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Abstract
The evolution of the Internet of Things (IoT) started decades ago as part of the first

face of the digital transformation, its vision has further evolved due to a convergence of
multiple technologies, ranging from wireless communication to the Internet and from
embedded systems to micro-electromechanical systems. As a consequence thereof, IoT’
platforms are being heavily developed, smart factories are being planned to revolution-
ize the industry organization and both security and trust requirements are becoming
more and more critical. The integration of such technologies within the manufactur-
ing environment and processes in combination with other technologies such as Cloud
Computing, Cyber Physical Systems, Information and Communication Technologies as
well as Enterprise Architecture has introduced the fourth industrial revolution referred
to also as Industry 4.0. In this future world machines will talk to machines (M2M) to or-
ganize the production and coordinate their actions function of the information collected
by different sensors and exchanged with other entities. However opening connectivity
to the external world raises several questions about data security that was not an issue
when devices were controlled locally and just few of them were connected to some other
remote systems. That’s why ensuring a secure communication between heterogeneous
and reliable devices is essential to protect exchanged information from being stolen or
tampered by malicious cyber attackers that may harm the production processes and
put the different devices out of order. Without appropriate security solutions, these
systems will never be deployed globally due to all kinds of security concerns. That’s
why ensuring a secure and trusted communication between heterogeneous devices and
within dynamic and decentralized environments is essential to achieve users acceptance
of such solutions. However, building a secure system does not only mean protecting the
data exchange but it requires also building a system where the source of data and the
data itself is being trusted by all participating devices and stakeholders.
In this thesis our research focused on four complementary issues, mainly (i) the dy-
namic and trust based management of access over shared resources within an Industry
4.0 based distributed and collaborative system, (ii) the establishment of a privacy pre-
serving solution for related data in a decentralized architecture while eliminating the
need to rely on additional third parties, (iii) the verification of the safety, the correctness
and the functional accuracy of the designed framework and last (iv) the evaluation of
the trustworthiness degree of interacting parties in addition to the secure storage and
sharing of computed trust scores among them in order to guarantee their confidential-
ity, integrity and privacy.
By focusing on such issues and taking into account the conventional characteristics of
both IoT and IIoT based environments, we proposed in this thesis a secure and dis-
tributed framework for resource management in Industry 4.0 environments. The pro-
posed framework, enabled by the blockchain technology and driven by peer to peer net-
works, allows not only the dynamic access management over shared resources but also
the distribute governance of the system without the need for third parties that could
be their-selves vulnerable to attacks. Besides and in order to ensure strong privacy
guarantees over the access control related procedures, a privacy preserving scheme is
proposed and integrated within the distributed management framework. Furthermore
and in order to guarantee the safety and the functional accuracy of our framework soft-
ware components, we focused on their formal modeling in order to validate their safety
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and compliance with their specification. Finally, we designed and implemented the
proposal in order to prove its feasibility and analyze its performances.
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Resumé
En raison de l’avancement technologique dans les domaines des communications

sans fil ainsi que ceux de l’informatique mobile et embarquée, les frontières entre le
monde physique et le monde numérique se rétrécissent pour introduire une nouvelle
technologie également appelée l’internet des objets (IdO). Cette technologie est en train
de devenir une partie intégrante de nos vies. Allant des capteurs de puissance et ca-
pabilités réduites, aux appareils électroménagers intelligents, objets de télé-santé et
véhicules et voitures connectées jusqu’aux usines interconnectées et intelligentes dans
lesquelles les employés, les machines, les processus, les services et meme les produits
interagissent entre eux de manière à fournir une meilleure adaptabilité dans la pro-
duction ainsi qu’une allocation plus efficace des ressources, et ce, pour répondre plus
rapidement au marché, d’une façon plus personnalisée et à moindre coût. L’intégration
de cette technologie dans l’environnement et les processus de fabrication en combinai-
son avec d’autres technologies et paradigmes telles que le cloud computing (CC), les
systèmes physiques cybernétiques (CPS), les technologies de l’information (IT) et de
la communication ainsi que l’analyse des donnees et l’intelligence artificielle (IA) a in-
troduit la quatrième révolution industrielle également appelée l’Industrie 4.0. Dans ce
futur monde, les machines parleront aux machines (M2M) pour organiser la produc-
tion et coordonner leurs actions en fonction des informations collectées et échangées
entre les différents capteurs et entités. Cependant, l’ouverture de la connectivité a un
monde externe soulève plusieurs soucis et questions sur la sécurité et la confidentialité
des données produites et échangées qui n’étaient pas un problème lorsque les appareils
étaient contrôlés localement et que seuls quelques-uns d’entre eux étaient connectés à
d’autres systèmes distants. Les risques de sécurité liés à tels objets représentent des
ressources potentielles pour les acteurs tiers et malveillants qui peuvent nuire aux pro-
cessus de production au sein de l’usine et mettre les différents appareils hors service.
Une fois compromises, ces ressources peuvent être utilisées dans des attaques à large
échelle contre d’autres systèmes. C’est pourquoi il est essentiel d’assurer une com-
munication sécurisée entre les différents appareils hétérogènes qui sont généralement
déployés dans des environnements dynamiques et décentralisés pour protéger les in-
formations échangées contre le vol ou la falsification par des cyberattaquants malveil-
lants et par conséquent obtenir l’acceptation des utilisateurs de telles solutions. Dans
cette direction, cette thèse est concentrée sur quatre questions complémentaires, prin-
cipalement (1) la gestion dynamique de l’accès aux ressources partagées au sein d’un
système distribué et collaboratif de l’industrie 4.0, (2) la protection des données per-
sonnelles et sensibles des utilisateurs tout au long des procédures de gestion d’access
et tout en éliminant le besoin de s’appuyer sur des tiers supplémentaires, (3) la vérifi-
cation formelle et la validation de la sécurité ainsi que l’exactitude du cadre conçu et
enfin (4) la gestion de confiance des parties en interaction en plus du stockage sécurisé
des informations relatives afin de garantir leur confidentialité, intégrité et traceabilité.
En se concentrant sur telles questions et en tenant compte des caractéristiques conven-
tionnelles des environnements IdO et IdO Industriels, nous avons proposé dans cette
thèse un cadre générique sécurisé et decentralisé pour la gestion des ressources dans les
environnements Industrie 4.0. Le cadre spécifié basé sur la technologie blockchain et pi-
loté par un réseau peer to peer permet non seulement la gestion dynamique d’accès aux
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ressources partagées mais aussi la governance distribuée du système, la protection de
vie privée, la gestion de confiance et la vérification formelle des spécifications établies.
Enfin, une conception et mise en œuvre de la plateforme sont assurées afin de prouver
sa faisabilité et d’analyser ses performances.

Keywords: Blockchain, Securité, Controle d’access, Vie privée, Gestion de confiance,
IdO, Industrie 4.0
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2 Chapter 1. Introduction

1.1 Context and Motivation

The technological advancement in the fields of wireless communications and mobile
computing has introduced a new technology also called IoT which, basically repre-
senting the integration of physical smart devices within the Internet infrastructure, has
significantly emerged, grown and gradually affected daily lives of human beings pro-
moting as a consequence thereof a new generation of innovative and valuable services
provided by various application domains and industrial systems ranging from wear-
able devices, smart transportation, health care, smart grid and smart manufacturing
systems, to mention a few.
Within such paradigm, smart connectivity, remote sensing and computation is an indis-
pensable part. Their integration within the manufacturing environment and processes
in combination with other technologies such Cloud Computing (CC), Cyber Physical
Systems (CPS), Information and Communication Technologies (ICT) as well as Enter-
prise Architecture (EA), has introduced the fourth wave of the industrial revolution
called also Industry 4.0.
In this regard, IoT is becoming an indispensable part for the design and the implementa-
tion of both Industry 4.0 and smart factories scenarios and applications. By connecting
humans, machines, products and data processes, IoT will offer undoubtedly various
new opportunities to the manufacturing systems making factories consequently more
intelligent, greater resource efficient, higher reliable and correlated and obviously flex-
ible and dynamic. As a consequence, the production process will be more efficient and
flexible with products of higher quality. However, the deployment of such technologies
in addition to the heterogeneous and constrained nature of IoT devices, is expected to
intensify encountered security threats and issues. In fact, opening connectivity to the
external world raises several questions about data and IT infrastructure security that
were not an issue when devices and machines were controlled locally and just few of
them were connected to some other remote systems. Launched threats and attacks can
cause manufacturing disruptions, leading to defective products, production downtime,
physical damage and even threaten lives.
According to a report from IBM X-Force Research in 2016, the manufacturing sector is
the second most-attacked industry behind healthcare in 2015. Automotive manufac-
turers were the top targets for criminals, accounting for almost 30% of all cyberattacks,
while chemical companies were attackers’ second-favorite targets. The report sheds
light also on the biggest cyber risks that organizations and manufacturing industries
face today. In what follows, we cite some of the most popular security threats launched
in last six years:

• German steel mill meltdown: In December 2014, attackers infiltrated a Germany
steel mill facility and obtained control right of the cooperate and plant network,
which led to the explosion of a furnace at that time [47].
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• The Mirai attack: In October 2016, the Mirai IoT botnet [49] infected numerous IoT
devices and initiated distributed Denial of Service (DoS) attacks through flooding
DNS servers, which results in the large-scale Internet network paralysis.

• The Jeep hack: In July 2015, a team of researchers was able to take total control of
a Jeep SUV over Sprint cellular network by exploiting a firmware update vulner-
ability. They discovered that they could control the speed of the vehicle as well as
veer it off from the road [11].

• The Hackable Cardiac Devices from Abbott medical center: Implantable cardiac
pacemakers from Abbott (formerly called St. Jude) medical center in Chicago have
vulnerabilities that could allow a hacker to access them, to deplete the battery or
administer incorrect pacing or shocks to patients.

Without appropriate security solutions, various IoT and IIoT systems will never be de-
ployed globally due to all kinds of security concerns. That’s why ensuring a secure and
trusted communication between heterogeneous devices and within dynamic and decen-
tralized environments is essential to achieve users acceptance and to protect exchanged
information from being stolen or tampered by malicious cyber attackers that may harm
the production processes and put the different devices out of order. However, building
a secure system does not only mean protecting the data exchange but it requires also
building a system where the source of data and the data itself is being trusted by all
participating devices and stakeholders.
To improve privacy and security within such environments, a more decentralized ap-
proach is seen as the solution to allow the longterm growth of both IoT and IIoT. This
refers mainly to the fact that participating entities when interacting and collaborating
with each other, do not have to rely and to trust external services or third-parties to
manage access rights over data they produce or they share. In this context, several pro-
posals have been made for ensuring distributed systems in IoT environments and hence
harvest scalability and security advantages. However, these last cannot easily solve the
integrity, immutability, traceability, and notarization issues required for most use cases
within such environments.

1.2 Problematic

In this context, the research problem that we address in this thesis is:

How to ensure a distributed collaborative system within an Industry 4.0 based environ-
ment, where the access is dynamically and trustfully managed over shared resources
and where both users and data privacy are preserved during collaboration?

We decompose this research problem into four sub-problems.
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• RP1: How to design a dynamic access control framework within a distributed
collaborative system where collaborating parties are more empowered to control
access over resources they share by defining their own policies and dynamically
reconfiguring them in response to time, events and more importantly to entities’
changing behavior and attitudes. This approach requires a trust management
mechanism to be considered and integrated within the access control model for
evaluating access requester entities’ behavior. Such consideration would guaran-
tee as a consequence thereof the dynamicity of security policies insofar that they
would be defined and validated function of the access requester entity’s behavior.

• RP2: How to ensure strong privacy guarantees over the access control related pro-
cedures regarding the access requester’s sensitive attributes as well as the shared
access control policies? When interacting parties from different sites and with di-
versified competing and conflicting interests, share common resources for which
access is controlled and managed via a distributed and a consensus based man-
agement framework, their privacy may be breached. This is mainly due to the
fact that their access history related details once recorded in a distributed storage
structure, may conduct to tracing their access activities and learning their autho-
rization functionality pattern. Also and in case of malicious competitors existence,
although these last cannot read shared data files and resources related informa-
tion, they can read stored access control policies, and thus they can deduce infor-
mation about an organization current activity details, they can even try to satisfy
the access condition in order to get authorized to the corresponding resource

• RP3: How to evaluate the trustworthiness degree of interacting parties and how to
securely store and share computed trust scores among them in order to guarantee
their confidentiality, integrity and privacy? To evaluate entities trustworthiness,
exchanging trust information is crucial to reach an accurate assessment. Besides,
trust information may contain sensitive information about trust providers and tar-
gets. Hence, there is a need to secure not only the network but also to ensure in-
tegrity and trustworthiness of exchanged information. Consequently secure shar-
ing and storage of trust information is inevitably crucial for its confidentiality, in-
tegrity and immutability especially in IoT enabled industries environments where
devices collect a large amount of data conveying important information for critical
decision making.

• RP4: How to guarantee the safety, the correctness and the functional accuracy of
the designed framework? Generally speaking, customers and end users accep-
tance of any kind of proposed technologies and frameworks depends mainly on
the fact that their software components provide services that behave correctly and
satisfy their requirements. The safety, correctness and reliability of such systems
include two dimensions. One is to regard developed software components as a
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static program that has not been put into use. The correctness of the program is a
prerequisite for ensuring their security and reliability. The other one is the security
issues that may arise during their execution. By considering these two dimensions
in a comprehensive way, the security and reliability of developed software com-
ponents can be greatly improved.

1.3 Objectives and Main Contributions

Fig. 1.1 depicts the positioning of the main contributions of this PhD thesis. It illustrates
the problems tackled, the approaches adopted to solve it and the different solutions to
meet our goal. In the following, we present the main objectives of this thesis. We ad-
dress each objective with one contribution.

• State of the Art: We present security issues and requirements in IoT and Indus-
try 4.0 environments. Therefore we comprehensively review existing blockchain
applications in such areas. Specifically, we present the current research trends
in each of the related industrial sectors, as well as successful commercial imple-
mentations. Then, we emphasis on the major security concerns prevalent in the
industrial domain with some countermeasures proposed in the literature. Based
on this comparison, we have shown that existing solutions leave some areas where
some remaining open issues are encountered and a contribution is needed, those
areas where contributions are needed are the ones we tackle throughout this the-
sis, making them our core contribution to the state of the art.

• First Contribution: we proposed a Distributed Resource Management Framework
for Industry 4.0 Environments. The proposed framework utilizes blockchain to
keep a living document trace about the flow of resources being distributed and
shared among collaborating parties while using the OrBAC access control model
to implement distributed, fine grained, flexible and secure resource access autho-
rization.
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Figure 1.1 – Thesis objectives and contributions

Moreover, and in order to better support the security requirement, this frame-
work adds the notion of trust management to the access control model where a
trust framework is integrated to evaluate access requester entities’ behavior. Fi-
nally our proposal is conceived to support distributed and dynamic governance
of the system through the registration of new entities requesting mining permis-
sions. To demonstrate the application of the framework, a case study is provided
in which an Ethereum private blockchain network is configured and a set of smart
contracts are implemented. However, adopting the blockchain technology to han-
dle shared resources management and controlling the access made over them is
not straightforward and additional critical issues are raised regarding the privacy
of access requester entities as well as the safety and the reliability of the proposed
framework. We deal with such issues in the following contributions.

• Second Contribution: We ensure strong privacy guarantees over the access control
related procedures regarding the access requester sensitive attributes as well as the
shared access control policies. The proposed scheme will be integrated within our
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DRMF framework to preserve the anonymity of both the access requester entities
as well as the collaborating parties, by this way the transparency feature of our
framework will be maintained while guaranteeing and preserving the privacy of
its users.

• Third Contribution: As a third contribution, and as blockchain smart contracts
could be exposed to many security problems and attacks caused by vulnerabilities
contained within, reasoning about the correctness, the safety and the functional ac-
curacy of smart contracts before their deployment on the blockchain network is a
need. In this context model checking tools are well adopted for the formal verifi-
cation of smart contracts in order to assure their execution as parties’ willingness
as well as their reliable and secure interaction with users. For this contribution, we
use Event-B formal verification method to formally model written smart contracts
in order to verify and validate their safety, correctness and functional accuracy in
addition to their compliance with their specification for given behaviors. To il-
lustrate the proposed approach, its application to a realistic industrial use case is
described.

• Fourth Contribution: We propose a secure trust management system based on
the blockchain technology so that we can take advantages of security features it
provides regarding reliability, traceability and information integrity. Blockchain
based trust management can provide tamper proof data, enable a more reliable
trust information integrity verification, and help to enhance its privacy and avail-
ability during sharing and storage. For this purpose, we design and implement
a blockchain based trust architecture to collect trust evidences, to define a trust
score for each device and to securely store and share them with other devices
within the network by embedding them into blockchain transactions. Results from
performance evaluation demonstrate that our proposal provides security features
including tamper-proof and attacks resiliency, reliability in addition to a low com-
plexity for IoT scenarios and applications. For assessing the trustworthiness de-
gree of each entity within the network and deriving a trust score to be shared
between involved entites and considered within the decision making process, a
generic trust mechanism is defined. For the evaluation and the experimentation of
this last, we have chosen to use our solution within a specific use case which is the
RPL routing protocol to ensure secure routing by protecting the network against
misbehaving, selfish and malicious nodes regarding the routing procedure.

These contributions have given rise to several publications in international conferences
and revues namely:
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1.4 Manuscript Organization

Figure 1.2 – Thesis plan

As it is illustrated in Fig. 1.2, the remaining of this dissertation is organized on five
chapters as follows. Chapter 1 provides a comprehensive study of the state of the art of
security related concepts in the IoT and Industry 4.0 domains. Chapters 2, 3, 4, and 5
detail our proposed contributions as presented in 1.3
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Introduction

Internet of Things (IoT) is the interconnection of objects sensing, communicating and in-
teracting with each other on a cooperative basis to meet a standard goal. The integration
of such paradigm within the manufacturing environment and processes in combination
with other technologies has introduced Industry 4.0 that represents the fourth indus-
trial revolution. In this scenario, security requirements represent a crucial issue whose
satisfaction is a key to achieve users acceptance of such technologies. These last include
data confidentiality, integrity and authentication, identity management, privacy and
trust among the different devices. Besides, data gathered by industrial IoT devices may
contain confidential, sensitive and private information, in addition to the emergence of
security threats that aim to exploit the weaknesses of current IoT and industrial infras-
tructures. Indeed, most state of the art IoT infrastructures are heavily centralized with
single points of failure, which hinder scalability and wide adoption of based solutions
and applications. To improve privacy and security within such environments, a more
decentralized approach is seen as the solution to allow the longterm growth of both IoT
and IIoT. This refers mainly to the fact that participating entities when interacting and
collaborating with each other, do not have to rely and to trust external services or third-
parties to manage access rights over data they produce or they share. In this context,
several proposals have been made for ensuring distributed systems in IoT environments
and hence harvest scalability and security advantages. However, these last cannot eas-
ily solve the integrity, immutability, traceability, and notarization issues required for
most use cases within such environments until the blockchain technology has emerged
as a prominent perspective to develop security solutions in decentralized, collaborative
and trustless domains. In recent years, this technology has attracted significant scien-
tific interest in research areas beyond the financial sector, among them IoT and Industry
4.0. This last is seen as the missing link toward building a truly decentralized, traceable,
trustless, and secure environment for such domains. In this context, our aim in this
chapter is to shape a comprehensive picture of the current state of the art efforts made
in this direction. As the domain is vast and various, we first recall the basic concepts
of IoT and Industry 4.0. We list then the main challenges related to their appearance,
in particular security and trust issues. Therefore we provide a detailed description of
what a blockchain is, how a blockchain network operates, what are its main charac-
teristics and concepts, and how blockchain based systems achieve the characteristics
of decentralization, security, and auditability. From there, we comprehensively review
existing blockchain applications in Industry 4.0. Specifically, we present the current re-
search trends in each of the related industrial sectors, as well as successful commercial
implementations. Further, we emphasis on the major security concerns prevalent in the
industrial domain with some countermeasures proposed in the literature and finally we
present currently open issues raised with the adoption of blockchains in Industry 4.0.
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2.1 IoT and Industry 4.0: Background and Basic Concepts

In this section we will point out first the basic principles of Internet of things (IoT) and
Industry 4.0. We will overview then the main challenges and issues related to their ap-
pearance and we will focus on some important recurring topics that could be integrated
within these concepts in order to obtain benefits in specific application scenarios.

2.1.1 Internet of Things

Definition

As an arising technology, IoT is expected to offer promising solutions that will revolu-
tionize not just the conduct but also the services to be provided across several industries
such as health-care, transportation, energy and manufacturing. Building upon a com-
plex network connecting billions of devices, objects, services and humans into a mul-
titechnology, multi-protocol and multi-platform infrastructure, this paradigm main vi-
sion is to create an intelligent world while bridging the physical world, sensing/actuating,
processing, analytics, to the digital, cyber, and virtual worlds on a global scale [63].
In other words, IoT could be defined as the intelligent connection of objects that equipped
with sensors, collect data and take decisions locally or collectively. These objects com-
municate with each other without human interaction, however they just need to have
Internet connectivity in order to retrieve and send their data to be kept in a database or
even in a Cloud infrastructure for further processing that requires many other networks
to be realized, for this reason the IoT can be viewed as a network of networks of things
[59].
For example, production processes will be organized and monitored remotely, machines
will talk to machines to coordinate their actions function of the information collected by
different sensors and exchanged with other entities among the production line in order
to control the corresponding value chain.
It is clear here that the fact of exploiting IoT basic technologies including sensor net-
works, embedded technologies, communication standards and Internet protocols will
impact the nature of involved objects, making them capable of communicating and in-
teracting with other external entities while sharing information and coordinating deci-
sions.

Reference Architecture

Although several architectures have been proposed to model the Internet of Things, the
basic one is still the well-known three-layer architecture [84, 179] consisting of the ap-
plication, the network, and the perception layers.
As illustrated in Fig. 2.1, the perception layer is made up of smart devices, actuators
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Figure 2.1 – Internet of Things reference architecture

and wireless sensing devices. Its main tasks are perceiving, identifying, collecting in-
formation and automatic control. To ensure such functions, several standards and com-
munication protocols were proposed such as IEEE 802.15.4, Bluetooth, LTE-A, Wireless-
HART [160], ISA100.11a, etc.
As a second layer, the network layer ensures the processing, the addressing, and the
information transmission and routing from the perception layer to the application layer
safely and reliably through the use of infrastructure protocols such as 6LowPAN [89],
6TiSCH [165], IPv4/IPv6, RPL[178], etc.
Finally, the application layer takes in charge the control and the management of trans-
mitted information, the activation of relative events and the generation of requested
services by both customers and end users. To do so, several application and service
discovery protocols were proposed such as DDS [132], COAP [31], AMQP [172], MQTT
[99], XMPP [143], REST, HTTP, mDNS, DNS-SD.

2.1.2 Industry 4.0

Definition

Currently, the emerging technologies such as Big Data and data analytics, Cloud Com-
puting, machine learning, and Internet of things are being frequently integrated into
the manufacturing environments and processes introducing as a consequence thereof
the fourth industrial revolution sometimes referred to as Industry 4.0 [62, 150, 32]. This
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concept has introduced what has been called the Smart Factory, the revolutionized ver-
sion of traditional factory in which Cyber Physical Systems (CPS) communicate over
the IoT to monitor the physical processes of the factory and to make decentralized deci-
sions.
This revolution includes the introduction of highly flexible and greatly efficient supply
chains, manufacturing on demand, logistics operations and production processes, the
provision of new services and the allowance of mass-customization and virtual produc-
tion.
Thus, the core idea of Industry 4.0, similarly for the Smart Factory, is the use and the
integration of emerging information technologies within industrial and manufacturing
processes what could make production operates in an efficient, flexible and economic
manner with constantly high quality and low cost. As a consequence thereof, every-
thing in and around the manufacturing supply chain will be interconnected such as
machines, data, processes, suppliers, customers, distributors, even the product itself.
By this way, data about business operations will be shared between involved entities
and locations, production lines will be remotely monitored and automatically handled,
machines will communicate with each other to organize the production, to adapt their
functioning to both operating conditions and received orders , and also to coordinate
their actions function of the information collected by the different sensors regarding
their location, their status, as well as the encountered faults, exceptions and problems.
As seen, digitalized manufacturing will result in a wide range of changes and benefits
to manufacturing processes, outcomes and business models [62].

Reference Architecture

Figure 2.2 – Layout of the Smart Factory of Industry 4.0
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Fig. 2.2 illustrates the general layout of a Smart Factory within Industry 4.0. This frame-
work is composed of four main layers [176, 93], including the physical resource layer,
network layer, Cloud layer, and application layer.
The physical resources layer comprises smart machines (e.g. robots, mobile devices,
workmen, AGVs (Automated Guided Vehicles), etc.), smart products and smart con-
veyors. These resources acquire and compute data while communicating with each
other through the industrial network for the completion of mechanical tasks and the
achievement of the system-wide goal.
These resources communicate not only with each other but also with the data servers
and the industrial Clouds through the industrial networks. These last are made up
of cellular, wireless, wired and other industrial networks transmitting data in realtime
among the involved entities.
The Cloud layer is responsible for storage, analytics, mining, computation, high perfor-
mance processing and so on. Once activated and operated, the physical resources begin
to collect and produce huge amounts of information data transferred to the Cloud via
the network layer in order to be processed after by application systems. Hence the
Cloud is an important infrastructure that provides the bridge between the networked
resources and the application layer.
This last links users, workmen, and management to the smart factory systems. Through
the terminals they use such as computers, LCD screens, smart phones and tablets, they
can access the statistics provided by the Cloud, apply a different configuration and pro-
vide key parameters according to their needs by choosing some different options or
perform maintenance and diagnosis of the production process, even remotely through
the Internet.

Key Technologies

Various technologies or techniques can be used for implementing Industry 4.0. These
technologies include Cyber Physical Systems (CPS), IoT, Cloud Computing, Big Data
and Data Analytics, Mobile Computing, Industrial Information Integration and other
related technologies [101, 181, 173].

• Big Data : The volume, the variety and the velocity of data collected, produced
and communicated between devices within industries will be more and more im-
portant than ever seen before. Smart factory devices such as wireless sensors,
cameras, programmable controllers, digital gauges, RFID readers, bar codes and
energy monitoring components (e.g. temperature controllers, hour-meters, coun-
ters, air flow meters, etc) plus services, supervision and management applications
are assumed to produce continuously and in a single day larger amounts of in-
dustrial data than they used to do in a full month just ten years ago. Currently,
the produced data has reached a total volume of more than 1000 exabytes an-
nually and is expected to increase 20-fold in the next ten years [15]. Moreover,
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the data produced will be diverse, complex, heterogeneous and comes in many
varied types and formats such as text, images, audio, video, scans, digital and
analog data and much more. That’s why the comprehensive evaluation, the ef-
ficient data analysis and the real-time actionable insight and intelligence gaining
shall be guaranteed within the industrial production processes. Meanwhile, the
5 Vs of Big Data namely Variety, Volume, Velocity, Value and Veracity have in-
troduced several issues especially adequate hardware and software requirements
data processing, the urgent need for on-line detection ability, and the necessity for
interdisciplinary techniques [185].
An entire generation of innovative new technologies has sprung up to address
these issues. The utilization of Big Data is now feasible with the Cloud Comput-
ing that enables to effectively manage the scalability, the performance, the man-
ageability, the reliability and the computing processing of such a system. Many
others techniques and technologies can be used such as : Genetic algorithms, Ma-
chine learning, Regression analysis, Sentiment analysis and Social network analy-
sis.

• Cloud Computing : According to the National Institute of Standard and Tech-
nologies, Cloud Computing can be defined as "a model for enabling ubiquitous,
convenient and on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction". [96] While the concept of Cloud Computing has existed
for several years and has gradually evolved to reach various IT environments, the
technology has only started to take its place in the manufacturing industry as a
solution to store and manage the explosive growing volume of production and
control related data. Cloud based manufacturing can contribute significantly to
the realisation of Industry 4.0 that enables modular and service oriented manufac-
turing where systems orchestration and sharing of services and components are
important considerations [164].
Besides, a smart industry related operations involve numerous decision making
processes that require large amounts of information plus intensive computation.
On the one side, and while these kind of industries require several computing
and storage resources such as servers for databases and decision-making units,
they have suffered before from an inefficient data exchange and sharing, low pro-
ductivity and less optimal utilisation of manufacturing resources. The integration
of Cloud Computing within such environments would provide undoubtedly an
effective solution to such problems. All data can be stored and processed in pri-
vate or public Cloud servers. By this way complex decision-making tasks can be
supported and manufacturers can effectively increase the agility, ensure efficient
processing, ameliorate performance and drive profitability.[182, 137]
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When talking about agility, manufacturers with enabling Cloud Computing, will
be able to adapt to changing and fluctuating market demands by modulating
their production capacity, realigning their processes, products and equipments
and supporting automatic scaling of resources and processing capabilities. This
could consequently increase productivity and reduce relatively operating costs es-
pecially when using a private Cloud solution.

• Cyber Physical Systems (CPS): Cyber Physical Systems are defined according to
[101] as "industrial automation systems that integrate innovative functionalities
through networking to enable connection of the operations of the physical reality
with computing and communication infrastructures". These last are considered as
the core foundation of Industry 4.0 that

2.1.3 Research challenges

The integration of IoT technologies within the industrial environments makes pro-
duction processes and operations operate in an efficient, intelligent and flexible
manner with constantly high quality and low cost. However, such integration
will create also various challenges that have gained increasing attention from the
public and the research area [84] [161] [116] [21]. In the following, we will cover
five main challenges coming from both IoT and IIoT unconventional characteris-
tics namely scalability, heterogeneity, reliability, dynamic changes, and security as
presented in Fig. 2.3. We deal specifically with such challenges just as they are the
closest to our work alongside this thesis.

