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ABSTRACT

Microfabrication methods are an emerging technology which enables to build micro scale
airborne particle mass concentration measurement systems. A personal airborne particle monitoring
system can be achieved by combining an appropriate sampling method with inertial micro-
electromechanical systems (MEMS) mass sensors. While aerosol sampling methods can take airborne
particles from ambient air and transport to a detector in the most efficient way, MEMS provide the
detection and estimation of the mass based on a shift in the resonance frequency of oscillating sensors.

In this context, an extensive literature review is proposed in order to examine the mass
concentration measurement methods from past to present. The methodological tendencies for advanced
real-time aerosol mass concentration measurement are evaluated. Finally, bulk-mode silicon-based
MEMS mass sensor is chosen to be coupled with an appropriate aerosol sampler.

Following that the miniaturization possibilities of aerosol sampling methods are discussed and
inertial impactor is chosen as a suitable aerosol sampling method. Then, the impactor is designed,
fabricated, and characterized based on the classical impaction theory. The latter, the deposition
characteristics of monodisperse aerosol (fluorescent) and bioaerosols (Aspergillus niger, Staphylococcus
epidermidis, Pseudomonas fluorescens) are explored by inertial impaction on silicon and nanostructured
silicon (i.e. black silicon). The empirical results show that the size of airborne particles plays a key role to
determine the deposition characteristics of the impaction by the mechanism of rebound and re-
entrainment (i.e. bounce effect) of the particles.

In the context of developing an inertial mass sensor, sub-pm air gap MEMS mass sensors have
been successfully fabricated based on the thick oxide as a mask layer method. This method enables to
fabricate high-aspect-ratio air-gap MEMS resonators. Then, the devices are electrically characterized and
the mass resolution is investigated. As a result, high-aspect-ratio MEMS sensors are operated in two
different bulk modes (Lamé and extensional modes) and the mass resolution of the sensors is found to be
as sub-ng.

Finally, the fabricated MEMS mass sensors are integrated into the developed impactor and
monodisperse fluorescent particles are successively impacted on the sensors. The shift in the resonance
frequency of MEMS mass sensors are evaluated based on Sauerbrey’s principle. Ultimately, MEMS mass
sensors have achieved to detect and perform mass measurements of the impacted fluorescent particles
with a promising precision. Although more impactions are needed to calibrate the sensors, the theoretical
mass sensitivity of the device is matched with the experimental mass sensitivity obtained from successive
impactions. Therefore, the developed airborne particle detection system paves the way for real-time
detection and mass measurements of aerosol and bioaerosols.
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RESUME

Grace au développement des techniques de micro-fabrication, il devient désormais possible de
réaliser des systémes miniatures de mesure de la concentration en particules polluantes dans 1’air. Ainsi,
I’utilisation conjointe d’un systéme d’échantillonnage adéquat et d’un microsystéme électromécanique
(MEMS), comme capteur inertiel de masse, permet de former un dispositif individuel de contréle de
pollution particulaire. La méthode d’échantillonnage permet de prélever puis d’emmener les aérosols de
I’air ambiant au capteur, alors que le MEMS permet de détecter puis d’estimer la masse déposée a partir
d’un décalage de sa fréquence de résonance.

Dans ce contexte, une revue bibliographique approfondie a été menée sur les méthodes de mesure
de masse traditionnelles et actuelles. Notamment, les avancées concernant les différentes méthodes
émergeantes permettant une analyse en temps réel ont été examinées. Les MEMS en silicium a
déformation de volume ont alors été choisi comme capteur de masse, couplé a systéme d’échantillonnage
approprié.

