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Défendue par
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Abstract

To ensure both good data center service performance and reasonable power con-

sumption, a detailed analysis of the behavior of these systems is essential for the

design of efficient optimization algorithms to reduce energy consumption. This

thesis fits into this context, and our main work is to design dynamic energy man-

agement systems based on stochastic models of controlled queues. The goal is to

search for optimal control policies for data center management, which should meet

the growing demands of reducing energy consumption and digital pollution while

maintaining quality of service. We first focused on the modeling of dynamic energy

management by a stochastic model for a homogeneous data center, mainly to study

some structural properties of the optimal strategy, such as monotony. Afterwards,

since data centers have a significant level of server heterogeneity in terms of energy

consumption and service rates, we have generalized the homogeneous model to

a heterogeneous model. In addition, since the data center server’s wake-up and

shutdown are not instantaneous and a server requires a little more time to go from

sleep mode to ready-to-work mode, we have extended the model to the purpose

of including this server time latency. Throughout this exact optimization, arrivals

and service rates are specified with histograms that can be obtained from actual

traces, empirical data, or traffic measurements. We have shown that the size of

the MDP model is large and leads to the problem of the explosion of state space

and a large computation time. Thus, we have shown that optimal optimization

requiring a MDP is often difficult or almost impossible to apply for large data

centers. Especially if we take into account real aspects such as server heterogeneity

or latency. So, we have suggested what we call the greedy-window algorithm that

allows to find a sub-optimal strategy better than that produced when considering a

special mechanism like threshold approaches. And more importantly, unlike the

MDP approach, this algorithm does not require the complete construction of the

structure that encodes all possible strategies. Thus, this algorithm gives a strategy

very close to the optimal strategy with low space-time complexities. This makes

this solution practical, scalable, dynamic and can be put online.
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Résumé

Pour garantir à la fois une bonne performance des services offerts par des centres

de données, et une consommation énergétique raisonnable, une analyse détaillée

du comportement de ces systèmes est essentielle pour la conception d’algorithmes

d’optimisation efficaces permettant de réduire la consommation énergétique. Cette

thèse s’inscrit dans ce contexte, et notre travail principal consiste à concevoir des

systèmes de gestion dynamique de l’énergie basés sur des modèles stochastiques

de files d’attente contrôlées. Le but est de rechercher les politiques de contrôle

optimales afin de les appliquer sur des centres de données, ce qui devrait répondre

aux demandes croissantes de réduction de la consommation énergétique et de la

pollution numérique tout en préservant la qualité de service. Nous nous sommes

intéressés d’abord à la modélisation de la gestion dynamique de l’énergie par

un modèle stochastique pour un centre de données homogène, principalement

pour étudier certaines propriétés structurelles de la stratégie optimale, telle que

la monotonie. Après, comme des centres de données présentent un niveau non

négligeable d’hétérogénéité de serveurs en termes de consommation d’énergie et de

taux de service, nous avons généralisé le modèle homogène à un modèle hétérogène.

De plus, comme le réveil (resp. l’arrêt) d’un serveur de centre de données n’est pas

instantané et nécessite un peu plus de temps pour passer du mode veille au mode

prêt à fonctionner, nous avons étendu le modèle dans le but d’inclure cette latence

temporelle des serveurs. Tout au long de cette optimisation exacte, les arrivées et

les taux de service sont spécifiés avec des histogrammes pouvant être obtenus à

partir de traces réelles, de données empiriques ou de mesures de trafic entrant. Nous

avons montré que la taille du modèle MDP est très grande et conduit au problème

de l’explosion d’espace d’états et à un temps de calcul important. Ainsi, nous

avons montré que l’optimisation optimale nécessitant le passage par un MDP est

souvent difficile, voire pratiquement impossible pour les grands centres de données.

Surtout si nous prenons en compte des aspects réels tels que l’hétérogénéité ou la

latence des serveurs. Alors, nous avons suggéré ce que nous appelons l’algorithme

greedy-window qui permet de trouver une stratégie sous-optimale meilleure que

celle produite lorsqu’on envisage un mécanisme spécial comme les approches à

seuil. Et plus important encore, contrairement à l’approche MDP, cet algorithme

n’exige pas la construction complète de la structure qui encode toutes les stratégies

possibles. Ainsi, cet algorithme donne une stratégie très proche de la stratégie

optimale avec des complexités spatio-temporelles faibles. Cela rend cette solution

pratique et permet son implémentation dans un contexte à temps réel.
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Résumé long (français)

Le développement croissant des centres de données et l’expansion récente des

clouds posent des problèmes énergétiques et des problèmes de pollution numérique.

Plusieurs études montrent une augmentation significative de la consommation

d’énergie et de la pollution numérique générée par des ordinateurs. Plus de 1.3%

de la consommation mondiale d’énergie est due à l’électricité utilisée par des

infrastructures informatiques. En outre, un serveur de centre de données peut

produire plus de 10 kg de CO2 par jour.

Plusieurs enquêtes scientifiques ont révélé que ces taux sont en augmentation.

Des clouds et des centres de données sont conçus pour prendre en charge le trafic

maximal attendu. Toutefois, la charge globale moyenne représente environ 60% de

la charge maximale.

De ce fait, un nombre important de serveurs ne sont pas en charge et con-

tinuent de consommer environ 65% de l’énergie maximale. Ainsi, des besoins

d’économie d’énergie apparaissent pour envisager des stratégies de gestion de

l’énergie. Plusieurs études montrent qu’une grande partie de l’énergie consommée

dans le centre de données est principalement due à l’électricité utilisée pour faire

fonctionner les serveurs et les refroidir (70% du coût total du centre de données).

Ainsi, le principal facteur de cette consommation d’énergie est lié au nombre

de serveurs opérationnels. De nombreux efforts ont été consacrés à l’amélioration

des serveurs et à leur refroidissement. Des travaux ont été effectués pour construire

de meilleurs composants et des processeurs à faible consommation d’énergie, des

réseaux plus efficaces en terme énergétique, des systèmes de refroidissement plus

efficaces, et des noyaux système optimisés.

Par conséquent, pour garantir à la fois une bonne performance des services

offerts par ces centres de données et une consommation d’énergie raisonnable,

une analyse détaillée du comportement de ces systèmes est essentielle pour la

conception d’algorithmes d’optimisation efficaces permettant de réduire la con-

sommation d’énergie. Dans ce contexte, une approche complémentaire en matière

d’économie d’énergie est à envisager. Une politique de gestion permettant de gérer

le démarrage/l’arrêt des serveurs dans un centre de données afin d’assurer à la

fois une meilleure qualité des services offerts par ces centres de données et une

consommation d’énergie raisonnable. Deux exigences sont en conflit:

1. Maintenir une qualité de service (QoS) élevée.

2. Consommer moins d’énergie.

Pour répondre à la première exigence, nous devons allumer un grand nombre de

serveurs, qui consomment plus d’énergie, réduisent la durée d’attente et réduisent
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le taux de perte de clients, mais nécessitent une consommation énergétique élevée.

Pour répondre à la deuxième exigence, nous devons activer un petit nombre de

serveurs, ce qui entraı̂ne une consommation d’énergie moindre, mais entraı̂ne

davantage d’attente et augmente le taux de pertes de clients. Ainsi, l’objectif est de

concevoir de meilleurs algorithmes de gestion de l’énergie tenant compte ces deux

contraintes afin de minimiser la durée d’attente, le taux de perte et la consommation

d’énergie.

Dans cette thèse, notre travail principal consiste à concevoir des systèmes

de gestion dynamique de l’énergie (DPM) basés sur des modèles stochastiques

de files d’attente contrôlées. Le but est de rechercher les politiques de contrôle

optimales afin de les appliquer sur des centres de données, ce qui devrait répondre

aux demandes croissantes de réduction de la consommation d’énergie et de la

pollution numérique tout en préservant la qualité de service (QoS).

Premièrement, on note qu’un travail important avait été fait pour analyser le

problème de l’optimisation de l’énergie dans les data centers dans un contexte à

temps continu (voir section 2.4 et les tables 2.8, 2.9).

Notre travail est entièrement consacré au contexte à temps discret. Notons

que les contextes temporels continus offrent un cadre mathématique permettant de

trouver les politiques optimales et étudier leurs propriétés structurelles en utilisant

des méthodes analytiques.

Dans tout notre travail, le processus des arrivées et la capacité de traitement

des requêtes par les serveurs sont modélisés par des distributions obtenues à partir

de traces réelles, de données empiriques ou de mesures du trafic entrant. Ainsi,

nous avons principalement utilisé la trace ouverte de Google [Wil11, RWH11],

pour laquelle nous avions suggéré, dans un premier temps, un algorithme basé

sur l’utilisation du test statistique des points de réflexion pour trouver la période

d’échantillonnage adéquate afin de garantir la propriété i.i.d. (une distribution repar-

tie de manière indépendante et identique) des données échantillonnées. Autrement

dit, les choix des valeurs des paramètres ont été choisis comme suit:

• l’unité de temps: comme on est dans un cadre discret, on doit fixer la durée

de l’unité de temps, pour la trouver on a proposé une technique qui se base

du le test statistique turning points pour trouver la meilleur durée de l’unité

de temps à considérer dans l’échantillonnage, l’analyse et l’optimisation

(voir la fin de la Section 1.3.3).

• taille de la queue: dans la majorité des analyses que nous avons effectuées,

on a fait varier la taille de la queue b de 1 jusqu’à une valeur assez grande.

• nombre maximal de machines: de même dans la majorité des analyses on fait

varier M , le nombre maximal de machines, de 1 jusqu’à une valeur assez

grande.
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• l’horizon h: ceci représente la durée sur laquelle on observe le système,

là aussi on a pris soit un jour soit une semaine soit un mois d’analyse,

pourquoi? Car on ne dispose que d’un seul mois de données de la trace de

Google [Wil11, RWH11], donc soit on fait une analyse sur un mois, soit on

accumule les quatre semaines pour faire une analyse sur la semaine, soit on

accumule les jours du mois pour faire une analyse sur un jour. On a aussi

considéré une analyse sur la nuit et sur la journée.

• les coûts unitaires: dans la majorité des analyses on ne fixe pas les coûts

unitaires mais plutôt, on fait varier les coûts unitaires dans des intervalles

selon plusieurs contraintes, par exemple, on fait varier cn, cm, et cl avec la

contrainte cn > cm > cl ou cn < cm < cl ou d’autre contraintes du même

style.

• arrivées et services: on déduit des distributions à partir de traces réelles.

Et pour chaque expérimentation on analyse et on interprète le comportement du

système. Il faut noter qu’on a considéré deux types d’expérimentations:

• expérimentation pour analyser le comportement du système (évolution),

• expérimentation pour analyser la complexité algorithmique.

Pour le dernier cas on est obligé de fixer tous les paramètres du système pour

pouvoir comparer plusieurs techniques, dans le but d’analyser la taille et la rapidité

de l’algorithme et non pas pour étudier le comportement de système.

Ensuite, et avant de montrer comment résoudre le problème d’optimisation

énergétique de manière optimale, nous avons expliqué comment modéliser un

mécanisme spécifique pour résoudre le problème d’optimisation énergie/QoS par

une solution sous-optimale. Nous introduisons donc l’utilisation de DTMC (chaı̂ne

de Markov à temps discret) pour modéliser et résoudre le problème de la réduction

de la consommation d’énergie dans un centre de données tout en maintenant une

bonne QoS basée sur une stratégie monotone classique prédéfinie, à savoir la

stratégie des seuils. Ce type de politique appartient en général à la classe des

politiques sous-optimales. Après cela, et dans la continuité de l’approche basée sur

DTMC, nous présentons un système d’optimisation stochastique plus compliqué,

alors que nous le résolvons encore par un mécanisme spécial de stratégie de seuils.

Ainsi, cette seconde approche montre comment les opérateurs d’histogramme

peuvent être utilisés pour éviter de générer explicitement un nombre important de

DTMC comme dans la première approche. Plus précisément, nous introduisons

l’utilisation des opérateurs d’histogrammes pour modéliser et résoudre le problème

d’économie d’énergie consommée dans un centre de données tout en préservant

les performances de son service, sur la base du mécanisme de stratégie de seuils.
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De plus, nous montrons comment utiliser l’algorithme de détection de stationnarité

pour accélérer le calcul de la meilleure politique de seuils.

Il est bien connu que les politiques de seuils sont pratiques et faciles à mettre

en œuvre mais elles ne sont pas nécessairement les meilleures. Ainsi, dans un

deuxième temps, nous nous sommes concentrés sur la minimisation optimale de

la consommation d’énergie dans les centres de données. Donc pour trouver la

stratégie optimale nous avons formaliser le modèle dans un cadre temporel discret

basé sur l’utilisation du concept de processus de décision de Markov afin de garantir

une consommation d’énergie raisonnable avec une bonne performance du service

offerte par le centre de données.

Pour trouver la politique optimale, nous formulons le problème d’optimisation

à l’aide d’un MDP à temps discret. Nous nous intéressons d’abord à la modélisation

de la gestion dynamique de l’énergie par un modèle stochastique pour un centre de

données homogène, principalement pour étudier certaines propriétés structurelles

de la stratégie optimale, telle que la monotonie. Deuxièmement, comme les centres

de données présentent un niveau non négligeable d’hétérogénéité de serveurs en

termes de consommation d’énergie et de taux de service, nous généralisons le

modèle homogène à un modèle hétérogène. Enfin, comme le réveil (resp. l’arrêt)

d’un serveur de centre de données n’est pas instantané et nécessite un peu plus

de temps pour passer du mode veille au mode prêt à fonctionner, nous étendons

le modèle dans le but d’inclure cette latence temporelle des serveurs. Comme

précédemment, tout au long de cette optimisation exacte, les arrivées et les taux

de service sont spécifiés avec des histogrammes pouvant être obtenus à partir de

traces réelles, de données empiriques ou de mesures de trafic entrant.

Pour un modèle homogène, les résultats théoriques et expérimentaux montrent

qu’en général1, la politique optimale n’est pas monotone, ce qui nous mène aux

conclusions suivantes:

• la politique optimale ne peut pas être exprimée selon une structure de seuils,

• la politique basée sur une structure à double seuil est en général sous-

optimale.

L’optimisation par MDP conduit à la politique optimale qui économise une quantité

importante d’énergie. Cependant, en comparaison avec les méthodes basées sur

les seuils, MDP sous PRISM nécessite plus de temps de calcul et plus d’espace

mémoire pour calculer cette stratégie optimale. Nous observons que l’approche

basée sur les seuils calcule la stratégie d’optimisation plus rapidement et utilise

moins d’espace mémoire, mais elle ne renvoie qu’une stratégie sous-optimale.

1Pour des valeurs particulières des paramètres du système la politique peut être monotone.
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Pour le modèle hétérogène, nous avons prouvé que ni la monotonie ni l’isotonie

ne sont vérifiées par la politique hétérogène optimale. Par conséquent, la politique

optimale ne peut pas être conçue comme une simple structure à double seuil. De

plus, les résultats montrent que la taille du modèle hétérogène est supérieure à

celle du modèle homogène. Cependant, à partir de résultats expérimentaux, il

semble que l’hétérogénéité croissante des serveurs entraı̂ne davantage d’économies

d’énergie.

Pour les modèles avec latence, les résultats montrent que la taille du modèle

est énorme, plus précisément la taille est une exponentielle de la période de

latence. Cependant, à partir des résultats expérimentaux, lorsque la latence est

plus importante, il semble que l’augmentation de la capacité de la queue b entraı̂ne

potentiellement une plus grande économie de l’énergie.

Afin de spécifier, résoudre, puis analyser la consommation énergétique de nos

centres de données, nous utilisons un logiciel de vérification formel efficace appelé

PRISM, un logiciel probabiliste utilisable pour la spécification de modèles MDP.

Nous avons mis en place un outil nous permettant de générer automatiquement les

spécifications PRISM de nos différents modèles de gestion dynamique de l’énergie.

Avec cet outil, nous pouvons effectuer de nombreux test en modifiant facilement

les paramètres sans réécrire manuellement des milliers de lignes de code PRISM.

Nous avons montré que la taille des modèles de MDP ci-dessus est très grande

et conduit au problème de l’explosion d’espace d’états. De plus le calcul de la

stratégie optimale nécessite un temps de calcul important. Nous avons observé

que l’utilisation des modèles de MDP est souvent difficile, voire impossible, à

réaliser pour les grands centres de données. Surtout si nous voulons prendre en

compte des aspects réels tels que l’hétérogénéité ou la latence des serveurs. Le

problème provient principalement de la taille exponentielle de la structure du MDP,

puis du temps nécessaire pour la parcourir pour trouver la stratégie optimale. La

complexité est donc importante tant dans l’espace que dans le temps. En effet,

nous suggérons ce que nous appelons l’algorithme greedy-window qui permet

de trouver une stratégie sous-optimale meilleure que celle produite lorsqu’on

envisage un mécanisme spécial comme les approches à seuil. Et plus important

encore, contrairement à l’approche MDP, cet algorithme glouton n’exige pas la

construction complète de la structure, y compris toutes les stratégies possibles.

Ainsi, notre algorithme donne une stratégie très proche de la stratégie optimale

avec des complexités spatio-temporelles très faibles.

Cette dernière solution consiste à fournir un algorithme efficace qui calcule une

solution assez proche à la stratégie optimale, en utilisant un espace mémoire et un

temps de calcul inférieurs à ceux des solutions basées sur MDP ou les politiques

de seuils. Cela rend cette solution pratique et permet son implémentation dans

un contexte à temps réel. Cette solution a été aussi codée sous forme d’un outil
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permettant de calculer cette stratégie pour pouvoir la comparer avec les résultats

des autres méthodes.
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Chapter 1
Introduction

1.1 Context of work: Background and Generalities

1.1.1 Background (Cloud in real life)

T
ODAY almost every feature and all aspects of our modern life are changing to

become partially or sometimes completely digital, leading to an explosion

of data and the global growth of the data centers. For example, Intel [Nel16]

confirms that one autonomous car generates more than 4000 GB of data every day,

and Cisco [Cis15] estimates that globally a Virtual Reality traffic will increase

61-fold until 2020 and data center traffic is to grow 300% by the same year. Notice

that 30−40% of the total cost of a data center is due to energy use. In fact, the

workload will multiply in the next years and the data centers demand in terms

of energy will continue to increase exponentially. Thus, in order to keep the

energy demand low and flat it will be crucial to improve both the hardware and

the software of electrical/electronic components, computers, digital infrastructures,

cooling systems, lighting systems, and making the processing of requests in data

centers more efficient. However data centers need to act very quickly as clients

are demanding more and more flexible and reliable services. In fact, an important

work is currently devoted by both scientists and industrialists to give data centers

the opportunity to be manageable efficiently and safely in terms of consuming

energetic resources. Increasingly more people and more things are becoming

connected from medical and healthcare applications, transportation, building and

home automation, manufacturing, agriculture, to military applications. Thus, as

reported by the International Data Corporation [ZW+14], the digital universe is

doubling every two years, and this large number of devices that will become online

during the next few years will generate and use more data which need more clouds
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Chapter 1. Introduction 2

services and more data centers. Scholars as in [BBA10, CM12, Sor15] confirm

that it will be a daily challenge to reduce the energy consumption and it should be

the responsibility we have with our environment. In fact, we will have to become

smarter, more sensible, and more efficient to deal with this challenge and give

computer science the opportunity to participate actively in preserving our planet

when using efficiently the energy and allowing all people to appreciate serenely

all the advantages of our digital society. This requires a degree of sophistication

and a degree of control that is in some level inherent in the solution suggested

in the work presented in this manuscript. Thus, I hope the management systems

described and analyzed in this thesis will help us in that direction.

1.1.2 Data center

What is a data center? When a small company starts its activity, it needs to store

all its paper data like financial information and customer details in a digital form in

order to keep it safe from theft or catastrophes as fire and also to make this data

more easily accessible and shared. The company also needs an Internet connection

to host their website and their emails. In fact all this digital data is stored in a

computer called server. This server is basically a specialized computer of the size

of one or two schoolbags connected to the local network of the company and also

to the Internet. It contains several hard disks that store data in a replicated way

to be able to back up the data of the company if for any reason or accidentally

some data is deleted. Thus the data can be shared between the different desktop

computers of the company through the local network and information can be sent

outside to people visiting the website of the company through Internet. Now, as

the company grows up, the website becomes more popular and bigger demand for

the company products grows and consequently bigger needs to store more data

and ensure a good quality of the services emerge. Inevitably, the company must

add more and more servers and eventually end up by building an entirely separate

server room to house all this servers.

Additionally, servers need to be cooled (see Figure 1.1) and maintained by

an information technology professionals to ensure the reliability and the security

of the servers. Also to ensure the continuity of the services in the case of the

occurrence of any failure due to electricity, servers must be equipped with their

own backup uninterruptible power supplies usually in the form of large batteries or

a powerful generator. In fact all these constraints can become a serious financial

and logistical challenge for the company. Indeed, rather than trying to solve these

problems themselves, nowadays, many companies, foundation, and organizations

choose to move all their data and digital services out of their own buildings into

a specialized facility called a data center. Which is a secure computer friendly
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data centers reduce considerably the amount of electricity used and carbon dioxide

ejected.

1.2 Generalities and problems

1.2.1 Queuing model theory

Let us now introduce queuing theory. It is well known that various real-life systems,

like supermarket payment queues, manufactures of production, exchanging and

sharing information systems, networks and communication infrastructures as well

as data centers can be represented by means of queuing models. Queuing system

takes it origin since the early 1900s in the design of automatic telephone exchange

systems that were analyzed by Agner Krarup Erlang in order to determine how

many lines had to be supplied in order to guarantee a certain level of service [Erl17].

Analogous problems emerge in numerous other cases, for instance looking at the

impact of service rate on waiting time in payment queues, in order to satisfy the

client’s demands for quality of service (QoS). In practice, the problem that queuing

theory faces principally is how to find a balance between improvement of QoS and

economic related costs. In other terms, how to find the best trade-off between a

gain in QoS, supplying more resources, and additional economic loss. Notice that

queuing theory has succeeded to obtain many analytical and numerical results by

studying formally and mathematically models including the probabilistic aspect

of real systems. Those results cover various important quantitative features which

characterize the behavior of systems such as queue length, waiting time distribu-

tions, loss probabilities, and throughput, etc. Classical queuing models do not

include controllers that allow to inspect different strategies, when taking adequate

decisions based on the state of the system. Such a controller may considerably

improve the performance of the system by for example decreasing waiting time,

reducing queue length, or increasing the throughput. However, the absence of

a such controller may make the system going through periods of high load that

induce long waiting time followed by periods during which the servers remain idle

and still consuming resources. In fact, the controlling mechanism is performed by

suitable actions that can be described in mathematical and formal terms and then

subjected to determine the optimal control policy. Thus, by adding such controlling

aspects into queuing models, the field of queuing theory was extended as a branch

of optimization theory in which the subject of this thesis fits. The theoretical

foundations of controlled queuing systems are based on the concept of Markov

decision processes [Ryk66, MO70, Ros70, Put94, KR95, LL96, FS12].
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In fact, we define policy or interchangeably strategy as the following. A policy

or a strategy is an instruction telling the manager, depending on the state of the

system and the current time, which action to choose and perform.

Thus the control problem consists in the task to choose an optimal strategy that

minimizes some function over the cost sequence. There are many functions that

may be considered suitable for classifying optimum system behavior.

In the present thesis, as we are more interested in the transient regime, we

confine our analysis to the optimality criterion of expected total cost function

accumulated over a period of time.

1.2.3 Optimality

In several applications the best approach to design a strategy can be done by

simply comparing the results of different alternatives. It is clear that this approach

is feasible only if the number of alternatives is relatively limited. Otherwise,

optimization methods are required to find the best/good strategy. However, for

complex and more realistic cases, where the number of different possible strategies

is very large, it is clear that simple enumeration procedures for finding an optimal

policy is inadequate. A Markov decision model is a Markov model which can

use additionally the dynamic programming techniques for the computation of the

optimal solution.

1.2.4 Metrics

It is very important for data center providers to measure the performance/QoS of

their services. For a cloud that hosts data, performance is measured in terms of

availability of data over a period of time. For a server farm hosting database or

websites, performance is often measured in terms of response time. For a grid

computation, performance is measured in terms of completion time or number of

completed jobs in a period of time.

Moreover, it is well known that servers need an additional amount of energy

to switch-on (resp. switch-off). It is also known that the switching-on (resp.

switching-off) is not instantaneous and a server needs some units of time to transit

from a sleeping/stopping mode to a ready-working mode. This period of time

during which the server switches from a mode to another is called latency.

In the following we define some popular performance/energy metrics of data

centers.

In the context of data centers, energy is the quantitative property that must

be transferred to a server in order to be able to process jobs when providing the
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requested service on those jobs. And power is the amount of energy transferred per

unit of time: power =
energy

time
.

For a given period of time, waiting jobs is the average number of jobs that

wait in the data center queue before being served.

We call arrival job a request arriving to the data center asking the service

provided by the data center. If the job is received by the data center, it will be

called waiting job until a server begins processing it. If not received by the data

center (for any reason) it will be called lost job or rejected job.

Waiting time for a request is defined as the time from when the job arrives at

the data center to the time when its service begins.

Response time for a request is defined as the time from when the job arrives at

the data center to the time when its service is completed.

Time latency is defined as the period of time needed to switch on/off a server.

It is called sometimes setup for the switching-on case.

Working power is the amount of energy, per unit of time, needed by a busy

server to process requested jobs.

Idle power is the amount of energy, per unit of time, needed by a non busy

server to keep itself on.

Energetic latency (or switching energy) is defined as the amount of additional

energy needed for a server to switch on/off. In other words, it is the total energy

consumed by the server during the entire latency time.

1.3 Queue model

Here we deal with discrete time models. Let DC be a data center composed of

M non identical servers working under the FIFO1 discipline. DC receives jobs

requesting the proposed service. The number of jobs served by one server in one

slot is not assumed to be constant (see Section 1.3.4). However it is modeled

by a discrete distribution obtained from real data center traces. In a similar way,

arrival jobs are also modeled by discrete distributions. Thus, both arrival and

service processes are specified by histograms. The queuing model is a batch arrival

queue with finite capacity buffer b (buffer size). Notice that the model considers

heterogeneous servers, which means, non identical servers. This point comes

from the analysis of the Google trace servers [Wil11, RWH11] which shows that

data centers present a non negligible level of server heterogeneity. Several levels

of heterogeneity were observed for instance: heterogeneity in CPU-speed and

1First In First Out.
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heterogeneity in memory-size. Those criteria are good indicators for QoS and also

energy consumption and taking them into account is very important for our energy

optimization problem. Additionally, in order to include more realistic aspects of

the data center in the context of energy saving, the model considers the latency of

the servers (see Figure 1.5).

1.3.1 Evolution equations

In a queue, at discrete time, we need to accurately describe the order of events of

inputs and outputs. Let us define the following variables:

• a(t) number of arrival jobs during slot t,

• n(t) number of waiting jobs during slot t,

• l(t) number of rejected jobs during slot t,

• m(t) number of operational servers during slot t.

• d number of jobs that can be severed by one server during one slot.

We begin by serving the waiting jobs of the buffer, next we fill the free operational

servers by the new jobs, then we fill the buffer. This means that the new jobs are

spread over all the free places of the system: in the free operational servers and in

the buffer. Notice that this order of events is chosen in this specific way to ensure

the FIFO discipline. In this case the number of jobs waiting (resp. rejected jobs) at

instant t +1 can be deduced recursively as follows:

n(t +1) = min(b,(n(t)+a(t)−d×m(t))+)

l(t +1) = (n(t)+a(t)−d×m(t)−b)+.

1.3.2 Histogram operators

As mentioned before, in the literature, modeling the arrival jobs consists in ob-

taining a continuous time distribution by fitting the experimental data. Another

approach consists in modeling the arrival jobs by a DTMC2 as in [BBPDM99]. In

this work we suggest to use directly the discrete finite distributions that may be ob-

tained from sampling real traces, empirical data, or incoming traffic measurements.

In fact we model the random variables of our systems (arrival jobs, waiting

jobs, lost jobs, etc) by finite discrete distributions represented by finite structures

called histograms.

2Discrete Time Markov Chain.



Chapter 1. Introduction 10

Servers of level 1

stopped server

stopped server

server in latency

server in latency

ready server

ready server

Servers of level 2

stopped server

stopped server

server in latency

server in latency

ready server

ready server

Servers of level p

stopped server

stopped server

server in latency

server in latency

ready server

ready server

served jobs
i: job arrivals

l: rejected jobs b: Buffer size

n: Waiting jobs

Figure 1.5: Illustration of the generic queuing model: each server belongs to a group of

servers with specific energy consumption level. Each server is either ready, stopped, or in

latency period.
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Definition 1.1 (histogram). Let X be a discrete random variables taking values in

N. The couple HX = (SX ,PX) denotes the histogram of X where PX : N→ [0,1] is

the probability mass function of X and SX = {i ∈ N : PX(i)> 0} is the support of

PX . Notice that ∑
i∈SX

PX(i) = 1.

Example 1.1. Let A be a random variable for the arrival jobs of a system. Let HA

be its histogram. We have:

HA =

{
SA = [ 2 , 4 , 5 , 7 ]
PA = [ 0.2 , 0.3 , 0.4 , 0.1 ].

Thus, we can say for example that we have a probability of 0.2 to receive 2 jobs

during a slot (one time unit) and a probability of 0.1 for receiving 7 jobs. Implicitly,

we note that the probability of receiving 0, 1, 3, 8 jobs or more is zero.

In order to do calculus on histograms, the following operators defined over

histograms are needed to compute the evolution of a stochastic system:

1. ∆v is the Dirac histogram with v ∈ N, where the probability mass function is

defined as:

∀i ∈ N : P(i) =

{
1 if i = v and

0 otherwise.
(1.1)

2. Given a random variable X and a natural number v ∈ N, the histogram of the

variable Y = X− v noted by HY = HX − v corresponds to the histogram of

HX translated by constant v:

PY (i) = PX(i− v) if i > v and PY (0) = ∑
i≤v

PX(i). (1.2)

3. HY = MINb(HX) is the distribution of variable X bounded above by constant

b. This operation corresponds to a minimum on the underlying random

variable. It is defined by:

PY (i) = PX(i) if i < b and PY (b) = ∑
i≥b

PX(i). (1.3)

4. Given two random variables X and Y , the histogram of the variable Z =X +Y

noted by HZ = HX ⊕HY corresponds to the convolution of histograms HX

and HY :

∀i ∈ N : PZ(i) =
i

∑
j=0

PX( j)×PY (i− j). (1.4)
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Example 1.2. Let HX be an histogram such that:

HX =

{
SX [ 1 , 2 , 3 , 5 , 9 , 11 ]
PX [ 0.1 , 0.2 , 0.3 , 0.1 , 0.15 , 0.15 ].

We have:

MIN4(HX) =

{
SMIN4(HX ) [ 1 , 2 , 3 , 4 ]

PMIN4(HX ) [ 0.1 , 0.2 , 0.3 , 0.1+0.15+0.15 ]

=

{
SMIN4(HX ) [ 1 , 2 , 3 , 4 ]

PMIN4(HX ) [ 0.1 , 0.2 , 0.3 , 0.7 ].

MIN0(HX) =

{
SMIN0(HX ) [ 0 ]

PMIN0(HX ) [ 0.1+0.2+0.3+0.1+0.15+0.15 ]

=

{
SMIN0(HX ) [ 0 ]

PMIN0(HX ) [ 1 ]

= ∆0.

MIN18(HX) =

{
SMIN18(HX ) [ 1, 2, 3, 5, 9, 11 ]

SMIN18(HX ) [ 0.1, 0.2, 0.3, 0.1, 0.15, 0.15 ]

= HX .

We have also:

HX −4 =

{
SHX−4 [ 0, 1, 5, 7 ]
PHX−4 [ 0.1+0.2+0.3, 0.1, 0.15, 0.15 ]

=

{
SHX−4 [ 0, 1, 5, 7 ]
PHX−4 [ 0.6, 0.1, 0.15, 0.15 ].

Example 1.3. Let HX and HY be two histograms such that:

HX =

{
SX [ 2 , 3 ]
PX [ 0.4 , 0.6 ]

and HY =

{
PY [ 10 , 20 ]
SY [ 0.1 , 0.9 ].

We have:

HZ = HX ⊕HY

=

{
SZ [ 2+10 , 3+10 , 2+20 , 3+20 ]
PZ [ 0.4×0.1 , 0.6×0.1 , 0.4×0.9 , 0.6×0.9 ]

=

{
SZ [ 12 , 13 , 22 , 23 ]
PZ [ 0.04 , 0.06 , 0.36 , 0.54 ].
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Remark 1.1. Notice that the computation of a convolution by the direct method

described by Equation (1.4) requires O(|SX |× |SY |) operations which can be signif-

icantly reduced with a fast algorithms typically by the use of fast convolution algo-

rithms [PD13, Jan00], to reduce the cost of the convolution to O(n logn) complexity

where n is the extent of the support of the histograms: n = max(SX)+max(SY ).
Figure 1.6 shows an experimental comparison between the quadratic direct method

and the FFT-based method by using the scipy Python package that implements

both methods.

Remark 1.2. In all of our work the convolution operator is used principally to

compute a convolution between HA a histogram of arrival jobs and HN histogram

of waiting jobs in the buffer.

Remark 1.3. The number of waiting jobs is bounded above by b, in fact both the

support of HN and its extent are bounded above by b, thus in terms of complexity

|SN | and max(SN) are in O(b).

Remark 1.4 (Smoothness). The histogram of arrival jobs HA is obtained by sam-

pling real traffic traces as we done with the open Google trace [Wil11, RWH11] and

we observed that the obtained distribution is smooth (|SA| ∼max(SA)). Smoothness

means that both the support of HA and its extent are of the same order, thus in

terms of complexity |SA| and max(SA) have the same order (see for example the

distributions used in Chapter 6).

1.3.3 Description of Arrivals

As said before, in this work we consider discrete-time queue models. Our queuing

model is a batch arrival queue with a finite capacity buffer b. To model job arrivals,

we use real traffic traces based on the open cluster-data-2011-2 trace [Wil11,

RWH11]. As in [BDF+16] and [Bay18], we focus on the part that contains the

job events corresponding to the requests destined to a specific Google data center

for the whole month of May 2011. The job events are organized as a table of

eight attributes. Column timestamps refers to the arrival job instant expressed in

microseconds. Thus based on this trace, the number of jobs arriving to the data

center during a slot is modeled by a histogram HA where PA(i) gives the probability

to have i arrival jobs per a slot.

Example 1.4. Assume that, per slot, we have a probability of 0.14 to receive 3

arrival jobs, 0.19 to receive 7 arrival jobs, and 0.67 to receive 11 arrival jobs. In

this case, arrivals are modeled by histogram HA = (SA,PA) where SA = {3,7,11},
PA(3) = 0.17, PA(7) = 0.19, and PA(11) = 0.67.
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Figure 1.6: Comparison between the direct method and the FFT-based method for comput-

ing the convolution of two histograms HX ⊕HY . The histograms were generated randomly

where the extent of each histogram is close to the support of the histogram: max(SX) = n,

max(SY ) = n, |SX | ∼ n, and |SY | ∼ n.
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for each sampling periods in order to test the i.i.d.-ness of the sampled data. We

found that sampling period between 115 and 155 second has a p− value bigger

than 0.05 thus at confidence level 0.95 we accept the null hypothesis, namely, the

sampled data is i.i.d. If i.i.d.-ness test is accepted for several values of sampling

period, as we deal with several kinds of arrivals (for instance arrivals for daytime,

nighttime, and for each day of the week), we will choose the sampling period for

which the turning point is accepted for all arrival kinds. In fact, we consider frames

of 136 second to sample the trace and construct empirical distributions for daytime,

nighttime, and for each day of the week. The support of the histogram obtained is

formed of around 200 bins, and the average of arrival jobs is around 46 jobs per

slot (see Figure 1.8).
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Figure 1.8: Left: Google trace arrival jobs distribution. Right: i.i.d.-ness test.

