be
systematically used. With this value the relative error on phase
celerity is about 2 × 10−9.

We point out that Liu and Yue [13] simulated Bragg
resonance cases by solving Eqs. (14) with the (nonlinear)
HOS method. In the HOS method [13,22], assuming periodic
boundary conditions in the horizontal direction, the velocity
potential is represented by a large number of free wave
modes whose amplitudes are determined via a pseudospectral
method. The problem is solved by combining a perturbation
expansion method for the potential and Taylor expansions of
the nonlinear FSBCs and the BBC around their mean levels,
giving an approximate solution at a given target order in wave
steepness. The numerical model adopted here does not assume
spatial periodicity of the spatial domain, the BBC is applied
at the exact position of the bottom (in system A), and the
FSBCs are applied at the exact position of the free surface
(in the nonlinear version of the model). The vertical variation
of the potential at each horizontal node is instead represented
by a series of Chebyshev polynomials given by Eq. (15). By
increasing the order NT of this vertical approximation (and
concurrently decreasing the spatial grid size), extremely ac-
curate representations of the potential can be reached over the
fluid domain, for both the linearized and the fully nonlinear
versions of the code.

B. Simulation results of the Bragg resonance case

The experiments conducted by Davies and Heather-
shaw [6] on Bragg resonance have been intensively studied
since their publication, e.g., in [8,13,19,20,28]. We start by
simulating one case of these experiments in order to validate
the linearized version of WHISPERS-3D.

In the experiments in [6], patches with N = 2, 4, and 10
bars were tested. We select the case with the longest patch
(N = 10) because in this case stronger wave-bottom interac-
tion is expected, resulting in significant reflection of incident
waves. Besides, this case clearly showed a wave-number
downshift effect and is thus considered most challenging for
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FIG. 4. The simulation results (system A) of Davies and Heather-
shaw’s experiments [6] with 10 bars are compared with the ex-
perimental measurements. The ALAS prediction based on Mei’s
theory [8] is also given as a reference.

the numerical model. In the experiments, the bottom corru-
gations are fixed at d = 0.05 m and Lb = 1 m. The relative
corrugation amplitude δ = 0.16 is achieved by adjusting the
water depth h. The wavelength of incident waves is deter-
mined from the Bragg resonance condition L = LB. Regarding
the numerical model, sinusoidal waves are generated and
absorbed by using relaxation zones with 4LB in length. Before
and after the patch of corrugations, two zones with constant
water depth h and length 3LB are used. The domain is meshed
with a regular grid defined by �x = LB/64. The time step
is chosen as �t = T/64, giving a Courant-Friedrichs-Lewy
number CFL = 1 (CFL = C�t/�x, with phase velocity C =
L/T ). It should be noted that in the numerical simulations,
instead of using the dispersion relationship of Airy wave
theory, the wave period T is determined by the analytical
dispersion relationship, Eq. (17), of WHISPERS-3D at order NT .

A series of runs is performed by varying the wave num-
ber of incident waves around the value kB corresponding to
expected resonance based on the ALAS. Once a periodic
state is reached over the domain, the reflected and transmitted
waves are separated by Goda and Suzuki’s method [29], and
the corresponding reflection coefficient from the ALAS RB is
evaluated following Eq. (6a) in [4]. The reflection coefficients
are compared in Fig. 4, from which it can be concluded
that the numerical results show good agreement with the
experimental results as well as theoretical predictions for the
primary resonance tongue.

However, it is also clear that the maximum reflection
coefficient is not obtained for the Bragg condition kB = kb/2,
as is predicted by the ALAS, but for a slightly smaller wave
number. This effect corresponds to the so-called wave-number
downshift (or, equivalently, frequency downshift). Liu and
Yue [13] explained this slight detuning by showing that the
spatially averaged local wave number over the patch is always
larger than the incident wave number, while it was considered
uniform over the whole domain during the derivation of the
ALAS. In other words, the “effective” wave number over the
patch (whose mean water depth is h) is greater than the wave
number of a uniform water depth h (this is further discussed in
Sec. IV C below). A slightly smaller incident wave number is
thus required to compensate this increase due to the presence
of bars; then the Bragg condition is met again.

We also note that Liu and Yue [13] obtained results very
similar to those for system A in Fig. 4 using the HOS method
(see Fig. 6 in [13]), although the nonlinearity of water waves
is excluded in the present model. This implies that the wave-
number downshift in this configuration is mainly a BBC
effect, and not a nonlinear effect. Overall, the good agreement
of the present results of system A with the experimental, the
ALAS, and the numerical results of [13] validates the current
numerical model for the Bragg resonance case.

IV. SIMULATION AND ANALYSIS OF FABRY-PEROT
RESONANCE

A. Description of the numerical setup

Now consider the F-P resonance; we aim at investigating
whether large enhancement factors (see Fig. 2) for finite-
amplitude bars can be realized within the exact linear frame-
work (system A). In other words, we focus on the effects
associated with the assumption of smallness of the corrugation
amplitude. To this end, the assumption of small-amplitude
surface waves is preserved, and the height of standing waves
in the resonator should in principle remain small for the linear
approach to apply.

Regarding the numerical setup, we again follow the work
in [4] as introduced in Sec. II except for the amplitude of cor-
rugations. Here, four kinds of tests with different corrugation
amplitudes are studied: δ = 0.05, 0.1, 0.2, and 0.4. Note that,
for this bottom configuration, ALAS predicts EFP

ALAS ≈ 27.579
when δ = 0.4. With such large amplification, even small to
moderate incident waves could lead to very large standing
waves, with possible dramatic effects on the local structures.
For the numerical settings, the generation and absorption
zones are 4LB in length. The domain is uniformly meshed with
�x = LB/128. The time step is chosen as �t = T/256, giving
CFL = 0.5. The duration of the simulations depends on the
corrugation amplitude δ. Indeed, for F-P resonance, runs with
higher bar amplitudes take more time to reach a time-periodic
steady state.

B. Simulations with ALAS-tuned incident waves for small
to moderate corrugation amplitudes

For the considered setup, the free surface motion consists
of left- and right-propagating components with the same
frequency, i.e., reflected and transmitted waves. The reflected
waves are the comprehensive results of all the bars down-
stream at any given x. This suggests that no reflected wave is
expected after the second patch. Standing waves are expected
over the flat-bottom zones before the first patch and within
the resonator. Over the patches, not only the phase of the free
surface envelope but also its amplitude is slowly modulated
because of the change in the total number of downstream
bars. By excluding the fast oscillations, the ALAS describes
the envelope of the free surface elevation and indicates the
slow space modulation of the wave amplitude. Its computation
formula can be found in the Appendix in [4].

In this section, we present results of simulations of sys-
tem A and system B (done with the linearized version of
WHISPERS-3D) using an incident wave number as predicted by
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FIG. 5. Computed envelope of the free surface elevation at the
end of the simulations of systems A and B (t = 100T ) for the case
δ = 0.05 with the wave number k = kB, compared to the envelope
from the ALAS.

the ALAS, namely, k = kB, for different cases with increasing
values of δ.

For the case with small bottom corrugation amplitude δ =
0.05, Fig. 5 shows that the simulated results of systems A
and B are almost superimposed. For this case, the reflec-
tion and enhancement coefficients predicted by the ALAS
are both small, namely, RFP

ALAS ≈ 0.124 and EFP
ALAS ≈ 1.586.

Nice agreement with the ALAS is observed throughout the
computational domain, and the time required to achieve a
quasi–steady state is less than 100 incident wave periods. This
case validates the applicability of the current numerical model
to the F-P resonance case.

The simulation results with the higher corrugation ampli-
tude δ = 0.1 are shown in Fig. 6. The duration of simulation
is now 200T . For this case, the results of systems A and B are
still too close to be distinguished on the global scale, which
means that the assumption on the BBC adopted by Davies [5]
and Mei [8] remains appropriate. However, simulation results
deviate slightly from the ALAS results. The reflection coeffi-
cient from system A, RFP

A ≈ 0.329 (RFP
B ≈ 0.336 from system

B), is larger than the RFP
ALAS ≈ 0.245 from the ALAS, and

the enhancement factor from system A, EFP
A ≈ 2.385 (EFP

B ≈
2.397), is smaller than the expected EFP

ALAS ≈ 2.476 from the
ALAS.
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FIG. 6. Same as Fig. 5, for the case δ = 0.1. The simulation
duration is t = 200T .
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FIG. 7. Same as Fig. 5, for the case δ = 0.2. The simulation
duration is t = 900T .

The corrugation amplitude is then increased to δ = 0.2.
It is clearly shown in Fig. 7 that the results from systems
A and B and from ALAS predictions are different. Before
the first patch, simulations with systems A and B show that
the incident waves are nearly fully reflected with a reflection
coefficient RFP

A ≈ 0.956 for system A, resulting in little energy
being transferred through the second patch of corrugations.
Within the resonator, the enhancement factor does not reach
the predicted value by the ALAS, EFP

ALAS ≈ 5.785: only EFP
A ≈

1.711 is obtained with system A. Clearly, the F-P resonance
does not manifest in this case with either system A or system
B. In addition, it is also noteworthy that the results of systems
A and B are no longer superimposed, implying that the
assumption on the smallness of bottom corrugations is less
acceptable for δ = 0.2 or larger. Finally, we point out that this
case is much more time-consuming compared to the cases
with smaller corrugation amplitudes: no less than 900T is
required to approach the steady state.

C. Simulations with slightly detuned incident waves for a finite
corrugation amplitude

As the linearized version of WHISPERS-3D with the exact
BBC has been proven valid for the Bragg and F-P resonances
(at least for small-amplitude bars), it is interesting to investi-
gate whether large enhancement factors could be achieved in
the case where the bottom corrugations are of finite amplitude
and to analyze why the F-P resonance could not be realized for
δ = 0.2 in the previous subsection. For this purpose, tests with
finite corrugation amplitudes are performed here, namely, δ =
0.2 and then 0.4.

1. Slightly detuned simulations with δ = 0.2

The case δ = 0.2 is repeated here, but now the wave num-
ber of incident waves is detuned by a small value, so that k/kB

varies in the range [0.92, 1.10]. The numerical parameters and
settings for systems A and B remain unchanged. The effect of
detuning the wave number k/kB on the reflection coefficient
RFP is plotted in Fig. 8. The ALAS curve is symmetric with
respect to the resonance condition k/kB = 1, where a mini-
mum value is reached. However, when departing from this
value the reflection coefficient increases very rapidly, meaning
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FIG. 8. Effect of the detuned wave number (normalized by kB)
on the reflection coefficient RFP for systems A and B. The ALAS
prediction based on Eq. (10a) is also superimposed.

that the F-P resonance is sensitive to the wave number (or,
equivalently, the frequency) of incident waves, especially for
finite-amplitude bottom corrugations. Regarding the results
for systems A and B, there are clear shifts of the symmetry
axis from k/kB = 1 toward smaller values. For this value of
δ = 0.2, the difference between the exact BBC (system A)
and the approximate BBC (system B) remains limited.

For the same set of simulations, the enhancement factor in
the resonator is plotted in Fig. 9. Again the detuning effect is
clearly visible, with a downshift of the peak of maximum EFP

A
towards a lower value, namely, k ≈ 0.992 63kB, for system A.

It is verified here that EFP
A is quite low for k = kB, as

shown in Fig. 7. This can be explained by the sensitivity
of the F-P resonance to the incident wave number and by
the wave-number downshift for finite corrugation amplitude.
Following Liu and Yue [13] for Bragg resonance, we can eval-
uate a “mean” wave number k̄ j over patch j by a numerical
averaging method,

k̄ j = 1

xe
j − xs

j

∫ xe
j

xs
j

k j (x)dx, (18)

where k j (x) denotes the local wave number over patch j as
computed from the dispersion relation for the actual water
depth h̃(x) = h − ζ (x). The ratio D j = k̄ j/k(h) is a measure
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FIG. 9. Effect of the detuned wave number (normalized by kB)
on the enhancement factor EFP for systems A and B. The ALAS
prediction based on Eq. (10a) is also superimposed.
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FIG. 10. Computed envelope of the free surface elevation at the
end of the simulations of systems A and B (t = 900T ) for the case
δ = 0.2 with the wave number slightly smaller (k′ = 0.992 63kB)
than the F-P condition, compared to the ALAS envelope (calculated
for k = kB).

of the effect of the undulated bottom. For the present case
(same corrugation amplitude for the two patches), we obtain
D1 = D2 ≈ 1/0.9933. Based on this result, it is anticipated
that the nondimensional incident wave number should be
k/kB = D−1

1 = 0.9933 to recover F-P resonance, which in-
deed is located very close to the shifted resonance condition
in Figs. 8 and 9. As shown in these figures, it is speculated that
the “real” resonance condition for the incident wave number
in the present case falls between 0.992 63 and 0.993.

In Fig. 10, the simulation results for systems A and B using
the slightly detuned incident wave number k/kB = 0.992 63
are plotted, together with the ALAS envelope curve (for
k = kB). Good agreement is achieved between the simulated
results (in particular, with system A) and the ALAS predic-
tion regarding the maximum wave amplitude over the whole
domain. It should be noted that the differences in the results
for system A vs system B are due to the difference in the
degree of downshift associated with each of the two systems
(clearly shown in the inset in Fig. 9). Thus, the wave-number
downshift is mainly a leading-order phenomenon but is also
influenced by the order of approximation of the BBC.

2. Slightly detuned simulations with δ = 0.4

To demonstrate the significance of the wave-number down-
shift and to show that the F-P resonance can be realized even
for high bottom corrugation amplitudes, an additional test for
δ = 0.4 is performed and analyzed, with system A only. As
shown in Fig. 2, the enhancement factor predicted by the
ALAS for this case should be EFP

ALAS ≈ 27.579, associated
with the reflection coefficient RFP

ALAS ≈ 0.762. The assumption
on the smallness of bottom corrugations is obviously no
longer fulfilled, and it is thus interesting to compare the results
for system A (with the exact BBC) and for the ALAS.

Considering that the “exact” condition for F-P resonance
is unknown, Eq. (18) is used to provide the first guess of
the shifted F-P resonance condition, leading to k = 0.972kB.
Then the proper incident wave number associated with the
largest enhancement factor EFP

A is found by exploring a range
of wave numbers in the vicinity of this value. The result
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FIG. 11. Effect of the detuned wave number (normalized by kB)
on the enhancement factor EFP for system A. The ALAS prediction
based on Eq. (10a) is also superimposed.

regarding the enhancement factor is shown in Fig. 11. The
region where the F-P resonance takes place is extremely sharp
and narrow, meaning that the resonance condition is very
strict. Among the set of discrete values considered in the
simulations, the detuned incident wave number corresponding
to the maximum enhancement factor is k = 0.979 313kB. The
“exact” resonance condition is found to lie between 0.9793kB

and 0.979 317kB. It should be noted that even though the
amplitude of bottom corrugations is high, the prediction of the
value of the maximum EFP by the ALAS is quite reliable: sys-
tem A gives EFP

A ≈ 26.918 at maximum, which is quite close
to EFP

ALAS = 27.579. Such a close match was not guaranteed
a priori, as the wave number corresponding to the maximum
enhancement factor is significantly shifted downwards.

As a confirmation of the realization of F-P resonance, the
envelope of the simulation done with system A using the
incident wave number k = 0.979 313kB, corresponding to the
maximum enhancement factor in Fig. 11, is shown in Fig. 12.
A reasonable agreement is found, confirming the possibility
of reaching large enhancement factors in the resonator within
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FIG. 12. Computed envelope of the free surface elevation at the
end of the simulations with system A (t = 10 000T ) for the case δ =
0.4 with the wave number slightly smaller (k′ = 0.979 313kB) than
the F-P condition, compared to the ALAS envelope (calculated for
k = kB).

the framework of the exact linear wave theory. Note that the
simulation duration to reach a steady state for this value of
δ = 0.4 needs to be significantly increased: 10 000T was used
for this run.

V. CONCLUSIONS

Recently, Couston et al. [4] investigated the applicability
of the F-P resonance mechanism to water waves by using
two patches of corrugations on an otherwise flat bottom. For
small bottom corrugation amplitude and linear waves, they
built an asymptotic linear approximate system and solved it
by adopting the multiple-scale method, obtaining at leading
order an asymptotic linear analytical solution (ALAS). The
ALAS is the envelope of the wave amplitude as a function
of the space coordinate x. The reflection coefficient, trans-
mission coefficient, and enhancement factor are also derived
analytically for the F-P resonance. In the linear framework,
the enhancement factor increases exponentially as the relative
amplitude of the bottom corrugations increases.

The influence of the assumption of small corrugation am-
plitude adopted in the ALAS derivation was studied here by
using an accurate numerical model solving the linear water
wave problem with either the exact BBC (system A) or the
first-order approximate BBC (system B). A detailed study was
performed for the particular case where the ratio of corru-
gation amplitude to water depth δ = d/h varies in the range
[0.05, 0.4], using the same settings as in Ref. [4] for the other
geometrical parameters. When the corrugation amplitude is
small, for example δ = 0.05, predictions from the ALAS
are in good agreement with the numerical simulations. For
larger values, however, we observe that the resonance does not
manifest under the F-P resonance condition. Based on further
analyses of the cases with finite corrugation amplitudes δ =
0.2 and 0.4, the following conclusions can be drawn.

(1) If the finite amplitude of bottom corrugations is taken
into account, F-P resonance does not occur for incident
waves with a wave number equal to the target resonant wave
number kB = kb/2. No matter whether the exact BBC or the
approximate BBC is considered, the simulation results show
that waves are almost fully reflected by the finite-amplitude
bottom corrugations (RFP → 1 before the first patch) and
that standing waves are still formed in the resonator but
the enhancement factors are not comparable to the values
predicted by the ALAS. For example, for the case δ = 0.2, in
the ALAS, the reflection coefficient RFP

ALAS ≈ 0.462 and the
enhancement factor EFP

ALAS ≈ 5.786, however, RFP
A ≈ 0.956

and EFP
A ≈ 1.711 are observed in the simulation with system

A. Clearly, F-P resonance is not realized in the simulations of
system A or system B at the expected wave number kB when
δ > 0.1.

(2) By slightly decreasing the wave number of incident
waves, however, a situation close to the predicted F-P reso-
nance can be reached with systems A and B. Even for the case
with the highest corrugation amplitude studied in the present
work, δ = 0.4, the resonance can be recovered for the incident
wave number k = 0.979 313kB. In this case, the reflection
coefficient and enhancement factor from the numerical sim-
ulation with system A are RFP

A ≈ 0.687 and EFP
A ≈ 26.918,

respectively. As shown in Fig. 12, the agreement between the
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ALAS prediction and the simulation result is good, with a
relative error of enhancement factor of only 2% compared to
the ALAS value, EFP

ALAS ≈ 27.579. This demonstrates that F-P
resonance can be effectively realized for a finite corrugation
amplitude within the linear wave theory, but only for specifi-
cally detuned incident wave numbers.

(3) In line with the previous conclusion, it appears that
the range of incident wave numbers prone to F-P resonance
is extremely narrow for high corrugation amplitudes. As
illustrated in Fig. 9 for δ = 0.2 and Fig. 11 for δ = 0.4, as
soon as the incident wave number departs from the optimal
value, even slightly, the resonance can no longer develop. The
incident waves are then strongly reflected by the two-patch
system. The deviation of the optimal wave number from the
F-P resonance condition k = kB increases with the amplitude
of bottom corrugations. This extreme narrowness of the reso-
nance range makes the possibility of realizing such resonance
for practical coastal applications questionable, or, at least,
attainable for only very particular incident wave conditions,
all the more so as the required duration to reach maximum
amplification of waves in the resonator area was observed to
increase roughly exponentially as a function of δ.

(4) The fact that the resonant wave number cannot be
accurately predicted by the ALAS for finite-amplitude bottom
corrugations is mainly related to the implied assumption
of the ALAS that the wave number maintains a constant
value over the patch of corrugations. In fact, when waves
propagate over a patch of corrugations, the effective wave
number is slightly higher over this area, as highlighted by
the analysis in [13] based on a third-order expansion of the
linear dispersion relation. In the numerical model used here,
which can cope with arbitrary bottom shapes, the variations

of local wave properties due to a variable bottom are fully
accounted for, even in the linear framework. This explains the
difference between the numerical model results and the ALAS
for prediction of the wave-number downshift. Equation (18)
can be used to provide a primary estimate of the wave-number
downshift.

(5) On the other hand, the approximation related to the
first-order expansion of the BBC (i.e., considering system B
instead of system A) appears to have less influence. At least
for the range of bottom corrugation amplitudes δ ∈ [0.05, 0.2]
considered in the present study, the differences in the results
for system A vs system B are quite limited.

In the near-future, the effects associated with the assump-
tion of small-amplitude surface waves will be studied by using
the fully nonlinear wave model, (14), and applying the fully
nonlinear version of WHISPERS-3D. Finite-amplitude incident
waves will introduce higher-order modes due to wave-bottom
interactions. Furthermore, the dispersion relation will be af-
fected by the finite amplitude of waves, which will certainly
influence the occurrence of F-P resonance, as we have shown
in this work that the F-P condition is very sensitive to the
effective wave number over the patches of corrugations.
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Chap. 2: Finite-amplitude bottom ripple effects on Bragg/Fabry-Perot

resonance conditions



Chapter 3

Supplementary materials: further
investigation of wave-number
downshift phenomenon within
seven linear wave models

In Chapter 2, the effect of finite ripple amplitude on the F-P resonance has been dis-
cussed. Here, we further analyze the wave-number downshift phenomenon within
various linear wave models. In line with the work presented in Chapter 2, the
linear wave models of systems A, B and C are included in the present study. But
they are solved here in a semi-analytical manner, ensuring both efficiency and
convergence of the simulations. Then, an intermediate case between the exact
BBC and first-order approximated BBC, called the second-order approximation of
BBC, is implemented in the linear version of Whispers3D. This system with the
second-order approximated BBC is also solved semi-analytically. Furthermore,
three versions of the mild-slope equation family are also included and compared,
namely the classical elliptic MSE (Berkhoff, 1972, 1976), the EMSE (Kirby, 1986a)
and the MMSE Chamberlain and Porter (1995). As it is discussed in Chapter 1,
the three mild-slope equations are valid for different orders of mild bottom slope
magnitude. From a theoretical perspective, the ranking order of the model validity
range is MMSE > EMSE > MSE. It is believed that the differences among these
models mainly result from the BBC approximations. The comparative analysis of
the various models considered here allows gaining insight into the bottom effects
on the wave-number downshift for the F-P resonance phenomenon.
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downshift phenomenon within seven linear wave models

3.1 Presentation of the seven linear wave models for the
study of wave-number downshift

Considering small-amplitude long-crested plane waves, the full potential theory
of linear waves is composed of Eqs. (I.2.1) to (I.2.4) with the nonlinear terms in
the DFSBC (Eq. (I.2.2)) and the KFSBC (Eq. (I.2.3)) ignored. Within the small-
amplitude wave assumption, the FSBCs are applied at the undisturbed water
surface z = 0 instead of z = η(x, t).

For the F-P resonance case, the water depth is considered to be of the form
h̃(x) = h−δ(x), where h is the (constant) mean water depth and δ(x) is the shape
of ripples superimposed on the flat bottom:

δ(x) =





d sin [kb(x− xs1)− θ1], x ∈ [xs1, x
e
1],

d sin [kb(x− xs2)− θ2], x ∈ [xs2, x
e
2],

0, elsewhere.
(II.3.1)

where xsj and xej represent the start and the end of patch of ripples j (j = 1, 2).
kb and Lb = 2π/kb denote the wave-number and wavelength of the bottom corru-
gations, respectively. Each patch j is composed of an integer number Nj ∈ N of
ripples, so that its length is Lj = xej−xsj = NjLb. θj is the initial phase of the j-th
patch (consider either θj = 0 or π for a continuous bottom shape). The relative
ripple amplitude is characterized by the ratio ε = d/h. The resonator length is
denoted by Lr = xs2 − xe1.

With the bottom profile h̃(x) = h− δ(x) inserted into the potential linear wave
theory in Eqs. (I.2.1) to (I.2.4), we obtain:





φxx + φzz = 0, −h̃(x) ≤ z ≤ 0, (II.3.2)

φtt + gφz = 0, on z = 0, (II.3.3)

φz − δxφx = 0, on z = −h̃(x). (II.3.4)

The free surface elevation η(x, t) is related to the velocity potential by:

η(x, t) = −1

g
φt(x, z = 0, t). (II.3.5)

In the following, seven linear wave models are introduced. The governing equa-
tions for the bulk of domain (Eq. (II.3.2)) and on the free surface (Eq. (II.3.3)) are
shared by all models. The models are distinguished according to the assumptions
introduced for the BBC (Eq. (II.3.4)).
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3.1.1 Linear Whispers3D modeling: Laplace equation with three BBCs
at different orders

a/ Model I: Laplace equation with exact BBC

As a reference linear solution, the full potential linear wave problem composed
of Eq. (II.3.2) to Eq. (II.3.4) is solved by the linear version of Whispers3D. The
properties of the linear version Whispers3D have been detailed in Benoit et al.
(2017). We stress that the BBC considered in Model I is Eq. (II.3.4):

φz = δxφx, on z = −h̃(x), (II.3.6)

which has no limitation on the bottom gradient or curvature. Furthermore, the
exact BBC is applied on the ’actual’ vertical elevation, i.e. z = −h+ δ.

b/ Model II: Laplace equation with first-order approximate BBC

In Model II, an additional assumption on the magnitude of bottom variations is
introduced, requiring ε = |δ|/h � 1. In such a case, the water depth is formally

written as h̃(x) = h− εδ(x). Then, based on a Taylor expansion of the exact BBC
Eq. (II.3.4) around the mean water depth z = −h, the first-order approximate
BBC is obtained, with the terms O(ε) ignored:

φz = (δφx)x , z = −h. (II.3.7)

Note that the first-order approximated BBC is applied on the constant (undis-
turbed) elevation z = −h. This is the same BBC used by Mei (1985) and Couston
et al. (2015) to derive their analytical solutions.

c/ Model III: Laplace equation with second-order BBC

Both the exact and first-order approximated BBC have been tested in Zhang and
Benoit (2019) (referred to as system A and system B in that paper), showing
different degrees of wave-number downshift. In addition, here we have the second-
order approximation of the exact BBC based on Taylor expansion tested:

φz = (δφx)x +
1

2

(
δ2φxz

)
x
, z = −h. (II.3.8)

This approximate BBC is again applied at the mean bottom depth z = −h. This is
the BBC adopted in the derivation of analytical theory for Class II Bragg resonance
by Rey et al. (1996).
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3.1.2 Mild-slope equations: three formulations

a/ Model IV: Classical mild-slope equation by Berkhoff (1972)

Berkhoff (1972, 1976) introduced the classical MSE to describe the combined ef-
fects of refraction and diffraction for waves propagating over variable water depth.
Smith and Sprinks (1975) obtained the same MSE using a more succinct deriva-
tion. As its name suggests, the MSE assumes a small bottom slope hx � kh (if
h is slowly varying). The commonly accepted limit of validity of the MSE for the
bottom gradient is 1 : 3 (Booij, 1983). The mild-slope approximation also involves
applying an averaging procedure to the vertical structure of the wave field and
integrating the depth variable out of the solution. To this end, it is assumed that
the velocity potential may be expressed as:

φ(x, z, t) = F (h̃, z)Φ(x)e−iωt (II.3.9)

in which the vertical dependence of the potential

F (h̃, z) =
cosh k(h̃+ z)

cosh kh̃
(II.3.10)

is assumed to be the same as the solution obtained for progressive linear waves
in uniform water depth (in which case this expression corresponds to the exact
solution of the problem). Here, however, k is the local wave-number obtained

from the linear dispersion relation ω2 = gk tanh (kh̃), considering the angular

frequency ω and the local water depth h̃.
Although it has already been pointed out that the classical MSE fails in de-

scribing Bragg scattering problem with ripple bed profiles, the classical MSE is
included here for completeness and comparison purposes. The formulation of the
classical MSE reads:

(CCgΦx)x + k2CCgΦ = 0, (II.3.11)

where C = ω/k and Cg = ∂ω/∂k denote the phase celerity and the group celerity,

respectively evaluated at the local water depth h̃. We note that Eq. (II.3.11) can
be reformulated equivalently as:

Φxx +
(CCg)x
CCg

Φx + k2Φ = 0, (II.3.12)

where it can be shown that:

(CCg)x
CCg

= G(kh̃)
h̃x

h̃
. (II.3.13)

The function G depends on the relative water depth kh̃ only, and can be calculated
analytically as:

G(kh̃) =
kh̃

τ + kh̃(1− τ 2)

[
1− 3τ 2 +

2τ

τ + kh̃(1− τ 2)

]
, (II.3.14)
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denoting τ = tanh(kh̃). With the formulation (II.3.12-II.3.13), the slope of the

bottom h̃x appears explicitly in the MSE.

b/ Model V: Extended mild-slope equation by Kirby (1986a)

Kirby (1986a) extended the mild-slope equation by considering a bed consisting
of ripples superimposed on an otherwise slowly varying ’mean’ depth. To better
illustrate this model, here we temporarily assume the bottom profile h̃ can be
considered as the sum of slow variations h(x) and rapid undulations δ(x) about

the ’mean’ level h(x), i.e. h̃(x) = h(x) − δ(x). Note that in the F-P resonance
study, h is not a varying but a constant mean water depth. Apart from the
assumptions of the classical MSE, further assumptions of EMSE are introduced
for ripple amplitude. The wavelengths of ripples are comparable to the order of
surface wavelength, but ripple amplitudes are of a smaller scale. Namely, it is
assumed O(hx/kh) ≈ O(kδ)� 1.

Based on this assumption, the formulation of EMSE for the undulated bottom
with slowly varying mean depth h(x) is (Kirby, 1986a):

(
C̄C̄gΦx

)
x

+ k̄2C̄C̄gΦ− g sech2
(
k̄h
)

(δΦx)x = 0, (II.3.15)

where the terms proportional to h2
x and δhx have been neglected. Note that k̄, C̄,

C̄g correspond to ’mean’ values, computed using the slowly varying mean water
depth h(x). The bars on top of k, C and Cg are used to distinguish these variables

from the ones computed with local water depth h̃. The trial function of the velocity
potential φ(x, z, t) is also slightly different from Eq. (II.3.9), considering the ’mean’
water depth h only:

φ(x, z, t) =
cosh k̄(h+ z)

cosh k̄h
Φ(x)e−iωt. (II.3.16)

If the last term including δ in Eq. (II.3.15) is neglected, then Eq. (II.3.15)
reduces to the classical MSE Eq. (II.3.11) without bottom undulations.

When applying this equation to Bragg and F-P resonance cases where the mean
water depth h is constant, the values of k̄, C̄, C̄g become uniform in space. In this
case, the EMSE Eq. (II.3.15) reduces to:

Φxx + k̄2Φ− g sech2
(
k̄h
)

C̄C̄g
(δΦx)x = 0, (II.3.17)

c/ Model VI: Modified mild-slope equation by Chamberlain and Porter (1995)

Chamberlain and Porter (1995) proposed a more general MMSE formulation com-
pared to the classical MSE (Berkhoff, 1972, 1976) and EMSE (Kirby, 1986a). One
of the two mild-slope equation assumptions was released: the approximation on
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the trial form of velocity potential in Eq. (II.3.10) remains, whereas the assump-
tion on the bottom slope hx � kh is released. The formulation of MMSE reads:

Φxx +
(CCg)x
CCg

Φx +

(
k2 +

gr(h̃)

CCg

)
= 0, (II.3.18)

in which

u0(h̃) =

∫ 0

−h̃
F 2(h̃, z)dz =

1

2k

(
1 +

2q

sinh 2q

)
tanh q =

CCg
g

, (II.3.19)

where q = kh̃ is used for brevity. The additional term r(h̃) is given by:

r(h̃) = u1(h̃)h̃xx + u2(h̃)h̃2
x, (II.3.20)

This term could be neglected on the basis of the mild slope approximation hx �
kh and then Eq. (II.3.18) reduces to the classical MSE Eq. (II.3.15). Through

the term r(h̃) the MMSE permits to consider second-order effects of the bottom
variations, involving a term proportional to the curvature of the bottom and a
term proportional to the square of the bottom slope. It was derived with different
approaches by various authors (see e.g. Massel, 1993; Chamberlain and Porter,
1995; Suh et al., 1997; Chandrasekera and Cheung, 1997). These approaches,
resulting in the same formulation as Eq. (II.3.18), have different (but equivalent)
expressions of u1 and u2. In this work, we follow the formulation of Chamberlain
and Porter (1995):





u1(h̃) =
sech2 q

4 (2q + sinh (2q))
[sinh (2q)− 2q cosh (2q)] , (II.3.21)

u2(h̃) =
k sech2 q

12 (2q + sinh (2q))3

[
16q4 + 32q3 sinh (2q)− 9 sinh (2q) sinh (4q)

+12q
(
q + sinh (2q)

(
cosh2 (2q)− 2 cosh (2q) + 3

))]
, (II.3.22)

It is shown that, with the corresponding approximations adopted, Eq. (II.3.18)
reduces to Eq. (II.3.11) or Eq. (II.3.15) as special cases. As in the MSE, the
coefficients in the MMSE, k, C, Cg, r are evaluated using the local water depth

h̃. It has been shown by Chamberlain and Porter (1995) that only the models
considering local wave-number at the actual depth (i.e. models I–IV and VI here)
could detect significant second-order resonance.

3.1.3 Model VII: Asymptotic linear analytical solution by Couston et
al. (2015)

The asymptotic linear theories of both Mei (1985) and Couston et al. (2015) are
built on the basis of model II and concentrate on the reflection and transmis-
sion processes in the vicinity of the resonance. For the bathymetry defined in
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Eq. (II.3.1), the Bragg resonance manifests when the incident wave-number is kB =
kb/2 (to be clear, the subscript ’B’ stands for ’Bragg’ and ’b’ for ’bottom’). The

Bragg resonance condition in frequency is ω = ωB with ωB =
√
gkB tanh(kBh).

Assume the monochromatic incident water waves coming from x = −∞ with a
detuned wave-number k = kB + κ (assuming κ� kb), we know the corresponding
detuned frequency is ω = ωB + Ω, where Ω = Cgκ and Cg is the group celerity at
the Bragg wave-number:

Cg =
1

2

(
1 +

2kBh

sinh 2kBh

)
ωB
kB
. (II.3.23)

Due to the wave-bottom interaction, the amplitude is modulated in space. The
first-order solution of model II over undulated bottom patch j considering slow
spatial modulation of the incident and reflected wave amplitudes is expressed as
follows:

φ = f(z)[Aj(x′, t′)e−ikx + Bj(x′, t′)eikx]eiωt + c.c., (II.3.24)

where c.c. denotes the complex conjugate, i =
√
−1, x′ and t′ are the slow variables.

Aj, Bj denote the slowly varying complex amplitudes of the incident and reflected
waves respectively. The reflected wave amplitude is at the same order as the
incident wave amplitude. Then the time variation can be written explicitly Aj =
Aj(x

′)eiΩt
′
, Bj = Bj(x

′)eiΩt
′
. f(z) is the vertical structure of the velocity potential:

f(z) = − ig
2ω

cosh k(h+ z)

cosh kh
= − ig

2ω
F (h, z). (II.3.25)

The governing equations over the patch j consist of two coupled parabolic
equations for forward and backward-scattered waves:

iΩAj + Cg
∂A
∂x′

= −Ωce
iθjBj, (II.3.26a)

iΩBj − Cg
∂B
∂x′

= Ωce
−iθjAj, (II.3.26b)

where

Ωc =
ωBkBd

2 sinh 2kBh
. (II.3.26c)

It can be seen that for the flat bottom parts (where δ(x) = 0), Ωc = 0: the
incident and reflected waves propagate at the speed of group velocity without
coupling. If only one patch j is considered, the model returns to Mei’s theory
for Bragg resonance (Mei, 1985). The complex Bragg reflection and transmission
coefficients are expressed as functions of the normalized detuning frequency Ω/Ωc:
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RB
j (P)|xsj =

B(xsj , t
′)

A(xsj , t
′)

=
e−iθj sinhSjQ

Q coshSjQ+ iP sinhSjQ
, (II.3.27a)

T Bj (P)|xej =
A(xej , t

′)

A(xsj , t
′)

=
Q

Q coshSjQ+ iP sinhSjQ
(II.3.27b)

where

P = Ω/Ωc, Q =
√

1− P2, Sj =
ΩcLj
Cg

. (II.3.27c)

The normalized amplitude and phase shift of reflected waves are RB
j = |Rj| and

αBj = Arg (Rj), the normalized amplitude of the transmitted waves is TBj = |Tj|.
If two patches are considered, and the system is solvable thanks to the conti-

nuity of the free surface elevation over the resonator area, i.e. the amplitude of
the incident waves of the second patch equals that of the transmitted wave of the
first patch. Thus, the reflection and transmission coefficients for F-P resonance
are expressed as:

RFP |xs1 =

[
(RB

1 )2 + (RB
2 )2 − 2RB

1 R
B
2 cos γ

1 + (RB
1 R

B
2 )2 − 2RB

1 R
B
2 cos γ

]1/2

, (II.3.28a)

T FP |xe2 =

{ [
1− (RB

1 )2
] [

1− (RB
2 )2
]

1 + (RB
1 R

B
2 )2 − 2RB

1 R
B
2 cos γ

}1/2

, (II.3.28b)

where
γ = π − 2θ1 + 2kBLr − αB1 − αB2 . (II.3.29)

In addition to Bragg resonance condition, the wave energy will be trapped
within the resonator when γ = 2mπ (m ∈ N). Replacing γ in Eq. (II.3.29) results
in a condition on the possible values of the resonator length when k = kB

kbL
(m)
r = (2m+ 1)π + θ1 + θ2, with m ∈ N. (II.3.30)

This is denoted as F-P resonance condition in which the standing waves with high-
est achievable amplitude are expected between two patches. The non-dimensional
amplitude of the standing waves within the resonator is defined as enhancement
factor EFP and can be computed as follows (Couston et al., 2015):

EFP =
|A(xe1, t

′)|+ |B(xe1, t
′)|

|A(xs1, t
′)| =

(
1 +RB

2

) T FP
TB2

. (II.3.31)

In the following, we refer to the reflection and transmission coefficients and the
enhancement factor RFP , T FP and EFP as Asymptotic Linear Analytical Solution
(ALAS) of the F-P resonance.
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3.2 Numerical implementation of Whispers3D and mild-
slope models

3.2.1 Numerical implementation of models I, II and III (in Whispers3D)

In the Zakharov formulation of the water wave problem, we march in time the
free-surface elevation and the free-surface potential. For that, we need to solve
a Laplace equation on the velocity potential within the fluid domain given the
current value of the free surface elevation (which defines the upper boundary of
the fluid domain) and the associated value of the free surface potential, used as
a Dirichlet condition on the potential on that surface. This is referred to as a
Laplace BVP. As it has been outlined in Part I Subsection (3.2), the approach
used in Whispers3D involves three steps for solving the Laplace BVP problem:

• a change of variables for the vertical coordinate s defined in Eq. (I.3.5);

• approximation of the velocity potential ϕ(x, s, t) ≈ ϕNT
(x, s, t) using Cheby-

shev polynomials of the first kind to a given order NT shown in Equa-
tion (I.3.6);

• application of the Chebyshev-Tau method in the vertical.

Once the an coefficients at each location in space are solved, the vertical velocity
w̃ can be computed, which allows marching the free surface variables (η and φ̃) in
time.

This procedure of solving the DtN problem was used in Zhang and Benoit
(2019). We found that, with increasing relative ripple amplitudes ε, the physical
time to be simulated to reach an established periodic regime increases markedly,
which means the duration of the simulations should be extended correspondingly.
For example, in the largest ripple amplitude case (ε = 0.4) of Zhang and Benoit
(2019), it took nearly 10,000 wave periods for the enhancement factor to achieve
a (quasi-) steady level. In order to avoid unconverged results and to drastically
reduce the computational time, a method to solve the BVP in a semi-analytical
manner was developed recently, and is briefly presented hereafter.

a/ Governing equations of the semi-analytical approach

Here, a more detailed description is given to explain the procedure used to obtain
the so-called semi-analytical solution in the linearized version of Whispers3D. It
is assumed that the wave induced motion of the fluid is purely harmonic in time
at the steady state, which allows writing the solution as:

φ(x, z, t) = φ̂(x, z)e−iωt, (II.3.32)

where the hat symbol denotes the time-invariant semi-analytical solution, and
ω = 2π/T is the angular frequency of wave oscillation in time.



54
Chap. 3: Supplementary materials: further investigation of wave-number

downshift phenomenon within seven linear wave models

In the linear wave model where the nonlinear terms are ignored, such an ansatz
permits to eliminate the time dependence in all the governing equations. The
Laplace equation and the FSBC given in Eq. (II.3.2) and Eq. (II.3.3) are now
formulated as:

{
φ̂xx + φ̂zz = 0, −h̃(x) ≤ z ≤ 0, (II.3.33)

gφ̂z − ω2φ̂ = 0, on z = 0. (II.3.34)

At the two ends of the computational domain, instead of the relaxation zones
adopted in Zhang and Benoit (2019), two time-invariant radiation-type lateral
boundary conditions are applied:

{
φ̂x + ikφ̂ = 2ikφ̂I , on x = xbeg (II.3.35)

φ̂x − ikφ̂ = 0, on x = xend, (II.3.36)

where xbeg and xend denote the upwave and downwave limits of the computational
domain, respectively. The incident wave potential is taken as

φI(x, z, t) = φ̂I(x, z)e
−iωt = aIF (h, z)eikxe−iωt, (II.3.37)

where aI represents its (complex) amplitude (which can be chosen arbitrary in a
linear wave approach).

With the Eqs. (II.3.33) to (II.3.36), supplemented by one of the BBCs intro-
duced in Eqs. (II.3.6) to (II.3.8), the semi-analytical solution of models I, II, III
can be obtained solving the linearized DtN problem once far all, and thus avoiding
time integration of the Zakharov equations.

The first step of solving this system is to convert the governing equations from
the physical (x, z) domain to the (x, s) domain. It should be noticed that the
approximated BBCs (in models II and III) differ from the exact BBC (in model I)
in the sense that they are applied on the constant mean water depth. Therefore,
the transformation of the vertical variable is different. It is thus appropriate to
introduce the implementation of model I and model II/III separately.

b/ Numerical implementation of model I

For model I with the exact BBC applied on z = −h̃(x), the expressions of s(x, z)
and its derivatives are:





s = 2z/h̃+ 1,

sx = (1− s) h̃x/h̃, sxx = (1− s)
(
h̃h̃xx − 2h̃2

x

)
/h̃2,

sz = 2/h̃, szz = 0.

(II.3.38)
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With the change of variables, we have ϕ(x, s) ≡ φ̂(x, z). Using the chain rule,
the governing equations are formulated in terms of ϕ(x, s):

ϕxx + 2ϕxssx + ϕss
(
s2
x + s2

z

)
+ ϕssxx = 0, − 1 ≤ s ≤ 1, (II.3.39)

gϕssz − ω2ϕ = 0, on s = 1, (II.3.40)

ϕx + ϕssx + ikϕ = 2ikϕI , at x = xbeg, −1 ≤ s ≤ 1,
(II.3.41)

ϕx + ϕssx − ikϕ = 0, at x = xend, −1 ≤ s ≤ 1,
(II.3.42)

ϕs (sz − δxsx)− δxϕx = 0, on s = −1, (II.3.43)

It is assumed that the wave bottom is locally flat at both ends of the domain,
so that sx(xbeg) = 0 in Eq. (II.3.41) and sx(xend) = 0 in Eq. (II.3.42).

Then, the next step is to approximate the vertical velocity potential by using
a series of Chebyshev polynomials (denoted as Tn, with n ∈ N being the degree of
the polynomial). By selecting the NT + 1 first polynomials, the velocity potential
in the vertical direction is approximated as:

φ̂(x, z) ≡ ϕ(x, s) ≈ ϕNT
(x, s) =

NT∑

n=0

an(x)Tn(s). (II.3.44)

The expression and the properties of Chebyshev polynomials of the first kind can
be easily found in textbooks or on the internet. Here, the following properties will
be used: 




Tn(cos θ) = cos (nθ),

Tn(±1) = (±1)n

dpTn
dsp

∣∣∣
s=±1

= (±1)n+p

p−1∏

k=0

n2 − k2

2k + 1
.

(II.3.45)

With the approximation of the potential in Eq. (II.3.44) and the terms related
to s in Eq. (II.3.38) inserted, then the known values of Tn given at fixed boundaries
Eq. (II.3.45), the governing equations of model I are reformulated.

The Laplace equation (Eq. (II.3.39)) in the fluid domain is:

NT∑

n=0

an,xx +
2 (s− 1) δx
h− δ

NT∑

n=0

an,xTn,s+

NT∑

n=0

anTn,s
(s− 1)

h− δ

(
2δ2
x

h− δ + δxx

)

+
(s− 1)2 δ2

x + 4

(h− δ)2

NT∑

n=0

anTn,ss = 0, −1 ≤ s ≤ 1, (II.3.46)
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The free surface boundary condition (Eq. (II.3.40)) results in:

NT∑

n=0

an

(
2n2 − ω2 (h− δ)

g

)
= 0, (II.3.47)

The lateral boundary conditions applied at the upwave limit (Eq. (II.3.41)) is:

NT∑

n=0

(an,x + ikan)Tn(s) = 2ikaIF (h, s)eikxbeg , at x = xbeg, −1 ≤ s ≤ 1, (II.3.48)

Similarly, the radiation condition applied at the downwave limit (Eq. (II.3.42)) is:

NT∑

n=0

(an,x − ikan)Tn(s) = 0, at x = xend, −1 ≤ s ≤ 1, (II.3.49)

The exact BBC applied on the bottom (Eq. (II.3.43)) is:

2 (1 + δ2
x)

h− δ

NT∑

n=0

(−1)n+1n2an − δx
NT∑

n=0

(−1)nan,x = 0. (II.3.50)

The last step is to apply the Chebyshev-Tau method to the equations involving
a vertical dependence, namely the Laplace equation (Eq. (II.3.46)), and the two
lateral boundary conditions (Eq. (II.3.48) and (II.3.49)). To that end, we use the
operator

< f >p≡
2

πCp
< f, Tp >, with

{
C0 = 2,
Cp = 1 for p > 0,

(II.3.51)

basing on the inner product

< f, g >≡
∫ +1

−1

f(s)g(s)√
1− s2

ds, (II.3.52)

This operator is applied to Eq. (II.3.46) with p ranging from 0 to NT − 2 at all
interior nodes xj of the domain (i.e. for j ranging from 2 to npx− 1). This results
in NT−1 linear equations on the an coefficients at each node xj, supplemented with
the FSBC (Eq. II.3.47) and the BBC (Eq. II.3.50), leading thus to NT+1 equations.
This operator is also applied to Eqs. (II.3.48) and (II.3.49) with p ranging from 0 to
NT , leading to NT +1 equations on the an coefficients at x1 = xbeg and xnpx = xend.
Note that the terms < F (h, s) >p at x = xbeg can be computed analytically, as
explained in Benoit et al. (2017) (see Eq. (71)).
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c/ Numerical implementation of model II/III

For models II and III, the approximate BBCs are applied on the constant elevation
z = −h, so the expressions of s(x, z) and its derivatives are different from exact
BBC case, and become:

s = 2z/h+ 1, sz = 2/h, sx = sxx = sxz = szz = sxxz = 0. (II.3.53)

Omitting intermediate manipulations, the system of governing equations ex-
pressed with the approximated potential reads:

NT∑

n=0

(
an,xxTn +

4

h2
anTn,ss

)
= 0, − 1 ≤ s ≤ 1, (II.3.54)

NT∑

n=0

an

(
2n2 − ω2h

g

)
= 0, on s = 1, (II.3.55)

NT∑

n=0

(an,x + ikan)Tn = 2ikaIF (h, s)eikxbeg , at x = xbeg, −1 ≤ s ≤ 1

(II.3.56)
NT∑

n=0

(an,x − ikan)Tn = 0, at x = xend, −1 ≤ s ≤ 1,

(II.3.57)

and with one of the BBCs applied on s = −1 in the following:

NT∑

n=0

(−1)n−1n2

[
2− 4δ

3h

(
n2 − 1

)]
an −

NT∑

n=0

(−1)nδxhan,x = 0, for model II,

(II.3.58)
NT∑

n=0

(−1)n−1n2

[
2− 4δ (n2 − 1)

3h
+

4δ2 (n2 − 1) (n2 − 4)

15h2

]
an

−
NT∑

n=0

(−1)nδx
(
h− 2δn2

)
an,x = 0, for model III,

(II.3.59)

where the equality of φxx = −φzz was used to avoid evaluating second-order spatial
derivative of an(x). It is clear that the approximated BBC in model III reduces to
that in model II when the second-order terms in δ are ignored.

In models I to III, horizontal derivatives are approximated using finite differ-
ence schemes applied on centered stencils of customized size with Nsten (choosing
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from 3, 5, 7, 9) nodes on a regular grid. By far, the problem has been discretized
in the vertical direction using projection on a polynomial basis and in the hori-
zontal direction using a finite difference approach. Eventually, the semi-analytical
solution is established efficiently by solving a system of (NT + 1)× npx (complex)
linear equations on the an(xj) coefficients, for j = 1, ..., npx and n = 0, ..., NT .
This is currently done using a L-U solver in the code.

3.2.2 Numerical implementation of mild-slope equations (in Premise)

The numerical implementation of the mild-slope equations (models IV-VI) is more
straightforward compared to the Whispers3D semi-analytical models (models I-
III). Since the elliptic mild-slope equations are simplifications from the full po-
tential linear theory, the Laplace equation no longer needs to be solved. The
mild-slope equations are solved by using a code called PREMISE (Program Re-
solving the Elliptic MIld Slope Equation), developed by M. Benoit. It is briefly
introduced here.

a/ Numerical discretization and solution of the mild-slope models

We recall the F-P bottom profile of the present study h̃ = h − δ, with δ defined
in Eq. (II.3.1). Due to the similarity of the various equations in models IV-VI,
a general form of an elliptic equation for the interior nodes of the computational
domain can be written as:

D(x)Φxx(x) + A(x)Φx(x) +B(x)Φ(x) = 0, (II.3.60)

where the coefficients D(x), A(x), B(x) differ from one model to another. The
coefficients in model IV (MSE, Eq. (II.3.11)) read:

D(x) = 1, A(x) = (CCg)x/CCg, B(x) = k2. (II.3.61)

The coefficients in model V (EMSE, Eq. (II.3.17)) are:

D(x) =

(
1− gδ

C̄C̄g cosh2 k̄h

)
, A(x) = − gδx

C̄C̄g cosh2 k̄h
, B(x) = k̄2. (II.3.62)

The coefficients in model VI (MMSE, Eq. (II.3.18)) read:

D(x) = 1, A(x) =
(CCg)x
CCg

, B(x) = k2 +
gr(h̃)

CCg
, (II.3.63)

where r is defined in Eq. (II.3.20). The coefficients in models IV and VI are

evaluated at the actual bottom elevation h̃, whereas in model V, the coefficients
which are evaluated using the constant mean depth h are marked with overbar
signs. The nodes at two limits of the computational domain are governed by the
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same radiation conditions (Eqs. (II.3.41) and (II.3.42)), as is used in Whispers3D
semi-analytical model. Particularly, they are applied at the first two nodes nearest
to the lateral boundaries.

The spatial derivatives are approximated using 3-node centered finite difference
schemes, which leads to a tridiagonal system of linear equations on the nodal values
of Φ. The linear system is complex-valued due to the lateral boundary conditions.
It is solved efficiently with the so-called Thomas double-sweep algorithm.

b/ Treatment of bottom slope discontinuity

One particular aspect deserves additional discussion, namely the treatment of
nodes where the bed slope is discontinuous (the bottom elevation itself being as-
sumed to remain continuous in all cases considered here). Indeed, it was shown by
Porter and Staziker (1995) that the smooth approximations to the free surface ele-
vation obtained by using the long-standing mild-slope equation are not consistent
with the continuity of mass flow at locations where the bed slope is discontinuous.
In the F-P bathymetry setup, four connecting points between the flat bottom re-
gions and two corrugated regions (at x = xs1, x

e
1, x

s
2 and xe2) exhibit discontinuous

bottom gradient (as it is easily seen from the analytical expression Eq. (II.3.1)).
Four options have been implemented and compared in Premise for treating the

discontinuity of h̃x and h̃xx. They can be applied at any position x = xd where
the bottom slope is discontinuous, this being detected by comparing the left and
right first and second derivatives of h̃x provided as input data to the code at each
node position, e.g. h̃−x and h̃+

x for the first derivative (bottom slope):

i). No specific treatment is applied. Starting from the vector of water depth

h̃ at nodal positions, the first- and second-order derivatives h̃x and h̃xx are
evaluated directly by using 3-point centered finite-difference schemes.

ii). The slope is evaluated as h̃x = (h̃+
x + h̃−x )/2 at all nodes, resulting in the

input value where the slope is continuous (i.e. h̃+
x = h̃−x ) and an average of

the left and right slopes where it is discontinuous (with h̃+
x = lim

x→x+d
h̃x(x) and

h̃−x = lim
x→x−d

h̃x(x)). Where the slope is discontinuous, the second derivative

(bottom curvature) is estimated as h̃xx = (h̃+
x − h̃−x )/∆x. Otherwise, h̃xx =

(h̃+
xx + h̃−xx)/2 is used.

iii). A local polynomial smoothing is adopted to several nodes on each side of xd.
In the present study, three nodes, i.e.. the discontinuous node of hx and the
previous one and the following one, are affected. A fifth-order polynomial is
used to approximate the local bathymetry, whose coefficients are obtained by
matching the polynomial with the values of h̃, h̃x and h̃xx of the two ending
points of the approximated bottom.
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iv). The matching condition proposed by Porter and Staziker (1995) is adopted.
This condition, which is referred to as the ’mass-conserving matching condi-
tion’, ensures the continuity of mass flow at x = xd, thus significantly im-
proving the accuracy of the mild-slope type equations at discontinuity nodes.
In this case the mild-slope equation is not written in a discretized form at
xd. Instead, the mass-conserving condition applied at x = xd requires:

Φ(x−d ) = Φ(x+
d ), (II.3.64)

u1(xd)Φ(xd)
[
h̃x(x

+
d )− h̃x(x−d )

]
+u0(xd)

[
Φx(x

+
d )− Φx(x

−
d )
]

= 0, (II.3.65)

where u0 and u1 are defined in Eq. (II.3.19) and Eq. (II.3.21), respectively.

