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Chapter 1 Introduction

Le but de cette introduction est d'abord de placer notre travail dans le contexte de la recherche mathématique actuelle portant sur la question de stabilité des hypersurfaces minimales sous le flot de courbure moyenne nulle dans l'espace de Minkowski, ensuite d'exposer nos résultats principaux ainsi que les techniques utilisées pour les démontrer.

Origine du problème et résultats connus

L'équation des hypersurfaces minimales en géométrie riemannienne admet un analogue naturel en géométrie lorentzienne. Dans l'espace de Minkowski R 1,n muni de la métrique :

-dt 2 + n k=1 dx 2 k ,
cette problématique consiste à considérer des hypersurfaces de type temps et de courbure moyenne nulle. Ces hypersurfaces se présentent comme les points critiques de la fonctionnelle "aire hyperbolique" et vérifient un système d'équations quasilinéaires qui s'avère être hyperbolique sous la condition que les hypersurfaces restent de type temps 1 . Ce type de systèmes apparaît dans le contexte de problèmes d'évolution géométrique que l'on trouve en physique mathématique, en relativité générale et en géométrie (pour plus de détails sur le sujet, on peut par exemple consulter [1,4,5,11,17,22] et les références qui s'y trouvent).

En utilisant la théorie d'existence locale pour les systèmes hyperboliques, on peut montrer que le problème de Cauchy correspondant aux équations quasilinéaires qui interviennent dans ce cadre est localement bien posé pour des données initiales suffisamment régulières. Il est alors naturel d'étudier la question de comportement en temps long.

Dans cette thèse, nous étudions deux problèmes dans cette direction. Le premier problème est lié à la formation de singularités en temps fini et le second concerne la question de stabilité de certaines solutions stationnaires.

Il existe une littérature considérable concernant la construction de solutions explosant en temps fini pour des équations semi-linéaires de type ondes, chaleur et Schrödinger à la fois dans les cas critique et supercritique (on peut par exemple consulter les articles [7,8,12,13,14,15,19,20,21,24,26,27,28,32,33] et les références qui s'y trouvent). Dans ces travaux, la stratégie générale consiste à construire des solutions explosant en temps fini en deux étapes. Dans la première étape, on construit une solution approchée de l'équation qui intervient. Dans la seconde étape, on en déduit une solution exacte, par un argument perturbatif.

Dans la première partie de cette thèse, on étudie en collaboration avec Hajer Bahouri et Galina Perelman le flot de courbure moyenne nulle dans l'espace de Minkowski R 1,2n pour des hypersurfaces 1 dans le sens où la norme lorentzienne de la normale à ces hypersurfaces est strictement positive.

asymptotiques à l'infini au cône de Simons introduit par Simons dans [31] :

C n = X = (x 1 , ..., x 2n ) ∈ R 2n , x 2 1 + ... + x 2 n = x 2 n+1 + ... + x 2 2n
qui est une hypersurface minimisante de R 2n , n ≥ 4, singulière à l'origine et invariante par l'action du groupe O(n) × O(n) 2 .

Plus précisement, dans le cas où n = 4 on étabit l'existence d'une famille d'hypersurfaces (Γ(t)) 0<t≤T dans R 8 qui évoluent sous le flot de courbure moyenne nulle dans l'espace de Minkowski R 1,8 et qui explosent lorsque t tend vers 0 vers une hypersurface asymptotique au cône de Simons à l'infini. Ce problème revient à étudier la formation de singularités pour une équation d'ondes quasilinéaire du second ordre. Notre approche constructive consiste à démontrer l'existence de solutions de cette équation hyperbolique explosant en temps fini sous la forme u(t, x) ∼ t ν+1 Q x t ν+1 , où Q est une solution stationnaire et ν > 1/2 est un nombre irrationnel. Notre démarche s'inspire de celle de Krieger, Schlag et Tataru dans les travaux [19,20,21]. Cependant contrairement à ces travaux, l'équation en question dans ce travail est quasilinéaire, ce qui génère des difficultés à surmonter, notamment la construction simultanée de la solution et du cône d'ondes associé. Dans ce cadre, nous montrons l'existence de solutions de cette équation d'ondes qui explosent en temps fini par concentration de l'état fondamental correspondant qu'on notera par Q dans la suite de ce document.

Les solutions stationnaires du flot de courbure moyenne nulle dans l'espace de Minkowski R 1,n correspondent aux hypersurfaces minimales riemanniennes de R n . Étant des solutions stationnaires de ces équations quasilinéaires qui rentrent en jeu, elles fournissent des exemple de solutions globales de ce flot.

Les premières considérations du problème de stabilité des solutions stationnaires sont dues à Brendle [4] et Lindblad [22] qui ont étudié le cas des hyperplans qui sont des hypersurfaces minimales triviales. Dans ce cas, le problème est réduit à l'étude de la stabilité d'une équation d'onde scalaire quasilinéaire avec des données initiales petites vérifiant les conditions nulles quadratiques définies par Christodoulou dans [5] et Klainerman dans [16] et les conditions nulles cubiques introduites par Alinhac dans [1,2].

En ce qui concerne les hypersurfaces minimales non triviales, le seul exemple considéré est celui de la caténoïde en dimension 3 d'espace soumise à des perturbations radiales normales traîté d'abord par Krieger et Lindblad dans [18] et par la suite par Donninger, Krieger, Szeftel et Wong dans [11]. La caténoïde est linéairement instable d'indice 1. Dans [11], les auteurs montrent que cette instabilité est la seule obstruction pour la stabilité non linéaire globale de la caténoide. Plus précisément, en se plaçant dans la classe des hypersurfaces de révolution, ils ont démontré, au voisinage de la caténoïde, l'existence d'une variété de codimension 1 constituée de données initiales générant des solutions globales en temps convergeant vers la caténoïde lorsque le temps tend vers l'infini.

Dans la deuxième partie de cette thèse, nous étudions le problème de la stabilité d'une autre hypersurface minimale non triviale : l'hélicoïde, en dimension 3 d'espace soumise à des perturbations radiales normales. Nous arrivons à prouver un résultat de stabilité similaire à celui établi par Donninger, Krieger, Szeftel et Wong dans [11] pour la caténoïde. Plus précisément, on a démontré, au voisinage de l'hélicoïde, l'existence d'une variété de codimension 1 constituée de données initiales générant des solutions globales en temps convergeant vers l'hélicoïde lorsque le temps tend vers l'infini.

Phénomènes d'explosion pour le flot hyperbolique de courbure moyenne nulle d'hypersurfaces asymtotiques au cône de Simons

Cette partie, en collaboration avec Hajer Bahouri et Galina Perelman, intitulée « Bolw up dynamics for the hyperbolic vanishing mean curvature flow of hypersurfaces asymptotic to Simons cone » a pour objectif l'étude du problème de formation de singularités pour le flot hyperbolique de courbure moyenne nulle issu d'hypersurfaces minimales qui sont asymptotiques au cône de Simons à l'infini.

Dans [3], Bombierie, De Giorgi et Giusti ont prouvé que le cône de Simons défini par 

C n = {X = (
R + × S n-1 × S n-1 → C n ⊂ R 2n (ρ, ω 1 , ω 2 ) → (ρω 1 , ρω 2 ) .
Le cône de Simons est en lien avec le problème de Bernstein qui s'énonce de la façon suivante : si le graphe d'une fonction u de classe C 2 sur R m-1 est une hypersurface minimale dans R m , est-ce que cela implique que cette hypersurface est un hyperplan? Ce problème qui se ramène à se demander si la solution de l'équation

m-1 i=1 ∂ xi u xi 1 + |∇u| 2 = 0
est une fonction affine, n'admet de réponse affirmative que pour m ≤ 8 (pour une preuve de ce résultat, on peut consulter l'article de Bombieri, De Giorgi et Giusti [3], celui de De Giorgi [9] ou de Nitsche [25] ainsi que de Mazet [23] dans un cadre plus général).

D'après les travaux [3,32], il est bien connu que pour n ≥ 4 le complémentaire du cône de Simons dans R 2n admet un feuilletage par deux familles d'hypersurfaces minimales (M a ) a>0 et ( M a ) a>0 qui sont asymptotiques au cône de Simons à l'infini. Ces familles sont définies comme suit :

M a = aM et M a = a M
avec M et M admettant respectivement les paramétrisations :

R + × S n-1 × S n-1 (ρ, ω 1 , ω 2 ) → (ρω 1 , Q(ρ)ω 2 ) ∈ R 2n , R + × S n-1 × S n-1 (ρ, ω 1 , ω 2 ) → (Q(ρ)ω 1 , ρω 2 ) ∈ R 2n ,
où Q est une fonction de classe C ∞ , positive, vérifiant Q(0) = 1, Q(ρ) > ρ, pour tout ρ > 0 et admettant le comportement asymptotique suivant :

Q(ρ) = ρ + d α ρ α (1 + o(1)) (1.2.1)
lorsque ρ tend vers l'infini avec

α = -1 + 1 2 2n -1 -(2n -1) 2 -16 (n -1) .
Dans cette partie, nous nous sommes intéressés aux hypersurfaces de courbure moyenne nulle dans l'espace R 1,2n paramétrées sous la forme suivante :

R n × S n-1 (x, ω) → (x, u(t, x)ω) ∈ R 2n , u > 0. (1.2.2)
Cela nous conduit à l'équation d'onde quasilinéaire suivante :

∂ t u t 1 -u 2 t + |∇u| 2 - n i=1 ∂ xi u xi 1 -u 2 t + |∇u| 2 + n -1 u 1 -u 2 t + |∇u| 2 = 0,
que l'on peut écrire également comme suit : Dans ce travail, nous nous sommes placés dans le cas où n = 4 en supposant que u est une fonction radiale. Par conséquent, pour tout t > 0, l'hypersurface définie par (1.2.2) est invariante par l'action du groupe O(4) × O(4) et u vérifie l'équation suivante :

1 + |∇u| 2 u tt -1 -u 2 t + |∇u| 2 ∆u + n i,j=1 u xi u xj u xixj -2u t (∇u • ∇u t ) = - n -1 u 1 -u 2 t + |∇u| 2 . ( 1 
1 + u 2 ρ u tt -1 -u 2 t u ρρ -2u t u ρ u ρt + 3 1 + u 2 ρ -u 2 t 1 u - u ρ ρ = 0. (1.2.5)
Notre objectif ici est d'étudier l'évolution des hypersurfaces minimales de la forme (1.2.2) qui sont asymptotiques au cône de Simons lorsque |x| → +∞. Pour ce faire, on introduit pour tout L entier assez grand l'espace X L des fonctions (u 0 , u 1 ) telles que

∇ (u 0 -Q) et u 1 appartiennent à H L-1 (R 4 ) et qui vérifient inf u 0 > 0, et inf 1 + |∇u 0 | 2 -u 2 1 > 0.
En utilisant des arguments classiques de la théorie des équations hyperboliques, on a montré que pour L > 4 le problème de Cauchy associé à l'équation d'onde quasilinéaire (1.2.3) est localement bien posé dans l'espace X L .

Notre but principal dans ce travail est d'étudier la question de formation de singularités pour l'équation (1.2.3). Nous avons établi le résultat suivant : , admettant une singularité en t = 0 en concentrant le profil de l'état fondamental : il existe deux fonctions radiales g 0 ∈ Ḣs+1 (R 4 ) et g 1 ∈ Ḣs (R 4 ) et tel que pour tout réel 0 ≤ s < 3ν + 2 u(t, x) = t ν+1 Q x t ν+1 + g 0 (x) + η(t, x), u t (t, x) = g 1 (x) + η 1 (t, x),

avec ∇η(t, •) Ḣ2 (R 4 ) + η 1 (t, •) H 2 (R 4 ) t→0 ---→ 0.
En outre, en écrivant

u(t, x) = t ν+1 Q x t ν+1 + ζ t, x t ν+1 , u t (t, x) = ζ 1 t, x t ν+1 , nous avons ∇ζ(t, •) Ḣs (R 4 ) + ζ 1 (t, •) Ḣs (R 4 ) t→0 ---→ 0, ∀2 < s ≤ L 0 -1.
De plus, les fonctions g 0 et g 1 appartiennent à l'espace C ∞ (R 4 \{0}) et sont à support compact telles que pour tout 0 ≤ s < 3ν + 2 ∇g 0 H s (R 4 ) + g 1 H s (R 4 ) ≤ C s δ 3ν+2-s ,

g 0 (x) ∼ d 2 3ν + 4 | √ 2x| 3ν+1 , g 1 (x) ∼ d 2 | √ 2x| 3ν , lorsque x → 0,
où d 2 est la constante intervenante dans (1.2.1).

La preuve de ce théorème d'explosion se fait principalement en deux étapes. Elle utilise de façon cruciale le comportement asymptotique du soliton Q.

La première étape consiste à construire une solution approchée sous la forme :

u (N ) (t, x) ∼ t ν+1 Q x t ν+1 , où ν > 1 2
est un nombre irrationnel fixe.

Dans la deuxième étape, on en déduit une solution exacte par un argument perturbatif. Pour ce faire, nous écrivons la solution exacte u comme u = u (N ) + où u (N ) est la solution approchée déjà construite à l'étape précédente. Puis en utilisant l'équation (1.2.5), nous obtenons une équation vérifiée par le reste . L'étude de cette équation permet d'achever la preuve du théorème. Cette étude est effectuée en combinant le comportement spectral du linéarisé de l'équation (1.2.5) autour de Q ainsi que les propriétés de la solution approchée u (N ) .

Étude de la stabilité de l'hélicoïde sous le flot de courbure moyenne nulle dans l'espace de Minkowski

Dans cette deuxième partie, qui a donné lieu à une prépublication s'intitulant « Codimension one stability of the helicoid under the vanishing mean curvature flow in Minkowski space, nous étudions la stabilité du flot de courbure moyenne nulle dans l'espace de Minkowski R 1,3 issu de l'hélicoïde. L'hélicoïde est une surface minimale de R 3 qui peut être paramétrée comme suit :

(y, θ) → (y cos(θ), y sin(θ), θ) , (y, θ) ∈ R2 .

(

Ainsi, le vecteur normal à (1.3.1) au point (y, θ) s'écrit sous la forme suivante :

sin(θ) y , -cos(θ) y

, y y • Notons que la métrique induite sur l'hélicoïde est asymptotiquement plate. Signalons également que l'hélicoïde et la caténoïde sont localement isométriques et que l'on peut obtenir l'une de l'autre via la déformation continue suivante :

x(u, v) = cos(α) sinh(v) sin(u) + sin(α) cosh(v) cos(u),

y(u, v) = -cos(α) sinh(v) cos(u) + sin(α) cosh(v) sin(u), z(u, v) = u cos(α) + v sin(α), où α = 0 correspond à l'hélicoïde et α = π/2 correspond à la caténoïde.
Dans ce travail, nous étudions dans l'esprit de [11] des perturbations radiales normales de la solution stationnaire donnée par :

(t, y, θ) → (t, y cos(θ), y sin(θ), θ), (t, y, θ) ∈ R + × R 2 .
Plus précisément, nous demandons que la surface Comme il l'a été constaté par Brendle [4] et Lindblad [22] dans le cas de l'hyperplan, pour prouver toute sorte de stabilité, il faut avoir des estimations de décroissance locale pour l'équation linéarisée. Dans ce contexte, l'équation linéarisée est l'équation d'onde qui vérifie les estimations de décroissance locale classiques. Tandis que dans le cas de l'hélicoïde, l'équation linéarisée est l'équation d'onde géométrique :

u tt -∆u + W u = 0, (1.3.3) 
qui est la même que celle qui intervient dans le cas de la caténoïde étudiée dans le travail [11]. Notons que les estimations d'énergie et de décroissance locale pour l'opérateur L ont été prouvées par Donninger et Krieger dans l'article [10].

L'opérateur L admet un mode instable h d qui engendre une croissance exponentielle dans l'évolution linéare pour (1.3.3). C'est pourquoi on ne peut pas s'attendre à avoir un résultat de stabilité pour toute perturbation arbitraire. Cependant, nous pouvons ajuster les données initiales pour assurer l'existence globale des solutions ainsi que leur convergence vers l'hélicoïde lorsque le temps tend vers l'infini.

Dans l'esprit de l'article [11], nous prouvons le résultat suivant : La preuve de ce théorème est basée sur un argument de bootstrap. Elle utilise de façon fondamentale les propriétés de décroissance des solutions de l'équation linéarisée.
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Chapter 2

Blow up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to Simons cone

Introduction

Setting of the problem

In this article we address the question of singularity formation for the hyperbolic vanishing mean curvature flow of surfaces that are asymptotic to Simons cones at infinity.

In [6], Bombieri, De Giorgi and Giusti proved that the Simons cone defined as follows 

C n = X = (x 1 , • • • , x 2n ) ∈ R 2n , x 2 1 + • • • + x 2 n = x 2 n+1 + • • • + x 2 2n , ( 2 
R + × S n-1 × S n-1 -→ C n ⊂ R 2n (ρ, ω 1 , ω 2 ) -→ (ρω 1 , ρω 2 ) • (2.1.2)
The Simons cones are linked to Bernstein's problem which states as follows: if the graph of a C 2 function u on R m-1 is a minimal surface in R m , does this imply that this graph is an hyperplane? Such issue amounts to ask if the solution u to the following equation known as the minimal surface equation

m-1 j=1 ∂ xj u xj 1 + |∇u| 2 = 0 ,
is linear. This problem due to Sergei Natanovich Bernstein who solved the case m = 3 in 1914 admits only an affirmative answer in the case of dimension m ≤ 8. Actually in [10], De Giorgi shows that the falsity of the extension Bernstein's theorem to the case of R m would imply the existence of a minimizing cone in R m-1 . We refer for instance to [2,3,4,6,10,11,23,25,30,31] and the references therein for further details on Bernstein's problem and related issues.

By the works [6,33], it is known that for n ≥ 4 the complementary of the Simons cone (which has two connected components |x| < |y| and |y| < |x|) is foliated by two families of smooth minimal surfaces (M a ) a>0 and ( M a ) a>0 asymptotic to the Simons cone at infinity. These families are the scaling invariant: M a = aM and M a = a M with M and M admitting respectively the parametrization:

R + × S n-1 × S n-1 (ρ, ω 1 , ω 2 ) → (ρω 1 , Q(ρ)ω 2 ) ∈ R 2n , (2.1.3) R + × S n-1 × S n-1 (ρ, ω 1 , ω 2 ) → (Q(ρ)ω 1 , ρω 2 ) ∈ R 2n , (2.1.4)
where Q is a positive radial function which belongs to C ∞ (R n ) and satisfies Q(0) = 1, Q(ρ) > ρ for any positive real number ρ, and

Q(ρ) = ρ + d α ρ α 1 + •(1)
, as ρ tends to infinity, with d α some positive constant and

α = -1 + 1 2 (2n -1) -(2n -1) 2 -16(n -1) .
The minimal surface equation in Riemannian geometry has a natural hyperbolic analogue in the Lorentzian framework. In particular working in the Minkowski space R1,2n equipped with the standard metric: dg = -dt 2 + n j=1 dx 2 j , and considering the time-like surfaces that for fixed t can be parametrized under the form

R n × S n-1 (x, ω) → Γ(t) = (x, u(t, x)ω) ∈ R 2n , (2.1.5)
with some positive function u, lead to the following quasilinear second order wave equation (see Appendix 2.8.1 for the corresponding computations)

∂ t u t 1 -(u t ) 2 + |∇u| 2 - n j=1 ∂ xj u xj 1 -(u t ) 2 + |∇u| 2 + n -1 u 1 -(u t ) 2 + |∇u| 2 = 0 ,
that can be also rewritten as

(NW) u := (1 + |∇u| 2 ) u tt -(1 -(u t ) 2 + |∇u| 2 ) ∆u + n j,k=1 u xj u x k u xj x k -2u t (∇u • ∇u t ) + (n -1) u (1 -(u t ) 2 + |∇u| 2 ) = 0 • (2.1.6)
Note that this equation is invariant by the scaling

u a (t, x) = a u t a , x a , ( 2.1.7) 
in the sense that if u solves (2.1.6) then u a is also a solution to (2.1.6). In the framework of Sobolev spaces 1 , Ḣ n+2 2 (R n ) is invariant under the scaling (2.1.7).

In this paper, we shall consider the case when n = 4 and assume that u is radial which implies that for fixed t the surfaces we are considering are invariant under the action of the group O(4) × O(4). We readily check that in that case the function u satisfies the following equation:

(1 + u 2 ρ ) u tt -(1 -u 2 t ) u ρρ -2u t u ρ u ρt + 3(1 + u 2 ρ -u 2 t ) 1 u - u ρ ρ = 0 • (2.1.8)
Note that the Simons cone and the minimal surfaces M a are stationary solutions of our model with u(t, ρ) = ρ in the case of Simons cone and u(t, ρ) = Q a (ρ), Q a (ρ) = aQ ρ a in the case of M a . Let us also emphasize that in that case, we have

Q(ρ) = ρ + d 2 ρ 2 1 + •(1) , (2.1.9)
as ρ tends to infinity, with d 2 some positive constant.

We shall be interested in time-like surfaces of the form (2.1.5) that are asymptotic to the Simons cone as |x| → ∞. To take care of this behavior we introduce the spaces X L , with L an integer sufficiently large, that we define as being the set of functions (u 0 , u 1 ) such that ∇(u 0 -Q) and u 1 belong to H L-1 (R 4 ), and which satisfy inf u 0 > 0 and inf (1 

+ |∇u 0 | 2 -(u 1 ) 2 ) > 0 . ( 2 
   (2.1.6) u = 0 u |t=0 = u 0 (∂ t u) |t=0 = u 1 .
(2.1.11)

Assume that the Cauchy data (u 0 , u 1 ) belongs to the functions class X L with L > 4, then there exists a unique maximal solution u of (2.1.11) on [0, T * [ such that

(u, ∂ t u) ∈ C([0, T * [, X L ) . (2.1.12)
Besides if the maximal time T * of such a solution is finite (we then say that it blows up), then

lim sup t T * 1 u(t, •) L ∞ + 1 (1 + |∇u| 2 -(∂ t u) 2 )(t, •) L ∞ + sup |γ|≤1 ∂ γ x ∇ t,x u L ∞ = ∞• (2.1.13)
The question we would like to address in this paper is that of blow up i.e., the description of possible singularities that smooth hypersurfaces may develop as they evolve by the Minkowski zero mean curvature flow, which amounts to investigate blow up dynamics for quasilinear wave equations. There is by now a considerable literature dealing with the construction of type II blow up solutions for semilinear heat, wave and Schrödinger type equations both in critical and supercritical cases (see for instance the articles [7,9,14,15,17,18,19,20,21,22,24,26,27,33,[START_REF] Velázquez | Blow-up for semilinear parabolic equation[END_REF] and the references therein). At the most basic level, the strategy in these works is to construct solutions in a two step process, first building an approximate solution, and then completing it to an exact solution, by controlling the remaining error via well-established arguments. The viewpoint we shall adopt here is the one which has been initiated by Krieger, Schlag and Tataru in [21], where for the energy critical focusing wave equation they constructed type II blow up solutions, with a continuum of blow up rates, that become singular via a concentration of a stationary state profile. The goal of the present paper is to show that this blow up mechanism exists as well for the quasilinear wave equation defined by (2.1.8).

Statement of the result

Our main result is given by the following theorem. 

(u, ∂ t u) ∈ C((0, T ], X L0 ) with L 0 := 2M + 1 , M = 3 2 ν + 5 4 , (2.1.14) 
and such that it blows up at t = 0 by concentrating the soliton profile: there exist two radial functions g 0 ∈ Ḣs+1 (R 4 ) and g 1 ∈ Ḣs (R 4 ), for any 0 ≤ s < 3ν + 2, such that one has

u(t, x) = t ν+1 Q x t ν+1 + g 0 (x) + η(t, x) , u t (t, x) = g 1 (x) + η 1 (t, x) , with ∇η(t, •) H 2 (R 4 ) + η 1 (t, •) H 2 (R 4 ) t→0 -→ 0 .
Moreover, writing

u(t, x) = t ν+1 Q x t ν+1 + ζ t , x t ν+1 , u t (t, x) = ζ 1 t , x t ν+1 , we have ∇ζ(t, •) Ḣs (R 4 ) + ζ 1 (t, •) Ḣs (R 4 ) t→0 -→ 0 , ∀ 2 < s ≤ L 0 -1 .
Besides, g 0 , g 1 are compactly supported, belong to C ∞ (R 4 \ {0}) and verify for all 0 ≤ s < 3ν + 2

∇g 0 H s (R 4 ) + g 1 H s (R 4 ) ≤ C s δ 3ν+2-s , g 0 (x) ∼ d 2 3ν + 4 | √ 2 x| 3ν+1 , g 1 (x) ∼ d 2 | √ 2 x| 3ν , as x → 0 ,
where d 2 denotes the constant involved in (2.1.9).

Corollary 2.1.1.

There exists a family of hypersurfaces (Γ(t)) 0<t≤T in R 8 which evolve by the hyperbolic vanishing mean curvature flow, and which as t tends to 0 blow up towards a hypersurface which behaves asymptotically as the Simons cone at infinity. Moreover

t -(ν+1) Γ(t) t→0 -→ M ,
uniformly on compact sets, where M denotes the hypersurface defined by (2.1.3).

Remark 2.1.1.

• A similar result was established in the case of parabolic vanishing mean curvature flow by Velázquez in [33].

• Combining Theorem 2.1.2 with the asymptotic (2.1.9), we readily gather that the blow up solution u to (2.1.8) given by Theorem 2.1.2 satisfies

1. ∇(u(t, •) -Q) L ∞ ((0,T ], Ḣs (R 4 )) 1 , ∀ 0 ≤ s < 2, 2. ∇(u(t, •) -|x| -g 0 ) Ḣs (R 4 ) t→0 -→ 0 , ∀ 0 ≤ s < 2, 3. ∇(u(t, •) -Q) Ḣs (R 4 ) t→0 -→ ∞ , ∀ 2 ≤ s ≤ L 0 -1•
• The parameter ν is restricted to the irrationals just to avoid the formation of additional logarithms in the construction of an approximate solution to (2.1.8). Its limitation to ν > 1 2 is technical.

Strategy of the proof

Let us outline our strategy that is concisely implemented in Sections 2.3, 2.4, 2.5 and 2.7. Roughly speaking, the proof of Theorem 2.1.2 is done in two main steps. The first step is dedicated to the construction of an approximate solution to (2.1.8) as a perturbation of the concentrating soliton profile

t ν+1 Q x t ν+1
, where ν > 1 2 is a fixed irrational number. The second step which will be the subject of Section 2.7 is to complement this approximate solution to an actual solution u by a perturbative argument. In that step, the properties of the linearized operator of the quasilinear wave equation (2.1.8) around Q, which are studied in Appendix 2.8.2, are essential.

As we shall see, the blow up result we establish in this article heavily relies on the asymptotic behavior of the soliton Q. Thus we shall focus in Section 2.2 on its analysis.

To built a good approximate solution, we shall analyze separately the three regions that correspond to three different space scales: the inner region corresponding to ρ t ≤ t 1 , the self-similar region where

1 10 t 1 ≤ ρ t ≤ 10 t -2
, and finally the remote region defined by ρ t ≥ t -2 , where 0 < 1 < ν and 0 < 2 < 1 are two fixed positive real numbers. The inner region is the region where the blow up concentrates. In this region the solution will be constructed as a perturbation of the profile t ν+1 Q x t ν+1 • In the selfsimilar region, the profile of the solution is determined uniquely by the matching conditions coming out of the inner region, while in the remote region the profile remains essentially a free parameter of the construction.

In Section 2.3, we investigate the equation in the inner region

ρ t ≤ t 1 •
In that region, we shall look for an approximate solution as a power expansion in t 2ν of the form:

u (N ) in (t, ρ) = t ν+1 N k=0 t 2νk V k ρ t ν+1 , (2.1.15)
where V 0 is nothing else than the soliton Q, and where the functions V k , for 1 ≤ k ≤ N , are obtained recursively, by solving a recurrent system of the form:

LV k = F k (V 0 , • • • , V k-1 ) V k (0) = 0 and V k (0) = 0 ,
where L is the operator defined by:

L = ∂ 2 y + 3 y + B 1 ∂ y + B 0 , (2.1.16) with        B 1 (y) = 9 Q 2 y y -6 Q y Q , B 0 (y) = 3 1 + Q 2 y Q 2 • (2.1.17)
As it will be established in Paragraph 2.3.2, these functions V k grow at infinity as follows:

V k (y) = k =0 (log y) n≥2-2(k-) d n,k, y -n .
To obtain a good approximate solution, we are then constrained to restrict the construction to the region

ρ t ≤ t 1 •
The aim of Section 2.4 is to extend the approximate solution built in Section 2.3 to the self-similar region

1 10 t 1 ≤ ρ t ≤ 10 t -2 .
Taking into account the matching conditions coming out from the inner region, we seek to this extension under the form: 

u (N ) ss (t, ρ) = ρ + λ(t) N k=3 t νk (k) =0 log t w k, ρ λ(t) , ( 2 
w k, (z) ∼ c k, z kν+1 (log z) k-3 2 -,
as z tends to infinity, which imposes to restrict the self-similar region to ρ t t -2 , with 0 < 2 < 1.