Notice that in this work we modeled arrival jobs by an i.i.d. distribution over

all the period of analysis in Section 3.1, in all Chapter 4, and in Section 5.3.2. We

considered a pairwise i.i.d. distributions for Section 3.2 and Section 5.3.3.

1.3.4 Service rate Description

As we know now the length of a slot (see previous section), in this work (especially

in Chapter 4) we define the service rate as the number of jobs served by one server

during one slot. As we avoid to consider that the service rate is constant, we use

also real traffic traces (like the open cluster-data-2011-2 trace [Wil11, RWH11]) to

model the service rate. In fact, We focus on the table that refers to the time needed

to process each accepted job by each server of the given collection of servers of

Google’s trace. Thus, the number of jobs served by one server during one slot is
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modeled by a histogram HD where PD(i) gives the probability to process i jobs by

one server during one slot.

1.3.5 Energy and QoS metrics

According to research published [MDD10], a single server consumes around

something between 238 and 376 Watts. Rajesh et al. [RDSJ08] estimate the cost

of one kWh of energy to 0.0897$. These values may vary depending on where the

data center is located and how electricity is generated. Using that baseline, one

server costs around 300$ per year to run.

Every job may generate a profit, and the average profit per job can be computed

as a ratio of the total profit over the number of served jobs. For instance, 106

requests (page views) may bring 1000$ of revenue. Thus, it can be said that each

job brings 10−3$ on average. Work in [DM10] suggests that each successfully

processed job3 generates a profit around 6.2×10−6$. In this case, a lost job costs

6.2×10−6$. Table 1.1 summarizes the costs considered over one slot.

Table 1.1: Costs considered over one slot.

Cost Meaning

cN waiting cost for one job over one slot

cL rejection cost for one job over one slot

cM energy cost for running one operational server

cbusy energy cost for running one busy operational server

cidle energy cost for running one not busy server (idle)

co f f energy cost for stopped/switched-off server

cMg
∈ IR+ energy cost for running one operational server of group g

cOng
∈ IR+ energy cost needed to switch-on of level g

cMhigh
∈ IR+ energy cost for running one operational high level server

cMlow
∈ IR+ energy cost for running one operational low level server

cMmed
∈ IR+ energy cost for running one operational medium level server

cOnhigh
∈ IR+ energy cost needed to switch-on high level server

cOnlow
∈ IR+ energy cost needed to switch-on low level server

cOnmed
∈ IR+ energy cost needed to switch-on medium level server

The energy consumption takes into account the number of operational servers.

3Each job is a request for a web page view.
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A data center may be composed of heterogeneous servers grouped essentially into

several levels of energy consumption and service rate (for example a group with

high, med, or low energy consumption). As servers are heterogeneous, each server

of group g consumes some units of energy per slot when a server is operational and

it costs at average cMg
monetary unit. A server may consume a very low amount

of energy when it sleeps. During the latency period (waking-up) a server may

consume an additional amount of energy cOng
.

A server consumes more energy when it processes a job. The total energy

consumed is the sum of all units of energy consumed among a specific period.

As we are considering the latency of servers, we assume that cOng
is consumed

uniformly during the latency period, let us say
cOng

k
every slot, where k is the

number time units to completely switch-on the server.

The QoS takes into account the number of waiting and lost jobs. Each waiting

job costs cN monetary unit per slot. A rejected job costs cL monetary unit.

1.4 Outline and solution

1.4.1 Proposed solutions

In this thesis, our main work consists in designing efficient Dynamic Power Man-

agement systems (DPM) based on stochastic controlled queuing models when

investigating their optimal control policy in order to apply them on data centers,

which should satisfy the growing demands for minimizing the energy consumption

and the digital pollution while preserving the quality of service (QoS).

First, as we observed that an important work was done for analyzing the

problem of energy optimization in data centers in the context of continuous time

(see Tables 2.9 and 2.8), our work is entirely devoted to the context of discrete

time.

Next, and before showing how solving the energy optimization problem in an

optimal way, we introduce how we can model specific mechanisms to solve the

energy/QoS optimization problem by a sub-optimal solution. So, we introduce the

use of DTMC to model and solve the problem of reducing the energy consumed in

a data center while keeping a good QoS based on a predefined classical monotone

policy which is based on the thresholds strategy. This type of policy belongs,

in general, to the class of sub-optimal policies. After that, as a continuation,

we present a more sophisticated stochastic optimization system that shows how

histogram operators can be used to avoid generating explicitly a whole batch of

DTMC’s as done in the first approach. More precisely, we introduce the use of
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histogram operators to model and solve the problem of saving the energy consumed

in a data center when preserving it service performance based on the thresholds

policy mechanism. Additionally we show how the use of coupling and stationarity

detection algorithm [Ser99] can be used to make the computation of the best

thresholds policy faster by around 40%.

Now, as a second work we focused on finding the optimal strategy for min-

imizing both energy consumption and QoS in data centers when formulate the

model in a discrete time framework. Thus, we detail the use of the concept of

Markov Decision Process to find the optimal strategy to ensure a reasonable energy

consumption with a good performance. To find the optimal policy we formulate

the optimization problem by a discrete-time MDP. First we focus on the modeling

of the Dynamic Power Management by a stochastic model for a homogeneous

data center principally to study some structural properties of the optimal policy

such as monotony. Secondly, as data centers present a non negligible level of

server heterogeneity in energy consumption and service rate, we generalize the

homogeneous model to a heterogeneous one. Finally, as the switching-on (resp.

switching-off) of a data center server is not instantaneous and needs some extra

units of time to transit from a sleeping/stopping mode to a ready-working mode,

we extend the model in order to include this temporal latency of the servers. Along

all the chapter, arrival jobs and service rates are specified with histograms that may

be obtained from real traces, empirical data, or incoming traffic measurements.

For the homogeneous model theoretical and experimental results show that the

optimal policy is not monotone. Therefore we deduce that the strategy based on

double-threshold structure leads only to a sub-optimal policy. Results show that

MDP leads to the optimal policy when saving a significant amount of energy. But,

it needs more computation time and more memory space to analyze and solve the

optimization problem. We observe that threshold based approach computes the

optimization strategy faster, and uses a small amount of space memory. However,

it returns only a sub-optimal policy.

For heterogeneous model we proved that neither the monotony nor the isotony

properties hold for optimal heterogeneous policy. Consequently, the optimal

policy cannot be designed as a simple double-threshold structure. Additionally

results show that the size of the heterogeneous model is bigger than the size of

homogeneous model. However, from experimental results, it seems that increasing

server heterogeneity leads to more potential energy savings.

For the model with latency results show that the size of model is huge, more

precisely the size is an exponential of the period of latency. However, it still always

worthwhile to build more complex models. From experimental results, it seems

that increasing buffer size leads to more potential energy saving when the latency

is bigger.
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We show also that the size of any of the above MDP models is huge and leads

to the state space explosion problem and an important computation time. In fact,

we show that finding the optimal strategy, which requires passing through MDP, is

often difficult even impossible to achieve for large data centers. Especially if we

take into account real aspects like servers heterogeneity or latency. The problem

comes mainly from the exponential size of the MDP structure and then the time

needed to go through it to find the optimal strategy. So complexity is important

both in space and in time. Indeed, we suggest what we call the greedy-window

algorithm that allows to find a sub-optimal strategy better than that produced when

considering special mechanism like the threshold approaches. And more important,

unlike MDP approach, this greedy-window algorithm does not require the building

or parsing all possible strategies. Thus our algorithm gives a strategy very close to

the optimal strategy with very small space and time complexities.

1.4.2 Outline

In this chapter we showed how we can model a data center, in the context of energy

consumption optimization, by a queue model when we describe its different aspects

and components. Especially the arrival/service processes, the servers characteriza-

tion, and the energy/QoS metrics. The rest of this document is organized as follow.

In Chapter 2 we introduce the state of the art by analyzing several scientific papers

that have addressed the problem of finding a trade-off between energy consumption

and performance in data centers. Then, the first part of Chapter 3 introduces the

use of DTMC to model and solve the problem of reducing the energy consumed

in a data center when keeping a good QoS based on the thresholds strategy. After

that, in the second part of Chapter 3 we show how Histogram operators can be

used instead of generating explicitly DTMC’s. Next, in Chapter 4 we detail the

use of the concept of Markov Decision Process to find the optimal strategy. We

first consider a homogeneous data center, after that we generalize the model and

its results to the case of a heterogeneous data center. Moreover, we extend the

concept of MDP for a data center when we consider the latency of servers. After

that, in Chapter 5 we suggest an efficient space-time complexity greedy-window

algorithm that allows to find a sub-optimal policy very close to the optimal one.

Finally Chapter 6 closes the manuscript by comparing experimentally all presented

approaches when arrival jobs and service rate are modeled by discrete distributions

obtained from real Google traffic traces.
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T
HE increasing development of Data Centers and recent expansion of Clouds are

causing energetic problems and digital pollution issues. Several studies show

a significant augmentation of energy consumed and digital pollution produced

by computers. More than 1.3% of the global energy consumption is due to the

electricity used by computer infrastructures. Additionally, one data center server

can produce more than 10 kilogram of CO2 per day, rates that are increasing,

revealed by a survey conducted in [Koo11], which says a lot about the increasing

evolution of data centers. Clouds and data centers are designed to support the

expected peak traffic load, however the global load is about 60% of the peak load

[BAM10]. In fact, an important number of servers are not under load and still

consume about 65% of the maximal energy [GHMP09]. Thus, needs for energy

saving is emerging. Studies like [BGDG+10, Bal11, LZ12] show that much of

the energy consumed in the data center is due to the electricity used to run the

servers and to cool them (70% of total cost of the data center). Thus the main

factor of this energy consumption is related to the number of operational servers.

Many efforts have focused on servers and their cooling. Works have been done

to build better components and low-energy-consumption processors [GMIL+00],

more efficient energy network [BAM10], more efficient cooling systems [PBSB03],

and optimized kernels [JWC12]. Therefore, to ensure both a good performance

of services offered by these data centers and reasonable energy consumption,

a detailed analysis of the behavior of these systems is essential for designing

efficient optimization algorithms to reduce the energy consumption. Against this

background, a complementary approach to save energy is to consider a power

policy to manage the switching-on/off of servers in a data center to ensure both

a better quality of service offered by these data centers and reasonable energy

consumption. Two requirements are in conflict:

21
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1. Maintaining a high Quality of the Service (QoS).

2. Consuming less energy.

For the first requirement, we need to turn on a large number of servers which

consumes more energy and leads to less waiting time and decreases the rate of

losing jobs but needs a high energy consumption. For the second requirement, we

need to turn on a small number of servers which leads to less energy consumption,

but causes more waiting time and increases the rate of losing jobs. Thus, the goal

is to design better power management algorithms which take into account these

constraints to minimize waiting time, loss rate and energy consumption.

In the following section we analyze in more details several scientific papers

that have addressed the problem of saving energy in data centers when keeping a

optimal/reasonable QoS.

2.1 Analytical solutions based on CTMC

2.1.1 Thresholds policy without latency of servers

Schwartz et al. in [SPTG12] present a theoretical queuing model to evaluate the

trade-off between waiting time and energy consumption if only a subset of servers

is active all the time and the remaining servers are enabled on demand. In this paper

the problem is modeled by a queuing model with an infinite buffer size b =+∞.

Authors assume that the jobs in their model arrive according to an independent

Poisson process with rate λ and each server accepts only one job at a time with

an exponentially distributed service time with mean
1

µ
. Then, the system can be

modeled using a M/M/k queuing system. A number of m0 servers called base-

line-servers is active all the time, and a number of m1 additional servers called

reserve-servers is initially turned off and will be activated when the total number

of jobs in the system increases and exceeds some threshold θ1. The reserve-servers

will be turned off again if the number of jobs in the system decreases and becomes

less than another threshold θ0. For a server, the authors consider three level of

energy consumption:

1. co f f when the server is turned off,

2. cbusy when the server is turned on and proceeding a job, and

3. cidle when the server is turned on without proceeding a job.

They also consider mainly two random variables. Random variable x gives the

number of jobs in the system where only the base-line-servers are activated and
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in this case x(i) is the stationary probability that i jobs are in the system. And the

random variable y gives the number of jobs in the system where additionally the

reserve-servers are activated and in this case y(i) is the stationary probability that

i jobs are in the system. Using CTMC1, and based on local balance equations of

each state, they use analytical calculus to find the expression of each x(i) and y(i)
in function of m0, m1, θ0 and θ1 (see Appendix A for detailed equations). Then

they suggest to find the best m0, m1, θ0 and θ1 that minimize the following cost

function:

cost = αE(e)+(1−α)E(w) (2.1)

where e is the expected value of energetic cost and w is the expected value of

waiting time. Parameter α ∈ [0,1] can be chosen in such a way that a desirable

trade-off is made. Notice that a value of α close to 1 gives more importance to

energy. A value of α close to 0 gives more importance to QoS.

Du to the hardness to solve analytically the above optimization problem, authors

suggest to solve it in a trivial way by computing the cost function for all valid

combinations of m0, m1, θ0 and θ1, sorting the cost function values and choosing

the minimum.

Finally, the experimental simulation results done in this paper, show that

configurations as the one given in Table 2.1, leads to an energy consumption

significantly reduced while still having an acceptable waiting time. They observe

that the service was guaranteed while still saving about 40% of energy compered

to a situation in which all servers are always turned on.

Table 2.1: Experimental simulation settings in [SPTG12].

Parameter Value Description

M = m0 +m1 100 Total number of servers

λ 0.10 Exponential inter-arrival job arrivals rate

µ 0.0025 Exponential service rate

Notice that in this paper:

1. The latency of waking up servers is not considered, servers are considered to

switch on immediately.

2. The optimization problem is formulated by analytic equations however,

neither exact nor heuristic solutions were given.

1Continuous Time Markov Chain.
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3. The total cost does not contain the rejected jobs rate. That can be explained

by the fact that the size of the buffer is infinite.

4. The servers in the reserve, are switched-on or switched-off as one block, the

switching-on/off of additional servers is not done progressively.

5. The strategy is based on the number of jobs in the system and not the number

of waiting jobs.

6. The problem is considered for the steady state.

2.1.2 Thresholds policy with latency of servers

In [Mit13] Mitrani considers the problem of managing servers of a data center

in order to satisfy the conflicting objectives between high QoS and low energy

consumption. As in [SPTG12] Mitrani modeled the problem by a queuing model

with an infinite buffer size b = +∞. He assumes that the jobs arrive according

to an independent Poisson process with rate λ and each server accepts only one

job at a time with an exponentially distributed service time with mean
1

µ
. So, the

system can be modeled using a M/M/k queuing system. In addition, M is the

total number of servers, a subset of m1 servers called reserve is turned on when the

number of waiting jobs in the system is sufficiently high and exceeds a threshold U

(for Up), and is turned off when that number of jobs is sufficiently low and exceeds

another threshold D (for Down). Unlike Schwartz et al. [SPTG12], Mitrani takes

into account the latency of the servers, which is the period of time needed by a

server to be switched on. During this period a server consumes an energy surcharge

to be powered up while no job is served. All the reserve servers become operational

together after an interval of time distributed exponentially with mean
1

ν
. The main

objective of this paper is to find the best size of the reserve m1 and the best values

of thresholds U and D that allow a minimum total cost. The author considers one

level of energy consumption of a server, which means that energy consumption

depends on the number of switched on servers. He mainly considers three random

variables:

• Variable x gives the number of jobs in the system where the reserve is off

and in this case x(i) is the stationary probability that i jobs are in the system.

• Variable y gives the number of jobs in the system during latency period (the

reserve is powering up). In this case y(i) is the stationary probability that i

jobs are in the system.
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• Variable z gives the number of jobs in the system where additionally the

reserve is powered on. In this case z(i) is the stationary probability that i

jobs are in the system.

Using CTMC, and based on local balance equations of each state, he uses analytical

calculus (generating functions) to find the expression of each variable x(i), y(i)
and z(i) in function of m1, U , and D where 0 < D <U < M (see Appendix B for

detailed equations). Mitrani suggests an heuristics solution for the above equations

in order to give optimal values of m1, U , and D that minimize the following

objective cost function:

cost = c1E(n)+ c2E(m) (2.2)

where E(n) represents the average number of jobs in the system, E(m) gives the

average number of servers consuming energy in the system, coefficients c1 and

c2 reflect the relative importance placed on QoS and energy consumption, respec-

tively. He obtained a heuristic value of m1 (size of the reserve) by arguing as

follows. Let n(m0) be the average number of jobs in a system where there are

m0 permanently operative servers. Consider the change in costs as the number

of servers is increased from m0−1 to m0: the average queuing cost per unit time

would decrease by c1 (n(m0−1)−n(m0)). At the same time, the energy consump-

tion cost would increase by c2 . Hence, the increase would be advantageous if

c1 (n(m0−1)−n(m0)) > c2. Consequently, the optimal number of permanently

operative servers would be the largest m0 for which an increase from m0− 1 to

m0 is advantageous. Mitrani proposed an heuristic that consists in approximating

n(m0) by the M/M/1 expression: n(m0) =

λ
µ

M − λ
µ

, an optimal value of m0 should

be equal to:

m∗0 =

⌊
λ

µ
+

1

2

(
1+

√

1+4
λc1

µc2

)⌋
. (2.3)

In fact the optimal size of the reserve is: m∗1 = max{0,M −m∗0}.

Consider that we turn off the reserve when some of the non-reserve servers

become idle. In this case, the heuristic value of the lower threshold D can be fixed

to:

D∗ = M −m0−1. (2.4)

To derive a heuristic for the upper threshold, Mitrani uses a deterministic fluid

approximation of the queuing process and he deduces:

U∗ = max

{
m0−1,

⌈
m0µ−λ

ν
+

c2(m0µ−λ)

c1µ

(
1+

√

1+
2c1(M µ−λ)

c2ν(m0µ−λ)

)⌉}
. (2.5)
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Over parameters shown in Table B.1, Mitrani carried out several numerical experi-

ments to evaluate the quality of his heuristics.

Table 2.2: Experimental simulation settings in [Mit13].

Parameter Value Description

M = m0 +m1 20 Total number of servers

λ 4, 8, 10, 12 Exponential inter-arrival job arrivals rate

µ 1 Exponential service rate

ν 0.1 Exponential latency rate

He observed that when the size of reserve m1 is well chosen, it is not important

if the upper threshold U is overestimated. On the other hand, if m1 is badly chosen,

then both underestimating and overestimating the optimal threshold U can increase

the cost substantially. And as expected, the heavier the offered load, the fewer

servers should be reserved. Finally he compares the performance of the optimal

policy (m0, U , and D are chosen optimally), with that of the heuristic policy (using

the heuristic values for m0, U , and D), and also with the do nothing policy of not

reserving any servers. His experimental results confirm that the heuristic policy is

practically indistinguishable from the optimal policy, with only a small difference.

This has been observed to be the case for a large variety of system configurations

and cost coefficients. As future work, Mitrani suggests to extend his model by

introducing k blocks of reserves, of sizes m1,m2, . . . ,mk, with associated upper and

lower thresholds. Reserve 1 is turned on when the queue exceeds level U1, reserve

2 is turned on when the queue exceeds level U2 >U1, etc.

Notice that in this paper:

1. The latency of waking up servers is considered.

2. The optimization problem is formulated by an analytical equations then a

heuristic solutions were given.

3. The size of the buffer is infinite, in fact rejected jobs rate was not considered.

4. The servers in the reserve, are switched-on or switched-off as one block, the

switching-on/off of additional servers is not done progressively.

5. The strategy is based on the number of waiting jobs.

6. The problem is considered for the steady state.
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2.1.3 Allocation policy with rejected jobs

In [DM10] Dyachuk and Mazzucco study the problem of maximizing the revenue

of a service provider when preserving the performance requirement of users. Their

strategy is based on a dynamic allocation policies that keep turning-on the minimum

number of servers which are necessary to meet the user’s QoS requirements. The

solution is to dynamically power servers up and down according to the incoming

load. In this paper the problem is modeled by a queuing model with an infinite

buffer size b =+∞ and a total number of M servers. The authors consider three

level of energy consumption of a server:

1. co f f when the server is switched-off,

2. cbusy when the server is turned on and processing a job, and

3. cidle when the server is idle, which means, turned on without proceeding any

job.

Additionally, Dyachuk and Mazzucco consider that powering servers on/off takes,

in average, k units of time.

The jobs are assumed to be impatient. This is means that a waiting job can leave

the queue while waiting for the server to respond. In order to model this impatience

authors assume that jobs sitting in the queue can time out and abandon the buffer.

It is obvious that exact time-outs associated with specific jobs are not known,

however their distribution can be estimated. Notice also that an abandoned job does

not generate any profit. Hence, the provider should ensure a small waiting time

which does not exceed the patience of jobs, otherwise jobs will start aborting their

requests. Authors assume that jobs enter the system according to an independent

Poisson process with rate λ, the service times are exponentially distributed with the

mean of
1

µ
. Job’s patience (time-outs) is modeled by a random variables distributed

exponentially with mean
1

θ
, where θ represents the abandonment rate. (θ =+∞

corresponds to jobs with no patience, θ = 0 corresponds to jobs with infinite

patience).

Thus, the resulting model is an M/M/k queue model with impatience. In this

paper authors are interested in maximizing the average revenue earned by the

service provider per unit time. That value can be estimated as:

revenue = c×T − r×P (2.6)

where c is the income generated by each completed job, T is the number of served

jobs, r is the unitary cost of energy, and P is the total energy consumed by the

powered up servers.
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The strategy used in this paper is to call a policy at specific times. The interval

between consecutive policy invocations is called observation epoch. From the

statistics collected during the last observation epoch, their policy estimates the

arrival rate λ and average service time
1

µ
. Then it allocates during the next epoch

an optimal number of servers which should maximize the revenue during the epoch.

They use a binary search algorithm requiring logM iterations to find this optimal

number. They also suggest a heuristic (based on work given in [Gra88]) to get a

sub-optimal value of the number of servers to be ran as:

m∗ =
E(λ)

µ
+α

√
E(λ)

µ
+

Var(λ)

µ2
(2.7)

where λ is estimated using some forecasting techniques, E(λ) refers to the expected

value of λ, and Var(λ) describes the variance of the prediction.

Over real parameters shown in Table 2.3, Dyachuk and Mazzucco carried out

several numerical experiments and simulations to evaluate the quality of their exact

and heuristics strategies by using Wikipedia traces of November 2009 to model the

job arrivals.

Table 2.3: Experimental simulation settings in [DM10].

Parameter Value Description

M 1000 Total number of servers

λ - Modeled dynamically using Wikipedia traces

µ 10 The average service time is 1/µ = 0.1 seconds

θ 0.25 The average job patience is 1/θ = 4 seconds

r 0.1$ per kWh The cost for energy

c 6.2×10−6$ The profit generated by a successfully processed job

The various numerical analyses showed that the optimal strategy improves the

revenue with a percentage between 10% and 30%, while the heuristic strategy

performs with results close to the optimal strategy.

Notice that in the work of Dyachuk and Mazzucco:

1. The size of the buffer is infinite, however an abandoned jobs rate was consid-

ered.

2. The latency of waking up servers is considered.

3. The optimization problem is formulated by a dynamic optimization model

then an exact and also a heuristic solutions were given.
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4. The arrival jobs rate is estimated statistically by analyzing the past, each

time the policy is called.

5. Dyachuk and Mazzucco suggest to consider a supplementary cost as the

system’s reliability is affected by switching on/off the servers (hardware

components tend to degrade faster with frequent power on/off cycles).

2.1.4 Impact of data center size on the effectiveness of DPM

Most energy optimization techniques aim to minimize energy waste in data centers

by switching servers off when they are not busy and then switch them on when

it is needed. However, waking up a server requires a period of latency, in which

the QoS can degrade. Thus, in [GHB11] Gandhi et al. examine the impact of the

size of the data center (total number of servers) on the efficiency of the energetic

optimization. As in [Mit13] Gandhi et al. modeled the problem by a queuing model

with an infinite buffer size b =+∞. They assume that the jobs arrive according to

an independent Poisson process with rate λ and each server accepts only one job at

a time with an exponentially distributed service time with mean
1

µ
. So, the system

can be modeled using a M/M/k queuing system. They compare two strategies:

The first one called always-on is to keep all the M servers always on. The second

one called on/off is to turn off a server which is not busy and turn on additional

server for each new waiting job. The main parameter of this paper is the latency

(the period needed to turn on/off a server and the energy needed during this period).

Thus, authors consider that a server becomes operational after an interval of time

distributed exponentially with mean
1

ν
. They model the problem by a Markov chain

where each state is defined as the couple of the number of busy servers and the total

number of jobs in the system. Their analysis is based on Matrix-analytic methods,

which are numerical methods for analyzing complex unbounded Markov chains. In

order to compare the two strategies, they use PPW , Performance-per-Watt metric,

defined as:

PPW =
1

w× e
(2.8)

where w is the mean response time defined as the time from when a job arrives

until it completes service. And e the mean power consumption. PPW measures

the amount of service that can be delivered by a server for every watt of power

consumed.

The numerical analysis done in this paper (configurations given in Table 2.4),

find that for smaller data centers (M ≤ 50), the on/off strategy is often actually

worse than always-on strategy with respect to both mean response time and mean
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power, even when the load is low. However, as the size of the data center grows,

the on/off strategy becomes more and more efficient, eventually outperforming the

always-on strategy by saving more than the half of energy, while achieving the

same response time.

Table 2.4: Experimental numerical settings in [GHB11].

Parameter Value Description

ρ =
λ

M ×µ
30% System load

ν 0.01 Exponential latency time (the mean latency is 1/ν = 100 seconds)

Additionally, authors find that energy optimization is very effective when the

latency period is short or when the service time is large. They conclude that

efficiency of energy optimization increases with the size of the data center.

2.1.5 Multiple arrival jobs process

Aidarov et al. present a theoretical queuing model in [AEM13] to evaluate the

trade-off between energy and QoS in order to maximize revenues from the service

provider where a penalty is paid by the supplier if the QoS provided is less than

promised. In this paper the problem is modeled by a queuing model with an infinite

buffer size b = +∞. Authors assume that the jobs in their model may be of k

different types. The jobs arrive according several independent Poisson process

with rates λ1,λ2, . . . ,λk and each server accepts only one job at a time with an

exponentially distributed service time with means
1

µ1
,

1

µ2
, . . . ,

1

µk

. Then, the system

can be modeled using a queuing system. A number of M servers is considered. The

provider must make dynamic decisions about whether or not to accept incoming

jobs and how many servers to employ. More precisely, if new arrival jobs come,

the following actions may be considered:

• reject the new jobs,

• accept the new jobs but do not switch on any new servers,

• accept the new jobs and power up one new server,

• accept the new jobs and power up two new servers,

• ...

• accept the new jobs and power up all servers.
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If, wi, the average of waiting time of jobs of type i exceeds some obligation oi a

penalty of qi should be paid by provider to the user. The performance of the system

is measured by the average profit R received. This is given by:

R =
k

∑
i=1

ai(ri−qi×P (wi > oi))− c×m (2.9)

where:

1. ai is the average number of jobs of type i that are accepted into the system,

2. ri is the income generated by serving a job of type i,

3. P (wi > oi) is the probability that the observed average waiting time of jobs

of type i, exceeds the obligation oi,

4. c is the cost of running one server for one unit of time,

5. m is the average number of servers that are operational.

The objective of the authors is to maximize revenues from the service provider.

The strategy should find a balance between minimizing the penalties, minimizing

the cost of energy, and maximizing the number of served jobs. The policy proposed

is an heuristic that must be applied at arrival job instances. The policy estimates

for each new job and for every possible action, the income and the penalty that can

be generated before accepting the job and before serving it, the strategy consists in

choosing the action that maximizes the total revenue for this new job. They used

GI/G/n queues to approximate their model and estimate the revenue.

To test their heuristic method, authors carried out a number of simulation

experiments where the total number of servers is M = 40 and rates λi are close

to 0.1. In all cases, the profit achieved by the suggested policy was 20%−35%

higher compared to a system where the servers are all operational.

We notice that:

1. The size of the buffer is infinite.

2. The optimization problem is formulated by a dynamic optimization model

then a heuristic solutions was given.

3. The arrival jobs rate is estimated statistically by analyzing the past, each

time the policy is called.

4. Authors do not consider the latency of waking up servers.

5. The servers are considered to switch on/off immediately.

6. No additional energetic cost was considered to turn on servers.
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2.2 Continuous time MDP solutions

Yang et al. [YCNH11] study the saving of energy in data centers, where a data

center has multiple servers to deal with jobs. The servers are switched into sleeping

mode in periods of low traffic load to reduce energy consumption while guarantee-

ing the quality of service (waiting jobs). The problem was formulated as an MDP,

Markov decision process. Unlike previous papers, in this paper, authors modeled

the problem by a queuing model with a finite buffer of size b 6=+∞. They assume

that the jobs arrive according to an independent Poisson process with rate λ and

each server accepts only one job at a time with an exponentially distributed service

time with mean
1

µ
. The authors consider only two levels of energy consumption of

a server:

1. cidle when the server is in sleeping mode (not working but consuming a small

amount of energy),

2. cbusy when the server is turned on.

They considered no latency for switching the servers from a mode to another,

however they consider con a specific energetic cost when switching server from

sleeping mode to working mode. When M is the total number of servers and m

the number of current running servers, and n the number of current waiting jobs,

the state of the system is mapped to (m,n). From every state of the system they

consider all possible (M +1) actions:

1. action to turn off all servers,

2. action to turn on only 1 server,

3. action to turn on only 2 servers,

4. ...

5. action to turn on (M −1) servers,

6. action to turn on all servers.

Applying an action leads the system to another state and gives rise to a local cost.

The strategy consists in finding the best sequence of actions to minimize the total

cost during a period of time:

cost = ework + eon +α×w (2.10)

where ework denotes the energy consumption of all working servers, eon denotes

the energy consumption for switching servers, and w is a penalty for keeping jobs
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in waiting state. Parameter α can be used to strike a balance between energy

consumption and waiting job penalty.

In fact, the problem was formulated by an MDP and the value iteration algo-

rithm was used to calculate the optimal policy.

The authors prove that under previous conditions and assumptions, the optimal

control policy has a double threshold structure. It means that there exists a set

of M up-thresholds {U1,U2, . . . ,UM } and another set of M down-thresholds

{D1, . . . ,DM } such that, the optimal strategy is defined as the following. Consider

that m is the number of current running servers, and n is the number of current

waiting jobs. The action to perform from this state is:





turn off one server if: n < Dm

keep the same number of servers if: Dm ≤ n≤Um

turn on one additional server if: Um < n.

The experimental simulation done in this paper confirms this behavior, and

shows that applying the optimal policy for a system with configurations as the one

given in Table 2.5 saves around 19% of energy consumption.

Table 2.5: Experimental simulation settings in [YCNH11].

Parameter Value Description

M 10 Total number of servers

λ 6 Exponential inter-arrival job arrivals rate

µ 1 Exponential service rate

Notice that in this paper:

1. The latency period of waking up servers is not considered, only the energetic

cost of waking up servers is considered

2. The optimization problem is formulated as Markovian Decision Process,

then an algorithm which gives the optimal solution was given.

3. Although the buffer size is finite, the rejected jobs were not considered.

4. The servers are switched-on or switched-off progressively one by one.

5. The problem is considered for a period of time.
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2.3 Discrete time MDP solutions

2.3.1 Constrained optimization

All previous presented papers consider the problem of energy optimization in the

case of continuous time. In [BBPDM99] Benini et al. consider the problem for

the discrete time. They modeled the system by a queuing model with a finite

buffer size b 6=+∞. A server is modeled by an MDP, where possibles states can be

{on,o f f , . . .}. Actions are defined over this server states to switch from a state to

another with some probability. The Markov chain that models a server, can be used

to deduce the latency to wake up a server (the transition time from the off-state

to the on-state when a action has been issued with probability p is a geometric

random variable with average equal to
1

p
units of time). Additionally, they define

matrices used to set the service rate and the energy consumption for every server

state. Job arrivals are modeled by a discrete Markov chain where states represent

the possible numbers of jobs that can arrive per unit of time. Authors combine the

MDP that models the server with the DTMC that models arrival jobs to model the

entire system by a global MDP where each state is defined as the state of the server

added to the number of jobs.

As the authors are interested in the steady state behavior, a policy is modeled

by an infinite sequence of actions. Hence, the goal of this paper is to search the

space of all possible policies to find the one that minimizes a cost metric. Authors

define several cost metrics:

1. power e: average of consumed energy per unit of time,

2. performance s and r: average number of served jobs per unit of time, and

average number of rejected jobs per unit of time.

Instead of using an objective cost function, they target the optimization of one cost

metric while using the second as a constraint, for example:

1. Minimize power e when keeping performance more than some threshold:

s≥ s0. (2.11)

2. Minimize power e while not exceeding some loss rate:

r ≤ r0. (2.12)

3. Maximize performance s while not exceeding some energetic threshold:

e≤ e0. (2.13)
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Authors used some classical results of stochastic optimization to formulate these

two last stochastic optimization problems as a linear programming (LP) optimiza-

tion problem, that can be solved exactly in polynomial time by using the interior

point algorithm [Ros14].

Benini et al. evaluate the strength of their model by constructing the stochastic

model for a real-life device (disk drive, Web server, and CPU) under a realistic

workload. Then they apply their optimization algorithm and compute optimal

policies. The most interesting for us is the second one. They modeled a web

server with two processors for a high-traffic web site, which is an example of a

system with multiple servers. They set the time unit to five seconds. Then they

analyze the system for a period of one day. The two servers are not identical. The

first server has higher performance (1.5 times) and higher energy consumption (2

times) than the second one. The job arrivals model was extracted from real-life

traces obtained by monitoring a busy web server (Internet Traffic Archive, http:

//ita.ee.lbl.gov/). Then they constructed a simple two-state Markov model for

the workload. Then they apply their optimization algorithm and compute optimal

policies. Experimental results show that performance and energy consumption of

the obtained policy is validated by simulation. Theoretical and experimental results

were close.

Notice that in this paper:

1. The latency period of waking up servers is considered, hence, the energetic

cost of waking up servers is also considered.

2. The optimization problem is formulated as Markovian Decision Process,

then a polynomial algorithm which gives the exact solution was given.

3. As the buffer size is finite, the rejected jobs are considered.

4. The problem is considered for a steady state.

5. The model support heterogeneous servers.

6. The model is presented and explained by real-life examples for cases where

the number of servers was very small (one, two,...). The application of this

model for a data center of hundreds (or thousands) of servers leads to a huge

MDP and certainly to the explosion of state space of O(2number of servers).
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2.3.2 Probabilistic model checking for DPM

In order to reach a trade-off between the QoS and the energy consumption of a

system, in [NPK+05] Norman et al. present an approach to analyzing a stochastic

dynamic power management strategy using the formalism of probabilistic model

checking. For a given strategy, their probabilistic model checking formalism allows

them to formally establish several quantified probabilistic properties over QoS,

buffer size, latency, and energy consumption. In this paper, the authors used PRISM

to model an energy optimization problem based on continuous-time Markov chains.