With this condition, the value of h̃xx at the discontinuous point of h̃x is no
longer used.

Note the same matching condition is used in models IV and VI following the
recommendation of Porter and Staziker (1995). Currently, this option (iv) is
not yet available in model V since additional analysis and tests of its validity
are ongoing.

3.3 Convergence and validation tests of numerical models

In this section, we present a series of simulations designed to validate the numer-
ical codes (both Premise and the semi-analytical versions of Whispers3D) and to
study the convergence of their results with increasing the spatial resolutions (i.e.
decreasing the grid size ∆x for both codes, and increasing the value of NT and
Nsten for Whispers3D). First, in 3.3.1, the semi-analytical versions of Whispers3D
(models I-III) is considered on the F-P resonance case setup. Then, in 3.3.2, the
Premise solver for the mild-slope equation models (models IV-VI) is validated by
simulating the interaction of waves with a submerged sill of parabolic shape. The
convergence tests of the numerical parameters in both solvers have been conducted
for F-P bathymetry setup.

3.3.1 Whispers3D semi-analytical models: convergence and validation
tests

a/ Description of the simulated case

For the purpose of testing convergence and validation of the models I-III, we
simulate the F-P resonance on the basis of the case shown in the figure 6 of Couston
et al. (2015). The original setup is: N1 = 11 ripples, N2 = 15 ripples, θ1 = θ2 = 0,
kbh = 1.64, ε = d/h = 0.1 and resonator length Lr/Lb = 5.5 (corresponding
to m = 5 in Eq. (II.3.30)). The notations of the variables (already defined in
Section (3.1)) and the sketch of the bathymetry are recalled in Fig. (II.3.1).
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Figure II.3.1: Sketch of the bathymetry setup for F-P resonance.

In practice, we choose Lb = 0.5 m for the wavelength of the ripples, giving a
theoretical Bragg resonance wavelength LB = 2Lb = 1 m. To ensure the conver-
gence of the simulations, we adopt the same configuration as in Couston et al.
(2015), but choose a very challenging ε = 0.5 instead of 0.1 as was used in their
paper. The tested incident wave-number k varies in the vicinity of the resonance
wave-number k/kB ∈ [0.7, 1.3] with an interval ∆k/kB = 0.000075. This corre-
sponds to 8, 001 runs of the case, each of which should take more than 10, 000
wave periods to converge in the time dependent simulations with Whispers3D (i.e.
more than 48 h CPU time). However, it takes less than 1 s for each run with the
current models I-III using the semi-analytical version of the code.

b/ Convergence test of numerical parameters

In Whispers3D semi-analytical models I-III, the parameters to be tested include
the number of terms NT in the approximation of the velocity potential with Cheby-
shev polynomials, the stencil size Nsten of the finite difference scheme, and the
number of nodes in space ∆x (npx nodes for the given length of computational
domain). The computational domain starts at xbeg = −3 m (3 m before the first
patch of ripples) and ends at xend = 18.75 m (3 m after the end of the second patch
of ripples). The first patch is N1Lb = 5.5 m long and the second one N2Lb = 7.5 m
long. Between the two patches, the length of the resonator is 2.75 m. The total
length of the computational domain is thus 21.75 m. The list of tested parameters
is shown in Table (II.3.1).

The results are shown in Fig. (II.3.2) to (II.3.4) considering first model I. In
these figures, the maximum normalized amplitude within the resonator, defined
as enhancement factor EFP , is plotted using a logarithmic scale. Four panels are
presented: panel (a) shows the overall range of tested incident wave-number; panel
(b) considers the local range of incident wave-number near the most pronounced
peak of EFP ; panel (c) shows the local range near the secondary peak of EFP ;
panel (d) shows a range where no F-P resonance manifests. It is observed in the
first two panels that the results of different choices of parameters make differences.
Comparing the last two panels, we see that the results of all tested parameters are
superimposed.
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In Fig. (II.3.2), choosing Nsten = 5, 7 or 9 (for a fixed number of nodes npx =
2785 and a fixed value NT = 7) makes nearly no differences even in the vicinity
of the F-P resonance. Thus, a stencil size Nsten = 5 is selected for the sequel.
Fig. (II.3.3) shows that, near the two peaks of enhancement factor, the results of
NT = 5 differ from the other two curves (NT = 7 and 9). The results of NT = 7
and NT = 9 cannot be distinguished visually for all incident wave-numbers. Thus,
the convergence of NT is achieved for NT = 7. In Fig. (II.3.4), we see that the
three choices of npx (or ∆x) differ from each other near the two peaks of EFP . In
terms of the magnitude of the two peaks of EFP and the corresponding incident
wave-numbers, the simulated results with the three values of npx show similar
results. For the efficiency of conducting a large number of tests, the discretization
corresponding to npx = 2785 is thus chosen.

The same convergence tests were conducted for models III in terms of Nsten,
NT and npx. It was observed that the numerical parameters converged to the
same values in Whispers3D models with second-order approximated BBC, namely
Nsten = 5, and npx = 2785. The only exception is the NT parameter in model III.
In model III, a second-order term in δ is included which may be more demanding
in the representation of potential. In Fig. (II.3.5), it is shown that for NT = 5
the unconverged results distinguish from the converged results not only in the
magnitude of two peaks of EFP , but also in the corresponding incident wave-
number. More pronounced wave-number downshift takes place for low values of
NT case in model III. The selected value for model I, NT = 7 is not large enough
for model III with second-order BBC. In this model, the convergence is achieved
for NT = 9. As will be discussed later, the simulations with model II revealed to
be somewhat more delicate. We decided to conduct simulations of model II with
the same numerical parameters as in model III.

From the convergence tests for three Whispers3D models, it is noticed that, for

Table II.3.1: List of numerical parameters adopted during the convergence tests for
Nsten, NT and npx of Whispers3D semi-analytical model

Test NT Nsten npx ∆x (m) LB/∆x

1 7 5 2785 0.0078125 128

2 7 7 2785 0.0078125 128

3 7 9 2785 0.0078125 128

4 5 5 2785 0.0078125 128

5 7 5 2785 0.0078125 128

6 9 5 2785 0.0078125 128

7 7 5 1393 0.015625 64

8 7 5 2785 0.0078125 128

9 7 5 5569 0.00390625 256
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Figure II.3.2: Convergence test of model I with stencil size Nsten, with the same pa-
rameters NT = 7 and npx = 2785. Panel (a) shows the full tested range of incident
wave-number, (b) local range near the first peak of EFP , (c) local range near the second
peak of EFP , (d) local range with no resonance.
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Figure II.3.3: Convergence test of model I with number of Chebyshev polynomial terms
NT for the representation of potential, with the same parameters Nsten = 5 and npx =
2785. Panel (a) shows the full tested range of incident wave-number, (b) local range
near the first peak of EFP , (c) local range near the second peak of EFP , (d) local range
with no resonance.
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Figure II.3.4: Convergence test of model I with number of nodes in space npx, with
the same parameters Nsten = 5 and NT = 7. Panel (a) shows the full tested range of
incident wave-number, (b) local range near the first peak of EFP , (c) local range near
the second peak of EFP , (d) local range with no resonance.

the regions of k/kB away from the resonance, the differences of EFP between differ-
ent values of numerical parameters are smaller than those near the resonance. Such
observations are logical since the resonance is more demanding in the accuracy of
the models due to very large amplification of the waves in the resonator. For this
reason, the convergence tests should focus on the region near the resonance, which
differs from one model to another.

c/ Validation of semi-analytical models by comparing with time-dependent
Whispers3D results

As a further demonstration of the validity of Whispers3D semi-analytical models,
the simulations of the cases ε = 0.2 with varying incident wave-number presented
in Zhang and Benoit (2019) are done here with models I and II. We recall that
model I corresponds to the time-dependent Whispers3D model ’system A’ in Zhang
and Benoit (2019), while model II corresponds to the time-dependent Whispers3D
model ’system B’. The bottom setup in the PRE paper is similar to what we
consider here, except that two additional 3-meter-long relaxation zones are set in
the time-dependent simulations on each side of the computational domain shown
in Fig. (II.3.1). The calibrated values of numerical parameters Nsten = 5, NT = 7,
npx = 2785 are adopted in the semi-analytical simulations.

In Fig. (II.3.6)(a) the comparison between the time-dependent simulation of
Whispers3D and semi-analytical solution with the exact BBC is shown, and in
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Figure II.3.5: Convergence test of model III with the number of Chebyshev polynomial
terms NT for the representation of potential, with the same parameters Nsten = 5 and
npx = 2785. Panel (a) shows the tested range of incident wave-number, (b) local range
near the first peak of EFP , (c) local range near the second peak of EFP , (d) local range
with no resonance.

panel (b) the same comparison for the first-order BBC is shown. It can be observed
that the enhancement factors EFP within the resonator area of the time-dependent
simulations with Whispers3D (so-called system A and system B in Zhang and
Benoit (2019)) are well reproduced by the semi-analytical solution of models I
and II. This level of agreement of simulations with either the exact BBC in panel
(a) or the first-order approximated BBC in panel (b) validates the computations
with the semi-analytical model on one hand. Furthermore, on the other hand, it
indicates that the results of the previous study in Zhang and Benoit (2019) have
reached a converged periodic state. These figures also show the benefits brought by
the semi-analytical version of Whispers3D: while a limited number of simulations
(about thirty) were done with the time-dependent version of the code in Zhang
and Benoit (2019) (each of them taking several hours of CPU time), here no less
than 8,001 runs are available within a couple of hours using the semi-analytical
version of the code!

3.3.2 Mild-slope models: convergence and validation tests

a/ Description of the validation case: a parabolic hump

In Porter and Staziker (1995), the numerical solution to the MMSE was compared
with the full linear solution for both Booij’s test problem and a parabolic hump
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Figure II.3.6: Validation of the semi-analytical model by comparing with time-dependent
simulations of the case ε = 0.2. Panel (a) shows the comparison between model I (i.e.
the semi-analytical solutions of Whispers3D with the exact BBC) and the corresponding
time-dependent simulation results of the ’system A’ defined in Zhang and Benoit (2019),
(b) shows the comparison between model II (i.e. the semi-analytical solutions of Whis-
pers3D with the first-order approximate BBC) and the corresponding time-dependent
simulation results of the ’system B’ defined in Zhang and Benoit (2019).

test problem. Liu et al. (2012) validated their analytical solution of the MMSE
by comparing their results of the parabolic hump case to the simulation results
of Porter and Staziker (1995). As the Premise code for numerical models IV-VI
has not been reported before, here we examine the validity of Premise code by
considering the same parabolic hump topography and comparing our results with
those from Porter and Staziker (1995) and Liu et al. (2012).

The water depth function of a symmetric parabolic hump is:

h(x) =





h0, x < x0 −
Lhump

2
,

h0 + hhump

[(
x− x0

Lhump/2

)2

− 1

]
, x0 −

Lhump
2
≤ x ≤ x0 +

Lhump
2

,

h0, x > x0 +
Lhump

2
,

(II.3.66)
where hhump is the ’height’ of the hump, and Lhump denotes the length of the
hump, h0 denotes the water depth of the flat regions, and x0 is the location where
the hump elevation is maximum. The sketch of the tested hump bottom is shown
in Fig. (II.3.7). Following Porter and Staziker (1995), a dimensionless parameter
Ws = ω2Lhump/g is used to normalize the hump length Lhump with the deep water
wave-number of the incident waves omega2/g. In Porter and Staziker (1995), the
hump height is set to hhump = h0/2 and the incident wave angular frequency is
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fixed by setting ω2h0/g = 1. k denotes the corresponding incident wave-number in
water depth h0, and L the corresponding wavelength. Lhump is varying to show the
variation of reflection coefficient Cr against Ws. In Porter and Staziker (1995) and
Liu et al. (2012), Ws varies in the range [0.5, 8], which corresponds to, choosing
h0 = 6 m, Lhump varying from 3 m to 48 m. For that water depth, the incident
wavelength (from the dispersion relation of linear waves) is L ≈ 31.42 m, so that
kh0 ≈ 1.20.
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Figure II.3.7: Sketch of a parabolic hump bottom setup.

b/ Validation test of numerical models IV-VI

In Premise, two main numerical parameters or options need to be tested, namely (i)
the choice of treatment of the nodes where the derivative hx is not continuous, and
(ii) the spatial resolution of the mesh (∆x) for the evaluation of spatial derivatives
using the finite difference scheme. Regarding the former item, four options are
currently available for MSE (model IV) and MMSE (model VI) and three for EMSE
(model V). The convergence tests of ∆x for the parabolic hump bottom case have
been conducted and are not shown here: the converged value is ∆x = 0.01 m,
which corresponds to min(Lhump)/300 and approximately L/3142.

The reference data of the simulations of the parabolic hump case were digitized
from Fig. 3 in Liu et al. (2012) and Fig. 3 in Porter and Staziker (1995), including
the results of MSE, MMSE, and full linear simulations. Only the cases with the
mass conservation condition were digitized. In Fig. (II.3.8), the simulation results
of models IV to VI on the parabolic hump case are shown and compared with the
digitized results.

It is observed in Fig. (II.3.8)(a) that the results of model IV (MSE) with options
1, 2 and 3 are superimposed and predict a low value of reflection coefficient Cr
(about 0.07 at maximum). Meanwhile, option 4 is in excellent agreement with the
calculation of Porter and Staziker (1995) after considering the mass-conserving
matching condition. In Fig. (II.3.8)(b), the results of the EMSE (model V) are
visually indistinguishable for all three options adopted. The simulation results
of MMSE (model VI) with different treatment options of the bottom derivative
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discontinuity are shown in Fig. (II.3.8)(c). It is noticed that the results of MMSE
with options 1, 2 and 4 are superimposed and again in excellent agreement with
the calculation of Porter and Staziker (1995). The simulation with option 3 is
however distinct from the three other options. It is anticipated that this is due to
the terms proportional to hxx and h2

x included in MMSE. Thus, the MMSE model
is more sensitive to the local change of bathymetry, especially for the cases with
small values of Ws (shorter length of the hump) and associated larger magnitudes
of derivatives.

Finally, in Fig. (II.3.8)(d), the comparison between the results of Premise code
and the computations of Porter and Staziker (1995) is shown, using option 4 for
model IV and VI, and option 1 for model V. The results are very similar for both
MSE (model IV) and MMSE (model VI). The simulations of models IV-VI with
Premise code are therefore validated.

0.5 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure II.3.8: Validation tests of models IV-VI in Premise code with four options of
treating discontinuity points of bottom derivative for the parabolic hump bathymetry
case. The simulation results of MSE and MMSE models in Porter and Staziker (1995)
are digitized and superimposed with the corresponding results of Premise.

c/ Convergence tests of ∆x of models IV-VI in F-P resonance case

The models IV-VI computed using Premise code have been validated by the above-
mentioned parabolic hump case. Before being used to simulate the F-P resonance
case, it is necessary to conduct again convergence tests using the same bathymetry
setup (shown in Fig. (II.3.1)) in subsection (3.3.1). Because the F-P resonance case
is very sensitive, especially for the cases with large values of ε, small differences
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could result in significant differences in terms of EFP . In the tested F-P resonance
bathymetry, the total length of the computation domain is 21.75 m, the tested
relative ripple amplitude is ε = 0.4. The incident wave-number is set to k =
0.997kB.

The convergence tests results are shown in Fig. (II.3.9) as a function of npx. In
model IV (MSE), the simulation results with options 1-3 converge to the same level
for npx larger than about 10, 000. Due to the imposed matching condition, the
simulation results converge (relatively slowly) to a different level when using option
4 for npx > 20, 000. In model V (EMSE), the simulation results with options 1-3
converge to the a certain level which is different from the ones of model IV. For
model VI (MMSE), the simulation results with options 1, 2, 4 converge to the
same level. A large number of nodes (about 106) is however required for MMSE
with option 4 to converge. As in the parabolic hump case, using option 3 leads to
slightly different results.

Based on these convergence tests, it is decided to use model IV + option 4,
model V + option 1, and model VI + option 1 with ∆x = 0.001 m (equiva-
lent to npx = 21, 751 and LB/1000) for further investigation of the wave-number
downshift effect of F-P resonance.
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Figure II.3.9: Convergence tests of models IV-VI with npx (∆x) considering four options
of treating the discontinuity points of bottom derivative in a F-P resonance bathymetry
case. In this case, the incident wave-number is k = 0.997kB.
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3.4 Investigation of wave-number downshift in the Fabry-
Perot resonance case within seven models

In this section, the F-P resonance is simulated within the seven linear models
introduced in Section (3.1). The bottom setup is similar to the one used during the
previously presented convergence tests. We set the first patch withN1 = 11 ripples,
the second one with N2 = 15 ripples, θ1 = θ2 = 0, kbh = 1.64, resonator length
Lr/Lb = 5.5, and choose again Lb = 0.5 m (corresponding to a theoretical Bragg
wavelength LB = 1 m based on ALAS). For the purpose of investigation of wave-
number downshift effects for different ripple amplitudes, we consider varying ε =
d/h ∈ [0.05, 0.5] with an interval 0.01. For each value of ε, the tested incident wave-
number k varies in the vicinity of the resonance wave-number k/kB ∈ [0.7, 1.3] with
an interval ∆k/kB = 0.00015, which corresponds to 4, 001 runs. In total, up to
184, 046 runs are thus simulated for each model.

3.4.1 Model VII: ALAS prediction of the F-P resonance case

As a reference, the ALAS (model VII) will be compared with both Whispers3D
semi-analytical solutions (models I-III) and mild-slope equations with different
approximations (models IV-VI). Model VII is first analyzed before we introduce
the results of other more complicated models. It corresponds to the lowest order
solution of the problem, with the first-order approximated BBC in terms of δ
and keeping only the first-order free surface potential components which lead to
resonance. The wave-number is evaluated using the constant mean water depth
and does not vary over the corrugated regions (patches of ripples). The results
of ALAS are shown in a colormap of Fig. (II.3.10) where the enhancement factor
EFP within the resonator is evaluated as a function of ε and k/kB. It is predicted
by the ALAS that the resonance conditions is always k = kB whatever the ripple
amplitude ε. For a given ε, the evolution of EFP is symmetric with respect to
k/kB. It means that the wave-number downshift is not captured in model VII.

The region where significant EFP is achieved for k/kB close to 1 is called the
primary resonance tongue. The secondary resonance tongue refers to the two
stripes which start from k/kB ≈ 0.9 and ≈ 1.1 for ε = 0.05. It is predicted by
ALAS that the primary resonance tongue gets narrower as the ripple amplitude
increases, and the secondary resonance tongues depart from the primary resonance
tongue as ε increases. The narrowness of the primary tongue indicates that the
F-P resonance condition becomes more and more strict as ε increases. The two
blue zones beside k/kB = 1 indicate that the wave amplitude within the resonator
is close to 0 when no F-P resonance manifests, and the incident waves are nearly
fully reflected by the first patch of ripples. It can be noted that slight deviations
from the resonance condition for the incident wave-number result in significant
differences in terms of EFP . For instance, for ε = 0.5, choosing the incident wave-
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number k/kB = 0.95 or 1.05 (i.e. a variation of 5% with respect to the resonant
wave-number) provokes a strong decrease of EFP from 57.56 at the resonance to
about 0.47.

Figure II.3.10: Enhancement factor EFP predicted by the ALAS of the F-P resonance
case with varying ε and normalized incident wave-number k/kB. The color scale repre-
sents log10 (EFP ). The vertical solid line corresponds to k/kB = 1.

The evolution of EFP as a function of ε predicted by ALAS is shown in
Fig. (II.3.11) when the resonance condition is met (i.e. k = kB). The enhancement
factor EFP increases exponentially as ε increases. When the bottom is flat ε = 0,
EFP = 1 represents progressive waves. As ε = 0 increases to 0.5, the amplification
of the incident wave amplitude reaches 57.56! In the following, it will be shown,
comparing several models, how different approximations on the BBC affect the
F-P resonance condition and the maximum enhancement factor reached.
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Figure II.3.11: Maximum enhancement factor EFP predicted by the ALAS (model VII)
of the F-P resonance case with varying ε and k = kB in logarithmic scale.
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3.4.2 Fabry-Perot resonance simulations within models I-III

The F-P resonance cases with the configurations introduced at the beginning of this
section have been simulated with Whispers3D semi-analytical code for models I-III.
In each model, the numerical parameters (NT , Nsten, ∆x) were adopted on the basis
of the convergence tests. In Fig. (II.3.12), the colormaps of the enhancement factor
EFP within the resonator predicted by models I-III are shown. The prediction of
ALAS (model I) is also given in panel Fig. (II.3.12)(a) as reference. In panel
Fig. (II.3.12)(b), it is evident that model II fails in describing the F-P resonance
when ε is relatively large. Visually, poor results appear approximately for ε > 0.25.
The investigation of the reason for such unsatisfactory results is ongoing work.
While testing the numerical parameters for model II, convergence was achieved
for NT = 9. Whereas, the convergence was never achieved for npx. For a larger
number of nodes (smaller ∆x), the results deteriorated. The effects of choosing
different Nsten is related to the choice of npx. It is suspected that the linear system
in model II could become ill-conditioned for larger values of ε, the parameters of
the solver (which were set identical for all simulations) should probably be tuned.
However, we believe that the results of model II for ε ≤ 0.25 remain reliable since
in this range the general pattern of the colormap is similar to that of other models.

Hereafter, model II is temporarily excluded in the further discussion of wave-
number downshift for large values of ε. In panel Fig. (II.3.12)(c) and (d), it
is observed that the semi-analytical solutions are well resolved in models I and
III. In these two models, the resonances areas (where significant enhancement
factor is achieved) take place for an incident wave-number distinct from the ALAS
prediction k = kB. The wave-number downshift takes place. The degree of the
downshift increases as the relative ripple amplitude ε increases. Furthermore, the
degree of the downshift magnitude in model III is slightly more pronounced than
that in model II. It indicates that the effects resulting from third- or higher-order
BBC play a role. The secondary resonance tongue is clearly asymmetric with
respect to k = kB, not only in terms of incident wave-number but also in terms
of magnitude of the enhancement factor. Again, the degree of asymmetry of the
secondary resonance tongue is more pronounced in model I.

In order to demonstrate the degree of wave-number downshift and the magni-
tude of EFP in a more precise manner. 401 additional simulations for each value of
ε have been conducted in the wave-number range k/kB ∈ [X− 0.0025, X + 0.0025]
in which X denotes the downshifted F-P condition detected in the previous sim-
ulations. The discretization of wave-number ∆k/kB decreases to 1.25 × 10−5. In
Fig. (II.3.13), the detected resonance wave-numbers corresponding to the maxi-
mum values of EFP are shown in panel (a), and the maximum values of enhance-
ment factor EFP are shown in panel (b), both vary as a function ε. In panel (a), it
is seen that, the downshift decelerates for large ε in model III (blue curve). This
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Figure II.3.12: Enhancement factor EFP predicted by models I-III, VII of the F-P
resonance case with varying ε and normalized incident wave-number k/kB. The color
scale represents log10 (EFP ). The vertical solid line corresponds to k/kB = 1.

effect could be related to the higher-order BBC effects which are not included
in model III. In panel (b), we note that the prediction of ALAS is in very good
agreement with the simulation of model I in which the exact BBC was adopted.
For ε = 0.5, the enhancement factor in model VII is about 57.56, and in model
I 56.3. Meanwhile, model III predicts a lower enhancement value of about 38.51
for ε = 0.5. The close match of the maximum values of the enhancement factor
between model VII (ALAT) and model I (full linear solution with exact BBC),
already noted in Zhang and Benoit (2019), has to be stressed as it was not implied
a priori due to several assumptions made while deriving the ALAS solution (and
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recalling in addition that the ALAS fails in predicting the wave-number downshift
effect).
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Figure II.3.13: The shifted F-P resonance condition (panel (a)), and the corresponding
maximum enhancement factor (panel (b)) predicted by models I, III and VII. In panel
(b), the enhancement is shown in logarithmic scale.

3.4.3 Fabry-Perot resonance simulations within models IV-VI

The F-P resonance cases with the same configuration are then simulated within
models IV-VI. The colormap of the enhancement factor from the four models are
shown in Fig. (II.3.14).

By and large, the wave-number downshift effect can be described by all three
mild-slope equations. Even the classical MSE (model IV) shown in Fig. (II.3.14)(b),
which is considered not applicable for Bragg resonance case, is able to qualitatively
describe the shifted primary and even the sub-resonance tongues. The EMSE and
MMSE models show similar results. Compared to model IV, The enhancement
factors are smaller for the incident wave number k/kB lying in the range between
the primary and the secondary resonance tongues, i.e. larger blue areas manifest
in models V and VI. The shape of the sub-resonance tongues are very similar in
models V and VI.

In Fig. (II.3.15), the shifted resonance conditions and the corresponding en-
hancement factors achieved in such conditions within models IV-VI are shown.
The results are compared with ALAS prediction (model VII) too. It is observed
in Fig. (II.3.15)(a), the classical MSE with the improvement of mass-conserving
matching condition predicts the most pronounced wave-number downshift com-
pared to the other two mild-slope equations. Whereas, in panel (b), the MSE
model fails in predicting the magnitude of the enhancement factor EFP . Both
models V and VI predict higher EFP than the ALAS. For example, in the case
with largest ε = 0.5, EFP = 17.77 is achieved in model IV (MSE), 57.56 in model
VII (ALAS), 70.63 in model VI, and 85.31 in model V.
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Figure II.3.14: Enhancement factor EFP predicted by models IV-VII of the F-P reso-
nance case with varying ε and normalized incident wave-number k/kB. The color scale
represents log10 (EFP ). The vertical solid line corresponds to k/kB = 1.

To have a sense of the differences between all the models considered here,
the F-P condition and the corresponding EFP of all models I-VII are plotted in
Fig. (II.3.16). Taking the results of model I with exact BBC adopted as the bench-
mark, we observe that model IV predicts the closest F-P resonance condition for
large value of ε but the worst corresponding enhancement factor for all ε consid-
ered. In terms of EFP , as already noted, it is the ALAS prediction which agrees
surprisingly well the results of model I. As the relative ripple amplitude decreases,
the resonance condition tends to k = kB and EFP tend to 1 for all models.

It has been pointed out by Liu and Yue (1998) that the wave-number downshift
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Figure II.3.15: The shifted F-P resonance condition (panel (a)), and the corresponding
maximum enhancement factor (panel (b)) predicted by models IV-VII. In panel (b), the
enhancement is shown in logarithmic scale.
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Figure II.3.16: The shifted F-P resonance condition (panel (a)), and the corresponding
maximum enhancement factor (panel (b)) predicted by all models I-VII. In panel (b),
the enhancement is shown in logarithmic scale.

is related to wave-number varying as a function of local water depth. By using
an expansion of the local water depth about the mean water depth level, they
showed that averaged wave-number over the corrugated area is larger than the
wave-number corresponding to the mean water depth. The differences become
more and more significant as ε increases. Therefore, a smaller incident wave-
number (downshift) is needed to compensate the difference. Models I-VI shown
in this part all consider the local wave-number (in model V, it appears in the
coefficient proportional to δ). Our results show that, even with the wave-number
evaluated considering the local water depth, the degree of downshift is still different
among the various models due to different approximations made regarding the
BBC.



Chapter 4

Conclusion and outlook

4.1 Summary of findings and conclusions

In this part, we discussed the Bragg scattering problem for water waves in the
linear framework. The considered scenario is a variation of the Class I Bragg res-
onance (some researchers consider it as Class I2 resonance), the so-called Fabry-
Perot resonance. It happens when waves propagate over two patches of ripples
on an otherwise flat bottom. It has been recently studied theoretically for water
waves by Couston et al. (2015) using an asymptotic method at the lowest order
(ALAS). The ALAS predicts that, when the resonance conditions are met, the
standing wave amplitudes over the flat region between two patches of ripples (the
so-called resonator) increase exponentially with the relative ripple amplitude ε.
This particular situation of wave-bottom interaction is therefore a possible mecha-
nism explaining the formation of large waves in coastal areas presenting this shape
of bottom configuration.

Based on ALAS theoretical analysis, the F-P resonance condition consists of
two aspects: the wave-number of bottom ripples being exactly twice than that of
the incident wave-number and a particular length of resonator with respect to the
incident wavelength. The objective of this part was to investigate the effects of
different approximated BBCs and modeling assumptions on the manifestation of
the F-P resonance.

The main findings of this part have been reported in a journal paper (Zhang
and Benoit, 2019), in which simulations were performed using Whispers3D model
with both exact and first-order approximated BBC. Via testing ε = 0.05, 0.1,
0.2, and 0.4, it was found that the resonance did not manifest for the theoretical
incident Bragg wave-number kB = kb/2 in the cases with ε > 0.1. Instead, the F-P
resonance takes place with a slightly smaller incident wave-number. This wave-
number downshift, which has been reported by many authors for Class I and II
Bragg resonance cases, plays a much more significant role in the F-P setup. This
is due to the fact that as ε increases, the range of incident wave-numbers prone to
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F-P resonance becomes extremely narrow. Slight deviations from the resonance
wave-number could result in significant differences in the enhancement achieved
within the resonator. The results of Whispers3D with exact BBC (called system A
in the above paper) and first-order approximated BBC (system B) showed similar
patterns of the evolution of enhancement factor EFP , reflection and transmission
coefficients RFP and T FP as the incident wave-number was varying in the primary
resonance tongue.

To further demonstrate the wave-number downshift effect in larger ranges of ε
and k/kB, more simulations have been conducted in a second step and are shown
as supplementary materials in Chapter 3 of this part. First, variations of the full
Laplace BVP with exact, first- and second-order BBCs are considered and solved
in a semi-analytical manner within the Whispers3D model, drastically improving
the efficiency of exploring the wave-number downshift effect in F-P resonance
simulations. Furthermore, three models in the mild-slope equation family (MSE,
EMSE, MMSE) are also included and compared. In total, seven models (adding
the ALAS), labelled as models I-VII, are considered with different approximations
made on BBC. In line with our expectations, it is observed that the downshift effect
increases with ε. The results of models I-VI show different degrees of wave-number
downshift in F-P resonance condition. The most pronounced downshift appears in
model I in which no approximation is made on BBC. Model II failed in describing
the F-P resonance for large ε for some numerical reasons. Model IV captured
the downshift effect but failed in predicting the correct values of the enhancement
factor within the resonator for all ε considered here. For small ε, models III, V, VI
converge to the model I, but the deviations develop as ε increases. Our simulations
show that with the wave-number evaluated as a function of the local water depth,
the degree of downshift is still different due to different approximations made on
BBC. This observation indicates that the downshift appears at the first order of
BBC, since model II (for small ε) and models IV, V captured the downshift. In
addition, high-order effects of BBC also play significant role for the manifestation
of the F-P resonance.

As an overall take-away message, the manifestation of the F-P resonance in
the case of large relative ripple amplitude ε (in order to reach large enhancement
factors of the standing waves in the resonator) appears to be restricted to a very
narrow range of particular conditions, and this range becomes more and more
narrow as ε increases. As stated in Zhang and Benoit (2019), this extreme nar-
rowness of the resonance range makes the possibility of realizing such resonance
for practical coastal applications questionable, or, at least, attainable for only very
particular incident wave conditions, all the more so as the required duration to
reach maximum amplification of waves in the resonator area was observed to in-
crease roughly exponentially as a function of ε. Furthermore, we have also shown
that the study of this resonance mechanism requires using accurate mathematical
modeling approaches (and accurate numerical implementations as well). Indeed,
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approximate models, relying on approximations of the exact BBC and/or specific
forms of the solution for the potential (as in the mild slope equation approaches,
for instance) were shown to produce solutions which differ from the full linear so-
lution, the magnitude of these differences increasing again with ε. This means, for
instance, that a practical coastal setup designed to exploit the F-P resonance (for
harnessing wave energy as an illustrative purpose) whose design would be based
on an approximate model (as the mild slope equation for instance) would probably
not meet the expectations in terms of enhancement of wave height in the resonator
for large ripple amplitude (or alternatively for incident wave conditions slightly off
the target conditions).

4.2 Outlook and perspectives of future work

4.2.1 F-P resonance modeled within linear modeling framework

The simulations and analyses presented in Chapter 3 on the overall comparison of
the seven linear modeling approaches need some additional work to be finalized,
and possibly proposed for publication. Sticking in the linear framework for surface
waves, several aspects deserve additional investigations, in particular:

i). The influence of the treatment of discontinuities of bottom elevation deriva-
tives in all the models requires additional tests and analyses, as it appeared
to be quite sensitive for some of the models considered here. The imple-
mentation of the matching condition in model V (EMSE model by (Kirby,
1986a)) needs to be realized and validated.

ii). The numerical issue observed with model II for larger values of ε needs to be
investigated in a deeper manner, understood and resolved.

iii). Additional variants of linear models could also be added, as for example the
variants of EMSE and MMSE considered in Chamberlain and Porter (1995)
for the study of Bragg resonance.

iv). The possibility to include higher-order modes in the solution of MSE-like
models, as done by Porter and Staziker (1995) could also be tested in order
to improve the resolving capabilities of models IV-VI on the F-P setup.

v). An analytical solution of the Laplace equation without or with less limita-
tion on the bottom slope would be of interest. In this regard, the Floquet
theory could be an option based on the work of Howard and Yu (2007) and
Yu and Howard (2010), which do not assume that the bottom corrugations
are of infinitesimal amplitude. The sinusoidal corrugated bottom (or other
arbitrary periodic bottoms) could be decomposed on a Fourier mode basis
following the work of Yu and Howard (2012).
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4.2.2 F-P resonance modeled within nonlinear modeling framework

To the limit of my knowledge, the finite-amplitude water wave effects on Bragg
resonance are less studied since Bragg scattering is generally considered as a linear-
wave phenomenon. Kirby (1986b) considered non-coupling Stokes waves and found
that the weak nonlinearity of surface waves has only a secondary effect on Class
I Bragg resonance. Hara and Mei (1987) found in their experiments that the free
surface nonlinearity could generate infragravity waves for dispersive wave pack-
ets. Via fully nonlinear simulations of incident waves with different values of wave
steepness, Tang and Huang (2008) showed that the primary resonance tongue of
Class I Bragg resonance experiences a significant reduction as wave height in-
creases, probably because some incident wave energy is transferred to the higher
harmonics which do not meet resonance condition, thus being only slightly re-
flected.

Due to the sensitivity of the F-P resonance condition on the incident wave-
number for large relative ripple amplitude cases, the high-order dispersion may
probably alter the development of the resonance by slightly changing the wave-
number. It is anticipated that with the high-order dispersion taken into account,
the wave-number within the resonator is more and more affected as the F-P res-
onance develops and the wave amplitude increases. The F-P resonance condition
could be therefore broken, and the two patches of ripples would then tend to re-
flect nearly all wave energy due to non-resonant wave-bottom interaction. As the
wave amplitude decreases in the resonator, the F-P resonance condition could be
restored again since the higher-order dispersion effects also decreases.

A natural next step of this work would then be exploring the F-P resonance
condition for large ripple amplitude cases with the fully nonlinear version of Whis-
per3D to elucidate these effects. First steps in this direction have already been
undertaken with a couple of nonlinear simulations using Whisper3D (not reported
in this manuscript), which have shown the need to implement an accurate and
robust generation/absorption technique for incident nonlinear waves of high am-
plitudes. This work is ongoing and will be reported in the future.



Part III
Breather evolution over sloping

bottoms

Dans cette partie, les instabilités des solutions de type ”breather” qui apparaissent
lorsque les breathers se propagent dans un milieu dissipatif sur une bathymétrie
irrégulière sont étudiées. Le train d’ondes de type breather est soumis à des
perturbations quand il se propage dans un canal à vagues et donc s’écarte de
la trajectoire analytique. Les perturbations comprennent la dissipation visqueuse
dans le volume fluide, la variation de la profondeur, les interactions vague-vague
non résonantes et le phénomène de déferlement. En raison des instabilités, les
breathers se propagent de façon plus complexe de type récurrence Fermi-Pasta-
Ulam (FPU). Il a été démontré dans des travaux précédents (see Kimmoun et al.,
2016, 2017) que différents ordres de réponses dynamiques des breathers existent
en condition de fond plat, avec la dissipation agissant comme la perturbation. La
réponse du premier ordre est la récurrence de modulation de type FPU déphasée.
Dans la réponse de second ordre, la récurrence se produit accompagnée d’un ef-
fet de fission. L’objectif de cette partie du travail est de considérer non seule-
ment la dissipation, mais aussi la variation de fond comme les perturbations des
breathers. Nous discutons des effets des différentes propriétés des breathers in-
cidents et des profils bathymétriques sur la réponse dynamique des breathers du
fait des instabilités. Dans le chapitre 2, les breathers de type Akhmediev et Pere-
grine se propagent sur un fond de profil en forme de marche. Dans le chapitre 3,
le fond est constitué de deux pentes reliées entre elles. On utilise à la fois un
modèle entièrement non-linéaire, mais aussi l’équation de Schrödinger cubique
non-linéaire non-conservative avec coefficients variables pour prédire les réponses
dynamiques des breathers. Les conclusions sont résumées dans le chapitre 4.
L’observation la plus importante de cette partie est que, en raison de la réponse
dynamique de second ordre, des vagues scélérates pourraient être provoquées par
l’instabilité de modulation dans les zones côtières.
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Parmi toutes les choses du monde, il n’en est point de plus molle et de plus faible
que l’eau, et cependant, pour briser ce qui est dur et fort, rien ne peut l’emporter
sur elle. Pour cela rien ne peut remplacer l’eau. Ce qui est faible triomphe de ce

qui est fort; ce qui est mou triomphe de ce qui est dur.
Tao Te King - Le Livre de la voie et de la vertu

Lao Tseu (IVe siècle av. J.-C.)



List of the symbols of Part III

a carrier wave amplitude
a breather parameter

amod amplitude of non-exact
NLSE solution

A wave envelope variable in
space NLSE formulation

Amax maximum value of positive
envelope

Amin minimum value of positive
envelope

B wave envelope variable in
time NLSE formulation

c, c1, c2, c3 real-valued constants
CFL Courant–Friedrichs–Lewy

number
Cg wave group velocity
E wave energy as a function of

space
E0 initial wave energy
fc carrier wave frequency
g gravity acceleration
h local water depth
i imaginary unit,

√
−1

k local wave-number
Ldeep carrier wave-number in

deeper region
Lshallow carrier wave-number in

shallower region
N number of modulations af-

ter fission
R coefficient of Akhmediev

breather
T canonical time variable of

NLSE
Tc carrier wave period
W width of wave flume
xf breather focusing position
X canonical time variable of

NLSE

α constant-coefficient NLSE
parameter

β constant-coefficient NLSE
parameter

δ decay rate of wave ampli-
tude

δDorn theoretical dissipation with
sidewalls and bottom

δLM theoretical dissipation with
only sidewalls

ε carrier wave steepness
η free surface elevation
κ perturbation wave-number
λ variable-coefficient NLSE

parameter
µ variable-coefficient NLSE

parameter
ν variable-coefficient NLSE

parameter
νw viscosity of water
νv bulk dissipation parameter

in Whispers3D
ψ canonical envelope variable

of NLSE
ψAB canonical solution of

Akhmediev breather
ψKM canonical solution of

Kuznetsov-Ma breather
ψAP canonical solution of Pere-

grine breather
ω angular wave frequency
Ω perturbation angular wave

frequency
Ωmod angular wave frequency of

non-exact NLSE solution
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Chapter 1

Introduction

Waves in nature are unstable because they always contain perturbations. All
these perturbations lead to instabilities along or perpendicular to the wave di-
rection. The most powerful instability is the so-called modulation instability (or
Benjamin-Feir instability) (Benjamin and Feir, 1967) that develops in the direction
of the carrier waves. In modulational unstable wave trains, the main mode of the
carrier wave is associated with side-band perturbations. Eventually, strong tem-
poral compression of envelope profile along with strong wave energy transfer could
take place forming a soliton-like wave envelope. The perturbations emerge spon-
taneously, so waves are of self-modulation characteristics in the unstable regime.
Such properties make modulation instability a possible explanation of the forma-
tion of freak waves in deep water (Janssen, 2003).

In coastal areas, the bottom effects on the propagation and evolution of waves
are nontrivial. As water depth decreases, waves become weakly- or even non-
dispersive. The modulation instability cancels and ceases to exist when relative
water depth kh < 1.363 for unidirectional waves over flat bottom (Zakharov, 1968).
For uneven bottom, with decreasing water depth in the direction of wave propa-
gation, the initial envelope soliton could separate into several smaller ones with
different values of group velocity and magnitudes. This is the well-known soliton
fission law initially introduced by Djordjević and Redekopp (1978), obtained by
adopting variable-coefficient non-linear Schrödinger equation. For gradually in-
creasing water depth (Armaroli et al., 2020), on the contrary, the modulation is
stabilized resulting in a uniform train of pulses on a background.

In this part, the breathers’ propagation and evolution characteristics over slop-
ing bottoms will be studied by means of large-scale experiments and highly accu-
rate numerical models. The breather wave trains are generated in a deeper flat
region where modulation instability is included, and then propagate over slopes
until shoreline. The major aim is to show that, the formation of large waves in
relatively shallow water may be indirectly attributed to the shoaling of offshore
modulational unstable wave trains.
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86 Chap. 1: Introduction

1.1 Bibliography survey of the study of modulation insta-
bility

The theoretical study of modulation instability for non-linear water waves was
conducted almost simultaneously and independently in the 1960s by different re-
searchers (Whitham, 1965; Lighthill, 1967; Benjamin and Feir, 1967; Benjamin,
1967; Zakharov, 1968). A historical review on the theory of modulation instabil-
ity is available in Zakharov and Ostrovsky (2009), and it is not repeated here.
The modulation instability of waves is an ubiquitous phenomenon and has been
observed in several physical situations, including water waves (Zakharov, 1968;
Segur et al., 2005), electromagnetic waves (Tai et al., 1986; Närhi et al., 2016) and
plasma (Galeev et al., 1975; Guo et al., 2016).

The modulation instability could result in a strong compression of wave en-
velope in space and time. In Fourier spectral domain, the modulation instability
originates from the side bands symmetrically located beside the fundamental wave.
For the more unstable case, the amplitudes of the side bands increase exponen-
tially in the initial stage of modulation, besides, additional side bands are formed
due to the four wave mixing effect. The spectrum broadens from one peak to a
triangular cascade form (Chabchoub et al., 2016). If the excited lower side band is
of higher wave amplitude compared to the carrier wave, the frequency downshift
happens, and the lower side band becomes the new carrier wave. The spreading
of carrier wave energy to side bands is reversible in general, and the wave energy
will return to the carrier wave after the modulation. This growth-decay circle of
an unstable wave train repeats periodically or quasi-periodically in time happens
due to complex dynamics of non-ideal input conditions, through the mechanism
of Fermi-Pasta-Ulam (FPU) recurrence (Akhmediev and Korneev, 1986; Akhme-
diev and Ankiewicz, 2011). In hydrodynamics, the famous Non-linear Schrödinger
Equation (NLSE) is a model with third-order in non-linearity and first-order in dis-
persion. The cubic NLSE describes the evolution of envelope of weakly non-linear
(with ε = ka < 0.1, k for the carrier wave number, a for the corresponding ampli-
tude) and dispersive waves. It has been used to study the modulation instability
in deep water conditions by Zakharov (1968); Chu and Mei (1971) and in uni-
form arbitrary depth conditions by Hasimoto and Ono (1972); Mei (1992). Even
though it is of the lowest order of non-linearity and dispersion, the cubic NLSE
describes the four-wave interaction (modulation instability) of water waves with a
narrow-banded spectrum reasonably well. One of the most important characteris-
tics of the cubic NLSE is that it is solvable by using Inverse Scattering Transform
(IST) technique (Zakharov and Shabat, 1972) or by Darboux transform method
(Matveev and Salle, 1991). Several analytical exact solutions have been found
including non-linear plane wave, solitons, breathers, and rational solutions (Dys-
the and Trulsen, 1999; Gaillard, 2011). The breather solutions are a family of
exact ’pulsating’ solitary waves, including Akhmediev breathers (AB) (Akhmediev
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et al., 1987), Kuznetsov-Ma (KM) breathers (Kuznetsov, 1977; Ma, 1979) and
Akhmediev-Peregrine (AP) breathers (Peregrine, 1983; Akhmediev et al., 2009a).
Especially Peregrine breather (the lowest order of AP breathers) is considered as
a prototype of freak waves that appear from nowhere and disappear without a
trace (Akhmediev et al., 2009b; Kharif and Pelinovsky, 2003). It has been exper-
imentally confirmed in wave flumes that the maximum amplification of the initial
uniform water wave amplitude reaches as much as 3 and even higher (Chabchoub
et al., 2011, 2012) for AP breathers. The prediction of cubic NLSE agrees reason-
ably well, although not perfectly, with the experimental observations.

As an asymptotic theory, the cubic NLSE is limited by the weakly non-linear
(ε < 0.1) and narrow-banded spectrum assumption. The weakly non-linear as-
sumption is possibly violated during the modulation process even with an initially
mild carrier wave amplitude. it has been confirmed in experiments (Lo and Mei,
1985) that the cubic NLSE failed in capturing any asymmetry of non-linear wave
packet profile, and it can only describe modulation instability in a short duration
as an evolution function. In order to improve the prediction of NLSE for deep wa-
ter waves, Dysthe (1979) adopted the perturbation method to fourth-order with
respect to steepness ε. This approach, which is sometimes referred to as modified
NLSE (MNLSE), predicts that the wave-induced flow limits the growth of pertur-
bations and that the wave envelope soliton is of asymmetric profile. As is shown
by Stiassnie and Shemer (1984), the MNLSE is a particular case of the third-order
Zakharov equation, and all the fourth-order terms in MNLSE emerge as a result
of the narrow-spectral-width assumption, and none of them is of fourth order in
the wave amplitude itself. The MNLSE can predict the maximum amplification
of initial large-amplitude wave trains during the modulation process, but the pre-
diction of the most unstable modulational frequency is accurate only for ε < 0.1
as indicated in Tulin and Waseda (1999). Trulsen and Dysthe (1996) improved
this MNLSE by relaxing the narrow-band requirement O(ε) to a broader regime
O(ε1/2). Cases with strong mean flow without assuming that wave-induced-flow
velocity is equal to the group velocity of fundamental waves can be described using
fifth-order NLSE by Slunyaev (2005). The NLSE can be formulated as a conserva-
tive Hamiltonian system, for instance, coupled NLSE (Debsarma and Das, 2007)
and quartic MNLSE in deep water (Craig et al., 2012; Gramstad and Trulsen,
2011a) or in arbitrary water depth (Gramstad and Trulsen, 2011b). It is difficult
to find analytical solutions of higher-order NLSE other than the plane wave solu-
tion. The simulations with NLSE type models provide a very good preliminary
quantitative description of the evolution of envelope solitons with different bottom
conditions. For more accurate quantitative description of modulation instability
with larger carrier-wave steepness, Yuen and Lake (1982) suggested adopting the
Zakharov equation. Comparisons between fully non-linear potential models and
MNLSE in deep water conditions have been reported in Clamond et al. (2006);
Slunyaev and Shrira (2013); Adcock and Taylor (2016). It has been shown that
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for large-amplitude waves and long-duration simulations, a qualitative agreement
between fully non-linear models and NLSE type equations can be achieved for
deep water conditions, but they are quantitatively different. So for cases with
strong non-linearity and/or tortuous topography it is more appropriate to adopt
fully non-linear numerical models.

For ideal initial conditions, NLSE breathers exhibit only one growth-return
cycle in the non-periodic (time or space) dimension. However, such ideal signal
growth-decay return is hard to achieve and the initial breather focusing followed by
a FPU recurrence is generally observed. The complete recurrence of the initial state
maybe not reachable due to the effects of frictional dissipation (Kimmoun et al.,
2016), non-linear non-resonant wave-wave interaction and breaking wave effects
(Iafrati et al., 2014). Besides, when the second- and even higher-order harmonics of
the fundamental wave frequency fall within the modulational unstable regime, the
breather undergoes decomposition and splits into two sub-pulses, this phenomenon
has been demonstrated and observed in optics (Wabnitz and Akhmediev, 2010;
Hammani et al., 2011). This phenomenon is defined as higher-order modulation
instability by Erkintalo et al. (2011) in optics. Recently for water waves, the
fission effect due to the higher-order modulation instability has been confirmed
numerically and experimentally by Kimmoun et al. (2017). In their experiments,
the collision of two sub-pulses of modulation-induced fission resulted in significant
amplification of fundamental waves in the second circle of FPU recurrence. In some
cases, the envelope collision even produced higher waves compared to the breather
(the first growth-decay circle). Furthermore, in their numerical simulations, the
characteristics of higher-order modulation instability have been discussed with the
MNLSE, including an additional dissipation term. The inclusion of an additional
dissipation term in MNLSE is introduced in Eeltink et al. (2017) to incorporate
wind forcing contribution on surface gravity waves. The authors indicated that the
effect of dissipation may accelerate the focusing on the second recurrent cycle. This
is counter-intuitive since it is generally considered that the frictional dissipation
could suppress the modulation instability (Voronovich et al., 2008; Ma et al., 2012).

In coastal areas, the bottom boundary affects the evolution and propagation of
solitary waves significantly. The bottom effects on solitary waves have been exten-
sively studied for different types of bottoms, including submerged step, smoothly
varying topography, linearly increasing or decreasing slope (Djordjević and Re-
dekopp (1978); Tanaka (1986); Pudjaprasetya et al. (1999); Benilov et al. (2005);
Armaroli et al. (2020)). In the work of Djordjević and Redekopp (1978), they
discussed the characteristics of the fission of an envelope soliton moving over vari-
able depth by using NLSE with variable coefficients along the direction of wave
propagation. Zeng and Trulsen (2012) adopted variable coefficients NLSE to study
the change of statistics of irregular waves due to decrease of water depth. They
found that a local bathymetric change may provoke non-equilibrium statistics in
a region that may extend far beyond the local depth non-uniformity. They antic-
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ipate that the probability of freak waves on or near the edge of the continental
shelf may exhibit a rather complicated spatial structure for wave fields entering
from deep sea. Armaroli et al. (2020) discussed the effect of gradually increasing
water depth in the modulation process. They showed that the increasing water
depth results in stabilization of wave trains. This is true for not only exact NLSE
solutions but also for non-exact initial conditions like waves with harmonic pertur-
bations. It is a consensus that the 2D modulation instability cancels for relative
water depth below 1.363. To the best of the author’s knowledge, there are only
few reports on how breathers generated in deep water evolve as water depth de-
creases. Benilov et al. (2005) demonstrated asymptotically that as wave packets
propagate from deep water to shallow water, they will decrease in amplitude and
disperse as approaching the critical relative water depth kh = 1.363. Their work
was limited by the fact that NLSE fails when water depth is shallower than the
threshold. Higher-order NLSE waves were adopted instead in Grimshaw and An-
nenkov (2011). They showed that, in the framework of Higher-order NLSE, the
threshold kh = 1.363 is flexible. Wave packets could either penetrate into regions
shallower than kh = 1.363, or not even reach kh = 1.363 depending on the speed
of the wave packets. All these previous works focused on whether asymptotic
or higher-order NLSE simulation study. No experimental observation is available
until now. The main goal of this part is to investigate the evolution of envelope
solitons over an uneven bottom. Particular attention is paid to the shallower re-
gion where kh < 1.363. Before entering the sloping bottom, the envelope solitons
are generated in a flat region deeper than kh > 1.363 where waves are modulation-
ally unstable. The chosen envelope soliton is AB type solutions of cubic NLSE.
The experiments have been conducted in the ’Mid-size Observation Flume’ at the
Tainan Hydraulics Laboratory (THL) of the National ChengKung University in
Taiwan. In order to capture as much as possible the dynamics of envelope soliton
evolution in a long basin, including the effects of wave breaking, frictional dissi-
pation, and variable topography, and to compare with the experimental data, the
fully non-linear numerical model Whispers3D is adopted. The NLSE with variable
coefficients is available and cheap to adopt, and it lies in our interest to examine to
what extent the cubic NLSE can describe the instability. The computations will be
conducted with cubic NLSE with variable coefficients following the formulation in
Zeng and Trulsen (2012) with an additional term to take linear dissipation into ac-
count. The formulation of this dissipation term in NLSE with variable coefficients
will be introduced in paragraph 1.2.1.b.

1.2 Introduction of the formulation of cubic NLSE and its
typical solutions

From a practical point of view, the investigation of NLSE breather solutions is
crucial for the study of modulation instability in numerical or experimental basin.
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Typically, there are three approaches to trigger unstable side bands in a plane
wave background:

(a) Perform monochromatic wave without perturbation in a numerical/physical
wave flume for long time evolution. For all numerical or experimental simula-
tions, the unstable side bands will appear naturally after sufficiently long-time
evolution due to imperfect environment (for instance the dissipation and the
background noise in experiments and due to truncation in numerics). This
is referred to as ’un-seeded’ experiments;

(b) The modulation can be otherwise imposed in the motion of wave generator,
by artificially adding a pair of frequency modes to a sinusoidal (fundamental)
wave. The added side band wave-numbers or frequencies should be chosen ac-
cording to the unstable region diagram, for 2-D cases see Figure 1 in Benjamin
and Feir (1967), and for 3-D cases see Figure 5.4 of Kharif and Pelinovsky
(2003). This is referred to as ’seeded’ experiments;

(c) Start with analytical solutions of cubic NLSE, like Breather solutions, then
generate waves based on its Fourier amplitude and phase properties.