In Section 2.5, we construct an approximate solution u to the whole space, by solving the quasilinear wave equation (2.1.8) associated to an adapted Cauchy data in the remote region ρ t ≥ t -2 • We shall look for the approximate solution in that region under the following form:

u (N ) out (t, ρ) = ρ + g 0 (ρ) + tg 1 (ρ) + N k=2 t k g k (ρ) , (2.1.19)
where the Cauchy data (• + g 0 , g 1 ) is determined by the the matching conditions coming out of the selfsimilar region, and where for k ≥ 2 the functions g k are determined successively by a recurrent relation under the form

g k = G k g j , j ≤ k -1 •
As it will be seen in Paragraph 2.5.2, these functions g k , k ≥ 0, are compactly supported and behaves as ρ 1-k+3ν close to 0, which ensures that (2.1.19) provides us with a good approximate solution in the remote region. Section 2.7 is dedicated to the end of the proof of the blow up result by constructing an exact solution to (2.1.8), thanks to a perturbative argument. For that purpose, we firstly write u = u (N ) + ε (N ) , where u (N ) is the approximate solution to (2.1.8) constructed in Sections 2.3, 2.4, 2.5 , and then taking into account (2.1.8), we derive the equation satisfied by the remainder term ε (N ) with respect to the variable t, x t 1+ν • The study of the equation for ε (N ) is based on continuity arguments coupled with suitable energy estimates. These energy estimates are established by combining the spectral properties of the operator L together with the estimates of the approximate solution u (N ) .

Finally, we deal in appendix with several complements for the sake of completeness and the convenience of the reader. It is organized as follows. Section 2.8.1 is devoted to the derivation of the quasilinear wave equations (2.1.6). In Section 2.8.2, we analyze the spectral properties of the operator L. In Section 2.8.3, we give the proof of the local well-posedness result for the Cauchy problem (2.1.11), namely Theorem 2.1.1, and in Section 2.8.4, we collect some useful ordinary differential equations results that we use in the self-similar region.

To avoid heaviness, we shall omit in this text the dependence of all the functions on the parameter ν. All along this article, T and C will denote respectively positive time and constant depending on several parameters, and which may vary from line to line. We also use A B to denote an estimate of the form A ≤ CB for some absolute constant C.
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Analysis of the stationary solution

Asymptotic behavior of the stationary solution

Our analysis in this paper is intimately connected to the behavior at infinity of the stationary solution to the quasilinear wave equation (2.1.8). In this subsection, we collect the properties of Q that we will use through out this paper.

Lemma 2.2.1. The Cauchy problem

   -Q ρρ + 3(1 + Q 2 ρ ) 1 Q - Q ρ ρ = 0 Q(0) = 1 and Q ρ (0) = 0 (2.2.1)
has a unique solution3 Q ∈ C ∞ (R + ) which satisfies the following properties:

• Q has an even Taylor expansion4 at 0:

Q(ρ) = n≥0 γ 2n ρ 2n , (2.2.2)
with some constants γ 2n such that γ 0 = 1,

• Q enjoys the following bounds for any

ρ in R + Q(ρ) > ρ and Q (ρ) > 0 , (2.2.3)
• Q has the following asymptotic expansion as ρ tends to infinity:

Q(ρ) = ρ + n≥2 d n ρ -n , (2.2.4)
with some constants d n such that d 2 > 0 and d 4 = 0.

Proof. It is well-known (see for instance [6,33] and the references therein) that the Cauchy problem (2.2.1) admits a unique solution Q in C ∞ (R + ) satisfying (2.2.3), and which behaves as

Q(ρ) = ρ + d 2 ρ 2 (1 + •(1)) when ρ → ∞ , with d 2 > 0.
In order to determine the asymptotic formula (2.2.4), let us for ρ ≥ 1 set

Q(ρ) = ρ v(log ρ) .
According to (2.2.1), this ensures that the function v satisfies

-(v yy + v y ) + 3(1 + (v + v y ) 2 )( 1 v -v -v y ) = 0 . (2.2.5)
Observe that the function v ≡ 1 solves (2.2.5) and that the linearization of (2.2.5) around v ≡ 1 takes the following form:

-w yy -7w y -12w = 0 . (

The characteristic equation of the above linear differential equation (2.2.6) admits two real distinct roots r 1 = -3 and r 2 = -4. This ensures that Q has the following asymptotic development as ρ tends to infinity:

Q(ρ) = ρ + n≥2 d n ρ -n ,
for some constants d n , with d 4 = 0.

Finally one can check that the formulae (2.2.2) and (2.2.4) can be differentiated at any order with respect to the variable ρ, which completes the proof of the lemma.

Properties of the linearized operator of the quasilinear wave equation around the ground state

The blow up solution we construct in this paper is a small perturbation of the profile

t ν+1 Q ρ t ν+1
, and thus the linearization of the quasilinear wave equation (2.1.8) around Q will play an important role in our approach. This linearized equation has the form:

(1 + Q 2 ρ )w tt -Lw = 0 , (2.2.7)
where L denotes the operator introduced in (2.1.16) that will be extensively analyzed in Appendix 2.8.2.

It will be useful later on to emphasize that the function ΛQ, where ΛQ = Q-ρ Q ρ is a particular solution of the homogeneous equation Lw = 0 which is positive. Indeed by virtue of Lemma 2.2.1, ΛQ is positive on ρ = 0, tends to 0 at infinity and satisfies (ΛQ) ρ = -ρ Q ρρ . Recalling that Q ρρ (ρ) > 0, we end up with the claim.

The strategy we shall adopt in this article is based on the fact that, up to the change of function w = H g , with

H := (1 + Q 2 ρ ) 1 4 Q 3 2 , (2.2.8)
the above equation (2.2.7) rewrites on the following way:

g tt + Lg = 0 , (2.2.9)
where L is the positive self-adjoint operator on L 2 (R 4 ) defined by (see Appendix 2.8.2 for the proof of this fact):

L = -q ∆ q + P , (2.2.10) with q = 1 (1 + Q 2 ρ ) 1 2 
, and where the potential P belongs to C ∞ rad (R 4 ) and satisfies

P(ρ) = - 3 8ρ 2 (1 + •(1)), as ρ → ∞• (2.2.11)
The spectral properties of the operator L which are investigated in Appendix 2.8.2 rely on the asymptotic behavior of the potential P at infinity given by (2.2.11). It comes out of this spectral analysis that the operator L is positive. Furthermore, there is a positive constant c such that we have 

Lf |f L 2 (R 4 ) ≥ c ∇f 2 L 2 (R 4 ) , ∀f ∈ Ḣ1 rad (R 4 ) . ( 2 
u ρ (t, ρ) = V y t, ρ t ν+1 , u ρρ (t, ρ) = 1 t ν+1 V yy t, ρ t ν+1 , u t (t, ρ) = t ν+1 V t t, ρ t ν+1 + (ν + 1) t ν ΛV t, ρ t ν+1 := t ν (ΓV ) t, ρ t ν+1 , u tρ (t, ρ) = t -1 (ΓV ) y t, ρ t ν+1
and

t ν+1 u tt (t, ρ) = t 2ν [Γ 2 V -ΓV ] t, ρ t ν+1
, where we denote

ΓV := t∂ t V + (ν + 1)ΛV with ΛV = V -yV y and y = ρ t ν+1 • (2.3.2)
Thus replacing u by means of (2.3.1) into (2.1.8) and multiplying by t ν+1 , we get the following equation

(1 + V 2 y )t 2ν [Γ 2 V -ΓV ] -1 -t 2ν (ΓV ) 2 V yy -2 t 2ν V y (ΓV ) (ΓV ) y + 3 (1 + V 2 y -t 2ν (ΓV ) 2 ) 1 V - V y y = 0 • (2.3.
3)

It will be useful later on to point out that the above equation (2.3.3) multiplied by

V Q is polynomial of order four with respect to (V, V y , V yy , ΓV, (ΓV ) y , Γ 2 V ).
In what follows, we shall look for solutions V to Equation (2.3.3) under the form

V (t, y) = k≥0 t 2νk V k y , (2.3.4)
with V 0 = Q, where Q is the stationary solution introduced in Lemma 2.2.1.

Substituting this ansatz into (2.3.3) multiplied by V Q , we deduce the following recurrent equation for

k ≥ 1 LV k = F k (V 0 , • • • , V k-1 ) (2.3.5)
subject to the initial conditions

V k (0) = 0 and V k (0) = 0 , (2.3.6)
where

F k depends on V j , j = 0, • • • , k -1 only.
Here L is defined by (2.1.16). Taking advantage of the asymptotic formula (2.2.4), this easily leads for y large to the following asymptotic expansions

         B 1 (y) = 3 y + n≥4 β n y -n B 0 (y) = 6 y 2 + n≥5 α n y -n , (2.3.7) 
with some constants β n and α n that can be computed by means of the coefficients d n involved in the asymptotic formula (2.2.4).

Along the same lines, in view of (2.2.2) we find the following asymptotic formulae when y is close to 0

       B 1 (y) = n≥0 a 2n+1 y 2n+1 B 0 (y) = 3 + n≥1 b 2n y 2n , (2.3.8)
with some constants (a 2n+1 ) and (b 2n ) that can be expressed in terms of the coefficients (γ 2n ) that arise in (2.2.2).

Besides the source term F k can be splitted on two parts as follows:

F k = F (1) k + F (2) k , with F (1) 1 = 0 and F (1) k
for k ≥ 2 determined by the following equation

- V Q V yy + 3 (1 + V 2 y ) 1 Q - V V y y Q = k≥1 -LV k + F (1) k t 2νk • (2.3.9)
According to (2.3.4), this gives explicitly5 

F (1) k = - 1 Q j1+j2=k ji≥1 V j1 (V j2 ) yy + 3 (V j2 ) y y - 3 y Q j1+j2+j3+j4=k ji≤k-1 (V j1 ) y (V j2 ) y (V j3 ) y V j4 + 3 Q j1+j2=k ji≥1 (V j1 ) y (V j2 ) y • (2.3.10)
Finally combining (2.3.3) together with (2.3.9) and using the fact that .3.11) where Γ k = 2νk + (1 + ν)Λ, we readily gather that

Γ(t 2νk V k ) = t 2νk Γ k V k , ( 2 
F (2) k = j1+j2+j3+j4=k-1 ji≥0 V j1 Q (Γ j2 V j2 )(Γ j3 V j3 ) (V j4 ) yy + 3 (V j4 ) y y + j1+j2=k-1 ji≥0 V j1 Q Γ 2 j2 -Γ j2 V j2 + j1+j2+j3+j4=k-1 ji≥0 V j1 (V j2 ) y (V j3 ) y Q Γ 2 j4 -Γ j4 V j2 -2 j1+j2+j3+j4=k-1 ji≥0 V j1 (V j2 ) y Q (Γ j3 V j3 ) (Γ j4 V j4 ) y - j1+j2=k-1 ji≥0 3 Q (Γ j1 V j1 )(Γ j2 V j2 ) • (2.3.12)

Analysis of the functions V k

The goal of the present paragraph is to prove the following result: and 

Lemma 2.
V k (y) = k =0 (log y) n≥2-2(k-) d n,k, y -n , as y ∼ ∞ , ( 2 
f (y) = -(ΛQ)(y) y 0 (1 + (Q r (r)) 2 ) 3 2 Q 3 (r) r 3 (ΛQ) 2 (r) r 0 Q 3 (s) s 3 (ΛQ)(s) (1 + (Q s (s)) 2 ) 3 2 g(s) ds dr • (2.3.17)
Let us start by considering the case when k = 1. Under notations (2.3.2) and in light of (2.3.10) and (2.3.12), we have

F 1 (Q) = F (2) 1 (Q) = (1 + Q 2 y ) (1 + ν) 2 Λ 2 -(1 + ν)Λ Q -2(1 + ν) 2 Q y (ΛQ)(ΛQ) y + (1 + ν) 2 (ΛQ) 2 Q yy (Q y ) 2 (1 + Q 2 y ) • (2.3.18)
According to (2.2.2), this implies that for y close to 0 the following asymptotic formula holds

F 1 (Q) = n≥0 g 2n,1 y 2n . (2.3.19)
Besides in view of (2.2.4), we get for y sufficiently large the following expansion

F 1 (Q) = n≥2 c n,1,0 y -n . (2.3.20)
By virtue of Lemma 2.2.1 which asserts that6 d 4,0,0 := d 4 = 0, we find that c 4,1,0 = 0. Indeed invoking (2.2.4) together with (2.3.18), we easily check that

c 4,1,0 = 10 (1 + ν) (4 + 5ν) d 4,0,0 , which implies that the coefficient c 4,1,0 is null.
This ensures in view of Duhamel formula (2.3.17) that in that case, the Cauchy problem (2.3.5)-(2.3.6) admits a unique solution V 1 in C ∞ (R + ) satisfying the asymptotic expansions (2.3.13) and (2.3.14) respectively close to 0 and at infinity.

Regarding to the expansion coefficients d n,1, of V 1 at infinity, we can find them by substituting

V 1 (y) = 1 =0 (log y) n≥2 d n,1, y -n into (2.3.5
) and taking into account (2.3.7) and (2.3.20). This gives rise to

2 d 1,1,0 y 3 - n≥2 ((2n + 1)d n,1,1 -n(n + 1) d n,1,0 ) y -n-2 + 6 y + n≥4 β n y -n - d 1,1,0 y 2 + n≥2 (d n,1,1 -n d n,1,0 )y -n-1 - n≥2 n d n,1,1 (log y) y -n-1 + 6 y 2 + n≥5 α n y -n d 0,1,0 + d 1,1,0 y + n≥2 d n,1,0 y -n + n≥2 d n,1,1 (log y) y -n + n≥2 n(n + 1) d n,1,1 (log y) y -n-2 = n≥2 c n,1,0 y -n . (2.3.21)
In particular, the identification of the coefficient of y -4 in (2.3.21) gives

d 2,1,1 = c 4,1,0 = 0 , (2.3.22)
which proves that Condition (2.3.15) is fulfiled for k = 1.

Now using the fact that the coefficient of (log y) y -n-2 in (2.3.21) is null, we find that for any integer n ≥ 2

d n,1,1 (n 2 -5n + 6) + k1+k2=n+2 k1≥5, k2≥2 d k2,1,1 α k1 - k1+k2=n+1 k1≥4, k2≥2 k 2 d k2,1,1 β k1 = 0 .
Along the same lines, by computing the coefficients of y -n-2 we get

d n,1,0 (n 2 -5n + 6) + (5 -2n)d n,1,1 + k1+k2=n+1 k1≥4, k2≥2 β k1 (d k2,1,1 -k 2 d k2,1,0 ) + k1+k2=n+2 k1≥5, k2≥2 α k1 d k2,1,0 = c n+2,1,0 .
This implies that all the coefficients d n,1, can be determined successively in terms of the coefficients of

F 1 (Q) involved in (2.3.20
) and the coefficients d 2,1,0 and d 3,1,0 that are fixed by the initial data.

We next turn our attention to the general case of any index k ≥ 2. To this end, we shall proceed by induction assuming that, for any integer 

1 ≤ j ≤ k -1, the Cauchy problem (2.3.5)-(2.3.6) admits a unique solution V j in C ∞ (R + )
F (1) k (V 0 , • • • , V k-1 ) = n≥0 g (1)
2n,k y 2n , as y ∼ 0 , (2.3.23)

F (1) k (V 0 , • • • , V k-1 )(y) = k =0 (log y) n≥7-2(k-) c (1) n,k, y -n , as y ∼ ∞ . (2.3.24)
Similarly from (2.3.12), (2.3.13) and (2.3.14), we deduce that

F (2) k (V 0 , • • • , V k-1 )(y) = n≥0 g (2)
2n,k y 2n , as y ∼ 0 , (2.3.25)

F (2) k (V 0 , • • • , V k-1 ) = (1 + Q 2 y ) Γ 2 k-1 -Γ k-1 V k-1 + F (2) k (V 0 , • • • , V k-1 ) , (2.3.26)
where F

(2) k admits the following expansion at infinity

F (2) k (V 0 , • • • , V k-1 )(y) = k-1 =0 (log y) n≥7-2(k-) c (2) n,k, y -n . (2.3.27)
Recall that by definition

Γ k-1 = 2ν(k -1) + (1 + ν)Λ := α(ν, k -1) + (1 + ν)Λ ,
which by straightforward computations gives rise to7 

Γ 2 k-1 -Γ k-1 V k-1 = α(α -1) V k-1 + (1 + ν)(2α -1) ΛV k-1 + (1 + ν) 2 Λ 2 V k-1 .
Setting

β := α(α -1) + (1 + ν)(2α -1) + (1 + ν) 2 ,
we easily gather that

Γ 2 k-1 -Γ k-1 V k-1 = β V k-1 -(1 + ν)(2α -1) y∂ y V k-1 + (1 + ν) 2 y 2 ∂ 2 y V k-1 .
It follows therefore from (2.2.4) and (2.3.14) that the following expansion holds at infinity

(1 + Q 2 y ) Γ 2 k-1 -Γ k-1 V k-1 (y) = k-1 =0 (log y) n≥2-2(k-1-) c (2) n,k, y -n , (2.3.28)
where, under the above notations, for any integer

0 ≤ ≤ k -1 2 c (2) 2-2(k-1-),k, = (β + n(1 + ν)(2α -1) + (1 + ν) 2 n(n + 1)) d 2-2(k-1-),k-1, .
In view of the induction assumption (2.3.15) for the index k -1, we get 

c (2) 2-2(k-2),k,1 = 0 . ( 2 
F k (V 0 , • • • , V k-1 ) = F (1) k (V 0 , • • • , V k-1 ) + F (2) k (V 0 , • • • , V k-1 )
admits the following asymptotic expansions:

F k (V 0 , • • • , V k-1 )(y) = n≥0 g 2n,k y 2n , as y ∼ 0 , (2.3.30) F k (V 0 , • • • , V k-1 )(y) = k =0 (log y) n≥4-2(k-) c n,k, y -n , as y ∼ ∞ , (2.3.31)
which can be differentiated any number of times with respect to y, and with

c 2-2(k-2),k,1 = 0 . (2.3.32)
Therefore Duhamel formula (2.3.17) implies that the Cauchy problem (2.3.5)-(2.3.6) admits a unique solution V k in C ∞ (R + ) satisfying the asymptotic formulae (2.3.13) and (2.3.14) respectively close to 0 and at infinity. As for V 1 we can determine all the coefficients d n,k, in terms of F k and d 2,k,0 and d 3,k,0 that are fixed by the initial data, by substituting the expansion

V k (y) = k =0 (log y) n≥2-2(k-) d n,k, y -n into (2.3.5). In particular, we get for 0 ≤ ≤ k -1 and n = 2 -2(k -) (n 2 -5n + 6)d n,k, = c n+2,k, ,
which by virtue of (2.3.32) ensures that d -2(k-2),k,1 = 0 and proves (2.3.15).

Clearly, the asymptotic expansions (2.3.13) and (2.3.14) can be differentiated any number of times with respect to the variable y. This concludes the proof of the lemma.

Estimate of the approximate solution in the inner region

Under the above notations, set for any integer N ≥ 2

u (N ) in (t, ρ) = t ν+1 V (N ) in t, ρ t ν+1 with V (N ) in (t, y) = N k=0 t 2νk V k y • (2.3.33)
Our aim in this paragraph is to investigate the properties of

V (N ) in
in the inner region, namely in the region of R 4 defined as follows:

Ω in := Y ∈ R 4 , y = |Y | ≤ t 1 -ν .
(

Thanks to Lemma 2.3.1, we easily gather that V (N ) in satisfies the following L ∞ estimates on Ω in : Lemma 2.3.2. For any multi-index α in N 4 and any integer β ≤ |α|, there exist a positive constant C α,β and a small positive time T = T (α, β, N ) such that for all 0 < t ≤ T , the following estimates hold:

• β ∇ α (V (N ) in (t, •) -Q) L ∞ (Ωin) ≤ C α,β t 2ν , (2.3.35) ∇ α ∂ t V (N ) in (t, •) L ∞ (Ωin) ≤ C α t 2ν-1 , (2.3.36) • β ∇ α (ΓV (N ) in )(t, •) L ∞ (Ωin) ≤ C α,β , (2.3.37) ∂ t (ΓV (N ) in )(t, •) L ∞ (Ωin) ≤ C t 2ν-1 , (2.3.38) • β ∇ α ((Γ 2 -Γ)V (N ) in )(t, •) L ∞ (Ωin) ≤ C α,β , (2.3.39)
where as above Γ = t∂ t + (ν + 1)Λ.

Along the same lines taking advantage of Lemma 2.3.1, we get the following L 2 estimates:

Lemma 2.3.3. Under the above notations, we have for all 0 < t ≤ T :

∇(V (N ) in (t, •) -Q) L 2 (Ωin) ≤ C t ν , (2.3.40) ∇ α (V (N ) in (t, •) -Q) L 2 (Ωin) ≤ C α t 2ν , ∀ |α| ≥ 2 , (2.3.41) (Γ V (N ) in )(t, •) L 2 (Ωin) ≤ C log t , ∀ = 1, 2 , (2.3.42) ∇ α (Γ V (N ) in )(t, •) L 2 (Ωin) ≤ C α , ∀ |α| ≥ 1 , ∀ = 1, 2 . (2.3.43) Remark 2.3.1. Denoting by Ω x in := x ∈ R 4 , |x| ≤ t 1+ 1
, and combining (2.3.33) together with the above lemma, we infer that the following estimates hold for the radial function u

(N ) in on Ω x in : ∇ α (u (N ) in (t, •) -t ν+1 Q • t ν+1 ) L 2 (Ω x in ) ≤ C α t ν+(|α|-3)(ν+1) , ∀ |α| ≥ 1 , (2.3.44) ∇ α ∂ t u (N ) in (t, •) L 2 (Ω x in ) ≤ C α t ν+(|α|-3)(ν+1) , ∀ |α| ≥ 1 , (2.3.45) ∂ t u (N ) in (t, •) L 2 (Ω x in ) ≤ C t ν-3(ν+1) log t , (2.3.46) for all 0 < t ≤ T .
Let us end this section by estimating the remainder term:

R (N ) in := (2.3.3) V (N ) in .
One has:

Lemma 2.3.4. For any multi-index α, there exist a positive constant C α,N and a small positive time

T = T (α, N ) such that for all 0 < t ≤ T , the remainder term R (N ) in satisfies • 3 2 ∇ α R (N ) in (t, •) L 2 (Ωin) ≤ C α,N t 2ν+2N 1 -3 2 (ν-1 ) . (2.3.47)
Proof. In view of computations carried out in Section 2.3.2 and particularly on page 19, we have

V Q (2.3.3) k≥0 t 2νk V k = k≥1 -LV k + F k t 2νk . Thus recalling that V Q (2.3.
3)V is a polynomial of order four and taking into account Lemma 2.3.1, we deduce that

R (N ) in = V (N ) in Q R (N ) in = N +1≤k≤4N t 2νk G k , ( 2.3.48) 
where G k depending on V j , j = 0, • • • , N , is defined as the function F k by formulae similar to (2.3.10) and (2.3.12), where we assume in addition that the involved indices j i range from 0 to N .

This of course implies that the function G k , N + 1 ≤ k ≤ 4N admits the following expansions that can be differentiated any number of times with respect to the variable y, respectively close to 0 and at infinity:

G k (y) = n≥0 g 2n,k y 2n , (2.3.49) G k (y) = k =0 (log y) n≥4-2(k-) c n,k, y -n , (2.3.50)
with some constants g 2n,k and c n,k, that can be determined recursively in terms of the functions V j , for

j = 0, • • • , N .
Recalling that by definition

R (N ) in = Q V (N ) in R (N ) in ,
we deduce taking into account Lemma 2.3.2 and Formula (2.3.34) that for any multi-index α, there exist a positive constant C α,N and a positive time T = T (α, N ) such that for any time 0 < t ≤ T , we have •

Approximate solution in the self-similar region 2.4.1 General scheme of the construction of the approximate solution in the self-similar region

Our aim in this section is to built in the region

1 10 t 1 ≤ ρ t ≤ 10 t -2 an approximate solution u (N ) ss
to (2.1.8) which extends the approximate solution u

(N ) in constructed in the inner region ρ t ≤ t 1 • Here 0 < 2 < 1 is fixed.
We shall look for this solution under the following form:

u(t, ρ) = λ(t) (z + W (t, z)) with z = ρ λ(t) , (2.4.1)
and where λ(t) is a function which behaves like t, for t close to 0, and that will be constructed at the same time as the profile W . In fact, λ(t) will be given by an expression of the form:

λ(t) = t 1 + k≥3 (k) =0 λ k, t νk (log t) with (k) = k -3 2 • (2.4.2)
By straightforward computations, we find that

u ρ (t, ρ) = 1 + W z t, ρ λ(t) , u ρρ (t, ρ) = λ(t) -1 W zz t, ρ λ(t) , u t (t, ρ) = λ(t) W t t, ρ λ(t) + λ (t) ΛW t, ρ λ(t) := W 1 t, ρ λ(t) , ( 2.4.3) 
u tρ (t, ρ) = λ(t) -1 (∂ z W 1 ) t, ρ λ(t) , λ(t) u tt (t, ρ) = W 2 t, ρ λ(t) , ( 2.4.4) 
with

W 2 (t, z) := λ(t)λ (t) ΛW + 2λ(t)λ (t) ΛW t + λ 2 (t) W tt + (λ (t)) 2 z 2 W zz = z 2 W zz (t, z) + t 2 W tt (t, z) + 2tΛW t (t, z) + W 2 (t, z) , (2.4.5) 
where

W 2 (t, z) = ((λ (t)) 2 -1)z 2 W zz + (λ 2 (t) -t 2 )W tt + 2(λ(t)λ (t) -t)ΛW t + λ(t)λ (t) ΛW , ( 2.4.6) 
and where as above ΛW = W -zW z .

Thus substituting u by means of (2.4.1) into (2.1.8) multiplied by λ(t), we find that the function W solves the following equation:

(1 + (1 + W z ) 2 )W 2 -(1 -(W 1 ) 2 )W zz -2(1 + W z )W 1 (W 1 ) z -3 1 + (1 + W z ) 2 -(W 1 ) 2 W z 2 + W z z = 0 , (2.4.7)
where

W = W (1 + W z )
• Introducing the notations

W 2 := W 2 -(λ ) 2 z 2 W zz = λ 2 W tt + 2λλ ΛW t + λλ ΛW , W 3 := λ W tz , (2.4.8)
we readily gather that the above equation (2.4.7) rewrites in the following way:

(2z 2 -1 + A 0 ) W zz + A 1 = 0 , ( 2.4.9) 
with

A 0 = (λ W + λW t ) 2 + 2λ z(λ W + λW t ) + 2((λ ) 2 -1)z 2 ,
(2.4.10)

A 1 = (1 + (1 + W z ) 2 )W 2 -2(1 + W z )W 1 W 3 -3 1 + (1 + W z ) 2 -(W 1 ) 2 W z 2 + W z z •
Denoting by L the linear operator defined by:

LW = (2z 2 -1) W zz + 2t 2 W tt + 4tΛW t -6 W z z -6 W z 2 , (2.4.11)
we infer that the above equation (2.4.7) undertakes the following form:

LW = -A 0 W zz -2W z + (W z ) 2 W 2 -2 W 2 + 2 (1 + W z )W 1 W 3 - 6 z 3 W W + 3 2W z + (W z ) 2 -(W 1 ) 2 W z 2 + W z z , (2.4.12)
where

W 2 := W 2 -t 2 W tt -2tΛW t = W 2 -((λ ) 2 -1)z 2 W zz .
(2.4.13)

It will be useful later on to notice that under the above notations, (2.4.12) also rewrites in the following way:

LW = -2 W 2 -2W z + (W z ) 2 W 2 -(W 1 ) 2 W zz + 2 (1 + W z )W 1 (W 1 ) z - 6 z 3 W W + 3 2W z + (W z ) 2 -(W 1 ) 2 W z 2 + W z z • (2.4.14)
The asymptotic of the solution (2.4.1) at the origin has to be coherent with that of (2.3.1) at infinity. To determine this asymptotic, we combine the expansion (2.4.2) together with Formula (2.3.14), which gives:

u in (t, ρ) = λ(t) z + k≥3 t νk (k) =0 (log t) 0≤α≤ k-3 2 - (log z) α β≥1-k+2(α+ ) c k, α,β z β , as z → 0 , (2.4.15)
where the coefficients c k, α,β admit the representation:

c k, α,β = c k, ,0 α,β + c k, ,1 α,β ,
with c k, ,0 α,β independent of λ and given by

   c k, ,0 α,β = 0 , if β + k -1 is odd and c k, ,0 α,β = (-ν) α + α d -β, β+k-1 2 ,α+ , if β + k -1 is even ,
where d n,k, denotes the coefficient arising in (2.3.1).