The system they analyzed is composed of:

1. Service Provider (SP), which contains only one server which has several

energetic levels, each level with a specific amount of energy consumption

(see Table 2.7). The latency period to move form a state to another is given

in Table 2.6.

2. Service Requester (SR), which issues jobs to the server.

3. Service Request Queue (SRQ), a finite buffer which stores immediately

arrival jobs that are not serviced yet (b 6=+∞).

4. Power Manager (PM), which issues commands to the SP, based on observa-

tions of the system.

Table 2.6: Average latency period between energy levels (millisecond) in [NPK+05]

active idle idlelp standby sleep

active - 1 5 220 600

idle 1 - 5 220 600

idlelp 5 - - 220 600

standby 600 - - - -

Table 2.7: Average of energy consumption in [NPK+05]

State sleep standby idle active

Energy (W) 0.1 0.3 1.5 2.5

In this work, each component (SP, SR, SRQ and PM) is represented by an indi-

vidual PRISM module. Listing 2.1 shows the PRISM specification for the service

requester module (SR). Listing 2.2 presents the PRISM specification for the service

queue module (SRQ).
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Listing 2.1: The SR has two states, idle, where no requests are generated, and req, where

one request is generated per time slot.

1 // SERVICE REQUESTER

2 module SR

3 sr : [0..1] init 0; // 0 - idle and 1 - 1req

4 [tick2] sr=0 -> 0.898: (sr’=0) + 0.102: (sr’=1);

5 [tick2] sr=1 -> 0.454: (sr’=0) + 0.546: (sr’=1);

6 endmodule

Listing 2.2: To model the arrival and service of requests the transitions of the SRQ are

dependent on the state of both the SR and the SP. Since, either the SR is in state idle and no

requests arrive or in state req and one request arrives, and the SP can only serve requests

when it is in state active.

1 // SERVICE REQUEST QUEUE

2 module SRQ

3

4 q : [0..2] init 0;

5

6 // do not serve and nothing arrives

7 [tick2] sr=0 & sp>0 -> true;

8 // do not serve and a request arrives

9 [tick2] sr=1 & sp>0 -> (q’=min(q+1,2));

10 // serve and nothing arrives

11 [tick2] sr=0 & sp=0 -> (q’=max(q-1,0));

12 // serve and a request arrives arrives

13 [tick2] sr=1 & sp=0 -> true;

14

15 endmodule

As said before, each component is represented by an individual PRISM module,

then, the PRISM model checking tool was used to construct a generic model of the

energy optimization system. Using the transition matrix of this system, a linear

optimization problem was formulated as described in [BBPDM99]. After that, the

linear optimization problem was passed to the MAPLE symbolic solver to calculate

the optimal policy. For example to reach a system with a number of waiting jobs

not exceeding 1.5 with the minimum of energy consumption, they found that the

optimal stochastic strategy is described in Algorithm 1.

Under different optimization constraint on the queue size, they also use PRISM

to compute and plot the expected energy consumption, the expected number of

waiting jobs, and the expected number of rejected jobs. They observe that policies

which consume less energy have larger queue sizes and tend to lose more jobs.

In a second part of their work, they model and formalize the same system but

under continuous time when using CTMC. They again use MAPLE to perform the

solution of the associated optimization problem. They compare the performance
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of the system (the expected number of waiting jobs and the expected number of

rejected jobs) and its energy consumption under different constrains:

1. high performance: number of waiting jobs ≤ 0.1,

2. average performance: number of waiting jobs ≤ 1,

3. low performance: number of waiting jobs ≤ 5,

where the inter-arrival time of arrival jobs is modeled by deterministic, exponential,

Erlang, uniform, or Pareto distributions. So, this paper show how probabilistic

model checking (especially PRISM) allows for an automatic generation of a range

of QoS measurements in order to analyze energy optimization policies. In contrast

to simulation, the advantage of the model checking approach lies in the exhaus-

tiveness of the analysis. This means that the computed results are guaranteed to

be accurate with respect to the probabilistic model used, and that all behaviors are

included during the analysis.

Algorithm 1: Example of optimal strategy given in [NPK+05].

1if SP is active and SRQ is not full then

2with probability 1 goto idle;

3else

4if SR is idle, SP is in sleep and the SRQ is full then

5with probability 4.7×10−7 goto active;

6else

7if SP is idle then

8with probability 1 goto active;

9end

10end

11end

2.4 Papers consolidation

In the literature most works were done in the context of continuous time [Mit13,

AEM13, MD12, SPTG12, GHB11, GHBA10, GGHBK10, DM10, XT08, NPK+05,

MD15, YCNH11, STM08, Efr04, LV02, Li12, KAR11, EMSM17, GLNT13,

GDHBSW13]. Less works were done in the context of discrete time [NIG07,

LKGN16, BBPDM99].

Works as in [GDHBSW13, AEM13, MD12, SPTG12, GHB11, GHBA10,

GGHBK10, DM10, XT08, NPK+05, STM08, EMSM17, GLNT13, Mit13] con-

sider models under specific management mechanisms, that leads to sub-optimal
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strategies like threshold policies. They model homogeneous data center servers

as a theoretical queuing model to evaluate the trade-off between QoS and energy

consumption where jobs arrive according to a Poisson process then served accord-

ing to an exponentially distributed service time. The size of the buffer is in general

infinite but finite in some works as in [NPK+05, STM08, EMSM17, GLNT13].

Most works consider servers as homogeneous, however other papers study the

case of heterogeneous data centers where arrival jobs are served by several non

identical servers (servers with different speed and different power consumption)

[NIG07, Li12, KAR11]. Markov chains and specific Petri nets were used to

model the system then, an analysis based on analytic equation and/or experimental

simulation shows that energy consumption is significantly reduced (from 10% to

40%) while still keeping a reasonable QoS.

On the other hand other works focused on computing the optimal policy. To

achieve this aim, the authors in [BBPDM99, Efr04, LV02, MD15, YCNH11,

LKGN16] formalize the energy saving problem by Markov Decision Process

(MDP). MDP models can be considered in continuous or discrete time.

Additionally, most of studies consider the latency of servers, time latency

(period needed to switch on/off a server) as in [Mit13, XT08], or energetic la-

tency (additional energy needed to switch on/off a server) as in [SPTG12, DM10,

NPK+05, Efr04, YCNH11, LKGN16], or both as in [MD12, GGHBK10, GHB11,

GHBA10, STM08, EMSM17, GLNT13, MD15, GDHBSW13, BBPDM99].

In this chapter we detailed the most important elements of optimizing energy

in data centers related to the literature. In the next chapter we will introduce the

modeling of the energy/QoS optimization problem when using a predefined specific

mechanism of optimization which leads to only a sub-optimal policy. However

its ease will help us to prepare the reader to better embrace the optimal strategy

computation using MDP. Tables 2.9 and 2.8 summarize the most important aspects

of different articles studying energy optimization in data centers.
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Table 2.8: Consolidated of previous detailed papers with other works

Discrete time General arrivals Servers heterogeneity Server latency Strategy optimality

[LKGN16] ✓ ✗ ✗ ✓ ✓

[NIG07] ✓ ✓ ✓ ✗ ✗

[BBPDM99] ✓ ✓ ✓ ✓

[AEM13] ✗ ✗ ✗ ✗ ✗

[SPTG12, DM10,

STM08, Mit13,

XT08, EMSM17,

GDHBSW13,

GLNT13,

GHB11,

GHBA10, MD12,

GGHBK10]

✗ ✗ ✗ ✓ ✗

[YCNH11,

MD15]
✗ ✗ ✗ ✓ ✓

[KAR11, Li12] ✗ ✗ ✓ ✗ ✗

[LV02] ✗ ✗ ✓ ✗ ✓

[Efr04] ✗ ✗ ✓ ✓ ✓

[NPK+05] ✗ ✗ ✗ ✓ ✗
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Table 2.9: Collection of several papers on energy optimization in data centers

Paper Cited Time Arrivals Service Servers Buffer QoS
Time

latency

Energetic

latency
Model Solving method Strategy Energy saving

[EMSM17] 9 Continuous Poisson Exponential Homogeneous Finite
Response time

throughput
Exponential Yes SAN

Fixed-point

iteration
Suboptimal 5%−10%

[LKGN16] 4 Discrete
Interrupted

Bernoulli
Exponential One server Finite Waiting time No Yes MDP

Dynamic

programming
Optimal -

[MD15] 7 Continuous Poisson Exponential Homogeneous +∞ System jobs Exponential Yes MDP Analytic Optimal -

[Mit13] 70 Continuous Poisson Exponential Homogeneous +∞ Waiting jobs Exponential No Markov chain
Analytic

simulation
Suboptimal -

[GDHBSW13] 60 Continuous Poisson Exponential Homogeneous +∞ Response time Exponential Yes Markov chain
Analytic

simulation
Suboptimal 40%

[AEM13] 2 Continuous
Poisson

family

Exponential

family
Homogeneous +∞ Waiting time No No Markov chain

Analytic

simulation
Suboptimal 20%−35%

[GLNT13] 82 Continuous Poisson Exponential Homogeneous Finite
Response time

rejected jobs
Exponential Yes SRN

Fixed-point

iteration
Suboptimal -

[Li12] 22 Continuous
Poisson

family
General Heterogeneous +∞ Response time No No Queuing model

Analytic

numerical
Suboptimal -

[MD12] 43 Continuous Poisson Exponential Homogeneous +∞ Rejected jobs Deterministic Yes Markov chain
Analytic

simulation
Suboptimal 10%−30%

[SPTG12] 25 Continuous Poisson Exponential Homogeneous +∞ Waiting time No Yes Markov chain
Analytic

simulation
Suboptimal 40%

[KAR11] 22 Continuous Poisson Exponential Heterogeneous +∞ Waiting time No No Queuing model Analytic Suboptimal -

[GHB11] 48 Continuous Poisson Exponential Homogeneous +∞ Response time Exponential Yes Markov chain
Analytic

simulation
Suboptimal -

[YCNH11] 3 Continuous Poisson Exponential Homogeneous Finite Waiting jobs No Yes MDP
Value iteration

algorithm
Optimal 19%

[GHBA10] 120 Continuous Poisson Exponential Homogeneous +∞ Response time Exponential Yes Markov chain
Analytic

simulation
Suboptimal -

[GGHBK10] 225 Continuous Poisson Exponential Homogeneous +∞ Response time Deterministic Yes Markov chain
Analytic

simulation
Suboptimal -

[DM10] 17 Continuous Poisson Exponential Homogeneous +∞ Rejected jobs No Yes Markov chain Experimental Suboptimal 10%−30%

[XT08] 14 Continuous Poisson Exponential Homogeneous +∞ Waiting time Exponential No Markov chain Analytic Suboptimal

[STM08] 22 Continuous Bi-Poisson Exponential Homogeneous Finite Response time Exponential Yes MDP
Analytic

heuristics
Suboptimal -

[NIG07] 186 Discrete Benchmarks Benchmarks Heterogeneous Finite Throughput service No No Analytical prediction Experimental Suboptimal 20%

[NPK+05] 86 Continuous Markov chain Markov chain Homogeneous Finite Waiting jobs No Yes Markov chain
Linear

programming
Suboptimal -

[Efr04] 24 Continuous Poisson Exponential Heterogeneous Finite System jobs No Yes MDP
Value iteration

algorithm
Optimal -

[LV02] 28 Continuous Poisson
Exponential

family
Heterogeneous +∞ System jobs No No MDP

Linear

programming
Optimal -

[BBPDM99] 499 Discrete Markov chain Markov chain Heterogeneous Finite
Waiting jobs

rejected jobs
Markov chain Yes MDP

Linear

programming

Optimal

(Constrained)
-
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EFORE solving the energy optimization problem in an optimal way, Let us

begin by introducing how we can model specific mechanism to solve the

energy/QoS optimization problem by a sub-optimal solution. At first, this chapter

introduces the use of DTMC to model and solve the problem of reducing the

energy consumed in a data center when keeping a good QoS based on a monotone

strategy which is based on the thresholds strategy that belongs, in general, to

the class of sub-optimal policies. After that, and as a continuation of DTMC

based approach, we will present a more involved stochastic optimization system

when we still solve it by special mechanism that leads to a sub-optimal policy.

Thus, this second approach shows how histogram operators can be used to avoid

generating explicitly a whole batch of DTMC’s as done in the first approach. More

precisely, we introduce the use of histogram operators to model and solve the

problem of saving the energy consumed in a data center when preserving it service

performance based on the thresholds.

3.1 Thresholds policy based on Markov chain

Let DC be a data center composed of M identical servers (see Section 4.2 for

Markov model with no identical servers). DC receives jobs requesting the offered

service. In order to keep the chapter easy, we will consider the following assump-

tions. The maximal number of jobs that can be served by one server in one slot is

assumed to be constant and denoted by d. So the service rate can be modeled by a

Dirac histogram HD = ∆d (see Section 4.2.4 for Markov model with no constant

service rate). Thus, the number of jobs arriving to the data center during a slot

is modeled by a histogram HA where PA(i) gives the probability to have i arrival

42
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jobs per a slot. Note that we assume that arrivals of jobs are independent, and

their distribution PA is obtained from real traces, empirical data, or incoming traffic

measurements. Thus, the queuing model is a batch arrival queue with constant

services and finite capacity buffer b (buffer size). As said before to keep this first

modelization simple, neither energetic latency nor time latency are considered, we

assume that a server switches on instantaneously without consuming any additional

amount of energy. Otherwise considering latency in a DTMC model makes the

model heavily complex (see Section 4.3 for Markov model with latency).

The number of waiting jobs in the buffer is denoted by n. The number of

operational servers is denoted by m. The number of rejected (lost) jobs is not

considered in this chapter. We assume that initially the number of operational

servers, the number of waiting jobs are 0. The maximal number of servers that

can be operational is M . It is assumed that the input arrivals are i.i.d. and under

these assumptions, the model of the queue is a time-homogeneous Discrete Time

Markov Chain.

3.1.1 Optimization mechanism

A Markov process is a stochastic process having the property to analyze the future

only by knowing the present. In the following we focus on Markov chains with

discrete time. A discrete time Markov chain is a sequence X0,X1, . . . ,Xt , . . . of

random variables with values in some state space E. The characteristic property of

a Markov chain is: analyzing the future from the present may not be more precise

by considering the past, because all the useful information for the analysis of the

future is contained in the present state of this process. In general, this memory-less

property is expressed by the following formula:

∀t ≥ 0,∀(s0, . . . ,st ,st+1) ∈ Et+2 : (3.1)

P
(

Xt+1 = st+1 | X0 = s0, . . . ,Xt = st

)
= P (Xt+1 = st+1 | Xt = st) (3.2)

P denotes the probability of an event. If the transition mechanism does not change

over time the Markov chain is called homogeneous. The homogeneity property is

expressed as follows:

∀t ≥ 0,∀(e,e′) ∈ E2 : P
(
Xt+1 = e′ | Xt = e

)
= P

(
X1 = e′ | X0 = e

)
. (3.3)

In the following we only consider homogeneous Markov chains. The concept of

Markov chain can be used to analyze a predefined energy optimization strategy.

We will consider an energy/performance management strategy inspired (but not

identical) by the work given in [SPTG12] and [Mit13] in which a group of servers
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The state space of the underlying DTMC, E is:

E = {(m,n) | 0≤ m≤M and 0≤ n≤ b}. (3.4)

We have a probability of Pss′ to move from state s = (m,n) to s′ = (m′,n′) under a

transition from state s to state s′. This probability is defined as:

Pss′ = ∑



for each i ∈ SA satisfying:

n′ = min{b,max{0,n+ i−d×m}}
m′ = max(M ,m+1) if n′ > β or min(σ,m−1) if n′ ≤ β

PA(i). (3.5)

The goal is to find the best strategy by defining the pair (σ,β) that minimizes at

the same time the cost of energy and the cost of QoS. In other words minimizing

a cost function that combines the cost of consuming energy and the cost of the

degradation of the QoS. In order to keep things simple in this first part we will

consider the cost function: c = cN×n+ cM×m.

In order to find the best (σ,β) that minimizes c, we have to build for each

pair (σ,β) a corresponding Markov chain by using Algorithm 2 to compute the

transition matrix. After that, we use it to evaluate the average number of operational

servers m and the average number of waiting jobs n over a finite horizon h for the

transient case. Or we solve the equilibrium equations of the steady state of the

system. This steady state allows us to estimate m and n. As a total cost we will

consider:

c = cN×n+ cM×m. (3.6)

Table 3.1: Model and DTMC Parameters.

Parameters Description

h finite or +∞ duration of analysis

M total number of servers

b buffer size

m number of operational servers

m average number of operational servers (steady state)

n number of waiting jobs

n average number of waiting jobs (steady state)

HA histogram of job arrivals

HD = ∆d histogram modeling the processing capacity of a server

cM energetic cost of one working server during one slot

cN cost of one waiting job in the buffer during one slot

E set of all possible states
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3.1.2 Application example

In this section we will apply the previous modelization on a very simple data center

with settings shown in Table 3.2. For arrival jobs assume that, per slot, we have a

probability of 0.2 to no arrival job, 0.5 to receive two arrival jobs, and 0.3 to receive

five arrival jobs. In this case, arrivals are modeled by histogram HA = (SA,PA)
where SA = {0,2,5}, PA(0) = 0.2, PA(2) = 0.5, and PA(5) = 0.3.

Table 3.2: Settings used for testing thresholds policy based on Markov chain.

Parameters Value Unit Description

M 3 servers total number of servers

d 1 jobs/server processing capacity of a server

b 4 jobs buffer size

HA described above jobs/slot histogram of arrival jobs

HD ∆1 jobs/server/slot processing capacity of a server

cM 1 /server/slot cost of energy needed by a server

cN 1 /job/slot cost of a waiting job

ρ 83% percentage load factor

We can see from the analysis of the steady state of all possible Markov chains

that the best strategy, according to the minimal total cost is to choose (σ,β) as

(2,1). So the best policy in the long term is to keep two servers always on, and set

the threshold of the buffer to one.

Table 3.3: Strategy comparison for thresholds policy based on Markov chain.

σ β n m cost = cN×n+ cM×m

0 1 2.071 2.337 4.408

0 2 2.489 2.120 4.609

0 3 2.489 2.120 4.609

1 1 2.016 2.381 4.397

1 2 2.350 2.216 4.566

1 3 2.631 2.054 4.685

2 1 1.578 2.572 4.150

2 2 1.790 2.501 4.291

2 3 2.062 2.337 4.399

3 1 1.283 3.000 4.283

3 2 1.283 3.000 4.283

3 3 1.283 3.000 4.283

In the following three pages, we give the graph, the transition matrix, the

equilibrium equations, the steady state, the average number of operational servers,

the average number of waiting jobs, and the total cost of some pairs (σ,β).
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Figure 3.2: DTMC for σ = 3 and β = 3
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




(0,0) − − − − − − − − − − − − − − − − − − − −
(0,1) − − − − − − − − − − − − − − − − − − − −
(0,2) − − − − − − − − − − − − − − − − − − − −
(0,3) − − − − − − − − − − − − − − − − − − − −
(0,4) − − − − − − − − − − − − − − − − − − − −
(1,0) − − − − − − − − − − − − − − − − − − − −
(1,1) − − − − − − − − − − − − − − − − − − − −
(1,2) − − − − − − − − − − − − − − − − − − − −
(1,3) − − − − − − − − − − − − − − − − − − − −
(1,4) − − − − − − − − − − − − − − − − − − − −
(2,0) − − − − − − − − − − − − − − − − − − − −
(2,1) − − − − − − − − − − − − − − − − − − − −
(2,2) − − − − − − − − − − − − − − − − − − − −
(2,3) − − − − − − − − − − − − − − − − − − − −
(2,4) − − − − − − − − − − − − − − − − − − − −
(3,0) − − − − − − − − − − − − − − − 0.7 − 0.3 − −
(3,1) − − − − − − − − − − − − − − − 0.7 − − 0.3 −
(3,2) − − − − − − − − − − − − − − − 0.2 0.5 − − 0.3
(3,3) − − − − − − − − − − − − − − − 0.2 − 0.5 − 0.3
(3,4) − − − − − − − − − − − − − − − − 0.2 − 0.5 0.3





0.7π15 +0.7π16 +0.2π17 +0.2π18 = π15

0.5π17 +0.2π19 = π16

0.3π15 +0.5π18 = π17

0.3π16 +0.5π19 = π18

0.3π17 +0.3π18 +0.3π19 = π19
19

∑
i=0

πi = 1

π≃
(0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4)
( )0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.470 0.120 0.190 0.097 0.123

n≃ 1.283 and m≃ 3.000.



Chapter 3. Thresholds policy 48

Figure 3.3: DTMC for σ = 0 and β = 1
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(0,1)
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(0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4)






(0,0) 0.2 − − − − − − 0.5 − 0.3 − − − − − − − − − −
(0,1) − 0.2 − − − − − − 0.5 0.3 − − − − − − − − − −
(0,2) − − − − − − − 0.2 − 0.8 − − − − − − − − − −
(0,3) − − − − − − − − 0.2 0.8 − − − − − − − − − −
(0,4) − − − − − − − − − 1.0 − − − − − − − − − −
(1,0) 0.2 − − − − − 0.5 − − − − − − − 0.3 − − − − −
(1,1) 0.2 − − − − − − − − − − − 0.5 − 0.3 − − − − −
(1,2) − − − − − − 0.2 − − − − − − 0.5 0.3 − − − − −
(1,3) − − − − − − − − − − − − 0.2 − 0.8 − − − − −
(1,4) − − − − − − − − − − − − − 0.2 0.8 − − − − −
(2,0) − − − − − 0.7 − − − − − − − − − − − − 0.3 −
(2,1) − − − − − 0.2 − − − − − 0.5 − − − − − − − 0.3
(2,2) − − − − − 0.2 − − − − − − − − − − − 0.5 − 0.3
(2,3) − − − − − − − − − − − 0.2 − − − − − − 0.5 0.3
(2,4) − − − − − − − − − − − − − − − − − 0.2 − 0.8
(3,0) − − − − − − − − − − 0.7 − − − − − − 0.3 − −
(3,1) − − − − − − − − − − 0.7 − − − − − − − 0.3 −
(3,2) − − − − − − − − − − 0.2 − − − − − 0.5 − − 0.3
(3,3) − − − − − − − − − − 0.2 − − − − − − 0.5 − 0.3
(3,4) − − − − − − − − − − − − − − − − 0.2 − 0.5 0.3





0.2π0 +0.2π5 +0.2π6 = π0

0.2π1 = π1

0.7π10 +0.2π11 +0.2π12 = π5

0.5π5 +0.2π7 = π6

0.5π0 +0.2π2 = π7

0.5π1 +0.2π3 = π8

0.3π0 +0.3π1 +0.8π2 +0.8π3 +1.0π4 = π9

0.7π15 +0.7π16 +0.2π17 +0.2π18 = π10

0.5π11 +0.2π13 = π11

0.5π6 +0.2π8 = π12

0.5π7 +0.2π9 = π13

0.3π5 +0.3π6 +0.3π7 +0.8π8 +0.8π9 = π14

0.5π17 +0.2π19 = π16

0.5π12 +0.2π14 +0.3π15 +0.5π18 = π17

0.3π10 +0.5π13 +0.3π16 +0.5π19 = π18

0.3π11 +0.3π12 +0.3π13 +0.8π14 +0.3π17 +0.3π18 +0.3π19 = π19
19

∑
i=0

πi = 1

π≃
(0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4)
( )0.035 0 0 0 0 0.092 0.049 0.018 0 0.011 0.123 0.004 0.025 0.011 0.056 0 0.095 0.109 0.171 0.201

n≃ 2.071 and m≃ 2.337.
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Figure 3.4: DTMC for σ = 1 et β = 2
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





(0,0) − − − − − − − − − − − − − − − − − − − −
(0,1) − − − − − − − − − − − − − − − − − − − −
(0,2) − − − − − − − − − − − − − − − − − − − −
(0,3) − − − − − − − − − − − − − − − − − − − −
(0,4) − − − − − − − − − − − − − − − − − − − −
(1,0) − − − − − 0.2 0.5 − − − − − − − 0.3 − − − − −
(1,1) − − − − − 0.2 − 0.5 − − − − − − 0.3 − − − − −
(1,2) − − − − − − 0.2 − − − − − − 0.5 0.3 − − − − −
(1,3) − − − − − − − 0.2 − − − − − − 0.8 − − − − −
(1,4) − − − − − − − − − − − − − 0.2 0.8 − − − − −
(2,0) − − − − − 0.7 − − − − − − − − − − − − 0.3 −
(2,1) − − − − − 0.2 0.5 − − − − − − − − − − − − 0.3
(2,2) − − − − − 0.2 − − − − − − 0.5 − − − − − − 0.3
(2,3) − − − − − − 0.2 − − − − − − − − − − − 0.5 0.3
(2,4) − − − − − − − − − − − − 0.2 − − − − − − 0.8
(3,0) − − − − − − − − − − 0.7 − − − − − − 0.3 − −
(3,1) − − − − − − − − − − 0.7 − − − − − − − 0.3 −
(3,2) − − − − − − − − − − 0.2 0.5 − − − − − − − 0.3
(3,3) − − − − − − − − − − 0.2 − − − − − − 0.5 − 0.3
(3,4) − − − − − − − − − − − 0.2 − − − − − − 0.5 0.3





0.2π5 +0.2π6 +0.7π10 +0.2π11 +0.2π12 = π5

0.5π5 +0.2π7 +0.5π11 +0.2π13 = π6

0.5π6 +0.2π8 = π7

0.7π15 +0.7π16 +0.2π17 +0.2π18 = π10

0.5π17 +0.2π19 = π11

0.5π12 +0.2π14 = π12

0.5π7 +0.2π9 = π13

0.3π5 +0.3π6 +0.3π7 +0.8π8 +0.8π9 = π14

0.3π15 +0.5π18 = π17

0.3π10 +0.5π13 +0.3π16 +0.5π19 = π18

0.3π11 +0.3π12 +0.3π13 +0.8π14 +0.3π17 +0.3π18 +0.3π19 = π19
19

∑
i=0

πi = 1

π≃
(0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4)
( )0 0 0 0 0 0.096 0.108 0.054 0 0 0.045 0.087 0.031 0.027 0.077 0 0 0.075 0.151 0.249

n≃ 2.350 and m≃ 2.216.
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Figure 3.5: Comparison of average cost of different strategies for a finite horizon (transient

behavior).

As said before at the end of the previous section (Section 3.1.1) for the transient

behavior, we use the transition matrix to evaluate the average number of operational

servers m and the average number of waiting jobs n over a finite horizon h. Figure

3.5 shows the evolution of the average cost over a finite period h for the three

different strategies presented in the last pages. We can see that for instance, despite

that the red strategy (σ = 0 and β = 1) is better than the green one (σ = 1 and

β = 2) in the long term or for a big horizon, the green one is better for a period

h < 13.

In this first part, we have shown how DTMC can be used to model and compute

a sub-optimal policy for an energy/QoS optimization problem for a data center

when the strategy mechanism is predefined as a threshold structure. The model
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was restricted to:

1. identical servers (see Section 4.2 for heterogeneous servers),

2. constant service rate (see Section 4.2.4 for service rate modeled by general

distribution),

3. no latency (see Section 4.3 for model with latency).

Those restrictions are not limitations of the model, we only choose them to limit

the model to simplify this first part. We considered those restrictions in Chapter

4 where we model the problem with a more sophisticated Markov formalism.

However the real limitation of the DTMC model is related principally to two

points:

1. The need to consider a predefined strategy: the DTMC model is not able

to compute the optimal policy, it computes the performance of only a sub-

optimal policy related to the predefined strategy.

2. The need to build explicitly all DTMC’s that model the predefined strategy:

which leads to an explosion of state space and computation time.

In the next chapter we will give a second example of the analysis of a predefined

policy when we will use the histogram operators instead of building explicitly all

DTMC’s.

3.2 Thresholds policy based on histogram operators

As a continuation of the previous section, we will present here a more sophis-

ticated stochastic optimization system. In this second section we consider also

a special mechanism. Thus, we show how histogram operators can be used to

avoid generating explicitly a whole batch of DTMC’s as done in last section. More

precisely, this section introduces the use of histogram operators to model and solve

the problem of saving the energy consumed in a data center when preserving it

service performance.

3.2.1 Problem specification

Here we assume that the arrival process is modeled by the same probabilistic

distribution for short period of time and changes between periods. This allows us

to model for instance hourly or daily variations of the job arrivals. Suppose that the
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analysis will be done over a whole period of time denoted h which is decomposed

into p time intervals:

T1 = [t0..t1[,T2 = [t1..t2[, · · · ,Tk = [tk−1..tk[, · · · ,Tp = [tp−1..tp[ (3.7)

where the first instant t0 equals 0, and the last one tp equals h. So during these time

intervals, the traffic is assumed to be stationary and we impose that the number

of operational servers is unchanged during a time interval. Which means that we

will be able to change the number of operational servers (by switching on or off

some servers) only at the beginning of each time interval Tk. This assumption is

related to our predefined optimization strategy that will be explained further in this

section.

Thus, the number of jobs arriving to the data center per slot during time interval

Tk is modeled by a histogram HAk
where PAk

(i) gives the probability to have i

arrival jobs per a slot. Note that we assume that arrivals of jobs are independent,

and their distribution PAk
may be obtained from real traces, empirical data, or

incoming traffic measurements. In this manner, the queuing model is a batch

arrival queue with constant services and finite capacity buffer b (buffer size). In

this chapter we assume that a server needs laton unit of time to be switched on and

lato f f unit of time to be switched off. We assume also that the switching-on leads

instantaneously to an additional energetic cost con however the switching-off takes

place without consuming any additional amount of energy.

The number of waiting jobs in the buffer is denoted by n and its distribution by

HN . The number of operational servers is denoted by m. The number of rejected

(lost) jobs is denoted by l and its distribution by HL. We assume that initially the

number of operational servers and the number of waiting jobs are 0. The maximal

number of servers that can be operational is M .

Within time interval Tk = [tk−1..tk[, the histogram operators given in Section

1.3.2 can be used to inductively compute the evolution of distributions HN :

HN(t)←MINb

(
(HN(t−1)⊕HAk

)−m
)

(3.8)

where the arrival jobs are added to the system (buffer and free operational servers),

a maximum of d×m jobs will be on servers to be processed, and the rest of

jobs will be rejected (see Section 1.3.1 for the exact order of events). In fact, the

distribution of the number of lost jobs is computed as:

HL(t)←
(
HN(t−1)⊕HAk

− (m+b)
)
. (3.9)

The energy consumption takes into account the state and the transitions of each

server:
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• cidle the cost of energy consumed per slot per server when the server is

operational but idle (operational but without proceeding a job),

• cbusy the cost of energy consumed per slot per server when the server is

operational but busy (when proceeding a job).

• con energetic cost needed to switch on a server.

• co f f = 0 it is assumed that a non operational server does not consume energy.

If at slot t we have m(t) operational servers, m̃(t) = max{0,m(t)−m(t +1)} is the

number of additional servers switched on. The expected cost of energy consumed

by all operational servers during a slot t is:

energy(t) = m̃(t)× con +
b

∑
i=0

PN(t)(i)
(
cidle× (m(t)− i)++ cbusy×min(i,m(t))

)
(3.10)

where:

1. min(i,m(t)) is the number of busy servers if the number of waiting jobs is i,

2. (m(t)− i)+ is the number of idle servers if the number of waiting jobs is i,

3. m̃(t)× con is the cost to switch on m̃(t) additional servers.

In order to simplify the model, the energy used to switch on server is assumed to

be consumed instantaneously at the beginning of the slot where the decision is

taken although the server becomes available only after laton slot due to the latency.

The total cost of energy used is the sum of these quantities among the sample path.

As QoS metric, we take into account the number of rejected jobs which is

modeled by a distribution of lost jobs for every time slot. Each rejected job causes

a penalty that costs cL. In fact the expected cost of QoS is computed as:

∑
i∈SL(t)

PL(t)(i)× i× cL. (3.11)

Additionally, we take into account the number of waiting job which is modeled by

a distribution of waiting jobs for every time slot. Each waiting job causes a penalty

that costs cN . In fact the expected cost of QoS is computed as:

∑
i∈SN(t)

PN(t)(i)× i× cN . (3.12)

In fact the total expected cost of QoS can be estimated as:

QoS(t) = ∑
i∈SL(t)

PL(t)(i)× i× cL + ∑
i∈SN(t)

PN(t)(i)× i× cN . (3.13)

Finally the total expected cost function can be estimated as:

cost(t) = energy(t)+QoS(t). (3.14)
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As we are dealing with numerical analysis based on histogram operators, we will

base the action of running or stopping servers by observing the expectation of

the number of waiting jobs. This expectation is compared with threshold values

D and U , if larger than U , the number of operational servers is increased. If the

expectation is smaller than D, the number of operational servers is decreased.

The goal is to find the best strategy by defining the pair (U,D) that minimizes

at the same time the expected cost of energy and the expected cost of QoS. In other

words minimizing a cost function that combines the cost of consuming energy and

the cost of the degradation of the QoS.

3.2.2.1 Time interval analysis by coupling

During a time interval Tk, since the arrivals are i.i.d. and if the number of servers

is constant and unchanged, the underlying model is a time-homogeneous DTMC

taking values in a totally ordered state space (i.e. the buffer size). Thus, theoretical

results related to stochastic monotonicity can be used [MS02, BF12, ASCTFP16]

to improve the analysis.

Let G = {0,1,2, . . . ,v ∈ N} be a state space endowed with ≤ a total order. Let

HX and HY be histograms with support in G .

Definition 3.1. Histogram HX is said to be stochastically smaller than HY (denoted

as HX ≤st HY ) iff:

∀i, 1≤ i,
v

∑
j=i

PX( j)≤
v

∑
j=i

PY ( j). (3.15)

Definition 3.2. A DTMC {X(t), t ≥ 0} is stochastically monotone if

∀t : X(0) ≤st X(1) =⇒ X(t) ≤st X(t+1).

Theorem 3.1. During each time interval Tk, as arrival jobs are i.i.d. and the

number of operational servers is not changing, the DTMC of our queuing model is

stochastically monotone (see [ACFP13] for a proof).

These theoretical results have many applications. Here, these results are used

to prove the convergence of the transient distributions to the steady-state.