In the early pioneering studies like Lake et al. (1977), the method (a) was
adopted, then it was indicated in Melville (1982) that the method (b) is of advan-
tages over (a). Method (b) was then widely adopted for example in the experimen-
tal study of the two horizontal dimension modulation instability by Toffoli et al.
(2013) and also by Hwung et al. (2006) in the THL wave tank. However, this
three-wave system represents a truncated spectrum with less degree-of-freedom.
As knowledge of instabilities grows, the use of NLSE analytical solutions, namely
method (c), is preferred, since the solutions retain higher-frequency modes. It also
permits to start at any stage of the modulation process, which greatly releases
the constraints on the size of wave flumes. Therefore, in the present study, the
modulation instability will be investigated by the use of breather solutions.

1.2.1 Cubic NLSE in arbitrary constant water depth

The NLSE valid for weakly non-linear waves in arbitrary water depth was derived
from Eq. (I.2.1) to (I.2.4) by using the method of multiple scales (Hasimoto and
Ono, 1972; Mei, 1992). The spatial or temporal evolution of complex wave ampli-
tude function A(x, t) or B(x, t) is described by ’space’ or ’time’ NLSE, respectively.
The formulation of free surface elevation is identical whether A(x, t) or B(x, t) is
adopted. The detailed comparison of the ’space NLSE’ and ’time NLSE’ has been
reported in Chabchoub and Grimshaw (2016). In general, the space NLSE is ap-
propriate for the initial-value problem, and the time NLSE is more convenient
for wavemaker problem. The expression of free surface elevation formulated with
A(x, t) is:

η = A(x, t)ei(kx−ωt) + higher harmonics + c.c., (III.1.1)
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where ω is the carrier wave angular frequency and k its corresponding wave num-
ber, c.c. stands for complex conjugate, higher harmonics are omitted due to the
assumption of weakly non-linearity.

a/ Conservative formulation

Based on Eq. (III.1.1) the space NLSE is formulated as follows:

i

(
∂A

∂t
+ Cg

∂A

∂x

)
− α∂

2A

∂x2
− β|A|2A = 0, (III.1.2)

where Cg = dω(k)
dk

is the group velocity in finite water depth, α and β, are the
dispersive and non-linear coefficients respectively. The expressions are as follows:
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) . (III.1.4)

The Eq. (III.1.2) can be reformulated in the canonical space (X,T ) as:

iψT + ψXX ± 2|ψ|2ψ = 0, (III.1.5)

by using the following transformation of variables:

X = x− Cgt, T = −αt and ψ(X,T ) =

√
±β
2α

A(X,T ). (III.1.6)

In the non-dimensional canonical formulation, X is the coordinate in the frame
moving with the wave group velocity and T represents the re-scaled time. The sign
of the cubic non-linear term is determined by the sign of β/2α. For water waves,
α is positive for any water depth, and β changes sign for kh = 1.363. When the
relative water depth is below 1.363, β is negative so there is a minus sign for the
non-linear term in Eq. (III.1.5), denoting the non-focusing NLSE. In such cases,
the waves are stable with side bands perturbations. For cases where kh > 1.363,
Eq. (III.1.5) denotes focusing NLSE. In such cases, waves are unstable to side band
perturbations.

b/ Non-conservative approximation

In Eq. (III.1.2), the system is conservative. But even for well-controlled experi-
ments in hydrodynamics, the wave energy attenuation in space is inevitable. As
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is mentioned in Section (1.1), the dissipation plays a very important role in mod-
ulation instability, it is then helpful to consider non-conservative system. A more
general formulation of NLSE in Eq. (III.1.2), which takes linear dissipation effect
into account, is formulated as:

i

(
∂A

∂t
+ Cg

∂A

∂x

)
− α∂

2A

∂x2
− β|A|2A = iδ′A. (III.1.7)

This is the approximate model used in the study of water waves by Lake et al.
(1977). The new term is inserted on the right hand side of Eq. (III.1.7), and
0 < δ′ � 1 is a measure of the dissipation rate (here with unit s−1). Given
δ′ = 0, this formulation returns to cubic NLSE. Segur et al. (2005); Ma et al.
(2012) showed the sensitivity of modulation instability on the effect of dissipation.
Therefore, we understand that the determination of δ′ is critical.

It is generally admitted that the wave train energy decreases exponentially
along the direction of wave propagation:

E(x) = E0 exp (−2δx). (III.1.8)

In the work of Henderson et al. (2015), several theoretical models for the estima-
tion of the dissipation parameter δ (here expressed in m−1) have been compared
with measurements. They concluded that different models are useful for different
situations, and no universal theoretical formulation is found among all the mod-
els they listed. Assuming that the dominant source of dissipation in wave tank
experiments is the sidewall and bottom boundary layers, the spatial decay rate δ
established by Dorn (1966) is given by:

δDorn =

√
νw
2ω

(
2k

W

)(
kW + sinh (2kh)

2kh+ sinh (2kh)

)
, (III.1.9)

where νw = 10−6 m2s−1 is the kinematic viscosity of water at 20◦C, W is the flume
width. The third part of Eq. (III.1.9) is the water-depth correction mainly resulting
from the bottom layer in finite water depth. For deep-water condition, only the
two sidewalls affect the spatial decay (Lo and Mei, 1985), so the formulation of
the decay rate is simplified as:

δLM =

√
νw
2ω

2k

W
. (III.1.10)

Several experiments indicate that the spatial decay rate is underestimated by
Eq. (III.1.9) or Eq. (III.1.10). For example, in the experiments of Segur et al.
(2005), W = 0.254 m, h = 0.2 m, f = 3.33 Hz, resulting in δDorn = 0.054 m−1.
δDorn is approximately half of the measured δ = 0.11 m−1. In the deep-water
experiments of Ma et al. (2012), W = 0.8 m, f = 1 Hz, so δLM = δDorn =
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0.0028 m−1. It is also approximately half of the measured δ = 0.0058 m−1 in the
case with narrowest spectrum. This observation is also verified in the previous and
the present experiments carried out in the THL wave tank. It indicates that the
side wall and bottom boundary layers may not be the only source of dissipation.
Other terms considered in Henderson et al. (2015), such as air water interface, are
not large enough to reach the measured values.

Further more, this is true for flat bottom cases, whereas for variable bottom
cases, the dissipation rate δ is supposed to be a function of x as well. The value
of δ should be carefully calibrated from case to case.

1.2.2 Cubic NLSE in slowly varying water depth

For variable bottom condition, apart from the weakly non-linear assumption intro-
duced in the derivation of NLSE, it is further assumed that the variation is slow in
space, dh/ dx ∼ O(ε2). The NLSE equation with variable coefficients was firstly
derived by Djordjević and Redekopp (1978) and re-derived by Zeng and Trulsen
(2012), to describe the dynamics of the first harmonic up to cubic order. The
dimensional formulation is as follows:

i

(
∂B

∂x
+

1

Cg

∂B

∂t

)
+ iµ

d(kh)

dx
B + λ

∂2B

∂t2
+ ν|B|2B = iδ B, (III.1.11)

where the choice of B(x, t) indicates that Eq. (III.1.11) is a time NLSE formulation.
The coefficients are all functions of the water depth h(x):

µ =
(1− σ2)(1− kh σ)

σ + kh(1− σ2)
, λ =

1

2C3
g

d2ω(k)

dk2
=
−1

2Cgω

[
1− gh

C2
g

(1− kh σ)
(
1− σ2

)]
,

(III.1.12)

ν =
−ωk2

16Cg σ4

[
9− 10σ2 + 9σ4 − 2C2

g σ
2

gh− C2
g

(
4
C2
p

C2
g

+ 4
Cp
Cg

(1− σ2) +
gh

C2
g

(
1− σ2

)2
)]

.

(III.1.13)
In the expressions of coefficients, σ = tanh(kh), Cp = ω/k is phase velocity. µ,
λ, and ν correspond to shoaling term, dispersion term and non-linear term for
variable water depth respectively. The shoaling coefficient µ tends to be 0 as
water depth increases. Analog to Eq. (III.1.7), an additional dissipation term is
inserted and adapted to time NLSE formulation. For constant water depth case,
dh/ dx = 0, Eq. (III.1.11) becomes time NLSE if the dissipation is ignored.

1.2.3 Typical exact solutions of cubic NLSE

For the non-dimensional solution ψ(X,T ) of Eq. (III.1.5), two families of solu-
tions in forms of c1ψ(c1X, c

2
1T ) and ψ(X − 2c2T, T ) exp [i (c2X − c2

2T + c3)] can
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be found, with c1, c2, c3 being any real parameter. Here we recall three typical
solutions of the focusing NLSE in canonical space (X,T ), for plain waves: AB,
KM breathers, and AP breathers.

a/ Plane wave solutions

The simplest form for solutions of focusing NLSE is a progressive wave moving at
group velocity Cg:

ψ = ψ0 exp
(
2iψ2

0T
)
, (III.1.14)

where ψ0 is a measure of wave amplitude. This solution corresponds to second-
order Stokes waves when the water depth is infinite. For unstable Stokes waves,
the perturbation with wave number κ < 2ψ0 will experience exponential growth
rate during the modulation. The maixmum exponential growth rate is expected
for κ =

√
2ψ0.

b/ Akhmediev breathers

The AB and KM breather solutions are special cases of three-parameter solutions
family introduced in Akhmediev et al. (1987). For such cases, the modulation
instability process is controlled by a single breather parameter a, and they can be
formulated as follows:

ψAB/KM =

[
1 +

2 (1− 2a) cosh (2RT ) + iR sinh (2RT )√
2a cos (ΩX)− cosh (2RT )

]
exp (2iT ), (III.1.15)

where the parameters R and Ω are computed from the breather parameter a:

R =
√

8a (1− 2a), Ω = 2
√

(1− 2a). (III.1.16)

For a > 0.5, Eq. (III.1.15) represents KM breathers which are periodic in
canonical T axis. For 0 < a < 0.5, Eq. (III.1.15) stands for AB which are periodic
in canonical X axis. For AB, the parameter R governs the modulation instability
growth rate, the maximum growth rate is obtained when R = 1, corresponding to
a = 0.25.

c/ Akhmediev-Peregrine breathers

As a→ 0.5, the period of the wave envelope defined by Eq. (III.1.15) approaches
to infinity so that it represents a localized event in both space and time. The
limiting case is achieved when a = 0.5, corresponding to the well-known Peregrine
breather (Peregrine, 1983), Eq. (III.1.15) is simplified as:

ψAP =

(
−1 +

4 + 16iT

1 + 4X2 + 16T 2

)
exp (2iT ). (III.1.17)
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In this study, the AB solutions are chosen since it allows generating large
waves with a prescribed exponential growth rate. It is excellent for the study of
the dynamical stabilization of non-linear wave packets and the persistence of large
undulatory events.

1.2.4 Stability of NLSE solutions

The main goal of this study is to understand the stability of breather solutions
when they evolve over variable bathymetries. It is known from previous studies,
that the instabilities could lead to different behaviors such as phase lag recurrence,
or fission. It is then crucial to understand the effect of the Akhmediev parameter
on the evolution of disturbed solutions.

The study of modulation instability is conducted in general by solving NLSE
numerically for an input field of the perturbation form (Hasimoto and Ono, 1972):

A(X = 0, T ) = A0 [1 + amod cos (ΩmodT )] . (III.1.18)

It has been shown in optics (Dudley et al., 2009; Erkintalo et al., 2011) that
when the perturbation amplitude amod depends on frequency Ωmod with a particular
relation, the input field in Eq. (III.1.18) evolves in the same manner as in AB with
Ωmod = Ω in Eq. (III.1.15). The perturbation amplitude corresponding to Ωmod is:

amod = c

(
1 +

2iR

Ω2
mod

)
, (III.1.19)

where c is a real coefficient. With such relation, Eq. (III.1.18) represents AB-
like, but non-exact solution. Any other form of the perturbation amplitude amod
does not lead to one growth-decay circle of the unstable wave train, but results in
multiple growth-decay circles in a FPU recurrence manner.

For non-exact solutions of NLSE, the wave envelope evolution is subject to
instabilities. Based on simulations of non-exact initial conditions with conservative
deep-water NLSE, the bifurcation diagram, displayed in Fig. (III.1.1), is given to
illustrate different orders of the dynamical response for different a.

In Fig. (III.1.1), left panel shows the change of solution order as function of
a. On the right panels, the examples of envelope evolution in canonical space
are shown for different orders. The evolution of exact AB is given on top for
reference. Within the framework of conservative deep-water NLSE, it is shown that
the non-exact solutions which correspond to AB with different breather parameters
a evolve as exact AB in the first growth-decay circle. However, different dynamical
responses are observed in the second or third circle of recurrence. The so-called
’first-order’ solution takes place when a ∈ [0, 0.375], where simple FPU recurrence
happens. In the ’second-order’, solutions a ∈ [0.375, 0.444], the recurrence is
accompanied by fission effect, and in the third hierarchy a ∈ [0.444, 0.469], another
envelope bifurcation appears after the first fission.
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Figure III.1.1: Different orders for the non-exact solution regimes based on different
values of a, the orders are characterized by N , the number of modulations which appear
after the fission process. The critical values of a are marked, and examples of different
order solutions are shown.

We stress that the critical values of a for different order transitions should be
considered as qualitative rather than quantitative. Fig. (III.1.2) is obtained from
conservative deep-water NLSE simulations. In nature, topography, dissipation,
and initial wave non-linearities, for example, could alter the dynamical response
and play an important role in wave train evolution.

The dissipation effects on the evolution of non-exact NLSE solution given in
Eq. (III.1.18) have been discussed in Kimmoun et al. (2017) by means of conser-
vative and non-conservative NLSE simulations. It has been shown that, without
dissipation, a collision occurs at the end of the space domain, while this collision
is delayed when dissipation is considered. Authors also showed that starting with
an exact AB in a non-conservative NLSE, the fission evolution is similar to the
one observed with the non-exact solution. It means that dissipation acts as a
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perturbation in the exact solution. However, for the evolution of AB case, the
dissipation will accelerate the collision of the sub-modulations. The FIG.1 in this
work is repeated here to demonstrate the effect of dissipation.

Figure III.1.2: Evolution of exact and non-exact solutions with and without dissipation
in deep-water NLSE simulations (Kimmoun et al., 2017). (a): exact AB evolution in
conservative system; (b): exact AB evolution in non-conservative system; (c): non-
exact AB-like solution evolution in conservative system; (d): non-exact AB-like solution
evolution in non-conservative system. The breather parameter a = 0.45, wave steepness
ε = kA0 = 0.12, wave amplitude A0 = 0.03 m at x = −50 m, the dissipation rate for
non-conservative simulations is δ = 3.84× 10−4 m−1.

It is shown in panel (a) that the exact AB solution evolves in a conservative
system with one grow-decay circle. When dissipation is added, panel (b) shows that
the evolution is accompanied by recurrences, and collisions of different branches
of fission are predicted and result in another amplification of wave amplitude. In
panel (c), the evolution of non-exact solution given in Eq. (III.1.18) is shown. In
this case, Ωmod corresponds to Ω in Eq. (III.1.16) with a = 0.45, amod is evaluated
based on Ωmod via the above-mentioned relation. It shows similar evolution as
the exact solution in the first growth-decay circle, and then fission takes place,
corresponding to the second-order solution. In panel (d), the bifurcation of the
envelope is affected by the dissipation, and the collision is delayed compared to
the case without dissipation.

As mentioned above, effect of the topography on instability regimes is studied.
From this starting point, several questions can be expressed:
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• Whether the high-order instabilities observed in deep-water persist in the
variable bottom cases?

• What is the characteristics of exact AB solutions evolving in a dissipative,
spatially varying bathymetry, especially how exact breathers turn into non-
exact solutions (due to bottom variation and dissipation) and propagate in
shallow water?

• What is the capability of NLSE with variable coefficients in reproducing
experimental tests compared with fully non-linear models?

• Could shallow water freak waves explained by the evolution of modulated
wave train over uneven bottom which originates from deep water?



Chapter 2

Breather evolution over a
prismatic slope connecting two
regions of constant depths

When envelope soliton propagates over variable bottoms, in the framework of
NLSE, three different dynamic responses are predicted depending on relative water
depth. For relatively large water depth, unlike monochromatic waves or shallow-
water solitons, the wave packet amplitude counter-intuitively decreases as wa-
ter depth shoals. For a smaller water depth but still higher than the threshold
kh = 1.363, the main packet shed ’secondary’ solitons, fission is expected. When
water depth decreases below the threshold, the wave packet starts to disperse, its
envelope becomes wider and smaller. This has been discussed in Benilov et al.
(2005) with asymptotic envelope soliton solution of NLSE with variable coeffi-
cients. In the present work, the wave packet evolution over uneven bottom is
studied experimentally and numerically using exact breather solutions of NLSE.

The experiments have been conducted in the ’Mid-size tank’ at the Tainan
Hydraulics Laboratory (THL) of the National Cheng-Kung University in Taiwan.
The dimensions of this wave tank is 2 m by 2 m in depth and width, and 200 m
in length. Such a large facility allows to study the long-term evolution of insta-
bilities. The wave tank is equipped with a piston-type hydraulic wave maker with
a maximum frequency of motion of 2.5 Hz. This wave maker is able to absorb
waves reflected by the tested bottom profile or the end wall. The facility and
the front face of the wave maker are shown in panel (a) and (b) of Fig. (III.2.1).
Picture of the wave gauges is displayed in panel (c) of Fig. (III.2.1). 30 to 60 wave
capacitance gauges were used for measuring the surface elevation depending on
the experimental campaign with sampling frequency of 100 Hz. The same facility
and wave gauges were used during all the campaigns described in this dissertation.
Then the description will not be repeated hereafter.

The experimental conditions are controlled by five parameters: the carrier wave
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(a) (b) (c)

Figure III.2.1: THL facility and equipment used during the experimental campaign (a):
active-absorbing piston-type hydraulic wave maker; (b): ’Mid-size tank’; (c): capacitance
wave gauges suitable for different water depths.

period Tc, the initial wave steepness at the wave maker ε, the dimensional wa-
ter depth h near the wave maker, the breather parameter a, and the prescribed
focusing point xf which corresponds to the maximum amplification of envelope
amplitude.

In this chapter, we discuss how water waves evolve over the prismatic slope
connecting two flat bottoms. As is shown in Fig. (III.2.2), the bottom profile is
composed of four parts: (i) starting from the wave-maker (at x = 0), a first section
of length 35 m with constant water depth corresponding to the deeper part of the
domain, (ii) a transition zone with a constant (1 : 20) slope over a distance of 20 m,
(iii) a 115 m long shallow water zone with flat bottom, and (iv) a final section of
about 10 m in length with the natural bottom of the flume which works as an
effective wave absorbing porous media which is made of quarry stones. This wave
tank bottom setup is denoted as setup 1. The lateral walls as well as the bottom
are constructed of impermeable concrete.

1/20 slope
h

x (m)17155350

1m

Free Surface

Damping porous 

media

181

1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure III.2.2: Sketch of the bathymetry setup 1, and the locations of probes

A systematical study has been conducted with 89 tests, covering the a =
0.25, 0.37, 0.5, Tc = 0.9, 1.0, 1.1, 1.2 s, ε ∈ [0.09, 0.12], water depth h = 1.2, 1.3 m
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and varying focusing positions xf locating around the slope. In the following two
sections, representative cases will be discussed. The campaign took place from Oc-
tober 2017 to January 2018. I was involved in the measurements of this campaign
and the post-processing.

2.1 Case 368: Peregrine breather evolution, one unstable
event

Case 368 corresponds to a Peregrine breather. The associated parameters are,
a = 0.5, ε = 0.11, h = 1.3 m, Tc = 1.2 s, and xf = 55 m. For such conditions,
the threshold kh = 1.363 locates at x = 52.445 m, close to the end of the slope
x = 55 m. The relative water depth changes from deeper region kh ≈ 3.638 to the
shallower flat region kh ≈ 1.065. The data acquisition lasted for 7 min in allowing
the envelope soliton to reach the end of the domain.

2.1.1 Experimental observation

Fig. (III.2.3) shows the evolution of the free surface elevation and its corresponding
envelope measured at different positions. Both are normalized by the carrier wave
amplitude a0 ≈ 0.04 m. The signals are shifted according to the probe positions
and the wave group velocity of the carrier wave. It allows to track the focusing
event. The envelope is obtained by doing Fourier analysis on sliding windows.
The width of the sliding windows is set to 2Tc and it is translated Tc/10 at each
step. Different harmonics are obtained by doing this technique. Then sum up the
complex amplitude to the target order of harmonics, we obtain the time evolution
of the envelope, up to a specific order. Here the wave envelope is constructed using
three harmonics. This method applies for all the envelope computation hereafter,
unless specified.

In the left panel of Fig. (III.2.3), it is observed that the amplitude of the mod-
ulation is small compared to the amplitude of the wave carrier and then increases
up to the focusing point. As the soliton envelope propagates towards the focusing
point x = 55 m and passes through the bottom slope, the unstable wave packet
compresses. Due to the decrease of water depth and the increase of wave ampli-
tudes in the wave packet, the group velocity of waves in the wave packet slows
down. The shift of time window xProbe/Cg is slightly overestimated. This explains
the position of maximum wave envelope is gradually shifted over the sloping area.

On the right panel of Fig. (III.2.3), the evolution of the wave packet on the
second flat bottom region with kh < 1.363 is shown. The wave packet broadens
as it propagates over the shallower region where waves are modulationally stable.
At the same time, the amplitude of its envelope decreases. On each side of the
soliton envelope, two instants with minimum values are observed. Their time
difference increases during the propagation. To have a more continuous overview,



102
Chap. 2: Breather evolution over a prismatic slope connecting two regions

of constant depths

Figure III.2.3: AP case 368: evolution of normalized free surface elevation (solid line)
and its envelope (bold solid line) computed via windowed Fourier transform.

a 3D representation of the evolution of the wave envelope in space and in time,
is shown in Fig. (III.2.4). The generation and expansion of two modulations in
the wave envelope plane is clearly shown, and sub-pulses are observed around
t − x/Cg > 90 s. These modulations are not observed on the other side around
t− x/Cg < 80 s.

Figure III.2.4: AP case 368: 3D overall view of normalized envelope evolution in space
and time. The envelope is normalized by the carrier wave amplitude.

In the panel (a) of Fig. (III.2.5), the spatial evolution of the spectrum is shown.
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The frequencies are normalized by the carrier wave frequency fc. The spectrum
broadens as wave packet propagates towards the focusing position: on one hand,
the wave energy is gradually transferred to waves with higher frequencies than the
carrier frequency; on the other hand, the width of the spectrum part with frequen-
cies lower than the carrier wave frequency is not significantly changed during the
modulation. As wave packet reaches the threshold relative water depth 1.363, the
four-wave interaction ceases and the higher frequency part of the spectrum stops
broadening. Meanwhile, after the slope, a series of low-frequency modes appear.
The broadening of spectrum in the shallower region is mainly due to the genera-
tion of bound mode harmonics, as the sea state adapts to the new shallow water
dynamics.

Figure III.2.5: AP case 368: spatial evolution of spectrum and envelope, (a) pseudo
color map of the spatial evolution of spectrum in logarithmic scale, wave frequency is
normalized by carrier wave frequency fc, (b) the spatial evolution of the maximum and
minimum values of envelope. In both panels, the vertical dashed lines represent the
threshold of relative water depth kch = 1.363, kc corresponds to carrier frequency fc,
the vertical solid lines represent the focusing position.

In the panel (b) of Fig. (III.2.5), the spatial evolution of the normalized max-
imum and minimum values of the envelope is shown. They are computed via
windowed Fourier analysis. The upper bound of the envelope, Amax/A0 increases
as wave packet propagates towards the focusing position. In the meantime, the
lower bound of the envelope, Amin/A0 decreases. The increase and decrease stop
when the wave packet reaches the relative water depth threshold. For Peregrine
breather propagating over deep water, the amplification of carrier wave ampli-
tude is Amax/A0 = 3. It is observed that, in case 368 the maximum amplification
of Amax/A0 = 2 is achieved around the threshold of relative water depth. It is
smaller than the expected value in deep water. This is mainly due to two reasons,
the wave train is continuously dissipated, and as observed in previous works, the
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wave packet amplitude decreases as water depth decreases. In the shallower re-
gion, the maximum amplitude of the wave packet continues to decrease and the
minimum amplitude holds as constant.

2.1.2 Comparison between fully non-linear model and NLSE with vari-
able coefficients

We recall here the dimensional parameters of the case 368: carrier wave period
is Tc = 1.2 s, water depth in the deeper region is h = 1.3 m, and in shallower
region h = 0.3 m. The wavelength in the deeper region is Ldeep = 2.24 m, and
in the shallower region Lshallow = 1.77 m. The incident carrier wave amplitude is
a0 ≈ 0.04 m. The initial wave train at the wavemaker has a maximum envelope
amplitude Amax ≈ 1.5A0.

In the Whispers3D model, NT = 7 is used. The model domain has a regularly
spaced grid ∆x = 0.07 m, which corresponds about Ldeep/32 or Lshallow/25. Waves
are generated in a relaxation zone with one wavelength Ldeep on the left boundary of
the domain. The boundary condition is obtained from decomposition of the exact
solution at the position of wave maker, instead of the measured signal in the flume.
Waves are generated using linear composition for the free surface elevation as well
as the velocity potential. Waves are absorbed, on the other side of the numerical
basin, in a relatively long relaxation zone with a length of 6Ldeep. Waves are
generated with the same duration as in experiments, about 5 min. The time step
in the model is ∆t = Tc/64 = 0.01875 s. The Courant–Friedrichs–Lewy (CFL)
number in the current case is CFL = L∆t/(T∆x) = 0.5 in the deeper region and
CFL ≈ 0.4 in the shallower region. The NLSE is solved using split-step Fourier
method introduced by Taha and Ablowitz (1984).

The inclusion of bulk dissipation in Whispers3D model follows the visco-potential
approach of Dias et al. (2008). In such formulation (i.e. Eqs. (I.2.5) to (I.2.6)),
the dissipation is applied to the whole bulk of the fluid. In the model of NLSE
with variable coefficients, however, the dissipation term δ stands for the exponen-
tial attenuation in wave amplitude. The relation between the dissipation rates
of Whispers3D and NLSE models is established in Appendix (A.2) within the
framework of linear waves.

The value of δ has been measured experimentally via whether harmonic wave
tests or the unmodulated part of Peregrine breather tests. In case 368, the mea-
sured value is 0.0036 m−1. The dissipation parameter νv in Eqs. (I.2.5) and (I.2.6)
is calibrated, and the calibrated value is νv = 1.5 × 10−4 m2/s. It corresponds
to δ = 0.0034 m−1 considering the shallower water depth. For information, the
prediction of Eq. (III.1.9) is δDorn = 0.0017 m−1 which is about half of 0.0034
m−1. Both are smaller than the measured value of δ because in the flume, the
attenuation of wave amplitude in the deeper region is weaker than in shallower
region.
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In Fig. (III.2.6), the comparison of spatial evolution of the wave envelope is
shown. The envelope evolution in measurements shown in panel (a) is well de-
scribed by the Whispers3D simulation shown in panel (b). In panel (b), as waves
propagate towards the focusing position x = 55 m, the modulation of the envelope
increases in amplitude and is slightly shifted in time axis. After passing through
the threshold depth, the modulation (i.e. the envelope soliton) splits into two
sub-modulations (i.e. the new smaller envelope solitons with low amplitude). The
sub-modulations appear one followed by the other in time due to their different
group velocities. In panel (c), where the results for NLSE are displayed, the modu-
lation is symmetric. As the modulation propagates towards the focusing position,
there is no shift in the time. It means that the group velocity in NLSE simulation
is different from that in measurements and Whispers3D. The abrupt change of
slope gradient results in a series of oscillations that propagate with different group
velocities.

Figure III.2.6: AP case 368: pseudo color view of the normalized envelope evolution in
experiments, panel (a), Whispers3D simulation, panel (b), and NLSE simulation, panel
(c). In all the panels, the horizontal dashed line represents the threshold of relative
water depth kh = 1.363, and the horizontal solid line indicates the focusing position.

In Fig. (III.2.7), the spatial evolution of the maximum and minimum of the
envelope is shown. In this case, both the NLSE model and Whispers3D model
predict well the increase and decrease trend of the modulation. Both maximum
and minimum of envelope around the end of the flume is close to the measure-
ments. On one hand, it confirms the measured dissipation rate δ. On the other
hand, it also confirms the relation between wave amplitude attenuation rate and
bulk dissipation rate derived in Appendix (A.2). The minimum envelope is better
described by the Whispers3D model. In NLSE simulation, the minimum envelope
reaches 0 and is generally lower than the measurements over the shallower region.
The maximum envelope in simulations agrees well with the measurements, except
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near the focusing position where the measured values are lower than in simula-
tions. The Whispers3D model gives better results for Amax before the focusing
point, and for Amin after the focusing point, than the NLSE model. This is due
to the fact that Whispers3D has better description of higher-order non-linearities,
which are absent in cubic NLSE model.
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Figure III.2.7: AP case 368: spatial evolution of maximum and minimum envelopes in
experiments and simulations with different models. The vertical dashed line represents
the threshold of relative water depth kh = 1.363, and the vertical solid line represents
the focusing position.

In Fig. (III.2.8), the time evolution of the envelope is shown. It is observed that
the NLSE model gradually deviate from experiments and Whispers3D simulation.
It is known that the NLSE model with variable coefficients is first-order in disper-
sion, so waves propagate with the linear group velocity of local water depth. The
group velocity in measurements is faster than linear group velocity. In the NLSE
model results, the envelope is symmetric in time. In the measurements, however,
the two modulations with minimum envelope amplitudes are not symmetric. The
one that appears earlier in time is of smaller envelope amplitude that the other.
This is mainly due to higher-order dispersion effects. A similar asymmetric shape
of the envelope was also observed in a flat bottom case in Kimmoun et al. (2017),
and with the MNLSE model adopted, this asymmetry of the envelope in time is
well captured. It is known that the main difference between the NLSE model and
the MNLSE model lies in the capacity of describing wave dispersion. The MNLSE
is of second-order dispersion, thus it is closer to experiments and fully dispersive
model Whispers3D.
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Figure III.2.8: AP case 368: comparison of the time evolution of envelope measured
at different positions in experiments and simulations with the different models. Black
lines represent measurements, red lines represent the results of Whispers3D simulation
results, and blue lines represent the results of NLSE simulation results.

2.2 Case 364: Akhmediev breather evolution, periodic un-
stable events

In case 364, the breather parameter is a = 0.25. It corresponds to the largest mod-
ulation growth rate for AB. The other parameters are same as in Section (2.1),
ε = 0.11, h = 1.3 m, Tc = 1.2 s, and xf = 55 m. Similarly, the threshold kh = 1.363
locates at x = 52.445 m, close to the end of the slope x = 55 m. The relative
water depth changes from deeper region kh ≈ 3.638 to the shallower flat region
kh ≈ 1.065. The Akhmediev breather corresponds to a series of solitons. When a
soliton reaches the edge of the slope, a soliton split into multiple solitons due to
instabilities. These solitons can be described as oscillations or sub-modulations.
In Section (2.1), the experiment showed that one envelope soliton split into two
sub-modulations with significantly different group velocities. In this case, it is
anticipated that the sub-modulation could appear periodically for each of the en-
velope solitons. The sub-modulation with larger group velocity could interact with
the slower sub-modulation generated previously.
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2.2.1 Experimental observation

In Fig. (III.2.9), the evolution of the normalized free surface elevations and their
corresponding envelopes measured at different positions are shown. The envelope
is also computed via windowed Fourier analysis, and constructed using three har-
monics. The modulations of AB appears periodically in time. As the wave packets
containing modulations approach to the focusing position x = 55 m, the modula-
tions compress as observed in case 368. It is seen that starting from x = 62.2 m
(probe 15), the envelope solitons gradually decrease in magnitude as they propa-
gate over the shallower region, in the meantime, sub-modulations gradually man-
ifest themselves between the envelope solitons. After some distance (in this case
x = 96 m), the oscillations that are generated from different solitons overlap with
each other resulting in a more complicated pattern in time domain near the end
of the flume. This pattern is shown in Fig. (III.2.10), it presents a 3D view of the
envelope evolution in space and in time.

Figure III.2.9: AB case 364: evolution of normalized free surface elevation (solid line)
and its corresponding envelope (bold solid line).

In the panel (a) of Fig. (III.2.11), the spatial evolution of the spectrum is shown.
In the initial spectrum, the carrier wave frequency at f/fc = 1 is accompanied by
a large number of small side bands. Among the side bands, some are of higher
energy and remain while wave packet propagates into the shallower region. It is
seen that as the wave train propagates over the shallower region, new low-frequency
bands appear. This is the differences between the sub- hand super-harmonic side-
bands that is not described in NLSE. The carrier wave frequency and the energetic
side bands slightly broadens after around x = 80 m, and the frequency downshift
appears. In the panel (b) of Fig. (III.2.11), the evolution of the maximum and
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Figure III.2.10: AB case 364: 3D overall view of normalized envelope evolution in space
and time. The envelope is normalized by the carrier wave amplitude.

minimum value of envelope is shown. The maximum envelope amplitude at the
wave maker boundary is about 1.5 times of A0. It increases to around 1.7A0, near
the end of the slope. Then it decreases after entering the shallower region. A
bump in the maximum amplitude curve appears near the end of the flume.

Figure III.2.11: AB case 364: spatial evolution of spectrum and envelope, (a) pseudo
color map of the spatial evolution of spectrum in logarithmic scale, wave frequency is
normalized by carrier wave frequency fc, (b) the spatial evolution of the maximum and
minimum values of envelope. In both panels, the vertical dashed lines represent the
threshold of relative water depth kch = 1.363, kc corresponds to carrier frequency fc,
the solid lines represent the focusing position.
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2.2.2 Comparison between fully non-linear model and NLSE with vari-
able coefficients

In the numerical simulation with Whispers3D, the chosen NT , ∆x, ∆t, bulk
dissipation νv, and the length of relaxation zones are same as in Section (2.1).
The amplitude attenuation dissipation in the NLSE model δ is identical too. In
Fig. (III.2.12), the comparison of the normalized wave envelope between the mea-
surements, simulations of Whispers3D and NLSE models are shown. The Whis-
pers3D simulated result in panel (b) is very similar to the measurements in panel
(a), including the curly evolution of the initial modulation and the sub-modulation
in the middle of two modulations. In panel (b) the modulation around the end
of the flume is slightly larger than observed in measurements. Results for NLSE
model are displayed in panel (c). The modulation before the end of the slope is
not curly. Due to the abrupt change of slope gradient, the instabilities of the AB
solution take place in the tests. The instabilities result in a relatively complex
pattern of wave envelope. Over the shallower region, the pattern is symmetric and
the sub-modulation is more significant than that in the measurements.

Figure III.2.12: AB case 364: pseudo color view of the normalized envelope evolution in
experiments, panel (a), Whispers3D simulation, panel (b), NLSE simulation, panel (c).
In all the panels, the horizontal dashed lines represent the threshold of relative water
depth kh = 1.363, and the horizontal solid lines represent the focusing position.

The spatial evolution of the maximum and the minimum of the envelope is
given in Fig. (III.2.13). The agreement of the maximum envelope in simulations
with Whispers3D and NLSE models is good until x ≈ 90 m. Then discrepancies
arise. In the experiment, a second local maximum of Amax is observed around x =
140 m. The Whispers3D model predicts smaller value than the experiment. On
the other hand, the NLSE model overestimates the maximum envelope amplitude
in the same area. But the re-amplification of Amax observed in the experiment,
is predicted in both models. For the minimum envelope amplitude evolution in
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space, the results of Whispers3D show good agreement with the experimental
results along the wave flume.
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Figure III.2.13: AB case 364: spatial evolution of maximum and minimum envelopes.
The vertical dashed line represents the threshold of relative water depth kh = 1.363,
and the vertical solid line represents the focusing position.

In Fig. (III.2.14), the detailed envelope shape comparison between experiments
and simulations with different models is shown. The behavior of NLSE model in
the simulation of AB case 364 is similar to that in the AP case 368, two main
features are observed. The envelope in NLSE simulations deviates from the mea-
surements gradually. This is due to the dispersion in NLSE is linear. Besides,
unlike Whispers3D simulations, the asymmetry of the envelope is not captured in
NLSE simulations due to higher-order dispersion. The asymmetry of envelope am-
plitude in experiments appears in the deeper region and becomes more and more
pronounced as the wave train propagates. It indicates an adaptation of the exact
solution of AB to the real experimental condition which is dissipative and contains
all high-order effects. After entering the shallower region, the modulations decrease
gradually in amplitude. In the time domain, the modulation extends and becomes
broader due to different group velocity. The amplitude of the sub-modulations
increase in amplitude.

2.2.3 Comparison with an additional case 365 with a larger steepness

To show the effect of steepness of the carrier wave, an additional case 365 with
the same parameters as in the previous paragraph, with a = 0.25, h = 1.3 m,
Tc = 1.2 s, and xf = 55 m is considered. The carrier wave steepness is slightly
larger with ε = 0.12. a = 0.25 represents the largest instability growth rate. As
the wave maker is relatively close to the focusing point (with a distance 55 m),
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Figure III.2.14: AB case 364: comparison of the time evolution of envelope measured at
different positions. Black lines represent measurements, red lines represent Whispers3D
simulation results, and blue lines represent NLSE simulation results.

the modulation is already developed. At this boundary, the maximum wave am-
plification of the modulation is around 1.5 times of the carrier wave amplitude.

In case 365 with slightly larger carrier wave amplitude, the general characteris-
tics of the wave evolution are similar to the case 364. So they will not be repeated
here. The main interest here is to compare case 365 with the previous case 364 to
find the differences which result from the carrier wave amplitude parameter. In
Fig. (III.2.15), the evolution of the maximum and minimum value of normalized
envelope is shown. The maximum and minimum values of the normalized envelope
Amax/A0 and Amin/A0 in the case 365 with ε = 0.12 are smaller than that in the
case 364 with ε = 0.11. This is due to the fact that the canonical transformation
of X is scaled by carrier wave amplitude, for higher steepness, X is longer for the
same physical distance. Thus, for the same focusing position xf , the higher steep-
ness results in a less developed stage of modulation at the wave maker boundary.
It is also observed that the re-amplification of Amax/A0 takes place earlier in the
case 365. This is anticipated that the instability is stronger and develops faster
for the case with larger steepness.

It is seen that, in the previous examples, the normalized amplitude of the
perturbation Amax/A0 at the wave maker is a function of the steepness. It is thus
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Figure III.2.15: Comparison of maximum and minimum envelope amplitudes evolution
in space for AB cases 364 and 365. The vertical dashed line represents the threshold of
relative water depth kh = 1.363, and the solid line represents the focusing position.

of interest to show the relation of normalized and non-normalized perturbation
amplitude with steepness. Here we show their relation within the framework of
NLSE. Fig. (III.2.16) shows the maximum and minimum of wave envelope at the
wave-maker (55 m before the focusing position) as functions of steepness with
other parameters identical as in cases 364 and 365.

In panel (a) of Fig. (III.2.16), the relation between normalized maximum and
minimum values of envelope and steepness is shown. It is shown that as the carrier
wave steepness increases, the normalized maximum envelope amplitude at the wave
maker boundary decreases. This is because, for a larger carrier wave steepness, the
wave train modulation is more localized in space. The dimensional amplitude is
higher, since A0 is larger. The limiting case is that when the carrier wave steepness
is large enough, 55 m is sufficiently far from the focusing position. The wave train
is not modulated yet at x = 0 m, so that Amax = Amin = A0. It is in line with the
idea of a rogue (freak) wave ’coming from nowhere’ since the perturbations are so
small that they are indistinguishable from the carrier waves. For the parameters
chosen in the present case, and within the framework of the third-order NLSE
model, it is close to such limit for ε > 0.25. It should be noticed that such limit is
high for weakly non-linear assumption, and with an amplification of 2 considered
due to modulation, the steepness will exceed the breaking limit. In panel (b) of
Fig. (III.2.16), the relation between dimensional maximum and minimum values
of envelope and steepness is shown. It is observed that the dimensional envelope
amplitude increases with the carrier steepness. However, around the range ε ∈
[0.05, 0.15], the increase of the maximum envelope amplitude is not significant. The
minimum envelope amplitude, both dimensional and non-dimensional, increase
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Figure III.2.16: The maximum and minimum values of wave envelope at the wave-maker
(55 m before the focusing position) as functions of steepness ε with other parameters
identical as in cases 364 and 365. In panel (a) the envelope amplitude is normalized
by the incident carrier wave amplitude, panel (b) shows the corresponding dimensional
envelope amplitude.

As the experimental conditions are identical to previous case 364 except for
the steepness, we adopt the same numerical parameters ∆x, ∆t, NT , Nsten for
the simulation of case 365. In Fig. (III.2.17), the envelope evolution in space
and time is displayed. The experimental and numerical results of the two cases
with different carrier wave steepness are compared. We conclude that the main
differences lie in the sub-modulations over the shallower region. Fig. (III.2.17)(a-
c) shows that the sub-modulations are of more significant amplitude than the
case 364, in Fig. (III.2.17)(d-f). The sub-modulations take place earlier in space.
Besides, in the case 365, the NLSE model predicts new bifurcations of the sub-
modulations manifest around the end of the flume. In the experimental results in
panel (a), the bifurcations are not so clear. In the simulations with Whispers3D
in panel (b), the bifurcation is visible.

Here we studied cases where the bottom consists of two flat parts with differ-
ent water depth. The two flat regions are connected by a slope with a constant
gradient. The focusing position locates at the beginning of the shallower region.
It is anticipated that small carrier wave steepness, at the wave maker boundary,
the modulation is close to maximum modulation which corresponds to the largest
amplification of envelope. So the modulation is mild as the wave train propagates
towards the focusing position. As waves propagate over the shallower region, the
sub-modulation is trivial due to small non-linearity. On the contrary, strong mod-
ulation is expected from wave maker to the focusing position while the carrier
wave is of large steepness. More complex dynamics is expected around and after
the focusing position since the waves are of higher steepness due to amplification.
The bound mode non-linear interaction occurs and large amplification may cause
breaking events. All these effects result in a more complex pattern as waves prop-
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Figure III.2.17: Comparison of experimental and numerical results of the AB cases 364
and 365. In panels (a) to (c), the results correspond to the case 365, and in panels (d)
to (f), the results of case 364. Panels (a), (d) correspond to experimental measurements;
panels (b), (e) simulations with Whispers3D model; panels (c), (f) simulations with
NLSE model.

agate over the shallower flat region after the focusing event. The generation and
bifurcation of the sub-modulations are included.
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Chapter 3

Breather evolution over two
connected bed slopes

In the previous chapter, we have discussed the case where waves propagate in the
shallower flat region after an up-slope. It is shown that the abrupt bottom gra-
dient change results in the fission of crest of the modulated wave envelope into
two sub-solitons of the envelope over the shallower region. For AB cases, the sub-
modulations may overlap with each other, forming a second local amplification of
the envelope around the end of the flat region. For larger non-linearity of the inci-
dent wave train, the sub-solitons, or sub-modulations appear earlier in space and
are of higher amplitudes. However, large steepness conditions under which stronger
instability phenomenon would appear are not easy to understand. Because in such
non-linear cases, large oscillations take place beside the wave packets. These os-
cillations come from another unstable mode that develops naturally as the regular
wave train becomes very steep. Alternatively, more non-linearity is introduced by
setting a mild sloping region after the uphill slope. In the following, the considered
bottom is composed of three parts: (i) starting from the wave-maker (at x = 0),
a section with constant water depth, (ii) a relatively steeper slope with constant
gradient, (iii) a long mild slope with a shoreline. The second slope with shoreline
works as dissipation zone to absorb incident wave energy. Two bathymetries are
tested with different combinations of gradients of two connected slopes. One case
is of relatively milder slopes, 1 : 40 for the first slope and 1 : 200 for the second.
The other is of relatively steeper slopes, 1 : 20 and 1 : 120.

In this chapter, we discuss breather evolutions over two different bottom se-
tups. The experimental conditions are still controlled by the five-parameter space
(Tc, ε, h, a, xf ).

117
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3.1 Akhmediev breather evolution over relatively mild slopes

The bottom profile is shown in Fig. (III.3.1). The considered bottom slope is
relatively mild with the first slope being 1/40 and the second 1/200. The first
slope starts at x = 31.175 m, and the second starts at x = 51.175 m. 49 wave
gauges are placed in the flume, and their positions are shown in the sketch. As
is indicated, probes 1–27 are distributed with equal spacing of 3 m. The probes
27–44 are of a shorter spacing interval of 2 m to get a better description of breather
evolution within this area. This wave tank bottom setup is denoted as setup 2.
The closest wave gauge to the end of the first slope is probe 17.
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Figure III.3.1: Sketch of the bathymetry setup 2, and the locations of probes

3.1.1 Case 410: experiment and simulation of a weakly non-linear case

During the experimental campaign with bathymetry setup 2, 128 cases were per-
formed for different wave period, wave steepness, Akhmediev parameter and fo-
cusing distance. These tests are named case 301 to case 428. Among these cases,
regular wave tests were also performed in order to evaluate the dissipation rate.
Among all these cases, we have chosen the case 410 because it corresponds to a
general behavior observed during this campaign.

In the experimental case 410, the breather parameter is a = 0.35. The other
parameters are ε = 0.09, h = 0.975 m, Tc = 1.085 s, and xf = 76.183 m. The
threshold for modulation instability kh = 1.363 is located at x = 76.183 m, which
is the same position as xf . The relative water depth in the deeper region is
kh ≈ 3.339, it decreases to 0 after the two sloping areas.

In the simulations with Whispers3D model, NT = 7 is used. The numerical
step sizes in space is ∆x = Ldeep/32 = 0.0573 m and time ∆t = Tc/64 = 0.00287 s.
The corresponding CFL number is CFL = 0.5 in the deeper region. A 2 meter long
relaxation zone is set on the left boundary of the domain for wave generation. As
the run-up on shoreline is not our primary target in this study, a flat region is set
after kh equals 0.5. In this shallower flat region, a relaxation zone with a length
of 10 m is set for wave absorption. The computation domain is now 132.675 m
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without the relaxation zones. The dimensional water depth for the shallowest
region (for kh = 0.5) is as low as 0.068 m. In the simulation with NLSE model,
the same shallower flat region is adopted to avoid numerical instabilities. In this
case, the bulk dissipation parameter in Whispers3D is νv = 1 × 10−4 m2/s. The
corresponding amplitude decay rate in NLSE is δ = 0.0027 m−1, it is calculated
based on the relation of νv and δ established in Appendix (A.2).

In Fig. (III.3.2)(a), it is shown that for the experiment case 410, the envelope
solitons propagate over two slopes without significant change. The modulations
remain significant after the focusing position. The amplitudes of envelope solitons
decay mainly due to dissipation.

In Fig. (III.3.2)(b–c), the AB evolution of case 410 is well predicted by both
Whispers3D and NLSE models. Even in the modulational stable area with x >
76.183 m, the results of NLSE model with variable coefficients show qualitatively
good agreement with measurements. The main differences between the simulations
and the experiment appear around the beginning and the end of the flume. At the
beginning of the flume x < 40 m, probably there were some calibration problems
for the wave gauges during the measurements. Around the end of the flume, the
differences are not due to reflection, because it is known that a 1/200 slope involves
very low wave reflection.

Figure III.3.2: AB case 410: pseudo color view of normalized envelope evolution in
experiment, panel (a), Whispers3D simulation, panel (b), and NLSE simulation, panel
(c). In all panels, the horizontal solid lines indicate the superimposed location of AB
focusing position and the position where the threshold kh = 1.363 is achieved. The
horizontal dashed lines denote the edges of the first slope.

In Fig. (III.3.3), the maximum and minimum values of the envelope is shown.
The spatial variation of the maximum and minimum values of envelope amplitude
is mild. The local maximum envelope amplitude is achieved around x = 40 m in
Whispers3D, and around x = 52 m in NLSE. Due to the errors in measurements,
it is difficult to determined precisely the real position corresponding to the local
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maximum of envelope amplitude. Visually, we consider the maximum locates
between 40 m and 60 m. Obviously, the maximum amplification of the wave
packet is achieved before the focusing position. This is mainly due to two effects,
the dissipation in the flume and the uneven bottom effect. Both of them result in
decreased envelope amplitude, but counter-balanced by the increase of envelope
amplitude due to modulation. The minimum of the envelope evolution is well
captured by the models. Around the end of the flume, Amin ≈ 0 indicates that for
a time interval and for a given location, the free surface is not perturbated.
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Figure III.3.3: AB case 410: spatial evolution of maximum and minimum envelopes in
experiments and simulations with different models. The vertical solid line indicates the
superimposed location of AB focusing position and the position where the threshold
kh = 1.363 is achieved.

In Fig. (III.3.4), the local comparison of envelope profiles in the experiment
and simulations is shown. It is observed that the agreement in envelope profile
between measurements and Whispers3D simulation is good both in magnitude and
in phase. The phase differences of wave packets in NLSE model and Whispers3D
is limited. In the experiment, the envelope is nearly symmetric, the asymmetry
develops only for shallow water. The most significant asymmetric profile in the
measurements is obtained at the last probe. It is well predicted by Whispers3D
model.

In Fig. (III.3.5), the spectral evolution for the experiment and the simulation
results with different models is compared. As is shown in Fig. (III.3.5)(a), in the
measurements the carrier wave frequency and side-band modes within the range
f/fc ∈ [0.9, 1.1] had limited change as the wave train propagated in the flume.
The side-band modes grew asymmetrically over the first steeper slope, namely
x ∈ [31.175, 51.175] m, and around the end of the flume x > 100 m. The growth of
side-band modes indicates the occurrence of instabilities. The spectral evolution
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Figure III.3.4: AB case 410: comparison of the time evolution of envelope measured at
different positions. Black lines represent measurements, red lines represent Whispers3D
simulation results, and blue lines represent NLSE simulation results.

is well predicted by Whispers3D model given in Fig. (III.3.5)(b). Especially the
asymmetry of the spectrum is well captured over both the first slope and the end
of the flume. The spectral evolution in NLSE model is shown in Fig. (III.3.5)(c).
It is, however, symmetric with respect to the carrier wave frequency fc. The wave
energy is more concentrated in the carrier wave, and the side-band modes close
to fc are of less energy compared to the measurements. The growth of side-band
modes above the first slope is predicted (though with symmetrical shape). But
the growth around the end of the flume is not well predicted. Differences between
the measurements and NLSE results arise after x ≈ 60 m.

3.1.2 Case 415: experiment and simulation of a weakly non-linear case
for the largest instability growth rate

In case 415, the non-linearity of the incident wave train and the instability growth
rate are increased. In this case, the breather parameter is set to a = 0.25, and the
steepness to ε = 0.1. Other parameters are not changed, h = 0.975 m, Tc = 1.085 s,
and xf = 76.183 m. The threshold for modulation instability kh = 1.363 locates
at x = 76.183 m, which is the same position as xf . The numerical parameters for
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Figure III.3.5: AB case 410: comparison of spatial spectral evolution in measurements
panel (a), Whispers3D simulation panel (b), and NLSE simulation panel (c). In all
panels, the vertical solid lines indicate the superimposed location of AB focusing position
and the position where the threshold kh = 1.363 is achieved. The vertical dashed lines
denote the two edges of the first slope.

case 415, NT , Nsten, ∆x, ∆t, νv are identical to those in the simulation of case 410
with Whispers3D model. The amplitude decay rate due to dissipation in NLSE is
identical as well.

In Fig. (III.3.6)(a), the general evolution of the modulations is similar to case
410. The period of modulations is smaller in case 415 than in case 410 due to a
smaller value of a. The two adjacent modulations get too close to each other so that
sub-modulation generation in between is suppressed. The sub-modulations start
to manifest around the end of the flume. In Fig. (III.3.6)(b–c), the simulations
with both the NLSE and Whispers3D models show good prediction of the AB
evolution in bottom setup 2.

In Fig. (III.3.7) are displayed, the spatial evolution of the maximum and min-
imum values of the envelope amplitude. We confirm that the general agreement
between the experiment and simulations with different models is good. The pre-
diction of Whispers3D is better than the NLSE model. In line with case 410, the
Amax predicted by the NLSE model is higher than Whispers3D as water depth
decreases. This is because the amplitude decay rate δ that corresponds to the
calibrated νv is computed for water depth h = 0.975 m. In the simulation with the
NLSE model δ is considered as a constant. However, as the water depth decreases,
the corresponding δ should be increased due to a stronger dissipation. This could
be taken into account by considering spatial variation of δ in NLSE simulations.
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Figure III.3.6: AB case 415: pseudo color view of normalized envelope evolution in
experiment panel (a), Whispers3D simulation panel (b), and NLSE simulation panel
(c). In all panels, the horizontal solid lines indicate the superimposed location of AB
focusing position and the position where the threshold kh = 1.363 is achieved. The
horizontal dashed lines denote the two edges of the first slope.

However, it is not yet incorporated in the present work. The feature of Amin evo-
lution is different from case 410. In case 410, Amin approaches to 0 around the
end of the flume. For case 415, it decreases to 0 around 92 m and then increases
again. In the simulation of case 410 with Whispers3D, such re-increase of Amin is
also observed near the end of the wave tank. This feature is probably due to the
higher carrier wave steepness of the incident wave train.

The time evolution of envelope is compared in Fig. (III.3.8). As the wave train
propagate towards the focusing position x = 76.183 m, the envelope amplitude of
the modulation decreases. In the exact AB solution, the envelope decreases to 0.
It is clear at probe 29, the NLSE model predicts the minimum envelope Amin = 0
twice during one period of modulation. In the current time window, Amin = 0
takes place around t − xprobe/Cg = 50 s and 52 s for example. These two time
instants are close since a = 0.25 is small. The results of NLSE model is nearly in
phase with the measurements. The magnitudes of the envelopes are well predicted
in NLSE model. The measured envelope profile is asymmetric in the upstream
region of the flume (see probe 10 to probe 19) and near the end of the flume (see
probe 49).

