N

N

End-to-end mechanisms to improve latency in
communication networks
Baptiste Jonglez

» To cite this version:

Baptiste Jonglez. End-to-end mechanisms to improve latency in communication networks. Network-
ing and Internet Architecture [cs.NI|. Université Grenoble Alpes [2020-..], 2020. English. NNT:
2020GRALMO048 . tel-03120529

HAL Id: tel-03120529
https://theses.hal.science/tel-03120529

Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03120529
https://hal.archives-ouvertes.fr

UCA

Université
Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE GRENOBLE ALPES
Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Baptiste JONGLEZ

These dirigée par Martin HEUSSE
et codirigée par Bruno GAUJAL

préparée au sein du Laboratoire d’Informatique de Grenoble
dans I’Ecole Doctorale Mathématiques, Sciences et technologies de
Iinformation, Informatique

Mecanismes de bout en bout pour

ameéliorer la latence dans les ré-
seaux de communication

End-to-end mechanisms to improve latency in
communication networks

Thése soutenue publiguement le 23 octobre 2020,
devant le jury composé de :

Monsieur Martin HEUSSE

Professeur des Universités, Grenoble INP, Directeur de thése
Monsieur Bruno GAUJAL

Directeur de Recherche HDR, Inria, Co-Directeur de thése
Monsieur André-Luc BEYLOT

Professeur des Universités, INP Toulouse - ENSEEIHT, Rapporteur
Monsieur Guillaume URVOY-KELLER

Professeur des Universités, Université Cote d’Azur, Rapporteur
Madame Isabelle GUERIN LASsOUS

Professeur des Universités, Université Lyon 1, Présidente
Madame Anna BRUNSTROM

Professeur, Université de Karlstad - Suéde, Examinatrice

Abstract

The network technologies that underpin the Internet have evolved significantly over the
last decades, but one aspect of network performance has remained relatively unchanged:
latency. In 25 years, the typical capacity or “bandwidth” of transmission technologies has
increased by 5 orders of magnitude, while latency has barely improved by an order of
magnitude. Indeed, there are hard limits on latency, such as the propagation delay which
remains ultimately bounded by the speed of light.

This diverging evolution between capacity and latency is having a profound impact on
protocol design and performance, especially in the area of transport protocols. It indirectly
caused the Bufferbloat problem, whereby router buffers are persistently full, increasing
latency even more. In addition, the requirements of end-users have changed, and they
expect applications to be much more reactive. As a result, new techniques are needed to
reduce the latency experienced by end-hosts.

This thesis aims at reducing the experienced latency by using end-to-end mechanisms,
as opposed to “infrastructure” mechanisms. Two end-to-end mechanisms are proposed.
The first is to multiplex several messages or data flows into a single persistent connection.
This allows better measurements of network conditions (latency, packet loss); this, in
turn, enables better adaptation such as faster retransmission. I applied this technique to
DNS messages, where I show that it significantly improves end-to-end latency in case of
packet loss. However, depending on the transport protocol used, messages can suffer from
Head-of-Line blocking: this problem can be solved by using QUIC or SCTP instead of TCP.

The second proposed mechanism is to exploit multiple network paths (such as Wi-Fi, wired
Ethernet, 4G). The idea is to use low-latency paths for latency-sensitive network traffic,
while bulk traffic can still exploit the aggregated capacity of all paths. This idea was partially
realized by Multipath TCP, but it lacks support for multiplexing. Adding multiplexing
allows data flows to cooperate and ensures that the scheduler has better visibility on the
needs of individual data flows. This effectively amounts to a scheduling problem that was
identified only very recently in the literature as “stream-aware multipath scheduling”. My
first contribution is to model this scheduling problem. As a second contribution, I proposed
a new stream-aware multipath scheduler, SRPT-ECF, that improves the performance of
small flows without impacting larger flows. This scheduler could be implemented as part
of a MPQUIC (Multipath QUIC) implementation. More generally, these results open new
opportunities for cooperation between flows, with applications such as improving WAN

aggregation.

Résumé

Les technologies réseau qui font fonctionner Internet ont beaucoup évolué depuis ses débuts,
mais il y a un aspect de la performance des réseaux qui a peu évolué : la latence. En 25 ans,
le débit disponible en couche physique a augmenté de 5 ordres de grandeur, tandis que la
latence s’est a peine améliorée d’'un ordre de grandeur. La latence est en effet limitée par des
contraintes physiques fortes comme la vitesse de la lumiére.

Cette évolution différenciée du débit et de la latence a un impact important sur la conception
des protocoles et leur performance, et notamment sur les protocoles de transport comme TCP.
En particulier, cette évolution est indirectement responsable du phénomene de “Bufferbloat”
qui remplit les tampons des routeurs et exacerbe encore davantage le probléme de la latence.
De plus, les utilisateurs sont de plus en plus demandeurs d’applications trés réactives. En
conséquence, il est nécessaire d’introduire des nouvelles techniques pour réduire la latence
ressentie par les utilisateurs.

Le but de cette these est de réduire la latence ressentie en utilisant des mécanismes de
bout en bout, par opposition aux mécanismes d’infrastructure réseau. Deux mécanismes de
bout en bout sont proposés. Le premier consiste a multiplexer plusieurs messages ou flux
de données dans une unique connexion persistante. Cela permet de mesurer plus finement
les conditions du réseau (latence, pertes de paquet) et de mieux s’y adapter, par exemple
avec de meilleures retransmissions. J'ai appliqué cette technique a DNS et je montre que la
latence de bout en bout est grandement améliorée en cas de perte de paquet. Cependant, en
utilisant un protocole comme TCP, il peut se produire un phénomeéne de blocage en ligne
qui dégrade les performances. Il est possible d’utiliser QUIC ou SCTP pour s’affranchir de ce
probléme.

Le second mécanisme proposé consiste a exploiter plusieurs chemins, par exemple du Wi-
Fi, une connexion filaire, et de la 4G. L'idée est d'utiliser les chemins de faible latence
pour transporter le trafic sensible en priorité, tandis que le reste du trafic peut profiter de
la capacité combinée des différents chemins. Multipath TCP implémente en partie cette
idée, mais ne tient pas compte du multiplexage. Intégrer le multiplexage donne davantage
de visibilité au scheduler sur les besoins des flux de données, et permettrait a ceux-ci
de coopérer. Au final, on obtient un probleme d’ordonnancement qui a été identifié tres
récemment, “I'ordonnancement multi-chemins sensible aux flux”. Ma premiére contribution
est de modéliser ce probleme. Ma seconde contribution consiste a proposer un nouvel
algorithme d’ordonnancement pour ce probleme, SRPT-ECF, qui améliore la performances
des petits flux de données sans impacter celle des autres flux. Cet algorithme pourrait étre

utilisé dans une implémentation de MPQUIC (Multipath QUIC). De facon plus générale,

ces résultats ouvrent des perspectives sur la coopération entre flux de données, avec des

applications comme l’agrégation transparente de connexions Internet.

Remerciements

Cette thése doit beaucoup aux échanges nourris et constructifs que j’ai eu la chance
d’avoir avec mes deux directeurs de these, Martin Heusse et Bruno Gaujal, et je
les en remercie. IlIs ont su accorder le temps nécessaire pour se rencontrer tous
les trois régulierement et me permettre ensuite de faire fructifier ces réflexions.
Leurs domaines de spécialité bien différents n’a pas toujours facilité les échanges,
mais il en est systématiquement ressorti des points de vue complémentaires sur les
problemes abordés.

Merci a Sinan Birbalta que j’ai eu le plaisir d’encadrer comme stagiaire de master et
qui a travaillé sur des expériences préliminaires a mes travaux de these.

Merci a Maciej Korczynski et Yevheniya Nosyk de m’avoir impliqué dans leur projet
« Source Address Validation » qui a donné de beaux résultats : j’ai trouvé du plaisir
a participer au projet, et j’ai également apprécié de pouvoir travailler sur un autre
sujet quand jétais bloqué sur mon sujet de these principal.

Avec presque 400 heures d’enseignement tout au long de ma thése, j’ai évidemment
beaucoup collaboré avec mes collegues de I'Ensimag : outre Martin Heusse, merci
a Roland Groz, Andrzej Duda, Olivier Alphand, Franck Rousseau, Grégory Mounié,
Matthieu Moy et Frédéric Wagner de m’avoir donné l'opportunité de travailler
ensemble. Sans oublier les services administratifs de ’Ensimag ainsi que le service
informatique que j’ai souvent sollicité.

Je tiens également a remercier Juliusz Chroboczek et Matthieu Boutier de 'Université
Paris Diderot pour m’avoir permis de mettre un pied dans la recherche en réseau il y
a maintenant 7 ans. De méme, je suis reconnaissant 4 ’Ecole Normale Supérieure
de Lyon pour sa formation « par et pour la recherche » et pour m’avoir donné
I'opportunité de poursuivre cette aventure académique avec un financement de
these.

Tout au long de ma thése, les collegues de mes deux équipes de rattachement,
Drakkar et Polaris, ont été essentiels a une vie d’équipe riche et a une ouverture
sur des sujets de recherche différents des miens. Merci en particulier a Takwa,
Ulysse, Henry, Timothy, Pierre et Etienne pour le grand nombre de discussions
passionnantes durant ces quelques années passées ensemble. Merci également au

Vi

personnel administratif du Laboratoire d’Informatique de Grenoble, toujours trés
professionnel, et en particulier a Pascale Poulet, Alexandra Guidi et Annie Simon
pour leur capacité a surmonter les problemes de facon particulierement efficace.

Enfin, merci & ma famille de m’avoir soutenu dans ce projet malgré la distance, et
merci a Oriane de m’avoir accompagné toutes ces années, et particulierement d’avoir
réussi a survivre a un confinement en compagnie d’'un doctorant en fin de rédaction.

Contents

Abstract i
Résumé ili
Remerciements v
Contents vii
1 Introduction 1
1.1 Latency in modern communication networks 1
1.1.1 Experiencedlatency 2

1.1.2 Impact of latency on applications 2

1.2 Reducinglatency e 4
1.2.1 Infrastructure mechanisms to improve latency 4

1.2.2 End-to-end mechanisms to improve latency 5

1.3 Multi-homing and multipath communication 6
1.3.1 Reducing latency with multi-homing 7

1.4 Methodology 8
1.5 Overview of contributions 9
1.5.1 Reducing latency with better routing 9

1.5.2 Performance of persistent DNS connections 10

1.5.3 Stream-aware multipath scheduling 11

1.6 Outline e 12

2 Dissecting end-to-end latency 13
2.1 End-host sources of latency inanetwork 13
2.2 Multiplexing messages on a connection 15
2.2.1 The need for application data multiplexing 15

2.2.2 Message-oriented semantic, 16
Multiplexing in the message-oriented semantic 17

2.2.3 Stream-oriented semantic 18
Multiplexing in the stream-oriented semantic 19

2.2.4 Hybrid semantic: HTTP 19
Multiplexing in HTTP/1 20

Vii

viii

Multiplexing in HTTP/2

2.3 Performance impact of multiplexing
2.3.1 Sharingcosts i
2.3.2 Reactivity and buffer management
2.3.3 Head-of-line blocking at the transport layer
2.3.4 Messagebundling

2.4 Latency impact of multi-homing
2.4.1 Multi-homing challenges that impair latency
Head-of-line blocking

Receive window blocking

Shortflows

2.4.2 Opportunities offered by multipath scheduling.

2.5 Conclusion e e
2.5.1 Multiplexing
2.5.2 Multi-homing

Performance of persistent DNS connections
3.1 DNS: performance requirements and transport protocol
3.2 Message loss dramatically impacts DNS-over-UDP latency
3.3 Improving DNS latency with persistent connections
3.3.1 Experimental validation
3.3.2 Relatedwork
3.3.3 Goingbeyond latency
3.4 Evaluation of recursive DNS resolver performance
3.4.1 The need for persistent connections
3.4.2 Deployment model: large-scale persistent DNS connections
3.4.3 Experimental setup and methodology
3.4.4 Methodology: performance metrics
345 Results. e e
3.4.6 Limitations of the methodology
Query generationmodel 0oL L.
Differences between DoTand DoH
Churn and cost of new TLS connections
3.5 Conclusion

4 Stream-aware multipath scheduling

4.1 Background on stream multiplexing and scheduling
4.1.1 From single-stream to multi-stream transport: an historical
Perspective e e e e e e e e

31
31
33
35
36
43
45
46
46
47
47
48
49
53
53
53
53
54

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.1.2 Scheduling multiplexed streams 61

The multi-stream schedulingmodel 64
Applicability to SCTP 66
Applicability toQUIC 67
Applicability to HTTP 68

Stream-aware multipath scheduling 69

4.3.1 Multipath scheduling with several streams 69
Stream scheduling 69
Path allocation 71

4.3.2 Shortcomings of MPTCP schedulers 71

Shortcomings of MPTCP scheduling: serialisation at the sender 71
Shortcomings of MPTCP delivery: serialisation at the receiver 72

4.3.3 Stream-aware multipath schedulers. 73
<Round-Robin>-<MinRTT> 74
<Round-Robin>-<ECF> 74
<Round-Robin>-<Single Path> 75
<Sticky Round-Robin>-<Single Path> 75
<Sequential>-<ECF> 76
<FCFS>-<ECF> 76

ECF: multipath scheduling for a single message 77

4.4.1 Networkmodel, 77

4.4.2 Completiontimeof ECF 77

SRPT-ECF: optimal stream-aware multipath scheduling 79

4.5.1 Examples 80

4.5.2 Propertiesof SRPT-ECF. 81

Running SRPT-ECFonline 82

4.6.1 Online SRPT-ECF algorithm 83

4.6.2 Comparison with offline algorithms 84

Trace-based evaluation of SRPT-ECF 85

4.7.1 Methodology 85

4.7.2 Simulationcode 86

473 Results. e 87

Practical considerations, 89

4.8.1 Dealing with network variability and uncertainty 89

4.8.2 Congestion control: pacing vs. congestion window 90
Pacing e 90
Classical congestion window 90
Pacing and scheduling 91

4.8.3 Buffering strategy 91

4.8.4 Streaming use-cases and infinite messages 92

4.9 Conclusion 92
5 Conclusion 95
5.1 Perspectives e e e e e 97
5.1.1 Dealing with measurement uncertainties 97

5.1.2 More cooperation between thin-stream and bulk-transfer com-
munications e 98
5.1.3 WANaggregation 99
Improving WAN aggregation 101
5.1.4 Large-scale impact of multipath 102
Bibliography 105
List of Figures 117

List of Tables 121

1.1

Introduction

Latency in modern communication networks

The Internet has seen major evolutions over the years: new services have been
deployed, mobile and wireless usage has exploded, and the transmission capacity
of common technologies — the “bandwidth” of your Wi-Fi network or Internet
connection — has increased by 5 orders of magnitude in 25 years [16]. However,
latency is one aspect of communication networks that has remained relatively
unchanged because of strong physical constraints. Improvements have been made,
but in a much less spectacular way than the growth in capacity: in 1987, the
typical delay through the ARPANET network was around 340 ms of round-trip time
(RTT) [63]. Today, the typical round-trip time through the continental US is around
60 ms: for this specific example, latency has seen an improvement of less than
an order of magnitude in 33 years. There are hard limits on latency, such as the
propagation delay which remains ultimately bounded by the speed of light.

With the stagnation of latency causing such an imbalance between capacity and
latency, new problems are arising. The Bandwidth-Delay Product (BDP) has be-
come larger and larger, basically following the increase in network capacity. As a
result, traditional congestion control algorithms that were designed in a small-BDP
environment have a hard time adapting to a high-BDP environment, and cannot
take advantage of high-capacity paths. This has led to the development of more
aggressive congestion control algorithms for TCP, such as Cubic [37] or BBR [14].
These new algorithms can indeed deliver the full expected throughput on high-
capacity paths; however, they can also cause a significant amount of congestion [39].
This congestion, in turn, increases queuing delays and thus the overall amount of
latency. In fact, Cubic may well be responsible for causing, or at least exposing,
bufferbloat [2, 48].

This motivates efforts aimed at reducing latency, which can be done in many differ-
ent ways. This work is focused on reducing latency through end-to-end mecha-
nisms.

1.1.1

1.1.2

Experienced latency

In this work, I am mostly interested in the overall latency experienced by an appli-
cation. The application is running on a terminal, also called end-host (a laptop, a
mobile phone, a connected device. . .). It communicates through a network with a
remote application: this remote application typically runs on a server, but it can also
run on another terminal when using peer-to-peer protocols.

The overall latency includes delays caused by the network itself, as well as those
caused in the end-host (buffers, transport protocol, operating system).

A simple way to approximate the overall experienced latency is to measure the
Round-Trip Time (RTT). It can be done by sending a small data packet that goes to
the destination host and immediately elicits a small data packet as response. This is
what a tool like ping measures. However, such a measurement technique ignores
delays coming from the transport protocol, from moving data between the operating
system and the application, or from the data processing happening on the remote
host. To obtain more accurate measurements, the overall latency must be measured
between the local application and the remote application.

Impact of latency on applications

Latency is becoming the new performance bottleneck for many applications. This
is especially true for new interactive applications such as Virtual Reality (VR). VR
needs low end-to-end latency between user motion and the corresponding visual
feedback, sometimes called “motion-to-photon” latency. If this latency is too high,
the user may experience impaired motor performance or even nausea or headaches.
The maximum acceptable end-to-end latency ranges from 50-75 ms [1, 106] to as
low as 15-20 ms for Head-Mounted Displays [24, 70]. When graphical rendering is
done remotely through a communication network, many steps must fit within such a
tight latency budget: motion sensor acquisition, round-trip network communication,
graphical rendering, and display update. Even with state-of-the-art equipment
for the other steps, this leaves a latency budget of only 14 to 40 ms for network
communication.

Traditional applications that involve bulk transfers of data, such as web applications,
are also highly affected by latency. When transferring small amounts of data over
a high-capacity networks, the transfer time is dominated by two factors: the ini-
tialisation phase (e.g. TCP’s three-way handshake), and the slow-start mechanism
used to probe available capacity and avoid congestion. Both factors are directly

Chapter 1 Introduction

related to the end-to-end latency: when latency gets higher, feedback takes more
time to be received from the remote end of the connection. For instance, with a
40 ms RTT and an initial window of 4380 bytes, it takes 10-11 round-trips for TCP’s
slow-start algorithm to ramp up to 1 Gbit/s in ideal conditions. During these 10
first round-trips, only 4.3 MiB of data is transferred, yielding an average throughput
of 90 Mbit/s. This example shows that a standalone transfer of a few megabytes
cannot achieve 1 Gbit/s of throughput in the presence of moderate latency.

More generally, the communication pattern of applications can be classified in two
categories [85]:

throughput-bound communication or “greedy streams” [85]: in this category, the
application almost always has more data to send. Thus, the throughput is typi-
cally limited by the TCP congestion window. This category of communication
is characterized by large packet size and high packet rate. The main use-case
is bulk transfer of data, such as downloading or uploading a file.

thin-stream communication In this category, the application only has sporadic
data to send. It is characterized by small packet size, large packet inter-arrival
time, and low packet rate. This includes applications such as online gaming,
instant messaging, voice-over-IP, DNS, and more generally any application
that communicates through a series of small messages or requests/responses.

This distinction has a major implication on choosing the appropriate metric to study
performance. For throughput-bound communication, the main metric is the effective
throughput, which can be alternatively measured as the completion time of each bulk
transfer: the average throughput is the total size divided by the completion time.
Even though these applications are throughput-bound, the completion time can still
depend on latency, as we have seen in the small calculation above. The completion
time is typically a large multiple of the RTT. In Chapter 4, I optimize the completion
time of individual “streams” that can potentially transfer a large amount of data.

For thin-stream communication, the main metric is the latency of each individual
message (which can be a request, response, or a message with any other semantic).
Since messages are typically small, the transmission time is usually negligible: in this
case, overall latency is dominated by sources of latency coming from the network,
such as propagation delay or queuing delay. For instance, I use the latency metric
in Chapter 3 to evaluate the performance of DNS. DNS is clearly a thin-stream
application because it uses small requests and responses and requires a low packet
rate.

1.1 Latency in modern communication networks

1.2

1.2.1

Note that, depending on the network conditions — capacity, latency — the same
application could belong to one category or the other. For example, sending regular
messages of size 50 KB can be considered thin-stream if the network capacity is
large enough. With a 100 Mbps link and 40 ms of RTT, assuming perfect congestion
control and no loss, transmitting a message and receiving the acknowledgment takes
44 ms', which is close to the RTT. However, on a 1 Mbps link with 40 ms of RTT,
transmitting the same message would take 440 ms. Since it takes several RTT, this
becomes a throughput-bound communication.

Overall, when network capacity increases, applications tend to be more limited by
latency. As a result, latency becomes a challenging performance bottleneck for many
applications.

Reducing latency

The goal of this work is to reduce the overall latency experienced by end-hosts. There
are many sources of latency, and as a result there are many possible ways to reduce
latency. These sources and possible remediation are summarized in a comprehensive
survey by Briscoe et al. [12]. For the sake of this introduction, the possible ways
to reduce latency can be loosely categorized in two broad families: infrastructure
mechanisms and end-to-end mechanisms. Both families are briefly described below,
while Chapter 2 delves more into the details of end-to-end mechanisms.

Infrastructure mechanisms to improve latency

The first family of mechanisms that can improve latency are infrastructure mech-
anisms, i.e. any mechanism that is not directly accessible to the end-hosts. This
includes any improvements to the structure of the Internet or its supporting tech-
nologies.

For instance, it is possible to improve Internet routing to provide shorter geographical
routes. This can be done by careful configuration of BGP routing policies, or by
developing local peering points (Internet eXchange Points or IXP). This touches on
the structure of the network.

50 KBx8
100 Mbps

!The transmission delay is 4 ms =

Chapter 1 Introduction

1.2.2

It is also possible to move content closer to the user thanks to caches or CDNs
(Content Delivery Networks). Even going further, there are proposals to move
computation capabilities closer to the user (Edge Computing).

Better technologies can improve latency as well: FTTH (Fiber-to-the-home) provides
much lower local-loop latency compared to xDSL (Digital Subscriber Line), because
it uses less elaborate mechanisms to overcome noise and interference — for instance,
xDSL usually implements an interleaving mechanism to mitigate bursts of noise,
which increases the transmission latency. As an other example, Low-Earth-Orbit
satellite systems (LEO) provide much lower propagation latency than communication
satellites in geostationary orbit. One such LEO system, StarLink, has recently
demonstrated end-to-end latency of 30 ms [103] in the continental United States.
In contrast, typical end-to-end latency through a geostationary satellite is around
600 ms. Given this large difference in end-to-end latency and the general need for
lower latency, it is not surprising that LEO satellite systems are being deployed at a
fast pace.

Lastly, Active Queue Management (AQM) can be used in ISP-managed routers to bet-
ter manage their buffers in case of congestion. This can help avoid bufferbloat [42].

All these mechanisms must be deployed by ISPs or infrastructure providers. Once
deployed, they can have a significant impact by affecting many customers at once.
But they often require large amounts of time and money to be deployed, which may
limit their usage.

End-to-end mechanisms to improve latency

The second family consists of end-to-end mechanisms, i.e. mechanisms mostly
implemented in terminals (computer, smartphone...). These mechanisms can
be deployed relatively easily through software updates or configuration changes,
although it may take significant time to reach a large-scale roll-out.

Many of these mechanisms that can reduce latency are found in the operating system
of end-hosts: drivers for network interface cards, buffer management, transport
protocol implementation or parameters... Some mechanisms are also accessible
to the applications: for instance, choosing an appropriate transport protocol or
appropriate transport protocol options, managing events without blocking. .. Lastly,
exploiting multi-homing to reduce latency is a transversal mechanism that can be
done either in the operating system or the application.

1.2 Reducing latency

Overall, the two families of mechanisms (infrastructure and end-to-end) are comple-
mentary. For instance, in the current Internet, better routing can only be done in the
infrastructure, while exploiting multi-homing is only possible end-to-end.

Exploiting end-to-mechanisms is the main approach adopted in this work. These
mechanisms are easier to deploy and match the end-to-end model of the Internet, in
which most of the intelligence is located at the edge of the network.

1.3 Multi-homing and multipath communication

Multipath transport protocols have emerged in the last decades thanks to the
widespread availability of connectivity options. It is quite common to have si-
multaneous access to several network connections: home Wi-Fi, neigbhour’s Wi-Fi,
mobile connectivity, fiber, DSL... This is called a multi-homing situation, illustrated
in Figure 1.1. The end-host device is physically attached to several networks, and
can exploit these attachment points to use several paths to communicate with a
destination. The device can dynamically choose which path it will use to communi-
cate, based on various metrics: monetary cost of mobile data, expected performance,
measured real-time performance, physical signal level, and so on. When using a
multipath-aware transport protocol such as Multipath TCP [88] or CMT-SCTP [49],
it is even possible to use both paths at the same time and load-balance between
them to optimize a performance metric.

3G/4G network

Home network

Figure 1.1 An end-host device (smartphone) in a multi-homing situation.

6 Chapter 1 Introduction

Figure 1.2

1.3.1

Multi-homing connectivity can also be exploited from the home router, as illustrated
in Figure 1.2. In this case, the end-host device is connected to a single home router,
which is itself attached to several networks. This is the multi-homing model consid-
ered by the IETF [4], in particular in the Home Networking working group [17]. In
this model, the local network runs several parallel addressing schemes, one for each
upstream ISP, using IP address space delegated by the ISPs. Thus, the device can
select which network it will use by just setting the appropriate source address in its
outgoing packets. Alternatively, all control over which path to use can be delegated
to the home router, using Network Address Translation (NAT): this setup is then
known as SD-WAN (Software-Defined Wide Area Network).

ISP A

A

| DSL line

Wi-Fi - _ Cable connection

Home router v

End device

ISP B

An alternative “network-based” multi-homing situation, where the home router has several
network connections, potentially with different ISPs (Internet Service Providers).

Multipath networks are a much more general concept. For instance, multipath is
an essential component of modern datacenter networks [88] to provide redundant
paths between pairs of servers. Similarly, large-scale network operators exploit
multiple paths in their core networks to load-balance traffic and cope with failures.
However, since this work is mostly focused on end-user devices and not in the core
network, I will not consider these situations.

Reducing latency with multi-homing

The diversity of connectivity options offered by multi-homing has been exploited in
several ways:

1. to improve throughput by aggregating the capacity of several network paths [81];

1.3 Multi-homing and multipath communication

1.4

2. to increase reliability by quickly re-routing traffic to a different path in case of
disruption: for example, Multipath TCP has been massively deployed by Apple
to improve the reliability of Siri’s communication [18];

3. to improve reliability and latency by duplicating traffic on several network
paths [34, 25, 69].

In the context of reducing overall latency from the end-hosts, the second and third
items are the most promising. Recovering from disruption, such as temporary loss of
connectivity or mobility, is an area where TCP is lacking.

But as Chapter 4 will show, simply having several paths to choose from can be
enough to improve latency, even without duplicating traffic.

Methodology

Two main methods are adopted in this work. The first one is to experiment with real
networked systems using testbeds. Indeed, operating systems and network protocols
are so complex that simulation may not yield realistic results. On the other hand,
experimenting with real systems “in the wild” is notoriously difficult and does not
easily allow to isolate interesting behaviors. Using testbeds is a middle-ground that is
expected to give more realistic results than simulation, but still allows some control
over experimental parameters. Experiments on testbeds still take a considerable
amount of time to setup, especially when taking efforts to make them reproducible.
Some of these efforts are described in Section 3.4.3 of Chapter 3.

In particular, I worked with several large-scale testbeds such as Grid’5000 [5] or the
NLNOG ring [79]. I also setup small testbeds that were more controlled, allowing
me to study specific effects in more details.

The second method is to develop theoretical models and algorithms. This is mostly
used in Chapter 4 where it is applied to a scheduling problem. In that case, evaluation
is done through simulation: I used HTTP/2 traces that I replay in a simple network
model. The simulation setup is described in details in Section 4.7.2.

Chapter 1 Introduction

1.5 Overview of contributions

1.5.1 Reducing latency with better routing

My first work in this area was to improve routing by taking into account end-to-end
latency. Traditionally, a routing protocol computes paths in a network without
taking into account the actual traffic. For example, a sub-optimal routing choice
may lead to congestion, but routing protocols such as BGP or OSPF have no way to
realize this. It is still possible to take into account the latency of network links, by
encoding it in the link weight used by the routing protocol to compute shortest paths.
However, this requires manual tuning and only provides a static view of latency: the
routing protocol will still be oblivious to an increase of end-to-end latency caused by

congestion.

My proposal is to dynamically compute paths based on end-to-end latency measure-
ments. This allows to always find the path with lowest latency, even in a dynamic
network with changing traffic patterns. The most challenging issue of this approach
is stability: how to prevent the network from oscillating between paths when the
traffic load causes congestion? I leverage recent advances in game theory to design
an algorithm that provably converges to a near-optimal point, without oscillating
indefinitely. There are also other challenges to solve to make this method practical,
for instance: how can a router in the middle of the network measure the end-to-end
latency experienced by a user?

This work led to a publication at ITC29 [52] (International Teletraffic Congress).
The article mixes a theoretical solution based on game theory with an actual imple-
mentation and evaluation of the proposed routing scheme.

While related to latency, this work is based on an infrastructure mechanism: routing.
As such, it will not be detailed further in this thesis. However, it was still an important
milestone to better understand end-to-end latency and led to the development of
the other contributions described in this thesis.

Publications

B. Jonglez and B. Gaujal. “Distributed and Adaptive Routing Based on Game Theory”.
In: 2017 29th International Teletraffic Congress (ITC 29). Vol. 1. Sept. 2017, pp. 1-9.
DOI: 10.23919/ITC.2017.8064333

1.5 Overview of contributions

https://doi.org/10.23919/ITC.2017.8064333

1.5.2

10

Baptiste Jonglez and Bruno Gaujal. “Distributed and Adaptive Routing Based on
Game Theory”. In: ALGOTEL 2017 - 19émes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications. Quiberon, France, May 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01517911

Baptiste Jonglez and Bruno Gaujal. Distributed Adaptive Routing in Communication
Networks. en. report. Inria ; Univ. Grenoble Alpes, Oct. 2016, p. 25. URL: https:
//hal.inria.fr/hal-01386832

Performance of persistent DNS connections

Chapter 3 provides a first look at protocol performance with DNS (the Domain Name
System). The goal is to analyse the performance requirements of DNS applications,
whether these requirements are fulfilled adequately, and how to improve DNS
performance at the transport layer.

DNS is an excellent use-case because it needs both low-latency and reliability: this is
uncommon and not easy to achieve. Current stub resolver implementations mostly
use UDP, with a very naive retransmission strategy that does not take into account
latency or processing delays. As a result, a single lost DNS query produces an
additional delay of 5 seconds (Linux, Android), which can be prohibitive for many
applications.

To improve this situation, I leverage an end-to-end mechanism by using a more
suitable transport protocol. More specifically, using persistent TCP connections
allows to adapt the retransmission timer to the measured Round-Trip Time, leading
to much lower delay in case of query loss. I validate this intuition on a small testbed,
providing detailed explanations of the specific mechanisms that impact the latency
of DNS-over-TCP.

The second question addressed in this chapter is related to scalability: switching
to DNS-over-TCP brings benefits for the end-user, but can it work at a large scale?
Will it overload the DNS infrastructure such as recursive resolvers? Indeed, TCP is a
much more complex protocol than UDP and requires more resources such as CPU
and memory.