Figure 2.3 – Industrial IoT raised challenges
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Scalability

With the explosive growth of Internet connected devices, both IoT and IIoT based
applications and services must be able to support the increasing number of con-
nected objects, end users as well as the application features, processing and an-
alytics capabilities without causing any significant decrease nor degradation in
the quality of the service offered to their customers. Scalability is therefore es-
sential to meet the inherent features of such systems. In such vast networks of
interconnected objects, designing related frameworks such as authentication, au-
thorization and access control mechanisms should take into full consideration the
scalability feature of such environments so that all participating and involved en-
tities from organizations and humans to devices, assets and services should be
identified and authenticated to grant access and authorization tokens to entities
requesting to use their resources at anytime and from anywhere. These mecha-
nisms therefore should be extensible in size, structure, and number of users and
resources. Besides, the unbounded number of connected entities exposes them to
potential threats and attacks that imposes to move towards distributed approaches
and infrastructures without centralized control of any security authority or man-
agement system.

Heterogeneity

The IoT interacts with a large number of devices presenting very different tech-
nologies, services and capabilities from the computational and communication
standpoints thus making them incompatible. Differences between those devices
can be the operating system, the connectivity, the I/O channels and the perfor-
mance which will lead certainly to different computational power, storage capac-
ity and energy consumption. Since IoT devices would be connected through an
interface in common in order to communicate all together, the management of
their heterogeneity should be guaranteed at both architectural and protocol levels
[18]. Thus the task of standardization needs to be considered to ensure interop-
erability among devices and also to standardize the communication among the
network.

Reliability

The reliability within the Smart factory is an important evaluation factor that re-
flects the performance of the whole system insofar as it evaluates both data and
results consistency as well as the stability of the offered services.
In an industrial environment, the reliability is concerned with how much data is
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received successfully at the receiver end with minimum delay. However, the re-
liability of the transmitted data is affected by the environment dynamic topology
where packets transmission is susceptible to link availability, interference, channel
state change and protocol overheads. Therefore, high communication reliability is
essential to provide accurate and precise supervision of industrial processes.
In this context, authors in [93] have presented some of the approaches used to
increase the reliability of wireless sensor networks used in industries such as re-
dundancy, frequency-hopping and interference minimization. In addition, many
other works [171, 15, 101] have assumed that the use of the fifth generation (5G)
mobile technology will address effectively the industrial requirements associated
with Industry 4.0 based Smart factory by reducing the communication latency, in-
creasing the longevity of devices battery life and more importantly improving the
reliability of communication in indoors as well as in outdoors.

Dynamic changes in industrial environments

In the context of IoT, states often describe devices’ behaviors. Transitions between
states are quite common and frequent, e.g., started and standby, sleeping and wak-
ing up, leaving and joining networks. Besides, the number of connected devices
can also evolve. Environments in which IoT devices operate are subject to con-
textual changes. The characteristic of dynamic changes is the intrinsic properties
of the IoT. However, many threats emerge due to dynamic changes in IoT sys-
tems. For instance, in intelligent transportation systems with characteristics of the
high mobility of connected vehicles, rapidly changing network topology and un-
bounded network size, hackers could even hijack a moving car and take the con-
trol. Particularly, IoT devices, such as vehicles or wearable devices equipped with
strong mobility, often make great demands on across domain authentication and
authorization to prevent malicious attacks from adversaries. Therefore, the secure
IoT infrastructure should be able to resilient to this dynamic changes environment
and provide a peer-to-peer authentication and authorization services.

Security

Many Other challenges have been discussed in the context of IoT but one of the
most important ones is the security challenge [116, 88], in fact traditional security
mechanisms could not be used directly within IoT applications due to its different
technologies, standards and communication stacks [8]. In addition, the existence
of such a large network with a high number of interconnected entities will defi-
nitely imply various scenarios of attacks and eavesdropping which could threaten
those entities and put them in danger thus harming the corresponding users.
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To cope with this challenge, cyber security systems must offer adapted mecha-
nisms to protect the collected data from physical devices and this since it may in-
clude and manage sensitive user information. This means that data confidentiality,
integrity, and availability should be provided by the IoT system [159] which could
be done by considering encryption primitives [121, 184], redundancy techniques
as well as authentication [90], access control and authorization [107, 72] mecha-
nisms in order to prevent unauthorized users to access the system.
Recently, many other security challenges have been arised especially with the full
increasing implications of ubiquitous connectivity and on the other hand as re-
gards to the frequent integration of IoT services and applications to carry out
daily activities.For example, data providers can behave deceitfully by providing
false information. Users personal and sensitive data could be collected, accessed
and interpreted by third parties what could make data providers hesitant about
sharing their information. Hence both privacy and trust represent real and ma-
jor issues that may limit the potential and the development of IoT applications.
The increasing amount of production data uploaded and shared between smart
devices deployed in heterogeneous and distributed architectures and communi-
cating with each other independently within and beyond the factory site put the
corresponding industrial system at a greater cyber risk that need to be seriously
considered in the near future. For example, attackers can manipulate and infiltrate
industrial systems, malware injection can disturb their functioning and put them
out of action, which could cause significant damage to the whole production area.

2.2 Security requirements for Industry 4.0 based In-
frastructures

In addition to the previously mentioned challenges, we still have to sort out spe-
cific security requirements in order to build secure infrastructures and frameworks
for Industrial IoT based environments. Some researchers have already introduced
many works related to security requirements in IoT. For instance, in the context
of IoT, [159] focuses more on security and privacy requirements in terms of confi-
dentiality, authentication, access control, and trust. Moreover, in [108], have iden-
tified security challenges in each layer of IoT and potential attacks like replay, DoS,
man-in-the-middle, and eavesdropping attacks. Similarly, in [9] authors have pro-
vided a taxonomy of security threats and attacks in IoT that were classified in
terms of application, architecture, communication, and data. The presented se-
curity vulnerabilities are then discussed for hardware, network, and application
components and demonstrated in different application scenarios such as smart
environment, healthcare, etc. More specifically, [183] presented a comprehensive
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survey that focused on the specific issue of trust management in IoT. In the context
of Industrial IoT and Industry 4.0 and with the growing trend of integrating IoT in
industries and manufacturing sectors, a significant number of surveys have been
realized to highlight research advancements done in the domain of Industrial IoT.
However just few ones have discussed security concerns and predominant attacks
prevalent in the industrial domain. For example, in [155] authors have surveyed
IIoT specific security problems and discussed eventual corresponding solutions.
In anoher work [134], authors have outlined basic requirements for secure decen-
tralised industrial IoT infrastructures and therefore examined threats and vulner-
abilities targeting such systems.
From the already mentioned research papers, we can deduce that security require-
ments in both IoT and IIoT should not only cover inherent characteristics of related
systems and environments but should also deal with several components and lay-
ers ranging from devices and networks to services and applications during both
the design phase and the runtime phase. In this context, this section states the
main security requirements for a secure Industrial IoT infrastructure.

2.2.1 Confidentiality

Confidentiality may be defined as the guarantee that data is protected from being
accessed, retrieved, cracked, altered and misused by unauthorized and malicious
parties. This security requirement represents a fundamental issue in IoT and IIoT
scenarios whereby not only users but also authorized objects, machines and ser-
vices may access data. This last may represent an asset or a resource to be pro-
tected in order to maintain the competitiveness, preserve the privacy of related
holders and safeguard the market values [116]. This requires addressing two im-
portant aspects: first, the definition of an access control mechanism and second,
the definition of an object authentication process (with a related identity manage-
ment system). However in such environments, current solutions for access control
and identity management may not be applicable due to several limitations such
as the amount of data generated, the dynamic change of such networks, the agree-
ment needed to be established in case of shared resources.

2.2.2 Integrity

Integrity may be defined as the guarantee that data is protected from unautho-
rized alteration and tampering. These measures provide assurance in the accu-
racy and the completeness of data either collected and stored at the device layer,
or transmitted and exchanged between entities at the network layer. For maintain-
ing integrity, several countermeasures may be put in place []. For instance, access
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control and rigorous authentication can help in preventing authorized users from
making unauthorized changes. Hash verification and digital signatures on the
other side can help in ensuring transactions authentication and guaranteeing that
files have not been modified or corrupted.

2.2.3 Privacy

With the increasing use and efficiency of data processing, information privacy has
become the predominant concern nowadays, that’s why it is considered as one of
the major issues that need to be addressed in IoT based applications and specifi-
cally when designing and developing trust management systems.
Although privacy is a very broad and diverse notion for which the literature of-
fers many definitions and perspectives [138] but in the context of IoT and IIoT,
little attention have been paid to privacy preserving issues and techniques. In
fact, many IoT solutions and services provide sensitive and personal information
about users and data providers such as personal preferences, private information,
opinions, interests, etc. This information could be later revealed and made known
to all the accessing users, it could even be accessed and misused by a third party.
That’s why privacy preserving is so important to protect data providers’ personal
information such as identity information, location, mobility traces, habits from
any other parties in order to keep a certain degree of anonymity, unlinkability and
data secrecy.

2.2.4 Availability

Availability may be defined as the guarantee that all services and devices are
timely and uninterruptedly accessible by authorized users. Some of the most fun-
damental threats to availability are non malicious in nature and include hardware
failures, unscheduled software downtime and network bandwidth issues. Ma-
licious threats include various forms of sabotage intended to cause harm to an
organization by denying users access to the information system.
In the context of IoT, availability requirements, as specified by [140], are highly
tied to reliability requirements. IoT systems need to display sufficient resiliency to
sustain availability under desired levels as well as they need to guarantee a certain
level of performance requested by their applications.

2.2.5 Trust

In the current literature, various trust definitions have been proposed. these last
range from specific scenarios to wide and general systems. Meanwhile, the trust
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meaning across existing proposals differs from one work to another insofar that
each one of them has considered trust from different perspectives. According to
[120], trust is defined as the subjective expectation of others future behavior as
expected by their evaluators on the basis of the history of their encounters. An-
other definition was given in [69] where trust was defined as the firm belief that
other entities are competent enough to act in a secure, dependent, and reliable way
within a specified context.
A trust management system is often needed to produce reaction based on the real
time evaluation of entities behaviors during established interactions in addition to
feedbacks and recommendations gathered from other entities. These last aggre-
gated together form an overall trust score that once shared and propagated over
the network, participating entities could decide whether to continue or not the
collaboration.
This concept plays a key role in IoT in general and has a great importance for in-
dustrial IoT based environments. It is essential when participating devices, with-
out being previously interacted with each other, want to cooperate and to use
provided services with a certain degree of trust among themselves. It is needed
also to achieve trustworthy data during collection, exchange, analysis, fusion and
mining phases which is inevitably crucial in IoT and especially in smart factories
where devices continuously collect data with great amounts and important infor-
mation within that is needed for critical decision making. It is needed as well for
many other decision making situations such as access control, intrusion detection,
key management, isolating misbehaving nodes for effective routing, authenticat-
ing devices before interaction and other purposes.
Regarding this set of security requirements, in this thesis, we will focus more on
trust mechanisms. For this purpose, we will detail more this requirement in Sec-
tion 2.3.

2.3 Trust management in IoT

We have presented in the previous paragraph the existing trust definitions, in the
following we will give a generic definition for trust in the context of IoT. Then, we
will describe trust properties, the operations considered within the trust manage-
ment process, and therefore we will review how proposed works have dealt with
the concept of trust management within each operational block in IoT systems.
In the context of IoT, trust could be defined as a relationship established between
two entities: a trustor and a trustee, where the trustor is the evaluating entity while
the trustee is the evaluated one. The trustor when needing to collaborate with the
trustee, to use the services or the information it provides, when it receives out-
comes through the established communication while coming in touch to it, will
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evaluate its competence to act just as predicted for a specific period and within a
specified context. Thus this relationship is always related to a time value which
corresponds to the trust evaluation time, a context where the relationship resides
in, and a parameter on which the evaluation depends.
As a part of this thesis focuses on the concept of trust management, we will present
in this section more details about the notion of trust, and we will review how pro-
posed works have dealt with this last during the trust composition process in IoT
systems and exceptionally in smart industries.

2.3.1 Trust properties

Due to the different requirements of IoT applications and regarding the nature of
the harsh industrial environment, the concept of trust can be viewed in a different
way and accordingly its evaluation can depend on several properties and charac-
teristics. In this section, we will define the main trust properties as illustrated in
Fig. 2.4.

Figure 2.4 – Trust properties

Trust is unidirectional

When evaluating the trustworthiness of a specific entity, the trustor generally rely
on the evidence it has about the trustee. This evidence may be acquired either
through its direct observations, either through the policies it specifies, either from
the recommendations it receives from the neighboring nodes, or other means.
Obviously, the trustee may not necessarily know the trustor or has established
previous interaction with him and therefore it may not trust him. Even in the
case where previous interactions have been existed between the two entities, the
disposition of the trustee, its willingness to trust, its perception on the trustor’s
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performance and benevolence may differ.
Hence trust may not be mutual or reciprocal . This property could be formalized
as follow:

∃(ei, ej) : trust(ei 7−→ ej)
c
t 6= trust(ej 7−→ ei)

c
t

Trust may not be transitive

[79, 42] If the trustor ei needs to evaluate the trustworthiness of ej to collaborate
with for the first time, ek which ei trusts, comes and recommends ej, in this case
should ei consider the received recommendation and trust ej?
The answer may be yes and no. This fact is so large to be as simple as this. In fact
many other factors come into play to determine whether trust could be transitive
or not such as the context in which the trustor ei trusts the recommender ek, the
community to which each entity belongs and the relationships that exists between
them.
This property could be formalized as follow:

trust(ei 7−→ ek)
c
t ∧ trust(ek 7−→ ej)

c
t =⇒ trust(ei 7−→ ej)

c
t

Trust is dynamic

Present entities in IoT environments are generally resource constrained and mo-
bile in nature and due to these two characteristics, the network topology changes
at every instant and consequently data in transmit will be typically incomplete
and can change rapidly. To accommodate the different changes related to the en-
vironment in question, various approaches were considered in the literature.
Some have considered event driven scheme [124, 41, 142], where trust is updated
after a communication or an event is made between two entities or after ratings
and feedbacks are sent to the evaluating entity.
Others have considered time-driven scheme [36, 39, 38], as trust evidence is col-
lected periodically, trust needs to be updated at each period, past evidence can be
considered also while updating trust either by applying aggregation techniques
or by using exponential time decay function.

Trust is social based

The exploitation and the integration of social concepts within IoT environments
has introduced SIoT, the Social Internet of Things paradigm [bib322, 17]. This
last is mainly related to the fact that objects within IoT environments are able to
establish social relationships in an autonomous way with regard to their owners.
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The evaluation and the computation of trust therefore will depend not only on the
trustee’s competence and capability to perform the requested task, but also on its
commitment and on the type of the relationship towards the trustor.

Trust is subjective

The evaluation of trustworthiness depends not only on the behavior of the trustee,
its performance, reputation or technical properties but also on how this evidence is
perceived and interpreted by the evaluating entity. Hence trust can be influenced
by the subjective properties of both the evaluating and the evaluated entities [183]
such as the evaluated entity’s honesty, benevolence, goodness and on the other
side, the evaluating’s confidence, expectation, belief and willingness to trust, etc.

2.3.2 Trust operational blocks

The design, the implementation and the development of a trust management model
generally goes through a succession of operations that are considered essential for
trust computation in dynamic networks [67].
In Fig.2.5 we present the possible trust operational blocks that need to be imple-
mented within a trust framework for IoT. These phases include: (i) the computa-
tion of a trust value based on a specific parameters, considering some metrics and
using certain factors, (ii) the computed values are propagated over the network in
order to establish trust between entities having neither prior knowledge nor pre-
vious interaction, (iii) As trust values are sent by several evaluating entities and
since they are propagated through multiple paths, they need to get aggregated into
one single value which will be used in a later trust compositions, (iv) Whenever a
change occurs due to the network dynamicity, trust could be predicted potentially
using the present and past trust values, (v) The trust values will be applied into
the network in order to achieve the desired purposes.
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Figure 2.5 – Trust operational blocks

These five phases the trust composition process is made up of are detailed in the
following paragraphs.

Trust Composition Before producing a trust score and judging an entity either
trustworthy or not, the trust management system should collect enough informa-
tion about a specific entity in order to define its trust score regarding its behavior
as it will be considered by other network entities.
The questions to be asked here:

– What approaches to use to determine trust?

– Which kind of aspects to consider?

– How to compute the gathered information and to provide a final trust value?

The process to be realized within this block is illustrated in Fig 2.6

Figure 2.6 – Trust composition process
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As seen, the first step within trust composition is to determine and to specify
which kind of aspect the information gathering will focus on. Here we can dis-
tinguish between social trust and technical trust (or QoS trust) [71]. Social trust
derives from established social relationships among IoT entities while quality of
service trust is determined by the belief on entities ability to guarantee a certain
quality of service in response to a service request. When reviewing the current
literature, we can interpret that almost all trust management systems have consid-
ered both technical (QoS) and social trust as an aspect on which the information
gathering focuses for the trust evaluation phase. This fact is mainly related to the
introduction of the social Internet of Things [62, 150] according to which partici-
pating entities are capable of setting up social relationships that are generally af-
fected by those existing between their corresponding owners. Among social prop-
erties, friendship [40, 136, 125] and community of interest [22, 23, 24, 40], are the
most used ones for the evaluation of social trust. This refers to the fact that having
a good friendship, sharing a common interest or belonging to the same commu-
nity implies a good confidence on the provided service and the established com-
munication. For the technical trust, we have seen that this last considers several
parameters such as the energy consumption level [37, 177] and the device related
capability [142, 136, 177, 2] in order to address respectively the energy efficiency
and the resource constraints challenges present in almost IoT based environments.
As a next step and once the aspect is determined, the information gathering pro-
cess can be launched. This last may be based on several approaches such as expe-
rience, reputation, knowledge and policies which represents the trust parameters
[14, 68, 169]. The experience parameter corresponds to each node’s interpretation
of the previous interactions and events established with its immediate neighbors
at a specific period of time. These evaluations will be kept within each node and
updated at regular periods and regarding regular events. Moreover, they will be
propagated as trust recommendation part to other network nodes. Subsequently,
the past gathered trust information will be regularly kept and considered after as
the knowledge part of trust. Another approach to evaluate trust is to use well-
defined languages and semantics as policies to make trust decisions. For the infor-
mation gathering process, we have seen that some works in the current literature
have considered the context while assessing the trustworthiness degree of each
entity within the network [142, 136, 177]. The context awareness is an important
feature that should be considered while designing a trust management system in-
sofar that some nodes could act honestly in such a context and maliciously in other
one.
Finally a last step within the trust composition process is the trust calculation
where a trust value will be computed and modeled according to a specific method
such as probability, mean, difference, etc.
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Trust Propagation In Fig. 2.7, we illustrate the functional sub-blocks correspond-
ing to the trust propagation process. In fact, once trust is composed regarding a
specific entity, the trust value will be propagated to the network entities what
would effectively optimize the resource utilization as entities will spend no more
resources to recompute trust.
The main questions here are:

– How to propagate trust values?

– Shall an entity propagate trust autonomously and periodically to other enti-
ties within its neighborhood?

– Shall it wait until it receives a request from another entity to propagate trust?

– Or shall it send it to a centralized entity for further processing and storage?

Generally, there are three schemes of trust propagation namely centralized, dis-
tributed, and decentralized. where in the distributed scheme, each entity will
record locally the trust information and provide it either on request from rely-
ing nodes or communicate it autonomously to other entities it interacts and col-
laborates with. On the other hand, in the centralized scheme, a third party (i.e. a
centralized server, a cloud platform, a virtual service, etc.), came into play to prop-
agate the trust information over the network in order to make it publicly available.
As it is seen here, the process of trust propagation could be launched either on de-
mand from the relying entities or autonomously, freely and independently by the
evaluating ones.

Figure 2.7 – Trust propagation process

After reviewing the existing works, we have seen that existing proposals mostly
consider the distributed scheme for trust scores propagation [22, 23, 24, 40]. These
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last are sent either upon demand to nodes requesting their use or autonomously
and independently to serve within the trustworthiness evaluation process of tar-
get nodes. The consideration of such a scheme seems to be the most convenient to
the inherent requirements of IoT systems where devices scattered over a wide area
could have always access to a centralized system to send and get trust information
regarding nodes to be assessed. Moreover no work far discusses how to ensure the
integrity, the validity and the authenticity of the transmitted data during the prop-
agation phase. Instead, existing works assume that collecting information from a
large number of entities and executing aggregation operations on the exchanged
trust related information will result in a relatively accurate assessment.

Trust Aggregation Generally speaking, when trust values regarding a specific
entity are requested, different evaluating entities will send their assessed values
which will be obviously propagated through multiple paths within the network,
thus different trust values will be received and multiple versions of each value will
be created as well. For this reason an aggregation technique is needed to combine
the received value into a final one.
The main question to be asked here is:

– Which technique to use for trust aggregation?

In the current literature, many aggregation techniques have been presented. Ac-
cording to [79], these last include belief theory, weighted sum, fuzzy logic, regres-
sion analysis and Bayesian inference.

Trust Prediction Whenever a change occurs due to the network high dynamic-
ity, trust could be predicted potentially using the entities’ present and past trust
values. Moreover, when two entities lose contact and there is no edge between
them, it will be so important to be able to estimate the trust relationship nature to
be established before it took place in the reality.
The main questions to be raised here are:

– Which approach to consider for the trust prediction?

– How to guarantee the accuracy of trust prediction?

– How to trust the prediction in itself and take actions based on it?

Various approaches have been considered in the literature, some of them used the
kalman-filter approach to predict the trust system future state [35, 27], others have
focused on the unsupervised methods to predict trust [163], while several ones
have used the principles of machine learning [127] and data mining [86] as a basis
for creating a prediction enabled trust model.
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Trust Application Applications of trust management are enormous in mobile
networks and particularly in IoT environments where trust management systems
are often designed to handle effectively many security services as illustrated in Fig
2.8. These services include : intrusion detection, key Management, secure routing,
malicious nodes detection, quality of information assessment, access control man-
agement etc.

Figure 2.8 – Trust design purposes and applications

2.4 Research Statement

Figure 2.9 – Thesis objectives and contributions
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From summarized IoT and IIoT challenges and security requirements, we can see,
that in order to build our IoT secure infrastructure for meeting presented security
requirements while taking into account mentioned IoT unconventional character-
istics, several questions need to be considered. Therefore, we summarize our re-
search problems as follow:

– How to ensure a distributed collaborative system?
we remind here that, the aim of IoT is mainly to have smart objects com-
municate over the Internet to collect comprehensive data and provide per-
sonalized automation services, with little deliberate human interaction. To-
wards this aim, current IoT platforms are built on a centralized model where
a central server or broker provides services like data handling, device co-
ordination, and authorization. This approach necessitates high-end servers
and proves to be unsuitable for scenarios where objects are required to au-
tonomously exchange data and where end-to-end communications do not
have to go through a centralized server for performing automation services.

– How to ensure an agreement is reached among collaborating entities? When
talking about entities collaborating and working altogether alongside a pro-
duction process for example and sharing for this purpose a set of common
resources, an agreement should be reached among them in order to ensure
a distributed and dynamic governance and management of the overall sys-
tem where all relevant parts can make a comprehensive decision of joining
entities registration and shared resources management without the need for
a third party that could be itself vulnerable to attacks.

– How to dynamically manage the access over shared resources?
Where end users and collaborating parties are more empowered to control
access over their own devices as well as over resources they share by defining
their own policies and dynamically reconfiguring them in response to time,
events and more importantly to entities’ changing behavior and attitudes.

– How to guarantee integrity, consistency and notarization of data during shar-
ing?
We have seen in the previous section how security is one of the most criti-
cal concerns to IoT applications. Particularly, the integrity and consistency
of collected and shared data is the basic guarantee for securing established
operations. In this direction, effective mechanisms need to be considered to
protect IoT communications for confidentiality, integrity, authentication and
non-repudiation of information flows. Moreover, interacting entities need to
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be identified to ensure the data integrity from the origin, which convention-
ally relies on trusted third parties that may lead to breaches of privacy and
security in the considered environment.

2.4.1 The solution: Decentralizing IoT and IIoT networks in a
secure way through the blockchain technology

A decentralized, resilient, fault tolerant, secure and censorship resistant approach
to both IoT and IIoT networking would solve many of the encountered issues
as described above. The concept of a distributed scenario is not novel. In fact,
many academic and industrial studies consider it as one of the most promising
approaches that can push the dream of the IoT into the real world [78]. Currently,
the blockchain technology represents one of the most suitable candidate technolo-
gies able to support a secure and distributed ecosystem for both the IoT and the
Industrial IoT. The inherent features of such technology make it a natural fit to de-
veloping distributed and secure frameworks for these environments. That’s why
we propose to integrate it within our work in order to take advantages of security
features it provides. Fig. 2.9 depicts the positioning of the main contributions of
this thesis. The figure illustrates the problem tackled, the approaches adopted to
solve it and the different solutions to meet our goal. As a first contribution and
as illustrated in Fig. 2.9, we propose to use the blockchain technology within a
resource management framework for ensuring reliability, traceability, control, in-
formation integrity and notarization. The proposed framework utilizes blockchain
to keep a living document trace about the flow of resources being distributed and
shared among collaborating parties while maintaining distributed system gover-
nance and implementing dynamic, fine grained, flexible and secure resource ac-
cess authorization. More details about the proposed approach are given in the
next chapter, Chapter 3. To better understand the core feature of the blockchain
technology as well as its working principles, we will investigate in the next sec-
tion its key challenges and benefits. The state of the art of blockchain technologies
in terms of consensus mechanisms, enabling technologies and main concepts are
analyzed as well.

2.5 Blockchain in Industry 4.0

From existing IoT and Industry 4.0 based solutions, distributed models could not
only improve the scalability of the considered system but also to ensure the se-
curity and the privacy of involved entities compared with centralized and decen-
tralized models. This refers mainly to the fact that participating entities when
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interacting or collaborating with each oher, do not have to rely and to trust ex-
ternal services or third-parties to handle data they produce and share given the
fact that these last can misuse it or in worst case scenarios, share it with mass-
surveillance programs. In this context, several proposals have been made for en-
suring distributed systems in IoT environments and hence harvest scalability and
security advantages. For instance, Webinos [64] and Alljoyn [12] are two pioneers
for practicing distributed models in IoT environments. However, these last can-
not easily solve the integrity, immutability, traceability, and notarization issues
required for most use cases within such environments until the blockchain tech-
nology has emerged as a prominent perspective to develop security solutions in
decentralized, collaborative and trustless environments. By using blockchains, we
could remove intermediaries, allow users and devices to manage their data with-
out relying on third parties and especially we can reach high levels of harmony
in the traceability and sharing of information. By providing effective sharing of
historical information, this technology guarantees transactions transparency and
traceability.
In the area of IoT applications such as smart manufacturing, tracing historical data
is crucial. For instance, by reviewing data, we can identify key factors that might
impact product quality. By improving processes, a higher quality will then be
achieved. By filtering through the data, we can discover weak spots in production
and so on.
We will provide in this part a detailed description of what a blockchain is, how a
blockchain network operates, what are its main characteristics and concepts, how
smart contracts allow us to radically redefine how interactions between transact-
ing parties on a network can be set up and automated, what are the different ap-
plication scenarios a blockchain is used for in IoT and Industry 4.0, and finally
what are the main security challenges these applications face once the blockchain
technology deployed within.

2.5.1 Definition

Originally designed for keeping a financial ledger and meeting the purpose of
cryptocurrency applications, the blockchain paradigm can be extended to provide
a generalized framework for managing any movements of data related to goods,
devices, information records, etc. This last could be defined as a distributed ledger
of transactions across a decentralized network whereby records of all established
interactions are registered providing thereof a proof of existence, of ownership
and modification of this data during interaction [43, 48, 50].
These transactions are hold within blocks chained together through cryptographic
hashes contained within their headers in order to ensure immutability insofar that
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blocks once chained, data contained within will be available and could never be
changed or altered. Each block references the hash of the block that came before it.
This establishes a link between the different blocks, thus creating a chain of blocks,
or blockchain as it is illustrated in Fig. 2.10. Any node with access to this ordered,
back-linked list of blocks can read it and figure out what is the world state of the
data that is being exchanged on the network.

Figure 2.10 – Blockchain design structure

2.5.2 Types of Blockchain

Based on several criteria and how they are used in different application scenarios,
blockchain systems can be classified into three main types namely public, private,
and consortium blockchains [10, 43]. These three are compared in Table 2.1 and
described as follows:

– Public Blockchains: This category provides an open platform that allows
users from different organizations and backgrounds to join, transact, mine
and perform read and write operations on the blockchain. There are no re-
strictions on any of these factors and anyone can send transactions, maintain
a copy of the distributed ledger and engage in validating and adding new
blocks to the chain where the nomination of permissionless blockchains.
Moreover the blockchain is open and transparent, there are no specific val-
idator pre-selected set of nodes and all users can publish new blocks to the
blockchain by solving either computationally expensive puzzles, or stak-
ing one’s own cryptocurrency. The availability of the copy of the entire
blockchain, synchronized with all of the nodes, makes it secure and im-
mutable.
Moreover, this kind of blockchain is tamper-resistant insofar that each trans-
action has a processing fee attached to it, which prevents the public ledger
from being hacked since it would be too costly to tamper its contents.

– Private Blockchains: This kind of blockchain is mainly set up to facilitate the
private sharing and exchange of data among a group of known members
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within a single organization. Private blockchains are also called permis-
sioned blockchains insofar that external users cannot have access nor par-
ticipate unless they are authorized to do. Users’ participation is decided
either by a set of rules or by the network that controls access. This inclines
the network more toward centralization, while derogating the elementary
blockchain features of complete decentralization and openness as defined.
In a private blockchain system, once nodes become part of the network, they
contribute in running a decentralized network, with each node maintaining
a copy of the ledger and collaborating to reach a consensus for updating.
But, unlike public blockchain, the writes are restricted.

– Consortium Blockchains: This kind of blockchain could be considered as a
partly private and permissioned blockchain, in which no single organiza-
tion handle consensus process and block validation but rather a set of pre-
selected set of nodes. These nodes decide who can participate in the network
and who can partake in the consensus mechanism. Thus, it is a partially
centralized system, owing to the control by some selected validator nodes.
Similar to private blockchains, this kind of blockchain does not involve pro-
cessing fees, and it is not computationally expensive to publish new blocks
[10]. While it does provide auditability and lower latency in transaction pro-
cessing, it does not entirely guarantee immutability and irreversibility, since
the control of the consortium is made by a majority of nodes which can lead
to tampering with the blockchain.



