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The cells of our immune system play an essential role in protecting us from infections from pathogens such as viruses or harmful bacteria. In the context of a disease, the different types of immune cells perform special roles and interact, resulting in a finely orchestrated immune response. However, this complex immune response can in some cases be disrupted. For instance, the cells that are supposed to fight a disease can be silenced. This phenomenon can be observed in tumors, in which cells can start proliferating abnormally without being controlled by a functional immune response.

Understanding how the immune system works in the context of a disease is therefore of crucial importance if we want to find efficient therapies. The cells from the immune system can now be thoroughly studied with technologies that generate unprecedented amounts of information on these cells' shape, type, and on the molecules that they contain. This enormous amount of data represents a challenge for the doctors who need to analyse it. In this context, many computational tools are being developed, to automate the analysis of medical data. These computational tools tackle typical data analysis issues, such as preprocessing (to obtain clean, noise-free data), feature selection (to identify cell features of interest), clustering (to identify groups of similar cells), trajectory inference (to identify developmental processes), and network inference (to identify genes that can influence other genes), among others.

The topic of this thesis is the application and design of computational solutions for single-cell data analysis. In the first part of this thesis, we essentially focus on identifying structure in this type of data. We first present a new computational tool for trajectory inference, TinGa, that can identify cell developmental trajectories in a fast and flexible way. Trajectories are typically identified by compressing the information contained in thousands of genes into a low-dimensional space. We thus secondly present an exploratory study, in which we aimed at computing an optimal low-dimensional space in which the
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allo-HSCT allogenic Hematopoietic Stem Cell Transplantation.

identification of a trajectory would be facilitated. Thirdly, we applied trajectory inference as well as a new network inference method, BRED, to gain biological insight on the response of CD8 T cells upon an acute viral infection. We identified two sources of memory along the developmental trajectory followed by activated CD8 T cells, and we characterised these two memory precursor populations. Finally, we report our results on a multi-omics study that aimed at unraveling differences between patients that were tolerant to a graft transplantation and patients who developed graft-versus-host disease. By integrating three different types of data, we were able to uncover the crucial role between an activated state and a steady state of the immune system in these patients.

Computational tools allow to analyse new types of large scale datasets in a fast and efficient way. By allowing to automate analyses that were previously performed manually, they present multiple advantages. First, they make it possible to analyse data of unprecedented size and complexity. Secondly, they significantly reduce the time typically needed for the analysis of any type of data. Lastly, they lead to more robust results, since correctly set computational experiments can be repeated by different persons and will lead to identical results. Altogether, the development and application of computational tools can lead to more robust and reproducible single-cell omics research.

Samenvatting

De cellen van ons immuunsysteem spelen een essentiële rol bij de bescherming tegen pathogenen zoals virussen en bacteriën. Tijdens het verloop van een ziekte speelt elk van de verschillende types immuuncellen een specifieke rol, en deze cellen interageren met elkaar om zo een goed georkestreerde immuunrespons in gang te zetten. Deze immuunrespons kan echter in sommige gevallen verstoord of gebrekkig verlopen. Zo kunnen bijvoorbeeld cellen die verondersteld worden abnormale cellen te vernietigen afwezig of niet functioneel zijn. Dit fenomeen kan bijvoorbeeld geobserveerd worden in tumoren, waarbij bepaalde cellen abnormaal beginnen te prolifereren, zonder een goede respons van het immuunsysteem.

Het begrijpen van de werking van ons immuunsysteem is dus van cruciaal belang als we nieuwe behandelingen willen ontwikkelen voor bepaalde ziekten. Nieuwe technologische vooruitgang laat ons nu ook toe om de cellen van het immuunsysteem op een zeer gedetailleerde manier te onderzoeken, waarbij zeer grote hoeveelheden data gegenereerd worden. Deze data bevat informatie over de vorm van de cel, het type cel, en de verschillende moleculen die aanwezig zijn in de cel. Deze grote hoeveelheden data vormen evenwel een zeer grote uitdaging voor biomedische wetenschappers die deze data willen interpreteren om er nieuwe biologische kennis uit te halen. Om deze data te analyseren is er een grote nood aan informatica-technieken, die het mogelijk maken om op automatische wijze grote en hoogdimensionele data te analyseren. Deze methoden worden typisch gebruikt voor data mining taken, zoals data pre-processing (bijvoorbeeld om goede kwaliteitsdata te bekomen), kenmerkselectie (bijvoorbeeld om belangrijke celkarakteristieken te ontdekken), clustering (om groepen gelijkaardige cellen te ontdekken), trajectanalyse (om celontwikkelingsprocessen te modelleren) en het afleiden van gen-regulatorische netwerken (om de invloed van bepaalde genen op andere genen te modelleren).

Deze thesis gaat over het ontwikkelen toepassen van zulke informat-ica-technieken voor het analyseren van single-cell data, meerbepaald technieken die gebruikt kunnen worden om interessante structuren te leren uit dit type van data. De eerste contributie van dit werk is een nieuwe methode voor trajectanalyse, TinGa, dewelke instaat is om celontwikkelingsprocessen op een snelle en flexibele manier te gaan afleiden. Om deze methoden toe te passen worden echter typisch dimensionaliteitsreductietechnieken gebruikt, die de hoogdimensionele data, bestaande uit duizenden genen, omzetten naar een laag-dimensionale voorstelling. De tweede contributie van dit werk is een exploratieve studie waar we bekijken welke optimale laagdimensionele representatie kan bekomen worden met het oog op trajectanalyse. In een volgend hoofdstuk passen we zowel trajectanalyse als gen-regulatorische netwerkinferentie toe om een beter inzicht te krijgen in de respons van CD8 T-cellen op een acute virale infectie. Hierbij werden twee types van immunologisch geheugen geïdentificeerd met behulp van trajectanalyse, en kwamen we tot een beter karakterisering van twee precursoren van immunologisch geheugen. Een vierde bijdrage van dit werk behandelt een integratieve studie, waarbij verschillende types van "omics" data geïntegreerd werden om een onderscheid te kunnen maken tussen patiënten die een graft-versus-host ziekte ontwikkelden na transplantatie en patiënten die dit niet deden. Hierbij werden drie verschillende types van omics data geïntegreerd met klinische variabelen en kon een link gemaakt worden tussen een al dan niet geactiveerde toestand van het immuunsysteem en de reactie van de patiënt.

Dit werk toont aan dat computationele technieken ons toe laten een brede waaier aan nieuwe analyses te doen op single-cell data. Door deze analyses te automatiseren zijn we nu in staat om zeer grote hoeveelheden complexe data te distilleren tot nieuwe biologische kennis. Voorts stellen deze technieken ons ook in staat om zeer snel een inzicht te krijgen in complexe data, en laten ze ons toe op een meer data-gedreven en objectieve manier naar cellulaire processen te kijken. Dit werk toont ook aan dat de ontwikkeling en toepassing van nieuwe computationele technieken tot meer robuust en reproduceerbaar onderzoek in het veld van de single-cell biologie kan leiden.

Résumé

Les cellules de notre système immunitaire jouent un rôle essentiel en nous protégeant de pathogènes infectieux tels que les virus ou certaines bactéries. Lors d'une maladie, les diffé r e n t s t y p e s d e c e l l u l e s immunitaires jouent des rôles spécifiques et interagissent, générant ainsi une réponse immunitaire adéquate. Cependant, cette réponse immunitaire complexe peut parfois être perturbée. Par exemple, les cellules qui sont supposées combattre l'infection peuvent être rendues silencieuses. Ce phénomène est observé dans certaines tumeurs, dans lesquelles des cellules peuvent commencer à proliférer de façon anormale sans être contrôlées par une réponse immune fonctionelle.

Comprendre comment le système immunitaire fonctionne lors d'une maladie est donc d'une importance cruciale pour trouver des thérapies efficaces. Les cellules du système immunitaire peuvent maintenant être étudiées grâce à des technologies qui génèrent de grandes quantités d'information concernant la forme, le type, ou les molécules contenues dans ces cellules. Cette immense quantité d'information représente un réel challenge pour les médecins qui se doivent de l'analyser. Ce contexte a mené au développement de beaucoup d'outils computationnels, qui permettent d'automatiser l'analyse de données médicales. Ces outils computationnels remplissent différentes fonctions, telles que le preprocessing (permettant d'obtenir des données propres, dans lesqulles le bruit technique est diminué), la sélection de variables (permettant d'identifier des variables d'intérêt), le clustering (permettant d'identifier des groupes de cellules similaires), l'inférence de trajectoire (permettant d'identifier des processus de développement), et l'inférence de réseaux d'interactions de gènes (permettant d'identifier les interactions entre certains gènes et leurs cibles), entre autres.

Ce travail résulte de l'application et de la création de solutions computationnelles pour l'analyse de données single-cell. Dans la première partie de cette thèse, nous nous sommes essentiellement concentrés sur l'identification de structures dans les données. Nous présentons dans un premier temps TinGa, un outil capable d'identifier des trajectoires de développement de manière rapide et flexible. L'inférence de trajectoire repose en général sur la compression de l'information comprise au sein de milliers de gènes en un espace de faibles dimensions. Nous présentons donc, dans un second temps, une approche exploratoire que nous avons mis en place afin de calculer un espace de faibles dimensions optimal, dans lequel l'identification de trajectoires serait facilitée. Troisièmement, nous avons appliqué l'inférence de trajectoire ainsi que BRED, une nouvelle méthode d'inférence de réseaux de régulation de gènes, dans le but de mieux comprendre la réponse de cellules T CD8 à une infection virale aigüe. Nous avons identifié deux sources de cellules mémoires le long de la trajectoire suivie par les cellules T CD8, et nous les avons caractérisés. Finalement, nous présentons les résultats d'une étude multi-omique qui avait pour but d'identifier les différences qui existent entre des patients qui tolèrent la greffe de moelle osseuse, et d'autres patients, qui développent la maladie du greffon contre l'hôte. En intégrant trois différents types de données, nous avons pu identifier l'importance cruciale d'un équilibre entre un état d'activation et de repos du système immunitaire chez ces patients.

Les outils computationnels permettent l'analyse de nouveaux types de données à large échelle, de manière rapide et efficace. En permettant d'automatiser des analyses qui étaient jusqu'à présent faites mannuellement, ces outils présentent de multiples avantages. Premièrement, ils permettent l'analyse de données d'une taille et d'une complexité sans précédent. Deuxièmement, ils réduisent significativement le temps nécessaire à l'analyse de ces données. Enfin, ils permettent de rendre l'analyse de données plus robustes, puisque des expériences computationnelles correctement parametrées peuvent être répétées par différentes personnes et mèneront à des résultats identiques. Somme toute, le développement et l'application d'outils computationnels peut mener à une recherche plus robuste et reproductible dans la recherche de données omiques single-cell.
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Introduction

This PhD manuscript will focus on computational methods for biological applications. In this first chapter, we introduce some biological and machine learning concepts that are necessary to the understanding of the manuscript as a whole. We briefly describe the role of the immune system and of the specific cells that are composing it. We present the different components that a human cell is made of and we focus on the components that will be largely referred to in this manuscript. We introduce some of the technological advances that have greatly expanded general knowledge of cells. We then introduce some machine learning concepts that will be studied in detail in other chapters of the manuscript. These concepts allow to simplify our understanding of complex datasets and gain insight into the biological processes occurring in these datasets. Finally, we present a layout of the manuscript's structure.

1.1 The immune system: an extraordinary protective mechanism

The human blood contains the most studied cells in the context of diseases: leukocytes, that can commonly be referred to as white blood cells. They are a major part of our immune system. The role of these cells is to protect our body from threats such as viruses, harmful bacteria and other microbes. Leukocytes also play a crucial role in protecting us from cellular changes that can for instance result in cancer.

A powerful mechanism allows our leukocytes to detect and fight such threats: the distinction between self and non-self. Each and every nucleated cell that constitutes our body expresses self markers at its surface. On the other hand, cells that do not belong in our body express non-self molecules on their surface, called antigens. These antigens are detected by our immune system and generate an immune response. The way in which the immune system reacts to non-self antigens has been historically divided in two mechanisms: the innate and the adaptive immune system [1].

The innate immune response: a fast and non-specific reaction

The role of this type of response is to immediately eliminate pathogens and prevent them from spreading in our body. We all experience it from time to time. One of the first reactions of the innate immune system is inflammation: leukocytes that are present on the infection site, such as macrophages and dendritic cells, will produce chemicals that will sensitize pain receptors and cause a local dilatation of the blood vessels, which explains why a wound typically appears red, painful and swollen. By locally increasing the diameter of the blood vessels, this reaction will facilitate the recruitment of other immune cells. These recruited cells, among which eosinophils, basophils and neutrophils, will in turn be able to help the macrophages and dendritic cells to get rid of the pathogens, either by eating them through the process of phagocytosis [2], or by secreting toxic substances that will kill or prevent the pathogens from growing. The left part of the Figure 1.1 shows these actors of the innate immunity.

The adaptive immune response: a delayed antigen-specific reaction that confers long-lasting protection The adaptive immune system will react to one specific antigen, and generate an efficient and long-lasting protection against it. Vaccination relies on this adaptive immunity. Two specific types of leukocytes that are present on the infectious site play a crucial role: macrophages and dendritic cells. They will phagocytise the pathogen and keep some of its antigens as an inspector would keep evidence after a crime. Dendritic cells will be the main carriers of this antigen: they will use the blood circulation to travel to specific organs where the blood to the infection site. These antibodies will fix the antigens on the surface of the pathogen, and will stay there as little flags, which will make the pathogen more visible and facilitate its removal by phagocyting cells. The fixation of antibodies to their target antigens on intra-cellular pathogens also prevents them from entering and infecting new cells. The memory B-cells will be the actors of a long-lasting protection: they will linger after the pathogen removal, and will be able to generate antibodies faster and more efficiently if they encounter the pathogen again.

T-cell generation and activation: T-cells are derived from stem cells that are generated in the bone marrow, as is the case for all leukocytes, including B-cells. However, some of these cells will then travel to the thymus and become T-cells, hence the "T" in their name. There, the receptors on their surface (called TCR, for T-cell Receptor) will undergo recombinations in a very similar way to BCR. As was the case for B-cells, these T-cells then go through two types of positive and negative selection in the thymus, in which the reactivity of their TCR to non-self antigens is tested and their reactivity to self-antigens is kept under control. The selected T-cells will then undergo different stages of maturation that will lead to two distinct populations: CD4 T-cells, that were mentioned previously as T-helper cells, and CD8 T-cells. The resulting CD4 and CD8 T-cells then travel to lymph nodes, where they will wait to be activated. Figure 1.2, from [6] illustrates how CD8 T cell activation occurs after viral infection in the lung. Dendritic cells that have encountered the pathogen will migrate to the draining lymph node (Figure 1.2, 1) and present the pathogen's antigen to thousands of naive T-cells (Figure 1.2, 2). The CD4 naive T-cells that will recognise the antigen will start proliferating and evolving into CD4 Thelper cells, that will help to activate CD8 T cells, as well as a B-cell response as was described in the previous paragraph (not shown in Figure 1.2). If the pathogen that triggered a response was intra-cellular, CD8 T-cells will also be activated, proliferate, and evolve into CD8 T-effector cells (Figure 1.2, 3). These CD8 T-effector cells will travel through the blood to the infection site (Figure 1.2, 4), and will be able to kill infected cells by secreting toxic proteins that will induce the death of their target cells (Figure 1. 2,5), after what the majority of these effector cells will be removed in a contraction phase. CD4 and CD8 memory T-cells are also generated (Figure 1.2, 6) and will confer a long-lasting protection to the organism. They will linger after the eradication of infected cells. Some of these memory cells can live up to twenty years. In case of a second infection by the same pathogen, these cells will be able to trigger a much faster and a much more efficient immune response.

From DNA to a functional cell

The cells of the immune system have different sizes, shapes and specificities that allow them to play different roles in our immunity, as we have seen in the previous section. In order to better understand how differences between these cells can be characterised, we first need to understand how a cell works. instance, the RNA triplet AUG corresponds to the Methionine amino acid. During the translation of a mRNA into a protein, the mRNA bases are read 3 by 3 and the corresponding amino acids are added to an elongating amino acid chain, just as pearls would be added on a necklace (Figure 1.3). The resulting amino acid chain will then fold into a 3D functional protein. Proteins are the cell's functional agents: they can degrade, synthesize, and transport molecules, among other functions. In order to do so, they use small bricks, that they can assemble to synthesize macromolecules, that are in turn used to build cells. The small bricks, or molecules, that are used by cells as sources of growth, development, energy, or that are excreted by these cells, are called metabolites. As an example, amino acids, nucleotides, vitamins, small sugars and lipids are considered as metabolites, that can be found in a cell or in its environment.

Studying our cells by measuring their features

At the very beginning, we are all formed of one unique cell, resulting from the union of a sperm and an egg. This cell then multiplies, and its daughter cells start expressing specific genes that drive their fate, resulting in cells with different functions, shapes and life styles. The high diversity of cells in our body therefore results from their capacity to multiply and differentiate. This is also the case in the context of a disease, where cells need to adapt. In order to get a better understanding of how cells, and more specifically leukocytes, respond to an infection, one could thus measure the genes they express. In this manuscript, we focus mainly on two sources of information: the genes that are expressed by cells, and the proteins that are present in cells. It might seem redundant to measure gene transcripts and proteins, since proteins are directly formed based on transcripts.There are however many mechanisms that can still regulate the amount of proteins being formed on the basis of a transcript. Recent studies, where transcripts and proteins were measured simultaneously in the same cells, showed that the amount of some proteins and their corresponding transcripts in single-cells were poorly correlated ([9, 10, 11]). Measuring transcripts and proteins can therefore give us very useful and complementary information on cells. In the next two paragraphs, we will briefly introduce the exciting technological developments that have allowed scientists to measure specific proteins and transcripts in cells.