To answer this second question, I setup a large-scale series of experiments on
Grid’5000 [5]. The results of these experiments allowed me to analyse the per-
formance impact of large-scale persistent DNS connections on recursive resolvers,
with up to millions of simultaneous TCP clients connecting to a single recursive
resolver.

Chapter 1 Introduction

https://hal.archives-ouvertes.fr/hal-01517911
https://hal.archives-ouvertes.fr/hal-01517911
https://hal.inria.fr/hal-01386832
https://hal.inria.fr/hal-01386832

1.5.3

Publications

Baptiste Jonglez et al. “Poster: persistent DNS connections for improved perfor-
mance”. In: 2019 IFIP Networking Conference, Networking 2019, Warsaw, Poland,
May 20-22, 2019. IEEE, 2019, pp. 1-2. DOI: 10.23919/IFIPNetworking46909 .
2019.8999394

Baptiste Jonglez et al. Improving end-to-end delay at the application layer. Interna-
tional Summer School on Latency Control for Internet of Services. Poster. June
2017. URL: https://hal.inria.fr/hal-01632191

Stream-aware multipath scheduling

Lastly, Chapter 4 is dedicated to multipath scheduling in the multi-homing context
described in Section 1.3. The main idea is to extend existing multipath scheduling
algorithms, as used by Multipath TCP, to the new case of multi-stream transport
protocol. It provides increased benefits for applications that multiplex several flows
of data in the same connection, such as HTTP/2. This recent approach has been
called “stream-aware” multipath scheduling in [87].

More specifically, I identify two key advantages when taking into account application-
level data flows in a multipath scheduler:

1. the receiver can avoid Head-of-Line blocking between unrelated data flows, a
very common issue with Multipath TCP;

2. the scheduler can take more informed decisions, for instance by prioritizing
short flows.

Based on these observations, I introduce a new stream-aware multipath scheduler
called SRPT-ECF, and show that it has good properties. Most notably, it minimises
the stream completion time in ideal network conditions. I then evaluate it on a
HTTP/2 trace.

This work is mainly theoretical and high-level, but the scheduling model is inspired

from both SCTP and MPQUIC. As a result, this new scheduling algorithm should be
readily implementable in MPQUIC.

1.5 Overview of contributions

11

https://doi.org/10.23919/IFIPNetworking46909.2019.8999394
https://doi.org/10.23919/IFIPNetworking46909.2019.8999394
https://hal.inria.fr/hal-01632191

1.6

12

Publications

Baptiste Jonglez et al. “SRPT-ECF: challenging Round-Robin for stream-aware mul-
tipath scheduling”. In: 2020 IFIP Networking Conference, Networking 2020, Paris,
France, June 22-26, 2020. IEEE, 2020, pp. 719-724. URL: https://ieeexplore.
ieee.org/document/9142713

Outline

This thesis is organized as follows. Chapter 2 provides more context on end-to-end
latency, and focuses on two main mechanisms: multiplexing several data flows, and
using multiple paths to transmit data. Each mechanism is analyzed and its impact on
latency — positive as well as negative — is assessed.

Chapter 3 presents the first contribution: multiplexing DNS requests on a persistent
connection to improve latency. The performance of this proposal is analyzed from
two perspectives: end-user latency on the one hand, and infrastructure load on the
other hand.

Chapter 4 combines multiplexing and multi-homing to shed light on a recently
identified scheduling problem, stream-aware multipath scheduling, by formalizing it.
I then propose a new algorithm to solve this scheduling problem: SRPT-ECF. I show
that it has interesting theoretical properties and behaves well in a simulation based
on HTTP/2 traffic traces.

Finally, Chapter 5 summarizes the contributions of this thesis compared to recent
works and draws some perspectives for future work.

Chapter 1 Introduction

https://ieeexplore.ieee.org/document/9142713
https://ieeexplore.ieee.org/document/9142713

2.1

Dissecting end-to-end latency

This chapter delves into end-to-end latency to better understand its cause and
possible ways to improve it. After a brief overview of the different sources of
latency related to end-hosts in Section 2.1, I focus on an important aspect of modern
applications and transport protocols: multiplexing. Section 2.2 defines multiplexing
and the possible models for an application to communicate through a transport
protocol: message-oriented, stream-oriented, hybrid. Section 2.3 then analyses the
impact of multiplexing on latency and illustrate important concepts that will be used
throughout all chapters, such as Head-of-Line blocking.

Lastly, Section 2.4 discusses the latency impact of multi-homing. Using multiple
paths provides several opportunities that can help improve latency, but it also comes
with its own set of challenges.

End-host sources of latency in a network

In a very complete survey [12], Briscoe et. al identify and classify the main sources
of latency in a network. The authors also explore possible techniques for reducing
latency for each source. Among all identified sources of latency, the ones directly
related to the end hosts include:

Transport session initialization (lll-A [12]) Establishing a transport session to a re-
mote host often needs several Round-Trips (RTT). For instance, the three-way hand-
shake of TCP requires a full RTT before the host is able to send any application-level
data, and TLS (Transport Layer Security) adds two more RTT to the initialization
procedure. For transfers of small amounts of data, latency is thus dominated by
the initialization phase. This is made worse by the fact that TCP SYN are lost more
often than other packets in the Internet [11]: as a result, TCP will fall back to multi-
seconds retransmission timeouts, leading to catastrophic latency for the end-user.
Solutions include reducing the number of RTTs needed to establish a session (TCP
Fast Open [15], TLS session resumption), possibly by integrating encryption directly

13

14

into the transport layer with protocols such as TCPcrypt [9] or QUIC [66], and better
queuing management [11].

End-host congestion control algorithm and its induced queuing delay in the network
(IV-F [12]) When an end host uses an aggressive congestion control algorithm such
as Cubic [37] or BBR [14], it will always try to fill buffers at the bottleneck link,
causing large delays both for itself (self-induced latency) and for other flows. This
mostly matters for “bulk” transfers that try to send data as fast as possible through
the network: interactive applications will generally never fill the congestion control
window. However, applications that have an intermittent transmission pattern will
suffer from the lack of Congestion Window Validation (Section V-D of the survey),
where the congestion window grows without actually being tested for congestion.
This creates episodes of self-induced congestion when the application transmits
a large burst of data, leading to high delays and packet loss. A new validation
mechanism [93] attempts to solve this issue without impacting latency-sensitive
applications.

Packet loss recovery (lll-C [12]) Reliable transports need to detect and recover
losses. Two main mechanisms are used: fast retransmit and retransmission timeout.
Triggering a retransmission timeout is undesirable, because it can take several
seconds to recover from a loss. In contrast, fast retransmit can detect and repair
a loss in just one RTT, as shown in Figure 2.1. However, it only works when the
lost packet is immediately followed by several more packets. This is especially
problematic for the last packet of a bulk data transfer, or for interactive “thin stream”
applications [85] that sporadically send small amount of data: they can only recover
from a loss through a costly retransmission timeout. Techniques such as Early
Retransmit [3] and Tail-Loss Probes [30] have been developed to mitigate this
problem.

Head-of-line blocking at the transport layer (VI-B [12]) This complex subject is re-
lated to application data multiplexing. This subject is covered in details in Sec-
tion 2.2.

Chapter 2 Dissecting end-to-end latency

Figure 2.1

2.2

2.2.1

Source Destination
DATA (1)

DATA (2)
DATA (3)

ACK (2)
DATA (4)

ACK (3)
DATA (5)

DATA (6) ACK (3)
ACK (3)
ACK (3)

Duplicated ACK (3)

Fast Retransmit|
DATA (3)

Fast retransmit in TCP: when receiving several duplicate ACKs, the missing segment is
retransmitted immediately. Figure from [67].

Multiplexing messages on a connection

This section defines the notion of multiplexing used by applications to exchange
multiple flows of data within a single connection. It also focuses on the possi-
ble communication models between the application and the transport protocol:
message-oriented, stream-oriented, and how multiplexing can be introduced in
these models. This is an essential pre-requisite to understand performance issues
related to multiplexing.

The need for application data multiplexing

Applications commonly need to manipulate, send and receive several kind of flows
of data, even with the same remote host. Examples include: managing a control
flow and one or more data flows (FTP, Bittorrent); loading several HTTP resources
from a server; tunnelling several TCP flows within a SSH connection; sending audio,
video and text to a video-conferencing server.

Historically, a protocol like FTP opens a TCP connection for its control flow, and
then opens a new TCP connection each time it needs to transfer the content of a file.
The goal is to simplify the protocol and avoid in-band signalling: a data connection

2.2 Multiplexing messages on a connection

15

2.2.2

16

only transfers the content of a file and nothing else. However, this approach can
actually complicate things: there is no fate sharing between connections, which
means that they can fail independently and the application needs to recover from
partial failures. Also, this approach does not interact well with NATs and firewalls.

To some extent, a similar approach was taken with HTTP/1.1, where browsers
typically open several TCP connections to the same server and balance HTTP requests
on these connections. Here, the goal is to limit head-of-line blocking between
requests: even with request pipelining, the server must provide replies in the same
order as the requests, which means that a reply that takes time to compute might
block a reply that is ready to send out. A downside of opening several connections
is that it consumes more resources (both on the server and in stateful parts of the
network such as NATs and firewalls) and might lead to increased congestion [27].
Note that, contrary to FTP, HTTP/1.1 implementations take an hybrid approach
by not opening a new TCP connection for each request. This hybrid approach is a
compromise between increased resource usage and high initial latency (if too many
connections are used) and potential request blocking (if too few connections are
used).

The basic idea of application data multiplexing is to send and receive several
application-level flows in a single transport-layer connection. As we have seen
through the examples of FTP and HTTP, it allows to reduce latency and can simplify
implementations, while reducing resource usage on the remote host and in the net-
work. However, multiplexing can have an impact on the performance of individual
flows. Some applications may require strict performance isolation of flows, may
need to ensure fairness between flows, may want to prevent starvation of some
flows. ..

Accordingly, there are many different ways of achieving multiplexing, depending
on the semantic required by the application and its performance constraints. The
two most common families of transport protocol are message-oriented and stream-
oriented, detailed below.

Message-oriented semantic

The simplest piece of data that can be manipulated by an application is a message.
We define a message as an atomic unit of data with a well-defined length, typically
short (less than 64 KiB for UDP). The application gives the message to the transport
protocol, and expects that the whole message will be delivered atomically to the

Chapter 2 Dissecting end-to-end latency

application running on the remote host. That is, the message will either be delivered
in its entirety, or not delivered at all.’.

UDP is the simplest message-oriented transport protocol that can run on top of IP,
because it provides no extra feature besides port-based multiplexing. DCCP [64]
additionally provides congestion control. SCTP [100] provides more features and
organises messages into streams but is still message-oriented according to our
definition. QUIC, although not message-oriented, has been extended to provide an
unreliable datagram service [83]. Note that this QUIC extension has not yet been
standardized.

In general, there exists several variants of the message-oriented semantic, depending
on additional services offered by the transport protocol:

ordering Both UDP and DCCP provide no ordering guarantee between successive
messages sent by the application. With SCTP, all messages must belong to a
stream: any two messages belonging to the same stream are delivered in the
same order as they were provided by the sending application. However, there
is no ordering guarantee between messages that belong to different streams. In
addition, SCTP supports unordered messages for which it provides no ordering
guarantee, even with respect to other messages from the same stream. Note
that the concept of stream in SCTP is substantially different from TCP streams.

reliability UDP and DCCP provide unreliable message delivery, while SCTP ensures
reliable message delivery. A Partial Reliability [101] extension has been
designed for SCTP, allowing the sender to “abandon” some messages even
though the receiver was expecting them to guarantee in-order delivery.

Examples of application protocols that use the message-oriented semantic include:
DNS, SS7, RTP, SNMP, SIP. With the exception of SS7 that leverages SCTP, most of
them simply run on top of UDP. In the context of WebRTC and real-time media, RTP
can run on top of SCTP, even though it is encapsulated in UDP in the end to ease
deployment.

Multiplexing in the message-oriented semantic

When messages are small, multiplexing is naturally done at the level of messages:
send one complete message, then move to the next message, and so on.

1As an exception, note that SCTP allows partial delivery to the application when the SCTP buffer
runs out of space, see Section 6.9 of [100]. But since SCTP provides reliable delivery, it does not
contradict this statement.

2.2 Multiplexing messages on a connection

17

2.2.3

18

However, when messages can be large, it makes sense to split messages into smaller
pieces. For instance, SCTP splits messages into DATA chunks, typically sized to fit in
a single IP packet [100]. Multiplexing is then performed at the level of DATA chunks.
That is, DATA chunks from several messages can be interleaved, allowing concurrent
progress of several messages. This provides a much finer granularity and avoids the
situation where a big message blocks smaller unrelated messages.

Stream-oriented semantic

When an application uses the stream-oriented semantic, it sends data as one or more
continuous streams of bytes. The total size of a stream does not need to be known in
advance, and it is even possible to send infinite streams of data. The expectation
of the sending application is that the exact same stream of data will eventually be
delivered to the receiving application: in particular, the order of individual bytes
must be preserved.

The transport protocol is responsible for ensuring this semantic. It performs segmen-
tation of application data, ensures reliability through a retransmission algorithm or
error-correcting codes, and reorders data bytes on the receiver side. It also provides
congestion control and flow control.

The stream-oriented semantic gives no guarantee on data boundaries. For instance,
if the sending application gives a single block of 4 KiB of data to the transport
protocol, it is possible that the data will be delivered to the receiving application
in 2 blocks of 2 KiB. Similarly, several small data blocks might be aggregated and
delivered as a single block to the receiving application. Transport-application APIs
may allow some control over aggregation and splitting, but they provide no absolute
guarantee. Examples include the TCP_CORK socket option on Linux, and Nagle’s
algorithm [76] (TCP_NODELAY option). TCP also includes a PUSH flag: when set
on a segment, it informs the remote peer that all data in its TCP buffer should be
immediately delivered to the receiving application.

Note that stream-oriented protocols are always reliable: the stream abstraction does
not make sense if it is not reliable. To work without reliability, the application would
need some control over the structure and framing of data, and a guarantee that
atomic sets of data are either fully received or fully lost. In other words, it would
require a message-oriented semantic, not a stream-oriented semantic.

Chapter 2 Dissecting end-to-end latency

224

Multiplexing in the stream-oriented semantic

While TCP only offers a single communication stream to the application, QUIC [66]
provides multiplexing with a stream-oriented semantic, effectively providing several
streams in a single connection. A stream represents “an elastic message abstraction:
a single STREAM frame may create, carry data for, and terminate a stream, or a
stream may last the entire duration of a connection” [50].

In practice, data from a stream is transmitted within frames. Just like the DATA
chunks of SCTP, QUIC frames fit in a single IP packet and represent the granularity
of the multiplexing process.

Hybrid semantic: HTTP

While originally an application protocol, HTTP gained features over time and can be
used as a somewhat generic transport protocol. However, it has a “hybrid” semantic
that is not clearly either stream-oriented or message-oriented.

The target element manipulated through HTTP is called a resource. The actual
definition of a resource is intentionally left vague by the HTTP specification [28]
for the sake of generality. Resources are communicated or manipulated through a
representation carried in HTTP messages. Such a representation could be, for instance,
some text encoded in a given charset or a JSON document, and can optionally be
“content-coded” with a transformation such as compression. More formally [28]:

A “representation” is information that (...) consists of a set of represen-
tation metadata and a potentially unbounded stream of representation
data.

Syntactically, a HTTP message contains header fields with metadata, and an optional
message body with a stream of bytes that encodes a payload body [27]. Thus, within
a message, the payload is stream-oriented in nature.

When actually transmitting HTTP messages, several protocol variants are possible,
with an impact on application semantic and protocol performance:

* explicit message body length, allowing persistent connections and pipelined

messages: the regular way for HTTP/1.0 and HTTP/1.1 to send requests and
responses with a message body is to include a Content-Length header. This
header explicitly specifies the total length of the message body. It means that

2.2 Multiplexing messages on a connection

19

20

the sender must know the size of the message in advance: this is suitable for
message-oriented communication. Arbitrarily large messages are supported:
data can be partially delivered to the “application” (for instance a web ren-
dering process or a storage system) before the entire message has been fully
received by HTTP.

Performance-wise, the main advantage of an explicit length header is that
the sender can pipeline messages one after the other, although the order of
pipelined responses must be the same as the corresponding requests. This
pipeline feature was introduced in HTTP/1.1.

* implicit message length by closing the connection: when the sender wants
to transmit “stream-oriented content” for which it does not know the total
length in advance, it can omit the Content-Length header. In that case, the
message body is terminated by closing the connection. This is only possible
for responses, not requests, and is particularly inefficient: it does not allow to
reuse connections or pipeline messages. As such, it is recommended to use the
chunked transfer-coding introduced in HTTP/1.1 instead.

* chunked transfer-coding: the recommended alternative for stream-oriented
content is to send the message body as a series of self-terminated chunks.
This method is applicable to both requests and responses, and is compat-
ible with pipelining and connection reuse. This works by first sending a
Transfer-Encoding: chunked header. Each chunk can then be sent in se-
quence, preceded with its length. The last chunk has a length of zero: upon
reception of this empty chunk, the receiver knows that the message body is
complete. Chunked transfer-coding was introduced in HTTP/1.1 [27].

Multiplexing in HTTP/1

In HTTP/1.0 and HTTP/1.1, the granularity of multiplexing is the HTTP message.
That is, a new message can only start when the previous one has been fully transmit-
ted. This is a form of sequential multiplexing, which has severe limitations.

In particular, even with pipelining, a web server must send HTTP responses in the
same order as the HTTP requests. This produces a form of Head-of-Line blocking
on the server side, because a fast response maybe be blocked by a slow response.
HTTP/2 was designed to overcome this issue.

Chapter 2 Dissecting end-to-end latency

2.3

2.3.1

Multiplexing in HTTP/2

Among other changes, HTTP/2 [6] generalises the notion of chunked transfer and
allows full multiplexing between messages.

All messages must be sent in a stream as a series of frames, which have roughly the
same role as chunks had in HTTP/1.1. The difference is that frames from different
streams can be freely interleaved, enabling the server to send responses in any order
and allowing several messages to progress simultaneously. Frames should be small
enough to allow efficient application data multiplexing, because they represent the
granularity of the multiplexing process: a sender cannot switch to a different stream
in the middle of transmitting a frame. Frame length does not typically exceed 16 KB,
although larger frames up to 16 MB are possible [6].

Overall, this mechanism provides full multiplexing and avoids the server-side Head-
of-Line blocking issue found in HTTP/1.1 pipelining.

Performance impact of multiplexing

Now that we have a better idea of what multiplexing entails, let’s consider its impact
on performance. In this context, performance should be understood as in Section 1.1,
i.e. either end-to-end latency between applications, or the completion time of a bulk
transfer.

This section details a set of challenges faced by multiplexing protocols and how
these challenges can positively or negatively impact performance.

Sharing costs

Multiplexing effectively means that several streams of data share the same connec-
tion. As a result, there are a number of costs that can be shared across the streams,
lowering the burden on each individual stream.

Initialization cost sharing The most obvious advantage is that the connection only
needs to be initialized once. Any subsequent communication on the connection will
not need to wait for the connection to be established, which can be especially costly
for TCP and TLS: the three-way handshake followed by the TLS key exchange is
costly both in latency and processing time.

2.3 Performance impact of multiplexing

21

2.3.2

22

RTT measurements Most reliable transport protocols take Round-Trip-Time (RTT)
measurements, so that they can adapt their retransmission timeout to the actual
latency of the network. However, different connections typically do not share their
RTT measurements: for thin streams, this results in very few and inaccurate RTT
measurements. Multiplexing several streams allows to obtain more RTT measure-
ments for the same connection, and re-use them for new streams, resulting in faster
retransmission.

Fast Retransmit The most efficient retransmission mechanism in TCP, Fast Retrans-
mit, requires a steady flow of data on the connection. Multiplexing several thin
streams allows to push more data on the same connection, helping to trigger Fast
Retransmit. In effect, with multiplexing, packets from a stream can help another
stream to recover quickly from an earlier loss.

Overall, sharing costs is positive, and streams are able to “help” each other when they
belong to the same connection. However, this has the drawback of creating depen-
dencies between streams, which can increase latency. Three kind of dependencies
are detailed below.

Reactivity and buffer management

When several data flows are multiplexed, they often have different requirements.
Some data flows may be bulk transfers with no particular deadlines, while other
flows may be highly latency-sensitive. An application will typically prioritize latency-
sensitive flows so that they always take precedence.

However, prioritizing sensitive flows doesn’t solve the reactivity problem: when a
latency-sensitive flow suddenly has new data to send, how long does it take before
this new data can be actually transmitted? With TCP, unsent data from bulk transfers
may still be waiting in the send buffer because of congestion control. When latency-
sensitive data is passed from the application to TCP, this new data will be enqueued
after unsent bulk-transfer data, creating an artificial delay on the sending side.

Since the TCP send buffer is managed by the kernel, it is difficult for applications
to effectively control this send buffer. The application can choose the size of this
buffer, but it cannot know its optimal size: it should be equal to the Bandwidth-Delay
Product (BDP), a value that is not known in advance and that is subject to change
over time. If the buffer is smaller than the BDP, bulk transfer performance will suffer;

if it is larger, the reactivity problem appears.

Chapter 2 Dissecting end-to-end latency

2.3.3

An easy way to overcome this issue is to use the TCP_NOTSENT_LOWAT socket option
on Linux [22]. This allows the kernel to limit the amount of unsent data in its
send buffer: it will only mark the socket as writable if the amount of unsent data is
below TCP_NOTSENT_LOWAT. This helps to solve the reactivity problem while keeping
the send buffer large enough to obtain good performance on high-BDP links. This
technique has been used with success for HTTP/2 [74, 96].

But even when the reactivity problem is solved at the kernel level, it may still remain
at the application level. Software projects such as web servers are very complex and
also have internal buffering that can impair reactivity. For instance, the Nginx web
server needed extensive internal changes to be able to support HTTP/2 traffic with
good reactivity [51].

This problem highlights an important property of multiplexing: the application
must be able to choose which piece of data to send as late as late possible. This new
requirement is specific to multiplexing: in contrast, with TCP, the application does
not need to choose which piece of data to send, because there is a single stream of
in-order data. As a result, with TCP, the application could just push all its data to
a large buffer in the kernel and wait for the work to be done. This explains why
having more control on buffer size and receiving more feedback from the transport
protocol are relatively recent concerns.

Head-of-line blocking at the transport layer

Head-of-line blocking is a well-known problem with transport protocols that provide
a reliable and in-order service, such as TCP. It occurs when several application-level
streams are multiplexed over a single connection and there is packet loss, as shown
in Figure 2.2. In this case, segment A1 was lost in the network between the sender
and the receiver. Because of the in-order guarantee of TCP, all subsequent segments
are buffered at the receiver, waiting for Al to be retransmitted. As a result, the
application does not receive any data from the transport layer, while it could already
start processing messages of type B: this is what we call head-of-line blocking.

HTTP/2 is a typical case of head-of-line blocking causing performance degradation.

Even though HTTP/2 supports multiplexing, it still uses a single TCP connection

underneath, and this TCP connection has no visibility over the multiplexed streams.

As a result, any lost segment will block all multiplexed streams.

2.3 Performance impact of multiplexing

23

Figure 2.2

2.3.4

24

Sender Receiver

Application A Application B Application A Application B

\ \ / 1

B
]

Wait for A1

Buffers Buffers

B3
=
Send Receive
2
81

m Resend At

L EEEREr

;
\J

Head-of-line blocking situation when two streams are multiplexed on a single TCP connec-
tion: any segment loss will block subsequent segments at the receiver, even if they belong to
a different stream. Figure from [12].

The solution to avoid head-of-line blocking is to change the semantic of the transport
protocol, so that it becomes aware of application data multiplexing. There are two
main approaches:

1. SCTP [100] can provide unordered delivery of messages to the application,
while keeping the service reliable. This means that the application will be
delivered messages in any order, and can start processing them as soon as
possible [35]. The downside is that additional complexity is pushed to the
application: it has to enforce any partial ordering constraint by itself. This
method is suitable for applications where messages are completely independent
from one another, such as DNS.

2. Both QUIC [66] and SCTP support application data multiplexing through the
notion of stream, where data belonging to different streams can be delivered
in any order to the application. However, within a stream, data is delivered
in-order.

Message bundling

Message bundling refers to the practice of aggregating several pieces of data in a
single packet. This is typically done by the transport protocol implementation on
the sender side.

Chapter 2 Dissecting end-to-end latency

2.4

For stream-oriented traffic, message bundling can be applied whenever the applica-
tion is giving data to the transport protocol in small chunks (i.e. write with a size
that is smaller than a single segment). The transport protocol can either transmit
each data chunk immediately, or it can wait for a small amount of time to try to
bundle several write into a single segment. This is used in Nagle’s algorithm [76]
and can be controlled by the application using TCP’s “corking” feature. A similar
feature is also supported by SCTP implementations. This kind of message bundle
improves transfer efficiency by transmitting larger packets, but it introduces an
additional delay before data is actually transmitted.

When a transport protocol is aware of multiplexed data flows, such as SCTP or
QUIC, an additional decision needs to be made. If two small messages belonging to
different data flows are available for transmission, should they be bundled in the
same packet?

The trade-off is slightly different in this case, because no additional delay is intro-
duced on the sender side. However, if the packet containing the two messages is
lost, this creates Head-of-Line blocking for both data flows. In effect, this creates a
temporary coupling between the two flows. Thus, it is often beneficial to disable
bundling for messages that belong to different data flows. SCTP-based simulations
showed that it decreases the average latency when running many streams with small
amount of data, a typical usage pattern for SS7 running on top of SCTP [95].

Latency impact of multi-homing

When using multipath networks, there are a few more considerations to have
about latency. The main issue arises when the available paths have very different
latency characteristics: if the transport protocol is not careful enough, the latency
perceived by the application may well be the latency of the worst path! This section
starts with effects that negatively impact the end-to-end latency experienced by
applications, and then reviews multipath scheduling algorithms as an opportunity to
take advantage of path diversity to provide latency.

2.4 Latency impact of multi-homing

25

2.4.1

26

Multi-homing challenges that impair latency

Head-of-line blocking

It is possible to suffer from head-of-line blocking even without packet loss, simply
because of the different RTT on each path. Packets sent on different paths will take
a different amount of time to arrive at the receiver, leading to a large amount of
out-of-order packets. Thus, to ensure the in-order property of a data flow, data sent
on the path with lowest RTT may be blocked at the receiver, waiting for data sent
on higher-RTT paths. In the end, the latency experienced by the application can be

worse than using a single path.

Multipath scheduler such as DAPS [92, 65] and BLEST [26] try to compensate this
problem, either by deliberately sending packets out-of-order or by avoiding a path
when it has a risk of producing head-of-line blocking.

Receive window blocking

Receive window blocking is a related problem. Because of head-of-line blocking,
the receive buffer may contain a lot of blocked data that cannot be delivered to the
application. As a result, the receive buffer may become full and block the sender
through the flow-control mechanism. It means that the sender will be blocked from
sending on the lowest-RTT path because of the in-flight data on the slower paths.

To overcome this problem, a simple solution is to use very large receive buffers.
Solutions that avoid head-of-line blocking will also avoid receive window blocking.

Short flows

Practical measurements with Multipath TCP have shown that short flows cannot
take advantage of multiple paths [78]. This is because it takes time for MPTCP to
setup an additional subflow on a secondary path: if the flow is short, it will already
have been fully transferred on the primary path. This increases overall latency if the
primary path has higher latency than the secondary one.

Chapter 2 Dissecting end-to-end latency

2.4.2 Opportunities offered by multipath scheduling

Of course, excessive latency may also come from the network itself. A well-studied
cause is bufferbloat [42], which happens when routers on the path have oversized
buffers that can accumulate up to several seconds of queuing delay:.

When latency comes from the network, multi-homing can offer end hosts a second
chance. That is, if a multi-homed host measures high latency on a path and cannot
do anything about it, it can switch to a different path in the hope of obtaining a
lower latency. This is the main expected benefit of multi-homing.

To take advantage of this opportunity, a scheduling strategy is needed. Such a
strategy defines how data received from the application is split across the different
paths: it has therefore a huge impact on the end-to-end latency. A scheduler can be
designed to fulfill various goals: maximizing aggregated throughput, minimizing
latency, minimizing reordering at the receiver... Multipath TCP implements several
schedulers [81]:

Round-robin This is the simplest scheduler: it simply spreads data over all available
paths, provided their congestion window is not yet filled up (ACK pacing). When
paths have different RTT, this strategy exhibits poor performance, large amounts of
reordering and high latency.

Lowest-RTT-first The default Multipath TCP scheduler works as follows: it always
sends data on the path with lowest RTT, unless its congestion window is filled up
(in which case it sends data to the second lowest-RTT path, and so on). This method
is suitable both for interactive traffic and bulk transfer: an application that sends
small amounts of data will always use the lowest-RTT path, thereby minimizing
perceived latency, while a bulk transfer will utilize all paths in parallel to aggregate
the available capacity.

In practice, when the paths are very dissimilar (for instance Wi-Fi and 3G), this
scheduler still exhibits high latency [112]. This is because it tries to use the high-RTT

path from time to time, causing severe head-of-line blocking at the receiver.

Other scheduling strategies have been proposed to overcome these issues:

2.4 Latency impact of multi-homing

27

2.5

28

DAPS [92, 65], short for “Delay-Aware Packet Scheduling”, tries to ensure that
packets arrive in-order at the receiver. It works by computing a schedule that
deliberately sends packets out-of-order, based on one-way-delay estimations, to
compensate the RTT difference between the paths.

BLEST [26], short for “BLocking ESTimation” scheduler, tries to estimate when
selecting a path would cause head-of-line blocking, and adapts its scheduling strategy

accordingly.

ECF [68] uses an Earliest Completion First strategy. Whenever the lowest-RTT path
has filled its congestion window, it decides whether to wait for the path to become
available again, or to transmit immediately on a higher-RTT path, depending on
which solution is expected to complete sooner. For this, it takes into account the RTT
and congestion window of each path, but also the amount of data in the sending
buffer: it only makes sense to use a higher-RTT path if there is a large amount of data
waiting to be transmitted. ECF exhibits much better latency than the lowest-RT T-first
scheduler when faced with highly dissimilar paths.

STTF [46] is short for “Shortest Transfer Time First” scheduler. For each segment,
it estimates its transfer time on each possible path, taking into account path charac-
teristics but also the congestion state. It then selects the path with lowest transfer
time.

Conclusion

While end-to-end latency involves many differences sources, few of them are in
control of the end-host. The main end-host factors affecting latency are the relation
between the application and the transport protocol, and the way the transport
protocol itself works.

Two techniques in particular can have a large impact of latency, positive or nega-
tive:

* multiplexing several flows into a single connection

* using several paths to transmit data

Chapter 2 Dissecting end-to-end latency

2.5.1 Multiplexing

The main challenge with multiplexing is to exploit its beneficial aspects to improve
latency, while avoiding the detrimental dependencies between unrelated data flows.
The following table sums up various mechanisms related to multiplexing, and
whether they can improve or impair latency.