In this section, the bottom effects with relatively mild slopes 1/40 and 1/200
have been studied. It is seen that very limited instabilities of the AB wave trains
occurred in the bottom setup 2 for the studied cases. The spatial evolution of the
envelope is gentle and the generated sub-modulations are of low amplitude, even
though the wave trains propagate in low relative water depth (until kch = 0.5).
This is because the exact AB solutions could adapt to the non-exact solutions
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Figure III.3.7: AB case 415: spatial evolution of maximum and minimum envelopes in
experiments and simulations with different models. The vertical solid line indicates the
superimposed location of AB focusing position and the position where the threshold
kh = 1.363 is achieved.

which coincides with the experimental condition in a relatively long distance. This
hypothesis is supported by the comparison between case 415 and the AB case 364
with the bottom setup 1 in Section (2.2). They share similar non-dimensional
parameters: in case 415, kch = 3.34, ε = 0.1 and a = 0.25; and in case 364,
kh = 3.64, ε = 0.11 and a = 0.25. The differences are however obvious: in case
364, a particular envelope pattern has been observed; in case 415, the spatial
evolution of envelope is mild. It is anticipated that the generation of the sub-
modulations in Sections (2.1) and (2.2) is due to more significant depth transition.

3.2 Akhmediev breather evolution over relatively steep slopes

To show more pronounced instabilities as the exact AB solutions adapt to the
non-exact solutions which are suitable for the experimental conditions, we consider
larger bottom gradients and an incident AB wave train with stronger non-linearity.
The bottom profile is shown in Fig. (III.3.1). The first slope is now 1/20 and the
second 1/120. The first slope starts at x = 42.6 m, the second at x = 55.6 m. The
water depth decreases by 0.65 m after passing over the steeper slope, and then
decreases until 0 m after the second milder slope. As is shown in Fig. (III.3.9), 59
wave gauges are placed in the flume, and their positions are shown in the sketch.
This bottom setup is labelled as setup 3.

During this campaign, 60 cases were performed for different wave period, wave
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Figure III.3.8: AB case 415: comparison of the time evolution of envelope measured at
different positions. Black lines represent measurements, red lines represent Whispers3D
simulation results, and blue lines represent NLSE simulation results.
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Figure III.3.9: Sketch of the bathymetry setup 3, and the location of probes.

steepness, Akhmediev parameter and focusing distance. These tests are named
case 701 to case 760. Among these cases, 8 regular wave trains have been per-
formed to evaluate the dissipation. The main differences from the previous section
correspond to higher steepness and focusing points that are located near the edge
between the two slopes. The campaign took place from June to August 2019 (I
was involved in this campaign).

We show the experimental results of a case with strong non-linearity, case
739. The focusing distance took place before entering the uneven slope. As wave
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packets approached the focusing position, the non-linearity of the wave packets
was enhanced to a higher level. Due to the enhancement of large carrier wave
steepness resulting from shoaling, breaking events were observed around the end
of the first slope (i.e. 55.6 m). In this case, the wave parameters are a = 0.46,
Tc = 0.9 s, h = 1.4 m, ε = 0.13. The focusing position is xf = 42.6 m. In the
deeper region, kh ≈ 6.956. The threshold for modulation instability kh = 1.363
locates approximately at x = 116.725 m.

3.2.1 Case 739: experimental observation

In Fig. (III.3.10)(a), the top view of the envelope evolution in space and time
is shown. Due to the choice of a relatively high incident carrier wave steepness,
the incident wave train at x = 0 m is only mildly modulated, and significant
modulation takes place as wave train propagates towards the focusing position
x = 42.6 m. The incident AB solution focuses at xf = 42.6 m, and the ampli-
tudes of the modulations keep increase until the end of the first slope x = 52.6 m.
The local maximum value of the wave envelope is achieved before the wave train
enters the second slope. As the wave train propagates over the second slope,
each modulation splits into two envelope solitons with different group velocities.
Two envelope solitons generated due to fission are of different amplitudes, the
one with smaller group velocity is of higher amplitude. It would overlap with a
sub-modulation (with relatively larger group velocity) generated by the fission of
another modulation, and forming an additional enhancement of envelope ampli-
tude. In Fig. (III.3.10)(b), a three-dimensional view is shown. It is noted that
around the end of the flume where the relative water depth is low, the collision
of two sub-modulations results in considerable high envelope amplitude which is
significantly larger than the background wave amplitude.

In Fig. (III.3.11), the evolution of the maximum and minimum values of the
envelope amplitude is shown. Two local maximum values should be noted. One
is around the end of the first steeper slope x21 = 51.7 m. After this maximum the
value of Amax decreases partially due to the breaking events. The other is around
the end of the flume x59 = 125.6 m. They correspond to the amplifications of the
carrier wave up to a factor of 2. Especially the second amplification takes place in
a relatively shallow, modulationally stable region. It corresponds to the collision
of two sub-modulations, which is related to the instability of the AB solution.
Such a high amplification meets the criterion of freak waves. So this case is
a piece of experimental evidence that the breather solutions generated
upstream could result in freak waves in the shallower region where the
modulation instability ceases to exist.

In Fig. (III.3.12)(a), the spectral evolution is shown. The spectrum broadens
as the wave train propagates over the first steeper slope, a similar trend is also
observed in Fig. (III.3.5)(a), in case 410 with milder non-linearity and bottom
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Figure III.3.10: AB case 739: envelope evolution in space and time of the experiment.
The envelope is normalized by the carrier wave amplitude, in panel (a) top view, and
panel (b) 3D view. In panel (a), the solid lines denote the two edges of the first slope.
The dashed line indicates the position where the threshold kh = 1.363 is achieved.

Figure III.3.11: AB case 739: spatial evolution of maximum and minimum envelopes in
experiment. The vertical dashed line indicates the position where the threshold kh =
1.363 is achieved.

slopes. However, more side-band modes appear and result in broader spectral
width in the present case. The growth of side-band modes is asymmetric, with
more frequency modes appearing for frequencies higher than fc. As the wave
train propagates over the milder second slope, the spectrum becomes narrower,
the energy of the side-band modes with f/fc > 1.2 is transferred back to the main
part of the spectrum. The spectral shape becomes nearly symmetric after the
connection of two slopes. In Fig. (III.3.5)(b), it is shown that the incident wave
spectrum (probe 1) is symmetric with two relatively large side-band modes besides
the carrier frequency. As the wave train propagates over the uneven bathymetry, at
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probe 21, the spectrum is asymmetric with more side-band modes with frequencies
higher than fc appear. Fewer side-band modes with frequencies lower than fc take
place, but their energy is relatively higher than their counterparts on the higher
frequency side of fc. It is observed that at probe 59, the frequency with the highest
energy is f/fc ≈ 0.9, a frequency downshift takes place.

Figure III.3.12: AB case 739: spatial spectral evolution, panel (a) and comparison of
spectra measured at different positions panel (b) in experiment. In panel (a), the vertical
solid lines indicate the two edges of the first slope. The dashed line indicates the position
where the threshold kh = 1.363 is achieved.

3.2.2 Case 739: convergence tests of numerical parameters in Whis-
pers3D

It was our target to achieve high non-linearity of the wave train entering the sloping
areas. While trying to simulate case 739, particular attention should be paid to
the choice of numerical parameters in Whispers3D that are related to the model
accuracy. Given the experimental conditions, kch ≈ 6.956 represents the carrier
wave is in deep water. And ε = 0.13 for the carrier wave, after the enhancement
of a factor of 2, the carrier steepness could be as high as 0.26 around x ≈ 52 m
and x ≈ 125 m. The broad spectral width is observed around the end of the
first slope, resulting in a relatively wide range of relative water depth. Especially
around the end of the flume, it is challenging to simulate the strong non-linear
wave train propagating in shallow water. It brings more complexity since breaking
events appeared around the end of the first slope during the experiment. But it is
not sure, if we stop the second slope after kch = 0.5 in simulations, whether waves
break or not. The typical choice of numerical parameters, especially NT = 7 and
Nsten = 5 may be too conservative to describe the case 739.

Before going to detailed comments on the comparison of Whispers3D simula-
tion results and measurements, convergence tests of the numerical parameters are
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introduced. This is done to justify the reliability of the Whispers3D simulation
results for such a challenging experimental condition. The tested parameters in-
clude NT , Nsten, and νv. The discretization step in space (∆x) and time (∆t) is
calibrated just as all the other cases, thus they are omitted here. The choices of
∆x = 0.0176 m and ∆t = 0.005 s balance the accuracy and efficiency of Whis-
pers3D model.

The other numerical parameters used during the convergence tests are not
changed. The region from kph = 0.5 to the shoreline in the experiment flume is
replaced by a region with constant depth kph = 0.5 in simulations. The generation
relaxation zone is 3.79 m long corresponding to 3 wavelengths in the deeper region.
The damping relaxation zone is 7.58 m long, it corresponds to approximately 6
wavelengths in the deeper region (or equivalently 13 wavelengths for kph = 0.5). In
this case, the approach outlined in Section (3.3) is adopted to model the breaking
process. The criterion for determining the starting and the ceasing of the wave
breaking process is the angle of wave slope with respect to the x-axis (i.e., ηx).
In this case, we choose βb = 26◦ and βf = 10◦. The depth-induced breaking
effect is modelled by inclusion of an additional dissipative term in Eq. (I.3.9),
the dynamic free surface boundary condition. This approach was introduced in
Guignard and Grilli (2001). The parameter which characterises the intensity of
breaking, µb = 1.2 of Eq. (I.3.10) is adopted in the simulations of case 739.

a/ Convergence tests of NT and Nsten parameters

As is observed in previous cases, while the incident AB solution propagates over
uneven bottoms, the modulation remains periodic in time. The convergence test
is thus carried out by directly comparing the time series of free surface elevation,
and focusing on one period of the modulations. The focusing due to the growth of
the modulation, where maximum envelope amplitude (thus strongest nonlinearity)
takes place, is the most challenging area. The list of tested numerical parameters
is given in Table (III.3.1).

Table III.3.1: List of numerical parameters adopted during the convergence test for NT

and Nsten of Whispers3D model

Test NT Nsten ∆x (m) Lc,deep/∆x Lc,shallow/∆x ∆t (s) Tc/∆x

1 7 5 0.0351 36 17 0.005 180

2 9 5 0.0351 36 17 0.005 180

3 10 5 0.0351 36 17 0.005 180

4 7 5 0.0176 72 33 0.005 180

5 7 7 0.0176 72 33 0.005 180

6 7 9 0.0176 72 33 0.005 180

In Fig. (III.3.13), the comparison of the time series of surface elevation is shown.
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In each panel, the time window is shifted according to the probe positions and
local group velocity of the carrier wave. At probe 20, the wave trains including
the modulations are superimposed for the three chosen Nsten. However, as the
wave train propagates over the second slope, differences appear for Nsten = 5 and
Nsten = 7, 9. For the sub-modulations marked in Fig. (III.3.13) at probe 40, 50
and 52, the results of simulations with Nsten = 7 and Nsten = 9 are superimposed.
This indicates that the choice of Nsten = 5 which denotes the five-point finite
difference scheme is insufficient for accurately describing case 739, and convergence
is achieved for Nsten = 7.
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Figure III.3.13: Convergence test of Nsten: comparison of free surface elevation.

In Fig. (III.3.14), the convergence test of NT is shown in the same moving
window as in Fig. (III.3.13). Three values of NT = 7, 9, 10 have been tested. It is
shown that at the four probe positions, the results of NT = 7 are different from
NT = 9 and NT = 10, especially for waves with large amplitude. The differences
are mainly due to the different degree of accuracy of the dispersion in Whispers3D
model with different NT . The simulation results with NT = 9 and NT = 10 are
of minor differences. So we consider that the convergence is nearly achieved for
NT = 9.
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Figure III.3.14: Convergence test of NT : comparison of free surface elevation

b/ Calibration of bulk dissipation rate νv

It has been addressed that the dissipation rate allows to control the complex
spatio-temporal arrangement for breather-type solutions in deep water conditions
(see Kimmoun et al., 2017). Especially for the cases with a relatively high value
of a, the ’second-order’ response of modulations takes place, leading to fission
of modulations, as is illustrated in Fig. (III.1.2). The dissipation does not only
affect the envelope amplitude decay of AB solutions but also affect the bifurcation
of the envelope. Here the sensitivity tests of the dissipation parameter νv show
the effects of dissipation for AB breathers that propagate over uneven bottom
with significant depth transition. The calibration of the dissipation parameter
is based on the comparison between measured and simulated envelope evolution,
including the qualitative agreement of envelope profile in space and time, and the
quantitative comparison of the maximum envelope amplitude Amax/A0.

In Fig. (III.3.15), the spatial evolution of maximum and minimum envelope
amplitude is shown. Four values of dissipation parameter νv are superimposed
with the measured results. It is observed that the effects of dissipation gradually
manifest as the wave train propagates towards the end of the flume. By affecting
the wave amplitude, the dissipation is directly related to breaking events appearing
at the end of the first slope. It is noted that the sudden decrease of Amax due
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to wave breaking takes place later in the wave tank for larger dissipation rate.
And the decrease of Amax (intensity of breaking) caused by breaking effect is
different, the larger the bulk dissipation, the milder the dissipation due to breaking
effects is (comparing the simulation results with νv = 1.8 × 10−5 m2/s and νv =
4.0×10−5 m2/s). More significant differences happen around the second slope, the
re-increase of the Amax which is due to collision of the sub-modulations is shifted to
the direction of the shore for larger dissipation. For Amin, the evolution is similar
except for the smallest dissipation rate νv = 1.8× 10−5 m2/s.
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Figure III.3.15: Calibration test of dissipation parameter νv: comparison of maximum
and minimum envelope amplitudes. The vertical solid lines denote the two edges of the
first slope. The vertical dashed line indicates the position where the threshold kh = 1.363
is achieved.

In Fig. (III.3.16), the comparison of the envelope evolution in space and time
is shown, focused on a short time window. The collision of the sub-modulations
takes place around x = 110 m in experiment, highlighted by a red arrow. It is
noticed that in the simulations with increasing dissipation the distance between
the wave maker and the position of collision increases.

Based on the observations listed above, we conclude that the dissipation plays
an important role in the AB evolution over the uneven bottom. It affects the
wave steepness around the end of the first slope, so different dissipation rates may
change the position and intensity of breaking events. It also has non-negligible
effects on the wave dispersion by affecting the wave amplitude and wave-number.
The group velocities of sub-modulations are thus different. The position where
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Figure III.3.16: Calibration test of dissipation parameter νv: envelope evolution in space
and time. In all the panels, the horizontal dashed lines denote the two edges of the first
slope. The horizontal solid lines indicate the position where the threshold kh = 1.363 is
achieved. The horizontal red arrow is a reference line.

the collision of the sub-modulations takes place depends on their group velocities,
so different dissipation rates may change the position of collision. The choice of
dissipation parameter νv = 3.3 × 10−5 m2/s results in good agreement for these
two aspects: the magnitude of the envelope amplitude, and correct prediction of
the position for collision.

3.2.3 Comparison between measurements and simulations with Whis-
pers3D and NLSE models

The numerical parameters for the simulations with Whispers3D is summarized
here. The convergence is achieved for Nsten = 7, NT = 10, and ∆x = 0.0176 m
and ∆t = 0.005 s (convergence is not shown). These parameters are chosen to
balance the accuracy and efficiency of the simulations. A 3.79 m long generation
relaxation zone and a 7.58 m long damping zone are set. The breaking wave
detection is based on the geometry of the wave profile. In this study, βb = 26◦ and
βf = 10◦ represent the onset and end of a breaking wave. The breaking intensity
determines the dissipation due to breaking. The associated breaking intensity
parameter µb = 1.2 is used. Based on the study in the previous paragraph, the
bulk dissipation νv = 3.3×10−5 m2/s is chosen. It corresponds to amplitude decay
rate δ = 0.0023 m−1 for the constant water depth h = 0.75 m. This value of h
corresponds to the water depth at the end of the first slope.

In Fig. (III.3.17), the comparison between measurements and simulation results
of Whispers3D and NLSE models is shown. When parameters are carefully cali-
brated, Whispers3D predicts well the evolution of wave envelope in space and time.
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Very good agreement is achieved not only for modulations and sub-modulations
but even the small oscillations of wave envelope between two significant overlapped
sub-modulations. The relatively high incident carrier wave steepness results in sig-
nificant non-linearity of modulation around the end of the first slope which locally
violated the weakly non-linear assumption. The NLSE model still provides a qual-
itatively correct evolution of envelope, apart from the asymmetry profile which
has been observed in all above-mentioned NLSE simulations. The fission effect
is captured, and the collision takes place nearly in the same position as in the
measurements. The main advantage of the NLSE models is the computational
time. In the simulations of the shown cases, it takes only a few seconds for NLSE
computation, whereas it takes on average 2 days CPU-time for simulating 320 s
wave propagation with Whispers3D.

Figure III.3.17: AB case 739: pseudo color view of normalized envelope evolution in
experiment panel (a), Whispers3D simulation panel (b), and NLSE simulation panel
(c). In all panels, the horizontal dashed lines indicate the position where the threshold
kh = 1.363 is achieved. The horizontal solid lines denote the two edges of the first slope.

In Fig. (III.3.18), quantitative comparison of the maximum and minimum enve-
lope amplitudes Amax/A0 and Amin/A0 evolution in space is shown. The simulation
results of Whispers3D show excellent agreement with measurements. The envelope
amplification due to modulation near the end of the first slope, the re-amplification
due to collision around the end of the flume, and the local maximum of envelope
due to the occurrence of sub-modulations around x ≈ 100 m are well captured
by Whispers3D. In simulation of NLSE however, the amplification rate of Amax
over the first slope is larger than in measurements. This is due to the fact that
NLSE is limited by the weakly non-linear assumption. For such a case with strong
nonlinearity, the energy transfer to second or higher harmonics is underestimated
by NLSE. Furthermore, the limitation of the envelope due to breaking effects is
excluded in NLSE. Due to little energy transferred or dissipated, stronger wave
non-linearity results in stronger instabilities and earlier occurrence of the collision
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of the sub-modulations in the flume.
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Figure III.3.18: AB case 739: spatial evolution of maximum and minimum envelopes in
experiments and simulations with different models. The vertical solid line indicates the
focusing position and the vertical dashed line indicates the position where the threshold
kh = 1.363 is achieved.

In Fig. (III.3.19), the spectral spatial evolution is shown. Again, the spec-
tral evolution is well captured by Whispers3D. In Fig. (III.3.19)(a) and (b), it is
seen that the energy decay due to wave breaking around x ≈ 55 m, mainly take
place for the waves with carrier frequency fc. The energy of the carrier wave in
Fig. (III.3.19)(c) shows only gradual decrease in space. The broadening of wave
spectra take place around the connection of the first and second slopes in panel
(a) and (b). As in previous cases, the spectrum predicted by NLSE is symmetric
with wave energy simultaneously transferred to both lower and higher modes of
the carrier frequency.

3.2.4 Ongoing numerical investigation of the effects resulting from the
bottom slope on the nearshore wave enhancement

It is seen that the behaviour of the AB wave train is evidently different in case
739 from case 410 and 415. As is shown in subsection (3.2.1), there is a second
enhancement of the wave amplitude around the end of the flume in case 739.
However, only with the three cases shown in this section, it is difficult to conclude
which parameter dominates the nearshore wave amplification (collision of the sub-
modulations). Since not only the bottom slopes but also the depth variation and
the incident wave steepness are changed to achieve higher non-linearity in case 739.
Especially the effects resulting from the bottom slopes are hard (at least costly)
to investigate experimentally. So the idea is to test numerically, the propagation
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Figure III.3.19: AB case 739: comparison of spatial spectral evolution in measurements
panel (a), Whispers3D simulation panel (b), and NLSE simulation panel (c). In all
panels, the vertical solid lines indicate the two edges of the first slope. The vertical
dashed line indicates the position where the threshold kh = 1.363 is achieved.

of the same AB solution as case 739 over different bottom slope combinations.
The incident wave conditions of case 739 are recalled: a = 0.46, Tc = 0.9 s,

ε = 0.13, and focusing position xf = 42.6 m. The incident wave trains in all new
cases are identical to case 739. Three new bottom setups similar to Fig. (III.3.9)
but with different combinations of slopes are tested numerically. The water depth
near the wave maker is h = 1.4 m, and the first slope starts at x = 42.6 m in
all cases. The tested slopes are shown in Table (III.3.2). In case 739.1, the first
steeper slope is changed from 1 : 20 in the experiment to 1 : 40 for showing the
effects of a milder first slope. In case 739.2 and 739.3, the second slope is changed
to 1 : 200 and 1 : 80 respectively to demonstrate the effects of the second slope.

Table III.3.2: List of new bottom slope combinations of case 739

Case Slope 1 Lslope1 (m) Slope 2 Lslope2 (m) xkh=1.363 (m)

739 1:20 13 1:120 84.42 116.728

739.1 1:40 26 1:120 84.42 129.728

739.2 1:20 13 1:200 140.7 157.48

739.3 1:20 13 1:80 56.28 96.352

The simulations are conducted using Whispers3D model with the calibrated
numerical parameters: Nsten = 7, NT = 10. The discretization in space and time
∆x = 0.0176 m, ∆t = 0.005 s, and viscous dissipation νv = 3.3 × 10−5 m2/s are
adopted. A 3.79 m long generation relaxation zone and a 7.58 m long damping
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zone are set. The parameters related to breaking events are βb = 26◦ and βf = 10◦

representing the onset and end of a breaking wave, and µb = 1.2 for breaking
intensity. In the simulations, a shallow-water flat region with kh = 0.5 is set in
place of the area kh < 0.5, since the shoreline run-up is not the target of the
present work.

In Fig. (III.3.20), the evolution of the normalized maximum wave envelope
Amax/A0 is shown. In case 739.1, the first slope is set with a milder slope. It
is observed in Fig. (III.3.20)(a) that, the spatial evolution of two cases is similar
until x = 90 m. Then differences appear in the sense that in case 739.1 the second
local peak of Amax appear later in space. It is anticipated that the lag-in-space is
partially related to local relative water depth, since in the new case the first slope
is 13 m longer than in the original case. In Fig. (III.3.20)(b), the evolution of
Amax/A0 is shown with decreasing kh. It allows to compare the envelope evolution
under the same local water depth condition. In the flat regions before the first
slope (x = 0 m to x = 42.6 m) and near the end of the computational domain, the
relative water depths are kh = 6.96 and kh = 0.5 respectively. These two regions
are represented by the vertical lines at the corresponding water depth in panel (b).
The connection point of two slopes is marked by the dot-dashed line. Although
the maximum envelope evolution for two cases is similar before x = 90 m, the
wave train is propagating over different local water depths. The second local peak
of Amax also appears in case 739.1 but takes place in a deeper region. After the
threshold kh = 1.363, the maximum envelope rapidly decreases for both two cases.
This decrease of Amax in the modulational stable area is in line with the asymptotic
formulation of Benilov et al. (2005). Since the focusing position xf = 42.6 locates
at the beginning of the first slope, the evolution of maximum envelope is dominated
by the de-modulation after the focusing. The effects of the first slope gradient are
therefore less evident.

In Fig. (III.3.21)(a), the spatial envelope evolution comparison of three choices
of the second slope is shown. The collision between the two sub-modulations
that results in a second maximum near the shore is also visible for the case 739.2
in which the second slope is 1 : 200. This second local peak does not appear
in case 739.3 in which a steeper second slope 1 : 80 is set. This is somewhat
unexpected. Because the non-linearity of the wave train is supposed to be enhanced
by a steeper second slope and therefore a more significant second peak is expected.
In Fig. (III.3.21)(b), the envelope evolution in terms of relative water depth is
shown. It is noticed that as the second slope gradient increases, more space is
needed to develop the second local peak of Amax/A0. However, as the wave train
approaches to the threshold kh = 1.363, Amax decreases rapidly. So in case 739.3,
the wave train achieves the position where the relative water depth is kh = 1.363,
and the maximum envelope Amax/A0 starts decreasing before the development of
the second peak. It indicates that the appearance of a significant second peak of
Amax is the result of a balance. On one hand, a steep enough second slope is needed
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Figure III.3.20: AB case 739: spatial evolution of maximum envelope Amax compared
with a milder first slope case 739.1. Panel (a) shows the maximum envelope evolution
in space, panel (b) shows its evolution as relative water depth decreases. The vertical
dot-dashed lines denote the connection between the two slopes, and the dashed line in
panel (b) indicates the threshold kh = 1.363.

to increase the non-linearity of the wave train. On the other, a milder second slope
is also needed to keep enough space before the modulational stable region. In the
experiment case 739, it happens to meet this balance. A significant second peak of
maximum envelope appears and takes place very close to the modulational stable
area.
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Figure III.3.21: AB case 739: spatial evolution of maximum envelope Amax compared
with different second slopes in case 739.2 and 739.3. Panel (a) shows the maximum enve-
lope evolution in space, panel (b) shows its evolution as relative water depth decreases.
The vertical dot-dashed lines denote the connection between two slopes, and the dashed
line in panel (b) indicates the threshold kh = 1.363.



Chapter 4

Conclusion and outlook

4.1 Summary of findings and conclusions

It has been shown that, in deep water condition, the instabilities of exact breather
solutions may occur when they are performed in experimental wave tanks. Start-
ing with exact breather solutions, different dynamical behaviours of the breather
wave train may manifest. These behaviours with different phenomena are con-
sidered as ’different orders’ dynamical responses. The ’first-order’ behavior is the
phase-shifted FPU recurrence (see Kimmoun et al., 2016), and the ’second-order’
behavior is the collision of the sub-modulations of modulation (see Kimmoun et al.,
2017). The occurrence of the instabilities of exact breather solutions and devia-
tion from expected breather trajectories in space and time is possibly due to the
’imperfect experimental condition’. For example, the AB breather is an exact so-
lution of constant-coefficient conservative cubic NLSE for weakly non-linear waves
propagating over a flat bottom. Effects which are not included in this equation,
like bottom change, dissipation, high-order non-linearity and high-order dispersion
and breaking etc., play as disturbances to the exact breather wave train. The in-
stabilities take place while the AB solution adapts to the one that meets the ’real’
condition. The dissipation effect is common in all experimental flumes. Its effects
on the evolution of exact breather solution have been studied in Kimmoun et al.
(2017) within the framework of a non-conservative NLSE model. The effects of
uneven bottoms as a source of disturbance on the instabilities of breather solutions
are not discussed yet.

This study attempts to contribute to the understanding of the characteristics of
breather transformation over slopes and evolution in shallow water. In this part,
the exact breather solutions evolving over two kinds of uneven bottom profiles
have been investigated experimentally and numerically. The experiments were
conducted in a mid-size wave flume in THL. Two different types of bathymetry
are considered. One is bottom setup 1 which contains a prismatic slope (1/20)
that connects a deep water region on one side and a shallower region on the
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other. The other bottom starts with deeper region after which two slopes are set.
In the second case, the first slope is steeper to introduce significant instabilities
to the wave train, the other slope is milder to decrease the water depth until
shoreline. Two different combinations of slopes are considered. The bottom setup
2 is milder, the gradient for the first slope is 1/40, and the second 1/200. The
bottom setup 3 is steeper with 1/20 and 1/120 as slopes. Mainly three aspects
are considered when choosing the bottom setups: the bottom gradient, the change
of gradient between the two areas, and the shoreline (or very shallow water).
The frictional dissipation is non-negligible considering the dimension of the wave
flume (200 m long). Experiments with regular wave trains have been performed to
evaluate the dissipation. Both the uneven bathymetry and the dissipation work as
disturbances resulting in instabilities of exact breather solutions. The generated
breather wave trains are characterized by a five-parameter space (Tc, ε, h, a, xf ).
The tested conditions cover a relatively large range in this space. Different levels
of incident carrier wave steepness (ε = 0.09 to 0.13) were tested in three bottom
setups. Both Akhmediev (time-periodic) and Peregrine (non-periodic) breather
solutions were included. For Akhmediev breather solutions, different values of
a were tested from 0.25 to 0.46. The effects of different bottom slope gradient
combinations have been investigated with the validated numerical model with well
calibrated numerical parameters. By conducting comprehensive analyses of the
measured free surface signals, surface envelope computed via windowed Fourier
transformation, and spectrum of surface elevation, the following conclusions for
the experiments can be drawn:

• As breather solutions propagate over slopes, the envelope solitons are ampli-
fied due to modulation and shoaling. In the meantime, the envelope solitons
are reduced by dissipation (due to friction and breaking effects) and non-
linear triad wave-wave interaction. The spatial variation of envelope ampli-
tude is a result of the balance of all these phenomena. In general, for cases
with low values of ε and a long focusing distance xf , the amplification of
envelope takes place in a long-distance such that the dissipation significantly
limited the increase. The envelope showed very mild spatial variation. On
the contrary, significant spatial variation of the envelope was observed for
the wave trains with large values of ε. Especially when the focusing takes
place around the slope with a larger gradient (1/20 or 1/40 in our cases),
the non-linearity of the wave train is further enhanced due to strong shoal-
ing and mild dissipation effects. High incident steepness ε not only affects
the non-linear behavior (like the breaking effects and higher-order bound
modes occurrences) but also the dispersion property (like the wave-number
and group velocity) of the wave train. The spectrum of surface elevation un-
derwent broadening near the point with different bottom gradients on each
side. A series of side-bands appeared asymmetrically with respect to the
carrier wave frequency fc, with more modes apparent in the range f > fc.



4.1 Summary of findings and conclusions 141

The number of modes appeared in the range f > fc, i.e. the degree of the
asymmetry of the spectrum, is a sign of the significance of instabilities. In
the cases where sub-modulations are generated, a larger incident steepness
results in the earlier occurrence of the sub-modulations in the wave flume.

• The water depth transition and the abrupt change of gradient result in insta-
bilities of the breather solutions. The bathymetry setup 1 is a combination
of steep slope (1/20 in bottom setup 1) and significant gradient change (from
1/20 to 0). With this setup, the envelope solitons in both Peregrine and
Akhmediev breathers split into two sets of envelope oscillations with dif-
ferent group velocities. In the Akhmediev breather case, these oscillations
overlap with the ones generated from another envelope soliton forming a par-
ticular envelope pattern in space and time. However, compared to case 364
with bathymetry setup 1, the sub-modulations are smaller in case 415 with
bathymetry setup 2. It is anticipated that the differences are due to the rela-
tively mild first slope (1/40) and small gradient change (from 1/40 to 1/200)
in bathymetry setup 2. The effects of the second slope have been studied nu-
merically only. It is shown that the second slope also plays an important role
for the AB wave train propagation. As the wave train passes the threshold
water depth kh = 1.363, the maximum envelope decreases rapidly. A steeper
second slope increases the non-linearity of the wave train but shortens the
distance from the modulational stable region.

• As in deep water case, the ’order’ of the dynamical responses of wave trains to
disturbances increases as the breather parameter a. The thresholds for a that
involve different order behaviors are dependent on many factors such as ε, Tc,
dissipation rate and slope gradient. For a low value of a (0.25 and 0.35 shown
in this study), one growth-decay cycle was observed. The phase-shifted FPU
recurrence was not observed. The most possible explanations for bathymetry
setups 1 and 2 are different. For bathymetry setup 1, strong instabilities
were triggered due to the depth transition and gradient change. However, the
shallower flat region is of relative water depth lower than the threshold 1.363
such that the modulation focusing can not happen again. For bathymetry
setup 2, the instabilities were small because of the mild depth transition,
small gradient change and relatively low steepness. For a large value of a
(0.46 tested), significant incident steepness and relatively steep slopes, a clear
’second-order’ behavior of envelope solitons occurred with the generation of
sub-solitons. The generated sub-solitons overlapped with each other
resulting in a re-amplification of envelope amplitude around the
end of the flume where kh < 1.363. The nearshore enhanced waves
meet the definition of freak waves.

• The choice of the carrier wave period Tc and deep water depth h deter-
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mines the relative water depth (for a given bathymetry setup). Certainly,
the relative water depth also has a non-negligible influence on the wave train
evolution. For sufficiently large relative water depth, the breather solution
responses to instabilities tend to the deep water case, the bottom effects re-
duce. For very shallow relative water depth, the wave trains are modulational
stable. In the cases with intermediate relative water depth (all cases studied
belong to this category), the threshold kh = 1.363 is reached over the un-
even areas. Before this position, wave envelope evolves due to modulation,
the wave train ’breathes’ as a result of the resonant four-wave interactions.
After this point, the shape of the wave envelope is somewhat ’frozen’ and
propagate only as energetic wave packets without significant modulation.

In this study, the experiments were also investigated by using two numerical
models. One is a fully non-linear dispersive model with dissipation due to fric-
tion and breaking events incorporated, Whispers3D. The other is non-conservative
third-order NLSE with variable coefficients, which describes waves to third order
in non-linearity and first-order in dispersion. Based on the comparison between
the results of two models with the measurements, the following remarks of the
behavior of two models can be drawn:

• The Whispers3D model shows excellent agreement with measurements for all
cases, given the parameters NT , Nsten, ∆x and ∆t are well-calibrated. Good
agreement in both tempo- and spectral-domain between Whispers3D simu-
lation and measurements have been achieved even for the most challenging
case 739 which corresponds to high non-linear waves (up to breaking limit)
propagating in a wide range of relative water depth. The convergence of this
case shows that the influences due to the insufficient value of NT is more
significant than that associated with Nsten. High accuracy of dispersion of
numerical model is required.

• The adopted NLSE model is of the limited capacity for characterizing high-
order wave non-linearity and non-linear dispersion. The dissipation is mod-
elled by a simple linear term which characterizes the decay rate of wave am-
plitude. However, the simulation results showed very good agreement with
experiments for cases with intermediate non-linearity. The instabilities of
the breather solutions are quantitatively described by the NLSE model. The
limitation of the application of NLSE model mainly comes from its linear
dispersion property. The asymmetry of both envelope and spectrum profile
is thus not predicted by the NLSE model adopted here. For case 739, the
most challenging case with strongest non-linearity, the prediction of NLSE
model still qualitatively agrees with measurements.
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4.2 Outlook and perspectives of future work

As one of the most important outputs of this part, it has been shown experimen-
tally in case 739 that the breather solutions generated in deep water could result
in freak waves hitting the coastal areas. The experimental conditions of case 739
outline a very complicated physics: significant depth variation, relatively steep
bottom slopes, strong non-linear incident wave train, and second-order dynami-
cal response of breather wave trains. In this case, it is still not fully clear which
parameter or parameters dominate the formation of the freak waves.

In the end of Chapter 3, the ongoing work in this direction is mentioned.
Several tests have been conducted to illustrate the effects on the formation of the
freak waves resulting from different bathymetries. In the near future, a systematic
numerical investigation will be conducted to draw conclusions on which parameters
allow to enhance the nearshore wave height. The factors that are going to be tested
include:

• The shape of bathymetry. A few combinations of two bottom slopes for the
same incident wave train have already been tested. Then the bathymetry
effect will be tested by adjusting the relative water depth, the position of
focusing due to modulation;

• The period of the envelope, namely the breather parameter a, which is related
to the ’orders’ of the dynamical responses of breather solutions;

• The non-linearity of the incident wave train which affects the non-resonant
wave-wave interaction on one hand, and affects the envelope variation rate
in space due to modulation on the other hand.

Furthermore, the bathymetry setup 3 was inspired by the typical profile of the
bathymetry in the north-eastern coast of Taiwan as a simplified bottom profile.
This is a position where casualties were reported during typhoons. Therefore, it
would be of practical interest to simulate more realistic bottom profiles and local
wave conditions based on our first-stage investigations.
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Part IV
Irregular waves propagation over

sloping bottoms

Pour un état de mer irrégulier, de fortes variations de profondeur induisent des
modifications importantes de l’état de mer sur une échelle de longueur relativement
courte et l’éloignent de l’état d’équilibre (ou de quasi-équilibre) incident. Dans la
zone de profondeur d’eau plus faible, l’état de mer s’adapte progressivement vers
un nouvel état d’équilibre. En raison de la dynamique hors équilibre, on s’attend à
des statistiques fortement non-gaussiennes et à une intensification de la probabilité
d’occurrence des vagues scélérates. L’objectif de cette partie est de mieux compren-
dre le processus d’adaptation de l’état de mer incident et le comportement non-
gaussien. Le chapitre 1 présente les approches déterministes et stochastiques dans
l’étude des vagues scélérates, et passe en revue les méthodes d’analyse de données
couramment utilisées. Dans le chapitre 2, un cas expérimental représentatif mené
au THL et sa simulation correspondante sont examinés en détail. La bathymétrie
adoptée est en forme de marche. Les occurrences intensifiées de vagues scélérates
sont confirmées dans la région plate à faible profondeur, et les modèles de hau-
teur de vagues cités ne sont pas capables de décrire les distributions de hauteur
de vagues mesurées de manière satisfaisante. Les cas d’expériences et les simu-
lations supplémentaires par rapport au chapitre 2 sont présentés et discutés dans
le chapitre 3. L’autre axe de cette partie du travail est basé sur les expériences
récentes présentées dans Trulsen et al. (2020). Dans cette campagne, la bathymétrie
adoptée est de type barre. Dans le chapitre 4, nous examinons le comportement
non-gaussien de l’état de mer du fait des fortes variations de profondeur (shoaling
et de-shoaling) en utilisant des simulations entièrement non-linéaires. Les effets
du de-shoaling dans l’expérience sont étudiés plus en détail en mettant en place un
cas comparatif avec une bathymétrie en forme de marche. Deux groupes de vari-
ables de vagues ayant des tendances d’évolution statistique différentes sont iden-
tifiés. Nous montrons que les déformations des vagues sur les pentes se produisent
indépendamment dans les directions horizontale et verticale. Le de-shoaling modi-
fie le champ d’ondes à l’amont de cette zone et entrâıne des oscillations à courte
échelle des propriétés spectrales. Les conclusions sont données dans le chapitre 5.
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L’eau qui porte le bateau est la même que celle qui le renverse, nous
apporte-t-elle une catastrophe ou un bonheur? Cela dépend uniquement de la

façon avec laquelle on y fait face.
Xun tseu

Xun Kuang (IIIIe siècle av. J.-C.)



List of the symbols of Part IV

A local amplitude of wave enve-
lope

AltB atiltness parameter defined in
frequency domain

Altη atiltness parameter defined in
time domain

b2 bicoherence
B bispectrum

BFI Benjamin-Feir index defined
in deep water

Bs Benjamin-Feir index defined
in shallow water

c constant coefficient of BFI
C phase velocity
Cg group velocity of linear theory
Cr relaxation coefficient function
Egr wave group energy over corre-

sponding group length
EI instantaneous wave energy

ESIWEH smoothed instantaneous wave
energy history

fn nth natural mode frequency in
a wave flume

fp spectral peak frequency
GF groupness factor defined by

SIWEH
h local water depth
H̄ arithmetic mean of wave

height
H Hilbert transform operator

HH Hilbert-Huang transform op-
erator

H1/3 mean wave height of the high-
est one-third waves

H1/M mean wave height of the high-
est one-Mth waves

Hm0 characteristic wave height de-
fined in spectral domain

Hs significant wave height
kn nth natural mode wave num-

ber in a wave flume

kp wave number corresponding
to the spectral peak

Ln nth natural mode wavelength
in a wave flume

Lp wavelength corresponding to
the spectral peak

LRun length of a run of wave group
mn nth order moment defined in

spectral domain
Ngr group length defined in

Hilbert-Huang domain
p probability density function
P complementary cumulative

distribution function
Ps power spectrum function
Pv Cauchy principal value
Qp peakedness parameter
S power spectral density func-

tion
T̄ arithmetic mean of wave pe-

riod
T1/3 mean wave period of the high-

est one-third waves
T1/M mean wave period of the high-

est one-Mth waves
T̄m02 mean of wave period defined

by m0 and m2

T̄m04 mean of wave period defined
by m0 and m4

Tn nth natural mode period in a
wave flume

Tp spectral peak period
TSIWEH mean period of smoothed in-

stantaneous wave energy his-
tory

Ur Ursell number
Xn Fourier coefficient
Z envelope function
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β biphase
γ spectral width parameter of

JONSWAP spectrum
ε wave steepness
ζ orthogonal complement of the

free surface elevation
η free surface elevation
η̄ arithmetic mean of free sur-

face elevation
Θ local wave phase of the enve-

lope function
κ3
m,n general third order moment of

free surface elevation
κ4
m,n general fourth order moment

of free surface elevation
λB3 skewness defined in frequency

domain
λη3 skewness defined in time do-

main
λm,n general (m+n)th order mo-

ment of free surface elevation
µ relative water depth

ν02 spectral width parameter
ν04 spectral width parameter
Π nonlinear parameter intro-

duced by Goda
σ standard deviation of free sur-

face elevation



Chapter 1

Introduction

The modulational instability is one of the most popular mechanisms responsible
for the generation of freak waves in deep water conditions, and under certain cir-
cumstances, it may also result in large wave occurrences in intermediate and even
shallow water conditions. However, researchers have not yet reached a consensus
about the applicability of four-wave quasi-resonances in explaining the freak waves
in the real world. The major concern lies in the complexity of real sea states since
the modulational instability is limited by diverse requirements such as the relative
water depth, spectrum width, dissipation, and spreading angle. These factors are
hardly fulfilled at the same time as was indicated by Fedele (2016). In coastal
areas, the strong depth variations could also result in the formation of freak waves
and the non-Gaussian statistics due to non-equilibrium dynamic response of the
sea states (Trulsen et al., 2012).

This part is dedicated to the study of high wave formation and its statistical
features in irregular sea states induced by strong water depth transition in coastal
areas. In the literature, both deterministic and stochastic approaches are adopted
to study extreme waves or freak waves. Both of them are of great importance and
will be reviewed. Also, the state-of-art of data analysis approaches are reviewed
in Chapter 1. This study is on the basis of large-scale experiments in THL and
deterministic simulations with fully nonlinear numerical simulations. With such
a combination, a step (shoaling) bottom profile is studied. The in-depth analysis
of a representative case has been conducted and published in form of a journal
paper (Zhang et al., 2019). This paper will be duplicated in Chapter 2. The
additional details regarding the complete experimental campaign and validation
of the numerical model are given as supplementary materials in Chapter 3. Based
on the recent experiments reported in Trulsen et al. (2020), the non-Gaussian
sea state behavior and freak wave statistics induced by strong depth variations
(including both shoaling and de-shoaling) have been discussed. The results are
presented in form of a journal paper (under review), and shown in Chapter 4.
In the end, the main findings and conclusions of this part will be summarized in
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Chapter 5.

1.1 Bibliography survey of topographic effect on formation
of extreme waves

1.1.1 Study of extreme waves with deterministic approach

The geometric, kinematic, and dynamic studies of extreme waves are conducted
usually with the deterministic approach. These pieces of information are very use-
ful for diverse practical purposes. For example, it allows offshore/coastal engineers
to evaluate the extreme loads on structures and the corresponding structural re-
sponses. It also allows naval architects to analysis ship stability, the global and
local strength of the vessel, and the vibration of the structural components in
the challenging sea conditions. Such studies require precise generations of freak
waves at predetermined space-time. In this direction, the dispersive focusing has
received much attention. The first linear method was adopted by Longuet-Higgins
(1974) to study wave breaking issues. In this method, it is assumed that the free
surface waves can be represented by linear superposition of a large number of small
wavelets with random phases. The wavelet components are determined from the
given spectrum, and they are in phase at the focal position. Tromans et al. (1991)
put forward NewWave theory to describe the local displacement of the ocean sur-
face. It contains two parts, one deterministic part describe the extreme wave, the
other part is a non-stationary Gaussian process describing the sea state away from
the extreme event. Both parts base on the linear assumption in deep water condi-
tion (Jonathan and Taylor, 1997), valid in a Gaussian sea. However, it is known
that nonlinear waves with bound modes travel faster than predicted by linear dis-
persion relationship, so the linear assumption may fail when the focusing waves
are of large amplitudes and/or when the water depth is intermediate or shallow.
Chaplin (1996) adopted successive adjustment to the phases at the wavemaker in
order to achieve 0 phase at the focusing point. This procedure partially includes
the correction of nonlinear phase shift and phase discrepancies due to other effects.
Baldock et al. (1996) studied the nonlinear kinematic and dynamic characteristics
of linearly generated focusing waves and compared them with second-order theo-
retical predictions. Taylor and Williams (2004) reported the second-order effects
of large waves in finite water depth by considering NewWave theory as an accept-
able model for the linear parts of the measured large waves. Ning et al. (2009)
discussed the effect of the nonlinear wave-making method on the transient wave
generation. This focusing method has also been systematically investigated in a
fully nonlinear numerical wave tank very recently (Wang et al., 2019), the effects
resulting from the bandwidth, wave nonlinearity, wave generation method on fo-
cal position have been discussed. The NewWave theory has been optimized, by
taking second-order correction into consideration, to handle variable water depth
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by Whittaker et al. (2016). Recent applications in the studies of run-ups (Whit-
taker et al., 2017) and wave overtopping of seawalls (Whittaker et al., 2018) with
this optimized NewWave theory have shown its applicability to coastal areas. The
generated waves will focus at (or near) the prescribed space-time, but besides the
focusing event, the free surface is nearly undisturbed. The theory involves the
simulation of a single wave rather than a comprehensive sea state.

A more realistic approach is to form an extreme wave in a sea state contain-
ing background waves. Cassidy (1999) embed the NewWave into a random wave
train while maintaining the random distribution characteristics of phases, known
as constrained NewWave theory. Alternatively, Kriebel and Alsina (2000) used
a superposition of two wave trains and by tuning the portion of the transient
wave energy of the total wave energy, to generate an extreme event in a random
sea state with desired statistical characteristics. This method has been tested
with uneven (slope or curved) bottom, the bottom effect is not helpful for freak
wave formation due to frequency focusing (Cui et al., 2012). Deng et al. (2015)
considered a vertical end-wall to investigate the effects of reflected waves on the
formation of the extreme waves. For some purposes, particular wave trains need to
be generated. For such purposes, Clauss and Steinhagen (2000) proposed an opti-
mization method to reproduce a target extreme wave in a random sea by adopting
their Sequential Quadratic Programming (SQP) technique. The well-known freak
waves like the ’New Year wave’ and ’Yura wave’ have been reproduced with good
agreement (Clauss, 2002). Bennett et al. (2012) compared previous extreme wave
generation methods and listed their cons and pros, he suggested that the opti-
mization method (Clauss and Steinhagen, 2000) is more suitable for extreme wave
generation compared to NewWave and constrained NewWave theories. Another
iterative approach, Self Correcting Method (SCM) is provided by Fernández et al.
(2014b) by using Fast Fourier Transform (FFT) transformation. Based on the
similar idea of the work of Chaplin (1996), SCM is capable of handling nonlinear
effects that are missing in the linear approaches, and it is also possible to apply
this method to uneven bottom cases (Fernández et al., 2014a). More recently,
Buldakov et al. (2017) introduced a new iterative approach by adopting harmonic
separation technique to generate high waves near breaking limit. Niu et al. (2020)
combined second-order wavemaker theory and self correction method using an All-
Phase FFT instead of FFT algorithm, to introduce an improved focusing method
called All Phase Correction Method (APCM). This method shows better agree-
ment with target wave profile and faster convergence of iteration. The effects on
the iteration steps required from wave steepness, spectral width, as well as the
spectral shape have been discussed.
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1.1.2 Study of extreme waves with stochastic approach

In practice, engineers are more interested in the averaged properties to charac-
terize the sea states instead of detailed wave evolution history. The pieces of
information regarding averaged wave characteristics like wave amplitude spectrum
and wave direction spectrum are needed as input for the whole design-assessment-
optimization procedure of coastal structures by using experimental and/or nu-
merical simulations. The stochastic study of waves in coastal areas is of vital
importance for marine safety and coastal development. The pioneering work in
this direction was given by Longuet-Higgins (1952) for Gaussian sea states and
Longuet-Higgins (1963) for non-Gaussian behaviors in weakly nonlinear sea states.
In terms of numerical study, the phase-averaged models (like WAM, SWAN, and
WaveWatch-III) are adequate considering the balance of accuracy and efficiency,
for most engineering purposes. However, for more complicated and local phenom-
ena like the formation of freak waves, the phase-resolved models which require
more computational effort are more appropriate.

The bottom effects on wave (and wave groups) nonlinear propagation have been
extensively studied for decades. When waves propagate over uneven bottoms, the
effects of shoaling, reflection, and refraction are more and more involved as water
depth decreases. Due to the energy flux conservation, as water depth decreases,
waves become shorter in terms of wavelength and spatially asymmetric in terms
of wave profile (Goda, 2000). The presence of the bottom bar could give rise to
strong wave-wave nonlinear interactions, resulting in broadened wave spectrum
and breaking wave events (depending on the gradient of slope, and incident wave
characteristics), see experimental evidence in the work of Beji and Battjes (1993);
Ting and Kirby (1994). The statistical characteristics of wave fields over a slope,
relevant for freak wave occurrence, have also been studied. Following the statistical
study of Longuet-Higgins (1974) for the deep water case, Bitner (1980) reported
field measurements of waves propagating over a sloping bottom and derived sta-
tistical models to account for non-Gaussian effects of wave height/phase/velocity.
Significant differences were observed between real wave measurements and Gaus-
sian model predictions. Recently, it is found that the dynamic response of waves
passing over the sloping bottom will result in the non-equilibrium statistics, Zeng
and Trulsen (2012) showed numerical evidence in the NLS framework that a signif-
icant decrease of skewness and kurtosis due to the depth transition is anticipated.
Sergeeva et al. (2011) did simulations with the Korteweg–de Vries (KdV) equa-
tion showed that the kurtosis increases as water depth decreases. This process
depends on the Ursell number which is the relative importance of nonlinearity and
dispersion. Moreover, the probability of the occurrences of extreme waves may be
altered due to a nonuniform bottom. The experimental evidence given by Trulsen
et al. (2012) showed that the nonuniform bottom enhances the occurrence prob-
ability of freak waves and that the statistical parameters reach local maximum
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values around the end of the slope. Later on, Gramstad et al. (2013) reported
numerical results using a modified Boussinesq model showing that no increase in
freak wave occurrence in their sloping bottom case. The opposite results can prob-
ably be explained by the different relative water depth in the shallower side. The
latest work of Trulsen et al. (2020) indicated a rough threshold of relative water
depth around 1.3, over which no significant effect on the kurtosis and freak wave
occurrences is anticipated. When the water depth after the slope is lower than this
value, significant enhancement of statistical parameters and higher probability of
occurrences of freak waves are expected. Their work did not discuss the possible
effect of wave steepness, spectral broadness, and slope gradient. Ma et al. (2015)
reported an experimental case study on the bottom effect on statistical parame-
ters including skewness, kurtosis, groupiness. The adopted trapezoidal bar allows
investigating the evolution of the parameters at leeward. They found that the
correlation of freak wave occurrences and the initial spectral width is negligible,
but more freak waves are expected with increasing groupiness. Kashima et al.
(2014) studied water depth transition from deep to shallow water region related to
freak wave occurrences by using experimental tests with different bottom slopes
and numerical tests with standard Boussinesq model. Using a proper correction of
the nonlinear properties, the adopted Boussinesq model showed good agreement
with measurements. Intensified freak wave occurrences have been reported in their
study. Based on the same experimental results, Kashima and Mori (2019) reported
a practice-oriented study of the uneven bottom effect on the pressure variation on
breakwaters. The possibility of relating the change of kurtosis to the ’designed
wave pressure’ has been discussed therein. However, no matter in the KdV equa-
tion or the Boussinesq model, there are limitations on representing wave nonlinear
and dispersive properties. The highly nonlinear numerical study of the problem
is, to the best of my knowledge, very limited. Viotti and Dias (2014) adopted a
fully nonlinear model to study a wide range of relative water depth which exceeds
the validation range of KdV and Boussinesq models. A strong transition process
connecting two equilibrium states (of the deeper region and the shallower region)
has been observed over the slope. Ducrozet and Gouin (2017) reported numerical
studies with the HOS model (up to 5th-order). They found that the directionality
in a spreading wave field has significant effects on the non-equilibrium statistics
and that the extreme wave activity is reduced in a spreading sea. In the next sec-
tion, different statistical properties that have been adopted to characterize freak
waves in the literature will be introduced and used in this work to show the bottom
effects on the sea states.
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1.2 Bibliography survey of techniques of irregular wave anal-
ysis

For short-term statistics, the statistical characteristics are computed from a wave
record with a certain duration (normally 15-30 min, or 6-12 h for a storm record).
The basic assumption of a random sea state is that the time records can be consid-
ered as stationary ergodic stochastic process (Holthuijsen, 2007). The ergodicity
means that the statistical characteristics of the ensemble free surface elevation can
be represented by one observation with discrete sampling. In this Ph.D. work, the
time series recorded by numerical wave gauges as well as real digital wave probes
last over 40 min, they will be treated as stationary stochastic processes and the
sampling variability is relatively low. In this section, not only the statistical anal-
ysis of the free surface elevation, free surface envelope, and individual waves will
be introduced, but also the spectral/bispectral analysis in Fourier space will be
introduced. Some non-dimensional parameters that are important for character-
izing wave conditions are covered too. The idea is to develop a preliminary data
processing procedure, as was introduced in Fig. (10.2) of Goda (2000), but with
more attention paid for the analysis of extreme waves or freak waves.

It should be stressed that in the present work, the statistical study of extreme
waves is different from the one used in the design of maritime structures that
adopts the conception of ’return period’ basing on long-term observation. The
abnormal extreme waves are very local events so that long-term statistics are over
simplified for our purpose. And abnormal extreme waves are currently not yet
included in the related engineering projects.