Let HNmin
and HNmax

be two histograms modeling the corresponding transient

distributions of probability of the number of waiting jobs. HNmin
and HNmax

repre-

sent two realizations of the stochastic process of the queue size with two initial

values equal respectively to the Dirac distribution in 0 and b. H
(t)

X denotes the

distribution during slot t.
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Algorithm 4: Computation with coupling detection over time interval

Tk = [tk−1..tk[

1Data: b, tk−1, tk, d, m

2Result: HN

3HNmin
= ∆0;

4HNmax
= ∆b;

5foreach t in Tk = [tk−1..tk[ do

6HNmin
←MINb

(
(HNmin

⊕HAk
)− (d×m)

)
;

7HN ←MINb

(
(HN⊕HAk

)− (d×m)
)
;

8HNmax
←MINb

(
(HNmax

⊕HAk
)− (d×m)

)
;

9if HNmax
≡HNmin

then

10return HN and jump to time interval Tk+1

11without any new computation;

12end

13end

14return HN and jump to time interval Tk+1;

the coupling without any computation of the distribution. Indeed, as the two

distributions have coupled, the steady-state distribution is reached thus it is not

necessary to continue the numerical process. This numerical procedure has strong

connections with the stationarity detection heuristic proposed by Sericola in [Ser99]

for the efficient computation of reliability. Here, the stationarity is proved by the

coupling while it was only numerically checked in [Ser99]. Note that we may use

the infinite norm to check the equality in distributions mentioned in Instruction 9:

HNmax
≡HNmin

⇐⇒ ‖HNmax
−HNmin

‖< ε (3.17)

where ε is a small value enough close to zero. ε should be equal to zero but as we

deal with numerical analysis we have to choose a value enough close to zero (10−6

for example).

3.2.2.2 Numerical analysis

Let t0 = 0, p ∈ N, and p periods Tk = [tk−1..tk[ for k ∈ 1..p. We take as input a

sequence of instants t0 = 0, t1, . . . , tp = h and the corresponding arrival traffic dis-

tribution HA1
,HA2

, . . . ,HAp
. HAk

,k ∈ 1..p refers to the traffic during Tk = [tk−1..tk[.
The data center is described by its parameters: b, cbusy, cidle, con, l1, l2, M . The

modeler has to provide the QoS measure that will be monitored to control the

number of servers (see Section 3.2.2).
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Algorithm 5: Main function to evaluate the expected accumulated cost

for a given U and D.

1Data: p ∈ N, Instants t0 = 0, t1, . . . , tp = h, distributions HA1
, . . . ,HAp

2Data: b, d, laton, lato f f , M , U , D ∈ N, con, cidle, cbusy ∈ R
+

3Result: overall expected accumulated cost C(h)
4HN ← ∆0, latency state← ”no latency”;

5m← 0, C← 0, cpt← 0;

6foreach all time intervals Tk = [tk−1..tk[ do

7foreach t ∈ Tk do

8if latency state = ”no latency” then

9n← ∑
i∈SN

PN(i)× i;

10if n≥U then

11C←C+ con;

12latency state← ”switching on latency”;

13cpt← laton;

14/* increase m by 1 after laton slots */

15end

16if n < D then

17C←C+ co f f ;

18latency state← ”switching o f f latency”;

19cpt← lato f f ;

20/* decrease m by 1 after lato f f slots */

21end

22end

23if latency state = ”switching on latency” then

24cpt← cpt−1;

25if cpt = 0 then

26m← m+1, latency state← ”no latency”;

27end

28end

29if latency state = ”switching o f f latency” then

30cpt← cpt−1;

31if cpt = 0 then

32m← m−1, latency state← ”no latency”;

33end

34end

35HL←
(
HN ⊕HAk

− (d×m+b)
)
;

36HN ←MINb

(
(HN ⊕HAk

)− (d×m)
)
;

37Loss← ∑
i∈SL

PL(i)× i× cL;

38Waiting← ∑
i∈SN

PN(i)× i× cN ;

39QoS←Waiting+Loss;

40Energy←
b

∑
i=0

PN(i)
(
cidle× (m− i)++ cbusy×min(i,m)

)
;

41c← QoS+Energy;

42C←C+ c;

43end

44end

45return C;



Chapter 3. Thresholds policy 59

The main function is called for each period Tk. Under the i.i.d.-ness of the traffic

specified by distribution HAk
, the function computes the chosen QoS measure for

every time slot. For a given slot, if the QoS measure exceeds the upper threshold

U then one additional server will be switched on after laton time units and if the

QoS measure becomes less than the lower threshold D then one server will be

switched off after a latency of lato f f time units. Finally we will return the overall

cost (accumulated cost) that combines the energy cost and the QoS cost:

C(h) =
h

∑
t=0

cost(t) (3.18)

For every possible threshold couple (U,D) such that 0≤ D≤U ≤ b where D/U

is the lower/upper threshold, depending on this cost outputs, we choose the best

thresholds.

Theorem 3.2. The computation-time to evaluate the strategy by Algorithm 5 is in

O(h×b2×q× log(q)) where q = b+max(SA).

Proof. To find the best policy we have to use Algorithm 5 to compute the overall

expected cost over the period h for every possible threshold couple (U,D) such

that 0≤ D≤U ≤ b. As U and D are between 0 and b, we need
(b+1)× (b+2)

2
to test all possible couples (U,D). Otherwise, for each slot we need to compute the

distribution of the number of waiting jobs in the buffer by computing a convolution

between HA and HN . This task needs at most b×|SA| operations, however, as being

said before in Remark 1.1, by using the fast Fourier transform the convolution can

be performed in a reduced time of O(q× log(q)) with q = max(SA)+max(SN)
where max(SN) = b.

Theorem 3.3. The space complexity of algorithm 5 is in O(b2).

Proof. At each step of the calculation, Algorithm 5 needs to keep track of the

evolution of the distribution of the number of waiting jobs in the buffer. As

the buffer is finite, the number of waiting jobs is bounded above by b and the

algorithm can use only an array of length O(b) to store the distribution probability

of waiting jobs and a space memory of O(q log(q)) to compute the convolution,

with q = max(SA)+b. Algorithm 5 needs also to keep track of the evolution of the

distribution of the number of lost jobs. The number of lost jobs is bounded above

by max(SA) and the algorithm can use only an array of length O(max(SA)) to store

the distribution probability of lost jobs. Otherwise we need to store the computed

cost for each possible threshold couple (U,D) which needs a matrix of size O(b2).
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Finally we need a total space of q log(q)+b+max(SA)+b2 which is in O(b2) if

max(SA) and b are of the same order of magnitude.

3.2.3 Case study

In this section we present in details an analysis to find the best thresholds U and D

to control the number of servers with respect to the average queue size. Notice that

we have done other analyses in the following chapters. Those analyses were done

to compare the result of the methodology “Thresholds policy based on histogram

operators” to the other methods (see Table 4.9 and Figure 4.16 of Section 4.1.5.5

for three additional experimentations, and Sections 6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5,

and 6.1.6 of Chapter 6 for six more experimentations).

For the experimentation of this section we use the open clusterdata-2011-

2 trace [Wil11, RWH11], and we focus on the part that contains the job events

corresponding to the requests destined to a specific Google data center for the whole

month of May 2011. The job events are organized as a table of eight attributes;

we only use the column timestamps that refers to the arrival times of requests

expressed in microsecond. This timestamps allows us to model for instance hourly,

daily, or weekly variations of the job arrivals. In this case study timestamps are

used to detect whether the job was received during nighttime or daytime in order

to consider an analysis on a period of one day divided into nighttime and daytime.

In fact we need to sample the trace and construct two empirical distributions

(histograms) one corresponding to arrivals during daytime and the other during

nighttime.

It is important to assume the i.i.d.-ness of the arrivals. However to avoid to

just keep that property as an assumption, we suggested to construct an arrival

model which is i.i.d. In fact we do the following: the traffic trace is sampled with

a sampling period for which both the nighttime and daytime arrival jobs can be

considered as i.i.d. So, we sample, literally, the data with several sampling periods

between a small sampling period (one second) and a big one (five minutes), then

we applied the turning point test [Ken73] for each sampling periods in order to test

the i.i.d.-ness of the sampled data. We found that a sampling period of 136 second

has a p− value bigger than 0.05 for both period, thus at confidence level 0.95 we

accept the null hypothesis, namely, the sampled data is i.i.d. Thus, we consider

frames of 136 second to sample the trace and construct two empirical distributions

(histograms) one corresponding to arrivals during daytime and the other during

nighttime (see Figure 3.8).

These distributions have different statistical properties reflecting the fluctuation

of traffic between day and night (see Figure 3.9). For instance, we observe an

average of 46 jobs per minute during daytime against an average of 50 jobs per
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minute during nighttime (see Figure 3.9).

The daytime distribution HA1
was considered between t0 = 0 and t1 = 720

minute, and the nighttime distribution HA2
was considered between t1 = 720 and

t2 = 1440 minute. The methodology showed in this chapter was used to analyze

one day under the configuration of the Table 3.4.

Table 3.4: Settings of the study case

p b d laton lato f f M cidle cbusy con cL cN

2 100 1 1 0 100 13 20 30 30 20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling period (in second)

p
-v

al
u
e

Daytime
Nighttime
0.05

Figure 3.8: Google trace arrivals and i.i.d.-ness test for nighttime and daytime: The turning

point test for the nighttime arrivals is accepted, at confidence level 95%, for a sampling

period in [104,166] second. However, for the daytime it is accepted for a sampling period

in [116,154] second. In fact the arrival jobs are i.i.d. for nighttime and daytime for any

sampling period in [104,166]∩ [116,154].
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Figure 3.9: Discrete distributions for nighttime and daytime obtained by sampling real data

with an appropriate slot length to preserve the i.i.d.-ness property.
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Figure 3.11: The evolution of the number of operational servers (blue) and the average

queue size (red) during the first 600 minutes of the first period T1.
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Figure 3.12: The evolution of the number of operational servers (blue) and the average of

rejected jobs (red) during the first 600 minutes of the first period T1.
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It can be seen from Figure 3.10 that when the energy consumption is high, the

QoS is low and vice versa. The modeler can combine the QoS and the energy in a

global index to find the best thresholds (see left graphic of Figure 3.10). Otherwise,

Figure 3.12 shows the evolution of the average number of waiting jobs and the

number of operational servers over time when using the best optimal strategy

computed by Algorithm 5. We can observe that when the number of waiting jobs

is low (less then D) the strategy tends to reduce the number of operational servers,

this action will cause a diminution of the served jobs and an augmentation of the

waiting jobs until that the waiting jobs exceed U . In this case the strategy will tend

to switch on more and more operational servers to process more jobs until that the

number of waiting jobs returns ton a reasonable quantity between U and D.

The methodology adopted in this section was built in a tool based on the

numerical simulation of Equations (3.8) and (3.9) associated with a controller

defined in Section 3.2.2. Algorithm 5 shows the core control function of the tool in

a simplified way. Note that the tool is written in C/C++ with a parallelized code in

which the coupling detection algorithm is implemented. Notice that the analysis

was done on an Intel(R) Core(TM) i7-4800MQ CPU @2.70GHz computer in 70

minutes, and the use of coupling detection reduced the computation time to 49

minutes (42% faster). Notice that the value of ε was set to 10−6.

3.3 Conclusion

In this chapter we showed how we can model a specific mechanism to model

and to solve the problem of reducing the energy consumed in a data center when

keeping a good QoS based on a predefined classical monotone policy which is

the thresholds strategy. The first part was devoted to a solution based on DTMC.

The second part shows how we used the histogram operators to address a similar

problem. The two methods are both based on a predefined management mechanism

which is the threshold strategy, both are monotone (because they are based on a

threshold strategy structure, see Definition 4.2), both lead to a sub optimal strategy

(in Section 4.1.5.5 of the following chapter we will show the sub optimality of the

thresholds strategy). However, we notice that if we implement the two methods

with the same considerations (same nature of thresholds, same arrivals model) the

second method is more efficient computationally than a solution based on DTMC,

because it uses less space memory to compute the strategy as it does not build

explicitly all the needed DTMC’s. Instead of that, it computes only the distributions

of lost and waiting jobs and keeps tracing of there evolution by using histogram

operators. Additionally this second method uses coupling (stationarity detection

algorithm) to make the computation faster.



Chapter 4
Markov Decision Process

A
FTER introducing, in the previous chapter, some specific mechanisms to sub-

optimizing the cost induced by the energy consumption and the QoS, in this

chapter we will use a Markov Decision Process and we will give details on how

we can apply this concept in order to find the optimal strategy that ensures at the

same time a low energy consumption and a high performance. In fact, to compute

this optimal policy we first formulate the optimization problem by a discrete-time

MDP. So, we focus on the modeling of the Dynamic Power Management by a

stochastic model in the case of a data center with homogeneous servers. We do that

principally to study structural properties of the optimal policy like the hysteresis,

monotony, and isotony. Secondly, as data centers present a non negligible level of

server heterogeneity in energy consumption and service rate, we generalize the

homogeneous model to a heterogeneous one. Finally, as the switching-on (resp.

switching-off) of a data center server is not instantaneous and needs additional

units of time to transit from a sleeping/stopping mode to a ready-working mode,

we extend the model in order to include this temporal latency of the servers. Along

all the chapter, arrival jobs and service rates are specified with histograms that may

be obtained from real traces, empirical data, or incoming traffic measurements.

4.1 MDP for homogeneous data center

In this section we show first how MDP can be used to model and solve our

optimization problem to ensure a reasonable energy consumption with a good

performance. After that we examine the space complexity of the model and the

time complexity of the algorithm used to find the optimal strategy. Then we inspect

more closely some structural properties of the optimal policy such as monotony

66
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and the possibility to write the optimal policy as a double threshold structure, and

how those properties are effected by the variation of the system parameters. Finally,

MDP is applied on and tested for several system with arrivals obtained from real

Google traffic traces to show the practical limits of the use of MDP.

4.1.1 Problem specification

Here we deal with a discrete-time Model. Let DC be a data center composed of

M identical servers. DC receives jobs requesting the offered service. The queuing

model is a batch arrival queue with finite capacity buffer b (buffer size). As said

before we model arrival jobs and service rate with histograms. Thus, the number of

jobs arriving to the data center during a slot is modeled by a histogram HA where

PA(i) gives the probability to have i arrival jobs per slot. Similarly, during one time

unit, the number of jobs that can be served by a server is modeled by a histogram

HD where PD(d) gives the probability to process d jobs.

S

S

S

S

HD×m

i: job arrivals

l: rejected jobs
b: Buffer size

n: Waiting jobs

m: Number of operational servers
HD: Histogram of served job number by a machine per slot

Figure 4.1: Illustration of the queuing model.

The number of waiting jobs in the buffer is denoted by n. The number of

operational servers is denoted by m. The number of rejected (lost) jobs is denoted

by l. We assume that initially the number of operational servers, the number of
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waiting jobs, and the number of rejected jobs are 0. The maximal number of servers

that can be operational is M . The number of waiting jobs n can be computed by

induction where the arrival jobs are added to the system (buffer and free operational

servers), a maximum of
M

∑
k=1

dk jobs will be on servers to be processed, and the rest

of jobs will be rejected (see Section 1.3.1 for the exact order of events). For a

number of i arrival jobs, and if each server k processes at most dk jobs per slot, we

will have: 



l ← max{0,n+ i−
M

∑
k=1

dk−b}

n ← min{b,max{0,n+ i−
M

∑
k=1

dk}}.

(4.1)

It is assumed that the input arrivals are i.i.d. and under these assumptions, the

model of the queue is a time-homogeneous Discrete Time Markov.

4.1.1.1 Energy and Performance metric

The energy consumption takes into account the number of operational servers.

Each server consumes some units of energy per slot when a server is operational

and it costs an average of cM ∈ IR+ monetary units. A server may consume a very

low amount of energy when it is turned off. However, during the latency period

a server may consume an additional amount of energy that costs an average of

cOn ∈ IR+ monetary units which is the energetic cost needed to switch a server

on. Additionally, we consider that a server switches-on immediately. The total

energy consumed is the sum of all units of energy consumed among a specific

period. The QoS metric takes into account the number of waiting and lost jobs.

Each waiting job costs cN ∈ IR+ monetary unit per slot, and a rejected job costs

cL ∈ IR+ monetary unit.

4.1.1.2 Objective function

For a given period of time, a dynamic power management system consists in doing

at each slot an action (turn on or turn-off a specific number of servers) in order

to adapt the number of operational servers to incoming job changes. The optimal

strategy consists in finding the best sequence of actions to minimize the overall

cost (accumulated cost) (energetic cost plus performance cost). The cost generated

for each slot is a linear combination of energetic and QoS costs called objective

function:

n× cN + l× cL +m× cM +max{0,m′−m}× cOn (4.2)
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where n is the number of waiting jobs, l is the number of lost jobs, m is the current

number of operational servers, and m′ is the number of operational servers after

doing an action.

The problem we have to consider is to find a trade-off between the performance

(i.e. waiting and loss jobs) and the energy consumption (i.e. number of operational

servers). However, as the number of servers changes with time, the system becomes

more complex to analyze than a system with servers operational all the time.

4.1.2 Optimization approach

In order to find the optimal strategy and then analyze the performance and the

energy consumption of the data center under this optimal strategy, we will use the

concept of Markov Decision Process to formulate our optimization problem.

4.1.2.1 Modelization

Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set of actions,

P is the transition probability, and C the immediate cost of each action. Let

HA = (SA,PA) be the histogram used to model the arrival of jobs. The state of the

system is defined by the couple (m,(n, l)) where m is the number of operational

servers, n is the number of waiting jobs, and l is the number of lost jobs. Indeed

the state space S is defined as:

S = {(m,(n, l)) | m ∈ [0..M ] and n ∈ [0..b] and l ∈ [0..max(SA)]}. (4.3)

Let HD j be the histogram defined as:

HD j = HD⊕HD⊕·· ·⊕HD︸ ︷︷ ︸
j times

, (4.4)

which is the distribution of the number of served jobs from j servers during one

slot. In fact PD j(d) gives the probability that j servers serve together d jobs.

At the beginning of each slot, and based on the current state of the system, an

action α j ∈ A will be made to determine how many servers will be operational

during the current slot. In fact the action space A is defined as A = {α j | 0≤ j ≤
M }, where action α j consists in keeping exactly j operational servers during the

current slot. We have a probability of P
α j

ss′
to move from state s = (m,(n, l)) to

s′ = ( j,(n′, l′)) under action α j. This probability is defined as:

P
α j

ss′
= ∑



for each i ∈ SA and each d ∈ SD j satisfying:

n′ = min{b,max{0,n+ i−d}}
l′ = max{0,n+ i−d−b}

PA(i)×PD j(d). (4.5)
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If we do the assumption that all the servers process the same number of jobs during

the same slot then the probability will be equal to:

P
α j

ss′
= ∑



for each i ∈ SA and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i−d× j}}
l′ = max{0,n+ i−d× j−b}

PA(i)×PD(d). (4.6)

Consequently moving from state s = (m,(n, l)) to s′ = ( j,(n′, l′)) under action α j

induces immediately a cost C
α j
s defined as:

C
α j
s = j× cM +max{0, j−m}× cOn +n× cN + l× cL. (4.7)

The immediate cost C
α j
s , includes four parts:

1. The first part is j× cM, where cM is the cost of energy consumption of one

working server per slot and j is the number of working servers during the

current slot. This part presents the total cost of energy consumed by the

operational servers during the current slot.

2. The second part is max{0, j−m}× cOn, where cOn is the energetic cost

of switching-on one server from stopping mode to working mode and

max{0, j−m} is the number of servers switched-on at the beginning of

the slot. This part presents the total cost of energy used to switch-on servers

at the beginning of the current slot.

3. The third part is n× cN , where cN is the cost of keeping one job in the buffer

during one slot and n is the number of waiting jobs. This part presents the

total cost of maintaining waiting jobs in the buffer during the current slot.

4. The last part is l× cL, where cL is the cost of losing one job and l is the

number of lost jobs. This part presents the total cost of losing jobs during

the current slot.

Finally Table 4.1 summarizes parameters used in our model and our MDP formula-

tion.

Remark 4.1. Notice that adding l in the state increases the number of states,

however, as we will use the model checker PRISM to do the experimentation,

we add directly l into the state of the system in order to be able to catch the cost

induced by losing some jobs.
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Table 4.1: Model and MDP Parameters.

Parameters Description

h duration of analysis

M total number of servers

b buffer size

m number of operational servers

n number of waiting jobs

l number of rejected jobs

HA histogram of job arrivals

HD histogram of service jobs rate

cOn energetic cost of switching-on one server

cM energetic cost of one working server during one slot

cN cost of one waiting job in the buffer during one slot

cL cost of one lost job during one slot

S set of all possible states

A set of all possible actions

s = (m,(n, l)) system state

s0 = (0,(0,0)) starting state

α j action to keep exactly j operational servers

P
α j

ss′
probability of transition from s to s′ under action α j

C
α j
s immediate cost from s under action α j
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4.1.2.2 Space Complexity

In this section we will evaluate the space complexity of the data structure behind

our MDP formulation.

Theorem 4.1. If each state is represented by the couple (m,(n, l)) then, the number

of states of the MDP is in O(M × b×max(SA)). Otherwise, if each state is

represented by the couple (m,n), without considering lost l then, the number of

states of the MDP is in O(M ×b).

Proof. Every state of the MDP includes three element:

1. the number of operational servers which is between 0 and M ,

2. the number of waiting jobs in the buffer which is bounded above by b, and

3. the number of rejected jobs which can be at most equals to the maximum

number of arrival jobs given by max(SA).

So, |S | is bounded above by (M +1)× (b+1)× (max(SA)+1) or by (M +1)×
(b+1) depending whether we consider or not lost l.

Theorem 4.2. If each state is represented by the couple (m,(n, l)) then, the number

of transitions of the MDP is in O(M 2×b×|SA|×max(SA)). Otherwise, if each

state is represented by the couple (m,n) without considering lost l then, the number

of transitions of the MDP is in O(M 2×b×|SA|).

Proof. From each state of the MDP we have at most (M +1) actions, and each

action leads to a number of transitions equals to |SA| (one transition for each bin in

the support of the arrival distribution). In fact, as the number of states was already

evaluated in Theorem 4.1, we deduce that the number of transitions is bounded

above by M × b×max(SA)× (M + 1)× |SA| or by M × b× (M + 1)× |SA|
depending whether we consider or not lost l.

Remark 4.2. As shown previously in Theorems 4.1 and 4.2, the size (size can

be seen as the number of states or the number of transitions) of the MDP is more

important when we consider the number of rejected jobs l. Nevertheless, the spatial

complexity of both models (considering or not l) still important (see experimental

results in Annex C).

4.1.2.3 Solver algorithm

As we formulate our optimization problem as an MDP, an action consists in turning-

on each unit of time a specific number of servers and turning-off the rest of the
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servers. The optimal strategy is the best sequence of actions to be done in order to

minimize the overall cost (accumulated cost) during a finite period of time called

horizon and noted h. The value function V : S × [0..h]→ IR+ has as objective

minimizing the expected sum of costs over time:

Vt(s) = min
π

E

[
h

∑
k=h−t+1

C
πk(sk)
sk

]
. (4.8)

The value function can be expressed recursively as:

Vt(s) = min
α j

{
C

α j
s + ∑

s′∈S

P
α j

ss′
Vt−1(s

′)

}
, (4.9)

where α j is the action taken by the system, and P
α j

ss′
is the transition probability

from state s to state s′. In this case the optimal policy for each state s is:

π∗t (s) ∈ argmin
α j∈A

{
C

α j
s + ∑

s′∈S

P
α j

ss′
Vt−1(s

′)

}
. (4.10)

In order to find the optimal policy associated to each state in S, Algorithm 6, which

is a value iteration algorithm, is applied.

Algorithm 6: Value iteration algorithm for MDP.

1Data: M , C , P , S , horizon h

2Result: (Vh,π
∗
h)

3foreach s ∈ S do

4V0(s) = 0

5end

6for k← 1 to h do

7foreach s ∈ S do

8(m,n, l)← s

9for a j← a0 to aM do

10C
α j
s ← j× cM +max{0, j−m}× cOn +n× cN + l× cL

11Qk(s,a j)← C
α j
s +∑

s′

P
α j

ss′
Vk−1(s

′)

12end

13π∗k(s)← argmin
a

Qk(s,a)

14Vk(s)← Qk(s,π
∗
k(s))

15end

16end

17return (Vh,π
∗
h)
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This algorithm minimizes the cost of the current slot plus the expected cost of all

future slots. The costs of future slots are updated by using Bellman’s backwards

equations [Bel57, Put94, Ber95] as shown in the Algorithm. Where V (s) is the

value of state s, π∗(s) is the optimal policy for state s, and Q(s,a) is the value of

taking action a in state s.

In the following of this section we will evaluate the time and space complexity

of the value iteration algorithm 6 that computes the optimal strategy.

Theorem 4.3. If each state is represented by the couple (m,(n, l)) then, the time

complexity of Algorithm 6 is in O(h×M 2× b×|SA|×max(SA)). Otherwise, if

each state is represented by the couple (m,n), without considering lost l then, the

time complexity of Algorithm 6 is in O(h×M 2×b×|SA|).

Proof. To compute the summation of the line 11 of Algorithm 6 we need to take

into account all transitions from state s to any state s′ under action α j. This number

of transitions is bounded above by |SA|, in fact the time complexity of Algorithm 6

is in O(h×|S |×|A |×|SA|): h iterations for the second loop at line 6, |S | iterations

for the third loop at line 7, and |A | iterations for the last loop at line 9. In fact, the

time complexity is in O(h×M 2×b×|SA|×max(SA)) or O(h×M 2×b×|SA|)
depending whether we consider or not lost l.

Theorem 4.4. If each state is represented by the couple (m,(n, l)) then, the space

complexity of Algorithm 6 is in O(h×M ×b×max(SA)). Otherwise, if each state

is represented by the couple (m,n), without considering lost l then, the space

complexity of Algorithm 6 is in O(h×M ×b).

Proof. The value iteration algorithm use the V matrix to store intermediate values

of the computation and also to be able to retrace the optimal strategy that induce

the minimal cost. This matrix is of a size of h×|S | which equals O(h×M ×b×
max(SA)) or O(h×M ×b) depending whether we consider or not lost l.

4.1.3 Example

To illustrate our formalization Let us show an MDP for a very simple data center:

• One server which means that M = 1.

• Buffer size equals one which means that b = 1.

• Job arrivals are modeled as the following: assume that, per slot, the probabil-

ity to receive one arrival job is 0.59, and 0.41 to receive no arrival jobs. In this

case, arrivals are modeled by histogram HA = (SA,PA) where SA = {0,1},
PA(0) = 0.41, and PA(1) = 0.59.
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• We set service rate of each machine as a histogram with only one bin:

PD(1) = 1.

So, MDP= (S ,A ,P ,C ) where:
{

S = {(0,(0,0)),(0,(1,0)),(0,(1,1)),(1,(0,0)),(1,(1,0)),(1,(1,1))}
A = {α0,α1}.

And P can be deduced from the graph of Figure 4.2. For instance, state s3 =
(1,(0,0)) means that only one server is turned on, and no jobs are waiting in the

buffer nor jobs are lost. Action α0 switches-off the server and α1 switches-on the

server.
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(0,(0,0))

s1

(0,(1,0))

s2

(0,(1,1))

s3

(1,(0,0))

s4

(1,(1,0))
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α0
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Figure 4.2: MDP example for a data center with two servers.

4.1.4 Optimal Strategy Structure

As shown previously, the size of the MDP is important, and the computation of

the optimal policy can be hard even impossible for a big data center. In fact, it
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is essential to analyze the structural properties of the optimal policy to make the

computation efficient. In the following we will be interested in some properties of

the optimal policy, and we show in particular that the double-threshold structure

property does not hold for our homogeneous data center model.

The following definitions are extensions of the hysteretic, monotony, and

isotony properties for our model based on previous work done by Topkis [Top78],

Hipp and Holzbaur [HH88], Lu and Serfozo [LS84], Plum [Plu91], and Serfozo

[Ser79].

Definition 4.1. A policy π is called hysteretic if ∀t ∈ [0..h], ∃m∈ [0..M ], ∃α j ∈A
such that πt(m,(n, l)) = α j =⇒ πt( j,(n, l))) = α j.

Theorem 4.5. The optimal policy (4.10) is hysteretic.

Proof. For each slot t, Let us define function ft(m, j) : [0..M ]× [0..M ]→ IR+ as

the cost for switching the number of operational servers from m to j. And function

wt(m,(n, l)) : S → IR+ represents the expected future cost starting with n waiting

jobs in the buffer, losing l jobs, serving with m operational servers during one

slot, and then following an optimal policy. So, our optimal policy (4.10) can be

formulated as:

π∗t (s) ∈ argmin
α j∈A

{ ft(m, j)+wt( j,(n, l))}, (4.11)

where





wt( j,(n, l)) = j× cM +n× cN + l× cL +∑
s′

P
α j

ss′
Vt(s

′)

ft(m, j) = max{0, j−m}× cOn.
(4.12)

According to Theorem 1 of [HH88], if the function ft satisfies the following

condition:
{
∀m ∈ [0..M ] : ft(m,m) = 0

∀m, p,q ∈ [0..M ] : ft(m,q)≤ ft(m, p)+ ft(p,q)
(4.13)

then the optimal policy π∗ is a hysteretic policy. Thus, to prove that our optimal

policy is hysteretic we need just to prove that ft satisfies conditions (4.13). We have

ft(m,m) = max{0,m−m}× cOn = 0 which implies the first condition of (4.13),

and the following summarizes all possible cases for the second condition of (4.13):

1. if m ≥ q we have ft(m,q) = 0 and as ft is positive then ∀p ∈ [0..M ] :

ft(m, p)+ ft(p,q)≥ 0 = ft(m,q) =⇒ ft(m,q)≤ ft(m, p)+ ft(p,q).

2. if m≤ p≤ q we have ft(m, p)+ ft(p,q) = (p−m)×cOn +(q− p)×cOn =
(q−m)× cOn = ft(m,q) =⇒ ft(m,q)≤ ft(m, p)+ ft(p,q).
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3. if m ≤ q ≤ p we have ft(m, p)+ ft(p,q) = (p−m)× cOn +0 = (p−m)×
cOn ≥ (q−m)× cOn = ft(m,q) =⇒ ft(m,q)≤ ft(m, p)+ ft(p,q).

4. if p ≤ m ≤ q we have ft(m, p)+ ft(p,q) = 0+(q− p)× cOn = (q− p)×
cOn ≥ (q−m)× cOn = ft(m,q) =⇒ ft(m,q)≤ ft(m, p)+ ft(p,q).

In conclusion, each condition of (4.13) holds and our optimal policy is hysteretic.

A dynamic power management model is monotone if one can show that its

optimal strategy is structured in pairs of thresholds. Thus, if an optimal strategy is

shown to be monotonous then:

1. in practice, the implementation of the optimal strategy will be easy,

2. finding the optimal strategy can be done while avoiding the use of heavy

algorithms that explore all possible strategies like value iteration. In other

words, we need to explore only the set of strategies that are structured in

pairs of thresholds.

Definition 4.2. A policy π is called monotone if π is hysteretic and, ∀t ∈ [0..h]
there exist a set of integer thresholds {Dt

0 ≤U t
0,D

t
1 ≤U t

1, . . . ,D
t
M ≤U t

M } such

that for every s = (m,(n, l)) we have:

πt(m,(n, l)) =





πt(m−1,(n, l)) if n < Dt
m for m > 0

αm if Dt
m ≤ n≤U t

m for 0≤ m≤M
πt(m+1,(n, l)) if n >U t

m for m < M .
(4.14)

Additionally, if for each t ∈ [0..h], Dt
0 ≤Dt

1 ≤ ·· · ≤Dt
M and U t

0 ≤U t
1 ≤ ·· · ≤U t

M ,

then, the policy π is called isotone.

Notice that the policies presented in Chapter 3 are necessarily monotone because

they are based on a double threshold structures by definition and by construction.

4.1.4.1 Monotone policy example

Before showing that in the general case, our model is not monotone, Let us give an

example which is monotone. Assume that, per slot, we have a probability of 0.5
to receive one arrival job, and 0.5 to receive no arrival jobs. In this case, arrivals

are specified by histogram HA = (SA,PA) where SA = {0,1}, PA(0) = 0.5, and

PA(1) = 0.5. We set b = 10, M = 2, cM = 15, cN = 1, cOn = 10, cL = 0. The

service rate is modeled by a histogram with only one bin such as PD(1) = 1, and

h = 20. Under those parameters, solving the optimality equation (4.9) leads to the

following optimal policy for t = 10:



Chapter 4. Markov Decision Process 78

Observed state Action

(m = 0,n = 0) → α0

(m = 0,n = 1) → α0

(m = 0,n = 2) → α1

(m = 0,n = 3) → α1

(m = 0,n = 4) → α1

(m = 0,n = 5) → α1

(m = 0,n = 6) → α2

(m = 0,n = 7) → α2

(m = 0,n = 8) → α2

(m = 0,n = 9) → α2

(m = 0,n = 10) → α2

Observed state Action

(m = 1,n = 0) → α0

(m = 1,n = 1) → α1

(m = 1,n = 2) → α1

(m = 1,n = 3) → α1

(m = 1,n = 4) → α1

(m = 1,n = 5) → α1

(m = 1,n = 6) → α2

(m = 1,n = 7) → α2

(m = 1,n = 8) → α2

(m = 1,n = 9) → α2

(m = 1,n = 10) → α2

Observed state Action

(m = 2,n = 0) → α0

(m = 2,n = 1) → α1

(m = 2,n = 2) → α1

(m = 2,n = 3) → α2

(m = 2,n = 4) → α2

(m = 2,n = 5) → α2

(m = 2,n = 6) → α2

(m = 2,n = 7) → α2

(m = 2,n = 8) → α2

(m = 2,n = 9) → α2

(m = 2,n = 10) → α2

Server Number Lower threshold Upper threshold

m = 0 D10
0 = 0 U10

0 = 1

m = 1 D10
1 = 1 U10

1 = 5

m = 2 D10
2 = 3 U10

2 = 10

It is clear that lower and upper thresholds of the optimal policy for all possible

values of m = 0,1,2 are consistent with the Definition 4.2 of monotony. In fact the

optimal policy can be written as the following double threshold structure:

π10((0,(n, l))) = π10((1,(n, l))) = π10((2,(n, l))) =

{
α0 if 0≤ n≤ 1

π10((1,(n, l))) if n > 1





π10((0,(n, l))) if n < 1

α1 if 1≤ n≤ 5

π10((2,(n, l))) if n > 5

{
π10((1,(n, l))) if n < 3

α2 if 3≤ n≤ 10

4.1.4.2 Optimal policy and Monotony

In this section we will show that in general our model is not monotone. However

for the same model, depending on specific values of the parameters of the system

the resulting optimal policy can be monotone or not. The following theorem

announces that monotony of the optimal policy of our MDP model does not hold.

Theorem 4.6. The optimal policy (4.10) is not monotone.

Proof. In this proof we give a counterexample that shows that monotony of the

optimal policy (4.10) does not hold in general. Let us model the arrival by the

following histogram: Assume that, per slot, we have a probability of 0.59 to receive

one arrival job, and 0.41 to receive no arrival jobs. In this case, arrivals are modeled

by histogram HA = (SA,PA) where SA = {0,1}, PA(0) = 0.41, and PA(1) = 0.59.