Table 2.1 Multiplexing mechanisms and their impact on latency

Multiplexing mechanism || Impact on latency

Sharing initialization cost
More RTT measurements
Faster retransmission
Message bundling
Oversized send buffer

DOEOOO

Head-of-Line blocking

Thus, any multiplexing transport protocol can expect to enjoy improved latency, but
needs to be very careful to avoid pitfalls that can have detrimental effects on latency:
message bundling, oversized send buffer, and Head-of-Line blocking.

For instance, working to avoid Head-of-Line blocking requires significant complexity
in the transport protocol, and protocol designers may not want to introduce such
complexity if they can avoid it. The following table summarizes how different
protocols are affected by Head-of-Line blocking:

Table 2.2 Protocols affected by head-of-line blocking

Avoids Avoids
HoL blocking | HoL blocking at
in application? | transport layer?
(Section 2.2.4) | (Section 2.3.3)

HTTP 1.1 with pipelining ®

DNS over persistent TCP [114]
HTTP/2 over TCP [6]

SCTP [100]

QUIC [66]

Details

Section 2.2.4
Chapter 3

Section 2.2.4
Section 2.3.3
Section 2.3.3

OO
OOOO®®

2.5 Conclusion 29

2.5.2

Table 2.3

30

Multi-homing

The next challenge is to exploit several paths to improve latency. While the diversity
of available paths should yield lower latency, it can be difficult to take advantage
of. Serious efforts have been made to tackle the RTT difference, with multipath
schedulers focused on reducing Head-of-Line blocking or Receive Buffer Blocking.
The table below summarizes several aspects of multi-homing and their impact on
latency:

Multi-homing and its impact on latency

Multi-homing aspect || Impact on latency
More diversity ©
RTT difference &
HoL blocking ®
Short flows
Combination with multiplexing @

Practical deployments have pointed out that short flows do not benefit much from
multi-homing, because the transport protocol does not have time to setup secondary
paths [78]. I argue that this is a perfect opportunity to bring multiplexing into the
equation: if short flows are part of a larger, long-lived connection, then all paths can
be fully exploited.

Overall, both multiplexing and multi-homing are challenging but full of potential
to reduce latency, and this is even more the case when combining the two tech-
niques. This tradeoff is the main focus of this work. Chapter 3 explores in details
the performance impact of multiplexing DNS queries within a single TCP or TLS
connection. Chapter 4 tackles the more general problem of scheduling multiplexed
messages unto several paths, effectively combining both techniques to provide the
best possible latency even for short flows.

Chapter 2 Dissecting end-to-end latency

3.1

Performance of persistent
DNS connections

This chapter provides a first look at protocol performance with DNS (the Domain
Name System). The goal is to analyse the performance requirements of DNS applica-
tions, whether these requirements are fulfilled adequately, and how to improve DNS
performance at the transport layer. DNS is quite particular because it needs both
low-latency and reliability: this is uncommon and not easy to achieve.

First, Section 3.1 details the particular performance requirements of DNS. In Sec-
tion 3.2, I then show that the current approach, using UDP to transport DNS
messages, does not provide the required level of performance: it can exhibit very
large latency when packets are lost. In Section 3.3, I finally explore how other
transport protocols such as TCP could provide better client performance thanks to

persistent connections.

However, performance requirements of DNS applications is only one side of the
question: the DNS infrastructure also needs to withstand the load. In Section 3.4, I
develop an experimental methodology to perform large-scale measurements against
a DNS server. I then use this methodology to determine the performance impact of
DNS-over-TCP and DNS-over-TLS (DoT) on recursive resolvers.

Overall, this chapter focuses on two core aspects of the performance of DNS: the
latency experienced by clients, and the server-side resources needed to handle client

queries such as CPU time or memory usage.

DNS: performance requirements and transport
protocol

The DNS (Domain Name System) is a fundamental protocol of the Internet and
it is expected to remain a critical component in the foreseeable future. Indeed,
most programs and protocols in the Internet rely heavily on DNS, for instance web
browsers or email servers, and need timely answers to function correctly. A web

31

32

browser cannot carry out any work before it knows the IP address of the web server:
loading a web page can only start after a successful DNS exchange. If this initial
DNS exchange is delayed or fails, then the resulting latency cascades down to the
page load time and may be noticeable by the user [12].

Thus, a DNS client needs both reliability because it really needs to obtain an answer
to its queries, and low latency because it may be blocked while waiting for the
answer.

Having both requirements is quite atypical in the Internet: most applications either
need only low-latency (real-time communication such as Voice-over-IP, where appli-
cations can cope with packet loss) or only reliability (file or “resource” transfer using
protocols such as FTP or HTTP). This dichotomy is reflected in the limited choice
of transport protocols, with UDP and TCP being the most widespread: UDP does
not provide any built-in reliability, allowing applications to take advantage of the
“native” latency of the network; TCP provides strict reliability and in-order delivery,
but does not make any guarantee on the resulting application-level latency.

As a result, it may come as a surprise that DNS uses UDP, because it does not provide
the required reliability. This choice was likely made for two main reasons:

1. providing low latency was deemed more important than reliability;

2. UDP is lightweight, in that it requires less processing and less memory than
TCP: this allows a server to handle a large volume of DNS queries from many
different clients.

A less obvious reason relates to the interface provided by the transport protocol:
UDP is message-oriented, which fits the needs of DNS, while TCP is stream-oriented.
I will show in Section 3.3.1 that it can have an impact on performance and that
neither UDP nor TCP may be the right choice for DNS.

My first contribution in Section 3.3 is to show that, although UDP indeed provides
better latency than TCP in the general case of a well-working network, it degrades
to provide very poor DNS latency when the network exhibits packet loss and TCP
becomes desirable in this case. My second contribution in Section 3.4 is to show
that the processing cost of DNS-over-TCP is not as high as one would expect given
the complexity of TCP. As a result, it is entirely feasible to run a large-scale DNS
recursive resolver over TCP or even TLS.

Chapter 3 Performance of persistent DNS connections

3.2

Figure 3.1

Message loss dramatically impacts DNS-over-UDP
latency

DNS resolution conceptually involves three types of actors: 1) a stub resolver which
initiates queries on behalf of an application; 2) a recursive resolver which uses various
sources to build a response for the query, and maintains a cache of responses for
efficiency; 3) authoritative servers which are the ultimate source of DNS data, where
each server is responsible for a subset of the DNS tree. A full example of DNS
resolution without cache is shown in Figure 3.1.

Message loss — losing a DNS query or response — can happen for several reasons
during resolution: packet loss due to congestion, overloaded recursive resolver, rate-
limiting at the recursive resolver to avoid reflection attacks, or network rate-limiting
to mitigate DDoS attacks.

UDP has no built-in reliability mechanism such as acknowledgements or retransmis-
sion, so it is up to the application layer to detect and recover from these losses. This
is difficult for DNS: a stub resolver has no way to distinguish a message loss from a

slow recursive resolver.

Stub Recursive Authoritative
resolver resolver resolvers
/] ~ -
[] -
-- \ Y

e A
' Iterative
A3 .
s resolution
-~ P
1 delay
.

~
~

4
\~ r&
1
1
1
1
1
'i
P
- .

LI - -

\

\ lterative
(m gueries

timeY v v

Iterative DNS resolution performed by a recursive resolver. When the answer is not in the
cache of the recursive resolver, the iterative resolution process can take up to several seconds,
during which the stub resolver has to wait.

More precisely, when the stub resolver sends a query, it has no feedback on the
iterative resolution process being performed by the recursive resolver. This process

3.2 Message loss dramatically impacts DNS-over-UDP latency

33

generally completes quickly but can sometimes take up to several seconds, as shown
in Figure 3.1. If no response comes back after some time, the stub resolver has to
guess whether the iterative resolution process is taking longer than expected, or if a
message was lost and a retransmission is required.

Stub
resolver

Recursive
resolver

Query ¢~ S

L N
P 1
4 1

' Loss R
. or 37
l‘ L Ol
~.--_' -, -
Retransmission
timeout
Query

Response

\{

time v

Figure 3.2 The stub resolver must implement a retransmission timer. This timer needs to be larger than

Table 3.1

34

the worst-case response time to avoid spurious retransmission. It it thus much larger than
typical RTTs.

How should this retransmission timer be chosen? To avoid spurious retransmission, it
should be at least as long as the iterative resolution delay, as illustrated in Figure 3.2.
The following table lists the retransmission timers used in practice by typical stub
resolvers. It also lists their retransmission strategy, along with the total time it takes
for the stub resolver to give up retransmission altogether and signal a failure to the
calling application.

Retransmission behaviour of widely used stub resolvers, obtained through experiments. Each
stub is configured with two recursive resolvers. The results have been partially confirmed
with source code analysis (glibc, bionic) and documentation (Windows).

Chapter 3 Performance of persistent DNS connections

Stub resolver First retrans. | Retransmission Time before
timeout strategy failure
Glibc 2.24 (Linux) 5 seconds Constant interval 40 seconds
Bionic (android 7.1.2) | 5 seconds Constant interval 30 seconds
Windows 10 1 second Exponential backoff | 12 seconds
0SX10.13.6 1 second Exponential backoff | 30 seconds
I0S11.4 1 second Exponential backoff | 30 seconds

These timeout values directly impact the end-user experience: on Android, the most
widely used operating system on smartphones and tablets, any application needs 5
seconds to recover from a single query loss.

3.3 Improving DNS latency with persistent connections

Using a persistent DNS connection means that a connection is opened and reused
for several successive DNS transactions. In this setup, the stub resolver can use
acknowledgements to measure the RTT towards the recursive resolver, independently
from the iterative resolution delay shown in Figure 3.1. It can then adapt its
retransmission timer to recover more quickly from a packet loss, based only on the
measured RTT. This mechanism is illustrated in Figure 3.3, where it is assumed that
the persistent TCP connection has already been opened before.

Stub Recursive
resolver resolver
Query 1
RTr@ —>! \
< ACK .
[terative
resolution
delay
Response 1 |y
<—
ACK >
Retrans- Query 2 Loss
mission i
timeout Query 2

—>
Faster

retransmission

time

Figure 3.3 Persistent connections improve the response time: the retransmission timer can be adapted
to the RTT and does not depend on the worst-case response time anymore.

This approach basically decouples transport-layer and application-layer concerns:
the transport protocol simply ensures that messages are delivered reliably and in a

3.3 Improving DNS latency with persistent connections

35

3.3.1

Figure 3.4

36

timely manner, without being affected by large delays in higher-level mechanisms
such as the iterative resolution process. This decoupling offers several advantages:

1. it avoids wasting resources on repeated queries: since retransmission happens
at the transport layer, only a single copy of the query will be delivered to the
application even if it was received multiple times due to retransmission;

2. it simplifies applications by moving complexity from the application into the
transport protocol.

3. it provides faster retransmission, thanks to the ability to measure the RTT
without being affected by delays in the application;

Overall, running DNS on top of a reliable transport protocol such as TCP, cou-
pled with persistent connections, should significantly improve query latency when
recovering from packet loss.

Experimental validation

To better understand the impact of packet loss on latency and verify the effectiveness
of persistent DNS connections, I designed experiments in the controlled testbed
illustrated in Figure 3.4.

Az s W D e

Proxy roxy
UDP or TCP L-=--) UDP or TCP
UDP Router UDP

02 Query generator

- N

Client Server

Setup for the testbed experiment comparing the latency of DNS-over-UDP and DNS-over-TCP.
The router (middle) can apply packet loss and delay to all packets flowing through it.

A client sends DNS queries using either UDP or a persistent TCP connection. A
router is inserted between the client and the server to emulate various network
conditions such as high RTT or packet loss. The testbed uses three APU2 boards
from PC Engines cabled directly to each other, without any intermediate switch or
network equipment that could affect the results of the experiment. All boards run
Debian Stretch with version 4.9 of the Linux kernel.

Chapter 3 Performance of persistent DNS connections

The client! and proxy? are custom software, while the server runs unbound with
a pre-filled cache. Packet loss and delay are emulated on the router using netem.
Loss is induced in both directions: a loss of X% means that the router independently
applies X% of loss from the client to the server, as well as X% of loss from the server
to the client. For the following experiments, the testbed is configured with 2% of
packet loss in each direction and 20 ms of RTT.

Queries are generated by the client with a fixed inter-query interval. In the figures
below, values of either 50 ms and 100 ms are used, depending on the experiment.
The client is configured to retransmit after a fixed timeout of 3 seconds, which is the
average retransmission timeout of stub resolvers in Table 3.1. In each experiment,
1000 queries are sent. For a given set of parameters, the experiment is repeated 21
times, and data points from all experiments are aggregated in a single CDF. As a

result, each CDF contains 21000 queries.>

These experiments allow comparing the latency of UDP and TCP under packet loss.
Figure 3.5 shows the complementary CDF (CCDF, also known as tail distribution)
of query latency for a 100 ms inter-query interval. Figure 3.6 shows the same data
with a logarithmic scale to better see the tail of the distribution.

UDP has a very characteristic step-like behavior: 96% of UDP queries are immediately
successful and experience a latency close to the RTT (22 ms), while most of the
remaining UDP queries need a single retransmission and end up with a latency as
high as 3 seconds. A handful of queries need two retransmission and experience a
latency of 6 seconds.

Table 3.2 gives the theoretical probability distribution of the number of retransmis-
sions needed to achieve a successful exchange, based on a 2% failure probability for
queries and 2% failure probability for responses. The experimental data in Figure 3.6
gives values that are very close to these theoretical probabilities.

Table 3.2 Theoretical probability of success depending on the number of retransmission.

‘ Success after. .. ‘ Latency ‘ Probability ‘
No retransmission 20 ms 96.040%
One retransmission 3020 ms 3.803%
Two retransmissions 6020 ms 0.151%
Three retransmissions | 9020 ms 0.006%

"https://github.com/SinBirb/dnsquerier

https://github.com/SinBirb/dnstransformer

®performing 21 repetitions might seem strange. The initial goal was to additionally vary TCP settings
(see Section 3.3.2) with 7 different values, and repeat each experiment 3 times. However, the TCP
settings were not applied due to a mistake in the experiment script. As a result, for each set of
parameters, data points are available from 7 x 3 = 21 experiments.

3.3 Improving DNS latency with persistent connections

37

https://github.com/SinBirb/dnsquerier
https://github.com/SinBirb/dnstransformer

100%

Transport

|

|

|

| UDP
75% - - TCP

|

|

|

|

|

22 ms latency (= RTT + processing time)

50% |/[96% of queries]

CCDF

3022 ms latency

|
|

25% (retransmission)
| [~4% of queries]
|
l‘ Effect of packet loss

Oo/o S s A O SO N

0 2000 4000 6000

Query latency (ms)

Figure 3.5 Query latency for UDP and TCP shown as a Complementary CDF. The testbed is configured
with a 20 ms RTT and 2% of packet loss in each direction. The inter-query interval is 100 ms.
With UDP, a retransmission is needed for roughly 4% of queries: this happens when either
the query or the response is lost.

38 Chapter 3 Performance of persistent DNS connections

100.0%

40.0%
_10.0%
o

S 4.0%
(V)]
(@)]

o
L 1.0%
)

O

O 0.4%

0.1%

Figure 3.6 Query latency for UDP and TCP: same data as in Figure 3.5 but with a logarithmic scale.

22 ms latency
[96% of queries]

Transport

— UDP
3022 ms latency
(retransmission)| ~ - TCP

A

TCP improves
tail latency

2000

[3.9% of queries]

6022 ms latency
(double retrans.)

[0.1% of queries]

4000 6000

Query latency (ms)

A few queries actually need two retransmissions. Using TCP significantly reduces the
retransmission latency in case of loss.

3.3 Improving DNS latency with persistent connections

39

Figure 3.6 shows that TCP exhibits a much better tail latency compared to UDP:
the 99th percentile is reduced from 3022 ms to 109 ms, and the 99.9th percentile
is reduced from 6022 ms to just 197 ms. This is because the TCP retransmission
scheme adapts itself based on the RTT, while UDP retransmissions are blind and use
a fixed timeout.

Next, Figure 3.7 takes a close-up look at small latencies to better understand the
retransmission behaviour of TCP. It shows the same data as Figure 3.5 but focuses
on small latencies and only shows part of the CCDF. In addition, it introduces “TCP
bursts”, where 3 queries are sent back-to-back on the TCP connection. The inter-
query interval is still 100 ms. This new curve (dotted blue) uses 3 times as much
queries compared to the simple TCP case: in each experiment, 1000 bursts of 3
queries are sent.

o, I
16% : Transport
: UDP
' - - TCP
12% !
NG TCP burst(3)
I 3) Head-of-Line
" ' blocking
) [
S 8% |- -, 1) Early Retransmit
; triggered by
I'Inter-query interval next burst
I 100 ms
4% “_ S ——————
)
4 | '
2) Early
0o, Retransmit e
0 100 200 300 400

Query latency (ms)

Figure 3.7 Query latency for UDP and TCP: zoom on small latencies, and introduction of query bursts
for TCP (groups of 3 queries sent back-to-back) The testbed is configured with a 20 ms RTT
and 2% of packet loss in each direction.

There are several interesting behaviours to notice in this figure:

1. Early Retransmit triggered by next burst: for TCP, approximately 4% of
queries exhibit a latency close to 155 ms. This corresponds to queries or

40 Chapter 3 Performance of persistent DNS connections

responses that were lost and were able to recover thanks to the next query.
100 ms after sending the lost message, the client sends a new query. When
this new query arrives at the server, it triggers a duplicate ACK. When this
duplicate ACK reaches the client after one RTT (20-25 ms), it triggers the
Early Retransmit [3] mechanism that is enabled by default on Linux 4.9. That
is, whenever there is only a small amount of data in flight (which is the case
here), the sender is allowed to use Fast Retransmit even if the usual threshold
of 3 duplicate ACKs is not met. As a result, the client is able to retransmit
the lost packet almost immediately, and it takes a further RTT to complete
the exchange. The theoretical overall latency would be 140 ms, computed
as: 100 ms (inter-query interval) + 20 ms (loss detection, one RTT) + 20 ms
(retransmission, one RTT). The actual latency is a bit higher at 155 ms: the
difference can be explained by processing times and by the fact that Linux uses
Delayed Early Retransmit, according to which it delays Early Retransmit by
1/4 of the measured RTT.

TCP bursts exhibit a similar pattern but only for about 1.5% of queries. This is
because Early Retransmit is triggered by the next burst only if the third and
last query of a burst is lost. That is, this mechanism only applies to one-third of
the queries. In addition, the latency is slightly lower at 145 ms: this is because
the next burst triggers 3 duplicate ACKs, which avoids the 1/4 RTT delay of
Delayed Early Retransmit.

. Early Retransmit for TCP bursts: this second mechanism only applies to the
first and second query of a burst. Since they are immediately followed by
a third query, a duplicate ACK is immediately triggered and Delayed Early
Retransmit can be applied earlier, without having to wait 100 ms for the next
burst of queries. This yields a query latency around 65-75 ms: 20 ms for loss
detection, 20 ms for retransmission, and 25-35 ms to account for processing
delays and Delayed Early Retransmit.

. Head-of-Line blocking: this applies to queries that were not lost, but were
blocked by a previous lost query. This blocking happens because TCP delivers
data in-order. For TCP, this accounts for 4% of queries: one query is blocked
for each lost query. For TCP bursts, Head-of-Line blocking is more severe and
the mechanism applies to around 10% of queries, because several queries in a
burst can be blocked. The latency of blocked queries is 45-55 ms: it can be
interpreted as 20 ms of loss detection, 20 ms of retransmission, along with
processing time and the delay of Delayed Early Retransmit. It is interesting
to see that there is exactly 100 ms between the two parts of the CCDF cor-

3.3 Improving DNS latency with persistent connections

41

responding to “Early Retransmit triggered by next burst” and “Head-of-Line
blocking, especially for TCP in dashed green. This is because two successive
queries — sent with a 100 ms interval — are delivered at the same time if the
first one is lost.

To validate these findings, the same series of experiments was run with 50 ms of
inter-query interval instead of 100 ms. The result is shown in Figure 3.8 and supports
the analysis done with 100 ms.

16% : Transport
I UDP
i
- S - - TCP
12% : : 3) Head-of-Line TCP burst(3)
| blocking
" :
8 8% i
Finter- i
DY 1) Early Retransmit
1 50ms triggered by
L next burst
4% : .
/ {
2) Early A
- Retransmit ‘e~ w=we
100 200 300 400

Query latency (ms)

Figure 3.8 Latency comparison of UDP, TCP and TCP bursts, with the same methodology and parameters

42

as Figure 3.7 except for the inter-query interval that is set at 50 ms.

Overall, using persistent TCP connections significantly improves the worst-case
latency compared to UDP when DNS messages are lost. Sending frequent queries or
bursts of queries helps TCP to recover even more quickly, supporting the use-case
of aggregating queries from different devices or applications in a single persistent
connection.

In addition, Early Retransmit [3] has a very positive effect on latency because it
allows any new query to help recover the loss of previous queries. Without Early
Retransmit, TCP would need either 3 queries to trigger 3 duplicate ACKs and thus

Chapter 3 Performance of persistent DNS connections

3.3.2

Fast Retransmit, or it would need to wait until triggering the RTO (Retransmission
Timeout) whose typical timeout values range between 200 ms and 1 second [84].

However, the use of TCP introduces Head-of-Line blocking, which needlessly de-
grades latency for some queries. This problem could be solved by using DNS-
over-QUIC [45] or DNS-over-SCTP, because both protocols provide independent
“streams”: sending each query in a different stream would eliminate Head-of-Line
blocking between queries. This is a motivation for Chapter 4 in which I provide a
more general discussion on stream-aware scheduling in the context of QUIC and
SCTP.

Related work

Thin streams Running DNS over a persistent TCP connection is an instance of a
“thin-stream” application [85]. That is, the connection stays open for a potentially
long time, but very little data is sent on the connection. In addition, traffic is typically
very sporadic, with long periods of silence intertwined with short bursts of data.

TCP is known to behave badly in this use-case, especially regarding latency [85].
The most serious issue is “tail loss” [89]: if one of the last TCP segments in a
communication is lost, then there are not enough duplicate ACKs to trigger a fast
retransmit, so the sender has to wait for a full RTO before retransmitting. This can
take several seconds and produce head-of-line blocking. Tail losses are normally
only a problem at the very end of a TCP-based transfer, hence the name tail loss. But
in a thin stream, any segment preceding an idle period can suffer from a tail loss.

There have been several proposals to improve latency for thin streams [89], including
Early Retransmit [3] and Tail Loss Probes [21]. Early Retransmit ensures that only
the very last packet can be negatively affected by a tail loss because it lowers the
threshold to trigger Fast Retransmit. Tail Loss Probes try to trigger duplicate ACKs by
resending the last packet with a lower timeout than the RTO. These two mechanisms
are complementary.

The Linux kernel implements many of these algorithms. Table 3.3 below lists
available settings related to TCP thin streams as well as their default value.

For the experiments in Section 3.3.1, all these Linux settings were kept to their
default values and this yielded good DNS-over-TCP performance. Still, experiment-
ing with various combinations of these settings would be an interesting future
development.

3.3 Improving DNS latency with persistent connections

43

Table 3.3

44

Kernel sysctl settings related to TCP thin streams (Linux 4.9)

Setting Default value
tcp_thin linear timeouts | O

tep_thin _dupack 0

tcp_early retrans 3
tcp_recovery 0x1
tcp_slow_start_after idle | 1

tcp_low latency 0

Comparing performance of DNS transport protocols Early work [114] highlighted
the advantage of using persistent connections: it greatly improves latency by amor-
tising the cost of establishing a connection.

Recent work [43, 44] compared the latency of DNS-over-UDP, DNS-over-TLS (DoT)
and DNS-over-HTTPS (DoH) against a set of open resolvers, using emulated loss for
some measurements. They instrument a web browser to obtain DNS latency data
when loading actual web pages, which gives a real-world view of DNS performance.
However, these measurements have drawbacks: the measured latency includes sev-
eral factors that are hard to pull apart, such as network latency, query retransmission,
communication with authoritative DNS servers if the answer is not in the cache,
variable connectivity with these authoritative servers over time, client connection
persistence. Another factor is that a given open resolver provider might use different
servers for each protocol, with different load, cache policy and cache hit rate. As
such, the resulting latency data is very variable and hard to interpret. By contrast,
the latency measurements I performed were done in a controlled environment: it is
less realistic, but it provides the ability to observe specific behaviors in isolation and
explain them.

In the end, the authors of [44] reach a similar conclusion: under moderate amount
of packet loss, DoT and DoH generally exhibit larger latency, but they still deliver
equivalent or even slightly better Page Load Time compared to DNS-over-UDP.
This is likely caused by the large timeout in DNS-over-UDP implementations that
I identified in Section 3.2. Because of this timeout, an unlucky web page resolved
with DNS-over-UDP may be significantly slowed down if one of its important DNS
queries is lost. However, the performance of DoT and DoH becomes poor under very
adverse network conditions (high latency, low throughput, high loss), likely because
TCP has trouble recovering from heavy losses with a thin-stream kind of traffic.

Another work [10] again highlights the importance of persistent connections to
amortise the high cost of TLS connection establishment. The authors also study the
impact of Head-of-Line blocking, but they only consider blocking at the level of the

Chapter 3 Performance of persistent DNS connections

3.3.3

recursive resolver, instead of the more general Head-of-Line blocking problem caused
by packet loss (see Section 2.5). This makes a difference for DNS-over-HTTP/2,
which is not affected by blocking in the recursive resolver, but which would still
suffer from Head-of-Line blocking caused by packet loss, like any other TCP-based
protocol. Lastly, they use a methodology similar to [44] and obtain consistent
results: the latency of DoT and DoH is generally higher than with UDP, but it does
not significantly affect web Page Load Time.

Going beyond latency

These controlled experiments illustrate that persistent DNS connections can sig-
nificantly improve the worst-case latency of DNS queries when messages are lost,
although head-of-line blocking can negatively affect the overall latency; this last
effect could be mitigated using QUIC or SCTP.

But to be widely deployed, persistent DNS connections need to be feasible on a
large scale for all actors of the DNS ecosystem. Thus, the next section looks at the
performance impact of persistent DNS connections on recursive resolvers.

3.3 Improving DNS latency with persistent connections

45

3.4

3.4.1

46

Evaluation of recursive DNS resolver performance

My second contribution is to assess the server-side cost of using DNS-over-TCP or
DNS-over-TLS. Both TCP and TLS introduce protocol overhead, such as managing
session state or timers for retransmission. Perhaps more importantly, the crypto-
graphic operations performed by TLS can significantly increase the CPU cost of

handling queries.

To determine the server-side cost of TCP and TLS, I experiment with recursive
resolvers under high load and determine how many clients and queries they can
handle at a maximum, all while maintaining acceptable latency for clients. I also
compare how this “peak performance” varies when clients use UDP, persistent TCP
connections, or persistent TLS connections.

The need for persistent connections

We have already seen in Section 3.3 that persistent connections can be helpful to
improve the latency experienced by DNS clients. For recursive DNS resolvers, the
main performance metric is the cost of handling queries. In particular, when using
TLS, cryptography plays a role in performance. TLS uses two kind of cryptographic

primitives:

1. symmetric cryptography used to encrypt and decrypt user data with a session
key. This is typically very fast and efficient, either because it is implemented
in hardware (AES) or because efficient software implementation are possible
(ChaCha20)

2. asymmetric cryptography used during key exchange to derive a session key.
It is much more costly CPU-wise, but is only needed at the start of a TLS
connection.

This gives additional weight to the use of persistent DNS connections: the high
CPU cost of asymmetric cryptography will only need to be paid once for several
queries. However, it comes at the cost of more memory usage: the server will have
to maintain state for a large number of persistent connections, even if they remain
idle. In practice, servers can close connections when the client has been idle for too
long.

In the rest of this section, I assume that persistent connections are used.

Chapter 3 Performance of persistent DNS connections

3.4.2

Figure 3.9

3.4.3

Deployment model: large-scale persistent DNS connections

The guiding principle for the experiments is: if we were to switch all end hosts in
the Internet to use persistent DNS connections, could the current DNS infrastructure
withstand the additional load?

The specific deployment model I consider is shown in Figure 3.9. Home routers run
a simple DNS forwarder and maintain a persistent TCP or TLS connection towards a
single recursive resolver. Devices in the home network send their DNS queries to the
home router, which forwards them over the persistent connection to the recursive
resolver.

Persistent
TCP connections

Customers

DNS resolver
. n . Home router (ISP)

The deployment model for persistent DNS connections.

This is a simplified model, since a real ISP would typically use several DNS resolvers
— possibly organized in a multi-tier topology — and each customer would be assigned
to predetermined resolvers in the pool so that the load can be spread on a large
number of machines. This model is thus a “worst-case” situation where the number
of DNS resolvers is reduced to just one.

I focus exclusively on the “frontend” communication between stub resolvers and
recursive resolvers: I ensure a 100% cache hit ratio so that the results don’t measure
anything related to iterative resolution. I also make sure that all clients open their
persistent connections before starting to send queries, so that I obtain results for an
ideal steady state.

Experimental setup and methodology

To implement the model shown in Figure 3.9, I setup a large-scale testbed setup
involving tens of thousands of stub resolvers connected to a recursive resolver. Stub

3.4 Evaluation of recursive DNS resolver performance

47

resolvers run an custom instrumented DNS client*, while the recursive resolver
either runs unbound, bind9 or Knot Resolver.

I use a large number of physical servers from the Grid’5000 [5] research platform. A
single physical server runs the recursive resolver software, while each other server
spawns several Virtual Machines (VM) that run the custom DNS client. Each server
has 20 CPU cores (2x Xeon E5-2630 v4) and 128 GB of RAM, and all servers
are interconnected through a local 10 Gbit/s Ethernet network. For the largest
experiment, I used as many as 18 physical machines to host 216 VMs.

Each VM opens several persistent connections to the recursive resolver to send
queries: for instance, it is possible to simulate 10,000 TCP customers by running
only 100 VMs, with each VM sending queries on 100 TCP connections in parallel.
The custom DNS client generates queries according to a Poisson process, and then
sends each query on one of the persistent connections chosen uniformly at random.
This naturally results in a Poisson process on each persistent connection. I discuss the
relevance of this query generation model as well as other models in Section 3.4.6.

Reproducibility To manage the experiments and make them reproducible, I devel-
oped an automated deployment script thanks to the Execo library [47]. Given a
set of parameters as input, the script reserves the appropriate server resources on
Grid’5000, deploys the necessary software including virtual machines, starts the
experiment in a synchronised manner on the various machines, and then collects
traces for later analysis. Overall, this script encapsulates all the complexity of setting
up the experiment and allows to easily repeat experiments.

The source code for this tool is available at https://github.com/jonglezb/dns-server-experiment

3.4.4 Methodology: performance metrics

The first goal is to estimate the peak performance of the DNS resolver, i.e. the
maximum rate of queries it can process. To this end, I start a large number of DNS
clients that send queries according to a Poisson process, and then slowly increases
their query rate. When the answer rate from the resolver drops permanently below
the query rate, it means that the resolver has reached its capacity. I define the
peak performance as the highest rate for which the answer rate matches the query
rate. Figure 3.10 shows the query rate and answer rate evolving over time during
a typical experiment using bind9. Using unbound and/or TLS clients yields similar

“https://github.com/jonglezb/tcpscaler

48 Chapter 3 Performance of persistent DNS connections

https://github.com/jonglezb/dns-server-experiment
https://github.com/jonglezb/tcpscaler

Figure 3.10

3.4.5

results. The horizontal blue line in the figure shows the peak performance (in Q/s
i.e. queries per second) the method computed for this experiment.