36Chapter 2. State of the Art: Security and Trust concepts in Industrial Internet of Things
(IIoT)

Public
blockchain

Consortium
blockchain

Private
blockchain

Registration
authorities

Anyone Multiple entities (or-
ganizations)

Single entity
Defined before
initializing the
network

Access Public
read/write

Can be restricted Can be re-
stricted

Identity Pseudo-
anonymous

Approved partici-
pants

Approved par-
ticipants

Immutability Nearly impossi-
ble to tamper

Could be tampered Could be tam-
pered

Participation
in consensus

All nodes Selected nodes in
multiple organiza-
tions

Single organiza-
tion

Transaction
Speed

Slow Lighter and faster Lighter and
faster

Table 2.1 – Types of blockchains

2.5.3 Blockchain Technology Features and Working Principles

In order to understand the potential applications of blockchains in IoT and Indus-
try 4.0, it is important to have a clear understanding of the main concepts and
working principles of blockchains. In the following, we introduce the main fea-
tures and working principles involved in achieving immutability, security, and
integrity of blockchain stored data.

Consensus Mechanisms

To ensure that all entities agree on the transactions and the order in which these are
listed on the newly validated block so that they have the same copy of the ledger,
an agreement is required to maintain the blockchain architecture and to ensure its
functioning and consistence. Otherwise, the individual copies of the blockchain
will diverge and we will end up with forks. In such a case participating nodes will
have a different view of the world state and the network will no longer be able
to maintain a unique authoritative chronology unless this fork is resolved. A dis-
tributed consensus mechanism is therefore needed in every blockchain network
in order to make sure that an agreement is reached between the set of predefined
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entities to support a decision making. The type of the considered consensus mech-
anism depends mainly on the blockchain network as well as the characteristics and
the capabilities of the participating entities.
To reach consensus among validating entities, several ways could be considered
[190, 20]. Below, a brief introduction to a few of them is given.

– PoW (Proof of Work): this consensus strategy is used in the Bitcoin network
[122] in addition to many other cryptocurrencies to confirm transactions and
produce new blocks to the chain. In such a strategy, Publishing new blocks to
the blockchain is called "mining", and miners engage in a race to find a nonce
that, when hashed with the hash of a block, produces a resultant smaller than
a predefined threshold. In the decentralised network, all participants have
to calculate the hash value continuously by using different nonces until the
target is reached. When one node obtains the relevant value, all other nodes
must mutually confirm the correctness of the value. After that, transactions
in the new block would be validated in case of frauds. Then, the collection
of transactions used for the calculations is approved to be the authenticated
result, which is denoted by a new block in the blockchain. Subsequently,
the miner claims the processing fees associated with the transactions stored
within the block as a reward for mining. In PoW consensus, the compu-
tationally expensive block creation and transaction fees secure the network
against DDoS attacks and false block creation.

– PoS (Proof of Stake): this consensus strategy is an alternative approach for
PoW that requires less CPU computations for mining. Instead of a compe-
tition between participating nodes to solve the next block, a node is chosen
for mining task based on its proportional stake in the network which is its
wealth in terms of that cryptocurrency. This last will usethen a digital sig-
nature to prove its ownership over the stake instead of solving a compli-
cated hash problem. Meanwhile, the more currency forgers held, the greater
chance they have to generate the next block. Moreover, in this method, all
coins are available from the first day and no mining reward or coin creation
exists, instead, miner nodes are rewarded only with the transaction fees.
Although this method eliminates the computational requirements of proof
of work, it creates new problems, insofar that is contingent upon nodes with
the highest amount of stake which somehow makes the blockchain central-
ized.

– PBFT (Practical byzantine fault tolerance): this consensus strategy is based
on a replication algorithm to tolerate byzantine failures. All entities, in this
method, should participate in the voting process in order to validate and to
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add the next block. Here, the consensus is reached when more than two-
thirds of all nodes agree upon that block. Meanwhile, PBFT can tolerate
malicious behavior from up to one-third of all nodes to perform normally.
For instance, in a system with one malicious node, there should be at least 4
nodes to reach a correct consensus. Otherwise, consensus is not reached.
Besides, in such mechanism, the consensus is reached quicker and in an eco-
nomic manner compared to proof of work. Also, it does not require owning
assets similar to proof of stake to take part in the consensus process, which
make it well suited to private blockchain networks like Hyperledger projects
that are controlled by a third-party.
However, it is not the best choice for permissionless, public blockchains due
to their limited scalability and comparatively low tolerance towards mali-
cious activities. PBFT has high throughput, low latency, and low computa-
tional overhead, all of which are desirable for IoT networks. However, its
high network overhead makes it unscalable for large networks, thus it could
be applied only to small IoT networks.

– RR (Round Robin): This mechanism is mostly used in private blockchain
networks, where mining is restricted only to select identifiable entities. This
prevents the problem that such blockchains might have, which is the mo-
nopolization of the mining process. More specifically within this consensus
strategy permitted entities create blocks in rotation in order to generate a
valid blockchain, and every entity in a given time window can only create a
finite number of blocks calculated using a network parameter called mining
diversity that determines the number of blocks that should be wait for before
attempting to mine again.

Smart Contracts

A smart contract is an executable code deployed and residing at a specific unique
address on the blockchain network. This last is triggered by addressing a transac-
tion to it. The main aim of a smart contract is to automatically execute the terms of
an agreement once specified conditions are met. It include a set of data which are
the state variables and code corresponding to the executable functions. These last
are executed when transactions are made, broadcast to the network and addressed
to its address. Called smart contract then runs independently and automatically in
a prescribed manner on every node in the network, according to the data that was
included as input in the related transaction, as a result an eventual return value is
shown to the outside.
When a blockchain supports smart contracts, it does allow for multi-step processes
to occur between mutually distrustful counterparties. The transacting entities get
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to: (a) inspect the code and identify its outcomes before deciding to engage with
the contract, (b) have certainty of execution since the code is already deployed on
a network that neither of them controls fully, and (c) have verifiability over the
process since all the interactions are digitally signed. The possibility of a dispute
is eliminated since the participants cannot disagree over the final outcome of this
verifiable process they engaged in.
Smart contracts operate as autonomous actors, whose behavior is completely pre-
dictable. As such they can be trusted to drive forward any on-chain logic that can
be expressed as a function of on-chain data inputs, provided that the data they
need to manage is within their own reach.
Smart contracts can be developed and deployed in different blockchain platforms
where each one of them offers distinctive features for development supported by
different high-level programming languages. In Ethereum blockchain platform,
advanced and customized smart contracts are supported with the help of Tur-
ing complete programming language. The code of an Ethereum contract is in a
low-level, stack-based bytecode language referred to as Ethereum virtual machine
(EVM) code. Users define contracts using high-level programming languages
compiled into EVM code. The most widespread language is Solidity [53] which
is a JavaScript style contract-oriented, statically-typed, high-level programming
language designed for implementing smart contracts.

Peer To Peer Networks (P2P)

Figure 2.11 – Peer to peer model

The continuous and widespread growth of Internet based applications in terms of
number of users and computational resources, has challenged the centralised na-
ture of the client-server paradigm which has led to the emergence of peer to peer
networks. These last provide a good substrate for creating large-scale data shar-
ing, content distribution and application-level multicast applications [102]. Fig. ??
illustrates the general model of a peer to peer network. As shown in Fig ??, there
is no hierarchical organization or central governing authority within the network.
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Instead a set of autonomous entities called peers form self-organizing overlay net-
works that are overlayed on the IP networks, offering a set of various properties
as follows:

1. Self-organisation: where nodes are able to interact with each other without
any central control. This is the main property of peer to peer systems that
makes the difference against the client-server paradigm.

2. Decentralised resource usage: available resources of nodes (CPU, storage,
and bandwidth) are distributed and shared with the best effort regarding its
load distribution.

3. Fault tolerance: where the failure of a single node within the peer to peer
network must not compromise the correct operation of the whole system.

When it comes to blockchains, one of the main goals of this technology is to mini-
mize the number of intermediaries being involved in the process. As a result, the
use of the peer to peer architecture was a necessity to offer security, decentraliza-
tion, and censorship resistance.

Cryptographic Techniques

In blockchain, cryptography technology is mainly used to protect user privacy,
transaction information, ensure data consistency and immutability, and guarantee
the blockchain as a distributed ledger with tamper proof and public verifiability
[174]. In what follows, we will present an overview of the commonly and widely
used cryptographic primitives and algorithms in blockchain platforms.

– Hash functions: A hash function is a computational method that maps data
of arbitrary and indeterminate size to a fixed size string and is characterized
by susceptibility, unidirectionality, non-invertibility, collision resistance, and
high sensitivity [187]. Hash functions are generally used to guarantee data
integrity and immutability and to ensure that it has not been illegally tam-
pered with. In the context of blockchains, hash functions can be used to per-
form block and transaction integrity verification where the hash value of the
information of the previous block is stored in the header of each block, and
any user can compare the calculated hash value with the stored hash value.
In turn, the integrity of the information of the previous block is detected. The
most popular hash function used in blockchains is SHA256, which is one of
the algorithms from a family of cryptographic hash functions named SHA
(Secure Hash Algorithms).
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– Digital Signatures: Besides hash functions, digital signatures are another in-
evitable cryptographic primitive in blockchains. Generally speaking, these
primitives are used for ensuring source authentication, source non-repudiation
and integrity. A digital signature scheme usually consists of two algorithms:
a signature generation algorithm and a verification one. The generated sig-
nature is mainly dependant on a signature key that is kept secret, and con-
trolled by the signer. For the verification phase, a public key is used for
verifying the received signature. In the context of blockchains, ECDSA and
EdDSA are the two digital signature schemes frequently used in blockchains
[174]. In principle, both of them are based on the hardness of the elliptic
curve version of discrete logarithm problem. ‘

– Other primitives: To enhance more transactions and identites privacy, some
other primitives are applied in some blockchain based applications such
as ring signatures, multi-signatures, non interactive zero knowledge proof,
commitment proof and so on [60, 75].

Blockchain key characteristics

In this paragraph, we will briefly delineate the main features and key carachter-
istics of blockchain that will make it an attractive technology for addressing the
aforementioned issues encountered with IoT and Industry 4.0 based applications.

– Decentralization: Blockchain technology utilizes the idea of distributed and
decentralized computing and storage. There is no centralized database in
a blockchain and participating can engage in transactions with each other
without the need to place trust upon a central third party to maintain records
of data exchange or perform authorization. This eliminates the many to one
traffic flows and overcome the problem of having a single point of failure.

– Immutability: Since all new entries made in the blockchain are agreed upon
by peers via decentralized consensus, the blockchain is censorship-resistant
and is nearly impossible to tamper. Similarly, all previously held records in
the blockchain are also immutable and, in order to alter any previous records,
an attacker would need to compromise a majority of the nodes involved in
the blockchain network. Otherwise, any changes in the blockchain contents
are easily detected.

– Traceability: Blockchain reaches high levels of harmony in the traceability
and sharing of information. Providing effective sharing of historical infor-
mation, this technology guarantees transactions transparency and traceabil-
ity. In the area of IoT applications such as smart manufacturing, tracing his-
torical data is crucial. For instance, by reviewing data, we can identify key



42Chapter 2. State of the Art: Security and Trust concepts in Industrial Internet of Things
(IIoT)

factors that might impact product quality. By improving processes, a higher
quality will then be achieved. By filtering through the data, we can discover
weak spots in production and so on.

– Auditability: All participating peers hold a copy of the distributed ledger,
consequently they can access all timestamped transaction records. This trans-
parency allows peers to look up and verify transactions involving specific
blockchain addresses. Blockchain addresses are not associated with identi-
ties in real life, so the blockchain provides a manner of pseudo-anonymity.
While records of a blockchain address cannot be traced back to the owner,
specific blockchain addresses can indeed be held accountable, and inferences
can be made on the transactions a specific blockchain address engages in.

– Security: Security is comprised mainly of confidentiality, integrity, and avail-
ability. Blockchain uses hash functions to chain blocks which ensures in-
tegrity and immutability insofar that blocks once connected, data contained
within cannot be subsequently altered. For the availability requirement, this
last is fulfilled inherently in blockchain given its distributed nature and data
is always available. Coming to the confidentiality requirement, this last is
achieved in permissioned blockchain solutions were users are permitted to
access just the data they are authorized to access through the use of permis-
sions. Without forgetting the fact of encrypting transactions before being
linked to the existing ledger.

2.5.4 Blockchain for IoT and IIoT: Applications

Integrating Blockchain technologies into Industry 4.0 based applications, such as
those involving Industrial IoT (IIoT) and IoT has proved to be quite beneficial
[115]. For instance, several attempts have been made for harnessing the power
of blockchain technology to face security issues in Industrial systems, to facilitate
data collection and storage techniques, and to trace the flow of data being ex-
changed and accessed. The adoption of such technology has empowered several
IIoT applications to enhance their security, transparency and to add additional
features within their pre-existing systems. In this section, we present the current
research trends in Industry 4.0 related sectors specifically the manufacturing, the
supplychain and the healthcare sectors and we discus how the most relevant ap-
plications have used blockchain to add decentralization, and to enforce security,
safety, privacy and other benefits to their systems.
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Manufacturing Industry

Within a smart factory environment, manufacturing data alongside the produc-
tion process have to be shared between different related departments and across
complex networks of machines, products, human operators, and value chain par-
ticipants that may be deployed in heterogeneous, distributed and unknown sites.
These data have to be released, timely updated, and securely accessed and shared
among the different parties within and outside the factory walls which is a very
tedious process and requires a certain level of trust to be established in advance
between the different parties. Security hence is one of the most important concerns
in such environments, given that vulnerabilities introduced during manufacturing
can be hard to detect and harder to react especially with open connectivity to the
external world in addition to the increasing amount of shared data. For example,
attackers can manipulate and infiltrate industrial systems, malware injection can
disturb their functioning and put them out of action, which could cause signifi-
cant damage to the whole production area. Also, users with different motivations,
roles and in different contexts can utilize the terminals to interact with data stor-
age systems. They may query data or attempt to take control of some physical
resources (i.e. terminals and the communication channel are the target). Or an
attacker can seek to collect available data through harvesting and exfiltration of
sensitive information from these terminals.
By integrating the blockchain technology, immutable records of manufacturing
data can be stored and uploaded on the shared distributed ledger and is accessi-
ble to blockchain participants while guaranteeing transparency, auditability and
traceability of both the flow of data as well as their access history.
Some existing applications and use cases of blockchain in the manufacturing in-
dustry are summarized below.

1. Logistics management: One important area is using the blockchain technol-
ogy for logistics management in order to ensure fair pricing and guarantee
timely delivery of row material and supplies for its productions. In addi-
tion, it helps to ensure efficient and on time delivery of their products to
meet their customers’ need. In [3], authors have proposed a decentralized
distributed system that uses the blockchain technology to collect, store and
manage key product information of each individual product throughout its
life cycle what would create a secure, shared record of transactions for each
individual product along with specific product information.

2. Social manufacturing networks: A second area is using the blockchain tech-
nology to enable social manufacturing networks among manufacturing par-
ties who collaborate altogether alongside the production process in order to
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effectively and securely support sharing of their manufacturing resources.
Forming a social manufacturing network can efficiently enhance manufac-
turers’ competitive capabilities and help them to produce more precise and
professional services and products that meet their customers’ needs. How-
ever, there are always high concerns of security, fairness, and effectiveness
in such collaborative network. In this context, authors in [97] developed
a blockchain based product credit assurance mechanism under social man-
ufacturing context in order to securely, fairly, and effectively manage and
regulate the cross-enterprise collaborations among socialized manufacturing
resources. This management is achieved in a peer-to-peer fashion, without
involving a third party and using both smart contracts plus a credit system.

3. Cloud manufacturing: Another direction is utilizing the blockchain technol-
ogy to support cloud manufacturing operations. This last is a new service-
oriented manufacturing model designed to utilize concepts from cloud com-
puting, Internet of Things, service-oriented computing, and virtualization
in order to transfer the manufacturing resources, capabilities and operations
into a set of services that can be smartly integrated and managed accord-
ing to the customers’ demands [26]. The integration of the blockchain tech-
nology within such a paradigm has encountered problems it faces espe-
cially those regarding centralization, scalibility and resiliency to vulnerabil-
ities which affect the system such as cyber-attacks and security problems.
In this context, authors in [26] has introduced a decentralized cloud man-
ufacturing system based on the peer to peer network developed via the
blockchain technology in order to enable all evolving set of parties to main-
tain a safe, permanent, and tamper-proof ledger of connections without a
central authority. Subsequently, this concept was expended in [25] where au-
thors have focused on machine level connection, and shop floor data sharing
based on blockchain technology.

4. Security and privacy: A last but not least direction is using the blockchain
technology for enforcing security and privacy requirements within indus-
trial systems. In this direction, several works have been made in an attempt
to use the blockchain technology as a basis for designing access control sys-
tems, identity management tools and preserving the privacy of their partic-
ipants as well. For instance in [129], FairAccess, a blockchain based access
control framework is presented for IoT. This last makes use of bitcoin stack
and introduces a new type of transactions to manage access permissions.
Access requests are granted or denied through defining access control trans-
actions using smart contracts, which takes advantage of the immutability of
the blockchain and makes the auditing of access control policies transparent.
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In [95] a blockchain-based secure mutual authentication with fine-grained
access control system for industry 4.0 was presented. The proposed frame-
work leverages the underpinning characteristics of blockchain as well as sev-
eral cryptographic materials to realize a decentralized, privacy preserving
solution. Another approach was presented in [77] where authors have pro-
posed a credit-based proof-of-work (PoW) mechanism for IIoT devices. The
proposed mechanism is based on directed acyclic graph (DAG)-structured
blockchains which is further used to develop a data authority management
method. This method regulates access to sensor data thereby protecting sen-
sitive data confidentiality as well as data privacy.
On the other hand and with regards to blockchain based identity manage-
ment systems, these last are gaining much attention to propose new solu-
tions for digital identities. In this context, several efforts have been made
in order to develop blockchain based identity systems such as Uport [103],
Shocard [158], Civic [149], Sovrin [166], etc. For instance, Uport, which is a
core component of the Consensys Ethereum ecosystem [192], aims at build-
ing decentralized applications to solve the digital identity problem. It mainly
uses smart contracts to design digital identity models and ensures reliabil-
ity and usability of identities through a set of operations (i.e., keys revoca-
tion and identities recovery). For its part, Sovrin takes a different approach
and provides a complete full stack to manage identities from the distributed
ledger to devices. It adds the identity layer for every entity on the Inter-
net and operates as a global public utility designed to provide permanent,
private and trustworthy identities. Sovrin establishes a public permissioned
blockchain in a peer-to-peer network in which nodes are divided into au-
thenticated validator nodes (permissioned) and observer nodes to ensure
high performance and scalability.

Supply Chain Industry

Traditional supply chain applications focus generally on the management of the
delivery of raw material, products, and services between providers, customers
and consumer destinations. This can run across multiple organizations and en-
tities or just be part of a single organization. The integration of the blockchain
technology within such applications can provide powerful support for their well
conduct. Reminding that within such applications, it is so important to provide
a set of functions for planning, scheduling, coordinating, monitoring, tracing and
validating the performed related operations. Which can be efficiently, securely and
transparently supported by the blockchain technology. Using a shared distributed
ledger to verify,permanently store and audit logistics transactions can also reduce
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time delays, management costs, and help to check the authenticity of the items
by tracing their origin. In addition, applying smart contracts will facilitate agree-
ments between the companies involved and create binding contracts faster and
with lower costs.
In this context, authors in [19] have described how a reliable, transparent, au-
thentic and secure system can be created by integrating blockchain into the sup-
ply chain architecture. They have also studied the benefits of introducing the
blockchain to the supply chain and the challenges to be encountered. Another ap-
proach was presented in [118] where authors have proposed a blockchain based
food supply chain using the proof-of-object (PoO) based authentication protocol.
For food traceability, an RFID tag is attached to the food product in order to track
its location throughout its lifetime within the supply chain. Tracking and moni-
toring generated data are then stored within the distributed ledger thus assuring
better quality of the food to be exchanged. Moreover in [100], involved companies
in the supply chain are connected to the blockchain to share logistic related data
with different visibility levels while simultaneously verifying its authenticity and
integrity. For the architecture deployment, a simulation model is used to recreate
such a supply chain and integrate it within the Ethereum blockchain.
Furthermore and regarding commercial implementations, important blockchain
based commercial projects in the domain of supply chain management are dis-
cussed below:

1. Food Trust: This project created by the IBM company [30] is a modular solu-
tion build on blockchain technology for food traceability, supply chain trans-
parency and auditability. The project is using the IBM blockchain platform
in addition to Hyperledger Fabric Project architecture to track food produc-
tion flows. The tracking information in this project includes storage tem-
peratures, expiration date, shipping details, origination farm details, batch
number and much more relevant data when the food being delivered world-
wide. The data are digitally connected to food items and the information is
entered into the blokchain along with every step of the process.

2. IBM Blockchain-TradeLens: IBM Blockchain provides solutions that cover
all aspects of supply chain management, with a specific focus on logistics.
Transparency and traceability are the most critical aspects of logistics, and
IBM Blockchain can streamline business exchanges, transactions and trading
associations with secure, worldwide business systems and networks. With
solutions like TradeLens, new and open blockchain-fueled platforms built
to support worldwide trade major logistics players are profiting by a com-
mon and shared ledger that is validated promptly with each system member
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[151]. The outcomes are streamlined stock administration, greater collabora-
tion, improved resource usage and much more.

3. OriginTrail: The main objective of this project is to bring transparency to
complex international supply chains since 2013 [109]. It is a platform, which
is already in use in the food industry, that lets its users know the where-
abouts of their food products.

4. BlockVerify: It is a blockchain based anti-counterfeit solution presenting trans-
parency in the supply chains. It is effectively being utilized in diamonds,
pharmaceuticals, and a couple of electronic industries.

We summarize in Table 2.2 the main benefits of using the blockchain technol-
ogy in each of the discussed industrial sectors. Therefore in Table ?? we present
a summary of the different case studies reviewed in this Section giving details
of the blockchain technology employed in each work. For each case study, the
problem addressed and the solution proposed are discussed. Technical details
of blockchain such as consensus algorithm used, the blockchain platform used,
transaction data which goes into each block, and the status of smart contracts us-
age have also been discussed.
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Industrial Sec-
tor

Benefits of utilizing the Blockchain technology in each industrial
domain

Manufacturing
Industry – Reduce manufacturing costs by improving manufacturing sup-

ply chain management.

– Enable social manufacturing networks.

– Support Cloud manufacturing operations.

– Enforce security and privacy requirements.

– Enhance anti-counterfeiting and copyright protection.

Supply Chain
Industry – Reduce time delays, human errors and management costs.

– Help to check the authenticity of items by tracing their origin.

– Support logistic operations scheduling, coordinating and moni-
toring.

– Enable agreements to be established between involved parties.

– Make a transparent and effective framework for dealing with all
archives engaged within the logistic procedure.

Table 2.2 – Benefits of utilizing the blockchain technology in Industry 4.0 related sectors

2.5.5 Security Discussions on Blockchain based IoT and Industry
4.0 Applications

Recently, the concept of industrial IoT is slowly gaining popularity with its prac-
tical application in various domains and application areas. This has lead to the
discovery of various security vulnerabilities and threats whitin the industrial en-
vironment such as replay, Man in the middle and DDoS attacks [156]. Along with
these security risks, blockchains bring their own set of security vulnerabilities. Al-
though these last are considered as one of the most promising technologies for
securing both IoT and Industrial IoT applications, they may suffer from several



2.5. Blockchain in Industry 4.0 49

vulnerabilities and security threats. In this section we will present first the differ-
ent vulnerabilities of blockchain systems, open research challenges are then high-
lighted and discussed.

Security vulnerabilities of blockchain systems

Double spending :
Although the consensus mechanism of blockchain can validate transactions, it is
still impossible to avoid double spending. Double spending refers to that a con-
sumer uses the same cryptocurrency more than once for validating transactions.
For example, an attacker could leverage race attack for double spending. The ex-
istence of such kind of attacks in Bitcoin were first analysed in [82] where authors
showed how, with some reasonable assumptions and without the need of special
computation nor much network overhead, an attacker has a great probability of
succeeding with a double-spending attack. Moreover, authors showed also how
basic countermeasures such as waiting a few seconds before accepting the pay-
ment or adding observers that report back to the payee are not enough on their
own to avoid these types of attacks. Consequently, proposition to modify the Bit-
coin protocol rules was made so that nodes forward double-spending transactions
instead of dropping them.

51% vulnerability :
The blockchain relies on the distributed consensus mechanism to establish mutual
trust. However, the consensus mechanism itself has 51% vulnerability, which can
be exploited by attackers to control the entire blockchain. More precisely, in PoW
based blockchains, if a single miner’s hashing power accounts for more than 50%
of the total hashing power of the entire blockchain, then the 51% attack may be
launched. Hence, the mining power concentrating in a few mining pools may
result in the fears of an inadvertent situation.. In PoS based blockchains, 51%
attack may also occur if the number of coins owned by a single miner is more
than 50% of the total blockchain. By launching the 51% attack, an attacker can
arbitrarily manipulate and modify the blockchain information. Specifically, an
attacker can exploit this vulnerability to conduct the following attacks [54]:

– Reverse transactions, and launch double spending attack.

– Exclude transactions, and change their ordering.

– Tamper with the blockchain information.

– Hamper normal mining operations of other miners.

– Impede the confirmation operation of normal transactions.
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Private key leakage :
When using blockchain, the user’s associated private key is considered to be his
identity and security credential, which is generated and maintained by the user
instead of third-party services. In [113] a vulnerability in ECDSA (Elliptic Curve
Digital Signature Algorithm) scheme which is used to generate the private key of
the user is discovered. If the private key is generated with limited randomness, it
can be recovered by an attacker. Once the user’s private key is lost, it will not be
able to be recovered. If the private key is stolen by criminals, the user’s blockchain
account will face the risk of being tampered by others. Since the blockchain is
not dependent on any centralized third party trusted institutions, if the user’s
private key is stolen, it is difficult to track the criminal’s behaviors and recover the
modified blockchain information. As a result, many attacks can be launched by
exploiting such vulnerability such as: key attack, replay attack, tampering attack,
impersonation attack, modification attack, and man-in-the-middle attack.

Vulerable smart contracts :
While smart contracts are becoming widely recognized as the most successful
application of the blockchain technology that could be applied into various in-
dustries and for different purposes, their implementation has posed several chal-
lenges insofar that they could handle large amount of money and digital assets
in addition to their ability to manipulate critical data and transactions related in-
formation which makes them attractive targets of security threats and attacks that
could lead to significant problems like money losses, privacy leakage and data
breach. Besides, smart contracts may have several security vulnerabilities caused
by program defects. In [16], an investigation of smart contracts vulnerabilities
is conducted. These last include 12 types of bugs that was classified into 3 cat-
egories regarding the target in which the vulnerability arise namely Source code
vulnerabilities, EVM bytecode vulnerabilities and Blockchain mechanism caused
vulnerabilities. Another investigation was made in [104] where a symbolic exe-
cution tool called Oyente is proposed in order to find potential security bugs. In
this work, authors have confirmed that among 19366 Ethereum smart contracts,
8833 are tested vulnerable. Detected bugs of smart contracts include timestamp
dependence, transaction ordering dependence, mishandled exceptions and reen-
trancy vulnerability. The existence of such vulnerabilities made smart contracts an
easy target to security threats and attacks aiming at tampering and stealing assets
they handle. An example of attack was in June 2016, the DAO (the world’s largest
crowdfunding project deployed on the Ethereum) was attacked by hackers, caus-
ing more than 3 million ETH separated from the DAO resources pool which is
worth around $60 million.
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Transaction Privacy Leakage :
In the current blockchain environments, the issue is not only that data is perma-
nently stored on a ledger, never to be erased or altered, but that by nature it exists
on a blockchain which is irreversibly shared with the entire network what makes
it easily accessible by each participating user in case of public blockchain or by
authorized ones in case of private blockchain solutions which increases privacy
concerns regarding exchanged transactions content. Unfortunately, privacy pro-
tection measures in blockchain are not very robust. In [119], authors have empir-
ically evaluated two linkability weaknesses in Monero’s mixin sampling strategy,
and discovered that 66.09% of all transactions do not contain any mixins which
will lead to the privacy leakage of both its sender and its content.

Security and privacy enhancement solutions for blockchain systems

In the following, we will give an overview of some of the practical achievements
for enhancing the security and the privacy of blockchain systems.

Hawk :
As it was described in the previous paragraph, privacy leakage is a serious threat
to blockchain systems where not only transactions but also smart contracts related
data are visible and accessile to blockchain participants, such as contract’s byte-
code, invoking parameters, etc. For preserving smart contracts privacy, authors in
[87] have proposed Hawk, a novel framework for developing privacy preserving
smart contracts. Leveraging Hawk, developers can write private smart contracts,
and it is not necessary for them to use any code encryption or obfuscation tech-
niques. Furthermore, the financial transaction’s information will not be explicitly
stored in blockchain. When programmers develop Hawk contract, the contract can
be divided into two parts: private portion, and public portion. The private data
and financial function related codes can be written into the private portion, and
codes that do not involve private information can be written into the public por-
tion. The Hawk contract is compiled into three pieces. (1) The program that will
be executed in all virtual machines of nodes, just like smart contracts in Ethereum.
(2) The program that will only be executed by the users of smart contracts. (3)
The program that will be executed by the manager, which is a special trustworthy
party in Hawk. The Hawk manager is executed in Intel SGX enclave, and it can see
the privacy information of the contract but will not disclose it. Hawk can not only
protect privacy against the public, but also protect the privacy between different
Hawk contracts. If the manager aborts the protocol of Hawk, it will be automati-
cally financially penalized, and the users will gain compensation. Overall, Hawk
can largely protect the privacy of users when they are using blockchains.
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Oyente :
In [104], authors have proposed Oyente to detect bugs in Ethereum smart con-
tracts. Currently open source for public use, Oyente leverages symbolic execu-
tion to analyze the bytecode of smart contracts and it follows the execution model
of EVM. Since Ethereum stores the bytecode of smart contracts in its distributed
ledger, this tool can be used to detect bugs in deployed contracts. For the execu-
tion process, this tool takes both the smart contract’s bytecode and the Ethereum
global state as inputs. Firstly, based on the bytecode, the Control Flow Graph
(CFG) BUILDER will statically build the corresponding CFG of the smart con-
tractin question. Then, and according to the Ethereum state and CFG informa-
tion, EXPLORER conducts simulated execution of smart contract leveraging static
symbolic execution. In this process, CFG will be further enriched and improved
because some jump targets are not constants. Instead, they should be computed
during symbolic execution. The CORE ANALYSIS module uses the related anal-
ysis algorithms to detect four different vulnerabilities as described earlier. There-
fore the VALIDATOR module validates the detected vulnerabilities and vulnera-
ble paths. Confirmed vulnerability and CFG information will finally be output to
the VISUALIZER module, which can be employed by users to carry out debug-
ging and program analysis.