1.2.1 Analysis of nonlinear sea states in time domain

a/ Statistical analysis of free surface elevation signal

The raw data one gets from the measuring equipment is the history of oscillation
(pressure, voltage, time interval and so on). After calibration, the oscillation signal
reflects the free surface elevation variation, η. But the mean level of the free surface
elevation is not necessarily located at the mean sea level. The first step is thus to
evaluate the mean water level:

η̄ = 〈η〉 , (IV.1.1)

where the operator 〈·〉 represents the arithmetic mean, and substrate it from the
time series. In an ideal Gaussian sea state, the characteristic of the statistics
of surface motion can be fully described by its expected value η̄ and standard
deviation σ:

σ2 =
〈
(η − η̄)2〉 . (IV.1.2)

However, waves in nature are nonlinear, and sea states deviate from Gaussian.
Especially when waves approach coastal areas, the significant deviation of the sea
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states from Gaussian states is expected, and waves are of sharper and higher wave
crests. Higher-order moments are required to characterize this deviation due to the
nonlinear effect. Usually, skewness (3rd-order normalized moment) λη3 and kurtosis
(4th-order normalized moment) λη4 are of interest

λη3 =

〈
(η − η̄)3〉

σ3
, (IV.1.3)

λη4 =

〈
(η − η̄)4〉

σ4
. (IV.1.4)

For Gaussian sea states, λη3 = 0 and λη4 = 3 are expected. The skewness is
related to the bound mode harmonics, indicating the asymmetry of the wave pro-
files. For λη3 > 0, the larger skewness the more asymmetry with respect to the
mean sea level is expected. It means more pronounced sharp and high crests and
flat and shallow troughs. The reverse is true for λη3 < 0. The net effect of the 2nd-
order bound harmonics on the wave height is 0, so in terms of characterizing freak
wave occurrence probability, it is of less interest compared to kurtosis. It is known
that the kurtosis consists of two additive contributions, one is quasi-resonance
four-wave interactions (the ’dynamic’ contribution), the other contribution results
from the asymmetries in the shape of the waves (the ’wave-shape’ contribution).
It is generally believed that kurtosis, especially the dynamic part, is related to
the occurrences of abnormal high waves. λη4 > 3 indicates an increased probabil-
ity of occurrence of the largest wave heights (Trulsen et al., 2012), but it is not
guaranteed that when λη4 < 3, the large waves will not manifest.

The overall vertical asymmetry property of the sea states is characterized by
skewness, but waves are also asymmetric in the horizontal direction. This is char-
acterized by the ’atiltness’ parameter defined as:

Atlη =

〈
(ηt − 〈ηt〉)3〉

√〈
(ηt − 〈ηt〉)2〉3

, (IV.1.5)

where ηt denotes the partial derivative of η with respect to time. Atlη > 0 means
that the waves are leaning forward, and Atlη < 0 for backward.

The term ’Gaussian’ indicates that waves are linear and uncorrelated among
them. It also means that the values of η as a function of time are Gaussian
distributed. In the linear approximation, the Probability Density Function (PDF)
of a time series η with zero-mean is governed by:

p(η) =
1

σ
√

2π
exp

(
− η2

2σ2

)
. (IV.1.6)

The nonlinearity of the measurements can be characterized by comparing the
Gaussian distribution (with measured σ) and the histogram of the observed sur-
face elevation. The skewness is related to the asymmetry of the PDF, λη3 > 0
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indicates that the PDF of η ’leans’ towards negative values. The kurtosis is re-
lated to the sharpness of the PDF, λη4 > 3 indicates that the PDF is higher and
narrower compared to the corresponding Gaussian distribution (Goda, 2000). The
deviation from Gaussian distribution due to bound modes is incorporated by using
an Edgeworth’s form of the type-A Gram-Charlier series following the work of, for
example, Longuet-Higgins (1963).

b/ Statistical analysis of wave heights

The signal is then treated by wave-by-wave analysis. In time series, a wave is de-
fined as the free surface profile between two successive intersection points where the
surface elevation penetrates the still water level and goes downwards or upwards.
The corresponding wave period is the time interval between the two successive
points. This is the well-known zero-down-crossing or zero-up-crossing method.
For Gaussian sea states, they are statistically equivalent which do not influence
the evaluation of statistical parameters. However, for highly nonlinear waves, the
choice of the zero-crossing method makes differences. Hereafter waves are distin-
guished by the zero-down-crossing method unless specified.

The identified wave heights are denoted as Hi with corresponding period Ti,
they are rearranged in descending order of wave heights. i is the sequential number
of the ith-highest wave. The highest wave is Hmax = H1, with the period THmax .
Assume there are N waves in total in the time series, the mean wave height is:

H̄ =
1

N

N∑

i=1

Hi. (IV.1.7)

Likewise, the mean wave period is:

T̄ =
1

N

N∑

i=1

Ti. (IV.1.8)

Mean values are rarely used in practice mainly because waves with trivial ampli-
tudes are taken into account. The mean values are different from the intuitively
estimated averaged wave height and period, and thus not representative for char-
acterizing the sea states.

The root-mean-square wave height, which is an energy-related quantity, is de-
fined:

Hrms =

(
1

N

N∑

i=1

(
Hi − H̄

)2

)1/2

. (IV.1.9)

The statistical quantities that are useful of describing the sea states (via wave-
by-wave analysis) are the mean height and period of the highest one-mth waves:
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H1/M =
M

N

M/N∑

i=1

Hi, T1/M =
M

N

M/N∑

i=1

Ti. (IV.1.10)

The choices ofM can be 3, 10, 100, 250. Among them, the most important measure
is H1/3, which is considered as the significant wave height, Hs. The significant wave
height can alternatively be defined from the wave spectrum, as will be introduced.
H1/3 is relatively close to the visually estimated wave height, however, this is not
true for the ’significant wave period’ T1/3.

The wave height distribution is of significant importance in this Ph.D. study.
For Gaussian sea states in deep water and with narrow spectra, the PDF of wave
heights is the Rayleigh distribution as shown by Longuet-Higgins (1952). In this
linear theory, the distribution is only governed by one parameter, the variance of
the free surface σ:

p(H) =
H

4σ2
exp

(
−H

2

8σ2

)
. (IV.1.11)

Even though it is based on strong simplifications, but if one is concerned with the
distribution of the majority of the waves, the Rayleigh distribution shows very
good performance, even for sea states out of its valid range. This distribution is
adopted as a reference, which stands for the expectation of linear behavior.

To emphasize the tail of the wave height distribution, the complementary cumu-
lative distribution function (CCDF) in the logarithm coordinate is more straight-
forward. It is denoted as P and obtained by accumulating the probabilities for
the waves that are higher than the considered wave height. Assume that H is a
continuous variable, the CCDF of the Rayleigh distribution (also as the reference)
is:

P (H) =

∫ +∞

H

p(H) dH = exp

(
−H

2

8σ2

)
. (IV.1.12)

According to Forristall (1978) and many other similar reports, if one is con-
cerned with the relatively high waves, then the Rayleigh distribution tends to over
predict the heights of the high waves for nearly 10%. To achieve a consistent con-
clusion, the parameter σ is preferable to be computed from the wave spectrum.
This observation has made the present topic more interesting because due to the
wave-bottom interaction, the probability of occurrences of high waves is larger
than the expectation of Rayleigh distribution.

From the wave-by-wave analysis, the distribution of zero-crossing periods and
joint distribution of wave height and period are readily constructed, but they are
relatively less concerned for the subject of this study. Thus they are not included
here.
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c/ Statistical analysis of the envelope of free surface elevation

The envelope of the free surface elevation is considered to have advantages over
the wave height as a variable. One important reason is that the envelope is a con-
tinuous function of time, and it is, in general, a better-defined quantity compared
to the wave height especially for sea states with broad spectra. The zero-crossing
method is affected by the sampling frequency, insufficient sampling will result
in underestimation of wave heights, whereas excessive sampling ends up in more
involvement of noise (too many high-frequency waves). For the envelope distribu-
tion, the high sampling frequency is no longer a problem because the envelope is
a continuous function of time. And the square of envelope is a direct measure for
the potential energy of waves. The envelope Z as a function of t is defined:

Z(t) = A exp(iΘ) = η(t) + iζ(t), (IV.1.13)

where A and Θ denotes local amplitude and phase correspondingly,

A(t) =
√
η2(t) + ζ2(t), (IV.1.14)

Θ(t) = tan−1

[
ζ(t)

η(t)

]
. (IV.1.15)

The orthogonal complement ζ(t) of the free surface η(t) is computed via the
Hilbert transform H:

ζ(t) = H(η) =
1

π
Pv

∫ ∞

−∞

η(τ)

t− τ dτ, (IV.1.16)

Pv denotes the Cauchy principal value. Alternatively, for a relatively short record,
the FFT algorithm can be adopted instead to evaluate ζ.

It is shown by Janssen (2014) that for the linear wave motion, the PDF of the
envelope is always Rayleigh distributed regardless of the width of the spectrum.
Such characteristics make it a good indicator of the nonlinearity of sea states. In
the European Centre for Medium-Range Weather Forecasts (ECMWF) freak wave
warning system, the wave envelope distribution is adopted to assess the most
possible maximum wave height (Janssen and Bidlot, 2009). Based on the envelope
function, a number of normalized moments are defined:

λm,n =
〈ηmζn〉

〈η2〉m/2 〈ζ2〉n/2
, (IV.1.17)

including the general 3rd-order moments:

κ3
m,n = λm,n, m+ n = 3, (IV.1.18)

and the general 4rd-order moments:

κ4
m,n = λm,n + (m− 1) (n− 1) (−1)m/2 , m+ n = 4. (IV.1.19)
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These moments are used to characterize the deviation from the normality and
also to predict the wave height distribution assuming that the wave height is
H = 2A according to Mori and Janssen (2006).

1.2.2 Analysis of nonlinear sea states in frequency domain

In the signal processing toolbox, the Fourier analysis is of fundamental importance
and has been applied in diverse branches of physics. The theoretical basis of Fourier
analysis is ample and is in-depth reviewed in many monographs like in Papoulis
(1977). The rigorous mathematical deducing details fall out of the present study
interest. Only the necessary ones are mentioned. Consider the random wave series
η(t) measured at a fixed position is of zero mean, and it is represented by an
infinite number of Fourier series:

η(t) =
+∞∑

n=−∞

Xn exp (−2iπfnt), (IV.1.20)

where Xn is the complex Fourier coefficient, and X−n = X∗n, the asterisk indicates
complex conjugate, fn = 2πn/D and D is the duration of the signal η(t). The
evaluation of the Fourier amplitude Xn is:

Xn = lim
D→∞

1

D

∫ D/2

−D/2
η(t) exp (2iπfnt) dt. (IV.1.21)

a/ Fourier spectral analysis

The function which shows the distribution of the averaged wave component am-
plitude in corresponding frequency band df = 1/D along the frequency axis is
defined as amplitude spectrum. This analysis is very powerful since it shows in a
condensed way the averaged wave amplitude in a small frequency bin. However,
it is more common to consider the distribution of averaged variance, the power
spectrum Ps(f), defined as:

Ps(f) =
1

2
〈XnX

∗
n〉 , (IV.1.22)

and the one-sided power spectral density S(f) is related to Ps(f) by:

S(f) =
2

df
Ps(f). (IV.1.23)

There are two numerical approaches for the estimation of the power spectrum and
its density. One approach is to conduct the Fourier transform of the autocovariance
function of the free surface elevation (auto-correlation method). The other is to
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carry out FFT to the measured signal directly (periodogram method). The latter
approach is much more efficient than the former one.

Here the Welch’s averaged periodogram method is adopted. Firstly, the time
series is separated into M segments with 50% overlapping rate, and each segment
is of N = 2FFT points. Secondly, FFT requires the time series to be periodic in
time otherwise the spectral leakage will occur. In most cases, the time series is
not periodic, thus a proper window function is required to minimize the leakage,
and a corresponding correction factor is used to compensate for the decrease of
total energy due to the application of the window. Thirdly, conduct N -points FFT
transformation of each segment and take the mean value of M estimates. Fourthly,
smooth the obtained spectrum by replacing the evaluated spectral density by the
weighted average of the adjacent values. Finally, adjust the estimated spectrum
by forcing the consistency of total energy with measurements. A correction factor
σ2/m0 is multiplied to all estimates of spectral density values, and m0 is the zeroth
spectral moment.

The spectral moments are defined:

mn =

∫ ∞

0

fnS(f) df, n = 0, 1, 2, ... (IV.1.24)

The characterizing properties of irregular sea states are also represented by spectral
parameters. The zeroth spectral moment m0 is a measure of the total energy, and
it is equivalent to the variance σ2 of the surface signal. Replacing the variance
with the spectral zeroth moment in Eq. (IV.1.11), the characteristic wave heights
are then related to the spectrum.

The significant wave height based on wave spectrum is defined as:

Hs = Hm0 = 4.004
√
m0 ≈ 4

√
m0. (IV.1.25)

Hereafter, this definition of significant wave height is adopted unless specified. The
averaged wave period is defined as:

T̄m02 =

√
m0

m2

, (IV.1.26)

however, this definition is sensitive to the high-frequency range of the spectrum
where noise may influence the evaluated mean period significantly. An alternative
definition of averaged wave period is:

T̄m01 =

√
m0

m1

. (IV.1.27)

The width of the spectrum is defined as:

ν04 =

(
1− m2

2

m0m4

)1/2

, (IV.1.28)
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but the estimation of m4 involves too much noise at high-frequency range. An
alternative definition is:

ν02 =

(
m0m2

m2
1

− 1

)1/2

. (IV.1.29)

Goda (2000) proposed to use ’peakedness’ parameter to describe the spectral
shape:

Qp =
2

m2
0

∫ ∞

0

fS2(f) df. (IV.1.30)

b/ Fourier bispectral analysis

The Gaussian assumption is not valid for nonlinear waves, and especially not for
the highly nonlinear events like extreme waves. The above-mentioned variance
spectrum is not able to distinguish the bound mode frequency components re-
sulting from nonlinear wave-wave interaction, and the free wave component. A
powerful tool to study the nonlinear process is polyspectral analysis. In partic-
ular, the Fourier based bispectral analysis technique has been used to study the
triad wave-wave nonlinear interactions and quadratic phase coupling of nonlin-
ear water waves (Hasselmann et al., 1963; Bertin et al., 2018). The bispectrum
B(f1, f2) is defined as the two dimensional Fourier transformation of the third-
order auto-correlation function of the signal. Equivalently, it can also be defined
as introduced in Kim and Powers (1979):

B(f1, f2) =
〈
X1X2X

∗
1+2

〉
, (IV.1.31)

which is the ensemble average of the triple product of complex Fourier coefficients
defined in Eq. (IV.1.21). Two Fourier coefficients of frequencies f1, f2 and the
conjugate of the Fourier coefficient of sum-frequency f1 + f2 are adopted. In
general, the bispectrum B(f1, f2) is complex.

The evaluation of the bispectrum defined in Eq. (IV.1.31) is efficient using
the FFT algorithm. The bispectrum is of symmetry properties, B(f1, f2) =
B(f2, f1) = B∗(−f1,−f2) = B(−f1 − f2, f2) = B(f1,−f1 − f2). Due to these
symmetric properties, only a triangular domain where f1, f2 > 0, f1 > f2, and
f1 + f2 < Fs/2 (with Fs as the sampling frequency) of the bispectrum needs
to be computed. The averaged wave profile is related to the bispectrum. The
bispectrum-defined skewness λB3 can be computed as the normalized integral of
the real part of the bispectrum according to Hasselmann et al. (1963). The wave
profile asymmetry with respect to the vertical axis, the atiltness parameter AtlB

is evaluated from the normalized integral of the imaginary part of the bispectrum
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according to Elgar and Guza (1985):

λB3 =

∑∑<{B (f1, f2)}
σ3

, (IV.1.32)

AtlB =

∑∑={B (f1, f2)}
σ3

, (IV.1.33)

where < and = denote the real part and the imaginary parts of the complex
number, respectively. The normalized phase of the bispectrum is the so-called
biphase β(f1, f2), defined as:

β(f1, f2) = arctan

[<{B(f1, f2)}
={B(f1, f2)}

]
. (IV.1.34)

This definition gives a normalized measure of the phase relationship. The variance
of the bispectral estimates could be highly variable depending on the power spec-
tral properties. The commonly used normalization measure of bispectrum is the
bicoherence b2(f1, f2), defined as follows:

b2(f1, f2) =
|
〈
X1X2X

∗
1+2

〉
|2

〈|X1X2|2〉
〈
|X∗1+2|2

〉 =
|B(f1, f2)|2

〈|X1X2|2〉 〈|X1+2|2〉
, (IV.1.35)

bounding the real-valued function b2(f1, f2) in [0, 1], if no smoothing or merging
applied to the bispectrum.

The bicoherence is a measure of the relative strength of the coupling of the
three wave components involved. The biphase is dependent on this parameter,
with low bicoherence the biphase is randomly distributed between −π and π. The
bicoherence b2(f1, f2) does not reveal the direction of the energy transfer among
three wave components. The direction is indicated by the sign of ={B(f1, f2)},
negative value represents difference interaction, and positive value represents sum
interaction.

1.2.3 Analysis of wave grouping characteristics

For this Ph.D. study, and also for many other engineering problems, the knowledge
of high wave series is important. The series of successive high waves in which all
waves are of heights greater than a certain threshold Hgr, is known as a wave group.
The groupness of irregular waves is quantified in different ways. A good review
of the commonly used parameters and methodologies is given by Medina and
Hudspeth (1990). In general, the groupness of irregular sea states is related to the
spectral width, the narrower the spectrum is, the stronger grouping characteristics
are expected. The peakedness parameter Qp introduced previously works as a
good indicator of groupiness.
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a/ Theory of runs of high waves

The preliminary analysis of wave grouping is to consider the definition of wave
groups by Goda Yoshimi in the 1970s (Goda, 2000). Following Goda’s defini-
tion, we consider the zero-crossing wave heights with unsorted order and take the
threshold wave height Hgr = H1/3. The waves whose wave heights successively
locate above this reference is called a run of high waves, the number of waves in
the run is the run length LRun. The repetition length of high waves is called a
total run, and it is defined analogously to the definition of the zero-up-crossing
method, which is the number of waves from the first wave in a run to the first wave
in the next run. The ’zero’ line is the threshold Hgr. By this definition, a single
high wave can be considered as a wave group, since LRun = 1 indicates a wave
group consists only one wave, as is shown in Fig. (IV.1.1). In this definition, the
key parameter is the number of wave groups with different LRun, and the weighted
average of LRun. Kimura (1980) derived the theoretical probability distributions
of the run length considering correlated wave heights as a Markov process.

Index of unsorted waves  

Wave height

𝐻𝑔𝑟

𝐿𝑟𝑢𝑛 = 4 𝐿𝑟𝑢𝑛 = 1

Figure IV.1.1: Sketch of two runs of high waves, one run with LRun = 4 and the other
with LRun = 1, both are wave groups by definition.

b/ Theory of wave energy history

It is known that wave energy is proportional to the variance of wave record and
that large waves are of greater energy than that of smaller waves. So the wave
groups can be described effectively by the wave energy history. Following the work
of Funke and Mansard (1980), the instantaneous wave energy E at the instant t
is defined as the convolution of η2 and a window function W :

ESIWEH(t) =
1

Tp

∫ Tp

−Tp
η2(t+ τ)W (τ) dτ, for Tp ≤ t ≤ tend − Tp, (IV.1.36)

where Tp is the wave period corresponding the spectral peak, tend denotes the end
time of wave record, W (τ) is an arbitrary smoothing function needed to filter out
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high frequencies, in the original work of Funke and Mansard (1980), the Bartlett
window is chosen:

W (τ) =





1− |τ |
Tp
, −Tp/2 ≤ τ ≤ Tp/2,

0 , elsewhere.

(IV.1.37)

It should be noticed that for the two ends of the record, when t ∈ [0, Tp] and
t ∈ [tend − Tp, tend], the computation formula of the instantaneous wave energy is
slightly different:




ESIWEH(t) =
2

Tp + t

∫ Tp

−t
η2(t+ τ)W (τ) dτ, for 0 ≤ τ ≤ Tp,

ESIWEH(t) =
2

Tp + tend − t

∫ tend−t

−Tp
η2(t+ τ)W (τ) dτ, for tend − Tp ≤ τ ≤ tend.

(IV.1.38)
ESIWEH(t) is called Smoothed Instantaneous Wave Energy History (SIWEH),

with which the Groupness Factor (GF) is defined and used to quantify the grouping
characteristics of a record:

GF =
1

〈ESIWEH〉

√
1

tend

∫ tend

0

[ESIWEH(t)− 〈ESIWEH〉]2 dt. (IV.1.39)

Another parameter based on SIWEH method was introduced by Rye (1982) in
his dissertation. It is the mean zero-up-crossing period of [ESIWEH(t)− 〈ESIWEH〉],
defined as:

T̄SIWEH =
1

Tp

1

I

I∑

i=1

(TSIWEH)i, (IV.1.40)

in which I denotes the total number of zero-up-crossings of the mean level in
the SIWEH. This parameter seems to be more propitiate in describing grouping
characteristics since it can approximately represent the mean length of the total
run of waves with Hgr = Hrms.

In the literature, there is an alternative approach to relate the grouping proper-
ties with the fluctuation of local variance. It is called Local Variance Time Series
(LVTS) method by Thompson and Seelig (1984). But it will not be introduced
in detail since LVTS and SIWEH are very similar in essence, and the groupness
parameter of LVTS is comparable to GF here.

c/ Theory of wave envelope

What SIWEH method do is to isolate the low-frequency components of the oscil-
lations of η2, and this is achieved by doing convolution with a smoothing window.
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The choice of the low-pass filter makes nontrivial influences, and the spectral leak-
age range of the proposed Bartlett window in frequency domain is even broader
than the rectangular window. This will cause unpredictable effects on the evalu-
ated GF.

Hudspeth and Medina (1989) proposed to use the Hilbert transform to estimate
the instantaneous wave energy as a function of H2(t)/8 because it was demon-
strated by the same authors that the squared-wave height function H2(t) is the
target function of which the Hilbert transform exactly isolates the low-frequency
components of η2(t). It is no longer necessary to specify any filter, and the original
signal is not contaminated either.

More recently, Veltcheva and Soares (2016) introduced a new wave group analy-
sis technique by using Hilbert-Huang Transform (HHT). The idea of HHT consists
of two steps: first, decompose the signal into different modes; then conduct the
Hilbert to each of them. The empirical model decomposition procedure will pro-
duce a finite number NIM of Intrinsic Mode Functions (IMF) Cj, j = 1, ..., NIM

and a residual function rn as:

η(t) = rn(t) +

NIM∑

j=1

Cj(t), (IV.1.41)

and the Hilbert to each IMF is:

Ĉj(t) = H(Cj). (IV.1.42)

The instantaneous envelope aj(t), the phase Θj(t) and the corresponding angular
frequency ωj(t) for the jth-IMF Cj(t) are readily obtained:

aj(t) =
√
Ĉ2
j (t) + Cj(t)2, (IV.1.43)

Θj(t) = tan−1
[
Ĉj(t)/Cj(t)

]
, (IV.1.44)

ωj(t) = ∂Θj(t)/∂t. (IV.1.45)

The time-frequency distribution of the squared amplitude is designated as the
Hilbert energy spectrum HH(ω, t). Based on this spectrum, Veltcheva and Soares
(2016) defined new group parameters including the new instantaneous energy
EI(t):

EI =

∫ ∞

0

HH(ω, t) dω. (IV.1.46)

The wave groups are identified with a method in analog to the theory of runs,
by setting a threshold of wave height or wave energy. The time group length
tgr is the time interval between two successive intersections of the EI(t) and the
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chosen level, the group energy Egr is defined for each group by integration over
the corresponding time group length tgr:

Egr =

∫

tgr

EI(t) dt. (IV.1.47)

The spectral peak frequency in each wave group is denoted as fpgr, and dimen-
sionless number as a measure of group length is defined as:

Ngr = tgrfpgr. (IV.1.48)

1.2.4 Non-dimensional numbers for characterizing wave conditions

In previous analysis techniques, a number of non-dimensional parameters have
been introduced in time and frequency domains, and also in groupiness analy-
sis. Herein, some other non-dimensional parameters which are also important for
characterizing irregular sea states will be supplemented.

a/ Wave nonlinearity and dispersion characterization

Consider the wave with spectral peak frequency fp to represent the irregular sea
state. The nonlinearity of the sea state is characterized by the steepness:

ε = kpHs, (IV.1.49)

where kp is computed by dispersion relationship based on local water depth h
and spectral peak frequency fp. The dispersion parameter is relative water depth,
defined as:

µ = kph. (IV.1.50)

The relative importance of nonlinearity over dispersion is measured by Ursell
number, here we use the following definition:

Ur =
Hs/Lp

(h/Lp)
3 =

HsL
2
p

h3
. (IV.1.51)

Goda (2000) provided a parameter for measuring wave nonlinearity which is infor-
mative for both shallow water and deep water waves:

Π = (Hs/Lp) coth3 µ. (IV.1.52)

For deep water waves, it corresponds to steepness, and when water depth gets
sufficiently shallow, it reflects the Ursell number.
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b/ Benjamin-Feir Index for deep water narrow-banded waves

For the study of the freak wave, assuming that waves are unidirectional in the deep
water with the narrow-banded spectrum, Janssen (2003) introduced Benjamin-
Feir Index (BFI) evaluating the ratio of nonlinearity to frequency dispersion to
investigate the importance of quasi-resonant four-wave interaction. The original
definition is:

BFI = c
k
√
〈η2〉

∆
, (IV.1.53)

where C is a scaling constant, generally c =
√

2 is used, ∆ denotes the spectral
width which is determined by the half-width at the half-maximum of the spectrum
normalized by the peak wave frequency. Note that in Janssen (2003), the authors
define ε = (k2〈η2〉)1/2, whereas in this work, ε denotes kpHs. It is also found that
the dynamic part of the kurtosis is related to the square BFI parameter. The BFI
parameter measures the balance of the nonlinearity and the dispersion, increases as
the wave steepness increases or the spectrum width decreases. When the relative
water depth is higher than 1.363, the wave train is ’unstable’ due to modulational
instability, in this case, BFI indicates the relative strength of four-wave interaction.
When relative water depth is below the threshold 1.363 the process of nonlinear
focusing ceases to exist, so BFI loses its meaning as an indicator of modulational
instability.

For regular waves with unstable side-bands, the evaluation of BFI is unique.
However, it is not the case for irregular waves. The evaluation of spectral width
and peak frequency is not univocally defined, resulting in various BFI computation
methods. In the work of Serio et al. (2006); Olagnon and Magnusson (2004), several
estimation methods of BFI are compared and so is the variability of the estimates.
Here we follow the suggestion of Serio et al. (2006) for computing the spectral peak,
spectral width as well as the steepness. The definition of BFI in Eq. (IV.1.53) is
replaced by:

BFI =
√
m0k̂pQp

√
2πν

√
|β|
α
, (IV.1.54)

where m0, Qp are defined already, α, β, ν are the coefficients of cubic NLS equation,

k̂p corresponds to the wave with the frequency f̂p. f̂p is an estimate of the true
peak frequency, involving the use of a weighted integral:

f̂p =

∫∞
0
fS4(f) df∫∞

0
S4(f) df

. (IV.1.55)

c/ Shallow water extension of Benjamin-Feir Index

In shallow water, it is known that finite-amplitude surface gravity waves generate
a current and deviations from the mean surface elevation. This stabilizes the
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modulational instability, and as a consequence, the process of nonlinear focusing
ceases to exist when µ < 1.363. This shallow water effect due to wave-induced
current is studied by Janssen and Onorato (2007), where they adopt the Zakharov
equation for intermediate water depth to evaluate the nonlinear source term in the
energy balance equation.

In addition, a dimensionless number that measures the balance between non-
linearity and dispersion is introduced in Janssen and Onorato (2007). This pa-
rameter, introduced within framework of Zakharov equation, is computed from:

B2
s = −C

2
g

C2

gT0,0,0,0

ω

1

k2ω′′
2〈η2〉
∆2

, (IV.1.56)

where the subscript s is used to distinguish from deep water condition, C = ω/k
is the phase velocity. The second derivative of angular frequency is related to α
as ω′′ = −2α. For any water depth condition, α > 0 always holds. T0,0,0,0 is a
known interaction coefficient with a complicated expression in the general case.
Here, only the narrow-band limit of this interaction coefficient is given:

T0,0,0,0

k3
=

9 tanh4 (kh)− 10 tanh2 (kh) + 9

8 tanh3 (kh)
− 1

kh

[
(4Cg − C)2

4
(
gh− C2

g

) + 1

]
. (IV.1.57)

For more details, it is suggested to refer to the work of Janssen and Onorato (2007).
It is noticed that the first term of Eq. (IV.1.57) is related to the nonlinear

dispersion for surface gravity waves, and the second term is due to wave-induced
current effects. Two terms cancel each other when kh = 1.363, for narrow-band
uni-directional waves. With the computation method (IV.1.54) taken into account,
we consider the Benjamin–Feir index in the general shallow-water case as:

Bs = BFI
Cg
C

√
−gT0,0,0,0

k4ωω′′
, (IV.1.58)

where BFI is evaluated following Eq. (IV.1.54) instead of Eq. (IV.1.53). We stress
that all the parameters (α, β, T0,0,0,0, Cg, etc.) are evaluated using the local values

of f̂p. In the deep water limit, α→ g/(8kω) and T0,0,0,0 → k3, Bs reduces to BFI.
Apart from the water depth condition, the width of direction spectrum also

plays a significant role for the estimation of BFI or Bs of short-crest waves. This
is beyond the framework of the present study, thus it is not introduced. For
more details and applications in the wave forecast system of the shallow water
directional BFI parameter, refer to the unpublished internal report by Janssen
and Bidlot (2009) or to the work of Fedele (2015).



Chapter 2

Long-crested irregular wave train
evolution over a submerged step
bottom profile

The published paper Statistics of extreme waves in coastal waters: Large scale
experiments and advanced numerical simulations, is shown in this chapter. This
paper addresses the formation mechanisms and statistics of extreme waves in the
coastal area, by combining two approaches: (i) a series of experiments performed
in a large scale facility using unidirectional irregular waves propagating over a
variable bottom profile (composed of a 1/20 slope connecting two constant-depth
regions), (ii) numerical simulations using two advanced highly nonlinear determin-
istic wave models. Both the experimental free surface elevation time series and
the corresponding numerical results are analyzed using four methods: (i) classi-
cal spectral (Fourier) analysis, (ii) bispectral analysis, allowing to gain knowledge
on the nonlinear coupling between wave components, (iii) evolution of synthetic
parameters characterizing the nonlinearity of the wave field (skewness, kurtosis
and asymmetry), and (iv) statistical analysis of distribution of wave heights. Par-
ticular attention is paid to the sloping bottom area, and the low-frequency wave
dynamics in the flume.

A number of observations have been drawn from the analysis of both the ex-
perimental and numerical data. In particular, nonlinear effects are more marked
in the area around the end of the slope. Strong second-order nonlinear effects (and
also noticeable third-order effects) manifest as waves enter the shallower region.
We speculate that the formation of extreme waves is mainly related to these non-
linear effects, which are also responsible for the generation of long waves. Based
on the comparison of several existing models for the distribution of wave heights,
it appears that the generalized Boccotti’s distribution can predict with good con-
fidence the distributions of large wave heights, though it was originally designed
for weakly nonlinear deep water waves.
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Abstract: The formation mechanism of extreme waves in the coastal areas is still an open
contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that
the transition of water depth from a deeper to a shallower zone increases the occurrence probability
of large waves. Indeed, more efforts are required to improve the understanding of extreme wave
statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional
irregular waves propagating over a variable bottom profile considering different transition water
depths were performed. The validation of two highly nonlinear numerical models was performed
for one representative case. The collected data were examined and interpreted by using spectral
or bispectral analysis as well as statistical analysis. The higher probability of occurrence of large
waves was confirmed by the statistical distributions built from the measured free surface elevation
time series as well as by the local maximum values of skewness and kurtosis around the end of the
slope. Strong second-order nonlinear effects were highlighted as waves propagate into the shallower
region. A significant amount of wave energy was transmitted to low-frequency modes. Based on
the experimental data, we conclude that the formation of extreme waves is mainly related to the
second-order effect, which is also responsible for the generation of long waves. It is shown that
higher-order nonlinearities are negligible in these sets of experiments. Several existing models for
wave height distributions were compared and analysed. It appears that the generalised Boccotti’s
distribution can predict the exceedance of large wave heights with good confidence.

Keywords: coastal areas; extreme waves; statistical analysis; bispectral analysis; nonlinear wave models

1. Introduction

Extreme wave, also known as freak wave or rogue wave, refers in oceanography to large water
wave with crest-to-trough wave height H exceeding twice the significant wave height Hs in the wave
field, or with wave crest height ηc higher than 1.25Hs [1]. In a Gaussian sea state, wave heights H
follow a Rayleigh distribution when the wave field is assumed to be narrow-banded. In such cases,
large waves fulfilling the criteria H/Hs > 2 are not so unusual, occurring approximately once every
3000 waves. For instance, if the average wave period Tave = 15 s, it implies that the observer could

Fluids 2019, 4, 99; doi:10.3390/fluids4020099 www.mdpi.com/journal/fluids
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probably encounter one of such waves in 12 h. What makes this particular field of research interesting
is the fact that the extreme waves may occur not only in the energetic storm sea state but also in a
calm sea state, making these waves outstanding and exceptional compared to the surrounding waves.
These extreme waves are supposed to be very rare basing on Rayleigh distribution model, whereas
they seem to have a larger occurrence in the real world, as suggested in the following scientific studies
and reports [2–5].

The possible mechanisms of the formation of extreme waves are summarised and discussed
in recent reviews [6,7]. One of the well-known mechanisms of the generation of freak waves is the
so-called Benjamin–Feir (or modulational) instability [8,9], which is frequently studied within the
framework of the nonlinear Schrödinger equation (NLS). The NLS equation can describe the evolution
of the narrow-banded weakly nonlinear waves [10–13]. More recent reviews show that real sea
states are more complex and one needs to consider three-dimensionality [14], dissipation [15–17]
and breaking [18] to achieve more accurate modeling of such wave fields. For constant water depth,
the modulation instability of unidirectional waves should disappear with the relative water depth
kh < 1.363 (k denotes the wave number and h is the water depth) [8,19]. However, for the
multidirectional sea states, this is no longer the case. The three-dimensionality not only affects
the modulation instability but also the statistical parameters [20,21]; the sea states are either focusing or
defocusing depending on the spreading angle. Although we are aware of the essential importance of
short-crest waves, the topic of this paper is restricted to one horizontal propagation direction case since
the uneven bottom effects on freak waves are not fully understood yet in such configuration. Recently,
it has been emphasised that the formation of extreme waves is more related to the second/third-order
non-resonant or bound harmonic waves than modulation instability, especially in the finite water
depth case where the instabilities are further attenuated [22].

The evidence of the link between a water depth transition and a higher probability of the
occurrence of extreme waves has been shown both experimentally [23,24], and numerically [25–27].
There are also studies dealing with extreme wave statistics in coastal areas with different shapes
of variable bathymetry. Katsardi et al. (2013) [28] conducted experimental tests with unidirectional
waves propagating over mild bed slopes (1:100 and 1:250) including breaking zones, and made
extensive comparisons of wave height distributions. Nonlinear transformation of irregular waves
propagating over sloping bottoms (1:15, 1:30 and 1:45) is discussed using wavelet-based bicoherence
in [29]. Ma et al. (2014) [30] studied spatial variations of skewness, kurtosis and groupiness factor for
irregular waves over a bar (1:20) in shallow water. The obliquity effects on the statistical parameters
are discussed in [21] using 3D simulations with a High-Order Spectral (HOS) model.

In this context, the objectives of the present study were three-fold: (1) studying experimentally the
statistical distribution of (extreme) wave heights considering variable bottom coastal conditions
in a uni-directional water wave flume; (2) comparing the collected temporal wave profiles and
corresponding statistical distributions with the results from two advanced numerical models;
and (3) comparing the measured and simulated wave height distributions with a number of existing
statistical models. Regarding Objective 1, the spatial evolution of unidirectional irregular sea states
due to the presence of a constant bottom gradient was studied in the large scale facility of Tainan
Hydraulics Laboratory (THL) in Taiwan. This large facility allowed us to investigate the full life cycle
of extreme waves, from the generation to the degeneration. Several cases with different experimental
conditions were tested, while one representative case was investigated for the validation of numerical
nonlinear models. In addition to the overall evolution of the sea state, particular attention was
paid to the sloping bottom zone as well as the two depth transition regions. Regarding Objective 2,
two accurate numerical models were adopted to simulate the experiments, both based on the fully
nonlinear potential flow theory: a higher-order Boussinesq-type model based on the model in [31]
and the highly nonlinear and dispersive model, whispers3D, using a spectral approximation of the
potential in the vertical direction [32,33]. As shown below, the corresponding results indicate that
the increase of the probability of occurrence of freak waves was clearly observed in experiments and
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well captured in the simulations, over a region where the water depth is relatively mildly varying.
Both measured and simulated wave profiles were studied by using statistical, spectral and bispectral
analysis. Finally, Objective 3 was devoted to the statistical distributions of measured and simulated
wave heights comparing with six existing statistical distribution models.

The present article is structured as follows. In Section 2, the experimental set-up and the tested sea
state conditions are introduced. The mathematical models and their numerical implementations are
presented in Section 3. Several signal processing techniques are adopted to interpret the obtained data:
from the measurements as well as the simulations, including spectral analysis (Section 4), bispectral
analysis (Section 5), nonlinear wave parameters analysis (Section 6), and statistical analysis of the wave
height distribution (Section 7). Conclusively, the main results are summarised in Section 8.

2. Experimental Set-Up and Test Conditions

The experiments were conducted in the 2-D wave flume of THL at Tainan, Taiwan. The flume
is 200 m long and 2 m wide. The waves were initially generated in the deeper region with depths of
h = 1.2 m and 1.3 m. The bathymetry was decomposed into three parts: a 30 m long flat part, a 20 m
long part with a constant slope of 1/20 and again a 120 m long flat bottom part. Waves were generated
at x = 0 m by a piston-type wave-maker, which was also able to absorb part of the wave energy
reflected by the uneven bottom or far-field rip-rap mound. The last 30 m part of the flume worked as
an effective wave absorber including a deep water area and a mound of stones placed at the end of the
flume. Over the flume length, 30 capacitance gauges were used to measure the wave elevation with a
sampling frequency of 100 Hz. The locations of the wave gauges are shown in Figure 1.

1 m1:20

ሾ݉ሿ	ݔ

݄	ሾ݉ሿ

Figure 1. Sketch of the experimental setup, installed at THL.

The first probe, located at x = 3 m, was used as a reference for the input signal generated by
the wavemaker, and then 7 additional wave probes were used to measure the wave evolution in the
deeper area. Probes 9–12 were used to record the wave evolution over the slope. Several probes were
distributed in the shallower region to observe the post-dynamics of extreme waves appearing around
the end of the bottom slope.

Unidirectional irregular waves were generated using a linear superposition model using random
initial phases and amplitudes as determined from a JONSWAP spectrum, given in Equation (1).
The experimental condition was controlled by four parameters: water depth h, significant wave height
Hs, peak frequency fp and the peak enhancement factor γ.

S( f ) =
αg2

(2π)4
1
f 5 exp

[
−5

4

(
fp

f

)4
]

γ
exp

[
−( f− fp)

2
/(2σ2

J f 2
p)
]
, (1)

where g denotes the gravitational acceleration; α denotes the adjustment factor to achieve the target
Hs; and σJ denotes the spectral asymmetric parameter with respect to (w.r.t.) the spectral peak at
fp, with σJ = 0.07 when f < fp and σJ = 0.09 when f > fp. The spectrum was discretised using
16,384 = 214 frequency components over the range [0, 6 fp] to generate irregular sea states.

During the experimental campaign, more than 30 cases were tested, which were chosen based on
the nonlinearity (wave steepness kp Hs, with kp being the wave number corresponding to the peak wave
period Tp) and the dispersion (w.r.t. the relative water depth kph) in the deeper and shallower regions.
The relative importance of these two effects was measured by the Ursell number Ur ≡ HsL2

p/h3.
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For each test, the test duration lasted for 1200Tp. Among all tests, the experimental results of three
representative cases shown in Table 1 have already been studied [34].

Table 1. Experimental cases studied in [34].

Case γ h(m) Hs(m) Tp(s)
Deeper Side Shallower Side

kph kp Hs Ur k′
ph′ k′

p H′
s Ur′

1 3.3 1.2 0.05 1.5 2.20 0.092 0.3 0.64 0.166 25.4
2 3.3 1.3 0.10 2.3 1.19 0.092 2.1 0.50 0.197 63.3
3 3.3 1.3 0.10 2.5 1.06 0.082 2.7 0.45 0.185 78.0

(1) Parameters in the shallower side are denoted by ′; (2) in the shallower region, h′ = h − 1 m,
and H′s = Hs

√
Cg/C′g; (3) the group velocity Cg = ∂ω/∂k, with ω =

√
gk tanh kh.

Only Case 2 was selected and simulated in this study for the following reasons: (1) the sea state
of Case 1 is almost Gaussian and the number of measured large waves is insufficient to do reliable
statistical analysis; (2) in Cases 2 and 3, the relative water depth kph < 1.363 is verified for the whole
bottom profile, which means the effect of modulation instability can be ignored; and (3) Cases 2 and 3
show similar behaviour in both the statistical and spectral analyses. Case 2 is also preferred because
fewer wave breaking events happened during the experiment, and they are not accounted for in
the two numerical models. Regarding the wave parameters, one difference between the work of
Trulsen et al. [23] and the present work is that the nonlinearity of the waves in our case is significantly
increased by the shoaling over the slope (note that k′p H′s ≈ 0.197 in our case is larger than 2kpac ≈ 0.14
in the shallower side of Case 1 in [23]) with the dispersion effects, i.e., kph and k′ph′ being similar.
Regarding the wave tank, our configuration was shorter in the deeper part but longer in the shallower
part, also the slope is longer with the normalised length kpLs ≈ 18 (Ls denotes the length of slope)
than in [23] where kpLs ≈ 8. Finally, a larger number of wave gauges were set in the flume to follow
the wave evolution in space.

3. Numerical Modeling

3.1. General Modeling Approach

The wave problem is formulated in a 2D vertical Cartesian coordinate system (x, z), with x-axis
located at the mean free surface level, and z-axis positive upwards. In the framework of potential flow
theory, the fluid is assumed to be homogeneous and inviscid and the flow is assumed irrotational so
that the wave breaking cannot be directly considered. With the velocity potential φ(x, z, t) introduced,
the nonlinear potential flow problem is:

φxx + φzz = 0, −h(x) ≤ z ≤ η(x, t), (2)

ηt + φxηx − φz = 0, at z = η(x, t), (3)

φt +
1
2

(
φ2

x + φ2
z

)
+ gη = 0, at z = η(x, t), (4)

hxφx + φz = 0, at z = −h(x), (5)

where the subscripts denote partial derivatives (i.e., φx ≡ ∂φ
∂x ).

The free surface boundary conditions (FSBCs) Equations (3) and (4) are expressed as functions of
free surface variables η(x, t) and φ̃(x, t) ≡ φ(x, z = η, t), forming the so-called Zakharov equations:

ηt = −φ̃xηx + w̃
(

1 + η2
x

)
+ 2νηxx, (6)

φ̃t = −gη − 1
2

φ2
x +

1
2

w̃2
(

1 + η2
x

)
− 2νφzz, (7)
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where the vertical velocity at the free surface is w̃(x, t) ≡ φz(x, z = η(x, t), t), which is needed to
integrate the Zakharov equations in time. Determining w̃ from the free surface variables η and φ̃ is
known as a Dirichlet-to-Neumann (DtN) problem. It should be noticed that the wave flume is large so
that the frictional dissipation is significant during the experiments. This is modeled here by adopting
two additional viscous terms in Equations (6) and (7), following the work of Dias et al. [35]. The value
of ν needs to be calibrated: in our simulations, the value of ν = 0.0006 m2/s was chosen as it allows
reproducing the mean decay rate of wave energy as waves propagate along the wave flume.

3.2. Boussinesq-Type Model

The Boussinesq-type model for the fully nonlinear and dispersive water waves with potential
formulations [31] was used to simulate the experiments. In the model, the velocity potential φ is
expanded around a certain depth ẑ(x) in the water column using a power series of the vertical
coordinate z:

φ(x, z, t) ≈
4NB+1

∑
n=0

1
n!

(z− ẑ)n φ̂(n), (8)

where NB is related to the order of the model, and, in our simulations, NB = 2 ws chosen.
φ̂(n) ≡ ∂nφ/∂zn|z=ẑ for n = 0, 1, 2, 3, ..., ∞, with ẑ is usually fixed at the middle of the water column to
optimise the dispersion properties. We define ŵ ≡ φ̂(1) as the vertical velocity at the chosen elevation.

The in-depth study of this model can be found in the literature [31,36,37]. The main steps are
briefly recalled here (see [31] for more information). Introducing Equation (8) into the Laplace equation
(Equation (2)) and assuming ẑ is a function of slow variable δx (with δ� 1), the velocity potential φ

can be formulated as an expression of φ̂(0) and ŵ. In the NB = 2 model, the expression of φ is truncated
at order O(δ2) and the higher-order derivatives are up to 4NB + 1. The accuracy of the truncation
can be significantly improved by adopting the enhancement technique. New expansion variables are
obtained by applying the L-operator:

φ̂(0) = Lp (ẑ∇) φ̂∗, ŵ = Lw (ẑ∇) ŵ∗ (9)

where Lp (ẑ∇) = L0 +∇ẑ · L1∇ and Lw (ẑ∇) = L0 +∇ẑ · L2∇, with ∇ ≡ ∂/∂x being the horizontal
derivative operator. The coefficients of a linear operator L0 (ẑ∇) are computed to let the high-order
derivatives from 2NB + 2 to 4NB + 1 vanish. The shoaling enhancement operators L1 (ẑ∇) and
L2 (ẑ∇) are used to optimise the linearised shoaling behaviour of the model. The expressions of these
L-operators can be found in [31].

Now, the velocity potential φ is expressed as a function of φ̂∗ and ŵ∗ via Equation (9).
The expressions of the potential at the free surface and at the bottom can be derived using the chain
rule. With the Dirichlet boundary condition at the free surface φ|z=η = φ̃ and the bottom boundary
condition in Equation (5) expressed in terms of φ̂∗ and ŵ∗, a linear system is established. The potential
φ can be obtained from the solutions of the linear system, φ̂∗ and ŵ∗. Finally, the vertical velocity at
the free surface w̃ is computed to advance the model in time.

The numerical solution procedure is based on the finite difference method for the spatial derivative
and the explicit fourth-order Runge–Kutta scheme for the time integration. In the horizontal direction,
a stencil of seven points is used to apply up to fifth-order derivative operators. In the linearised NB = 2
model, the dispersion relationship is given explicitly by:

C2
NB

gh
=

1 + ∑2NB
n=0 D2n (kh)2n

1 + ∑2NB+1
n=0 E2n (kh)2n (10)

where CNB denotes the phase velocity. The coefficients D2n and E2n depend on the expansion
level ẑ(x)/h(x), and are given by [36] (Equation (25)). To evaluate the dispersion property of this
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model, Equation (10) has to be compared to the exact Airy phase velocity in flat bottom condition
C2

Airy/(gh) = tanh(kh)/(kh).

3.3. Whispers3D Model

The modeling approach of whispers3D is presented in previous works [32,33] and summarised
hereafter. First, a change of the vertical coordinate from z ∈ [−h(x), η(x, t)] to s ∈ [−1, 1] is applied,
mapping the varying domain to a rectangular one:

s(x, z, t) =
2z + h(x)− η(x, t)

h(x) + η(x, t)
(11)

The nonlinear potential system in Equations (2)–(5) can be reformulated using in the new
(x, s, t)-space, with φ(x, z, t) = ϕ(x, s(x, z, t), t). Following Tian and Sato (2008) [38], a spectral
approach is used in the vertical to approximate the velocity potential. Using the set of orthogonal
Chebyshev polynomials of the first kind, denoted Tn(s), n = 0, 1, ..., NT , with s ∈ [−1, 1], as an
expansion basis, the potential is approximated as:

ϕ(x, s(x, z, t), t) ≈ ϕNT (x, s(x, z, t), t) =
NT

∑
n=0

an(x, t)Tn(s), (12)

where the an(x, t) coefficients of the Tn terms are now the main unknowns of the problem.
Then, the approximation in Equation (12) of ϕ is inserted into the governing equations composed

of the Laplace equation, a Dirichlet free surface boundary condition (FSBC) with ϕNT |s=1 ≈ φ̃ and the
bottom boundary condition expressed in the (x, s) coordinate system. The so-called Chebyshev-tau
method, a variant of the Galerkin method, is used to project the Laplace equation onto the Tn

polynomials for n = 0, 1, ..., NT − 2 eliminating the s coordinate and giving a set of NT − 1 equations
on the an coefficients at each location x. These NT − 1 equations are supplemented with the Dirichlet
FSBC and the bottom boundary condition, so that a system of NT + 1 linear equations with NT + 1
unknowns (an, n = 0, ..., NT) at each abscissa is formed. The solutions of this linear system are the an

coefficients, from which the free surface vertical velocity at time t is obtained as:

w̃(x, t) =
2

h(x) + η(x, t)

NT

∑
n=1

an(x, t)n2, (13)

In the whispers3D model, the first- and second-order horizontal derivatives are approximated
using fourth-order finite difference formulas with stencils of five nodes. An explicit third-order
Runge–Kutta scheme (SSP-RK3) is used for time marching. The dispersion relation of the linear model
in constant water depth was derived analytically by Benoit et al. [39]:

C2
NT

gh
=

1 + ∑NT−2
n=1 Pn (kh)2n

1 + ∑NT−1
n=1 Qn (kh)2n , (14)

where the coefficients Pn and Qn for different values of NT can be found in Table 1 of [39].

3.4. Simulations of the Experimental Case 2

The whispers3D model solves the fully nonlinear potential flow problem, with no assumptions
made regarding the steepness of the surface waves or the bathymetry. In the Boussinesq-type model,
with the linear operators applied, the model is “improved” in the dispersion relation accuracy.
The rapidly varying bathymetry can be well simulated. The dispersion relations of two models
are compared to CAiry in Figure 2 over a wide range of relative water depth kh. It is shown that
the relative error varies significantly for different water depths. In intermediate and shallow water,
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i.e., kh ∈ (0, π], the relative errors of CNB and CNT are small (for instance, below 10−5 for NT = 7
or NB = 2). However, the dispersion relation is less accurate for deep water waves in both models.
One advantage of the whispers3D model is that the user can adjust the value of NT easily. In shallow
water, a small NT can improve the efficiency of the model while keeping good accuracy. In deep water,
by using large NT , the model has the possibility to achieve better accuracy for a large value of kh.
The dispersion relations of both models are very accurate under the experimental condition (kph ≈ 1.2
for Case 2), thus NT = 7 was chosen in the simulations with whispers3D.

10-1 100 101 102
10-10

10-8

10-6

10-4

10-2

100

Figure 2. Comparison of the dispersive effects between the Boussinesq-type model (NB = 2) and
the whispers3D model (with different choices of NT) in log-log scale. The two dash lines divide the
domain into shallow water region (kh < π/10), intermediate water depth region, and deep water
region (kh > π).

In the simulations with Boussinesq-type model, the expansion elevation was chosen at ẑ = −0.5h,
the shoaling enhancement factors were chosen to be accurate for kh ∈ (0, 30]; the optimised coefficients
are given in Equation (52) of [31]. The chosen time step is ∆t ≈ 0.016 s and the horizontal grid size is
∆x ≈ 0.114 m, corresponding to the Courant–Friedrichs–Lewy number (CFL = C∆t/∆x, C = L/T) is
CFL ≈ 0.417. Waves were generated in a relaxation zone of 3Lp long at the left boundary and were
absorbed in another of 0.5Lp long at the right boundary. This set-up was chosen to achieve a better
agreement of the low-frequency domain with the measured data. The measured data at x = 3 m were
taken as the target spectrum and reconstructed through linear superposition of harmonic incident
wave components. In the whispers3D simulation, NT = 7 was used for the approximation of velocity
potential. The simulations were made with a time step of ∆t = 0.02 s and a grid size of ∆x = 0.05 m,
resulting in CFL = 1.19.

In Figure 3, the spatial evolution of the largest wave group observed in the experiment is shown;
the simulated results of Boussinesq-type model and whispers3D are also superposed for comparison.
Note that the threshold of freak wave is considered locally since the sea state undergoes significant
change due to the uneven bottom. For this reason, the free surface elevation in the figure is normalised
by the local significant wave height. The origin of the two freak waves in Figure 3h is shown in the
energetic wave packet generated around 33 min from the start, where the sea state has already been
affected by the reflected long wave. Figure 3a–c shows that the wave form remains quite similar, from
the formation of the wave packet until it propagates over the middle of the slope. The simulation results
are in good agreement with the measurements in this region. As waves enter the shallower region and
propagate within a certain distance, corresponding to the region between Probe 13 (Figure 3g) and
Probe 17 (Figure 3f), two waves in the packet are amplified and can be identified as freak waves since
their crest elevations exceed 1.25 times of the local Hs. These two freak waves keep their wave profiles
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longer in the experiment than in the simulations. On the other hand, both numerical schemes seem to
underestimate the group velocity as well as the amplitudes of large waves.

Figure 3. Comparison of the free surface elevation normalised by the local significant wave height at
different positions (panel (a)–(g)) between the simulated results of the Boussinesq-type model (blue
lines), whispers3D (red lines) and the measurements (black dot lines). Only the local relative water
depth over the uneven region is marked. The threshold of freak wave basing on crest elevation is
shown (dash lines).