We set b = 5, M = 5, cM = 9, cN = 8, cOn = 7. The service rate is modeled by a
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histogram with only one bin such as PD(1) = 1, and h = 7. In order to simplify the

counter example1, we set cL = 0 so we do not need to consider rejected jobs in the

MDP model. Under those parameters, solving the optimality equation (4.9) leads

to the following optimal policy for t = 5:

Observed state Action

(m = 0,n = 0) → α1

(m = 0,n = 1) → α2

(m = 0,n = 2) → α2

(m = 0,n = 3) → α3

(m = 0,n = 4) → α4

(m = 0,n = 5) → α5

Observed state Action

(m = 1,n = 0) → α1

(m = 1,n = 1) → α1

(m = 1,n = 2) → α2

(m = 1,n = 3) → α2

(m = 1,n = 4) → α3

(m = 1,n = 5) → α4

Observed state Action

(m = 2,n = 0) → α1

(m = 2,n = 1) → α1

(m = 2,n = 2) → α1

(m = 2,n = 3) → α2

(m = 2,n = 4) → α2

(m = 2,n = 5) → α3

Observed state Action

(m = 3,n = 0) → α1

(m = 3,n = 1) → α1

(m = 3,n = 2) → α1

(m = 3,n = 3) → α1

(m = 3,n = 4) → α2

(m = 3,n = 5) → α3

Observed state Action

(m = 4,n = 0) → α1

(m = 4,n = 1) → α1

(m = 4,n = 2) → α1

(m = 4,n = 3) → α1

(m = 4,n = 4) → α1

(m = 4,n = 5) → α2

Observed state Action

(m = 5,n = 0) → α1

(m = 5,n = 1) → α1

(m = 5,n = 2) → α1

(m = 5,n = 3) → α1

(m = 5,n = 4) → α1

(m = 5,n = 5) → α1

For m = 2, it is clear that lower and upper thresholds of the optimal policy can not

be other than D5
2 = 3 and U5

2 = 4, because if they exist:

{
D5

m = min{n | π∗5(m,(n, l)) = αm}

U5
m = max{n | π∗5(m,(n, l)) = αm}.

In fact, if the policy is monotone we must have:

π5 monotone =⇒ ∀n < D5
2 : π∗5(m = 2,(n, l)) = π∗5(m = 1,(n, l))

However this last implication does not hold because π∗5(m = 2,(n = 2, l)) = α1

however π∗5(m = 1,(n = 2, l)) = α2.

Corollary 4.1. The optimal policy (4.10) is not isotone.

Proof. From Definition of isotony, monotony is a necessary condition for isotony.

However form Theorem 4.6, we deduce that the optimal policy (4.10) is not

isotone.

Corollary 4.2. At least one of the function w and f defined in Equation (4.12) is

not sub-modular.

1The counter example holds even for some positive value of cL.
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Proof. According to Corollary 1 of [HH88], if condition (4.13) holds and functions

w and f are both sub-modularity then the policy is monotony. However Theorem

4.6 claims that the optimal policy is not monotone, in fact we deduce that neces-

sarily, at least, one of the function w and f is not sub-modular (because condition

(4.13) is verified).

So we showed that the model is in general non-monotone. But it could be

monotone for some values of the system parameters. In order to have the whole

picture of the monotony/non-monotony of the optimal strategy, we have to:

1. either, study analytically the modularity of functions f and w of relations

defined in the proof of Theorem 4.5,

2. or, compute numerically for each configuration the optimal policy and check

whether it is monotone or note based on Definition 4.2,

As the arrival and the service processes are modeled by histograms and not by

an analytical formulation, it is not obvious to use the analytical analysis to study

the modularity of functions f and w. However as we are already in the context of

numerical analysis, in the following we produce an entire image of the monotony

depending on the variation of the system parameters by analyzing numerically the

system, producing the optimal policy then checking whether it is monotone or not.

Figure 4.3 gives the monotony/non-monotony of the optimal strategy when

service rate is modeled by HD = ∆1, arrival jobs by histogram of Example 1.4,

h = 200, and t = 100:

1. The top left graphic of the figure gives results when varying values of cM

and cN in interval [0,100] and b = 8, M = 5, cL = 0, con = 15.

2. The top right graphic of the figure gives results when varying values of cM

and b in interval [0,100] and M = 5, cL = 0, cN = 20, con = 15.

3. The bottom left graphic of the figure gives results when varying values of

cM and M in interval [0,100] and b = 8, cL = 0, cN = 20, con = 15.

4. The bottom right graphic of the figure gives results when varying values of

cM and con in interval [0,100] and b = 8, M = 5, cL = 0, cN = 20.

The patterns observed in those graphics confirm the complexity of studying the

modularity of the monotony in an analytical way.
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4.1.5 Experimental results

To model arrivals and service rate, this work uses real traffic traces based on the

open clusterdata-2011-2 trace [Wil11, RWH11]. Before starting our experiments,

Let us describe the most important probabilistic properties that can be expressed

for an MDP under PRISM.

4.1.5.1 MDP under PRISM

For MDP modeling, PRISM can be used to check some expected reachability

properties. The two principal properties are: computing the minimum or maximum

expected accumulated reward/cost to reach some set of states in an MDP, i.e.

PRISM properties of the form:

Listing 4.1: Expected reachability properties in PRISM

1 Rmin=? [...] or Rmax=? [...]

This properties are expressed under Probabilistic Computation Tree Logic (PCTL)

which is an extension of computation tree logic (CTL) that allows the specification

of probabilistic quantification properties [HJ94].

Based on the minimization or the maximization of the reward (or the cost),

PRISM using PCTL allows a wide range of quantitative measures of the system.

This is can be grouped into three principal types of properties.

Instantaneous properties Given a period of h units of time, PRISM can be used

to find the best policy that minimizes/maximizes the reward over the given period

then returns the instantaneous reward at slot h:

Listing 4.2: Instantaneous properties

1 Rmin=? [I=h] or Rmax=? [I=h]

This can be used to estimate for example the maximum expected queue size at

noon (12 o’clock).

Cumulative properties Given a period of h unit of time, PRISM can be used to

find the best policy that minimizes/maximizes the reward over the given period

then return the cumulative reward of the whole period of h slots:

Listing 4.3: Cumulative properties

1 Rmin=? [C<=h] or Rmax=? [C<=h]

This can be used to estimae for example the energy consumption over a day.
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Reachability properties Given an MDP, PRISM can be used to find the best

policy that minimizes/maximizes the accumulated reward until reaching some set

of states defined by a formula phi in an MDP:

Listing 4.4: Reachability properties

1 Rmin=? [F phi] or Rmax=? [F phi]

This can be used to estimate for example the maximum expected time for the

system to be idle.

As PRISM can be used for the specification and analysis of a Markov decision

process (MDP) model, in this section we use this probabilistic model-checker

software tool to perform our experimentation.

In the following, and in an incremental way, we give detailed experimental

results for principally three data center settings:

1. Small model: with a low number of bins in the histogram modeling arrival

jobs and a small number of servers. All principal parameters except unitary

costs, where chosen to be low in order to produce a small MDP model in

terms of state and transition numbers, which allowed us to easily check the

correct functioning of the methodology.

2. Medium model: to push further the experimentation, the parameters of the

small model have been enlarged by about ten times.

3. Big model: in order to push the model to its practical limits, the parameters

of the small model have been enlarged by about one hundred times, high

number of bins in the histogram modeling arrival jobs and high number of

servers. All principal parameters except unitary costs, where chosen to be

high in order to produce an MDP model for a realistic parameters.

The choice of parameter values was done as follows:

1. The queue size b was varied from 1 to the value that makes the system

behavior constant.

2. The number of machines and the number of bins in the job arrival histogram,

were chosen to be low for experimentation done for the first model, medium

for the second one, and large for the large last model.

3. The unitary costs are not fixed: instead, the unitary costs are varied in

intervals according to several constraints. For example, we vary cn, cm, and

cl with the constraint cn > cm > cl or cn < cm < cl or other constraints of the

same style in order to observe the individual impact of each unitary cost.
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4. The duration horizon h on which we observe the system, we took a period of

1000 slots which corresponds to a period bigger than on day. This choice

allows us to observe the system in a reasonable period of activity.

Notice that the size of the MDP in terms of transition number depends also on

number of bins in the histogram modeling arrival jobs (see Theorem 4.2). For that

reason the arrival number of bins is low in the first model and high in the third one.

4.1.5.2 Small Model

In this section we analyze a small model. The parameters of this model are shown

in Table 4.2 where arrival jobs are modeled by the following simple histogram:

HA = (SA,PA) where SA = {0,2,5}, PA(0) = 0.2, PA(2) = 0.3, and PA(5) = 0.5.

Table 4.2: Settings of the first numerical analysis for small data center.

Parameters Value Unit Description

b 1-60 buffer size

M 3 servers total number of servers

HD ∆1 jobs/server processing capacity of a server

|SA| 3 bins size of the arrival jobs histogram

cM 10 cost of energy needed by a server

cN 10 cost of waiting a job

cL 10 cost of rejecting a job

con 0 cost of switching on a server

h 1000 slot horizon or period of analysis

As we have 3 machines, the number of possible actions is 4:

1. action a0 to switch-off all servers,

2. action a1 to switch-on only one server,

3. action a2 to switch-on only two servers, and

4. action a3 to switch-on all servers.

Listing 4.6 gives the associated PRISM specification. Asking PRISM to check the

following Formula:

Listing 4.5: Formula to check for Small Data Center

1 Rmin=?[C<=1000]
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PRISM returns the minimum cumulative cost of the best strategy over all possible

strategies. Table 4.3 summarizes the results.

Listing 4.6: Example of a simple PRISM specification.

1 mdp

2 const int B=30;

3 const int m=3;

4 const int d=1;

5 const double cN=10, cM=11, cL=11;

6 const int d0=0;const double p0=0.200000;

7 const int d1=5;const double p1=0.500000;

8 const int d2=2;const double p2=0.300000;

9 module system1

10 M : [0..m] init 0;

11 N : [0..B] init 0;

12 L : [0..5] init 0;

13

14 [a0] true ->

15 p0:(N’=min(B,max(0,N+d0-M*d)))&(M’=0)&(L’=max(0,N+d0-M*d-B))

16 +p1:(N’=min(B,max(0,N+d1-M*d)))&(M’=0)&(L’=max(0,N+d1-M*d-B))

17 +p2:(N’=min(B,max(0,N+d2-M*d)))&(M’=0)&(L’=max(0,N+d2-M*d-B));

18

19 [a1] true ->

20 p0:(N’=min(B,max(0,N+d0-M*d)))&(M’=1)&(L’=max(0,N+d0-M*d-B))

21 +p1:(N’=min(B,max(0,N+d1-M*d)))&(M’=1)&(L’=max(0,N+d1-M*d-B))

22 +p2:(N’=min(B,max(0,N+d2-M*d)))&(M’=1)&(L’=max(0,N+d2-M*d-B));

23

24 [a2] true ->

25 p0:(N’=min(B,max(0,N+d0-M*d)))&(M’=2)&(L’=max(0,N+d0-M*d-B))

26 +p1:(N’=min(B,max(0,N+d1-M*d)))&(M’=2)&(L’=max(0,N+d1-M*d-B))

27 +p2:(N’=min(B,max(0,N+d2-M*d)))&(M’=2)&(L’=max(0,N+d2-M*d-B));

28

29 [a3] true ->

30 p0:(N’=min(B,max(0,N+d0-M*d)))&(M’=3)&(L’=max(0,N+d0-M*d-B))

31 +p1:(N’=min(B,max(0,N+d1-M*d)))&(M’=3)&(L’=max(0,N+d1-M*d-B))

32 +p2:(N’=min(B,max(0,N+d2-M*d)))&(M’=3)&(L’=max(0,N+d2-M*d-B));

33 endmodule

34 rewards "r"

35 [a0] true : M*cM+N*cN+L*cL;

36 [a1] true : M*cM+N*cN+L*cL;

37 [a2] true : M*cM+N*cN+L*cL;

38 [a3] true : M*cM+N*cN+L*cL;

39 endrewards
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Table 4.3: Result of the numerical analysis for small data center.

Parameters Value Unit

Size of the Prism specification 40 line

Building model time 0.003 second

Number of states 36 state

Number of transitions 420 transition

Needed memory space 12.0 KB

Verification time 0.023 second

Best policy cost 44251.81

More experiments where done to analyze the behavior of the system when changing

the buffer size b and the unitary costs cN , cM and cL. Results are shown in the

following figures.

Figure 4.4: By solving the MDP of the small data center described in Section 4.1.5.2, this

experiment shows the total cost (minimum expected reward) for different values of buffer

size 0 < b < 60 where cN , cM and cL are equal. We observe that the total cost increases

when b is less than some value b0 (for example around 45 here). However, when b > b0

the total cost seems to be constant. We can explain this behavior as follows: for a small

size of buffer, the number of rejected jobs is important but the number of waiting jobs and

operational servers is low which leads to a low total cost. As b increases the number of

served jobs increases in fact the total cost will increase. When the buffer size is bigger

than b0 the number of rejected jobs becomes negligible but as the arrival jobs are bounded,

the number of waiting jobs becomes relatively stable, which leads to a constant number of

running servers and to a constant total cost.
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4.1.5.3 Medium Model

In this section we analyze a medium model with medium number of bins in the

histogram modeling arrival jobs, and with a medium number of servers. All

principal parameters except unitary costs, where chosen to be medium in order

to produce a medium MDP model in terms of state and transition numbers. The

parameters of this model are shown in Table 4.8 where arrival jobs are modeled by

the discrete distributions showed in Figure 4.8.
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Figure 4.8: Discrete distributions for a medium model.
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Table 4.4: Settings of the numerical analysis for a medium data center.

Parameters Value Unit Description

M 50 servers total number of servers

HD ∆1 jobs/server processing capacity of a server

|SA| 20 and 40 bins size of the arrival jobs histogram

cM 10 cost of energy needed by a server

cN 10 cost of waiting a job

cL 10 cost of rejecting a job

h 1000 slot horizon or period of analysis

As we have 50 machines, the number of possible actions is 51. As in the

previous section we ask PRISM to check the following Formula:

Listing 4.7: Formula to check for a medium Data Center

1 Rmin=?[C<=1000]

to get the minimum cumulative cost of the best strategy over all possible strategies.

Table 4.5 summarizes the results:

Table 4.5: Result of the numerical analysis for a medium data center.

Parameters Value for |SA|= 20 Value for |SA|= 40

Size of the Prism specification 1200 line 2400 line

Building model time 9.967 second 17.097 second

Number of states 15 049 16 665

Number of transitions 26 541 790 59 897 646

Needed memory space 619.5 MB 1.4 GB

Verification time 5.55 minute 16.74 minute

Best policy cost 479 729.61 561 246.45

More experiments where done to analyze the behavior of the system when

changing the buffer size b and the unitary costs cN , cM and cL. Results are shown

in the following figures.
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4.1.5.4 Big Model

In this section we analyze a big model with large number of bins in the histogram

modeling arrival jobs, and with a large number of servers. All principal parameters

except unitary costs, where chosen to be large in order to produce an MDP model

with more realistic parameters. The parameters of this model are shown in Table 4.6

where arrival jobs are modeled by the discrete distributions showed in Figure 4.13.
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Figure 4.13: Discrete distributions for big model.
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Table 4.6: Settings of the numerical analysis for big data center.

Parameters Value Unit Description

M 100 servers total number of servers

HD ∆1 jobs/server processing capacity of a server

b 100 jobs buffer size

|SA| 200 bins size of the arrival jobs histogram

cM 10 cost of energy needed by a server

cN 10 cost of waiting a job

cL 10 cost of rejecting a job

h 1000 slot horizon or period of analysis

As we have 100 machines, the number of possible actions is 101. As in the

previous sections we ask PRISM to check the following Formula:

Listing 4.8: Formula to check for Big Data Center

1 Rmin=?[C<=1000]

to get the minimum cumulative cost of the best strategy over all possible strategies.

Table 4.7 summarizes the results:

Table 4.7: Result of the numerical analysis for big data center.

Parameters Value Unit

Size of the Prism specification 20000 line

Building model time 1.36 minute

Number of states 39 491 state

Number of transitions 772 399 318 transition

Needed memory space out of memory -

Verification time impossible -

Best policy cost impossible -

PRISM is not able to solve the MDP model to give the best cost strategy for

this system. Because of the explosion of the number of states PRISM gives the

message out of memory (see Figure 4.14).
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4.1.5.5 Comparison with the threshold strategy

As explained in the previous chapter, we presented an approch that uses real traffic

traces then determines the best threshold based policy presented in Section 3.2 to

find trade-off between energy consumption and performance evaluation. Under the

same parameters of Table 4.8, this section compares the results obtained by the

threshold based policy with those obtained when using MDP approach. The results

obtained are presented in Table 4.9.
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Figure 4.15: Discrete distributions.

Table 4.8: Settings of different data centers parameters.

Setting Data center Total number of servers Buffer size

First Small M = 21 server b = 31 job

Second Medium M = 51 server b = 59 job

Third Big M = 103 server b = 111 job
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Results show that PRISM is able to solve the MDP model to give the best cost

strategy that reduces significantly the total cost. The threshold method gives a

sub-optimal cost which is close to the MDP one. The threshold approach is more

interesting if we need to compute a satisfying strategy in short time when using a

small amount of space memory.

In this section we presented a discrete-time Markov decision process model

for an optimal management of a data center with homogeneous servers, with the

objective of minimizing energy consumption when avoiding the degradation of the

QoS. Additionally, some theoretical results are presented, as well as a numerical

study on the optimal policy.

4.2 MDP for heterogeneous data center

Our analysis of the Google trace servers [Wil11, RWH11] shows that data centers

present a non negligible level of server heterogeneity. Mainly, three levels of

heterogeneity were observed based on two criteria: CPU-speed and memory-size

of each machine. Those criteria are good indicators for QoS and also energy

consumption. Figure 4.17 shows that a very important number of servers runs with

a medium CPU-speed and a medium amount of memory. Otherwise a significant

number of machines run under a high CPU-speed and memory-size.

5.89 %

92.76 %
1.35 %

Low CPU-speed

Medium CPU-speed

High CPU-speed

13.80 %57.58 %

28.62 %

Low memory-size

Medium memory-size

High memory-size

Figure 4.17: Google trace servers repartition according to CPU-speed and memory-size

[Wil11, RWH11].
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As said before, MDP models for heterogeneous systems were considered in

several works as in [Li12] and [NIG07]. In particular [LV02, Efr04, KAR11] used

continuous-time MDP’s for a heterogeneous data center where jobs arrive in a

Poisson fashion and join a single queue served by several non identical servers.

Then the authors study structural properties of the optimal policy as the threshold

structure property. In fact in this section we will generalize the discrete-time MDP

for the homogeneous model used in the previous section to a heterogeneous one.

4.2.1 Generalization of the problem

As previously in this section we consider a discrete-time queue model: a batch

arrival queue with a finite capacity buffer b where arrival jobs and service rates

are modeled by histograms. A data center is composed of heterogeneous servers

grouped essentially into several levels of energy consumption. To simplify we

consider the set of the following levels G = {high,med, low}. The number of

operational servers of type g is denoted by mg and Mg is the maximal number of

servers of level g. During one time unit, the number of jobs that can be served by a

server of type g is modeled by a histogram HDg
where PDg

(d) gives the probability

to process d jobs. Thus, the total number of operational servers is ∑
g∈G

mg and

M = ∑
g∈G

Mg is the maximal number of operational servers.

high server

high server

med server

med server

low server

low server

served jobs
i: job arrivals

l: rejected jobs b: Buffer size

n: Waiting jobs

Figure 4.18: Illustration of the queuing model.

The number of waiting jobs in the buffer is denoted by n. The number of
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rejected (lost) jobs is denoted by l. We assume that initially the number of oper-

ational servers, the number of waiting jobs, and the number of rejected jobs are

0. The number of waiting jobs n can be computed by induction where the exact

sequence of events during a slot have to be described. We begin by serving the

waiting jobs of the buffer, next we fill the free operational servers by the new jobs,

then we fill the buffer. This means that the new jobs are spread over all the free

places of the system: in the free operational servers and in the buffer. Notice that

this order of events is chosen in this specific way to ensure the FIFO discipline.

The job is assigned, at first, to a free server with high running level, if no high

server available, the job is attributed to a free server with medium running level,

otherwise it will be given to a free server with low running level. The following

equations give the number of waiting jobs in the buffer and the lost jobs. For a

number of i arrival jobs, we have:





n ← min{b,max{0,n+ i− ∑
g∈G

mg×dg}}

l ← max{0,n+ i− ∑
g∈G

mg×dg−b}.
(4.15)

As i.i.d.-ness assumption of arrivals is assumed (see end of Section 1.3.3), the

model of the queue is a time-homogeneous Discrete Time Markov Chain.

Table 4.10 summarizes the energy and QoS metrics.

Table 4.10: Energy and Performance metric for heterogeneous model

Cost Meaning

cMg
∈ IR+ energy cost for running one operational server of type g

cOng
∈ IR+ energy cost needed to switch-on a server of type g

cN ∈ IR+ waiting cost for one job per unit of time

cL ∈ IR+ rejection cost of one lost job

In fact, for a given period of time, a dynamic power management system

consists in doing at each slot an action (turn on or turn off a specific number

of servers) in order to adapt the number of operational servers to incoming job

changes. The optimal strategy consists in finding the best sequence of actions to

minimize the overall monetary cost (energetic cost plus performance cost). The

cost generated for each slot can be presented as:

n× cN + l× cL + ∑
g∈G

(mg× cMg
+max{0,m′g−mg}× cOng

) (4.16)



Chapter 4. Markov Decision Process 104

where n is the number of waiting jobs, l is the number of lost jobs, m′g is the current

number of operational servers of level g, and mg is the number of operational

servers before doing an action.

4.2.2 Optimization approach

In order to find the optimal strategy and then analyze the performance and the

energy consumption of the data center under this optimal strategy, we will use the

concept of Markov Decision Process to formulate our optimization problem.

4.2.2.1 Modelization

Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set of actions,

P is the transition probability, and C the immediate cost of each action. Let

HA = (SA,PA) be the histogram used to model the arrival of jobs. The state of the

system is defined by the couple ((mhigh,mmed,mlow),(n, l)), indeed the state space

S is defined as:

S = {((mg : g ∈ G),(n, l)) | mg ∈ [0..Mg], n ∈ [0..b] and l ∈ [0..max(SA)]}.
(4.17)

The action space is defined as:

A = {α(x,y,z) |x ∈ [0..Mhigh], y ∈ [0..Mmed], z ∈ [0..Mlow]} (4.18)

where action α(x,y,z) consist of keeping exactly: x high, y medium, and z low opera-

tional servers, during the current slot. Indeed, we have a probability of P
(α(x,y,z))

ss′

to move from state s = (mhigh,mmed,mlow,(n, l)) to state s′ = (x,y,z,(n′, l′)) under

action α(x,y,z). This probability is defined as:

P
α(x,y,z)

ss′
= ∑{

for each i ∈ SA and each dg ∈ SDg satisfying:

n′ = min{b,max{0,n+ i− x×dhigh− y×dmed − z×dlow}}
l′ = max{0,n+a− x×dhigh− y×dmed − z×dlow−b}

PA(i)×∏
g∈G

PDg
(dg)

(4.19)

where n′ is the new number of waiting jobs, l′ is the new number of lost jobs, and x,

y, z are the number of operational servers for each level of G after applying action

α(x,y,z). In this case, applying action α(x,y,z) induces immediately a cost C
α(x,y,z)
s

defined as:

C
α(x,y,z)
s = n× cN + l× cL

+x× cMhigh
+ max{0,x−mhigh} ×cOnhigh

+y× cMmed
+ max{0,y−mmed} ×cOnmed

+z× cMlow
+ max{0,z−mlow} ×cOnlow

.

(4.20)
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The immediate cost C
α(x,y,z)
s includes two parts. The QoS part which includes the

cost due to waiting and rejected jobs. The power part is composed of energy

consumed for running operational servers and energy used to power-up additional

servers.

Every state of the MDP includes three elements:

1. number of operational servers for every level which is between 0 and Mg,

2. number of waiting jobs in the buffer which is bounded above by b, and

3. number of rejected jobs which can be at most equal to the maximum number

of arrival jobs given by max(SA).

s

(mhigh,mmed,mlow)
(n, l)

α(x,y,z)

immediate cost

s′

(x,y,z)
(n′, l′)

probability

Figure 4.19: Depiction of an MDP action

Table 4.11 summarizes parameters used in our model and our MDP formulation.

4.2.2.2 Memory complexity

In this section we give the spatial complexity of the heterogeneous MDP model in

terms of state number and transition number.

Theorem 4.7. The number of states, and the number of transitions of the het-

erogeneous MDP model are respectively in O

(
b×max(SA)×∏

g∈G

Mg

)
and in

O

(
b×|SA|×max(SA)×∏

g∈G

M 2
g

)
.

Proof. Every state of the MDP includes three element:

1. the number of operational servers for each group which gives a number of

combinations of ∏
g∈G

(Mg +1),

2. the number of waiting jobs in the buffer which is bounded above by b, and

3. the number of rejected jobs which can be at most equal to the maximum

number of arrival jobs given by max(SA).
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Table 4.11: Model and MDP Parameters.

Parameters Description

h duration of analysis

Mg total number of servers of type g

HDg
histogram modeling the processing capacity of a server of type g

b buffer size

mg number of operational servers of level g

n number of waiting jobs

l number of rejected jobs

HA histogram of job arrivals

S set of all possible states

A set of all possible actions

s s = ((mg : g ∈ G),(n, l)) system state

s0 s0 = ((0,0,0),(0,0)) starting state

α(x,y,z) action to keep exactly:

x high operational servers

y medium operational servers

z low operational servers

P
α(x,y,z)

ss′
probability of transition from s to s′ under action α(x,y,z)

C
α(x,y,z)
s immediate cost from s under action α(x,y,z)
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So, |S | is bounded above by (b+1)× (max(SA)+1)×∏
g∈G

(Mg+1). Additionally,

from each state of the MDP we have at most ∏
g∈G

(Mg +1) actions, and each action

leads to a number of transitions equals to |SA| (one transition for each bin in the

support of the arrival distribution).

4.2.2.3 Solver algorithm

As we formulate our optimization problem as an MDP, an action consists in turning-

on each unit of time a specific number of servers and turning-off the rest of the

servers. The optimal strategy is the best sequence of actions to be done in order to

minimize the overall cost (accumulated cost) during a finite period of time called

horizon and noted h. The value function V : S × [0..h]→ IR+ has as objective

minimizing the expected sum of costs over time:

Vt(s) = min
π

E

[
h

∑
k=h−t+1

C
πk(sk)
sk

]
. (4.21)

The value function can be expressed recursively as:

Vt(s) = min
α(x,y,z)

{
C

α(x,y,z)
s + ∑

s′∈S

P
α(x,y,z)

ss′
Vt−1(s

′)

}
(4.22)

where α(x,y,z) is the action taken by the system, and P
α(x,y,z)

ss′
is the transition prob-

ability from state s to state s′. In this case the optimal policy for each state s

is:

π∗t (s) ∈ argmin
α(x,y,z)∈A

{
C

α(x,y,z)
s + ∑

s′∈S

P
α(x,y,z)

ss′
Vt−1(s

′)

}
. (4.23)

As the value iteration algorithm is an efficient dynamic programming, implementa-

tion for solving Bellman equation, we used it to compute the optimal control policy

of our MDP.

4.2.3 Example

To illustrate our formalization Let us show a little part of an MDP modeling a

very simple data center. Figure 4.20 illustrates a tiny2 part of an MDP modeling a

small data center of four servers (one high server, two medium level servers, and

2The number of states of this MDP is around 700.
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one low server) with a buffer size equal to four. Which means that M = 4 and

b = 4. Additionally, to keep the example simple, we set the service rate of each

machine type as a histogram with only one bin: PDhigh
(3) = PDmed

(2) = PDlow
(1) =

1. Job arrivals are modeled by histogram of Example 1.4. For instance, state

s82 = ((1,0,1),(3,1)) means that the system is running with a single high server

and a single low server, when three jobs wait in the buffer and one job was rejected.

Action α(0,2,1) switches-off the high server and switches-on the two middle servers.

This action induces an immediate cost of 1.45 and moves the system to state s380

with probability 0.14, to state s502 with probability 0.67, and to state s121 with

probability 0.19.

4.2.4 Optimal strategy structure

As shown previously, the size of the MDP is important, and the computation of

the optimal policy can be hard even impossible for a big data center. In fact, it

is essential to analyze the structural properties of the optimal policy to make the

computation efficient. In particular the double-threshold structure was proved in

the case of a homogeneous data center in several models like in [YCNH11].

In the following we will be interested in some properties around the optimal

policy, and we show in particular that the property of the double-threshold structure

does not hold for our heterogeneous data center model.

Corollary 4.3. The optimal policy (4.23) is neither isotone nor monotone.

Proof. The homogeneous model presented in Section is a special case of the

heterogeneous model, and as the optimal policy of the homogeneous model is

neither isotone (see Corollary 4.1) nor monotone (see Theorem 4.6), the optimal

policy of the heterogeneous model is also neither isotone nor monotone.

4.2.5 Test and results

This section presents a case study which uses real traffic traces based on the

open cluster-data-2011-2 trace [Wil11, RWH11]. As in [BDF+16], we model

arrival jobs, and additionally service rates, by discrete distributions build from the

job/machine events corresponding to the requests destined to a specific Google

data center for the whole month of May 2011. This traffic trace is sampled with a

sampling period that ensure the i.i.d.-ness assumption. Thus, we consider frames

of 136 second to sample the trace and construct empirical distributions (see Figure

4.21).
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Figure 4.20: MDP example.
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Figure 4.21: Arrival traffic distribution.

In PRISM we need to write a specification for our MDP model which can

be written easily if the system parameters were small, but when we consider real

systems with big parameters it will be very hard. As an example the PRISM

specification associated with a data center with ten heterogeneous servers is a file

of several thousands of lines, all lines are different from each other (copy/paste

can’t help). Trying to write our specification without automated generation is time

consuming, gives rise to making easily mistakes, forgetting some cases, losing

time for updating or maintaining. Indeed, as the specification of our heterogeneous

model is huge and not obvious to write (see complexity given in Section 4.2.2), we

have coded a tool that helps us to generate automatically the PRISM specification

file.

Table 4.12 summarizes values of the parameters of our system.

Table 4.12: Parameters of the numerical analysis.

b M HA HDhigh
HDmed

HDlow
cMhigh

cMmed
cMlow

cOnhigh
cOnmed

cOnlow
cN cL

50 10 38 ∆10 ∆5 ∆2 6 4 2 3 2 1 1 2

Figure 4.22 shows the minimal expected overall cost (accumulated cost) during
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one day (h = 1 day= 635 slots) when varying the buffer size b and the unitary

waiting/losing job cost and keeping the rest of parameters as in Table 4.12.

Table 4.13 summarizes the results obtained for the following configurations:

1. a data center with ten heterogeneous servers,

2. a data center with ten identical high servers,

3. a data center with ten identical medium servers,

4. a data center with ten identical low servers.

Table 4.13: Result of the numerical analysis.

(i) Heterogeneous (ii) Homogeneous (iii) Homogeneous (iv) Homogeneous

servers high servers medium servers low servers

Mhigh 2 10 0 0

Mmed 5 0 10 0

Mlow 3 0 0 10

Prism lines 7 ×104 7.5 ×102 7.5 ×102 7.5 ×102

States 1.6 ×104 1.6 ×103 1.6 ×103 1.6 ×103

Transitions 88 ×106 0.81 ×106 0.87 ×106 0.89 ×106

Memory 2 GB 18.8 MB 20.4 MB 20.7 MB

Time 1.6 hour 1 minute 2 minute 2 minute

Expected minimal cost 50342 52251 54175 56381

Results show that the size of the three homogeneous models is relatively small

compared to the size of the heterogeneous one which is huge. The size of heteroge-

neous model is due to the large number of different action combinations. However,

heterogeneous model saves more energy. The total cost is 12% (respectively 8%,

4%) better than the low (respectively medium, high) homogeneous model. Fig-

ure 4.23 shows the result of experiments in which we are analyzing the total cost

over one day when varying the buffer size b for heterogeneous/homogeneous data

centers.

We observe that the total cost increases when b is less than some value (b0≃ 40).

However, when b is bigger than b0 the total cost seems to be convergent for any

configuration.

We can explain this behavior as follows: for a small size of the buffer, the

number of waiting jobs is low. This leads to a small number of served jobs. In fact

the system switches-on a small number of servers. So the energetic cost and also

the waiting jobs are low.

When the buffer size is bigger, the number of waiting jobs is more important.

Which leads to a bigger number of served jobs. In fact the system switches-on

more servers. So both, the energetic cost and the number of waiting jobs increases.
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Figure 4.22: Top: varying the unitary waiting job cost cN while keeping other unitary costs

constant. We observe that the bigger cN is, the greater the total cost is. Bottom: varying

the unitary losing job cost cL while keeping other unitary costs constant. For a value of

b sufficiently large, the unitary cost for losing jobs cL does not affect the total cost of the

system.
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As the arrival jobs are bounded, when the buffer size is bigger than some value,

the number of waiting jobs and the number of served job become relatively stable,

which leads to a constant number of running servers and necessarily to a constant

total cost.

We can also observe that:

• globally the heterogeneous model leads to a better cost minimization: this

can be explained by the fact that the heterogeneous model presents a huge

number of ways to combine actions, which leads to a better control policy

that may save more energy.

• the homogeneous model with low servers induces an important cost: this can

be explained by the fact that low servers have a low service capacity which

leads to an important number of waiting jobs (E(HDlow
) = 2).
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Figure 4.23: Total cost when varying buffer size b for heterogeneous and homogeneous

data centers.

In this section we presented a discrete-time Markov decision process model for

optimal management of a data center with heterogeneous servers, with the ob-

jective of minimizing energy consumption and Quality of Service (QoS) costs.

Additionally, some theoretical results are presented, as well as a numerical study

on the performance of the optimal policy.
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4.3 MDP for data center with latency

It is well known that servers need an additional amount of energy to switch-on (resp.

switch-off). This phenomena was handled in the last sections by introducing the

con unitary cost that quantifies this amount. It is also known that the switching-on

(resp. switching-off) is not instantaneous and a server needs some units of time

to transit from a sleeping/stopping mode to a ready-working mode. This period

of time during which the server switches from a mode to another is called latency.

In the previous models we consider latency as zero. However, in the following

we will show how MDP can be modified to include the latency of servers. Notice

that modeling our energetic optimization problem with an MDP when including

latency is not easy. In fact, and in order to keep the model simple and clear for the

reader we will make following assumptions:

1. only latency of switching-on is considered;

2. turning-off a running server is instantaneous which means that switching-off

latency is zero;

3. all servers are homogeneous and have the same constant latency period

which is of a duration of k units of time.

4.3.1 Problem extension

In this part we also consider a discrete time queue model. Our queuing model

is a batch arrival queue with a finite capacity buffer b. We model arrival jobs

and service rate by histograms which are discrete distributions formed from real

traces. The number of jobs arriving to the data center during a slot is modeled

by a histogram HA where PA(i) gives the probability to have i arrival jobs per a

slot. A data center is composed of M homogeneous servers. During one time unit,

the number of jobs that can be served by a server is modeled by a histogram HD

where PD(d) gives the probability to process d jobs. A server can be in one of the

following states:

• stopped: switched-off

• ...

• in latency since i unit of time and needs k− i unit to be ready, for each

i = 0..(k−1)

• ...

• ready: switched-on
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At each slot we need to know the number of servers grouped by states given above

(see Figure 4.24). We consider the following set of levels of latency:

L = {lat∞ = stop, latk, latk−1, . . . , lati, . . . , lat2, lat1,ready = lat0}. (4.24)

where lati denotes that the server is within the switching-on period and need i slot

to be completely ready to work. The number of servers of level x ∈ L is denoted

by mx.
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◆✄✄☎ ✆ ✝✞✁�
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Figure 4.24: Transition between stopping/sleeping mode and ready mode.