Town Crier :
To enable smart contracts’ interaction with off-chain data source, authors in [188]
have proposed Town Crier (TC) which is an authenticated data feed system for
this data interaction process. Since smart contracts deployed in blockchain can-
not access network directly, they cannot get data through HTTPS. TC exactly acts
as a bridge between HTTPS enabled data source and smart contracts. The ba-
sic architecture of TC is mainly composed of 3 layers namely: TC contract, TC
server and TC target which are HTTPS-enabled websites. The TC contract is the
front end of the TC system, which acts as API between users’ contracts and TC
server. The main function of the TC server is to obtain the data requests from
users’ contracts, and obtain the data from target HTTPS-enabled websites. Finally,
the TC server will return a datagram to the users’ contracts in the form of digi-
tally signed blockchain messages. TC can largely protect the security of the data
requesting process. The core modules of TC are respectively running on decentral-
ized Ethereum, SGX-enabled enclave, and HTTPS-enabled website. Furthermore,
the enclave disables the function of network connection to maximize its security.
Relay module is designed as a network communication hub for smart contracts,
SGX enclave environment, and data source websites. Therefore, it achieves iso-
lation between network communication and the execution of TC’s core program.
Even if the Relay module is attacked, or the network communication packets are
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tampered, it will not change the normal function of TC. TC system provides a ro-
bust security model for the smart contracts’ off-chain data interaction, and it has
already been launched online as a public service.

Fair Access :
As presented earlier, FairAccess is a multi-layered framework that focuses on pri-
vacy, reliability and integrity in its design as a blockchain enabled IoT architecture
[129]. This framework uses smart contracts on which IoT users rely to selectively
associate role based privileges to people requesting access to their data, in ex-
change for monetary or service incentives. Moreover, Fairaccess has transaction
definitions for granting and revoking access to users’ IoT data, for decentralized
access control. For storage, FairAccess adds a separate storage layer where data is
stored in off-chain, decentralized storage systems.

Open research issues

From the analysis of the selected literature, a series of insights can be derived con-
cerning the limitations of the blockchain technology in IIoT and Industry 4.0 based
environments. In the following, we will discuss some of the pressing security re-
lated open issues in the adoption of blockchain in Industry 4.0 scenarios.
The first issue to speak about is the privacy and the confidentiality of shared data.
In this direction, several anonymisation and encryption-based mechanisms can
be adopted to protect established transactions content as well as the real identi-
ties of their partakers [60, 75]. However, such primitives depend generally on the
implementation, the context and the environment of the system in question. A
two well-known problems in blockchain data privacy are transaction privacy and
identity privacy. To preserve such privacy, several efforts have been made. These
last focused mainly on the following aspects:

– Obfuscating transactions relationships to resist linking or tracing analysis.

– Hiding real identities of both the sender and the receiver via complicated
cryptographic primitives.

– Blinding the transaction content whilst retaining the verifiability and com-
putability.

Adopted strategies for preserving identities and transactions privacy can be adapted
to different requirements of a range of application areas such as financial applica-
tions, e-voting systems and healthcare services. However, just few studies have
focused on using privacy preservation approaches within blockchain based sys-
tems in the context of smart factories environments.
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A second issue is related to smart contracts that similarly to programs, frequently
contain errors, which can cause hefty losses. To better deal with such issue, reason-
ing about the correctness, the safety and the functional accuracy of smart contracts
before their deployment on the blockchain network is critical and no important
than ever. How to write reliable smart contracts was presented in [98], where two
aspects were considered for the correctness verification and security insurance of
smart contracts including programming correctness and formal verification.
Formal verification provides a powerful technology for the correctness verification
of the established specification of smart contracts. To strictly verify the required
security of smart contracts, we need to formalize the semantics as well as the se-
curity properties of interest, especially at the level of the executed bytecode. A
number of security properties should be formally defined for smart contracts, in-
cluding atomicity of invocation, independence, and integrity.
Another important issue is related to data ownership and protection policies inso-
far that attackers and malicious users can modify the ownership details to make
their ownership invalid. So, preventing the ownership data from unauthorized
access is of utmost importance to make the system safe and secure.

Returning to Fig. 2.9, we argued in Section 2.4 how the blockchain provides an
elegant solution to problems encountered within IoT enabled industries. There-
fore, we analyzed in Section 2.5 the state of the art of the blockchain technology
and we surveyed the latest research work conducted on blockchain applicability
in multiple IIoT specific industries. However and while blockchains have great
potential in establishing a decentralized and secure fabric for IoT enabled indus-
tries scenarios and applications, its integration within such systems has raised
significant additional fears and concerns about the privacy of participating enti-
ties as well as the correctness and safety of smart contracts. On the basis of these
considerations, our focus in the rest of this thesis is to ensure first strong privacy
guarantees over our DRMF framework as illustrated in Fig. ??. The correspond-
ing contribution will be detailed in Chapter . Therefore, we will be interested in
a second step in behavior based formal verification of smart contracts in order to
verify their compliance with the specification for given behaviors. More details
about the proposed approach are given in Chapter 5.

Conclusion

We have presented, throughout this chapter, the basic concepts of IoT and Indus-
try 4.0 environments and we listed the main challenges and issues related to their
appearance, particularly security and trust requirements. We pointed out then the
importance of decentralizing such architectures through the use of blockchains.
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Therefore and in a second part of this chapter, our focus lied mainly on enhanc-
ing their security aspect in order to achieve trustworthy data during transmission,
storage and sharing among the different participating parties within the network
guaranteeing their transparency, integrity, authenticity, privacy, confidentiality,
and authorization. Where the focus on the blockchain technology. We will provide
in this chapter a detailed description of what a blockchain is, how a blockchain
network operates, what are its main characteristics and concepts, how smart con-
tracts allow us to radically redefine how interactions between transacting parties
on a network can be set up and automated, and what are the main security features
that their introduction adds to a system once deployed within.
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INTRODUCTION

While smart factories are becoming widely recognized as a fundamental concept of In-
dustry 4.0, their implementation has posed several challenges insofar that they gener-
ate, process, and exchange vast amounts of security critical and privacy sensitive data,
which makes them attractive targets of attacks and unauthorized access. Introduced
attacks and vulnerabilities during manufacturing, in such environments, can be hard
to detect and harder to react especially with open connectivity to the external world in
addition to the increasing amount of data shared between devices deployed in heteroge-
neous, distributed and unknown sites while collaborating altogether along the produc-
tion process. Security requirements in such scenario include integrity, confidentiality,
traceability and notarization of exchanged data in the one hand plus access control, pri-
vacy and trust in the other one. In this direction, this chapter mainly focuses on the
following security properties:

• Confidentiality, tracability and notarization: Entities and resources related infor-
mation are generally recorded in a different storage structure. Hence, there is a
risk that these structures can be subject to unauthorized access and modification.
Consequently, traceability and auditability of both the flow of data and their access
history records will be challenging.

• Dynamic access management: Dynamic reconfiguration of access rules in response
to time, events and more importantly to entities’ changing behavior and attitudes.

• Distributed system governance: Distributed management of the shared resources
plus the authorization of new entities willing to partake in the system without the
need for a third party that could be vulnerable to attacks.

In this chapter, we present DRMF, a distributed resource management framework for
Industry 4.0 environments. This last utilizes blockchain based smart contracts technol-
ogy to support shared resources management and usage between collaborating parties
while dynamically manage access authorization over considered resources. Moreover,
and in order to better support the security requirement, this framework adds the notion
of trust management to the access control model. Here a trust framework is integrated
to evaluate access requester entities’ behavior guaranteeing thereof dynamicity of se-
curity policies insofar that they would be defined and validated function of the access
requester entity’s behavior.
The rest of this chapter is organized as follows.
Section 2 presents the proposed case study. Section 3 discusses the different challenges
of existing access control systems and presents related proposals carried out in the area
of blockchain based access control. Thereafter, in Section 4. an overview of the pro-
posed framework is presented and a complete detail of its composition and functioning
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principles is provided. Finally Section 5 delves into the implementation of the proposed
scheme, a set of experimental results validating our approach are shown.

3.1 Use case study

Throughout this chapter, we will project and illustrate our approach with a scenario ex-
ample inspired from a real world case study of existing applications related to Industry
4.0.
As a case study, let us take the example of three automaker factories SF1, SF2 and SF3
respectively responsible for: (i) the manufacturing of mechanical and electrical compo-
nents, (ii) the assembly operations and (iii) the test plus the performance and quality
control. These factories over time interact all together along the production processes
and alongside with automotive suppliers, as an example a raw material supplier SP1
and a component supplier SP2 proposing, buying and shipping goods and products
through transportation partners as it is shown in Fig.3.1.
These parties while looking to ensure sophisticated shipping and logistics operations,
agreed to invest in shipping and logistic equipments as well as technologies and person-
nel to manage their day-to-day trucking operations instead of relying on third parties to
ensure them. Obviously, the fact of using their own resources for shipping operations
will increase the efficiency of processes, the immediate availability of vehicles, the re-
duction of cost and the increase of profits insofar that they could rent these resources to
other companies and help them load, deliver and unload their items and products. An-
other important advantage within such decision is the fact of preserving their privacy
as well as those related to their resources especially when the third part is not trustful
enough so that they could rely on it to ensure such service which could lead to several
issues as they put a non trustful third part in control of one of the business functions
with the most impact on the smooth running of production processes and the greatest
effect on their customers satisfaction.

That’s why having their own shipping and logistic resources is really important to
overcome such limitations. We notice here that to share such resources among sev-
eral parties collaborating and working all together and especially that could not always
have a strong confidence established in advance, different challenges should be firstly
resolved as follows:

• Fully distributed management framework: where we don’t need to pass through a
third part or to involve several services to manage shared resources and to perform
common processes.

• High security level: that guarantees integrity, confidentiality, traceability and au-
ditability of both established transactions and access records and procedures.
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Figure 3.1 – use case study

• Dynamic access control: insofar that security rules can change dynamically in re-
sponse to time, events and more importantly to involved parties’ changing behav-
ior and attitudes.

• Distribute governance: where collaborating parties could join, leave the system
and partake in the consensus mechanism any moment they want without worry-
ing neither about the well conduct nor about the security of common processes
and shared resources obviously after a consortium is established between the col-
laborating parties.

3.2 Access control schemes raised issues and problem state-
ment

In this section, we will give first a brief introduction to different access control schemes,
we will point out then potential security issues that they may have and we will review
research proposals carried out in the current literature to solve such issues.

3.2.1 Access control systems and related issues

An access control model is often used to protect system resources by checking the ac-
cess made over them in a given access context. The decision is made according to rights
subjects have to perform the access they request. These rights are expressed by means
of security policies, which consist of a set of conditions evaluated against the current
access context to make the access decision each time an access request is received.
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In the current literature several models were proposed to define access rights and to con-
trol access requests [130, 168], among them: Mandatory Access Control (MAC) [128],
Discretionary Access Control (DAC) [146], Role Based Access Control (RBAC) [61],
Attribute-based Access Control (ABAC) [186], and Organization Based Access Control
(OrBAC) [80]. Many derivatives have been deduced as well from these models in order
to resolve a specific need.

Classical access control systems

Discretionary Access Control (DAC) and Mandatory Access Control (MAC), also known
as lattice based access control or multilevel security are the first models of access control
that have emerged in the early 1970’s.

• Discretionary Access Control (DAC): a decentralized access control model where
subjects are allowed to decide access rights on objects they own through a set of
security rules defined by the triple (S,A,O) meaning that the subject S is permitted
to perform the action A on the object O. Access controls within DAC are discre-
tionary in the sense that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) on to any other subject.

• Mandatory Access Control (MAC): a centralized access control model where re-
source owners are not permitted to decide who gets access to it, but instead a
manager or a central authority has the authority to set access rights to any object
by assigning security levels and labels to subjects and objects respectively such as
confidential, secret, and top secret. A subject can access only objects that corre-
spond to a security level equal to or lower than theirs in the hierarchy.

Role Based Access Control (RBAC)

RBAC [147] is one of the most widely used access control models that has been stan-
dardized and extended in many ways. The key concept of RBAC is the role assignment
where roles assigns a collection of permissions to users for the purpose of granting ac-
cess as it is illustrated in Fig. 3.2. Access is granted by creating a role assignment, and
access is revoked by removing a role assignment. The use of roles in RBAC makes it
easier and simpler to add, remove, and adjust permissions than assigning permissions
to users individually. Moreover, and for efficiency, roles can be structured hierarchically
so that some roles can inherit permissions from each other.
However, RBAC suffers from some inflexibility where access permissions could not
change in correspondence to network dynamics in changing environments, as in the
case of smart factories environments, where production processes information, resource
attributes and devices behaviors change as time goes by. Second, and as smart factories
consist of a huge number of autonomous and complex systems where each of which
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has its own administration service, it seems to be so challenging the fact of managing
thousands of roles and mapping them to operations and users respectively and thus the
setting up of the RBAC model may end up being an infinite process for big organiza-
tions or systems.

Figure 3.2 – Role Based Access Control

Attribute Based Access Control (ABAC)

ABAC [76] can be defined as a generalization of RBAC where security rules can be eval-
uated and access authorization can be determined based on various attributes presented
by the subject, the object and the environment. Attributes may be considered charac-
teristics of anything that may be defined within the access control model and to which
a value may be assigned. Basically, ABAC relies upon the evaluation of attributes of
the subject (that correspond to users information such as department, role, job title, ad-
dress, etc.), attributes of the object (corresponding to resources characteristics such as
the status, type, location, owner, etc.), the environment (representing the environmental
conditions such as time, location, humidity, temperature, etc.), plus a formal relation-
ship or access control rule defining the allowable operations for attributes combinations.
Fig. 3.3 illustrates an ABAC access control scenario where a subject requests access to
an object. This mechanism assembles policy, subject attributes, object attributes and
environment conditions to determine and enforce a set of allowable operations by the
subject upon the object.
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Figure 3.3 – Attribute Based Access Control

ABAC enables more precise access control by allowing for a higher number of dis-
crete inputs into access decision and thereby providing a larger set of possible combi-
nations of those variables to reflect a larger and more definitive set of possible rules to
express policies, which are limited only by the computational language and the richness
of the available attributes.

Organization Based Access Control (OrBAC)

OrBAC model [80] could be considered as one of the richest access control models in
terms of components and applicability to many realistic situations. The main original-
ity of OrBAC is the organization entity defined as a structured group of active entities,
in which subjects play specific roles, in addition to the distinction it makes between the
abstract and the concrete level as it is illustrated in Fig. 3.4. More specifically, instead of
modeling the security policy by means of concrete concepts related to subjects, objects
and actions, OrBAC relies on three abstract entities for expressing security rules namely
roles, views, activities, where subjects are abstracted into roles to which the same secu-
rity rule applies. Also an activity is a group of one or more actions, a view is a group
of one or more objects. In the decision making process, OrBAC takes into consideration
various context information representing a specific situation conditioning the validity
of the policy rule and that could be temporal, spatial or declared by the subject. More-
over, in OrBAC, specification of security policies is no more restricted to permissions.
Instead, a security policy may include four different access types namely: permission,
prohibition, obligation and dispensation. Intuitively, a prohibition is a negative per-
mission implying that one must not perform some action. An obligation is associated
with an action someone must perform and is usually triggered when some conditions
are satisfied. Finally, a dispensation is a negative obligation implying that one may not
perform some action.
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Figure 3.4 – Organization Based Access Control

However, even if OrBAC has several advantages for expressing security policies, it
is unfortunately only adapted to centralized structures and does not cover the distri-
bution, the collaboration and the interoperability needs when considering collaborative
systems and multi organizations based environments as it is the case of smart factories
and Industry 4.0.
Table 3.1 summarizes the already presented access control systems regarding their dy-
namicity, scalability, context awareness and rules expressivity.
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Access
control
model

Scalability Dynamicity Context
Awareness

Rules expres-
sivity

Pros

RBAC Policies can-
not evolve
easily be-
cause the
creation of
new roles
can lead to
rebuilding
the entire
model.

Access per-
missions
defined in
a static and
fixed manner
thus could
not change
in corre-
spondance
to network
dynamics

Access rules
statically
defined
without
taking the
context into
considera-
tion

Access rights
based on roles

ABAC Scalable Access con-
trol decisions
defined to ac-
commodate
dynamically
changing
attributes

Additive
informa-
tion related
to sub-
ject/object
and envi-
ronment
considered

Access right
based on at-
tributes related
to resource,
subject and
environment.

Fine grained
More scal-
able
More flexible
More inter-
operable
Support of
delegation

OrBAC Scalable Dynamic
security
policies with
the use of
contexts

Takes the
context (e.g.,
specific situ-
ations, time
and location
constraints)
into account.

Access rights
based on roles,
views, activities
and context.
Various types
of access such
as permission,
prohibition,
obligation and
recommenda-
tion.

Structured
and an ab-
stracted
expression of
the policy
Fine grained
More scal-
able
More flexible
More access
right types

Table 3.1 – Classical Access control models

3.2.2 Discussion

In the context of smart factories and considering the need for dynamic security rules
definition and parameterization, context awareness, security rules abstraction, scalabil-
ity of resources, actions, subjects and situations, plus expressivity and fine-granularity,
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we can consider OrBAC as a good candidate for providing an adequate access control
model for such environments.
Reminding that within a multi factories based environment, entities belonging to dif-
ferent factories interact with each other in order to realize a common goal where the
concept of multi organizational environment characterized by large scale and indepen-
dent structures with decentralized systems, where each factory defines its own model,
assigns its own roles and specifies its own access control policies.
The question to be asked here how to verify the role attribution procedure and how can
we provide flexibility to entities to fully control their roles as well as access requests
related to their resources? Another issue is the integrity and the confidentiality where
entities access requests and operations history are stored within a local database or a
cloud infrastructure. Hence, there is a risk that these databases can be subject to unau-
thorized access and modification, without neglecting the fact that they remain a bot-
tleneck and a single point of failure that can disrupt the entire system. Consequently,
traceability, notarization and auditability of access records will be challenging. One
more issue is privacy breaches and lack of transparency in such environments where
an undebatable lack of a trust is arising especially towards third part getting access to
data collected by billions of entities creating information. Hence the need for a security
through transparency approach allowing users, machines and collaborating parties to
retain their anonymity and to preserve their privacy. A last but not least issue is the
difficulty of managing security policies according to the context dynamicity especially
with the colossal number of entities supposed to be managed and that could change
their behavior over time.
That’s why providing an adequate solution to distributively govern the system and to
dynamically, securely and contextually manage the access while keeping a living docu-
ment trace about the flow of resources data being shared become crucial and no more
important than ever.

3.2.3 The proposed solution: Decentralizing smart factories environ-
ments in a traceable and secure way through the blockchain

A distribute, secure, transparent, consensually and publicly verifiable solution to smart
factories based environments would solve many of the raised issues described above.
In this direction and given the noted features of blockchain technology, this last ap-
plied to such systems provides promising possibilities and solutions to issues they en-
counter. Actually, the decentralized, autonomous, and trustless inherent capabilities of
the blockchain technology make it an ideal component to become a fundamental ele-
ment for addressing security issues in collaborative and resource sharing based smart
factories systems.
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However, adopting the blockchain technology is not straightforward and will require
addressing the following research questions:
1- How to ensure a distributed system governance where entities can join, leave the sys-
tem and get involved in the consensus mechanism without worrying neither about the
well conduct nor about the security of common processes and shared resources?
2- How to provide a lightweight, dynamic and trustworthy access control framework
that reconfigures access rules in response to time, events and more importantly to enti-
ties’ changing behavior and attitudes?
3-How to guarantee the integrity and the consistency of access requests and operations
history and how to trace the interception and the modification made over them?
4-How to enable a strong privacy guarantees over the access control related procedures
regarding the access requester sensitive attributes as well as the shared access control
policies?
In this direction, few proposals of blockchain related access control systems have been
presented in the current literature.
Recently, The blockchain technology was used as a storage structure for access control
policies in [106]. Therefore, its computing feature was examined in [129] where it plays
the role of a decentralized access control manager. In this work, FairAccess was pro-
posed to offer a fully decentralized pseudonymous and privacy-preserving authoriza-
tion management framework for IoT devices. The proposed framework used OrBAC
access control model to enable users to own and control their data whose policies were
stored in a private blockchain solution. Subsequently, the idea of using smart contracts
for achieving access control has been adopted in [51], [52], [95] for different access con-
trol systems.
In [51], authors proposed RBAC-SC, a Role Based Access Control system using Smart
Contracts. In this model, Ethereum’s Smart Contract technology was used to realize a
trans-organizational utilization of an organization’s roles.
In [95], a blockchain-based secure mutual authentication with fine-grained access con-
trol system for industry 4.0 was presented. The proposed framework leverages the un-
derpinning characteristics of blockchain as well as several cryptographic materials to
realize a decentralized, privacy preserving solution. However an implementation of
the proposal is missing as well as the evaluation and the proof of its performance.
In [191], a Transaction based access control platform was proposed where the ABAC
model was integrated within the blockchain system to manage subject registration, ob-
ject escrowing and publication plus access request and grant.

3.2.4 Discussion

As seen, the blockchain technology has been used for several purposes and within vari-
ous models of access control. However, just few studies have focused on integrating the
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blockchain technology within access control systems in the context of smart factories en-
vironments. Our focus in this work is not only to ensure fine grained, flexible and secure
resource access authorization in the context of smart factories environments but also to
support distributed and dynamic governance and management of the overall system
where all relevant parts can make a comprehensive decision of joining entities registra-
tion and consensus management for entities requesting mining permissions. Another
focus of this framework is the integration of trust management with the access control
model in order to determine whether subjects are trusted and well behaved enough so
that they could access resource data.

Figure 3.5 – System architecture

3.3 Proposed Approach

3.3.1 Overview

In this chapter we present DRMF, a Distributed Resource Management Framework
based on the blockchain technology for Industry 4.0 deployments. The main objectives
of this work are as follow:

• Information notarization: The use of blockchain to keep a living document trace
about the flow of data and resources being shared by collaborating entities guaran-
tees an extra level of transparency, control and notarization during collaboration
where a proof of existence, of ownership, of access and modification is essential
for decision making process.

• Distributed system governance: For each entity willing either to partake in the
consensus mechanism or to join the blockchain network and sharing common re-
sources, a verification of its behavior by most participants in the system is made in
order to ensure its legitimacy absolutely necessary to confirm its joining request.
The registration of new entities as well as the management and the elimination of
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joined ones require an agreement to be reached between the pool of entities taking
in charge the consensus mechanism.

• Dynamic access management: this framework achieves distributed, dynamic, con-
textual and trustworthy access authorization through the integration of the Or-
BAC access control model within a distributed ledger where transactions serve as
verifiable and traceable medium of policies definition and parametrization, access
request procedures as well as related operations.

Fig. 3.5 shows the overall structure of the proposed system. As illustrated, each domain
(e.g. SF1, SF2) holds its own entities with different roles, for example a human worker
in the manufacturing subfactory SF1, a supervisor agent in the quality control subfac-
tory SF3, these last could perform several actions on each shared resource such as using
the shipping trucks, sharing their trust records, querying for available ones, etc. Let us
assume that a human worker within SF1 wants to have access over the shared resource
Truck 3 to perform a shipping operation. To do so, the process would work as follows:
the agent needs to get authenticated first along with an authentication system, which is
responsible for making authorization decisions, verifying devices identities and gener-
ating authorization tokens. Furthermore and instead of statically evaluating the access
request, a DRMF trust-module is involved to assess the trustworthiness degree of the re-
questing entity and to judge its behavior taking into account different trust aspects and
parameters (that will be discussed in Section. 3.3.2). The result of this evaluation will
be incorporated within the context structure to be sent to the DRMF policy-manager-
module which is in charge of formulating the corresponding transaction to be broad-
cast via the DRMF client to the DRMF distributed network where the corresponding
smart contract will be executed. Reminding that within a smart factory environment,
IoT devices are used to collect and analyze data coming from smart products, other
smart devices and related smart services, that’s why in the case of IoT devices with
tight resource constraints, DRMF modules are assumed to be deployed in more power-
ful network components that will be connected directly to each device, otherwise it is
deployed within the device/entity itself.

3.3.2 System composition

In the following we will detail the different software modules composing our system,
the specific role and the operation of each smart contract as well as the workflow of
the overall architecture. As shown in Fig. 3.5, our framework consists of the following
components:
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DRMF distributed network

This component is the main core of our system. It defines: (1) a set of smart contracts
ensuring the notarization, the distributed governance and the dynamic access manage-
ment, (2) a distributed network composed of a set of peers responsible mainly for re-
ceiving the established transactions, verifying and validating its state and executing the
functions contained within.
In this work, three Ethereum based smart contracts are considered namely: Access Con-
tract (AC) designed to manage access authorization made over shared resources, Gov-
ernance Contract (GC) used to ensure a distributed governance of the overall system,
and Lookup Contract (LC) acting as a register to map between the required services and
the contracts ensuring their management. More details about each smart contract will
be provided in the following subsections.

DRMF client

This component implements the full functionality required to join and to participate in
the DRMF distributed network. This handles a broad set of tasks, such as connecting
to the peer-to-peer network, encoding and sending transactions, keeping and exploring
blocks copies and deploying and interacting with smart contracts.

DRMF-Trust module

This component is in charge of assessing the trustworthiness degree of shared resources
as well as requesting entities in order to capture their ability and willingness to be-
have as expected. The realized assessment will be linked with access control decisions
through the context structure defined within security rules that will no longer be stat-
ically defined and parameterized, but instead will depend on entities behavior in ad-
dition to the environment dynamicity and context change. We remind here that our
proposal is based on the OrBAC access control model where the integration of trust
management to enhance the security level of the corresponding system has been stud-
ied by the research area during the last years. There are multiple ways to define trust
and to evaluate it. This last could be based on a set of paramaters where the most rel-
evant ones defined in the literature are experience, reputation and knowledge [167],
the experience parameter corresponds to the interpretation of the previous interactions
established with immediate neighbors. These evaluations will be propagated as trust
recommendations to other network nodes to constitute the reputation parameter, that
once kept, will be considered after as the knowledge part of trust. How to evaluate
trust is not the topic of this chapter, however we will provide an example of metrics
that matching with the proposed use case, could be considered as effective ones within
the trust evaluation process.
We remind here that according to our use case, the evaluation of trust will focus on
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both access requesting entities and requested resources (which are the shipping trucks)
as target nodes addressed by the trust model. The trustworthiness assessment of the
shipping resources could be based on their speed, position, direction of motion, engine
coolant temperature, battery voltage, real-time diagnostics and performance evaluation
results of vehicle status, the trustworthiness degree of their drivers, etc, [189].

DRMF-PolicyManager module

This component serves in the one side as the defining part of access rules to be encap-
sulated into transactions and reloaded to the blockchain after validation, on the other
side this module serves as the acquisition source of attribute values required for policy
evaluation that once received and intercepted will be sent to the corresponding smart
contract.

Authentication system

This component is mainly responsible for verifying the validity of entities’ identities as
well as the legitimacy of demands and requests sent to the blockchain network. Partici-
pating entities are authenticated based on the provided credentials. In our framework,
we rely on the openID Connect [144] (OIDC) which is an identity layer on top of the
OAuth 2.0 protocol [73]. We have chosen OIDC since it is free, open and decentralized
(no central authority approves or registers relying parties or service providers). Its in-
tegration does not require complicated update in the deployed application. Indeed, it
follows a restful approach which makes it easy to use and to interoperate.
Remembering here that at the beginning of the authentication process, participating en-
tities are authenticated based on the provided credentials. These last can be represented
by using different mechanisms, such as login/password, digital certificates, authentica-
tion keys, etc. In case of a successful authentication process, this module generates an
access token which is delivered in order to avoid subsequent authentication procedures.

Smart contracts

In our work, we proposed three smart contracts: LC, AC and GC.
Lookup contract (LC): The main role of this smart contract is to map between the re-
quired services and contracts ensuring their management. To do so, it maintains a
lookup structure that registers the required information to find and execute the meth-
ods in question. This structure contains the name of the smart contract in which the
method is developed, its address, the address of its creator and the name of the re-
quested method. The operation of this smart contract will be mainly based on the fol-
lowing methods:
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• lookup(): This method receives in input the name of the requested method to re-
turn the address of the corresponding contract (i.e., the access contract AC, the
governance contract GC).

• addFunction(): This method receives in input the information details of a new
function to add to the lookup structure, obviously only the creator of the corre-
sponding smart contract can add new methods.

• deleteFunction(): This method receives the name of an existing function to delete
from the lookup structure.

Access contract (AC): This smart contract is mainly designed to achieve distributed,
interoperable, contextual, trustworthy and secure access control for multi organiza-
tion systems where participating parties interacting and collaborating all together share
common resources for which access rules should be maintained and parameterized by
the collaborating parties. This smart contract is based on the integration of the OrBAC
access control model within a distributed ledger to express access control policies. We
opt here for such integration firstly to guarantee the fact that access policies are available
at any time and evaluated in distributed environments where there is no central author-
ity to define roles and to generate security rules what would overcome the problem of
having a single point of failure. Secondly to ensure verifiable and transparent role as-
signments where any entity can verify if another one owns really the role it pretends to
have and that this last is managed and issued by its factory or belonging organization.
Third to enable the dynamic reconfiguration of access rules in response to time, events
and more importantly to entities’ changing behavior and attitudes.
To ensure such features, this smart contract maintains a set of security rules. Table. 3.2
illustrates a simple example of rules where each row corresponds to the policy defined
on a certain tuple. Basic fields of each row are:

• View: it represents the resource for which the access is requested. According to
our use case scenario, this last could be a record related to production data, man-
ufacturing entities, trust records, etc.

• Activity: it represents the action to be performed on the resource such as check,
update, use, etc.