(0]
o
1

(2]
o
1

201 Rates

— Answer rate

Query rate and answer rate (kQ/s)
s
o

= Query rate

0 10 20 30
Time (seconds)

Total query and answer rates seen by clients during an experiment. The horizontal line
indicates the peak performance computed with the method: 47.5 kQ/s. Parameters: bind
9.13.3 with 1 thread, 24 VMs, 125 TCP connections / VM.

The second main performance metric is latency, which I collect through client-side
logging: all clients measure the end-to-end latency of each query they have sent.
Figure 3.11 shows aggregated client latency as a function of the query load for the
same experiment as Figure 3.10. As expected from queuing theory, latency roughly
follows an exponential evolution as the query load approaches the saturation point.
Still, it is safe to use the resolver at 80% of its peak performance, yielding a 95th
latency percentile below 20 ms.

Results

Using the methodology described above, I ran a campaign of around 600 experiments.
The obvious parameters I varied are the recursive resolver software, the number
of clients, and the transport protocol (UDP, TCP, TLS). Other parameters include
the slope with which clients increase their query rate, or the number of threads
configured on the recursive resolver.

Figure 3.12 shows the peak performance of unbound running on a single CPU core,
as a function of the number of client connections. With few clients, performance of

3.4 Evaluation of recursive DNS resolver performance

49

Figure 3.11

50

1507 | Query latency
- 5th percentile N
- - - 95th percentile '
— :
g — Median :
E 100 4 .
>]
o]
c
L :
K] '
a L}
q‘)]
S 501 -
<o
O -
40.0% 60.0% 80.0% 100.0%

Query load relative to peak performance

Query latency as a function of the query load, up to the peak performance rate that was
measured (47.5 kQ/s in this case). This is from the same experiment as Figure 3.10.

DNS-over-TCP is close to that of DNS-over-UDP, with only a 30% slowdown. When
the number of clients increases, performance of DNS-over-TCP drops, stabilizing
around a slowdown of roughly 75%. For DNS-over-TLS, the performance profile
is similar to TCP, but with a 30% to 45% performance hit. It means that with a
large number of TLS clients, the performance slowdown compared to UDP is around

83%.

Figure 3.13 shows a comparison of the peak performance of unbound and bind9.
Only the plots for TCP clients are shown, since bind9 does not natively support
TLS. The performance profiles are similar, although bind9 is generally slower. Inter-
estingly, running unbound with DNS-over-TLS or bind9 with DNS-over-TCP yields
roughly the same performance. This suggests that with modern hardware, encryption

is not a serious bottleneck.

For both TCP and TLS, performance drops significantly when the number of clients
increases. Since it similarly affects bind9 and unbound, I believe this is caused by
the high number of concurrent TCP connections that needs to be managed by the
kernel. First, the kernel data structures associated to TCP connections may no longer
fit in the CPU cache, slowing down any access to them. Second, when there are
more clients, the query rate per client is lower for the same overall query rate. It
means that there are less opportunities for TCP to process several segments from the

Chapter 3 Performance of persistent DNS connections

300
2 4
-~ e A S R A R
¢ | -1
8 Mode
S 200+
£ —= UDP
2 TCP
[¢b)
GE) 100 -
3 “u
E
@ g OF BT SR 4
D)
a
O-
0 5000 10000 15000 20000 25000

Number of client connections

Figure 3.12 Performance of unbound when the number of clients increases. Each point shows the
average peak performance for the given number of clients over several experiments, with
95% confidence intervals.

200 - Resolver

unbound/TCP
150 - —— bind9/TCP
100+

a1
o

1
Jeami

‘r{-n.i_{ I---. r PR I I

Peak server performance (kQ/s)

0 5000 10000 15000 20000 25000
Number of client connections

Figure 3.13 Performance comparison of unbound and bind9 with TCP clients. Each point shows the
average peak performance for the given number of clients over several experiments, with
95% confidence intervals. The plot for unbound/TCP is the same as TCP in Figure 3.12.

3.4 Evaluation of recursive DNS resolver performance

800 - o
o) T
<
= 600- =
q') 4
) e
= 4
© ,
€ e
£ 400-]’
(]
o 7
o .
E 7
7} i
& 200 5
I >
& ,
—
0-
0 5 10 15 20

Number of threads

Figure 3.14 Performance speedup when using several threads with unbound on a server with two 10-cores

52

CPUs. For each experiment, there are 48 VMs running clients, with 300 TCP connections per
VM.

same TCP socket in a single pass. These two effects are likely to combine to explain
the drop in performance.

Next, I look at multi-core performance. Figure 3.14 shows that performance scales
linearly with the number of cores up to 800 kQ/s. At such a high query rate, the
bottleneck seems to move to the hardware rather than the software: even with UDP,
the server could not go much higher than 800 kQ/s, hinting at a limit of the physical
network interface (NIC) or the NIC — host communication. These limits impact UDP,
TCP and TLS similarly. Thus, using DNS-over-TLS on a single CPU core is a worst
case situation.

The most extreme experiment (not shown in the graphs) involved 6.5 million TCP
clients, all connected to a single unbound instance. We obtained an honorable
peak performance of 50k queries per second on a single CPU core, which shows
that DNS-over-TCP can scale to extreme number of clients. However, the memory
consumption is high enough to make this scenario undesirable in practical setups:
as much as 51.4 GB of RAM was used on the resolver machine, including both
kernel and userspace usage. Since unbound allocates 4 KB of buffer space for each
TCP connection, I estimate that a further 3.7 KB of memory is needed for each
TCP connection: in the kernel, in libevent, and in sections of unbound that are
unrelated to query buffers. TLS memory usage would be even higher.

Chapter 3 Performance of persistent DNS connections

3.4.6

Overall, the results show that with up to 1000 clients, the CPU processing cost is 2.5
times higher with DoT than with UDP. Interestingly, for a larger number of clients,
performance drops and DoT becomes 5 times more expensive than DNS-over-UDP.

Limitations of the methodology
Query generation model

To generate queries, I use a Poisson process. This has the advantage of simplifying
the client side of the experiment, as described in Section 3.4.3.

More realistic query distributions could be used for each client, such as Pareto with
a point mass [58], but they would need to be fitted on real data. Unfortunately,
I could not obtain any DNS client traces from a production network, as this type
of data is very privacy-sensitive. In any case, with a large number of independent
clients that send a small amount of queries, the overall traffic can be approximated
with a Poisson process.

Differences between DoT and DoH

I only experiment with TCP and TLS, as opposed to the more recent trend of using
DNS-over-HTTPS (DoH).

On the protocol side, DoH and DoT are very similar and only differ in the presentation
format. Thus, I expect them to exhibit similar server-side performance in terms of
CPU cost: in this specific setting, most of the CPU cost is related to TCP (state and
timer management) and TLS (cryptography).

However, there may still be significant differences in performance due to implemen-
tation differences.

Churn and cost of new TLS connections

The performance evaluation shows that TLS is not that much slower than TCP
(Figure 3.12). This is because I chose to focus on the steady-state by opening
all persistent connections before starting to send queries: this hides the cost of
establishing a new TLS session. In a real DNS setup, clients will come and go, so

3.4 Evaluation of recursive DNS resolver performance

53

3.5

54

the recursive resolver will need to spend CPU time on cryptographic key exchange,
potentially slowing down resolver performance.

Initial performance measurements with unbound, configured with a 2048 bits RSA
key and default ciphers, shows that it can accept roughly 900 new TLS sessions
per second on a single CPU core. Furthermore, when spreading the incoming
connections on a few CPU cores, the number of new TLS sessions per second scales
linearly. This is consistent with common performance figures found in the HTTPS
industry: Nginx reports 620 RSA signatures per second in a virtual machine on
unspecified hardware from 2014 [77], while I use powerful hardware from 2016
(Xeon E5-2630 v4 at 3.10 GHz turbo frequency) and more recent software.

Overall, a CPU core can either handle 50,000 to 100,000 queries per second over
TLS (Figure 3.12), or accept around 900 new TLS sessions per second. To obtain a
balanced CPU usage, clients would need to send between 55 and 110 queries per
session on average, which seems rather high. Thus, I expect in practice that most of
the CPU resources will be spent on TLS connection establishment.

TLS session resumption via session tickets, as specified for TLS [90] and QUIC [104],
is a promising solution to this performance bottleneck. It would allow sporadic
clients to terminate their TLS connections after a short idle period, freeing up
memory resources on the resolver, while subsequent TLS sessions would benefit
from fast resumption and be much less costly for the resolver CPU.

Conclusion

In this chapter, I have evaluated the performance of new transport protocols for
DNS. I have adopted two complementary points of view: on the one hand, the key
objectives of the DNS client are low latency and reliability; on the other hand, the
DNS resolver needs to handle a large number of clients while making reasonable
use of resources such as CPU and memory.

From the DNS client perspective, I have shown that persistent TCP connections
are very efficient at reducing worst-case latency when faced with message loss.
Lost queries can be recovered faster when the client sends frequent queries on
the connection, although sending queries too frequently can produce Head-of-Line
blocking. By extension, DNS-over-TLS would provide similar latency properties
because TLS is based on TCP. In comparison, UDP has no way to reliably detect
lost messages and disambiguate them from a slow resolver. It also cannot take

Chapter 3 Performance of persistent DNS connections

advantage of subsequent queries to recover the loss of previous queries. As a result,
the application either retransmits conservatively and introduces several seconds of
latency, or retransmits more aggressively, leading to spurious retransmission and
duplicate queries. UDP is currently the default transport protocol for DNS.

From the DNS resolver perspective, I have shown that the CPU and memory resources
needed by TCP and TLS are higher than for UDP but are still reasonable. For TLS,
most of the CPU resources are expected to be spent in TLS session establishment.
This makes it even more important to maintain long-lived persistent connections,
trading reduced CPU cost for more memory usage. TLS session resumption is a
promising future development that could overcome this trade-off.

In both cases, my approach is to explore these research questions through controlled
experiments — that is, experiments that involve real systems in a controlled environ-
ment. The conditions of the experiments are different from real-life deployments:
for instance, in the experiments, the resolver runs entirely from its cache and the
network latency is fixed. As a result, real deployments will likely experience a
different level of performance than the results of my experiments. However, con-
trolled experiments provide a key advantage: specific effects and mechanisms can be
isolated and understood in depth. For instance, I was able to identify that Early Re-
transmit plays a key role in achieving good latency with DNS-over-TCP under packet
loss. Controlled experiments also allow to make meaningful comparisons, such as
comparing the performance impact of UDP, TCP and TLS on recursive resolvers,
because the conditions are the same for all experiments.

Overall, the results of this chapter support the move to new transport protocols for
DNS. DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH) are becoming increasingly
popular in the Internet, mainly because of the privacy guarantees they provide.
My results show that, in addition to this privacy advantage, the mere fact that
they rely on a persistent TCP connection has latency advantages when the network
experiences losses.

There is still room for future protocol improvements. DNS-over-QUIC [45] is
expected to solve the head-of-line blocking issue between DNS requests, while TLS
session resumption [90, 104] has the potential to dramatically lower the CPU cost
of re-establishing connections for returning clients. More experiments would be
needed to better understand this cost and how much session resumption would help
to reduce it.

Experiments on the client side were very helpful to understand the relation between
the needs of an application and the features provided by a transport protocol. It led

3.5 Conclusion

55

me to more general considerations about multiplexing, how to avoid Head-of-Line
blocking, and scheduling. The next chapter explores these questions in depth, with
a particular focus on scheduling.

56 Chapter 3 Performance of persistent DNS connections

4.1

Stream-aware multipath
scheduling

Application requirements have changed significantly since the early days of the
Internet, when telnet and FTP where the dominant applications. Applications
now manipulate many concurrent flows of data and need lower end-to-end delay;
transport protocols have evolved accordingly to provide more elaborate services to
these applications. In particular, the concept of multi-stream transport, once reserved
to niche applications such as telephony signalling, is now becoming mainstream and
is being applied to web applications and real-time communication. Simultaneously,
the emergence of multipath communication provides even more possibilities to
application and transport protocols, but it also brings its fair share of challenges. In
this chapter, I will mostly focus on challenges related to scheduling.

In Section 4.1, I start by reviewing the emergence of multi-stream applications
and transport protocols. In Section 4.2, I introduce a model that can be used to
reason about multi-stream scheduling. Then, in Section 4.3, I extend this multi-
stream model to account for multipath communication. I analyse the associated
impact on transport protocol schedulers, highlighting the need for stream-aware
multipath schedulers. The main contribution, in Section 4.5, is the proposal of a new
stream-aware multipath scheduling algorithm, called SRPT-ECF, that addresses these
challenges. In Section 4.6, I extend the algorithm to the online case; in Section 4.7,
I evaluate it on HTTP/2 traces and show it exhibits good properties. Finally, in 4.8, I
discuss how it could be implemented as part of a MPQUIC implementation.

Background on stream multiplexing and scheduling

To understand why stream scheduling is necessary, we first need to look at how the
needs of applications have changed over time, and how applications and transport
protocols have adapted to these new requirements by multiplexing data. I then
briefly review existing protocols that perform stream multiplexing (SCTP, QUIC,
HTTP) and their possible scheduling strategies. Finally, I introduce a multi-stream

57

411

58

scheduling model that abstracts away protocol-specific details. I will use this model
in the rest of this chapter.

From single-stream to multi-stream transport: an historical
perspective

In the early Internet, the requirements of applications were basic. If you needed to
send lightweight messages, you would use UDP; if you wanted a reliable connection
or needed to transfer a file, you would use TCP. Applications such as telnet typically
only manipulated a single data flow!, while other applications such as FTP clients or
early HTTP servers manipulated just a few concurrent flows at most.

This is reflected in the historical design of the Apache web server and its “prefork”
model that spawns several Unix processes, dedicating an entire process to each
client. In this model, an Apache process handles a single client connection from
beginning to end before it can move on to the next client?>. The downside of this
approach is that it wastes server resources whenever a connection is left idle by the
client or is blocked by the congestion window. The newer and more efficient “event”
model [31] only became a viable alternative with the release of Apache 2.4.0 in

January 2012 [32], and has been the default model since then.

In these early applications, each application data flow was typically mapped to a
separate connection. For instance, FTP opens a TCP connection for its control flow,
and then opens a new TCP connection each time it needs to upload or download
the content of a file. As another illustration, HTTP/1.0 [7] required the use of a
separate TCP connection for each request, even when several requests are made to
the same web server.

Trend 1: more data flows Over time, applications started to manipulate more and
more data flows concurrently. For the web in particular, HTTP can easily need to
transfer up to hundreds of resources from a server to a client just to display a web
page. A reverse proxy or load balancer may handle simultaneous data flows for
tens of thousands of clients. Other examples include tunnelling several TCP flows
within a SSH connection, or receiving several audio, video and text streams from a
video-conferencing server.

1 am intentionally vague on what a “flow” of data actually is, because it depends on the application
(stream, message, file...). It can be loosely defined as a set of data that has a consistent meaning
for the application, i.e. data from different flows semantically belongs to different objects.

2The “worker” model is similar but additionally uses threads instead of relying only on processes.

Chapter 4 Stream-aware multipath scheduling

Trend 2: more costly connections Despite a very significant improvement in hard-
ware computing resources over time, opening new connections has actually become
more costly.

First, many applications are now encrypting their communications by default, using
protocols such as Secure Shell [113] (SSH) or Transport Layer Security [90] (TLS).
Secure connection establishment uses asymmetric cryptography algorithms, which
consume a large amount of processing resources. Thus, even a high-end server may
have trouble processing a large amount of simultaneous connection establishment.

In addition, “middle-boxes” [82] are now widely used throughout the Internet, and
they typically keep a state for each connection they observe or process: this includes
for instance stateful firewalls, Network Address and Port Translation (NAPT or more
commonly called “NAT”) devices [99], or Intrusion Detection Systems (IDS). Each
connection consumes a potentially scarce resource on these middle-boxes, such as
memory or port number.

Lastly, and perhaps most significantly, latency has become a bottleneck for most
applications, as described in Chapter 1. As such, the latency of opening a connection
is becoming more costly relatively to other network operations, due to both transport
session initialization and congestion control. This is what motivates CDNs (Content
Delivery Networks) to deploy edge servers as close to the user as possible, but even
CDNs cannot completely offset the latency cost of opening a new connection.

The need for multiplexing Combining these two trends, it becomes too costly to
create a new transport-layer connection for each data flow. This has led to a push
to multiplex several flows of data within a single connection whenever possible.
Note that this kind of multiplexing is conceptually distinct from transport-layer
multiplexing — that is, delivering data to the correct application socket depending
on transport-layer port information.

A simple way to multiplex application data has been introduced as early as 1997 in
HTTP/1.1 using persistent connections [29]. Since the length of a HTTP message
can generally be determined by the receiver, it is possible to “pipeline” several
requests or responses in the same connection, thus amortising the cost of connection
establishment. However, this is not very flexible, because a HTTP message needs
to be entirely transmitted before starting transmission of the next one. In addition,
the order of pipelined responses must be the same as the corresponding requests,
further limiting the potential for taking advantage of this feature.

4.1 Background on stream multiplexing and scheduling

59

60

Meanwhile, the Stream Control Transmission Protocol [100] (SCTP) was specified
in 2000 [102] as a generic transport protocol with built-in message multiplexing.
The application gives messages to SCTP for sending, and associates each message
to a stream thanks to a stream identifier. Messages are then transmitted reliably by
SCTP as a series of interleaved “DATA chunks”, where the length of a DATA chunk
is designed to fit in a single IP packet to avoid IP fragmentation. On the receiver
side, messages are reassembled from their individual DATA chunks. Then, messages
belonging to the same stream are delivered in-order to the receiving application,
while messages from independent streams have no ordering constraints and can
thus be delivered to the application without blocking each other.

15 years later, HTTP/2 [6] introduced a similar mechanism for HTTP messages on
top of TCP. Each HTTP message belongs to a stream, and messages from concurrent
streams can be freely interleaved by the sender. To achieve this, a HTTP message is
broken down as a series of frames, typically up to 16 KB in length, that are trans-
mitted atomically on the TCP connection. Interleaving is achieved by transmitting
frames from different messages in succession, which means that frames should be
small enough to match the desired multiplexing granularity. This concept of “frame”
plays a similar role as “chunks” in HTTP/1.1 and “DATA chunks” in SCTP, although
they differ in their details.

Finally, QUIC [66] offers a multi-stream service inspired from HTTP/2, but is
intended as a more generic transport protocol that could be used by other application
protocols. In addition, instead of relying on TCP like HTTP/2 did, QUIC implements
a new reliable stream-oriented transport service directly over UDP. As a consequence,
while QUIC also uses “frames” to interleave data from different streams, they are
actually very different from HTTP/2 frames: QUIC frames must fit into a single UDP
datagram. Therefore, QUIC frames are much more closely related to SCTP DATA
chunks than they are to HTTP/2 frames.

Note that, unlike SCTP, QUIC provides no built-in way to frame several messages
within a stream: each QUIC stream is simply exposed as a continuous byte stream to
the application. The application either needs to send a single message per stream
and close the stream to signal the end of message, or it needs to add the necessary
framing as part of the application protocol itself. This second approach is taken in
the current draft HTTP/3 specification [8] so that it can continue using a similar
framing as HTTP/2.

Chapter 4 Stream-aware multipath scheduling

4.1.2 Scheduling multiplexed streams

As we have seen, applications and transport protocols now multiplex data from
several streams on a single connection. This raises a scheduling question: when the
sender has several active streams with new data to transmit, which one should it
transmit data from? Should it use Round-Robin? If the application assigns priorities
to streams, should they be interpreted as strict priorities or as input to a Weighted
Round-Robin algorithm? What is the metric to optimise?

I review recent literature on multi-stream scheduling. Note that the HTTP literature
tends to use the term prioritization while the SCTP literature uses the term scheduling,
but there is no significant difference between the two concepts.

Conceptually, stream scheduling is necessarily performed by the sender. However,
some protocols allow the receiver to provide scheduling hints to the sender: the
sender can then schedule data according to these hints, or it can choose to partially or
completely ignore the hints. Scheduling hints are mainly used for request-response
protocols such as HTTP, because the receiver needs to be aware of which streams
are going to be sent by the remote peer.

Client-side HTTP prioritisation via scheduling hints HTTP/2 [6] defines a complex
scheme of scheduling hints. It allows HTTP clients to express many different
scheduling strategies that they would like a server to implement. It works by
specifying a weighted dependency tree between HTTP resources: a parent node
has strict priority over its children, and siblings should be served with Weighted
Round-Robin once their parent has completed. The dependency tree is maintained
on the server side and is updated dynamically according to client messages.

A recent work [110] describes how web browsers use this dependency tree system
to provide a variety of scheduling hints. It uncovers very different approaches:
simple Round-Robin (Internet Explorer, Edge), Weighted Round-Robin (Safari),
strict priority classes combined with FCFS [First-Come First-Serve] within each class
(Chrome), complex tree-based strategy (Firefox). When looking at the impact of
the prioritization scheme on the Page Load Time, an interesting pattern emerges:
the advanced strategies from Chrome and Firefox perform very well, especially in
low-packet-loss environments, but the naive FCFS strategy is almost as good. On the
other side of the scheduling spectrum, Round-Robin consistently performs poorly.

This dependency tree system has been found to be complex to implement and
difficult to use correctly: as a result, when designing HTTP/3, there was a debate

4.1 Background on stream multiplexing and scheduling 61

62

as to whether this system should be simplified, adapted or simply carried over
unchanged [71]. This debate was partially settled in September 2019 by completely
dropping support for scheduling hints in HTTP/3 until a better scheme could be
found [8].

At around the same time, a simpler system of scheduling hints has been pro-
posed [80], but it is still work-in-progress and has yet to be adopted. With this
scheme, a request carries two parameters: the “urgency” parameter which defines
one of 8 strict priority classes, and the “incremental” parameter which specifies
whether resources within the same priority class should be delivered sequentially or
in parallel. The idea is that resources that can be processed “incrementally”, such
as HTML documents or progressive images, benefit from loading in parallel; on
the contrary, if the “incremental” parameter is set to false, the resources should be
delivered sequentially in the same order as the requests.

Server-side HTTP prioritisation Literature on server-side HTTP prioritisation is
surprisingly poor, considering that web servers are ultimately responsible for the
scheduling of stream data.

The HTTP/2 specification [6] defaults to serving streams with Round-Robin if the
client provides no scheduling hints. However, Round-Robin has been found to be
the worst strategy for loading typical web pages [110].

CloudFlare developed an alternate priority scheme that runs on the server side [72,
73]. This scheme is called the “bucket” priority scheme in [71]. This scheme imple-
ments strict priority classes (the “buckets”). Within each priority class, resources
can again be given strict priority against each other, or are served with a two-tier
Round-Robin strategy. This system combining “urgency” and “concurrency” inspired
the most recent HTTP priority proposal described above [80].

Hybrid HTTP prioritisation Vroom [91] takes an interesting approach that splits
the scheduling effort between client and server. This takes into account that a client
often needs to load HTTP resources from several independent servers: as a result,
a single server does not have complete control over the scheduling problem, and
the client should be partially left in charge of prioritizing its requests across several
servers. On the other hand, the server has initially access to more information about
the content, so it is in a better place to prioritize important resources.

In Vroom’s proposed solution, the server directly “pushes” important resources
that are critical for the client to start loading the web page, such as HTML and

Chapter 4 Stream-aware multipath scheduling

Javascript files. This uses the server push functionality of HTTP/2. For less important
resources or resources that are provided by third-party servers, the server simply
sends “dependency hints” that let the client know about the resources it will likely
need. This is especially helpful for CPU-constrained clients, because the client can
already start fetching these resources before it has finished parsing HTML files or
executing Javascript code.

More precisely, from a scheduling perspective, the server classifies resources in one
of several classes:

1. important local resources (HTML, JS): they are pushed to the client using
HTTP/2 server push;

2. important third-party resources (HTML, JS): they are sent as high-priority
hints to the client. The client fetches these resources as soon as possible;

3. other resources, both local and third-party: they are sent as low-priority hints
to the client. The client fetches them once it has finished downloading the
important resources.

Within each class, the server estimates which resources will be needed first by the
client, and it orders resources accordingly (either by pushing them in order or
by sending ordered dependency hints). When receiving dependency hints for a
given priority class, the client simply fetches resources in the order provided by the

SEerver.

Finally, when actually serving HTTP resources and there are several concurrent
requests from the same client, the server uses FIFO (First-In First-Out) instead of
Round-Robin. This is because requests are already ordered “optimally” thanks to the
dependency hints; using Round-Robin would slow down the completion of the most
important requests.

Overall, Vroom tries to discover most of the required HTTP resources as soon as
possible to minimize round-trips. Then, client and servers coordinate to transfer
resources sequentially in the order they are needed by the client.

SCTP stream scheduling While SCTP has native multi-stream support, there are
no stream scheduling guidelines in the SCTP specification itself [100]. In practice,
implementations take different approaches: according to [95], FreeBSD uses Round-
Robin while Linux uses First-Come First-Server (FCFS).

4.1 Background on stream multiplexing and scheduling

63

4.2

64

Early work [95] explored two scheduling aspects of SCTP. First, it is beneficial to
only bundle messages from a single stream within an IP packet: this is called “Per
Packet Scheduling” by the authors. This reduces the impact of packet loss because
only one stream will be affected by the resulting Head-of-Line blocking. Second, it is
useful for a receiver to be able to control which stream is prioritised by the sender.
Conceptually, this can be achieved through per-stream flow control; however, since
SCTP does not provide per-stream flow control, the authors achieve the same goal
by applying stream priorities on the sender side.

Another work [109] proposed a “pluggable” stream scheduling system with an
implementation in the Linux kernel. This allows the application to select a scheduling
strategy at run-time, for instance FCFS, Round-Robin, Weighted Fair Queuing or
Strict Priority. The choice is left to the application because it depends on its specific
requirements.

QUIC stream scheduling QUIGC, just like SCTP, is a generic transport protocol. As
such, deciding which scheduling strategy should be used mostly depends on the
application requirements.

The only generic piece of advice in the QUIC specification is to avoid bundling data
from several streams in the same packet, for exactly the same reason as in SCTP: it
would cause Head-of-Line blocking for several streams in case of packet loss [50]

An example of application-specific stream scheduling is the Deadline-Aware Trans-
port Protocol [97], based on QUIC. For each “block” of data, a priority and a deadline
are provided by the application, and the transport protocol must schedule data to
respect both the deadline constraints and the priorities.

The multi-stream scheduling model

As we have seen, there are many approaches to stream scheduling, and they are quite
dependent on the application requirements. In addition, multi-stream transport
protocols such as QUIC and SCTP provide similar but slightly-different services.
Reasoning about them would be made easier with a model that encompasses features
from both protocols.

Throughout this chapter, I will use a multi-stream scheduling model that can be
applied to a broad class of applications that use either QUIC or SCTP. This includes

Chapter 4 Stream-aware multipath scheduling

HTTP/3 in particular. Inspired mostly by SCTP, the model defines the following
components that are visible to a scheduling algorithm:

message a piece of data with a well-identified beginning and end. A message is
the network representation of a single abstract “object” or “resource” in the
application. The size of the message needs to be known in advance: when the
application creates a new message, it should provide the scheduler with the
total size of this message.

message size The total data length of a message, expressed in bytes.

message completion time In the model, the receiving application is only interested
in the whole message: it can start receiving parts of a message, but I assume
that it will only be able to process the data once the complete message has been
received. Thus, the performance metric I will consider is the application-level
completion time of individual messages. It is defined as the time elapsed
between two instants: 1) the instant at which the sending application provides
a message to the transport protocol; 2) the instant at which the message has
been fully delivered to the receiving application.

message priority The sending application can attach a priority to a message, which
is interpreted as a strict priority: if messages m; and ms have priorities P; and
P, such that P, > P,, then the whole message m; should be scheduled before
message mo. However, priorities do not constrain delivery of messages to the
receiving application: in special circumstances, it is possible that message ms
might be fully received before message m,, despite the priorities. In that case,
message ms is delivered to the application before message m;.

stream Each message is sent on a stream. In the model, only a single message
can be sent on a given stream: as such, messages and streams are effectively
equivalent.

data-chunk the transport protocol splits messages into data-chunks so that they can
be multiplexed on the sending side. The transport protocol then reassembles
messages from their data-chunks on the receiving side. In addition, data-
chunks need to fit constraints from lower layers (UDP, IP). Data-chunks are
typically not seen by the application since they are only used internally by the
transport protocol. However, the scheduler needs to manipulate data-chunks:
it decides how to split messages and combine their data-chunks, and may even
decide to bundle several data-chunks in a single lower-layer datagram.
This is called a frame in QUIC. However, the word “frame” may be confusing
because it has three different meanings in HTTP/2, QUIC and HTTP/3. As a

4.2 The multi-stream scheduling model

65

Figure 4.1

66

Host 1 Host 2
Application Application

¢

ﬁelivery of

A complete
message
Transport Transport
y ransport p
Message B Message C -
- Message A Buffer
- priority: high -
- size: 16 KB — Message C

- priority: default Message B
\ - size: 128 KB \
Retrans. Data-chunks Reassembly
@ msion 7/ [\ NN

HENEESESE-E->

Network

Summary of the multi-stream scheduling model: applications create messages to transport
resources, and each message has a size and priority. The scheduler then decides which
message should be served, and sends the content of messages as a sequence of data-chunks.
Data-chunks from different messages can be freely interleaved: this can be useful for
instance when retransmitting lost data-chunks. Messages are reassembled on the receiver
side; conceptually, they are delivered to the application only once they are complete.

consequence, I use the unambiguous expression “data-chunk” with a definition
that matches the “DATA chunks” concept from SCTP.

Figure 4.1 summarises the main aspects of the multi-stream scheduling model. For
simplicity, the model merges the concept of message and stream: only a single
message can be sent on a stream. In addition, the message size needs to be known
in advance. I discuss the relevance of these two simplifications and other aspects of
the model below.

Applicability to SCTP

The message-oriented semantic of the model is directly inspired from SCTP.

Chapter 4 Stream-aware multipath scheduling

The main difference between the model and SCTP is that SCTP allows several
messages to be sent on a given stream. SCTP provides an ordering guarantee
between these messages: they will be delivered to the receiving application in the
same order as they were provided by the sending application.

From a scheduling perspective, this is equivalent to introducing strict priorities
between messages belonging to the same stream, which is possible in the model.

However, SCTP would need an additional serialisation step at the receiver to ensure
that messages are indeed delivered in the correct order. This slight difference
between the model and SCTP is not critical because it happens in very specific
conditions: packet loss would need to happen in such a way as to sufficiently delay
one message, while a lower-priority message in the same stream is not delayed: this
lower-priority would complete sooner although it started being transmitted later.
The impact of this slight difference is that the model will predict a slightly optimistic
completion time compared to SCTP in this specific case.

Applicability to QUIC

QUIC does not natively support message framing within a stream: as such, it is
limited to a single “implicit message” per stream. That is, opening a new stream
is the same as starting a new message, and closing a stream signals the end of the
message. This exactly matches the model.

The main difference between QUIC and the model is that QUIC is more stream-
oriented. It allows an application to consume any amount of data on a stream
and start processing it, even before the stream ends. Some applications might
find this feature useful, while others might only be able to process the data when
they have fully received the content of a stream. Thus, the model only applies to
this second category of applications, i.e. those using QUIC for message-oriented
communication.