Thus, the number of operational servers is m = mready = mlat0 , the number of

servers that will be ready within i slot is mlati , the total number of servers in latency

is given by mlat =
k

∑
i=1

mlati , and finally M = mready +mlat +mstop is the maximal

number of operational servers (total number of servers).

The number of waiting jobs in the buffer is denoted by n. The number of

rejected (lost) jobs is denoted by l. We assume that initially the number of waiting

jobs, the number of rejected jobs are 0, and all servers are in the stopped mode.

stopped server

stopped server

server in latency

server in latency

ready server

ready server

served jobs
i: job arrivals

l: rejected jobs b: Buffer size

n: Waiting jobs

Figure 4.25: Illustration of the queuing model.

The number of waiting jobs n can be computed by induction where the arrival

jobs are added to the system (buffer and free operational servers), a maximum

of d×mready jobs will be on servers to be processed, and the rest of jobs will be
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rejected (see Section 1.3.1 for the exact order of events). For a number of i arrival

jobs, and a service rate of d we have:
{

n ← min{b,max{0,n+ i−mready×d}}
l ← max{0,n+ i−mready×d−b}.

(4.25)

As i.i.d.-ness assumption of arrivals is assumed (see end of Section 1.3.3), the

model of the queue is a time-homogeneous Discrete Time Markov Chain.

The energy consumption takes into account the number of operational servers.

A server may consume no energy when it is turned off. But consumes some units

of energy per slot when it is operational and it costs some monetary units cM. As

we are considering that a server needs k unit of time to switch on, a server may

consume an additional amount of energy that costs also some monetary unit con.

We assume that con is consumed uniformly during the latency period, let say
con

k
every slot. The total energy consumed is the sum of all units of energy consumed

during a specific period. The QoS takes into account the number of waiting and

lost jobs. Each waiting (resp. rejected) job costs some monetary units cN (resp.

cL). For a given period of time, a dynamic power management system consists in

doing each slot an action (turn on or turn-off a specific number of servers) in order

to adapt the number of operational servers to incoming job changes. The optimal

strategy consists in finding the best sequence of actions to minimize the overall

monetary cost (energetic cost plus performance cost). The cost generated for each

slot can be presented as:

n× cN + l× cL +mready× cM +mlat×
con

k
(4.26)

where n is the number of waiting jobs, l is the number of lost jobs, mready is the

current number of operational servers, and mlat is the number of servers in latency

mode.

4.3.2 Optimization approach

4.3.2.1 Modelization

Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set of actions, P
is the transition probability, and C the immediate cost of each action. Let HA =
(SA,PA) be the histogram used to model the arrival of jobs, and let HD = (SD,PD)
be the histogram used to model the service rate. The state of the system is de-

fined by the couple ((mstop,mlatk ,mlatk−1
, . . . ,mlati , . . . ,mlat2 ,mlat1 ,mready),(n, l)),

indeed the state space S is defined as:

S = {((mx : x∈L),(n, l)) |mx ∈ [0..M ], n∈ [0..b] and l ∈ [0..max(SA)]}. (4.27)
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The action space is defined as:

A = {α+z |z ∈ [1..M ]}∪{α0}∪{α−z |z ∈ [1..M ]} (4.28)

where:

1. action α0 consists in doing nothing;

2. action α+z consists in switching-on z additional servers if the number of

stopped servers is more than z, otherwise switches-on all stopped machines;

3. action α−z consists in switching-off z servers if the number of ready servers

is more than z, otherwise switches-off all the ready machines.

If the current state of the system is:

s =

{
(mstop,mlatk ,mlatk−1

, . . . ,mlati , . . . ,mlat2 ,mlat1 ,mready)
(n, l)

(4.29)

then:

1. action α0 moves the system to the state s0:

s0 =

{
(mstop,0,mlatk ,mlatk−1

, . . . ,mlati , . . . ,mlat2 ,mlat1 +mready)
(n′, l′)

(4.30)

so we have a probability of P α0

ss0 and an immediate cost of C α0
s to transit from

state s to state s0 under action α0:

P α0

ss0 = ∑{
for each i ∈ SA and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i− (mready +mlat1 )×d}}
l′ = max{0,n+a− (mready +mlat1 )×d−b}

PA(i)×PD(d) (4.31)

C α0
s = n× cN + l× cL +(mlat1 +mready)× cM +

k

∑
i=2

mlati×
con

k
(4.32)

2. action α+z moves the system to the state s+:

s+ =





(max{mstop− z,0},min{z,mstop},mlatk ,mlatk−1
, . . .

. . . ,mlati , . . . ,mlat2 ,mlat1 +mready)
(n′, l′).

(4.33)
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so we have a probability of P α+z

ss+
to transit from state s to state s+ under

action α+z:

P α+z

ss+
= ∑{

for each i ∈ SA and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i− (mready +mlat1 )×d}}
l′ = max{0,n+a− (mready +mlat1 )×d−b}

PA(i)×PD(d) (4.34)

And we have an immediate cost of C α+z
s to transit from state s to state s+

under action α+z:

C α+z
s = n× cN + l× cL +(mlat1 +mready)× cM

+
(

min{z,mstop}+
k

∑
i=2

mlati

)
×

con

k

(4.35)

3. action α−z moves the system to the state s−:

s− =





(mstop +min{z,mready},0,mlatk ,mlatk−1
, . . .

. . . ,mlati , . . . ,mlat2 ,mlat1 +max{mready− z,0})
(n′, l′)

(4.36)

so we have a probability of P
α−z

ss−
to transit from state s to state s− under

action α−z:

P α−z

ss−
= ∑{

for each i ∈ SA and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i− (mlat1 +max{mready− z,0})×d}}
l′ = max{0,n+a− (mlat1 +max{mready− z,0})×d−b}

PA(i)×PD(d)

(4.37)

and we have an immediate cost of C α−z
s to transit from state s to state s−

under action α−z:

C α−z
s = n× cN + l× cL +(mlat1 +max{mready− z,0})× cM

+
k

∑
i=2

mlati×
con

k
.

(4.38)

Notice that n′ (resp. l′) is the new number of waiting (resp. rejected) jobs, and

the immediate cost includes two parts. The QoS part which includes the cost due

to waiting and rejected jobs. The power part composed of energy consumed for

running operational servers and energy used by servers which are in the switching-

on latency period. Table 4.14 summarizes parameters used in our model and our

MDP formulation.
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Table 4.14: Model and MDP Parameters.

Parameters Description

h duration of analysis

k latency period

b buffer size

M total number of servers

HD histogram modeling the processing capacity of a server

HA histogram of job arrivals

mready number of operational servers

mlati number of servers in latency level i

n number of waiting jobs

l number of rejected jobs

S set of all possible states

A set of all possible actions

s s = ((mx : x ∈ L),(n, l)) system state

s0 s0 = ((M ,0, ...,0),(0,0)) starting state

α0 action to keep the same number of operational servers

α+z action to switch-on z additional server

α−z action to switch-off z server

P α
ss′ probability of transition from s to s′ under action α

C α
s immediate cost from s under action α

4.3.2.2 Space state complexity

Theorem 4.8. The number of states of the MDP is in O
(

b×max(SA)×M k
)

.

Proof. Every state of the MDP includes three parts:

1. the number of waiting jobs in the buffer which is bounded above by b,

2. the number of rejected jobs which can be at most equals to the maximum

number of arrival jobs given by max(SA), and

3. as we deal with k level of latency, the set of number of servers for every

latency level in L . Each number is between 0 and M .

So, |S | is bounded above by (b+1)× (max(SA)+1)×M k+2. In fact the number

of states of the MDP is in O
(

b×max(SA)×M k
)

.
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Theorem 4.9. The number of transitions of the MDP is in

O
(

b×|SA|× |SD|×max(SA)×M k
)
.

Proof. From each state of the MDP we have at most (2×M + 1) actions, and

each action leads to a number of transitions equals to |SA|× |SD| (one transition for

each bin in the support of the arrivals distribution combined with each bin in the

support of the service rates distribution). Then, the number of transitions of the

MDP is in O
(

b×|SA|× |SD|×max(SA)×M k
)

.

In order to solve the previous optimization problem we use a similar approach

as explained in Sections 4.1.2.3 and 4.2.2.3.

4.3.3 Example

To illustrate our formalization Let us show an example of an MDP modeling a very

simple data center of two servers M = 2 with a latency period of two units of time

k = 2 with a buffer size equals two b = 2. Additionally, to keep the example simple,

we set service rate of each machine as a histogram with only one bin: PD(1) = 1

(one server processes one job every slot). Also job arrivals are modeled by an

histogram with only one bin PA(1) = 1 (the system receives one job every slot).

Listing 4.9 gives the associated PRISM specification, and Figure 4.26 shows the

MDP obtained.

Listing 4.9: Example of PRISM specification for a model with latency.

1 mdp

2 const int k=2, B=2, m=2, d=2, A0=1;

3 const double cN=1, cL=1, cM=1, cON=1, p0=1.0;

4 module system1

5 off : [0..m ] init m;

6 M : [0..m ] init 0;

7 set2 : [0..m ] init 0;

8 set1 : [0..m ] init 0;

9 N : [0..B ] init 0;

10 L : [0..A0] init 0;

11 [a_5] M>=5 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

12 (M’=min(m,M+set1-5))&(set1’=set2)&(set2’=0)&

13 (off’=min(m,off+5))&(L’=max(0,N+A0-M*d-B));

14

15 [a_4] M>=4 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

16 (M’=min(m,M+set1-4))&(set1’=set2)&(set2’=0)&

17 (off’=min(m,off+4))&(L’=max(0,N+A0-M*d-B));
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18 [a_3] M>=3 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

19 (M’=min(m,M+set1-3))&(set1’=set2)&(set2’=0)&

20 (off’=min(m,off+3))&(L’=max(0,N+A0-M*d-B));

21

22 [a_2] M>=2 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

23 (M’=min(m,M+set1-2))&(set1’=set2)&(set2’=0)&

24 (off’=min(m,off+2))&(L’=max(0,N+A0-M*d-B));

25

26 [a_1] M>=1 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

27 (M’=min(m,M+set1-1))&(set1’=set2)&(set2’=0)&

28 (off’=min(m,off+1))&(L’=max(0,N+A0-M*d-B));

29

30 [a0] off>=0 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

31 (M’=min(m,M+set1))&(set1’=set2)&(set2’=0)&

32 (off’=off-0)&(L’=max(0,N+A0-M*d-B));

33

34 [a1] off>=1 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

35 (M’=min(m,M+set1))&(set1’=set2)&(set2’=1)&

36 (off’=off-1)&(L’=max(0,N+A0-M*d-B));

37

38 [a2] off>=2 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

39 (M’=min(m,M+set1))&(set1’=set2)&(set2’=2)&

40 (off’=off-2)&(L’=max(0,N+A0-M*d-B));

41

42 [a3] off>=3 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

43 (M’=min(m,M+set1))&(set1’=set2)&(set2’=3)&

44 (off’=off-3)&(L’=max(0,N+A0-M*d-B));

45

46 [a4] off>=4 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

47 (M’=min(m,M+set1))&(set1’=set2)&(set2’=4)&

48 (off’=off-4)&(L’=max(0,N+A0-M*d-B));

49

50 [a5] off>=5 -> p0:(N’=min(B,max(0,N+A0-M*d)))&

51 (M’=min(m,M+set1))&(set1’=set2)&(set2’=5)&

52 (off’=off-5)&(L’=max(0,N+A0-M*d-B));

53 endmodule

54 rewards "r"

55 [a_5] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

56 [a_4] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

57 [a_3] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

58 [a_2] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

59 [a_1] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

60 [a0] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

61 [a1] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

62 [a2] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

63 [a3] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

64 [a4] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

65 [a5] true : M*cM+N*cN+L*cL+(set1+set2)*cON/k;

66 endrewards
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Figure 4.26: MDP example for a data center of only two machine with latency k = 2 and

b = 2.
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4.3.4 Experimental application

As previously this section presents a case study that uses real traffic traces based on

the open cluster-data-2011-2 trace [Wil11, RWH11]. Also as already said before,

the specification of our latency model is huge and not obvious to write in PRISM

(see Theorems 4.8 and 4.9). In fact we have coded a tool that helps us to generate

automatically the PRISM specification file.

Figure 4.24 summarizes the results obtained for the following configuration:

Table 4.15: Parameters of the numerical analysis.

b M E(HA) HD cM cOn cN cL k h

4-67 5 7 ∆2 1 1 1 1 2-5 100 slot

Figure 4.27 shows the result of experiments in which we are analyzing the total

cost over 100 unit of time when varying the buffer size b and latency k. We observe

that in general the total cost increases when b is less than some value bk which

depends on k.

Figure 4.27: Total cost when varying buffer size b for different values of latency k.

However, when b is bigger than bk the total cost seems to be convergent for any

configuration (see Section 4.2.5 for the explanation).

Another related observation is the fact that bk grows when k increases. For

example, for a system with k = 4, the total cost becomes independent from the

latency period when b > bk = b4 = 36, however for a system with k = 2, the total

cost becomes independent from the latency period when only b > bk = b2 = 21.
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It means that a data center with servers with longer period of latency have to be

designed with larger buffer size.

A last observation is the fact that the total cost is more important when k

increases. We can explain that from the fact that the system, during the latency

period, accumulates more waiting jobs before the complete switching-on of the

servers.

4.4 MDP for variable arrival distribution

Our analysis of the Google trace arrival jobs [Wil11, RWH11] shows that arrival

traffic changes during time and presents a non negligible level of fluctuation daily

along the month (see Figure 1.7 of Chapter 1), and hourly as shown in Figure 4.28

which present three samples of the arrival traffic for three different hours. For

example the traffic between 6h and 7h for 27 May 2011 (blue curve), and the traffic

between 10h and 11h for 19 May 2011 (red curve), are close and may be modeled

by the same histogram. However it is clear that the traffic between 14h and 15h for

18 May 2011 (orange curve), must be modeled by another histogram as the traffic

during this period is significantly higher than the two first ones. Figure 4.29 shows

that even from a minute to another minute the traffic my change significantly. In

fact, in contrary of the previous models of MDP where we consider that arrivals

are modeled by the same histogram over time (see Figure 4.30), in this section,

we will consider that each slot we may receive a number of arrival jobs modeled

by a different histogram (see Figure 4.31). In order to model the case of arrival

jobs distributions that changes over time, we may consider two kind of solution.

The first one is an adaptation of the generic value iteration algorithm for the case

of variable distribution arrival jobs. Thus we adapt the computation of the value

function V to take into account the appropriate arrival job histogram for each slot

t. The second solution is more adapted to be implemented in a model checker

in-which the value iteration algorithm is predefined and encoded in the kernel of

the model checker as in PRISM or MdpToolBox (see Annex D for more details).

Notice that both approaches give rise to the same number of transitions (see Table

4.16).

Table 4.16: Approaches comparison.

States Transitions Advantage

First approach O(M ×b) O(M 2×b×h×|SA|) Less states

Second approach O(M ×b×h) O(M 2×b×h×|SA|) Use of PRISM
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Figure 4.28: Arrival traffic for different hours.
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Figure 4.29: Arrival traffic for different minutes.
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Figure 4.30: Illustration of the generic i.i.d. arrival jobs: each slot we receive a number of

jobs with the same distribution over time.
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Figure 4.31: Illustration of a generic variable arrival jobs: each slot we may receive a

number of jobs with a different distribution. Which means that every slot we may deal

with a different distribution.
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In the following we give a summary of the modelization that can not be written

in a model checker in-which the value iteration algorithm is predefined as in PRISM

or MdpToolBox, because it is based on a modified version of the generic value

iteration algorithm that is able to take into account the fact that each slot we may

have a different distribution for the arrival jobs process.

Let HA(t) = (SA(t),PA(t)) be the histogram used to model the arrival of jobs

during slot t. Assume that the optimization will be done over a period of h slots

(the horizon). Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set

of actions, P = {Pt | t ∈ [0..h]} is a set of transition probability matrices where Pt

is the transition probability matrix during slot t, and finally C is the immediate cost

of each action. The state of the system is defined by the couple (m,n) where m is

the number of operational servers, n is the number of waiting jobs. However t the

age of the system, will be associated to the probability function P . Indeed the state

space S is defined as:

S = {(m,n) | m ∈ [0..M ] and n ∈ [0..b]}. (4.39)

At the beginning of each slot, and based on the current state of the system, an action

α j ∈ A will be made to determine how many servers will be operational during the

current slot. In fact the action space A is defined as A = {α j | 0≤ j ≤M }, where

action α j consists in keeping exactly j operational servers during the current slot.

We have a probability of P
α j

t,ss′
to move from state s = (m,n) to s′ = ( j,n′)) under

action α j, during slot t. This probability is defined as:

P
α j

t,ss′
= ∑{

for each i ∈ SA(t) and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i−d× j}}

PA(t)(i)×PD(d). (4.40)

Consequently moving from state s = (m,n) to s′ = ( j,n′) under action α j induces

immediately a cost C
α j
s defined as:

C
α j
s = j× cM +max{0, j−m}× cOn +n× cN . (4.41)

Algorithm 7 is an adaptation of the generic value iteration algorithm to include the

fact that arrival jobs distribution may change over time.

Now we will evaluate the space complexity of the data structure behind our MDP

formulation.

Theorem 4.10. The number of states of the MDP is in O(M ×b).
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Algorithm 7: Value iteration algorithm for MDP.

1Data: M , C , S , horizon h

2Data: P0,P1, · · · ,Pt , · · · ,Ph

3Result: (Vh,π
∗
h)

4foreach s ∈ S do

5V0(s) = 0

6end

7for k← 1 to h do

8foreach s ∈ S do

9(m,n)← s

10for a j← a0 to aM do

11C
α j
s ← j× cM +max{0, j−m}× cOn +n× cN

12Qk(s,a j)← C
α j
s +∑

s′

P
α j

h−k,ss′
Vk−1(s

′)

13end

14π∗k(s)← argmin
a

Qk(s,a)

15Vk(s)← Qk(s,π
∗
k(s))

16end

17end

18return (Vh,π
∗
h)
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Proof. Every state of the MDP includes two element:

1. the number of operational servers which is between 0 and M ,

2. the number of waiting jobs in the buffer which is bounded above by b, and

So, |S | is bounded above by (M +1)× (b+1).

Theorem 4.11. The number of transitions of the MDP is in O(M 2×b×h×|SA|).

Proof. From each state of the MDP we have at most (M +1) actions, and each

action leads to a number of transitions equals to |SA| (one transition for each bin

in the support of the arrival distribution). However as we need to consider the

set of (h+ 1) matrices of probability transition the total number of transitions

is |S |× |SA|× (h+ 1). In fact, as the number of states was already evaluated in

Theorem 4.10, we deduce that the number of transitions is bounded above by

M ×b× (M +1)×|SA|×h which is in O(M 2×b×h×|SA|).

Theorem 4.12. The computation-time to find the optimal strategy with the value

iteration algorithm is in O(h×b2×M 3).

Proof. As we know, at each iteration, for each of |S | states, the value iteration

algorithm computes expectation for |A | actions. In general, each expectation takes

O(|S |) time, however in this modelization each expectation takes only O(M ×b)
time. In fact the total time complexity is O(h×|S |× |A |× (M ×b)) which equals

O(h×b2×M 3) (see proof of Theorem 4.3 for more details).

In fact, even if the number of servers in the data center is low, if we want an

optimization over an important period of time (a big horizon h), the MDP structure

will be huge and parsing it to find the optimal solution becomes very important.

4.5 Lessons learn from this work

This chapter presents a discrete-time Markov decision process (MDP) model

for optimal management of a data center when considering separately different

aspects: homogeneity, monotony, heterogeneity, and latency. The objective was

to minimize energy consumption and Quality of Service (QoS) costs. Job arrivals

and service rates are modeled by a general discrete probability distribution, which

can be estimated from real data through a histogram. The optimal control policy is

computed by the value iteration algorithm and used to define the Dynamic Power

Management that ensures the trade-off between QoS and energy consumption. We
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prove that in general the optimal policy is not monotone. Consequently, the optimal

policy cannot be designed as a double-threshold structure.

For the homogeneous model theoretical and experimental results show that

depending on the values of the system parameters the optimal policy is monotone

or not. Therefore we can claim that strategy based on double-threshold structure

leads only to a sub-optimal policy. Results show that MDP leads to the optimal

policy when saving a significant amount of energy. But, it needs more computation

time and more memory space to analyze and solve the optimization problem. We

observe that the threshold based approach computes the optimization strategy faster,

and uses a small amount of space memory. Otherwise we show that the size of an

MDP model is important and in the following chapter, we consider to apply some

heuristic algorithm to approximate efficiently the optimal policy by avoiding state

space explosion.

For the heterogeneous model we proved that neither monotony nor isotony

properties holds for optimal heterogeneous policy. Consequently, the optimal

policy cannot be designed as a simple double-threshold structure. Additionally

results show that the size of heterogeneous model is bigger than the size of ho-

mogeneous model. However, from experimental results, it seems that increasing

server heterogeneity leads to more potential energy savings.

For the model with latency results show that the size of model is huge, more

precisely the size is an exponential of k the period of latency. However, from

experimental results, it seems that increasing buffer size leads to more potential

energy saving when the latency is big.

Thus, in order to deal with the space and time complexity problem, we suggest

in the next chapter what we call the greedy-window algorithm that allows to find a

sub-optimal strategy better than that produced when considering special mechanism

like the threshold approaches. And more important, unlike the MDP approach, this

greedy-window algorithm does not require the building of the structure including

all possible strategies and it is able to give a strategy very close to the optimal

strategy with small space and time complexities.



Chapter 5
Greedy-window optimization

algorithm

P
REVIOUS chapters show that computing the optimal strategy, which requires

passing through an MDP, is often difficult even impossible to achieve for large

data centers. Especially if we take into account real aspects like servers hetero-

geneity or latency. Moreover, when we consider a data center with arrival jobs

modeled by a distribution which changes over time, the MDP structure becomes

huge because the space state size will depend on the horizon h. Indeed, the problem

comes mainly from the exponential size of the MDP structure and then the time

needed to go through it to find the optimal strategy. So the MDP complexity is big

both in space and in computation-time. In this chapter we propose an algorithm

that allows to find a sub-optimal strategy which is better than the strategy produced

by the threshold approaches. More important, unlike the MDP approach, this

algorithm does not require the entire construction of the structure including all

possible strategies. Thus our algorithm gives a strategy close to the optimal strategy

with small space and time complexities.

5.1 Problem specification

Let DC be a data center composed of M identical servers. DC receives jobs

requesting the offered service. The maximal number of jobs that can be served by

one server in one slot is assumed to be constant and denoted by d. So the service

rate is modeled by a Dirac histogram HD = ∆d . We assume that the arrival process

changes between periods. This allows us to model for instance hourly or daily

variations of the job arrivals. Suppose that the analysis will be done over h a whole

131
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period of time. The number of jobs arriving to the data center per slot during

time slot t is modeled by a histogram HA(t) where PA(t)(i) gives the probability

to have i arrival jobs during slot t. Note that we assume that arrivals of jobs are

independent, and their distribution is obtained from real traces, empirical data,

or incoming traffic measurements. In this manner, the queuing model is a batch

arrival queue with constant services and finite capacity buffer b (buffer size). In

this chapter we assume that a server needs no time to be switched on or off. We

assume also that the switching-on leads instantaneously to an additional energetic

cost con however the switching-off takes place without consuming any additional

amount of energy. Otherwise we consider that, in average, one on-server costs cM

unit per slot. During slot t, the number of waiting jobs in the buffer is denoted by

n(t) and its distribution by HN(t). The number of operational servers is denoted by

m(t). The number of rejected (lost) jobs is denoted by l(t) and its distribution by

HL(t). We assume that initially the number of operational servers and the number

of waiting jobs are 0. The maximal number of servers that can be operational is

M .

S

S

S

S

d×m

i: job arrivals

l: rejected jobs
b: Buffer size

n: Waiting jobs

m: Number of operational servers
d: Number of jobs served by a server per slot

Figure 5.1: Illustration of the queuing model.

The histogram operators given in Chapter 1.3, are used to compute inductively
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the evolution of distributions HN :

HN(t+1)←MINb

(
(HN(t)⊕HA(t))− (d×m)

)
(5.1)

where the arrival jobs are added to the system (buffer and free operational servers),

a maximum of d×m jobs will be on servers to be processed, and the rest of

jobs will be rejected (see Section 1.3.1 for the exact order of events). In fact, the

distribution of the number of lost jobs is computed as:

HL(t+1)←
(
HN(t)⊕HA(t)− (d×m+b)

)
. (5.2)

5.1.1 Energy and Performance metric

Energy consumption takes into account the state of each server and its transitions:

• Each server consumes some units of energy per slot when a server is opera-

tional and it costs an average of cM ∈ IR+ monetary unit.

• when switching a server on, the server consumes an additional amount of

energy that costs an average of cOn ∈ IR+ monetary unit.

• A server consumes a very low amount of energy when it is turned off in

fact it is assumed that a non operational server does not consume energy

co f f = 0.

The total consumed energy is the sum of all units of energy consumed among a

specific period.

As QoS metric, we take into account the number of rejected jobs. Each rejected

job causes a penalty that costs cL. Additionally, we take into account the number

of waiting job. Each waiting job causes a penalty that costs cN for every slot. In

fact the cost of QoS is computed as:

∑
i∈SL(t)

PL(t)(i)× i× cL + ∑
i∈SN(t)

PN(t)(i)× i× cN . (5.3)

5.1.2 Objective function

A dynamic power management system consists in doing each slot an action (turn on

or turn-off a specific number of servers) in order to adapt the number of operational

servers to incoming job changes. A good strategy consists in finding a sequence of

actions to reduce the overall accumulated cost (energetic cost plus performance
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cost). The expected cost generated for each slot is a linear combination of energetic

and QoS costs called objective function:

c(t) = ∑
i∈SL(t)

PL(t)(i)× i× cL (5.4)

+ ∑
i∈SN(t)

PN(t)(i)× i× cN (5.5)

+m(t)× cM +max{0,m(t)−m(t +1)}× cOn (5.6)

where m(t) is the current number of operational servers, and m(t+1) is the number

of operational servers after doing an action.

5.2 Optimization approach

Here we explain our greedy-window approach to optimize energy and QoS. Based

on some elements of the system like the number of job arrivals, the number of

waiting jobs, the number of rejected jobs and the number of servers, the method

consists in turning on or off, each slot, an optimal number of servers to minimize

energy consumption and maximize the QoS. So we will need to evaluate every slot

the number of waiting and rejected jobs. Notice that parameters n(t), m(t) and

l(t) are correlated, gain on energy consumption leads to a degradation on the QoS

and vice versa. In the following we will give the details of our greedy-window

optimization algorithm. Before that, let us show other solutions:

1. The first one based on the concept of rolling horizon procedure which leads

to an algorithm similar to the truncated value iteration algorithm that returns

a sub-optimal policy. Unfortunately this solution still suffering from the

state space explosion problem, and consumes a considerable amount of

computation time.

2. The second solution based on a greedy algorithm which is very fast, need a

small amount of memory to find a strategy, however the computed strategy

is not close enough to the optimal one.

3. Finally we explain the greedy-window algorithm which allows us to compute

a sub-optimal strategy very close to the optimal one in a small amount of

space memory and computation time.

5.2.1 Truncated value iteration

The MDP optimization consists in exploring all the possible paths of length h

from the initial state of the system until the end of the period of analysis (See the
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pink paths in Figure 5.2). As seen before, the use of the value iteration algorithm

reduce the time and space used for exploring the paths to a polynomial complexity,

unfortunately we still consume a considerable amount of computation time and

memory space. The idea of the rolling horizon procedure [WL11, IRCS13] is to

not go through all the possible paths for the entire horizon h as MDP does. But

instead, for each slot, we explore only the paths of length w, in fact the search is

limited each slot to a depth called window of length w (see Figure 5.3). Notice

that this concept is called sometime sliding look-ahead window [GOA18] or model

predictive control [AA11]. The use of the window concept in the MDP optimization

gives the truncated MDP. In Algorithm 8, for each slot t, we look for the sequence

of optimal actions mt+0, mt+1, . . . , mt+w performed during the duration [t..t +w]
which minimizes the total accumulated cost over the same period [t..t +w]. The

first action in this sequence mt+0 is the action chosen to be applied for the slot t.

After this we go to the next slot t +1 and we redo the same thing: which means

find the optimal sequence of action between t + 1 and t + 1+w to find the best

action to perform for the slot t +1. And so on for the rest of the slots.

Algorithm 8: Truncated value iteration algorithm.

1Data: M , d, b,cM, cN , cL, cOn, m(0) = 0

2Data: HA(0), HA(1), · · · ,HA(h)

3Result: m(1),m(2), · · · ,m(h)

4n(0)← 0;

5l(0)← 0;

6for t← 0 to h do

7/* Use a value iteration algorithm with a horizon w to compute the

optimal strategy over period [t..t +w] */

8(mt+0,mt+1, . . . ,mt+w)←
value iteration(n(t−1), l(t−1),m(t−1), [t..t +w]);

9m(t)← mt+0;

10Compute n(t);
11Compute l(t);

12end

Theorem 5.1. The computation-time to find the strategy by the truncated value

iteration Algorithm 8 is in O(h×w×M 2×b×|SA|).

Proof. As we consider a window of w slots, mk is the number of operational

servers at slot k. For each slot form 0 to w we will try all possible combinations

of operational servers for each slot. And then we evaluate the total cost over the

window period for each possible combination. Finally we choose the combination
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Figure 5.2: In the MDP optimization we have to visit all possible paths.
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Figure 5.3: In the Truncated MDP optimization we have to visit all possible paths restricted

to a window (depth) w < h. For this example the number of actions is 3, w = 3, h = 5, and

the pink paths present the visited paths.
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with the minimal cost and switch-on, during slot t, the m0 servers associated with

this best combination. In fact finding the sub-optimal action during slot t can be

seen as an execution of a value iteration instance over the system for a horizon

equals only w. And the space of states is restricted to a size of |S |= M ×b. So,

for each slot (we have h slot), for all iterations of w, the value iteration algorithm is

in O(w×M 2×b×|SA|) (see Theorem 4.3 for more details). In fact the total time

complexity is O(h×w×M 2×b×|SA|).

5.2.2 Greedy optimization

As we have seen in previous chapters and previous section, MDP has the advantage

of allowing us to get the optimal optimization strategy by browsing then evaluating

the expected accumulated cost of each possible strategy. In fact we can choose, at

the end, the strategy that has the minimum cost.

So as a first attempt we will consider Algorithm 9 that builds the optimization

strategy by choosing at each slot the action that minimizes the immediate cost,

ignore the rest of the actions and move to the next slot (see Figure 5.4). This

method is in the class of greedy algorithms [Bla04].

Algorithm 9: Greedy optimization algorithm for one slot.

1Data: M , d, b

2Data: m(t−1), HN(t−1), HA(t)

3Data: cM, cN , cL, cOn

4Result: m(t), c(t)

5cost min←+∞;

6for m← 0 to M do

7N←MINb((HN(t−1)⊕HA(t))−d×m);

8L← (HN(t−1)⊕HA(t))− (d×m+b);

9m̃←max{0,m−m(t−1)};

10c← cM×m+ ∑
i∈SN

PN(i)× i× cN + ∑
i∈SL

PL(i)× i× cL + cOn× m̃;

11if c < cost min then

12cost min← c;

13servers min← m;

14end

15end

16c(t)← cost min;

17m(t)← servers min;
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Knowing the parameters of the system at slot (t − 1), our strategy consists in

determining the best number of servers to be switched on, in slot t, in order

to minimize the cost. To do so, every slot t: for each possible value of m(t) ∈
{0,1, . . . ,M }, we compute c(t) and then we return the value of m(t) that minimizes

the expected cost c(t).

Table 5.1: Example of optimization. Suppose M = 10, b = 15, d = 3, cM = 11, cN = 5,

cL = 0 and for t = 1 we have: HN(t−1) = ∆5 and HA(t) = ∆7. In this case our algorithm

chooses m(t) = 4 this value leads to the minimal cost.

m(t) 0 1 2 3 4 5 6 7 8 9 10

c(t) 60 56 52 48 44 55 66 77 88 99 110

It is clear that this method is fast and does not cause the explosion of the number

of states. However, accumulating the immediate minimum costs does not guarantee

us to obtain a strategy close enough to the optimal strategy. So we introduced the

notion of window.

Theorem 5.2. The greedy Algorithm 9 is in O(q log(q)) space complexity with

q = max(SA)+b.

Proof. At each step of the calculation, Algorithm 9 needs to keep track of the

evolution of the distribution of the number of waiting jobs in the buffer. As

the buffer is finite, the number of waiting jobs is bounded above by b and the

algorithm can use only an array of length O(b) to store the distribution probability

of waiting jobs, and a space memory of O(q log(q)) to compute the convolution,

with q = max(SA)+b. The number of lost jobs is bounded above by max(SA) and

the algorithm can use only an array of length O(max(SA)) to store the distribution

probability of lost jobs. So we need a total space of q log(q)+b+max(SA) which

is in O(q log(q)).

Theorem 5.3. The computation-time to find the strategy by Algorithm 9 is in

O(h×M ×q× log(q)) where q is the sum of b and max(SA).

Proof. Algorithm 9 needs to be executed for h iterations. The for loop is of M
iterations, and at each step of the calculation Algorithm 9 needs to compute the

distribution of the number of waiting jobs in the buffer. Otherwise, for each slot

we need to compute the distribution of the number of waiting jobs in the buffer by

computing a convolution between HA and HN . This task needs at most b×|SA|
operations, however, as being said before in Remark 1.1, by using the fast Fourier

transform the convolution can be performed in a reduced time of O(q× log(q))
with q = max(max(SA),max(SN)) where max(SN) = b.
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Figure 5.4: In the greedy optimization we have to visit all possible paths of length one. For

this example the number of actions is 3, h = 5, and the pink paths present the visited paths.
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5.2.3 Greedy-window optimization

It is clear that the decision is based on the analysis of one slot in the greedy

algorithm. We can generalize our idea to do a decision after analyzing w successive

slots as shown in Section 5.2.1.

This generalization will necessarily give a better decision. The bigger w is, the

better optimization is, but the time of computation will be more important. Now, in

order to avoid executing an entire instance of a like value iteration algorithm over

w, we suggest our greedy-window algorithm that computes only a sub-optimal

strategy over the window [t..t +w] as follows.

Algorithm 10: Greedy-window optimization algorithm.

1Data: M , d, b, cM, cN , cL, cOn

2Data: HA(0), HA(1), · · · ,HA(h)

3Result: m(1), · · · ,m(h)

4m(0)← 0, HN(0)← ∆0, HL(0)← ∆0;

5for t← 1 to h do

6cost min←+∞, servers min← 0;

7for m← 0 to M do

8N←HN(t−1);

9L←HL(t−1);

10m̃←max{0,m−m(t−1)};
11accumulated cost← m̃× cOn;

12for k← t to t +w do

13N←MINb((N⊕HA(t))−d×m);

14L← (N⊕HA(t))− (d×m+b);

15c← cM×m+ ∑
i∈SN

PN(i)× i× cN + ∑
i∈SL

PL(i)× i× cL;

16accumulated cost← accumulated cost +c;

17end

18if accumulated cost<cost min then

19cost min←accumulated cost;

20servers min← m;

21end

22end

23m(t)←servers min;

24HN(t)←MINb((HN(t−1)⊕HA(t))−d×m(t));

25HL(t)← (HN(t−1)⊕HA(t))− (d×m(t)+b);

26end
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Figure 5.5: In the Greedy-window optimization we have to visit all directions restricted to

a window (depth) w < h. For this example the number of actions is 3, w = 3, h = 5, and

the pink paths present the visited paths.