• Role: that represents the entity requesting the access for a certain resource.

• Context: it is used to express different types of extra conditions or constraints that
control activation of rules expressed in the access control policy.

• Access type: it defines the access type defined on the view, according to the OrBAC
model, this last could be permission, prohibition, obligation and recommendation.
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View Activity Role Context Access
type

Truck
related file

update Supervisor Sup.Trust-score > T-Th1
AND
Current-time IS IN
Working-hours

Permission

Genesis-
block-
addr

mine BC-node BC-node.Trust-score >
T-Th2
AND
Node-registered

Permission

Truck 3 use human
worker

Worker.Trust-score > T-
Th3
AND
Current-time IS IN
Working-hours
AND
Department IS IN
Shipping

Permission

Table 3.2 – Security rules list example

Returning to the use case presented in Section. 3.3.1, to perform the shipping operation
using the Truck 3, an evaluation of the agent’s access request is needed first to allow or
not the demanded access. To do so a verification of the well conduct and functioning of
both the requesting entity and the requested resource is essential, hence an authoriza-
tion over the access control smart contract is required to decide whether the access is
permitted or prohibited. The access authorization and according to the OrBAC access
control model depends on a set of contextual conditions whose activation will activate
the corresponding rule. In this example, to have the requested access accepted, the hu-
man agent should have a trust score above the defined threshold for the corresponding
role, he should belong to the shipping department and request to use the Truck during
his working hours. We can notice here that the fact of using trust management within
the access control would enable the dynamic reconfiguration of security rules that will
change in response to involved parties’ changing behavior and attitudes. To do so, we
have added a novel type of context which is related to trust management. The role of
this latest is to check if the trust levels of both the access requesting and the requested
entity respect well the threshold defined.
The operation of the Access contract will be based on the following methods:

• addpolicy(factory id, role id, string activity, view id, struct context, string permName):
this function launched by resource owners aiming to define and to add a new
access control policy for a newly shared/stored resource. It takes as input the
owner’s belonging factory public key, the role id of the subject, the view id of
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the object, the context in which the access is demanded, the permission to be at-
tributed. As a result of this function, a new policy item will be added to the policies
list.

• Updatepolicy(factory id, role id, string activity, view id, struct context, string new-
Perm): this function launched by resource owners in order to update an already
added access control policy.

• deletepolicy(factory id, role id, string activity, view id, struct context): this func-
tion receives the main identification information of a policy to be deleted from the
policy list.

• accesscontrol(factory id, entity id, string activity, view id, struct context): this func-
tion executed by a subject requesting entity in order to authorize its access request
upon a certain resource identified with its view id within a certain context. To do
so a verification of the request is made to check the validity of the subject role, the
existence of the policy within the defined ones and the behavior of the requesting
entity to detect a potential doubtful/suspect access demand. As a result an access
result will be returned to both the requesting and the requested entities and the
access process will be executed.

Governance contract (GC): This contract is mainly designed to govern consensus and to
manage who can partake in the consensus mechanism within the blockchain network.
More specifically it is responsible for determining the consensus algorithm to be exe-
cuted for the mining procedures, as well as for registering and managing miner entities.
To do so, this contract is supposed to store blockchain addresses related to entities hav-
ing either transaction validation, mining or voting permissions. For registering miner
entities, the consensus contract is used to validate entities requesting mining permis-
sions in order to be allowed either to validate, create and add new blocks to the ledger.
Here we note that once the system is deployed, this contract will contain initial val-
idators representing the collaborating parties. For overwriting miner entities, a request
to delete the entity in question is submitted by the one who has noticed its malicious
behavior or its breakdown. Thus once the rest of entities have reached a majority, the
miner will be removed from the consensus contract.
We remind here that in order to be registered, or to send overwriting instruction, the
requesting entity needs first to get authenticated and authorized over the access con-
trol smart contract, then the request will be transmitted to the pool of entities taking in
charge the consensus mechanism, once confirmed that it does not pose a threat to the
system, its address will be added to the governance contract.
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Figure 3.6 – Proposed framework phases

3.3.3 Prototype workflow

A description of the different phases and operations of the proposed framework is pre-
sented in Fig. 3.6. This last involves a succession of operations wherein:
(i) DRMF distributed network is created and a consortium is defined in order to reach
the desired agreement among collaborating parties that once identified get registered
and involved in the consensus procedure.
(ii) Given the existence of resources to be shared, these last are identified in order to be
accessed and used in a notarized manner.
(iii) For such purpose, first security rules should be defined in order to manage the ac-
cess among the collaborating parties.
(iv) Entities requesting to join the system or to participate in the consensus mechanism,
are registered obviously after evaluation of their behavior, corresponding roles are iden-
tified and attributed as well.
(v) When willing to perform an action over an existing resource, the requesting entity
sends an access request that further to which a decision is made.
These five steps our proposed framework is made up of are detailed in the next para-
graphs.

DRMF distributed network creation and entities registration

Once the DRMF distributed network is created and becomes operational, the process
of adding new entities with different roles and classifications can be launched. Here, it
should be assumed that new entites have been already identified within the authentica-
tion system and have a public identifier that is unique to their organization. It should
also be assumed that they have received an Ethereum address required to partake in
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Figure 3.7 – Policy creation transaction workflow

the Ethereum network. Therefore, the process of adding a new entity begins by hav-
ing the pool of consensus entities validate that the public identifier corresponds to the
pretended role and suits the requested classification.

Security rules definition

When collaborating sub factories agree on adding an access control policy for a newly
deployed resource to be shared among them during a certain time. For example collabo-
rating sub factories SF1, SF2, and SF3 agree on adding a new truck identified with a new
attributed address R_addr1. To manage the access over the shared resource, an access
policy needs to be added to the AC smart contract and shared within the DRMF dis-
tributed network. The proposed framework works as illustrated in the UML sequence
diagram in Fig. 3.7. The resource holder needs to get authenticated first along with the
authenticator, in case it is already authenticated, the attributed token is used to have
access to the system. Therefore, the DRMF-Trust module evaluates the resource trust
value, defines the trust threshold to be satisfied by the access requesting entity and gen-
erates the context structure to be sent to the DRMF-PolicyManager module. This last
defines the possible roles, the activity to be performed and encapsulates the defined
access control policy in form of a scripting language in order to be added to the poli-
cies list within the AC and sends it to the DRMF client in order to be broadcast to the
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DRMF network. The peer to peer nodes verify the transaction, and record it within the
distributed ledger in case of success validation. At this stage, a new AC is created and
deployed on the blockchain, obviously a new entry is added to the LC in order to regis-
ter the required information of the newly created AC via the addFunction() method.

Access request transaction workflow

In case of access request, the proposed framework works as follows: A subject (e.g.,
a human worker within the supervision service of the performance and quality con-
trol subfactory SF3, identified with his ethereum address E_Addr) wants to perform an
action (e.g., execute) on a protected resource (e.g., a controlled robotic arm responsi-
ble for auto body panels spot welding operations within the assembly subfactory SF2,
identified as well with its ethereum address R_addr). The subject E_addr after being
authenticated within the authentication system for a first authentication case or after
validating the access token it uses, will submit its access request to perform the ex-
ecute action on the resource R_addr. The DRMF-Trust module at this stage receives
the access request, assesses the entity trustworthiness, derives its trust value, prepares
context related attributes and generates the context structure to be sent to the DRMF-
Policymanager module acting as a Policy Enforcement Point (PEP). This last formulates
the access request to an access transaction and broadcasts it to the peer to peer network
via the DRMF client in order to run the AC. We remind here that before sending the
access demand transaction, the DRMF client needs to have the address of the AC, to do
so it calls the getContract method of the LC to retrieve the AC address and concerned
method. Once received, the access demand transaction is sent to the AC acting as a
Policy Decision Point (PDP) that evaluates the access demand by verifying the validity
of the subject role, the existence of the access policy within the defined policies list and
especially checking the subject’s behavior, as a result it determines whether the request
should be permitted or denied. Finally, if it is permitted the transaction is valid and it
will be recorded in the blockchain else the transaction will be rejected and a notification
will be sent to the requester.
The described workflow is illustrated in Fig. 3.8.

3.4 Implementation and evaluation

In this section, we will introduce first the different tools used for the implementation of
our framework therefore we will show experiment results demonstrating its feasibility.



78Chapter 3. DRMF: A Distributed Resource Management Framework for Industry 4.0
Environments

Figure 3.8 – Access request transaction workflow

3.4.1 Work environment

For the implementation of our proposal, we have set up a testbed as illustrated in Fig.3.9
featuring several hardware and software components as listed below:

• a Dell Precision M6800 machine with 4th Generation Intel Core i7 processor and
8Gb of RAM in which we have configured a private Ethereum blockchain network
consisting of three nodes having the functionalities of Ethereum miners.

• an Intel Core i5-3210M laptop with 6 Gb of RAM and 2.40 GHz of CPU frequency
in which an Ethereum node was set up.

• two Raspberry Pi 3 Model B configured to act as shipping resources shared among
the collaborating factories.

For the implementation of our proposal, we chose Ethereum, which is currently the
most common blockchain platform for developing smart contracts. According to the
use case study we introduced in Sec. 3.1, our scenario consists of 3 subfactories SF1,
SF2 and SF3, where the administration service is represented by each Ethereum node
within the Dell machine. These factories collaborate altogether alongside the produc-
tion process and sharing as common resources two trucks responsible for the trucking
and shipping operations. These last are represented by the two single boards (RPi3) that
are connected to the blockchain network where related information according to their
real-time diagnostics and performance evaluation in addition to their trustworthiness
degree are collected, sent and stored within the distributed ledger. Moreover a human
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Figure 3.9 – Work environment

worker within the shipping service willing to perform a shipping operation using a
truck resource is represented by the laptop machine.
For our prototype implementation we use geth client [66] which is a command line in-
terface for running a full Ethereum node implemented in Go language As illustrated
in Fig.3.9, a geth client is configured on each entity so that it could act as an Ethereum
node. For each entity we have created an account and set it to form the DRMF network.
Mining tasks are ensured by the Dell machine insofar that it has a relatively large com-
puting software and storage capability where the Proof of Authority (PoA) consensus
mechanism is supported by each node. This entity took in charge also the creation and
the deployment of solidity smart contracts. In what concerns the trust module inte-
grated within either the laptop machine or the RPi share resources, we have used the
model presented and implemented in the chapter 6.

3.4.2 Proof of concept

As it was presented in Sec.3.3.2, each smart contract is based on a set of methods devel-
oped under specific algorithms according to the defined use case scenario. Reminding
that our DRMF framework is based on the following main functionalities: (1) Register-
ing a new resource with a corresponding address. (2) Definition of security rules. (3)
Access request. (4) Behavior evaluation. (5) System governance.
In order to show the feasibility of our proposal, we conducted some experiments related
to the access control and the consensus governance procedures. For the validation of the
access contract, we added a new role ’shipping worker’, a new context with the trust
threshold, the affiliation and the working hours, a corresponding policy then is added
to the policies list that according to the OrBAC model, is specified as follow:
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permission(org: SF1, shipping worker, use, truck3, shipping worker.trust-score > trust-th3
AND current-time IS IN working-hours AND shipping worker.department IS IN shipping)
Therefore, we defined a malicious behavior where an on-off attack is launched to cause
a low trust score that was calculated by the DRMF-trust module. As a penalty for the
malicious behavior, access requests from the subject will be blocked for a certain pe-
riod of time (until the trust score is above the trust threshold fixed to 0.4). Fig.3.10 and
Fig.3.11 show access results displayed after a legitimate behavior and a malicious one
respectively.
For the validation of the consensus contract, we need here to prove the well achieve-

Figure 3.10 – permission of access

Figure 3.11 – prohibition of access

ment of consensus while dynamically adding and removing nodes to and from the net-
work. We will consider the case of a new node willing to partake in the consensus
mechanism within the blockchain network. This last needs to get authenticated and au-
thorized first over the access control smart contract, then the request will be transmitted
to the pool of entities taking in charge the consensus mechanism, once confirmed that it
does not pose a threat to the system, its address will be added to the consensus contract.
We added a new role ’supervisor’, a new context with the trust threshold, the affiliation
and the working hours. We specify thereafter the policy to be added as follow:
Obligation(org: SF1, supervisor, mine, genesis-block-addr, registered AND supervisor.trust-
score > trust-th2
AND current-time IS IN working-hours AND supervisor.department IS IN administration)
Fig.3.12 shows corresponding access results.
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Figure 3.12 – registration of a new entity within the consensus mechanism

3.4.3 Discussion

In this paragraph, we analyze the different features provided by DRMF that utilizes
blockchain to keep a living document trace about the flow of resources being distributed
and shared among collaborating parties while implementing distributed, dynamic and
secure resource access authorization.
Transparency
The DRMF framewwork achieves the transparency property since all functions exe-
cuted within smart contracts are reflected on the corresponding log of both the respec-
tive smart contract and the DRMF distributed network. By this way, an entity could
not perform any transaction without other entities’ knowing and validation, and also it
cannot deny any transaction it has committed.
Verification
The DRMF framewwork effectively achieves verifiable access control through the veri-
fication of role assignments, access rules existence and non violation in addition to the
legitimacy of access requests implemented within the AC.
Flexibility
Our proposal gives participating entities the flexibility to join or to leave the system or
even to partake in the consensus mechanism easily. Functions implemented within the
GC ensure the registration of new joining entities, the overwriting of existing ones and
the management of those taking in charge the consensus mechanism.
Dynamicity
Dynamic reconfiguration of access rules in response to entities’ changing behavior and
attitudes is ensured within the AC that does not only verify and validate access autho-
rization statically by checking access rules’ defined conditions are met, but also dynami-
cally by checking the behavior of the access requesting entity and judging its legitimacy
or maliciousness according to the trust score derived by the DRMF-Trust module.
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Conclusion

We have presented in this chapter the design and the implementation of a distributed
resource management framework based on the Blockchain technology in order to (1) no-
tarize the flow of data and resources being shared by collaborating parties, (2) achieve a
secure, trustworthy, fine-grained, and traceable access control and (3) dynamically and
distributively manage new joining entities as well as those willing to partake in the con-
sensus mechanism. Combining the resource management system with the blockchain
technology, we enable a more reliable resource data confidentiality and integrity veri-
fication during sharing and we make a time-stamped log of both entities’ access trans-
actions and behavior. However, adopting the blockchain technology to handle shared
resources management and controlling the access made over them is not straightfor-
ward and additional critical issues emerge that are:

1. The public and transparent aspect of the blockchain comes at odds with the private
aspect of access control policies publically recorded in the blockchain. Often times,
the policies for determining who can access the resources are sensitive also and
need protection as well.

2. Traceability issue where the verifiable and traceable feature of blockchain may leak
access requesters privacy and sensitive information, insofar that their access his-
tory related details once recorded in the blockchain, may conduct to learning their
authorization functionality pattern, as well as to tracing their access activities.

3. Correctness and safety issue of smart contracts that could be exposed to a variety
of security threats and attacks leading to significant malicious scenarios resulting
in terrible losses.

To deal with such issues, we will present in the next two chapters how to adapt the
proposed framework to tackle these challenges and to achieve the required security
level.
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INTRODUCTION

We have discussed in the previous chapter how the blockchain technology could be an
efficient solution for access control schemes to address challenges they encounter re-
garding data confidentiality, immutability in addition to traceability and notarization of
access demands and authorizations. We have seen also how using the blockchain tech-
nology within such systems has raised significant additional fears and concerns about
the privacy of participating entities regarding both access history and shared policies
in the blockchain. On the basis of these considerations, our main focus alongside this
chapter is to ensure strong privacy guarantees over the access control related proce-
dures regarding the access requester sensitive attributes as well as the shared access
control policies. The proposed scheme is then integrated within our DRMF framework
to preserve the anonymity of both the access requester entities as well as the collaborat-
ing parties, by this way the transparency feature of our framework will be maintained
while guaranteeing and preserving the privacy of its users.
Alongside this chapter, the first Section presents the motivation behind this work illus-
trated by an example scenario inspired from the case study presented in the previous
chapter. We provide in Section 2 then some insights into privacy issues associated with
the blockchain and discuss different techniques considered by existing works. There-
after, in Section 3 an overview of the proposed scheme is presented and a detailed de-
scription of our system composition and functioning principles is provided. Finally
Section 4 delves into the implementation of the proposed scheme, a set of experimental
results validating our approach are shown.

4.1 Research motivation

In a large scale smart factories environments where interacting parties collaborate all
together along the production processes while sharing common resources for which ac-
cess is controlled and managed via a distributed and a consensus based framework.
These parties in certain cases are from different sites and sometimes even have diversi-
fied competing and conflicting interests with each other. Within such scenario, an agent
for example or an entity being part of such an organization might not want other in-
volved parties to associate his identity to the data he requests, or the time he accesses
the network. However, he may wish to keep confidential whether he accessed such re-
sources, what data types he was interested in, or from which part he obtained the data
he requested. Also and in case of malicious competitors existence, although these last
cannot read shared data files and resources related information, they can read stored
access control policies, and thus they can deduce information about an organization
current activity details, they can even try to satisfy the access condition in order to get
authorized to the corresponding resource.
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To address such issues, a new decentralized access control framework is required to
preserve in a strong way the privacy and the anonymity of entities alongside the access
procedure.

4.2 Privacy issues in Blockchain and considered strategies

Generally speaking, to protect privacy, the blockchain system needs to satisfy the fol-
lowing requirements:

• Identity Privacy: which means inlinkability between established transactions (with
random addresses and pseudonyms) and the real identities of their partakers as
well as the transactional relationships between interacting parties.

• Transaction Privacy: which means that the transaction contents (e.g., amount or
transacting patterns) can only be accessed by specified users, and kept unknown
to the public blockchain network.

In this direction, various privacy preservation strategies have been proposed in the lit-
erature either in the context of public blockchains or in the context of permissioned
blockchains [60, 75]. These last could be divided according to [60] on the basis of pri-
vacy requirements into two main categories as illustrated in Fig. 4.1.

4.2.1 Identity based privacy preservation techniques

While users use random addresses and pseudonyms when acting in the blockchain,
their real identity and personal information could be easily revealed using various
strategies such as behavioral analysis tools, traceability techniques, etc. In order to
achieve a higher level of identity privacy and security, anonymization, unlinkability
and untraceability features should be guaranteed. Currently, to achieve such goal there
are four frequently-used mechanisms for protecting anonymity in blockchain [60, 75].
These last include: mixing services, ring signature, anonymization, and non-interactive
zero-knowledge proof as presented in Fig. 4.1.
In the following we will give a brief description of most used techniques and we will
present how related proposals have used them for preserving identities privacy in the
blockchain.

1. Mixing services: This technique was mainly introduced to guarantee anonymity
in blockchain based financial applications transactions by transferring payments
from an input set of addresses to an output set in such a way that it is hard to trace
which input address paid which output one which successfully confuse the trail
back to the funds’ original source.
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Figure 4.1 – Considered strategies for privacy preservation in blockchain

As illustrated in Fig. 4.2, a trusted third service called mixer is involved to inter-
mix input transactions in order to hide the value and identities from adversaries
in such a way that associating input and output transactions from these last’ point
of view is impossible.
In this context, most existing mixing services adopt a completely centralized ar-
chitecture which may cause some problems insofar that the mixing server may
keep records of mixing information and store the mapping from inputs to outputs
transactions which may be leaked after mixing. Hence distributed mixing services
have emerged to remedy centralized systems’ limitations.
As a first example, CoinJoin was introduced in [112] to make a joint transaction
mixing the link between inputs and outputs so that the exact direction of data
flow will be kept unknown to the other peers. This protocol provides anonymity
for users and ensures that funds will be transferred to their addresses, as they will
check and validate the mixing transaction before signing on it.
As an amelioration to CoinJoin, CoinShuffle was proposed by [141] to achieve the
internal unlinkability. It utilizes an anonymous group communication protocol to
hide the participants’ identities from each other. This method achieves the inter-
nal unlinkanility by the simple trick of layered encryption, and the cost of high
communication and computation overhead.



4.2. Privacy issues in Blockchain and considered strategies 87

Figure 4.2 – mixing services scheme

2. Ring signature: This technique was initially designed by [139] as a digital signa-
ture that, by generating an anonymous signature, conceals the actual identity of a
signer among a group of signers forming a ring which makes it a special form of
group signature that excludes the group manager entity and where no particular
group setup procedure is necessary. A ring signature is generated by one of ring
members and it can be verified by anyone who owns all ring members’ public
keys. Nobody has the ability to identify who actually signed it. Unless the signer
exposes himself, there is no mechanism for others to find out which one in the
ring is the actual signer. All information a verifier can confirm is that someone
included in the ring has generated the signature. For any verifiers, the identity of
the signer is absolutely anonymous. It is very useful in some particular situations
where identity information can not be revealed while secrets must be authenti-
cated with signatures.
As illustrated in Fig. 4.3, when willing to sign a transaction, the signer user aggre-
gates a group of public keys (Pk1, Pk2,..,PkN) from other participants to generate
a ring. All participants corresponding to these public keys are regarded as ring
members. Therefore, a signature is generated using the aggregated keys PKi plus
the signer’s own private key SK. This last then has to announce all public keys of
ring members for verifiers to verify this ring signature. In particular, other ring
members may not be aware of a ring signature has been generated utilizing their
public keys.
As described, the ring signature scheme can be divided into 3 parts: key genera-
tion, ring signature generation and signature verification.
In the current literature several works have used this scheme for preserving iden-
tity privacy and anonymity in blockchain transactions within several applications
such as financial applications, e-voting systems and healthcare services.
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In [58], authors presented a lightweight privacy-preserving scheme that guaran-
tees anonymity and security of users during the sharing and the management of
their medical data. The proposed scheme uses lightweight Ring structure along
with digital signatures in order to allow participating patients to sign their trans-
actions anonymously.
In [105], authors proposed a smart contract based decentralized trustless e-voting
system where participating voters have cryptographic assurance ensuring the pro-
tection of their privacy. To meet the basic security needs of electronic voting sys-
tems and to hide the real identity of each voter while avoiding multiple votings,
the proposed framework uses linkable ring signature for each voter to group a
signing ring. Authors opted for such technique in order to guarantee double vot-
ing avoided insofar that public checkers could verify that whether two signatures
on different messages are generated by the same signer.
In the context of financial applications, Ring confidential transactions was pro-
posed in [126] as the combination result of Maxwell’s approach of Confidential
Transactions [111] with ring signatures in order to hide both sender and receiver
addresses as well as the transaction amount information. The proposed solution
can provide identity privacy and transaction privacy simultaneously. The pro-
posed approach is implemented in Monero cryptocurrency system.

Figure 4.3 – Ring signature scheme

3. Group signature: This technique is mainly conceived to allow any member of a
group to produce a signature on behalf of the group, enabling users to sign with
the authority of the group, without revealing the specific signer’s identity. The
concept of a group signature, as illustrated in Fig. 4.4, is that a trusted group mas-
ter or manager is responsible for setting up a group of users who can sign mes-
sages on behalf of the whole group, without revealing their individual identity.
The group master holds a master key with the ability to reveal the signer of any
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signature generated by a group member in the past. As a result of this, group sig-
natures offer the participants anonymity only under the condition that the group
master does not choose to reveal the signer’s identity.

Figure 4.4 – Group signature scheme

4.2.2 Transaction based privacy preservation techniques

In the current blockchain environments, the issue is not only that data is permanently
stored on a ledger, never to be erased or altered, but that by nature it exists on a blockchain
which is irreversibly shared with the entire network what makes it easily accessible by
each participating user in case of public blockchain or by authorized ones in case of pri-
vate blockchain solutions which increases privacy concerns regarding exchanged trans-
actions content. In order to achieve a higher level of transaction privacy in blockchain,
three main approaches could be considered for securing transactions carried data and
information. These last include: differential privacy, non interactive zero knowledge
proof, homomorphic encryption and smart contracts as it is illustrated in Fig. 4.1. In
the following we will give a brief description of most used techniques and we will
present how related proposals have used them for preserving transaction privacy in
the blockchain.

1. Non Interactive Zero Knowledge (NIZK) proof: Zero-knowledge proof (ZKP) is
a cryptographic method by which one party called the prover can prove a given
statement to another party known as the verifier without leaking any additional
information. The essence of a ZKP method is that it is trivial to prove that some-
one possesses knowledge of certain information by simply revealing it. Hence
the challenge of how to justify such possession without revealing the information
itself or any additional information. To do so, ZKP must satisfy three main param-
eters called completeness, soundness and zero knowledge.
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Non-interactive zero-knowledge proof (NIZK) is a variant of ZKP where the in-
teraction between the prover and the verifier is missing to consist of just a sin-
gle action in which the prover generates a proof chosen randomly from a set of
questions to which it has always response and send it to the verifier in charge of
checking if the prover knows the secret information to answer the question us-
ing the generated proof and another special function called check a proof, as it is
illustrated in Fig 4.5.

Figure 4.5 – Non Interactive Zero Knowledge proof scenario

The loss of interaction between the prover and the verifier in addition to its ability
to prove the correctness of an assertion independently without leaking additional
information makes NIZK proof well suitable in blockchain to verify transactions
anonymously and in a distributed way and thus to create privacy preserving pro-
tocols.
We present hereafter some examples of its usage in preserving privacy of blockchain.
In [87], Hawk is presented as the first work to simultaneously provide transac-
tional privacy and programmability in the blockchain. This method is based on
the idea of Zerocash and the smart contract system, users send encrypted and
committed information to the smart contract, and rely on the NIZK proofs to en-
force the correctness of contract execution and funds’ transfer. While the result of
smart contract can be publicly verifiable, the entire sequence of transaction actions
taken in the contract are kept confidential from the public.
In [162], authors proposed a language, zkay, that supports expressive privacy
specifications allowing developers to specify data ownership by annotating vari-
ables as private to particular accounts. To enable running the proposed zkay con-
tract on public blockchains, this last is transformed to a contract where values are
encrypted for their owner and correctness is enforced using NIZK proofs, guaran-
teeing that transformed contracts preserve privacy and functionality.
In [148], a new cryptocurrency Zerocash protocol is issued to achieve anonymity
and transaction privacy by making use of zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs) proof and a commitment scheme to hide a



4.2. Privacy issues in Blockchain and considered strategies 91

payment’s original address. Furthermore, the coin value is added in the commit-
ment and zero-knowledge proof is used so that the value is arbitrary and publicly
verifiable.

2. Homomorphic encryption: this technique is a cryptographic encryption method-
ology that satisfies homomorphism so as to preserve arithmetic operations carried
out on ciphertexts. Performing as a black box, it allows any party to perform op-
erations on the ciphertexts while preserving the privacy of digital original data.
This attractive feature makes homomorphic cryptography well suited for hiding
and performing timely update of the amount and other metadata of a transaction.
Typical homomorphic cryptographic schemes which could be used to protect pri-
vacy of blockchain include the Pedersen commitment scheme [133] and Paillier
cryptosystem [131].
In this context, authors in [175] designed a framework where the Paillier cryp-
tosystem is used to hide the real amount of each transaction, and Commitment
Proof is used for checking the validity of the encrypted amount (i.e., ensures that
the amount is positive and verifies the trade-off between inputs and outputs).
These encrypted transactions are like sealed asset envelopes which can be merged,
separated, or used while keeping the amount invisible.

4.2.3 Discussion and Problem statement

Table 4.1 summarizes the already presented works regarding the target they address,
the category to which they belong, the focus they are interested at, the tool they use and
the application scenario in which they are applied.
As seen, we note that there have been many efforts for protecting privacy in blockchain.
These efforts focused mainly on the following aspects:

• Obfuscating transactions relationships to resist linking or tracing analysis.

• Hiding real identities of both the sender and the receiver via complicated crypto-
graphic primitives.

• Blinding the transaction content whilst retaining the verifiability and computabil-
ity.

Adopted strategies for preserving identities and transactions privacy can be adapted
to different requirements of a range of application areas such as financial applications,
e-voting systems and healthcare services. However, just few studies have focused on
using privacy preservation approaches to meet the requirements of blockchain based
access control systems in the context of smart factories environments. In this context,
just one work [157] proposed a privacy aware decentralized access control framework
based on the Tangle technology. The proposed work provides privacy of the policy
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stored within the Tangle by leveraging Masked Authenticated Messaging (MAM) data
communication protocol that allows users to transmit policies in the encrypted format
for storage.
In this direction, two main limitations need to be addressed alongside this study:

• Pseudonymity: here blockchain anonymity is mainly guaranteed by allocating
some addresses generated from a one-time public key (e.g. Ethereum address)
to participating devices, and clearly it will be challenging to identify a specific one
in a large real-world infrastructure such as a smart factory environment. However
when considering some techniques such as transaction graph analysis and quan-
titative analysis, il will be possible to find the connection between an address and
it’s concrete entity. Once an adversary can link the allocated address to a specific
entity, all of its access requests and procedures related records will be disclosed;
hence, compromising the device’s identity and personal privacy.

• Traceability: while blockchain transactions serve as verifiable and traceable medium
of access request procedures, it may leak access requesters privacy and sensitive
information, insofar that their access history related details once recorded in the
blockchain, may conduct to learning their authorization functionality pattern, as
well as to tracing their access activities.

• Policy public visibility: here Blockchain based solutions generally require the sub-
mission of access control policies directly into the blockchain to ensure verifiable-
consistency, immutability and notarization. Unfortunately, this will also reveal all
the access control policies to the public, meaning that anyone can learn the re-
quired policies to access resources even when they are not authorized. This will
further leak entities sensitive information beyond the inferred metadata from ac-
cessible data.
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Work Addressed tar-
get

Category Focus Considered
technique

Application
scenario

[112] Bitcoin-like
blockchain

Identity
privacy

combining multiple Bit-
coin payments from dif-
ferent senders into a sin-
gle transaction so that data
flow exact trx is kept un-
known

Mixing services Financial
transac-
tions

[58] Ethereum smart
contracts

Identity
and Trans-
action
privacy

allowing participating
patients to sign their
transactions anonymously
while sharing their en-
crypted data.

Ring signature
Double en-
cryption using
ARX ciphers
and public
encryption
schemes.

Healthcare

[105] Ethereum smart
contracts

Identity
and Trans-
action
privacy

using cryptographic assur-
ance to ensure the protec-
tion of voters real iden-
tity while avoiding multi-
ple votings.