Finally, QUIC allows the application to assign priorities to streams as part of the
application-transport API (e.g. a socket-like API) [50]. While QUIC implementations
are encouraged to take these priorities into account, no specific scheduling mecha-
nism is specified. Thus, even though other priority models are possible, my choice of
strict priorities in the scheduling model is fully compatible with QUIC.

4.2 The multi-stream scheduling model

67

68

Applicability to HTTP

The model matches the use-case of transferring web resources between a server and
a client with HTTP. Each web resource is represented as a message. The message
size is typically known in advance for static resources (Javascript files, images. ..).

In some cases, the total size of a HTTP message is not known in advance, for instance
when generating responses on the fly. In that case, the sender transmits the message
payload as a sequence of HTTP DATA frames until it reaches the end of the message.
In the model, this can be translated as a message with an initial size equal to infinity.
Whenever the sender eventually determines the remaining amount of data, it can
inform the transport protocol about the actual message size.

Finally, HTTP clients and servers may start processing partial messages. For instance,
it is usually beneficial to start parsing a large HTML document even if it has not been
fully received, so that links to resources can be discovered and requested as soon
as possible. Progressive images are another example of partial message processing.
These use-cases can be modelled with several successive messages with appropriate
priorities. For instance, a progressive image can be modelled with three messages:

1. a high-priority message containing the image metadata (type, width, height)
2. a medium-priority message containing a low-resolution version of the image

3. a low-priority message containing the full image data

Specific notes about HTTP/2 While the model can be applied to HTTP/2, it is not a
very convenient fit. Since HTTP/2 relies on TCP, all scheduling decisions need to be
made before passing data to TCP. This means that any data waiting in the TCP send
buffer cannot be rescheduled, preventing late scheduling decisions or preemption of
high-priority messages over low-priority messages. The TCP send buffer needs to
be at least as large as the Bandwidth-Delay Product (BDP) for good performance,
which can mean as much as several megabytes. See Section 2.3.2 in Chapter 2 for
more details.

Overall, HTTP/2 matches the model if all resources are known at the same time. It

otherwise provides very limited support for online scheduling — the case where new
messages can be created at any time, potentially preempting existing messages.

Chapter 4 Stream-aware multipath scheduling

4.3

4.3.1

Specific notes about HTTP/3 In HTTP/3, at most a single message with a payload
body is allowed on a QUIC stream [8]. This matches the model.

In addition, with good cooperation between the QUIC layer and the HTTP/3 layer, it
is possible to schedule data as late as possible, even if it is already in the QUIC send
buffer. This is useful when a new high-priority message is created and suddenly
needs to preempt existing messages.

Overall, notwithstanding the general applicability of the model to HTTP, both
HTTP/3 and SCTP provide the best match with the model.

Stream-aware multipath scheduling

In the previous section, I introduced a model to study stream scheduling algorithms.

I now extend this model to the multipath case and discuss the challenges that arise
from this extension.

Multipath scheduling with several streams

The previous scheduling model in Figure 4.1 was tackling the problem of scheduling
data from several streams. I now assume that there are several paths to choose from
when sending data: this adds a new dimension to the scheduling problem. I call

this problem stream-aware multipath scheduling in line with recent literature [87].

I show the basic principle of how a stream-aware multipath scheduler works in
Figure 4.2.

A stream-aware multipath scheduler needs to solve two separate problems: stream
scheduling and path allocation. I detail these two problems below:

Stream scheduling

The scheduler needs to choose which stream(s) it will service at any given time.
It may use priorities provided by the application. This is the same problem that I
described in Section 4.1.

4.3 Stream-aware multipath scheduling

69

Host 1 Host 2

Application Application
\] , »
Relivery of
A complete
message
VY Transport Transport
Message B Message C
Message A
- priority: h|gh
- size: 16 KB - priority: default Message C
StreamSIZE 128 KB Message B
scheduling
Stream-aware

multipath schedulet

Path 2

Figure 4.2 The stream-aware multipath scheduling model. Compared to Figure 4.1, there is an addi-
tional dimension: several paths can be used to send data. The scheduler needs to solve two
problems: stream scheduling and path allocation.

70 Chapter 4 Stream-aware multipath scheduling

4.3.2

Path allocation

Once the scheduler has data to send, it needs to decide which path(s) it will use.

This is similar to the classical multipath scheduling problem that I described in
Section 2.4.2 of Chapter 2.

Shortcomings of MPTCP schedulers

Multipath TCP (MPTCP) has been the de-facto standard for multipath transport
research for many years. This has led to a number of proposed multipath scheduling
algorithms as described in Section 2.4.2. As such, it is tempting to reuse schedulers
developed for MPTCP in this new multi-stream case. This is the approach taken by
early works on MPQUIC [19, 105].

However, MPTCP was specifically developed to match the semantic of TCP: it handles
a single stream of data with no visible framing. Whenever the application multiplexes
several messages on a connection, as discussed in Section 4.1, Multipath TCP is not
aware of this fact and this may negatively impact performance. More specifically, I
identify two main shortcomings of MPTCP when handling multiplexed messages:
the first is related to scheduling, while the second is inherent to the way the protocol
delivers data.

Shortcomings of MPTCP scheduling: serialisation at the sender

When using MPTCP, a serialisation step is needed before data can be handed out
to MPTCP: data from several stream needs to be ordered and organised in a single
buffer. The application is responsible for this serialisation step and is thus forced to
perform stream scheduling itself. This behaviour is illustrated in Figure 4.3.

The main problem of this serialisation step is that it completely decouples stream
scheduling (performed by the application, on the left of Figure 4.3) from path
allocation (performed by the MPTCP implementation, on the right of Figure 4.3). It
causes a lack of visibility: the path allocation algorithm does not see the boundaries
between streams. As a result, it cannot optimise the scheduling process for a given
stream, and it may unknowingly take poor scheduling decision such as sending part
of a stream on a high-latency path: this may cause delayed stream completion.

4.3 Stream-aware multipath scheduling

71

Figure 4.3

72

Sending application MPTCP
Stream Path
scheduling allocation

> 4

Multipath
network

No visibility N\
Serialisation on streams

Ilustration of the serialisation step incurred by MPTCP when scheduling multiplexed data.
Stream scheduling and path allocation are performed completely independently (by the
application and by the MPTCP scheduler respectively).

For instance, the Earliest Completion First [68] scheduler aims to minimise the
completion time of the whole TCP data flow; however, it cannot consider the
completion time of individual messages.

Shortcomings of MPTCP delivery: serialisation at the receiver

The second issue happens on the receiver side: the data flow is again serialised into
the receive buffer. Since paths have different latencies, it is common to obtain gaps
in the receive buffer. When such a gap happens, it blocks delivery to the application
because the semantic of TCP implies strict in-order delivery. However, the blocked
data may contain data that belongs to a different stream than the missing data in
the gap, and this blocked data could be used straight away by the application: this
is called Head-of-Line blocking. This behaviour is illustrated in Figure 4.4.

This head-of-line blocking issue is much more frequent when using multiple paths.
On a single path, it mainly happens when a packet is lost and needs to be retrans-
mitted: all subsequent received packets are blocked until the retransmission reaches
the receiver. With multiple paths, there is an additional significant cause of head-
of-line blocking: different latency on each path. Many MPTCP schedulers such
as DAPS [92, 65] or BLEST [26] try to avoid Head-of-Line blocking by estimating
network characteristics before scheduling data, but there will always remain some
cases of head-of-line blocking because the latency of a network is variable over
time.

Chapter 4 Stream-aware multipath scheduling

Figure 4.4

4.3.3

MPTCP Receiving application
e]

N blocking

Multipath

network 1 gap__- -
Serialisation Demultiplexing-

VN

e

Ilustration of the serialisation step at the receiver, before stream demultiplexing can be
done. Any gap in the received data will cause Head-of-Line blocking.

In the case of the message-based model, head-of-line blocking is mainly an issue
when it delays completion of a stream. That is, if the last data-chunks of a message
M, are received but are blocked by missing data-chunks from another unrelated
message M», the completion of message M is delayed.

To sum it up, MPTCP schedulers provide a good basis to solve the path allocation
problem individually. However, to tackle the more general stream-aware multipath
scheduling problem, it is necessary to solve both stream scheduling and path allo-
cation simultaneously, a double task that MPTCP schedulers cannot solve on their
own.

Stream-aware multipath schedulers

I now present a few illustrative stream-aware multipath scheduling strategies. I start
by reviewing existing algorithms for stream scheduling and path allocation. I then
show how they can be combined: while stream scheduling and path allocation are
distinct problems, a scheduling algorithm needs to integrate both aspects to obtain
good performance.

I present scheduling algorithms in a normalised form <stream scheduler>-<path
allocation>. For instance, <Round-Robin>-<MinRTT> means that Round-Robin is
used to choose which streams are served, while the MinRTT strategy is used for path
allocation.

4.3 Stream-aware multipath scheduling

73

Table 4.1 Stream scheduling algorithms

Stream scheduling algorithm | Description

Round-Robin (RR) Serve all active streams in parallel. It is possible
to take priorities into account using Weighted
Round-Robin (WRR).

Sequential Serve streams exclusively: finish a stream before
starting the next one. The order can be based
on message priorities, message lengths, or other
criteria.

First-Come First-Serve (FCFS) | Special case of Sequential where the order is
simply the order in which messages were handed
out to the scheduler.

Strict priority classes Messages with higher priorities are served first.
A secondary stream scheduling strategy (RR, Se-
quential) is needed to schedule streams with the
same priority.

Table 4.2 Path allocation algorithms

74

Path allocation algorithm Description
Single Path Only use a single path to send data for a message.
MinRTT Use the path with lowest RTT if congestion con-

trol allows sending on it, otherwise fallback to
another higher-RTT path.

Earliest Completion First (ECF) | Try to ensure simultaneous completion of mes-
sages on multiple paths.

<Round-Robin>-<MinRTT>

This is the most straightforward algorithm: it combines the default stream scheduling
strategy of HTTP/2 (Round-Robin) with the default path allocation strategy of
MPTCP (MinRTT). There is no interaction between the two strategies: MinRTT only
takes into account path characteristics when allocating a data-chunk to a path and it
performs this allocation without any consideration of which message this data-chunk
belongs to. As a result, this combined algorithm suffers from the first shortcomings
described in Section 4.3.2 because it has an implicit serialisation step at the sender,
even when used with MPQUIC.

<Round-Robin>-<ECF>»

Rabitsch et al. [87] proposed the SA-ECF scheduler that combines Weighted Round-
Robin and ECF. It provides a good example of interaction between stream scheduling

Chapter 4 Stream-aware multipath scheduling

and path allocation: to perform path allocation, ECF needs to estimate the comple-
tion time of a message, and this is only possible by knowing the stream scheduling
strategy (WRR in this case). I will describe in much more details how ECF interacts
with the stream scheduling strategy in Section 4.4.

<Round-Robin)-<Single Path>

This single-path design has been proposed for CMT-SCTP and was named the “Fixed”
scheduler [20]. It sends each stream on a single path. When multiple streams are
mapped to the same path, they share its capacity with Round-Robin.

Sending a message on a single path has the advantage of avoiding out-of-order
reception of packets that would be caused by heterogeneous path latency. However,
large messages will not be able to take advantage of the combined throughput of all
paths. As such, it is mostly beneficial for small messages or for a high number of

concurrent messages.

FStream [98] proposed a similar design for MPQUIC: messages are sorted according
to their HTTP/2 priority and each message is mapped to a single path, chosen to
minimize the estimated completion time of the message. Once mapped to a path,
messages share the capacity of the path using Weighted Round-Robin based on their

priority.

<Sticky Round-Robin)>-<Single Path>

The DS scheduler, short for “Dynamic path- and Stream-based Scheduling algo-
rithm” [23], is designed to schedule messages from SCTP streams. It does not
exactly fit the scheduling model, because the algorithm schedules messages that
belong to the same stream differently than messages that belong to different streams.
Nevertheless, its scheduling strategy warrants a detailed explanation.

First, it provides strict priority classes: streams in a higher priority class get absolute
priority over path resources.

Then, within a priority class, it uses a “sticky” version of round-robin to select which
stream can send data. That is, if a stream has just sent a message on a path and has
more messages to send, it will keep getting access to the same path: the stream is
“sticked” to this path. Note that several streams can be “sticked” at the same time,
each on its own path.

4.3 Stream-aware multipath scheduling

75

76

Once the “sticked” stream has no more data to send, Round-Robin is used to select
another stream. This is done in two steps: first, the algorithm looks for a stream
that had used this path to send its previous message. This provides another level of
stickiness. As a second step, the algorithm will fall back to select any stream that
has data to send.

Finally, path allocation simply sends each message on a single path. The choice of
path is done by estimating which path would yield the lowest transfer time.

Overall, this strategy cleverly exploits the message structure of SCTP to avoid head-
of-line blocking while still exploiting all the capacity offered by the available paths.
It bears some similarity with the single-path allocation strategy from [20], but with
a much finer-grained and dynamic approach.

<Sequential>-<ECF>

A recent MPQUIC scheduler for HTTP/2 has proposed a sequential stream scheduling
approach [107].

To determine the sequential order in which streams are served, the authors simulate
a WRR algorithm based on the HTTP/2 priority tree. They determine the order in
which messages would complete in this WRR simulation, and they then apply the
same order with a sequential strategy. Overall, the sequential order is determined
using both message size and message priority.

Path allocation is similar to ECF in that it ensures simultaneous completion on
multiple paths, although the exact method is slightly different.

<FCFS>-<ECF>

Although it was developed for Multipath TCP, the DEMS scheduler [36] splits the
data flow into “chunks” and schedules each chunk independently. This is similar to
the notion of message in the model, although it is less accurate because (MP)TCP
does not have real visibility into application messages: a chunk may encompass
several application-level messages, or a message may be split into several chunks.

In DEMS, chunks are scheduled in the order they are provided by the applica-
tion (First-Come First-Serve). Path allocation tries to ensure “balanced subflow
completion” for each chunk, using a technique similar to ECF.

Chapter 4 Stream-aware multipath scheduling

4.4

441

442

ECF: multipath scheduling for a single message

Before describing the general SRPT-ECF algorithm, I start with the simpler problem
of scheduling a single message on multiple paths. It means that we only need to
solve path allocation: there is no stream scheduling.

I focus on the Earliest Completion First [68] (ECF) path allocation strategy and
show that it is minimizes the completion time for a single message in an idealized
network model. I will then use this result in Section 4.5 to prove the optimality of
my proposed algorithm SRPT-ECF in the same model.

Network model

The network model is the following: each path p has a fixed round-trip latency D,
and a fixed bottleneck capacity or “bandwidth” B,, expressed in bytes per second.
This model is very simple but captures the two main parameters of interest for a
transport protocol. Even though using fixed values for these parameters is widely
unrealistic, it will allow us to more clearly highlight the important properties and
requirements of stream-aware scheduling algorithms. I then discuss how to handle
variable latency and capacity in Section 4.8.

Compiletion time of ECF

The metric I consider is message completion time, which is the difference between
the time at which the message becomes available and the time at which it has been
fully transferred and acknowledged.

I compute the minimum completion time as a function of (D)), (B,) and the message
size S, assuming that paths are ordered by increasing latency. The key finding is that,
for two paths, there is a size threshold S;;,,,: below this threshold, the completion
time is minimized by taking only the first path, because the latency of the second
path is larger than the total completion time. Above this threshold, both paths are
useful, until the remaining size crosses the threshold: at this point, all remaining
data should be sent on the first path. This allows both paths to complete their
transfer at the same time from the point of view of the receiver. The completion
time as a function of the message size S is given by:

4.4 ECF: multipath scheduling for a single message

77

Figure 4.5

78

Cs<sy, = D1+ B, (4.1)
S - Slim
Sos,, = Dy 2—tm 2
Cs>s,.. 2+ By + By (4.2)
where
Siim = B1 - (D2 — Dy) (4.3)

These equations are actually valid at any point in time, giving the remaining comple-
tion time as a function of the remaining size. This stability property yields a natural
scheduling algorithm that, at any time, simply compares the remaining size with the
threshold Sj;,,. Fig. 4.5 shows such an ECF schedule with two paths. At first, both
paths are used. Starting from time ¢ = 12.86, the remaining size drops below the
Siim threshold, so only the path with lowest latency is used.

Schedule as seen by sender

Path 0 i
Path 1 B streamo
0 5 10 15 20
Schedule as seen by receiver
Path 0 A

Path11 M stream 0

0 5 10 15 20
Time

Example of an optimal schedule computed with ECF for a single message, as seen from
the sender (top) and the receiver (bottom). Notice how data on the two paths completes
simultaneously on the receiver side. Path 0 has capacity 200 KB/s and latency 5 ms, while
path 1 has capacity 500 KB/s and latency 10 ms. The message has a size of 10 KB.

For n paths, we can show recursively that there exists n — 1 similar size thresholds:

as the message size increases, it becomes more and more useful to use paths with
larger latency. An example curve with 3 paths is shown in Fig. 4.6.

Chapter 4 Stream-aware multipath scheduling

Figure 4.6

4.5

Completion time

One E Two paths E Three paths e
path | ' Slope:
: : 1/(B1+B2+B3)
Slope: Slope: :
1/B:1 /i 1/(B1+B2)
Df" " Threshold Threshold Message size
0 D>
0 S_limi2 S_limas

Completion time as a function of message size using ECF. S};,,,12 is the size threshold at which
point the optimal solution changes from only using one path to using two paths. Similarly,
Siimas is the threshold between two and three paths. Paths are ordered by increasing delay.
Here, D, is the delay of the first path, while B; is the capacity (in byte/s) of path i.

SRPT-ECF: optimal stream-aware multipath
scheduling

I now describe SRPT-ECF, my novel stream-aware multipath scheduling algorithm. I
compare it with other schedulers and show that my algorithm is optimal in a simple
network model.

I consider multiple messages (my,) of size Si. I assume that all messages are created
at the same time and are available at the sender. I use the same network model
as in Section 4.4 and the goal is to minimize the completion time of individual
messages.

The algorithm works in two steps:

Stream scheduling: SRPT The algorithm first takes into account application-provided
priorities to partition messages into priority classes: messages with higher priorities
are scheduled first.

Within a given priority class, it orders messages according to the Shortest Isolated
Remaining Completion Time principle. It computes the remaining completion time
for each message if it was alone using ECF, and prioritise messages that have
the smallest “isolated” completion time. This principle is inspired from the SRPT
algorithm (Shortest Remaining Processing Time) from classical scheduling theory,
hence the name of the algorithm. In the simple case where all messages are created

4.5 SRPT-ECF: optimal stream-aware multipath scheduling

79

4.5.1

Figure 4.7

80

at the same time, it boils down to scheduling smaller messages first because the
function from Fig. 4.6 is non-decreasing. In a real implementation, we would need
to keep track of in-flight data-chunks to estimate the isolated completion time of
each message. This is described in more details in Section 4.6.

Overall, messages are ordered according to a lexicographical ordering on the couples
(application-provided priority, isolated completion time).

Path allocation: ECF For each message in the order determined by stream schedul-
ing, the message is scheduled on the available paths using Earliest Completion First
(ECF). For a given message, the size that is considered to determine which paths to
use (see Fig. 4.6) accounts for all the messages that are scheduled before. Thus, the
effective size of message my, for ECF is: SFCF = > i<k Si- This is because the data
of all messages (m;);< is scheduled before message m.

Examples

Fig. 4.7 shows a simple example of how SRPT-ECF optimally schedule two mes-
sages.

Schedule as seen by sendler

1 1 1 1 1

Path 0 | [-

B streamo
Path 1 1 [l Stream1 [

0 2 4 6 8 10
Schedule as seen by receiver

Path O
B StreamoO |

Path1l4 [] Stream1

0 2 4 6 8 10
Time

Optimal schedule computed with SRPT-ECF for two messagess with the same paths as in
Fig. 4.5. Message 0 has size 900 B while Message 1 has size 800 B. Notice how the smaller
message gets priority but only uses the shortest-latency path thanks to ECF, while the bigger
message exploits the unused resources on Path 1. However, thanks again to ECF, it stops
using Path 1 early to ensure simultaneous completion on both paths. The sequence of
completion times is (9,11) and is optimal.

I also compare my algorithm with a Round-Robin strategy, more specifically SA-
ECF [87]. The result is shown in Fig. 4.8: Message 0 has roughly the same com-

Chapter 4 Stream-aware multipath scheduling

Figure 4.8

4.5.2

pletion time as with SRPT-ECF, but the completion of time of Message 1 notably
increases. Overall, Round-Robin is a net loss: by introducing more fairness, it
actually made the situation worse for a message while not improving the situation
for the other message.

Schedule as seen by senqler

1

B B
Path O N
B StreamoO
Path 1 [] Stream1 [
2 4 6 8 10

Schedule as seen by receiver

Path 0 -
B Streamo
Path1q [7] stream1
0 2 4 6 8 10
Time

Same situation as Fig. 4.7, but with the SA-ECF scheduler [87] (Weighted Round-Robin +
ECF) with 150 bytes of quantum and equal weights. The overall completion time is roughly
the same as SRPT-ECF, but all messages have the worst possible completion time among ECF
schedulers: the sequence of completion times is (11, 11.2).

Properties of SRPT-ECF

My SRPT-ECF algorithm has desirable properties: it prioritizes smaller messages,
lowering their completion time without having a significant impact on larger mes-
sages. In addition, since ECF may not use all paths to transmit a small message,
unused resources can be used by larger and thus lower-priority messages. This
behavior is illustrated in Fig. 4.7 where Message 0 is scheduled with ECF with an
effective size of SFCF = S + S, causing it to use the high-latency path while it

waits for access to the low-latency path.

SRPT-ECF achieves an optimal completion sequence Let (C;) be the ordered se-
quence of completion times achieved by SRPT-ECF, and (C/) the ordered sequence
of completion times achieved by any other scheduling algorithm. The order in which
messages complete may not be the same for both cases: C; might be the completion
time of message m; while C] might be the completion time of message ms.

4.5 SRPT-ECF: optimal stream-aware multipath scheduling

81

4.6

82

The sequence (C;) is optimal in the following sense:

Vi, C;<C! (4.4)

This result can be proved by showing that in any optimal schedule, the overall
schedule behaves like ECF with a single message of size) Si, and that the SRPT
ordering is the best ordering. This is because the total completion time C*(3",cs Sk)
of any subset of messages S is a non-decreasing function of their total size.

Optimal average completion time In particular, the optimality result implies that
SRPT-ECF is also optimal for the average completion time of messages.

Stability Similarly to Section 4.4, the SRPT-ECF algorithm is stable: the order in
which messages are considered will stay the same over time. This is because the
Isolated Remaining Completion Time of each message will reduce faster for higher-
priority messages: therefore, their order is not modified. This stability property
means that messages have no regrets about their past actions, and avoids priority
inversions that would be harmful for message completion times.

Running SRPT-ECF online

In Section 4.5, we assumed that all messages were available at the same time. In
practice, however, the application may decide to create and transmit a new message
at any time: this becomes an online scheduling problem where each message m is
released at a given date r,,. The scheduler needs to take decision without knowing
future release dates, potentially leading to poor decisions in hindsight. In this
context, the completion time of a message is defined relatively to its release date, i.e.
the completion time equals C,, = f,,, — r;, where f,, is the finishing date at which
the message is completely received.

The SRPT-ECF algorithm can still be used, but it is no longer optimal: an offline

algorithm would know about future messages and could anticipate and produce a
slightly better schedule. Still, I show that SRPT-ECF remains desirable.

Chapter 4 Stream-aware multipath scheduling

4.6.1 Online SRPT-ECF algorithm

In an online setting, the algorithm still works as described in Section 4.5: 1) it orders
messages according to their Isolated Remaining Completion Time, that is: assuming
we dedicate all paths resources to a message, how much time would it need to
complete? 2) it allocates paths to messages with ECF. The main difference is that
the Isolated Remaining Completion Time is more complicated to compute.

Assume that we already have a set of messages (my,)1<x<,—1 already being scheduled
and transmitted with SRPT-ECF. Then, at time r,, a new message m,, is released and
wants to be scheduled: the current schedule may need to be changed to satisfy the
requirements of SRPT. We need to recompute and compare the Isolated Remaining
Completion Time for each message. A key difference with Section 4.5 is that part of a
message may already be in-flight, possibly impacting its remaining completion time.
This is especially the case when a data-chunk is in-flight on a high-latency path: even
if all future data-chunks use a low-latency path, we still need to wait for this in-flight
data-chunk to arrive. In practice, the Isolated Remaining Completion Time of a
message my, with size Sy is the maximum of two terms: the optimal completion time
given by ECF (which only depends on the size Sj) and the time Tin-ﬂight needed
for existing in-flight data-chunks to reach the destination:

Cisolated (M%) = max|Cicp(Sk), Tin flight ()] (4.5)

This second term can be computed by predicting the date at which in-flight data-
chunks will finish on all paths. A simple way to do this is to record the last time
at which we sent a data-chunk on a path p and add the path delay D,, assuming it
does not change over time, and take the maximum over all paths. Once the Isolated
Remaining Completion Time is computed for all messages, we order messages from
smaller to bigger and use ECF to allocate paths to messages, as before.

Thanks to the stability property, we don’t need to recompute Cj q for all

solate
messages, since the relative order of existing messages is unchanged: the new
message can simply inserted in the ordered list of messages, which can be done with

only O(log(n)) operations.

Fig. 4.9 shows an online example of SRPT-ECF where a big message is pre-empted
by two small messages in succession.

4.6 Running SRPT-ECF online 83

Figure 4.9

4.6.2

84

§chedqle as seen bylsender

S E— —— -

Path O
Path 1

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Schedule as seen by receiver

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Time

Path O -
Path 1 -

Example of SRPT-ECF running online. Message 0 is initially alone and uses ECF as in Fig. 4.5.
When Message 1 arrives (t = 4), Message 0 gets preempted immediately: as a result, it
starts using Path 1 again so that data on both paths finishes simultaneously, accounting for
Message 1. When Message 2 arrives (¢t = 9), Message 0 is preempted again but this time it is
too late to use Path 1, so it just waits for Message 2 to finish.

Comparison with offline algorithms

To understand how much SRPT-ECF can lose by not anticipating future events, I
compare it to offline scheduling algorithms that know about future message releases
and are able to anticipate. The goal is to illustrate the behavior of SRPT-ECF, rather
than conducting a thorough analysis of offline-to-online performance ratio.

I implement a simple offline algorithm that tests all possible priority orderings
between messages. For each priority ordering, it allocates resources to messages in
this order while ensuring simultaneous completion on all paths, giving resources
to a lower-priority message if a higher-priority message has not yet been released.
The algorithm then selects the ordering that yields the best value of the chosen
metric, which could be for instance the average completion time or the maximum
completion time.

In Fig. 4.10 I show the result of this offline algorithm in the same setting as Fig. 4.9,
taking the average completion time as metric to minimize. For Message 0, the offline
algorithm does 18% better than SRPT-ECF. This example illustrates that SRPT-ECF
works best when messages are available in batches; in addition, the application
should inform the scheduler as soon as possible about data it plans to send, even if
such data is not yet available.

Chapter 4 Stream-aware multipath scheduling

Figure 4.10

4.7

4.7 .1

§chedq|e as seen bylsender

S— —

Path O
Path 1

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Schedule as seen by receiver

I I I I - 1

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time

Path O -
Path 1 -

Optimal schedule obtained by an offline algorithm that minimizes the average completion
time. Message O can anticipate the arrivals of Messages 1 and 2, so it uses Path 1 for a longer
time to ensure both paths finish at the same time.

Trace-based evaluation of SRPT-ECF

To evaluate the SRPT-ECF algorithm against other scheduling algorithms, I use a
trace-based approach.

Methodology

[use webpagetest.org to run an actual web browser and instrument it when loading
a web page with HTTP/2 on a single path. The tool emulates a low-end residential

connection (DSL with 1.5 Mbps download capacity and 50 ms of additional RTT).
For each web resource, I record the date of the request and the size of the response.

I then select a single connection from this trace and replay it in the multipath model
described in Section 4.4: for each web resource, I create a message of the same size
in a multipath connection from the server to the client; the release date r, is the
date of the original request. I use two paths with comparable combined capacity
and end-to-end latency compared to the original setup: a first path with 80% of the
capacity and 80% of the end-to-end latency (DSL), and a second path with 40%
of the capacity and 180% of the end-to-end latency (mobile). Note that I don’t
compare the results with the original trace because it would be meaningless: I simply
compare different schedulers on the same trace replay.

I take several steps to ensure the trace is meaningful:

4.7 Trace-based evaluation of SRPT-ECF

85

4.7.2

86

1. T ensure that data is cached on the server by repeating the experiment and
keeping the last run: we can thus assume that the server can send the content
as soon as it receives the client request;

2. when recording the trace, I emulate a slow DSL connection to make sure
the page load is network-bound and not CPU-bound, and also to have many
resources loading simultaneously;

3. when replaying the trace, I simulate a slightly faster overall network (120% of
the original capacity) to respect dependencies without having to enforce them
explicitly. Indeed, each web page has an implicit dependency graph [108],
but instead of trying to determine this graph, my method makes sure that any
prerequisite requests are finished by the time a new request is made. Said
differently, any dependency in the original web page produces two independent
groups of requests in the replayed trace.

Simulation code

The simulation code is based on discrete event simulation with the help of the
Salabim Python library [38]. I implemented the simple network model from Sec-
tion 4.4.1 with a continuous transmission model. Instead of simulating packets, the
scheduler can transmit data continuously during a time interval, and each byte of
data is subject to the RTT of the path before being acknowledged.

The code of this simulator is available34. I describe a few aspects of this simulator
below:

discrete event core This is located in discrete_event.py. It contains the main
loop of the simulation in the process() method.

schedulers implementation All scheduling algorithms or “strategies” are located
in scheduling.py. A scheduling strategy must define a function that will be
called whenever a path is free and at least a stream has data to send, or on
special occasions (such as when a new stream is created). This function is
given the list of streams with data to send, the list of available paths, the list of
all paths (including those that are already busy sending data), and the current

*https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/master/
model

*An earlier packet-based simulator with a graphical visualisation can also be found in the same repos-
itory: https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/
master/simulation. However, this earlier simulator was only used to obtain initial intuition:
no result in this work is based on it, and I will not describe it further.

Chapter 4 Stream-aware multipath scheduling

https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/master/model
https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/master/model
https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/master/simulation
https://gricad-gitlab.univ-grenoble-alpes.fr/jonglezb/multipathsim/-/tree/master/simulation

4.7.3

time. The scheduling strategy must return a triple with: the stream that should
be served, the path on which data from this stream should be sent, and the
duration for which this action is valid. Specifying a duration is necessary
because of the continuous network model, and because the scheduling strategy
may want to stop using a path after some time (this is the case for ECF). The
scheduling strategy can also choose to return nothing, which means that it is
not interested in using the available paths: again, this is needed for ECF.

input instances The input is specified in a simple text format, documented in the
README. It describes the available paths, each with a fixed “speed” and “delay”.
It also describes the available streams, each with a release date (allowing
online experiments) and a total size. It is possible to specify dependencies
between streams but it was not used for this thesis.

HTTP/2 trace conversion For the trace-based evaluation, I needed to convert
the HTTP/2 trace from webpagetest.org in the input format expected by
my tools. This is done in trace_to_model.py and works from the JSON
trace produced by webpagetest.org. It produces several files, one for each
connection recorded in the trace.

offline solver for the needs of Section 4.6.2, I implemented offline solvers in
solve_omniscient.py. These solvers are not based on discrete event sim-
ulation, but they read the same input format and the result can be plugged
into the same graphical visualisation.