The coefficients c k, ,1 α,β depend only on λ p,q involved in (2.4.2) with 3 ≤ p ≤ k -3 and are equal to zero if

β + k -1 -2(α + ) ≤ 2 or if k < 6 or if > k -6 2 •
Let us point out that taking into account Lemma 2.2.1 together with Property (2.3.15), which respectively assert that d 4,0,0 = 0 and d 4-2m,m,1 = 0 for any integer m ≥ 1, we infer that c 5,0 0,-4 = 0 and c 5,1 0,β = 0, ∀β .

(2.4.16) Formula (2.4.15) leads us to look for the approximate solution in the self-similar region under the form:

u(t, ρ) = ρ + λ(t) W t, ρ λ(t) , ( 2.4.17) 
where

W (t, z) = k≥3 t νk (k) =0 (log t) w k, (z) . (2.4.18)
To fix λ(t), we require that the function A 0 defined by (2.4.10) satisfies

A 0 z= 1 √ 2 = 0 • (2.4.19)
Actually a difficulty that we face in solving (2.4.12) is in handling the singularity of the operator L defined by (2.4.11) 

W i (t, z) = k≥3 t νk 0≤ ≤ k-3 2 (log t) w i k, (z) , i = 1, 2, 3 , W 2 (t, z) = k≥6 t νk 0≤ ≤ k-6 2 (log t) w 2 k, (z) , W 2 (t, z) = k≥3 t νk 0≤ ≤ k-3 2 (log t) w (2, ) k, (z) , W 2 (t, z) = k≥6 t νk 0≤ ≤ k-6 2 (log t) w (2, ) k, (z) , W (t, z) = k≥3 t νk 0≤ ≤ k-3 2 (log t) wk, (z) , A 0 (t, z) = k≥3 t νk 0≤ ≤ k-3 2 (log t) A 0 k, (z) ,
where w i k, , i = 1, 2, 3, and w Observe also that 8

(2, ) k, depend only on w k , , 3 ≤ k ≤ k and λ k , , 3 ≤ k ≤ k -3,
w 1 k, = νk + Λ w k, + ( + 1)w k, +1 + w 1 k, , w 1 k, = k1+k2=k, 1 + 2 = λ k2, 2 νk 1 w k1, 1 + ( 1 + 1)w k1, 1 +1 + k1+k2=k, 1 + 2 = (1 + νk 2 )λ k2, 2 + +( 2 + 1)λ k2, 2 +1 Λw k1, 1 , (2.4.20)
and that

w 3 k, = νk∂ z w k, + ( + 1)∂ z w k, +1 + w 3 k, , w 3 k, = k1+k2=k, 1 + 2 = λ k2, 2 νk 1 ∂ z w k1, 1 + ( 1 + 1)∂ z w k1, 1 +1 . (2.4.21)
In addition, one has 9

8 with the convention all along this section that λ k, = 0 and

w k, ≡ 0 if k < 3 or > k -3 2 •
9 One can for w 2 k, and w

(2, ) k,
give explicit expressions of the same type as for w 1 k, and w 3 k, , but to avoid needlessly burdening the text, we will not explicit them. 

w 2 k, (z) = z 2 ∂ 2 z w k, + νk νk + 1 -2z∂ z w k, + ( + 1) 2νk + 1 -2z∂ z w k, +1 + ( + 1)( + 2)w k, +2 + w 2 k, , (2.4 
L k w k, = F k, , 0 ≤ ≤ (k) (1 + νk)λ k, + ( + 1)λ k, +1 = -(1 + νk)w k, + ( + 1)w k, +1 z= 1 √ 2 + g k, .
(2.4.24)

Here L k refers to the operator

L k w = (2z 2 -1)w zz -4 z ν k + 6 z w z + 2 νk(1 + νk) - 6 z 2 w , (2.4.25)
and the source term F k, can be divided into a linear and a nonlinear parts as follows:

F k, = F lin k, + F nl k, , (2.4.26) 
where 

F lin k, = -2(2νk + 1) ( + 1)w k, +1 + 4 z ( + 1)(w k, +1 ) z -2( + 1)( + 2)w k, +2 , (2.4 
S k W k = F nl k (2.4.28)
where S k denotes the following matrix operator: 

               L k A k (0) + B(0, z)∂ z C(0) 0 . . . . . . . . . 0 L k A k (1) + B(1, z)∂ z C(
A k ( (k) -1) + B( (k) -1, z)∂ z . . . . . . . . . . . . . . . . . . L k                with A k ( ) = -2(2νk + 1) ( + 1) , B( , z) = 4z( + 1) , C( ) = -2( + 1)( + 2) , 10 F nl k, and g k, are identically null if k < 6 or > k-6 2 •
and

W k =         w k,0 . . . w k, . . . w k, (k)         , F nl k =         F nl k,0 . . . F nl k, . . . F nl k, (k)         .
Let us emphasize that we do not subject the above system to any Cauchy data as for the system (2.3.5) corresponding to the inner region. In order to solve uniquely (2.4.24), we shall take into account the matching conditions coming out from the inner region, namely we require that

w k, (z) = 0≤α≤ k-3 2 - β≥1-k+2(α+ ) c k, α,β (log z) α z β , as z → 0 , (2.4.29)
where c k, α,β = c k, α,β (λ) are given by (2.4.15). In view of (2.4.12), one can write F nl k, explicitely as follows:

F nl k, = F nl,1 k, + F nl,2 k, + F nl,3 k, + F nl,4 k, , (2.4.30) 
where

F nl,1 k, = -2 w (2, ) k, , (2.4.31) 
F nl,2 k, = j1+j2=k 1 + 2 = 6 (w j1, 1 ) z 1 z (w j2, 2 ) z + 1 z 2 wj2, 2 -2(w j1, 1 ) z w (2, ) j2, 2 + j1+j2=k 1 + 2 = 2 w 1 j1, 1 w 3 j2, 2 - 6 z 3 w j1, 1 wj2, 2 ,
(2.4.32)

F nl,3 k, = j1+j2+j3=k 1 + 2 + 3 = 2 w 1 j1, 1 w 3 j2, 2 (w j3, 3 ) z -(w j1, 1 ) z (w j2, 2 ) z w (2, ) j3, 3 + 3 j1+j2+j3=k 1 + 2 + 3 = (w j1, 1 ) z (w j2, 2 ) z -w 1 j1, 1 w 1 j2, 2 wj3, 3 z 2 + (w j3, 3 ) z z , (2.4.33) 
and

F nl,4 k, = - j1+j2=k 1 + 2 = A 0 j1, 1 (w j2, 2 ) zz . (2.4.34)
For our purpose, it will be useful to point out that according to (2.4.14), one also has:

F nl k, = F nl,1 k, + F nl,2 k, + F nl,3 k, , (2.4.35) 
where

F nl,1 k, = -2 w 2 k, , (2.4 
.36)

F nl,2 k, = j1+j2=k 1 + 2 = 6 (w j1, 1 ) z 1 z (w j2, 2 ) z + 1 z 2 wj2, 2 -2 (w j1, 1 ) z w 2 j2, 2 + j1+j2=k 1 + 2 = 2 w 1 j1, 1 (w 1 j2, 2 ) z - 6 z 3 w j1, 1 wj2, 2 ,
(2.4.37)

F nl,3 k, = - j1+j2+j3=k 1 + 2 + 3 = (w j1, 1 ) z (w j2, 2 ) z w 2 j3, 3 + w 1 j1, 1 w 1 j2, 2 (w j3, 3 ) zz + 2 j1+j2+j3=k 1 + 2 + 3 = w 1 j1, 1 (w 1 j2, 2 ) z (w j3, 3 ) z + 3 j1+j2+j3=k 1 + 2 + 3 = (w j1, 1 ) z (w j2, 2 ) z -w 1 j1, 1 w 1 j2, 2 wj3, 3 z 2 + (w j3, 3 ) z z • (2.4.38)

Analysis of the vector functions W k

Study of the linear system S k

In order to determine successively the solutions w k, of the recurrent system (2.4.28), let us under the above notations, start by investigating the homogeneous equation:

S k X = 0 . (2.4.39)
We infer that the following lemma holds:

Lemma 2.4.1. For j in 0, • • • , (k) , define (f j,± k, ) 0≤ ≤ (k) by f j,± k, (z) = j log 1 √ 2 ± z j- 1 √ 2 ± z α(ν,k) z 3 , (2.4.40) f j,± k, = 0 , for j + 1 ≤ ≤ (k) , where α(ν, k) = νk + 4.
Then denoting by 

f j,± k =           f j,± k,0 . . . f j,± k,j 0 . . . 0           , the vector functions (f j,± k ) 0≤j≤ (k) constitute
2 v tt -l ρ v = 0 , (2.4.41)
where

l ρ = ∂ 2 ρ + 6 ∂ ρ ρ + 1 ρ 2 • (2.4.42) Writing v(t, ρ) = tw(t, z) with z = ρ t
, we clearly get under notation (2.4.11)

Lw = 0.
Observe also that (2.4.41) is equivalent to

2(ρ 3 v) tt -(ρ 3 v) ρρ = 0 . (2.4.43) Set G(t, z) = t νk+1 log t + log 1 √ 2 ± z j 1 √ 2 ± z α(ν,k) z 3 • Since G(t, z) = log t √ 2 ± ρ j t √ 2 ± ρ α(ν,k) ρ 3 = F t √ 2 ± ρ ρ 3
, for some function F , we infer that G satisfies

L(t -1 G) = 0 .
This implies that

L t νk log t + log 1 √ 2 ± z j 1 √ 2 ± z α(ν,k) z 3 = 0 .
Since

t νk log t + log 1 √ 2 ± z j 1 √ 2 ± z α(ν,k) z 3 = t νk j =0 log t f j,± k, (z) , (2.4.44)
we obtain the result, recalling that

L t νk j =0 log t f j,± k, (z) = 0 ⇔ S k f j,± k = 0 .
Remark 2.4.1. Note that in view of the above lemma, the homogeneous equation

L k f = 0
admits the following basis:

         f 0,+ k,0 (z) = 1 √ 2 + z α(ν,k) z 3 , f 0,- k,0 (z) = 1 √ 2 -z α(ν,k) z 3 • (2.4.45)
Before concluding this section, let us collect some useful properties about the elements of the basis (f j,± k ) 0≤j≤ (k) given above. Lemma 2.4.2. Under the above notations, the following asymptotic expansions hold

[νk + Λ]f j,± k, (z) + ( + 1)f j,± k, +1 (z) = z νk 0≤α≤j-p∈N γ k p,α log z α z -p , as z → ∞ , (2.4.46) [z 2 ∂ 2 z + νk(νk + 1 -2z∂ z )] f j,± k, (z) + ( + 1) [2νk + 1 -2z∂ z ] f j,± k, +1 (z) + ( + 1)( + 2) f j,± k, +2 (z) = z νk-1 0≤α≤j-p∈N γk p,α log z α z -p , as z → ∞ , (2.4.47)
for any integer k ≥ 3 and all j, in 0, • • • , (k) , respectively for some constants γ k p,α and γk p,α .

Proof. In view of Formula (2.4.44), we have for large ρ

log ρ ± t √ 2 j ρ ± t √ 2 α(ν,k) ρ 3 = t νk+1 j =0 log t f j,± k, ρ t • (2.4.48)
Therefore taking the derivative of the above identity with respect to t, we deduce that

1 √ 2 j log ρ ± t √ 2 j-1 ρ ± t √ 2 α(ν,k)-1 ρ 3 + α(ν, k)(log ρ ± t √ 2 j ρ ± t √ 2 α(ν,k)-1 ρ 3 = t νk j =0 log t (νk + Λ)f j,± k, + ( + 1)f j,± k, +1 ρ t .
(2.4.49)

Performing the change of variables z = ρ t , we infer that

t νk √ 2 z ± 1 √ 2 α(ν,k)-1 z 3 j log t + log z ± 1 √ 2 j-1 + α(ν, k) log t + log z ± 1 √ 2 j = t νk j =0 log t (νk + Λ)f j,± k, + ( + 1)f j,± k, +1 (z) , (2.4.50)
which concludes the proof of (2.4.46).

Along the same lines taking the derivative with respect to t of (2.4.49) ensures Identity (2.4.47), which ends the proof of the lemma.

Study of the functions w k,

The goal of this paragraph is to prove by induction that the system (2.4.28) admits a solution satisfying the matching conditions (2.4.29) coming out from the inner region.

For that purpose, let us start by the following usefull lemma which stems from standard techniques of ordinary differential equations. For the sake of completeness and the convenience of the reader, we outline its proof in Appendix 2.8.4.

Lemma 2.4.3. Under the above notations 11 , the following properties hold:

• For any function g in C ∞ (R * + ), the equation L k f = g admits a unique solution f in C ∞ (R * + ) satisfying f 1 √ 2 = 0 • • For any function h in C ∞ ]0, 1 √ 2 ]
, any γ > 0, and any integer q, the equation

L k f (z) = 1 √ 2 -z γ log 1 √ 2 -z q h(z) (2.4.51)
admits a unique solution f of the form:

f (z) = 1 √ 2 -z γ+1 0≤ ≤q log 1 √ 2 -z h (z) ,
where for all 0 ≤ ≤ q, h is a function in

C ∞ ]0, 1 √ 2 ]
, provided that the exponent γ satisfies

νk + 4 -γ / ∈ N * . (2.4.52) • Let g be a function in C ∞ ]0, 1 √ 2 
[ with an asymptotic expansion at 0 of the form:

g(z) = (log z) α0 β≥β0 g β z β-2 ,
for some integers α 0 , β 0 , then any solution f of the equation

L k f = g (2.4.53) belongs to C ∞ ]0, 1 √ 2
[ and admits for z close to 0 an asymptotic expansion of the type:

f (z) = β≥-3 f 0,β z β + 1≤α≤α0 β≥β0 f α,β (log z) α z β ,
in the case when β 0 ≥ -1, and of the type

f (z) = β≥min(β0,-3) f 0,β z β + 1≤α≤α0 β≥β0 f α,β (log z) α z β + β≥max(β0,-3) f α0+1,β (log z) α0+1 z β ,
in the case when β 0 ≤ -2.

• If g denotes a function belonging to

C ∞ ] 1 √ 2
, ∞[ and admitting at infinity an asymptotic expansion of the form:

g(z) = 0≤α≤α0 p∈N ĝα,p (log z) α z A-p ,
for some real A < νk and some integer α 0 , then the equation

L k f = g (2.4.54) admits a unique solution f in C ∞ ] 1 √ 2 , ∞[ such that f (z) = 0≤α≤α0 p∈N f k α,p (log z) α z A-p , z → ∞ .
The key result of this paragraph is the following proposition:

Proposition 2.4.1. Under the above notations, the following properties hold:

1. Existence

The system (2.4.24) admits a solution (w k, , λ k, ) k≥3,0≤ ≤ (k) such that for any integer k ≥ 3 and any ∈ 0,

• • • , (k) , the function w k, belongs to C [α(ν,k)] R * + ∩ C ∞ R * + \ { 1 √ 2 }
, and has the form 12 :

w k, (z) = a reg k, (z) + 1 √ 2 -z kν+4 0≤α≤ k-3 2 - b reg k, ,α (z) log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) + 3≤β≤k-3 0≤α≤ k-6 2 - b reg k, ,α,β (z) 1 √ 2 -z βν+4 log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) , (2.4.55) 
where the function χ denotes the characteristic function, namely

     χ ]0, 1 √ 2 ] (z) = 1 for z ≤ 1 √ 2 and 
χ ]0, 1 √ 2 ] (z) = 0 for z > 1 √ 2 •
In addition, the following asymptotics hold:

w k, (z) = 0≤α≤ k-3 2 - β≥1-k+2(α+ ) d k, α,β (log z) α z β , as z → 0 , (2.4.56) with d k, 0,-2 = c k, 0,-2 (λ) , d k, 0,-3 = c k, 0,-3 (λ) , (2.4.57)
where c k, 0,β (λ) are the coefficients related to the matching conditions coming out from the inner region involved in Formula (2.4.15).

Moreover for z >

1 √ 2 , w k, can be splitted into two parts as follows:

w k, (z) = w nl k, + w lin k, , (2.4 

.58)

where the nonlinear part

w nl k, is null if k < 6 or > k -6 2
, and has in all other cases, as z tends to infinity, an asymptotic expansion of the form

w nl k, (z) = 3≤β≤k-3 0≤α≤ k-6 2 -, p∈N dk, α,β,p (log z) α z β ν+1-p + z νk+1 0≤α≤ k-3 2 -, p≥2 dk, α,k,p (log z) α z -p , (2.4.59)
for some constants dk, α,β,p , and where the linear part w lin k, is given by

w lin k, (z) = 0≤j≤ (k) α j,+ k f j,+ k, + α j,- k f j,- k, , (2.4 

.60)

for some constants α j,± k , where f j,± k = (f j,± k, ) 0≤j≤ (k) are the solutions of the homogeneous equation (2.4.39) introduced in Lemma 2.4.1.

Uniqueness

Let (λ k, ) k≥3,0≤ ≤ (k) be fixed, and let

(w 0 k, ) 3≤k≤M,0≤ ≤ (k) and (w 1 k, ) 3≤k≤M,0≤ ≤ (k) be two solutions of L k w k, = F k, (λ; w) , 3 ≤ k ≤ M , (2.4.61)
defined and C ∞ in a neighborhood of 0, with w i 5,1 ≡ 0 for i ∈ {0, 1}, and which have an asymptotic expansion of the form (2.4.56), as z tends to 0:

w i k, (z) = 0≤α≤ k-3 2 - β≥1-k+2(α+ ) d k, ,i α,β (log z) α z β . If d k, ,0 0,-2 = d k, ,1 0,-2 , d k, ,0 0,-3 = d k, ,1 0,-3 , (2.4.62) then w 0 k, = w 1 k, , for all 3 ≤ k ≤ M and all 0 ≤ ≤ (k). Similarly, if (w 0 k, ) 3≤k≤M,0≤ ≤ (k) and (w 1 k, ) 3≤k≤M,0≤ ≤ (k)
are two solutions of the equation (2.4.61) defined and C ∞ around +∞, with w i 5,1 ≡ 0 for i ∈ {0, 1}, and which satisfy as z tends to infinity: (2.4.66)

w i k, = 0≤j≤ (k) α j,+,i k f j,+ k, + α j,-,i k f j,- k, + 3≤β≤k-3 0≤α≤ k-6 2 -, p∈N dk, ,i α,β,p (log z) α z β ν+1-p + z νk+1 0≤α≤ k-6 2 -, p≥2 dk, ,i α,k,p (log z) α z -p , (2.4.63) then α j,±,0 k = α j,±,1 k , ∀ 3 ≤ k ≤ M and 0 ≤ j ≤ (k) , ( 2 
w k, (z) = 3≤β≤k-3 0≤α≤ k-6 2 -, p∈N w k, ,α,β,p (log z) α z β ν+1-p + z k ν+1 0≤α≤ k-3 2 - p∈N w k, ,α,p (log z) α z -p , as z → ∞ ,
In view of Remark 2.4.1, this implies that

     w k,0 = a k 0,+ f 0,+ k,0 (z) + a k 0,-f 0,- k,0 (z) for z ≤ 1 √ 2 , w k,0 = a k 0,+ f 0,+ k,0 (z) for z > 1 √ 2 , k = 3, 4, 5 , (2.4.67)
where a 3 0,+ = -a 3 0,-and where f 0,+ k,0 , f 0,-

k,0
denotes the basis of solutions associated to the operator L k given by (2.4.45). The coefficients a k 0,± are determined by (2.4.57):

             2(3ν + 4) 1 √ 2 3ν+3 a 3 0,+ = c 3,0 0,-2 , 1 √ 2 νk+4 a k 0,+ + a k 0,-= c k,0 0,-3 , (νk + 4) 1 √ 2 νk+3 a k 0,+ -a k 0,-= c k,0 0,-2 , k = 4, 5 .
(2.4.68)

Clearly the functions w k,0 , k = 3, 4, 5, satisfy properties (2.4.55)-(2.4.60).

Let us now consider the general case of any index k ≥ 6. To this end, we shall proceed by induction assuming that, for any integer 3 ≤ j ≤ k -1 and all 0 ≤ ≤ (j), (w j, , λ j, ) satisfies the conclusion of part (1) of Proposition 2.4.1.

The first step consists to establish the following lemma: Lemma 2.4.4. Assume that (w j, , λ j, ) 0≤ ≤ (j) is a solution of the system (2.4.24) with 3 ≤ j ≤ k -1, which satisfies (2.4.55), (2.4.56), (2.4.58), (2.4.59) and (2.4.60). Then F nl k, has the following form:

F nl k, (z) = f reg k, (z) + 1 √ 2 -z kν+6 0≤α≤ k-6 2 - f reg k, ,α (z) log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) + 3≤β≤k-3 0≤α≤ k-6 2 - f reg k, ,β,α (z) 1 √ 2 -z βν+3 log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) , (2.4.69)
and has the following asymptotic expansions respectively close to 0 and at infinity:

F nl k, (z) = 0≤α≤ k-6 2 - β≥1-k+2(α+ ) f k, ,α,β (log z) α z β-2 ,
(2.4.70) 2.4.65), then for any 6 ≤ j ≤ k + 2, w 1 j, admits the following asymptotic expansions as z → 0 and z → ∞: ), one sees that the function w 1 j, has asymptotic of the same form as w j, , as z tends to 0: 

F nl k, (z) = z kν-1 0≤α≤ k-6 2 - p∈N fk, ,α,p log z α z -p + 3≤β≤k-3 0≤α≤ k-6 2 -, p∈N
w 1 j, (z) = 0≤α≤ j-6 2 - β≥4-j+2(α+ ) w 1,0 j, ,α,β log z α z β , as z → 0 , (2.4.72) w 1 j, (z) = 0≤α≤ j-6 2 - 3≤β≤j-3, p≥0 w 1,∞ j, ,α,β,p log z α z βν+1-p , as z → ∞ . ( 2 
w 1 j, (z) = 0≤α≤ j-3 2 - β≥1-j+2(α+ ) w 1,0 j, ,α,β log z α z β . ( 2 
w 1 j, (z) = z jν 0≤α≤ j-3 2 - p∈N w 1,∞ j, ,α,j,p log z α z -p + 0≤α≤ j-6 2 - 3≤β≤j-3, p∈N w 1,∞ j, ,α,β,p log z α z νβ+1-p , ( 2.4.75) 
for any integer 3 ≤ j ≤ k -1.

The function w 2 j, can be analyzed along the same lines as w 1 j, . In particular, using Definition (2.4.22), one can show that under the assumptions of Lemma 2.4.4, for any 6 ≤ j ≤ k + 2, w 2 j, behaves in the same way as w 1 j, when z → 0 and z → ∞, namely we deduce, as we have done for w 1 j, , that w 2 j, has the same form as w j, , w 1 j, , as z → 0

w 2 j, (z) = 0≤α≤ j-6 2 - β≥4-j+2(α+ ) w 2,0 j, ,α,β log z α z β , as z → 0 , (2.4.76) w 2 j, (z) = 0≤α≤ j-6 2 - 3≤β≤j-3, p≥0 w 2,∞ j, ,α,β,p log z α z βν+1-p , as z → ∞ . ( 2 
w 2 j, (z) = 0≤α≤ j-3 2 - β≥1-j+2(α+ ) w 2,0 j, ,α,β log z α z β , (2.4.78)
and as z → ∞, one has:

w 2 j, (z) = z jν-1 0≤α≤ j-3 2 - p∈N w 2,∞ j, ,α,j,p log z α z -p + 0≤α≤ j-6 2 - 3≤β≤j-3, p∈N w 2,∞ j, ,α,β,p log z α z νβ+1-p , (2.4.79) for all 3 ≤ j ≤ k -1.
Next we address wj, . Writing

wj, = p≥1 j1+•••+jp=j 1 +•••+ p = (-1) p-1 z 1-p w j1, 1 • • • w jp, p , (2.4.80)
it is easy to check that if w j, , 3 ≤ j ≤ k -1, verify (2.4.56), (2.4.65) then the same is true for wj, , 3 ≤ j ≤ k -1, namely the functions wj, admit asymptotic expansions of the form: given by (2.4.23) that for

wj, (z) = 0≤α≤ j-3 2 - β≥1-j+2(α+ ) w0 j, ,α,β log z α z β , as z → 0 , ( 2 
any 6 ≤ j ≤ k + 2, w (2, ) j,
assumes the form:

f reg j, (z) + 3≤β≤j-3 0≤α≤ j-6 2 - 1 √ 2 -z βν+3 log 1 √ 2 -z α h reg α,β (z) χ ]0, 1 √ 2 ] (z) , (2.4.83) 
which means that (2.4.69) holds for F nl,1 k, .

Next consider F nl,i k, , i = 2, 3, respectively defined by (2.4.32) and (2.4.33). In view of (2.4.20) and (2.4.21), we deduce that w 1 j, and w 3 j, have the form (2.4.83) for any 6 ≤ j ≤ k + 2, and therefore the functions w 1 j, and w 3 j, can be written in the following way

f reg j, (z) + 1 √ 2 -z jν+3 0≤α≤ j-3 2 - log 1 √ 2 -z α h reg j, ,α (z) χ ]0, 1 √ 2 ] (z) + 3≤β≤j-3 0≤α≤ j-6 2 - 1 √ 2 -z βν+3 log 1 √ 2 -z α h reg j, ,α,β (z) χ ]0, 1 √ 2 
] (z) .

( given by (2.4.34). It follows from the definition of A 0 (see (2.4.10)) that, for all 3 ≤ j ≤ k -1, the function A 0 j, admits the same form as w j, :

A 0 j, (z) = A reg j, (z) + 1 √ 2 -z jν+4 0≤α≤ j-3 2 - log 1 √ 2 -z α A reg j, ,α (z) χ ]0, 1 √ 2 ] (z) + 3≤β≤j-3 0≤α≤ j-6 2 - 1 √ 2 -z βν+4 log 1 √ 2 -z α A reg j, ,α,β (z) χ ]0, 1 √ 2 
] (z) .

(2.4.85)

Furthermore by virtue of the required condition (2.4.19), the functions A 0 j, , 3 ≤ j ≤ k -1, vanish on z = 1 √ 2 , namely: 

(A 0 j, ) z= 1 √ 2 = 0 , ( 2 
S k X = F nl k , (2.4.87)
where S k is defined by (2.4.28) and

F nl k = F nl k, 0≤ ≤ (k) .
Then the following properties hold:

1. The system (2.4.87) has a unique solution X 0 = X 0, 0≤ ≤ (k) such that X 0, ≡ 0 for any

integer 1 (k) < ≤ (k), where 1 (k) = [ k -6 2 
] , and such that if ≤ 1 (k), then X 0, belongs to the functional space

C [kν+4] R * + ∩ C ∞ R * + \ { 1 √
2 } and has the following form:

X 0, (z) = X reg 0, (z) + 1 √ 2 -z kν+7 0≤α≤ k-6 2 - log 1 √ 2 -z α X reg 0, ,α (z) χ ]0, 1 √ 2 ] (z) + 3≤β≤k-3 0≤α≤ k-6 2 - 1 √ 2 -z βν+4 log 1 √ 2 -z α X reg 0, ,β,α (z) χ ]0, 1 √ 2 ] (z) , X 0, 1 √ 2 = 0 • (2.4.88)
Moreover, it admits an expansion of the form (2.4.56) as z → 0:

X 0, (z) = 0≤α≤ k-4 2 - β≥1-k+2(α+ ) X 0, ,α,β (log z) α z β , (2.4.89)
for some constants X 0, ,α,β .

2. The system (2.4.87) has a unique solution

X 1 = X 1, 0≤ ≤ (k) such that X 1, ≡ 0 for any integer 1 (k) < ≤ (k), and such that if ≤ 1 (k), then X 1, ∈ C ∞ ] 1 √ 2
, ∞[ with the following asymptotic as z → ∞:

X 1, (z) = z kν-1 0≤α≤ k-6 2 - p∈N X 1, ,α,p log z α z -p + 3≤β≤k-3 0≤α≤ k-6 2 -, p∈N X 1, ,α,β,p log z α z νβ+1-p , (2.4.90)
where X 1, ,α,p and X 1, ,α,β,p denote some constants.

Proof. In order to establish this lemma, we shall proceed by induction on the index . Since for any integer k ≥ 6, we have 

F nl k, ≡ 0 , 1 (k) < ≤ (k) , we get X 0, ≡ 0 , ∀ 1 (k) < ≤ (k) . Consider now L k X 0, 1 (k) = F nl k, 1 (k) . ( 2 
(k) in C [kν+4] R * + ∩ C ∞ R * + \ { 1 √ 2 }
which assumes the form (2.4.88) and admits asymptotic expansion of type (2.4.89), for z close to 0.