Measuring proteins in cells by cytometry

When facing a pathogen, leukocytes will respond by expressing specific proteins on their surface, in their cytoplasm, or in their nucleus. In order to better understand the mechanisms that allow our immune system to efficiently fight pathogens, a first highly informative approach is therefore to measure the proteins in cells. As was mentioned earlier, certain proteins, called antigens, can be recognised by antibodies. This immunological property can be taken advantage resce: it would emit light at a different wavelength. This emitted wavelength could then be filtered in a microscope [12]. One could therefore take a tissue sample, tag a protein in the sample with a fluorescent molecule, and once illuminated at the right wavelength, this protein would appear very shiny on a dark background. This principle was re-used to measure proteins rapidly in a large amount of cells in a fluid-based device: the flow cytometer [13]. To use this device, cells from a sample (Figure 1.4 A) are mixed with a solution of antibodies that are tagged with fluorochromes (Figure 1.4 B). These antibodies will fix their target proteins in cells. In the flow cytometer, the cells travel through a capillary that has such a small diameter that the cells have no choice but to travel one by one (Figure 1.4 C). Each cell is illuminated at specific wavelengths and the different fluorescent molecules with which it has been tagged start to fluoresce. Specific detectors are placed around the capillary and measure the fluorescing signal of each cell, and thus the tagged proteins that it contains (Figure 1.4 D). Recent developments of the fluorescent molecules now allow to measure 20-30 proteins per cell in flow cytometry, at a rate of tens of thousands of cells per second. More recently, these antibodies have also been tagged with isotopes that have a specific atomic mass (Figure 1. 4 E), and that can be detected by mass cytometry [14]. In this case, the cells pass through a nebulizer that generates droplets that each contain only one cell. These droplets come out of the nebulizer one by one, and the cell's antibodies tagged with metal isotopes are ionised. Ions in the resulting ion cloud are then accelerated, and their time-of-flight (TOF) is measured in a mass spectrometer (Figure 1.4 F). Since all ions are accelerated at a fixed potential, their TOF is proportional to their masses (with light ions travelling faster than heavy ones). The TOF of all measured ions in a cell thus allows us to identify which isotopes were initially present in the cell and in which quantity (Figure 1.4 G). This technology is slightly more potent than flow cytometry as it allows to measure up to 40-60 proteins per cell, at a rate of a few thousand cells per second. However, the cells are destroyed in the process and cannot be further analysed, as opposed to flow cytometry studies in which cells can still be used for downstream analyses.

In summary, the flow or mass cytometry technologies allow immunologists to measure the quantity of specific proteins in samples containing thousands of cells. It is thus a method of choice to identify cell types in a blood or tissue sample: B cells will for instance express the CD19 antigen, whereas T cells will express the CD3 antigen on their surface. By counting the cells expressing one of these proteins or the other, the number of B cells and T cells in a sample can directly be derived. As will be discussed further in this thesis manuscript, cytometry is a fast and efficient way to generate data that will inform us on a patient's state, since it allows us to assess whether a certain cell-type or a certain protein is present in an abnormal proportion in this patient's blood or tissue sample.

Measuring transcripts using RNA sequencing

In the previous paragraph, we saw how proteins of interest could be identified in cells. We can take a step back by investigating the processes that led to the synthesis of these proteins. As was mentioned earlier, some sections of the DNA, called genes, can be transcribed into transcripts that will in turn be used to synthesise proteins. Having access to a cell's transcriptome (i.e. all of its transcripts, or mRNA) therefore opens a window on a cell's functioning. It allows to study which genes are being expressed together in which cells, thus offering a better understanding of a cell's characteristics and regulatory mechanisms.

RNA sequencing has become very popular in the last years, owing to the development of next generation sequencing, in 2006 [15]. This technology was first constrained to bulk RNA sequencing, meaning that it could only be applied to a large amount of cells. More recently, breakthroughs in manipulation of microvolumes have allowed new generation sequencing to be applied on single cells, allowing to gain unprecedented insight into cell-to-cell heterogeneity [16]. We will briefly describe the steps that allow to extract and sequence the transcripts that are contained in a cell.

In the first step, cells are isolated, either in little wells or, more recently, in droplets [17]. Each cell is then lysed: its membrane is carefully broken to allow its content to become accessible. The transcripts can then be isolated, by capturing all molecules that present a specific poly-A sequence that can be found at the end of all mRNA molecules. As these transcripts consist of one RNA strand, complementary DNA can then be synthesised in a step called reverse transcription. The resulting cDNA strands are more stable than RNA strands and are easier to manipulate in the subsequent steps. The amount in which transcripts are present in a cell is typically quite low. This is why the complementary DNA is then amplified, which leads to many copies of the same original cDNA strand. Finally, the resulting amplified cDNA is sequenced.

Transcripts can potentially give us information on the genes that are being expressed in a cell and in which quantity. However, only a few copies of a same transcript are typically found in a cell, and the steps that we mentioned previously can typically lead to biased results. The transcripts that are present in very small amounts can be degraded during cell lysis, or they can be missed during the extraction of transcripts after cell lysis, or during the reverse transcription phase. Moreover, in the amplification step, some transcripts tend to be better amplified than others [18]. The resulting proportion of each transcript in the amplified cDNA pool will therefore not necessarily reflect the original proportion of transcripts in the cell.

Even though RNA-sequencing data give us unprecedented understanding at the single-cell level, the technical and biological effects that we mentioned in the previous paragraph make this type of data difficult to analyse. Good computational pre-processing steps are therefore essential, in which the data can be cleaned, the effect of technical artefacts can be reduced, and true biological conclusions can be drawn from the data [19].

Computational analysis of biological features for better data understanding

We have seen in the previous section how biological data could be generated. This type of data needs to be analysed in order to generate interpretable results. Since very large datasets are now being generated, one approach consists in using and developing computational tools to analyse these datasets in a fast and automated way. The second chapter of this thesis is a review that describes computational methods that can be applied to different types of single-cell data analysis. As was mentioned in the previous section, the technologies used to measure proteins or transcripts in cells can induce technical noise in the data. A first step to analyse this type of data is therefore to preprocess it, in order to increase its quality. As an example of technical bias, more transcripts might be measured in some cells compared to others, for purely technical reasons (more sequencing material might have been used on these cells). A preprocessing step thus consists in normalising the transcript counts such that this type of technical bias would be reduced [20,21]. Many computational tools have been developed for data preprocessing, and we describe them more thoroughly in the section 2.3 of this manuscript. After preprocessing, the data is ready to be analysed. In machine learning, the techniques for data analysis can be separated in two main groups of unsupervised and supervised techniques. Unsupervised machine learning techniques aim at identifying main trends in the data [22]. These techniques allow to derive structure from the data, and to understand the underlying processes that are responsible for the variability that we observe. In this type of descriptive modelling, the data drives the analysis. Supervised machine learning techniques rely on external information to extract knowledge from the data [23]. For instance, if we provided a label defining patients and controls, these techniques would allow us to find which parts of the data can help us to classify the patients and controls. In this type of predictive modeling, the data is thus used to predict an outcome, such as a disease.

Unsupervised machine learning helps to find structure in the data

In this type of analysis, the idea is to let the data talk, letting the main trends in the data appear. To illustrate this concept, we can take the example of a dataset resulting from the measurement of 10 proteins in 100 cells. If we would only focus on one of these proteins, we would probably notice that it was highly measured in some cells and weakly measured in others. We would thus see two cell populations appear (Figure 1.5a). If we would then look at the expression of a second protein in the cells, we would probably see more specific cell subpopulations, expressing only one of the two proteins, or both, or none of them (Figure 1.5b). The more proteins we would look at, the more complex populations with different protein expression patterns we would probably identify (Figure 1.5c).

lower number of dimensions is called dimensionality reduction. It will capture the main data structure and embed it in low dimensions, while a certain amount of information will inevitably be lost, except if the data structure in higher dimensions was very simple. Dimensionality reduction will be further described from a computational point of view in the section 2.4 of this manuscript.

Once the data is represented in lower dimensions, some structures start to appear, such as groups of cells (also called clusters) or continuums between the cells (also called trajectories). This allows to visualise and model essential biological processes. As an example, all the cells from our immune system originally come from the same progenitors in the bone marrow: haematopoietic stem cells (Figure 1.6, taken from [24]). Haematopoiesis is the process by which these hematopoietic stem cells multiply and differentiate, first into two myeloid and lymphoid progenitors, and then into all known cell-types of the immune system.

cells differentiate into dendritic cells, which are antigen-presenting cells, and into lymphocytes -T cells, B cells and specific manner. Lymphocytes are also the main targets of immunotherapeutics. T cells mature in the thymus and can be cytotoxic T cells, which kill virally infected cells and tumours and express CD8 on their surface, and CD4 helper T cells, which express CD4 on their surface, secrete cytokines and prime B cells. B cells mature in the bone marrow and can then differentiate into antibody-secreting plasma cells and memory B cells in secondary lymphoid organs. Once formed, plasma cells are immediately active to produce antibodies against pathogens. Memory B cells are long-living By measuring features on cells during haematopoiesis, and using these features to visualise cells in 2D, we can thus see the trajectories that cells follow when they differentiate from haematopoietic stem cells to differentiated cell-types. This procedure was applied in 2014 to describe the differentiation of B cells [25]. It allowed to define precisely the different stages that cells undergo when they differentiate from hematopoietic stem cells to naive B cells. The computational tools that have been developed to identify clusters or trajectories in single-cell data are more broadly described in the section 2.5 of this manuscript.

Supervised machine learning helps to predict an outcome

This method consists in supervising the analysis by adding prior information to the data. As an example, we might need to analyse a dataset resulting from the measurement of certain genes in 50 patients. We might know in advance that half of these patients suffer from leukemia, and that the rest of the data comes from healthy donors. We could use this information to analyse the data in a supervised way, by looking for genes that might be linked to the disease. One approach would be to look at each gene one by one and to test its association with what we know about the patients. Some genes will be distributed randomly across the patients, but some genes might be enriched in patients with leukemia. Computational tools have been developed to look for differences between 2 groups of patients by performing statistical tests. This approach is referred to as differential analysis, and is described in the section 2.6 of this manuscript.

Another branch of supervised methods goes one step further, by building models to classify patients as healthy or sick. Such models can for instance rely on specific gene expression patterns, and learn that patients with increased levels of certain genes are more likely to have leukemia. These models, called classifiers, thus learn by generalising from examples. If they are trained on datasets in which patients with large amounts of gene A transcripts systematically have leukemia, they will generalise this information and build a model in which large amounts of gene A are associated with leukemia. In order to be accurate, these models typically need to be trained on large amounts of data.

Aims of the thesis

Nowadays, many technologies offer a new point of view on the functioning of the human immune system. It is now possible to follow the changes that occur in our leukocytes in response to a disease very precisely, by measuring many molecules directly in the cells. The resulting datasets are rich sources of information on the biological processes that cells are undergoing. In this thesis, I have developed, applied and adapted different computational techniques to interrogate this type of data, aiming at identifying the processes driving variability in the data, and to extrapolate biological mechanisms that were driving this variability.

During my PhD, I have thus focused on identifying structure in the data resulting from this type of analysis. To this end, I have developed a new tool for trajectory identification, I have worked on a method to optimise the representation of cells in low dimensions, and I have used existing unsupervised machine learning techniques to identify structure in a real scRNA-Seq dataset. I have also used and developed supervised machine learning techniques to identify molecules that would allow to classify patients based on their outcome. Accordingly, this manuscript regroups reviews on computational tools applied to a certain type of data analysis, as well as articles in which I have either developed or applied computational methods to better understand the processes that immune cells are undergoing in different clinical conditions.

The second chapter of this manuscript is a review that introduces the computational tools that can be used to analyse increasingly complex biological data. The review can be seen as a second part of this introduction, in which the analysis of the different types of data discussed in this chapter is developed from a computational point of view, and the computational tools that have been developed to analyse this type of data are described. The scope of this review is focused on the analysis of single-cell data, a type of data where features are extracted for each cell, as opposed to bulk data, in which features are extracted for groups of cells.

The four next chapters mainly focus on unsupervised machine learning techniques to identify structure in data. The third chapter describes TinGa,a new computational tool that I designed to identify developmental trajectories in single-cell data. The identification of trajectories helps to understand how cells differentiate into different cell-types and which sets of genes they express along the way. Since today's datasets tend to contain more and more cells, it is important to develop methods that are able to deal with large datasets. TinGa proved to be very fast compared to state-of-the-art methods for trajectory inference, with comparable performance. Trajectory inference methods typically rely on a low-dimensional representation of the data. In the fourth chapter, I present an unpublished exploratory study, in which I aimed at computing a low-dimensional data representation that would optimally disclose trajectories. In the fifth chapter of this manuscript, I present a second review, that addresses the complicated task of identifying regulatory networks in cells. Regulatory network inference represents a real asset, since regulatory networks can help us to decipher the mechanisms that are driving cell differentiation. In the sixth chapter, I applied TinGa, regulatory network inference and other computational methods to study the differentiation of CD8 T cells in response to a viral infection. These computational tools helped to reconstruct a trajectory in the data and to study a specific sub-population of cells that can potentially bring consensus in the field of CD8 T cell differentiation study, that is still divided by several opposite theories.

In the following chapter, I applied both unsupervised and supervised machine learning techniques to analyse medical data. Chapter seven is a manuscript in preparation that I wrote together with medical doctors specialised in hematology. For this article, I have pre-processed, analysed and integrated data from three data sources (immunophenotypic, metabolomic and transcriptomic), to cast light on the mechanisms associated with graft-versus-host disease (GvHD), a disease that affects some patients but not others in a way that is still very poorly understood. I have applied a supervised approach that allowed us to identify cell mechanisms that differed between three groups of patients with more or less severe GvHD. The last chapter of this manuscript is a discussion on my work, findings, and possible future perspectives.

Bibliography 2

Computational approaches for high-throughput single cell data analysis

In the previous chapter, we briefly introduced the general structure of a eukaryotic cell and its constituants. Today, many technologies can be used to examine numerous aspects of these cells. Their cellular genomes and transcriptomes can be sequenced, their proteomes, and epigenomes can be measured, and information on a cell's aspect and its environment can be gained through cellular imaging. In the following review article, we took a computational point of view to describe how these different data types were being generated, and to describe the best practices in the pre-processing and analysis of these different data types. This review was published in the FEBS Journal in 2018. Since then, significant advances have been made and new computational tools were published that allow to process the different types of single-cell data that are described in the review. We therefore chose to update the review so that it would be up-to-date at the time when this doctoral manuscript would be reviewed. Historically, microscopy-based techniques were the first methodology to study organisms at single-cell resolution [1]. While initially consisting largely of manual labour and thus being very low-throughput, automated image acquisition and segmentation have enabled high-throughput image based screening, by analysing up to hundreds of thousands of cells in single well plates [2]. Similarly, many other microscopy based techniques allow the extraction of information at the single-cell level, although at a lower throughput. These include most types of light and electron microscopy, with a broad variety of applications. Common to all these image-based approaches is the fact that advanced imageanalysis pipelines are needed to arrive at single-cell resolution [3]. A typical image processing pipeline first performs segmentation of the single cells from the image, followed by a feature extraction step, typically extracting several hundreds of features for each individual cell [4]. In comparison to other singlecell approaches where cells are dissociated in suspension, a major advantage of image-based single-cell profiling methodology is that it inherently provides the user with two-or three-dimensional spatial information, as knowing a cell's spatial context is often key to discovering novel biological findings.

Flow cytometry allows profiling and analysing cells in a high-throughput fashion and is based on passing cells through a laser beam in a rapidly flowing fluid stream. This core technology is in essence very similar to the original design from the late 1960s [5], illustrating the robustness of the technology [4,6]. The field of flow cytometry has emerged as a powerful methodology for single cell analysis due to continuous innovations such as (i) multicolor assays enabling the measurement of a large number of proteins simultaneously [7], (ii) spectral flow cytometry [8] in which classical mirrors, optics and detectors are replaced by dispersive optics and a linear array of detectors allowing highly complex fluorochrome combinations, (iii) imaging flow cytometry [9] combining flow cytometry and microscopy for high-throughput imaging of single cells and (iv) acoustic-based focusing and sorting [10]. In addition, other technological advances such as mass cytometry have replaced the fluorescent labelling and readout using optics by a labelling using heavy isotopes, and subsequent readout by mass spectrometry [11]. This eliminates the problem of spectral overlap in classical flow cytometry, allowing the theoretical measurement of up to 100 proteins simultaneously. Mass cytometry can also be performed on tissue slices, thereby scanning the tissue spot by spot and performing a single experiment per spot. This approach, named imaging mass cytometry, allows performing spatial proteomics in a high-throughput fashion [12]. The ability to measure increasing amounts of proteins simultaneously [7] complicates the analysis of this type of data, which can no longer be analysed manually as was done with datasets containing a few markers per cell, but needs new computational approaches to correctly identify cell populations [13].

Recent developments in micro-volume sequencing have led to a new wave of single-cell "-omics" profiling technologies [14,15,16,17,18], permitting the quantification of whole genomes, epigenomes and transcriptomes at the singlecell level. Novel computational tools are being developed in order to deal with the continuously increasing dimensionality of these datasets, since a single experiment can quantify molecular characteristics of up to tens of thousands of cells, measuring tens of thousands of parameters (e.g. transcripts in the case of single cell transcriptomics). A high level of resolution is provided by single-cell omics tools, as they aim to sequence all of the cell's content, instead of focusing on a set of user-defined targets as is done in cytometry. This allows performing novel types of analyses, such as studying the heterogeneity of cell populations in much greater detail, identifying rare cell types, and studying the dynamics of cellular systems. Furthermore, the field continues to evolve by combining single cell RNA sequencing with other technologies such as spatial transcriptomics [19] and CRISPR-mediated knockout screens (Perturb-Seq [20]/CRISP-seq [21]). Recent approaches combine transcriptomics with other types of omics data at a single cell resolution such as single-cell proteomics (CITE-seq [22]/REAP-seq [23]), single-cell genomics (G&T-seq [24]) and single-cell methylomics (scM&T-seq [25]). These emerging "single-cell multi-omics" technologies [26] integrate several types of measurements on the same single cell and are likely to be part of the everyday methodology of molecular biologists in the future.