La possibilité de miniaturiser les méthodes d’échantillonnage a ensuite été étudiée et I’impacteur
inertiel a été choisi comme la plus appropriée des méthodes. En accord avec la théorie classique
d’impaction, I’'impacteur a été¢ dimensionné et congu puis fabriqué et caractérisé. Des dépdts d’aérosols
monodispersés (fluorescéine) et de bioaérosols (Aspergillus niger, Staphylococcus epidermidis,
Pseudomonas fluorescens) ont été réalisés, a I’aide du micro-impacteur, sur des surfaces de silicium poli
et sur des surfaces de silicium nanostructuré (Silicium noir) et leurs propriétés ont été étudiées. Les
résultats expérimentaux ont mis en évidence que la taille des particules joue un role déterminant dans les
caractéristiques de dépot, du fait des mécanismes de rebond et de réentrainement.

Afin de développer un détecteur inertiel de masse, des capteurs MEMS, ont été fabriqués avec
succes, par microfabrication en utilisant un oxyde épais pour réduire la taille des gaps électrostatique a
des dimensions sub-microniques. Cette méthode permet alors de réaliser des résonateurs MEMS a gap
d’air avec de tres fort rapport d’aspect. Les dispositifs réalisés ont ensuite été caractérisés électriquement
et la résolution en mesure de masse a été étudiée. Ces capteurs MEMS a fort rapport d’aspect ont été
actionnés suivant deux modes de déformation de volume (Lamé et mode extensionnel), et une résolution
en masse inférieure au nanogramme a pu étre démontrée.

Finalement, les capteurs MEMS ont été intégrés au microimpacteur et des particules
monodispersées de fluorescéine ont été successivement impactées sur les capteurs. Le décalage de la
fréquence de résonance des capteurs MEMS a été mesurée et la masse déposée a été évaluée a I’aide du
principe de Sauerbrey. Les capteurs MEMS ont permis de détecter et de mesurer la masse de particules de
fluorescéine avec une précision trés prometteuse. Bien que de nouvelles impactions soient nécessaires
pour calibrer les capteurs, la sensibilité en masse théorique est en accord avec celle mesurée pour les
différentes impactions. Le systéme de détection de particules, développé dans le cadre de cette thése,
ouvre donc la voie a la détection et la mesure de masse d’aérosols et de bioaérosols en temps réel.
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INTRODUCTION

An aerosol is an assembly of liquid or solid suspended particles in a gaseous ambient such as air
and can be referred as an airborne particle. According to the definition of the World Health Organization
(WHO), particulate matter (PM) is referred as a complex mixture of solid and liquid particles of organic
and inorganic contents suspended in the air. The need to study aerosols has mostly arisen for the health
and environment due to their significant role in both areas. These airborne particles can be found in a
large diversity of shape, size, chemical composition, and origin.

Airborne particles can also be biological in origins such as fungal spores or fragments, pollen,
virus, bacteria or their derivatives like allergens, endotoxin, mycotoxins, etc., and such referred as
bioaerosols. Many of these biological airborne particles can be transmitted from one place to another and
can remain viable during this transmission. Indeed, these particles can also be found nonviable in the
environment, which means that these are either dead or unable to reproduce, unlike viable ones.
Bioaerosols can be mainly found with the following features; (i) Single spores, pollen grains, bacterial
cells or viruses. (if) Aggregates of several spores or cells or other biological material. (iif) Fragments of
spores and cells. (iv) Biological particle carried by other non-biological particles (Baron & Willeke,
1993).

In the context of human exposure and health effects of the aerosols, the toxicity of airborne
particles depends on their size and their composition such as bulk chemical or trace element content, acid
and sulfate content, etc. (Harrison & Yin, 2000). Indeed, the particle size is of major importance. Particles
which have diameters greater than 2.5 um and less than 2.5 um are usually referred as “coarse particles”
and “fine particles” respectively. Thus, particles smaller than 100 nm are referred as ’ultrafine particles’’
or “’nanoparticles’’. The fine and ultrafine particles can penetrate deeper in the human respiratory tract,
and particle toxicity increases with high surface to volume ratio (see Figure 1). It has been documented
that the ultrafine particles trigger alveolar inflammation, and may lead to cardiovascular diseases and
deaths (Seaton, MacNee, Donaldson, & Godden, 1995). Long-term exposures to PM, s (Particle matter
with an aerodynamic equivalent diameter below 2.5 um, which can be defined as the diameter of a sphere
with the standard density of 1000kg/m’ that has the same terminal velocity when it settles under gravity
as the particle of interest) were correlated with many types of cancers in the upper digestive tract,
accessory digestive organs, lung in males and breast in females (Wong et al., 2016). In contrast, short-