Results

Figure 4.11 shows the CDF of message completion times with SRPT-ECF and SA-
ECF [87] when loading the 132 images of a wikipedia page. The Weighted Round-
Robin component of SA-ECF is implemented with the same weight for all messages.
I also include two simpler schedulers based on MinRTT: First-Come-First-Serve
(FCFS-minRTT) that schedules messages in their order of arrival, and SRPT-minRTT
that orders messages by size. This experiment yields two main results:

1. ECF exploits the low-latency path to reduce completion time for small mes-
sages, while MinRTT does not; the poor performance of MinRTT can be
partially explained by the network model, see Section 4.8.2;

2. SRPT brings a very significant improvement for the tail of resources compared
to both Round-Robin (SA-ECF) and FCFS.

4.7 Trace-based evaluation of SRPT-ECF

87

1.00 s
1 =" l.
w 0-751 e ® Scheduler
8 o] FCFS-minRTT
% 0.50 - ‘_,f"r . [---+ SA-ECF
0 T ~ - SRPT-ECF
5 il) _am=em T
0254 | il b SRPT-minRTT
r -
, _
|
t -
0.00 4=

70 100 150 250 400 650 1100 1800 3000 5000
Stream completion time (ms, log scale)

Figure 4.11 Simulation of a wikipedia page load by replaying a trace (webpagetest.org ID

88

200413 _FH_478b18e178c0fbf2ec9312686630e510, run 3, connection 2). Path O:
1050 Kbit/s, 67 ms. Path 1: 750 Kbit/s, 151 ms. Path latency is indicated with the
vertical bars. SRPT-ECF exhibits low completion times, thanks to its combination of ECF (left
part of the CDF) and SRPT (tail of the CDF).

To better understand this second effect, I plot the number of active messages at each
instant in Figure 4.12. SRPT-based schedulers reduce the number of active messages
as much as possible by prioritizing small messages, thereby completing them sooner.
With FCFS, small messages suffer when they have to wait behind a larger message,
increasing both the backlog of active messages and the completion time. SA-ECF
accumulates even more work because of Round-Robin, but smaller messages do
not have to wait for large messages to finish, yielding better completion time for
small messages compared to FCFS. Overall, combining SRPT and ECF gives the best
results.

Chapter 4 Stream-aware multipath scheduling

Figure 4.12

4.8

4.8.1

= ..
& h Scheduler
@ 127 FCFS-minRTT
g a
-§ 504 ;*-\\ ---- SA-ECF
| b '\

= SR - - -+ SRPT-ECF
© o N, ™
5 20 f r SRPT-mIinRTT
) lf - -
g ' "‘.“. ‘-.
5 01— . T S - ;
< 0 3000 6000 9000

Time (ms)

Scheduler occupation over time during the trace replay. Messages are created in three visible
bursts. The schedulers have different strategies for handling the backlog of active messages.

Practical considerations

I now discuss several practical aspects of the SRPT-ECF algorithm and how it could

be implemented in practice.

Dealing with network variability and uncertainty

All results so far are based on the simple network model from Section 4.4. In real
networks, the latency and available capacity can vary significantly over time, and
this can have a large impact on the effectiveness of scheduling algorithms. I sketch
some ways in which SRPT-ECF could be adapted to cope with this issue.

The main problem is the uncertainty associated with measured latency and capacity:
past measurements may not be good predictors of future network conditions. In
addition, it takes one RTT for the sender to become aware of a significant change
in the network. The key challenge is to anticipate these unexpected changes while
keeping the associated cost low.

On a theoretical side, it will be difficult to ensure the stability property from Sec-
tion 4.5.2 under changing network conditions. Thus, the scheduler should expect to

take decisions that may partially contradict earlier decisions.

4.8 Practical considerations

89

4.8.2

90

On a practical side, the DEMS scheduler [36] introduced several interesting tech-
niques for MPTCP: using the one-way delay difference between paths instead of
the RTT, controlled data duplication at the end of a message, adaptation based
on the variance of latency samples. Controlled duplication is interesting because
it provides optimal completion time at the end of a message, even if the delay
estimation used by ECF was wrong. These techniques could be adapted to apply to a
SRPT-ECF implementation, although there are challenges to be solved: should each
message benefit from duplication, which means delaying subsequent messages? Or
should duplication only be applied to the last message when there is nothing left to
transmit.

Congestion control: pacing vs. congestion window

I discuss two approaches to sending congestion-controlled data (classical congestion
window and pacing) and their impact on scheduling.

Pacing

Pacing is being used by recent TCP congestion control algorithms such as BBR [13].
These algorithms “pace” outgoing packets at the estimated bottleneck capacity to
avoid sending large bursts of data at once when the congestion window is not full.

The network model, with its continuous model of transmission and its assumption of
a perfect congestion control, is a perfect pacing model: between time ¢ and ¢ + dt, a
sender can transmit B,, - d¢ bits of data on path p where B, is the capacity of the path.
This infinitesimal amount of data will experience a delay of D,, before reaching the
remote peer.

Classical congestion window

When using a classical congestion window mechanism, the steady-state is reached
when the congestion window is full: the connection enters a “ACK pacing” phase in
which new packets are sent for each incoming ACK, naturally pacing packets at the
estimated bottleneck capacity.

When the congestion window is not full, the sender can send several packets in a
burst. These packets will accumulate in the bottleneck buffer, and will be released
from the buffer at a rate equal to the bottleneck capacity. In the end, the delay of

Chapter 4 Stream-aware multipath scheduling

4.8.3

each individual packet is the same as in the “pacing” case (assuming the buffer does
not overflow): packets are waiting in the bottleneck buffer instead of being paced
by the sender.

Pacing and scheduling

In the context of multipath scheduling, pacing has an additional benefit: it allows
to schedule data as late as possible, thus better adapting to real-time changes in
network conditions. Essentially, pacing converts queuing delay at the bottleneck into
waiting delay at the sender. The advantage is that the sender has more control over
data still waiting in its sending buffer than data stuck in the bottleneck buffer. This
provides better reactivity, a concept described in Section 2.3.2 of Chapter 2.

However, pacing interacts poorly with MinRTT. A naive implementation of MinRTT
will be blocked after sending just one packet on the low-latency path, thinking that it
is unavailable because its congestion window is filled. As a result, it will start sending
on higher-latency paths even though it would have been beneficial to wait and send
all data on the lowest-latency path. This partially explains the poor performance
of MinRTT in the evaluation in Section 4.7: since the model implements a perfect
pacing mechanism, MinRTT never has the opportunity to send whole messages on
the low-latency path. As a result, all messages bear the cost of the high-latency
path.

A real MinRTT implementation could take pacing into account and estimate when
it should wait and send all data on the lowest-latency path. However, it comes
at the expense of more complexity and deviates from the simple stateless idea of
MinRTT.

Buffering strategy

The buffering strategy of the sender can have an important impact on performance
and reactivity. To ensure good reactivity, it is necessary to serialize data as late
as possible before it is actually transmitted on the network (see Section 2.3.2 of
Chapter 2). However, in a multipath situation, this becomes even more impor-
tant: changing network conditions can frequently cause the sender to change its
scheduling decisions and use another path. Such a scheduling change needs to be
applied quickly, without leaving buffered data that would be sent according to the
old scheduling decision.

4.8 Practical considerations

91

4.8.4

4.9

92

Streaming use-cases and infinite messages

In the scheduling model (Section 4.2), I assumed that the scheduler knows about
the total message size in advance. In practice, this may not always be possible:
a HTTP resource can be produced “on-the-fly”, i.e. data starts being sent before
the response has been fully computed. Similarly, a reverse proxy might fetch and
forward data from an upstream server without knowing the total size in advance.
Buffering the whole message before starting to send data to the client would be
counter-productive.

This situation can be modelled with an infinite message size. The behaviour of
SRPT-ECF when faced with a message of infinite size is the following:

Stream scheduling (SRPT) within a priority class, an infinite message has lower
priority than any other finite message. This is consistent with the regular
behaviour of SRPT-ECF, because the Isolated Remaining Completion Time of
an infinite message is infinite. However, if several messages with infinite size
need to be ordered, the algorithm is modified to serve them with Round-Robin.

Path allocation (ECF) an infinite message is allocated to all paths. This is consis-
tent with the regular behaviour of SRPT-ECF, because an infinite message is
larger than any threshold (Section 4.4.2).

When the message is almost finished, it needs to inform the scheduler about its
remaining size. At this point, SRPT-ECF can resume its original behaviour because it
now has access to the message size. It is important to know the message size before
the very end of the message, because SRPT-ECF needs the size to bring the most
benefits near the end of messages: SRPT prioritizes small messages, and ECF tries to
ensure their simultaneous completion on all paths. Theoretically, this avoids having
regrets.

Conclusion

I have presented a scheduling model that allows to design and analyse stream-aware
multipath schedulers. To obtain good performance, a scheduler needs to work on
both the stream scheduling aspect (made possible by multiplexing) and on the path
allocation aspect (the more classical multipath scheduling problem). Combining
the two aspects opens many opportunities for optimisation but also means that a
large number of different approaches are possible. To my knowledge, these two

Chapter 4 Stream-aware multipath scheduling

sub-problems had not been clearly defined before, although scheduling algorithms
that implicitly solve these sub-problems together were proposed recently [87, 23].

Within this model, I proposed a new stream-aware multipath scheduler called
SRPT-ECF, where a variant of SRPT (Shortest Remaining Processing Time) is used
for stream scheduling and ECF is used for path allocation. Despite the apparent
simplicity of the algorithm, the combination of SRPT and ECF achieves an optimal
pattern of completion times. This brings highly desirable properties such as allowing
very different types of streams to coexist peacefully: small or important messages
enjoy strict priority to use the lowest-latency paths, while bulk transfers can still use
other higher-latency paths to make progress. This has the additional advantage of
lowering the risk of starving large flows, because they can exploit unused resources
offered by the multipath setup. All these properties can be ensured without any
manual tuning or classification from the application: it just needs to provide expected
message sizes to the scheduler. That being said, the application can still provide strict
priorities to the scheduler to indicate that a given flow is important even though it
may be larger.

Evaluation on a HTTP/2 trace shows that SRPT-ECF yields much better message
completion time than other stream-aware schedulers. In particular, Round-Robin
stream scheduling stands out for behaving poorly: since it tries to handle all streams
concurrently, it accumulates a large number of concurrent streams and this delays the
completion time of all streams. Said differently, SRPT allows streams to cooperate
with each other: a stream can tolerate short-term unfairness and starvation if this
allows another stream to achieve better results. In contrast, Round-Robin provides
short-term fairness, but this comes at the cost of higher completion time for all
streams.

In fact, Round-Robin could make sense in two situations:

* for truly concurrent flows, for instance if they belong to different users. User
A would find it unfair if all resources are first given to User B, and would
prefer sharing resources with B using Round-Robin, even though the overall
completion time of User A is the same in both situations. The short-term
fairness offered by Round-Robin also avoids starvation, which is important in
a competitive setting;

* for “streaming” use-cases, where any byte of received data can be exploited by
the application. In that case, the overall completion time is not very important
and short-term fairness matters more, even for cooperative flows.

4.9 Conclusion

93

94

But in the message-based multiplexing model considered here, all flows belong
to the same user application and are atomic: short-term fairness is not relevant
and the overall completion time of a message is the appropriate metric. As such,
Round-Robin yields very poor performance in this situation. This fact has been only
recently realized for HTTP/2 [110, 71].

Overall, I expect this work to lead to better MPQUIC schedulers, especially in the
context of HTTP/3. SRPT-ECF itself is a first step, and will probably need some
adaptation and extensions to be deployable in real networks.

Chapter 4 Stream-aware multipath scheduling

Conclusion

This work explored several directions to reduce latency in the Internet. In my early
work on adaptive routing [52], my approach was to let routers discover the best
paths that minimize end-to-end latency. Indeed, routers are naturally in a position to
have several available paths to select from when taking routing decisions. However,
it turned out to be difficult to implement in practice, because routers have a poor
view of end-to-end performance metrics such as latency. I implemented a proof-of-
concept router based on OpenFlow that performs passive RTT measurements by
observing timestamps in TCP packets, but this approach would not scale very well
and is very specific to TCP.

After this initial work, I turned my focus on end-to-end mechanisms to improve
latency, that is, working on the end-hosts themselves. This matches the end-to-end
model of the Internet where most of the intelligence is supposed to be located at the
periphery of the network.

The first end-to-end mechanism that I studied is multiplexing in Chapter 2. Multiplex-
ing allows several messages or data flows to share a common connection, thereby
sharing information about the current network state: latency, loss events. .. Itis a
first example of useful cooperation between data flows.

In Chapter 3, I applied this multiplexing idea to DNS. With the current DNS-over-UDP
approach, each DNS request and response starts from scratch without having any
information about the network state. As a result, the retransmission timeout used
to detect lost messages is extremely high, ranging from 1 to 5 seconds depending
on the implementation. By multiplexing several DNS requests on a single persistent
TCP connection, more information can be obtained on the network state, and it
can be reused for future requests. I showed that this DNS-over-TCP technique can
significantly reduce tail latency in case of packet loss: in one experiment, the 99th
percentile of query latency was reduced from 3022 ms to 109 ms. Multiplexing
DNS requests on a persistent connection had been proposed before as “Connection-
oriented DNS” [114]. However, to my knowledge, Chapter 3 is the first work to
give specific evidence that multiplexing DNS requests on a persistent connection
can improve latency in case of packet loss. More precisely, I isolated specific
mechanisms such as Fast Retransmit that explain this latency improvement. Lastly, I

95

96

ran experiments to ensure that the DNS infrastructure could withstand the additional
load of widespread DNS-over-TCP or DNS-over-TLS usage.

This was a first example that demonstrates the benefits of cooperation between
data flows: information and measurements can be shared to better adjust to net-
work conditions and improve performance. However, cooperation sometimes has
drawbacks. In the case of DNS-over-TCP, this comes in the form of Head-of-Line
blocking: since TCP ensures in-order delivery, a lost query will block subsequent
queries from being processed, even they have been successfully received. Solving
Head-of-Line blocking requires more advanced transport protocols, such as SCTP or
QUIC, that are aware of the multiplexed nature of the data they transport. This way,
they can ensure in-order delivery only when it makes sense and avoid unnecessary
head-of-line blocking in the other cases.

In Chapter 4, I generalize this multiplexing idea by adding a new dimension: the
ability to use several network paths. Multipath transport protocols, in particular
MPTCP, have been extensively studied for more than ten years. However, MPTCP
is based on the same single-stream model as TCP. Transport protocol extensions
such as CMT-SCTP [49] and more recently MPQUIC [19, 105] allow to multiplex
several streams of data in the same multipath connection. This has the potential
to solve long-standing issues with MPTCP such as head-of-line blocking caused by
asymmetric delays on the available paths, or the fact that MPTCP has no visibility
on multiplexed data — for instance when HTTP/2 multiplexes several streams on a
single (MP)TCP flow.

From a high-level perspective, combining the ability to multiplex several data
streams and the ability to transmit data on several paths yields a very rich and
interesting scheduling problem. Indeed, such a “stream-aware” scheduler has more
information available compared to a MPTCP scheduler: it has visibility on how many
streams have data to send, how much data is queued for each stream, and so on.
It can also take different scheduling decisions for different streams. Until recently,
this rich scheduling problem had not been identified clearly: the MPQUIC design
proposals [19, 105] were focused on other design aspects and simply reused existing
MPTCP schedulers, without exploiting the additional information made available to
the scheduler. To my knowledge, the first proposals that identified this scheduling
problem as such and developed schedulers to take advantage of this new paradigm
were published in 2018: the “Dynamic path- and Stream-based Scheduling” proposal
for CMT-SCTP [23] and the “Stream-Aware Earliest Completion First” scheduler for
MPQUIC [87].

Chapter 5 Conclusion

5.1

5.1.1

Chapter 4 focuses on this scheduling problem that I call the “stream-aware multipath
scheduling problem” following the terminology from [87]. It introduces a scheduling
model that can be used to reason about stream-aware multipath scheduler. Using
this model, I then propose a new stream-aware multipath scheduler called SRPT-ECF.
This scheduler exploits the size of each stream, and possibly priorities set by the
application, to compute an appropriate order in which streams should be processed.
It then ensures that each stream gets delivered in the smallest possible amount of
time, exploiting multiple paths if it helps. Using a simplified model, SRPT-ECF yields
an optimal sequence of stream completion time.

So far, this scheduling work remains rather theoretical. While I am confident that
SRPT-ECF can be implemented as part of a MPQUIC or CMT-SCTP implementation,
this remains to be proven. In particular, it would need more work to account for the
unpredictable conditions found in real networks: this calls for both theoretical and
practical extensions.

Perspectives

Dealing with measurement uncertainties

Most of the work in this thesis was based on predictable network conditions, either
because the experimental conditions were controlled on a testbed, or because I
selected a simple network model for the sake of tractability. Real networks are much
less predictable, and this is especially true for a distributed network like the Internet.
Network conditions can change over a large timescale (routing changes, diurnal
traffic patterns, persistent congestion, outages) as well as over a small timescale
(physical layer noise and interference, link rate adaptation, episodic congestion,
synchronisation between senders, bursts of cross-traffic). In addition, because of
network latency, any measurement such as RTT or loss rate is necessarily outdated
by the time its result is known.

As a result, when decisions need to be taken based on the current network state,
sub-optimal decisions become unavoidable. One specific example is the “remaining
size” threshold that I compute in Section 4.4: it is used by ECF to decide on which
path it will send data, and it depends on estimated network conditions. If the value
of this threshold is wrong because of incorrect network measurements, then the
completion time of the flow will be increased. Practical counter-measures have to

5.1 Perspectives

97

5.1.2

98

be found to overcome this uncertainty, such as the controlled replication scheme
introduced by the DEMS scheduler for MPTCP [36].

The lack of reliable up-to-date measurements affects thin-stream communication
the most, because of the low amount of traffic and the sporadic nature of this kind
of communication. Only a small number of RTT measurements can be taken, and
measurement results quickly become outdated.

This is also challenging on a theoretical level: few scheduling models integrate the
notion of latency, because they are usually focused on processing time in the context
of servers. I introduced models that account for latency (Sections 4.2 and 4.4.1 of
Chapter 4), but many properties only work if the latency is fixed. Under uncertain
network conditions, results such as the stability of a scheduler or the optimality
of SRPT-ECF (Section 4.5.2 of Chapter 4) no longer hold. More advanced tools
are needed, such as considering the expectation of parameters or minimizing a
regret in hindsight. For instance, my earlier work on latency-sensitive routing [52]
was resilient to outdated and noisy latency measurements by using an advanced
optimization method from Game Theory. More work is needed in the context of
stream-aware multipath scheduling to account for uncertainty in measurements.

More cooperation between thin-stream and bulk-transfer
communications

We have seen that thin-stream communication is affected by its lack of reliable
measurements. In addition, it is highly affected by packet loss because efficient
recovery would need good RTT estimation and sustained traffic: thin streams lack
both. This affects DNS (Chapter 3), TCP SYN packets [11], instant messaging traffic,
signalisation traffic such as Radius. ..

Such loss-sensitive traffic could benefit from more cooperation with other types of
communication patterns, such as bulk transfers. The idea of the cooperation is the
following: bulk-transfer flows enjoy timely feedback from the network because they
always have data to send, thus eliciting a continuous stream of acknowledgments.
As such, they are able to detect a packet loss in just one RTT, and they have access
to more accurate and up-to-date RTT measurements. Cooperation means that they
could provide loss detection and accurate RTT measurements to the thin-stream
flows.

Done correctly, this cooperation would significantly improve the performance and
reactivity of thin-stream flows. However, it is also very challenging: bulk transfers

Chapter 5 Conclusion

5.1.3

should not impair thin-stream flows, because that would nullify any advantage
brought by the cooperation. Even with appropriate prioritization, we have seen that
buffer management can have a significant impact on reactivity (see Section 2.3.2 in
Chapter 2). In addition, bulk transfers might create congestion that will increase the
delay experienced by thin-stream flows, both at the bottleneck and at the sender:
congestion control might prevent the sender from transmitting new data from thin-
stream flows. One solution could be to always reserve some space in the congestion
control window for thin-stream data.

This cooperation could be implemented as flow multiplexing on a common connec-
tion, and this combination of flows could be scheduled with the scheduler proposed
in Chapter 4. For instance, DNS traffic could share the same QUIC connection as
HTTP traffic. This would introduce a large number of practical challenges though,
such as: cross-layer dependencies, more complexity in the DNS infrastructure and
increased concentration of power in the hands of a few actors. Nevertheless, such a
scheme was already suggested in the past [40] although it was later retracted [41].

A limitation of the multiplexing technique studied so far is that all flows must be
handled by the same application. It does not allow flows from different applications
or from different hosts to be multiplexed and collaborate with each other.

Overcoming this limitation would allow broader cooperation between flows. There
has been a proposal to use HTTP/3 to carry and demultiplex flows for several
applications on the same host [94]. For even broader cooperation among flows from
several devices, WAN aggregation can be used: this is detailed in the next section.

WAN aggregation

The basic idea of WAN aggregation, also sometimes called “multilink aggregation”,
is to exploit several paths to the Internet directly from the home router.! This has
similar advantages to using a multipath transport such as Multipath TCP, but it is
simpler to deploy: any end-device connected to the home router will transparently
benefit from the advantages of multipath connectivity.

The expected benefits of WAN aggregation are fault tolerance (which allows to
tolerate a link failure by re-routing on another path), better reliability (to work
around packet loss and congestion on a path), and bandwidth aggregation.

There are two main existing WAN aggregation approaches:

! call it “home router” because it helps to understand the concept, but the concept can of course be
applied to an “office router” at a business office.

5.1 Perspectives

99

ISP A

A

| DSL line

Wi-Fi R _ Cable connection

Home router v
End device

ISP B

Figure 5.1 An example “network-based” multi-homing situation that is amenable to WAN aggregation.
This aggregation will be transparent for the devices connected to the local network.

simple or “single-ended” The home router simply maps each outgoing connection
to a single path. It can either map all connections to a single path and keep
another path as a fallback, or it can load-balance connections on the available
paths. There are several limitations: a given connection can only use a single
path, and existing connections cannot be migrated to another path in case
of path failure. The reason for that is that this approach often relies on NAT
(Network Address Translation) to select the correct outgoing IP address before
mapping a connection to a path. It has the advantage of not needing any

server-side component.

tunneled or “dual-ended” The home router establishes one or several tunnels to-
wards a server relay. The home router and the server relay can then cooperate
to transmit user data across the available paths; traffic is then relayed by the
server towards its destination on the Internet. It provides a very flexible and
powerful system: for example, a single user connection can be mapped to
several paths simultaneously to provide an increased throughput, data can be
duplicated to provide extra reliability, error correcting codes can be added to

avoid retransmission. . .

A popular open-source solution for this second approach is to setup a proxy on the
home router that communicates with the relay server using Multipath TCP. Shadow-
socks? is commonly used for the proxy part, with a setup that allows transparent

https://shadowsocks.org

100 Chapter 5 Conclusion

https://shadowsocks.org

proxying of user connections. Other open-source solutions that are not based on
Multipath TCP exist, such as Glorytun® and MLVPN*.

A slight variation of the “dual-ended” approach is marketed as “SD-WAN” for busi-
ness customers. It aims at offering a less expensive solution for the “WAN”, that
is, building a private network that interconnects several branch offices of the same
business entity. Traditionally, a WAN is built with expensive dedicated lines managed
with MPLS (Multi-Protocol Label Switching). SD-WAN solutions replace this archi-
tecture with a dual-ended WAN aggregation approach, typically tunneling all traffic
through a central location to interconnect the branch offices. The main advantages
are cost reduction and flexibility, because any network connection can be exploited
(FTTH, xDSL, LTE) instead of using expensive dedicated links. However, reliability
is generally much lower than with dedicated links, which is why it becomes useful
to aggregate several connections to improve the overall reliability. In essence, two
or more low-reliability links are used to replace a single high-reliability link, for a
fraction of the price. It is a workable strategy thanks to a variant of the “power of
two choices” [75]: it is unlikely that all links would fail or misbehave at the same
time.

The SD-WAN market is well-identified and booming, with a large number of actors
proposing SD-WAN solutions: Cisco Meraki, VMware (VeloCloud), Citrix, Oracle,
CenturyLink, Aruba, Riverbed, Fortinet, Silver Peak, Peplink. . .

Improving WAN aggregation

In the dual-ended case, many flows from several devices are aggregated by the
router into a single tunnel. This opens opportunities for cooperation between flows
belonging to different devices: as developed above, it can benefit sensitive flows
because they will recover faster, but it is also challenging because of Head-of-Line
blocking and possible interference.

Current open-source approaches for WAN aggregation either schedule each packet
individually or exploit Multipath TCP. Both approaches fail to consider individual
streams, which can lead to sub-optimal scheduling and impair the latency experi-
enced by thin-stream flows.

The SRPT-ECF scheduler that I proposed in Chapter 4 would be a good fit for this
situation, since it is able to optimize the latency experienced by each multiplexed

*https://github.com/angt/glorytun
“http://zehome.github.io/MLVPN/

5.1 Perspectives

101

https://github.com/angt/glorytun
http://zehome.github.io/MLVPN/

stream. Small sensitive flows would have priority and would use the lowest-latency
path, while bulk transfers would get access to spare resources and exploit high-
latency paths.

In practice, it could exploit a recent proposal for tunneling TCP connections within
QUIC streams [86]. The home router would maintain a single MPQUIC connection to
the relay server, would terminate TCP connections initiated by devices from the local
network, and tunnel them into the MPQUIC connection. The MPQUIC scheduler
would have visibility on each tunneled connection, and could use SRPT-ECF to
optimally schedule them.

This approach raises a number of interesting challenges:

* Would SRPT-ECF scale to a very large number of flows in practice?

* Would SRPT-ECF be competitive compared to SD-WAN algorithms that ex-
plicitly classify flows? Some SD-WAN solutions implement rules that classify
application traffic (Youtube videos, Voice-over-IP, gaming traffic...) and use
this classification to decide how to schedule flows on the available paths.
SRPT-ECF has the advantage of not requiring any classification, because it
only looks at the flow size: this is simpler, more robust, and allows any new
application to be deployed without needed an update of classification rules.
However, it may under-perform compared to SD-WAN solutions with explicit
classification rules.

* How should congestion control be handled? All combined flows from all
devices, once tunneled into a single MPQUIC connection, would be subject
to the congestion control rules of a single connection. If n tunneled flows
are competing with a single external connection at the bottleneck, assuming
fairness, the n flows would collectively only obtain half of the available capacity.
Each flow would thus get a lower share of bottleneck capacity than if it was
running outside of the MPQUIC tunnel. Solving this problem would require
extensive modelization and experimentation with new congestion control
algorithms.

5.1.4 Large-scale impact of multipath

102

Finally, we can envision the impact of a large-scale deployment of multipath tech-
nologies, possibly through WAN aggregation. What would be the resulting impact

Chapter 5 Conclusion

on the Internet as a whole? Would it lead to a stable system, or would we wit-
ness large and persistent shifts of traffic as multipath protocols adjust to measured
performance? Would there be a significant effect on congestion?

Several decades ago in ARPANET, the routing algorithm would choose routes based
on measured latency [63]. It eventually had to be changed because it caused severe
stability issues under high load. To some extent, widespread use of multipath
would have a similar effect: it allows traffic to shift from one path to another
based on latency and loss measurements. As such, it could also lead to large-scale
instabilities.

Even if large-scale multipath is stable, it may still converge to undesirable situa-
tions where no user is happy. In Game Theory, a stable situation is called a Nash
Equilibrium. A popular example of undesirable Nash Equilibrium in the context of
transportation networks is the Braess paradox [33]: adding a new shortcut road to a
network can worsen the travel time for all users. In the context of multipath commu-
nication networks, similar situations may exist: switching all users from single-path
to multipath may decrease the performance obtained by each user, possibly because
of increased cross-traffic and congestion, higher variability in delays. ..

Braess’ paradox happens when each user selfishly optimizes its own performance
metric. To move away from a Nash Equilibrium, either some users need to accept to
lose some performance so that other users can gain, or some external constraints
need to be enforced. Could large-scale cooperation between network users avoid
undesirable Nash Equilibria, and if so, how could such a cooperation be achieved?
For TCP, Kelly and others have shown that congestion control acts like an implicit
coordination mechanisms between users, and that it can be designed to converge to
a stable state with fair sharing of network capacity [59, 61]. This line of work on
congestion control has been extended to Multipath TCP [60, 62, 111]. There may
be other cooperation mechanisms besides congestion control.

Overall, the impact of local decisions on the global state of a network and the
question of cooperation between users of a network are open-ended questions that
can yield plenty of research questions. It can be approached with theoretical tools
such as Game Theory, but it also needs a practical view of multipath protocols that
make sense in the current and future Internet.