Let us assume now that for any integer < q ≤ 1 (k), the equation

L k X 0,q = F k,q
admits a unique solution X 0,q which satisfies (2.4.88) and (2.4.89). Then by virtue of Formula (2.4.27), we find that F lin k, undertakes the following form:

F lin k, (z) = F reg k, (z) + 1 √ 2 -z kν+6 0≤α≤ k-6 2 --1 log 1 √ 2 -z α F reg k, ,α (z) χ ]0, 1 √ 2 ] (z) + 3≤β≤k-3 0≤α≤ k-6 2 --1 1 √ 2 -z βν+3 log 1 √ 2 -z α F reg k, ,α,β (z) χ ]0, 1 √ 2 ] (z) , (2.4.92)
and behaves as follows close to 0: Therefore taking into account Lemma 2.4.3, we infer that the equation The proof of the second part of the lemma is also by induction on . First taking into account Lemma 2.4.3 together with Formula (2.4.71), we infer that the equation

F lin k, (z) = 0≤α≤ k-6 2 - β≥5-k+2(α+ ) F k, ,α,β (log z) α z β-2 , ( 2 
L k X 0, = F k, has a unique solution X 0, in C [kν+4] R * + ∩ C ∞ R * + \ { 1 √ 2 } which satisfies (2.
L k X 1, 1 (k) = F nl k, 1 (k) admits a unique solution X 1, 1 (k) which belongs to C ∞ ] 1 √ 2
, ∞[ and verifies (2.4.90). Then assuming that for any integer < q ≤ 1 (k), the equation

L k X 1,q = F k,q
admits a unique solution X 1,q which satisfies (2.4.90), we deduce that F lin k, defined by (2.4.27) has an expansion of the following form at infinity: 

F lin k, (z) = 3≤β≤k-3 0≤α≤ k-6 2 --1, p∈N Fk, ,α,β,p (log z) α z β ν+1-p + z k ν-1 0≤α≤ k-6 2 --1 p∈N F k, k, ,α,p (log z) α z -p , ( 2 
L k X 1, = F k, has a unique solu- tion X 1, in C ∞ ] 1 √ 2
, ∞[ admitting an asymptotic of the form (2.4.90) as z → ∞. This achieves the proof of the lemma.

We now return to the proof of Proposition 2.4.1. Taking advantage of Lemma 2.4.5 (1), we get

W k := w k, 0≤ ≤ k-3 2 by setting          W k = X 0 + 0≤j≤ (k) a k j,+ f j,+ k + a k j,-f j,- k for z ≤ 1 √ 2 , W k = X 0 + 0≤j≤ (k) a k j,+ f j,+ k for z > 1 √ 2 , (2.4.95)
where f j,± k 0≤j≤ (k) denotes the basis of solutions of S k X = 0 given by Lemma 2.4.1, where X 0 is given by Lemma 2.4.5 (1), and where in view of Formula (2.4.15) the coefficients a k j,± are determined by

       X 0, ,0,-3 + ≤j≤ (k) µ j, k,0 a k j,+ + a k j,-= c k, 0,-3 , X 0, ,0,-2 + ≤j≤ (k) µ j, k,1 a k j,+ -a k j,-= c k, 0,-2 , (2.4.96)
where respectively X 0, ,0,-3 and X 0, ,0,-2 , c k, 0,-3 and c k, 0,-2 , denote the coefficients involved in (2.4.89) and (2.4.15), 13 and where the coefficients µ j, k,0 and µ j, k,1 are defined so that

f j,+ k, (z) = µ j, k,0 z 3 + µ j, k,1 z 2 + O 1 z , as z → 0 • (2.4.97)
By virtue of (2.4.40), we easily deduce that

       µ j, k,0 = 1 √ 2 α(ν,k) j log 1 √ 2 j- µ j, k,1 = √ 2 α(ν, k) - j - log( √ 2) µ j, k,0 • (2.4.98) 
By Lemma 2.4.5 (2),

W k = X 1 + 0≤j≤ (k) α j,+ k f j,+ k, + α j,- k f j,- k, ,
with some coefficients α j,± k , which concludes the proof of the first part of Proposition 2.4.1.

In order to establish the part (2) of the proposition, we shall again proceed by induction. Firstly, let us investigate the uniqueness for the solutions to (2.4.61) near 0, and consider the indexes k = 3, 4 and 5. By the computations carried out in Section 2.4.1 (see (2.4.16)), we have in that case w i k,1 = 0 and Let us assume now that for any index k ≤ k 0 -1 ≤ M -1, the uniqueness for solutions to (2.4.61) near 0 holds under Hypothesis (2.4.62). Since F nl k0, (λ; w) only depends on w j, , j ≤ k 0 -3, this ensures that

L k w i k,0 = 0 , which implies that L k (w 0 k,0 -w 1 k,0 ) = 0 . Invoking Remark 2.
S k0 (W 0 k0 -W 1 k0 ) = 0 , (2.4.99)
where

W i k0 =         w i k0,0 . . . w i k0,
. . .

w i k0, (k0)         .
(2.4.100) 13 with the convention X 0, ,0,β = 0 if > 1(k) and c k,

0,-3 = 0 if = k-3 2 •
In order to prove that W 0 k0 = W 1 k0 , we shall proceed by induction on the index starting by (k 0 ). Taking into account (2.4.28) together with (2.4.101), we infer that L k0 (w 0 k0, (k0) -w 1 k0, (k0) ) = 0 .

Thanks to Lemma 2.4.1 and Condition (2.4.62), this implies that w 0 k0, (k0) = w 1 k0, (k0) .

Assume now that for any integer < q ≤ (k 0 ), we have on a neighborhood of 0

w 0 k0,q = w 1 k0,q .
Therefore in view of the definition of S k0 page 28, we find that

L k0 (w 0 k0, -w 1 k0, ) = 0 ,
which, due to Lemma 2.4.1 and Condition (2.4.62), easily ensures that

w 0 k0, = w 1 k0, .
This achieves the proof of the uniqueness for solutions to (2.4.61) near 0.

Secondly, let us investigate the uniqueness for solutions to (2.4.61) around +∞. Again, we shall proceed by induction starting with the indexes k = 3, 4 and 5. In that case, we have

L k w i k,0 = 0 ,
and the conclusion follows easily from (2.4.64). Now, assuming that the uniqueness holds under Hypothesis (2.4.64), for any index k ≤ k 0 -1 ≤ M -1, let us consider the index k 0 . Again, by the induction hypothesis, we have S k0 (W 0 k0 -W 1 k0 ) = 0 . This gives the result thanks to Lemma 2.4.1 and Condition (2.4.64), which ends the proof of the proposition.

Remark 2.4.3. By virtue of the uniqueness of the solutions to the system (2.4.24) near 0 established above, we readily gather from the matching conditions (2.4.29) coming out from the inner region that

d k, α,β = c k, α,β (λ) , ∀ k, , α, β.
(2.4.101)

Estimate of the approximate solution in the self-similar region

Under the above notations, set for any integer N ≥ 3

V (N ) ss (t, y) = y + λ (N ) (t)t -ν-1 W (N ) ss t, y t ν+1 λ (N ) (t) , u (N ) ss (t, ρ) = t ν+1 V (N ) ss t, ρ t ν+1 , (2.4.102)
with

W (N ) ss (t, z) = N k=3 t νk (k) =0 (log t) w k, z and λ (N ) (t) = t 1 + N k=3 (k) =0 λ k, t νk (log t) . (2.4.103)
The purpose of this paragraph is firstly to estimate the radial function V

(N ) ss defined by (2.4.102), in the self-similar region:

Ω ss := Y ∈ R 4 , t 1 -ν 10 ≤ |Y | ≤ 10 t -2 -ν , (2.4.104)
and secondly to study, for N sufficiently large, the remainder term.

Combining Identity (2.4.15) together with Lemma 2.4.1, we firstly get the following lemma: Lemma 2.4.6. There exist a positive constant C and a small positive time T = T (N ) such that the following L ∞ estimates hold, for any time 0 < t ≤ T :

• |α|-1 ∇ α (V (N ) ss (t, •) -Q) L ∞ (Ωss) ≤ C [t 3(ν-1 ) + t 3ν(1-2 ) ], ∀ |α| < 3ν + 4 , (2.4.105) • β ∇ α (V (N ) ss (t, •) -Q) L ∞ (Ωss) ≤ C [t 2ν+2(ν-1 ) + t (ν-1 )(N +1) + t ν+1+(3ν-1)(1-2 ) ], ∀ β ≤ |α| -2 and 1 ≤ |α| < 3ν + 4 .
(2.4.106)

In addition ∂ t V (N ) ss satisfies ∂ t V (N ) ss (t, •) L ∞ (Ωss) ≤ C t -2-ν [t 1+ν+2(ν-1 ) + t (1+3ν)(1-2 ) ] ,
(2.4.107)

∇ α ∂ t V (N ) ss (t, •) L ∞ (Ωss) ≤ C t -1 [t 3(ν-1 ) + t 3ν(1-2 ) ], ∀ 1 ≤ |α| < 3ν + 3 . ( 2 

.4.108)

Besides for any multi-index α of length |α| < 3ν + 3, the function14 

V (N ) ss,1 (t, y) := (∂ t u (N )
ss )(t, ρ) satisfies

• β ∇ α V (N ) ss,1 (t, •) L ∞ (Ωss) ≤ C t ν [t 3(ν-1 ) + t 3ν(1-2 ) ], ∀ β ≤ |α| -1 , • α ∇ α V (N ) ss,1 (t, •) L ∞ (Ωss) ≤ C [t 3ν-2 1 + t 3ν(1-2 ) ] (2.4.109) ∂ t V (N ) ss,1 (t, •) L ∞ (Ωss) ≤ C t -1 [t 3ν-2 1 + t 3ν(1-2 ) ] .
(2.4.110)

Finally for any multi-index α of length |α| < 3ν + 2 and any integer β ≤ |α|, we have

• β ∇ α V (N ) ss,2 (t, •) L ∞ (Ωss) ≤ C [t 2ν+2(ν-1 ) + t ν+1+(3ν-1)(1-2 ) ] , (2.4.111) 
where

V (N ) ss,2 (t, y) = t ν+1 (∂ 2 t u (N ) ss )(t, ρ).
In the same spirit as Lemma 2.3.3, we have the following result.

Lemma 2.4.7. The following L 2 estimates hold for all 0 < t ≤ T :

∇ α (V (N ) ss (t, •) -Q) L 2 (Ωss) ≤ C [t ν|α|-1 (|α|-2) + t (ν-1 )(N +|α|-3) , + t ν|α|-2 (3ν+3-|α|) ] , ∀ 1 ≤ |α| < 3ν + 4 + 1 2 , (2.4.112) ∇ α (V (N ) ss,1 )(t, •) L 2 (Ωss) ≤ C t ν(|α|+1) [t -1 |α| + t -2 (3ν+2-|α|) ] , ∀ 0 ≤ |α| < 3ν + 3 + 1 2 , (2.4.113) ∇ α (V (N ) ss,2 )(t, •) L 2 (Ωss) ≤ C t ν(|α|+2) [t -1 |α| + t -2 (3ν+1-|α|) (1 + t 3ν-2 2 ) )] , ∀ 0 ≤ |α| < 3ν + 2 + 1 2 • (2.4.114)
Let us now consider the remainder

R (N ) ss (t, y) := (2.3.3)V (N ) ss (t, y) .
Clearly,

R (N ) ss (t, y) = t ν+1 λ (N ) (t) R (N ) ss t, y t ν+1 λ (N ) (t) , where R (N ) ss (t, z) = (2.4.7)W (N ) ss (t, z) .
By construction,

R (N ) ss (t, z) = k≥N +1 ≤ k-6 2 t νk (log t) r k, (z) with r k, (z) = F nl k, (W (N ) ss , λ (N ) ) .
In view of computations carried out in Section 2.4.1, we have

r k, (z) = r reg k, (z) + 1 √ 2 -z kν+6 0≤α≤ k-6 2 - r reg k, ,α (z) log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) + 3≤β≤k-3 0≤α≤ k-6 2 - r reg k, ,α,β (z) 1 √ 2 -z βν+2 log 1 √ 2 -z α χ ]0, 1 √ 2 ] (z) • (2.4.115)
Furthermore, as z → 0 and as z → ∞, r k, satisfies (2.4.70), (2.4.71) respectively.

As a direct consequence of these properties, we obtain the following lemma:

Lemma 2.4.8. There exist a small positive time T = T (N ) and a positive constant C N such that for all 0 < t ≤ T , the remainder term R (N ) ss satisfies the following estimate

• 3 2 R (N ) ss (t, •) H K 0 (Ωss) ≤ C N [t (ν-1 )(N -3 2 ) + t ν(1-2 )(N +1)-5 2 (ν+1) ] ,
(2.4.116)

where

K 0 = [3ν + 5 2 ]•
Let us end this section by investigating

V (N ) in -V (N ) ss
in the intersection of the inner and self-similar regions, namely in

Ω in ∩ Ω ss = Y ∈ R 4 , t 1 -ν 10 ≤ |Y | ≤ t 1 -ν •
In view of (2.4.15), (2.4.55) and Remark 2.4.3, we have for any multi-index α and any integer m

∂ α y ∂ m t (V (N ) in -V (N ) ss )(t, y) t 2ν(N +1)-m y 2N -|α| + t -m y -N -|α| ,
provided that y belongs to Ω in ∩ Ω ss , and t is sufficiently small, which leads to the following result:

Lemma 2.4.9. For any integer m and any multi-index α, the following estimate holds

∇ α ∂ m t (V (N ) in -V (N ) ss )(t, •) L ∞ (Ωin∩Ωss) ≤ C N,α,m t -m+|α|(ν-1 ) t 2ν+2N 1 + t N (ν-1 ) , ( 2 

.4.117)

for all 0 < t ≤ T = T (α, m, N ).

Approximate solution in the remote region 2.5.1 General scheme of the construction of the approximate solution in the remote region

In the previous section, we built in the self-similar region an approximate solution u

(N ) ss which extends the approximation solution u (N ) in constructed in Section 2.3 in the inner region. Our goal here is to extend u (N ) ss to the whole space.

Recall that the approximate solution u (N ) ss built in in Section 2.4 assumes the following form:

u (N ) ss (t, ρ) = ρ + λ (N ) (t) N k=3 t νk (k) =0 log t w k, ρ λ (N ) (t)
,

where (k) = k -3 2
, and where λ (N ) (t) is the perturbation of t defined by (2.4.103).

To achieve our goal, let us start by introducing the function u lin,(N ) defined by

u lin,(N ) (t, ρ) := t N k=3 t νk (k) =0 log t w lin k, ρ t , ( 2.5.1) 
where w lin k, denotes the linear part of the function w k, involved in the asymptotic expansion (2.4.18) and given by (2.4.60).

The function u lin,(N ) solves the Cauchy problem:

     (2∂ 2 t -l ρ ) u lin,(N ) = 0 u lin,(N ) |t=0 = u lin,(N ) 0 (∂ t u lin,(N ) ) |t=0 = u lin,(N ) 1 , (2.5.2)
where l ρ is defined by (2.4.42), and where

             u lin,(N ) 0 (ρ) = N k=3 (k) =0 µ 0 k, ρ k ν+1 log ρ , u lin,(N ) 1 (ρ) = N k=3 (k) =0 µ 1 k, ρ k ν log ρ , (2.5.3)
with under notations (2.4.60)

   µ 0 k, = α ,+ k + α ,- k , µ 1 k, = 1 √ 2 (νk + 4) α ,+ k -α ,- k + ( + 1) α +1,+ k -α +1,- k , ( 2 
.5.4) using again the convention that α +1,±

k = 0 if + 1 > k -3 2 •
Indeed, combining (2.4.60) together with (2.5.1), we infer that

u lin,(N ) (t, ρ) = N k=3 t νk+1 (k) =0 log t 0≤j≤ k-3 2 α j,+ k f j,+ k, ρ t + α j,- k f j,- k, ρ t •
Taking advantage of (2.4.44), this gives rise to

u lin,(N ) (t, ρ) = N k=3 t νk+1 0≤j≤ k-3 2 α j,+ k log t + log ρ t + 1 √ 2 j ρ t + 1 √ 2 νk+4 ρ t 3 + α j,- k log t + log ρ t - 1 √ 2 j ρ t -1 √ 2 νk+4 ρ t 3 = N k=3 0≤j≤ k-3 2 α j,+ k log ρ + t √ 2 j ρ + t √ 2 νk+4 ρ 3 + α j,- k log ρ - t √ 2 j ρ -t √ 2 νk+4 ρ 3
, which ensures the result.

Let now χ 0 be a radial smooth cutoff function on R 4 equal to 1 on the unit ball centered at the origin and vanishing outside the ball of radius 2 centered at the origin, and consider for a small positive real number δ, the compact support functions: 3) together with (2.5.5), we infer that there15 is δ 0 (N ) > 0 such that for all positive real δ ≤ δ 0 (N ) and any integer m < 3ν + 2, the above functions g 0 and g 1 belong respectively to the Sobolev spaces Ḣm+1 (R 4 ) and Ḣm (R 4 ), and satisfy

g 0 (ρ) = χ δ (ρ) u lin,(N ) 0 (ρ) , g 1 (ρ) = χ δ (ρ) u lin,(N ) 1 (ρ) , ( 2 
g 0 Ḣm+1 (R 4 ) ≤ C δ 3ν-m+2 and g 1 Ḣm (R 4 ) ≤ C δ 3ν-m+2 .
We shall look for the solution in the remote region under the form:

u out (t, ρ) = ρ + g 0 (ρ) + tg 1 (ρ) + k≥2 t k g k (ρ) . (2.5.6)
To this end, we shall apply the lines of reasoning of Sections 2.3 and 2.4 and determine by induction the functions g k , for k ≥ 2, making use of the fact that the function u out is a formal solution to the Cauchy problem:

   (2.1.8) u out = 0 u out|t=0 = ρ + g 0 (∂ t u out ) |t=0 = g 1 .
(2.5.7)

For that purpose, we substitute (2.5.6) into (2.1.8), which by straightforward computations leads to the following recurrent relation for k ≥ 2

g k = 1 k(k -1)(2 + 2(g 0 ) ρ + (g 0 ) 2 ρ ) H k g j , j ≤ k -1 • (2.5.8)
The source term H k involved in the above identity can be splitted into three parts as follows:

H k = H (1) k + H (2) k + H (3)
k , (2.5.9) with H

(1)

k = l ρ g k-2 , (2.5.10) H (2) k = -2 k1+k2=k k2>0 k 1 (k 1 -1 -k 2 )g k1 (g k2 ) ρ + 6 k1+k2=k-2 -g k1 ǔk2 ρ 3 + (g k1 ) ρ ǔk2 ρ 2 + (g k2 ) ρ ρ , (2.5.11) 
H (3) k = k1+k2+k3=k k 1 k 2 -g k1 g k2 (g k3 ) ρρ + 2g k1 (g k2 ) ρ (g k3 ) ρ -3g k1 g k2 ǔk3 ρ 2 + (g k3 ) ρ ρ - k1+k2+k3=k 2≤k1<k k 1 (k 1 -1)g k1 (g k2 ) ρ (g k3 ) ρ + 3 k1+k2+k3=k-2 (g k1 ) ρ (g k2 ) ρ ǔk3 ρ 2 + (g k3 ) ρ ρ , (2.5.12)
where ǔk is given by

ǔ = u -ρ 1 + u-ρ ρ = k≥0 t k ǔk • (2.5.13)
Note that ǔk only depends on g ki , with k i ≤ k.

Analysis of the fuctions g k

The aim of the present paragraph is to investigate the fuctions g k defined above by (2.5.8)-(2.5.12). To this end, let us start by introducing the following definition.

Definition 2.5.1. We denote by A the set of functions a in C ∞ (R * + ) supported in {0 < ρ ≤ 2δ}, where δ is the positive parameter introduced in (2.5.5), and admitting for ρ < δ an absolutely convergent expansion of the form: Our aim now is to establish the following key result which describes the behavior of the functions g k .

a(ρ) = j≥3 0≤ ≤ j-3 2 a j, ρ νj log ρ . ( 2 

Lemma 2.5.1.

There exists δ 0 (N ) > 0 such that for all positive real δ ≤ δ 0 (N ), we have, under the above notations, for any integer k

g k ∈ ρ 1-k A .
Proof. Firstly note that in view of (2.5.3) and (2.5.5), g 0 ∈ ρ A and g 1 ∈ A for any δ > 0, and there exists δ 0 (N ) > 0 such that

1 1 + (1 + (g 0 ) ρ ) 2 A ⊂ A , 1 1 + g 0 ρ A ⊂ A , (2.5.16) 
for any δ ≤ δ 0 (N ).

Let us now show that for any δ ≤ δ 0 (N ), g k ∈ ρ 1-k A, for all k ≥ 2. To this end, we shall proceed by induction assuming that, for any integer j ≤ k -1, the function g j belongs to ρ 1-j A.

Recalling that

l ρ v = v ρρ + 6 v ρ 2 + v ρ ρ ,
we infer taking into account (2.5.15) that the function H

k given by (2.5.10) belongs to ρ 1-k A.

Since ǔk is defined by

ǔ = u -ρ 1 + u-ρ ρ = k≥0 t k ǔk ,
it readily follows from the induction hypothesis that for any integer j ≤ k-1, ǔj belongs to the functional space ρ 1-j A.

Combining the fact that A is an algebra together with (2.5.15) and (2.5.16), we deduce that the function H

(2) k defined by (2.5.11) belongs to ρ 1-k A.

Along the same lines, taking into account (2.5.11), we readily gather that H

(3) k ∈ ρ 1-k A. This concludes the proof of the result thanks to (2.5.8), (2.5.9) and (2.5.16).

Remark 2.5.3. Combining Definition 2.5.1 together with Lemma 2.5.1, we infer that for any integer k, the function g k involved in the asymptotic formula (2.5.6) admits an absolutely convergent expansion of the form:

g k (ρ) = ρ 1-k j≥3 0≤ ≤ j-3 2 a k j, ρ νj log ρ , ( 2.5.17) 
for ρ < δ, with some coefficients a k j, satisfying

a 0 j, = µ 0 j, , a 1 j, = µ 1 j, if 3 ≤ j ≤ N and a 0 j, = a 1 j, = 0 if j ≥ N + 1 .
(2.5.18)

Estimate of the approximate solution in the remote region

Under the above notations, set for any integer N ≥ 3 

u (N ) out (t, ρ) = ρ + N k=0 t k g k (ρ) , V (N ) out (t, y) = t -(ν+1) u (N ) out (t,
Ω out := Y ∈ R 4 , y = |Y | ≥ t -2 -ν .
Lemma 2.5.2. For any multi-index α, there exists δ 0 (α, N ) > 0 such that for all positive real number δ ≤ δ 0 (α, N ), we have

• |α| ∇ α (V (N ) out (t, •) -Q) L ∞ (Ωout) ≤ C α t -(ν+1) δ 3ν+1 , (2.5.20) • |α|-1 ∇ α (V (N ) out (t, •) -Q) L ∞ (Ωout) ≤ C α δ 3ν , (2.5.21) • β ∇ α (V (N ) out (t, •) -Q) L ∞ (Ωout) ≤ C α,β t 3ν(ν+1) + t ν+1 , ∀ β ≤ |α| -2 , (2.5.22) ∂ t V (N ) out (t, •) L ∞ (Ωout) ≤ C t -(ν+2) δ 3ν+1 , ( 2 
.5.23)

• |α| ∇ α V (N ) out,1 (t, •) L ∞ (Ωout) ≤ C α δ 3ν , ( 2 
.5.24)

• β ∇ α V (N ) out,1 (t, •) L ∞ (Ωout) ≤ C α,β t 3ν(ν+1) + t ν+1 , ∀ β ≤ |α| -1 , (2.5.25) ∂ t V (N ) out,1 (t, •) L ∞ (Ωout) ≤ C t -1 δ 3ν ,
(2.5.26)

• β ∇ α V (N ) out,2 (t, •) L ∞ (Ωout) ≤ C α,β t 3ν(ν+1) + δ 3ν-1 t ν+1 , ∀ β ≤ |α| , (2.5.27)
for all 0 < t ≤ T with T = T (α, δ, N ), and where

V (N ) out,1 (t, y) := (∂ t u (N ) out )(t, ρ) , V (N ) out,2 (t, y) := t ν+1 (∂ 2 t u (N ) out )(t, ρ) .
Besides, for any multi-index |α| ≥ 1

∇ α ∂ t V (N ) out (t, •) L ∞ (Ωout) ≤ C α t -1 δ 3ν , (2.5.28)
for all 0 < t ≤ T .

Denote

Ω x out := x ∈ R 4 , |x| ≥ t 1-2 .
(2.5.29)

One has the following estimates in L 2 framework: Lemma 2.5.3. Under the above notations, the following estimates occur for any 0 < δ ≤ δ 0 (α, N ) and all 0 < t ≤ T = T (α, δ, N ):

∇ α x u (N ) out (t, •) -t ν+1 Q • t ν+1 -g 0 L 2 (Ω x out ) ≤ C α t(1 + t (1-2 )(3ν+2-|α|) ), ∀ |α| ≥ 1, ∇ α x ∂ t u (N ) out (t, •) -g L 2 (Ω x out ) ≤ C α t(1 + t (1-2 )(3ν+2--|α|) ), ∀ |α| ≥ 0, for all = 1, 2.
Remark 2.5.4. Combining Formula (2.5.19) with Lemma 2.5.3, we infer that

V (N ) out (t, •) satisfies, for all 0 < t ≤ T ∇ α (V (N ) out (t, •) -Q) L 2 (Ωout) ≤ C α t (|α|-3) (ν+1) [δ 3ν+3-|α| + t (1-2 )(3ν+3-|α|) ], ∀α ≥ 1 ,
(2.5.30)

∇ α V (N ) out, (t, •) L 2 (Ωout) ≤ C α t (|α|-3+ ) (ν+1) [δ 3ν+3--|α| + t (1-2 )(3ν+3--|α|) ], ∀α ≥ 0, (2.5.31)
for all = 1, 2.

Let us now consider the remainder

R (N ) out := (2.3.3)V (N )
out .

(2.5.32)

We have R

(N ) out (t, y) = t ν+1 R (N ) out (t, t ν+1 y) where R (N ) out (t, y) = [(2.1.8)u (N )
out ](t, t ν+1 y) . It follows readily from the proof of Lemma 2.5.1 that

| • | 3 2 ∇ α x R (N ) out (t, •) L 2 (Ω x out ) ≤ C α,N t N -1-(1-2 )(|α|+N -3ν-7 2 ) , (2.5.33)
for any |α| ≥ 0, provided that N ≥ 3ν + 7 2 which leads to the following lemma: Lemma 2.5.4. For any multi-index α, the following estimate holds :

• 3 2 ∇ α R (N ) out (t, •) L 2 (Ωout) ≤ t 2 N -5 2 (ν+1) , (2.5.34) for all 0 < t ≤ T = T (α, δ, N ), provided that N ≥ 3ν + 7 2 • We next investigate V (N ) out -V (N ) ss
in Ω out ∩ Ω ss . Assuming ρ < δ, and rewriting u

(N ) out in terms of the variable z = ρ λ (N ) (t)
, we get:

u (N ) out (t, ρ) = λ (N ) (t) z + N k=3 0≤ ≤ k-3 2 t νk (log t) 3≤β≤k-3 0≤α≤ k-6 2 -, p≥0 w out k, ,α,β,p (log z) α z νβ+1-p + z νk+1 0≤α≤ k-3 2 -, p≥0 w out k, ,α,p (log z) α z -p ,
with some coefficients w out k, ,α,β,p , w out k, ,α,p that can be expressed explicitly in terms of the coefficients (λ j, ), for 3 ≤ j ≤ N, 0 ≤ ≤ (j) and of the constants (a k j, ), k ≥ 0, j ≥ 3, 0 ≤ ≤ (j) introduced in Remark 2.5.3.

In particular

w out k, ,α,p = α + α a p k,α+ , (2.5.35) for all k ≥ 3, ≤ k -3 2 , α ≤ k -3 2 -, p ≥ 0•
Combining (2.5.4), (2.5.18) with (2.5.35), we infer that 0≤j≤ (k)

α j,+ k f j,+ k, + α j,- k f j,- k, = 0≤α≤ j-3 2 - p=0,1 z νk+1-p (log z) α w out k, ,α,p + O(z νk-1 (log z) (j)-) ,
as z → 0, which by Proposition 2.4.1 (2) (uniqueness around infinity) implies that w out k, ,α,β,p = w k, ,α,β,p , w out k, ,q,p = w k, ,q,p , (2.5.36)

for any 3 ≤ k ≤ N , 0 ≤ ≤ (k), 0 ≤ α ≤ k-6 2 -, 0 ≤ q ≤ k-3 2 -, 3 ≤ β ≤ k -3, p ≥ 0,
where w k, ,α,β,p , w k, ,q,p are the coefficients involved in (2.4.65).

As a direct consequence of (2.5.36), we obtain Lemma 2.5.5. For any multi-index α ∈ N 4 and any integer m, we have

∂ m t ∇ α (V (N ) out -V (N ) ss )(t, •) L ∞ (Ωout∩Ωss) ≤ t -m-ν+|α|(ν+ 2 ) t 2 N + t -2 +(1-2 )νN , (2.5.37)
for all 0 < t < T = T (α, m, N ).