This sub-optimal strategy is defined as the best strategy from the set of restricted

strategies that maintains, over the window period [t..t +w], the same action done

at slot t. In other words, at slot t the algorithm tries to evaluate the impact of

maintaining an action over a period of w, then chooses the action that minimizes

the accumulated cost over the window.

Notice that the algorithm repeats this operation each slot and not each w. In

other words the greedy-window algorithm, explores only directions (a direction is

a path with the same action each slot) of length w (see Figure 5.5). Now, for the

choice of the value of w, as shown in Figure 5.6, the cost is less optimized for a

small value of w (w < 5), however it is more optimized for bigger values (w≥ 5).

In fact we need to set w to a big value (w ≥ 5) to guarantee that the strategy is
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close enough to the optimal strategy, but w must not be too much big (w≤ 10) to

maintain a fast computation.

For example Figure 5.6 shows the daily accumulated cost induced by the

greedy-window strategy depending on w for various traffic arrivals issued from the

Google trace [Wil11, RWH11] under the same settings as in Table 5.4. We observe

that even for a small window size w≪ h the cost is significantly improved.

Theorem 5.4. The greedy-window Algorithm 10 is in O(q log(q)) space complex-

ity with q = max(SA)+b.

Proof. See proof of Theorem 5.2.

Theorem 5.5. The computation-time to find the strategy by the greedy-window

Algorithm 10 is in O(w×h×M ×q× log(q)) where q is the sum of b and max(SA).

Proof. The first for loop is of h iterations, the second loop is of M iterations, and

at each step of the calculation in the third for loop, Algorithm 10 needs to compute

the distribution of the number of waiting/rejected jobs by computing a convolution

between HA and HN .

This way of doing the optimization based on the greedy-window algorithm, is

a very interesting compromise, because it avoids the phenomenon of explosion of

memory space and computing time (the greedy-window algorithm time-complexity

is linear in M compared to the MDP based algorithm which is quadratic in M ),

while computing a strategy sufficiently close to the optimal strategy. In addition

of all this, it gives the algorithm the ability to be executed in real time (online).

Because for each slot it calculates immediately the action to be done (of course

based on a projection of w slots) and it does not need to know the horizon h.

Algorithm 11 is an example of a possible online version of the greedy-window

algorithm. It uses a list called arrival history that stores the number of arrivals for

past slots. This list is used to recompute the histogram of arrivals every slot. Notice

that this list should be restricted to a limited size by dropping the old arrivals in

order to:

1. prevent the list from becoming large which can slow down the execution of

the algorithm,

2. compute a histogram that is more representative for new arrivals.
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Figure 5.6: Relationship between the window size and the optimization efficiency of the

greedy-window algorithm. For example, for the arrivals of the 2nd May 2011, the analysis

of only some successive slots improves the cost significantly by about 50% compared to

an analysis done with w = 1.
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Algorithm 11: The online version of the greedy-window algorithm.

1Data: M , d, b

2Data: cM, cN , cL, cOn

3arrival history← [];
4HA← ∆0;

5foreach beginning of slot t do

6cost min←+∞;

7servers min← 0;

8/* Request the state of the system */

9a← the number of arrival jobs received in the last slot;

10n← the number of waiting jobs;

11m← the number of operational servers;

12/* Add a to the arrival history */

13arrival history← arrival history+[a];
14/* Use the arrival history to update the histogram of arrivals */

15HA← compute(arrival history);
16for m← 0 to M do

17N← ∆n;

18m̃←max{0,m−m(t−1)};
19accumulated cost← m̃× cOn;

20for k← 1 to w do

21N←MINb((N⊕HA)−d×m);
22L← (N⊕HA)− (d×m+b);

23c← cM×m+ ∑
i∈SN

PN(i)× i× cN + ∑
i∈SL

PL(i)× i× cL;

24accumulated cost← accumulated cost +c;

25end

26if accumulated cost<cost min then

27cost min←accumulated cost;

28servers min← m;

29end

30end

31m←servers min;

32set the number of operational servers to m;

33end

We notice that the greedy-window algorithm is designed to support an arrival

process modeled by a histogram that may change at each slot, but it still works for

the case where the arrivals are i.i.d. and even for this special case, our algorithm

has a lower complexity compared to the MDP model (See theorems 4.1 and 4.3).
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5.3 Experimental results

In the next sub-sections, we will use our greedy-window optimization algorithm

to test, analyze and compare the evolution of the cost (energy consumption and

QoS) for different configurations of the system. In order to reduce the number

of parameters to explore in our experimentation we define the load factor of the

system as follows:

ρ =

∑
i∈SA

PA(i)× i

M ×d
. (5.7)

Table 5.2: Workload of system according to ρ.

ρ [0;0.25[ [0.25;0.5[ [0.5;0.75[ [0.75;1[ ≥ 1

relaxed moderate comfortable high excessive

It is clear that ρ can be higher than 1 if the number of arrivals is more important

than the number of processed jobs (for example if M = 10, d = 1, and H = ∆20

then ρ = 2≥ 1).

5.3.1 Experiments for Dirac arrivals job

In order to show the different behaviors of the system under our greedy-window

algorithm, let us first study the case where arrivals are modeled by a constant rate

of job arrivals (it can be seen as a deterministic case):

a ∈ R : ∀t : a(t) = a. (5.8)

In this case the histogram of a(t) is defined as:

a ∈ R : ∀t : HA(t) = ∆a. (5.9)

In this case the load factor is equal to:

ρ =

∑
i∈SA

PA(i)× i

M ×d
=

a

M ×d
. (5.10)
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5.3.1.1 Optimization and load factor

Tests show that our algorithm turns on, eventually, a number of servers proportional

to the system load factor (see Figure 5.7).
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Figure 5.7: Average of operational servers number and load factor.

Although our algorithm calculates from the beginning the best number of

servers to be switched on, we observed that this number is kept the same during

the whole observation period: ∀t m(t) =
⌈
ρ×M

⌉
. This formula is only valid if

the load factor of the system ρ is smaller than 1. Otherwise, if the load factor is

greater than 1, the best number of servers to be turned on will exceed the number

of servers available, so the system turns on all available servers to be as close as

possible to the optimal number of servers. Finally, the number of servers to be

switched on by our algorithm in the case of a constant arrival rate is given by:

∀t : m(t) = min(
⌈
ρ×M

⌉
,M ). (5.11)

Note that the heavier the load factor is, the bigger number of operational servers is.
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Note that the results of this subsection are true for costs cM, cN and cL of the same

order of magnitude. In the next subsection, we will show the impact of varying the

order of magnitude between these costs.

5.3.1.2 Order of magnitude of costs

Let us define ce as the cost of energy paid in one slot for the treatment of one single

job by one server:

ce =
cM

d
. (5.12)

Table 5.3: Impact of costs on the number of operational servers.

Condition # operational servers Behavior

ce≫ cN ,cL 0 Lazy

ce≪ cN ,cL M Fully active

ce ≈ cN ,cL min(
⌈
ρ×M

⌉
,M ) Proportional

The various tests we have done show that the behavior of our strategy against

energy and QoS optimization depends on the values ce, cN , and cL. We distinguish

mainly three types of behavior:

1. If cost ce is higher than cN and cL, the system prefers to turn off all servers

because the cost of switching on a server to serve d jobs is more expensive

than the cost of rejecting and/or keeping d jobs in the buffer. We say that the

system is lazy.

2. If cost ce is smaller than cN and cL, then the system prefers to turn on all

the servers because the total cost of waiting and rejection is much more

important than the cost of the switching on more servers. We say that the

system is fully active.

3. If cost ce, cN and cL are close to each other, the system immediately turns on

a number of servers proportional to the load factor: min(
⌈
ρ×M

⌉
,M ).

To better clarify the results reported in Table 5.3, a closer analysis of the

relationship between costs, the load factor and the optimal number of servers is

discussed in the following.
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Theorem 5.6. Assume that the buffer size is infinite or sufficiently large. For any

slot t the number of servers computed by the greedy algorithm 9 is:

m(t) =

{
M if ce < cN

0 if ce > cN .

Proof. Assume that b is +∞. This implies that all jobs will be accepted and no job

will be rejected, which means that the number of loss jobs l(t) is always zero:

∀t : lim
b→∞

l(t) = 0.

Additionally, as the arrival process is modeled in this section by a constant, we

have: ∀t : HA(t) = ∆a, then we deduce that the number of waiting jobs will be also

deterministic:

n(t) = min(b,(n(t−1)+a(t)−d×m(t))+)
= min(+∞,(n(t−1)+a(t)−d×m(t))+)
= (n(t−1)+a(t)−d×m(t))+

= max(0,n(t−1)+a(t)−d×m(t))
= max(0,n(t−1)+a−d×m(t))

and the total cost c(t) will be:

c(t) = cM×m(t)+ ∑
i∈SN(t)

PN(t)(i)× i× cN + ∑
i∈SL(t)

PL(t)(i)× i× cL

= cM×m(t)+n(t)× cN + l(t)× cL

= cM×m(t)+(max(0,n(t−1)+a(t)−d×m(t)))× cN +0× cL

= cM×m(t)+ cN×max{0,n(t−1)+a−d×m(t)}.

We have two cases:

1. if (n(t−1)+a−d×m(t))≤ 0 then c(t) = cM×m(t). In this case we must

always choose m(t) = 0 to ensure a minimum total cost.

2. if (n(t−1)+a−d×m(t))> 0 then

c(t) =cM×m(t)+ cN× (n(t−1)+a−d×m(t))
= m(t)× (cM−d× cN)+ cN× (n(t−1)+a).

It is clear that the right-hand side term cN×(n(t−1)+a) is always a positive

value. Thus minimizing the total cost requires the minimization of the left-

hand side term m(t)× (cM−d× cN). Thus, we are mainly dealing with two

sub-cases:

(a) If ce < cN then m(t)× (cM−d× cN) is negative, and choosing a maxi-

mum value of m(t) = M ensures a minimum total cost.

(b) If ce > cN then m(t)× (cM−d× cN) is positive, and choosing a zero

value of m(t) = 0 provides a minimum total cost.
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5.3.2 Experiments for i.i.d. arrival distribution

In this section we will study the case where arrivals are modeled by a single

distribution that does not change over time: ∀t : HA(t) = HA, it is the case of i.i.d.

job arrivals.
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Figure 5.8: Example of different arrival distributions inducing different load factors ρ.
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We will consider arrival distributions which induced different load factors as

presented in Figure 5.8 for this part of experimentation which is computed to be

i.i.d. based on the turning point approach presented in the end of Section 1.3.3,

when using the real open trace of Google [Wil11, RWH11].

5.3.2.1 Load factor variation

In this section we will use the three types of arrivals we have previously introduced

to analyze numerically the system whose parameters are described in Table 5.4.

Table 5.4: Settings of the first numerical analysis.

Parameters Value Unit Description

M 150 servers total number of servers

d 1 jobs/server processing capacity of a server

b 1000 jobs buffer size

h 1000 slot study period

cM 10 cost of energy needed by a server

cN 10 cost of waiting a job

cL 10 cost of rejecting a job

Figure 5.9 shows the average number of operational servers over the period of

analysis h for several values of ρ. The bigger ρ is, the more important the average

number of operational servers is.
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Figure 5.9: The average number of operational servers over the period of analysis depending

on load factor values ρ.
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Figure 5.9 shows the evolution, of the average number of operational servers

according to several load factor values of ρ. Clearly, we observe that the heavier

load factor is, the bigger needed operational servers is. If the system is overloaded

the system eventually turn on all available servers. Thus, in general, the ultimate

number of operational servers in the long term converges to: min
{

M ,
⌈
ρ×M

⌉}
.

Figure 5.10 shows the evolution of the real number of operational servers over

the period of analysis h for several values of ρ. This figure shows the transient

aspect of the switching off/on of the servers.
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5.3.2.2 Cost variation

In this subsection we will consider an analysis with the same job arrivals distri-

bution HA, where varying the costs cM, cN and cL. We analyze numerically the

system whose parameters are described in Table 5.5.
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Figure 5.11: Example of arrival distributions.

Table 5.5: Settings of the second numerical analysis.

Parameters Value Unit Description

M 300 servers total number of servers

d 1 jobs/server processing capacity of a server

b 1000-9000 jobs buffer size

h 1000 slot study period

ρ 52% - load factor (see Figure 5.11)
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Waiting cost In this subsection we have set a small value for the cost of energy

consumption ce and a high value for the cost of waiting cN > ce with any value for

the loss cost. Figure 5.12 illustrates the result of this configuration.
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Figure 5.12: Evolution of the average number of operational servers over the period of

analysis h for different values of waiting cost cN (b = 1000, cL = cM = 0.5).

We observed that the system switches on a significant number of servers if the

cost of energy is lower than the one of waiting. Thus the system prefers to turn

more servers on to serve more jobs and avoid long waiting time.

Loss cost In this numerical analysis we have set a small value for ce (the cost of

energy paid in one slot for the treatment of one single job by one server) and even

smaller value for the cost of waiting cN but a high value for the cost of rejection cL:

cL > ce > cN .

When fixing b the size of the buffer and varying cL (while keeping cL > ce > cN),

we observe that the higher the cost cL is, the higher the system turns on servers. It

is a completely natural reaction because the system tries to minimize the total cost,

and as the loss cost cL is highest, the system will turn more servers on to serve

more jobs and emptying further the queue which allows a low loss rate. Figure 5.13

illustrates this phenomenon.
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Figure 5.13: Evolution of the average number of operational servers for different values of

loss cost cL (b = 1000, cN = cM = 0.5).

Figures 5.14, 5.15, 5.16, and 5.17 show the evolution of:
m(t)

M
the operational

servers rate, and
n(t)

b
, the buffer fill rate, over the period of analysis h for several

values of b. These figures show the transient aspect of the switching off/on of the

servers and the number of waiting jobs. This Figures illustrate the system-inertia

phenomenon. We observe that at the beginning and during a certain period, the

system keeps all the servers switched off and holds jobs on waiting, because the

cost of turning on a server is higher than keeping a job waiting. Thus the system

prefers to put jobs on buffer. That said, after a certain inertia period the buffer b

becomes full and the system begins to reject jobs, and as the loss cost is too high

compared to other costs, the system starts to turn on servers in order to reduce the

loss rate.

Let us define the inertia period as the initial period during which all the servers

of system are turned off.

Curves of Figures 5.14, 5.15, 5.16, and 5.17 show that the larger the buffer b is,

the longer inertia period is. The inertia period before the response of the system

can be approximated by:
b

E(HA)
. (5.13)
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Figure 5.14: Inertia phenomenon: Evolution, over time, of operational servers rate and

buffer fill rate for b = 1000 (cN = cM = 1 and cL = 5).
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Figure 5.15: Inertia phenomenon: Evolution, over time, of operational servers rate and

buffer fill rate for b = 3000 (cN = cM = 1 and cL = 5).
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Figure 5.16: Inertia phenomenon: Evolution, over time, of operational servers rate and

buffer fill rate for b = 5000 (cN = cM = 1 and cL = 5).
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Figure 5.17: Inertia phenomenon: Evolution, over time, of operational servers rate and

buffer fill rate for b = 7000 (cN = cM = 1 and cL = 5).
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5.3.3 Experiments for variable arrival distribution

In this section we will generalize our study extending it for arrivals modeled by a

distribution that changes over time: ∃t1 ∃t2 : HA(t1) 6= HA(t2).

5.3.3.1 Hourly arrival variation

In a real data center the arrivals jobs vary over the day. For example high rate

arrivals between 8 a.m. and 4 p.m., low arrivals between 4 p.m. and midnight, and

medium arrivals between midnight and 8 a.m. (see Figure 5.18).

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

·10−2

Number of jobs

P
ro

b
ab

il
it

y

Histogram of low arrivals during 4 a.m.-0 a.m
Histogram of medium arrivals during 0 a.m.-8 p.m.
Histogram of high arrivals during 8 a.m.-4 p.m.

Figure 5.18: Discrete distributions.

Figure 5.19 shows the results of analyzing numerically the system whose

parameters are described in Table 5.6.
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Table 5.6: Settings of the third numerical analysis.

Parameters Value Unit Description

M 400 servers total number of servers

d 1 jobs/server processing capacity of a server

b 3000 jobs buffer size

cM 7 cost of energy needed by a server

cN 9 cost of waiting a job

cL 8 cost of rejecting a job
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Figure 5.19: Evolution of the average number of operational servers during one day (each

triangle represents the average number of operational servers during half an hour).

We observe that the system turns on a number of servers at the beginning of the

day to treat arriving jobs. Then, it gradually increases the number of operational

servers to treat the high arrival rate between 8 a.m. and 4 p.m. Then from 4 p.m.

it begins to turn off the servers and keeping only reduced number of operational

servers to serve the low arrival rate until midnight. We clearly note the dynamic

adaptation of the energy optimization system to the traffic variation.
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5.3.3.2 Daily arrival variation

This section uses real traffic traces to model arrivals. We use the open clusterdata-

2011-2 trace [Wil11, RWH11]. This traffic trace is sampled with a sampling period

equal to the slot duration. We consider frames of two minutes to sample the trace

and construct seven empirical distributions corresponding to arrivals during each

day of the week. For example to compute the distribution of sunday, as the trace

contains the timestamp of each arrival jobs during a whole month, we were able to

group the arrivals of the four Sundays of the month, after that we sampled those

arrivals to compute the histogram.

Table 5.7: Example of daily variation of arrivals obtained from Google trace where E(HA)
represents the average number of new jobs and σ(HA) its standard deviation.

Day of week Arrivals rate E(HA) σ(HA)

Monday Low 43 jobs 21

Tuesday Medium 51 jobs 25

Wednesday Medium 49 jobs 23

Thursday High 58 jobs 38

Friday Medium 53 jobs 25

Saturday Low 41 jobs 24

Sunday Low 39 jobs 22
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Figure 5.20: Google trace arrivals and i.i.d.-ness test for the Sunday days.
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Figure 5.21: Google trace arrivals and i.i.d.-ness test for the Saturday days.
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Figure 5.22: Google trace arrivals and i.i.d.-ness test for the Tuesday days.
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Figure 5.23: Google trace arrivals and i.i.d.-ness test for the Wednesday days.
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Figure 5.24: Google trace arrivals and i.i.d.-ness test for the Thursday days.
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Figure 5.25: Google trace arrivals and i.i.d.-ness test for Friday days.
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Figure 5.26: Google trace arrivals and i.i.d.-ness test for the Monday days.
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The turning point test was applied for each day at confidence level 95% (means

5% of error level). Let us define Ik as the interval for which the sampled data of

day k is i.i.d. In fact we choose a sampling period which is in the intersection of all

intervals Ik which includes the value of 136 second:

sampling period ∈
7⋂

k=1

Ik. (5.14)
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Figure 5.27: Cumulative distribution of HA(t) for days of the week.
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A high arrivals rate is observed on Thursday, low arrivals rate on Saturday,

Sunday and Monday, and medium arrivals rate during the rest of the week (see

Table 5.7). These distributions have different statistical properties reflecting the

fluctuation of traffic over the week (see Figure 5.27). For instance, we observe

an average of 39 (resp. 58) jobs per minute during Sunday (resp. Thursday) with

a standard deviation of 22 (resp. 38). Figure 5.28 shows the results of analyzing

numerically the system whose parameters are described in Table 5.8. We note that

the work presented in this section was published in [Bay16].

Table 5.8: Settings of the last numerical analysis.

Parameters Value Unit Description

max 100 servers total number of servers

d 1 jobs/server processing capacity of a server

b 300 jobs buffer size

cM 7 cost of energy needed by a server

cN 23 cost of a waiting job

cL 29 cost of rejecting a job
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Figure 5.28: Evolution, over a week, of the average number of operational servers (each

point of the curve is the average number of operational servers during half an hour). Our

algorithm adapts the number of operational server according to the traffic variation.
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The methodology adopted in this chapter was built in a tool based on the greedy-

window Algorithm 10. The tool takes as input a sequence of instants 0,1, . . . ,h
and the corresponding arrival traffic distribution HA0

,HA1
, . . . ,HAh

. HAk
,k ∈ 0..h

refers to the traffic during slot t. The data center is described by its parameters: b,

cM, cN , cL, con, M .

The tool’s main function is called for each slot, the function computes the

QoS and the energy accumulated cost over a period of w slot while considering

all possible actions. Then choose the action that minimize this cost. Algorithm 10

shows the core control function of the tool in a simplified way. Note that the tool is

written in Python in a schema that is easily parallelized.



Chapter 6
Comparison of methods and

Conclusion

T
HIS thesis focuses the problem of saving energy consumption in data centers

while guaranteeing a high quality of the services. We use the concept of

histograms and the set of its associated operations in order to better model the job

arrivals and the service rates with general discrete distributions obtained from real

traces, empirical data, or incoming traffic measurements. This way of modeling ar-

rivals avoids classical assumptions like Poisson arrivals assumption or exponential

services time assumption.

Then we presented a queuing model used to formalize the problem of managing

energy and performance in data centers.

After that we introduced the use of DTMC to model and solve a thresholds

optimization strategy. We presented also the use of histogram operators to analyze

numerically the trade-off between energy consumption and performance evaluation

to determine the best threshold based policy among a set of parameters proposed

by the modeler.

Next we used the concept of Markov Decision Process to find the optimal

strategy and then analyze the performance and the energy consumption of the data

center under optimal strategy and using PRISM to specify the problem and to ana-

lyze the experiments. Because of the computational limitation of the MDP method,

we proposed and explained our greedy-window approach to optimize energy and

QoS in the data center. Our greedy-window approach is based on observing every

slot the state of the system (the number of job arrivals, the number of waiting jobs,

the number of rejected jobs and the number of operational servers) then turning on

or off an optimal number of servers to minimize energy consumption and maximize

the QoS (see Algorithm 11).

167
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6.1 Final result

In this section we compare the performance and the energetic gain induced by the

several methods proposed while using real traffic traces to model arrivals.

This traffic trace is sampled with a sampling period equal to the slot duration.

We consider frames of 136 second to sample the trace and construct one empirical

distribution corresponding to arrivals during all the month (see the end of Section

1.3.3 to understand how the value 136 was chosen).

We do not choose to consider the rejected jobs, neither the latency nor the

heterogeneity of the system, because as we observed in Chapter 4 those aspects

lead to the explosion of the space state of the MDP based method. Otherwise, we

set the same conditions, parameters, and assumptions for the different methods.

We found that the use of MDP gives an optimal strategy but need a huge amount of

memory and time to find the best strategy. Additionally, when the parameters of

the model are big (for example when the size of buffer b or the maximum number

of servers M exceeds 200), the current implementations of the value iteration

algorithm (as in PRISM) may not be able to complete the computation to find the

best policy. However our greedy-window algorithm gives a strategy close to the

optimal strategy (2% of difference) and need a little amount of memory and time to

find the best strategy. This greedy-window algorithm is fast compared to the other

methods (see the experimental results of Sections 6.1.1, 6.1.2, 6.1.3, 6.1.4, and

6.1.5 in which we show the difference between the cost of the best strategy given

by our greedy-window algorithm, MDP, truncated MDP, greedy, and threshold

method, we show also the difference between the time of computation of each

strategy and the memory usage).

Because of the explosion of the number of states PRISM gives the message

out of memory. Our algorithm does not have this problem (see experimentation

of Section 6.1.6). The following Tables 6.1 and 6.2 summarizes the theoretical

time-space complexity of MDP and our greedy-window algorithm.

Table 6.1: Time complexity comparison: Notice that the complexities are for the homoge-

neous model without considering latency nor rejected jobs.

Time Theorem

Thresholds U/D O(h×b2× (b+max(SA))× log(b+max(SA))) 3.2

MDP O(h×M 2×b×|SA|) 4.1

Greedy-window O(w×h×M × (b+max(SA))× log(b+max(SA))) 5.5



Chapter 6. Comparison of methods and Conclusion 169

Table 6.2: Space complexity comparison: Notice that the complexities are for the homoge-

neous model without considering latency nor rejected jobs.

Space Theorem

Thresholds U/D O(b2) 3.3

MDP O(h×M ×b) 4.4

Greedy-window O((b+max(SA))× log(b+max(SA))) 5.4

Note that the number of states in MDP is bounded above by b×M , and the

number of transitions is bounded above by M 2×b×|SA|, and the space complexity

of MDP may take into account the two bounds: O(M ×b) gives the size of the

space of states and O(M 2×b×|SA|) represents the size of the sparse matrix of

MDP which stores the transitions. Additionally, the value iteration algorithm need

to use a space of O(h×M ×b) to solve the MDP model and trace-back the actions

sequence of optimal strategy (see Theorem 4.4).

As noticed in Remark 1.4 both the support of HA and its extent are of the

same order, thus in terms of complexity |SA| and max(SA) have the same order.

If additionally we consider that |SA|, max(SA), and b are of the same order of

magnitude, lets say q we will have:

Table 6.3: Time complexity comparison.

Time Space Theorem

Thresholds U/D O(h×b3× log(b)) O(b2) 3.2, 3.3

MDP O(h×M 2×b2) O(h×M ×b) 4.1, 4.4

Greedy-window O(h×M ×b× log(b)×w) O(b× log(b)) 5.4, 5.5

In comparison with MDP, our greedy-window algorithm gives a lower time

complexity as it is linear in M and quasi linear in b, however MDP is quadratic

in M and b. Additionally, as seen at the end of Section 5.2.3, w is negligible

compared to the other factors as b, h, and M .

In the following we give all details of six different experimentation we have

done to compare the methods presented in this work. Notice that, in the first, the

second, the third, and the fourth experimentation we use the same arrival jobs

distribution presented in Figure 6.1.
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Figure 6.1: Arrival traffic distribution.
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6.1.1 First Experimentation

Table 6.4: Settings of the numerical analysis.

Parameters Value Unit Description

M 50 servers total number of servers

d 1 jobs/server processing capacity of a server

b 50 jobs buffer size

h 100 slots horizon

w 5 slots window

E(HA) 12.1 jobs expected arrival jobs per slot

|SA| 50 bins arrival jobs histogram size

max(SA) 52 jobs max arrival jobs per slot

cM 0.3 cost of energy needed by a server

cN 0.2 cost of waiting a job

cOn 0.1 cost of switching on a server
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Figure 6.2: Cost comparison: In the first position is shared between MDP, Truncated-MDP

and Greedy-window algorithm. After that at the fourth position it’s the threshold algorithm

with a cost quite far from the optimal one. And the last position is held by the greedy

algorithm.
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Figure 6.3: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a huge amount of memory and time.
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6.1.2 Second Experimentation

In this experimentation we double the buffer size b and we reduce the period of

analysis h.

Table 6.5: Settings of the numerical analysis.

Parameters Value Unit Description

M 50 servers total number of servers

d 1 jobs/server processing capacity of a server

b 100 jobs buffer size

h 50 slots horizon

w 5 slots window

E(HA) 12.1 jobs expected arrival jobs per slot

|SA| 50 bins arrival jobs histogram size

max(SA) 52 jobs max arrival jobs per slot

cM 0.3 cost of energy needed by a server

cN 0.2 cost of waiting a job

cOn 0.1 cost of switching on a server
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Figure 6.5: Cost comparison: In the first position, the MDP cost is the best one, because

this method computes the best policy. The second position is the Truncated-MDP as it

computes all possible paths within a window. Then at the third position we found the

Greedy-window algorithm which is close to the optimal cost. After that at the fourth

position it’s the threshold algorithm with a cost quite far from the optimal one. And the

last position is held by the greedy algorithm.
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6.1.3 Third Experimentation

In this experimentation we increase the total number of servers M .

Table 6.6: Settings of the numerical analysis.

Parameters Value Unit Description

M 80 servers total number of servers

d 1 jobs/server processing capacity of a server

b 100 jobs buffer size

h 50 slots horizon

w 5 slots window

E(HA) 12.1 jobs expected arrival jobs per slot

|SA| 50 bins arrival jobs histogram size

max(SA) 52 jobs max arrival jobs per slot

cM 0.3 cost of energy needed by a server

cN 0.2 cost of waiting a job

cOn 0.1 cost of switching on a server

Thresholds MDP Truncated-MDP Greedy Greedy-window
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Figure 6.8: Cost comparison: In the first position, the MDP cost is the best one, because

this method computes the best policy. The second position is the Truncated-MDP. Then at

the third position we found the Greedy-window algorithm which is close to the optimal

cost. After that at the fourth position it’s the threshold algorithm with a cost quite far from

the optimal one. And the last position is held by the greedy algorithm.
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Figure 6.6: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a huge amount of memory and time.
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6.1.4 Fourth Experimentation

In this experimentation we increase further the total number of servers M . We also

double the horizon h.

Table 6.7: Settings of the numerical analysis.

Parameters Value Unit Description

M 100 servers total number of servers

d 1 jobs/server processing capacity of a server

b 100 jobs buffer size

h 100 slots horizon

w 5 slots window

E(HA) 12.1 jobs expected arrival jobs per slot

|SA| 50 bins arrival jobs histogram size

max(SA) 52 jobs max arrival jobs per slot

cM 0.3 cost of energy needed by a server

cN 0.2 cost of waiting a job

cOn 0.1 cost of switching on a server

Thresholds MDP Truncated-MDP Greedy Greedy-window
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Figure 6.11: Cost comparison: In the first position, the MDP cost is the best one, because

this method computes the best policy. The second position is the Truncated-MDP. Then at

the third position we found the Greedy-window algorithm which is close to the optimal

cost. After that at the fourth position it’s the threshold algorithm with a cost quite far from

the optimal one. And the last position is held by the greedy algorithm.
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Figure 6.9: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a huge amount of memory and time.





Chapter 6. Comparison of methods and Conclusion 181

6.1.5 Fifth Experimentation
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Arrival histogram with |SA|= 99 and max(SA) = 98.

Figure 6.14: Arrival traffic distribution.

Table 6.8: Settings of the numerical analysis.

Parameters Value Unit Description

M 100 servers total number of servers

d 1 jobs/server processing capacity of a server

b 100 jobs buffer size

h 200 slots horizon

w 5 slots window

E(HA) 24.69 jobs expected arrival jobs per slot

|SA| 99 bins arrival jobs histogram size

max(SA) 98 jobs max arrival jobs per slot

cM 0.1 cost of energy needed by a server

cN 0.1 cost of waiting a job

cOn 0.1 cost of switching on a server
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Figure 6.12: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a huge amount of memory and time.
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Figure 6.15: Cost comparison: In the first position, the MDP cost is the best one, because

this method computes the best policy. The second position is the Truncated-MDP. Then at

the third position we found the Greedy-window algorithm which is close to the optimal

cost. After that at the fourth position it’s the threshold algorithm with a cost quite far from

the optimal one. And the last position is held by the greedy algorithm.
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Figure 6.16: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a huge amount of memory and time.
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6.1.6 Sixth Experimentation
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Arrival histogram with |SA|= 229 and max(SA) = 328.

Figure 6.18: Arrival traffic distribution.

Table 6.9: Settings of the numerical analysis.

Parameters Value Unit Description

M 200 servers total number of servers

d 1 jobs/server processing capacity of a server

b 200 jobs buffer size

h 200 slots horizon

w 5 slots window

E(HA) 48.92 jobs expected arrival jobs per slot

|SA| 229 bins arrival jobs histogram size

max(SA) 328 jobs max arrival jobs per slot

cM 0.1 cost of energy needed by a server

cN 0.1 cost of waiting a job

cOn 0.1 cost of switching on a server
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Figure 6.19: Cost comparison: In the first position, we found the greedy-window algorithm.

After that at the second position it’s the greedy algorithm with a cost quite far from the

greedy-window one. And the last position is held by the threshold method. MDP and

Truncated-MDP were executed for a long period of time and because of the out of memory,

they were not able to finish the computation of the strategy.
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Figure 6.20: Space and computation-time comparison: In the first position, the greedy and

the greedy window algorithms consume a negligible amount of space and take a small

period of time to compute the strategy. At the second position the threshold method use

a medium amount of space and time. And at the last position MDP and Truncated-MDP

need a very huge amount of memory and time which are not available in our machine.
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Additionally we notice that the analysis under greedy-window algorithm can be

on-line1, dynamic2 and adaptive3, that means: every slot, we take the parameters

of the system (the arrival could be modeled with a histogram that change over

time) and we calculate in real time a sub-optimal strategy (close to the optimal

one) that gives the number of machines to be turned depending on the number of

waiting jobs. Finally, where comparing the time-space complexity of MDP and

greedy-window algorithm, we observe that MDP needs a big structure to store

the matrix state/action transition and a huge amount of time to solve Bellman’s

equation in order to return the optimal policy. Our greedy-window algorithm gives

a policy close to the optimal one (MDP is only around 2% better than greedy-

window algorithm, see for instance Figure 6.22). Greedy-window algorithm is

more efficient because it is faster and avoids state space explosion.
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Figure 6.22: Average cost per slot for MDP and window-greedy algorithm when varying h.

1An on-line algorithm is able to compute/do the requested value/task while the input is given

piece by piece and not entirely.
2A dynamic algorithm is able to handle the fact that each time the input data is modified.
3An adaptive algorithm is able to handle the fact that the input data may change over time.
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6.2 Contributions

This thesis is a contribution to the modeling of the exact energy optimization in

data centers in the context of the discrete time with inputs/outputs jobs modeled

by general discrete distributions obtained from real traces or empirical data when

considering various real aspects of data centers like heterogeneity of the servers

(see Section 4.2) or their latency (see Section 4.3).

A first possible solution is to try to express the optimization under simple

form as what we done when considering the approaches based on thresholds.

We show that threshold-based solutions, which are by definition monotones (see

Definition 4.2), are not optimal (see Section 4.1.5.5), use less space but require a

large computation time. So they are not dynamic and they can not be online.

In fact, as a second solution, we implemented and analyzed theoretically and

practically exact optimization when using MDP in Chapter 4. We show how it

causes the problem of the explosion of the use of resources in terms of computation

time and memory space (see Theorems 4.8 and 4.9), which makes it impractical,

non-scalable, non-dynamic, and non-online. Otherwise we prove that the optimal

policy is not monotone which means that it can not be expressed as a double

threshold structure (see Theorem 4.6).

Our third solution explained along Chapter 5. is to give an efficient algorithm

that computes a quasi-optimal solution, better than the MDP and the thresholds

based solutions, in terms of time computation and in memory space. This makes

this solution practical, scalable, dynamic. Additionally, as minor contributions:

1. We found that heterogeneity can be exploited to effectively reduce energy

consumption (see Section 4.2.5).

2. We have also proposed an algorithm that allows to find the best sampling

period of real traces to have an i.i.d. distribution based on statistical tests

(see the end of Section 1.3.3).

3. We implemented:

(a) a tool that allow us to generate automatically PRISM specifications of

our different Dynamic Power Management models. With this tool we

can perform a lot of experimentation by easily changing parameters

without rewriting by hand thousand lines of PRISM code. This tool

was used to prepare all results in Chapter 4.