5.1 Perspectives

103

Bibliography

[1]Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. “Latency Requirements
for Foveated Rendering in Virtual Reality”. In: ACM Trans. Appl. Percept. 14.4 (Sept.
2017). DOI: 10.1145/3127589. URL: https://doi-org.ins2i.bib.cnrs.fr/10.
1145/3127589. | cit. on p. 2

[2]Stefan Alfredsson, Giacomo Del Giudice, Johan Garcia, et al. “Impact of TCP conges-
tion control on bufferbloat in cellular networks”. In: 2013 IEEE 14th International
Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).
June 2013, pp. 1-7. DOI: 10.1109/WoWMoM.2013.6583408. | cit. onp. 1

[3]IM. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig. Early Retransmit
for TCP and Stream Control Transmission Protocol (SCTP). RFC 5827 (Experimental).
RFC. Fremont, CA, USA: RFC Editor, May 2010. DOI: 10 . 17487 /RFC5827. URL:
https://www.rfc-editor.org/rfc/rfcb827.txt. | cit. on pp. 14, 41, 42, 43

[4]Fred Baker, Chris Bowers, and Jen Linkova. Enterprise Multihoming using Provider-
Assigned Addresses without Network Prefix Translation: Requirements and Solution.
Internet-Draft draft-ietf-rtgwg-enterprise-pa-multihoming-06. Work in Progress. In-
ternet Engineering Task Force, May 2018. 48 pp. URL: https://datatracker.ietf.
org/doc/html/draft-ietf-rtgwg-enterprise-pa-multihoming-06.

| cit. on p. 7

[5]Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Em-
manuel Jeannot, et al. “Adding Virtualization Capabilities to the Grid’5000 Testbed”.
In: Cloud Computing and Services Science. Ed. by Ivanl. Ivanov, Marten Sinderen, Frank
Leymann, and Tony Shan. Vol. 367. Communications in Computer and Information
Science. Springer International Publishing, 2013, pp. 3-20. DOI: 10.1007/978-3~-
319-04519-1_1. | cit. on pp. 8, 10, 48

[6]M. Belshe, R. Peon, and M. Thomson (Ed.) Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, May
2015. poI1: 10.17487/RFC7540. URL: https://www.rfc-editor.org/rfc/rfc7540.
txt. | cit. on pp. 21, 29, 60, 61, 62

[7]1T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol — HTTP/1.0.
RFC 1945 (Informational). RFC. Fremont, CA, USA: RFC Editor, May 1996. DOI:
10.17487/RFC1945. URL: https://www.rfc-editor.org/rfc/rfc1945. txt.

| cit. on p. 58

[8]Mike Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft draft-ietf-
quic-http-28. Work in Progress. Internet Engineering Task Force, May 2020. 70 pp.
URL: https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-28.

| cit. on pp. 60, 62, 69

105

https://doi.org/10.1145/3127589
https://doi-org.ins2i.bib.cnrs.fr/10.1145/3127589
https://doi-org.ins2i.bib.cnrs.fr/10.1145/3127589
https://doi.org/10.1109/WoWMoM.2013.6583408
https://doi.org/10.17487/RFC5827
https://www.rfc-editor.org/rfc/rfc5827.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-enterprise-pa-multihoming-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-enterprise-pa-multihoming-06
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.17487/RFC7540
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc7540.txt
https://doi.org/10.17487/RFC1945
https://www.rfc-editor.org/rfc/rfc1945.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-28

106

[9]Andrea Bittau, Daniel B. Giffin, Mark J. Handley, et al. Cryptographic protection of
TCP Streams (tcpcrypt). Internet-Draft draft-ietf-tcpinc-teperypt-11. Work in Progress.
Internet Engineering Task Force, Nov. 2017. 31 pp. URL: https://datatracker.ietf.
org/doc/html/draft-ietf-tcpinc-tcpcrypt-11. | cit. on p. 14

[10]Timm Bottger, Felix Cuadrado, Gianni Antichi, et al. “An Empirical Study of the Cost
of DNS-over-HTTPS”. In: Proceedings of the Internet Measurement Conference. IMC "19.
Amsterdam, Netherlands: Association for Computing Machinery, Oct. 2019, pp. 15-21.
DOI: 10.1145/3355369.3355575. URL: http://doi.org/10.1145/3355369.3355575
(visited on July 16, 2020). | cit. on p. 44

[11]Tristan Braud, Martin Heusse, and Andrzej Duda. “The Virtue of Gentleness: Improving
Connection Response Times with SYN Priority Active Queue Management”. In: IFIP
Networking 2018 Conference (IFIP Networking 2018). Zurich, Switzerland, 2018. URL:
https://hal.archives-ouvertes.fr/hal-01797063. | cit. on pp. 13, 14, 98

[12]B. Briscoe, A. Brunstrom, A. Petlund, et al. “Reducing Internet Latency: A Survey of
Techniques and Their Merits”. In: IEEE Communications Surveys Tutorials 18.3 (2016),
pp. 2149-2196. DOI: 10.1109/COMST.2014.2375213. | cit. on pp. 4, 13, 14, 24, 32

[13]Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. “BBR: Congestion-Based Congestion Control”. In: Queue 14.5 (2016), p. 50.
| cit. on p. 90

[14]Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. “BBR: Congestion-based Congestion Control”. In: Commun. ACM 60.2 (Jan.
2017), pp. 58-66. DOI: 10.1145/3009824. URL: http://doi.acm.org/10.1145/
3009824. | cit. on pp. 1, 14

[15]Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open. RFC 7413 (Exper-
imental). RFC. Fremont, CA, USA: RFC Editor, Dec. 2014. DOI: 10.17487/RFC7413.
URL: https://www.rfc-editor.org/rfc/rfc7413.txt. | cit. on p. 13

[16]S. Cherry. “Edholm’s law of bandwidth”. In: IEEE Spectrum 41.7 (July 2004). Confer-
ence Name: [EEE Spectrum, pp. 58-60. DOI: 10.1109/MSPEC.2004.1309810.
| cit. onp. 1

[17]T. Chown (Ed.), J. Arkko, A. Brandt, O. Troan, and J. Weil. I[Pv6 Home Networking
Architecture Principles. RFC 7368 (Informational). RFC. Fremont, CA, USA: RFC
Editor, Oct. 2014. DOI: 10.17487/RFC7368. URL: https://www.rfc-editor.org/
rfc/rfc7368.txt. | cit. on p. 7

[18]Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans, and Olivier Bonaventure.
“A First Analysis of Multipath TCP on Smartphones”. en. In: SpringerLink. Springer,
Cham, Mar. 2016, pp. 57-69. DOI: 10.1007/978-3-319-30505-9_5. URL: https:
//link-springer-com.gaelnomade-1.grenet.fr/chapter/10.1007/978-3-319-
30505-9_5 (visited on June 22, 2017). | cit. on p. 8

Bibliography

https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-11
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-11
https://doi.org/10.1145/3355369.3355575
http://doi.org/10.1145/3355369.3355575
https://hal.archives-ouvertes.fr/hal-01797063
https://doi.org/10.1109/COMST.2014.2375213
https://doi.org/10.1145/3009824
http://doi.acm.org/10.1145/3009824
http://doi.acm.org/10.1145/3009824
https://doi.org/10.17487/RFC7413
https://www.rfc-editor.org/rfc/rfc7413.txt
https://doi.org/10.1109/MSPEC.2004.1309810
https://doi.org/10.17487/RFC7368
https://www.rfc-editor.org/rfc/rfc7368.txt
https://www.rfc-editor.org/rfc/rfc7368.txt
https://doi.org/10.1007/978-3-319-30505-9_5
https://link-springer-com.gaelnomade-1.grenet.fr/chapter/10.1007/978-3-319-30505-9_5
https://link-springer-com.gaelnomade-1.grenet.fr/chapter/10.1007/978-3-319-30505-9_5
https://link-springer-com.gaelnomade-1.grenet.fr/chapter/10.1007/978-3-319-30505-9_5

[19]Quentin De Coninck and Olivier Bonaventure. “Multipath QUIC: Design and Evalu-
ation”. In: Proceedings of the 13th International Conference on Emerging Networking
EXperiments and Technologies. CONEXT ’17. New York, NY, USA: ACM, 2017, pp. 160-
166. DOI: 10.1145/3143361 . 3143370. URL: http://doi.acm.org/10.1145/
3143361.3143370. | cit. on pp. 71, 96

[20]Thomas Dreibholz, Robin Seggelmann, Michael Tiixen, and Erwin Paul Rathgeb.
“Transmission scheduling optimizations for concurrent multipath transfer”. In: Pro-
ceedings of the 8th International Workshop on Protocols for Future, Large-Scale and
Diverse Network Transports (PFLDNeT). Vol. 8. 2010. | cit. on pp. 75, 76

[21]Nandita Dukkipati, Neal Cardwell, Yuchung Cheng, and Matt Mathis. Tail Loss Probe
(TLP): An Algorithm for Fast Recovery of Tail Losses. Internet-Draft draft-dukkipati-
tcpm-tcp-loss-probe-01. Work in Progress. Internet Engineering Task Force, Feb. 2013.
20 pp. URL: https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-
tcp-loss-probe-01. | cit. on p. 43

[22]Eric Dumazet. tcp: TCP NOTSENT LOWAT socket option. Online; accessed on 20 August
2020. July 2013. URL: https://lwn.net/Articles/560082/. | cit. on p. 23

[23]Johan Eklund, Karl-Johan Grinnemo, and Anna Brunstrom. “Using multiple paths
in SCTP to reduce latency for signaling traffic”. en. In: Computer Communications
129 (Sept. 2018), pp. 184-196. DOI: 10.1016/j.comcom.2018.07.016. URL: http:
//www .sciencedirect .com/science/article/pii/S0140366417310873 (visited
on Sept. 2, 2020). | cit. on pp. 75, 93, 96

[24]M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler. “Toward Low-Latency and
Ultra-Reliable Virtual Reality”. In: IEEE Network 32.2 (2018), pp. 78-84. | cit. on p. 2

[25]Benevid Felix, Igor Steuck, Aldri Santos, Stefano Secci, and Michele Nogueira. “Redun-
dant Packet Scheduling by Uncorrelated Paths in Heterogeneous Wireless Networks”.
In: 2018 IEEE Symposium on Computers and Communications (ISCC). ISSN: 1530-1346.
June 2018, pp. 00498-00503. DOI: 10.1109/ISCC.2018.8538641. | cit. on p. 8

[26]S. Ferlin, O Alay, O. Mehani, and R. Boreli. “BLEST: Blocking estimation-based MPTCP
scheduler for heterogeneous networks”. In: 2016 IFIP Networking Conference (IFIP
Networking) and Workshops. May 2016, pp. 431-439. DOI: 10.1109/IFIPNetworking.
2016.7497206. | cit. on pp. 26, 28, 72

[27]R. Fielding (Ed.) and J. Reschke (Ed.) Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230 (Proposed Standard). RFC. Fremont, CA, USA: RFC
Editor, June 2014. DOI: 10.17487/RFC7230. URL: https://www.rfc-editor.org/
rfc/rfc7230.txt. | cit. on pp. 16, 19, 20

[28]R. Fielding (Ed.) and J. Reschke (Ed.) Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. RFC 7231 (Proposed Standard). RFC. Fremont, CA, USA: RFC
Editor, June 2014. DOI: 10.17487/RFC7231. URL: https://wuw.rfc-editor.org/
rfc/rfc7231.txt. | cit. on p. 19

Bibliography

107

https://doi.org/10.1145/3143361.3143370
http://doi.acm.org/10.1145/3143361.3143370
http://doi.acm.org/10.1145/3143361.3143370
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://lwn.net/Articles/560082/
https://doi.org/10.1016/j.comcom.2018.07.016
http://www.sciencedirect.com/science/article/pii/S0140366417310873
http://www.sciencedirect.com/science/article/pii/S0140366417310873
https://doi.org/10.1109/ISCC.2018.8538641
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.17487/RFC7230
https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.rfc-editor.org/rfc/rfc7230.txt
https://doi.org/10.17487/RFC7231
https://www.rfc-editor.org/rfc/rfc7231.txt
https://www.rfc-editor.org/rfc/rfc7231.txt

108

[29]R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer
Protocol — HTTP/1.1. RFC 2068 (Proposed Standard). RFC. Obsoleted by RFC 2616.
Fremont, CA, USA: RFC Editor, Jan. 1997. DOI: 10. 17487 /RFC2068. URL: https:
//www.rfc-editor.org/rfc/rfc2068.txt. | cit. on p. 59

[30]Tobias Flach, Nandita Dukkipati, Andreas Terzis, et al. “Reducing web latency: the
virtue of gentle aggression”. In: ACM SIGCOMM Computer Communication Review.
Vol. 43. 4. ACM. 2013, pp. 159-170. | cit. on p. 14

[31]The Apache Software Foundation. Apache HTTP Server Version 2.4 - Apache MPM event.
URL: https://httpd.apache.org/docs/2.4/mod/event .html (visited on June 2,
2020). | cit. on p. 58

[32]The Apache Software Foundation. Overview of new features in Apache HTTP Server 2.4.
URL: https://httpd.apache.org/docs/2.4/new_features_2_4.html (visited on
June 2, 2020). | cit. on p. 58

[33]Marguerite Frank. “The braess paradox”. In: Mathematical Programming 20.1 (1981),
pp. 283-302. | cit. on p. 103

[34]Alexander Frommgen, Tobias Erbshaufier, Alejandro Buchmann, Torsten Zimmermann,
and Klaus Wehrle. “ReMP TCP: Low latency multipath TCP”. In: 2016 IEEE Interna-
tional Conference on Communications (ICC). ISSN: 1938-1883. May 2016, pp. 1-7.
DOI: 10.1109/ICC.2016.7510787. | cit. on p. 8

[35]K. J. Grinnem Grinnem, T. Andersson, and A. Brunstrom. “Performance Benefits
of Avoiding Head-of-Line Blocking in SCTP”. In: Joint International Conference on
Autonomic and Autonomous Systems and International Conference on Networking and
Services - (icas-isns’05). Oct. 2005, pp. 44—44. DOI: 10.1109/ICAS-ICNS.2005.73.

| cit. on p. 24

[36]Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and Subhabrata

Sen. “Accelerating Multipath Transport Through Balanced Subflow Completion”.

In: Proceedings of the 23rd Annual International Conference on Mobile Computing

and Networking. MobiCom ’17. Snowbird, Utah, USA: Association for Computing

Machinery, Oct. 2017, pp. 141-153. DOI: 10.1145/3117811.3117829. URL: http:
//doi.org/10.1145/3117811.3117829 (visited on Apr. 9, 2020).

| cit. on pp. 76, 90, 98

[37]Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: A New TCP-friendly High-speed
TCP Variant”. In: SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 64-74. DOI: 10.1145/
1400097 .1400105. URL: http://doi.acm.org/10.1145/1400097.1400105.

| cit. on pp. 1, 14

[38]Ruud van der Ham. “salabim: discrete event simulation and animation in Python”. In:
Journal of Open Source Software 3.27 (2018), p. 767. | cit. on p. 86

[39]Mario Hock, Roland Bless, and Martina Zitterbart. “Experimental evaluation of BBR
congestion control”. In: 2017 IEEE 25th International Conference on Network Protocols
(ICNP). Oct. 2017, pp. 1-10. DOI: 10.1109/ICNP.2017.8117540. | cit. on p. 1

Bibliography

https://doi.org/10.17487/RFC2068
https://www.rfc-editor.org/rfc/rfc2068.txt
https://www.rfc-editor.org/rfc/rfc2068.txt
https://httpd.apache.org/docs/2.4/mod/event.html
https://httpd.apache.org/docs/2.4/new_features_2_4.html
https://doi.org/10.1109/ICC.2016.7510787
https://doi.org/10.1109/ICAS-ICNS.2005.73
https://doi.org/10.1145/3117811.3117829
http://doi.org/10.1145/3117811.3117829
http://doi.org/10.1145/3117811.3117829
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
https://doi.org/10.1109/ICNP.2017.8117540

[40]Paul E. Hoffman. Running DNS in Existing QUIC Connections. Internet-Draft draft-
hoffman-dns-in-existing-quic-00. Work in Progress. Internet Engineering Task Force,
Apr. 2017. 6 pp. URL: https://datatracker.ietf.org/doc/html/draft-hoffman-
dns-in-existing-quic-00. | cit. on p. 99

[41]Paul E. Hoffman. Running DNS in Existing QUIC Connections. Internet-Draft draft-
hoffman-dns-in-existing-quic-01. Work in Progress. Internet Engineering Task Force,
May 2017. 2 pp. URL: https://datatracker.ietf.org/doc/html/draft-hoffman-
dns-in-existing-quic-01. | cit. on p. 99

[42]Toke Hgiland-Jgrgensen. “On the Bleeding Edge: Debloating Internet Access Net-
works”. PhD thesis. Karlstad University Press, 2016. | cit. on pp. 5, 27

[43]Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster.

“Analyzing the Costs (and Benefits) of DNS, DoT, and DoH for the Modern Web”.

In: Proceedings of the Applied Networking Research Workshop. ANRW ’19. Montreal,

Quebec, Canada: Association for Computing Machinery, 2019, pp. 20-22. DOI: 10.
1145/3340301.3341129. URL: https://doi.org/10.1145/3340301.3341129.

| cit. on p. 44

[44]Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster.
“Comparing the Effects of DNS, DoT, and DoH on Web Performance”. In: Proceedings
of The Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Computing
Machinery, Apr. 2020, pp. 562-572. DOI: 10.1145/3366423 .3380139. URL: http:
//doi.org/10.1145/3366423.3380139 (visited on July 16, 2020).

| cit. on pp. 44, 45

[45]Christian Huitema, Melinda Shore, Allison Mankin, Sara Dickinson, and Jana Iyengar.
Specification of DNS over Dedicated QUIC Connections. Internet-Draft draft-huitema-
quic-dnsoquic-07. Work in Progress. Internet Engineering Task Force, Jan. 2018. 19 pp.
URL: https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-
07. | cit. on pp. 43, 55

[46]Per Hurtig, Karl-Johan Grinnemo, Anna Brunstrom, et al. “Low-Latency Scheduling
in MPTCP”. In: IEEE/ACM Transactions on Networking 27.1 (Feb. 2019). Conference
Name: IEEE/ACM Transactions on Networking, pp. 302-315. DOI: 10.1109/TNET.
2018.2884791. | cit. on p. 28

[47]Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lébre, and
Takahiro Hirofuchi. “Using the EXECO Toolkit to Perform Automatic and Reproducible
Cloud Experiments”. In: Proceedings of the 2013 IEEE International Conference on Cloud
Computing Technology and Science - Volume 02. CLOUDCOM ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 158-163. DOI1: 10.1109/CloudCom.2013.119.
URL: http://dx.doi.org/10.1109/CloudCom.2013.119. | cit. on p. 48

[48]Nuruddeen Iya, Nicolas Kuhn, Fabio Verdicchio, and Gorry Fairhurst. “Analyzing the
impact of bufferbloat on latency-sensitive applications”. In: 2015 IEEE International
Conference on Communications (ICC). ISSN: 1938-1883. June 2015, pp. 6098-6103.
DOI: 10.1109/ICC.2015.7249294. | cit. onp. 1

Bibliography

109

https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-existing-quic-00
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-existing-quic-00
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-existing-quic-01
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-in-existing-quic-01
https://doi.org/10.1145/3340301.3341129
https://doi.org/10.1145/3340301.3341129
https://doi.org/10.1145/3340301.3341129
https://doi.org/10.1145/3366423.3380139
http://doi.org/10.1145/3366423.3380139
http://doi.org/10.1145/3366423.3380139
https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-07
https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-07
https://doi.org/10.1109/TNET.2018.2884791
https://doi.org/10.1109/TNET.2018.2884791
https://doi.org/10.1109/CloudCom.2013.119
http://dx.doi.org/10.1109/CloudCom.2013.119
https://doi.org/10.1109/ICC.2015.7249294

110

[49]1J. R. Iyengar, P. D. Amer, and R. Stewart. “Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths”. In: [EEE/ACM Transactions on
Networking 14.5 (Oct. 2006), pp. 951-964. DOI: 10.1109/TNET. 2006 .882843.

| cit. on pp. 6, 96

[50]Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure Trans-
port. Internet-Draft draft-ietf-quic-transport-24. Work in Progress. Internet Engineering
Task Force, Nov. 2019. 156 pp. URL: https://datatracker.ietf.org/doc/html/
draft-ietf-quic-transport-24. | cit. on pp. 19, 64, 67

[51]Nick Jones. NGINX structural enhancements for HTTP/2 performance. https://blog.
cloudflare.com/nginx-structural-enhancements-for-http-2-performance/.
Online; accessed on 20 August 2020. May 2019. URL: https://blog.cloudflare.
com/nginx-structural-enhancements-for-http-2-performance/.

| cit. on p. 23

[52]B. Jonglez and B. Gaujal. “Distributed and Adaptive Routing Based on Game Theory”.
In: 2017 29th International Teletraffic Congress (ITC 29). Vol. 1. Sept. 2017, pp. 1-9.
DOI: 10.23919/ITC.2017.8064333. | cit. on pp. 9, 95, 98

[53]Baptiste Jonglez, Sinan Birbalta, and Martin Heusse. Improving end-to-end delay at
the application layer. International Summer School on Latency Control for Internet of
Services. Poster. June 2017. URL: https://hal.inria.fr/hal-01632191.

| cit. on p. 11

[54]Baptiste Jonglez, Sinan Birbalta, and Martin Heusse. “Poster: persistent DNS connec-
tions for improved performance”. In: 2019 IFIP Networking Conference, Networking
2019, Warsaw, Poland, May 20-22, 2019. IEEE, 2019, pp. 1-2. DOI: 10. 23919/
IFTIPNetworking46909.2019.8999394. | cit. on p. 11

[55]Baptiste Jonglez and Bruno Gaujal. Distributed Adaptive Routing in Communication
Networks. en. report. Inria ; Univ. Grenoble Alpes, Oct. 2016, p. 25. URL: https:
//hal.inria.fr/hal-01386832. | cit. on p. 10

[56]Baptiste Jonglez and Bruno Gaujal. “Distributed and Adaptive Routing Based on
Game Theory”. In: ALGOTEL 2017 - 19émes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications. Quiberon, France, May 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01517911. | cit. on p. 10

[57]Baptiste Jonglez, Martin Heusse, and Bruno Gaujal. “SRPT-ECF: challenging Round-
Robin for stream-aware multipath scheduling”. In: 2020 IFIP Networking Conference,
Networking 2020, Paris, France, June 22-26, 2020. IEEE, 2020, pp. 719-724. URL:
https://ieeexplore.ieee.org/document/9142713. | cit. on p. 12

[58]J. Jung, A. W. Berger, and Hari Balakrishnan. “Modeling TTL-based Internet caches”.
In: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Cat. No.O3CH37428). Vol. 1. Mar. 2003, 417-426
vol.1. DOI: 10.1109/INFCOM. 2003.1208693. | cit. on p. 53

Bibliography

https://doi.org/10.1109/TNET.2006.882843
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-24
https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/
https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/
https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/
https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/
https://doi.org/10.23919/ITC.2017.8064333
https://hal.inria.fr/hal-01632191
https://doi.org/10.23919/IFIPNetworking46909.2019.8999394
https://doi.org/10.23919/IFIPNetworking46909.2019.8999394
https://hal.inria.fr/hal-01386832
https://hal.inria.fr/hal-01386832
https://hal.archives-ouvertes.fr/hal-01517911
https://hal.archives-ouvertes.fr/hal-01517911
https://ieeexplore.ieee.org/document/9142713
https://doi.org/10.1109/INFCOM.2003.1208693

[59]F P Kelly, A K Maulloo, and D K H Tan. “Rate control for communication networks:
shadow prices, proportional fairness and stability”. en. In: Journal of the Operational

Research Society 49.3 (Mar. 1998), pp. 237-252. DOI: 10. 1057 /palgrave . jors.

2600523. URL: https://doi.org/10.1057/palgrave. jors. 2600523 (visited on
Sept. 2, 2020). | cit. on p. 103

[60]Frank P. Kelly and Thomas Voice. “Stability of end-to-end algorithms for joint routing
and rate control”. In: Computer Communication Review 35.2 (2005), pp. 5-12. DOTI:
10.1145/1064413.1064415. URL: https://doi.org/10.1145/1064413.1064415.

| cit. on p. 103

[61]Frank Kelly et al. “Fairness and stability of end-to-end congestion control”. In: European
journal of control 9.2-3 (2003), pp. 159-176. | cit. on p. 103

[62]Ramin Khalili, Nicolas Gast, Miroslav Popovic, and Jean-Yves Le Boudec. “MPTCP
is not Pareto-Optimal: Performance Issues and a Possible Solution”. In: IEEE/ACM
Transactions on Networking (2013), p. 15. DOI: 10.1109/TNET.2013.2274462. URL:
https://hal.inria.fr/hal-01086030. | cit. on p. 103

[63]Atul Khanna and John Zinky. “The revised ARPANET routing metric”. In: ACM SIG-
COMM Computer Communication Review 19.4 (1989), pp. 45-56. | cit. on pp. 1, 103

[64]E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP).
RFC 4340 (Proposed Standard). RFC. Updated by RFCs 5595, 5596, 6335, 6773.
Fremont, CA, USA: RFC Editor, Mar. 2006. DOI: 10. 17487 /RFC4340. URL: https:
//wuw.rfc-editor.org/rfc/rfc4340.txt. | cit. on p. 17

[65]N. Kuhn, E. Lochin, A. Mifdaoui, et al. “DAPS: Intelligent delay-aware packet schedul-
ing for multipath transport”. In: 2014 IEEE International Conference on Communications
(ICC). June 2014, pp. 1222-1227. DOI: 10.1109/ICC.2014.6883488.

| cit. on pp. 26, 28, 72

[66]Adam Langley, Alistair Riddoch, Alyssa Wilk, et al. “The QUIC Transport Protocol:
Design and Internet-Scale Deployment”. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. SIGCOMM ’17. Los Angeles, CA, USA:

ACM, 2017, pp. 183-196. DOI: 10.1145/3098822.3098842. URL: http://doi.acm.

org/10.1145/3098822.3098842. | cit. on pp. 14, 19, 24, 29, 60

[67]Sungwon Lee and Dongkyun Kim. “Two Fast Retransmit Techniques in UWSNs with
ACK Indiscretion Problem”. In: 2014 (Jan. 2014), pp. 1-9. | cit. on p. 15

[68]Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J. Gibbens. “ECF: An
MPTCP Path Scheduler to Manage Heterogeneous Paths”. In: Proceedings of the 13th In-
ternational Conference on Emerging Networking EXperiments and Technologies. CONEXT
"17. New York, NY, USA: ACM, 2017, pp. 147-159. poI: 10.1145/3143361.3143376.
URL: http://doi.acm.org/10.1145/3143361.3143376. | cit. on pp. 28, 72, 77

[69]1gor Lopez, Marina Aguado, Christian Pinedo, and Eduardo Jacob. “SCADA Systems
in the Railway Domain: Enhancing Reliability through Redundant MultipathTCP”. In:
2015 IEEE 18th International Conference on Intelligent Transportation Systems. ISSN:
2153-0017. Sept. 2015, pp. 2305-2310. DOI: 10.1109/ITSC.2015.372. | cit.onp. 8

Bibliography

111

https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1145/1064413.1064415
https://doi.org/10.1145/1064413.1064415
https://doi.org/10.1109/TNET.2013.2274462
https://hal.inria.fr/hal-01086030
https://doi.org/10.17487/RFC4340
https://www.rfc-editor.org/rfc/rfc4340.txt
https://www.rfc-editor.org/rfc/rfc4340.txt
https://doi.org/10.1109/ICC.2014.6883488
https://doi.org/10.1145/3098822.3098842
http://doi.acm.org/10.1145/3098822.3098842
http://doi.acm.org/10.1145/3098822.3098842
https://doi.org/10.1145/3143361.3143376
http://doi.acm.org/10.1145/3143361.3143376
https://doi.org/10.1109/ITSC.2015.372

112

[70]Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and Michael I. Hill. “Perceptual
Sensitivity to Head Tracking Latency in Virtual Environments with Varying Degrees
of Scene Complexity”. In: Proceedings of the 1st Symposium on Applied Perception
in Graphics and Visualization. APGV ’04. Los Angeles, California, USA: Association
for Computing Machinery, 2004, pp. 39-47. DOI: 10.1145/1012551.1012559. URL:
https://doi-org.ins2i.bib.cnrs.fr/10.1145/1012551.1012559. | cit. on p. 2

[71]Robin Marx, Tom De Decker, Peter Quax, and Wim Lamotte. “Of the Utmost Impor-
tance: Resource Prioritization in HTTP/3 over QUIC”. In: Proceedings of the 15th
International Conference on Web Information Systems and Technologies, WEBIST 2019,
Vienna, Austria, September 18-20, 2019. Ed. by Alessandro Bozzon, Francisco José
Dominguez Mayo, and Joaquim Filipe. ScitePress, 2019, pp. 130-143. po1: 10.5220/
0008191701300143. URL: https://doi.org/10.5220/0008191701300143.

| cit. on pp. 62, 94

[72]Patrick Meenan. Better HI'TP/2 Prioritization for a Faster Web. https : / /blog .
cloudflare.com/better-http-2-prioritization-for-a-faster-web/. Online;
accessed on 17 June 2020. May 2019. URL: https://blog.cloudflare.com/better-
http-2-prioritization-for-a-faster-web/. | cit. on p. 62

[73]Patrick Meenan. HTTP/3 Prioritization Proposal. https://github. com/pmeenan/
http3-prioritization-proposal. Online; accessed on 20 August 2020. June 2019.
URL: https://github.com/pmeenan/http3-prioritization-proposal.

| cit. on p. 62

[74]Patrick Meenan. Optimizing HTTP/2 prioritization with BBR and tcp notsent lowat.
https://blog.cloudflare.com/http-2-prioritization-with-nginx/. Online;
accessed on 20 August 2020. Oct. 2018. URL: https://blog.cloudflare.com/http-
2-prioritization-with-nginx/. | cit. on p. 23

[75]Michael Mitzenmacher. “The power of two choices in randomized load balancing”. In:
IEEE Transactions on Parallel and Distributed Systems 12.10 (2001), pp. 1094-1104.
| cit. on p. 101

[76]J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896 (Historic). RFC. Obso-
leted by RFC 7805. Fremont, CA, USA: RFC Editor, Jan. 1984. DOI: 10.17487/RFC0896.
URL: https://www.rfc-editor.org/rfc/rfc896.txt. | cit. on pp. 18, 25

[77INGINX. NGINX SSL Performance. https://www.nginx.com/wp-content/uploads/
2014/07 /NGINX-SSL-Performance . pdf. Online; accessed on 14 December 2018.
July 2014. URL: https://www.nginx.com/wp-content/uploads/2014/07/NGINX-
SSL-Performance.pdf. | cit. on p. 54

[78]Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao, and Subhabrata Sen.
“An in-depth understanding of multipath TCP on mobile devices: measurement and
system design”. In: Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking. MobiCom ’16. New York City, New York: Association for
Computing Machinery, Oct. 2016, pp. 189-201. DOI: 10.1145/2973750.2973769.
URL: http://doi.org/10.1145/2973750.2973769 (visited on Apr. 9, 2020).

| cit. on pp. 26, 30

Bibliography

https://doi.org/10.1145/1012551.1012559
https://doi-org.ins2i.bib.cnrs.fr/10.1145/1012551.1012559
https://doi.org/10.5220/0008191701300143
https://doi.org/10.5220/0008191701300143
https://doi.org/10.5220/0008191701300143
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://github.com/pmeenan/http3-prioritization-proposal
https://github.com/pmeenan/http3-prioritization-proposal
https://github.com/pmeenan/http3-prioritization-proposal
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://doi.org/10.17487/RFC0896
https://www.rfc-editor.org/rfc/rfc896.txt
https://www.nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf
https://www.nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf
https://www.nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf
https://www.nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf
https://doi.org/10.1145/2973750.2973769
http://doi.org/10.1145/2973750.2973769

[79INLNOG RING: A distributed worldwide network for measuring and troubleshooting the
Internet. en-US. URL: https://ring.nlnog.net/ (visited on June 15, 2018).
| cit. on p. 8

[80]Kazuho Oku and Lucas Pardue. Extensible Prioritization Scheme for HTTP. Internet-
Draft draft-ietf-httpbis-priority-01. Work in Progress. Internet Engineering Task Force,
July 2020. 20 pp. URL: https://datatracker.ietf.org/doc/html/draft-ietf-
httpbis-priority-01. | cit. on p. 62

[81]Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. “Experimental
Evaluation of Multipath TCP Schedulers”. In: Proceedings of the 2014 ACM SIGCOMM
Workshop on Capacity Sharing Workshop. CSWS ’14. New York, NY, USA: ACM, 2014,
pp. 27-32. DOI: 10.1145/2630088.2631977. URL: http://doi.acm.org/10.1145/
2630088.2631977. | cit. on pp. 7, 27

[82]Giorgos Papastergiou, Gorry Fairhurst, David Ros, et al. “De-Ossifying the Internet

Transport Layer: A Survey and Future Perspectives”. In: [EEE Communications Surveys

& Tutorials 19.1 (2017), pp. 619-639. DOI: 10.1109/COMST . 2016 . 2626780. URL:
http://ieeexplore.ieee.org/document/7738442/ (visited on June 21, 2018).

| cit. on p. 59

[83]Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Extension to
QUIC. Internet-Draft draft-ietf-quic-datagram-00. Work in Progress. Internet Engineer-
ing Task Force, Feb. 2020. 9 pp. URL: https://datatracker.ietf.org/doc/html/
draft-ietf-quic-datagram-00. | cit. on p. 17