Approximate solution in the whole space

Let Θ be a radial function in D(R) satisfying

Θ(ξ) = 1 if |ξ| ≤ 1 4 0 if |ξ| ≥ 1 2 • Set V (N ) (t, y) := Θ y t ν-1 V (N ) in )(t, y) + Θ y t ν+ 2 -Θ y t ν-1 V (N ) ss )(t, y) + 1 -Θ y t ν+ 2 V (N ) out )(t, y) , u (N ) (t, ρ) := t ν+1 V (N ) t, ρ t ν+1 • (2.6.1)
Proof. As mentioned above, for any t 1 sufficiently small, the initial data (u (N ) (t 1 , •), ∂ t u (N ) (t 1 , •)) belongs to X K0+2 , and thus satisfy the hypothesis of Theorem 2.1.1. By construction u (N ) (t, ρ) -ρ is compactly supported. Thus, to prove Proposition 2.7.1, it is enough to show that there exists a time T = T (δ, N ) > 0 such that the solution to the Cauchy problem (2.7.4) satisfies the energy estimate (2.7.5), for any time t 1 ≤ t < min T (δ, N ), T * , where T * is the maximal time of existence. This will be achieved in two steps:

1. First writing u(t, x) = t ν+1 V (t, y), V (t, y) = V (N ) (t, y) + ε (N ) (t, y), with y = x t ν+1
, x ∈ R 4 , we derive the equation satisfied by the remainder term ε (N ) . We next set

ε (N ) (t, y) = H(y) r (N ) (t, y) ,
where H is the function defined by (2.2.8), and rewrite the obtained equation in terms of r (N ) . As we will see later, the equation for r (N ) involves the operator L introduced in (2.2.10).

2. We deduce the desired result (inequalities (2.7.5)) by suitable energy estimates by making use of the behavior of the approximate solution u (N ) described by Lemmas 2.6.1, 2.6.2, and the spectral properties of the operator L which turns out to be close to the Laplace operator.

In order to make notations as light as possible, we shall omit in the sequel the dependence of the functions ε (N ) and r (N ) on N .

Denote by

V 1 (t, y) : = a(t) V t (t, y) + a (t) ΛV (t, y) = u t (t, x) (2.7.6) V 2 (t, y) : = a(t) (V 1 ) t (t, y) -a (t) (y • ∇V 1 )(t, y) = t ν+1 u tt (t, x) , (2.7.7) 
with a(t) = t ν+1 and ΛV = V -y • ∇V .

By straightforward computations, we readily gather that the quasilinear wave equation (2.1.6) multiplied by a(t) undertakes the following form in terms of the function V with respect to the variables (t, y) = t, x t 1+ν

(1 + |∇V | 2 )V 2 -2(∇V • ∇V 1 )V 1 -(1 -V 2 1 + |∇V | 2 ) ∆V + 4 j,k=1 V yj V y k ∂ 2 yj y k V + 3 V (1 -V 2 1 + |∇V | 2 ) = 0 • (2.7.8)
Thus recalling that the approximate solution V (N ) satisfies (2.7.8) up to a remainder term R (N ) , we infer that saying that the function u solves the equation (2.1.6) u = 0 is equivalent to say that the remainder term ε satisfies the following equation:

(1 + |∇V | 2 ) ε 2 -Lε -2V 1 ∇V • ∇ε 1 + (V 2 1 -|∇ε| 2 ) ∆ε + 4 j,k=1 ε yj ε y k ∂ 2 yj y k ε + F + R (N ) = 0 , (2.7.9)
where

ε 2 = a(t) (ε 1 ) t -a (t) (y • ∇ε 1 ) , ε 1 = a(t) ε t + a (t) Λε , (2.7.10)
with L the linearized operator introduced in (2.1.16):

Lε = ∆ε + 3 3 y • ∇Q ∇Q |y| 2 - 2 ∇Q Q • ∇ε + 3 1 + |∇Q| 2 Q 2 ε ,
and where the term F is given by:

F = (|∇V | 2 -|∇V (N ) | 2 ) V (N ) 2 -2 (V 1 ∇V -V (N ) 1 ∇V (N ) ) • ∇V (N ) 1 + (V 2 1 -(V (N ) 1 ) 2 )∆V (N ) - 3 V V (N ) V 2 1 V (N ) -(V (N ) 1 ) 2 V + 3 1 V (N ) |∇V | 2 -|∇V (N ) | 2 - 2 Q ∇Q • ∇ε -3 ε (1 + |∇V | 2 ) V V (N ) - (1 + |∇Q| 2 ) Q 2 -9 (|∇V (N ) | 2 -|∇Q| 2 ) y • ∇ε |y| 2 -9 y • ∇V (N ) |y| 2 |∇ε| 2 .
Next, set ε(t, y) = H(y) r(t, y) , (2.7.11) with

H = (1 + |∇Q| 2 ) 1 4 Q 3 2 • (2.7.12)
Let us emphasize that in view of Lemma 2.2.1, the above function H enjoys the following property: for any multi-index α in N 4 , there exists a positive constant C α such that, for any y in R 4 the following estimate holds 1

C α y 3 2 +|α| ≤ | ∇ α H(y)| ≤ C α y 3 2 +|α| • (2.7.13)
Now in light of the definitions introduced in (2.7.10), we have

ε 1 (t, y) = H(y) r 1 (t, y) , ε 2 (t, y) = H(y) r 2 (t, y) ,
where

r 1 = a r t + a Λr -a y • ∇H H r , r 2 = a (r 1 ) t -a y • ∇r 1 -a y • ∇H H r 1 • (2.7.14)
Thus taking advantage of (2.7.9), we readily gather that the remainder term r given by (2.7.11) satisfies

(1 + |∇V | 2 ) r 2 + (1 + |∇Q| 2 ) Lr - 2V 1 H ∇V • ∇(Hr 1 ) + (V 2 1 -|∇(Hr)| 2 ) ∆r - 2V 1 H ∇V • ∇(Hr 1 ) + V 2 1 -|∇(Hr)| 2 H [∆, H] r + 4 j,k=1
(Hr) yj (Hr)

y k ∂ 2 yj y k r + 4 j,k=1 (Hr) yj (Hr) y k H [∂ 2 yj y k , H]r + F H + R (N ) H = 0 , (2.7.15)
where [A, B] = AB -BA denotes the commutator of the operators A and B, and where

L = - 1 H(1 + |∇Q| 2 ) LH • (2.7.16)
Let us recall that in view of (2.2.10) L = -q ∆ q + P ,

with q = 1 (1 + |∇Q| 2 ) 1 2
, and P a radial C ∞ function which satisfies

P = - 3 8ρ 2 1 + •(1) ,
as ρ tends to infinity.

Now dividing the equation at hand by (1 + |∇V |

2 ), we infer that the function r solves the following equation:

r 2 + 1 + |∇Q| 2 1 + |∇V | 2 Lr - 2 V 1 1 + |∇V | 2 ∇V • ∇r 1 + V 2 1 -|∇(Hr)| 2 1 + |∇V | 2 ∆r + 1 1 + |∇V | 2 4 j,k=1 (Hr) yj (Hr) y k ∂ 2 yj y k r + F + R (N ) = 0 , (2.7.17)
where .7.18) and

R (N ) := R (N ) (1 + |∇V | 2 ) H , ( 2 
F := F (1 + |∇V | 2 ) H - 2V 1 (1 + |∇V | 2 ) H ∇V • (∇H) r 1 + V 2 1 -|∇(Hr)| 2 (1 + |∇V | 2 ) H [∆, H] r + 4 j,k=1
(Hr) yj (Hr)

y k (1 + |∇V | 2 ) H [∂ 2 yj y k , H]r • (2.7.19)
Note that we split Equation (2.7.15) into a first part which behaves as a quasilinear wave equation and a second part depending only on the remainder term r and its first derivatives. This achieves the goal of the first step.

The proof of energy inequalities (2.7.5) is based on suitable priori estimates. These priori estimates are established by combining the key properties of the operator L stated page 18 (and established in Appendix 2.8.2) together with the asymptotic formula (2.2.4) as well as some properties of the approximate solution V (N ) . We shall argue by bootstrap argument by proving the following key result: Lemma 2.7.1. There is N 0 in N such that for any integer N ≥ N 0 , there exists T = T (N, δ) > 0 such that for any t 1 ∈]0, T ], and any t 2 ∈ [t 1 , T ] the following property holds. 

If we have for all time

t in [t 1 , t 2 ], r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) ≤ t 2N , (2.7.20) then r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) ≤ C N t 2N , ( 2 
L M r 2 + 1 + |∇Q| 2 1 + |∇V | 2 L M +1 r - 2 V 1 1 + |∇V | 2 ∇V • ∇L M r 1 + V 2 1 -|∇ε| 2 1 + |∇V | 2 ∆L M r + 1 1 + |∇V | 2 4 j,k=1 (Hr) yj (Hr) y k ∂ 2 yj y k (L M r) + F M + L M R (N ) = 0 , (2.7.22) 
with

F M = L M F + G M ,
where

G M := L M , 1 + |∇Q| 2 1 + |∇V | 2 Lr -2 L M , V 1 1 + |∇V | 2 ∇V • ∇ r 1 + L M , V 2 1 -|∇ε| 2 1 + |∇V | 2 ∆ r + 4 j,k=1
L M , (Hr) yj (Hr) 

y k 1 + |∇V | 2 ∂ 2 yj y k r . ( 2 
(I) + (II) + (III) + (IV ) = -a -1 (t) R 4 r 1 F + R (N ) + (L M r 1 ) F M + L M R (N ) (t, y) dy , with (I) = a -1 (t) R 4 r 2 r 1 + L M r 2 L M r 1 (t, y) dy , (II) = a -1 (t) R 4 1 + |∇Q| 2 1 + |∇V | 2 (Lr) r 1 + (L M +1 r) (L M r 1 ) (t, y) dy , (III) = -2a -1 (t) R 4 V 1 1 + |∇V | 2 ∇V • (∇r 1 ) r 1 + (∇L M r 1 ) (L M r 1 ) (t, y) dy and (IV ) = a -1 (t) 4 i,j=1 R 4 g i,j ∂ 2 yiyj r r 1 + (∂ 2 yiyj L M r) (L M r 1 ) (t, y) dy ,
where for all 1 ≤ i, j ≤ 4 the coefficients g i,j in the latter integral are defined by

g i,j = V 2 1 -|∇ε| 2 1 + |∇V | 2 δ i,j + (Hr) yi (Hr) yj 1 + |∇V | 2 , (2.7.25)
and obviously satisfy the symmetry relations g i,j = g j,i .

Firstly, let us investigate the term (I). By definition

r 2 = a (r 1 ) t -a y • ∇r 1 -a y • ∇H H r 1 ,
and thus

L M r 2 = a (L M r 1 ) t -a y • ∇(L M r 1 ) -a X , with X = [L M , y • ∇] r 1 + L M y • ∇H H r 1 •
We deduce that

(I) = 1 2 d dt r 1 (t) 2 L 2 (R 4 ) + L M r 1 (t) 2 L 2 (R 4 ) - 1 + ν t R 4 r 1 y • ∇r 1 + (L M r 1 ) y • ∇(L M r 1 ) + r 1 y • ∇H H r 1 + (L M r 1 ) X (t, y) dy •
Integrating by parts and taking into account that

X L 2 (R 4 ) r 1 H L 0 -1 (R 4 ) ,
we find

(I) = 1 2 d dt r 1 (t) 2 L 2 (R 4 ) + L M r 1 (t) 2 L 2 (R 4 ) + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) , (2.7.26)
in the sense that (and all along this proof)

O r 1 (t, •) 2

H L 0 -1 (R 4 ) r 1 (t, •) 2 H L 0 -1 (R 4 ) .
Let us now estimate the part (II). Firstly, let us point out that it stems from Hardy inequality and the asymptotic expansion (2.2.4) that for any function f in Ḣ1 (R 4 ) the following inequality holds

∇(q f ) L 2 (R 4 ) ≤ C ∇f L 2 (R 4 ) .
(2.7.27)

Therefore performing an integration by parts, we get

(II) = R 4 ∇ 1 + |∇Q| 2 1 + |∇V | 2 • qr 1 ∇(qr) + qL M r 1 ∇(qL M r) (t, y)dy + R 4 1 + |∇Q| 2 1 + |∇V | 2 ∇(qr 1 ) • ∇(qr) + ∇(qL M r 1 ) • ∇(qL M r) + P(rr 1 + L M rL M r 1 ) (t, y)dy • A straightforward computation gives ∇ 1 + |∇Q| 2 1 + |∇V | 2 = ∇ 1 + |∇Q| 2 -|∇V | 2 1 + |∇V | 2 = ∇ (∇Q -∇V )(∇Q + ∇V ) 1 + |∇V | 2 •
We claim that there is a positive constant C such that the following estimate holds for any time t in [t 1 , t 2 ], with 0 < t 1 ≤ t 2 ≤ T :

∇ 1 + |∇Q| 2 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Ct ν .
(2.7.28)

In order to establish the above estimate, let us start by observing that for any time t in [t 1 , t 2 ] we have 18 Here and bellow, we assume that N > ν.

18 ∇ 2 (V -Q)(t, •) L ∞ (R 4 ) ≤ C t ν .
Indeed by definition

V = V (N ) + ε , with ε = H r ,
which gives the result by applying the triangle inequality and making use of Lemma 2.6.1, Hardy inequality, the estimates (2.6.3), (2.7.13) and the bootstrap assumption (2.7.20).

Along the same lines, we find that

• -1 ∇(V -Q)(t, •) L ∞ ≤ Ct ν , • ∇ 2 V (t, •) L ∞ ≤ C and ∇V (t, •) L ∞ ≤ C ,
which achieves the proof of the claim (2.7.28).

We deduce that

(II) = 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) + R 4 1 + |∇Q| 2 1 + |∇V | 2 ∇(qr 1 ) • ∇(qr) + ∇(qL M r 1 ) • ∇(qL M r) + P(rr 1 + L M rL M r 1 ) (t, y)dy •
Besides, remembering that

r 1 = a r t + a Λr -a y • ∇H H r , we obtain ∇(qr 1 ) = a ∂ t (∇qr) + a Λ∇qr -a Y 0 , with Y 0 = ∇ q y • ∇H H r -[∇q, Λ]r • Invoking (2.2.4
) together with (2.7.13) and Hardy inequality, we infer that

Y 0 L 2 (R 4 ) ∇r L 2 (R 4 ) . (2.7.29) 
Along the same lines, we readily gather that

L M r 1 = a ∂ t (L M r) + a ΛL M r -a Y 1 , ∇qL M r 1 = a ∂ t (∇qL M r) + a Λ∇qL M r -a Y 2 ,
with

Y 1 = L M y • ∇H H r -[L M , Λ]r , Y 2 = -[∇q, Λ]L M r + ∇(qY 1 ) ,
that clearly satisfy:

Y 1 H 1 (R 4 ) + Y 2 L 2 (R 4 ) ∇r H L 0 -1 (R 4 ) . ( 2.7.30) 
Taking advantage of (2.7.29) and (2.7.30), we infer that

(II) = d dt E 1 (t) + (II) 1 + (II) 2 + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 )
, with

E 1 (t) := 1 2 R 4 1 + |∇Q(y)| 2 1 + |∇V (t, y)| 2 |∇(qr)| 2 + |∇(qL M r)| 2 + P(r 2 + (L M r) 2 ) (t, y)dy , (2.7.31) (II) 1 := - 1 2 R 4 ∂ t 1 + |∇Q(y)| 2 1 + |∇V (t, y)| 2 |∇(qr)| 2 + |∇(qL M r)| 2 + P(r 2 + (L M r) 2 ) (t, y)dy , and 
(II) 2 := 1 + ν t R 4 1 + |∇Q| 2 1 + |∇V | 2 ∇(qr) • Λ∇(qr) + ∇(qL M r) • Λ∇(qL M r) (t, y)dy •
Again combining the bootstrap assumption (2.7.20) with Estimate (2.6.6), we claim that for any time t

in [t 1 , t 2 ], with 0 < t 1 ≤ t 2 ≤ T ∂ t 1 + |∇Q(y)| 2 1 + |∇V (t, y)| 2 (s, •) L ∞ (R 4 ) ≤ Ct -1 • (2.7.32)
It is obvious that (2.7.32) reduces to the following inequality

∂ t ∇V (t, •) L ∞ (R 4 ) ≤ Ct -1 • (2.7.33)
Now to establish (2.7.33), let us first recall that

V = V (N ) + ε with ε = H r .
Applying the triangle inequality and invoking Estimate (2.6.6), we deduce that

∂ t ∇V (t, •) L ∞ (R 4 ) ≤ ∂ t ∇V (N ) (t, •) L ∞ (R 4 ) + ∂ t ∇(H r)(t, •) L ∞ (R 4 ) ≤ Ct -1 + ∇(H ∂ t r)(t, •) L ∞ (R 4 ) •
But in view of (2.7.14), we have

a r t = a r 1 -a Λr + a y • ∇H H r ,
which ends the proof of the result thanks to the bootstrap hypothesis (2.7.20).

Consequently, we get

(II) 1 = 1 t O ∇r(t, •) 2 H L 0 -1 (R 4 ) • (2.7.34)
To end the estimate of the second part, it remains to investigate the term (II) 2 . For that purpose we perform an integration by parts, which implies that

(II) 2 = (1 + ν) 2 R 4 (∇ • y) 1 + |∇Q| 2 1 + |∇V | 2 |∇(qr)| 2 + |∇(qL M r)| 2 (t, y)dy •
Taking into account Lemma 2.6.1 and the bootstrap assumption (2.7.20), this gives rise to

(II) 2 = 1 t O ∇r(t, •) 2 H L 0 -1 (R 4 ) • (2.7.35)
In summary, we have

(II) = d dt E 1 (t) + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) • (2.7.36)
Besides, it stems from the definition of the operator L and the estimates (2.6.2), (2.7.20) that there is a positive constant C such that

E 1 (t) - 1 2 Lr(t, •)|r(t, •) L 2 - 1 2 L M +1 r(t, •)|L M r(t, •) L 2 ≤ Cδ 3ν ∇r(t, •) 2 H L 0 -1 • (2.7.37) 
Let us now estimate the third term (III). Integrating again by parts, we easily get

(III) = -2a -1 (t) R 4 V 1 1 + |∇V | 2 ∇V • (∇r 1 ) r 1 + (∇L M r 1 ) (L M r 1 ) (t, y) dy = a -1 (t) R 4 ∂ yj V 1 1 + |∇V | 2 ∂ yj V (r 1 ) 2 + (L M r 1 ) 2 (t, y) dy •
Arguing as above, we infer that for any time t in [t 1 , t 2 ], with 0 < t 1 ≤ t 2 ≤ T , we have

∇ V 1 1 + |∇V | 2 ∇V (t, •) L ∞ ≤ Ct ν • (2.7.38)
The latter estimate is a direct consequence of the following inequalities

∇V 1 (t, •) L ∞ ≤ Ct ν , • -1 V 1 (t, •) L ∞ ≤ Ct ν and • ∇ 2 V (t, •) L ∞ ≤ C ,
which readily stem from the bootstrap assumption (2.7.20) and Lemma 2.6.1.

It proceeds to say that

(III) = 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) • (2.7.39)
Finally the last term (IV ) can be dealt with along the same lines as the second term (II). Firstly performing an integration by parts, we get

(IV ) = - 4 i,j=1 a -1 (t) R 4 g i,j (∂ yi r) (∂ yj r 1 ) + (∂ yi L M r) (∂ yj L M r 1 ) (t, y) dy - 4 i,j=1 a -1 (t) R 4 (∂ yj g i,j ) (∂ yi r) r 1 + (∂ yi L M r) (L M r 1 ) (t, y) dy ,
where the coefficients g i,j are defined by (2.7.25).

For any time t in [t 1 , t 2 ], with 0 < t 1 ≤ t 2 ≤ T , the functions g i,j for 1 ≤ i, j ≤ 4 enjoy the following properties

g i,j (t) L ∞ (R 4 ) ≤ Cδ 6ν and ∇g i,j (t) L ∞ (R 4 ) ≤ Ct ν . (2.7.40)
Indeed by definition

g i,j = V 2 1 -|∇ε| 2 1 + |∇V | 2 δ i,j + (Hr) yi (Hr) yj 1 + |∇V | 2 ,
which leads to the result thanks to the following estimates

V 2 1 -|∇ε| 2 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Cδ 6ν , ∇ V 2 1 -|∇ε| 2 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Ct ν , ∇ (Hr) yj (Hr) y k 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Ct 2N , = 0, 1 ,
that can be proved by the same way as (2.7.28), making use of the bootstrap assumption (2.7.20) and Lemma 2.6.1.

Now remembering that

r 1 = a r t + a Λr -a y • ∇H H r , we find that ∇(r 1 ) = a ∂ t (∇r) + a Λ∇r -a Y 0 , with Y 0 = ∇ y • ∇H H r -[∇, Λ]r •
Along the same lines as for Y 0 , we have

Y 0 L 2 (R 4 ) ∇r L 2 (R 4 ) .
(2.7.41)

Similarly, we easily check that

∇L M r 1 = a ∂ t (∇L M r) + a Λ∇L M r -a Y 2 , with Y 2 = -[∇, Λ]L M r + ∇(Y 1 ) , that clearly satisfies Y 2 L 2 (R 4 ) ∇r H L 0 -1 (R 4 ) . (2.7.42) Therefore (IV ) = d dt E 2 (t) + 1 2 4 i,j=1 R 4 (∂ t g i,j ) (∂ yi r) (∂ yj r) + (∂ yi L M r) (∂ yj L M r) (t, y) dy - (ν + 1) t 4 i,j=1 R 4 g i,j ∂ yi r Λ∂ yj r + (∂ yi L M r) (Λ∂ yj L M r) (t, y) dy + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) , with E 2 (t) = - 1 2 4 i,j=1 R 4 g i,j (∂ yi r) (∂ yj r) + (∂ yi L M r) (∂ yj L M r) (t, y) dy • (2.7.43)
In view of the bootstrap assumption (2.7.20) and Lemma 2.6.1, we have the following estimates

• ∇g i,j L ∞ (R 4 ) ≤ C , (2.7.44) 
which follow easily from the fact that we have for any time

t in [t 1 , t 2 ] • ∇ V 2 1 -|∇ε| 2 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ C and • ∇ (Hr) yj (Hr) y k 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Ct 2N .
An integration by parts thus gives rise to

(IV ) = d dt E 2 (t) + 1 2 4 i,j=1 R 4 (∂ t g i,j ) (∂ yi r) (∂ yj r) + (∂ yi L M r) (∂ yj L M r) (t, y) dy + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) • Now we claim that ∂ t g i,j L ∞ (R 4 ) ≤ C t -1 . (2.7.45)
The latter estimate is shown making use again of the bootstrap assumption (2.7.20) and Lemma 2.6.1 which assert that there is a positive constant C such that for any time t in [t 1 , t 2 ], we have

∂ t V 2 1 -|∇ε| 2 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ C t -1 and ∂ t (Hr) yj (Hr) y k 1 + |∇V | 2 (t, •) L ∞ (R 4 ) ≤ Ct N •
Therefore, we obtain

(IV ) = d dt E 2 (t) + 1 t O r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) • (2.7.46) 
Observe also that by (2.7.40), we have

E 2 (t) ≤ Cδ 6ν r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) • (2.7.47)
We finally address the terms F , F M and R (N ) . Using the bootstrap assumption (2.7.20) and Lemmas 2.6.1, 2.6.2 it is not difficult to show that they admit the following estimates.

Lemma 2.7.2.

There is a positive constant C such that under Assumption (2.7.20), the following estimates occur for any time t in [t 1 , t 2 ], where

0 < t 1 ≤ t 2 ≤ T F (t, •) H L 0 -1 (R 4 ) ≤ Ct ν ∇r(t, •) H L 0 -1 (R 4 ) + r 1 (t, •) H L 0 -1 (R 4 ) , (2.7.48) 
R (N ) (t, •) H L 0 -1 (R 4 ) ≤ C t N +ν , ( 2.7.49) 
F M (t, •) L 2 (R 4 ) ≤ C t ν ∇r(t, •) H L 0 -1 (R 4 ) + r 1 (t, •) H L 0 -1 (R 4 ) • (2.7.50) 
We now gather the latter lemma with the bootstrap hypothesis (2.7.20) and Estimates (2.7.26), (2.7.37), (2.7.39), (2.7.47), (2.7.49) and (2.7.50). This yields the following estimate

d dt E(t) ≤ Ct 2N -1 , (2.7.51) with E(t) = 1 2 r 1 (t) 2 L 2 (R 4 ) + L M r 1 (t) 2 L 2 (R 4 ) + E 1 (t) + E 2 (t),
and where E 1 and E 2 are respectively given by (2.7.31) and (2.7.43).

It follows from (2.2.4), (2.2.12), (2.7.37) and (2.7.47) that

E(t) ≥ C( r 1 (t, •) 2 H L 0 -1 + ∇r(t, •) 2 H L 0 -1 ,
for some positive constant C, provided that δ is taken sufficiently small. Therefore, integrating inequality (2.7.51) and taking into account that r(t 1 ) = r 1 (t 1 ) = 0, we get

r 1 (t, •) 2 H L 0 -1 (R 4 ) + ∇r(t, •) 2 H L 0 -1 (R 4 ) ≤ C N t 2N ,
which achieves the proof of Lemma 2.7.1.

Since by construction, we have 

(u -u (N ) )(t, x) = t ν+1 (V -V (N ) ) t, x t ν+1 = t ν+1 (H r) t, x t ν+1 , ∂ t (u -u (N ) )(t, x) = (V 1 -V (N ) 1 ) t, x t ν+1 = (H r 1 )
u(t, •) ≥ c0 t ν+1 and (1 + |∇u| 2 -(∂ t u) 2 (t, •) ≥ c1 , (2.7.52) 
with some positive constants c0 and c1 , provided that N 0 is sufficiently large.

Furthermore, injecting the bounds (2.7.20) into (2.7.17) and taking into account Lemma 2.7.2, one easily deduces that the solution to the Cauchy problem (2.7.4) satisfies

• 3 2 ∂ 2 t (u -u (N ) )(t, •) H L 0 -2 (R 4 ) ≤ t N 2 , (2.7.53) for all t ∈ [t 1 , T ].

End of the proof

We are now in position to finish the proof of Theorem 2.1.2. Let (t n ) n∈N be a sequence of positive real numbers in ]0, T ] converging to 0, and consider the Cauchy problem (NW) n,N defined by:

(NW) n,N    (2.1.6) u n = 0 u n|t=t n = u (N ) (t n , •) (∂ t u n ) |t=tn = (∂ t u (N ) )(t n , •) •
In view of Proposition 2.7.1 and Remark 2.7.1, we straightforward have the following uniform result of local well-posedness:

Corollary 2.7.1. There exists an integer N 0 such that the Cauchy problem (NW) n,N0 admits a unique solution u n on [t n , T ] which satisfies the following energy estimates

• 3 2 ∂ t (u n -u (N0) )(t, •) H L 0 -1 (R 4 ) + • 3 2 ∇(u n -u (N0) )(t, •) H L 0 -1 (R 4 ) ≤ t N 0 2 , ( 2.7.54) 
for any time t n ≤ t ≤ T .

Furthermore,

u n (t, x) ≥ c0 t ν+1 , 1 + |∇u n (t, x)| 2 -(∂ t u n (t, x)) 2 ≥ c1 , ∀ (t, x) ∈ [t n , T ] × R 4 .
(2.7.55) By Ascoli theorem, the bounds (2.7.54), (2.7.55) imply that there exists a solution u to the Cauchy problem (2.1.11) on ]0, T ] satisfying (u, ∂ t u) ∈ C(]0, T ], X L0 ) and such that after passing to a subsequence, the sequence

((∇u n , ∂ t u n )) n∈N converges to (∇u, ∂ t u) in C([T 1 , T ], H s-1 (R 4
)) for any T 1 ∈]0, T ] and any s < L 0 . Clearly the solution u satisfies:

∂ t (u -u (N0) )(t, •) H L 0 -1 (R 4 ) + ∇(u -u (N0) )(t, •) H L 0 -1 (R 4 ) ≤ t N 0 2 , ∀t ∈]0, T ] , u(t, x) ≥ c0 t ν+1 , 1 + |∇u(t, x)| 2 -(∂ t u(t, x)) 2 ≥ c1 ∀(t, x) ∈]0, T ] × R 2 .
Taking into account Lemma 2.6.2 and Remaks 2.5.1, 2.6.1, this concludes the proof of Theorem 2.1.2.