term exposures to PM, s induce DNA hypo methylation which leads to activate inflammatory, vascular
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Figure 1 — An inhalation experiment with baboons’ respiratory tract in vivo. Aerosol depositions (%) for the
extrathoracic (ET) and thoracic (TH) regions are indicated. The fine particles effectively penetrated to the
lungs (TH region) as opposed to the coarse particles, which effectively accumulated within the head airways
(ET region) (Albuquerque-Silva et al., 2014).

responses, and increase blood pressure (Bellavia et al., 2013). According to WHO (“WHO | Air pollution
levels rising in many of the world’s poorest cities,” 2016), the critical limit for yearlong and daylong
exposure to PM, s has been estimated at 10 pg/m’ and 25 pg/m’ respectively. Likewise, for PM,, the
critical limits were at 20 pg/m’and 50 pg/m’ respectively.

Exposure to airborne biological particles such as pollen, viruses, bacteria and fungal spores has
been one of the main concerns due to their adverse health effects on human being. The impact of
bioaerosols on human health is influenced by their nature, their immunogenicity, their mass
concentration, their size, and thereby their penetration in the respiratory tract (Lecours, Duchaine,
Thibaudon, & Marsolais, 2017). Nowadays, clear evidences for bioaerosols exposure-related health issues
have been widely recognized and the exposures have been associated with contagious infectious diseases,
acute toxic effects, allergies, and cancer (Douwes, Thorne, Pearce, & Heederik, 2003) (Fiegel, Clarke, &
Edwards, 2006) (Bush & Portnoy, 2001) (Lindsley et al., 2010). Infectious diseases linked to bioaerosols
are essentially caused by viruses (e.g. influenza, measles), bacteria (e.g. tuberculosis, Legionnaire’s
disease) or fungal spores (e.g. aspergillosis, blastomycosis) (Jonsson et al., 2014). Non-infectious agents
are usually associated with toxic or hypersensitivity conditions and lead to asthma, chronic bronchitis,

hypersensitivity pneumonitis, and organic dust toxic syndrome (Lecours et al., 2017). Although it is
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believed and referred as to the hygiene hypothesis that the exposures of infectious agents during
childhood evaluate the immune system and ultimately reduce the risks of consequences (Okada, Kuhn,
Feillet, & Bach, 2010), all these airborne particles are not beneficial and this hypothesis is still yet to be
clarified. Ultimately, lack of quantitative bioaerosols exposure assessment methods leads difficulties to
define exposure limits.

Usually, the exposure guideline depends on the mass concentration, particle aerodynamic
diameter, and exposure time. The mass concentration measurement is usually carried out by offline or
real-time mass concentration measurement tools such as standard gravimetric measurement, inertial
impactors or Tapered Element Oscillating Microbalance (TEOM). Among these tools, for example,
inertial impactors can classify the particles by their acrodynamic diameter. Finally, the exposure time can
be determined by in-vivo studies. The latter, the dose of related health effects can be defined. However,
prerequisite for reliable airborne particles mass concentration and size measurements are the efficient
sampling and accurate detection of airborne agents. The sampling can be defined as an ability of
extraction of airborne particles from ambient air and transport them to a detector in the most efficient
way. The detection may be defined as a system that is capable of perceiving a specific airborne particle
from a surrounding environment and provides a useful signal such as optical, electrical, and
electrochemical. Then, the signal can ultimately be used to deduce the physical or chemical properties of
the detected particles.