4. Data Processing: Spectral Analysis

Assuming that the free surface elevation is the sum of a large (infinite) number of statistically
independent harmonic waves, each component having a random phase in [−π, π] and a constant
positive amplitude, we operated with a Gaussian sea state and the statistical characteristics can be
described through simple Fourier analysis. The spectral analysis was applied to both measured and
simulated results. The simulated signals were resampled (by means of interpolation) to have the
same sample points. A low-pass filter was applied to the measured signals to exclude the undesired
high-frequency band which might be contaminated by the electronic noise of the wave probes. The time
window where the analysis was carried out was translated for each wave gauge with the group velocity
Cg( fp), which ensured that all analysed signals recorded at different positions roughly started from
the same wave event. The spectra were estimated via Welch’s method. The overlapping factor was
50%, with which the signals were separated into a number of segments. First, the Hann window was
applied to each segment of signal (approximately 80 s), and then it was Fourier-transformed through
213-point fast Fourier transform (FFT), resulting in a high spectral resolution ∆ f = 0.0061 Hz.

In Figure 4, both the overall spatial evolution of the spectrum and the detailed spectra at four
specific positions are shown. It was observed that, as waves propagate over the deeper region, the wave
spectra are modulated mainly in the low-frequency range ( f < 0.2 Hz), and several low-frequency
modes are formed before the bottom slope. The low-frequency part is a result of the reflection of
unabsorbed long waves and the excitation of the natural modes of the wave flume. The wavemaker
and the damping zone only “absorb” a part of the reflected wave energy. Thus, these low-frequency
modes increase gradually during the test. Over the bottom slope, second-order effect gets increasingly
significant especially around the end of the slope (see the yellow peak at about 2 fp in Figure 4a for
x = 53.5 m and Figure 4b for the corresponding spectrum). After the slope segment, the increase of
the second harmonic disappears rapidly. More and more wave energy transfers to the low-frequency
part, and, as a result, the spectrum broadens. After some distance, due to the energy transfer the
low-frequency peak even exceeds the “original” spectral peak and becomes the “new” highest peak of
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the spectrum (see, for instance, Figure 4b, Probe 24). Apart from the nonlinear wave–wave interactions,
the evolution of the spectrum is also affected by the friction resulting from the boundaries, which play
an important role in the dissipation of wave energy. The frictional dissipation works as a low-pass
filter, i.e., the dissipation is stronger for the high frequency waves than for the low-frequency waves.

Figure 4. The spectrum of the experimental data shown in different scales: (a) the spatial evolution of
the spectrum in a log-scale colormap; and (b) the spectra of four specific positions.

The spectra simulated with the Boussinesq-type model are shown in Figure 5. The incident wave
spectrum shape was well simulated, as waves propagate in the deeper region, the frequencies in the left
side of the spectral peak remain in good agreement with the measurements, but differences appear in
the higher frequency domain (see Figure 5b). Potentially, some wave–wave interactions occur between
the wavemaker and the first probe generating high frequency components. These high-frequency
components are considered as free modes in the simulations due to linear wave making, so that they
are dissipated rapidly by friction. Around the end of the slope, the second harmonic clearly appears
and is more energetic compared to the measured results. The broadening of the spectrum after the
slope is well predicted. In total, the Boussinesq-type model provides a good prediction of spectral
evolution, despite the slight overestimation of the nonlinear interaction.

Figure 5. Same plot as Figure 4 for the results of the Boussinesq-type simulation.

The spectra simulated with whispers3D are shown in Figure 6. It is shown that the results of
whispers3D are in good agreement with the results of the Boussinesq-type model as well as the
measurements. Indeed, this model also overestimates the nonlinear wave–wave interactions around
the end of the slope so that second (and also higher) harmonic of the spectral peak receive more energy.
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Figure 6. Same plot as Figure 4 for the results of whispers3D simulation.

5. Data Processing: Bispectral Analysis

It is well-known that waves in nature can be strongly nonlinear when they enter in coastal areas.
Especially in the case studied here, the nonlinear effects are significant, and a Fourier analysis is
insufficient to interpret the data. A powerful tool to study the nonlinear process is the polyspectral
analysis, in particular, the Fourier based bispectral analysis technique which has been used to study the
triad wave–wave nonlinear interactions and quadratic phase coupling of nonlinear water waves [40,41].
The bispectrum B( f2, f1) is defined as the two dimensional Fourier transformation of the third-order
auto-correlation function of the signal. Equivalently, it can also be defined as [42]:

B( f1, f2) = E
[
X1X2X∗1+2

]
, (15)

where E[·] is the ensemble average of the triple product of complex Fourier coefficients of two
frequencies f1 and f2 and their sum f1 + f2. The asterisk indicates complex conjugate. For time
series with zero mean, the Fourier coefficients Xn come from the following decomposition:

x(t) =
+∞

∑
n=−∞

Xn exp (−2πn fit). (16)

This definition is economic regarding the computational effort thanks to the Fast Fourier transform
(FFT) algorithm. The bispectrum has symmetry properties, i.e., B( f1, f2) = B( f2, f1) = B∗(− f1,− f2) =

B(− f1 − f2, f2) = B( f1,− f1 − f2), which can further simplify the computation.
In the following, the Fourier coefficients Xn were computed in the same way as introduced

in Section 4, except that 212-point FFT was used to get a smoother bispectrum. In Figures 7–9,
the imaginary parts of the bispectra are plotted, for both the experimental (upper row) and numerical
results (second row for the Boussinesq-type model and lower row for the whispers3D model). The two
component frequencies f1 and f2 were normalised by the incident peak frequency.

The positive and negative values are represented by the colors in the graphs indicating,
respectively, the sum interactions and the difference interactions between the two frequency
components. For instance, assume B(0.1, 1) < 0, it means that three wave components 0.1 Hz,
1 Hz and 1.1 Hz participate in the nonlinear interaction and the wave energy is transferred from 1.1 Hz
to the 0.1 Hz and 1 Hz components. Similarly, if B(0.1, 1) > 0, the 1.1 Hz component gain energy from
the 0.1 Hz and 1 Hz components.
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Figure 7 shows that, in general, the wave–wave interaction between fp and 2 fp is weak in the
deeper region. In Figure 7a1, two relatively strong interactions happen around B( fp, 0.1 fp) (red) and
B( fp, fp) (blue), which indicates that the wave energy is transferred from both the low-frequency
modes around 0.1 fp and the second harmonic 2 fp to the frequencies around the peak. As waves
propagate in the deeper region, in Figure 7b1, it is shown that for the low-frequency domain both
sum and difference interactions are present. This pattern indicates that the energy of peak frequency
is transferred to both lower and higher frequencies and that the spectrum broadens. This pattern
can hardly be seen in the corresponding spectrum due to weak interactions, but as shown below,
the spectral broadening is more obvious in the shallower region. In the simulations, this energy transfer
is overestimated, resulting in slightly larger long waves. When waves arrive at the end of the deeper
region, Figure 7c1 shows that the spot around B( fp, 0.1 fp) is blue, meaning that the energy transfers
mainly from the peak frequency to the low-frequency components and that long waves are generated.
In the deeper region, the simulated and measured bispectra are in overall good agreement.

Figure 7. Contour of the imaginary parts of bispectra of Probes 1, 5, and 8 in the deeper region
(kph = 1.19) (corresponding to panels (a)–(c)). The upper row (panels (1)) of graphs presents measured
bispectra, while bispectra obtained from numerical results are presented on the second (panels (2)) and
third rows (panels (3)) for the Boussinesq-type and whispers3D models, respectively. All the panels
share one colorbar, which is in scale (10−8 m3).

In Figure 8, the bispectra of waves propagating over the sloping bottom area are shown where strong
nonlinear effects are expected. In Figure 8d1, it is observed that the nonlinear effect is present but still
moderate. In Figure 8e1, the wave–wave interaction is strong, resulting in an increase of the second
harmonic 2 fp and the low-frequency waves around 0.1 fp. In Figure 8f1, not only similar characteristics
regarding the second harmonic and the long wave generation are seen, but also the wave–wave interactions
between fp and 2 fp coupled to 3 fp is visible. The long waves are generated from both peak frequency and its
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second harmonic 2 fp (see the blue spots at B( fp, 0.1 fp) and B(2 fp, 0.1 fp)). In the simulations, the agreement
is still good but the intensity (or “magnitude”) of nonlinear transfers is slightly overestimated. For instance,
the sum interactions of low-frequency modes around B( fp, 0.1 fp) at all three probes are stronger in the
two numerical models than in the experiments. As is shown in Figure 8e2 and e3, the sum interactions at
B( fp, 2 fp) are also a bit stronger in the simulations.

Figure 8. Same plot as Figure 7 for Probes 10, 12, and 13 over the slope (corresponding to panels
(d)–(f)), the corresponding relative water depths are kph = 0.86, 0.54 and 0.50 respectively.

In Figure 9, three probes are chosen to illustrate the modulation of waves propagating over the
shallower region. More wave components participate in the wave–wave interaction, and the contours
become more complex. A negative band ranging from B(0.5 fp, 0.5 fp) to B(0, fp) is observed which
indicates the strong energy transfer from the spectral peak to the bands with frequencies lower than
the peak. This blue band is clear in Figure 9g1, and disappears in Figure 9i1 because, as the spectral
peak keeps losing energy, this energy transfer becomes weaker and weaker. This explains partially the
spatial evolution of the spectrum, namely the decrease of the “original” spectral peak, the increase
of the low-frequency components (which eventually become new spectral peak) over the shallower
region, and the increase of the long wave energy. Another possible reason for this spectral change is
the different frictional dissipation rates for different frequencies. The friction dissipates more energy
of high-frequency waves while low-frequency wave energy is less dissipated. Finally, a quasi-steady
state is reached and the spectral shape keeps almost unchanged, as can be observed for the spectral
shape after 100 m in Figure 4a.
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Figure 9. Same plot as Figure 7 for Probes 19, 24, and 29 (corresponding to panels (g)–(i)) in the
shallower region k′ph′ = 0.50.

6. Data Processing: Nonlinear Wave Parameters

The free surface elevation is regarded as a stationary stochastic process. In a Gaussian sea state,
the characteristic of the statistics of the surface motion can be fully described by its mean η̄ = E (η) and
variance σ2 = E

(
(η − η̄)2). As waves propagate into coastal areas, the sea states become non-Gaussian

and the nonlinearities affect the wave shape, resulting in sharper and higher wave crests. Higher-order
moments can be used to characterise nonlinear effects. Usually, skewness (third-order normalised
moment) and kurtosis (fourth-order normalised moment) are considered. They can be computed from
time series η:

Skewη = λ3 =
E
(
(η − η̄)3)

σ3 , (17)

Kurtη = λ4 =
E
(
(η − η̄)4)

σ4 . (18)

The skewness is related to the bound mode harmonics and the asymmetry of the probability
density function (PDF) of η, and the kurtosis is related to the sharpness of the PDF [43]. For Gaussian
sea states, λ3 = 0 and λ4 = 3 are expected. For non-Gaussian sea states, λ3 > 0 represents asymmetric
wave shape (sharper crests and f troughs) and the reverse for λ3 < 0. λ4 > 3 indicates an increased
probability of occurrence of the largest wave heights [23], but it is not guaranteed that, when λ4 < 3,
the large waves (especially freak waves) will not manifest.
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Statistical parameters can also be computed based on the bispectrum. Skewness can be defined
as the normalised integral of the real part of the bispectrum [40]; the wave profile asymmetry w.r.t.
the vertical axis is related to the normalised integral of the imaginary part of the bispectrum [44]:

Skewbis =
∑ ∑< {B ( f1, f2)}

σ3 , (19)

Asymbis =
∑ ∑= {B ( f1, f2)}

σ4 . (20)

In Figure 10, the statistical parameters of the simulations as well as the measured results are
shown, and the two different computation methods of the skewness are also compared. It can be seen
that the two methods give very similar results; the small differences are probably due to the use of
Hann function window (even though a correction factor has already been considered) when computing
the Fourier coefficients. It can be seen that both the Boussinesq-type and whispers3D models have
good agreement over the two flat bottom regions, but clearly overestimate the maximum skewness
(triad wave–wave interaction) around the end of the slope. While the generated waves are almost
symmetric w.r.t. the horizontal axis, they become skewed as they propagate over the slope. Around
the end of the slope, the wave shape is highly asymmetric w.r.t. the horizontal axis, and the symmetry
is not fully recovered in the shallower flat bottom. Regarding the asymmetry parameter, the simulated
results agree well with the measured results. As can be seen, this parameter is almost zero except over
a short region after the slope which implies that the waves generated are almost symmetric w.r.t. the
vertical axis. It is also noted that the presence of the current bottom slope has limited effect on the
asymmetry parameter.

In Figure 11, the evolution of the kurtosis is shown. It fluctuates around 3 except for the area
around the end of the slope, where a local maximum value is observed. This corresponds to the location
of Probe 13. The numerical models predict well the overall evolution of kurtosis along the bottom
profile. However, they both overestimate the kurtosis around the end of the slope, and this trend
is more marked with whispers3D. This is probably because the breaking events in the experiments,
which are not considered in the simulations, limited the maximum wave heights. At the end of the
slope, the prediction of whispers3D is more non-Gaussian compared to that of the Boussinesq-type
model. According to previous studies (e.g., [23]), the local maximum of kurtosis indicates higher
probability of the occurrence of extreme waves. This motivates further investigations of wave height
statistics in similar, however, more complicated configurations.
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Figure 10. Overall evolution of the nonlinear statistical parameters, skewness and asymmetry,
computed from the time series (dash lines) and the bispectrum (solid lines).
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Figure 11. Comparison of the overall evolution of kurtosis between the measured and the simulation
results of the two numerical models.

7. Data Processing: Wave Height Distribution

The wave height distribution for the nonlinear shallow water waves has been of interest for
oceanographers, as it represents a key input for the design of coastal structures. The understanding of
the shallow water wave height distribution is, for the moment, limited not only due to the complexity of
coastal hydrodynamics but also due to the complex nearshore environment. The existing distributions
are either empirical/semi-empirical or analytical under strong assumptions. For this reason,
more experimental data are needed to study the applicability and validity of these models. In the
following, some of the most popular distributions are listed and compared with the measurements
and the results of the simulations.

7.1. Brief Review of Existing Distribution Models

7.1.1. Rayleigh Distribution

The study of wave height distribution in the early 1950s starts with the work of
Longuet-Higgins (1952) [45] for narrow-banded linear deep water waves. The wave heights (H)
follow the Rayleigh distribution, whose complementary cumulative distribution function (CCDF) is
given by:

PR(H) = exp

[
−
(

H√
2Hs

)2
]

. (21)

The wave conditions of the current Case 2 obviously violate the aforementioned assumptions.
The Rayleigh distribution is adopted here only for the purpose of comparison. Assume for the signals
with zero mean, the relation Hs ≈ 4σ is fulfilled throughout the domain, then the normalised wave
height H/σ = 8 is the threshold for the freak waves.

7.1.2. Glukhovskiy Distribution and Its Modifications (GV91 and GK96)

As waves propagate into coastal areas, the shoaling effect, as well as the depth-induced wave
breaking, are expected, which affect the shape of the distribution. Due to the insufficient understanding
of wave breaking and high-order non-Gaussian effects, only empirical or semi-empirical models
are available. A more general form of the Rayleigh distribution, namely the Weibull distribution,
is used to account for the depth-induced wave breaking in shallow water, as initially proposed by
Glukhovskiy [46]:

PG(H) = exp

[
−A

(
H
H∗

)K
]

, (22)
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where A, H∗, and K are the Weibull parameters. which are defined differently in the literature.
Van Vledder (1991) [47] (labelled as GV91) modified this model by considering the parameters as:

A = Γ (1/K + 1)K , K =
2

1− H∗/h
, H∗ =

Hs√
2

Γ (1/k + 1)√
Γ (2/k + 1)

, k =
2

1−
√

8Hs/ (4.5636h)
, (23)

with Γ denoting the gamma function, Γ(x) =
∫ ∞

0 e−ttx−1dt. Klopman (1996) [48] also proposed a
modification (labelled as GK96) based on a fit to laboratory data:

A =

[
Γ
(

2
K
+ 1
)]K/2

, K =
2

1− H∗β/h
, H∗ =

Hs√
2

, β = 0.7. (24)

As input, the local water depth h and the significant wave height Hs are required. Both modified
Glukhovskiy’s distributions are used and compared hereafter.

7.1.3. Composite Weibull Distribution (CWD)

Another well-known model for wave height distribution in shallow water is the semi-empirical
composite Weibull distribution (labelled as CWD here) [49]. In this model, the smaller wave heights are
Rayleigh distributed, whereas the larger wave heights follow a Weibull distribution. The distribution
requires not only h and Hs but also the bottom slope m. This model also takes wave breaking
into consideration:

PCWD(H) =





exp
[
− (H/H1)

2
]
, H ≤ Htr

exp
[
− (H/H2)

3.6
]
, H ≥ Htr,

(25)

where Htr = (0.35 + 5.8m) h denotes the transition wave height between the two distributions, and H1

and H2 are scale parameters for wave heights and are given in [49] (see more details in Equation (6) or
Table 2 in this reference).

7.1.4. Weibull-Generalised Pareto Distribution (WGP)

More recently, another two-part model, the Weibull-generalised Pareto wave height distribution
(labelled as WGP), has been introduced [50]. The parameters, including Hs, local wave number kL
(here the wave number kp corresponding to the peak frequency fp is used), and local water depth h
are required in this semi-empirical model:

PWGP(H) =





exp
[
−µ (H/Htr)

κ], 0 ≤ H ≤ Htr

exp (−µ)
[
1 + ξ

α (H/Htr − 1)−
1
ξ

]
, Htr ≤ H ≤ Hmax,

(26)

where

Htr = ρHs, Hmax = 2βπ
tanh(kLh)

kL
, κ =

2

1− λ (Hs/h)1.7 , µ =
1

κα
, ξ =

αHtr

Htr − Hmax
. (27)

In this model, except for the required information regarding the waves and bathymetry,
four additional parameters are needed to be calibrated: ρ for the transition wave height, α for the scale
of Pareto distribution, β for the Miche wave breaking height limit, and λ for the shape of Weibull
distribution. According to the results of Wu et al. [50], ρ = 1, α = 0.22, β ≈ 0.15, and λ = 1 are used.
Unlike CWD, this two-part model is continuous and bounded (0 ≤ H ≤ Hmax), and this model has a
continuous PDF.
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7.1.5. Gram–Charlier Type Model (GBD)

The relationship between the fourth-order moment of free surface elevation and the third-order
nonlinearity is studied in [51]. The effects resulting from third-order nonlinearity on the statistics
of wave height distribution have been taken into consideration by using Edgeworth’s form of a
Gram–Charlier series [51–55]; this family of wave height distributions is sometimes referred to as
modified Edgeworth Rayleigh distribution (MER). They do not seem to be of specific attraction in
describing the statistics of coastal wave heights because the corresponding PDF of MER is not always
positive (which is not realistic). In addition, these distributions are derived under the assumption of
narrow-banded weakly nonlinear waves in the deep water condition, which is violated in nearshore
areas. However, they are attractive in predicting abnormal waves because MER models showed
good agreement for the tail of the wave height distribution when compared to some laboratory
measurements [54]. Thus, this model is included in the present paper anyways.

A recent model of this family proposed in [55] is a generalised Boccotti distribution (labelled as
GBD) in the form of MER, taking third-order nonlinearity and finite spectral width into consideration.
Recall the Boccotti’s distribution [56]:

PB(H) = c0 exp

(
−c1

(
H
Hs

)2
)

, (28)

where

c0 =
1 + b√

2b (1 + a)
, c1 =

4
1 + a

, a =

∣∣∫ ∞
0 S(ω) cos (ωτ)dω

∣∣
√

m0
, b =

∣∣∫ ∞
0 ω2S(ω) cos (ωτ)dω

∣∣
√

m2
, (29)

with S(ω) denoting the spectral density function, τ corresponding to the time lag of the global
minimum of autocorrelation function R(τ) = E [η(t)η(t + τ)], and mi denoting the ith-order moment
of S(ω), mi =

∫ ∞
0 ωiS(ω)dω.

Then, the formulation of GBD is:

PGBD(H) = c0 exp

[
−c1

(
H
Hs

)2
] [

1 +
Λ
16

c2
1

(
H
Hs

)4
− Λ

8
c1

(
H
Hs

)2
]

, (30)

where

Λ = Λ04 + Λ22 + Λ40, Λmn =
E [ηmη̂n]

σ4 + (−1)m/2 (m− 1) (n− 1) , (31)

with η̂ denoting the Hilbert transform of the free surface elevation η, and [m, n] = 0, 2, or 4, but not 3
due to the absence of resonant three-wave interactions. It should be noticed that the CCDF starts with
PGBD(0) 6= 1, which is not realistic, meaning that this model is not suitable to model the bulk of the
distribution, but only its tail for large wave heights.

7.2. Comparative Evaluation of Wave Height Distributions

The wave height distribution at Probe 8 located at the beginning of the slope is first considered
and displayed in Figure 12. It can be seen that the Rayleigh distribution predicts well the measured
wave height distribution. The agreement between the simulated and the measured data at this position
is good, as shown in Figure 12a. In Figure 12b, the other wave height distribution models are similar
to the Rayleigh distribution, differences appear only in the prediction of larger waves with H > 6σ.
The measured results show fewer large waves than predicted by the Rayleigh distribution. This can
be related to the work of Forristall (1978) [57] showing that the Rayleigh distribution overpredicts the
heights of the largest waves in a deep water sea state. From the previous analysis of the nonlinear
parameters skewness and kurtosis, the sea state here is quasi-Gaussian and the nonlinear wave–wave
interactions are limited for the deeper region. Thus, it is anticipated that the wave heights follow a
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Rayleigh distribution. The data show better agreement with the modified Glukhovskiy’s methods,
GV91 and GK96.

Figure 12. The wave height distributions of measurements, simulations and different models at
x8 = 30 m: (a) the CCDF as a function of normalised wave height; and (b) the deviation from the
Rayleigh is shown by the normalised CCDF. The horizontal solid line in (a) as well as the vertical solid
line in (b), both at H/σ = 8, represent the usual threshold for freak waves.

As waves propagate near the end of the slope, Figure 13 shows a clear increase of the probability
of the large waves. The agreement between the measured and simulated results remains good, and the
model predictions by CWD and GBD are in better agreement with other models. The two numerical
models show similar results. In the Boussinesq-type model, note that one wave fulfils the criteria of
freak waves (recalling that H > 2Hs is equivalent to H > 8σ). However, the corresponding wave
height is lower (below the above threshold) in the measured time series. At this position, skewness and
kurtosis computed from the measured signal and from the simulated signals are in excellent agreement.
The skewness increases approximately to 0.2, whereas the kurtosis is still around 3, indicating that
second-order nonlinearity plays a more important role here.

In Figure 14, the wave height distribution after the slope (Probe 13), where the skewness and
kurtosis reach their local maximum values, is illustrated. The amount of large waves is larger than the
expectation of Rayleigh distribution, and more freak waves appear after the slope. At this location,
it is also observed that some sporadic spilling breakers occurred, limiting the number and height of
the large waves. It is clearly shown in Figure 14b that all the wave height distribution models except
GBD underestimate the probability of wave height for H > Hs. The GBD model shows nice agreement
for the same wave height range, even though the case studied here lies out of its validity domain.
Regarding the simulations, the Boussinesq-type model results agree well with the measurements.
The wave heights are overestimated with whispers3D, as are the skewness and kurtosis.
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Figure 13. Same plot as Figure 12 at x12 = 49.1 m.

Figure 14. Same plot as Figure 12 at x13 = 53.5 m.

Then, in Figure 15b, it is shown that the tail of the wave height distribution lowers and the
degeneration of the extreme waves starts. This change of wave height distribution is also part of
the process of settling down towards a new equilibrium state. However, it was observed in the
experiments that some of the generated freak waves will keep their wave form (without breaking) and
propagate over a certain distance, even though these waves are quite steep, and propagate in relatively
shallow water depth. The prediction of GBD is still good regarding large waves. Other models are
lower than the Rayleigh distribution probably because the wave breaking effect is overestimated with
these models.
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Figure 15. Same plot as Figure 12 at x14 = 55.6 m.

8. Discussion and Conclusions

To achieve a better understanding of the generation mechanism of extreme waves in coastal areas,
large scale experiments at THL and highly accurate numerical simulations with two advanced models
were performed. A variable bottom profile was designed to study the effects of a constant bottom
slope connecting two flat regions on the occurrence of extreme waves. The experimental conditions
were chosen based on two non-dimensional parameters: the wave steepness and the relative water
depth. Note that our experimental set-up is different from previous experiments [23,24] regarding the
length of slope, the arrangement of the two flat regions, and, most importantly, the nonlinear effects
were relatively strong in the experimental cases shown here. Besides, the large scale facility allowed
investigating the whole life cycle of the extreme waves. Spectral, bispectral and statistical analyses
of the collected data were conducted, through which a more comprehensive understanding of the
shoaling process has been drawn.

In line with previous studies [23,25–27], second- and third-order effects appear in the frequency
spectrum, and local maximum values of the statistical parameters skewness and kurtosis were observed
in the shallower region. It was experimentally observed that the second-order effects rapidly weaken
after the end of the slope, as shown Figure 4a. The values of skewness and kurtosis also decrease with
the weakening of second-order effect: the skewness decreases to a new level instead of zero due to the
asymmetrical wave shape in the shallow water, while the kurtosis decreases back to 3.

The imaginary part of the bispectra was used to demonstrate the phase coupling of wave
components and the energy transfer due to nonlinear wave–wave interactions. The nonlinear wave
coupling is relatively strong around the end of the slope where mainly second and third harmonics are
generated. The generation of third harmonic is small in magnitude, but it can be seen in the variance
spectrum. Thus, we speculate that the increase of the occurrence probability of extreme waves is
more related to the second-order effects. It was also observed in our experiments that a series of
low-frequency waves appear. It is anticipated from the bispectra that long waves are mainly generated
by the difference interactions as waves propagate in the flume. The frictional dissipation works as a
low-pass filter on the wave spectrum, which has limited effects on these low-frequency modes.

In the deeper region, the sea state is almost Gaussian, and the nonlinear wave–wave interactions
are moderate. The wave heights are well described by Rayleigh distribution, except that the latter
slightly overpredicts the occurrence probability of the highest waves. The occurrence probability
of large waves is significantly increased when waves propagate over the slope. This is due to the



Fluids 2019, 4, 99 21 of 24

fact that the sea state is transforming from one equilibrium state (in the deeper region) to another
(in the shallower region). During this process, some of the largest waves can be identified as freak
waves and will propagate for a distance while keeping their wave form. We also emphasise that the
process of settling down to the new state takes time and a certain distance (a distance-lag in response
to the depth transition), thus the shallower region after the slope is also prone to freak waves due to
this lag. This was clearly noticeable in our flume set-up, which contains a long flat shallower region.
Since the nonlinearities obviously come into play, nonlinear wave parameters are useful in describing
the sea state, especially the kurtosis is related to the occurrence probability of large waves. It was
confirmed that strong modifications of the distributions of the largest wave are rather well correlated
with larger values of the skewness and kurtosis (see Figures 10 and 11). The Rayleigh distribution is
no longer suitable to describe such sea states, thus a number of wave height distribution models were
introduced and compared. In the coastal areas with intermediate or shallow water depth, the wave
height distribution models are either semi-empirical or analytical with strong assumptions. In this
study, not only the modified Glukhovskiy distributions (GV91 and GK96) and two-part distributions
such as CWD and WGP were considered, but also another deep water wave height distribution, GBD,
was introduced. This distribution is known to have good predictions for extreme waves [54]. As the
non-equilibrium statistics appear and fade out over the slope, the probability for large waves increases
then decreases in the same manner. It was seen that no distribution model can predict the measured
wave height distribution equally well for all probes, but, in the prediction of the occurrence probability
of large waves, the generalised Boccotti distribution works reasonably well, although it was originally
designed for weakly nonlinear deep water waves. The listed shallow water wave height distribution
models underestimate the wave height distribution mainly because they assume waves break during
the shoaling process.

The numerical results of the Boussinesq-type model and the whispers3D model agree well with
the experimental data. The results are in better agreement in the deeper region than in the shallower
region, especially before the reflected long waves reach the probes. In particular, the agreement
deteriorates due to the contamination of reflected long waves. A small number of wave breaking
events also affect the agreement after the slope. These effects are insignificant at the beginning, but the
disagreements accumulate as waves propagate in the flume, and eventually affect the simulated results
in a significant way. The agreement is acceptable for the deeper region and the slope area, which
is of most interest. Two models show very similar results as they both adopt fully nonlinear FSBC
and are capable of accounting for variable bathymetry. We noticed that both models overestimate
the nonlinear interactions around the end of the slope. The possible reasons for this are numerous;
we anticipate that this is due to the non-equilibrium statistics provoked by the transition of water
depth. The small number of wave breaking events may also play a role in constraining the maximum
achievable skewness and kurtosis. As a further study, new unidirectional irregular wave experiments
in the same facility, but with a new bottom profile containing two constant slopes will be conducted
and studied in the future. Finally, it is recalled that wave obliquity and wave directionality were not
considered in this study; the effects associated with multidirectional (three-dimensional) sea states are
left for future work.
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Abbreviations

The following abbreviations are used in this manuscript:

HOS High-Order Spectral
THL Tainan Hydraulics Laboratory
w.r.t. with respect to
JONSWAP Joint North Sea Wave Observation Project
DtN Dirichlet-to-Neumann problem
FSBC Free surface boundary condition
CFL Courant–Friedrichs–Lewy number
FFT Fast Fourier transform
PDF Probability density function
CCDF Complementary cumulative distribution function
GV91 Glukhovskiy’s method modified by van Vledder (1991)
GK96 Glukhovskiy’s method modified by Klopman (1996)
CWD Composite Weibull distribution
WPD Weibull-generalised Pareto distribution
MER Modified Edgeworth Rayleigh distribution
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Chapter 3

Supplementary materials:
additional experiment and
simulation results

3.1 Description of experimental campaign and two addi-
tional tests

The transmission of irregular waves over a sloping bottom is a complicated process
with the presence of shoaling, nonlinear wave-wave interaction, refraction, reflec-
tion, dissipation due to friction, and breaking effects. This experimental campaign
in Tainan Hydraulics Laboratory (THL) aimed to investigate the formation of
extreme waves in irregular sea states with the presence of sloping bottoms. The
facility in THL has been introduced in Part III Chapter 2 for the experimental
investigation of modulation instability, and will not be repeated here.

We consider uni-directional long-crested irregular wave trains propagating over
a prismatic slope connecting two regions of constant water depths. The bottom
slope is fixed, starting at 30 m away from the wave maker and ends at 50 m from
the wave maker. The length of the uneven part is 20 m long and depth transition
is 1 m (1/20 slope). A large number of tests were conducted with different com-
binations of parameters to cover a broader range in the four-parameter domain
(water depth h, significant wave height Hs, peak frequency fp, and spectral width
γ) which dominates the sea states. The incident wave trains are described by the
JONSWAP spectrum with two different spectral widths γ = 3.3 or 7.0 consid-
ered. The examined spectral peak period Tp covers from 1.5 s to 2.7 s. The water
depths h range from 1.2 m to 1.4 m, and the significant wave heights Hs vary in
[0.05, 0.12] m. The complete list of tested conditions is given in Table (IV.3.1),
where non-dimensional parameters including relative water depth µ, steepness ε,
and Ursell number Ur computed with the peak period in both the deeper region
and the shallower region are shown. The experimental test conditions are con-
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trolled by gradually increasing the peak period Tp for different water depth so that
the relative water depth µ is gradually decreasing. Then for the same µ, different
tests are set with increasing nonlinearity until some minor breaking events appear
during tests.

Table IV.3.1: List of all conditions tested during the experimental campaign

Case h (m) Tp (s) Hs (m) γ
Deeper region Shallower region
µ ε Ur µ ε Ur

1 1.2 1.5 0.05 3.3 2.20 0.092 0.340 0.64 0.166 25.391

2 1.2 1.5 0.08 3.3 2.20 0.147 0.544 0.64 0.265 40.626

3 1.2 1.5 0.09 3.3 2.20 0.165 0.612 0.64 0.298 45.704

4 1.2 1.5 0.10 3.3 2.20 0.183 0.680 0.64 0.331 50.782

5 1.2 1.8 0.11 3.3 1.61 0.148 1.390 0.52 0.329 92.262

6 1.25 1.8 0.08 3.3 1.67 0.107 0.909 0.59 0.207 40.237

7 1.25 1.8 0.10 3.3 1.67 0.133 1.136 0.59 0.259 50.297

8 1.3 2.1 0.12 3.3 1.36 0.125 1.984 0.55 0.250 60.087

9 1.3 2.1 0.12 7.0 1.36 0.125 1.984 0.55 0.251 60.087

10 1.3 2.3 0.10 3.3 1.19 0.092 2.143 0.50 0.197 63.325

11 1.3 2.3 0.10 7.0 1.19 0.092 2.143 0.50 0.197 63.325

12 1.3 2.3 0.11 3.3 1.19 0.101 2.357 0.50 0.216 69.658

13 1.3 2.3 0.11 7.0 1.19 0.101 2.357 0.50 0.216 69.658

14 1.3 2.3 0.12 3.3 1.19 0.110 2.571 0.50 0.236 75.990

15 1.3 2.5 0.10 3.3 1.06 0.082 2.685 0.45 0.185 77.999

16 1.3 2.5 0.12 3.3 1.06 0.098 3.222 0.45 0.222 93.599

17 1.3 2.5 0.12 7.0 1.06 0.098 3.222 0.45 0.222 93.599

18 1.3 2.7 0.09 3.3 0.96 0.067 2.949 0.42 0.157 84.636

19 1.4 1.8 0.12 3.3 1.83 0.157 1.010 0.77 0.234 20.354

20 1.4 2.1 0.12 3.3 1.43 0.123 1.650 0.64 0.210 31.073

21 1.4 2.3 0.12 3.3 1.25 0.106 2.152 0.58 0.196 39.476

1 In the shallower part, the significant wave heights are amended using the linear
shoaling coefficient;

The comparison in the ε-µ space between our experiments and existing experi-
ments conducted by Ma et al. (2014); Trulsen et al. (2012); Kashima et al. (2014) is
shown in Fig. (IV.3.1). Our experiments significantly extend the existing database
and cover relatively large areas in the ε-µ plane. It is also observed that, in the
tested cases, the bottom slope plays an important role in the wave evolution since
the steepness and the relative water depth are significantly different in the deeper
and shallower regions.

The tested experimental conditions are capable of revealing different trends.
Waves in cases 1, 6, 10, 16 are of similar nonlinearity before entering the bottom
slope, but with different relative water depths µ ∈ [1.06, 2.2]. The effects of wave
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Figure IV.3.1: All tested experimental conditions in ε-µ space are shown in lines of
different colors, the experimental conditions adopted in previous studies are shown by
the dash, dot, and dash-dot lines. The circles of solid line illustrate the range of this
experimental campaign.

nonlinearity are illustrated by comparing the combinations of tests Case 1-5, or
Case 10, 12, 14. The effects of the spectral width are shown by considering Case
8-9, Case 10-11, or Case 12-13. By doing the preliminary data processing of all
the signals measured at different positions, including the computation of BFI pa-
rameter, Hm0 , high-order statistical moments skewness λη3, kurtosis λη4 and Fourier
spectrum and spectral peak frequency fp, three representative cases have been se-
lected. They are Case 1, 10, 15. They are chosen for different reasons. In Case 1,
the relative water depth considerably decreases due to the shoaling from µ = 2.2
to µ = 0.64, while the nonlinearity remains low on both sides of the slope. The sea
state is quasi-Gaussian with the lowest value of Ur. In Case 10, the depth vari-
ation is less significant compared to Case 1, but the nonlinearity of the sea state
is stronger. Case 15 is a comparative case of Case 10 in which the nonlinearity is
further increased. The main efforts were dedicated to the study of case 10, and
the results are shown in Chapter 3 in the form of a journal paper, the other two
cases are shown here as supplemented materials. In Fig. (IV.3.2), the three cases
are shown in ε-µ.
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Figure IV.3.2: Three chosen case conditions in ε-µ space are shown in lines of different
colors, the experimental conditions adopted in previous studies are shown by the dash,
dot, and dash-dot lines.

3.1.1 Case 1: a near Gaussian sea state

In Table (IV.3.1), the experimental condition of Case 1 is given. In this case, the
change of relative water depth is significant whereas the wave nonlinearity is mild.
The Ursell number, in this case, is the smallest among the three chosen tests.
Since the length of the bottom slope remains for all tests, Case 1 is of the fastest
transition rate of relative water depth. Furthermore, the shallower region is of
relative water depth µ = 0.64 below 1.363, the effect of modulational instability is
of secondary importance.

First, the spectral analysis of the recorded time series of all 30 probes is per-
formed. According to the Nyquist–Shannon sampling theorem, the highest distin-
guishable frequency in our cases is 50 Hz (with sampling frequency being 100 Hz).
In the following Fourier analysis, the power density spectra are obtained by using
the averaged periodogram procedure introduced in Section 1.2, using 213-points
FFT which results in a spectral resolution ∆f = 0.0061 Hz. The results are shown
in Fig. (IV.3.3) and Fig. (IV.3.4). Higher frequencies than 2 Hz in the spectra are
of low energy compared to the main part of the spectrum, so they are therefore
not shown.

In Fig. (IV.3.3) it is observed that as waves propagate in the flume, the wave
energy transfer is very limited. The wave energy is transferred to long waves over
the shallower region, but still, trivial compared to the main part in the spectrum.
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Figure IV.3.3: The spatial evolution of the power density spectrum for Case 1, the
spectrum is shown in log-scale colormap, and the colormap limits correspond to the
exponential powers.
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Figure IV.3.4: The power density spectra for Case 1 at four particular positions are
shown in detail in the log-scale coordinate, black line for the deeper area close to the
wavemaker (probe 1), red line at the toe of the slope (probe 8), blue line for the shallower
area 3.5 m after the end of the slope (probe 13), and green line for the shallower part
far from the slope (probe 24).
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The spectrum keeps its original shape, except for the decrease in magnitude due
to continuous attenuation. Visually, there is no obvious excitation of higher har-
monics of waves with the spectral peak frequency. The spectral peak, as well as
the width of the spectrum, remains similar to the input wave spectrum.

In Fig. (IV.3.4), the detailed spectra of four particular positions are shown.
The choice of these positions aims at illustrating the spectral evolution in the
deeper region (between Probe 1 and Probe 8), over the bottom slope (between
Probe 8 and Probe 13) and in the shallower region (between Probe 13 and Probe
24). Comparing the spectra at Probe 1 and Probe 8, it is observed that there
is a minor increase around 1.4 Hz which corresponds the second harmonic of the
peak frequency. However, after the slope, this second harmonic loses energy. The
spectrum measured at Probe 24 shows that the spectral shape is similar to the
input spectrum only slightly broader. The low-frequency in the range [0, 0.4] Hz
is of slightly higher (but still small) energy compared to the spectrum measured
at Probe 1, no particular low-frequency mode is excited at Probe 13 and 24. The
energy of the main part of the spectrum decreases. It is anticipated that the
decrease of energy in the main frequency range is due to frictional dissipation.
In this case, the sea state is quasi-Gaussian, wave-wave interaction is relatively
gentle.

In Fig. (IV.3.5) six parameters are shown, including significant wave height,
high-order moments, and spectral width parameter, peak frequency, and B-F in-
dex. It is observed that there is no significant enhancement of high-order moments
over the depth transition region, λη3 and λη4 fluctuates around 0 and 3 respectively,
as are expected in a Gaussian state. The significant wave height gradually de-
creases as waves propagate since wave energy is continuously dissipated by the
friction. It is indicated by the peakedness parameter Qp, the spectral shape re-
mains roughly throughout the basin, except that the spectral width is slightly
increased as waves propagate over the shallower region (after 60 m). The spectral
peak is evaluated following the formula in Eq. (IV.1.55), within the frequency range
[0.2, 2.5] Hz. It is clearly shown that the spectral peak was nearly not changed as
waves propagated over the flume. In the last panel, the Benjamin-Feir Index with
two different evaluation methods is shown. In the area where kh < 1.363, both
BFI and Bs are manually set negative to stress that the effects of modulation in-
stability are expected to disappear. In such areas, large magnitudes of BFI and Bs

denote more pronounced effects from nonlinearity compared to dispersion. Over
the bottom slope, both BFI and Bs show a significant magnitude increase. How-
ever, since the relative water depth falls below the threshold value of 1.363, the
behavior B-F index indicates a more modulationally stable condition. As waves
propagate over the shallower region, the value of BFI gradually decreases mainly
due to the decrease of wave steepness.

All these observations imply the fact that this case is almost Gaussian, and that
the effect of the bottom slope is trivial and negligible in terms of spectral changes.
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Figure IV.3.5: The spatial evolution of significant wave height Hs, high-order moments
skewness λη3 and kurtosis λη4 and peakedness parameter Qp, peak frequency f̂p and B-F
index in Case 1, the shading areas denote the depth transition region.
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There is also evidence that the non-resonant wave-wave interaction is mild. The
wave heights thus follow Rayleigh distribution Eq. (IV.1.11) and the free surface
elevation is Gaussian distributed Eq. (IV.1.6). The probability of the occurrence
of freak waves is low. But this is only true statistically. In our experiments, we
found evidence that the bottom slope can take effect on a very local scale. The
evidence is that we found an energetic wave packet which seemed to be ’normal’
before the bottom slope, but the wave energy was concentrated to one wave after
the slope. The largest wave eventually became an outstanding ’freak’ wave.
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Figure IV.3.6: The evolution of an energetic wave packet in Case 1, the free surface
elevation is normalized by local

√
m0. The signals are shifted in time based on the linear

dispersion, and they are shifted in y-axis by 10 for different probes.

As is shown in Fig. (IV.3.6), when waves propagate over the deeper region the
energetic wave packet is not outstanding compared to the background, with the
largest value of η/

√
m0 < 8. But after the slope, this wave packet formed one freak

wave with η/
√
m0 ≈ 10.5, corresponding to AI ≈ 2.6 at Probe 14 (red signal).

Deep troughs are detected at Probe 13 and 15 which are supposed to be the
different stages of the freak wave formation. And we conclude that the formation
of freak waves is possible even in a modulationally stable quasi-Gaussian sea state.

3.1.2 Case 15: a strongly nonlinear sea state

As indicated by Trulsen et al. (2020), there is a transition relative water depth
which should be taken into account. Below a certain threshold, the higher har-
monic behavior and the extreme wave statistics are expected. This behavior has
been confirmed in Trulsen et al. (2012); Zhang et al. (2019). This threshold is 1.3
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in the tests shown in Trulsen et al. (2020). Above this threshold, the sea states
are quasi-Gaussian. It is anticipated that no significant increase of skewness and
kurtosis after the slope, and that the occurrence probability of high waves is not
significantly enhanced (but not impossible). Case 1 is clearly of shallow relative
water depth after the slope (µ = 0.64), but with a quasi-Gaussian sea state. No
local maxima are observed for skewness and kurtosis. In Case 10 shown in Zhang
et al. (2019), and Case 15, which will be introduced below, the relative water
depth in the shallower region is slightly lower than in Case 1 (µ = 0.5 and 0.45).
Considerable increase of the skewness, kurtosis, and the occurrence probability of
freak waves have been reported in Case 10. As a further demonstration of such
enhancement, Case 15 is shown. The experimental condition of Case 15 is given
in Table (IV.3.1), this case is of slightly stronger nonlinearity (with a few gentle
spilling breakers), in relatively shallower water depth compared to Case 10. Case
16 and Case 18 are of shallower relative water depth than Case 15, however, sig-
nificant spilling breaking effects limited the occurrences of high waves thus they
are thus not shown here.

In Fig. (IV.3.7) and Fig. (IV.3.8), the spectra are different from the ones of
Case 1. In this case, the spectral evolution is similar to Case 10. It is important
to note that after the propagation of waves in the deeper region, a set of modes
appear in the low-frequency range [0, 0.3] Hz of the spectrum, whereas they are
barely invisible in Case 1. One possible explanation is that the slope reflects more
energy before the slope when the relative water depth is small, the reflected waves
could resonate with incident waves. The wavemaker can ‘absorb’ some reflected
wave energy so that these modes are not visible near the wavemaker, then and
gradually appear as waves leave wavemaker and propagate further. The second-
order harmonics are more pronounced at Probe 13, around the end of the slope,
it disappears after a short distance in the shallower region. At Probe 13, it is
observed two bumps around 1.2 Hz and 1.6 Hz which correspond to the third-order
and fourth-order harmonics of the peak frequency 0.4 Hz respectively. However,
in log-scale, they represent minor energy level.

It is anticipated that the generation of the low-frequency modes is mainly a
result of natural modes instead of non-resonance wave-wave interaction. With
the presence of a sloping bottom, the effective flume length should be taken into
account since waves are not only reflected by the end wall on the other side of
the flume but also by the sloping bottom. The derivation of natural mode in
a wave flume with an arbitrary bottom profile with a linear theory is detailed
in Appendix A.1. Two additional assumptions are considered in the derivation,
one assumption is that natural modes are shallow-water waves in the flume, and
the other is that the varying bottom can be discretized with numerous segments.
Consider the effective flume length as 50 m, the computed natural modes with
this method are listed in Table (IV.3.2). However, it is seen in Fig. (IV.3.7) that
the low-frequency modes evolve in space. This is because the slope continuously



204
Chap. 3: Supplementary materials: additional experiment and simulation

results

Figure IV.3.7: The spatial evolution of the power density spectrum for Case 15, the
spectrum is shown in log-scale colormap, and the limits of the colorbar correspond to
the exponential powers.
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Figure IV.3.8: The power density spectra for Case 15 at four particular positions are
shown in detail in the log-scale coordinate, black line for the deeper area close to the
wavemaker (probe 1), red line at the toe of the slope (probe 8), blue line for the shallower
area 3.5 m after the end of the slope (probe 13), and green line for the shallower part
far from the slope (probe 24).
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reflects waves so that the effective flume length should be considered as a variable.
The content in Table (IV.3.2) is evaluated as a function of x, and the first 5 modes
are superimposed in the spatial evolution of wave spectra in Fig. (IV.3.9). The
pattern of the evolution of low frequency modes are well predicted by this method.

Table IV.3.2: List of first five resonant frequencies which could be excited in the exper-
iment wave flume

n−th mode fn (Hz) Tn (s) ln (m) kn (rad/m)

1 0.0313 31.934 100.00 0.0628

2 0.0626 15.967 50.00 0.1257

3 0.0939 10.645 33.33 0.1885

4 0.1253 7.984 25.00 0.2513

5 0.1566 6.387 20.00 0.3142

... ...

Figure IV.3.9: The spatial evolution of the power density spectrum for Case 15 with
first 5 natural modes superimposed.

As for Case 1, six parameters for Case 15 are shown in Fig. (IV.3.10). It is
observed that the skewness λη3 and kurtosis λη4 experienced a significant increase
after the sloping area, and local maxima appeared at the beginning of the shallower
region. The increase of skewness is mainly caused by the shoaling effect, waves
become sharper in crests and flatter in troughs after the slope. The skewness does
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not decrease back to the level in the deeper region since waves are of asymmetry
profiles in the shallower region. The kurtosis is increased mainly resulting from
two sources, one is the dynamic response of the sea state transition from one state
(deeper region) to another one (shallower region), and the other is the bound
mode nonlinearity. After the slope, λη4 decreases significantly indicating that the
non-equilibrium dynamic response is the main reason for this local maximum.
The evolution of Hs shows the intensity of overall dissipation. It is also noticed
that after the sloping area, there is a slight decrease in Hs which is attributed to
slightly spilling wave breaking events. In terms of spectral evolution, it is seen
that the wave spectrum significantly broadens after the slope, while the spectral
peak within [0.2, 2.5] Hz remains around the input peak frequency fp. However,
due to the dissipation of the wave energy of the main spectral area, the spectral
peak is replaced by the low-frequency modes outside the range [0.2, 2.5] Hz in the
shallower region. In the last panel, there is also a local maximum value for BFI
and Bs. Negative values mean that the sea state is modulationally stable, and the
local peak represents the nonlinearity effect of the sea state increased significantly.
Different definitions of the B-F index show different values, but the trend is similar.
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Figure IV.3.10: The spatial evolution in Case 15 of significant wave height Hs, high-order
moments skewness λη3 and kurtosis λη4 and peakedness parameter Qp, peak frequency f̂p
and B-F index, the shading areas denote the depth transition region.

To conclude, the wave parameters in Case 15 show similar behaviors as they
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do in Case 10. Local increases of skewness and kurtosis parameters and significant
energy increase of second harmonics in the spectrum are observed shortly after
the end of the slope. Such features are not observed in the Case 1 experiments
where the sea state is quasi-Gaussian. In Case 1 the relative water depth in the
shallower region is µ = 0.64, it is much smaller than the threshold 1.3 observed
in Trulsen et al. (2020) but it is close to µ = 0.45 of Case 15. There are two
possible explanations for the different sea state dynamic responses in the shallower
region between Case 1 and Case 15 (also Case 10). One explanation is that the
transition relative water depth in our experiments is between 0.5 and 0.64, such
that in Case 10 and Case 15 the relative water depth in the shallower region is
below the transition threshold. However, Case 1 is above the threshold and falls
in the ’deeper regime’. This is possible because the bottom slope in the current
experiments 1/20 is smaller than in Trulsen et al. (2020), 1 : 3.81. The ’deeper
regime’ might be shallower for milder slopes. The other explanation is that the
transition relative water depth is our case is larger than 0.64, so Case 1, 10, 15
are all in the ’shallower regime’. But the non-equilibrium dynamic response of sea
states may also result from the nonlinearity of the incident sea state. For cases
with low nonlinearity, strong dynamic responses do not manifest. It is difficult to
anticipate the transition water depth since in our cases, the relative water depths
in the shallower region are in a limited range µ = [0.42, 0.72].

It is anticipated that both the nonlinearity of the incident sea states, the gra-
dient of the bottom slope also play important roles in the water-depth transition
process and affect the transition water depth. In terms of the spectral width, no
significant differences have been observed when comparing, for example, Case 10
and 11, Case 12 and 13. The spectral width is of secondary importance in our
experimental tests. However, the spectral width may be more important when
the shallower region is of larger water depth, where the dispersion effect is more
significant. This will be left for future study.

3.2 Additional numerical tests of Case 10 for calibration of
model parameters

In the paper presented in Chapter 2, the numerical tests of Case 10 are shown with
converged results. The tests of convergence are omitted for brevity. Here they are
given as additional materials. The effects of different numerical parameters are
shown here, based on which our choices for the numerical parameters are justified.

Various effects play roles in the quality of the agreement between the simula-
tion results and measurements, especially when the measurements are conducted
on such a large scale in space (200 m) and long duration in time (1200Tp). Dif-
ferences may result from undesired events in the outdoor flume in THL, like a
sudden gust of wind, electronic noise of the wave gauges and insufficient long-wave
absorption, etc. Even though in this experimental campaign, the experiments were
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conducted at carefully chosen timing, these effects are inevitable and untraceable
from the time series. It would be ambitious to seek a perfect overall agreement
between simulation results and large-scale long-time measurements in time and
space. Small upstream errors will result in considerable disturbances on the waves
downstream. For such reasons, we aim at the quantitative agreement with mea-
surements in the deeper region and the beginning of the shallower region. For
the shallower region far from the end of the slope (after 100 m), the nonlinear
wave propagation in shallow water is outside the subject of the present thesis, the
qualitative agreement between simulations and experiments is acceptable.

The convergence tests have been done for the numerical step sizes in space (∆x)
and time (∆t), accuracy of numerical models in describing the velocity potential
(NT for Whispers3D and NB for Boussinesq type model), viscous dissipation pa-
rameter νv, and the length of relaxation/absorption zones. These tests aim to find
the balance between computational cost and optimization of the simulated results.

3.2.1 Dispersion and nonlinear properties of models

For Case 10, Tp = 2.3 s, the corresponding wave number is Lp = 6.86 m in the
deeper region and 3.80 m in the shallower region. The chosen value of ∆x =
0.11 m results in an 8-points description for the third harmonics of waves with
peak frequency in the shallower region (frequency f3p ≈ 1.30 Hz, the corresponding
L3p = 0.89 m). As is seen in Fig. (IV.3.4) and Fig. (IV.3.8), waves with frequencies
higher than 1.2 Hz are of minor energy. The choice of ∆x = 0.11 m is thus adopted
in Boussinesq-type model. In the adopted Boussinesq-type model 5th order spatial
derivatives are required, so for the sake of numerical stability, ∆x = 0.11 m is used,
and ∆t = 0.016 s is chosen for keeping a low value of Courant–Friedrichs–Lewy
(CFL) number, CFL = L∆t/T∆x = 0.42. In Whispers3D, the spatial derivatives
are of second order at most, so we could test smaller ∆x, while having a larger
∆t for saving time. ∆t = 0.02 s and ∆x = 0.05 m (resulting in CFL = 1.2) are
chosen.

The values of NT and NB are determined based on the relative water depth
range [0.50, 1.19] in Case 10. In Fig. (IV.3.11), different choices of NT (whispers3D)
and NB (Boussinesq-type) have been shown as a function of relative water depth,
from which it is seen that for NT = 7 and NB = 2, the relative error of dispersion
compared to Airy theory is less than 10−8. They are adequate for describing the
dispersive effects in the experiments.

3.2.2 Relaxation zone setting

It is difficult to achieve very good agreement between experiments and simulated
results in terms of thelow-frequency range of the spectra. It is anticipated that the
quality of the agreement of long waves are partially related to the ability of wave
absorption in the numerical basin. One supporting fact is the agreement shown in
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Figure IV.3.11: Comparison of the dispersive properties between the Boussinesq-type
model (with NB = 1, 2), the whispers3D model (with NT = 5, 7, 10) and exact Airy
solution. The gray area represents the relative water depth region of Case 10.