Appendix

Derivation of the equation

It is well-known that if we consider in the Minkowski space R 1,m regular time-like hypersurfaces with vanishing mean curvature which for fixed t are graphs of functions ϕ(t, x) over R m , then ϕ satisfies the following quasilinear wave equation:

∂ t ϕ t 1 -(ϕ t ) 2 + |∇ϕ| 2 - m j=1 ∂ xj ϕ xj 1 -(ϕ t ) 2 + |∇ϕ| 2 = 0 .
Our purpose in this appendix is to carry out the computations for the equation in the case of time-like surfaces with vanishing mean curvature that for fixed t are parametrized as follows

R n × S n-1 (x, ω) → (x, u(t, x)ω) ∈ R 2n , ( 2.8.1) 
with some positive function u. An elementary computation shows that in that case, the pull-back metric is:

g = -dt 2 + dx 2 + u 2 dω 2 + du 2 . (2.8.2)
Recalling the obvious identities

dx 2 = n j=1 dx 2 j and du = n j=1 ∂u ∂x j dx j + ∂u ∂t dt ,
we infer that the associated Lagrangian density is given by

L(u, u t , ∇u) = u n-1 1 -(u t ) 2 + |∇u| 2 . ( 2.8.3) 
Using that the mean curvature is the first variation of the volume form, we can determine the equation of motion by considering formally the Euler-Lagrange equation associated to the Lagrangian density L, which gives rise to

∂L ∂u - n j=1 ∂ ∂x j ∂L ∂u xj - ∂ ∂t ∂L ∂u t = 0 .
According to (2.8.3), this leads to

(n -1) u n-2 1 -(u t ) 2 + |∇u| 2 - n j=1 ∂ ∂x j u n-1 u xj 1 -(u t ) 2 + |∇u| 2 + ∂ ∂t u n-1 u t 1 -(u t ) 2 + |∇u| 2 •
Therefore the quasilinear wave equation at hand undertakes the following form:

∂ t u t 1 -(u t ) 2 + |∇u| 2 - n j=1 ∂ xj u xj 1 -(u t ) 2 + |∇u| 2 + n -1 u 1 -(u t ) 2 + |∇u| 2 = 0 . (2.8.4)
Straightforward computations show that the above equation (2.8.4) rewrites as follows:

u tt (1 + |∇u| 2 ) -∆u (1 -(u t ) 2 + |∇u| 2 ) + n j,k=1 u xj u x k u xj x k -2u t (∇u • ∇u t ) + (n -1) u (1 -(u t ) 2 + |∇u| 2 ) = 0 , (2.8.5) 
which achieves the proof of (2.1.6).

Study of the linearized operator of the quasilinear wave equation around the ground state

The aim of this section is to investigate the linearized operator L introduced in (2.1.16). To this end, consider under notations (2.1.17) the change of function

w(ρ) = H(ρ)f (ρ) with H = (1 + Q 2 ρ ) 1 4 Q 3 2
• By easy computations, we deduce that

Lw = -H(1 + Q 2 ρ )Lf with L = -q ∆ q + P , where q = 1 (1 + Q 2 ρ ) 1 2 
and

P = V (1 + Q 2 ρ )
, with

V = -3 1 + Q 2 ρ Q 2 + 1 2 (B 1 )ρ - 1 4 B 2 1 - 3 2 B 1 - (1 + Q 2 ρ ) ρ + 2Q ρ 1 Q - Q ρ ρ • (2.8.6)
In view of Lemma 2.2.1, the potential P belongs to C ∞ rad (R 4 ) and satisfies

P = - 3 8ρ 2 1 + •(1) , as ρ → ∞ • (2.8.7)
The operator L is at the heart of the analysis carried out in this article. The following lemma summarizes some of its useful properties.

Lemma 2.8.1. Under the above notations, we have

• The operator L with domain H 2 (R 4 ) is self-adjoint on L 2 (R 4 ).
• There is a positive constant c such that for any function f in Ḣ1 rad (R 4 ), the following inequality holds: 

Lf |f L 2 (R 4 ) ≥ c ∇f 2 L 2 (R 4 ) . ( 2 
L m+1 f |f L 2 (R 4 ) + Lf |f L 2 (R 4 ) ≥ c m ∇f 2 H m (R 4 ) , ∀f ∈ Ḣ1 (R 4 ) ∩ Ḣm+1 (R 4 ) , and L m+1 f |f L 2 (R 4 ) + f |f L 2 (R 4 ) ≥ c m f 2 H m (R 4 ) , ∀f ∈ H m+1 (R 4 ) .
Proof. The fact that L is self-adjoint on L 2 (R 4 ) stems easily from (2.2.10). Consequently the spectrum of L which will be denoted in what follows by σ(L) is real. Since the potential P is a regular function which behaves as -3 8ρ 2 as ρ tends to infinity, we deduce that σ(L) ∩ R * -is a discrete set. Besides if σ(L) ∩ R * -= ∅, then it admits a minimum λ 0 < 0 which is an eigenvalue of L and an associated eigenfunction u 0 in S(R 4 ) which is positive.

Recalling that the positive function ΛQ = Q -ρ Q ρ solves the homogeneous equation Lw = 0, we infer that the function

G := ΛQ H with H = (1 + Q 2 ρ ) 1 4 Q 3 2
, (2.8.9) defines a regular positive solution to the homogeneous equation Lf = 0. We deduce that

0 = LG|u 0 L 2 (R 4 ) = G|Lu 0 L 2 (R 4 ) = λ 0 G|u 0 L 2 (R 4 ) < 0 ,
which yields a contradiction. This implies that σ(L) ∩ R * -= ∅ and ends the proof of the fact the operator L is positive in the sense that for any function f in H 1 rad (R 4 ), we have

Lf |f L 2 (R 4 ) ≥ 0 .
(2.8.10)

In order to prove Inequality (2.8.8), we shall proceed by contradiction assuming that there is a sequence

(u n ) n∈N in Ḣ1 rad (R 4 ) satisfying ∇u n L 2 (R 4 ) = 1 and Lu n |u n L 2 (R 4 ) n→∞ -→ 0 . (2.8.11)
Since the sequence (u n ) n∈N is bounded in Ḣ1 rad (R 4 ), there is a function u in Ḣ1 rad (R 4 ) such that, up to a subsequence extracting (still denoted by u n for simplicity)

u n n→∞ u in Ḣ1 (R 4 ) .
(2.8.12)

We claim that the function u = 0 and satisfies Lu = 0. Indeed by definition, we have

Lu n = (-q ∆ q + P)u n , which, with Notation (2.8.6), gives by integration

Lu n |u n L 2 (R 4 ) = R 4 |∇(qu n )(x)| 2 dx + R 4 |(qu n )(x)| 2 V (x) dx .
Firstly, let us observe that there is a positive constant C such that, for any integer n we have

∇(qu n ) L 2 (R 4 ) > C • (2.8.13)
Indeed, one has

∇u n L 2 (R 4 ) ≤ 1 q ∇(qu n ) L 2 (R 4 ) + ∇ 1 q qu n L 2 (R 4 ) ,
which in view of Hardy inequality and Lemma 2.2.1 leads to (2.8.13).

Secondly, consider θ a smooth radial function valued in [0, 1] and satisfying

θ(x) = 0 for |x| ≤ 1 θ(x) = 1 for |x| ≥ 2 ,
and write

Lu n |u n L 2 (R 4 ) = R 4 |∇(qu n )(x)| 2 dx - 3 4 R 4 |(qu n )(x)| 2 θ(x) |x| 2 dx + R 4 |(qu n )(x)| 2 Ṽ (x)dx ,
where of course

Ṽ (x) = V (x) + 3 4 θ(x) |x| 2 •
Invoking Formula (2.8.7), we infer that there is a positive constant δ such that Ṽ satisfies at infinity

| Ṽ (x)| 1 x 2+δ •
Invoking Rellich theorem and Hardy inequality, we deduce that

R 4 |(qu n )(x)| 2 Ṽ (x) dx n→∞ -→ R 4 |(qu)(x)| 2 Ṽ (x) dx • (2.8.14)
Now for any functions f and g in Ḣ1 (R 4 ), denote by

a(f, g) := R 4 ∇(qf )(x) • ∇(qg)(x)dx - 3 4 R 4 θ(x) |x| 2 (qf )(x)(qg)(x)dx •
Combining Hardy inequality with Lemma 2.2.1, we easily gather that there exist two positive constants α 0 < α 1 such that for any function f in Ḣ1 (R 4 ), we have

α 0 ∇f 2 L 2 (R 4 ) ≤ a(f, f ) ≤ α 1 ∇f 2 L 2 (R 4 ) ,
which ensures that a(f, g) is a scalar product on Ḣ1 (R 4 ) and that the norms a( which according to the fact that L is positive implies that Lu = 0.

To end the proof of the claim, it remains to establish that u = 0. For that purpose, let us start by observing that by virtue of (2.8.11), (2.8.14) and (2.8.15), we have

R 4 |∇(qu n )(x)| 2 dx - 3 4 R 4 |(qu n )(x)| 2 θ(x) |x| 2 dx n→∞ -→ R 4 |∇(qu)(x)| 2 dx - 3 4 R 4 |(qu n )(x)| 2 θ(x) |x| 2 dx .
(2.8.16)

But in view of Hardy inequality and the bound (2.8.13), we have

R 4 |∇(qu n )(x)| 2 dx - 3 4 R 4 |(qu n )(x)| 2 θ(x) |x| 2 dx ≥ 1 4 R 4 |∇(qu n )(x)| 2 dx ≥ C 4 •
(2.8.17)

By passing to the limit, we obtain

R 4 |∇(qu)(x)| 2 dx - 3 4 R 4 |(qu)(x)| 2 θ(x) |x| 2 dx ≥ C 4
, which achieves the proof of the fact that u is not null.

By construction the function u belongs to Ḣ1 rad (R 4 ) and satisfies Lu = -q ∆ qu + Pu = 0 with P = -

3 8ρ 2 (1 + •(1)) , as ρ → ∞ •
Therefore in view of Hardy inequality, Pu ∈ L 2 rad (R 4 ) and thus q ∆ qu belongs to L 2 rad (R 4 ), which ensures that u ∈ Ḣ2 rad (R 4 ). Now the homogeneous equation Lu = 0 admits a basis of solutions f 1 , f 2 given by 19 :

   f 1 (ρ) = G(ρ) and f 2 (ρ) = G(ρ) ρ 1 (1 + (Q r (r)) 2 ) 3 2 Q 3 (r) r 3 (ΛQ) 2 (r) dr ,
where G denotes the function defined by (2.8.9). By Lemma 2.2.1, one then has

   f 1 (ρ) ∼ 1 f 2 (ρ) ∼ 1 ρ 2
, near ρ = 0. Since f 2 does not belong to Ḣ1 rad (R 4 ), we deduce that u is collinear to G. This yields a contradiction because in view of (2.2.4), the function G behaves as 1 √ ρ when ρ tends to infinity and thus it does not belong to Ḣ1 rad (R 4 ). This finally completes the proof of the lemma.

Proposition 2.8.1. Let u be such that (u, u t ) ∈ C([0, T ], X L ), u tt ∈ C([0, T ], H L-2 ) for some integer L > 4 and some 0 < T ≤ 1. Assume that

u t L ∞ ([0,T ],H L-1 ) + ∇(u -Q) L ∞ ([0,T ],H L-1 ) ≤ A , (2.8.20) u tt L ∞ ([0,T ],H L-2 ) ≤ A 1 , (2.8.21) u(t, x) ≥ ε and 1 -(u t (t, x)) 2 + |∇u(t, x)| 2 1 + |∇u(t, x)| 2 ≥ ε , ∀(t, x) ∈ [0, T ] × R d • (2.8.22)
Consider the Cauchy problem

         Φ tt - 4 i,j=1 a i,j ∇u, u t Φ xixj - 4 i=1 b i ∇u, u t Φ txi = c u, ∇u, u t Φ |t=0 = Φ 0 (∂ t Φ) |t=0 = Φ 1 ,
(2.8.23)

assuming that ∇(Φ 0 -Q) and Φ 1 belong to H L-1 (R 4 ). Then the Cauchy problem (2.8.23) admits a unique solution Φ on [0, T ] and the following energy inequalities hold:

Φ t (t, •) H L-1 + ∇(Φ(t, •) -Q) H L-1 ≤ C ε e t C ε,A,A 1 Φ 1 H L-1 + ∇(Φ 0 -Q) H L-1 + C ε,A,A1 t 0 u t (s, •) H L-1 + ∇(u -Q)(s, •) H L-1 ds , (2.8.24)
and 

Φ tt (t, •) H L-2 ≤ C A Φ t (t, •) H L-1 + ∇(Φ(t, •) -Q) H L-1 + C ε,A u t (t, •) H L-1 + ∇(u -Q)(t, •) H L-1 . ( 2 
∆ = 4(u t ) 2 (1 + |∇u| 2 ) 2 4 i=1 u xi ξ i 2 + 4(1 -(u t ) 2 + |∇u| 2 ) (1 + |∇u| 2 ) |ξ| 2 - 4 (1 + |∇u| 2 ) 4 i=1 u xi ξ i 2 = 4(1 -(u t ) 2 + |∇u| 2 ) (1 + |∇u| 2 ) 2 |ξ| 2 + 4(1 -(u t ) 2 + |∇u| 2 ) (1 + |∇u| 2 ) 2 |∇u| 2 |ξ| 2 - 4 i=1 u xi ξ i 2 ,
which implies that

∆ ≥ 4(1 -(u t ) 2 + |∇u| 2 ) (1 + |∇u| 2 ) 2 |ξ| 2 • (2.8.27)
This ends the proof of the claim and ensures that (2.8.23) is strictly hyperbolic as long as

(1 -(u t ) 2 + |∇u| 2 ) > 0 ,
and thus, in view of (2.8.57), on [0, T ] × R 4 .

Let us emphasize that under the above notations, the function Φ := Φ -Q satisfies :

         Φ tt - 4 i,j=1 a i,j ∇u, u t Φ xixj - 4 i=1 b i ∇u, u t Φ txi = f u, ∇u, u t Φ |t=0 = Φ 0 -Q (∂ t Φ) |t=0 = Φ 1 ,
(2.8.28)

Together with (2.8.31), this implies that for all t in [0, T ]

f (t, •) L 2 ≤ C ε,A u t (t, •) L 2 + ∇(u -Q)(t, •) L 2 .
(2.8.34)

Thanks to the bound (2.8.20), this ends the proof of the fact that f belongs to L ∞ ([0, T ], L 2 (R 4 )).

In order to establish that f ∈ L ∞ ([0, T ], H L-1 (R 4 )), let us firstly observe that by virtue of the assumption (2.8.20), the functions (b i ∇u, u t ) 1≤i≤4 , a i,j ∇u, u t -a i,j ∇Q, 0 1≤i,j≤4 as well as the function c u, ∇u,

u t + 3 u belong to L ∞ ([0, T ], H L-1 (R 4 )).
Thus taking advantage of Lemma 2.2.1 and recalling that L > 4, we find that the function f belongs to L ∞ ([0, T ], H L-1 (R 4 )) and satisfies the following estimate uniformly on [0, T ]:

f (t, •) H L-1 ≤ C ε,A u t (t, •) H L-1 + ∇(u -Q)(t, •) H L-1 .
Besides applying Leibniz's formula to the term u -Q u Q and taking account (2.8.33), we infer that there is a positive constant C ε,A such that for all t in [0, T ], we have

1 u - 1 Q (t, •) H L-1 ≤ C ε,A ∇(u -Q)(t, •) H L-1 .
Combining the two last inequalities, we get

f (t, •) H L-1 ≤ C ε,A u t (t, •) H L-1 + ∇(u -Q)(t, •) H L-1 . (2.8.35)
This concludes the proof of the desired result.

Finally, since the coefficients of Equation (2.8.28) as well as their time and spatial derivatives are bounded on [0, T ] × R 4 , applying classical arguments, we infer that the Cauchy problem (2.8.23) admits a unique solution on [0, T ] × R 4 .

To avoid heaviness, we shall notice all along this proof by A the matrix (a i,j ) 1≤i,j≤4 and by b the vector (b 1 , • • • , b 4 ), and omit on what follows the dependence of all the functions a i,j and b i on (∇u, u t ) and the source term f on (u, ∇u, u t ). Now to establish the energy inequality (2.8.24), we can proceed as follows. First we take the L 2 -scalar product of (2.8.28) with ( Φ t -b 2 • ∇ Φ), which gives rise to

[∂ t ( Φ t - b 2 • ∇ Φ) - 4 i,j=1 a i,j Φ xixj - b 2 • ∇ Φ t + b t 2 • ∇ Φ](t, •) ( Φ t - b 2 • ∇ Φ)(t, •) L 2 = f (t, •) ( Φ t - b 2 • ∇ Φ)(t, •) L 2 .
Performing integrations by parts, we deduce that

1 2 d dt E( Φ)(t, •) = I 0 (t) + f (t, •) ( Φ t - b 2 • ∇ Φ)(t, •) L 2 , (2.8.36)
where

E( Φ)(t, •) := ( Φ t - b 2 • ∇ Φ)(t, •) 2 L 2 + 4 i,j=1 a i,j Φ xi (t, •) Φ xj (t, •) L 2 + ( b 2 • ∇ Φ)(t, •) 2 L 2 , (2.8.37)
and where I 0 admits the estimate Observe also that thanks to (2.8.27), we have

|I 0 (t)| ≤ a 0 (t) (∇ Φ)(t, •) 2 L 2 + Φ t (t, •) 2 L 2 , (2.8.38) with a 0 (t, •) = T A(t, •) L ∞ , (∇ t,x A)(t, •) L ∞ , b(t, •) L ∞ , (∇ t,x b)(t, •) L ∞ , ( 2 
E( Φ)(t, •) ≤ 4 (∇ Φ)(t, •) 2 H L-1 + Φ t (t, •) 2 H L-1
and

E( Φ)(t, •) ≥ ( Φ t - b 2 • ∇ Φ)(t, •) 2 L 2 + ε ∇ Φ(t, •) 2 L 2 .
(2.8.41)

Now in order to investigate Φ t (t, •) and ∇(Φ -Q)(t, •) in the setting of H L-1 , we differentiate the nonlinear wave equation (2.8.28) with respect to the variable space up to the order L -1. By straightforward computations, we obtain formally for any multi-index α of length |α| ≤ L -1

           (∂ α Φ) tt - 4 i,j=1 a i,j (∂ α Φ) xixj - 4 i=1 b i (∂ α Φ) txi = f α (∂ α Φ) |t=0 = ∂ α (Φ 0 -Q) (∂ t (∂ α Φ)) |t=0 = ∂ α Φ 1 ,
(2.8.42) with under the above notations

f α = ∂ α f + f α .
where

f α := 4 i,j=1 β<α α β ∂ α-β a i,j (∂ β Φ) xixj + 4 i=1 β<α α β ∂ α-β b i (∂ β Φ) txi . (2.8.43)
Then taking the L 2 -scalar product of Equation (2.8.42) with

((∂ α Φ) t - b 2 • ∇(∂ α Φ))
, we get applying the same lines of reasoning as above 

1 2 d dt E(∂ α Φ)(t, •) = I α (t) + f α (t, •) [(∂ α Φ) t - b 2 • ∇(∂ α Φ)](t, •) L 2 , ( 2 
f α (t, •) [(∂ α Φ) t - b 2 • ∇(∂ α Φ)](t, •) L 2 ≤ C ε,A ∇ Φ(t, •) 2 H |α| + Φ t (t, •) 2 H |α| + ∇ Φ(t, •) H |α| + Φ t (t, •) H |α| u t (t, •) H L-1 + ∇(u -Q)(t, •) H L-1 .
( 

d dt E(∂ α Φ)(t, •) ≤ C ε,A,A1 ∇ Φ(t, •) 2 H L-1 + Φ t (t, •) 2 H L-1 + ∇ Φ(t, •) H L-1 + Φ t (t, •) H L-1 u t (t, •) H L-1 + ∇(u -Q)(t, •) H L-1 .
(2.8.48)

Applying Gronwall lemma and taking into account (2.8.41), we deduce for all t in [0, T ]

∇ Φ(t, •) H L-1 + Φ t (t, •) H L-1 ≤ C ε e t C ε,A,A 1 Φ 1 H L-1 + ∇(Φ 0 -Q) H L-1 + C ε,A,A1 t 0 u s (s, •) H L-1 + ∇(u -Q)(s, •) H L-1 ds .
(2.8.49)

Finally, Property (2.8.57) results directly from the following straightforward estimates:

u (n+1) (t, •) -u 0 L ∞ (R 4 ) ≤ t 0 ∂ s u (n+1) (s, •) L ∞ (R 4 ) ds A t , (∂ t u (n+1) )(t, •) -u 1 L ∞ (R 4 ) ≤ t 0 ∂ 2 s u (n+1) (s, •) L ∞ (R 4 ) ds A 1 t , (∇u (n+1) )(t, •) -∇u 0 L ∞ (R 4 ) ≤ t 0 (∂ s ∇(u (n+1) )(s, •) L ∞ (R 4 ) ds A t ,
which implies (2.8.57) provided that T = T A, A 1 , ε is chosen sufficiently small. This achieves the proof of the claim.

To end the proof of the local well-posedness for the Cauchy problem (2.1.11), it suffices to establish that the sequences (∂ t u (n) ) n∈N and (∇(u (n) -Q)) n∈N are Cauchy sequences in the functional space L ∞ ([0, T ], H L-2 (R 4 )). By a standard argument, this fact follows easily from (2.8.51). Indeed setting w (n+1) := u (n+1) -u (n) , we readily gather that for all n ≥ 0

         w (n+1) tt - 4 i,j=1 a i,j ∇u (n) , u (n) t w (n+1) xixj - 4 i=1 b i ∇u (n) , u (n) t w (n+1) txi = g (n) w (n+1) |t=0 = 0 (∂ t w (n+1) ) |t=0 = 0 , where g (n) = 4 i,j=1 a i,j ∇u (n) , u (n) t -a i,j ∇u (n-1) , u (n-1) t u (n) xixj + 4 i=1 b i ∇u (n) , u (n) t -b i ∇u (n-1) , u (n-1) t u (n) txi + c u (n) , ∇u (n) , u (n) t -c u (n-1) , ∇u (n-1) , u (n-1) t .
Since by construction, we have for any

(t, x) in [0, T ] × R d u (n) (t, x) ≥ ε and 1 -(u (n) t (t, x)) 2 + |∇u (n) (t, x)| 2 1 + |∇u (n) (t, x)| 2 ≥ ε ,
we obtain arguing as for the proof of Proposition 2.8.1

w (n+1) t (t, •) L ∞ ([0,T ],H L-2 ) + ∇w (n+1) (t, •) L ∞ ([0,T ],H L-2 ) ≤ C T w (n) t (t, •) L ∞ ([0,T ],H L-2 ) + ∇w (n) (t, •) L ∞ ([0,T ],H L-2 ) .
This ensures the result provided that T is small enough and completes the proof of the first step.

Let us now address the second step, and establish the uniqueness of solutions to the Cauchy problem (2.1.11). For that purpose, we shall prove the following continuation criterion which easily gives the result: Lemma 2.8.2. Consider u and v two solutions of the Cauchy problem (2.1.11) respectively associated to the initial data (u 0 , u 1 ) and (v 0 , v 1 ) in X s , such that (u, u t ) and (v, v t ) are in C([0, T ], X s ) and such that u t and v t belong to C 1 ([0, T ], H s-1 ), with s a positive real number strictly greater than 4. Then there is a positive constant C such that, for all t in [0, T ], the following estimate holds:

(u -v) t (t, •) L 2 (R 4 ) + ∇(u -v)(t, •) L 2 (R 4 ) ≤ C u 1 -v 1 L 2 (R 4 ) + ∇(u 0 -v 0 ) L 2 (R 4 ) .
Proof. By straightforward computations, we readily gather that the function w =: u -v solves the following Cauchy problem:

         w tt - 4 i,j=1 a i,j ∇u, u t w xixj - 4 i=1 b i ∇u, u t w txi = g w |t=0 = u 0 -v 0 (∂ t w) |t=0 = u 1 -v 1 , (2.8.58) where g = 4 i,j=1 a i,j ∇u, u t -a i,j ∇v, v t v xixj + 4 i=1 b i ∇u, u t -b i ∇v, v t v txi + c u, ∇u, u t -c v, ∇v, v t .
Therefore, taking the L 2 -scalar product of (2.8.58) with (w t -b 2

• ∇w), we get as for the proof of Proposition 2.8.1 the following energy inequality:

w t (t, •) L 2 (R 4 ) + ∇w(t, •) L 2 (R 4 ) ≤ C u 1 -v 1 L 2 (R 4 ) + ∇(u 0 -v 0 ) L 2 (R 4 ) + t 0 g(s, •) L 2 (R 4 ) ds .
As before, we have by straightforward computations

g(s, •) L 2 (R 4 ) ≤ C w t (t, •) L 2 (R 4 ) + ∇w(t, •) L 2 (R 4 ) ,
which easily achieves the proof of the continuation criterion.

Finally the blow up criterion (2.1.13) results by standard arguments from the fact that if

lim sup t T 1 u(t, •) L ∞ + 1 (1 + |∇u| 2 -(∂ t u) 2 )(t, •) L ∞ + sup |γ|≤1 ∂ γ x ∇ t,x u L ∞ < ∞ ,
then the solution to the Cauchy problem (2.1.11) can be extended beyond T . This ends the proof of Theorem 2.1.1.

Some simple ordinary differential equations results

Proof of Duhamel's formula (2.3.17)

The formula results from the following lemma: 

(1 + (Q r (r)) 2 ) 3 2 Q 3 (r) r 3 (ΛQ) 2 (r) dr • (2.8.60)
Besides for any regular function g, the solution to the Cauchy problem Lf = g f (0) = 0 and f (0) = 0 , (2.8.61)

writes under the following form

f (y) = -(ΛQ)(y) y 0 (1 + (Q r (r)) 2 ) 3 2 Q 3 (r) r 3 (ΛQ) 2 (r) r 0 Q 3 (s) s 3 (ΛQ)(s) (1 + (Q s (s)) 2 ) 3 2

g(s) ds dr •

Proof. Recall that it was proved page 15 that e 1 := ΛQ is a positive function on R + which solves the homogeneous equation Lf = 0.

In order to obtain a solution e 2 to (2.8.59) linearly independent with e 1 , let us firstly emphasize that if we denote f = Ĥ f , where This achieves the proof of (2.8.60).

2 ( Ĥ) y Ĥ = - 3 y + B 1 , ( 2 
To end the proof of the lemma, it remains to establish Duhamel's formula (2.3.17). For that purpose, let us start by noticing that since by construction W (ê 1 , ê2 ) = 1, then f the solution to the inhomogeneous equation L f = ĝ undertakes the following form: 

Proof of Lemma 2.4.3

To prove the first item, let us for g in C ∞ (R * + ) look for the solution f of the inhomogeneous equation

     L k f = (2z 2 -1)∂ 2 z f -( 6 z + 4zνk)∂ z f -( 6 z 2 -2 νk(1 + νk))f = g , f 1 √ 2 = 0 ,
under the form:

f = f (0) + f (1) with f (0) (z) := N +1 m=1 α m z - 1 √ 2 m ,
where N := [kν] + 3 and where the coefficients α m , for 1 ≤ m ≤ N + 1, are uniquely determined by the requirement that the function g defined by:

g := g -L k f (0) verifies g ( ) 1 √ 2 = 0, ∀ ∈ {0, • • • , N } .
(2.8.66)

Then f (1) has to satisfy

   L k f (1) = g , f (1) 1 √ 2 = 0 , f (1) ∈ C ∞ (R * + ) ,
and can be recovered by Duhamel formula:

f (1) (z) = z 1 √ 2 g(s) 2s 2 -1 1 W(f 0,+ k,0 , f 0,- k,0 )(s) f 0,- k,0 (z) f 0,+ k,0 (s) -f 0,+ k,0 (z)f 0,- k,0 (s) ds , where W(f 0,+ k,0 , f 0,- k,0 ) := f 0,+ k,0 (f 0,- k,0 ) z -f 0,- k,0 (f 0,+ k,0 ) z
denotes the Wronskian of the basis {f 0,+ k,0 , f 0,- k,0 } defined by (2.4.45). By straightforward computations, we have

W(f 0,+ k,0 , f 0,- k,0 )(z) = √ 2 α(ν, k) sgn(z -1 2 )|z 2 -1 2 | α(ν,k)-1 z 6 , which implies that f (1) (z) = 1 2 √ 2 α(ν, k) z 1 √ 2 s 3 g(s) f 0,- k,0 (z) |s -1 √ 2 | α(ν,k) - f 0,+ k,0 (z) (s + 1 √ 2 ) α(ν,k) ds • (2.8.67)
The uniqueness follows immediately from Remark 2.4.1. Now we turn our attention to the second item. Our task here is to solve uniquely (2.4.51) in the functional space C ∞ ]0, 1 √ 2 ] under Condition (2.4.52). Let us start with the case when q = 0 and look for a solution f to the equation:

L k f (z) = 1 √ 2 -z γ h(z) ,
under the form: f = f (0) + f (1) , with

f (0) (z) := 1 √ 2 -z γ+1 N m=0 c m 1 √ 2 -z m ,
where again N = [kν] + 3. Due to (2.4.52), the coefficients c m , for 0 ≤ m ≤ N , can be fixed so that

L k f (1) (z) = 1 √ 2 -z γ h(z) , (2.8.68) where h is a function in C ∞ ]0, 1 √ 2 ] which satisfies h ( ) 1 √ 2 = 0, ∀ ∈ {0, • • • , N } .
But any solution to (2.8.68) is under the form

1 2 √ 2α(ν, k) z 1 √ 2 s 3 1 √ 2 -s γ h(s) f 0,- k,0 (z) ( 1 √ 2 -s) α(ν,k) - f 0,+ k,0 (z) (s + 1 √ 2 ) α(ν,k) ds + a + k f 0,+ k,0 (z) + a - k f 0,- k,0 (z) ,
for some constants a + k and a - k . Invoking the fact that we look for solutions in

C ∞ ]0, 1 √ 2 ] vanishing at z = 1 √ 2 
, we end up with the result in the case when q = 0 by taking a + k = a - k = 0.