While all techniques described above provide the user with information at single-cell level, the throughput, resolution, cost and type of information acquired differ drastically between technologies. We will take a computational perspective here, and compare the main dataset characteristics for the three major classes of single-cell data introduced above. Classical imaging based techniques typically offer a low throughput, measuring a few hundreds of cells, while more advanced high-content screening methods allow high-throughput measurements of hundreds of thousands to millions of cells. When applying segmentation and feature extraction, e.g. using popular pipelines such as CellProfiler [27], almost a thousand image-derived features can be extracted per cell. However, many of those capture redundant information and thus are very correlated. Flow and mass cytometry allow measuring cells at high throughput, up to millions of cells for classical flow cytometry. Only a few tens of parameters can be quantified simultaneously per single cell, but these parameters often represent very complementary information, as they are manually chosen by an expert. Single-cell omics technologies offer medium throughput, measuring thousands to tens of thousands of cells in a single run. However, these data are very rich in information, measuring thousands of transcripts in the case of single-cell transcriptomics.

While the profiling methodology and dataset characteristics in each of these technologies is very different, many of the applications and computational workflows are quite similar. In the remainder of the paper, we will discuss the differences and commonalities in computational workflows for the different applications.

Computational workflow for single-cell experiments

Regardless of the specific technology used to generate a single-cell dataset, a common pipeline can be devised, starting with the experimental design, data generation, technology-specific pre-processing, quality control and subsequent data analysis (Figure 2.1). A detailed design of the experiment is a crucial step towards minimising technical variation and improving scientific reproducibility. This not only includes standardization of experimental protocols and equipment, but also careful planning and consultation with statisticians and/or bioinformaticians regarding sample size, specific setup related to the biological questions that should be answered or specific types of computational analyses that should be carried out. Subsequently the experiment should be performed, ensuring that standardized procedures are followed for sample preparation, handling equipment and data acquisition while appropriate controls are added at multiple steps of the experiments. The next step in the pipeline is the preprocessing and quality control. This step will likely take a considerable amount of time, as it is crucial to start from good quality data if good quality results are desired. Therefore, it is important to perform technology-specific pre-processing steps, a topic that will be covered in the section "Data preprocessing and quality control". After data preprocessing, an initial exploration of the data can be performed using visualisation techniques, in order to perform early detection of any possible batch effects or unexpected subpopulations. Applying visualisation techniques may also help to visualise the population structure within samples, and to compare this structure between different samples. In this step, interesting populations or trends may be observed that require further investigation.

Next, several types of in-depth analyses can be performed, in most cases starting with an automated clustering of the cells into cell types. This clustering allows quantifying and comparing different cell types in the samples and identifying new cell types or transition states. Novel computational approaches to model gradual transitions between cell states (trajectory inference) can also be applied at this stage. Other alternatives include specific predictive modelling approaches such as classification, regression and survival analysis modelling. All of these approaches have the potential to extract novel biomarkers from singlecell data, with important diagnostic and therapeutic potential. Finally, more The correlations in gene expression within cells can be studied to assess gene regulatory networks (network inference). In the case of multi-omics datasets, data integration approaches can be used to combine the information on singlecell mechanisms.

Data preprocessing and quality control 2.3.1 Single cell imaging

The preprocessing of single-cell imaging data usually starts by accounting for batch effects through illumination correction, and image-wise processing such as noise removal, aligning or cropping [28,29]. This procedure is commonly followed by the segmentation of the individual cells within the images, and finally by a feature extraction process that yields a vector of numeric features for each individual cell, usually in a tabular format. CellProfiler [27] is widely used to extract numerical features from two-dimensional microscopy images (such as in high-content screening assays). The main difficulty faced by CellProfiler is the segmentation of the cells or objects of interest present in the image. CellProfiler contains several fast algorithms that can extract well-separated objects; however, in many cases these objects appear clumped, hindering their segmentation and making it prone to both false negatives (when the borders between objects cannot be found) and false positives (when the sensitivity of the detection is too high). In order to deal with this difficulty, CellProfiler also provides a more complex segmentation algorithm that follows a hierarchical process: first, it finds primary level objects that are typically well-separated (such as cell nuclei, visible on DNA-stain channels); then, the boundaries of secondary level objects (such as cell edges) are searched around the primary level objects. However, it is also possible that the primary level objects appear clumped, which is why CellProfiler divides their detection into several steps following the guidelines of previously published algorithms [30,31,32,33,34]. Clumped objects are first detected, segmented and separated by dividing lines, thus avoiding false negatives. Finally, some of the objects are either removed or merged to reduce the false positive rate. Once the primary level objects are properly detected, it becomes simpler to find secondary level objects around them. CellProfiler provides an improved algorithm to properly detect the borders even when the objects are clumped against each other. Once the objects have been segmented, multiple features can be extracted from each of them in a per-channel basis (area, shape, intensity, texture...) or at the whole-image level (number of cells, background intensity...). CellProfiler has a modular structure that allows the user to select and configure the individual algorithms that will be applied, which in turn defines the specific preprocessing applied and the features that are obtained at the end of the pipeline. The resulting features can later be used for visualisation, clustering or differential downstream analyses for instance.

Flow/mass cytometry

In conventional flow cytometry, the first preprocessing step is typically compensation of the spectral overlap, to correct for spillover of the fluorescent signal into neighbouring channels. This is typically accounted for in the experimental procedure, by measuring the fluorescence of single stains in the different channels, allowing for the calculation of a compensation matrix. In mass cytometry, this issue is largely avoided by using rare isotopes instead of light measurements, although the measurement of certain isotopes can still be polluted due to metal impurity levels, oxydation and abundance sensitivity [35]. Mass cytometry panels should therefore be designed with caution by pairing strong intensity markers with less sensitive channels in order to avoid interference between channels [36]. The data is then transformed through a biexponential or hyperbolic arcsine transformation, which improves the separation between negative and positive cells for the different markers. Fluctuations in measurements can also be caused by an unsteady flow rate. Typically, up to 10,000 cells are measured per second at a steady rate in flow cytometry. Mass cytometry has a slightly lower throughput, measuring a few thousand cells per second. However, obstructions in the fluid stream and manual interventions can disturb the flow, which also impacts the amount of protein levels measured. To remove these technical artefacts, the data needs to be either manually gated against time or screened by tools such as FlowClean [37], FlowQ [38] and FlowAI [39], which can automatically identify and remove sections in which the flow was perturbed. The previously cited tools tended to remove too large sections of the data, as they focused on different aspects such as the marker intensity or the flow rate to define low quality regions in different steps, and then removed all such regions in a final step. On the other hand, these tools were not able to identify a constant increase or decrease of a marker's intensity. Two new computational tools allow to circumvent these issues (flowCut [40] and PeacoQC [41]) by separating the data into segments and applying different tests to decide, for each segment, if it should be kept or not.

The acquisition level of cytometers can slightly change from one day to another, or even within hours. The use of control tubes to calibrate the machine before running an experiment can help to make different samples more comparable, but batch effects are often observed between two experiments. The resulting slight shift in protein expression can be accounted for manually, by shifting the gates of every sample that differs, or in an automated way using the FlowStats [42] package. In mass cytometry, beads are commonly used in the experiments, allowing normalisation of the data based on the signal of these beads to have more comparable samples. Some markers can also be used to barcode cells, and then pool several samples together, to avoid technical bias between different experimental conditions. When performing experiments on different days, it may be advisable to include additional control samples, such as an aliquot from the same sample that is taken along all different experiment days, in order to allow normalization between experiment days later on. When such additional control samples were added in the different batches, they can be used as anchors to normalise the data. Two methods were recently published that allow to normalise data from different batches in which control samples were measured (CytoNorm [43] and SwiftReg [44]). In these methods, a clustering step, performed with the FlowSOM algorithm in the case of CytoNorm and with the SWIFT algorithm for SwiftReg, is followed by a step where clusters are matched across the different batches. These matching clusters are then normalised across the different batches. Once batch effects have been accounted for, debris, doublets and other low quality cells can be removed either by manual gating or using OpenCyto [45], or FlowDensity [46].

As flow cytometry allows the measurement of proteins at the single cell level while preserving the integrity of the cells, it is sometimes used to sort specific cells into wells before sequencing their transcriptome. The cells can either be sorted by cell population, based on a set of common markers, or index-sorted, in which case single cells are sorted into wells and barcoded, so that their protein expression profile is kept. In this case, doublets and empty wells might occur, which should be carefully removed from the analysis before any further processing step.

Single cell omics

Pre-processing single-cell omics data based on NGS technologies further builds on the wide availability of NGS preprocessing tools that are already available from experiments on bulk RNA or DNA. However, single-cell omics technologies lead to a number of additional challenges when going through the process from the individual reads to the mapped genomes or transcriptomes. We will focus here more specifically on methods for single-cell transcriptomics, as this is the most widely used type of single-cell omics data at present. Several scRNA-Seq protocols were developed, usually focusing either on sequencing a large number of cells, or a high amount of genes at an increased sequencing depth [47]. Due to the low amount of transcripts in the cells, scRNA-Seq data usually contain a lot of technical variance, requiring specific computational tools to perform quality control, normalization, and downstream analyses [48,49,50,51].

When performing a computational analysis on scRNA-Seq data coming from multiple experiments, batch effects can arise, leading to an increased interexperimental variability. Two recently published algorithms can be used in order to reduce batch effects. These algorithms either identify a gene correlation structure [52], or a subset of cells coming from the same population [START_REF] Haghverdi | Batch effects in singlecell RNA-sequencing data are corrected by matching mutual nearest neighbors[END_REF], that are shared between the datasets coming from different experiments. Proper data transformation is then applied to align similar cell populations, resulting in more consistent datasets that can be further analysed together. Both these methods were updated since their first publication in 2017, and new methods that re-used the same principles were published ( [START_REF] Stuart | Comprehensive Integration of Single-Cell Data[END_REF][START_REF] Korsunsky | Fast, sensitive and accurate integration of single-cell data with Harmony[END_REF]). However, some of these methods assume that all the differences that are observed between samples are due to batch effect. More recent methods, based on cluster-matching or neural networks, are now able to reduce the batch effect while preserving real differences between the samples ( [START_REF] Welch | Single-cell multi-omic integration compares and contrasts features of brain cell identity[END_REF]). A comparative review was recently published, in which 14 methods for batch-effect correction were compared on 10 different datasets ( [START_REF] Thi | Ab e n c h m a r ko fb a t c h -e ffect correction methods for single-cell RNA sequencing data[END_REF]). Overall, three methods (Harmony [START_REF] Korsunsky | Fast, sensitive and accurate integration of single-cell data with Harmony[END_REF], Seurat3 [START_REF] Stuart | Comprehensive Integration of Single-Cell Data[END_REF] and LIGER [START_REF] Welch | Single-cell multi-omic integration compares and contrasts features of brain cell identity[END_REF]) seemed to stand out from the others, as they effectively reduced batch effects, kept the biological differences between samples, and were scalable to large datasets.

Several quality control metrics, such as the library size and the percentage of mitochondrial genes, are used to filter out abnormal cells, in order to reduce the technical variance of the data [START_REF] Aaron | A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor[END_REF]. Additionally, a great part of intercellular variability can be caused by the cell cycle, and it is up to the user to decide whether this variability should be removed from the data or not. Cyclone [START_REF] Scialdone | Computational assignment of cell-cycle stage from single-cell transcriptome data[END_REF] is a method that can be used to predict the cell cycle stage, which can subsequently be used to either remove cycling cells, or tag them so that they can be easily identified later in the analysis. F-scLVM [START_REF] Buettner | f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq[END_REF] is another algorithm that identifies the amount of variability across the expression of each gene that is due to cell cycle differences. It can be used to infer "corrected" gene expression values, removing the effect of the cell cycle. A paper summarising the best practices in scRNA-seq data processing has recently been published [START_REF] Luecken | Current best practices in single-cell RNA-seq analysis: at u t o r i a l[END_REF]. Among other preprocessing steps, it summarises the best methods to identify cell-cycle effects in a dataset and regress them out. The cited methods can also be used to regress out other known sources of biological variation in the data, such as cellular stress.

The next step in the process regards the normalisation of the count data, since a large part of the observed variability can be due to differences in size, viability, capturing efficiency and amplification biases between cells. Some methods aim to standardise the total number of reads per cell (RPKM [START_REF] Mortazavi | Mapping and quantifying mammalian transcriptomes by RNA-Seq[END_REF], TPM [START_REF] Wagner | Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples[END_REF], downsampling) or proportions of the total number of reads per cell (UQ, full quantile [START_REF] Bullard | Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments[END_REF]). However, these methods can be seriously impacted by false negative counts [START_REF] Vallejos | Normalizing singlecell RNA sequencing data: challenges and opportunities[END_REF]. Indeed, the number of transcripts in a cell being very low for certain genes, there is a high probability that these transcripts will be missed, resulting in a zero count in the final expression data. These missed transcripts are called dropouts, and lead to a high technical variance that can affect the final results. High-throughput scRNA-Seq protocols typically show higher dropout rates [47], but high amounts of sequenced cells can help to infer dropout probabilities. ZIFA [START_REF] Pierson | ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis[END_REF] is a method which identifies zero counts that are most likely resulting from dropout events, and gives less weight to these counts. ZINB-WAVE [START_REF] Risso | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data[END_REF] is another method which not only assesses the probability for a zero to be a dropout based on the sequencing depth, but also accounts for batch effects between samples, and computes global-scaling normalisation factors, which allow it to be used directly on non-normalised data.

Some methods rely on spike-ins to distinguish technical variability from biologically relevant changes in gene expression [START_REF] T L Lun | Testing for differential abundance in mass cytometry data[END_REF] (BaSiCS [START_REF] Vallejos | BASiCS: Bayesian Analysis of Single-Cell Sequencing Data[END_REF], GRM [START_REF] Ding | Normalization and noise reduction for single cell RNA-seq experiments[END_REF], SAMstrt [START_REF] Katayama | SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization[END_REF]). Spike-ins are control RNA transcripts which are added in the same quantity to all the samples to be sequenced. They can be used to normalise the data, as all cells should have exactly the same amount of spike-ins after sequencing, and the differences in spike-in amounts should only be the consequence of technical artefacts. However, the most commonly used spike-in set (ERCC [START_REF] Reid | Proposed methods for testing and selecting the ERCC external RNA controls[END_REF]) can not always faithfully account for the intrinsic gene variability, as they have been shown to have a length and GC content that differ from mammalian transcripts [START_REF] Risso | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data[END_REF]. Moreover, choosing the quantity of spike-ins that should be added to the cells can be challenging, as a significant amount of spike-ins has to be used in order to reflect faithfully the intercellular variability, but may eclipse the intracellular transcripts of interest. However, ERCC spikeins are still commonly used to filter out low quality cells [START_REF] Aaron | A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor[END_REF]. Overall, the views on the use of spike-ins for single cell RNA Seq normalisation are still conflicting [START_REF] Baran-Gale | Experimental design for single-cell RNA sequencing[END_REF][START_REF] Tung | Batch effects and the effective design of single-cell gene expression studies[END_REF][START_REF] Lun | Assessing The Reliability Of Spike-In Normalization For Analyses Of Single-Cell RNA Sequencing Data[END_REF].

The methods cited above apply global scaling factors to all cells equally, assuming that the relation between the number of genes measured per cell and the sequencing depth is the same for all genes. However, this assumption of a constant gene-count/ sequencing depth ratio has been shown to hold on bulk RNA data, but not in single-cell datasets [START_REF] Bacher | SCnorm: robust normalization of single-cell RNA-seq data[END_REF]. Applying global scaling factors to scRNA-Seq data might therefore lead to biased correction of lowly and highly expressed genes. Two algorithms can be used to perform single-cell specific normalisation of scRNA-Seq datasets. The SCnorm method [START_REF] Bacher | SCnorm: robust normalization of single-cell RNA-seq data[END_REF] relies on the fact that the normalisation should not be applied in the same way to all the genes, as they differ in various properties such as transcript length and GC content. SCnorm first groups genes with similar dependencies on sequencing depth and subsequently estimates different scale factors for each group of genes. Alternatively, SCRAN [START_REF] Aaron | A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor[END_REF], first groups cells with similar expression profiles together, and applies intra-group normalisation before performing inter-group normalisation. One new normalisation method can be added to the two previously cited methods. Sctransform allows to perform scRNA-seq data normalisation using Pearson residuals [START_REF] Hafemeister | Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[END_REF].

Visualising high-dimensional single-cell data

Once the data has been pre-processed, visualization tools can help to get a first insight into the structure of the data. A quick principal component analysis (PCA) plot of the data can for instance allow identifying any remaining source of technical variability between samples, which should be removed by normalisation. Structures in the data or biological differences between the samples may then be investigated using different approaches: dimensionality reduction techniques, clustering techniques, or the novel class of techniques to model cell trajectories and state transitions. The problematic of finding cell trajectories in high-dimensional data through dimensionality reduction to find an optimal data representation is discussed in further detail in Chapter 4 of this manuscript. A list of visualisation tools and their principal characteristics is provided in Table 2.1.

Dimensionality reduction tools aim to capture the structure of the highdimensional data by projecting it to a lower dimensional space that keeps the most important structural properties of the original, high-dimensional space. The lower dimensional projection allows the human expert to visualise and explore the data. Dimensionality reduction can be performed either in a linear way (the lower dimensional projections are a linear combination of the original dimensions), or in a non-linear way. PCA is a linear dimensionality reduction technique, in which the features with the largest variability are preserved in principal components. The main sources of variability in the data can then be optimally laid out. A PCA can therefore be applied to check for batch effects in the data, or to identify any main source of variability. The use of non-linear dimensionality reduction methods (e.g. tSNE [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF], MDS [START_REF]Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis[END_REF], diffusion maps [START_REF] Haghverdi | Diffusion maps for high-dimensional singlecell analysis of differentiation data[END_REF], SPRING [START_REF] Weinreb | SPRING: a kinetic interface for visualizing high dimensional single-cell expression data[END_REF]) allows optimal plotting of the data in two dimensions while preserving the local similarities between cells. A new dimensionality reduction technique has been published in 2018 (UMAP [START_REF] Mcinnes | UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[END_REF]). As the tSNE method, it aims at preserving the local distances between cells in the original space when it embeds them into lower dimensions. Unlike tSNE, however, UMAP is also able to preserve global distances between cells, and allows to embed cells into more that 2 dimensions. Another advantage of the UMAP algorithm is that it performs significantly faster than the tSNE method. Autoencoders have also recently been proposed as alternatives to perform dimensionality reduction in single-cell datasets [START_REF] Eraslan | Single-cell RNA-seq denoising using a deep count autoencoder[END_REF]. Even though they have the potential to help identifying main sources of variability in the data, it can be difficult to accurately tune their parameters [START_REF] Hu | Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics[END_REF].