(b) a tool that implemented the methodology based on threshold policy

presented in Section 3.2 and the methodology based on greedy-window

algorithm presented in Chapter 5.
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6.3 Future work

After having presented how we can model, formalize and solve the problem of

energy optimization in data centers according to several approaches, and after

having analyzed them theoretically and numerically, as a perspective, we intend to

test our solutions and compare them in a real context by deploying them in a true

heterogeneous server cluster architecture. The manager is a machine connected

to the network of the cluster and host a software application based on the greedy-

window that observes the system and decides what action to take. This manager

must have access: i) to the cluster network to be able to ask a particular server to turn

on or off, ii) to the flow of incoming requests to the system to continually update

the distribution of arrivals using the histograms, iii) to the energy consumption of

the servers, iv) to the machine dispatcher queries on different servers to estimate

the number of queries pending and rejected requests.

Queu

Job arrivals
stream source

Power
supply

ServerServerServer

ServerServerServer

ServerServerServer

ServerServerServer

DPM
Manager

Figure 6.23: Deployment schema.

Otherwise, we are working to include all the tools developed in this work in

one tool that implements all the optimization methods described in this thesis.

Additionally, we plan to test our greedy-window algorithm for other optimization

problems in other domains other then reducing energy in Data Centers.
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Appendix A
Schwartz et al. paper detail [SPTG12]

Schwartz et al. in [SPTG12] present a theoretical queuing model to evaluate the

trade-off between waiting time and energy consumption if only a subset of servers

is active all the time and the remaining servers are enabled on demand. In this paper

the problem is modeled by a queuing model with an infinite buffer size b =+∞.

Authors assume that the jobs in their model arrive according to an independent

Poisson process with rate λ and each server accepts only one job at a time with

an exponentially distributed service time with mean
1

µ
. Then, the system can be

modeled using a M/M/k queuing system. A number of m0 servers called base-

line-servers is active all the time, and a number of m1 additional servers called

reserve-servers is initially turned off and will be activated when the total number

of jobs in the system increases and exceeds some threshold θ1. The reserve-servers

will be turned off again if the number of jobs in the system decreases and becomes

less than another threshold θ0. For a server, the authors consider three level of

energy consumption:

1. co f f when the server is turned off,

2. cbusy when the server is turned on and proceeding a job, and

3. cidle when the server is turned on without proceeding a job.

They also consider mainly two random variables. Random variable x gives the

number of jobs in the system where only the base-line-servers are activated and

in this case x(i) is the stationary probability that i jobs are in the system. And the

random variable y gives the number of jobs in the system where additionally the

reserve-servers are activated and in this case y(i) is the stationary probability that

i jobs are in the system. Using CTMC, and based on local balance equations of

202



Appendix A. Schwartz et al. paper detail [SPTG12] 203

each state, they use analytical calculus to find the expression of each x(i) and y(i)
in function of m0, m1, θ0 and θ1:

x(i) =





1−
m0+θ1

∑
k=1

x(k)−
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k=θ0

y(k) For i = 0

ai

i!
x(0) For 0 < i < θ0
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ai−θ0+1
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− y(θ0)

θ0si−θ0
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x(m0)
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m
i−m0
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− y(θ0)
θ0sm0−θ0
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+y(θ0)
θ0
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1−a
For m0 < i≤ m0 +θ1

(A.1)

y(i) =


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am0+θ1+1 (θ0−1)!

(
aθ1sn−θ0
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ak (i− k)!
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(A.2)

where a =
λ

µ
, ρ =

a

m0 +m1
, and si =

i

∑
k=0

ak(m0− k−1)!.

Authors suggest finding the best m0, m1, θ0 and θ1 that minimize the following

cost function:

cost = αE(e)+(1−α)E(w) (A.3)

where:

E(w) =
m0+θ1

∑
i=m0

x(i)
i−m0

λ
+

+∞

∑
i=m0+m1

y(i)
i−m0−m1

λ
(A.4)
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and

E(e) =
m0

∑
i=0

x(i)
(
icbusy +(m0− i)cidle +m1co f f

)

+
m0+θ0

∑
i=m0+1

x(i)
(
m0cbusy +m1co f f

)

+
m0+m1

∑
i=θ1

y(i)
(
icbusy +(m0 +m1− i)cidle

)

+
+∞

∑
i=m0+m1+1

y(i)(m0 +m1 +1)cbusy

(A.5)

where E(e) is the expected value of energetic cost and E(w) is the expected value

of waiting time. Parameter α ∈ [0,1] can be chosen in such a way that a desirable

trade-off is made.

Du to the hardness to solve analytically the above optimization problem, authors

suggest to solve it in a trivial way by computing the cost function for all valid

combinations of m0, m1, θ0 and θ1, sorting the cost function values and choosing

the minimum.

Finally, the experimental simulation results done in this paper, show that

configurations as the one given in Table 2.1, leads to an energy consumption

significantly reduced while still having an acceptable waiting time. They observe

that the service was guaranteed while still saving about 40% of energy.

Table A.1: Experimental simulation settings in [SPTG12].

Parameter Value Description

M = m0 +m1 100 Total number of servers

λ 0.10 Exponential inter-arrival job arrivals rate

µ 0.0025 Exponential service rate



Appendix B
Mitrani’s paper detail [Mit13]

In [Mit13] Mitrani considers the problem of managing servers of a data center

in order to satisfy the conflicting objectives between high QoS and low energy

consumption. As in [SPTG12] Mitrani modeled the problem by a queuing model

with an infinite buffer size b = +∞. He assumes that the jobs arrive according

to an independent Poisson process with rate λ and each server accepts only one

job at a time with an exponentially distributed service time with mean
1

µ
. So, the

system can be modeled using a M/M/k queuing system. In addition, M is the

total number of servers, a subset of m1 servers called reserve is turned on when the

number of waiting jobs in the system is sufficiently high and exceeds a threshold U

(for Up), and is turned off when that number of jobs is sufficiently low and exceeds

another threshold D (for Down). Unlike Schwartz et al. [SPTG12], Mitrani takes

into account the latency of the servers, which is the period of time needed by a

server to be switched on. During this period a server consumes an energy surcharge

to be powered up while no job is served. All the reserve servers become operational

together after an interval of time distributed exponentially with mean
1

ν
. The main

objective of this paper is to find the best size of the reserve m1 and the best values

of thresholds U and D that allow a minimum total cost. The author considers one

level of energy consumption of a server, which means that energy consumption

depends on the number of switched on servers. He mainly considers three random

variables:

• Variable x gives the number of jobs in the system where the reserve is off

and in this case x(i) is the stationary probability that i jobs are in the system.

• Variable y gives the number of jobs in the system during latency period (the

reserve is powering up). In this case y(i) is the stationary probability that i

205



Appendix B. Mitrani’s paper detail [Mit13] 206

jobs are in the system.

• Variable z gives the number of jobs in the system where additionally the

reserve is powered on. In this case z(i) is the stationary probability that i

jobs are in the system.

Using CTMC, and based on local balance equations of each state, he uses analytical

calculus (generating functions) to find the expression of each probability x(i), y(i)
and z(i) in function of m1, U , and D where 0 < D < U < M . Probabilities x(i),
y(i), and z(i) allow to give expression of E(n) the average number of jobs in the

system:

E(n) =
U

∑
i=0

ix(i)+
U

∑
i=D+1

i(y(i)+ z(i))+g′1(1)+g′2(1) (B.1)

where:





g1(1) =
x(U)+ y(U)

ζ2−1

g′1(1) = g1(1)

(
U +1+

1

ζ2−1

)

g2(1) =
1

M µ−λ

(
λz(U)+

g1(1)νζ2

ζ2−1

)

g′2(1) = (U +1)g2(1)+
1

M µ−λ

(
λg2(1)+

g1(1)νζ2

(ζ2−1)2

)

ζ2 ∈ R : The biggest zero of quadratic polynomial λζ(ζ−1)+M µ(1−ζ)−νζ

Additionally probabilities x(i) allow to give expression of E(m) the average number

of servers consuming energy in the system:

E(m) = M −m0

U

∑
i=0

x(i). (B.2)

Mitrani suggests an heuristics solution for the above equations in order to give

optimal values of m1, U , and D that minimize the following objective cost function:

cost = c1E(n)+ c2E(m) (B.3)

where E(n) represents the average number of jobs in the system, E(m) gives the

average number of servers consuming energy in the system, coefficients c1 and

c2 reflect the relative importance placed on QoS and energy consumption, respec-

tively. He obtained a heuristic value of m1 (size of the reserve) by arguing as

follows. Let n(m0) be the average number of jobs in a system where there are

m0 permanently operative servers. Consider the change in costs as the number
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of servers is increased from m0−1 to m0: the average queuing cost per unit time

would decrease by c1 (n(m0−1)−n(m0)). At the same time, the energy consump-

tion cost would increase by c2 . Hence, the increase would be advantageous if

c1 (n(m0−1)−n(m0)) > c2. Consequently, the optimal number of permanently

operative servers would be the largest m0 for which an increase from m0− 1 to

m0 is advantageous. Mitrani proposed an heuristic that consists in approximating

n(m0) by the M/M/1 expression: n(m0) =

λ
µ

M − λ
µ

, an optimal value of m0 should

be equal to:

m∗0 =

⌊
λ

µ
+

1

2

(
1+

√

1+4
λc1

µc2

)⌋
. (B.4)

In fact the optimal size of the reserve is: m∗1 = max{0,M −m∗0}.

Consider that we turn off the reserve when some of the non-reserve servers

become idle. In this case, the heuristic value of the lower threshold D can be fixed

to:

D∗ = M −m0−1. (B.5)

To derive a heuristic for the upper threshold, Mitrani uses deterministic fluid

approximation of the queuing process and he deduces:

U∗ = max

{
m0−1,

⌈
m0µ−λ

ν
+

c2(m0µ−λ)

c1µ

(
1+

√

1+
2c1(M µ−λ)

c2ν(m0µ−λ)

)⌉}
. (B.6)

Over parameters shown in Table B.1, Mitrani carried out several numerical experi-

ments to evaluate the quality of his heuristics.

Table B.1: Experimental simulation settings in [Mit13].

Parameter Value Description

M = m0 +m1 20 Total number of servers

λ 4, 8, 10, 12 Exponential inter-arrival job arrivals rate

µ 1 Exponential service rate

ν 0.1 Exponential latency rate

He observed that when the size of reserve m1 is well chosen, it is not important

if the upper threshold U is overestimated. On the other hand, if m1 is badly chosen,

then both underestimating and overestimating the optimal threshold U can increase

the cost substantially. And as expected, the heavier the offered load, the fewer

servers should be reserved. Finally he compares the performance of the optimal
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policy (m0, U , and D are chosen optimally), with that of the heuristic policy (using

the heuristic values for m0, U , and D), and also with the do nothing policy of not

reserving any servers. His experimental results confirm that the heuristic policy is

practically indistinguishable from the optimal policy, with only a small difference.

This has been observed to be the case for a large variety of system configurations

and cost coefficients. As future work, Mitrani suggests to extend his model by

introducing k blocks of reserves, of sizes m1,m2, . . . ,mk, with associated upper and

lower thresholds. Reserve 1 is turned on when the queue exceeds level U1, reserve

2 is turned on when the queue exceeds level U2 >U1, etc.



Appendix C
Including lost into the state of the

system

This section is an additional experimental analysis for the homogeneous model of

Chapter 4. We analyze the impact of considering an MDP model in two way:

1. each state of the MDP is modeled only by the number of operational servers

and the number of waiting jobs in the buffer (m,n),

2. each state of the MDP is modeled by the number of operational servers and

the number of waiting jobs in the buffer, and additionally by the number of

rejected jobs (m,(n, l)).

As shown previously in Theorems 4.1 and 4.2, Figures C.1 and C.2 show that the

size (size can be seen as the number of states or the number of transitions) of the

MDP is more important when we consider the second model. Nevertheless, the

spatial complexity of both model still important even when lost l is not considered.
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Figure C.1: MDP state number when considering or not the lost jobs (b = 100).
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Figure C.2: MDP transition number when considering or not the lost jobs (b = 100).



Appendix D
MDP for variable arrival distribution

Our analysis of the Google trace arrival jobs [Wil11, RWH11] shows that arrival

traffic changes during time and presents a non negligible level of fluctuation daily

along the month (see Figure 1.7 of Chapter 1), and hourly as shown in Figure 4.28

which present three samples of the arrival traffic for three different hours. For

example the traffic between 6h and 7h for 27 May 2011 (blues curve), and the

traffic between 10h and 11h for 19 May 2011 (red curve), are close and may be

modeled by the same histogram. However it is clear that the traffic between 14h and

15h for 18 May 2011 (orange curve), must be modeled by another histogram as the

traffic during this period is significantly higher than the two first one. Figure 4.29

shows that even from a minute to another minute the traffic my change significantly.

In fact, in contrary of the previous models of MDP where we consider that arrivals

are modeled by the same histogram over time. In this section, we will consider

that each slot we may receive a number of arrival jobs modeled by a different

histogram.

D.1 Problem specification

Let DC be a data center composed of M identical servers. DC receives jobs

requesting the offered service. We assume that the arrival process may change

every slot. This allows us to model for instance hourly or daily variations of the job

arrivals, even generally a variation each slot of time. Suppose that the analysis will

be done over h a whole period of time. Thus, the number of jobs arriving to the data

center per slot during time slot t is modeled by a histogram HA(t) where PA(t)(i)
gives the probability to have i arrival jobs during slot t. Note that we assume that

during a slot arrivals of jobs are independent, and their distribution is obtained from
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real traces, empirical data, or incoming traffic measurements. In order to focus

more on the MDP modelization for the case of a job arrivals process modeled by a

variable histogram over time, we assume some restrictions that were considered in

the previous MDP model:

1. The maximal number of jobs that can be served by one server in one slot is

modeled by histogram HD.

2. A server needs no time to be switched on or off, the switching-on leads

instantaneously to an additional energetic cost con however the switching-off

takes place without consuming any additional amount of energy.

3. For the QoS metric, the rejected jobs are not considered, only the waiting

jobs will be considered.

In this manner, the queuing model is a batch arrival queue with constant services

and finite capacity buffer b (buffer size). The number of waiting jobs in the buffer

is denoted by n. The number of operational servers is denoted by m. We assume

that initially the number of operational servers, the number of waiting jobs. The

maximal number of servers that can be operational is M . As shown before the

number of waiting jobs n can be computed by induction where the following

equations give the number of waiting jobs in the buffer. For a number of i arrival

jobs, and if each server processes at most d jobs per slot, we will have:

n←min{b,max{0,n+ i−d×m}}. (D.1)

D.1.1 Energy and Performance metric

The energy consumption takes into account the number of operational servers. Each

server consumes some units of energy per slot when a server is operational and it

costs an average of cM ∈ IR+ monetary unit. During the latency period a server

may consume an additional amount of energy that costs an average of cOn ∈ IR+

monetary unit which is the energetic cost needed to switch-on a server. Additionally,

we consider that a server switches-on immediately. The total consumed energy is

the sum of all units of energy consumed among a specific period. QoS takes into

account the number of waiting. Each waiting job costs cN ∈ IR+ monetary unit per

slot.

D.1.2 Objective function

For a given period of time, a dynamic power management system consists in doing

each slot an action (turn on or turn-off a specific number of servers) in order to adapt
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the number of operational servers to incoming job changes. The optimal strategy

consists in finding the best sequence of actions to minimize the accumulated overall

cost (energetic cost plus performance cost). The cost generated for each slot is a

linear combination of energetic and QoS costs called objective function:

n× cN +m× cM +max{0,m′−m}× cOn (D.2)

where n is the number of waiting jobs, m is the current number of operational

servers, and m′ is the number of operational servers after doing an action.

The problem we have to consider is to find a trade-off between the performance

and the energy consumption. As the number of servers changes with time, the

system becomes more complex to analyze than a system with servers operational

all the time.

In order to find the optimal strategy and then analyze the performance and the

energy consumption of the data center under this optimal strategy, we will continue

to use the concept of Markov Decision Process to formulate our optimization

problem.

D.2 Optimization

In order to model the above specification we may consider two kind of solution.

The second one is more adapted to be implemented in a model checker in-which

the value iteration algorithm is predefined and encoded in the kernel of the model

checker as in PRISM or MdpToolBox (see Annex D for more details). The first

one is an adaptation of the generic value iteration algorithm for the case of variable

distribution arrival jobs. In fact for the first solution we consider the possibility

to write a version of value iteration algorithm which is specific for this solution.

Thus we adapt the computation of the value function V to take into account the

appropriate arrival job histogram for each slot t. Notice that both approaches give

rise to the same number of transitions (see Table D.1).

Table D.1: Approaches comparison.

States Transitions Advantage

First approach O(M ×b) O(M 2×b×h×|SA|) Less states

Second approach O(M ×b×h) O(M 2×b×h×|SA|) Use of PRISM
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D.3 First approach

In this section we give a modelization that can not be written in a model checker

in-which the value iteration algorithm is predefined as in PRISM or MdpToolBox,

because it is based on a modified version of the generic value iteration algorithm

that is able to take into account the fact that each slot we may have a different

distribution for the arrival jobs process.

D.3.1 Modelization

Let HA(t) = (SA(t),PA(t)) be the histogram used to model the arrival of jobs during

slot t. Assume that the optimization will be done over a period of h slot (the

horizon). Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set of

actions, P = {Pt | t ∈ [0..h]} is a set of transition probability matrices where Pt is

the transition probability matrix during slot t, and finally C is the immediate cost

of each action. The state of the system is defined by the couple (m,n) where m is

the number of operational servers, n is the number of waiting jobs. However t the

age of the system, will be associated to the probability function P (remark that we

need to add t into P in order to be able to catch the changes in the distribution of

arrival jobs HA(t)). Indeed the state space S is defined as:

S = {(m,n) | m ∈ [0..M ] and n ∈ [0..b]}. (D.3)

At the beginning of each slot, and based on the current state of the system, an action

α j ∈ A will be made to determine how many servers will be operational during the

current slot. In fact the action space A is defined as A = {α j | 0≤ j ≤M }, where

action α j consists in keeping exactly j operational servers during the current slot.

We have a probability of P
α j

t,ss′
to move from state s = (m,n) to s′ = ( j,n′)) under

action α j, during slot t. This probability is defined as:

P
α j

t,ss′
= ∑{

for each i ∈ SA(t) and each d ∈ SD satisfying:

n′ = min{b,max{0,n+ i−d× j}}

PA(t)(i)×PD(d) (D.4)

Consequently moving from state s = (m,n) to s′ = ( j,n′) under action α j induces

immediately a cost C
α j
s defined as:

C
α j
s = j× cM +max{0, j−m}× cOn +n× cN . (D.5)

Algorithm 12 is an adaptation of the generic value iteration algorithm to include

the fact that arrival jobs distribution may change over time.
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Algorithm 12: Value iteration algorithm for MDP.

1Data: M , C , S , horizon h

2Data: P0,P1, · · · ,Pt , · · · ,Ph

3Result: (Vh,π
∗
h)

4foreach s ∈ S do

5V0(s) = 0

6end

7for k← 1 to h do

8foreach s ∈ S do

9(m,n)← s

10for a j← a0 to aM do

11C
α j
s ← j× cM +max{0, j−m}× cOn +n× cN

12Qk(s,a j)← C
α j
s +∑

s′

P
α j

h−k,ss′
Vk−1(s

′)

13end

14π∗k(s)← argmin
a

Qk(s,a)

15Vk(s)← Qk(s,π
∗
k(s))

16end

17end

18return (Vh,π
∗
h)

D.3.2 Space and time complexities

In this section we will evaluate the space complexity of the data structure behind

our MDP formulation.

Theorem D.1. The number of states of the MDP is in O(M ×b).

Proof. Every state of the MDP includes two element:

1. the number of operational servers which is between 0 and M ,

2. the number of waiting jobs in the buffer which is bounded above by b, and

So, |S | is bounded above by (M +1)× (b+1).

Theorem D.2. The number of transitions of the MDP is in O(M 2×b×h×|SA|).

Proof. From each state of the MDP we have at most (M +1) actions, and each

action leads to a number of transitions equals to |SA| (one transition for each bin

in the support of the arrival distribution). However as we need to consider the
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set of (h+ 1) matrices of probability transition the total number of transitions

is |S | × |SA| × (h+ 1). In fact, as the number of states was already evaluated

in Theorem D.1, we deduce that the number of transitions is bounded above by

M ×b× (M +1)×|SA|×h which is in O(M 2×b×h×|SA|).

Theorem D.3. The computation-time to find the optimal strategy with the value

iteration algorithm is in O(h×b2×M 3).

Proof. As we know, at each iteration, for each of |S | states, the value iteration

algorithm, which is polynomial in number of states, computes expectation for

|A | actions. In general, each expectation takes O(|S |) time, however in this

modelization each expectation takes only O(M ×b) time. In fact the total time

complexity is O(h×|S |×|A |×(M ×b)) which equals O(h×b2×M 3) (see proof

of Theorem 4.3 for more details).

In fact, even if the number of servers in the data center is low, if we want

an optimization over an important period of time (a big horizon h), the MDP

structure will be very huge and parsing it to find the optimal solution becomes very

important.

D.3.3 Example

To illustrate our second formalization Let us show an MDP for a very simple data

center:

1. One server and buffer size equals one which means that M = 1 and b = 2.

2. We set service rate of each machine as HD = ∆1.

3. For a period of 3 slots, job arrivals are modeled as the following:

(a) During t = 0 by histogram HA(t) = ∆1.

(b) During t = 1 by histogram HA(t) = ∆1.

(c) During t = 2 by histogram HA(t) = (SA,PA) where SA = {0,1}, PA(0) =
0.1 and PA(1) = 0.9.

So, MDP= (S ,A ,P ,C ) where A = {α0,α1}, C can be deduced from Relations

D.4 and D.5, and P from Figures D.3, D.1, D.2. And space of states defined as:

S = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}.
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Figure D.1: Transition probability matrix

for the second slot Pt=1.
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Figure D.2: Transition probability matrix

for the second slot P t = 2.
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Figure D.3: Transition probability matrix for the first slot Pt=0.

D.4 Second approach

In this section we give a modelization that can be written in any model checker

in-which the value iteration algorithm is predefined as in PRISM or MdpToolBox.

D.4.1 Modelization

Let (S ,A ,P ,C ) be an MDP where S is the state space, A is the set of actions,

P is the transition probability, and C the immediate cost of each action. Let
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HA(t) = (SA(t),PA(t)) be the histogram used to model the arrival of jobs during slot

t. Assume that the optimization will be done over a period of h slot (the horizon).

The state of the system is defined by the tuple (m,n, t) where m is the number of

operational servers, n is the number of waiting jobs, and t the age of the system

(remark that we need to add t into the state of the system in order to be able to

catch the changes in the distribution of arrival jobs HA(t)). Indeed the state space S
is defined as:

S = {(m,n, t) | m ∈ [0..M ] and n ∈ [0..b] and t ∈ [0..h]}. (D.6)

At the beginning of each slot, and based on the current state of the system, an action

α j ∈ A will be made to determine how many servers will be operational during

the current slot. In fact the action space A is defined as A = {α j | 0 ≤ j ≤M },
where action α j consists in keeping exactly j operational servers during the current

slot. We have a probability of P
α j

ss′
to move from state s = (m,n, t) to s′ = ( j,n′, t ′))

under action α j. This probability is defined as:

P
α j

ss′
= ∑



for each i ∈ SA :

n′ = min{b,max{0,n+ i−d× j}}
t ′ = t +1

PA(i). (D.7)

Consequently moving from state s = (m,n, t) to s′ = ( j,n′, t ′) under action α j

induces immediately a cost C
α j
s defined as:

C
α j
s = j× cM +max{0, j−m}× cOn +n× cN . (D.8)

The immediate cost C
α j
s , incorporate three parts:

1. The first part is j× cM, where cM is the cost of energy consumption of one

working server per slot and j is the number of working servers during the

current slot. This part presents the total cost of energy consumed by the

operational servers during the current slot.

2. The second part is max{0, j−m}× cOn, where cOn is the energetic cost

of switching-on one server from stopping mode to working mode and

max{0, j−m} is the number of servers switched-on at the beginning of

the slot. This part presents the total cost of energy used to switch-on servers

at the beginning of the current slot.

3. The third part is n× cN , where cN is the cost of keeping one job in the buffer

during the current slot and n is the number of waiting jobs. This part presents

the total cost of maintaining waiting jobs in the buffer during the current slot.

Table D.2 summarizes parameters used in our model and our MDP formulation.
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Table D.2: Model and MDP Parameters.

Parameters Description

h duration of analysis

M total number of servers

b buffer size

m number of operational servers

n number of waiting jobs

HA(t) job arrivals histogram for slot t

∆d histogram of service jobs rate

cOn energetic cost of switching-on one server from stopping mode to working mode

cM energetic cost of one working server during one slot

cN cost of one waiting job in the buffer during one slot

S set of all possible states

A set of all possible actions

s = (m,n, t) system state

s0 = (0,0,0) starting state

α j action to keep exactly j operational servers

P
α j

ss′
probability of transition from s to s′ under action α j

C
α j
s immediate cost from s under action α j

D.4.2 Space and time complexities

In this section we will evaluate the space complexity of the data structure behind

our MDP formulation.

Theorem D.4. The number of states of the MDP is in O(M ×b×h).

Proof. Every state of the MDP includes three element:

1. the number of operational servers which is between 0 and M ,

2. the number of waiting jobs in the buffer which is bounded above by b, and

3. the age of the system which can be at most equals to the horizon h.

So, |S | is bounded above by (M +1)× (b+1)× (h+1).

Theorem D.5. The number of transitions of the MDP is in O(M 2×b×h×|SA|).

Proof. From each state of the MDP we have at most (M +1) actions, and each

action leads to a number of transitions equals to |SA| (one transition for each bin in

the support of the arrival distribution). In fact, as the number of states was already

evaluated in Theorem D.4, we deduce that the number of transitions is bounded

above by M ×b×h× (M +1)×|SA| which is in O(M 2×b×h×|SA|).
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Theorem D.6. The computation-time to find the optimal strategy with the value

iteration algorithm is in O(h2×b2×M 3).

Proof. As we know, at each iteration, for each of |S | states, the value iteration

algorithm, which is polynomial in number of states, computes expectation for

|A | actions. In general, each expectation takes O(|S |) time, however in this

modelization, an action can only moves the system from a state (m,n, t) to any

state (m′,n′, t +1), which means that each expectation takes only O(M ×b) time.

In fact the total time complexity is O(h× |S | × |A | × (M × b)) which equals

O(h2×b2×M 3) (see proof of Theorem 4.3 for more details).

In fact, even if the number of servers in the data center is low, if we want an

optimization over an important period of time (a big horizon h), the MDP structure

will be huge and parsing it to find the optimal solution becomes important.

D.4.3 Example

To illustrate our formalization Let us show an MDP for a very simple data center:

1. One server and buffer size equals one which means that M = 1 and b = 2.

2. We set service rate of each machine as d = 1.

3. For a period of h = 8 slots, job arrivals are modeled as the following:

(a) During t = 0,1,2 by histogram HA(t) = (SA,PA) where SA = {0,1},

PA(0) = PA(1) =
1

2
.

(b) During t = 3,4,5 by histogram HA(t) = (SA,PA) where SA = {0,1,2},

PA(0) = PA(1) = PA(2) =
1

3
.

(c) During t = 6,7 by histogram HA(t) = (SA,PA) where SA = {0,1,2,3},

PA(0) = PA(1) = PA(2) = PA(3) =
1

4
.

So, MDP= (S ,A ,P ,C ) where A = {α0,α1}, P and C can be deduced from

Relations D.7 and D.8. And space of states defined as:

S = {(0,0, t),(0,1, t),(0,2, t),(1,0, t),(1,1, t),(1,2, t) | t = 0, . . . ,8}.
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Figure D.4: MDP example for arrival distribution that change over time.
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E.1 Energy

What is energy? Each of us experiences to feel like to have energy or to be energetic.

Thus, energy is this thing that allows us to walk, to act, to be active, to go work...

However, we can lose energy in the evening when we get back from work. In fact

we imagine energy as a volatile entity or a mystical substance. But that intuitive

sense has inspired us to discover the most powerful and useful concept in physics.

According to Oxford English Dictionary energy, in physics, is the property of

matter and radiation which is manifest as a capacity to perform work (such as

causing motion or the interaction of molecules). According to Cambridge English

Dictionary energy is the power from something such as electricity or oil that can

do work, such as providing light and heat.

In physics, energy is not a substance. Energy, is a number, a quantity. And

the concept of energy began taking it rigorous mathematical shape during the 17th

century initially by Gottfried Leibniz and Isaac Newton. However, in simple words,

we can say that energy is the ability to do work, all kinds of work. And work is

just the act of displacing something by applying force.

For example, when you enjoy your preferable meal, the energy from that food is

transported into the trillions cells of your body in order to accomplish their several

physiological and biological activities as making muscle cells contract, transporting

materials from one organ to another, making copies of DNA, assembling proteins,

and all the rest of work of a living being.

However there is a very important thing to remember: once the work is done,

the energy is not done. Because energy never goes away. It can never be destroyed,

and in the same way, it can never be created. It can only be transferred from one
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source to another, like, how the energy in the food that were in the meal were

transferred into the body, or it can be transformed from one form into another

like the chemical energy in the wood being transformed to light and heat as fire.

In fact when using expression as energy production or energy consumption we

need to keep in mind that energy can neither be produced nor consumed. Energy

consumption is only a convention expression to mention the transformation energy

from one form to another form when doing specific work.

To fully introduce energy, it is important to understand how it is measured. As

said before energy is the capacity to do work and is equal to force × distance, in

other words it is the force required over a distance. Work is measured in joules and

therefore this is one of the main units for measuring energy. Joule is a metric unit

equal to a newton-meter or the amount of work done when a force of one newton

is moved by one meter. Work may also be measured in thermal units and calorie is

the amount of energy needed to raise the temperature of one gram of water by one

degree Celsius at normal atmospheric pressure. Another measure of energy that

we may have heard about is a BOE, a barrel of oil equivalent, which is the energy

contained in one barrel of oil.

Power and energy are not the same thing. Unfortunately those terms are

sometimes used interchangeably. Power is the rate at which energy is consumed or

produced and is equal to energy over time. In the metric system power is measured

in watts which is equal to one joule per second. Not confused with a watt hour

which is the energy consumed by a one watt device operating for one hour. Thus

watt hours represent a quantity of energy which is the unit we see on our electricity

bills.

Table E.1: Units of energy

Unit Symbol Joule equivalent

electronvolt eV 1.6021766208×10−19 J

calorie cal 4.184 J

kilowatt-hour kWh 3.6×106 J

tonne of TNT tonne of TNT 4.184×109 J

barrel of oil equivalent BOE 6.1178632×109 J
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Table E.2: List of some of the most important symbols and notations of the manuscript

Symbol Meaning

N Set of natural numbers

R Set of real numbers

x,y,z, . . . Discrete random variables

X ,Y,Z, . . . Histograms

∆v Dirac function histogram

QoS Quality of the Service

MDP Markov decision process

M Total number of server

b Buffer size

n Number of waiting jobs

m Number of operational servers

U Up threshold

D Down threshold

cM Energetic cost for running one operational server during one slot

cN Waiting cost for one job over one slot

cL Rejection cost for one job over one slot

SRN Stochastic Reward Networks

SAN Stochastic Activity Networks



Résumé

Pour garantir à la fois une bonne performance des services offerts par des centres de données, et une consomma-

tion énergétique raisonnable, une analyse détaillée du comportement de ces systèmes est essentielle pour la conception

d’algorithmes d’optimisation efficaces permettant de réduire la consommation énergétique. Cette thèse s’inscrit dans ce

contexte, et notre travail principal consiste à concevoir des systèmes de gestion dynamique de l’énergie basés sur des

modèles stochastiques de files d’attente contrôlées. Le but est de rechercher les politiques de contrôle optimales afin de les

appliquer sur des centres de données, ce qui devrait répondre aux demandes croissantes de réduction de la consommation

énergétique et de la pollution numérique tout en préservant la qualité de service. Nous nous sommes intéressés d’abord à la

modélisation de la gestion dynamique de l’énergie par un modèle stochastique pour un centre de données homogène, princi-

palement pour étudier certaines propriétés structurelles de la stratégie optimale, telle que la monotonie. Après, comme des

centres de données présentent un niveau non négligeable d’hétérogénéité de serveurs en termes de consommation d’énergie

et de taux de service, nous avons généralisé le modèle homogène à un modèle hétérogène. De plus, comme le réveil (resp.

l’arrêt) d’un serveur de centre de données n’est pas instantané et nécessite un peu plus de temps pour passer du mode veille

au mode prêt à fonctionner, nous avons étendu le modèle dans le but d’inclure cette latence temporelle des serveurs. Tout

au long de cette optimisation exacte, les arrivées et les taux de service sont spécifiés avec des histogrammes pouvant être

obtenus à partir de traces réelles, de données empiriques ou de mesures de trafic entrant. Nous avons montré que la taille

du modèle MDP est très grande et conduit au problème de l’explosion d’espace d’états et à un temps de calcul important.

Ainsi, nous avons montré que l’optimisation optimale nécessitant le passage par un MDP est souvent difficile, voire pra-

tiquement impossible pour les grands centres de données. Surtout si nous prenons en compte des aspects réels tels que

l’hétérogénéité ou la latence des serveurs. Alors, nous avons suggéré ce que nous appelons l’algorithme greedy-window

qui permet de trouver une stratégie sous-optimale meilleure que celle produite lorsqu’on envisage un mécanisme spécial

comme les approches à seuil. Et plus important encore, contrairement à l’approche MDP, cet algorithme n’exige pas la

construction complète de la structure qui encode toutes les stratégies possibles. Ainsi, cet algorithme donne une stratégie

très proche de la stratégie optimale avec des complexités spatio-temporelles faibles. Cela rend cette solution pratique et

permet son implémentation dans un contexte à temps réel.

Abstract

To ensure both good data center service performance and reasonable power consumption, a detailed analysis of the behavior

of these systems is essential for the design of efficient optimization algorithms to reduce energy consumption. This thesis

fits into this context, and our main work is to design dynamic energy management systems based on stochastic models

of controlled queues. The goal is to search for optimal control policies for data center management, which should meet

the growing demands of reducing energy consumption and digital pollution while maintaining quality of service. We first

focused on the modeling of dynamic energy management by a stochastic model for a homogeneous data center, mainly to

study some structural properties of the optimal strategy, such as monotony. Afterwards, since data centers have a significant

level of server heterogeneity in terms of energy consumption and service rates, we have generalized the homogeneous

model to a heterogeneous model. In addition, since the data center server’s wake-up and shutdown are not instantaneous

and a server requires a little more time to go from sleep mode to ready-to-work mode, we have extended the model to the

purpose of including this server time latency. Throughout this exact optimization, arrivals and service rates are specified

with histograms that can be obtained from actual traces, empirical data, or traffic measurements. We have shown that the

size of the MDP model is large and leads to the problem of the explosion of state space and a large computation time. Thus,

we have shown that optimal optimization requiring a MDP is often difficult or almost impossible to apply for large data

centers. Especially if we take into account real aspects such as server heterogeneity or latency. So, we have suggested what

we call the greedy-window algorithm that allows to find a sub-optimal strategy better than that produced when considering

a special mechanism like threshold approaches. And more importantly, unlike the MDP approach, this algorithm does not

require the complete construction of the structure that encodes all possible strategies. Thus, this algorithm gives a strategy

very close to the optimal strategy with low space-time complexities. This makes this solution practical, scalable, dynamic

and can be put online.
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