To establish the result in the general case of any integer q ≥ 1, we shall proceed by induction assuming that under Condition (2.4.52), for any integer 1 ≤ j ≤ q -1, the inhomogeneous equation

L k f (z) = 1 √ 2 -z γ log 1 √ 2 -z j h(z)
admits a unique solution f of the form:

f (z) = 1 √ 2 -z γ+1 0≤ ≤j log 1 √ 2 -z h (z) ,
where for all 0 ≤ ≤ j, h is a function in

C ∞ ]0, 1 √ 2 ]
• Then we look for a solution f to

L k f (z) = 1 √ 2 -z γ log 1 √ 2 -z q h(z) ,
under the form:

f (z) = log 1 √ 2 -z q f (z) + f (1) (z) , (2.8.69) where L k f (z) = 1 √ 2 -z γ h(z) .
Thanks to the above computations, this implies that

f (z) = 1 √ 2 -z γ+1 h q (z) , where h q belongs to C ∞ ]0, 1 √ 2 ] •
Since in view of (2.8.69)

L k f (1) (z) = 1 √ 2 -z γ 0≤ ≤q-1 log 1 √ 2 -z h (z) , with h ∈ C ∞ ]0, 1 √ 2 
] , this achieves the proof of the second item by virtue of the induction hypothesis.

Let us now establish the third item. To this end, let us for g ∈ C ∞ ]0, 1 √ 2 [ admitting an asymptotic expansion at 0 of the form:

g(z) = (log z) α0 β≥β0 g β z β-2 ,
for some integers α 0 and β 0 , investigate the non homogeneous equation L k f = g. Fixing some z 0 in ]0, 1 √ 2 [ and invoking Duhamel's formula, we readily gather that for all z in ]0, 1 √ 2 [ , we have

f (z) = 1 2 √ 2α(ν, k) z z0 s 3 g(s) f 0,- k,0 (z) ( 1 √ 2 -s) α(ν,k) - f 0,+ k,0 (z) (s + 1 √ 2 ) α(ν,k) ds + a + k f 0,+ k,0 (z) + a - k f 0,- k,0 (z) ,
for some constants a + k and a - k .

Taking into account (2.4.45), we infer that any solution to L k f = g admits for z close to 0 an asymptotic expansion of the form

f (z) = β≥-3 f 0,β z β + 1≤α≤α0 β≥β0 f α,β (log z) α z β ,
in the case when β 0 ≥ -1, and of the type

f (z) = β≥min(β0,-3) f 0,β z β + 1≤α≤α0 β≥β0 f α,β (log z) α z β + (log z) α0+1 β≥max(β0,-3) f α,β z β ,
in the case when β 0 ≤ -2. This completes the proof of the third item.

To end the proof of the lemma, it remains to establish the fourth item. Applying Duhamel's formula,

we get for all z in C ∞ ] 1 √ 2 , ∞[ f (z) = - 1 2 √ 2α(ν, k) ∞ z s 3 g(s) f 0,- k,0 (z) (s -1 √ 2 ) α(ν,k) - f 0,+ k,0 (z) (s + 1 √ 2 ) α(ν,k) ds + a + k f 0,+ k,0 (z) + a - k f 0,- k,0 (z) ,
for some constants a + k and a - k . Since A < νk, the unique solution to (2.4.54) which admits an asymptotic expansion at infinity under the form:

f (z) = 0≤α≤α0 p∈N f k α,p (log z) α z A-p
is given by the above formula, with a + k = a - k = 0. This ends the proof of the lemma.

for δ 0 > 0 sufficiently small. Then, there exists a parameter a ∈ R which depends Lipschitz continuously on φ1,2 with respect to • X0 , such that the solution φ to the Cauchy problem: 

∂ 2 t φ + L φ = G, ( φ(0, •), ∂ t φ(0, •)) = ( φ1 + ag d , φ2 ), ( 3 

Basic facts about the operator L

In this section, we recall briefly the spectral behavior of the linear operator L (for further details consult [8]). This will allow us to derive the spectral decomposition of the solution which will be the starting point in the proof of our result. The operator L is self-adjoint on H 2 (R) and its essential spectrum is [0, ∞[. As it was shown in [8], the operator L has a unique eigenvalue -λ 0 , (λ 0 > 0) corresponding to an even eigenfunction g d which is smooth, decays exponentially and nowhere vanishing.

In what follows, we fix g d such that g d L 2 y = 1 and we shall consider the operator L restricted on the space of even functions. We denote by P d the projection to the ground state g d and P c = 1 -P d the projection to the continuous part of the spectrum.

Spectral decomposition of the solution

Splitting our solution φ into two parts as follows:

φ(t) = h(t) g d + ψ(t), with obviously ( ψ(t), g d ) L 2 y = 0, we infer that P d φ(t) = h(t) g d = ( φ(t), g d ) L 2 y g d , P c φ(t) = ψ(t).
Therefore, applying the projection P c to (3.1.9) gives rise to

∂ 2 t ψ + L ψ = P c G, ψ(0) = P c φ1 , ∂ t ψ(0) = P c φ2 . (3.2.1)
Hence, using Duhamel's formula, we can derive the following expression for ψ:

ψ(t) = cos(t √ L) ψ(0) + sin(t √ L) √ L (∂ t ψ)(0) + t 0 sin((t -s) √ L) √ L P c G(s) ds. (3.2.2)
On the other hand, taking advantage of the fact that g d is an eigenfunction of the operator L with eigenvalue -λ 0 , we deduce that h solves the following Cauchy problem:

h (t) -λ 0 h(t) = (G, g d ) L 2 y , h(0) = ( φ1 , g d ) L 2 y + a, h (0) = ( φ2 , g d ) L 2 y . (3.2.3)
Then, using the variation of constant method, we conclude that

h(t) = 1 2 h(0) + h (0) √ λ 0 + 1 √ λ 0 t 0 (G(s), g d ) L 2 y e -s √ λ0 ds e t √ λ0
(3.2.4)

+ h(0) - h (0) √ λ 0 - 1 √ λ 0 t 0 (G(s), g d ) L 2 y e s √ λ0 ds e -t √ λ0 .

Energy bounds and pointwise decay estimates for L

Let us point out that the key point in controlling the nonlinear terms is the energy and decay estimates associated with the evolution of the operator L involving the scaling vector field Γ 2 := t∂ t + y∂ y .

Those estimates have been proved in [7] by employing a vector field method on the distorted Fourier side. To recall these estimates in a clear way, let us start by introducing the following notations:

∇ t,y α f X := 0≤|β|≤α ∇ β t,y f X , ∇ t,y α Γ 2 k f X := 0≤|β|≤α 0≤ k≤k ∇ β t,y Γ k 2 f X ,
for different norms • X . Moreover, for the sake of clarity, the notation f (t, y) L q t ([0,T ];L p y ) will stand (when it needs) for

T 0 f (t, •) q L p y (R) dt 1 q . Proposition 3.2.1. For any multi-index α = (α 1 , α 2 ) in N 2 and any k ∈ N, there exists a positive constant C α,k such that ∇ α t,y Γ k 2 P c e it √ L f L 2 y ≤ C α,k ∂ y |α| • ∂ y k f L 2 y . ( 3 

.2.5)

As for the sine evolution, we have for any

α = (α 1 , α 2 ) in N 2 of length |α| ≥ 1 and any k ∈ {0, 1, 2} ∇ α t,y Γ k 2 P c sin(t √ L) √ L f L 2 y ≤ C α,k ∂ y |α|-1 • ∂ y k f L 2 y + • ∂ y k f L 1 y . ( 3 

.2.6)

For the inhomogeneous evolution, we have for any integer j and any k ∈ {0, 1, 2}

∂ j y ∂ t Γ k 2 P c t 0 sin((t -s) √ L) √ L F (s) ds L 2 y ≤ C j,k ∂ y j Γ 2 k F L 1 s ([0,t];L 2 y ) , (3.2.7) ∂ j+1 y Γ k 2 P c t 0 sin((t -s) √ L) √ L F (s) ds L 2 y ≤ C j,k ∂ y j Γ 2 k F L 1 s ([0,t];L 2 y ) + Γ 2 k F L 1 s ([0,t];L 1 y ) . (3.2.8)
Moreover, for the radiative decay we have for any real number σ in [1/2, 1] the following bounds

• -σ P c e it √ L f L ∞ y ≤ C σ t -σ • σ f L 1 y + • σ ∂ y f L 1 y , ( 3 
.2.9) 

• -σ P c sin(t √ L) √ L g L ∞ y ≤ C σ t -σ • σ g L 1 y . ( 3 

Strategy of proof

The proof of the existence part of Theorem 3.1.1 is essentially based on a bootstrap argument. Consider a time T > 0 such that for ε, ν, δ 1 sufficiently small the following bootstrap assumptions hold on the time interval [0, T ]: ∇ β t,y φ(t)

L ∞ y + t 1 2 +δ1
• -1 2 ∇ β t,y φ(t) ] provided that ε is sufficiently small. To achieve our goal, it is enough to show that there exists a real number a ∈ [-ε T a 2 The rest of the paper is organized as follows: Section 3.4 is devoted to the proof of Proposition 3.3.1 where we start by describing some features of the nonlinearity F . We next address the energy bounds (3.3.6). Then, we turn to the proof of (3.3.7) and (3.3.8). The purpose is then to prove the dispersive estimates (3.3.9)-(3.3.10). We end Section 3.4 by dealing with the unstable mode. Finally, in Section 3.5, we handle the Lipschitz continuity of a with respect to the initial data.

L ∞ y δ 0 + ε 3 2 + T

Proof of Proposition 3.3.1

The proof of Proposition 3.3.1 follows the same lines as Proposition 3.2 in [8]. We shall give an outline of its proof and clarify some of its details. We start this section by discussing some properties of the nonlinearity F .

Properties of the nonlinearity F

The main feature of the nonlinearity F is that most of its terms are localized in space thanks to their coefficients of the form y -k , k ≥ 1. This allows us to control these terms using pointwise decay estimates. The only exception is the expression Q = -φ 2 t φ yy -φ 2 y φ tt + 2φ t φ y φ ty , that appears in Q 3 (see Appendix A). However, as observed in [12], this term can be treated using its null structure. Namely, one has 

Q = -y -

Top order derivatives

Our task is now to prove Estimate (3.4.4) with |α| = N 1 + 1. As we will see in the analysis, here we need to perform integration by parts in the top order derivative contributions. We shall first bound the expressions ∂ N1+1 Since W ∈ L ∞ y , we deduce that In other respects, using the bootstrap assumption (3.3.1), we obtain the bound h (N1-1) (s) + h (N1) (s) ε s ν .

∂ N1+1 t ψ(t)
Putting together the last two bounds, we deduce that

|B(t)| ε 4 t 2ν .
Finally, combining the preceding bounds, one easily infers the improved estimate

∂ N1+1 t ψ(t) L 2 y + ∂ N1 t ∂ y ψ(t) L 2 y (δ 0 + ε 3 2 ) t ν .
To end this section, we shall show how the above estimate gives us the control over the remaining mixed derivatives using an induction argument through our equation. Thus, recalling that W (y) = 6+y 

Théorème 1 . 2 . 1 . 2 ,

 1212 Pour tout nombre réel positif δ suffisamment petit et tout nombre irrationnel ν > 1 il existe T > 0 et une solution radiale u(t, •) de l'équation (1.2.3) sur l'intervalle (0, T [ telle que (u, ∂ t u) ∈ C ((0, T ], X L0 ) avec L 0 = 2M + 1

1 √ 2

 12 .27) and where 10 the nonlinear part F nl k, , for k ≥ 6 and 0 ≤ ≤ k -6 2 , only depends on w k , and λ k , , for 3 ≤ k , k ≤ k -3. Similarly, the coefficients g k, only depends on the values of the functions w k , on z = and the coefficients λ k , , for 3 ≤ k , k ≤ k -3.In other words, for any integer k ≥ 3 the functions (w k, ) 0≤ ≤ (k) satisfy:

( 2 .

 2 4.65) for some constants w k, ,α,β,p and w k, ,α,p , as z tends to infinity. Proof of Proposition 2.4.1. Let us start with the existence part of the proposition, and first consider the indexes k = 3, 4 and 5. In view of the computations carried out in Section 2.4.1 (see Property (2.4.16)), we have in that case w 5,1 = 0 and L k w k,0 = 0 , k = 3, 4, 5 .

  4.88) and (2.4.89).

  4.1 together with Hypothesis (2.4.62), we easily gather that w 0 k,0 = w 1 k,0 on a neighborhood of 0, for k = 3, 4 and 5.

Remark 2 . 5 . 1 .

 251 defined above by (2.5.3), and where χ δ (ρ) = χ 0 ρ δ• Invoking (2.5.

.5. 14 ) 2 . 5 . 2 .

 14252 RemarkThe functional space A given by Definition 2.5.1 is an algebra, and we have for any function a in A and any integer m, ∂ m a ∈ ρ -m A .(2.5.15)

Lemma 2 . 8 . 3 .

 283 Under the above notations, the homogeneous equation Lf = 0 (2.8.59) has a basis of solutions e 1 , e 2 given by:    e 1 (y) = (ΛQ)(y) and e 2 (y) = (ΛQ)(y) y 1

0 e 1 e 1

 011 )ê 2 (s) -ê1 (s)ê 2 (y) ĝ(s) ds , which by definition gives rise tof (y) = y (y)e 2 (s) -e 1 (s)e 2 (y) Ĥ(s) 2 g(s) ds •In view of (2.8.60), we deduce thatf (y) = e 1 (y)Finally performing an integration by parts, we readily gather that f (y) = -e 1 (y) (s ) g(s ) Ĥ(s ) 2 ds ds , which ends the proof of the lemma by virtue of (2.8.65).

L 2 y δ 0 + ε 3 2+ 1 ])10 k ν y log y - 1 δ 0 + ε 3 2+

 23113 T k |b(T )| , 0 ≤ |β| ≤ N 1 -k, k ∈ {1, 2}, (3.3.17) sup t∈[0,T ] t -(1+χ k>0 [ 2|β| N ∇ β s,y Γ k 2 φ(s, y) L 2 s ([0,t];L 2 y ) T k |b(T )| , 0 ≤ |β| ≤ N 1 + 1 -k, k ∈ {0,1, 2}, (3.3.18)

1 2 3 2 , ε 3 2

 133 +δ1 |b(T )|, 0 ≤ |β| ≤ N 2 . (3.3.19) Assuming Proposition 3.3.1, let us prove the existence part of Theorem 3.1.1. To this end, let N 0 , N 1 , C, ν, δ 1 be as in Proposition 3.3.1, and δ 0 , ε such that 0 < δ 0 ε 3 2 , ε ν, and( φ1 , φ2 ) X0 ≤ δ 0 .For any a in [-ε ], we denote T a the supremum of T > 0 such that the solution of the Cauchy problem∂ 2 t φ + L φ = G, ( φ(0, •), ∂ t φ(0, •)) = ( φ1 + ag d , φ2 ),verifies the following bounds on [0, T [

  the flow, one has T a > 0 for any a ∈ [

3 2 3 2 , ε 3 2

 333 ] such that T a = +∞. Now, to prove the existence of such value of a, we argue by contradiction. Assume that for all a ∈ [-ε ], one has T a < +∞. Consider b(T a ) = b(a, T a ). By definition of T a and the continuity of the flow, one easily deduces from Corollary 3.3.2 that |b(T a )| = ε 5 4

3 2 , 3 2 , ε 3 2

 3233 then ±b(T a± ) > 0. Thus, there exists a ∈ [-ε ] such that b(T a ) = 0 which contradicts(3.3.26).

tψ

  and ∂ N1 t ∂ y ψ in L 2 y . Then we shall show how the remaining derivatives can be controlled directly from the equation using an argument of induction on the number of y-derivatives. Recall that ψ verifies the PDE: ψttψyy -W ψ = P c G. s, y) ∂ N1+1 s ψ(s, y) dy ds = 0.

0 G. 1 sG(s) L 2 y ε 3

 0123 h (N1+1) (t) -λ 0 h (N1-1) (t) = G (N1-1) (s), which implies that B(t) = t (N1) (s) λ 0 h (N1-1) (s) + G (N1-1) (s) ds = λ 0 G (N1-1) (s)h (N1-1) (s)As it is pointed out in the analysis of the operator L, g d is smooth and decays exponentially as |y| → ∞. Thus, taking advantage of Estimate(3.4.5) and Hölder inequality, we deduce that G (N1-1) (s) ∂ N1-s ν-1 .

Let 2 ≤∂ k- 2 y

 22 k ≤ N 1 + 1, our task is to establish Estimate (3.4.4) for α k = (N 1 + 1 -k, k) assuming that it is true for α k-2 and α k-1 . Applying ∂ N1+1-k t to the equation, we infer that ∇ α k-2 t,y ψ -∇ α k t,y ψ -∂ k-2 y W ∂ N1+1-k t ψ = ∂ N1+1-k t ∂ k-2 y P c G.

  x 1 , ..., x 2n ) ∈ R 2n , x 2 1 + ... + x 2 n = x 2 n+1 + ... + x 2 2n } est une hypersurface minimisante dans R 2n , pour n ≥ 4. Le cône de Simons qui est invariant par l'action du groupe O(n) × O(n) peut être paramétré comme suit :

  .2.3) Notons que l'équation (1.2.3) est invariante par le changement d'échelle : dans le sens où si u est une solution de l'équation (1.2.3) alors u a l'est aussi. Notons que dans le cadre des espaces de Sobolev homogènes, l'espace Ḣ n+2 2 (R n ) est invariant par le changement d'échelle (2.1.7).

	u a (t, x) = au	t a	,	x a	,	(1.2.4)

  En vue des travaux antérieurs[1, 2, 22] sur l'équation d'onde quasilinéaire en dimension 2, on sait que les nonlinéarités polynomiales les plus difficiles à traiter sont les quadratiques et les cubiques. Le terme cubique dans notre cas vérifie la condition nulle cubique. Cette condition, conjuguée avec le fait que la métrique induite sur l'hélicoïde est asymptotiquement plate, est le point clé de notre analyse.

	(t, y, θ) → t, y cos(θ) +	sin(θ) y	φ(t, y), y sin(θ) -	cos(θ) y	φ(t, y), θ +	y y	φ(t, y)

soit de courbure moyenne nulle dans l'espace de Minkowski. Cela nous conduit à l'étude de l'équation suivante :

φ tt + L φ = F (φ, ∇ t,y φ, ∇ 2 t,y φ), où (1.3.2) L := -∂ 2 y -

et F est une nonlinéarité polynomiale où l'ordre des termes varie entre 3 et 9.

2.3 Approximate solution in the inner region 2.3.1 General scheme of the construction of the approximate solution in the inner region

  .2.12)

	In this section, we shall built in the region a family of approximate solutions u (N ) in to the quasilinear wave equation (2.1.8) as a perturbation of the ρ ≤ t 1 (where 0 < 1 < ν is a fixed positive real number) t profile t ν+1 Q x t ν+1 •
	Writing			
	u(t, ρ) = t ν+1 V t,	ρ t ν+1	,	(2.3.1)
	we get by straightforward computations			

  satisfying formulae (2.3.13) and (2.3.14) as well as Condition (2.3.15).

	Invoking (2.3.10) together with (2.3.13) and (2.3.14), one can easily check that

  on the light cone z = 1 √ 2 • The above condition (2.4.19) ensures that the coefficient of W zz involved in the equation we deal with vanishes at z = 1 √ 2 • This will enable us to determine successively the functions w k, involved in (2.4.18) without loss of regularity at each step. Invoking (2.4.2) together with (2.4.18), we infer that the functions W 1 , W 2 , W 2 , W 2 , W 2 , W 3 , W and A 0 defined above admit expansions of the same form as W . More precisely, one has:

  By virtue of Lemma 2.4.1 and formulae (2.4.59) and (2.4.60), the functions w k, admit an asymptotic expansion of the form:

	Remark 2.4.2.

.

4.64) 

implies that w 0 k, = w 1 k, , for all 3 ≤ k ≤ M and all 0 ≤ ≤ (k).

  where the coefficients f k, ,α,β(resp. fk, ,α,p and fk, ,α,β,p ) are uniquely determined in terms of the coefficients d j, α,β (resp. w k, α,β,p ) involved in (2.4.56) (resp. (2.4.65)). Proof. Let us first address the behavior of F nl k, near z = 0 and at infinity. To establish (2.4.70) and (2.4.71), we will use formulae (2.4.35)-(2.4.38) combining them with the corresponding asymptotic of w 1 j, , w 1 j, , w 2 k, , w 2 j, and wj, that we start to describe now. Consider w 1 j, . It follows from (2.4.20) that if w j, , 3 ≤ j ≤ k -1, verify (2.4.56) and (

fk, ,α,β,p log z α z νβ+1-p , (2.4.71)

  To end the proof of the lemma, it remains to establish (2.4.69). To this end, we will use the representations (2.4.30)-(2.4.34).

						.4.81)
	wj, (z) = z jν+1	w∞ j, ,α,j,p log z	α z -p +	w∞ j, ,α,β,p log z	α z νβ+1-p , (2.4.82)
		0≤α≤ j-3 2 -		0≤α≤ j-6 2 -	
		p∈N		3≤β≤j-3,p∈N	
	as z → ∞.				
	Combining (2.4.30)-(2.4.34) with (2.4.74), (2.4.75), (2.4.76), (2.4.77), (2.4.78), (2.4.79), (2.4.81) and
	(2.4.82), we obtain (2.4.70) and (2.4.71).		
	Start with F nl,1 k,	defined by (2.4.31). It stems from the definition of w	(2, ) j,

  Finally using(2.4.80), one can easily check that the functions wj, , 3 ≤ j ≤ k -1, have the form (2.4.55), which can be viewed as a particular case of (2.4.84).

	.4.84)
	Similarly, by (2.4.23) the same is true for w j, . Since all the functions involved in (2.4.32) and (2.4.33) have the form (2.4.84), one easily deduces (2, )
	that F nl,i k, , i = 2, 3, verify (2.4.69).
	Now consider F nl,4 k,

  .4.91) Invoking formulae (2.4.69), (2.4.70) together with Lemma 2.4.3, we easily check that the above equation has a unique solution X 0, 1

  M r 1 , and then integrate over R 4 . This easily gives rise to the following identity

	a -1 (t)	r 1 (2.7.17) + (L M r 1 )(2.7.22) (t, y) dy = 0 .	(2.7.24)
	R 4		
	Making use of formulae (2.7.17) and (2.7.22), we deduce that (2.7.24) can be splited in several parts as
	follows:		

.7.23) Now let us respectively multiply Equation (2.7.17) by a -1 r 1 and Equation (2.7.22) by a -1 L

  Combining Proposition 2.7.1 with the bounds (2.7.1) and (2.7.2), we get that for any time t ∈ [t 1 , T ],

	t,	x t ν+1	,
	Proposition 2.7.1 follows readily from (2.7.13) and Lemma 2.7.1 by standard continuity arguments.
	Remark 2.7.1.		

  •, •) and • Ḣ1 (R 4 ) are equivalent. Lu n |u n L 2 (R 4 ) .

	Since u n	n→∞ u in Ḣ1 (R 4 ), we deduce that a(u, u) ≤ lim inf n→∞	a(u n , u n ), and thus
		Lu|u L 2 (R 4 ) ≤ lim inf	
	Taking into account (2.8.10), (2.8.11) and (2.8.14), we deduce that
		Lu|u L 2 (R 4 ) = 0 ,	(2.8.15)

n→∞

  .8.25) 

	Proof. Invoking Hypothesis (2.8.57), we easily check that for any ξ ∈ R 4 \ {0}, the characteristic poly-
	nomial of the wave equation (2.8.23)			
	4	4		
	τ 2 -τ	b i ∇u, u t ξ i -	a i,j ∇u, u t ξ i ξ j	(2.8.26)
	i=1	i,j=1		
	has two distinct real roots τ 1 and τ 2 . Indeed taking account of (2.8.18), we find that ∆ the discriminant
	of (2.8.26) is given by			

  Now since the functions ∇a i,j 1≤i,j≤4 and (∇b i ) 1≤i≤4 belong to the Sobolev space H L-2 (R 4 ), the function f α belongs to L 2 (R 4 ) and satisfies uniformly on [0, T ]f α (t, •) L 2 ≤ C A ∇ Φ(t, •) H |α| + Φ t (t, •) H |α| .

		.8.44)
	where	
	|I α (t)| ≤ a 0 (t) ∇(∂ α Φ)(t, •) 2 L 2 + (∂ α Φ) t (t, •) 2 L 2 .	(2.8.45)
		(2.8.46)
	Therefore taking into account (2.8.35), we get for any |α| ≤ L -1	

  .2.10) Along the same lines, we have the following proposition:and likewise for the inhomogeneous evolution, for any integer j and any k ∈ {0, 1, 2}, the following estimates hold For any α = (α 1 , α 2 ) in N 2 and any k ∈ {0, 1, 2}, we have the following space-time bounds1 y-1 ∇ α s,y Γ k 2 e isFor the inhomogeneous evolution, we have for any integer j and any k ∈ {0, 1, 2}

		∂ j+1 y	Γ k 2 P c	0	t	sin((t -s) √ L	√	L)	∂ y F (s) ds	y L 2	≤ C j,k ∂ y	j+1 Γ 2	k F L 1 s ([0,t];L 2 y ) ,	(3.2.12)
	∂ j+1 y	Γ k 2 P c	0	t	sin((t -s) √ L	√	L)	∂ s F (s) ds	y L 2	≤
						C j,k					∂ y	j •∂ y	k F (0) L 2 y	+ •∂ y	k F (0) L 1 y	+ ∂ y	j+1 Γ 2	k F L 1 s ([0,t];L 2 y ) . (3.2.13)
	Finally, we have the following local energy decay result:
	Proposition 3.2.3. L 2 s (R + ;L 2 y )	≤ C α,k ∂ y	|α| • ∂ y	k f	y L 2	,	(3.2.14)
	y log y -1 ∇ α s,y Γ k 2	sin(s √ L √	L)	P c g(y)	L 2 s (R + ;L 2 y )	≤ C α,k •	1 2 + ∂ y	(|α|-1)+ • ∂ y	k g	y L 2	.	(3.2.15)
	y log y	-1 ∂ j y Γ k 2 P c		0	t	sin((t -s) √ L	√	L)	F (s, y) ds	L 2 s (R + ;L 2 y )	≤
														C j,k y	1 2 + ∂ y	(j-1)+ Γ 2	k F (s, y)	L 1 s (R + ;L 2 y )	, (3.2.16)
	y log y	-1 ∂ j y Γ k 2 P c		0	t	sin((t -s) √ L	√	L)	∂ y F (s, y) ds	L 2 s (R + ;L 2 y )	≤
														C j,k ∂ y	j Γ 2	k F L 1 s (R + ;L 2 y ) , (3.2.17)
	and												
	y log y	-1 ∂ j y Γ k 2 P c		0	t	sin((t -s) √ L	√	L)	∂ s F (s, y) ds	L 2 s (R + ;L 2 y )	≤
											C j,k	y	1 2 + ∂ y	(j-1)+ •∂ y	k F (0)	L 2 y	+ ∂ y	j Γ 2	k F L 1 s (R + ;L 2
											∇ α t,y Γ k 2 P c	sin(t √ √ L	L)	∂ y f	y L 2	≤ C α,k ∂ y	|α| • ∂ y	k f	y L 2	,	(3.2.11)

Proposition 3.2.2. For any α = (α 1 , α 2 ) ∈ N 2 of length |α| ≥ 1 and any k ∈ {0, 1, 2}, we have √ L P c f (y) y ) . (3.2.18)

  Under the hypothesis of Proposition 3.3.1, the following estimates hold:

			sup t∈[0,T ]	t -ν ∇ t,y ∇ β t,y φ(t)	y L 2	δ 0 + ε	3 2 + |b(T )| , 0 ≤ |β| ≤ N 1 ,	(3.3.16)
	sup	t -(1+[ 2|β| N 1	])10 k ν ∇ t,y ∇ β t,y Γ k 2 φ(t)		
	t∈[0,T ]					
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∇ t,y ∇ β t,y φ(t)

L 2 y ≤ ε t ν , 0 ≤ |β| ≤ N 1 ,

(3.3

.1) Corollary 3.3.2.