Clustering-based visualization methods group similar cells together and may be combined with a subsequent visualization step, e.g. by laying out the resulting clusters in two dimensions. This reduces computation time and can simplify the understanding of the resulting plot. Several methods have been proposed for the visualisation of clusters in single-cell data (Spade [START_REF] Qiu | Reversed graph embedding resolves complex single-cell trajectories[END_REF], FlowSOM [START_REF] Van Gassen | FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data[END_REF], FlowMAP [START_REF] Zunder | A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry[END_REF]). These methods represent the clusters under the form of a graph in which the most similar clusters are linked by an edge. FlowSOM also allows performing meta-clustering, grouping clusters into larger populations, which has shown to return results very similar to manual labelling of cytometry data [START_REF] Weber | Comparison of clustering methods for highdimensional single-cell flow and mass cytometry data[END_REF]. Scaffold maps [START_REF] Spitzer | An interactive reference framework for modeling a dynamic immune system[END_REF] were specifically designed to simplify the identification of user defined cell populations in cytometry data. Finally, Phenograph [START_REF] Levine | Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis[END_REF] identifies closely linked communities of cells in a graph structure. This algorithm therefore identifies populations without any previous knowledge on the number of expected populations, which can be very useful in discovery studies. While most of these methods were initially developed for flow cytometry data, FlowSOM and Phenograph are scalable to high dimensional datasets. These methods can therefore be applied to mass cytometry and scRNA-Seq datasets, or to features extracted from images, allowing the visualisation of structure in the data.

However, scRNA-Seq and image derived data typically contain much more dimensions than the usual 10-30 colour panels used in cytometry. When dealing with features extracted from images, a first step can consist in performing principal component analysis, which will help to reduce the redundancy of these highly correlated features. One can then choose to work with the principal components containing 95% of the data variability. These principal components can be analysed as new features, using visualisation or clustering techniques. scRNA-Seq datasets tend to contain noise which might bias clustering studies, especially due to the high amount of lowly expressed genes and dropouts. Therefore, the highly variable genes (HVGs) can first be filtered on this type of data [START_REF] Aaron | A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor[END_REF][START_REF] Klein | Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells[END_REF], which considerably reduces the number of features and the noise they contain, while preserving the main biologically relevant sources of variability. Another algorithm was implemented in the Seurat R package [START_REF] Satija | Spatial reconstruction of single-cell gene expression data[END_REF] to filter HVGs. Visualisation, clustering, or any downstream analysis algorithms can then be applied either to the HVGs, or, if the dimensions of the data are still too high, on the principal components of a PCA run on these HVGs.

In order to highlight the differences between the different methods cited above, we applied two dimensionality reduction tools (PCA and tSNE) and two clustering based tool (FlowSOM, Phenograph) on a publicly available scRNA-Seq dataset [16] of 3000 peripheral blood mononuclear cells (PBMCs) from the 10X Genomics platform (Figure 2.2). We first pre-processed the dataset as described in the data preprocessing section by filtering out low quality cells and genes. We then selected the most highly variable genes, to which we applied the different visualisation methods. This filtering on highly variable genes has two advantages. It significantly reduces the size of the dataset, therefore reducing the analysis time, and it helps to focus on the genes that are driving heterogeneity across cells [START_REF] Aaron | A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor[END_REF]. The PBMC dataset had previously been expert-labelled in the Seurat R pipeline [START_REF] Satija | Spatial reconstruction of single-cell gene expression data[END_REF], which allowed us to use the cell identities to simplify the comparison of the outputs from the different methods. The different methods provided complementary information on the structure of the data. For instance, all methods except PCA identified the rare megakaryocyte cell popu- In order to identify structures in an expression data matrix, two types of methods can be used. Clustering based methods will tend to maximise the similarities between cells within clusters while maximising the differences between clusters. These methods thus help to identify homogeneous groups of cells in the data. On the other hand, trajectory inference methods will tend to preserve the local similarities between cells, ordering them along trajectories which represent gradual changes between similar cells.

2.3).

The choice between the two sets of methods depends on the biological question, but a good practice can be to first apply a clustering algorithm to identify the main populations in the data, and then perform trajectory inference on a specific group of similar cells. Indeed, trajectory inference tools will tend to identify trajectories in any dataset, so they should be applied to specifically delineated sets of cells. The identification of trajectories in highly variable datasets is a current challenge, which is only described recently in the literature [START_REF] Campbell | Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference[END_REF].

Clustering-based approaches

Several tools have been implemented in order to identify similar groups of cells in cytometry data, comparing either the similarities between cells (Spade [START_REF] Anchang | Visualization and cellular hierarchy inference of single-cell data using SPADE[END_REF], FlowSOM [START_REF] Van Gassen | FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data[END_REF]), the distances between cells in a lower dimensional space (Accense [START_REF] Shekhar | Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE)[END_REF]), or the shared neighbours in a graph (Phenograph [START_REF] Levine | Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis[END_REF]). A benchmark study of clustering tools, the FlowCAP I [START_REF] Aghaeepour | Critical assessment of automated flow cytometry data analysis techniques[END_REF] challenge, provided several mammalian datasets to assess the ability of different clustering methods to identify cell populations accurately. Most tools provided a good delineation of cell populations compared to manual gating, and ensemble methods which merged the outputs of several clustering methods showed the best results. However, due to the increasing number of markers used in cytometry data, there is a need to perform benchmark studies regularly, as tools which were very efficient with low-dimensional datasets might not necessarily perform equally well in higher dimensions [START_REF] Newell | Mass cytometry: blessed with the curse of dimensionality[END_REF]. Another study [START_REF] Weber | Comparison of clustering methods for highdimensional single-cell flow and mass cytometry data[END_REF] compared 18 clustering methods for conventional flow and mass cytometry data, taking into account the clustering accuracy as well as the computational time, which becomes more important when dealing with large datasets. The FlowSOM [START_REF] Van Gassen | FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data[END_REF] algorithm showed the best clustering accuracy and was one of the fastest methods when applied to large datasets, with a linear complexity with respect to the number of cells. CytoCompare [START_REF] Platon | A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data[END_REF] is a tool which was created to perform the comparison of the clustering results of three methods: Spade, ViSNE/Accense [START_REF] Shekhar | Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE)[END_REF] and Citrus [START_REF] Bruggner | Automated identification of stratifying signatures in cellular subpopulations[END_REF].

The clustering algorithms described above can also be applied to image derived features, although, as was the case for visualisation techniques, the high correlation between features might bias clustering results. The redundancy of the features can be reduced by first applying a PCA to this type of data, and performing clustering on the principal components of the PCA. In scRNA-Seq data, clustering is more tricky, because the gene expression contains noise and the data is very sparse. Cells may mistakenly be grouped together based on technical noise attributed to sequencing depth or library size, rather than actual biological effects. This raises the need for new tools, which are able to overcome this issue. Several tools do not compare the expression patterns of cells directly anymore, but apply tricks to perform more accurate clustering: SC3 [START_REF] Kiselev | SC3: Consensus clustering of single-cell RNA-seq data[END_REF] computes a consensus clustering over several kmeans runs at the cost of a high computational cost, BackSPIN [START_REF] Zeisel | Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF] uses a biclustering method, and DIMM-SC [START_REF] Sun | DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data[END_REF] was designed specifically for droplet-based single-cell RNA seq data.

Another characteristic of scRNA-Seq data is the high amount of dropout events. Some clustering methods were specifically designed to deal with this artefact, either by imputing the expected value of dropout candidates (CIDR [START_REF] Lin | CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data[END_REF]), or by computing the similarities between cells with techniques that are robust to dropouts (SIMLR [START_REF] Wang | Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning[END_REF], SNN-Cliq [START_REF] Xu | Identification of cell types from single-cell transcriptomes using a novel clustering method[END_REF], SCENIC [START_REF] Aibar | SCENIC: single-cell regulatory network inference and clustering[END_REF]). The PAGODA [START_REF] Fan | Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis[END_REF] algorithm also accounts for technical biases such as the expression magnitude and the cell cycle. order to obtain an overview of the dynamics of a large number of genes, these genes can be grouped together into modules, and one path along the trajectory can be visualised in the form of a heatmap.

Approaches for modelling gradual transitions

Another set of approaches, called trajectory inference (TI) methods, aim to reconstruct the developmental process that cells are undergoing. The resulting trajectory consists of states and transitions, with each cell mapped to a pseudotemporal location in the trajectory ( Trajectory inference was first explored on mass cytometry in order to reconstruct the differentiation of hematopoietic stem cells into naive B cells [START_REF] Bendall | Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development[END_REF]. Since then, TI methods have been used increasingly to reconstruct cell developmental trajectories. There are several strategies TI methods use to tackle this complexity, and the choice of which method is most appropriate will thereby depend on the characteristics of the given dataset [START_REF] Saelens | A comparison of single-cell trajectory inference methods: towards more accurate and robust tools[END_REF]. Pioneering TI methods were often specialised in producing a fixed trajectory type (e.g. linear [START_REF] Bendall | Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development[END_REF][START_REF] Cannoodt | SCORPIUS Improves Trajectory Inference and Identifies Novel Modules in Dendritic Cell Development[END_REF], bifurcating [START_REF] Haghverdi | Diffusion maps for high-dimensional singlecell analysis of differentiation data[END_REF][START_REF] Setty | Wishbone identifies bifurcating developmental trajectories from single-cell data[END_REF], or cyclical [START_REF] Liu | Reconstructing cell cycle pseudo time-series via single-cell transcriptome data[END_REF]). Some methods require specific input [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF], while others are capable of inferring the trajectory structure in an unbiased way [START_REF] Qiu | Reversed graph embedding resolves complex single-cell trajectories[END_REF][START_REF] Street | Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics[END_REF]. A recent comparative review [START_REF] Saelens | A comparison of single-cell trajectory inference methods: towards more accurate and robust tools[END_REF] assessed the performance of more than thirty TI methods on both synthetic and real scRNA-Seq datasets, providing useful practical guidelines to chose the most appropriate methods. Notably, no method consistently outperformed the others on all datasets. Rather, various sets of methods were better suited to specific trajectories in the datasets, with some methods better identifying linear trajectories, and others efficiently identifying cycles. A good practice would therefore be to identify a set of TI methods to apply to the data based on the expected structure, and comparing the results of at least 2-3 methods to confirm the biological findings. In 2018, one drawback of trajectory inference was that the methods would model a unique trajectory, incorporating all the cells of a sample. This issue was recently circumvented in methods that can model disconnected trajectories, and thus offer a better understanding of developmental processes that occur in parallel in different cell types. Two methods rely on a clustering and graph-building approach (PAGA [START_REF] Wolf | PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF], Monocle3 [START_REF] Cao | The single-cell transcriptional landscape of mammalian organogenesis[END_REF]), whereas a third TI method that we recently published relies on a growing graph that naturally adapts to the density structure of a dataset (TinGa [START_REF] Cannoodt | TinGa: fast and flexible trajectory inference with Growing Neural Gas[END_REF]). The paper introducing TinGa is presented in Chapter 3 of this manuscript, in which TinGa showed promising results when compared to PAGA, Monocle3, and other state-of-the-art methods for trajectory inference. It has recently been shown that single-cell RNAseq data could be used to extract dynamic information on the cells transcriptional states [START_REF] Manno | RNA velocity of single cells[END_REF]. By making the distinction between pre-mature and mature transcripts, this method allows us to see a cell's future state. It gives access to the genes that a cell is currently expressing, but also to the genes that it will be expressing in the near future. This represents an interesting property when applied to trajectory inference, as it helps to model directionality in cell commitment [START_REF] Bergen | Generalizing RNA velocity to transient cell states through dynamical modeling[END_REF].

Differential analysis 2.6.1 Cytometry based approaches

In order to identify cell populations which differ between different experimental conditions (for instance between samples of patients with different clinical outcomes), cytometry data can first be clustered, and these clusters can be compared between the conditions. In FlowSOM [START_REF] Van Gassen | FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data[END_REF], the user can provide a fold-change threshold, to colour clusters which differ between the conditions. The Citrus [START_REF] Bruggner | Automated identification of stratifying signatures in cellular subpopulations[END_REF] and COMPASS [START_REF] Lin | COMPASS identifies T-cell subsets correlated with clinical outcomes[END_REF] algorithms both perform model selection to identify the clusters which are best associated with a certain condition. A similar method was implemented, which groups cells into hyperspheres instead of clusters (Cydar [START_REF] T L Lun | Testing for differential abundance in mass cytometry data[END_REF]). Convolutional neural networks have also been used to identify subpopulations of cells which differ the most between two conditions (CellCNN [START_REF] Arvaniti | Sensitive detection of rare disease-Associated cell subsets via representation learning[END_REF]). However, none of these methods directly cope with complex experiments and may therefore be sensitive to batch effects, which might be misinterpreted as the main difference between the conditions. One solution is to first remove possible batch effects in a pre-processing step before performing differential analysis. A CYTOF workflow [START_REF] Nowicka | CyTOF workflow: Differential discovery in highthroughput high-dimensional cytometry datasets[END_REF] has been proposed, which first applies clustering and then uses gaussian linear mixture models to perform differential analysis while accounting for possible batch effect, paired experiments and other sources of technical variance in the data. A new method was recently published for differential discovery analysis in cytometry data (diffcyt [START_REF] Weber | diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering[END_REF]). It relies on the FlowSOM [START_REF] Van Gassen | FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data[END_REF] tool for clustering, and then applies differential analysis methods borrowed from the transcriptomics field for robust identification of differentially expressed clusters.

Sequencing based approaches

The technical biases which have to be dealt with are even larger in single cell and bulk RNA-Seq data, as many genes are lowly expressed and noisy. Several methods were proposed to specifically tackle differential expression (DE) of genes in scRNA-Seq data ( SCDE [START_REF] Kharchenko | Bayesian approach to single-cell differential expression analysis[END_REF], MAST [START_REF] Finak | MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data[END_REF], scDD [START_REF] Korthauer | A statistical approach for identifying differential distributions in single-cell RNA-seq experiments[END_REF]). These methods use mixture models or Bayesian modelling frameworks to identify both the technical effects between samples (mainly caused by the gene detection rate) and the variance which is related to the condition being tested. Another method, CENSUS [START_REF] Qiu | Reversed graph embedding resolves complex single-cell trajectories[END_REF], normalizes the single cell gene expression into relative transcript counts (accounting for technical variability between cells) in time series studies specifically, allowing for the identification of genes whose expression varies along time. These single-cell specific DE methods aim to free themselves from the idea that gene expression is unimodal across cells. Indeed, as many cells often show unmeasured genes, either due to biological or technical effects, these methods model gene expression through more elaborate distributions.

However, a recent study [START_REF] Soneson | Bias, robustness and scalability in single-cell differential expression analysis[END_REF], which compared 36 differential gene expression approaches, concluded that methods that were largely used for the DE analysis of bulk RNA datasets (such as DeSeq2 [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF], edgeR [START_REF] Robinson | edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[END_REF], Voom [START_REF] Law | voom: precision weights unlock linear model analysis tools for RNA-seq read counts[END_REF]), were in fact not performing worse than single cell specific DE methods on scRNA-Seq datasets. Single-cell specific DE approaches also required more computational time, although they scaled well with increasing cell numbers. This comparative study highlighted the fact that an important trend that generally improved a DE analysis results was accurate gene filtering, which reduces noise in lowly expressed genes, leading to less false positive genes being identified as differentially expressed.

A second comparative study that was published in 2019 was performed on different technically affected datasets and showed that on multimodal zero-inflated datasets, tools that were specifically designed for single-cell data analysis might show better results, even though the agreement between the lists of genes that were recovered by the different methods was low [START_REF] Wang | Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data[END_REF]. Overall, it seems that methods designed for differential expression analysis in bulk data perform at least as well as single-cell specific methods on datasets that are not too seriously affected by technical noise. A recent study came to a similar conclusion: if the data was normalised correctly, there was no evidence that single-cell specific DE tools would retrieve more accurate lists of DE genes than the bulk methods [START_REF] Vieth | A systematic evaluation of single cell RNA-seq analysis pipelines[END_REF].

Advanced computational approaches 2.7.1 Network inference

Single-cell transcriptomics provide a rich source of data, by quantifying the expression profiles of thousands of cells. The intercellular heterogeneity which naturally results from biological stochasticity [START_REF] Padovan-Merhar | Using variability in gene expression as a tool for studying gene regulation[END_REF] allows inferring mechanisms of gene regulation involving transcription factors and their target genes. More complex, non-linear interactions between genes can be studied at the singlecell level, as was shown with the PIDC [START_REF] Chan | Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures[END_REF] algorithm, which was able to infer regulatory networks involved in developmental processes from sc-qPCR datasets. However, inferring one global regulatory network from thousands of cells might not always prove accurate. Different sub-populations of cells in the data might be undergoing different regulatory processes, which is why some methods were implemented specifically to compute differential regulatory networks. These methods derive one regulatory network for each cell subtype (CSRF [START_REF] Xu | Case-Specific Random Forests[END_REF], Pólya tree models [START_REF] Filippi | A Bayesian nonparametric approach to testing for dependence between random variables[END_REF]).