Fig. (IV.3.9). These long waves are simulated by decreasing the absorption ability
in the numerical models. In both whispers3D and the Boussinesq-type models
adopted, relaxation zones are set in places of wave making and wave absorbing
equipment. This method is adopted to minimize the shock wave effect due to
the sudden change of variables. In the relaxation zone x ∈ [xrbeg, x

r
end], the solved

surface variables η and φ̃ are replaced, at each time step, by the imposed target
solution ηtar and φ̃tar, in the following manner:

{
η(x, t) = [1− Cr(x)] η(x, t) + Cr(x)ηtar(x, t), x ∈ [xrbeg, x

r
end] (IV.3.1)

φ̃(x, t) = [1− Cr(x)] φ̃(x, t) + Cr(x)φ̃tar(x, t), x ∈ [xrbeg, x
r
end]. (IV.3.2)

where Cr(x) is the relaxation coefficient as a function of x. If ηtar, φ̃tar correspond
to the measured signal, this relaxation zone corresponds to generation zone and the
boundary of the numerical flume is xb = xrend, if ηtar = φ̃tar = 0 then it corresponds
to dissipation zone and the boundary of the numerical flume is xb = xrbeg. The
expression of the relaxation coefficient Cr(x) is of exponential shape as follows:

Cr(x) =

(
1−

∣∣∣∣∣
xb − x

xrend − xrbeg

∣∣∣∣∣

)a

, (IV.3.3)

where a is the exponential power, normally it is suggested to take values larger
than 2 according to the length of the relaxation zone.
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A short dissipation zone can be adopted to imitate insufficient dissipation on
long waves in the wave flume. Since the relaxation zone is implemented in the same
manner in two numerical codes, here we take the results of the Boussinesq-type
model to illustrate the effect of the length of the relaxation zone. In the present
simulations of Case 10, the exponential power a = 3.5 in Eq. (IV.3.3) was adopted
following the suggestion of Madsen et al. (2003).

The results of the absorption zones with Lp/2, Lp, 2Lp, 3Lp in length are
tested and compared. The calibration tests for absorption zone length used the
first 1500 s of 2760 s measurements in Case 10. The simulated data were resampled
with the same sampling frequency (100 Hz) as the experiments. The experimental
data with the same duration was adopted to compare with simulation results. The
spectral spatial evolution in Case 10 for the first 1500 s is shown in Fig. (IV.3.12).
The long-wave modes have been well developed in this duration, and the spectral
shape is very similar to the full-time spectral analysis.

Figure IV.3.12: The spectral spatial evolution of Case 10 for the first 1500 s.

In Fig. (IV.3.13), the different choices of relaxation (absorption) zone lengths
are shown. In panel (a) and (b), the dissipation on the low-frequency modes is
effective in the Boussinesq-type model, only the lowest frequency around 0.05 Hz
accumulates wave energy in the wave flume. Panel (c) and (d) show the better
agreement of the emergence of the low-frequency waves as well as their spatial
evolution. In panel (d) the major part of the spectrum near the absorption region
shows better agreement with the experimental data in Fig. (IV.3.12), whereas, in
the other three panels, the wave energy of the major parts of the spectra near the
absorption zone is underestimated.
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Figure IV.3.13: The spectral spatial evolution of simulations with Boussinesq type model,
the absorption zone length is Lp/2 in panel (a), Lp in panel (b), 2Lp in panel (c), 3Lp
in panel (d)

The calibration tests of relaxation zone length show the evidence that, the
damping of the long waves energy in the experiments was limited. The long
waves accumulated wave energy during the experiments. The pattern of the low-
frequency range in the experiment is at least qualitatively described by the adopted
Boussinesq-type model and also by the Whispers3D model. With the current re-
laxation zone approach, waves could be properly generated and most of the low-
frequency modes could be effectively absorbed. In the experimental cases where
the low-frequency waves are of non-negligible energy, a shorter absorption zone can
be adopted to model the effects of partial dissipation of long-waves. For Case 10,
the absorption zone of one spectral peak wavelength (computed with the deeper
water depth) is appropriate to reproduce experimental measurements.

3.2.3 Calibration of overall dissipation

For the simulations of large-scale experiments, it is of the necessity for the inclusion
of wave energy attenuation in space. The energy decay is mainly due to the
friction effect near the water-wall and water-air interfaces. In both Whispers3D
and Boussinesq-type model, the wave energy attenuation is modeled by adding
viscous terms in Eqs. (I.2.5) and (I.2.6) in Subsection (2.2). The calibration details
of the kinematic viscosity parameter νv are given hereafter, and its effects on
simulation results are discussed too. The results of the Boussinesq-type model are
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shown, the results of Whispers3D show a similar trend.
The tested range of νv is [0.0006, 0.002] m2/s. The agreement between simulated

results and measurements is evaluated in terms of two aspects. In the first 100 m
near the wavemaker, the agreement in time series is required. However, due to some
undesired effects in the open-air flume of THL, small disagreement will evolve and
affect the downstream field in a considerable way, so for far-field of the wavemaker,
we seek for quantitative agreement of the statistical parameters.

In Fig. (IV.3.14), the comparison between the experimental measurements and
the simulated results with different values of the viscosity parameter νv is shown.
The signals measured at different probes are normalized by the root-mean-square
and plotted in two panels. Each of the signals is shifted upward by 10, and
backward in time according to the probes positions and the local group velocity.
The comparison starts at Probe 12, and previous probes show almost identical
results for different values of νv because the dissipation is minor for short distance.
The effects of dissipation start to show up when waves pass the bottom slope and
become more significant as waves propagate over the shallower region. In our case,
the simulation results approach to measurements as νv decreases. The dissipation
affects wave amplitudes and also wave phases (dispersion). In Fig. (IV.3.14), the
simulation with νv = 0.6 ∗ 10−3 m2/s shows better agreement in terms of wave
profile.

Figure IV.3.14: Wave profile comparison of calibration tests of viscous dissipation pa-
rameter νv in range [0.0006, 0.002] m2/s. Black and red lines representing measurements
and simulation results with adopted νv are bold.

In Fig. (IV.3.15), the statistical parameters of the simulation cases with dif-
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ferent νv are shown. On the left panels (a), (c), (e) the duration is 500 s, on
the other side, panel (b), (d), (f) show the complete simulation (duration 2760 s)
taking νv = 0.6 ∗ 10−3 m2/s as the chosen dissipation parameter for Case 10 simu-
lation. The statistical parameters are computed from the wave spectra, including
significant wave height Hs, and wave height for particular frequency ranges. The
range [0, 0.2] Hz corresponds to the low-frequency infragravity wave part, and
[0.2, 2.5] Hz corresponds to the major part of the spectra. It is noticed that the
measured wave energy decreases as waves propagate in the wave flume. Especially
for the shallower region (x > 50 m), since the dissipation rate is related to the local
water depth. The significant wave heights Hs decrease in a quasi-linear manner.
The simulation results with different νv show a similar trend. In panel (a), (c), (e),
it is seen that not only the energy decay along the wave flume is quasi-linear but
also the viscous dissipation parameter νv take effects on the simulated significant
wave heights approximately in a linear manner. In panel (b), (d), (f), it is seen
that with the chosen value of νv, the energy of low-frequency waves is slightly
overestimated, but the spatial energy evolution is well predicted. Based on these
results, the dissipation was chosen to be νv = 0.6 ∗ 10−3 m2/s.

Figure IV.3.15: Wave profile comparison of calibration tests of viscous dissipation pa-
rameter νv in range [0.0006, 0.002] m2/s. Black and red lines representing measurements
and simulation results with adopted νv are bold.
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Chapter 4

Long-crested irregular wave train
evolution over a submerged bar
bottom profile with strong depth
transitions (shoaling and
de-shoaling)

The paper Wave-bottom interaction and extreme wave statistics due to shoaling and
de-shoaling of irregular long-crested wave trains over steep seabed changes which
is currently under review by Journal of Fluid Mechanics is shown in this Chapter.
In this work, we present a numerical investigation using a recently developed fully
nonlinear and dispersive model, whispers3D, to investigate the non-equilibrium
dynamics and associated statistics of irregular long-crested wave trains propagating
over a non-uniform bathymetry which includes both an up-slope (shoaling) and
a down-slope (de-shoaling) transition. This work is based on a particular case
with strong depth transitions and non-Gaussian behaviour of sea state in a recent
experimental campaign, reported recently by Trulsen et al. (2020).

The three main objectives and outcomes of the present study are:

• Demonstrate the capabilities of the proposed numerical modelling approach
in representing all the details of the physical mechanisms at play in this
situation.

One particular experiment from Trulsen et al. (2020) is realized in a nu-
merical wave tank, with additional measurements of vertical velocities at
the same underwater elevation made in our simulation. The confrontation
of measurements and the corresponding simulation results demonstrates the
excellent capability of whispers3D for deterministic simulation of irregular
non-breaking wave trains of very long duration (equivalent to nearly 5,000
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bottom profile with strong depth transitions (shoaling and de-shoaling)

spectral peak periods). This permits a thorough validation of the numerical
model as both numerical results and the experimental measurements are anal-
ysed in-depth, combining 4 approaches for examining the spatial evolution
of the sea state over variable bathymetry: (i) integral sea state parameters
(skewness, kurtosis, asymmetry, BFI, etc.), (ii) spectral analysis, (iii) bispec-
tral analysis, (iv) statistical (wave-by-wave) analysis, considering both the
distribution of free surface elevation and individual wave heights. To the
best of our knowledge a comparison with such a depth of analysis and a
level of agreement between experiments and simulations for this type of wave
transformation problem has never been reported before.

• Exploit the numerical model to extend the analyses presented in Trulsen et al.
(2020).

This is achieved by considering and analysing the behaviour of other wave
characteristics, not measured during the experiments. This allows gaining
new insight in the physical processes accompanying wave transformation and
a deeper understanding of the physics of wave transformation and the spatial
evolution of extreme wave statistics. For instance, we show that the defor-
mations of wave profile take place independently and asynchronously in hor-
izontal and vertical directions, and thus two groups of skewness and kurtosis
variables show different statistical features in the transformation process.

• Separate the effects induced by the up-slope and down-slope transitions on
wave dynamics and statistics.

Using the same numerical model, a new comparative case, with the same
setup except that the de-shoaling area is replaced with an extended shallower
region (i.e. changing from a bar-type to a step-type profile), is investigated
to distinguish and assess the effects resulting from de-shoaling. This leads
to a clear identification of the effects induced by the down slope transition.
Based on a thorough analysis of the results, we find that the de-shoaling
affects the up-wave sea state by imposing reflected waves. Besides, the local
kurtosis maximum over the down-slope area reported in Trulsen et al. (2020),
is proven to result purely from the de-shoaling process.
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The formation of abnormal (extreme) waves in coastal areas can be triggered by wave-
seabed interaction, in particular by steep bottom changes. As an incident equilibrium
sea-state passes over a submerged step or bar, non-equilibrium dynamics appears locally
and forces the sea-state to a new, finite-depth equilibrium along with strong non-
Gaussian statistics and intensified occurrence probability of large waves. In this study,
the experimental case Run 3 reported by Trulsen et al. [J. Fluid Mech. 882, R2 (2020)]
has been investigated numerically with a fully nonlinear model. Furthermore, as both
shoaling and de-shoaling effects exist in the setup with a bar-profile bottom, an additional
simulation with a step-profile bottom is performed to isolate the de-shoaling effects. The
model is proven excellent by the confrontation of the measurements and simulated results
in both time and spectral domains. Strong non-Gaussian behaviour of the sea-state is
highlighted after the up-slope transition by combining spectral and bispectral analysis,
and characteristic parameters. With a harmonic extraction approach, we show evidence
that both second- and third-order effects triggered by the non-equilibrium dynamics
significantly enhance the local kurtosis and occurrence of extreme waves. The statistics
of kinematics shows the asymmetry of the wave field evolves somewhat independently in
horizontal and vertical directions. By comparing the simulations of bar- and step-profile
cases, we find the de-shoaling process is responsible for the upstream modulation of
nonlinear and dispersive parameters, and the enhancement of kurtosis of both horizontal
and vertical velocity and horizontal acceleration over the down-slope area.

Key words:

1. Introduction

In deep-water conditions, abnormal high waves, also called ”freak” (or ”rogue”) waves
are frequently explained by the self-modulation property of nonlinear wave trains (Ben-
jamin & Feir 1967; Onorato et al. 2005; Toffoli et al. 2013). Sudden appearance of these
extreme waves can lead to catastrophic consequences (Dysthe et al. 2008). As ocean waves
propagate toward nearshore areas, they are affected by finite water depth effects and sea
bottom variations. The transformation and deformation of sea-states due to non-uniform
depth are subject to complex dynamics involving numerous physical processes, including

† Email address for correspondence: benoit@irphe.univ-mrs.fr
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shoaling and refraction due to seabed gradients, reflection and diffraction due to islands
or seabed irregularities, wave-wave interactions, dissipation due to bottom friction and
depth-induced breaking in shallow-water areas (see e.g. Goda 2010).

The propagation of wave trains over strong depth variations is another mechanism for
explaining the occurrence of abnormal waves in coastal areas (Kharif & Pelinovsky 2003).
In such a situation, the rapid changes of the water depth result in strong modifications to
the local wave spectrum, pushing it out of the equilibrium (or near-equilibrium) shape it
had offshore. After the depth transition, the sea-state rapidly settles to a new equilibrium
compatible with the shallow water depth. The sea-state transition areas could be prone to
higher probability of occurrence of extreme waves (see e.g. Trulsen et al. 2012; Ma et al.
2015; Viotti & Dias 2014; Ducrozet & Gouin 2017). The occurrence probability of these
extreme waves can be characterised by statistical parameters of the sea-state, especially
kurtosis carrying information on the tail of the statistical distributions of wave crest
elevation and wave height (see Janssen 2003; Mori & Janssen 2006). It is thus of interest
to investigate the variations of statistical parameters due to rapid depth transitions in
coastal areas.

Trulsen et al. (2012) reported experiments with long-crested irregular waves prop-
agating over a shoal and showed that local maximum of skewness, kurtosis and an
enhanced probability of occurrence of extreme waves could be observed near the end of the
slope. Katsardi et al. (2013) conducted experimental tests with mild bottom slopes, and
concluded that the slope effect can be ignored when the gradient is milder than 1:100.
Kashima & Mori (2019) experimentally tested several types of bottom profiles. They
suggested that the third-order nonlinearity in the deeper region, where the sea-state is
modulationally unstable, provokes aftereffects influencing the downstream sea-state in
the shallower region. The amplified extreme waves due to depth changes remain until the
surf zone. In the work of Zhang et al. (2019), experiments with a sloping bottom were
conducted in a large-scale flume, showing similar variation trends of statistical parameters
as in Trulsen et al. (2012). Strong local triad wave-wave interactions were detected
around the end of the slope via Fourier-based bi-spectral analysis. For experiments of
uneven bottoms with bar-profile, Ma et al. (2015) focused on the parameters including
groupiness, skewness, and kurtosis. They found that the appearance of high waves was
positively correlated with groupiness. Chen et al. (2018) used wavelet-based bi-spectrum
to characterise nonlinear triad interactions, showing that nonlinear triad interactions
become stronger for steeper slopes.

The local variations of the statistical parameters are related to the significant dynam-
ical responses occurring due to depth changes. Trulsen et al. (2020) conducted a series
of experiments with a bar-profile bottom with rather steep slopes at both sides. They
identified two regimes with different dynamical responses, and showed that the dynamical
responses of the sea-states depend on the relative water depth kph in the shallower region
(where h denotes the water depth and kp the local peak wave-number). In the so-called
”shallower regime” with kph being lower than a threshold, significant enhancements of
the statistical parameters and the probability of extreme wave occurrence are expected.
On the contrary, for waves that enter into a sufficiently deep nearshore zone (the so-called
”deeper regime”), the responses of statistical parameters are trivial and do not exhibit
large enhancements. The threshold was found to be kph = 1.3 in their work, but it may
vary for different conditions. Trulsen et al. (2020) also observed that the local maximum
of kurtosis of the horizontal fluid velocity was achieved at a different position from that
of the kurtosis of the free surface elevation.

From the modelling viewpoint, Zeng & Trulsen (2012) used the cubic nonlinear
Schrödinger equation (NLS) with variable coefficients, to study the influence of variable
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bottom profile on the probability of occurrence of extreme waves. In their cases with
intermediate water depth and slowly varying bottom, particular patterns of the spatial
structure of skewness and kurtosis were identified. Non-equilibrium statistics due to
depth transitions may extend beyond the end of the slope. No localised enhancement of
statistics over the sloping area was observed, implying the cases considered in Zeng &
Trulsen (2012) belong to the ”deeper regime”. Gramstad et al. (2013) used a Boussinesq
model with improved linear dispersion properties, while Kashima et al. (2014) used a
standard Boussinesq model with an artificial correction of nonlinearity to reproduce the
experiments of Trulsen et al. (2012). Both studies further considered different bottom
profiles and observed significant increases of skewness, kurtosis, and probability of
occurrence of extreme waves around the end of the sloping bottom areas. Sergeeva
et al. (2011) studied the dynamical responses of the sea-state over uneven bottom
within the framework of the Korteweg-de Vries equation with variable coefficients.
They showed that for sea-states with stronger nonlinearity, the dynamical responses
are more pronounced. Although these numerical studies insightfully demonstrated the
effects of non-equilibrium dynamics due to non-uniform bathymetry, they were inevitably
constrained by the limited capability of the approximate models in representing nonlinear
and dispersive wave properties over a broad range of relative depth conditions.

Fully nonlinear and dispersive models are therefore of interest in studying the sea-state
adaptations due to depth variations. The first study in this path was done by Viotti
& Dias (2014) through simulations of the free-surface Euler equations using a spectral
method. They showed the non-equilibrium responses in a local region increase for stronger
depth variations, resulting in intensified extreme wave occurrence. Ducrozet & Gouin
(2017) considered directional sea-states propagating over a sloping bottom with the High-
Order Spectral (HOS) method (Dommermuth 2000; Gouin et al. 2016), showing the non-
negligible influence of the directional spreading on the sea-state dynamics. Zheng et al.
(2020) adopted a fast multipole boundary element method to simulate the experiments
of Trulsen et al. (2012), and tested more parameter choices. They discussed the effects of
different parameters including wave steepness, relative water depth, and bottom gradient
on the length of latency, which is defined as the distance between the end of shoal and
the position where skewness and kurtosis reach their maximum. By conducting harmonic
extraction with phase-inversion technique, Zheng et al. (2020) concluded that the second-
order terms are responsible for the local changes of statistical properties. However, with
the two-phase technique, the separated ’linear term’ is in fact a summation of first-,
third-, and higher odd order harmonics. The ’second-order’ terms consist of the second-
, fourth-, and higher even order harmonics. In their work, no further discussion was
made on the possible effects of these ignored harmonics, especially the third harmonic.
In the work of Zhang et al. (2019), a fully nonlinear and dispersive potential flow code,
whispers3D, was adopted and compared with a Boussinesq-type model introduced by
Bingham et al. (2009). The good agreement with the measurements conducted in a large
wave flume demonstrated the high accuracy of whispers3D.

The main objective of the present work is to investigate the non-equilibrium dynamics
and associated statistics of irregular long-crested wave trains propagating over non-
uniform bathymetry by considering one particular test (Run 3) of the experiments
reported in Trulsen et al. (2020) (for the sake of brevity, this paper will be referred
to as TRJR20, and the chosen case as R3 hereafter). The submerged trapezoidal bar in
TRJR20 consists of a rather steep slope at both ends. Our aim is to achieve a better
understanding of the non-equilibrium dynamics induced by both shoaling and de-shoaling
processes. The effects of the first up-slope transition are discussed on the basis of the in-
depth analysis of the original experimental measurements and additional data extracted
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Figure 1. Sketch of bottom profile and locations of the wave gauges, adapted from figure 2 of
Trulsen et al. (2020), and reproduced with permission from Cambridge University Press.

from the simulations. The effects of the de-shoaling area with increasing water depth are
analysed by simulating a variation of the R3 case with a step-like profile.

The remainder of this article is laid out as follows. In §2, the configurations of the
chosen experimental case of TRJR20 and the numerical modelling approach are recalled.
Then in §3, the original R3 case is reproduced with extra information extracted and
analysed. In §4, the variation case of R3 with a step-profile is simulated. By comparing
with the R3 simulation, the effects of the de-shoaling zone are isolated. In §5, the main
findings from this work are summarised, with perspectives for further investigations.

2. Experimental configuration, numerical modelling and analysis
methods

2.1. Experimental setup used by TRJR20

Details on the description of the experimental facility and tested conditions can be
found in the original paper of TRJR20. Here, only their test labelled ’Run 3’ is considered,
whose data set contains free surface elevation signals measured at 91 locations along the
wave flume, and horizontal velocity signals measured at 37 different locations and at an
elevation z0 = −0.048 m below the still water level (SWL). The schematic view of the
flume is shown in figure 1. It should be noticed that, compared to figure 2 in TRJR20,
the origin of the horizontal axis is placed here at the end of the up-slope. We selected this
R3 test mainly for two reasons: on the one hand, R3 belongs to the ’shallower regime’,
with the shoal being shallower than the threshold kph = 1.3 suggested in TRJR20.
The kurtosis of the free surface elevation was enhanced up to 4.2 at the beginning of the
shallower flat region in R3, which is the most pronounced amplification among the cases in
TRJR20. On the other hand, R3 is the only case with horizontal velocity measurements:
this is of interest for a deeper analysis of the wave transformation processes and the
validation of orbital velocities computed with the model.

The incident irregular long-crested wave train is generated from a JONSWAP spec-
trum. The experimental conditions are controlled by four parameters: the water depth
h1 in the deeper flat region, the incident significant wave height Hm0

= 4
√
m0, where m0

is the zeroth moment of the spectrum, the peak period Tp (or peak frequency fp) and
the peak enhancement factor γ of the JONSWAP spectrum S(f) in the following form:

S(f) =
αJg

2

(2π)
4

1

f5
exp

[
−5

4

(
fp
f

)4
]
γexp [−(f−fp)2/(2σ2

Jf
2
p)], (2.1)

where g denotes the gravitational acceleration, αJ the wave height adjustment factor,
and σJ the spectral asymmetric parameter (σJ = 0.07 if f 6 fp and σJ = 0.09 if f > fp).

The key parameters of R3 are listed in table 1. The non-dimensional parameters include
relative water depth µ = kph, steepness ε = kpac, and Ursell number Ur = ε/µ3. The
characteristic wave amplitude is ac =

√
2σ, with σ being the standard deviation of

the surface elevation: σ2 =
〈

(η − 〈η〉)2
〉

= m0, where 〈·〉 denotes the time-averaging
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Run Tp (s) γ
Deeper region Shallower region

h1 (m) µ1 Hm0 (m) ε1 Ur1 h2 (m) µ2 Hm0 (m) ε2 Ur2
3 1.1 3.3 0.53 1.85 0.025 0.031 0.0049 0.11 0.64 0.025 0.052 0.1918

Table 1. Key parameters of the experimental case reported as Run 3 in Trulsen et al. (2020).

operator. The non-dimensional numbers are computed and averaged in the first deeper
region (marked by subscript 1) and over the shoal crest (marked by subscript 2). Two
misprints for µ and Ur in the deeper region were detected in table 1 of TRJR20 and
are corrected here. The signals in R3 are recorded over a duration of 90 min (equivalent
to about 4,900 waves with period Tp) with a high sampling frequency fs = 125 Hz. No
breaking event was reported by TRJR20 during R3 test.

2.2. Outline of the mathematical and numerical model

We assume the fluid is inviscid and incompressible, the flow is irrotational and the
surface tension is negligible. A two-dimensional Cartesian coordinate system (x, z) is
considered. As shown in figure 1, the origin of x-axis along the flume is set at the beginning
of the shallower region, and z-axis points upward with z = 0 at SWL. The equations
governing the fluid motion in a domain with a free surface z = η(x, t) and a variable
bottom profile z = −h(x) are:

∇2φ = 0 for − h(x) 6 z 6 η(x, t), (2.2)

ηt + φxηx − φz = 0 on z = η(x, t), (2.3)

φt +
1

2
(∇φ)

2
+ gη = 0 on z = η(x, t), (2.4)

hxφx + φz = 0 on z = −h(x), (2.5)

where φ(x, z, t) denotes the velocity potential, ∇ is the gradient operator (∇φ ≡
(φx, φz)

T ) and subscripts denote partial derivatives.
The free surface boundary conditions (2.3) and (2.4) are expressed as functions of free

surface variables η(x, t) and φ̃(x, t) ≡ φ(x, z = η(x, t), t), as (Zakharov 1968):

ηt = −φ̃xηx + w̃
(
1 + η2x

)
, (2.6)

φ̃t = −gη − 1

2
φ̃2x +

1

2
w̃2
(
1 + η2x

)
, (2.7)

where w̃(x, t) ≡ φz(x, z = η(x, t), t) is the vertical component of the velocity at the free
surface. To determine the temporal evolution of η and φ̃, one should evaluate w̃ from
(η, φ̃), which is known as the Dirichlet–to–Neumann (DtN) problem. The DtN problem
is of fundamental importance for the Zakharov formulation, and various approaches have
been discussed (see e.g. Dommermuth 2000; Gouin et al. 2016; Madsen et al. 2006;
Bingham et al. 2009; Belibassakis & Athanassoulis 2011; Papoutsellis et al. 2018).

In whispers3D, the DtN problem is solved by using a spectral approach in the vertical
direction, following Tian & Sato (2008) and Yates & Benoit (2015). This code has been
validated for numerous conditions (see Raoult et al. 2016; Zhang et al. 2019; Simon et al.
2019), showing excellent performance for the prediction of wave propagation together
with acceptable computational burden. The modelling approach of whispers3D has been
presented in Yates & Benoit (2015) and Raoult et al. (2016) and is briefly recalled here.
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First, a change of vertical coordinate is introduced, with a new vertical variable:

s(x, z, t) =
2z + h−(x, t)

h+(x, t)
, (2.8)

where h±(x, t) = h(x) ± η(x, t). The physical domain in (x, z, t) space with variable
bottom and free surface boundaries z = −h(x) and z = η(x, t), is mapped into a
rectangular domain in (x, s, t) space with two fixed boundaries at s = ±1.

The nonlinear potential water wave problem (2.2–2.5) is then reformulated in the
(x, s, t) space with ϕ(x, s(x, z, t), t) ≡ φ(x, z, t). Using the set of Chebyshev polynomials
of the first kind Tn(s), n = 0, 1, ..., NT as an expansion basis for s ∈ [−1, 1], the potential
is approximated in the transformed domain as:

ϕ(x, s, t) ≈ ϕNT
(x, s, t) =

NT∑

n=0

an(x, t)Tn(s), (2.9)

where the coefficients an(x, t), n = 0, 1, ..., NT , are now the main unknowns.
The approximated potential ϕNT

in (2.9) is inserted into the governing equations
composed of the Laplace equation, a Dirichlet boundary condition with ϕNT

(x, s =
1, t) = φ̃(x, t) on the free surface, and the bottom boundary condition expressed in
the (x, s) domain. This problem is then solved by using the so-called Chebyshev-tau
method outlined by Tian & Sato (2008). The spatial derivatives are evaluated using
finite difference schemes applied with stencils composed of Nsten nodes. The value of
Nsten is specified by the user to control the order of accuracy. At each time step, the
solution of the problem is the set of coefficients an, n = 0, 1, ..., NT at each abscissa. With
these an coefficients, the horizontal velocity u = φx and the vertical velocity w = φz can
be evaluated as:

u(x, z, t) ≈ ∂ϕNT

∂x
+
∂ϕNT

∂s

∂s

∂x
=

NT∑

n=0

an,xTn +
h−x − sh+x

h+

NT∑

n=1

anTn,s, (2.10)

w(x, z, t) ≈ ∂ϕNT

∂s

∂s

∂z
=

2

h+

NT∑

n=1

anTn,s. (2.11)

At the free surface, w̃ is obtained by taking s = 1 in (2.11), and the DtN problem
is solved. To march equations (2.6–2.7) in time, an explicit Strong-Stability-Preserving
third-order Runge–Kutta (SSP-RK3) scheme (Gottlieb 2005) is used. In whispers3D, no
particular assumption is made on the level of dispersion or nonlinearity of the wave train.
Furthermore, no extra assumption on the bottom profile is required. The model is thus
considered powerful in describing wave dynamics over arbitrary variable bottom profiles.
One can balance accuracy and efficiency via a proper choice of the parameters NT , Nsten,
and numerical step sizes in space (∆x) and time (∆t). The incident wave train is imposed
on the left boundary of the numerical tank and damped on the right boundary using the
relaxation zone technique (Bingham & Agnon 2005). Linear wave-making theory is used,
which is applicable for the present study as justified in the next subsection.

2.3. Numerical setup and solution validation

The effective computational domain, excluding the two relaxation zones, is 6.3 m long,
from x = −2.7 m to 3.6 m. The generation zone ends at x = −2.7 m, i.e. at the position
of the first wave probe. The measured signal at this probe was imposed as the incident
wave train in the simulations. The relaxation zones are 5.4 m long each, which is roughly
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Figure 2. Sketch of model setup and bottom profiles adopted in simulations with whispers3D,
(a) R3-bar profile (identical to the experiment of TRJR20) and (b) modified R3-step profile
without de-shoaling area.

3 peak wavelengths in the deeper region. In figure 2, the schematic view of the numerical
wave tank for the original R3-bar case is shown in panel (a), and its variation for the
R3-step case in panel (b).

The simulations lasted 90 min, as in the experiment. After a convergence study on space
and time discretizations (not shown here), ∆x = 0.01 m and ∆t = 0.01 s were selected.
With this choice, the Courant–Friedrichs–Lewy number, defined as CFL = Lp∆t/(Tp∆x),
is approximately 1.64 in the deeper region and 0.97 in the shallower region. Similarly,
convergence tests showed that NT = 7 and Nsten = 5 provide high accuracy.

The variance density spectra of both measured and simulated free surface elevation
at probe 1 (x = −2.7 m) are shown in figure 3, with the target JONSWAP spectrum
of R3 experiment superimposed as reference. The spectrum measured at probe 1 (x =
−2.7 m) is similar to the target spectrum specified to drive the wave-maker (located
at x = −12.38 m), with no super-harmonic peaks (i.e. at 2fp, 3fp, etc.) appearing
in the spectrum. It indicates that nonlinear wave-wave interactions remained weak for
waves propagating from the wave-maker to probe 1. In figure 3(b), wave energy in the
low-frequency (LF) range, defined by f ∈ [0, 0.5fp], can be observed in the measured
spectrum, but the energy level is very low. The generation of LF modes could be related
to wave-wave interactions, intrinsic modes of the flume, and reflected waves which are
not effectively damped in the experiment. The low energy level of LF modes at probe 1
indicates that the absorption of the wave energy in the experiment was rather effective in
the LF range and that the natural modes were not markedly excited. Such observations
support the application of linear wave-making theory to simulate the R3 case.

The measured signal at probe 1 was decomposed into 38, 588 harmonic components
in the range [0.4fp, 5fp]. By using linear superposition of these components, the driving
signals were computed at left end of the domain and at nodes located in the generation
zone. The good agreement between the simulated and measured spectra at probe 1,
shown in figure 3, confirms the validity of the linear wave generation method. Only some
minor differences are observed, i.e. the magnitude of the spectral peak seen in figure 3(a)
and the amplitudes of LF modes in figure 3(b). The former is acceptable because the
slight overestimation of the simulated spectral density is limited to a very narrow range
[0.95fp, 1.05fp], but the averaged energy in a slightly broader range [0.9fp, 1.1fp] shows
similar values for both spectra. The latter differences are of secondary importance since
the LF energy in both simulation and experiment is very low compared to the main part
of the spectrum.

The submerged bar provokes some reflection of the incident wave train. As no indication
of reflection intensity given in TRJR20, a reflection analysis was undertaken here, using
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Figure 3. Incident variance spectral density of free surface elevation at probe 1 (x = −2.7 m)
shown in both linear scale (panel a) and logarithmic scale (panel b). As a reference, the
target JONSWAP spectrum imposed at the wave-maker (x = −12.38 m) in the experiment
is superimposed.

an extension of the least square method of Mansard & Funke (1980) applied to the
first 7 probes, located before the submerged bar, from x = −2.7 m (probe 1) to −2.0
m (probe 7). Note that the spatial arrangement of these probes is not optimal for the
reflection analysis: for probes 1-5, the distance between two successive probes is 0.10 m,
for probes 5-7, it is 0.15 m. The spectral variations of the reflection coefficient Cr(f)
for each frequency component f could nevertheless be assessed for both the experiment
and simulation of R3 case. The analysis showed that Cr(f) takes values below 10% in
the most energetic range around the peak frequency (0.75 < f/fp < 1.5), with very
good correspondence between experiment and simulation. For f > 1.5fp, experimental
values of Cr(f) are slightly larger than the ones from the simulation. Below 0.75fp,
Cr(f) takes larger values, confirming that longer waves are more prone to reflection, but
the agreement between experiment and simulation remains quite good. Representative
values of the reflection coefficient, defined as C̄r = Hm0,ref/Hm0,inc with subscripts ’ref’
and ’inc’ representing reflected and incident respectively, are 8.9% for the experiment
and 6.8% for the simulation. It indicates that the reflection is low (below 10%), in both
experiment and simulation.

It should be mentioned that dissipation is not considered in the current simulations.
Due to the limited size of the effective computation domain, the differences resulting from
dissipation are meant to be of secondary significance. The simulated velocity components
are recorded at the same positions as for the horizontal ones in R3 experiment.

To demonstrate qualitatively the high fidelity of the simulation, snapshots of the
normalised measured and simulated free surface elevation signals are compared at 16
positions along the wave flume in figure 4. The time window, covering the last 30 s of
the run, is shifted according to probe positions and the local group velocity Cg(fp) =
dω/dk. It can be seen that the agreement between the simulation and measurements
is excellent all over the domain, even after running nearly 90 min of simulation. Only
some minor differences are observed. A small phase shift develops for some waves as they
propagate towards the end of the flume: the simulated signal gradually moves ahead
of the measurements. This could be explained by the ignored dissipation effect in the
simulation: without dissipation, the simulated sea-state is of slightly higher energy, with
some waves having slightly larger amplitudes. Due to nonlinear dispersion, the phase and
group velocity are larger for waves with higher amplitudes, resulting in this small phase
shift with the measurements.
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Figure 4. Comparison between experimental measurements (black solid lines) and numerical
simulation (red dashed lines) of the normalised free surface elevation recorded at 16 positions
along the wave flume (probe positions and the corresponding local relative water depths are
indicated above each curve). Each of the time series is shifted vertically with an offset of 10 for
the sake of clarity.

2.4. Statistical, spectral and bispectral analysis approaches

To analyse the wave transformation processes, four conventional analysis approaches
are applied: (i) analysis of characteristic wave parameters, (ii) spectral (Fourier) analysis,
(iii) bi-spectral (Fourier-based) analysis, and (iv) statistical analysis. Since these analysis
techniques are commonly used, the formulations and definitions of notations are reported
in appendix A, and we mention below only specific aspects.

Regarding (i), eight non-dimensional parameters are selected to characterise the spatial
evolution of the sea-state. The nonlinearity is characterised by the normalised significant
wave height Hm0/Hm0,inc, steepness parameter Hm0/L̂p (where L̂p is the wavelength

related to the peak frequency f̂p evaluated with the method of Young (1995), see
(A 3)), skewness λ3 and kurtosis λ4 of several kinematic variables (free surface elevation,
orbital velocities and accelerations), and the asymmetry parameter computed from
bispectrum. The subscript ’inc’ denotes the incident wave characteristic given in table 1.
The dispersion parameters include the peakedness parameter Qp, and the normalised

local peak frequency f̂p/fp,inc. As a balance of nonlinearity and dispersion, the Benjamin–
Feir (B–F) index is considered, with two definitions BFIS06 and Bs applicable for
different relative depth conditions. The parameter definitions and related formulations
are provided in appendix A.1 Regarding (iii), the bispectral analysis includes both
bispectrum B(f1, f2) and bicoherence b2(f1, f2). The spectral and bi-spectral analysis
approaches are described in appendix A.2 Regarding (iv), the statistical distributions of
crest-to-trough wave heights H and free surface elevation η are considered to characterise
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the deviation of the sea-state from the Gaussianity. The experimental and simulated
distributions are compared with the Gaussian distribution for η and the theoretical model
of Boccotti (2000) for H. The distributions of η and H are given in appendix A.3.

2.5. Harmonic separation method

In addition, a harmonic separation method is adopted here. The idea of group inversion
allows decomposing the wave group into fundamental components, and was first adopted
by Baldock et al. (1996) to study focused wave groups in deep-water. Assuming the time
record of, for instance, free surface elevation or wave-induced load on a structure can be
approximated by a Stokes-like harmonic series in both frequency and wave steepness, then
the higher-order nonlinear contributions to the time record can be separated by using a
so-called ’phase-inversion’ method. This method requires two tests (either experimental
or numerical) using two incident wave trains with identical component amplitudes and
frequencies but phases shifted by π. The underlying assumptions of this method are
twofold: the existence of a generalised Stokes-type harmonic series expansion in both
frequency and wave steepness, and the validity of Stokes’s perturbation expansion up
to the target order. This method has been applied to study wave-body interactions in
uniform water depth (Zang et al. 2006, 2010; Fitzgerald et al. 2014) and shoaling waves
on variable bottom profiles (Borthwick et al. 2006; Zheng et al. 2020).

The phase-inversion method is however limited by its capacity in distinguishing n-th
and (n+ 2)-th order harmonics in a wave group. Especially at higher orders, the overlap
between them could occur over a range of frequencies, and it is difficult to separate them
accurately with digital filters. In this study, the harmonic separation is achieved with a
generalised phase-inversion method recently introduced by Fitzgerald et al. (2014), using
four phase shifts. The linear primary component and the first three super-harmonics
(up to fourth order) can be isolated with linear combinations of four time-histories. The
method is here applied to the numerical simulations (as experimental time series are
available for a single set of phases). These time-histories come from four whispers3D
simulations with the incident signals having the same amplitudes and frequencies but
shifted phases, namely 0, π/2, π, and 3π/2. The linear combinations of time-histories
and separated harmonics are as follows:

η1st =
(
η0 − ηHπ/2 − ηπ + ηH3π/2

)
/4 = η(1,1) + η(3,1) + h.o.t., (2.12)

η2nd =
(
η0 − ηπ/2 + ηπ − η3π/2

)
/4 = η(2,2) + η(4,2) + h.o.t., (2.13)

η3rd =
(
η0 + ηHπ/2 − ηπ − ηH3π/2

)
/4 = η(3,3) + h.o.t., (2.14)

η4th =
(
η0 + ηπ/2 + ηπ + η3π/2

)
/4 = η(2,0) + η(4,4) + h.o.t., (2.15)

where the subscripts 0, π/2, π, 3π/2 denote the applied phase shift, the superscript
H denotes harmonic conjugate of the signal computed via Hilbert transform. For the
separated harmonic components η(m,n) on the right-hand-side, the first index m in
the superscript denotes the power in amplitude, and the second index n the order of
harmonic. The higher-order terms with fifth- and higher-order in amplitudes are omitted
and represented by ’h.o.t.’. Note that in (2.15) both the fourth-order harmonic η(4,4)

and second-order difference harmonic η(2,0) appear. As the overlap between these two
components is very limited, a simple low-pass filter can be applied to separate them.
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Figure 5. Colour maps showing the spatial evolution of variance density spectrum of the free
surface elevation of Run 3 calculated from: (a) measurements and (b) simulation results. The
vertical dashed lines indicate the limits of the sloping bottom areas, located at x = −1.6 m,
0 m, 1.6 m, and 3.2 m.

3. Comparison of simulations and experiments for Run 3 and
analysis of wave transformation processes

In this section, a comprehensive comparison between the simulations and measure-
ments of R3 is presented based on the analysis approaches presented in §2.4 (and
appendix A) and §2.5. From the simulation results, we extract the same set of data (time-
series of η and u(z0)) as recorded during the R3 experiment. Moreover, extra information
was gathered, including the vertical velocity and the evolution of phase-shifted incident
wave trains. In addition to the comparison of free surface elevation in figure 4, more pieces
of evidence are needed to illustrate the capacity of the model to capture the dynamics
of waves as they propagate along the wave flume. We also aim at better assessing the
non-equilibrium dynamics due to the depth transitions.

3.1. Spatial evolution of wave spectrum

The spatial evolution of measured and simulated wave spectra is shown in figure 5.
The area with no measurement between probes 7 (x = −2 m) and 8 (x = −0.95 m)
is intentionally left blank. It can be seen that the measured spectrum in figure 5(a)
and the simulated one in figure 5(b) are in good agreement. Both show clearly the
enhancement of second-order harmonics in the frequency range [1.5fp, 2.5fp] over the
shallower region. The energy level of the spectral peak at fp in the measured spectrum
is gradually attenuated in space, whereas this level is more or less unchanged in the
simulated spectrum. This is speculated to be a consequence of the dissipation which is
not considered in our simulation. The dissipation is more effective in the frequency range
near the spectral peak than in the high-frequency range. In the LF range [0, 0.5fp] of
both simulated and measured spectra, some long-waves appear, especially after the up-
slope area. The long-waves are of slightly higher energy in the simulation as shown in
figure 5(b). As discussed in §2.3, the long-waves observed in both panels (a) and (b) of
figure 5 are considered to originate from nonlinear wave-wave interactions. It is therefore
considered the slight overestimation of the LF energy in figure 5(b) results from stronger
nonlinear interaction due to a more energetic spectral peak in the simulation after the
up-slope area.

In figure 6, a more detailed comparison of the spectra measured at eight positions is
shown to demonstrate the spectral evolution along the wave flume. Figure 6(a) shows
the wave train propagates over the deeper region with very limited changes in the main
part of the spectrum (0.5fp < f < 3fp), indicating the nonlinear wave-wave interactions
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Figure 6. Comparison of variance density spectra of surface elevation in different areas: (a)
the deeper region till the toe of the up-slope; (b) the beginning of the shallower region; (c) the
end of the shallower region; (d) deeper region after de-shoaling. In all the panels, the solid lines
represent measurements, and dashed lines are simulation results.

are weak in this range. As the wave train propagates in the shallower region, the waves
with frequencies higher than 2fp receive energy in a short distance (figure 6(b)). In
figure 6(c), at half-length of the shallower region (x = 0.8 m), secondary spectral peaks
around 2fp and 3fp manifest. As the wave train approaches the end of the shallower
region (from probe 39 to 55), the secondary peaks around 2fp and 3fp are shifted toward
lower frequencies. In figure 6(d), the spectrum measured at probe 91 (x = 3.6 m) has
some similarities with the spectrum measured at probe 1 (x = −2.7 m), but the secondary
peaks close to 2fp and 3fp do not completely vanish. It indicates the spectral changes
resulting from a shoaling area are not fully reversible by setting a symmetrical de-shoaling
area due to nonlinear effects. The predictions of whispers3D are seen to be very accurate
over a wide frequency range for all spectra shown in figure 6.

3.2. Evolution of non-dimensional parameters

In figure 7, the spatial evolution of twelve non-dimensional parameters is shown in
eight panels. For all these parameters, the agreement between the experiment and the
simulation is excellent. In figure 7(a), the spatial evolution of two normalised significant
wave heights corresponding to the components in frequency range [0, 0.5fp] (LF waves)
and [0.5fp, 0.5fs] (short waves) are shown. For the short-wave Hm0

, small spatial os-
cillations over the shoal crest can be observed in both experiment and simulation. In
the experiment, the Hm0 of short waves is attenuated in the shallower flat region (dark
grey zone) but almost holds as constants at other locations. The small decrease of Hm0 is
attributed to the dissipation in the experiment. It is evident that the dissipation is related
to the relative water depth, so we speculate that the dissipation in the experiment was
mainly induced by friction on the bottom and side-walls. The Hm0

for LF waves keeps
its low level over all the domain. In figure 7(b), the similar pattern of oscillation of the
steepness parameter in the shallower flat region as for Hm0 is observed. The increase of
the steepness parameter over the up-slope is more pronounced than that of Hm0 , since
the local peak wavelength is reduced due to shoaling.
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In figure 7(c), the evolution of the skewness of the free surface elevation λ3(η) and
the horizontal velocity λ3(u(z0)) show similar increasing and decreasing trends over the
domain. Their maximum and minimum values are achieved roughly at the same positions,
both located shortly after the change of bottom gradient (maximum at x ≈ 0.6 m,
and minimum at x ≈ 2.3 m). The skewness indicates the asymmetry of the probability
distribution of the considered variable. For η, a positive skewness indicates waves with
sharper crests and flatter troughs, and vice-versa for negative values. According to λ3(η),
the wave profile is nearly symmetric in the first deeper region and becomes asymmetric
with positive skewness over the shallower region. As the wave propagate over the down-
slope area, the asymmetry of the wave profile is rapidly inverted. The evolution is similar
for the profile of λ3(u(z0)).

In figure 7(d), the values of λ4(η) in both experiment and simulation are slightly larger
than 3 before the bar. Then, they rapidly increase in the area close to the end of the
up-slope, achieving their maxima at the same position as for the skewness. The length of
latency is found to be about half of the peak wavelength in the shallower region. Then,
λ4(η) decreases mildly in a larger area, and eventually goes back to 3 around the end
of the domain. No particular change of λ4(η) is observed in the de-shoaling area. The
evolution trend of λ4(η) is well captured by the numerical model, though the maximum
value of λ4(η) is slightly underestimated by 6%. As was observed in TRJR20, λ4(u(z0))
exhibits a very different behaviour: it does not show any noticeable enhancement over
the up-slope area nor over the bar crest, but reaches its maximum value after a short
distance in the de-shoaling area. Such behaviour of λ4(u(z0)) is well simulated, including
its maximum value.

In figure 7(e), the evolution of the asymmetry parameter is shown. Positive values indi-
cate that, in general, waves are leaning toward the wave-propagation direction, whereas,
negative values indicate waves are leaning to the opposite direction. The evolution of
asymmetry parameter indicates that the incident waves are almost symmetrical in the
horizontal direction for x < −1 m. As waves propagate over the bar, the general wave
profile leans backward first, and then forward. The most backward-leaning wave profile
is achieved in the shallower flat region, and the most forward-leaning profile in the de-
shoaling area. We note the largest asymmetry of the sea-state in horizontal direction
is achieved before λ3(η) takes its maximum and minimum values. This implies the
deformations of wave shape in horizontal and vertical directions are largely independent.

Figures 7(f) and 7(g) show that Qp and f̂p evolve in an oscillatory manner until the end
of the shallower region. After that, the changes of these two parameters are very limited.
The evolution of Qp is remarkably well simulated (figure 7(f)). For f̂p in figure 7(g),
the agreement between the experiment and simulation is also good. The peak frequency
is only underestimated, by a few percent at most, in the simulation. By and large, the
spectral changes in terms of the spectral width and peak frequency are quite limited.

In figure 7(h), the spatial evolution of the two forms of the B–F index (A 5) and (A 12) is
shown in logarithmic scale. In the present case, the threshold kph = 1.363 for modulation
instability is achieved at x = −0.95 m and 2.55 m. At these two positions, two forms
of the B–F index take 0 because the coefficient

√
|β|/α = 0 at this threshold relative

water depth (see the expressions of α and β in (A 8) and (A 9)). Between these abscissas,
waves are expected to be modulationally stable, both BFIS06 and Bs no longer indicate
the significance of modulation instability but only characterise the relative importance
of nonlinearity and dispersion. Both formulations show significant variations over the
up- and down-slopes with similar spatial profiles. The variations of BFIS06 and Bs in
the modulationally stable area are large compared to those in the unstable area. Such a
significant difference is also due to the property of the coefficient

√
|β|/α. It monotonically
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Figure 7. Spatial evolution of non-dimensional wave parameters in measurements (∗) and in
simulations (solid lines) of R3. The light grey zones indicate the sloping areas and the dark grey
zone indicates the shallower flat region. In panel (h), the vertical dash lines denote the positions
where the threshold kph = 1.363 for modulational instability is achieved.

increases from 0 to 1 for kph > 1.363, but increases exponentially as kph decreases
from 1.363 to 0. The magnitude of Bs is higher than that of BFIS06 over the shallower
region, due to the correction of the wave-induced mean flow. In line with the evolution
of Hm0

and steepness parameter, the evolution trend changes right after the transition
points of bottom gradient for B–F index. It means the change of nonlinearity due to
depth variations is more significant than that of the dispersion, and the changes stop
immediately when waves enter flat bottom regions.

3.3. Bispectrum and bicoherence

Bispectral analysis of η time series allows gaining insight on nonlinear wave coupling
between modes. In figures 8 and 9, we show the bicoherence for the relative strength
of nonlinear coupling and imaginary part of the bispectrum for the energy transfer
direction, in the area from 0.25 m to 1.3 m (over the shallower region). In this area,
the skewness and kurtosis vary significantly, with their maximum values achieved at
x ≈ 0.6 m. It indicates the most active nonlinear interaction takes place in this area.
Each panel contains the bispectrum from measurements in the lower right triangle and



Shoaling and de-shoaling effects of irregular waves over steep seabed changes 15

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8. Contours of bicoherence over the shallower region at eight probe positions between
x = 0.25 m (probe 28) and x = 1.3 m (probe 49), in (a) simulated results; (b) measurements.
The probe numbers and positions are indicated on each panel, together with the corresponding
maximum bicoherence values.

the bispectrum from simulation in the upper left triangle (so that the agreement between
them can be estimated from the symmetry about the line f1 = f2).

From the evolution of bicoherence b2 shown in figure 8, we note the strongest interaction
always takes place in the region near the spectral peak. The strongest coupling achieved
at b2(1.01fp, 1.01fp) reflects intense energy transfer among f1 = 1.01fp, f2 = 1.01fp,
and f1 + f2 = 2.02fp. This interaction corresponds to the development of the second
harmonics around 2fp in the spectrum. A less strong but clearly visible interaction takes
place around b2(2fp, fp), which becomes increasingly significant as waves propagate from
x = 0.25 m to 1.3 m. It corresponds to the development of the third harmonics around
3fp. More generally, we notice the non-zero bicoherence in the range between b2(fp, fp)
and b2(2fp, fp) from probe 28 to 34, which indicates that the harmonics with frequencies
2fp 6 f 6 3fp are involved in the interactions. This is in agreement with the observations
in figure 6(b) where a clear increase is noticed for the whole tail of the spectrum above 2fp
at probe 31. After some distance, non-zero values of b2 appear only around b2(fp, fp) and
b2(2fp, fp) resulting in the formation of second and third harmonics. In the simulation,
not only the components of the nonlinear interactions but also the levels of bicoherence
are well predicted for the listed probes.

In figure 9, the energy transfer direction can be inferred, by considering the imaginary
part of the bispectrum. Positive values indicating sum interactions are represented by
colours from green to red. Meanwhile, negative values indicating difference interactions
are represented by green to blue. It is clearly seen that the sum interactions first take
place over the first half of the shallower flat region (from probe 28 to 34), forming the
second harmonics around 2fp. Close to the centre of the shallower region, at probes 37 and
40, difference interactions appear around (fp, fp), indicating energy transfer from second
harmonics 2fp back to fp mode. In this area, both the sum and difference interactions
are present. As waves approach the second half of the shallower region (from probe
43 to 49), difference interactions dominate. Besides, difference interactions are present
around Im{B(fp, 0.25fp)}. It indicates energy transfer from the frequency 1.25fp to fp
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Figure 9. Contours of the imaginary part of bispectrum over the shallower region at eight probe
positions between x = 0.25 m (probe 28) and x = 1.3 m (probe 49), in (a) simulated results;
(b) measurements. The probe numbers and positions are indicated above each panel.

and 0.25fp, thus the generation/enhancement of LF waves with frequency 0.25fp. In
general, the agreement between simulation and experiment is very good. Only some
small differences can be observed in the LF range, which explain the overestimation of
LF energy in the simulated spectrum in figure 5(b).

3.4. Harmonic analysis

The application of the generalised phase-inversion method outlined by Fitzgerald et al.
(2014) requires moderate nonlinearity of the sea-state, in order to adopt a Stokes-type
harmonic series to represent the time series of η. As wave nonlinearity is significantly
enhanced due to shoaling, attention should be paid to the applicability of this approach in
the current case. To evaluate the applicability of the harmonic separation technique in the
present case, the sea-state is represented by the so-called first-, second-, and third-order
harmonics. These characteristic waves are of frequencies fp, 2fp, and 3fp respectively,
and their representative wave heights are computed in the same way as for the significant
wave height but over different frequency ranges, namely [0.5fp, 1.5fp], [1.5fp, 2.5fp], and
[2.5fp, 3.5fp]. The representative frequencies and wave heights are computed locally and
averaged over the areas with constant depth h1 and h2. In figure 10, the representative
harmonics are placed in the diagram of Le Méhauté (1976). It is seen the first three
harmonics fall in the range of validity of Stokes second-order theory in both flat regions:
the harmonic separation method is thus applicable.

After running three additional simulations with π/2, π and 3π/2 phase shifts for the
incident wave train, the contributions of harmonics at different orders η1st, η2nd, η3rd,
η4th to the original time record of η can be evaluated from equations (2.12–2.15). The
spatial evolution of their spectra is shown in figure 11. It can be seen that the different
harmonics have been successfully extracted. The spectrum of the primary components
(panel (a)) evolves with nearly no modulation over the domain. Panel (b) indicates the
increase of energy around 2fp is mainly due to second-order sum interactions. In panel
(c), the third harmonic is seen to be weak except over the bar crest. In panel (d) showing
η4th, two components η(4,4) and η(2,0) should be present according to (2.15). However the
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Figure 10. Le Méhauté’s diagram (Le Méhauté 1976), with the first three representative
harmonics of the irregular wave train of R3 added.