Aerosol sampling consists of several fundamental methods such as filtration, inertial impaction,
thermal precipitation, and electrostatic precipitation. Each of those methods have been adapted to an
appropriate detection technique using optics or spectroscopy (e.g. Fluorescent , Raman) (Jonsson,
Olofsson, & Tjarnhage, 2014), impedance (M. Carminati et al., 2014), radioactivity (Husar, 1974) or
electromechanical mass measurements (Paprotny, Doering, Solomon, White, & Gundel, 2013). The latter
can be applied to determine the mass concentration of PM in ambient air. Besides, collection of a reliable
and representative amount of bioaerosols has been realized by traditional aerosol sampling methods,
including gravitational sedimentation, inertial impaction, centrifugation, electrostatic precipitation, and
filtration. The latter, detection techniques such as polymerase chain reaction (PCR) (Pyankov et al.,
2007), enzyme-linked immunosorbent assay (ELISA) (Speight, Hallis, Bennett, & Benbough, 1997),
traditional colony counting (Han et al., 2018), optics or spectroscopy (e.g. Fluorescent , Raman) (Jonsson
et al., 2014) have been used for qualitative and quantitative analysis of the collected bioaerosols. Most of
the efforts have been recently given to real-time fluorescent-based relatively miniature optical systems,
due to the intrinsic fluorescent of most of bioaerosols, either using microfluidic approaches (Choi, Kang,
& Jung, 2015) or integrating it with a sampling method (Choi, Kang, Hong, Bae, & Jung, 2017).

Although some of the proposed systems achieved real-time detection, none of them have demonstrated a

25



miniature, integrable (to integrated circuits, thus daily used electronic devices), low-cost and real-time
bioaerosol concentration measurement system.

Today, measuring a mass can be actualized with (i) traditional balances (e.g. spring balance,
beam balance etc.) and (ii) the change in the resonance frequency of an oscillating material (e.g. quartz,
silicon etc.) in inertial mass sensors (e.g. QCM, TEOM, FBAR, SAW and MEMS). The latter was
discovered by Sauerbrey in 1959 (Sauerbrey, 1959). As documented previously, three fundamental
principles are required for any mass measurements: (i) the mass can be measured by placing it to a field,
which is gravitational field for the traditional balances and inertial field for the inertial mass sensors, (i)
the mass sensitivity of any balances is proportional to the intensity of the field that acts on the mass, (iif)
the measured mass in gravitational field or in time independent inertial field should be equal to the
measured mass in time dependent-inertial field (Mecea, 2006). In recent years, the nano/microfabrication
techniques have garnered considerable attention because they offer the possibility to realize inertial
micro/nano mass sensors, and therefore enable to build chip-scale real-time aerosols mass concentration
measurement systems.

As in microelectronics, the development of instrumentation for aerosol mass-concentration has
followed Moore’s law: over the past decade, devices are getting smaller and smaller. Unlike traditional
cumbersome methods, Nano scale (devices that have nanoscale structures <1pm) or Micro scale (devices
ranging from 1 to 100 pm) Electromechanical Systems referred as NEMS/MEMS have revolutionized the
capacities for measuring the mass down to a single airborne particle. NEMS/MEMS inertial mass sensors
allow the realization of integrable, inexpensive, portable, and low power consumption sensors.

This manuscript consists of four chapters which are designated to build a reliable and accurate
MEMS-based airborne particles (regardless of their origin) mass concentration measurement system. The
goal of the proposed detection system is to sample aerosols and bioaerosols to a micro sensor in the most
efficient way and then perform an accurate mass measurement of the detected airborne particles.

In Chapter 1, different types of mass measurement methods are presented. Particular attention is
paid to the potential uses of systems of which airborne particles mass concentration measurement can be
achieved. An extensive literature review is proposed in order to examine the mass concentration
measurement methods from past, present and future. Ultimately, the methodological tendencies for
advanced real-time aerosol mass concentration measurement are evaluated. Finally, a type of silicon-
based MEMS mass sensor is chosen to be coupled with an appropriate aerosol sampler.