In order to improve the inference of gene regulatory networks, external sources of information can be provided. As was discussed in the section on "Approaches modelling gradual transitions", cells can be ordered along developmental trajectories. Some network inference methods can include the information from these inferred trajectories to reconstruct dynamic regulatory networks (AR1MA1 [START_REF] Castillo | A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data[END_REF], SCODE [START_REF] Matsumoto | SCODE: an efficient regulatory network inference algorithm from singlecell RNA-Seq during differentiation[END_REF]). Another source of external information could come from perturbational studies, in which genes are knocked out and the consequences on the transcriptome can be observed [21]. New tools will be needed to optimally use this type of data in order to infer regulatory networks.A recently published comparative study has shown that tools for network inference that relied on external information, such as trajectories, to infer regulatory interactions were not necessarily better that model-free methods (that infer regulatory networks directly, and only, from the data) [START_REF] Pratapa | Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data[END_REF]. In this study, PIDC [START_REF] Chan | Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures[END_REF] was among the most accurate and scalable methods. Two other methods, GENIE3 [141] and GRNBoost2 [START_REF] Moerman | Grnboost2 and arboreto: efficient and scalable inference of gene regulatory networks[END_REF], that rely on random forest models, also emerged as methods of choice for gene regulatory network inference.

Single-cell transcriptomics data represent a rich source of information to infer interactions which occur between genes and transcription factors. However, new studies are highlighting the need to not only focus on a single cell's transcripts, but also the methylation state of the DNA, the chromatin state and other epigenomic data that might enrich our knowledge of the gene regulation dynamics [START_REF] Fiers | Mapping gene regulatory networks from single-cell omics data[END_REF][START_REF] Aijo | Biophysically motivated regulatory network inference: Progress and prospects[END_REF]. The different advantages and challenges of applying network inference to single-cell data are discussed in more detail in the review that is presented in Chapter 5 of this manuscript.

Single cell multi-omics data integration

Single-cell transcriptomics, proteomics, genomics and epigenomics have provided a level of understanding of the cellular heterogeneity that could not be reached with bulk studies. However, the models which are inferred from single technologies are by definition incomplete. Indeed, the relationships between the genome, the amount of transcripts and proteins in a single cell are not always straightforward. Transcriptional regulatory mechanisms such as methylation may for instance alter the correlation between the gene copy number and the associated number of transcripts. Moreover, post-transcriptional mechanisms regulating protein translation and stability may also influence the relation between the number of transcripts and proteins in a cell. In order to fully understand and to start modelling the mechanisms involved in single cells, it will therefore be essential to integrate complementary types of data from the same single cells [26].

New experimental approaches have already been able to achieve a simultaneous and multi-parameter measurement by combining methods. The study of the genome together with the transcriptome [24,[START_REF] Dey | Integrated genome and transcriptome sequencing of the same cell[END_REF] for instance has confirmed the existence of a strong correlation between genes with high copy numbers and the number of mRNA transcripts. The joint analysis of the methylome together with the transcriptome [25] also corroborated the negative relation between the methylation of a gene and its transcription. More surprisingly, the measurement of both transcripts and proteins [START_REF] Darmanis | Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells[END_REF][START_REF] Albayrak | Digital Quantification of Proteins and mRNA in Single Mammalian Cells[END_REF] in single cells has highlighted the fact that the amount of these two entities was poorly correlated. This could be due to the fact that transcription occurs in bursts, resulting in high discrepancies between the numbers of transcripts, whereas protein levels have been shown to be more stable for particular genes [START_REF] Schwanhausser | Global quantification of mammalian gene expression control[END_REF].

The experimental procedures cited above led to low throughput datasets, typically containing 100 cells at most, and could therefore be analysed by regular correlation studies to assess the links between different omics entities. The recently published CITE-seq [22] and REAP-seq [23] methods have allowed the simultaneous measurement of the transcriptome as well as 100 proteins in thousands of cells, and have the potential to measure thousands of proteins in single cells, as these proteins are tagged with synthetic oligonucleotides. Some studies have also achieved a broader characterization of single cells by combining proteomics and imaging based approaches [START_REF] Kk | Simultaneous, single-cell measurement of messenger RNA, cell surface proteins, and intracellular proteins[END_REF][START_REF] Kochan | Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH[END_REF]. As new experimental procedures keep providing larger and larger datasets, and new tools allow getting more insight into the mechanisms of regulations at the single-cell level [START_REF] Buenrostro | Single-cell chromatin accessibility reveals principles of regulatory variation[END_REF][START_REF] Jin | Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples[END_REF], there is a great need for multiomics integrative computational tools. These tools should have the ability to combine the information coming from complementary sources to infer complex global models. Several single-cell multi-omics integration tools were published in the last years, as new methods were needed to analyse increasingly larger and multi-omics datasets [START_REF] Ma | Integrative Methods and Practical Challenges for Single-Cell Multi-omics[END_REF]. One promising method relies on feature projection and is implemented in the Seurat R package [START_REF] Butler | Integrating singlecell transcriptomic data across different conditions, technologies, and species[END_REF]. By identifying common trends across the different datasets, it allows to project the cells into one common space that is built by combining the different modalities, opening the door to what can be considered as true single-cell multi-omics data integration [START_REF] Colomé-Tatché | Statistical single cell multi-omics integration[END_REF].

Conclusions and future perspectives

Various high-throughput approaches currently allow studying cell populations into unprecedented depth. The rapid development of novel technologies or hybridizations between them is generating large and complex data sets that require designing novel computational approaches for pre-processing, visualising and extracting novel patterns from them. As novel technologies arise, the development of computational tools and the adequate benchmarking between them is lagging behind. Indeed, many computational approaches to study single cell data are continuously being published, but the number of benchmark studies that objectively compare these methods is under-represented. Nevertheless, such benchmarks are essential to extract useful guidelines for biologists who want to use these tools, pinpoint limitations of current approaches and highlight novel directions for future tool development.

While current methods mainly focus on cells in suspension, novel advances that include the spatial context will stimulate novel classes of computational tools that will enable modelling cellular interactions and cell dynamics into much greater depth. Such techniques will allow going from cells in isolation to tissues and organs, offering new perspectives for multi-scale modelling. On the other hand, single-cell multi omics approaches are providing complementary information that can relate epigenetic, transcriptional and translational information, paving the way for single-cell multi-omics and multi-source data integration.

All of these advances strengthen the idea that the life sciences are becoming even more data-driven sciences. To be able to analyse and correctly interpret the results of computational pipelines, young researchers thus should be trained adequately in properly using and understanding the principles of these novel computational approaches.
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TinGa: fast and flexible trajectory inference with Growing Neural Gas

Single-cell data give us unprecedented knowledge of cellto-cell heterogeneity. Since this type of data contains information on the genes that are being expressed in every cell, it can be used to infer trajectories. We can thus order the cells, assuming gradual shifts in gene expression between cells that are in a similar state. The cells that have similar expression patterns are consequently placed nearby, and a global developmental pattern is formed of all the local cell-to-cell similarities. In this article, we developed a new trajectory inference method that relies on the Growing Neural Gas algorithm. TinGa is scalable to large datasets and it is able to identify both the simplest as the most complex trajectories that can be encountered in a dataset. It can therefore be used on a normalised singlecell RNAseq dataset to identify underlying developmental trajectories. We wanted to perform a fair comparison of TinGa to state-of-the-art existing methods. To that end, we used tools that Wouter Saelens, Robrecht Cannoodt and I had built to simplify the benchmarking of TI methods [START_REF] Saelens | a n dY .S a e y s . Ac o m p a r i s o no fs i n g l e -c e l l trajectory inference methods[END_REF]. TinGa was compared to four state-of-the-art methods on 250 real and synthetic datasets, and the results are reported in the following paper.

Introduction

Single-cell technologies have recently dramatically reshaped the landscape of techniques to model and better understand biological systems. Trajectory inference methods have recently emerged as a new category of unsupervised machine learning techniques to interpret single-cell data [1]. These methods aim to align cells along developmental trajectories, allowing researchers to get insight into the biological processes driving dynamic processes such as cell development and differentiation [2,3,4]. More than 70 trajectory inference (TI) methods have been published up to date, differing in their methodologies, the input they need from the user, and in the type of trajectories that they can model. Indeed, the first TI tools (Wanderlust, [5] and Monocle, [6]) were able to model very simple linear trajectories. With new tools being generated, the complexity of the trajectories that could be modelled increased greatly, from branching (DPT, [7], Wishbone, [8]), or cycling (reCAT, [9]), to more intricate graph structures (SLICER, [10]).

Even though a large number of trajectory methods exist, the spectrum of topologies that can be modelled is unevenly distributed. A large number of the existing tools allow analysing simple linear trajectories. However, for more complex graph structures there are only a handful of adequate methods. For the most complex topology considered in this paper, that is trajectories that might consist of several disconnected components, only three existing methods can be applied: PAGA [11], StemID [12] and Monocle 3 [13]. In a recently published paper on trajectory inference, [14] compared 45 of the existing TI methods. Several interesting findings resulted from this study, including the strengths and weaknesses of existing tools as well as possible gaps in the field of trajectory inference. A first conclusion from this study was that no existing method was able to return accurate results for all the 350 datasets that were included in the study. Therefore, when facing a new unknown dataset, researchers need to apply several of the state-of-the-art methods and then compare their results in order to be able to gain biological insight into the data. It could be argued that the methods that can model the most complex trajectories could be applied in general, since they should also be able to model the most simple trajectories. However, a general observation made by the authors was that such methods then tend to be biassed towards producing more complex trajectories in comparison to the ground-truth. Therefore, when facing a new dataset with an unknown structure, there is still room for new methods that can deal with both simple and complex topologies in a flexible manner. Ideally, such methods would also be scalable, and able to run on datasets with millions of cells in an acceptable runtime.

Methods

Adaptive topology modelling using Growing Neural Gas

In this paper, we introduce TinGa, a fast and flexible trajectory inference method. It is the first method that applies the Growing Neural Gas algorithm (GNG, [15]) to infer trajectories. The basic idea behind this algorithm is to build a (possibly disconnected) graph that aims to fit a set of data points as well as possible using a graph structure that is iteratively adapted. The algorithm starts by building a graph that consists of two nodes, linked by an edge. An iterative procedure is then applied in which a random cell from the dataset is picked as input at every iteration and subsequently the graph is adapted to the data. An algorithmic description of TinGa is given in Algorithm 1. All nodes have an associated error that is representative of how well each node covers a certain region of the data space. A new node is added to the graph every iterations until a maximum number of nodes is reached. The new nodes are added close to the nodes with a maximal error, such that the graph grows until it covers the data homogeneously. The edges in the graph age if they are not stimulated by any input data, and die after they reach a certain age. The procedure results in a graph whose nodes and edges are representative of the data density structure.

After obtaining the graph structure using the GNG algorithm, putative noisy edges are cleared from this structure. The triangle structures in the graph are simplified by building a minimal spanning tree. However, this process can also remove edges that were representative of the data structure. A second postprocessing step is therefore applied, in which nodes of degree one are identified. We then test if an edge should be added between pairs of nodes of degree one, following three rules:

1. the edge should exist in the GNG original result (before a minimal spanning tree was computed)

2. adding the new edge should not result in a triangle 3. the cell density along the new edge should be comparable to the mean density across the rest of the graph's edges (which we defined as equal or superior to the mean density in the rest of the graph)

An example of different iterations of the algorithm on a disconnected trajectory is shown in Figure 3.1. The fact that an error is attributed to every node in the graph helps to keep track of the data coverage. Nodes with high errors help to localise regions that are not sufficiently covered, in which new nodes will be added to help capture the region's structure. Since the nodes are allowed to move towards the input that stimulated them, the GNG graph iteratively evolves to cover the density structure of the dataset. The fact that edges get Algorithm 1 TinGa 1: input the matrix of reduced dimensions d 2: parameters max iter, age max, max nodes, ↵, , ✏ b , ✏ n , 3: procedure Compute a TinGa graph 4: initialise objects that will store information about the graph.:

5:
Nodes ← matrix(max nodes rows, ncol(d ) columns)

6:

Edges ← list that will contain the TinGa edges 7:

Nodes error ← list that will contain the node associated errors p ← node with maximum error.

27:

q ← neighbor of p with maximum error.

28:

insert a new node r between p and q.

29:

errors of p and q are multiplied by ↵ 30:

r gets the mean error of p and q 31: p-q edge is removed, p-r and r-q edges are added 32:

decrease error of all nodes by factor 33: post-process the graph.: for each pair of nodes p 1 and p 2 of degree 1: removed if they get too old allows the graph to split, and not linger over empty regions.

Datasets

For this study, we used 350 datasets that were used in the benchmarking study described in [14], all of which have a known ground truth trajectory useful for evaluation. A large spectrum of topologies is represented in these datasets, from the most simple linear trajectories to the most complex disconnected trajectories. In Figure 3.2, each of the nine possible topology types is represented as a graph. In bifurcations, a simple linear trajectory bifurcates into two branches. Converging trajectories are the exact opposite of bifurcations: two distinct branches merge into one. Trees consist of a succession of different bifurcations. Multifurcations happen when a simple linear branch splits into more than two branches. Finally, some of the datasets are graphs; they can contain cycles or be acyclic, depending on the direction along the branches.

We have split the 350 datasets in two. Table 3.1 describes the 100 out of 350 datasets that were used for testing TinGa's robustness to its parameter setting, and fine-tuning of the max nodes parameter. We then used the remaining 250 datasets to compare TinGa to 5 other trajectory inference methods. These 250 datasets contained 9 different types of trajectories, as can be seen in Table 3.2. Both the 100 datasets used for parameter tuning as well as the 250 datasets used for benchmarking to other methods contained comparable numbers of real and synthetic datasets. The synthetic datasets were generated using four simulators: dyngen [14], which simulates gene regulatory networks, dyntoy [14], which builds random gradients of expression in the reduced space, PROSSTT [16], which samples the expression from a linear model that depends on pseudotime, and Splatter [17], which simulates non-linear paths between different expression states. In total, 240 synthetic datasets were thus generated using these four simulators. The cells in each dataset were then post-processed to match a real dataset's characteristics such as the dropout rate. Combined with 110 real datasets, this thus resulted in the total number of 350 datasets, split in a set of 100 datasets for parameter tuning and 250 datasets for benchmarking to other TI methods.

Single-cell RNA-seq data preprocessing

Real datasets were preprocessed following the standard bioconductor pipeline which uses both the scran and scater Bioconductor packages [18,19]. The same settings were used as in [14], with a filtering that removed genes that were expressed in less than 5 percent of the cells and had an average expression lower than 0.02. Cell filtering was applied based on total counts, total amount of features, mitochondrial gene expression, and if available, spike-ins, where cells with values higher than the median ± 3 MADs were removed. The most highly variable genes were selected by modelling the mean-variance relationship with a curve, and identifying genes that differed from this curve with a false discovery rate of 5 percent and a biological component (or effect size) higher than 0.5, using the scran R package.

Benchmarking TinGa to state-of-the-art methods

We compared TinGa to four top trajectory inference methods, as identified by the large-scale benchmarking study by [14]. These are Slingshot [20], PAGA [11], RaceID/StemID [12] and Monocle 3 [13]. Since the dynbenchmark package [14] contained wrappers for most of these methods, metrics for comparison, as well as 110 real and 240 synthetic datasets on which we could compare the methods, we re-used the same comparison settings. We created one new wrapper for Monocle 3, a method that was not yet included in the dynbenchmark package. Four metrics, earlier described in [14], were used to assess the performance of the method:

• Hamming-Ipsen-Mikhailov (HIM): provides information on the difference in topology between a method's result and a gold standard, by taking into account both the edge lengths and the similarity in node degrees

• CORRELATION: provides information on the correlation between the cell ordering in a method's results compared to a gold standard, taking the trajectory structure into account by using geodesic distances.

• F1 BRANCHES: provides information on the difference in branch assignment between a method's result and a gold standard

• FEATURE IMPORTANCE: provides information on the genes that are differentially expressed along a method's result trajectory compared to a gold standard Finally, we used a last metric, the MEAN SCORE, which is the geometric mean of the four aforementioned metrics.

TinGa parameter settings

We used the default parameters of GNG as described in [15]. To test the applicability of each parameter setting, we performed a grid search for each parameter separately by varying the parameter over a large range of values while keeping the other parameters at their default value. These parameter values are as follows:

• max iter: the maximum number of iterations. Default: 10000. No grid search was performed on this parameter, as the GNG has mostly converged after 10000 iterations.

• ✏ b : how much the closest node will move towards the input cell. Default: 0.05. Grid search was performed on values varying from 0.005 to 1.

• ✏ n : how much the neighbours of the closest node will move towards the input. Default: 0.001. Grid search was performed on values varying from 0.0001 to 1.

• : the iteration at which a new node can be added. Default: 200. Grid search was performed on values varying from 100 to 500.

• age max: the maximum age of an edge before it is removed. Default: 200. Grid search was performed on values varying from 100 to 500.

• ↵: the decay parameter for error when a new node is added. Default: 0.5. Grid search was performed on values varying from 0.1 to 0.9. • : the value by which all node errors decrease at every iteration. Default: 0.99. Grid search was performed on values varying from 0.2 to 0.999.

• max nodes: the maximum number of nodes allowed in the GNG graph. Default: 30. Grid search was performed on values varying from 4 to 30.

We tested every resulting parameter setting on 100 randomly sampled datasets among the 350 datasets described in [14], which we used as our training set. We then performed paired t-tests to assess whether the mean score of TinGa over the 100 training datasets would change significantly due to parameter tuning. Varying the parameters ↵, , and age max did not significantly change the results of TinGa over these datasets (with a p-value of 0.05). We noticed that setting too high ✏ b and ✏ n values decreased the performance of TinGa, and we therefore advise to keep the values of these parameters equal to or lower than 0.5 and 0.01 for the ✏ b and ✏ n parameters respectively. We believe that the fact that GNG nodes should not be allowed to move excessively under the influence of one cell input makes sense, since this allows the method to be more robust to outlier cells.