Linkable ring
signature

E-voting

[126] Monero cryp-
tocurrency

Identity
and Trans-
action
privacy

preserving anonymity and
preventing double spend-
ing by combining Confi-
dential Transactions with
ring signatures.

Ring signature Financial
applica-
tions

[87] A developed
Smart contract

Transaction
privacy

applying smart contract to
store the encrypted com-
mitted coins generated by
users then NIZK proofs are
used to enforce the correct-
ness of contract execution.

zkSNARK
library Libsnark

Financial
transac-
tions

[162] Zkay smart con-
tracts

Transaction
privacy

allowing developers to
specify data ownership
by annotating variables
as private to particular
accounts

ZoKrates
library

[175] Bitcoin Smart
contracts

Transaction
privacy

Hiding the real amount
exchanged within transac-
tions through homomor-
phic cryptogtraphy

Paillier cryp-
tosystem
Commitment
Proof

Financial
transac-
tions

Table 4.1 – Security rules list example
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4.3 Proposed Approach

4.3.1 Main objectives

In blockchain based access control schemes, it is necessary to protect information secu-
rity and preserve attributes privacy of the participating role during the access proce-
dure. In this direction our main objectives in this work are as follows:

1. Untraceability with the goal to protect the access requester related information in
the form of the address (public key). A participating entity here and on the basis
of access records and history, cannot be able to trace who has demanded the access
and within which condition this last is attributed.

2. Unlinkability where transactions identities should be anonymous in the sense that
it reveals nothing about the real identity of their issuers.

3. Confidential policies where sensitive access control policies should be revealed
just to authorized parties.

4.3.2 Overview

To achieve such objectives, we introduce along this work an anonymous privacy-preserving
distributed access management framework called PDAMF, that we propose to integrate
within our DRMF framework in order to ensure strong privacy guarantees over the
access control related procedures regarding the access requester sensitive attributes as
well as the shared access control policies as it is illustrated in Fig. 4.6.

Figure 4.6 – Architectural view of PDAMF
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To tackle this issues, we propose to integrate anonymous signature schemes within
blockchain smart contracts while keeping the verification process transparent and nota-
rized.
Our main focus in this work lies on ring signatures to preserve access requesters pri-
vacy and enhance their anonymity regarding the unlinkability of their real identites to
their authorization tokens and on the other side the intraceability of their access history
on the basis of their authorization tokens. By relying on such scheme, our framework
could provide privacy and verifiability at the same time.
One benefit of using ring signatures over other anonymizing techniques presented in
4.2.1 especially group signature and mixing services mainly refer to the fact that these
last need some sort of centralized trusted entity for combining transactions (in case of
mixing services) or managing group members (including revealing their real identities
in case of group signatures). Reminding that in case the trusted part is compromised,
the anonymity of the transaction will also be compromised. When it comes to zero
knowledge proof, this last incurs high computation overheads specially in the proof
generation phase which may be unfeasible for our use case.

Figure 4.7 – Overview of the proposed scheme

Fig. 4.7 shows the overall structure of the proposed system according to the use case
presented in the previous chapter. The vision of our privacy-preserving distributed ac-
cess management framework is a system of autonomous organizations and domains
(i.e. subfactories, customers, suppliers, transportation partners) collaborating with each
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other while exchanging products and sharing resources in an attempt to realize a spe-
cific goal. The access management over shared resources plus the governance of the
overall system is based on specific rules defined through smart contracts created and
deployed within the blockchain network acting hereof as a policy retrieval point where
all security rules are stored in form of transactions. Alongside, each domain holds its
own entities with different roles. These last when wishing to have access over the shared
resources, are asked to pass through smart contracts defining the set of rules and condi-
tions that need to be fulfilled in order to get access authorization. We remind here that
managing the access via smart contracts deployed within a publicly visible and trans-
parent ledger will reveal requester entities sensitive attributes what could violate their
privacy and anonymity. Hence our idea to use ring signature scheme for preserving
identity privacy. That is, nodes within the P2P network can decide whether Adam, a
shipping agent, having sending an access request to use the shipping truck resource,
satisfy the security rule, without learning any other information about his personal at-
tributes or without being able to trace his action throughout the whole process. Instead,
by using ring signature, they will be able to trace Adam’s corresponding role and no
more his real identity. In this way the anonymity and untraceability of the token he
uses is achieved.

4.3.3 System composition

The proposed framework and as it is illustrated in Fig. 4.7 consists of the following
entities:

• Participating users (Ui) demanding access authorization over shared resources
(SR) using attributed roles (Ri) and by means of a ring signature RS generated
by use of a randomly selected subset of public keys P1, P2,.., Pr of the r ring mem-
bers, together with the secret key Ss of the s-th member representing the user who
has signed the access demand transaction.

• Authentication system: This component is mainly responsible for verifying the
validity of entities’ identities as well as the legitimacy of demands and requests
sent to the blockchain network. Participating entities are authenticated based on
the provided credentials. These last are used to prove the authority and legiti-
macy of public keys. In exceptional situations, as for example in case of a ma-
licious behavior launched by a certain user after having access granted causing
consequently resource damage, confidential data stealing, or even resources and
devices tracking, the real identity of the corresponding signature real originator
could be revealed.

• Peer to peer network: This component is the main core of our system. It defines:
(1) a set of smart contracts ensuring the access management and the verification



4.3. Proposed Approach 97

of generated ring signatures, (2) a distributed network composed by a set of peers
responsible mainly for receiving the established transactions, verifying and vali-
dating its state and executing the functions contained within.

• Signature compositor module: This component is mainly responsible for generat-
ing a ring signature from the ring of participants without revealing the identity of
the signature’s producer. The generated signature is then used for signing access
authorization transactions.

• Policy manager module: This component serves in the one side as the defin-
ing part of access rules to be encapsulated into transactions and reloaded to the
blockchain after validation, on the other side this module serves as the acquisition
source of attribute values required for policy evaluation that once received and
intercepted will be sent to the corresponding smart contract.

• Ethereum client: This component implements the full functionality required to
join and to participate in the distributed network. This handles a broad set of
tasks, such as connecting to the peer-to-peer network, encoding and sending trans-
actions, keeping and exploring blocks copies and deploying and interacting with
smart contracts.

Let us assume that a human worker denoted as user1 within the subfactory SF1 wants to
have access over the shared resource Truck 3 to perform a shipping operation. To do so,
the process would work as follows: the agent needs to get authenticated first along with
the authentication system, which is responsible for making authorization decisions, ver-
ifying devices identities and generating authorization tokens. Furthermore, the access
requester will generate his address corresponding to a pair of key (Pkuser1, Skuser1). The
public key Pkuser1 is published in order to enable other participating entities to inter-
act with user1. The secret key Skuser1 is used to spend the authorization token to have
access allowed. Therefore, the signature compositor module will query the set of all
other registered users in the contract, retrieved public keys are used for forming the
ring and generating the ring signature. Created signature is therefore used to sign the
access request transaction formulated by the policymanager module and broadcast via
the Ethereum client to the peer to peer network where the corresponding smart contract
shall be successfully executed to have access allowed and get an authorization token. To
do so, the transaction signature is verified by the smart contract, if this last is valid, and
the access request transaction matches the defined access control policy, this last is ac-
cepted by the ledger and the access is granted.
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4.3.4 System operational blocks

The proposed framework divides the interaction between involved parties into five op-
erational blocks as follows: a set up phase, a security rules definition phase, a key gen-
eration phase, an access request phase, and an access control phase. A description of
these different phases and operations is presented in Fig. 4.8.
These five phases our proposed framework is made up of are detailed in the next para-
graphs.

System set up

Once the distributed network is created and becomes operational, a consortium is de-
fined in order to reach the desired agreement among collaborating parties that once
identified get registered and involved in the consensus procedure. Therefore and given
the existence of resources to be shared, these last are identified in order to be accessed
and used in a notarized manner. Subsequently, the process of adding new entities with
different roles and classifications can be launched. Here, it should be assumed that
new entities have received an Ethereum address required to partake in the Ethereum
network. Therefore, the process of adding a new entity begins by having the pool of
consensus entities validate that the public identifier corresponds to the pretended role
and suits the requested classification.

Security rules definition

When collaborating parties agree on adding an access control policy for a newly de-
ployed resource to be shared among them and used as well by external users, an access
policy needs to be added to the Access smart contract and shared within the distributed
network. An access policy here is a set of rules and conditions based on a specific context
and attributes that a requester entity has to fulfill in order to obtain access authorization
over specific resource. These rules are expressed in OrBAC access control model and
then encapsulated by the policy manager module in form of a scripting language in or-
der to be added to the policies list within the Access smart contract. At this stage, the
Ethereum client broadcasts the SrD transaction to the peer to peer network, this verifies,
validates the transaction, and includes it into the blockchain if it was valid else it will be
rejected and a notification will be sent.
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Figure 4.8 – System operational blocks

Key generation

The access requester engage alongside this stage in the keyGen algorithm that takes as
input public parameter pp to output a signing key pair (Pki,Ski), the generated public key
in addition to identity descriptors are then sent to the authentication system that will
generate a certificate based on the parameters passed, calculate a hash value over it and
sign it using its private key. As a result, a digital certificate is created and sent back to the
access requester. This last is mainly used to prove the authority and legitimacy of public
keys. In exceptional situations, as for example in case of a malicious behavior launched
by a certain user after having access granted causing consequently resource damage,
confidential data stealing, or even resources and devices tracking, the real identity of the
corresponding signature real originator could be revealed by the authentication system
managing related keys.
The key generation algorithm is as follow:
We use hereafter the notation←R to indicate choosing an element at random from a set,
for example tj ←R Zq shows tj chosen at random from Zq.
1- For λ the security parameter, choose multiplicative group G with prime order q, and
randomly chosen generator g of G.
2- Choose also two hash functions H and H0 such that:
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• H : {0, 1}∗ → G

• H0 : {0, 1}∗ → Zq

3- Output public parameters pp = (λ, q, G, H, H0).
4- run KeyGen algorithm KeyGen(1λ, pp) as follow:

• xi ←R Zq

• yi ← gxi

5- Output the public key Pki = (pp, yi) and the secret key Ski = (pp, xi).

Access Request

When willing to perform an action over an existing shared resource, the requesting
entity sends an access request transaction that further to which a decision is made after
a successful execution of the Access Smart Contract.
To do so, the Access requester (ARq) runs in a first step the ring signature generation
algorithm RingGen(Ski, Ring, ARTx) as follow, where Ring is the set of public keys Pki

having participating in the ring creation, Ring = (Pk1, Pk2, .., Pkn):
If j in Ring members and j 6= i then:
compute tj, cj ←R Zq,
compute aj ← gtj y

cj
j ,

compute bj ← H(ARTx ‖ Ring)tj(H(ARTrx ‖ Ring)x
i )

cj ,
endif
If j = i then:
compute ri ←R Zq, compute ai ← gtj y

cj
j ,

compute bi ← H(ARTx ‖ Ring)ri ,
endif
Calculate ci ← [H0(ARTx, Ring, {aj, bj}n

1)−∑j 6=i cj] mod q,
Calculate ti ← ri − cixi mod q,
Return (Ring, ARTx, H(ARTx ‖ Ring)xi , ci, ti)
In a second step and after getting the address of the Smart Contract managing access
to the shared resource and signing the Access request on behalf of the ring, the access
requester triggers the Smart Contract with a Request Access transaction ARTx.

Access control

Once receiving the Request Access transaction ACTx, the Access smart contract (AC)
will verify first the transaction signature as follows:
Parsing the output of RingGen algorithm , and using the notation H(ARTx ‖ Ring)xi =

σ we compare:
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∑n
1 cj = H0(ARTx, Ring, {gtj y

cj
j , H(ARTx ‖ Ring)tj σcj}n

1)

If the comparison is true, the signature will be accepted and validated, otherwise, it
will be rejected.
As a second step of this phase, the Access contract will evaluate the access demand by
verifying the validity of the subject role and the existence of the access policy within the
defined policies list, as a result it determines whether the request should be permitted
or denied.

4.4 Implementation and Analysis

In this section, we will introduce first the different tools used for the implementation of
our framework therefore we will discuss expected properties and aspects and we will
show experiment results demonstrating its feasibility.

4.4.1 Work environment

For the implementation of our proposal, we have used the testbed presented in Chapter
3 and illustrated in Fig. 4.9 featuring hardware and software components listed below:

Figure 4.9 – Work environment

• a Dell Precision M6800 machine with 4th Generation Intel Core i7 processor and
8Gb of RAM in which we have configured a private Ethereum blockchain network
consisting of three nodes having the functionalities of Ethereum miners.
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• an Intel Core i5-3210M laptop with 6 Gb of RAM and 2.40 GHz of CPU frequency
in which an Ethereum node was set up.

• two Raspberry Pi 3 Model B configured to act as shipping resources shared among
the collaborating factories.

For the implementation of our proposal, we chose Ethereum, which is currently the
most common blockchain platform for developing smart contracts. Specifically we used
geth client [66] configured on each entity so that it could act as an Ethereum node.
For the implementation of the ring signature scheme, we used the secp256k1 scheme for
creating elliptic curve parameters and producing the signature where ECDSA is per-
formed [152]. We chose such scheme for its particular structure that allows very fast
performance when implementing elliptic curves’ points addition and multiplication by
a scalar.

4.4.2 Performance evaluation

Based on the software and the hardware we presented in the previous section, we car-
ried out experiments to prove the feasibility of our proposed privacy aware access man-
agement framework. Such framework could protect the privacy of access requester
entities and ensure the security and the anonymity of their identities in blockchain ap-
plications which is a long awaited feature that was missing in the current blockchain
based access control related literature. In this direction, a ring signature primitive has
been introduced to face the traceability problem of authorization tokens. Considering
such primitive, a participating entity on the basis of access records and history, cannot
be able to trace who has demanded the access and within which condition this last is
attributed.
To demonstrate the feasibility of our proposal in achieving distributed and privacy
aware access control for Industry 4.0 applications, we will evaluate in the following the
performance time required for signing and verifying the generated ring signature while
varying the number of participants involved in the ring construction process. This time
is therefore compared to the performance time required for executing the entire access
control related transaction.
In the case study we presented, corresponding results have been illustrated in Table 4.2.
This last enumerates the performance time for ring signature related processes as well
as the generated signature size.
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Ring members Signature genera-
tion time (s)

Signature verifica-
tion time (s)

Signature size
(Byte)

1 0.061 0.002 340
5 0.097 0.008 1405
10 0.102 0.01 3120
20 0.113 0.018 6113
50 0.125 0.022 15000

Table 4.2 – Ring signature performance

Figure 4.10 – Existing relation between ring members and signature generation and verification
processes

Figure 4.11 – Existing relation between ring members and signature size

Fig. 4.10 and fig. 4.11 present the existing relation between ring participants number
and the time required for performing ring signature related processes plus the signature
size. According to these figures we remark that there is a linear relationship between
public keys number corresponding to the ring members and other parameters such as
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the signature generation or verification time and the signature size. The more partic-
ipants enroll in, the less the process is efficient in terms of performance time. When
comparing this time to the performance time required for executing the Access smart
contract for an entire access control transaction which is less than 25 seconds (24.8 s) for
a 10 members ring size, we can demonstrate the possibility of our framework in achiev-
ing distributed privacy aware access control.
Notice that the time required for deploying and running smart contracts depends on
various factors, like the system computing power, the system networking architecture.
Thus, in the real-world public Ethereum system, the time cost may differ significantly
from that in this case study.

Conclusion

In this chapter we have presented our approach to tackle privacy and security issues
in decentralized access control mechanisms based on the blockchain technology. More
specifically, our focus was to ensure strong privacy guarantees over the access control
related procedures regarding the access requester personal information and sensitive
attributes. To do so we have built a privacy aware distributed access management
framework based on the ring signature on the elliptic curve, and used the complete
anonymity of the ring signature to ensure the security and the anonymity of access re-
questers identities in blockchain applications. By such a way, the transparency feature
of our framework is maintained while guaranteeing and preserving the privacy of its
users.
Our evaluation regarding the performance time needed for enabling such scheme shows
that our proposal is feasible, deployable and suited for our use case environment. For
future work, we plan to generalize our privacy aware framework to consider the pri-
vacy of shared access control policies within the blockchain distributed ledger where
they would be revealed just to authorized parties.



105

Chapter 5

An Event-B based Approach for Formal
Modeling and Verification of Smart
Contracts

Contents
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Background and problem statement . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Event-B formal method . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 AC Event-B formal model . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Verification of the smart contract behavior . . . . . . . . . . . . . . . . . 118



106Chapter 5. An Event-B based Approach for Formal Modeling and Verification of Smart
Contracts

5.1 INTRODUCTION

While smart contracts are becoming widely recognized as the most successful appli-
cation of the blockchain technology that could be applied into various industries and
for different purposes such as e-commerce, energy tradings, assets management, and
healthcare services, their implementation has posed several challenges insofar that they
could handle large amount of money and digital assets in addition to their ability to
manipulate critical data and transactions related information which makes them attrac-
tive targets of security threats and attacks that could lead to significant problems like
money losses, privacy leakage and data breach. To better deal with such issues, rea-
soning about the correctness, the safety and the functional accuracy of smart contracts
before their deployment on the blockchain network is critical and no important than
ever. In this context model checking tools are well adopted for the formal verification of
smart contracts in order to assure their execution as parties’ willingness as well as their
reliable and secure interaction with users. In this direction, this chapter will focus on
behavior based formal verification of smart contracts in order to verify their compliance
with the specification for given behaviors. The verification is conducted using Event-B
formal verification method in addition to a model checking tool along which expected
safety properties are formalized, validated and judged to be satisfied or unsatisfied. The
described approach of this proposal is applied to the use case application presented in
Chapter 3 where implemented smart contracts are formally modeled and verified using
the model checking tool.
The rest of this chapter is organized as follows. Section 2 recalls the basic preliminaries
and background needed for the understanding of our proposal described in the remain-
der of this chapter. Section 3 discusses then smart contracts security issues and vulner-
abilities and presents related proposals carried out in the area of smart contracts formal
verification. Thereafter Section 4 describes the proposed approach from a theoretical
and formal point of view and details the proposed Event-B formalization followed by
the verification process of smart contract’s behavior in Section 5. Finally in Section 6,
the chapter ends up with some conclusions and an outlook of our future work to study
in this area.

5.2 Background and problem statement

In this section, we will introduce first the main preliminaries and background needed
for understanding of our proposal specifically formal verification methods and Event-B
formal method. We will point out then potential security issues that smart contracts
may have and we will review research proposals related to their security verification in
recent years.
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5.2.1 Event-B formal method

Event-B [4] is both a language and a method for formal specification and verification
of secure systems. It has been proposed by J-R Abrial as the successor of the classic B
Method [5]. Event-B has preserved the advantage and the simplicity of the B method
while making improvements in several aspects, including the specification of reactive
systems. Following the B Method, Event-B uses basic mathematical notations, first or-
der logic and set theory. It supports a large part of the development life cycle, from the
specification/design phase to the implementation phase. This allows the early errors
detection which prevents from execution errors and facilitates maintenance.
The complexity of a system is mastered thanks to the refinement concept allowing to
gradually introduce the different parts that constitute the system starting from an ab-
stract specification to a more concrete one. The abstract specification describes the fun-
damental properties of the system. Requirements and details are added incrementally
through the refinement process.

Machines and Contexts

An Event-B specification is made of two main elements: contexts and machines. The
machine is a fundamental component for the formal construction of a system in Event-
B. It specifies its dynamic part and includes several elements such as variables V , in-
variants Inv, and events E that establish the system state change. The variables define
the state of the system to be specified. The possible values that the variables hold are re-
stricted using invariants written using first-order predicates. Invariants should remain
valid in each state of the system. Thus, they should be valid in the initial state and after
the execution of each event.
Machines often need static elements of the system such as constants C, sets S, and ax-
ioms A that specify their properties. These elements are included in a context that de-
scribes the static part of an Event-B specification. To have access to its elements, a con-
text is seen by a machine (i.e. SEES Context). An event can be executed if it is enabled,
i.e. all the conditions G, named guards, prior to its execution hold. Among all enabled
events, only one is executed. In this case, substitutions Act, called actions, are applied
over variables. In this thesis, we restrict ourselves to the becomes equal substitution,
denoted by (x := e).

Refinement in Event-B

Refinement is a process of enriching or modifying a model in order to augment the
functionality being modeled, or/and explain how some purposes are achieved. Both
Event-B elements context and machine can be refined. A context can be extended by
defining new sets Sr and/or constants Cr together with new axioms Ar. A machine is
refined by adding new variables and/or replacing existing variables by new ones Vr
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that are typed with an additional invariant Invr. New events can also be introduced to
implicitly refine a skip event (i.e. It does not modify the already existing variables).

Verification and Validation of Event-B Models

Event-B is supported by the Atelier-B platform [46] and can be used in conjunction with
the Pro-B animator/model-checker [92, 91] in order to animate and validate a formal
development.
ProB is an animator and explicit automatic model checker, originally developed for the
verification and validation of software development based on the B language. This
tool implements an automatic model checking technique to check LTL (linear temporal
logic) [135] and CTL (Computational Tree Logic) [44] properties against a B specifica-
tion. The core of ProB is written in a logical programming language called Prolog. Its
purpose is to be a comprehensive tool in the area of formal verification methods. Its
main functionalities can be summarized up as follows:

1. ProB can find a sequence of operations that, starting from a valid initial state of
the machine, moves the machine into a state that violates its invariant,

2. Giving a valid state, ProB can exhibit the operation that make the invariant vio-
lated,

3. ProB allows the animation of the B/EventB specification to permit the user to play
different scenarios from a given starting state that satisfies the invariant. Through
a graphical user interface implemented in Tcl/Tk, the animator provides the user
with: (i) the current state, (ii) the history of the operation executions that has led
to the current state and (iii) a list of all enabled operations, along with proper
argument instantiations. By this way, the user does not have to guess the right
values for the operation arguments.

4. ProB supports the model checking of the LTL and CTL assertions.

5.2.2 Problem statement

Potential security issues and assurance of smart contracts

Besides their correct execution, it is also crucial that the design and the implementation
of smart contracts are secure against vulnerabilities aiming at tampering and stealing
assets they handle. Indeed, several security vulnerabilities in Ethereum smart contracts
have been discovered. A recent analysis reveals that among 19336 smart contracts de-
ployed on the public Ethereum blockchain, 8333 contracts suffer from at least one secu-
rity issue [104]. An example of attack was in June 2016, the DAO (the world’s largest
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crowdfunding project deployed on the Ethereum) was attacked by hackers, causing
more than 3 million ETH separated from the DAO resources pool which is worth around
$60 million.
A survey of possible attacks on Ethereum contracts was presented in [16] where security
vulnerabilities of smart contracts were grouped into three classes according to the level
in which they are introduced namely Solidity, EVM bytecode, and blockchain.
Another issue that smart contracts may have is their dependency on external calls es-
pecially when they execute external contracts’ codes within their functions, call other
contracts’ function and wait for its returned value, or even call another contract that
may change its global state. If there is an exception raised (e.g., not enough gas, exceed-
ing call stack limit) in the called contract, the calling contract terminates, reverts its state
and returns false. However, depending on how the call is made, the exception in the
calling contract may or may not get propagated. In these cases, the contract’s control
flow should not be influenced by an adversary contract.
To deal with such issues, reasoning about the correctness of smart contracts before their
deployment on the blockchain network is critical and no important than ever. How to
write reliable smart contracts was presented in [98], where two aspects were considered
for the correctness verification and security insurance of smart contracts including pro-
gramming correctness and formal verification.
Formal verification provides a powerful technology for the correctness verification of
the established specification of smart contracts. In the following subsection, we will
review research proposals carried out in this field.
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Proposal Target Category Focus Tool
[28] Solidity

SC and
EVM
bytecode

Program based
formal verifica-
tion

Translated SC into F*
to check the correct-
ness.

F*

[13] EVM byte-
code

Program based
formal verifica-
tion

Analyzed EVM byte-
code of contracts stat-
ically.

Isabelle/HOL

[1] Solidity
SC

Behavior based
formal verifica-
tion

Considered the inter-
action between users,
programs and the en-
vironment.

Statistical
Model Check-
ing

[29] DSCP
BITHALO

Behavior based
formal verifica-
tion

Used probabilistic
formal models for
verification.

Game theory
Markov Deci-
sion Process
Prism tool

[123] Solidity
SC

Behavior based
formal verifica-
tion

Proposed a generic
modeling method
then applied the
model checking.

NUSMV
Model checking

[81] LLVM
bitcode
supports
different
high level
languages

Program based
formal verifica-
tion

Proposed a source
code translator to
convert the smart
contract embed-
ded with policy
assertions to LLVM
bitcode and a ver-
ifier to determine
assertion violations.

Zeus (the
prototype
implemented)

Table 5.1 – Smart contracts based formal verification approaches

Related works

Multiple efforts have been carried out in the current literature for the correctness ver-
ification of the established specification of smart contracts through formal verification
approaches.
In [28], authors proposed a verification method based on programming language. They
translated Solidity written smart contracts into an F* language (functional programming
language aimed at program verification) in order to check the safety, and the functional
accuracy of implemented contracts. The translation is made both at the source level
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(functional correction specifications) and bytecode level (low-level properties).
In [13], the Isabelle proof assistant was used to verify the binary Ethereum code whose
corresponding sequences were organized into linear code blocks. A logic program was
then created where each block is processed as a set of instructions. Each part of the
verification is validated in a single trusted logical framework from the perspective of
bytecode.
In [1], a new verification method is proposed to verify a smart contract’s behavior in
its execution environment. The proposed approach considered the interaction between
both users and programs, plus programs and the environment. The Behavior Interac-
tion Priorities (BIP) framework was used for components modeling, therefore the Sta-
tistical Model Checking (SMC) tool was used for verification.
In [29], game theory approach was combined with formal methods to address the chal-
lenging aspect of smart contracts, the proposed approach focused on DSCP (a Decen-
tralized Smart Contract Protocol inspired by BITHALO), therefore a probabilistic formal
model was proposed to verify smart contracts based on PRISM tool.
In [123], authors proposed a generic modeling method of smart contracts based Ethereum
applications, the model checking approach was then considered to verify the implemen-
tation’s compliance with the specification. The proposed model was written in NuSMV
language with properties formalized into temporal logic CTL to be subsequently ap-
plied to a case study based on smart contracts and coming from the energy market
place.
In [81], a framework called ZEUS was proposed to automatically verify the correctness
of implemented smart contracts using both abstract interpretation and symbolic model
checking and to validate their fairness. The proposed framework consists of three com-
ponents including a policy builder against which the smart contract must be verified, a
source code translator for the conversion of this last to LLVM bitcode, and third a veri-
fier in charge of determining and reporting policy violations.
Table 5.1 summarizes the already presented works regarding the target they address,
the category to which they belong, the focus they are interested at and the tool they use.

5.3 Proposed Approach

5.3.1 Overview

The main objective of this work is to formally model an Ethereum blockchain applica-
tion based on smart contracts formal verification methods. We rely alongside this work
on Event-B which is a state based model-oriented formal method intended for system
development. Its strength lies in a well-defined modelling and analysis process, which
allows one to specify a system from an abstract specification to a concrete one.
In order to verify and validate their safety, correctness and functional accuracy, smart
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Figure 5.1 – Overview

contracts, as illustrated in Fig. 5.1, are translated from solidity (which is a high level pro-
gramming language designed for implementing smart contracts running on the Ethereum
blockchain), into Event-B formal language. Therefore, and in order to check whether
implemented smart contracts behave as they are supposed to do, a verification of the
formal model is conducted using a model checking tool along which expected safety
properties are formalized, validated and judged to be satisfied or unsatisfied.

5.3.2 AC Event-B formal model

In Listing 1, the set of enumerated types, the state variables, the constants and the prop-
erties of defined attributes constituting the machine ACCESS CONTRACT are intro-
duced. For instance, AccessType_AS, Agent_AS, Activity_AS are specified as sets con-
taining predefined constants an AccessType (respectively an Agent, an Activity) vari-
able could have. Table 5.2 illustrates a brief description of each variable specified within
the ACCESS CONTRACT machine.
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VARIABLE Description
AccessType the access type to be attributed after

each access demand
Agent the entity asking access authorization
Activity the action to be performed once the

access is authorized
Resource the resource over which the access is

requested
Role the role demanding the access
Context the situation that must be respected

so that the access is granted
SecurityRule the defined access control policy
SecurityRuleList the list of security rules
RoleList the list of roles
ContextList the list of contexts

Table 5.2 – Security rules list example

Reminding here that a role structure is characterized by its description, the Organi-
zation by which it is issued (e.g. the subfactory SF1, SF2, etc.), the department to which
it does belongs (e.g. logistics), and the trust threshold it has. On the other hand, the
context structure is identified by its description (that could be for example shipping,
renting, etc.), minInterval (which is the minimum allowable time interval between two
successive access requests), nb_req_threshold (that corresponds to the maximum num-
ber of access requests in the minimum interval), working hours (corresponds to the
working hours interval).
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The definition of sets and abstract variables are succeeded by the introduction of typ-
ing invariant properties in order to complete the model construction. Listing 1. includes
the typing invariants of added variables For example, we define the variable Resource
to store shared resources over which the access is demanded. Obviously Resource is a
subset of Resource_AS (Inv4, Listing 1.).
Listing 2. defines typing invariants related to role, context, resource, request and secu-
rity rules structures. As an example, the ResourceState invariant (invariant 8) is used to
constrain changes in the state of a resource between free and occupied states.
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As a next step, this model is enriched by safety invariant properties plus the defini-
tion of events. The guard and action of these last must be specified in such a way that it
establishes invariants preservation.

Safety invariants:
In order to ensure consistent, correct and safe functioning process of the considered
framework, we define a set of constraints as it is illustrated in Listing 3. These last, and
that must be preserved by events specification, are formalized as follow:

1. Property 1: Once the smart contract is called upon a request is made, an access
result shall always be returned.

2. Property 2: Ensure that there is only one instance for each access rule defined and
shared within the Access smart contract.
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3. Property 3: Once a shared resource is used by a certain entity, the access over it
must be blocked and could never be attributed to another entity.

Events Specification
In the following Listings, we use events to describe the behavior of our ACCESS_CONTRACT
Event-B machine.