In Chapter 2, the miniaturization possibilities of aerosol sampling methods are discussed with
pros and cons, which are followed by the decision of a suitable aerosol sampling method. Then, the
sampler is designed, fabricated, and characterized. The latter, aerosol test particles and bioaerosols are

generated, sampled, and characterized in terms of their physical deposition behaviour on two different
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surfaces. This chapter does not only elaborate a relatively efficient sampler that is to be combined with a
selected MEMS mass sensor, but also explores some similarities in the deposition behaviour of aerosol
test particles and bioaerosols.

Chapter 3 is dedicated to the elaboration of the selected silicon-based MEMS mass sensor. The
proposed MEMS sensors are designed, simulated, microfabricated, electrically characterized, and proof of
concept mass measurements are exhibited. This chapter demonstrates the realization of a high-
performance MEMS mass sensor which is fabricated based on a distinctive microfabrication technique to
be integrated to the proposed sampler in order to perform real-time airborne particles mass concentration
measurements in the near future.

In Chapter 4, the developed MEMS sensors are integrated to the developed sampler. Aerosol test
particles with known size, mass, and origin are sampled on MEMS mass sensors, thus a reliable mass
measurement is conducted. Although sensors could not be fully mass-calibrated yet, the mass estimation
of aerosol test particles is highly promising. Therefore, the proposed detection system proves the
capability of efficient sampling and accurate mass measurement of airborne particles.

Under the framework of developing a real-time MEMS-based aerosol and bioaerosol detection
system, this thesis follows the work of Brice Berthelot (Berthelot, PhD thesis, Study and design of sensors
dedicated to surveillance biological particulate indoor environments, University of Paris-Est, 2015) whose
thesis is confidential until 2020. His work had mainly focused on adhesion properties of different fungi
species by impaction on different surfaces, simulations of the mass sensitivity of different shape and size
bulk-mode MEMS membranes, and chemical identification of different fungi groups by pyrolysis. One of
the main analytical findings which highly concerning this work is the selective attachment and
detachment of specific fungi on the resonator that is operating within a specific resonance frequency
range (Berthelot, Algré, Moularat, Robine, & Gehin, 2015). Following that work, this thesis has aimed to
develop a sampler and a MEMS resonator with a certain operational frequency range. Ultimately, this
thesis contributes to the goal of specific aerosol and bioaerosol detection with the realization of MEMS

integrated inertial impactor airborne particles mass measurement system.
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CHAPTER 1 - Aerosol mass concentration
measurements: Recent advancements of real-time
nano/micro systems

As excessive exposure to airborne particulate matter (PM) results in adverse health effects, the
development of real-time airborne particles monitoring is highly relevant. The objective of this chapter is
to broadly review the current state-of-the-art on aerosol mass-concentration measurement, and on real-
time monitoring systems (Soysal et al., 2017). Widely used systems are bulky, time-consuming or
expensive to maintain. Over the past decade, sensor developments have shown the following features:
portable, inexpensive, and suitable for monitoring real-time measurements. PM monitoring systems can
be easily accessed through the development of nano or micro scale systems. These sensors can be
integrated into conventional electronic devices in order to demonstrate their capabilities to provide real-
time and ultra-sensitive measurements. With respect to mass concentration measurements, we distinguish
a generation of “first” and “second” systems based on their different sizes. We examine the main
characteristics of PM systems as follows: type of instrument devices (either bulky or
nano/microfabricated), sampling method, real-time monitoring measurement capability, sensitivity, and
reliability of the new generation of sensors. Acoustic mass sensors are compared to nano and micro scale
electromechanical sensors. While the miniature sensors still need to be matured and integrated into
appropriate aerosols sampling methods, the physical constraints and the mass measurement capability of
these sensors are investigated. Nano and micro sensors can be promising tools for aerosol mass
concentration measurement systems, particularly in terms of sensitivity. A PM monitoring system can be
achieved b