The only parameter whose default value showed sub-optimal results was the max nodes parameter. The GNG algorithm was originally designed to learn complex topologies, and the default number of nodes in the graph was set to a relatively high value (with a maximum of 30 nodes). In the context of trajectory inference, this number seems inappropriate, as allowing too many nodes in the graph can lead to the appearance of noisy structures, as can be seen in Figure 3.3. We tested various values for the max nodes parameter, ranging from 4 to the default of 30. The results of TinGa on the 100 datasets that we selected 
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Results

We compared the performance of TinGa to a set of state-of-the-art methods for trajectory inference, namely PAGA, Slingshot, RaceID/StemID and Monocle 3. The performance of all five methods was assessed on 250 synthetic and real datasets offering a wide variety of complexities, from linear to disconnected trajectories. For each of these datasets, the ground truth trajectory is known, since it was either defined experimentally for the real datasets, or extracted from simulations for the synthetic datasets. Therefore, the results of any trajectory inference method can be compared to the ground truth trajectory and scored. We performed a comparison using four metrics that we described in the methods section. We report the results of the methods on the 178 synthetic and 72 real datasets separately.

Synthetic datasets

TinGa and Slingshot are the methods that found the best cell ordering across all synthetic datasets, as shown by the correlation scores (Figure 3.6a). These two methods also found the best cell assignment across branches (Figure 3.6b). However, Monocle 3 performed better than Slingshot for recovering the topology of the datasets and the features expressed along the trajectory, as can be seen in the boxplots showing the HIM score and the Feature Importance score in Figure 3.6d) and c) respectively. TinGa, on the other hand, was consistently among the best methods for these 4 metrics when applied on the synthetic datasets. The scores of RaceID/StemID were greatly affected by the fact that it failed to return results on many datasets. In order to make the comparison of five methods on 250 datasets possible, we set a maximum memory use of 15Gb for every method on every dataset. RaceID/StemID systematically ran out of memory on datasets containing more than 5000 cells. Figure 3.6f) shows the time each method took to run on the datasets in function of the number of cells.

All methods returned results in less than 10 seconds on datasets containing less than 1000 cells, except for RaceID/StemID, which already needed a few minutes on a dataset of 1000 cells. TinGa proved to be very scalable on larger datasets, while Slingshot and PAGA became significantly slower on datasets containing a few thousands of cells. Overall, the TinGa method obtained the best scores when compared to the four currently state-of-the-art TI methods on synthetic datasets, as can be seen in Figure 3.6e), where the Mean Score is the geometric mean of the four other metrics (Correlation, F1 Branches, HIM and Feature Importance). We performed statistical tests to assess if TinGa's mean score was significantly higher than the mean scores of the 4 other methods on the different trajectory types. The p-values associated with these one-sided t-tests can be seen in Table 3.3, which contains p-values associated with paired t-tests computed on the 178 synthetic datasets. TinGa consistently performed significantly better than RaceID/StemID across all trajectory types. It also significantly outperformed Monocle 3 and PAGA on simpler trajectories such as linear, bifurcating, converging and cycles. On the other hand, the mean scores of TinGa were significantly higher than the mean scores of Slingshot on more complex trajectories such as trees and acyclic graphs (with a p-value of 0.05).

For each of the 178 synthetic datasets, we determined which of the five tested methods performed the best. The results are presented in Figure 3.7. TinGa had the best score on 68 out of the 178 datasets. We also observed that TinGa was the method that performed best on the greater diversity of synthetic trajectory types. Monocle 3, the second-best method that outperformed For each method, bars represent the different trajectory types for which the method performed best. These bars are ordered and coloured from most simple (in light yellow) to most complex trajectory type (in dark red).

the other methods on 42 synthetic datasets, mainly showed its best performance in 2 types of trajectories: trees and graphs. Slingshot, the third-best method that outperformed the others on 28 synthetic datasets, mainly outperformed the other methods on simpler trajectories, from linear to cycles, while PAGA and RaceID/StemID performed best on trees. On the other hand, TinGa outperformed the other methods on linear, bifurcating, cyclic, tree, acyclic and graph trajectories.

Real datasets

Figure 3.8 shows violin plots of the scores of the five trajectory inference methods we tested on real datasets. These results were split between datasets with a silver and a gold standard. Datasets with a gold standard are datasets for which external information such as cell sorting or cell mixing were used for validation of the trajectory. In datasets with a silver standard, the ground truth trajectory was extracted directly from the expression data, typically by clustering and validation by experts.

In datasets with a silver standard, we observed results that were comparable to the results previously shown on synthetic datasets. TinGa, Slingshot, Monocle 3 and PAGA were the methods that had the best correlation and F1 branches scores, as can be seen in Figures 3.8a) and b) respectively. As observed previously, Monocle 3 outperformed Slingshot on the feature importance score (Figure 3.8c). In the case of datasets with a silver standard, it not only performed better than Slingshot but also TinGa and PAGA on the topology HIM score (Figure 3.8d). Overall, the mean scores of TinGa and Slingshot were relatively spread from mediocre (0.25) to very good scores (¿0.8) compared to Monocle 3 and PAGA, which returned more consistently mean scores around 0.55 on the real datasets with a silver standard. As observed on synthetic datasets, the scores of RaceID/StemID were greatly affected by the fact that it failed to return results on the large datasets, due to memory issues.

We compared the time necessary for each method to run ( 3.8 f). TinGa was the fastest of the five trajectory inference tools. It took 11 seconds on average to run on small datasets and only 21 seconds on average on datasets containing more than 10000 cells. Monocle 3 had very similar results on small datasets, but it took twice longer than TinGa on our largest datasets. Moreover, the method crashed on 9 datasets. PAGA took slightly more time to run on large datasets, needing more than 3 minutes on average to run on datasets containing more than 10000 cells. This method did not work on all datasets either: it crashed on 17 of them. RaceID/StemID was the second slowest method and already needed a few minutes to run on medium datasets. This method systematically crashed on datasets of more than 5000 cells, which represents 69 datasets. Slingshot and TinGa were the only methods that returned a result for all the 250 real and synthetic datasets on which they were tested. However, Slingshot was the least scalable of the five methods that we tested, and ran for more than 2 hours when applied to the largest dataset of the study that contained 19647 cells. In comparison, TinGa took 23 seconds on the same dataset.

All methods performed significantly worse on datasets with a gold standard compared to silver standard datasets. Since the validation of these trajectories does not rely on the data itself but on external measures, it might not reflect the processes in the data exactly and be more complex to infer. Even though Slingshot and Monocle 3 returned significantly lower correlation and featureimp wcor scores than on the real datasets with a silver standard (Figure 3.8 a) and c), these two methods had the highest mean scores on datasets with a gold standard (Figure 3.8 e). The mean score of TinGa on these datasets was slightly lower than its results on silver and synthetic datasets, and the mean score of PAGA completely dropped on these datasets, never reaching a value higher than 0.5. This might in part be explained by the fact that datasets with a gold standard consisted mainly of linear and bifurcating trajectories, two trajectory types on which Slingshot tends to excel, while PAGA can over-estimate these datasets complexity (see Figure 3.9). methods on any trajectory types. Table 3.4 shows the results of the one-sided paired t-tests that we performed, and contains the p-values computed among the real datasets. Since there was only one real dataset containing an acyclic graph, we could not compute any statistics on this trajectory type. As observed previously in synthetic datasets, TinGa consistently performed significantly better than RaceID/StemID across all trajectory types, except for real cyclic datasets. Moreover, the mean scores of TinGa were significantly higher than the mean scores of PAGA on both cyclic and linear datasets, and higher than the scores of Slingshot on the more complex trees and disconnected graphs (with a p-value of 0.05).

Figure 3.10 is shown as an example of the trajectories returned by the different methods on a real linear dataset. On this dataset, TinGa and Slingshot accurately retrieved a linear trajectory that was similar to the real trajectory (at the top left of the figure). The cell ordering was therefore optimally retrieved by these two methods, while PAGA for instance found a trajectory that diverged greatly from the ground truth, and reordered the cells in a very different way. The trajectory identified by Monocle 3 consists of many nodes, and even though it globally resembles the ground truth, it identified two noisy micro-structures: a branch and a cycle. In this case, the mean score of Monocle 3 was therefore impacted by the fact that the topology it returned was more complex than expected, which resulted in a low HIM score. It also suffered from the fact that some cells were assigned to an extra branch and an extra cycle that were not present in the ground truth trajectory, which resulted in a bad F1 branches score. RaceID/StemID and PAGA also returned a trajectory that was much more complex than the ground truth.

Topology bias

In order to further investigate the type of trajectory topology that TinGa would return compared to other methods, we then focused on the bias in topology. [14] had already highlighted the fact that some trajectory inference methods such as PAGA, tended to over-estimate the complexity of a trajectory, while other methods, amongst which Slingshot, typically under-estimated the complexity of a dataset. We assessed the difference in topology between the trajectories returned by the five TI methods tested in this paper and the real data topologies (Figure 3.11). Our results confirmed that PAGA, and also RaceID/StemID returned too complex trajectories when facing linear or cyclic datasets. We observed the same trend in Monocle 3, which also tends to reconstruct too complex topologies on linear or cyclic datasets. We also observe that RaceID/StemID tends to return extremely complex trajectories compared to ground truth, irrespective of the real topology in the data. On the other hand, slingshot and TinGa accurately returned linear topologies when facing simple datasets. We report however that Slingshot tends to model cyclic trajectories as linear, an error that TinGa typically circumvents.

If we then focused on more complex datasets such as converging, bifurcating or multifurcating trajectories, we noticed that TinGa, PAGA, and Slingshot were relatively unbiased towards the topology complexity. Monocle 3 and RaceID/StemID, to the contrary, tended to return overly complex trajectories for these topologies. Finally, if we focused on the most complex datasets on which we performed our comparison, we noticed that methods that tended to find too complex topologies in simple datasets performed more accurately on complex datasets. PAGA showed no bias in topology on disconnected graphs and showed only a slight bias in the direction of more simple topologies when applied to connected or acyclic graphs. Slingshot, on the other hand, underestimated the complexity of disconnected, connected, acyclic and tree graphs. We observed the same trend in TinGa for the two last-mentioned topologies, but the bias was much less pronounced that the bias observed for Slingshot. All methods seemed to struggle with finding the right topology for tree datasets.

Discussion

So far, every new trajectory inference method that was published compared its results to a maximum of 10 other methods (which were not necessarily selected among the best ones), on a maximum of 10 datasets. In this work, we presented an extensive comparison of TinGa to four of the best existing TI methods to our knowledge on 250 datasets. This allowed us to clearly establish the relative performance of each method in a minimally biased setting, since adding more datasets automatically reduces the possibility that we would overestimate the performance of our method. The datasets on which we tested trajectory inference methods were either generated by one of four different simulators or real single-cell RNA-seq datasets. This allowed us to test different aspects of the methods. In synthetic datasets, we have the advantage of having a refined gold standard, with information on every cell's state of progression in the trajectory we simulated. Testing the methods on real datasets is of course essential, but in these datasets, a gold standard is more difficult to extract, and is usually based on a grouping of cells into time points or clusters, which is less refined than the single-cell information obtained in synthetic datasets.

The TinGa method showed a very good performance on average on all types of trajectories, while we observed that Slingshot performed best on simple trajectory types, and PAGA and Monocle 3 were more prone to reconstructing complex trajectories types. Slingshot relies on two steps of first clustering the low-dimensional data and then fitting principal curves through these clusters. This results in the Slingshot trajectory typically being very well correlated with the gold-standard trajectory, since it follows the principal density structures in the data. However, this method also tends to smooth out the trajectory, possibly removing secondary structures such as branches or cycles. PAGA also starts with a clustering step, but the method then significantly differs from Slingshot since one small graph is then built per cluster. Several steps of refinement then allow linking the subgraphs that need to be linked while keeping separate the components that should not be merged, which allows the method to recover disconnected trajectories. This approach typically leads to more convoluted trajectories. Monocle 3 has a similar approach to PAGA, since it also performs clustering followed by a step where a principal graph is built for each cluster. Several refinement steps are then applied in order to produce a clean final graph, among which merging the subgraphs that should be linked. From what we observed in Figure 3.11, the similarities between PAGA and Monocle 3's methodologies are reflected in the way they model simple trajectories, since they both tend to return more com-In this setting, we observed that TinGa was a promising trajectory inference method. Its performance is comparable to Slingshot on simple datasets, but also accurate on complex trajectories where it performed equally well and sometimes outperformed the PAGA and Monocle 3 methods. In a field as complex as is trajectory inference, we believe that more than one trajectory inference tool should be used at the same time, to increase understanding of the data. We provide TinGa, a method that is applicable to a wide range of trajectory types, and can play a role in the inference of complex disconnected trajectories, a problem that very few methods are able to tackle for now, while still being accurate on simple trajectories.

4

An exploratory study of dimensionality reduction techniques for trajectory inference

Trajectory inference consists in identifying a trajectory in a low-dimensional representation of the data. We thus reasoned that in order to improve the performance of trajectory inference methods, we should focus on computing an optimal embedding of the data in a low-dimensional space, where the trajectory would be easier to identify. In this chapter, we report our preliminary findings on the impact of different computational steps on a spectral embedding of the data. We report why we chose this method, and what was the impact of different intermediary steps on the resulting representation of the data.

This work was performed by H. Todorov under the supervision of prof. K. Salamatian and prof. Y. Saeys.

Introduction

Trajectory inference consists in identifying the underlying dynamic processes that drive cell state transitions. We thus aim at modeling the underlying manifold on which the data lie, that typically lies in a space that has less dimensions than the original data. Single-cell transcriptomic data consist of projections of this manifold, that are typically difficult to interpret due to low-quality sampling. The reasons why the manifold representation in the data that we observe is biased are both technical and biological. Technical issues result from the fact that some transcripts that are present in low numbers in cells are difficult to capture, and that bias can be introduced in the counts during the cDNA amplification step. A biological source of stochastic noise in the data comes from the fact that gene expression is bursty, which makes it more difficult to extract smooth expression profiles from single cells. Modelling the processes that cells are undergoing during cell state transition is thus challenging, and requires that our models allow to lower the importance of zeros in our data (since these might be "technical zeros", also called dropouts), and to extract global similarities between cells, that would be robust to biased counts and bursty gene expression. Every trajectory inference (TI) method relies on a low dimensional representation of the data, when applied on single-cell RNA-seq data. We thus reasoned that, in order to facilitate the discovery of trajectories in this type of data, one option would be to try to generate an optimal low-dimensional embedding of the cells, where the trajectory could be clearly identified. In Figure 4.1, two visualisations of the same dataset are presented. The branching trajectory in this data, that is represented by a black line, is clearly easier to see in a low dimensional space computed by spectral embedding (Figure 4.1 b) than in a low dimensional space computed by multi-dimensional scaling (Figure 4.1 b). We reasoned that TI tools would perform better if the trajectory could be clearly identified in the low-dimensional data representation.

Multi-dimensional scaling [1] is a non-linear dimensionality reduction method that was recently shown to lead to an optimal layout of cells in the context of trajectory inference [2]. Even though methods such as tSNE [3] or UMAP [4] are broadly used in the analysis of scRNA-Seq data, these methods are typically more suited to identifying clusters in the data. In this study, we did not aim at identifying separated clusters but rather continuous transitions between cells, which is why we opted for methods such as multi-dimensional scaling. We reasoned that spectral embedding [5], which shares characteristics with multidimensional scaling, might represent an interesting option to reduce data dimensionality while enhancing its structure. An intermediary step of spectral embedding (SE) consists in building a graph from the data, from which topological information is derived in subsequent steps. Preliminary results on the spectral embedding representation of trajectories revealed that the quality of Use the E m × 1/2 m matrix to transform the data, where E m is the matrix consisting of e 1 , e 2 ,. . . e m ber of lower dimensions, and of associations between these combinations and a dataset's meta-features.

Spectral embedding can improve TI through an optimal low dimensional representation of the data

Multi-dimensional scaling: The pseudocode of the Multi-dimensional scaling algorithm is provided in Algorithm 2. In the first step of this algorithm, a double-centered squared proximity matrix is computed on the original highdimensional data. The resulting proximity matrix is used to embed the data into a user-defined number of dimensions m. m eigenvalues and corresponding eingenvectors are thus computed from the matrix and are used to compute new coordinates to project the data into. Due to squaring of the proximity matrix, the proximity between cells that were similar in the original dataset will be even higher than in a regular proximity matrix. On the contrary, the proximity between cells that were quite dissimilar in the original matrix will be even lower than in a regular proximity matrix. In other words, cells that appeared similar in the original space will appear even more similar in the MDS space, whereas cells that were quite different in the original space will be even more separated in the resulting MDS subspace. This can be seen as a form of structure enrichment, since in this data representation, the local data structure will appear enhanced. Spectral embedding: The pseudocode for the spectral embedding algorithm is provided in Algorithm 3. The last part of this algorithm is similar to the last step of the MDS pseudocode 2, as eigenvectors are again used to compute new coordinates for the cells in the low-dimensional space. The algorithm differs from MDS in the fact that the eigenvalues and corresponding eigenvectors are not computed on a squared proximity matrix, but on the Laplacian derived from a graph of the distance matrix. In this case, the topology of the data will be simplified even more than in the MDS algorithm. Typically, the cells that are separated by a distance smaller than a threshold ✏ will be linked by an edge in the graph, whereas all other distances between cells will be ignored. The final embedding of the data will thus reflect a simplified topology of the original data structure.

We quickly noticed that spectral embedding strongly relied on the ✏ parameter, corresponding to the maximal distance between cells to be linked by an edge in the graph computed in the seventh step of the algorithm. Figure 4.2 shows the result of spectral embedding on a cyclical dataset for an increasing value of ✏.I f✏ was too low, the resulting graph would consist of isolated cells. No structure could be learned from this graph and as a result, the cells would be placed in a default spherical shape in the final data embedding (Figure 4.2, ✏ =0 .34). On the other hand, if ✏ was too high, the resulting graph would be fully connected and again, no structure could be learned and the final data representation would collapse (Figure 4.2, ✏ =0 .58). We observed that there was an interval in which the ✏ values led to an optimal representation of the data, and that this interval varied from one dataset to another.

We thus focused on defining ✏ in such a way that the main data structure would be well defined. In a graph, this equals to saying that we would be interested in the global topology of the graph, rather than in small noisy subparts.