In Listing 4, we define the first event called addPolicy permitting to define and to
add a new access control policy, based on the role demanding the access "role", the
context defining the situation "context", the resource to be used "rsr", the action to be
performed "act" and the access type to be attributed "accessT". This event requires the
execution of addRole and addContext events before to be completed. As pre-condition,
input parameters must be already defined and the security rule must not exist before
within the "SecurityRuleList". The triggering of this event allows a new policy item to be
added to the policies list whose size will be incremented.

Listing 5. and Listing 6. are responsible for defining and adding a new role, respec-
tively a new context to their corresponding list, Rolelist and ContextList. For instance,
addRole event uses in input the role name "rl", the corresponding description "rldesc",
the organization to which the role belongs "org", the corresponding department "dept",
and finally the trust threshold above which access demanders should have their associ-
ated trust scores "trust".
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Listing 7. introduces the AccessControlAccept event. Through this last, an access
request made by the role "rl", upon a certain resource "rsr" to perform the activity "act"
within the specific context "ctx" is authorized. To do so, a set of guards are generated,
these last represent the set of conditions that should be respected, they include the typ-
ing guards related to input parameters, the belonging guards over which the existence
of role "rl" and context "ctx" within the Rolelist and respectively the Contextlist will be
checked, finally the comparison guards defined to check the condition to be respected
as well as the legitimate behavior of the access requesting agent. This last is evaluated
through (i) the corresponding trust score "TrustValue" that should be above the trust
threshold "TrustThres" of the associated role, (ii) the access requests number to detect
a potential doubtful access demand, this last should not exceed the "nbReqThreshold",
(iii) the last access request "TimeLastAccess" that should be launched within the mini-
mum allowable time interval "minInterval", and (iv) finally the current access request
that shall be launched during the working hours interval. As a result of this event, a list
of variables will be modified through the event action clause specifically the "Requests"
set, the "LastRequestId" and the "TimeLastAccess". Therefore the state of the resource will
be changed to occupied and the access will be authorized.
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5.4 Verification of the smart contract behavior

In this section, our main objective is to demonstrate our approach by (i) validating the
formal model introduced in Section. 5.3.2 and then (ii) checking that both the presented
implementation and design of the smart contract verifies well some required typing and
safety properties. More details about the proposed framework are provided in Chapter
3. As a first attempt to validate the Event-B models, we have applied these last to a
simplified real example derived from the use case study illustrated as well in Chapter
3.
Indeed in this scenario, we added two new roles called ’shipping worker’ and ’produc-
tion worker’ belonging respectively to the ’logistics’ and ’manufacturing’ departments
within the subFactory SF1 and having as trust threshold the value of ’0.5’, correspond-
ingly a new context is added to the contexts list, named ’shipping’, it concerns the re-
source ’truck3’ during the working interval ’8to18’ and where 2 access requests are per-
mitted during the minimum time interval set up to ’5 minutes’.
Afterwards, a corresponding security rule is defined and added to the security rules
list after being specified as follow: SR1(access type = "permission", activity= "use", re-
source= "truck3", role= "shipping worker", context= "shipping"), in other words, this
security rule authorizes the shipping worker to use the truck3 resource according to the
context shipping, that is, his trust score is above the trust threshold, the current time is
within the working interval and at most 2 access requests are launched during the last
5 minutes.
Subsequently, we defined 3 access demands corresponding respectively to 2 legitimate
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behaviors and a malicious one. For the legitimate behaviors, two shipping workers
from the logistics department with a trust score equal respectively to 0.7 and 0.65 de-
mand for the first time to use the truck3 resource during their working hours interval.
For the malicious behavior, we assume that a shipping agent launches an on-off attack
resulting on a low trust score while demanding access over the truck3 resource.
In order to demonstrate that the formal specification of access contract models is cor-
rect, we aim to validate Event-B models using ProB model-checker and animator. This
validation allows to verify that the invariants are preserved by all events. Since these
models are deterministic and have finite state spaces, the model-checking and anima-
tion are sufficient to validate our model for a given initial state than theorem proving
that requires considerable efforts.

Verification using model-checking :
Model-checking [45] is an automated approach for verifying that a system model con-
forms to its specifications. The system behavior is formally modeled and the specifi-
cations, expressing the expected properties of the system, are also formally expressed,
in our case via formulas of the first-order logic. All experiments were conducted on a
64-bit PC, Ubuntu 16.04 operating system, an Intel Core i5, 2.3 GHz Processor with 4
cores and 8 GB RAM. Using the ProB model-checker and based on mixed breadth and
depth search strategy, we have explored all states: 100% of checked states with 641 dis-
tinct states and 1613 transitions during 1987 milliseconds. No invariant violation was
found, and all the operations were covered. This verification ensures that invariants are
preserved by each event. Otherwise, a counter-example would be generated.

Verification using animation :
ProB can be used as a complementary of model-checker as an animator. Verification
using animation is very important and can detect a series of problems, such as unex-
pected behavior of a model. ProB animator allows to visualize the dynamic behavior of
a Event-B machine and we can systematically explore all the accessible states of a Event-
B machine to check the studied properties. We have successfully applied the animation
of ProB on the operational scenario that described at the beginning of this section. The
animation of this scenario demonstrates the behavior of the our specification which im-
plies that we have a verified and validated specification. However, if this is not the case,
then we have to go back to the initial specification to correct the unacceptable behavior
and re-apply the animation until the specification conforms to requirements.
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Conclusion

In this chapter, we have applied the formal verification concept to smart contracts devel-
oped and deployed within our DRMF framework. The aim is mainly to verify the com-
pliance of these last with their specification while validating their safety and functional
accuracy under specific properties and for given behaviors. To do so, we adopted the
Event-B formal method for translating solidity written smart contracts. Model check-
ing technique has been exercised therefore on the resulted formal model to judge and
validate some properties of interest. The presented method was applied to a simplified
real example derived from a use case study describing shared resources management
among collaborating organizations under Industry 4.0 environments.
As a future work, we will focus on enriching our model with other properties when
considering malicious parties introducing specific scenarios of attacks.
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INTRODUCTION

We have seen alongside the previous chapters how integrating the blockchain technol-
ogy could ensure the traceability and the confidentiality in addition to the immutability
of shared information that once stored within the distributed ledger cannot be altered
nor modified without being traced or revealed by validator peers. In this chapter, we
argue that despite the blockchain is an effective technology for managing shared data
traceability and notarization, it alone cannot support the reliability and the authenticity
of such data regarding the trustworthiness of network participating entities. In such
case, false data generated by malicious entities becomes immutable once recorded on
the distributed blockchain. One approach to improve the trust and reliability of the
data is to use a trust management mechanism to assess the trustworthiness of entities it
is produced and collected by. Such entities within IoT environments are susceptible to
faults and could be easily targeted by malicious threats and attacks, thus they cannot be
blindly trusted.
In this direction, our objective in this chapter is to propose a secure and distributed trust
management system based on the blockchain technology so that we can take advan-
tages of security features it provides regarding reliability, traceability and information
integrity. Blockchain based trust management can provide tamper proof data, enable
a more reliable trust information integrity verification, and help to enhance its privacy
and availability during sharing and storage. For this purpose, we design and imple-
ment a blockchain based trust architecture to collect trust evidences, to define a trust
score for each device and to securely store and share them with other entities within the
network by embedding them into blockchain transactions.
To do so, we propose first a generic trust mechanism for assessing the trustworthiness
degree of each entity within the network and deriving a trust score that will be shared
between involved entites and considered within the decision making process. In order
to evaluate and experiment the proposed trust mechanism, we have chosen to use our
solution within a specific use case which is the RPL routing protocol to ensure secure
routing by protecting the network against misbehaving, selfish and malicious nodes
regarding the routing procedure. We opted for such protocol mainly because RPL is
considered as one of the emerging routing standards for ensuring multi hop communi-
cations in IoT networks.
In brief, the focus of this chapter is first how to share trust related information within
the IoT network via blockchain and second how to assess trust within a multi-hop IoT
network regarding the routing procedure.
For effective clarity and better understanding, this chapter will be divided into two parts
where each one deals with one of the above mentioned issues. The rest of this chapter
is organized as follows. Section 2 presents our blockchain based framework for trust
management in IoT. In this section, and after discussing trust management systems re-
lated issues, an overview of the proposed scheme as well as its detailed design is given
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followed by a set of experimental results validating its performance. Therefore and in
order to validate our trust model regarding the RPL protocol, we present in Section 3
our trust framework for IoT regarding the routing procedure. In this part, we recall
the basic concepts of routing protocols for IoT and presents related proposals regard-
ing their security enhancements and trust aspects. Thereafter, a detailed design of the
proposed trust model is given and a set of experimental results are shown. Finally in
Section 4, the chapter ends up with some conclusions and an outlook of our future work
in this area.

6.1 Toward a blockchain based framework for trust man-
agement in IoT

6.1.1 Related works and problem statement

Security presents a significant challenge for the implementation and the realization of
IoT scenarios due to the different standards and communication stacks involved, the
heterogeneous nature of IoT communications and respectively the imbalance in in-
volved devices’ resources capabilities. The presence of such issues makes it challenging
to satisfy the security and privacy requirements of IoT [159].
Such requirements include data confidentiality and authentication, access control within
the IoT network as well as privacy and trust among things and services.
When a number of things with dynamic behaviors communicate in an uncertain IoT en-
vironment, trust plays an important role in establishing secure communication, reliable
data exchange and enhanced decision making.
Trust is a very general topic that may be applied to virtually any context. For this reason,
it has been extensively studied in many areas such as sociology, economics, computer
science, and so on [85], that’s why we find its definition always depends on the envi-
ronment, the objectives and the context in which it is applied. Its management has not
been comprehensively investigated by the current research in the context of IoT [183].
We have reviewed in Chapter. 2 existing proposals carried out in the area of trust man-
agement for IoT with different design purposes. According to the carried review, these
last generally consider a common small set of parameters to evaluate trustworthiness
which are either related to QoS, social or reputation aspects without focusing on the
security aspect that consists of verifying the confidentiality and integrity of trust evi-
dences during their collection, propagation and communication between participating
devices. Instead, they assume that collecting information from a large number of enti-
ties and executing aggregation operations on the exchanged trust related information
will result in a relatively accurate assessment. Another issue that has not been exten-
sively studied within proposed trust models is the sharing of trust information. In fact
existing trust models do not explain how trust scores are represented and how they are
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interpreted by involved and participating entities during the evaluation. In this context,
some works [110, 34] made use of ontologies to represent trust and to annotate related
trust information generated by either devices or resources within the network in ques-
tion.
Another issue that trust management systems face is the ability to link an identity to a
single entity and to prevent that a specific entity obtain more than one identity. Whereas
identity management can play an important role in measuring the credibility of ex-
changed trust related information and resisting against Sybil attacks where a malicious
entity can forge different identities to trick the system with multiple fake entities. As
a partial solution to this issue, authors in [33] have introduced a framework to detect
possible sybil attacks against trust management schemes within peer-to-peer (P2P) net-
works. This has been shown to almost entirely prevent a Sybil attack, although the
cost to the network in terms of the resources required to verify each peer is high which
makes the solution unsuitable for IoT networks.
Finally, a last but not least important issue is the storage of trust information, In fact
and regarding IoT networks with tight resource constraints, some of the existing trust
systems store trust information for devices with the highest trust values [39], others for
those that have been recently encountered and interacted with which is not that good
deal especially as trust computation depends on the past evaluations of all behaviors
and interactions, while others keep trust related information stored within a central sin-
gle entity [142] raising as a consequence thereof problems related to scalability.
Currently in the scientific research, numerous efforts have been emerged leading to sig-
nificant advances in the fields of attacks resiliency, cryptography, identity management
and decentralized computer networks resulting in the emergence of the blockchain tech-
nology, which has the potential to fundamentally overcome raised challenges and to
solve almost of the above mentioned issues. This technology has been springing up,
covering various fields such as data sharing, data storage, reputation systems and many
other security services. In the context of data sharing, authors in [180] have proposed a
blockchain-based data sharing framework that sufficiently addresses the access control
challenges associated with sensitive data stored in the cloud. Similarly, in [94], authors
have proposed ProvChain, a system that provides a data provenance system based on
blockchain technology where occurring changes in the cloud storage system are tracked,
recorded and events corresponding to the actions of the users are generated.
In the context of blockchain based reputation systems, authors in [55] have proposed
a new reputation system that is practically applicable to multiple networks and with
the objective is to store single dimension reputation value from the completed transac-
tions. Another work was presented in [117] where a new security model based on the
blockchain technlology was proposed to ensure validity and integrity of cryptographic
authentication data and associate peer trust level from the beginning to the end of the
sensor network lifetime.
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Discussion As seen the blockchain technology has been used for several purposes
and within various fields and application domains. However just few studies [55, 117]
have focused on integrating this last within trust and reputation systems. On the other
side, a secure and distributed based trust system is essential to ensure the network se-
curity and to guarantee trust information confidentiality, integrity and privacy during
sharing and storage. Besides, trust information may contain sensitive information about
trust providers and targets. Hence, there is a need to secure not only the network but
also to ensure integrity and trustworthiness of exchanged information.
That’s why providing an adequate solution to distributively and securely store and
share trust information within the IoT network while guaranteeing their integrity, avail-
ability, authenticity, and authorization become crucial and no more important than ever.
In this direction and given the noted features of blockchain technology, this last applied
to trust management systems in IoT provide promising possibilities and solutions to
issues they encounter as it was discussed previously.
In this part, we consider consortium blockchain to establish a secure blockchain based
trust system. The use of consortium blockchain refers to the fact that this last uses
permissions to control over who can join the network, and who can participate in the
consensus process that doesn’t have to spend an enormous amount of energy, comput-
ing power, time and money to be reached which makes it more suited to IoT environ-
ments compared with Bitcoin and public blockchain solutions where a puzzle need to be
solved by miners to identify the value of nonce. In other words, we consider blockchain
as a generic decentralized secured data storage structure were blocks are divided in two
parts wherein: (i) a block header containing metadata where reference to the previous
block hash is incorporated and (ii) data payloads representing the stored trust records.

6.1.2 Proposed approach

The main objective of this work is to propose a novel trust management system based on
the blockchain technology. Our framework aims to define and evaluate a trust score for
each device and to securely store and share these scores with the different devices within
the IoT network guaranteeing their transparency, integrity, authenticity, and authoriza-
tion. A description of the overall architecture of the proposed system is presented in
Fig. 6.1.
In the following, we will describe the overall architecture of our proposed scheme.
To efficiently compute trust values and to securely store and share them within the
blockchain network, we first need to clearly understand the detailed composition of our
system. Furthermore, a brief description of the required interactions to be established
will be provided.
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Figure 6.1 – Overall Architecture of the proposed model

System model

As seen in Fig.6.1, our system is composed of a number of manufacturing zones where
each zone is made up of a set of physical resources (e.g. machines, ordinary sensors,
IoT devices, etc.) along with an authentication manager, which is responsible for mak-
ing authorization decisions, verifying devices identities and generating authorization
tokens. Furthermore, each device is connected to a trust manager, which is in charge of
assessing the trustworthiness degree as well as aggregating and computing a final trust
score for each participating device within the manufacturing zone. In the case of IoT
devices with tight resource constraints, this entity is assumed to be deployed in a more
powerful network component that will be connected directly to each device, otherwise
it is deployed within the device itself. The detailed design as well as the validation
of the trust model will be presented in Section 6.2. Thereafter, a set of specific entities
are deployed to receive trust data storage transactions, to create blocks out of it and to
broadcast it into the blockchain network containing an ordered list of records linked
together where each block references the previous one, known as the parent block, and
storing trust data allowing as a consequence thereof the verification in a decentralized
manner of trust data exchange among participating devices.
A detailed architecture of the proposed system is presented in Fig. 6.2. This last illus-
trates the different modules that make up each entity within the proposed system as
well as interactions that could be established among them. More details are presented
in the next subsection.
We remind here that in this work we consider just only one zone for our design that
means that relationships and interactions established between devices belonging to dif-
ferent zones are not considered.
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Figure 6.2 – Detailed architecture of the proposed model

System detailed design

As seen in Fig. 6.2, three main conceptual layers can be identified in our proposed
model.

Device layer :
This layer consists of IoT devices that aim to collect and process information. These de-
vices include sensors, actuators, RFID tags, machines, robots, etc. Their main tasks are
to perform different functionalities such as querying and gathering data (e.g. location,
temperature, humidity, etc.), executing tasks and other primary functions. Exception-
ally and related to our proposed scheme, these devices will execute additional tasks
related to trust management. By this way they will evaluate, send, access, and retrieve
trust related information to and from the management system. In addition, they inter-
act over the Internet with the industrial services querying and supervising their state as
well as any information associated with them, taking into account their quantified trust
scores analyzed, processed and stored within the System management. These scores
can be used by devices to make decisions of sharing data with other devices according
to their trust scores. Besides industrial applications and services can obtain data in a
reliable way only from those that satisfy certain trust threshold.
To this end, each device after communicating with other devices, will assess their be-
havior during the interaction on the basis of certain metrics such as the packet delivery
ratio, the community of interest and its honesty in attributing recommendations. These



128 Chapter 6. Blockchain Based Trust Management Mechanism for IoT

metrics will be explained in the next Section. The assessment result will be periodically
sent after authentication to the trust manager entity in order to compute the correspond-
ing trust score and to forward it to the blockchain network.

System management layer :
This layer is composed of individual connected powerful entities responsible for the
secure establishment, the efficient running and the reliability of the proposed scheme.
More specifically this layer performs computation, verification and analysis on trust
related information. It additionally reports actions on trust and reputation scores which
are securely stored in a decentralized structure and indexed appropriately triggering
later an action on it when needed or required. Results of every action completed are
broadcast into an immutable network of consensus entities to guarantee verification,
auditing and validation of the action in question. Finally, the layer has a responsibility
of authenticating every device and managing their actions keys pertaining to trust data
access from the entire system.
The different entities in the system management layer are:

• Trust Manager: This entity enables to establish a trusted and reliable environment
where devices can interact with each other as well as with industrial IoT services
without worrying about risks related neither to devices changing behaviors nor to
transmitted information confidentiality and integrity. Thus they could make deci-
sions and obtain data in a reliable way according to the assessed trust scores.
We remind here that the trust framework is assumed to be deployed in the same
target entity when it comes to non-constrained devices whereas it could be de-
ployed outside in case of constrained ones.
For the computation of trust, this last is computed on the basis of the direct ob-
servations and interactions referred as the direct trust and the recommendations
exchanged between neighbors termed as the indirect trust.
For trustworthiness assessment, each entity maintains multiple trust properties re-
garding neighbors it interacts with namely cooperativeness, competence and com-
munity of interest where (i) cooperativeness property reflects the cooperativeness
level that entity ej has as evaluated by entity ei based on its behavior monitor-
ing during the time interval [0..t]. It is calculated using the Packet Delivery Ratio
(PDR) representing the number of packets successfully delivered to the number of
those that have been sent out by the sender, (ii) the competence property provides
the degree of the entity’s ability to perform its intended tasks, assessed based on
the energy and the computation capability it has in order to verify whether it is
enough competent to perform its tasks or not, and last (iii) the community of in-
terest property provides the degree of the common interest or similar tasks of ej

as evaluated by ei computed as the ratio of the number of common community
interests over the total number of their community interests.
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The combination of these properties as well as with past trust evaluations during
a specific time interval ∆t will produce an overall trust value that can be efficiently
and effectively used to ensure security improvements. The reason for which we
consider past trust evaluations is mainly due to the fact that an entity behavior is
not always constant but often changes in time.
A detailed description of the process to be executed for the trust management as
well as the metrics considered for its validation will be given in the next part of
this chapter.

• Authenticator: This entity is mainly responsible for verifying the validity of de-
vices’ identities as well as the legitimacy of demands and requests sent to both
trust data storage and management systems. IoT devices and smart objects are
authenticated based on the provided credentials. In our framework, we rely on
the openID Connect [145] (OIDC) which is an identity layer on top of the OAuth
2.0 protocol [74]. It enables clients to verify the identity of the device based on
the authentication performed by an OpenID Provider, and to obtain basic pro-
file information about the device in an interoperable and REST-like manner [145].
We have chosen OIDC since it has different characteristics related to IoT envi-
ronments. OIDC is free, open and decentralized (no central authority approves or
registers relying parties or service providers). Its integration does not require com-
plicate update in the deployed application. Indeed, it follows a restful approach
which make it easy to use and to interoperate. Finally, it gives the possibility to
use a JSON structure token that carries information about the device.
This entity could be composed of two subcomponents:

(i) The Policy Decision Component (PDC): this module is in charge of making
authorization decisions based on the policies defined to assign permissions that a
device has related to trust storage and management systems. In case of a success-
ful authentication process, this module generates an access token which is deliv-
ered in order to avoid subsequent authentication procedures. The PDP will be in
charge of checking and validating this token. These access tokens are comprised
of different fields, among them, we find: the requester authentication keys, the
subject, the target resource, and the access rights (action, target resource and con-
ditions). This approach allows subject devices to access target resources as many
times as required without running all the authentication process till its beginning.

(ii) The Key Management Component (KMC): this module generates authenti-
cation and transactions related keys that are used to authenticate devices’ valid-
ity within the system and to digitally sign actions to be executed on the stored
trust and reputation scores. These keys help to guarantee a level of security of the
scheme. They include:
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- Transaction private key: This key is generated for a each device willing to execute
actions on trust scores, it is used to digitally sign requests for trust data access.
- Transaction public key: This key is generated for each device and sent to trust
data storing entities’ authenticators in order to be used as verification of requesters
identity for data access. In addition, this key is also used to encrypt a package to
be sent to each requester device. Consequently, for a request whose signature can-
not match to the appropriate public key, such a request is considered as invalid.

• Validator: This entity is tasked to process and verify the authenticity, the validity
and the integrity of trust records as well as details pertaining to each transaction.
This last once received, will be broadcast into the network of validators where
they will check its validity and then package it into block in order to be chained
within the ledger. Obviously, all validator entities have a complete copy of the
ledger kept up to date.
In our framework, we consider Multichain [70] blockchain technology which is a
consortium blockchain protocol that manages the access to the blocks using a list
of registered participants. Only participants who have been previously registered
have access to read and write blocks within the ledger. The consensus method
that Multichain implements to approve transactions is the Round Robin (RR) al-
gorithm. The reason for which we have chosen Multichain mainly refers to the fact
that this last respects most the criteria of our requirements. Multichain is a permis-
sioned blockchain solution based on the use of streams that act as an independent
append-only collection of items which enforces more the confidentialy of shared
data. Second it is characterized by its flexibility allowing permissions changes and
delegations. Third it is based on the RR consensus mechanism where no complex
computation resources regarding processing capabilities, computing power and
time are required for the validation of blocks without forgetting currencies as it is
the case of bitcoin based solutions where miners carry out computationally expen-
sive calculations using their compute power in order to validate new blocks and
add them to the blockchain.
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Required interactions

Figure 6.3 – Required interactions

The required message exchange and interactions among the different entities within our
system have been split into three main stages. Fig. 6.3 shows the required interactions
to be established for the realization of our system’s proposed objectives.
Our scenario assumes an IoT device tries to store trust scores within the Blockchain
network. During the first stage, the device needs a proper authorization credential to
access the system. In case it does not have a valid capability token (e.g., it was expired,
revoked or it’s its first request), it contacts the authenticator entity using its membership
key, indicating the specific resource and action to be performed. This last will make au-
thorization decisions based on the policies defined within the PDC in order to assign
permissions. In case of a successful authentication process, this component will deliver
an authentication assertion and send it to the Token manager module in order to obtain
authorization token. Obviously, before demanding access and while interacting and
communicating with its direct neighbors, each device will monitor their behavior and
assess their trustworthiness level based on the evaluation metrics, as a result, an expe-
rience score will be computed, signed with the Transaction private key and sent to the
trust manager entity using the obtained authorization token. Reminding that in case of
resource constrained IoT devices this entity is assumed to be employed in a separate
and more powerful network entity, while in the case of a more powerful device, it is
supposed to be part of it. The trust manager entity will take in charge the computation
of the Reputation score and the derivation of an overall trust score based on the equa-
tions presented as well in Section 6.2. Thereafter, It sends the transaction signed with
the device’s private key to the validator, this last consists of the trust score, the Tr type
(storage, access, update), the time stamp, the target ID and the established interaction.
The validator entity and once receiving the transaction, forward it to the whole network
where each entity will check the validity of the transaction, then assemble verified trans-
actions into a block to be added to the existing ledger.
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6.1.3 Implementation and Performance analysis

The implementation of our proposal is conducted using NS3 simulation tool for the
simulation of the IoT environment. Our choice mainly depends on the fact that NS3
has emerged as the open simulation platform for networking research, it is a free and
an open source discrete-event network simulator, targeted primarily for research and
educational use.
In the other hand and for the implementation of the blockchain network, we have used
Multichain as presented earlier. Table 6.1 lists parameter values used for this implemen-
tation. We consider an IoT environment with a number of IoT devices varying from 50 to
100 devices. These IoT devices are randomly scattered in the network. Devices belong-
ing to the same community could share common interests or execute the same function
and task. Each device is attributed a random number between 1 and 10 that reflects
its belonging to one of the ten existing communities of interest within the IoT network.
Besides, it could belong either to one community, two or three at the same time. For the
compromised model, this last involves a number of malicious devices representing 20%
of the total number of network devices. The behavior of such devices starts with the
beginning of the network lifetime. In this model, three kinds of attacks were considered
such as:

• Bad Mouthing attack: where malicious nodes aim to ruin the reputation of other
well-behaved nodes by providing false recommendations against them what would
decrease their trust score.

• Ballot Stuffing attack: contrarily to the previous one, malicious nodes here aim
to promote other malicious nodes by providing good opinions about them what
would increase their opportunity to be trusted.

• On off attack: As its name indicates, in this scenario, the malicious node behaves
well and badly alternatively. By this way it could perform easily an attack before
the trust system will be aware of.

For the Multichain network, in a Dell Precision M6800 machine with 4th Generation
Intel Core i7 processor and 8Gb of RAM, we have used three virtual Linux machines
(Ubuntu 16.04 version) in which we have deployed Multichain and set up the func-
tionalities of validators within the blockchain network. Moreover and in order to more
securely the storage and sharing processes, we have created three streams within the
Multichain blockchain. These streams include:

1. A Keys stream: which used for the distribution of public keys.

2. A Data stream: which is used to store trust scores encrypted using the symmetric
AES cryptography scheme.

3. An Access stream: which provides access for encrypted trust files.
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The focus in this part is to evaluate our proposal’s performance, reliability and resiliency
against malicious attacks. Our simulation results have three parts. First, we evaluate
the resiliency of our proposal against malicious behaviors. We then demonstrate the
effectiveness of our storage and sharing solution based on the blockchain technology
through the evaluation of the average response time as well as the number of established
transactions and the computation power taken by each entity involved in the mining
process.

Resiliency against attacks

In the following, we examine the resiliency of our proposal against malicious attacks
launched by a set of devices within the IoT network.
First we evaluate the evolution of the average trust value of a well behaved node while
varying the number of total bad nodes launching bad mouthing attacks.
The total number of network nodes is fixed to 50. In this part, we test the resiliency of
our proposal against malicious behavior, to do so we fix the number of dishonest nodes,
this last represents 20% of the total nodes number in the first case and 40% in the second
one.

Figure 6.4 – Well behaved node trust evolution

Fig.6.4 shows average trust evaluation results towards a good node while varying
the percentage of total bad nodes. We can see here that as the population of malicious
nodes increases, both the convergence time and trust bias increase. However, the system
is found to be resilient to malicious attacks for a percentage of bad nodes going till 40%
of the total number of network nodes.
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Simulation parameter Value
Simulation tool Ns3-3.13
Simulation run time 2 hours
Simulation coverage area 50m x 50m
Nodes distribution Random
Total number of nodes 50..100
Number of malicious
nodes

20%, 40%

trust update period 300s
Initial trust value 0.5
trust interval 0..1
Multichain mining diver-
sity

0.3

Multichain Block size 8Mb
Multichain Transaction
size

4Mb

Table 6.1 – Network related parameters used in simulation analysis

In Fig.6.5 we evaluate the evolution of the trust value of a malicious node while
varying the percentage of total bad nodes launching ballot stuffing and on-off attacks.
For on-off attack, the malicious node behaves well and badly alternatively regarding
its packet delivery behavior. Specifically, the bad node deliver packets in the defined
interval to gain high trust scores, once its score rises to 0,75, it starts to behave worse
and when it senses its score drops below 0.4, it starts to act well again to rise its trust
score.

Figure 6.5 – Malicious node trust evolution

When it comes to the effect of the percentage of malicious nodes, we observe that the
trust values fluctuation is considerably higher when this percentage is higher because
more malicious nodes can collude together to promote the bad node and to quickly
bring its trust level. The results presented in the previous two paragraphs are based
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on the idea that each node uses the past and historical trust evaluations during the
time interval ∆t = 1800s for the computation of a novel score. In this paragraph, we
want to show how using the blockchain technology would enhance the accuracy and
the resiliency of the network in question against on-off attacks. In fact and thanks to
the traceability feature of the blockchain, trust information are time-stamped and per-
manently kept within the ledger for later use. For instance by tracing and reviewing
historical scores, we can identify such alternative malicious behavior and as a conse-
quence thereof we can penalize the malicious node and prevent it from gaining high
trust scores again. As illustrated in Fig. 6.6, we can see clearly that once the bad node
drops its trust score below 0,4 and starts to behave well again, this last, and thanks to
the feature provided by the blockchain technology, is penalized and its score remains
closed to 0,4.

Figure 6.6 – Malicious node trust evolution considering blockchain

Performance evaluation

We evaluate here the response time while varying the size of the file holding trust in-
formations and trust scores of each evaluated entity within the network, The file size
ranges from 1KB to 2MB. As it is shown in Fig.6.7, the average response time of the
blockchain network grows in parallel with the increasing size of the trust information
file. This last reaches 1937ms for a 2Mb trust file size which is acceptable considering
the security features provided by the blockchain technology. Moreover and in order

Figure 6.7 – Average Response Time
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to evaluate more the performance of our proposal as well as its relevance and ade-
quacy to IoT environments, we have evaluated in this step the computational resources
needed to process incoming requests and transactions by validator entities. To do so,
we have recorded the time at which the trust information file is sent for storage within
the blockchain network as well as the time at which a confirmation for successful trans-
action is received. Results we got show that this process requires 750ms to be com-
pleted for a 512Kb trust file size, 35% of CPU and 0.016Gb of RAM consumption needed
for the validation of transactions, the creation of blocks and the integration within the
blockchain network which demonstrates and proves its deployability and feasibility to
IoT environments. Fig. 6.8 shows the percentage of successful storage transactions pro-
cessed in the Multichain network according to the size of the trust information file. To
do so we have recorded the number of successful processed transactions over the total
number of established ones and we have calculated the related percentage. As shown
in Fig. 6.8, our proposal performs well in terms of successful storage transactions, the
average throughput of the Multichain blockchain is 97.55%.