Figure 11. Spatial-spectral evolution of extracted harmonics at different orders (in logarithmic
scale): (a) the first-order component η1st, (b) the second-order component η2nd, (c) the
third-order component η3rd and (d) the fourth-order component η4th. The vertical dashed lines
indicate the limits of the sloping bottom areas, located at x = −1.6 m, 0 m, 1.6 m, and 3.2 m.

fourth harmonic η(4,4) is weaker than the lower bound of the current colour scale, with
negligible contribution here. Therefore η4th ≈ η(2,0), showing the role of second-order
difference interactions in driving the energy increase of LF waves.

We note that Zheng et al. (2020) applied this technique using the phase-inversion
approach (i.e. with two time series η and ηπ), resulting in the separation of (η1st + η3rd)
and (η2nd + η4th), denoted as ηodd and ηeven respectively. Clearly, the two separated
components ηodd and ηeven would be subject to some overlap. In the present work,
the generalised (four-phase) phase-inversion method permits to isolate the first four
harmonics with good quality.

Basing on this decomposition, we analyse the contribution of the four harmonics to the
changes of skewness and kurtosis by considering cumulative summations of the separated
signals (figure 12). In panel (a), the skewness of the primary component is nearly 0.
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Figure 12. Spatial evolution of (a) skewness and (b) kurtosis of the time series of η obtained
from the simulation of R3-bar case without phase shift, and different combinations of separated
time series (see legend).

By adding the contribution due to second-order sum interaction, λ3(η1st + η2nd) is
significantly enhanced, showing very similar variations in space as λ3(η). The second
harmonic thus dominates the changes of skewness over the entire domain. Although η3rd
has little contribution to the spectrum, see figure 11(c), it affects skewness evolution
in a non-negligible way. Furthermore, the effects of η3rd appear only in the area where
the sea-state is out-of-equilibrium, namely starting shortly after the up-slope and ending
shortly after the shallower flat region. We note λ3(η1st + η2nd + η3rd) is larger than
λ3(η), indicating that the LF components due to second-order difference interactions are
responsible of a decrease of skewness.

In figure 12(b), it is observed that the kurtosis of the primary component becomes
lower than 3 as water depth decreases. The second harmonic component, η2nd, affects
the kurtosis over the entire domain, with an evident enhancement over the bar crest. The
inclusion of η3rd significantly enhances the kurtosis over the same area as for skewness.
Again, the contribution of bound LF waves η4th results in a decrease of kurtosis. Based
on these observations, it is anticipated that the changes of skewness and kurtosis due to
shoaling are related to both second- and third-order nonlinear interactions in the current
case, and the non-equilibrium dynamics is associated with third-order effects, resulting
in significant enhancement of kurtosis.

3.5. Statistical distributions

In figure 13, the PDFs of η time-series at 6 probes over the bar are shown, with
the Gaussian PDF superimposed as a reference. The measured and simulated PDFs
show excellent agreement for all the probes shown. In the experiment, the sea-state
remains quasi-Gaussian until the end of the up-slope (probe 23). Over the bar crest
(from probe 23 to 55), strong deviations from Gaussianity manifest. The positive tail
of the distribution is shifted toward higher values of η/

√
m0 indicating that the highest

wave crests are noticeably larger in comparison with the Gaussian prediction. Meanwhile,
the negative tail is shifted toward lower values, indicating the wave troughs are shallower.
Such observations are in agreement with the expectation of positive skewness in this area.
Among all the positions shown here, the strongest non-Gaussian behaviour takes place
close to the middle of the shallower region (probes 35 to 39), at the length of latency.
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Figure 13. Probability density function (PDF) of free surface elevation (η) at 6 probe positions
between x = −0.8 m (probe 9) and x = 3.2 m (probe 87). The probe numbers and positions
are indicated above each panel. The Gaussian distribution is superimposed to highlight the
nonlinear characteristics of the sea-state.

At the end of the bar crest (probe 55), the deviation of the empirical PDF from the
Gaussian one decreases. This is related to the effects of de-shoaling and the weakening of
the non-equilibrium dynamics. This is also in agreement with the indication of bispectral
analysis, from which we found energy transfer from second harmonic 2fp back to peak
frequency fp, and a decrease of nonlinear interactions. Eventually, at the end of the
de-shoaling zone (probe 87), the empirical PDF turns back to Gaussian.

In figure 14, the CCDFs of wave height H are shown at the same positions as in
figure 13, with the distribution of Boccotti (2000) superimposed as reference. Again, the
agreement between the simulation and measurements is excellent, even in the tail of the
distributions. Only few of the largest waves are slightly higher in the simulation at probes
39 and 55. Starting as a quasi-Gaussian process at probes 9, the sea-state undergoes a
clear deviation from Gaussianity as waves propagate over the bar crest, with a marked
increase of large waves, in particular at probes 35 and 39, and to a lesser extent until the
end of this area (probe 55). Over the bar crest, and in particular in the zone 0.5 m < x <
1 m, several ”freak waves” can be identified basing on the criterion H > 2Hm0

. The
distribution of Boccotti (2000) predicts that the occurrence probability of waves with
H > 2Hm0 is lower than 0.01% (the lower limit of the y-axis in figure 14). In agreement
with the increase of λ4(η) discussed previously (see figure 7(d) or 12(b)), these wave
height distributions clearly demonstrate the increase of the occurrence probability of
freak waves due to the water depth transition. At the end of the de-shoaling area (probe
87), where the PDF of η is very close to Gaussian in figure 13, the empirical CCDF of
H is lower than the theoretical prediction in the high-wave range. We note the CCDF of
H at probe 87 is rather close to the distribution observed before the bar crest (probe 9),
with a reduction of the occurrence probability of large waves. This is again considered
to be an effect of the de-shoaling process.
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Figure 14. Complementary cumulative distribution function (CCDF) of wave height (H) at 6
probe positions between x = −0.8 m (probe 9) and x = 3.2 m (probe 87). The probe numbers
and positions are indicated above each panel. The vertical dashed line in each panel represents
the commonly adopted threshold for freak waves: H = 2Hm0 .

3.6. Statistics of velocity and acceleration

In R3 experiment, the horizontal velocity at z0 = −0.048 m has been measured at
37 positions, and studied statistically in TRJR20. In §3.2 we have shown the skewness
and kurtosis of u(z0) simulated with whispers3D are in excellent agreement with the
measurements (see figure 7(c-d)). Here, using additional model results, we present a
more complete statistical analysis of the kinematic properties, namely the vertical ve-
locity and accelerations in both directions. The local (Eulerian) horizontal and vertical
accelerations, denoted as ut(z0) and wt(z0) respectively, are evaluated as time derivatives
of u(z0) and w(z0). The computation of derivatives is made with a five-point centred finite
difference scheme. In the following, we analyse the spatial evolution of the skewness and
kurtosis of 5 variables: η, u(z0), w(z0), ut(z0), wt(z0).

In figure 15(a), the evolution of skewness of the 5 kinematic variables is plotted. Two
groups of variables can be identified, showing two different spatial evolution patterns.
First, we note λ3(w(z0)) and λ3(ut(z0)) evolve very closely over the whole domain.
They both reach two local maximum and one local minimum values, at almost the same
positions for both variables (first maximum at x ≈ 0.2 m, minimum at x ≈ 1.9 m, second
maximum at x ≈ 2.6 m). In addition, it is noticed that the profile of the asymmetry
parameter in figure 7(c) is similar to that of λ3(w(z0)) and λ3(ut(z0)), despite an opposite
sign. In the second group, the spatial profiles of λ3(η), λ3(−wt(z0)) and λ3(u(z0)) present
a lot of similarities, though with different magnitudes. The local maximum and minimum
values of skewness of these 3 variables are located downstream compared to the ones of
w(z0) and ut(z0). The skewness of wt(z0) shows the most pronounced variation, with
its global maximum achieved around x = 0.45 m. The skewness of u(z0) shows a lower
minimum value in the middle of the down-slope area (around x = 2.3 m). The spatial
profiles of the skewness of these 5 variables and the asymmetry parameter indicate that
the adaptation of the sea-state due to depth variations has different impacts on kinematic
properties, among which two dominant typical evolution patterns can be identified.
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Figure 15. Spatial evolution of (a) skewness and (b) kurtosis of five variables obtained from
the simulation of R3-bar case: free surface elevation η, horizontal and vertical velocities u, w,
horizontal and vertical accelerations ut, wt. The velocities and accelerations are computed at
the same elevation z0 = −0.048 m.

It is known from linear theory that η, u and −wt are of the same phase in a linear
superposition of progressive harmonic components, while w and ut are also in phase,
but with a phase shift of π/2 with respect to the variables of the former group. In
the nonlinear case, such an expectation is not guaranteed a priori. The observations in
figures 15(a) indicate that the phase relations among the five variables are somewhat
preserved in the present case.

Figure 15(b) shows the kurtosis evolution of the same variables. As was observed in
TRJR20, λ4(u(z0)) shows no sign of enhancement over the up-slope or the bar crest,
whereas a local maximum is achieved in the down-slope area. This trend is successfully
captured in the simulation. However, model results show that λ4(w(z0)), λ4(ut(z0)) and
λ4(−wt(z0)) (not discussed in TRJR20) are noticeably enhanced over the shallower
region, with their maximum values achieved at the same position (about x = 0.6 m,
corresponding to the length of latency) as for λ4(η). Regarding the variables ut(z0) and
w(z0), we note that their kurtosis profiles are very similar, as was observed for their
skewness profiles in figure 15(a). λ4(−wt(z0)) shows the most significant enhancement
over the bar crest with only one maximum in the domain, as for λ4(η). Our results
supplement the observations made on λ4(u(z0)) in TRJR20, showing that significant
changes of kurtosis of other kinematic properties, namely w(z0), ut(z0) and −wt(z0), take
place due to depth variations. Furthermore, the kurtosis profiles of these 3 variables are
markedly different from the one of u(z0). All three show a significant increase of kurtosis
over the bar crest (implying an increased occurrence probability of their maximum
values), in line with the increase of λ4(η) in this area.

4. Effects of finite length of the bar crest and de-shoaling

4.1. Objectives and outline of the simulation with a step-like profile

In §3, an extensive analysis of the effects induced by wave shoaling in the up-slope area
has been performed, together with the effects of the down-slope (de-shoaling). At the up-
slope transition, the out-of-equilibrium dynamics of the wave train is associated with the
spectral settling from the deeper-water equilibrium state (in depth h1) to the shallow-
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water equilibrium (in depth h2), and this process takes place over a certain distance after
the start of the shallower region. However, this shallower water area is of relatively short
length in the R3-bar setup. One may wonder whether the out-of-equilibrium dynamics
due to up-slope transition has been fully developed in the shallower region and what
is the contribution of the de-shoaling process. The sea-state could enter the de-shoaling
area before having reached a new shallow-water equilibrium, it is therefore difficult to
conclude which effects govern the sea-state dynamics after the shallower region.

In order to isolate the effects of the two slopes and to better assess the characteristic
distance of non-equilibrium dynamics due to the shoaling process, an additional sim-
ulation without the de-shoaling area has been conducted with a modified bathymetry
profile (R3-step setup in figure 2(b)). The simulation of the new case is conducted with
the same numerical parameters as for R3-bar case. In this section, we show the results
of this new R3-step case, and compare them with those of R3-bar case. We focus on the
spatial evolution of the variance density spectrum (§4.2), non-dimensional parameters
(§4.3) and the statistics of the kinematic variables (§4.4).

4.2. Spatial evolution of wave spectrum

In figure 16, the spectral evolution in space shows the wave spectra of the two
setups exhibit very similar patterns in the area where the bottom profiles are identical
(x < 1.6 m). After x = 1.6 m, the differences in the spectra manifest mainly for two
frequency ranges: f > 1.5fp and f < 0.5fp. In R3-step case, more energy is transferred
to components in these two ranges, which is clearly the consequence of stronger nonlinear
interactions in the extended shallower region. In figure 16(b) for R3-step case, a second
energetic peak around 2fp appears after x ≈ 2.5 m and lasts until the end of the domain.

In the area from x = 1.6 m to 3.6 m, there is a particular spatial evolution of the
spectrum for f > 1.6fp, quite different from R3-bar case. It is believed this particular
spatial structure in the high-frequency range is due to the simultaneous presence of
free and bound components with frequencies being higher harmonics of frequencies close
to the spectral peak (typically in the range [0.8fp, 1.5fp]). This situation is typically
encountered when waves propagate over a submerged bar or shoal (Beji & Battjes 1993)
or when waves are generated using a wave shape that does not correspond to the stable
form of progressive nonlinear waves for the considered depth (Chapalain et al. 1992). As it
is well-known, if free and bound components at a higher harmonic Nf , with N = 2, 3, ...,
of the primary frequency f coexist in constant depth, a beating or spatial modulation of
the amplitude will manifest. This effect is most apparent here for the second harmonics
(N = 2) of primary frequencies f ∈ [0.8fp, 1.5fp]. The beat length of second harmonics,
defined as the distance between two successive maximum values of the spectral amplitude,
can be estimated following Massel (1983):

Lbeat(2f) =
2π

k(2f)− 2k(f)
, (4.1)

where the wave-numbers k(f) and k(2f) are computed from f and 2f using the linear
dispersion relation (for depth h2). Following this idea, the beating length of second
harmonics for f ∈ [0.8fp, 1.5fp] have been computed and superimposed in figure 16(b).
The estimation of the beating length for f ∈ [0.8fp, 1.5fp] results in a series of curves in
the range [1.6fp, 3fp] as second harmonics. The distance between two successive curves
at a particular frequency corresponds to the beating length. These curves are in good
agreement with the spatial modulations of the spectrum in figure 16(b) for f > 1.6fp.

In the R3-bar case (figure 16(a)), this effect is less pronounced due to the variable depth
over the down-slope area, but still visible for f > 2fp. It is also noted that for the case of
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Figure 16. Spatial evolution of the variance density spectra in simulations (a) with R3-bar
setup, and (b) with R3-step setup. The vertical dashed lines indicate the limits of the sloping
bottom areas in R3-bar setup, located at x = −1.6 m, 0 m, 1.6 m, and 3.2 m. The solid black
curves in panel (b) represent the predicted maximum values of the spectral amplitude, between
which the distance in space corresponds to the beating length of the second harmonics of primary
frequencies in [0.8fp, 1.5fp].

a larger (uniform) depth in (4.1), the beat length would be reduced. This reduction does
not appear clearly after the down-slope area in figure 16(a). This is because the area with
constant deeper water (h1 = 0.53 m) after x = 3.2 m is only 0.4 m long, which is less
than the shortest beating length Lbeat(3fp) ≈ 0.42 m in the considered frequency range
[0.8fp, 1.5fp]. However, comparing the spectra of two simulations in the range x > 1.6 m
and f/fp > 2, some indication of this reduction can be detected in figure 16(a), though
the depth is not uniform from x = 1.6 m to 3.2 m in the R3-bar case. In summary, the
water depth reduction due to the up-slope results in an increase of wave nonlinearity in
the shallower area, which manifests in the forms of energy transfer, generation of bound
long-waves and increase of the amplitude of the bound super-harmonics of the frequencies
near the spectral peak. In addition, as the depth variation is rather abrupt, part of the
energy is also transferred to free waves in the same high-frequency range, resulting in the
above-described spatial modulation of spectrum magnitude.

In figure 17, the comparison of the spectra in two simulations is shown at four positions
after x = 1.6 m. At x = 1.6 m (figure 17(a)), the main parts of the two spectra are
superimposed. As waves propagate in the extended shallower region in R3-step case,
differences gradually manifest in figure 17(b-d). In R3-step case, the harmonic peak
around 2fp is more pronounced in comparison with R3-bar case, and we notice this peak
is gradually shifted from frequencies slightly higher than 2fp to lower frequencies. We
also note the spectrum tail in the range [2.5fp, 4fp], which is decreased in R3-bar case, is
preserved in the R3-step case. This indicates that the de-shoaling process results in a loss
of energy of the high-frequency waves. The LF waves receive more energy in R3-step case
due to stronger nonlinear interactions in the extended shallower region for x > 1.6 m.
In R3-bar case, the spectral evolution in figure 17(b-d) is quite limited. It indicates that
the spectral adaptation to the shallow-water equilibrium was not fully developed over
the 1.6 m long bar crest in R3-bar case, and was balanced by the de-shoaling process.

4.3. Non-dimensional parameters

Figure 18 compares the spatial profiles of twelve non-dimensional parameters for R3-
bar and R3-step cases. In figure 18(a), the small spatial modulations of Hm0

/Hm0,inc

calculated in the main frequency range [0.5fp, 0.5fs] disappear over the shallower region
in R3-step case. It indicates that the de-shoaling process can influence the upstream wave
field, possibly via the generation of reflected free waves. Similar trends can be found for
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Figure 17. Comparison of spectra of the surface elevation at 4 positions from numerical
simulations for the R3-step (solid lines) and the R3-bar (dashed lines) cases.

the evolution of steepness parameter, Qp and f̂p/fp. In R3-step case, the Hm0 of the
LF range keeps increasing in the extended shallower region. Due to strong nonlinear
interactions in this region, wave energy is continuously transferred toward these sub-
harmonic components. In figure 18(b), the decrease of the steepness parameter for x >
1.6 m disappears in R3-step case, because L̂p remains uniform in the extended shallower
region.

In figure 18(c-e), significant discrepancies of skewness, kurtosis and asymmetry param-
eters from the results of R3-bar case are observed for x > 1.6 m. In R3-step case, these
parameters are seen to converge toward new constant levels in the extended shallower
region, after reaching their maximum/minimum values over the original shallower region.
This is an indication that the sea-state is evolving toward a new equilibrium state in
the shallower region, since the effects of non-equilibrium dynamics induced by the up-
slope gradually decrease in space. In the range x < 1.6 m, where both profiles are
identical, these statistical parameters are almost superimposed. We thus conclude that
the local minimum value of λ3(η) and λ3(u(z0)), the local maximum of λ4(u(z0)), and
the variations of the asymmetry parameter, observed for x > 1.6 m in R3-bar case
(see figure 7(c-d)), are caused by de-shoaling effects. This is of interest for interpreting
the particular behaviour of λ4(u(z0)) highlighted in figure 7(d): the local maximum of
λ4(u(z0)) is not due to the up-slope transition, but to the down-slope one. In R3-step
case, λ4(u(z0)) shows nearly no variation over the whole domain, in contrast to λ4(η)
that experiences strong enhancement in the first part of the shallower region.

Figure 18(f) and 18(g) show the comparison of Qp and f̂p/fp, respectively. For these
parameters, the differences between the two setups are not restricted to the de-shoaling
area but also manifest in the area where the two bottom profiles are identical. The spatial
modulations of Qp and f̂p/fp seen in R3-bar case for x < 1.6 m become insignificant in
R3-step case. As explained above, this indicates that de-shoaling affects not only the
wave field in the area after the beginning of the down-slope but also the upstream wave
field (reflected waves). Besides this difference, both cases show another modulation of Qp
and f̂p/fp before entering the shallower region (i.e. for x < 0) attributed to the reflection
of incident waves on the up-slope part. In summary, this comparison highlights the fact
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Figure 18. Spatial evolution of non-dimensional parameters in simulations of R3 case with
de-shoaling area (dashed lines), and without de-shoaling area (solid lines). The light grey zones
indicate the sloping areas and the dark grey zone indicates the shallower flat region in the case
with the de-shoaling area. In panel (h), the vertical dash lines denote the positions where the
threshold kph = 1.363 for modulational instability is achieved.

that the spatial modulations of Qp and f̂p/fp observed in R3-bar case before x = 1.6 m
originate from two reflection processes taking place at the up-slope transition (in both
cases), and at the down-slope transition (in R3-bar case only).

Figure 18(h) shows the BFIS06 and Bs parameters in the R3-step case are almost
superimposed with the ones in R3-bar case for x < 1.6 m. However, no decrease after
x = 1.6 m is seen in R3-step case, due to the extended shallower region.

4.4. Statistics of velocity and acceleration

Figure 19 compares the spatial profiles of skewness (panel (a)) and kurtosis (panel
(b)) of the kinematic properties in the two simulations. In R3-step case, the skewness
of all the kinematic properties continue their decreasing or increasing trend over a short
distance in the extended shallower region. This is because the non-equilibrium dynamics
induced by the up-slope keeps having effects after x = 1.6 m. After a short distance in the
extended shallower region, the variations of skewness in R3-step case become mild. But
it is evident that the steady shallow-water state has not been established yet, even in R3-
step case. As an evidence, λ3(u(z0)) keeps its increasing trend until the end of the flume.
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Figure 19. Spatial evolution of (a) skewness and (b) kurtosis of five variables η, u(z0), w(z0),
ut(z0) and −wt(z0) in both R3-bar and R3-step cases.

Based on the observations in Zhang et al. (2019) where a long shallower region was used,
we anticipate that the mild modulation of skewness in R3-step case would continue over
a longer distance without significant changes if the flume was extended. The skewness
differences between the two bottom setups correspond to the de-shoaling effects, and it
is clear that the de-shoaling process results in opposite effects to the skewness compared
to shoaling. The sharp decrease of skewness after x = 1.6 m is mainly due to de-shoaling
effects (rather than the decrease of up-slope induced non-equilibrium dynamics). It is
also noticed that the de-shoaling process slightly influences λ3(u(z0)) and λ3(η) before
the down-slope area. Regarding skewness, the most sensitive variable to the change of
water depth is wt.

In line with the observations for skewness, figure 19(b) shows the kurtosis of the five
variables continue their decreasing trend over a short distance in the extended shallower
region in R3-step case. This is due to the weakening of non-equilibrium dynamics.
The differences of kurtosis between R3-step and R3-bar cases again correspond to the
de-shoaling effects. Unlike skewness, both shoaling and de-shoaling processes result in
enhancement of kurtosis. Since kurtosis involves the mean of an even power of a variable,
it does not distinguish, for instance, a deep trough (negative) from a sharp crest (positive)
for η. It should be noticed that the effects of de-shoaling process on spatial evolution of
kurtosis are different for the five variables. No significant enhancement of λ4(−wt(z0))
and λ4(η) is observed in R3-step case. On the contrary, kurtosis of ut(z0), w(z0), u(z0) are
increased in the extended shallower region of R3-step case. Combined with the behaviour
of skewness for these variables in the same region, we know that the increase of kurtosis
is due to more negative extreme values (velocity or acceleration in the direction toward
bottom). Regarding kurtosis, the most sensitive variable to the depth variation is again
wt(z0), whereas λ4(u(z0)) shows almost no change over the domain in R3-step case.

5. Discussion and conclusions

Basing on the recent experimental study of TRJR20, we studied the propagation of
long-crested irregular waves over variable bottom profiles. With a fully nonlinear and
dispersive numerical model, we first studied the case R3 with a submerged trapezoidal
bar (R3-bar case) reported in TRJR20. Then, a variation of R3-bar case, with the
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down-slope of the bar removed and the shallower flat region extended to the end of the
domain, was considered (R3-step case). The main objective was to investigate the spectral
adaptation and out-of-equilibrium dynamics of the sea-state due to depth transitions, and
the associated statistics of the wave field.

The simulation of the R3-bar case not only validated the numerical model but also
permitted extracting more information of the wave field, i.e. vertical velocity and acceler-
ations at the elevation z0 = −0.048 m (below SWL). The sea-state dynamics in R3 case
was analysed in-depth by considering the spatial evolution of wave spectrum, bispectrum,
eight non-dimensional parameters, distributions of η and H and statistics of kinematics.
Additional simulations of the R3-bar case with different initial phases of the incident
waves were conducted in order to apply the four-phase harmonic extraction approach,
which allows evaluating the contributions of different harmonics in a quantitative manner.
The simulation of R3-step case was then conducted, the effects of the de-shoaling process
induced by the down-slope could be characterised by comparing with the R3-bar case.

As a first conclusion, the performance of whispers3D model was proven excellent in
the deterministic simulation of irregular non-breaking wave train evolution over a long
duration (equivalent to nearly 5, 000Tp). In all considered aspects, the comparisons with
measurements showed good to outstanding agreement. This includes in particular the
statistical distributions of wave heights, where the intensified extreme wave activities
were successfully captured by the model. Nevertheless, some minor differences between
the simulation and experiment exist. In the simulation, higher levels of significant wave
height and steepness parameter after the shallower region, and slightly higher magnitudes
of LF modes in the same area were observed. Both bispectrum and harmonic extraction
results indicated that the LF modes in the simulation were generated due to second-
order difference interaction. It is anticipated for a more energetic sea-state, the nonlinear
wave-wave interaction is stronger resulting in more significant energy transfer to both
LF modes and higher harmonics of the spectral peak. In the experiment, the wave train
was of slightly lower energy after the shallower region than in the simulation due to
frictional dissipation effects. The inclusion of dissipation in the model could bring some
improvement, at least for the agreement of Hm0 .

The sea-state evolution of R3-bar case has been characterised and analysed thoroughly.
In addition to the skewness and kurtosis evolution, we have observed a particular spatial
modulation for nonlinear parameters (Hm0

, Hm0
/L̂p), spectral parameters (Qp, f̂p),

and B-F index, completing the analyses reported in TRJR20. The bispectral analysis,
and harmonic extraction method permitted to characterise the spectral adaptation in
terms of nonlinear interaction. Strong nonlinear coupling was detected, with significant
energy transfer among the primary, second harmonics, third harmonics and long-wave
components after the shoal. The contributions of these components to the evolution of
wave spectrum, skewness and kurtosis have been evaluated by the harmonic extraction
technique. Second-order effects were shown to be amplified after the shoaling zone,
resulting in the generation of marked second harmonics (due to second-order sum interac-
tion) and long-wave components (due to second-order difference interaction). The former
dominated the evolution of λ3(η) and resulted in the enhancement of λ4(η), whereas
the latter resulted in decrease of both parameters. Third harmonics of the primary
components were noticeable only over the shallower region, with relatively low levels of
energy. Yet their contribution to the kurtosis was evidenced, in particular regarding its
maximum value after the length of latency (here equal to about half the local wavelength
at peak frequency).

The empirical distributions of η and wave height H showed considerable deviation
from Gaussianity (represented by the asymptotic model by Boccotti (2000) for H)
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over the shallower region, with several freak waves occurring in the area where λ4(η)
was close to its maximum. After the down-slope, the deviation from Gaussian models
decreased, but the secondary peak close to the second harmonic in the spectrum did not
vanish completely. The spectral changes due to a shoaling area are not fully reversible
by setting a symmetric de-shoaling area, some wave energy remained in higher-order
harmonics. A more complete statistical analysis of the kinematic properties, including
free surface elevation, asymmetry parameter, velocities and accelerations components was
performed. We found two different trends for the evolution of skewness of these variables,
indicating that the deformations of the wave field take place somewhat independently
in horizontal and vertical directions. The kurtosis of all the kinematic variables shown
but the horizontal velocity (the single one considered in TRJR20) were enhanced, at the
same position as λ4(η).

The comparison of the R3-bar case with the additional R3-step case allowed to isolate
the effects induced by the de-shoaling process. In R3-step case, a particular beating
pattern observed for f > 1.6fp in the range x > 1.6 m has been explained by the
simultaneous presence of free and bound components in the high-frequency range. It also
explains the similar but less pronounced (due to de-shoaling) spectral evolution pattern
in R3-bar case. With the R3-step case, it is evident that the small spatial modulations of
nonlinear and spectral parameters observed in R3-bar case were due to the de-shoaling
process. The de-shoaling process influences the upstream wave field by forcing reflected
waves.

In the R3-step case, the statistics of the kinematic variables continued their evolution
trends over a short distance in the extended shallower region, then mildly varied until
the end of the domain. The shallow-water equilibrium was thus not achieved over
the shallower region in R3-bar case, nor is it fully achieved in the R3-step case. The
comparison of the skewness and kurtosis in two cases demonstrated that the de-shoaling
process affects the skewness of all variables oppositely compared to shoaling. Meanwhile
the kurtosis of u(z0), w(z0) and ut(z0) were enhanced due to de-shoaling.

The knowledge of the ”transition water depth” for different dynamic sea-state re-
sponses, and the length of latency in the ”shallower regime” case are of practical interest,
since they are related to whether and in which range should a nearshore structure be
protected from depth variation induced freak waves. Next, effort will be made in to
improve our knowledge of these properties basing on information about seabed profile
and incident spectrum. In complement to experiments, the nonlinear and dispersive
whispers3D model will be used for this purpose, based on the accuracy of simulations
reported here.
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Appendix A. Statistical, spectral and bispectral analysis approaches

A.1. Characteristic non-dimensional parameters

The skewness λ3 and kurtosis λ4 are defined as the third- and fourth-order normalised
moments of a time series. The time series in the present work could be the surface
elevation, velocity or acceleration in the horizontal or vertical directions. Using the free
surface elevation η, their definitions are:

λ3(η) =
〈

(η − 〈η〉)3
〉
/σ3, λ4(η) =

〈
(η − 〈η〉)4

〉
/σ4. (A 1)

The peakedness parameter Qp characterising the spectral shape is defined as (see Goda
2010, p. 391):

Qp =
2

m2
0

∫ ∞

0

fS2(f) df. (A 2)

Note that narrower the spectrum is, the larger Qp will be.

The parameter f̂p is an estimate of the local peak frequency proposed by Young (1995):

f̂p =

(∫ ∞

0

fS4(f) df

)
/

(∫ ∞

0

S4(f) df

)
. (A 3)

The corresponding angular frequency is denoted as ω̂p, the local wave-number and

wavelength obtained through the linear dispersion relation are denoted k̂p and L̂p
respectively.

The B–F index originally introduced in the work of Janssen (2003) plays an important
role in understanding the effects of non-resonant four-wave interaction, its formulation
reads:

BFIJ03 =
k̂p
√

2σ

δ/ω̂p
, (A 4)

where δ denotes the width of the frequency spectrum.

The variation and robustness of B–F index with different parameters estimation
approaches have been discussed by Olagnon & Magnusson (2004) and Serio et al.
(2006). For uni-directional waves in constant water depth h, the threshold of modulation
instability is kph = 1.363. When waves are modulationally unstable with kph > 1.363, it
is suggested to use the formulation given by Serio et al. (2006) for single-peaked spectra:

BFIS06 =
√
m0k̂pQp

√
2πν

√
|β|
α
, (A 5)

where α, β and ν are coefficients of the cubic NLS equation which was derived from
equations (2.2–2.5) by using the method of multiple scales (Hasimoto & Ono 1972; Mei
1992):

−i
(
∂A

∂t
+

1

2
ν
ω

k

∂A

∂x

)
+ α

∂2A

∂x2
+ β|A|2A = 0, (A 6)

where A(x, t) denotes the wave amplitude, i denotes the imaginary unit, ν is the
correction to the group velocity for finite depth, α and β are the dispersive and nonlinear
coefficients respectively:

ν =
2Cg
C

= 1 +
2kh

sinh(2kh)
, (A 7)
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α = −1

2

d2ω(k)

dk2
=
ωh

2k

[
1

4kh
− kh

sinh2(2kh)
− 1− 2kh coth(2kh)

sinh(2kh)

]
, (A 8)

β =
ωk2

(
8 + cosh(4kh)− 2 tanh2(kh)

)

16 sinh4(kh)
− ω

(
2ω cosh2(kh) + kCg

)2

2 sinh2(2kh)
(
gh− C2

g

) . (A 9)

For kph < 1.363, the four-wave interaction vanishes due to the generation of a wave-
induced mean flow. Hence, in such cases, waves are stabilised and another form of B–F
index is recommended by Janssen & Onorato (2007):

B2
s = −BFI2J03

C2
g

C2

gT0,0,0,0
k4ω

(
d2ω

dk2

)−1
, (A 10)

where C = ω/k is the phase velocity. T0,0,0,0 is a known interaction coefficient with a
complicated expression in the general case. Here, only its narrow-band limit is given:

T0,0,0,0
k3

=
9 tanh4 (kh)− 10 tanh2 (kh) + 9

8 tanh3 (kh)
− 1

kh

[
(4Cg − C)

2

4
(
gh− C2

g

) + 1

]
. (A 11)

With the computation method (A 5) taken into account, we consider the B–F index in
the cases with kph < 1.363 as:

Bs = BFIS06
Cg
C

√
gT0,0,0,0
2αk4ω

. (A 12)

In the deep-water limit, α → g/(8kω) and T0,0,0,0 → k3, Bs reduces to BFIS06. In
this study, the coefficients in both two definitions were evaluated using the local peak
frequency f̂p.

A.2. Spectral and bispectral analyses

The variance density spectrum is obtained by using Welch’s method, with 50% over-
lapping rate of each 214-point signal segment.

The bispectrum, introduced by Hasselmann et al. (1963), characterises the phase-
coupling of 3 wave components due to nonlinear interactions. The triad-wave interactions
result in wave energy transfer among f1, f2, and f1 + f2. In the present study we follow
the definition of bispectrum B(f1, f2) in Kim & Powers (1979):

B(f1, f2) =
〈
X1X2X

∗
1+2

〉
, (A 13)

which is ensemble average of the triple product of complex Fourier coefficients, Xi denotes
the Fourier coefficient of frequency fi, and the asterisk indicates complex conjugate.

In general, the bispectrum B(f1, f2) is a complex quantity. The energy transfer direc-
tion is indicated by the sign of Im{B(f1, f2)}, where Im{·} means taking the imaginary
part: negative values mean wave energy is transferred from the component f1 + f2 to f1
and f2 (difference interaction), positive values mean wave energy is transferred from f1
and f2 to f1 + f2 (sum interaction). As a measure of the horizontal asymmetry of the
wave profile, the asymmetry parameter can be evaluated following Elgar & Guza (1985):

Asymmetry =

∑∑
Im {B (f1, f2)}
σ3

, (A 14)
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The commonly used normalisation measure of bispectrum is the bicoherence:

b2(f1, f2) =
|B(f1, f2)|2〈

|X1X2|2
〉 〈
|X1+2|2

〉 . (A 15)

The bicoherence b2(f1, f2), bounded in [0, 1], is a measure of the relative strength of the
coupling of the three wave components f1, f2, and f1 + f2. For instance, b2(f1, f2) = 1
denotes total phase coupling, on the contrary, b2(f1, f2) = 0 means the uncorrelated
(random) phases.

A.3. Statistical distributions of surface elevation and wave heights

The statistical distributions of the free surface elevation and individual wave heights are
compared with linear theoretical expectations. Consider the free surface elevation η is the
sum of a large number of harmonic waves, each with a constant amplitude and a random
phase, then the sea-state is a stationary, Gaussian process. The statistical characteristics
are fully described by the variance density spectrum. The high-order moments are then:
λ3(η) = 0 and λ4(η) = 3. The Gaussian distribution is expressed as (see e.g. Longuet-
Higgins 1952):

p(η) =
1

σ
√

2π
exp

(
− η2

2σ2

)
, (A 16)

where p denotes the probability distribution function (PDF). However, it is known that
nonlinear finite water effects have great influence on the statistics of the sea-state, causing
considerable deviation from the Gaussian model, see the pioneering work of Bitner (1980).

In a Gaussian sea-state with a sufficiently narrow spectrum, the heights of wave crests
are Rayleigh distributed. The crest-to-trough wave height could be approximated by
twice of the crest height, thus it approximately follows Rayleigh distribution. However,
such an assumption is not appropriate for sea-states with finite spectral width, leading
to an overestimation of the probability of the high waves (see e.g. Forristall 1978). The
wave height distribution models considering spectral width have been studied in, for
instance, Naess (1985) and Boccotti (2000). Given that the JONSWAP spectrum with
γ = 3.3 considered in the present study is not sufficiently narrow, the asymptotic model
proposed by Boccotti (2000) is chosen as the reference distribution of wave heights:

P (H) =
1 + b√

2b (1 + a)
exp

(
− H2

4 (1 + a)

)
, (A 17)

where P (H) denotes the complementary cumulative distribution function (CCDF), a and
b are evaluated as:

a =

∣∣∣∣
∫ ∞

0

S(f) cos (2πfτ∗) df

∣∣∣∣ /m0, b =

∣∣∣∣
∫ ∞

0

f2S(f) cos (2πfτ∗) df

∣∣∣∣ /m2, (A 18)

with τ∗ denoting the time-lag of the global minimum of the autocorrelation function
ρ(τ) = 〈η(t)η(t+ τ)〉, and m2 the second moment of the variance spectrum.
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Chapter 5

Conclusion and outlook

5.1 Summary of findings and conclusions

In this part of the Ph.D. thesis, the non-equilibrium characteristics observed when
a quasi-steady incident sea state gradually adapts to a new equilibrium after strong
depth variations have been studied by large-scale experiments as well as highly ac-
curate numerical simulations. State-of-art data processing techniques related to
natural sea-states and freak wave analysis have been broadly reviewed. With these
techniques, the temporal and spectral features of the measured (numerically and
experimentally) data can be extracted and analyzed. Wave grouping character-
istics, as well as effects related to four-wave interaction, can be interpreted in a
quantified manner. In this part, two axes of study are considered. One is the
experimental and numerical study on the basis of the experimental campaign con-
ducted in THL (Taiwan), in which a step-like bottom profile was adopted. The
other is the numerical study based on the experiments reported by Trulsen et al.
(2020) in which a bar-like bottom profile was used. In both cases, the spectral and
bispectral analysis, statistical wave-by-wave analysis, and integral sea state non-
dimensional parameters are adopted to characterize the non-equilibrium dynamic
response during the sea-state adaptation process.

In the experimental campaign in the large-scale wave flume in THL, a broad
range of experimental conditions has been tested. The relative water depth transi-
tion is more pronounced compared to existing experimental tests in similar studies.
The sea states are of different degrees of nonlinearity, close to the breaking-limit in
some cases. Tested wave spectra are of JONSWAP shape with different values of
the peak enhancement factor γ. The relative water depths in the shallower region
are lower than 1.363, so modulational instability is expected to be of secondary
importance in the shallower region. The complete life-circles of freak waves were
tracked in the large-scale flume. The following conclusions are drawn from this
study:

• In line with the work of Trulsen et al. (2020), two different trends are ob-
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served in our irregular wave experiments conducted in THL. Case 1 is the
representative case in which the sea state is quasi-Gaussian before and after
the depth transition region. No evident increase of the skewness and kurtosis
and no significant wave energy increase of second harmonics after the shoal-
ing step are observed. The other trend is represented by Case 10 (shown
in the journal paper by Zhang et al. (2019)) and 15, in which non-negligible
energy increase of high-order harmonics and local maxima of λη3, λη4, BFI take
place in a short distance after the step. The spectra experience broadening
in the shallower region. Wave energy is redistributed over a broad range of
frequencies in the spectrum. Several low-frequency modes appear, which can
be well predicted by a linear approach outlined in Appendix A.1.

• In our experiments, the relative water depth of the shallower region covers
only a limited range [0.42, 0.77], it is difficult to draw conclusive comments
on the ’threshold’ or ’transition’ relative water depth as done in Trulsen et al.
(2020). But at least, the Case 1 (and the Case 19 not shown here) in our
experimental campaign did not show local maxima of nonlinear parameters.
This suggests two possibilities, one is that the ’threshold’ depth for different
dynamic responses of the sea states over the current 1 : 20 slope is between
0.5 (Case 10) and 0.64 (Case 1). The other is that the nonlinearity also
plays an important role in determining the dynamic response of water waves
propagating over uneven bottoms.

• We stress on the fact that the bottom slope can provoke effects on a very local
scale. Even for quasi-Gaussian sea states, like Case 1, the bottom transition
could bring the formation of freak waves from an energetic wave packet.

• The numerical simulation study is conducted by using two highly accurate
numerical codes, one is a Boussinesq-type model and the other is Whispers3D.
Simulations with both codes show good agreement with measurements given
the length of relaxation zone, numerical step sizes in space (∆x) and time
(∆t), and the parameters NT (for Whispers3D) and NB (for Boussinesq-type
model) are properly chosen. The agreement is better in the upwave zone
near the wavemaker than downwave due to some unexpected perturbations
in the outdoor wave flume at THL. The statistical parameters agree well
with measurements downstream, thus the models can be used to study the
statistical features of freak waves. The conclusion drawn from the detailed
comparison between Case 10 simulation results and measurements are given
in the conclusion section of the journal paper, and are thus not repeated here.

In the work of Trulsen et al. (2020), long-crested irregular wave trains prop-
agating over a steep (1 : 3.81) step bottom profile have been investigated. The
wave-bottom interaction includes both shoaling and de-shoaling processes. With a
series of tests with a large range of relative water depth, they found the ’transition’
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water depth being 1.3 in their tests. The statistical moments of horizontal veloc-
ity are shown to have different evolutions in space compared to that of the free
surface elevation. In the numerical study, we adopted Whispers3D to reproduce
one of the experimental cases of Trulsen et al. (2020) and extracted additional
information from the computed velocity field. Then, the effects of de-shoaling are
discussed with a simulation of the same incident wave train propagating over a step
bottom profile. A thorough investigation of the sea state adaptation process for
both bottom profiles has been conducted by considering various non-dimensional
parameters, wave-by-wave statistics, spectral and bispectral analyses. The main
findings and conclusions have been reported in a journal paper (submitted), and
are thus not repeated here.

5.2 Outlook and perspectives of future work

In this part, the concept of the ’transition’ relative water depth has been discussed
on the basis of two independent experimental campaigns, one is conducted by our
team in the wave flume of THL in Taiwan, and the other by another team in Nor-
way. In our experiments, different parameter combinations in (h, Tp, Hs, γ) space
have been considered; however, the range of relative water depth in the shallower
region is relatively limited. Meanwhile, the experiments of Trulsen et al. (2020)
considered a larger range of shallower region relative water depth but only for
intermediate nonlinearity. Both experimental campaigns tested one bathymetry
setup (with different slopes).

It remains to be systematically studied whether the transition water depth is
influenced by other factors (apart from relative water depth), such as wave non-
linearity, slope gradient, and spectral width. Comparing Cases 1-5 with gradually
increasing incident wave amplitudes, the local values of skewness and kurtosis after
the slope show a increasing trend. In our experiments, the cases with different γ
factor of the JONSWAP spectrum (Case 10 and 11 for example) show very sim-
ilar results in terms of statistical parameters, indicating that the spectral width
plays a secondary role, at least in our tests. As follow-up work, a larger numerical
investigation will be conducted with Whispers3D model which has been proven
its validity in the simulations of these two experimental campaigns. The purpose
is to show whether and how the choices of bottom slope, spectral width, and the
nonlinearity of the wave train take effects during the sea state adaptation process
over the sloping area.
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Une montagne est faite de poignées de terre, un fleuve de nombreux filets d’eau.
Taöısme, œuvre de Tchouang-tseu
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Appendix A

Derivation details

1.1 The derivation of natural modes in the water flume with
arbitrary bottom profile

In experiments, the causes of the formation of long-waves are various, including
non-resonant wave-wave interaction and long-wave resonance. As is known that
when the length of the basin is an integral multiple of half wavelength, long-wave
resonance could take place in the basin. To study the low-frequency waves in
experiments, the possible frequencies that may resonate within the flume should
be computed. For the arbitrary water depth, within the framework of linear theory,
the wavelength (and its corresponding wave-number) is a function of local water
depth h(x). The resonance condition in the flume with l̄w in length, is:

lb =
nl̄w
2

=
nπ

k̄w
, (V.A.1)

where lb denotes the length of wave flume, l̄w denotes the averaged wavelength,
and its corresponding wave-number is k̄w.

The averaged wave-number over the wave flume length is defined as:

k̄w =

∫ lb
0
kw(x) dx

lb
, (V.A.2)

so the resonant condition could be written by replacing k̄w in Eq. (V.A.1) with
Eq. (V.A.2): ∫ lb

0

kw(x) dx = nπ. (V.A.3)

Now, consider the following additional assumptions, which generally hold for
long waves in the wave flume:

iii
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• Assumption 1 The long waves in the wave flume are of low energy, the
wave amplitudes are small compared to their wavelengths (low steepness).
The linear wave theory can thus be adopted.

• Assumption 2 Within the framework of linear theory, the local relative
water depth kwh as a function of x is small all over the basin so that the
shallow-water approximation of the linear dispersion relationship could be
adopted to estimate local mean angular frequency ωw = kw

√
gh;

• Assumption 3 The variable bottom could be approximated by a large num-
ber of small segments with constant slopes as shown in Figure (V.A.1). The
i-th slope segment starts from xi to xi+1 and its length is lb,i = xi+1 − xi.

One wave length 𝐿𝑤(𝑥)

—— Real Bottom 
Approximated Bottom

Wave 
generation
zone

Wave 
absorption
zone

Bottom length 𝐿𝑏

Local water depth ℎ(𝑥)

𝑥0 𝑥𝑖 𝑥𝑖+1

Figure V.A.1: A two dimensional basin with variable bottom.

Applying assumption 2 to the resonant condition given in Eq. (V.A.3), a set of
the possible resonant frequencies fn is obtained:

fn =
ωn
2π

=
n
√
g

2

[ ∫ lb

0

1√
h(x)

dx

]−1

, n = 1, 2, 3, ... (V.A.4)

Using Kn to denote the integral
∫ lb

0
1/
√
h(x) dx, the Eq. (V.A.4) is simplified as

follows:

fn = n

√
g

2
K−1
n . (V.A.5)

Now the assumption 3 is applied here to evaluate Kn in a discrete manner.
The real bottom profile is separated into a large number of segments with constant
slopes, and the original integration is simplified. The Kn is evaluated as:

Kn =
n−1∑

i=0

∫ xi+1

xi

1√
h(x)

dx, (V.A.6)

when the number of segments is large so that lb,i is small enough, the water depth
as a function of x is approximated by:

h(x) ≈ h(xi+1)− h(xi)

lb,i
(x− xi) + h(xi). (V.A.7)
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By replacing h(x) in Eq. (V.A.7) into Eq. (V.A.6), the result of the integral
could be written as:

Kn ≈
n−1∑

i=0

2
(
xi+1 − xi

)

h(xi+1)− h(xi)

[√
h(xi+1 −

√
h(xi)

]

=
n−1∑

i=0

2
(
xi+1 − xi

)
√
h(xi+1) +

√
h(xi)

=
n−1∑

i=0

2lb,i√
h(xi+1) +

√
h(xi)

.

Now the possible resonant frequencies could be computed by taking the ap-
proximated value of Kn, and other properties corresponding to each natural mode
are obtained:

fn = n

√
g

2
K−1
n ωn = 2πfn, n = 1, 2, 3..., (V.A.8)

l̄n =
2lb
n

k̄n =
2π

l̄n
, n = 1, 2, 3.... (V.A.9)

This method is valid as long as the shallow water assumption can be considered
to hold.

1.2 Relation of different dissipation rates in visco-potential
and NLSE models

In NLSE models, the dissipation parameter δ stands for the exponential attenua-
tion rate of wave amplitude. Whereas, the bulk dissipation ν in Whispers3D model
following the visco-potential approach of Dias et al. (2008) is applied to the whole
computation domain. Here we compute the corresponding amplitude attenuation
rate δ for given bulk dissipation rate ν. This computation is performed within the
linear framework.

First, recall the two free surface boundary conditions in two-dimensional Euler-
Zakharov model applied at z = η(x, t), the definition of variables and detailed
derivation are given in Section (2):




ηt = −φ̃xηx + w̃

(
1 + η2

x

)
+ 2νηxx, (V.A.10)

φ̃t = −gη − 1

2
φ̃2
x +

1

2
w̃2
(
1 + η2

x

)
− 2νφ̃zz. (V.A.11)

Retaining only the linear terms in the free surface boundary conditions, we get the
linearized system of equations on the (linearized) free surface z = 0:

{
ηt − φz − 2νηxx = 0, (V.A.12)

φ̃t + gη + 2νφ̃zz = 0. (V.A.13)
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Considering uniform water depth, h being constant, the linearized problem
with bulk dissipation taken into account becomes:





φtt + gφz − 2ν (φxxt − φzzt + 2νφxxzz) = 0, z = 0 (V.A.14)

φxx + φzz = 0, −h ≤ z ≤ 0 (V.A.15)

φz = 0. z = −h (V.A.16)

We look for harmonic plane wave solution of the system of Eqs. (V.A.14) ∼
(V.A.16) of the following form:

φ(x, z, t) = cosh (κ(h+ z))eiκxe−iωt, (V.A.17)

where ω denotes angular frequency, κ ≡ a + ib is the corresponding complex
wave number. The exponential decay of wave amplitude is characterized by the
imaginary part of the wave number: δ = b.

Inserting Eq. (V.A.17) into the linearized free surface boundary condition
Eq. (V.A.14), the dispersion relation in dissipative medium is obtained:

ω2
(

1 + 2i
ν

ω
κ2
)2

= gκ tanh (κh). (V.A.18)

For given (ω, h, ν), the roots of κ of this dispersion relation can be found. The
real part of κ is the wave-number corresponding to ω, and the imaginary part of κ
represents the wave amplitude attenuation that corresponds to ν. Especially, when
ν is zero, Eq. (V.A.18) reduces to the classical linear wave dispersion relationship.
A simple iteration approach can be used to solve Eq. (V.A.18), and will not be
detailed here.

Via this approach, the corresponding δ for given ν is obtained. For given δ
(from measurements), the corresponding value of ν is found by bisection method.
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doi:10.1103/PhysRevE.99.053109.
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Interactions vagues-fond marin et mécanismes de formation des vagues scélérates en zone côtière 

Résumé: Dans la communauté maritime, le terme de "vague scélérate" est utilisé pour les vagues dont la hauteur dépasse le 
double de la hauteur significative de l'état de mer considéré, et qui apparaissent plus fréquemment que la prédiction linéaire  
(i.e. modèle de Rayleigh). Dans les zones côtières, une bathymétrie irrégulière peut également provoquer des vagues extrêmes 
du fait des interactions entre le fond marin et les vagues. Dans cette thèse, nous nous concentrons sur trois scénarios 
d'interactions vagues-fond qui peuvent entraîner la formation de vagues extrêmes. Le premier scénario est un phénomène de 
résonance, connu sous le nom de résonance de Fabry-Pérot, qui peut se développer lorsque des vagues monochromatiques se 
propagent sur une bathymétrie comportant deux zones d'ondulations sinusoïdales sur un fond par ailleurs plat. Dans le 
résonateur situé entre les deux zones de rides, une augmentation significative de la hauteur de l'onde incidente peut être 
obtenue si la condition de résonance est satisfaite. En comparant des simulations numériques avec une condition limite de 
fond exacte ou approchée et une solution analytique linéaire asymptotique, nous observons un décalage de fréquence de 
résonance pour la condition de résonance et pour les cas où le rapport entre l'amplitude des ondulations et la profondeur de 
l'eau est grand. Le second scénario est celui des instabilités des trains de houle modulés en amplitude, appelés communément 
« breather » qui se propagent sur des fonds irréguliers. Trois types de profils bathymétriques sont étudiées expérimentalement 
et numériquement avec un modèle entièrement non-linéaire et avec l'équation cubique non-linéaire de Schrödinger. Cette 
étude a permis de montrer que pour de faibles profondeurs et pour certains paramètres, l’amplitude de la modulation peut 
atteindre deux fois l’amplitude du train initial. Cette amplification en faible profondeur résulte de mécanismes qui n’existent 
pas en profondeur constante. Le troisième scénario correspond à des trains de vagues irrégulières unidirectionnelles se 
propageant sur des profils de fond côtier variables. Lorsqu'un état de mer incident en condition d’équilibre passe sur une barre 
ou une marche submergée, une dynamique de non-équilibre apparaît et force l'état de mer à un nouvel équilibre compatible 
avec la profondeur finie, caractérisé par des statistiques fortement non-gaussiennes et une probabilité accrue d'occurrence de 
vagues extrêmes. La combinaison d'expériences à grande échelle et de simulations complètement non-linéaires permet de 
mieux comprendre la réponse dynamique du train de vagues. Les données obtenues ont été analysées en profondeur en utilisant 
une combinaison d'approches spectrales, bispectrales et statistiques. 
 
Mots-clés: vagues côtières extrêmes, vagues scélérates, interactions vagues-fond marin, résonance de Fabry-Pérot, 
focalisation modulationnelle, vagues non-linéaires. 
 

Wave-seabed interaction and mechanisms of freak wave formation in coastal zones 

Abstract: In the maritime community, the term “rogue wave” or “freak wave” is used for waves whose wave height exceeds 
twice the significant wave height of the background sea state, and that appear more frequently than the linear expectation (i.e. 
Rayleigh model). In coastal areas, uneven bathymetry could also trigger such high waves due to wave-bottom interactions. In 
this study, we focus on three scenarios of wave-bottom interactions that may result in the formation of high waves. The first 
scenario is a resonance phenomenon, known as Fabry-Perot resonance, that may develop when monochromatic waves 
propagate in a domain with two patches of sinusoidal undulations on an otherwise flat bottom. Within the so-called resonator 
between the two patches, significant enhancement of incident wave is expected if the resonance condition is met. By 
comparing numerical simulations with either exact or approximated bottom boundary condition and asymptotic linear 
analytical solution, we report significant frequency downshift effect of the resonance condition, for cases with large ratios of 
ripple amplitude to water depth. The second scenario corresponds to the instabilities of amplitude-modulated waves called 
“breathers” propagating over an uneven bottom. Three kinds of bathymetry profiles are investigated experimentally, and 
numerically with a fully nonlinear model and the cubic nonlinear Schrödinger equation. Results show that as the instabilities 
develop, the modulations can split into sub-modulations when waves entered the uneven bottom region. We show 
experimental evidence that the sub-modulations may overlap with each other forming freak waves nearshore. The third 
scenario corresponds to irregular long-crested wave trains propagating over uneven coastal bottom profiles. As an incident 
equilibrium sea state passes over a submerged step or bar, non-equilibrium dynamics appears and forces the sea state to a new, 
finite-depth equilibrium along with strong non-Gaussian statistics and intensified occurrence probability of large wave events. 
The combination of large-scale experiments and fully nonlinear simulations allows gaining insight into the dynamical 
response. The obtained data have been analyzed in-depth using a combination of spectral, bispectral and statistical approaches. 
 
Key words: extreme coastal waves, freak waves, wave-bottom interaction, Fabry-Perot resonance, modulational focusing, 
nonlinear waves. 
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