A graph is composed of nodes and edges. Small structures can be decomposed in the graph, and are called simplices. A simplex is the generalisation of a triangle to n dimensions. It represents the most simple shape that can be defined in the n dimensions. A simple node forms a 0 dimensional simplex. Two nodes linked by an edge, corresponding to a segment, form a one dimensional simplex. Three nodes linked by edges that form a plane triangle form a 2 dimensional simplex, etc.

Algorithm 3 Spectral Embedding pseudocode

1: input the pre-processed and normalised scRNA-seq matrix 2: parameters 3: m, the number of dimensions in the final data embedding 4: ✏, the threshold distance under which cells are linked in the graph 5: procedure Compute spectral embedding of the data 6:

Compute the distance matrix D

7:

Build a graph from D, in which nodes that are distant at most of a distance ✏ are linked by an edge 8:

Compute the Laplacian matrix L of this graph, a symmetric matrix in which element l i,j =1ifi = j, l i,j =

1 √ d[i]d[j]
if i!=j (with d[i] = degree of node i), l i,j = 0 if i and j are not linked in the graph.

9:

Compute the eigenvalues and eigenvectors of the Laplacian 10:

Use the matrix containing the m eigenvectors associated with the m smallest eigenvalues to define new cell coordinates On the synthetic datasets that followed a normal distribution, the neighborhood recovered using the maximal distance was not affected by noise (Figure 4.7 A). Since the maximal distance only takes into account the one dimension containing the largest differences between cells (the other dimensions having only a negligible impact on distances), this behaviour was expected. The Minkowski distance with k=1 (manhattan), and 2 (euclidean) were only slightly more affected by noise, with 90% of the neighbours being correctly retrieved when 1000 noisy dimensions were added to the data. Contrary to what we expected, the l2/3 distance was more affected by noise, followed by the pearson and angular distances, for which the percentage of retrieved neighbours dropped to 50%. The spearman metric was most affected by noise. After the addition of 10 noisy dimensions, less than 40% of the neighbour cells were retrieved. Since the spearman metric is based on ranks, we can easily understand how the number of noisy dimensions can quickly overpower a few strongly informative dimensions. The spearman metric was also significantly more affected than the other metrics on dimensions that followed a ZINB distribution (Figure 4.7 B). The six other methods had quite similar results in recovering the one nearest-neighbour of every cell. These results quickly dropped below 50% of neighborhood recovery, except for the maximal distance metric. A ZINB distribution is characterized by a strong skewness towards zero, which can explain how noisy dimensions could have a higher impact on this lowly informative type of data.

In this section, we observed that all distance metrics (except for the maximal distance metric in normally distributed data) were affected by noise and high dimensionality in the data, as the neighborhoods that they defined in low dimensions were not correctly retrieved in higher dimensions. We noticed that in normally distributed data, the neighborhoods retrieved with the Minkowski distance metrics were relatively robust to the addition of noisy dimensions, with higher values of k leading to more robust results. In ZINB distributed data, all Minkowski and correlation metrics seemed to be equally affected by the addition of noisy dimensions, except for the Spearman distance metric, for which the percentage of retrieved neighbours rapidly dropped below 10%.

Translating the noise-sensitivity-study of the distance and correlation metrics to real datasets

After the comparisons that we performed on synthetic datasets, we were interested in comparing the performance of the seven distance and correlation metrics described in the previous section on real datasets containing a trajectory. To this end, we identified the dimensions (e.g. the genes) that could help to predict the trajectory, by applying random forest models, in which we predicted the position of cells in the trajectory according to gene expression. We considered that these were the genes that drove the trajectory and helped to define its structure. On the other hand, every real dataset that we observed also contained some genes that were not associated with the trajectory, and ing geodesic compared to euclidean distances in trajectories. We conveniently labelled four cells in the trajectory: A, C and D are placed at the extremities of the trajectory whereas B is placed at the point where the AB branch bifurcates into two branches: BC and BD. If we wanted to compute the distance between C and D, we could imagine having an approach that would not take the trajectory structure into account, and simply compute the euclidean distance between these cells. From the formula of the euclidean distance between 2 points x and y (4.2), we would obtain L 2 (C, D) = 2. On the other hand, the geodesic distance would take into account the fact that C and D lie on different branches and that the shortest path from C to D goes through B. The geodesic distance between C and D would thus be equal to the distance from C to B plus the distance from B to D, which is equal to 2 √ 5. This value is more representative of the actual distance between these two cells in the trajectory.

L 2 (x, y)= v u u t d X i=1 (x i -y i ) 2 (4.2)
In order to make the calculation of geodesic distances in the reference trajectory and the calculation of the seven types of distances on the scRNA-Seq data computationally feasible, we did not compute distances between all possible pairs of cells. We rather subsampled a subset of cells that were evenly distributed along the reference trajectory, that we used as landmarks, as described in [8]. We then computed the geodesic distances of all cells to these landmarks in the reference trajectory, and in the same way, the distances of all cells to these landmarks with seven different distance metrics. By sub-setting a small number of landmarks [START_REF] Kiselev | SC3: Consensus clustering of single-cell RNA-seq data[END_REF], this allowed to greatly reduce the time needed for these calculations.

Since we already saw in sections 4.3 and 4.4 of this chapter that most distance metrics were clearly affected by a high number of dimensions, we decided to compute distances in two different settings. First, we computed distances between cells directly in the expression matrix. Secondly, we reduced the data dimensionality and then computed distances in the reduced dimensions. For both of these settings, we also computed distances between cells by taking into account only the 50 genes that were the most informative for the trajectory. Figure 4.11 A illustrates the design of this experiment. On one side, we computed geodesic distances in the trajectory as discussed previously. We considered these distances as true distances in the trajectory, and we looked for a method that would allow to identify distances that would be as close as possible to these true distances. On the other side, the seven distance and correlation metrics were used to compute distances between landmarks and cells 1) on the expression matrix directly (once on all genes, once on 50 HIGs) 2) in dimensions reduced by principal component analysis (computed once on all genes, once on 50 HIGs). For every dataset, we reduced the number of dimensions by keeping only the principal components that held 95% of variability in the data. We then compared the true distances defined in the trajectory to the distances com-exception of the maximal distance metric. When computed in higher dimensions consisting of all the dataset genes, 3 metrics clearly performed worse than in the 50 highly informative dimensions. The manhattan (L1), euclidean (L2) and angular distances were clearly affected by high dimensionality in the data. On the other hand, the two correlation metrics (Pearson and Spearman), and the maximum distance metric, were able to define distances between cells more accurately in the high dimensional datasets. These results seemed to suggest that when applied directly on real dimensions of the datasets, correlation metrics reflected the trajectory better than distance metrics.

The distribution of "best" performing metrics was more sparse when the distances were computed in lower dimensions defined by PCA (Table 4.2). When these lower dimensions were computed on the 50 HIGs, the results of three metrics were most correlated to the reference geodesic distances, namely the euclidean distance (that was already one of the best distance metrics when computed directly on the 50 HIGs), the maximum and the Pearson metric. These three metrics also returned the best results on a PCA computed on all genes, although the results of the euclidean distance metric were clearly less accurate. Interestingly, the fractional distance L2/3, which was supposed to be suited for high dimensional data, did not return distances that would be useful in the context of trajectory inference.

The results described in Tables 4.1 and 4.2 seemed to indicate that the accuracy of the different distance metrics in the context of trajectory inference was dataset-dependant, since no metric outperformed the others on all datasets.

Extracting intrinsic features from datasets to adapt the distance metric to use

In the previous section, the results seemed to suggest that the choice of a distance metric would be dataset-dependent. In this section, we tested whether meta-features could be extracted from real scRNA-Seq dataset, and if these meta-features could inform us on the way in which the dimensionality of the Table 4.1: For each dataset, seven distance matrices were computed using the seven different distance metrics. These matrices were compared to a reference geodesic distance matrix. The "best" distance metric, that led to the best correlation with the geodesic distances, is reported in this table for each dataset.

The results are shown when the distances were computed in reduced dimensions, defined by the 50 most HIGs, or on all genes. As an example, the l1 distance metric gave the most accurate results for 11 datasets, when computed on 50 HIGs. For each dataset, a PCA was applied and distances were computed in the PCA results, using the seven different distance metrics. The resulting distance matrices were compared to a reference geodesic distance matrix. The "best" distance metric, that led to the best correlation with the geodesic distances, is reported in this table for each dataset. The results are shown when the PCA was computed on the 50 most HIGs, or on all genes. As an example, the l1 distance metric gave the most accurate results for 3 datasets, when computed on a PCA that was generated using the 50 HIGs. datasets should be reduced. We thus present an experiment in which we aimed to define what the best method to reduce the dimensions of a dataset would be, depending on specific characteristics of this dataset. For every dataset, we defined a new set of meta-features that could be computed on the original expression matrix.

Metric

• Skewness allows to define the asymmetry of a distribution. A normal distribution has a skewness of zero, whereas a zero-inflated negative binomial distribution, that is very enriched in zeros, is positively skewed. For each dataset, we extracted six skewness features:

the minimum skewness the 1st quantile skewness the mean skewness over all genes the median skewness over all genes the 3rd quantile skewness the maximal skewness

• Kurtosis measures the tailedness of a distribution. The kurtosis of a normal distribution is 3. Distributions with a lower kurtosis will have shorter tails with less extreme outliers, whereas distributions with a higher kurtosis will have longer tails (as is the case in a ZINB distribution for instance).

For each dataset, we extracted six kurtosis features:

the minimum kurtosis the 1st quantile kurtosis the mean kurtosis over all genes the median kurtosis over all genes the 3rd quantile kurtosis the maximal kurtosis

• We extracted three features directly from the original dimensions of the expression matrix:

the number of genes in the matrix ("ncol")

the number of cells in the matrix ("nrow")

the fraction of genes for which the median expression value was equal to zero

• We also extracted features regarding the principal component analysis:

the number of dimensions that captured 95% of the variability of the data the corresponding fraction: the number of dimensions that captured 95% of the variability of the data divided by the original number of dimensions in the data

• Finally, we extracted four features that corresponded to the intrinsic dimension. The intrinsic dimension of a dataset informs us on the minimal number of dimensions that are needed to represent it. Many algorithms have been published to infer the intrinsic dimension of high-dimensional data. In this chapter, we focused on two such methods: the derivation of intrinsic dimension via translated Poisson distributions [15] and from kNN distances [16]. In this case, the intrinsic dimension is defined as the minimal number of dimensions that leads to a minimal loss of information in the sum of a kNN graph's edges. We used both these methods to derive four features:

the intrinsic dimension derived via translated Poisson distributions from the original expression matrix (int dim haro)

the intrinsic dimension derived via translated Poisson distributions from the principal components (int dim haro pca )

the intrinsic dimension derived via kNN distances from the original expression matrix (int dim knn)

the intrinsic dimension derived via kNN distances from the principal components (int dim knn pca )

We hoped that some of the aforementioned features could help us to predict which dimensionality reduction procedure would yield to best results. We thus performed the experiment described in Figure 4.11 B, by testing different combinations of PCA-preprocessing, distance metrics and numbers of dimensions in the final reduced space obtained by spectral embedding. For each dataset, we stored information on the combination that led to the best results. This resulted in four features:

• best PCA, a boolean, set to TRUE if a PCA had been computed in the optimal combination, FALSE otherwise

• best dist, corresponding to the distance metric used in the optimal combination

• best ndim, a numeric value set to 2, 3 or 5, corresponding to the number of SE dimensions in the optimal combination

• best cor, the value of the correlation between the distances computed in the spectral embedding space in the optimal combination and the geodesic distances in the reference trajectory

The heatmap presented in Figure 4.12 shows how the different features derived either from the datasets or from the results were linked. Two groups of features could be identified. The first group described the distributions of gene expression in the datasets. It contained five skewness features and three kurtosis features. The fact that these features were so close was not surprising, as they are complementary. The second group captured the dimensionality of the data. It contained features corresponding to the original number of dimensions in the data, the number and fraction of principal components kept in the PCA, and the intrinsic dimension computed on the principal components. Both these groups of features were slightly anti-correlated with the best PCA and the best cor features, which suggested that the metafeatures derived from the data might be used to decide whether a PCA should be used to reduce the dimensions of a dataset before computing distances between cells or not. Surprisingly, the best ndim did not seem to be linked to any of the features and metafeatures in the table.

In a second approach, we applied random forest modeling using the metafeatures to predict the optimal combination for data embedding in the datasets. We built four random forest models in which we tried to predict, for each dataset 1) whether PCA should be applied, 2) which distance metric should be used, 3) the number of dimensions in which the data should be embedded, and 4) the correlation value of the best combination.

Figure 4.13 shows the ROC curves corresponding to the predictions of the three first random forest classifiers. These ROC curves were generated by training the models on 40 randomly selected datasets out of the 53 datasets on which all meta-features and spectral embedding combinations were computed, and testing the resulting random forest models on the remaining 13 datasets. Results could be gathered for only 53/110 datasets that were originally in the study since computing a graph form the single-cell data was quite computationally demanding, as it required to compute distances between all pairs of cells. The fourth random forest model aimed at predicting a continuous value (the correlation score), so no ROC curves were derived for this model.

Only two out of these four random forest models seemed to learn something from the meta-features. Three meta-features came out with a predictive power in the first model, that aimed at classifying datasets as best embedded with PCA or not: the mean skewness, median skewness and the fraction of genes with a median expression equal to zero (Figure 4.14). These three meta-features were decreased in datasets for which applying PCA led to the best distances as and denoising at the graph level might lead to a better embedding of the data for trajectory inference.

Computing distances between cells: the way in which distances are defined between cells has an impact on all steps of a dataset's embedding into a low-dimensional space. In our different experiments, we computed distances directly on the original expression matrix or on principal components, using different distance and correlation metrics (Figure 4.11A). We also computed euclidean distances between cells after spectral embedding (Figure 4.11B). We then compared these distances to what the distances between cells would have been in an optimal layout of the trajectory, represented by geodesic distances in the reference trajectory. One conclusion was consistent in our experiments: the distance metric to use seemed to be strongly dataset dependent. We have thus tried to derive meta-features on datasets with the objective of gaining insight into how the different distance metrics were performing on different types of datasets. We were not able to establish any correlation between a dataset's meta-features and the distance metric that should be used on this dataset. We however observed that distances could be computed directly on the original expression matrix in datasets that contained many genes centered on zero. We also observed that, in this type of datasets (that contained many dimensions that ware typically heavy-tailed), the correlation scores between the distances computed in the spectral embedding space and the geodesic distances computed in the trajectory were quite high. Finally we noticed that correlation scores seemed to be higher in the datasets that could be reduced to few dimensions by PCA. Altogether, these results seem to indicate that in some datasets, informative dimensions for trajectory inference could easily be distinguished from noisy dimensions. This information could then be used to compute accurate distances between cells and embed the data into a space in which the trajectory could be seen. In other datasets, the number of dimensions could not be easily reduced. It seems that the genes that were informative for the trajectory could not be clearly identified, and that these datasets contained many other sources of variability. In these datasets, the correlation scores were typically lower, indicating that the trajectory could not be easily identified in the space computed by spectral embedding. Future investigations might focus on identifying the different sources of variability in such datasets, and maybe regressing them out such that the processes driving the trajectory could be more clearly defined.
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Network inference from single-cell transcriptomic data

Gene regulatory network inference consists in identifying regulatory dynamics between transcription factors (genes that can influence the expression of other genes) and target genes. In this chapter, we review the existing gene regulatory network inference methods and comment on the future trends that will broaden our understanding of gene regulatory dynamics in their globality.

Introduction

Recent technological breakthroughs in single-cell RNA sequencing (scRNA-seq) are revolutionising modern experimental design in biology. These breakthroughs lie at the basis of myriads of biological discoveries, the most common of which are the identification of novel cell types and the reconstruction of dynamic processes. In the context of network inference (NI), scRNA-seq has several major advantages over more traditional bulk transcriptional profiling techniques such as microarrays and bulk RNA-sequencing.

Traditionally, regulatory interactions are inferred from bulk transcriptional profiles, generated by pooling together the RNA transcripts of a supposedly homogeneous population of several thousands of cells, and quantifying the transcript abundance through a microarray or RNA sequencing. Incorrect assumptions on the homogeneity of the pooled cells may lead to the masking of relevant expression patterns in rare cell populations, as expression values are averaged over the whole population (Figure 5.1). In addition, NI methods rely on a diverse set of time-series and perturbation experiments in order to reliably identify causal regulatory interactions. However, such experiments are expensive and time-consuming, and an inaccurate choice of time points might result in crucial intermediate stages being missed.

One of the main advantages of single-cell transcriptomics is the ability to quantify the exact cellular state of thousands of cells per experiment. The intercellular heterogeneity caused by naturally occurring biological stochasticity [1] can be exploited to infer regulatory interactions between transcription factors (TFs) and their target genes (see Figure 5.1). In this sense, heterogeneity in the cell population will ease the inference of networks, rather than mask conditionspecific expression patterns and regulatory interactions.

While single-cell transcriptomics offers many advantages over traditional bulk profiling methods, several computational challenges pertaining to the preprocessing of the data have a big impact on single-cell NI [2]. In this chapter, we will therefore firstly focus on zero inflation, confounding factors and scalability problems (Section Ongoing computational challenges). We will then discuss several recent developments in single-cell transcriptomics analysis that present a high interest to further improve NI methods. In the second part, we will focus on novel unsupervised learning methods that have been proposed for inferring the different cellular states within a heterogeneous cell population. These methods can help to increase the accuracy of NI by deriving differential, dynamic or profile-specific regulatory networks (Section Integrating unsupervised learning and network inference). Lastly, single-cell transcriptomics has opened up a gateway to performing high-throughput multi-omics and/or perturbation experiments, which could again revolutionise how gene regulatory networks are being inferred at a high-throughput scale (Section Single-cell network inference using perturbational data).

highly similar cells in the population [7,8]. Another approach is to take into account dropouts into the model, for example using appropriate zero-inflated distributions [9,10,11] or spike-ins, to estimate technical variance, although these come with their own challenges [12]. However, more complex models add more parameters to the model, requiring a large dataset for parameter estimation and further escalating the scalability problems of single-cell NI as discussed later. Finally, networks can also be inferred on clusters of cells and/or genes, circumventing the dropouts by again investigating the network on respectively population level and gene module level [13].