[84]V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission Timer.
RFC 6298 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, June 2011. poI:
10.17487/RFC6298. URL: https://www.rfc-editor.org/rfc/rfc6298.txt.

| cit. on p. 43

[85]Andreas Petlund. “Improving latency for interactive, thin-stream applications over
reliable transport”. PhD thesis. University of Oslo, 2009. | cit. on pp. 3, 14, 43

[86]Maxime Piraux and Olivier Bonaventure. Tunneling TCP inside QUIC. Internet-Draft
draft-piraux-quic-tunnel-tcp-02. Work in Progress. Internet Engineering Task Force,
Aug. 2020. 12 pp. URL: https://datatracker.ietf.org/doc/html/draft-piraux-
quic-tunnel-tcp-02. | cit. on p. 102

[87]Alexander Rabitsch, Per Hurtig, and Anna Brunstrom. “A Stream-Aware Multipath
QUIC Scheduler for Heterogeneous Paths”. In: Proceedings of the Workshop on the
Evolution, Performance, and Interoperability of QUIC. EPIQ’18. New York, NY, USA:
ACM, 2018, pp. 29-35. DOI: 10.1145/3284850 . 3284855. URL: http://doi.acm.
org/10.1145/3284850.3284855. | cit. on pp. 11, 69, 74, 80, 81, 87, 93, 96, 97

[88]Costin Raiciu, Sebastien Barre, Christopher Pluntke, et al. “Improving Datacenter Per-
formance and Robustness with Multipath TCP”. In: Proceedings of the ACM SIGCOMM
2011 Conference. SIGCOMM ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 266-277.
DOI: 10.1145/2018436.2018467. URL: http://doi.acm.org/10.1145/2018436.
2018467. | cit. on pp. 6, 7

Bibliography

113

https://ring.nlnog.net/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-01
https://doi.org/10.1145/2630088.2631977
http://doi.acm.org/10.1145/2630088.2631977
http://doi.acm.org/10.1145/2630088.2631977
https://doi.org/10.1109/COMST.2016.2626780
http://ieeexplore.ieee.org/document/7738442/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-00
https://doi.org/10.17487/RFC6298
https://www.rfc-editor.org/rfc/rfc6298.txt
https://datatracker.ietf.org/doc/html/draft-piraux-quic-tunnel-tcp-02
https://datatracker.ietf.org/doc/html/draft-piraux-quic-tunnel-tcp-02
https://doi.org/10.1145/3284850.3284855
http://doi.acm.org/10.1145/3284850.3284855
http://doi.acm.org/10.1145/3284850.3284855
https://doi.org/10.1145/2018436.2018467
http://doi.acm.org/10.1145/2018436.2018467
http://doi.acm.org/10.1145/2018436.2018467

[89]Mohammad Rajiullah, Per Hurtig, Anna Brunstrom, Andreas Petlund, and Michael
Welzl. “An evaluation of tail loss recovery mechanisms for TCP”. In: ACM SIGCOMM
Computer Communication Review 45.1 (2015), pp. 5-11. | cit. on p. 43

[90]E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Pro-
posed Standard). RFC. Fremont, CA, USA: RFC Editor, Aug. 2018. DOI: 10.17487/
RFC8446. URL: https://www.rfc-editor.org/rfc/rfc8446.txt.

| cit. on pp. 54, 55, 59

[91]Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-
hyastha. “Vroom: Accelerating the Mobile Web with Server-Aided Dependency Res-
olution”. In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’17. Los Angeles, CA, USA: Association for Computing
Machinery, Aug. 2017, pp. 390-403. DOI: 10.1145/3098822.3098851. URL: http:
//doi.org/10.1145/3098822.3098851 (visited on June 16, 2020). | cit. on p. 62

[92]G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith. “Mitigating Receiver’s Buffer
Blocking by Delay Aware Packet Scheduling in Multipath Data Transfer”. In: 2013
27th International Conference on Advanced Information Networking and Applications
Workshops. Mar. 2013, pp. 1119-1124. poI: 10.1109/WAINA.2013.80.

| cit. on pp. 26, 28, 72

[93]Arjuna Sathiaseelan, Raffaello Secchi, and Godred Fairhurst. “Enhancing TCP to
Support Rate-limited Traffic”. In: Proceedings of the 2012 ACM Workshop on Capacity
Sharing. CSWS ’12. Nice, France: ACM, 2012, pp. 39—-44. DOI: 10.1145/2413219.
2413230. URL: http://doi.acm.org/10.1145/2413219.2413230. | cit. on p. 14

[94]David Schinazi. Using QUIC Datagrams with HTTP/3. Internet-Draft draft-schinazi-
quic-h3-datagram-04. Work in Progress. Internet Engineering Task Force, Apr. 2020.
6 pp. URL: https://datatracker.ietf.org/doc/html/draft-schinazi-quic-h3-
datagram-04. | cit. on p. 99

[95]Robin Seggelmann, Michael Tiixen, and Erwin P. Rathgeb. “Stream scheduling con-
siderations for SCTP”. In: SoftCOM 2010, 18th International Conference on Software,
Telecommunications and Computer Networks. Sept. 2010, pp. 412-416.

| cit. on pp. 25, 63, 64

[96]H20 web server. HTTP/2 Directives > Latency Optimization. Online; accessed on
29 August 2020. URL: https://h20.example.net/configure/http2_directives.
html#latency-optimization. | cit. on p. 23

[97]Hang Shi, Yong Cui, Feng Qian, and Yuming Hu. “DTP: Deadline-aware Transport
Protocol”. In: Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019. APNet
’19. Beijing, China: Association for Computing Machinery, Aug. 2019, pp. 1-7. DOI:
10.1145/3343180 . 3343191. URL: http://doi.org/10.1145/3343180.3343191
(visited on Apr. 23, 2020). | cit. on p. 64

[98]Xiang Shi, Lin Wang, Fa Zhang, and Zhiyong Liu. “FStream: Flexible Stream Scheduling
and Prioritizing in Multipath-QUIC”. In: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS). ISSN: 1521-9097. Dec. 2019, pp. 921-924.
DOI: 10.1109/ICPADS47876.2019.00136. | cit. on p. 75

Bibliography

https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/3098822.3098851
http://doi.org/10.1145/3098822.3098851
http://doi.org/10.1145/3098822.3098851
https://doi.org/10.1109/WAINA.2013.80
https://doi.org/10.1145/2413219.2413230
https://doi.org/10.1145/2413219.2413230
http://doi.acm.org/10.1145/2413219.2413230
https://datatracker.ietf.org/doc/html/draft-schinazi-quic-h3-datagram-04
https://datatracker.ietf.org/doc/html/draft-schinazi-quic-h3-datagram-04
https://h2o.examp1e.net/configure/http2_directives.html#latency-optimization
https://h2o.examp1e.net/configure/http2_directives.html#latency-optimization
https://doi.org/10.1145/3343180.3343191
http://doi.org/10.1145/3343180.3343191
https://doi.org/10.1109/ICPADS47876.2019.00136

[99]P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and
Considerations. RFC 2663 (Informational). RFC. Fremont, CA, USA: RFC Editor, Aug.
1999. DOI: 10.17487/RFC2663. URL: https://www.rfc-editor.org/rfc/rfc2663.
txt. | cit. on p. 59

[100]R. Stewart (Ed.) Stream Control Transmission Protocol. RFC 4960 (Proposed Standard).
RFC. Updated by RFCs 6096, 6335, 7053. Fremont, CA, USA: RFC Editor, Sept. 2007.

DOI: 10.17487/RFC4960. URL: https://www.rfc-editor.org/rfc/rfc4960.txt.
| cit. on pp. 17, 18, 24, 29, 60, 63

[101]R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Control Transmission
Protocol (SCTP) Partial Reliability Extension. RFC 3758 (Proposed Standard). RFC.
Fremont, CA, USA: RFC Editor, May 2004. DOI: 10. 17487 /RFC3758. URL: https:
//www.rfc-editor.org/rfc/rfc3758.txt. | cit. on p. 17

[102]R. Stewart, Q. Xie, K. Morneault, et al. Stream Control Transmission Protocol. RFC 2960
(Proposed Standard). RFC. Obsoleted by RFC 4960, updated by RFC 3309. Fremont,
CA, USA: RFC Editor, Oct. 2000. DOI: 10.17487/RFC2960. URL: https://www.rfc-
editor.org/rfc/rfc2960.txt. | cit. on p. 60

[103]Ars Technica. SpaceX Starlink speeds revealed as beta users get downloads of 11 to
60 Mbps. URL: https://arstechnica.com/information-technology/2020/08/
spacex-starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low—
as-31ms/ (visited on Aug. 14, 2020). | cit. on p. 5

[104]Martin Thomson and Sean Turner. Using TLS to Secure QUIC. Internet-Draft draft-ietf-
quic-tls-24. Work in Progress. Internet Engineering Task Force, Nov. 2019. 49 pp. URL:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-24.

| cit. on pp. 54, 55

[105]T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz. “Multipath
QUIC: A Deployable Multipath Transport Protocol”. In: 2018 IEEE International Confer-
ence on Communications (ICC). May 2018, pp. 1-7. DOI: 10.1109/ICC.2018.8422951.

| cit. on pp. 71, 96

[106]Thomas Waltemate, Irene Senna, Felix Hiilsmann, et al. “The Impact of Latency on
Perceptual Judgments and Motor Performance in Closed-Loop Interaction in Virtual
Reality”. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and
Technology. VRST ’16. Munich, Germany: Association for Computing Machinery, 2016,
pp. 27-35. DOI: 10.1145/2993369 .2993381. URL: https://doi-org.ins2i.bib.
cnrs.fr/10.1145/2993369.2993381. | cit. on p. 2

[107]1Jing Wang, Yunfeng Gao, and Chenren Xu. “A Multipath QUIC Scheduler for Mobile
HTTP/2”. In: Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019. APNet
’19. Beijing, China: Association for Computing Machinery, Aug. 2019, pp. 43-49. DOI:
10.1145/3343180 . 3343185. URL: http://doi.org/10.1145/3343180 . 3343185
(visited on Feb. 13, 2020). | cit. on p. 76

Bibliography

115

https://doi.org/10.17487/RFC2663
https://www.rfc-editor.org/rfc/rfc2663.txt
https://www.rfc-editor.org/rfc/rfc2663.txt
https://doi.org/10.17487/RFC4960
https://www.rfc-editor.org/rfc/rfc4960.txt
https://doi.org/10.17487/RFC3758
https://www.rfc-editor.org/rfc/rfc3758.txt
https://www.rfc-editor.org/rfc/rfc3758.txt
https://doi.org/10.17487/RFC2960
https://www.rfc-editor.org/rfc/rfc2960.txt
https://www.rfc-editor.org/rfc/rfc2960.txt
https://arstechnica.com/information-technology/2020/08/spacex-starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low-as-31ms/
https://arstechnica.com/information-technology/2020/08/spacex-starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low-as-31ms/
https://arstechnica.com/information-technology/2020/08/spacex-starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low-as-31ms/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-24
https://doi.org/10.1109/ICC.2018.8422951
https://doi.org/10.1145/2993369.2993381
https://doi-org.ins2i.bib.cnrs.fr/10.1145/2993369.2993381
https://doi-org.ins2i.bib.cnrs.fr/10.1145/2993369.2993381
https://doi.org/10.1145/3343180.3343185
http://doi.org/10.1145/3343180.3343185

116

[108]Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wether-
all. “Demystifying Page Load Performance with WProf”. In: 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp- 473-485. URL: https://www.usenix . org/conference/nsdil3/technical -
sessions/presentation/wang_xiao. | cit. on p. 86

[109]Yaogong Wang, Injong Rhee, and Sangtae Ha. “Augment SCTP multi-streaming with
pluggable scheduling”. In: 2011 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). Apr. 2011, pp. 810-815. DOI: 10.1109/INFCOMW.2011.
5928924, | cit. on p. 64

[110]Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. “HTTP/2 Prioritization
and its Impact on Web Performance”. In: Proceedings of the 2018 World Wide Web
Conference. WWW ’18. Lyon, France: International World Wide Web Conferences
Steering Committee, Apr. 2018, pp. 1755-1764. DOI: 10.1145/3178876.3186181.
URL: http://doi.org/10.1145/3178876.3186181 (visited on May 24, 2020).

| cit. on pp. 61, 62, 94

[111]Damon Wischik, Mark Handley, and Costin Raiciu. “Control of Multipath TCP and
Optimization of Multipath Routing in the Internet”. en. In: Network Control and
Optimization. Ed. by Rudesindo Nufiez-Queija and Jacques Resing. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 204-218. DOI: 10.1007/
978-3-642-10406-0_14. | cit. on p. 103

[112]Kiran Yedugundla, Simone Ferlin, Thomas Dreibholz, et al. “Is multi-path transport
suitable for latency sensitive traffic?” In: Computer Networks 105 (Aug. 2016), pp. 1-
21.DOI: 10.1016/j.comnet.2016.05.008. URL: http://www.sciencedirect.com/
science/article/pii/S1389128616301396 (visited on June 12, 2017).

| cit. on p. 27

[113]T. Ylonen and C. Lonvick (Ed.) The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard). RFC. Updated by RFC 8308. Fremont, CA, USA: RFC Editor, Jan.
2006. DOI: 10.17487/RFC4251. URL: https://wuw.rfc-editor.org/rfc/rfcd251.
txt. | cit. on p. 59

[114]L. Zhu, Z. Hu, J. Heidemann, et al. “Connection-Oriented DNS to Improve Privacy and
Security”. In: 2015 IEEE Symposium on Security and Privacy. May 2015, pp. 171-186.
DOI: 10.1109/SP.2015.18. | cit. on pp. 29, 44, 95

Bibliography

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://doi.org/10.1109/INFCOMW.2011.5928924
https://doi.org/10.1109/INFCOMW.2011.5928924
https://doi.org/10.1145/3178876.3186181
http://doi.org/10.1145/3178876.3186181
https://doi.org/10.1007/978-3-642-10406-0_14
https://doi.org/10.1007/978-3-642-10406-0_14
https://doi.org/10.1016/j.comnet.2016.05.008
http://www.sciencedirect.com/science/article/pii/S1389128616301396
http://www.sciencedirect.com/science/article/pii/S1389128616301396
https://doi.org/10.17487/RFC4251
https://www.rfc-editor.org/rfc/rfc4251.txt
https://www.rfc-editor.org/rfc/rfc4251.txt
https://doi.org/10.1109/SP.2015.18

List of Figures

1.1

1.2

2.1

2.2

3.1

3.2

3.3

3.4

3.5

An end-host device (smartphone) in a multi-homing situation.

An alternative “network-based” multi-homing situation, where the
home router has several network connections, potentially with differ-
ent ISPs (Internet Service Providers).

Fast retransmit in TCP: when receiving several duplicate ACKs, the
missing segment is retransmitted immediately. Figure from [67].

Head-of-line blocking situation when two streams are multiplexed
on a single TCP connection: any segment loss will block subsequent
segments at the receiver, even if they belong to a different stream.
Figure from [12].

Iterative DNS resolution performed by a recursive resolver. When
the answer is not in the cache of the recursive resolver, the iterative
resolution process can take up to several seconds, during which the
stub resolver hastowait.

The stub resolver must implement a retransmission timer. This timer
needs to be larger than the worst-case response time to avoid spurious
retransmission. It it thus much larger than typical RTTs.

Persistent connections improve the response time: the retransmission
timer can be adapted to the RTT and does not depend on the worst-
case response time anymore. e

Setup for the testbed experiment comparing the latency of DNS-over-
UDP and DNS-over-TCP. The router (middle) can apply packet loss
and delay to all packets flowing throughit..

Query latency for UDP and TCP shown as a Complementary CDF.
The testbed is configured with a 20 ms RTT and 2% of packet loss
in each direction. The inter-query interval is 100 ms. With UDP, a
retransmission is needed for roughly 4% of queries: this happens
when either the query or the responseislost.

6

15

117

118

3.6 Query latency for UDP and TCP: same data as in Figure 3.5 but with
a logarithmic scale. A few queries actually need two retransmissions.
Using TCP significantly reduces the retransmission latency in case of
loss. . . e

3.7 Query latency for UDP and TCP: zoom on small latencies, and intro-
duction of query bursts for TCP (groups of 3 queries sent back-to-
back) The testbed is configured with a 20 ms RTT and 2% of packet
loss in each direction.

3.8 Latency comparison of UDP, TCP and TCP bursts, with the same
methodology and parameters as Figure 3.7 except for the inter-query
interval thatissetat50ms.

3.9 The deployment model for persistent DNS connections.

3.10 Total query and answer rates seen by clients during an experiment.
The horizontal line indicates the peak performance computed with
the method: 47.5 kQ/s. Parameters: bind 9.13.3 with 1 thread, 24
VMs, 125 TCP connections / VM.

3.11 Query latency as a function of the query load, up to the peak perfor-
mance rate that was measured (47.5 kQ/s in this case). This is from
the same experiment as Figure 3.10.

3.12 Performance of unbound when the number of clients increases. Each
point shows the average peak performance for the given number of
clients over several experiments, with 95% confidence intervals. . . .

3.13 Performance comparison of unbound and bind9 with TCP clients.
Each point shows the average peak performance for the given number
of clients over several experiments, with 95% confidence intervals.
The plot for unbound/TCP is the same as TCP in Figure 3.12.

3.14 Performance speedup when using several threads with unbound on
a server with two 10-cores CPUs. For each experiment, there are 48
VMs running clients, with 300 TCP connections per VM.

4.1 Summary of the multi-stream scheduling model: applications create
messages to transport resources, and each message has a size and
priority. The scheduler then decides which message should be served,
and sends the content of messages as a sequence of data-chunks.
Data-chunks from different messages can be freely interleaved: this
can be useful for instance when retransmitting lost data-chunks.
Messages are reassembled on the receiver side; conceptually, they are
delivered to the application only once they are complete.

List of Figures

49

51

51

4.2

4.3

4.4

4.5

4.6

4.7

4.8

The stream-aware multipath scheduling model. Compared to Fig-
ure 4.1, there is an additional dimension: several paths can be used
to send data. The scheduler needs to solve two problems: stream
scheduling and path allocation.

Ilustration of the serialisation step incurred by MPTCP when schedul-
ing multiplexed data. Stream scheduling and path allocation are
performed completely independently (by the application and by the
MPTCP scheduler respectively).

Illustration of the serialisation step at the receiver, before stream
demultiplexing can be done. Any gap in the received data will cause
Head-of-Line blocking.

Example of an optimal schedule computed with ECF for a single
message, as seen from the sender (top) and the receiver (bottom).
Notice how data on the two paths completes simultaneously on the
receiver side. Path 0 has capacity 200 KB/s and latency 5 ms, while
path 1 has capacity 500 KB/s and latency 10 ms. The message has a
sizeof I0KB.

Completion time as a function of message size using ECF. Sj;,,,12 is the
size threshold at which point the optimal solution changes from only
using one path to using two paths. Similarly, Sj;,,23 is the threshold
between two and three paths. Paths are ordered by increasing delay.
Here, D, is the delay of the first path, while B; is the capacity (in
byte/s) of pathi.

Optimal schedule computed with SRPT-ECF for two messagess with
the same paths as in Fig. 4.5. Message 0 has size 900 B while Mes-
sage 1 has size 800 B. Notice how the smaller message gets priority
but only uses the shortest-latency path thanks to ECF, while the bigger
message exploits the unused resources on Path 1. However, thanks
again to ECF, it stops using Path 1 early to ensure simultaneous com-
pletion on both paths. The sequence of completion times is (9, 11)
andisoptimal.

Same situation as Fig. 4.7, but with the SA-ECF scheduler [87]
(Weighted Round-Robin + ECF) with 150 bytes of quantum and
equal weights. The overall completion time is roughly the same as
SRPT-ECF, but all messages have the worst possible completion time

79

among ECF schedulers: the sequence of completion times is (11,11.2). 81

List of Figures

119

120

4.9 Example of SRPT-ECF running online. Message 0 is initially alone and
uses ECF as in Fig. 4.5. When Message 1 arrives (t = 4), Message 0
gets preempted immediately: as a result, it starts using Path 1 again
so that data on both paths finishes simultaneously, accounting for
Message 1. When Message 2 arrives (¢t = 9), Message O is preempted
again but this time it is too late to use Path 1, so it just waits for
Message 2tofinish.

4.10 Optimal schedule obtained by an offline algorithm that minimizes the
average completion time. Message O can anticipate the arrivals of
Messages 1 and 2, so it uses Path 1 for a longer time to ensure both
paths finish at the same time.

85

4.11 Simulation of a wikipedia page load by replaying a trace (webpagetest.org

ID 200413_FH_478b18e178c0fbf2ec9312686630e510, run 3, con-
nection 2). Path 0: 1050 Kbit/s, 67 ms. Path 1: 750 Kbit/s, 151 ms.
Path latency is indicated with the vertical bars. SRPT-ECF exhibits
low completion times, thanks to its combination of ECF (left part of
the CDF) and SRPT (tail of the CDF).
4.12 Scheduler occupation over time during the trace replay. Messages
are created in three visible bursts. The schedulers have different
strategies for handling the backlog of active messages.

5.1 An example “network-based” multi-homing situation that is amenable
to WAN aggregation. This aggregation will be transparent for the
devices connected to the local network.

List of Figures

List of Tables

2.1
2.2
2.3

3.1

3.2

3.3

4.1
4.2

Multiplexing mechanisms and their impact on latency
Protocols affected by head-of-line blocking
Multi-homing and its impacton latency.

Retransmission behaviour of widely used stub resolvers, obtained
through experiments. Each stub is configured with two recursive
resolvers. The results have been partially confirmed with source code
analysis (glibc, bionic) and documentation (Windows).
Theoretical probability of success depending on the number of re-
transSmission. ot e e
Kernel sysctl settings related to TCP thin streams (Linux 4.9)

Stream scheduling algorithms
Path allocation algorithms

121

Abstract

The network technologies that underpin the Internet have evolved significantly over the last decades, but one aspect of network
performance has remained relatively unchanged: latency. In 25 years, the typical capacity or “bandwidth” of transmission
technologies has increased by 5 orders of magnitude, while latency has barely improved by an order of magnitude. Indeed,
there are hard limits on latency, such as the propagation delay which remains ultimately bounded by the speed of light.
This diverging evolution between capacity and latency is having a profound impact on protocol design and performance,
especially in the area of transport protocols. It indirectly caused the Bufferbloat problem, whereby router buffers are
persistently full, increasing latency even more. In addition, the requirements of end-users have changed, and they expect
applications to be much more reactive. As a result, new techniques are needed to reduce the latency experienced by end-hosts.
This thesis aims at reducing the experienced latency by using end-to-end mechanisms, as opposed to “infrastructure”
mechanisms. Two end-to-end mechanisms are proposed. The first is to multiplex several messages or data flows into a single
persistent connection. This allows better measurements of network conditions (latency, packet loss); this, in turn, enables
better adaptation such as faster retransmission. I applied this technique to DNS messages, where I show that it significantly
improves end-to-end latency in case of packet loss. However, depending on the transport protocol used, messages can suffer
from Head-of-Line blocking: this problem can be solved by using QUIC or SCTP instead of TCP.

The second proposed mechanism is to exploit multiple network paths (such as Wi-Fi, wired Ethernet, 4G). The idea is to use
low-latency paths for latency-sensitive network traffic, while bulk traffic can still exploit the aggregated capacity of all paths.
This idea was partially realized by Multipath TCP, but it lacks support for multiplexing. Adding multiplexing allows data flows
to cooperate and ensures that the scheduler has better visibility on the needs of individual data flows. This effectively amounts
to a scheduling problem that was identified only very recently in the literature as “stream-aware multipath scheduling”. My
first contribution is to model this scheduling problem. As a second contribution, I proposed a new stream-aware multipath
scheduler, SRPT-ECF, that improves the performance of small flows without impacting larger flows. This scheduler could be
implemented as part of a MPQUIC (Multipath QUIC) implementation. More generally, these results open new opportunities

for cooperation between flows, with applications such as improving WAN aggregation.

Resumeé

Les technologies réseau qui font fonctionner Internet ont beaucoup évolué depuis ses débuts, mais il y a un aspect de la
performance des réseaux qui a peu évolué : la latence. En 25 ans, le débit disponible en couche physique a augmenté de 5
ordres de grandeur, tandis que la latence s’est a peine améliorée d’un ordre de grandeur. La latence est en effet limitée par
des contraintes physiques fortes comme la vitesse de la lumiére.

Cette évolution différenciée du débit et de la latence a un impact important sur la conception des protocoles et leur
performance, et notamment sur les protocoles de transport comme TCP. En particulier, cette évolution est indirectement
responsable du phénomene de “Bufferbloat” qui remplit les tampons des routeurs et exacerbe encore davantage le probleme
de la latence. De plus, les utilisateurs sont de plus en plus demandeurs d’applications tres réactives. En conséquence, il est
nécessaire d’introduire des nouvelles techniques pour réduire la latence ressentie par les utilisateurs.

Le but de cette thése est de réduire la latence ressentie en utilisant des mécanismes de bout en bout, par opposition aux
mécanismes d’infrastructure réseau. Deux mécanismes de bout en bout sont proposés. Le premier consiste a multiplexer
plusieurs messages ou flux de données dans une unique connexion persistante. Cela permet de mesurer plus finement les
conditions du réseau (latence, pertes de paquet) et de mieux s’y adapter, par exemple avec de meilleures retransmissions. J'ai
appliqué cette technique a DNS et je montre que la latence de bout en bout est grandement améliorée en cas de perte de
paquet. Cependant, en utilisant un protocole comme TCP, il peut se produire un phénoméne de blocage en ligne qui dégrade
les performances. Il est possible d’utiliser QUIC ou SCTP pour s’affranchir de ce probleme.

Le second mécanisme proposé consiste a exploiter plusieurs chemins, par exemple du Wi-Fi, une connexion filaire, et de la
4G. L’'idée est d’utiliser les chemins de faible latence pour transporter le trafic sensible en priorité, tandis que le reste du trafic
peut profiter de la capacité combinée des différents chemins. Multipath TCP implémente en partie cette idée, mais ne tient
pas compte du multiplexage. Intégrer le multiplexage donne davantage de visibilité au scheduler sur les besoins des flux de
données, et permettrait a ceux-ci de coopérer. Au final, on obtient un probléme d’ordonnancement qui a été identifié trés
récemment, “I'ordonnancement multi-chemins sensible aux flux”. Ma premiere contribution est de modéliser ce probléme.
Ma seconde contribution consiste a proposer un nouvel algorithme d’ordonnancement pour ce probleme, SRPT-ECF, qui
améliore la performances des petits flux de données sans impacter celle des autres flux. Cet algorithme pourrait étre utilisé
dans une implémentation de MPQUIC (Multipath QUIC). De facon plus générale, ces résultats ouvrent des perspectives sur la

coopération entre flux de données, avec des applications comme I'agrégation transparente de connexions Internet.

	Front Cover
	Abstract
	Résumé
	Remerciements
	Contents
	Contents
	1 Introduction
	1.1 Latency in modern communication networks
	1.1.1 Experienced latency
	1.1.2 Impact of latency on applications

	1.2 Reducing latency
	1.2.1 Infrastructure mechanisms to improve latency
	1.2.2 End-to-end mechanisms to improve latency

	1.3 Multi-homing and multipath communication
	1.3.1 Reducing latency with multi-homing

	1.4 Methodology
	1.5 Overview of contributions
	1.5.1 Reducing latency with better routing
	1.5.2 Performance of persistent DNS connections
	1.5.3 Stream-aware multipath scheduling

	1.6 Outline

	2 Dissecting end-to-end latency
	2.1 End-host sources of latency in a network
	2.2 Multiplexing messages on a connection
	2.2.1 The need for application data multiplexing
	2.2.2 Message-oriented semantic
	Multiplexing in the message-oriented semantic

	2.2.3 Stream-oriented semantic
	Multiplexing in the stream-oriented semantic

	2.2.4 Hybrid semantic: HTTP
	Multiplexing in HTTP/1
	Multiplexing in HTTP/2

	2.3 Performance impact of multiplexing
	2.3.1 Sharing costs
	2.3.2 Reactivity and buffer management
	2.3.3 Head-of-line blocking at the transport layer
	2.3.4 Message bundling

	2.4 Latency impact of multi-homing
	2.4.1 Multi-homing challenges that impair latency
	Head-of-line blocking
	Receive window blocking
	Short flows

	2.4.2 Opportunities offered by multipath scheduling

	2.5 Conclusion
	2.5.1 Multiplexing
	2.5.2 Multi-homing

	3 Performance of persistent DNS connections
	3.1 DNS: performance requirements and transport protocol
	3.2 Message loss dramatically impacts DNS-over-UDP latency
	3.3 Improving DNS latency with persistent connections
	3.3.1 Experimental validation
	3.3.2 Related work
	3.3.3 Going beyond latency

	3.4 Evaluation of recursive DNS resolver performance
	3.4.1 The need for persistent connections
	3.4.2 Deployment model: large-scale persistent DNS connections
	3.4.3 Experimental setup and methodology
	3.4.4 Methodology: performance metrics
	3.4.5 Results
	3.4.6 Limitations of the methodology
	Query generation model
	Differences between DoT and DoH
	Churn and cost of new TLS connections

	3.5 Conclusion

	4 Stream-aware multipath scheduling
	4.1 Background on stream multiplexing and scheduling
	4.1.1 From single-stream to multi-stream transport: an historical perspective
	4.1.2 Scheduling multiplexed streams

	4.2 The multi-stream scheduling model
	Applicability to SCTP
	Applicability to QUIC
	Applicability to HTTP

	4.3 Stream-aware multipath scheduling
	4.3.1 Multipath scheduling with several streams
	Stream scheduling
	Path allocation

	4.3.2 Shortcomings of MPTCP schedulers
	Shortcomings of MPTCP scheduling: serialisation at the sender
	Shortcomings of MPTCP delivery: serialisation at the receiver

	4.3.3 Stream-aware multipath schedulers
	<Round-Robin>-<MinRTT>
	<Round-Robin>-<ECF>
	<Round-Robin>-<Single Path>
	<Sticky Round-Robin>-<Single Path>
	<Sequential>-<ECF>
	<FCFS>-<ECF>

	4.4 ECF: multipath scheduling for a single message
	4.4.1 Network model
	4.4.2 Completion time of ECF

	4.5 SRPT-ECF: optimal stream-aware multipath scheduling
	4.5.1 Examples
	4.5.2 Properties of SRPT-ECF

	4.6 Running SRPT-ECF online
	4.6.1 Online SRPT-ECF algorithm
	4.6.2 Comparison with offline algorithms

	4.7 Trace-based evaluation of SRPT-ECF
	4.7.1 Methodology
	4.7.2 Simulation code
	4.7.3 Results

	4.8 Practical considerations
	4.8.1 Dealing with network variability and uncertainty
	4.8.2 Congestion control: pacing vs. congestion window
	Pacing
	Classical congestion window
	Pacing and scheduling

	4.8.3 Buffering strategy
	4.8.4 Streaming use-cases and infinite messages

	4.9 Conclusion

	5 Conclusion
	5.1 Perspectives
	5.1.1 Dealing with measurement uncertainties
	5.1.2 More cooperation between thin-stream and bulk-transfer communications
	5.1.3 WAN aggregation
	Improving WAN aggregation

	5.1.4 Large-scale impact of multipath

	Bibliography
	List of Figures
	List of Tables
	Back Cover