  • (3.3.26) It follows from (3.3.15) that t 2 b(t) -λ 0 t 2 b(t) ε Furthermore, by integrating (3.3.15), we get for any t ∈ [0, T a ] (3.3.26) and (3.3.28) that T a |ln ε|, which together with (3.3.27) implies that t 4 b(t) 2 |t=Ta > 0. (3.3.30) The continuity of the flow combined with (3.3.30) allow to conclude in a standard way that the map a → T a is continuous. Making use of (3.3.28) and (3.3.29), one can observe that if we take a ± = ±ε

						5 4 t -1 2 -	δ 1 2 .	(3.3.27)
	e -	√	λ0t b(t) -b(0)	ε 3 ,	(3.3.28)
	Using that				
	b(0) -	λ 0 a 2	δ 0 + ε 3 ,	(3.3.29)
	we deduce from				

1 2

 1 ∂ t φ 2 t φt -2∂ y φ t φ y φt + ∂ t φ 2 y φt + 3φ 2 t (φ tt -φ yy ) --∂ t φ 2 t φt + 2∂ y φ t φ y φt -∂ t φ 2 y φt , (3.4.2)and G collects the terms that are either localized in space or of order at least 5 with respect to φ, ∇ t,y φ, ∇ 2 t,y φ. Explicitly, one has Clearly, G admits the same bound (3.4.5) as G: Furthermore, using the bootstrap assumptions (3.3.1)-(3.3.5), it is not difficult to see that It remains to deal with K(t). Taking advantage of Estimate (3.2.12), we infer that 3 Similarly to (3.4.5), one can easily check that, under the bootstrap assumptions (3.3.1)-(3.3.5), we have

			∇ s,y	y N1-1 G(s) L 2	ε 3 s ν-1 .	(3.4.7)
					y G(s) L 1	ε 3 s ν-1 .	(3.4.8)
	Thus, we deduce that							
	∂ α2 y I(t) L 2 y				0	t	ε 3 s ν-1 ds ε	5 2 t ν .	(3.4.9)
	∂ α2 y K(t) L 2 y		0	t	∇ s,y	N1 •	1 2 φ 3 s,y (s)	y L 2	ds.
		∇ s,y	N1 •	1 2 φ 3 s,y (s)	y L 2	ε 3 s ν-1 .
	It yields			∂ α2 y K(t) L 2 y	ε	5 2 t ν ,	(3.4.10)
									yφ y φ 2 t y 2	,	(3.4.1)
	which allows us to rewrite the nonlinearity as			
					G = G 0 + G,
	where							
	G 0 := G = y	1 2	2	yφ y φ 2 t y 2 + 6	φφ 2

t y 4 + 3φ 2 t F + F -Q . (3.4.3)

which ends the proof of (3.3.20) for 1 ≤ |α| ≤ N 1 .

  It remains to address the bound over B(t). For that purpose, recall that we haveLg d = -λ 0 g d ,and set G(t) := (G, g d ) L 2 y (t). Then, we can write

	we find that				
					t
		L(t) :=			∂ N1 s G(s, y) ∂ N1+1 s	ψ(s, y) dy ds
				0		R
			= A(t) -B(t),
	where				
				t	
		A(t) :=			∂ N1 s G(s, y) ∂ N1+1 s	φ(s, y) dy ds,
				0	R
				t	
		B(t) :=			∂ N1 s G(s, y) h (N1+1) (s) g d (y) dy ds.
				0	R
	Integrating by parts, we find that	|A(t)| ε	7 2 t 2ν + δ 0	2 .
				t	
	2 L 2 y + ∂ N1 t ∂ y ψ(t) 2 L 2 y -	0	R	∂ N1 s G(s, y) ∂ N1+1 s	ψ(s, y) dy ds
			∂ N1+1 t	ψ(0) 2 L 2 y + ∂ N1 t ∂ y ψ(0) 2 L 2 y + ∂ N1 t ψ(0) 2 L 2 y + ∂ N1 t ψ(t) 2 L 2 y .
	Thanks to (3.1.8), we have			
	∂ N1+1 t	ψ(0) 2 L 2 y + ∂ N1 t ∂ y ψ(0) 2 L 2 y + ∂ N1 t ψ(0) 2 L 2 y	δ 0	2 + ε 3 .	(3.4.11)
	On the other hand, the case of lower order derivatives provides us with the bound
			∂ N1 t ψ(t) 2 L 2 y	δ 0	2 + ε 3 + ε 5 t 2ν .	(3.4.12)
	It remains to deal with	t 0 R ∂ N1 s G(s, y) ∂ N1+1

s ψ(s, y) dy ds. Writing ψ under the form ψ(t, y) = φ(t, y) -h(t) g d (y),

3 

where φ 3 s,y stands for a cubic product of first order derivatives of φ

  A (1 -φ 2 t ) + B φ 2 y , ∂ t K = (∂ t A)(1 -φ 2 t ) -2Aφ t φ tt + (∂ t B)φ 2 y + 2Bφ y φ ty , ∂ y K = (∂ y A)(1 -φ 2 t ) -2Aφ t φ ty + (∂ y B)φ 2 y + 2Bφ y φ yy . Putting the values of K , ∂ t K, ∂ y K into our equation, we arrive at AA (1 -φ 2 t ) 2 + AB (1 -φ 2 t )φ 2 y + A B(1 -φ 2 t )φ 2 y + BB φ 4 y = -A∂ t Aφ t (1 -φ 2 t )-2∂ t ABφ t φ 2 y -2A 2 (1 -φ 2 t )φ tt -2ABφ 2 y φ tt -2A 2 φ 2 t φ tt + A∂ t Bφ t φ 2 y + 4ABφ t φ y φ ty +2A∂ y B(1 -φ 2 t )φ y + B∂ y Bφ 3 y + 2AB(1 -φ 2 t )φ yy -∂ y AB(1 -φ 2 t )φ y .We regroup, after replacing ∂ t A, ∂ y A, ∂ t B, ∂ y B by their values, all terms depending on the second derivatives. Thus, the left-hand side of the equation can be written as-2A 2 φ tt + 2AB(-φ 2y φ tt + 2φ t φ y φ ty + φ yy -φ 2 t φ yy ). One can see easily that the computation of A 2 and AB allows us to separate the nonlinear and linear contributions to the left-hand side of the equation. We haveA 2 = y 4 -4φ 2 + φ 4 y 4 6 -4Reorganizing a little bit and picking out the terms, the left-hand side we see is precisely2 y 4 (φ yy -φ tt + Q 3 + Q 5 + Q 7 + Q 7 ),whereQ 3 = φ 2 y 4 (4φ tt -φ yy ) -(φ tt φ 2 y + φ yy φ 2 t -2φ t φ y φ ty ), Q 5 = -φ 4 y 8 (6φ tt + φ yy ) + φ 2 y 4 (φ tt φ 2 y + φ yy φ 2 t -2φ t φ y φ ty ), Q 7 = φ 6 y 12 (4φ tt + φ yy ) + φ 4 y 8 (φ tt φ 2 y + φ yy φ 2 t -2φ t φ y φ ty ), Q 9 = -φ 8 y 16 φ tt -φ 6 y 12 (φ tt φ 2 y + φ yy φ 2 t -2φ t φ y φ ty ).It remains to deal with the right-hand side of the equation. We readily gather that it can be written asAs for the left-hand side, we replace A, A , B, B by their values, which implies that the above expression is equal to + S 3 + S 5 + S 7 + S 9 , with

	and also					
					K = φ 2 y 4 +	φ 4 y 8	,
	and		AB = y 4 -φ 2 -	φ 4 y 4 1 -	φ 2 y 4 .
	AA (1 -φ 2 t ) + 2A Bφ 2 y -AB φ 2 y -4yA(1 -φ 2 t )φ y 1 -	φ 2 y 4 -2yBφ 3 y 1 -	φ 2 y 4
			+2yB(1 -φ 2 t )φ y 1 +	φ 2 y 4 2 -3	φ 2 y 4	.
	2 y 4 -2 y 2 S 3 = 6 φ yφ y y 4 -φ 3 y 8 + 9 yφ 2 y 6 φ y + φ y 4 (2φ 2 t -5φ 2 y ) +	y y 2 (φ y φ 2 t -φ 3 y ),
	S 5 = -6	φ 5 y 12 -7	yφ 4 y 10 φ y +	φ 3 y 8 (-6φ 2 t + 2φ 2 y ) -9	yφ 2 y 6 φ y φ 2 t ,
	S 7 = 2	φ 7 y 16 -	yφ 6 y 14 φ y +	φ 5 y 12 (6φ 2 t + 3φ 2 y ) +	yφ 4 y 10 (7φ y φ 2 t + φ 3 y ),
	y S 9 = -2 ∇	α k-2 t,y φ 7 y 16 φ 2 ψ(t) L 2 y + t + yφ 6	1≤|β|≤N1-1	∇ β t,y ψ(t) L 2 y + ∂ N1+1-k t	∂ k-2 y	P c G(t) L 2 y .
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4 y 4 , we deduce that

∇ α k t,y ψ(t) L 2 y 14 φ y φ 2 t .

O(n) est le groupe orthogonal de R n .

y 4 + y y 2 ∂ y ,

All along this article, we shall denote by H s (R n ) the non homogeneous Sobolev space and by Ḣs (R n ) the homogeneous Sobolev space. We refer to[5] and the references therein for all necessary definitions and properties of those spaces.

where all along this paper, [x] denotes the entire part of x.

All along this paper, we identify the radial functions on R n with the functions on R+.

All the asymptotic expansions through this paper can be differentiated any number of times.

Here and below, we use the convention that the sum is null if it is over an empty set.

We shall designate in what follows the coefficients dp involved in Formula (2.2.4) by dp,0,0.

In order to make notations as light as possible, we shall omit all along this proof the dependence of the function α on the parameters ν and k.

∇ α R (N ) in (t, •) L 2 (Ωin) ≤ C α,N t 2ν+2N 1 -3 2 (ν-1 ) .This ends the proof of the lemma.

and again with the convention that the sum is null if it is over an empty set.

Here and below, the notation reg means that the corresponding function belongs to C ∞ (R * + ).

We recall that ρ = y t ν+1 .

In what follows, the parameter δ0(N ) may vary from line to line.

see Appendix 2.8.4 for a proof of this fact.

(y Q(y)) 3 2

we use the notation(x)+ = x if x ≥ 0 0 if x < 0 .

where all along this paper, [x] denotes the entire part of x and χ stands for the characteristic function.

Remerciements

Combining Lemmas 2.3.2, 2.4.6 and 2.5.2 together with Lemmas 2.4.9 and 2.5.5, we infer that for N sufficiently large there exists a positive parameter δ 0 (N ) such that for any δ ≤ δ 0 (N ) there exists a positive time T = T (δ, N ) so that the above approximate solution V (N ) defined by (2.6.1) satisfies the following L ∞ estimates: Lemma 2.6.1. The following estimates hold for V (N ) , for all 0 < t ≤ T

(2.6.2)

(2.6.3)

(2.6.4)

Besides the time derivative of V (N ) satisfies

(2.6.5)

(2.6.6)

In addition for any multi-index α of length |α| < 3ν + 3, the function V (N ) 1

(t, y) := (∂ t u (N ) )(t, ρ) and its time derivative verify

≤ C δ 3ν , (2.6.7)

(2.6.8)

(2.6.9)

Finally for any multi-index α of length |α| < 3ν + 2 and any integer β ≤ |α|, we have

where V

(N ) 2

(t, y) := t ν+1 (∂ 2 t u (N ) )(t, ρ). Along the same lines, taking advantage of Lemmas 2.3.3, 2.4.7 and 2.5.3, we get the following L 2 estimates, as before for N sufficiently large, δ ≤ δ 0 (N ) and 0 < t ≤ T (δ, N ): Lemma 2.6.2. For any 1 ≤ |α| < 3ν + 3, we have 4 ) ≤ C t + t (1-2 )(3ν+3-|α|) + t 3+5ν-|α|(1+ν) , (2.6.11) and for any 0 ≤ |α| < 3ν + 2

(2.6.12)

Besides, we have

, (2.6.13)

, (2.6.14)

Remark 2.6.1. Lemma 2.6.2 implies that

, (2.6.16)

, (2.6.17)

and

Finally, if we denote by R (N ) := (2.3.3) V (N ) , then invoking Lemmas 2.3.4, 2.4.8, 2.4.9, 2.5.4 and 2.5.5, we infer that the following result holds:

Lemma 2.6.3. There exist N 0 ∈ N and κ > 0 such that

•) H K 0 (R 4 ) ≤ t κN +ν , (2.6.18) for all 0 < t ≤ T (δ, N ), where K 0 = [3ν + 5 2 ] denotes the integer introduced in Lemma 2.4.8.

Re-denoting N , one can always assume that the approximate solutions u (N ) are defined and satisfy Lemmas 2.6.1-2.6.2 for any integer N ≥ 1, and that (2.6.18) holds with κ = 1 for all N ≥ 1.

Proof of the blow up result

Key estimates

The approximated solutions u (N ) constructed in the previous sections verify, for any integer N ≥ 1

for 16 some T = T (δ, N ) > 0. Furthermore, by (2.6.2), (2.6.8), there are positive constants c 0 and c 1 such that u (N ) (t, •) ≥ c 0 t ν+1 and (2.7.1)

for any N ≥ 1, and all t in ]0, T ]. This ensures that

The goal of this paragraph is to achieve the proof of Theorem 2.1.2 by complementing these approximate solutions u (N ) to an actual solution u to the quasilinear wave equation (2.1.8) which blows up at t = 0, and which for N fixed large enough is close to u (N ) , in the sense that there is a positive time T = T (δ, N ) such that the following estimate holds

(2.7.3) for all time t in ]0, T ], where the regularity index 17 

, we have M ≥ 2, and thus L 0 ≥ 5.

The mechanism for achieving this will rely on the following crucial result:

Proposition 2.7.1. There is N 0 in N such that for any integer N ≥ N 0 , there exists a small positive time T = T (δ, N ) such that, for any time 0 < t 1 ≤ T , the Cauchy problem:

admits a unique solution u on the interval [t 1 , T ] which satisfies

for all t 1 ≤ t ≤ T . 16 In what follows, δ is assumed to be less than δ0(N ), which may vary from line to line. 17 we take L to be odd just to make the estimates we are dealing more easier, but it is not important.

Proof of the local well-posedness result

The aim of this appendix is to give an outline of the proof of Theorem 2.1.1. Since the subject is so well known, we only indicate the main arguments. One can proceed on three steps:

1. First, one proves that for some positive time sufficiently small

the Cauchy problem (2.1.11) admits a solution u such that (u, u t ) belongs to the functional space

), and which satisfies for all t in [0, T ]

for some positive constant

2. Second, one shows the uniqueness of solutions thanks to a continuity argument.

3. Third, one establishs the blow up criterion (2.1.13).

Let us then consider the Cauchy problem (2.1.11) and assume that ∇(u 0 -Q) and u 1 belong to H L-1 (R 4 ), with L an integer strictly larger than 4, and that there is ε > 0 such that To prove existence, we shall use an iterative scheme. To this end, under the above notations, introduce the sequence (u (n) ) n∈N defined by u (0) = Q which according to (2.2.1) satisfies

In order to investigate the sequence (u (n) ) n∈N defined above by induction, let us begin by proving that this sequence of functions is well defined for any time t in some fixed interval [0, T ] which depends only on ∇(u 0 -Q) H L-1 , u 1 H L-1 and ε. This will be deduced from the following result. with

(2.8.29)

Firstly note that the source term f belongs to the functional space L ∞ ([0, T ], H L-1 (R 4 )) and thus to L 1 ([0, T ], H L-1 (R 4 )). Let us start by establishing that f ∈ L ∞ ([0, T ], L 2 (R 4 )). Recalling that by virtue of (2.2.1), we have

we deduce that f rewrites on the following way:

where 

which easily ensures that for all t in [0, T ], we have

(2.8.31)

Therefore, we are reduced to the study of the part

Indeed on the one hand according to Estimate (2.8.20), the function

and recalling that the stationary solution Q behaves as ρ at infinity, we infer that there is a positive real number R 0 = R 0 (A) such that for any |x| ≥ R 0 and any t in [0, T ], we have

On the other hand, invoking (2.8.57) together with Lemma 2.2.1, we infer that there is a positive constant C(ε, R 0 ) such that if |x| ≤ R 0 , then we have for all 0 ≤ t ≤ T

Now taking advantage of the Sobolev embedding Ḣ1 (R 4 ) → L 4 (R 4 ), we deduce that

, which according to the fact that 1 Q(ρ)

To achieve the proof of the energy estimates, it remains to estimate Φ tt (t, •) H L-2 (R 4 ) . To this end, we make use of Equation (2.8.28) which implies that

This ensures the result according to (2.8.20) and (2.8.35).

Let us now return to the proof of Theorem 2.1.1. The first step can be deduced from Proposition 2.8.1 by a standard argument that can be found for instance in the monographs [5,13,32]. The key point consists to prove that the sequence (u (n) ) n∈N of solutions to the initial value problem (W) n introduced page 64 is uniformly bounded, in the sense that there exist a small positive time

and a positive constant

, ε such that for any integer n and any time t in [0, T ], we have

In order to establish the uniform estimate (2.8.51), set

and

where C ε , C A and C ε,A are the constants introduced in (2.8.24)-(2.8.25).

We claim that there exists a positive time T ≤ 1 under the form (2.8.50) such that for any integer n ≥ 0: if for any time t in [0, T ], we have

and 

which implies that there exists

Invoking then (2.8.25), we get for all t ≤ T (A, ε)

This ends the proof of the fact that u (n+1) satisfies the bounds (2.8.55) and (2.8.56).

with B 1 defined by (2.1.17), then

Since for any two solutions f1 and f2 to the homogeneous equation

the Wronskian W ( f1 , f2 ) is constant, we infer that ê2 defined by ê2 (y) := ê1 (y)

constitutes a solution to (2.8.63) linearly independent with ê1 .

Since

, and thus taking account (2.8.62), one can choose
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Chapter 3

Codimension one stability of the helicoid under the vanishing mean curvature flow in Minkowski space

Introduction and statement of the result

The minimal surface equation in Riemannian geometry has a natural analogue in Lorentzian geometry.

In particular, in Minkowski space R 1,n equipped with the standard metric :

this problem consists in considering time-like hypersurfaces with vanishing mean curvature. This issue amounts to investigate a quasilinear system of equations that remains strictly hyperbolic as long as the pullback metric is Lorentzian (see for instance Christodoulou [6] and Wong [14]).

Using the local well-posedness theory for the hyperbolic systems (one can consult for example [3,9,13] and the references therein), we can prove that the associated Cauchy problem is locally well posed for smooth initial data (see for example Krieger and Lindblad [11]). It is then natural to consider the long-time behavior of the flow. Note that the minimal surfaces in R n are stationary solutions of the hyperbolic vanishing mean curvature flow. Therefore, they provide us with examples of global solutions. In this paper, we address the problem of stability of these minimal surfaces.

The first consideration of this problem is due to Brendle [4] and Lindblad [12] who studied the stability of a hyperplane (trivial minimal surface). By writing the solution as a graph over the stationary background, one can reduce the problem to the small data Cauchy problem for a scalar quasilinear wave equation which satisfies both quadratic (Christodoulou [5] , Klainerman [10]) and cubic (Alinhac [1,2]) null conditions.

Concerning non-trivial minimal surfaces, the only consideration is the one of the catenoid (Donninger, Krieger, Szeftel, Wong [8]), (Krieger, Lindblad [11]). The stationary catenoid solution is linearly unstable. By considering normal radial perturbations, the authors proved in [8] that the linear instability of the catenoid is the only obstruction to the global nonlinear stability. More precisely, they proved in a certain symmetry class the existence, in the neighborhood of the catenoid initial data, of a codimension one Lipschitz manifold transverse to the unstable mode consisting of initial data generating solutions which exist globally in time and converge to the catenoid at infinity.

In this paper, we study a stability problem of another non-trivial background that is the helicoid. Note that the helicoid is an embedded minimal surface in R 3 on which the induced Riemannian metric is asymptotically flat. Let us also mention that the helicoid can be continuously deformed into the catenoid by the transformation:

where α = 0 corresponds to the helicoid and α = π/2 to the catenoid.

We study normal radial perturbations of the stationary helicoid solution:

More precisely, we consider the mapping depending on a scalar function φ(t, y) satisfying the symmetry condition φ(t, y) = φ(t, -y): with (t, y, θ) ∈ R + × R 2 , y = 1 + y 2 , and we ask that this mapping have vanishing mean curvature in the Minkowski space R 1,2 . This leads to the following quasilinear wave equation with potential:

and where the nonlinearity F is polynomial and the degree of each of its terms varies between 3 and 9. Further details about this nonlinearity will be given in Section 4.1. The exact formula of F will be checked in Appendix A.

In view of the works [1,2,12] concerning quasilinear wave equation on R 1,2 associated to small Cauchy data, we know that the most difficult terms to handle are those which are quadratic or cubic. As we shall see later, the cubic term involved in the nonlinearity F satisfies the cubic null condition introduced in the papers [1,2]. This condition, combined with the fact that the induced Riemannian metric on the helicoid is asymptotically flat is the key argument in our analysis.

Actually, the natural space to study the operator L is L 2 Σ where Σ is the helicoid. Since we are working with rotationally symmetric functions, it is convenient to absorb the weight y onto the function φ and to work in L 2 y . For that purpose, we introduce the notation

and we obtain instead of (3.1.3) the following equation:

where

and G := y 1 2 F . As it has been noticed by Brendle [4] and Lindblad [12] in the case of hyperplanes, to prove any sort of stability we need local energy decay estimates for the linearized equation. In the case of the helicoid, the involved linearized equation is the geometric wave equation:

where L is defined by (3.1.6). Note that this linearized equation is the same that arises in the study of radial normal perturbations of the catenoid in [8,11].

As we shall see later, the linear operator L has a unique non-positive eigenvalue and whose eigenfunction g d contributes an exponentially growing mode to the linear evolution. That is why we cannot expect to have stability for arbitrary perturbations. However, it is possible to have a codimension one set of small initial data corresponding to solutions which exist globally in forward time and decay towards 0.

Our main theorem states as follows: Theorem 3.1.1. Let N 0 be an integer sufficiently large and ( φ1 , φ2 ) be a pair of even functions in W N0,1 (R) ∩ W N0,2 (R) satisfying the smallness condition

)

The key point of our analysis is the following proposition: andν, δ 1 small enough, 0 < ν δ 1 1, such that for any δ 0 , ε sufficiently small satisfying 0 < δ 0 ε ν, the following property holds: for any real number a ∈ [-ε 3 2 , ε 3 2 ] and any even functions

if the solution to the Cauchy problem (3.1.9) satisfies (3.3.1)-(3.3.5) on [0, T ] for some T > 0, then one has for all t in [0, T ] (i) Improvement for the component ψ:

)

where ψ(t, y) = y -1 2 ψ(t, y).

(ii) Control of the unstable mode: denoting

we have

In addition, we have b

Let us emphasize that one can readily gather from the above proposition the following corollary:

Proof of Estimate (3.3.6)

Our goal in this section is to prove the energy bounds (3.3.6) for the stable part ψ of the solution φ, namely:

To this end, we shall treat separately the derivatives with order less than N 1 and the top order derivatives.

Derivatives with order less than N 1

Here we deal with the cases α 1 = 0 and α 1 = 0 differently.

Let us start by the case α 1 = 0. Applying ∂ α1-1 t P c to (3.1.5), we infer that

which, thanks to Duhamel's formula, gives

Thus, we have

Then, we get in view of Estimate (3.2.5)

Taking advantage of the smallness condition (3.1.8) through the equation, we deduce that

On the other hand, under the bootstrap assumptions (3.3.1)-(3.3.5), we clearly have

Finally, integrating this latter inequality between 0 and t leads to the desired result.

We next turn to the case α 1 = 0. Let us first write under notations (3.4.2) and (3.4.3)

Thanks to Estimates (3.2.5), (3.2.6) and the smallness condition (3.1.8), we infer that for any integer 1 ≤ α 2 ≤ N 1 , the following estimates occur

Moreover, using Estimate (3.2.8), we have

According to the induction assumption, we have

On the other hand, the lower order derivatives case gives us the bound 1≤|β|≤N1-1

Notice also that

Then, we get in light of Estimate (3.4.5) 

Let us also state the following corollary that can be deduced from the previous lemma.

Corollary 3.4.2. We can split

In other respects, we can write

Moreover, there is a splitting

Our goal is now to prove the following estimates:

Let us point out that in the rest of this section, we shall use permanently the bootstrap assumptions (3.3.1)-(3.3.5), Hölder inequality and the Sobolev embedding

These technical elements can be used implicitly in the following computations without mentioning it.

We start with the case of less than top order derivatives: 

,

, let us firstly consider the case k = 1 (the case k = 0 has been already treated in Subsection 3.4.2). For any γ ≤ N 1 -2, we have

with 

•

which allows us to estimate I 1 as follows

Now, to deal with I 2 we shall treat the cases γ + 1

which, in view of the bootstrap assumptions (3.3.2),(3.3.4), gives

We next turn to the case γ + 1 ≥ N1 2 where we may assume in (3.4.27) that |α 2 | ≥ N 2 (and therefore

. Thus, we have

φs,y (s)

, we consider the regions y ≤ t 10 and y ≥ t 10 separately assuming that t 1. For y ≤ t 10 , we use the following identities:

, from which we infer that

By the bootstrap assumption (3.3.4) and Lemma 4.1, we deduce that

Furthermore, using that

and taking into account (3.4.16), we obtain

Putting the bounds (3.4.31)-(3.4.33) together, we deduce that

As for the region y ≥ t 10 , we simply write 

This achieves the proof of the case k = 1. For the case k = 2, one can proceed similarly, the only difference occurs from the terms containing the expressions of the form

that can be treated by using Corollary 3.4.2 and Lemma B.2 from [8]. We omit the simple details.

In order to investigate the contribution of G, we consider the following decomposition:

where

with Q given by (3.4.1),

and where the remainder G R contains all the terms whose coefficients are O( y -7 2 ) as y goes to infinity.

We start by addressing the bound over G R . For k = 1, we have

Therefore,

which after integration gives

The case k = 2 is treated similarly. Namely, we have

which implies that

Integrating this last bound, we get

We next treat the contribution of G 2 , starting again by the case k = 1. Using that

and taking into account the bootstrap assumption (3.3.1) and estimates (3.4.28), (3.4.29), one gets

The case k = 2 can be treated similarly. As a result, one obtains

It remains to consider G 1 . One has

and therefore in view of the previous analysis of G 0 , we deduce that

for k ∈ {0, 1, 2} and 0 ≤ γ ≤ N 1 -k. This completes the proof of (3.4.24) and (3.4.25) in the case of less than top order derivatives.

Top order derivatives

To prove (3.4.24) with |β| + k = N 1 one can proceed as in Section 2.4.2 via integration by parts. The proof of (3.4.25) with |β| + k = N 1 + 1 is more involved. To obtain the desired result, one uses an induction argument in order to reduce the problem to the case of lower order derivatives. To do so, one needs to express ∂ γ t Γ k 2 ψ, (γ + k = N 1 + 1) via an approximate representation formula using the method of characteristic since a simple integration by parts seems to no longer work. We refer to [8] for the details of this proof.

Pointwise decay estimate

The starting point in the proof of Estimates (3.3.9) and (3.3.10) is to apply estimates (3.2.9) and (3.2.10) to (3.2.2). Then, we need to treat the regions {y t}, {y ∼ t} and {y t} separately. For the details of this proof, one can consult Section 6 in [8].

Control over the unstable mode

To complete the proof of Proposition 3. 

one readily gets for any 0 ≤ i ≤ N 1 -1: 

we also have 

and h 

Proof of the Lipschitz continuity of a

The aim of this section is to prove the Lipschitz continuity of a with respect to the initial data. Given two initial data ( φ(1)

2 ) ∈ X 0 , let φ(1) , φ(2) be two solutions given by Theorem 3.1.1 corresponding, respectively, to parameters a (1) , a (2) , and let h (1) , h (2) be the corresponding projections on g d . We write ∆a = a (1) -a (2) , (∆ φ1 , ∆ φ2 ) = ( φ(1)

2 ), and ∆ φ = φ(1) -φ(2) , ∆h = h (1) -h (2) , ∆G(φ, ∇ t,y φ, ∇ 2 t,y φ) = G(φ (1) , ∇ t,y φ (1) , ∇ 2 t,y φ (1) ) -G(φ (2) , ∇ t,y φ (2) , ∇ 2 t,y φ (2) ) := G (1) -G (2) , The solutions φ (1) , φ (2) , verify estimates (3.3.16) This completes the proof of Theorem 3.1.1.

Appendix A: Derivation of the equation

We consider perturbations of the stationary helicoid solution to the extremal surface equation. The helicoid, as a surface of revolution, can be parametrized by (y, θ) → (y cos(θ), y sin(θ), θ), (y, θ) ∈ R × R, (3.6.1)

where we use the standard Cartesian coordinates. We shall study normal radial perturbations of the stationary helicoid solution. More precisely, we consider the mapping depending on a scalar function φ(t, y) satisfying φ(t, y) = φ(t, -y):

(t, y, θ) → t, y cos(θ) + sin(θ) y φ(t, y), y sin(θ) -cos(θ) y φ(t, y), θ + y y φ(t, y) , (

with (t, y, θ) ∈ R × R × R, and we ask that this mapping have vanishing mean curvature in Minkowski space.

Using that the mean curvature is the first variation of the volume form, we can derive the equation of motion by considering formally the Euler-Lagrange equation associated to the volume density of the pullback metric. An elementary computation shows that, for the mapping above, the pullback metric is