Figure 6.8 – Successful transactions

Discussion

In this section we have evaluated the performance of our proposal regarding its re-
siliency to launched attacks and its performance in terms of response time, computa-
tional resources and processed transactions. Our analysis of these metrics has shown
that our proposal gives higher resiliency to attacks in comparison with the basic one
without blockchain. This is mainly due to the traceability feature of the blockchain
technology where not only established transactions but also the trust information file
are kept permanently stored within the ledger which gives us the possibility to have
an overall vision of entities’ past behavior what could be both practical and useful for
predicting the future behavior of malicious entities launching especially on-off attacks.
Furthermore, and in order to prove the applicability of the blockchain within such a
model while fully respecting the design goals we set at the beginning, we have evalu-
ated the response time taken for the processing of storage coming transactions, we have
shown that this last maintains low even with greater file sizes which supports the real
time assessment objective.
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6.2 Our trust framework for IoT regarding the routing pro-
cedure

We have presented in the previous section the design and the implementation of our
trust management system based on the blockchain technology to collect trust evidences
and to securely store and share them within and through the blockchain network. Us-
ing such technology, we enable a more reliable trust information confidentiality and
integrity verification during storage and sharing and we make a time stamped log of
both entities’ transactions and behavior. In this part, we proposed a generic trust mech-
anism for assessing the trustworthiness degree of each entity within the IoT network.
However the presented architecture does not address the problem of trust management
and that’s why we propose in the next section to evaluate and experiment the proposed
trust mechanism. To do so we need a specific use case scenario in which the effective-
ness and the resiliency of our mechanism are demonstrated. Our focus therefore was
on ensuring multi hop communications in IoT networks. To do so we have chosen to
use our solution within the RPL routing protocol to ensure secure routing by protect-
ing the network against misbehaving, selfish and malicious nodes regarding the routing
procedure. We opted for such protocol mainly because RPL is considered as one of the
emerging routing standards for ensuring multi hop communications in IoT.

6.2.1 Background and Literature review

Routing Protocol for Low power and lossy networks

RPL, developed by the IETF working group, is an IPv6 routing protocol specifically
designed for LLNs with very limited resources in terms of energy, computation and
bandwidth. This protocol mainly targets collection based networks made up of nodes
interconnected according to a specific topology called Destination Oriented Directed
Acyclic Graphs (DODAG) as illustrated in Fig. 6.9, where sink nodes and gateways act
as the roots of the Directed Acyclic Graphs (DAGs). Within each DODAG, each node
is assigned a rank representing its position in the graph. Its computation depends on a
set of specific routing metrics (e.g. delay, link quality, throughput, etc.). The translation
of these metrics into ranks is based on an Objective Function (OF) responsible for rank
computation and parent selection. The DODAG construction and maintenance phases
are based on a set of control messages namely DODAG Information Object (DIO) deliv-
ered by the DODAG root to build routes, DODAG Information Solicitation (DIS) broad-
cast by nodes willing to join the network, Destination Advertisement Object (DAO)
used to propagate reverse route information and Destination Advertisement Object Ac-
knowledgement (DAO-ACK) messages sent as an acknowledgement of DAO messages.
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Figure 6.9 – RPL network topology and exchanged messages

Trust for the secure routing

Several trust management schemes have been developed to ensure secure routing by
protecting the network against misbehaving, selfish and malicious nodes regarding the
routing procedure. These nodes generally aim to attack the routing protocol by drop-
ping, modifying and altering the transmitted routing related packets, as well as disrupt-
ing the routing processes. The integration of trust within the routing protocol could
solve efficiently and effectively the problems to be faced when securing the routing
scheme in IoT environments.
However the proposed schemes are particularly dependent on the environment they
targeted and the routing protocol they are designed to be integrated within. Addition-
ally, some of them have been tailored to wireless sensor networks, without considering
the inherent requirements and features of IoT scenarios and more specifically those re-
lated to smart factories environments. In fact they do not keep in view wireless interfer-
ence, QoS and energy constraints which make them little suitable to IoT devices used
within smart factories.
When it comes to these networks, we may found several enhancements of the RPL pro-
tocol. Some of them have just focused on its evaluation [170, 6], others have tried to
enhance its performance [65, 83], while just few ones have addressed its security and
trust aspects [154, 114].
In [65], authors tried to overcome the limitations of the standardized RPL OFs providing
thereof QoS guarantees for LLNs while considering several routing metrics. However
the security aspect was not considered within the proposed approach keeping as a con-
sequence thereof the routing protocol under threat of attacks.
This threat analysis was presented in [114] where authors have detailed and classified
different attacks that could be initiated against the RPL protocol according to the at-
tacker’s goal as well as the network element to be impacted.
To secure the communication in an RPL based network, authors in [153] used the trusted
Platform Module to establish trustworthiness of nodes before exchanging keying mate-
rial. While in [56], authors have proposed to strengthen RPL by adding a new trust-
worthiness metric during the construction and the maintenance phases of its instances.
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However, they have not proven the defense of the proposed scheme against attacks that
could be launched.
For this reason, an amelioration was proposed in [57] which takes into account trust
along the path using collaborative trustworthiness evaluation between the different
nodes.
In [7], authors have presented Sectrust, a lightweight secure trust based routing frame-
work for IoT nodes. The trust evaluation is based specifically on the successful inter-
actions between IoT nodes and its calculation is based on some metrics such as the
prospect of the positive interaction between the different nodes, their satisfaction and
their energy level as well. However, although the proposed framework was designed
to isolate common routing attacks, its effectiveness under these threats has not been
proven nor evaluated.
Discussion: As seen, current IoT research has not yet fully and comprehensively in-
vestigated how to secure the routing processes in RPL based networks especially those
related to the routing topology construction and maintenance phases, the communica-
tion establishment and progress and above all how to trust the participating entities
and how to secure the network against the different threats and attacks this protocol is
exposed to.
In this context, several issues need to be seriously considered and more investigated.
On the one hand, the trust integration within the routing functions could affect the per-
formance of the routing protocol as longer paths could be selected to avoid malicious
nodes and thus it could cause a more important delay and energy. On the other hand,
more research is required in terms of QoS consideration, and attacks resiliency issues
within the routing protocols. In fact proposed schemes are generally designed to de-
fend a specific class of attacks while trust could deal with various kind of threats and
meeting both the energy and the QoS requirements.
For this purpose, an inspiration could be taken from other similar areas to IoT such
as MANETs and WSNs where extensive research has been carried out and several ap-
proaches have been proposed regarding trust management for routing procedures.

6.2.2 Problem statement and design objectives

In this section, we will provide a brief representation of the important properties to be
considered within the proposed scheme as well as the key constraints related to each
one of them. Therefore, we will present the main objectives we attempt to accomplish
in order to respect such considerations.

Problem statement

In the context of secure routing, a trusted route within our trust framework would sat-
isfy the following properties:
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• Trust: a route is trusted if only trusted nodes can participate in its establishment,
design and maintenance. On the other side malicious and selfish nodes will be
isolated and excluded from participating in the routing procedures.
This property could be assessed accurately on the basis of the entities historical
interactions and their observation of each other forwarding behavior to judge their
trust degree.

• Delay awareness: a delay aware route should be able to provide low end-to-end
delays. This property can be measured through the offered end-to-end delay from
one source to a destination through a particular route.

• Energy Efficiency: a route is energy efficient if it is made up of nodes that have
more energy than any other node. Therefore, an efficient topology construction
and route selection for RPL must consider the remaining energy of the nodes to
maximize the network lifetime. Obviously nodes with low battery levels should
be avoided in the routing process as much as possible.

• Reliability: a route is reliable if it continuously provide available and high qual-
ity of the communication links along the path. This property can be evaluated
through the link quality estimators, such as (i) the Packet Reception Ratio (PRR),
(ii) the Packet Error Rate (PER) representing the number of incorrectly received
data packets divided by the total number of received packets, (iii) the Expected
Transmission count (ETX) estimating the predicted number of transmissions re-
quired to send packets over a link including re-transmissions.

Main objectives

Taking into account these different issues, a brief description of the main objectives to
meet is provided hereafter.

1. Real time Assessment: Entities behavior and interactions are monitored in real-
time to collect trust related information which will further support malicious be-
haviors detection.

2. QoS optimization: our goal here is to optimize the offered QoS taking into account
the different QoS parameters such as the delay and the link quality estimators par-
ticularly the PRR, PER and ETX estimators. Hence we need a minimized delay, a
minimized error rate, a minimized transmission count and a maximized reception
rate.

3. Network life time maximization: a network life time could be defined as the
time taken until the network partition due to battery failure and power outage.
To maximize such parameter, the balancing of the consumed energy across the
network may be an effective solution to enhance the network lifetime.
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6.2.3 Proposed scheme

In the routing context, trust relies on the fact that entities within the routing process do
not act maliciously or selfishly regarding the forwarding mechanism. To cope with such
kind of behavior, trust could be considered as an efficient solution to secure the routing
procedure.
In this paragraph, we will describe the overall architecture of our trust framework. To
efficiently compute trust values and to effectively integrate them within the routing
procedures, we first need to clearly understand the main meaning of trust as well as the
detailed composition of our system. Furthermore, a brief description of the different
blocks and the required interactions to be established will be provided.

Overview

The main objective of this work is to propose a novel and multidimensional trust man-
agement system for the RPL routing protocol. A new objective function based on our
trust model is therefore integrated within the routing protocol and used for its topology
construction and maintenance phases. More specifically, our framework aims to define
and evaluate a trust score for each entity as well as for the link it is connected through.
The evaluated score is then included in the DIO message and used in the rank compu-
tation process for the selection of the preferred parent within the DODAG structure.

Trust definition

A trust management system is often needed to produce reaction based on the real time
evaluation of neighboring entities behaviors during established interactions in addi-
tion to feedbacks and recommendations gathered from indirect neighbors. These last
aggregated together form an overall trust score that once shared and propagated over
the network, participating entities could isolate malicious ones and consider secure and
trustworthy routing paths for their communications.
In our proposal, trust is defined as a relationship between two entities, a trustor and a
trustee. The trustor is the evaluating entity willing to join the DAG structure or to up-
date its preferred parent in order to send its data packets. On the other side, the trustee
is the evaluated entity which represents the candidate entity that would be chosen as
the next hop to the root. This relationship is restricted to a time value, that is, the time in
which the evaluation has been carried out. Moreover, this relationship is derived from
direct observations and interactions referred as the direct trust and the recommenda-
tions exchanged between neighboring nodes termed as the indirect trust.
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Proposed model detailed design

A description of the different phases of the proposed model is presented in Fig. 6.10.
This model involves a cyclic succession of operations namely topology creation, au-
thentication, information gathering, trust composition, trust storage, nodes filtering and
trust application. It includes as well two main components: an authenticator entity
plus a trust manager entity, and four dimensions specifically QoS dimension, Energy
awareness dimension, Reputation dimension and Security dimension. These entities
and dimensions will be detailed in the next two paragraphs.

Figure 6.10 – Trust model operational blocks

This trust model and as illustrated in Fig. ?? is based on five main operational phases
namely information gathering, trust composition, trust storage, nodes filtering and trust
application.
(i) Information gathering: Before being able to produce trust related evidence, each
entity has to gather enough information about its neighbors’ behavior as well as links’
quality indicators.
The trust structure to be sent to the trust manager is made up of the following infor-
mation: node ID, neighbor ID, RE percentage, PFR value, ETX value, PRR value, PER
value, the transmission delay as well as the entity time.
(ii) Trust composition: Upon receiving trust related information, the trust manager
starts the trust composition process consisting of computing the trust score based on
Node Trust (NT) and Link Trust (LT). This value is the weighted average of two parts as
follow:

T̂ij(t) =

{
0 i f (alert generated)

w1 ∗ N̂Tij(t) + w2 ∗ L̂Tij(t)else

T̂ij(t) represents the trust score an entity ei has for ej at time t. This score is limited to a
continuous range from 0 to 1, where 0 denotes complete distrust whereas 1 represents
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absolute trust.
N̂Tij(t) represents the NT level calculated based on node cooperativeness, node com-
petence and its community of interest.
L̂Tij(t) denotes the LT which is assessed based on link quality and link performance.
The weight factors w1 and w2 are assigned to N̂Tij(t) and N̂Tij(t) respectively where
w1 + w2 = 1; 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1.
Each computation is based on a set of properties where N̂Tij(t) represents the NT level
calculated based on the trustor’s direct observation of its one hop neighbors’ behavior

referred as the direct trust N̂T
d
ij(t) and on the other hand, on the third parties’ attributed

recommendations called the indirect or the relative trust N̂T
r
ij(t) as follow:

N̂Tij(t) = wd ∗ N̂T
d
ij(t) + wr ∗ N̂T

r
ij(t), wd and wr are the weights assigned to the direct

and the indirect trust respectively.
The direct trust is calculated by considering both node cooperativeness (coop), node
competence (comp) and community of interest (coi). At time t, it is defined as:

N̂T
d
ij(t) = N̂T

coop
ij (t) ∗ N̂T

comp
ij (t) ∗ N̂T

coi
ij (t), where (a) N̂T

coop
ij (t) reflects the coopera-

tiveness level that entity ej has as evaluated by entity ei based on its behavior monitor-
ing during the time interval [0..t]. It is calculated using the Packet Delivery Ratio (PDR)
representing the number of packets successfully delivered to the number of those that
have been sent out by the sender and the Packet Forwarding Ratio (PFR) representing
the number of packets forwarded correctly to the number of those supposed transmit-
ted and successfully received as well, (b) N̂T

comp
ij (t) provides the degree of the entity’s

ability to perform its intended tasks within the routing process, it is assessed based on
the energy and the computation capability it has in order to verify whether it is enough

competent to perform its tasks or not, and last (c) N̂T
coi
ij (t) provides the degree of the

common interest or similar tasks of ej as evaluated by ei computed as the ratio of the
number of common community interests over the total number of their community in-
terests.
On the other side, the indirect trust N̂T

r
ij(t) is set up upon recommendations of other

entities within the neighborhood which reflects here the reputation dimension. In or-
der to obtain trust recommendations, we first need to select trust recommenders with a
trusted communication link, and thus get rid of the impact of malicious recommenda-
tions.
When it comes to the link trust L̂Tij(t), its evaluation aims mainly to reinforce the rout-
ing DAG establishment and maintenance processes by considering both the quality
(qual) and the performance (perf) of the different links connecting the participating en-
tities in order to successfully meet the QoS requirements, its value is defined as follow:

L̂Tij(t) = L̂T
qual
ij (t) ∗ L̂T

per f
ij (t) where L̂T

qual
ij (t) reflects the belief that the connecting link

is efficient enough to respect the QoS guarantees. It is measured by ETX and PRR as

indicators of the link quality between the entity and its neighbor. While L̂T
per f
ij (t) char-

acterize the performance of the link based on the PER and the transmission delay L.
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The combination of these properties will produce an overall trust value that can be used
efficiently and effectively to ensure security improvement for the RPL routing process.

(iii) Trust storage: Once the trust composition process has been completed, trust related
evidence will be stored by the trust manager in a trust record table that contains apart
the trust information that each entity has gathered for its candidate neighbors, the trust
value computed according to the different properties as it has been already explained.
To enforce the security aspect of the proposed scheme, a hash algorithm has been em-
ployed to encrypt the trust values when stored and retrieved from the trust database or
when sent to the evaluating entities.
(iv) Nodes filtering: The detection and the isolation of insider attacks is the most im-
portant part within a trust framework insofar that malicious nodes are aware of every
detail of the network process, they may tamper the content of transmitted packets, deny
from sending messages to other legitimate nodes, they can even send fake routes to the
legitimate nodes in order to get the packets or to disturb the operations. Thus a filtering
phase is essential to classify network nodes and to isolate malicious ones. The filtering
process is mainly based on the trust assessment where nodes whose trust score is above
the trust threshold are classified as malicious, otherwise they will be considered as le-
gitimate and thus selected to be candidates for DODAG construction and maintenance
process.

(v) Trust application, a novel trust based routing metric for RPL routing protocol:
The trust model previously described has been integrated into the DODAG construc-
tion and maintenance phases of RPL through the development of a new OF in order to
rank nodes while calculating the most trusted path from each source to the root. To do
so, each node sends to its neighbors the value of its rank which is included by default in
the DIO message, once received the evaluating node ejoin will check its record table for
the most recent trust values of its p ≥ 1 candidate parents ecand1..ecandp, already sent by
the trust manager. Afterwards, the rank R(ejoin 7−→ ecandq) will be computed according
to the trust based OF and with respect to each candidate parent ecandq, according to the
formula below:
R(ejoin 7−→ ecandq) = R(ecandq)− T(ejoin 7−→ ecandq)t

where R(ecandq) is the rank value of the candidate parent. Afterwards, the node with
the minimum rank R(ejoin 7−→ ecandq) will be chosen as the preferred parent to reach the
root.
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6.2.4 Trust model validation

Simulation parame-
ter

Value

Simulation tool Contiki/Cooja
2.7

Mote type Tmote Sky
Simulation run time 3600 seconds
Simulation coverage
area

300m x 300m

Interference range 100m
Wireless communi-
cation range

50m

Total number of
nodes

10..50

Number of mali-
cious nodes

3..15

Radio environment DGRM (Di-
rected Graph
Radio Medium)

Initial trust value 0.5
Trust interval 0..1

Table 6.2 – Network related parameters used in simulation analysis

Our experiments were performed using the InstantContiki 2.7 platform while integrat-
ing the proposed trust model into the RPL routing protocol. As we have noted, the
InstantContiki was used as the development environment with the Cooja simulator to
implement the proposed model. Let us remind that Cooja provides real environment
to build IoT networks with different types of motes, and implemented code could be
tested and uploaded to real motes without any modification.
The various simulation parameters are listed in Table 6.2. In this study, we have as-
sumed that the attacking nodes behave as good nodes from inception and begin their
malicious activities during time (when activated). In this model, two kinds of attacks
were considered such as:

• Blackhole attack: when receiving routing packets, the malicious node will discard
them instead of relaying as the protocol requires.

• Greyhole attack: The Greyhole attack presents the same attitude and behaviour as
the blackhole attack. The difference is that the Greyhole malicious node does not
drop whole packets, instead it selectively drops some part of them.

Performance evaluation results

In order to prove the performance of our proposal, we have performed several simula-
tions in comparison with RPL and more specifically with RPL based on the
MRHOF, Minimum Rank with Hysteresis Objective
Function. This last uses hysteresis while selecting the path with the smallest ETX metric
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Figure 6.11 – Influence of the network size on the packet loss ratio

Figure 6.12 – PLR comparison between MRHOF and TRM-RPL under black hole attacks

value from the source node to the root. In addition, we have varied the number of net-
work nodes, the percentage of malicious ones and we have analyzed the corresponding
effect respectively on the Packet Loss Ratio (PLR), the Remaining Energy percentage
(RE) and the resiliency to black hole attacks.

Packet loss ratio : We measure here the PLR while varying the number of legitimate
and malicious nodes.
Fig. 6.11 shows the variation of the PLR with the increase of the network size while Fig.
6.12 shows its variation in the presence of a number of malicious nodes representing the
quarter of the total number of network nodes.

The simulation result in Fig. 6.11 shows that the PLR decreases slightly with the in-
crease in the network size. This is obvious as when there is a high number of neighbors,
nodes are able to find alternate paths easily, which reduces packet loss. One can see that
our trust framework called TRM-RPL experiences a more reduced packet loss than RPL.
This is primarily due to the fact that TRM-RPL takes into consideration more link qual-
ity estimators in addition to the node attributes while evaluating the trustworthiness of
each candidate parent. Minimizing the ETX, the PER and maximizing the PRR, the RE
when selecting the next hop will imply a path with low PLR.
To prove the effectiveness of our trust model, we have evaluated its conduct towards
black hole attacks where malicious entities dumps all packets they receive and that are
supposed to be forwarded.
Fig. 6.12 displays a graphical representation of the percentage of packet loss under
black-hole attacks. While TRM-RPL related PLR stayed below 0.4, the standard RPL
(MRHOF) recorded a staggering one between 0.6 and 0.95.
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Figure 6.13 – Malicious nodes number impact on the packet loss ratio

Moreover, we have measured the impact of the number of malicious nodes launch-
ing black hole attacks on the packet loss. As shown in Fig. 6.13, we can obviously see
that the PLR increases when the number of malicious nodes increases respectively for
both TRM-RPL and RPL-MRHOF. However, an obvious observation of this simulation
result is that TRM-RPL performs better in the presence of malicious nodes since packet
loss rate under 0.2 is realized for up to 10 attacking nodes while to 6 attacking ones in
RPL-MRHOF. The simulation result in Fig. 6.14 shows well how TRM-RPL detects the

Figure 6.14 – PLR evolution of LT-RPL in a 50 nodes network size

malicious behavior of nodes and how it reacts to its presence. The network here is com-
posed of 50 nodes where 15 among them start to act maliciously over a certain time after
the network initialization. As shown in Fig. 6.14, once malicious nodes begin their ma-
licious activities consisting of dropping their neighbors’ packets, the PLR considerably
increase in response to the occurring event. However the integration of the proposed
scheme within RPL was shown and proven to be effective in reducing the impact of
such behaviors insofar as the attacking nodes will not be chosen anymore as a next hop
nodes during the network routing topology construction. As a result thereof, the PLR is
reduced and maintained considerably stable over time.

Figure 6.15 – Average trust value evolution

To clearly see the reaction of TRM-RPL in the presence of malicious nodes, we have
measured the average trust value while increasing the percentage of activated malicious
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nodes within a 50 nodes network size where 15 nodes are malicious as illustrated in Fig.
6.15. It is clear that since they start to behave abnormally regarding the packet for-
warding behavior, malicious nodes are detected and their trust level significantly drops
which justify the decrease of the average trust value of the whole network (the average
value of both legitimate and malicious nodes).
Discussion: Our analysis of the packet loss has shown that TRM-RPL gives higher per-
formance in comparison with MRHOF based RPL since it experiences a more reduced
PLR even in the presence of malicious nodes launching black hole attacks. The detec-
tion, the reaction and the prevention of these behaviors have been proven as well.

Conclusion

We have presented in this chapter the design and the implementation of a secure trust
management system based on the blockchain technology to collect trust evidences and
to securely store and share them within and through the blockchain network. Using
such technology, we enable a more reliable trust information confidentiality and in-
tegrity verification during storage and sharing and we make a time-stamped log of both
entities’ transactions and behavior. Our evaluation shows that our proposal is feasible,
deployable and suited for IoT environments given its features of being decentralized,
ensuring security and resiliency to a set of attacks and requiring a low overhead in
addition to low resources. For the trust evaluation and composition process, we have
proposed a novel trust scheme according to a specific use case scenario which is the RPL
routing protocol. For such objective, we provided in a second part of this chapter a trust
based routing metric for securing the routing procedure within the RPL protocol. Our
trust model follows a multidimensional approach to enable an accurate trust assessment
for IoT entities where four dimensions are taken into account namely Reputation, QoS,
Energy and Security for the evaluation of the trustworthiness degree of network nodes
as well as the links they are connected through. Our proposal was implemented, suc-
cessfully tested and compared with the standard RPL protocol where its effectiveness
and resilience to attacks has been proved to be better.
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This part concludes our thesis. Section 7.1 summarizes our research and reflects
on the questions stated in the state of the art. Section 7.2 looks at improvements our
contributions could benefit from as well as future research directions

7.1 Summary of contributions

The premise of the Internet of Things (IoT) is to interconnect not only sensors, mo-
bile devices, and computers but also individuals, smart buildings and cities, electrical
and water grids, and smart factories and industries, to mention a few. The integra-
tion of such technologies within the manufacturing environment and processes in com-
bination with other technologies such as Cloud Computing, Cyber Physical Systems,
Information and Communication Technologies as well as Enterprise Architecture, has
introduced the fourth industrial revolution referred to also as Industry 4.0. However,
realizing the extensive connectivity of IoT enabled industries while ensuring security
and privacy still remains a challenge. In this thesis our research focused on four com-
plementary issues, mainly (I) the dynamic and trust based management of access over
shared resources within an Industry 4.0 based distributed and collaborative system,
(ii) the establishement of a privacy preserving solution for related data in a decentral-
ized architecture while eliminating the need to rely on additional third parties, (iii) the
verification of the safety, the correctness and the functional accuracy of the designed
framework and (iv) the evaluation of the trustworthiness degree of interacting parties
in addition to the secure storage and sharing of computed trust scores among them in
order to guarantee their confidentiality, integrity and privacy.
By focusing on such issues and taking into account the conventional characteristics of
both IoT and IoT enabled industries environments, we proposed in this thesis a secure
and distributed framework for resource management in Industry 4.0 environments. The
proposed framework, enabled by the blockchain technology and driven by peer to peer
networks, comprises three main pillars: (1) the decentralized, dynamic and trust based
access management over resources shared among collaborating parties and industries,
(2) Privacy preserving guarantees over the access control related procedures regarding
the access requester sensitive attributes as well as the shared access control policies and
finally (3) the distributed and secure sharing and storage of trust information within the
IoT network via blockchain.
We briefly summarize our contributions as follows:

• First Contribution: we proposed a Distributed Resource Management Framework
for Industry 4.0 Environments. The proposed framework based on the blockchain
technology aim to keep a living document trace about the flow of resources being
distributed and shared among collaborating parties while using the OrBAC access
control model to implement distributed, fine grained, flexible and secure resource
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access authorization through the design and the implementation of Ethereum based
smart contracts.

Moreover, and in order to better support the security requirement, this framework
adds the notion of trust management to the access control model where a trust
framework is integrated to evaluate access requester entities’ behavior. Finally
our proposal is conceived to support distributed and dynamic governance of the
system through the registration of new entities requesting mining permissions.

• Second Contribution: We ensured strong privacy guarantees over the access con-
trol related procedures regarding the access requester sensitive attributes as well
as the shared access control policies. The proposed scheme is integrated within
our DRMF framework to preserve the anonymity of both the access requester en-
tities as well as the collaborating parties, by this way the transparency feature of
our framework will be maintained while guaranteeing and preserving the privacy
of its users.

• Third Contribution: As a third contribution, we reasoned mainly about the cor-
rectness, the safety and the functional accuracy of smart contracts before their
deployment on the blockchain network. For this contribution, we used Event-B
formal verification method to formally model written smart contracts in order to
verify and validate their safety, correctness and functional accuracy in addition
to their compliance with their specification for given behaviors. To illustrate the
proposed approach, its application to a realistic industrial use case was described.

• Fourth Contribution: We proposed a secure trust management system based on
the blockchain technology to provide tamper proof data, enable a more reliable
trust information integrity verification, and help to enhance its privacy and avail-
ability during sharing and storage. For this purpose, we designed a blockchain
based trust architecture to collect trust evidences, to define a trust score for each
device and to securely store and share them with other devices within the net-
work by embedding them into blockchain transactions. For assessing the trust-
worthiness degree of each entity within the network and deriving a trust score to
be shared between involved entites and considered within the decision making
process, a generic trust mechanism was defined. For the evaluation of this last, we
have chosen to use our solution within a specific use case which is the RPL routing
protocol to ensure secure routing by protecting the network against misbehaving,
selfish and malicious nodes regarding the routing procedure.
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7.2 Future research directions

However, there are still many aspects that need to be further explored to improve the
entire infrastructure for both IoT and IIoT environments. In this section, we identify
and analyze some future research directions.

7.2.1 Access rules privacy

Although collaborating parties could have full and decentralized control over the sys-
tem and resources shared among them while preserving in a strong way their anonymity
and sensitive attributes during the access control procedure, the policy public visibility
and the privacy of shared access rules in the blockchain is still an issue. Here blockchain
based solutions generally require the submission of access control policies directly into
the blockchain to ensure verifiable-consistency, immutability and notarization. Unfor-
tunately, this will also reveal all the access control policies to the public, meaning that
anyone can learn the required policies to access resources even when they are not autho-
rized. This will further leak entities sensitive information beyond the inferred metadata
from accessible data. Hence confidential policies should be enabled where sensitive
access control policies should be revealed just to authorized parties.

7.2.2 Interoperability

Even though the blockchain technology enables decentralized applications and plat-
forms with interesting properties of transparency, auditability or censorship resistance,
the technology faces many challenges, specifically regarding the interoperability. This
last may concern several levels: between projects on a same blockchain, between dif-
ferent blockchains, or between blockchains and existing systems. This is due to the fact
each blockchain uses its own standard and economic model. As a future work direction,
we hope to improve the interoperability of our decentralized blockchain framework.
It involves developing models, methods and formal tools for designing decentralized
applications. In particular, the following aspects could be considered: Semantic repre-
sentation of entities and resources, Storage of these objects, Exchange protocols of these
objects between users, Validation of their integrity, Their integration in the application,
ensuring interoperability and scalability of the application.

7.2.3 Consensus algorithms benchmarking

Alongside this thesis we have been interested in using the blockchain as an enabling
technology for supporting a secure, distributed, resilient, fault tolerant, and censorship
resistant approach to both IoT and IIoT networking. For consortium blockchain based
systems several consensus algorithms could be considered. However the evaluation of
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these algorithms is actually challenging in adversarial environment. Indeed to be se-
cure, a protocol should comes out with clear security model and assumptions, under
which the protocol proceeds as expected guaranteeing safety and liveness properties.
Actually most of the modern consensus mechanisms comes out without these infor-
mation, hence it is difficult to evaluate their employability. In this context, as a future
direction for this work and in order to evaluate blockchain systems, we highlight the
need of a general purpose benchmark who measure performances of these last under
specific security and safety related assumptions. Hence we could define a framework
for benchmarking blockchain consenus mechanisms and evaluating them in a more for-
mal approach.
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