Another issue is that rapid successive improvements in single-cell profiling technologies have caused an exponential scaling in the number of cells being profiled over the past decade [14]. Traditional NI already requires clever heuristics to predict the regulatory effect between each pair of genes, where the number of samples is yet frequently limited to relatively few samples. In comparison, contemporary single-cell datasets are already reaching sizes of up to hundreds of thousands of single cells. Several approaches simplify the inferred model, for example by discretising either the input expression values [15] or outputted regulatory interactions [16] as binary on/off-state values. Another solution would be to simplify the outputted network by clustering similarly expressed target genes into modules, and clustering cells with similar expression profiles into populations [13]. Finally, a more obvious solution to the scaling problem will be the transition to big data solutions, as shown in a recent example with GRNBoost [17].

Integrating unsupervised learning and network inference

The increasing size of the single-cell expression data from which networks can be inferred allows identifying more complex, non-linear dependencies between genes. In this type of data, the regulatory processes can be inferred directly and accurately from thousands of variable cells. This advantage has been used in methods relying on partial information decomposition [18] or Bayesian NI [19] to infer networks from single-cell transcriptomic data. However, the processes involved in living organisms are highly dynamic, and it has been long known that regulatory interactions are context-dependent as a result [20]. Consequently, attempting to create an accurate model of those processes by inferring a static regulatory network may have limited relevance. While the presence of context-dependent regulatory interactions was an issue in NI on bulk transcriptomics data, the heterogeneity within single-cell transcriptomics increases the relevance of this issue even further. In addition, strong context-specific interactions are easily masked and thus not detectable by variations in expression when the interaction is not active.

This can be solved with NI methods that take into account the dynamic aspect of the regulome and are able to produce network models with variable regulatory activity. This should improve the detection rate of variable interactions, and allow researchers to explore for which conditions certain interactions are specific. To this end, several approaches have been proposed, which can be broadly classified in three different classes, depending on the output structure they produce: differential, dynamic, and profile-specific networks (Figure 5.2). An overview of the existing methods for single cell network inference is shown in Table 5.1.

With each of these methodologies, it should be noted that while they produce networks that are specific to certain subsets of the cells' profiles, they still use the information from all available profiles. If a method is to infer a network from cells in only a certain condition, it will infer interactions from noise in the data, rather than the changes that separate that condition from any other. As such, a context-dependent network inferred from only a subset of the profiles is likely to be less accurate than a static network trained on all profiles.

Differential network inference

Also called case-specific or condition-specific NI, differential NI methods aim to reconstruct one network for each of the given conditions amongst the transcriptomic profiles. The conditions can be different cellular states or changes in environment, and profiles can be grouped according to prior knowledge or derived through unsupervised clustering. From the resulting networks, one can then investigate the pathways that are differentially activated between conditions (e.g. deregulated pathways between a diseased and healthy condition), or those that are similarly activated between conditions (e.g. similarly activated pathways between two different disease conditions).

Differential NI methods have already been described for bulk -omics data [21], where they have been used, for instance, to elucidate deregulated mechanisms in different subtypes of leukaemia [22]. For single-cell transcriptomics, two pioneering differential NI methods have been proposed. The first method, relying on the random forests algorithm, is case-specific random forests (CSRF) [23]. Random forests have been widely used to assess regulatory networks from bulk expression data. They decompose the construction of the network of N genes into N prediction problems that are addressed with numerous decision trees. In the case of CSRFs, the cells are given specific weights such that similar cells have higher probabilities to be used together in each decision tree. The resulting inferred regulatory networks are thus specific to certain homogeneous groups of cells.

The second method relies on Bayesian Pólya trees [19]. The posterior probabilities of dependence and independence between two genes are computed using Pólya tree priors, to model the unknown distribution of the data. This probabilistic method for example helps to identify sets of genes whose expression is dependent under a healthy condition and becomes independent in samples corresponding to a disease state. It has been applied in order to identify changes in gene expression in response to breast cancer [19].

the directionality and the type of an interaction. This has helped to construct more accurate boolean networks (SCNS [15]), by selecting the network that most reliably describes the observed cell ordering. Several NI methods use this cell-ordering information to construct ordinary differential equations that are again improved to optimally describe the observed data [25,26]. While such methods are generally able to improve the accuracy of the produced networks by using information from the trajectory, they suffer from the same limitations as discussed at the start of the section since they produce a single regulatory network that is supposed to be a model for all of the cells in the population.

Instead, dynamic NI methods produce a network of interactions with variable activation levels across the trajectory. They provide useful information on which transcription factors are expressed at the beginning of a developmental process, and which gene interactions occur at later stages for instance. Dynamic networks are more complex models in comparison to differential and static networks.

Two pioneering methods infer dynamic networks from ordered cells. AR1MA1 [27] relies on a pseudotemporal ordering of the cells to infer the expression of a gene at a time t as the result of the weighted expressions of its regulators at time t-1. The potential regulators of a gene are seen as hidden variables with binary expressions (a regulator is either "on" or "off"). The weights of the interactions between a regulator and its target gene are parameters that are optimised until convergence in the Bayesian process. The AR1MA1 method thus returns weighted interactions between genes along the pseudotime. The size of the resulting regulatory network can be trimmed by selecting links between genes that have the highest weights.

The second method, SCODE [28], aims to describe the transcription factors' expression dynamics along time with a set of ordinary differential equations. As solving these equations requires a lot of computing time and a large amount of memory for large numbers of genes, the dimensions of the data are reduced into z factors (where z is much lower than the number of genes). In these reduced dimensions, the interactions between the z factors can be inferred more rapidly, and then transposed to the original dimensions of the data.

Both methods have been applied to scRNA-seq datasets and sometimes showed better accuracy when inferring regulatory interactions than NI methods that return static networks. While these two methods only support linear trajectories, future methods for inferring dynamic NI methods will likely also support other trajectory structures, such as branching or cyclical.

Profile-specific network inference

The most complex network models are the profile-specific networks, in which one set of active regulatory interactions is predicted per profile, or cell. Profilespecific networks can be seen as differential networks with one specific network being inferred for each unique cellular state.

Profile-specific NI has its roots in NI on bulk data. In this context it is often referred to as patient-specific or sample-specific NI [29,16]. It could be used, for example, to investigate deregulated pathways for individual patients in an unbiased approach. For single-cell data, the term "profile-specific" was chosen here to avoid confusion between cells and samples, as the data contains one profile per cell but these likely originate from one sample.

While profile-specific networks can seem daunting to interpret, they can also be interpreted as regulomics data, and many of the techniques used for analysing transcriptomics data (e.g. clustering or visualisation) can be exploited in the same way. A differential network can be obtained from profile-specific networks by clustering, and a dynamic network can be obtained by performing TI.

The difference between this approach and more "direct" differential and dynamic NI methods, is that the clustering or trajectories were derived from the regulomes of the samples, and not directly from transcriptomics data.

A likely advantage could be that NI methods are more robust to batch effects in comparison to clustering and trajectory inference methods. Therefore, by first inferring profile-specific networks, the downstream aggregation could produce more accurate networks. Another advantage could be that the profilespecific networks could be aggregated to non-exclusive biclusters. Each bicluster represents a set of samples for which a set of interactions are similarly active. Such biclusters would allow the unbiased discovery of a set of regulatory interactions important in a subset of all cells, which could be useful for things like disease subtype identification and drug discovery [30].

A method similar to profile-specific NI combined with biclustering is SCENIC [17]. SCENIC first uses GENIE3 [31] to infer a static network, followed by motif discovery to group together target genes into groups called regulons. In a later step, the activity of a regulon is determined for each individual profile by calculating the enrichment of that regulon for the profiles' expression values. Using motif discovery can aid in significantly improving the accuracy of the network, especially since motif data is now available for almost every transcription factor. However, motifs can be very similar between transcription factor family members and can in some cases be very degenerated. Furthermore, the binding of a transcription factor to DNA requires more than just the presence of a motif, and the presence of complex protein regulatory structures should be investigated to identify robust regulatory effects.

Single-cell network inference using perturbational data

NI on bulk transcriptional data benefits greatly from the inclusion of perturbational experiments [32], where one or several regulators have been knocked out or perturbed. This vastly eases the deconvolution of the true contribution of a regulator towards different targets, as perturbed regulators will necessarily be upstream from differentially expressed targets. Techniques in the past were based either on large genetic screens, which have a high cost and require large numbers of cells, or phenotypic screening, which need a selection criterion and do only observe a limited phenotype, such as cell survival or marker expression.

Several recently developed technologies [33,34,35,36] drastically increase the throughput by multiplexing multiple CRISPR/Cas perturbations in one single-cell experiment. This is achieved by generating a library of CRISPR/Cas vectors which specifically knock-out a particular gene. Next, by profiling the RNA of each individual cell, the effect of the perturbation on a regulator can be assessed over the whole transcriptome. By then linking the RNA profile of a cell to a perturbation of a particular regulator, a regulatory network can be inferred.

This technique has two main limitations, although current studies already show some initial proof-of-concepts to solve them. When a regulator is perturbed, both direct and indirect targets will be affected. In principle, this can be overcome by allowing two or more concurrent perturbations per cell, and computationally deconvolving the contribution of each regulator [34]. This has an added advantage that also combinatorial gene regulation can be analysed. A second limitation is that the technique is not easily applicable in vivo, as the guide-RNA (gRNA) vectors have to be transferred to the cells of interest at a relatively high efficiency. One way to solve this is to infect the gRNA vectors into Cas9 transgenic cells ex vivo, transferring these cells to a recipient [33], and after some time again purifying the perturbed cells for RNA-sequencing.

Perturbational data also comes with several pitfalls. The main technical challenge is to extract the (combination of) genes which were targeted, as the gRNA of the CRISPR/Cas vector is not polyadenylated and will therefore not be sequenced. This issue can be solved technically, by adding a unique barcode to each expressed gRNA that will lead to polyadenylation [33,34,35] or by directly cloning the gRNA [36]. Several challenges also need to be solved on the computational side. Current techniques mainly try to (1) handle undetected guide barcodes using imputation strategies [33], (2) try to model the regulatory network as a low number of coregulated sets of genes using matrix decomposition [35], (3) include covariates such as cellular state and genotype in the model [34] and (4) try to model the noise distribution underlying the single-cell data [34]. However, it still has to be seen whether current techniques are powerful enough to correctly infer complete single-cell regulatory networks on large scale single-cell perturbational data, handling both the peculiarities of single-cell transcriptomics, and the combinatorial complexity of the regulatory network.

Discussion

Single-cell expression data, through the large number and variability of the cells that they contain, have helped to infer more accurate and specific regulatory networks, as was shown in the different sections of this chapter.

Networks can now be reconstructed from different sub-populations of cells in an unbiased way, without prior experimental separation of the cell populations. Moreover, the availability of the expression patterns of every cell yields a deeper understanding of the underlying differentiation processes of the cells.

Continuous differentiation dynamics can be reconstructed, which provides a degree of information that could not be reached in time series experiments on bulk transcriptomics data. Indeed, when reconstructing a developmental trajectory at the single-cell level, all the important transition states can be recovered, providing knowledge of the transcription factors that drive the main phenotypic changes in a differentiation process. This may be used to identify, for instance, the main transcription factors that drive bifurcation processes in differentiation.

The regulatory processes in a cell may be too complex to be inferred from the expression data alone. A correlation between the higher expression of a certain transcription factor and a set of genes may indicate regulatory interactions between those highly expressed genes. However, due to post-transcription and post-translation regulatory processes in the cells, a highly expressed mRNA may also never lead to a functional protein. And even if this protein is synthesized in the cell, several regulatory processes still may prevent it from reaching its gene target, for instance the modelling of the chromatin.

One future perspective is therefore the integration of different data types to infer more complex but also more accurate regulatory networks. Such studies have already been initiated, by integrating single cell expression data with chromatin state studies, to set interactions between genes only if a target gene could be reached by the transcription factor [37,38]. Another method (SCENIC, see Profile-specific network inference) uses motif enrichment to filter results from a NI algorithm. This approach has the advantage that it does not need to include any extra single-cell data, and that motif data is now available for almost every transcription factor. However, the simplicity of this approach comes with a cost, as motifs can be very similar between transcription factor family members and can in some cases be very degenerated. Furthermore, the binding of a transcription factor to DNA requires more than just the presence of a motif, and the presence of complex protein regulatory structures should be investigated to identify robust regulatory effects.

Other single-cell data types could therefore be integrated in NI to provide a more context-specific view on transcription factor binding. This is not straightforward from a technical standpoint, as (in the ideal case) both the transcriptome and other data type(s) have to be extracted from the same individual cell. Several studies have already demonstrated techniques of extracting the chromatin accessibility at the single-cell level (single-cell ATAC-seq [39,40] and single-cell DNase I hypersensitive [41]), the methylome [42,43], chromatin organization (nuclear lamina interactions [44] and Hi-C [45]) and histone modifications [46]. Most of these techniques suffer from a low sensitivity due to the sparsity of the data, although the density of the data is still high enough to cluster similar cells together in an unsupervised way and further work on the resulting unbiased clusters. Some of these techniques have already been combined with single-cell RNA-seq, such as single-cell M&T seq for the parallel extraction of the transcriptome and methylome [47], and the joint profiling of chromatin accessibility, DNA methylation and transcription simultaneously [48]. A combined single-cell ATAC-seq and transcriptome technique will potentially have the biggest impact to single-cell NI studies, as it can be combined with motif detection to extract a context-specific picture of transcription factor binding, and conversely of context-dependent regulation. Other major developments are recent methods which can profile parts of the proteome and the transcriptome simultaneously [49,50], although they are currently still limited to proteins for which antibodies are available.

The field of single-cell NI is now starting to become mature, with almost ten different methods reviewed and new methods being published nearly every month. Different approaches have specific advantages and drawbacks, related to scalability with the number of genes and/or cells, prior assumptions about the network and the kind of network inferred. With the increasing number of methods, it becomes necessary to independently review the advantages and limitations of certain methods, to not only guide researchers towards the best method for their study, but also steer the development of new methods towards better and complex models of gene regulation. Although we already discussed some of the individual characteristics of current methods, a full-blown evaluation study in which speed and accuracy of single-cell NI methods are being put to the test is still necessary. This could be in the form of a competition, as was the case in the past for bulk NI methods [51]. The main challenge of such evaluations will be the development of a good gold standard, which can be easy to obtain from synthetic data, but hard from real data as the real network is not known. Integration of known binding or motif data could be useful in this case, and has indeed already been used to evaluate some methods on a small scale [17]. In contrast to evaluations on static NI methods, such an evaluation will also have to take into account the context-specificity when evaluating differential, dynamic or profile-specific NI methods. Networks inferred for the FANTOM5 project could be useful here [52]. We foresee that such an evaluation study will have a profound impact on the field, similar to what previous evaluations have had on static bulk NI methods [51].

Table 5.1: Existing tools for single cell network inference

Method

GRN type Methodology PIDC [18] Global Partial information decomposition [19] Global/differential Bayesian nonparametric procedure CSRF [23] Differential Random forests SCNS [15] Global Boolean network models, validated with cell ordering [25] Global ODE models, calibrated with cell ordering [26] Global Random forests and ODE AR1MA1 [27] Dynamic First-order autoregressive moving average model SCODE [28] Dynamic ODE SCENIC [17] Profile-specfic Random forests and motif analysis 6

Memory precursors are generated at multiple points during CD8 T cell response to an acute infection.

T cell differentiation in response to infections is of crucial importance for our immune system. We applied two trajectory inference methods, Slingshot and TinGa, as well as BRED, a new single-cell gene regulatory network inference method, to study the acute response of CD8 T cells to the lymphocytic choriomeningitis virus. The resulting trajectories were mainly driven by genes driving the cell cycle, which was also reflected in the majority of GRN modules that were linked to the cell cycle. The TinGa trajectory also allowed us to identify two different types of memory precursors, one being generated at an early time-point, the other being generated after the majority of CD8 T cells underwent many cell divisions. We could confirm this finding with a pulse-chase experiment. This chapter is preceded by a technical foreword that describes the trajectory inference (TinGa, Slingshot) and network (BRED) inference techniques that we used in the chapter.

6.1 Foreword: trajectory and network inference

Identifying a developmental trajectory

Single-cell RNA-seq data give us very rich information on cell-to-cell heterogeneity in terms of gene expression. Single-cell data has historically been used to define cell-types in the data, by labelling cells as specific T-cells, B-cells, etc. However, scRNA-Seq data now show us that the transitions between cells are not that easy to define. When taking the expression of many genes into account, we might observe a continuum between cells rather than clearly defined populations. In this context, it becomes difficult to set strict thresholds that define where one cell sub-population starts and where another one begins. Rather than defining strict groupings of cells, one type of computational methods aims at identifying smooth transitions between cells. These methods identify trajectories in the data rather than distinct points, and are referred to as trajectory inference (TI) methods. The first TI method was published in 2014 [2] and allowed to reconstruct the developmental trajectory from hematopoïetic stem cells to naive B-cells. Even though trajectory inference is a young discipline, many TI tools have been developed since 2014. Such tools now allow to distinguish trajectories that are much more complex than the initial linear ones. Some of these methods are able to reconstruct branching trajectories (in which some cells would develop into two distinct branches), cyclic trajectories, or even disconnected trajectories (in which 2 or more disjoint trajectories could be identified).

Defining a trajectory in a biological dataset provides a powerful tool to investigate the developmental processes that are occurring in the data. Once we know how the cells are transitioning from one transcriptomic stage to the other, we can start extracting different types of information. We can for instance look into the trajectory's topology, which can tell us whether the processes occurring in the cells are linear, or whether they are pushing the cells into different branches. We can also extract the genes that are varying along the trajectory, which can bring us a precious understanding of the genes that are driving the cell dynamics.

In this study, we applied two methods for trajectory inference. Slingshot [3] was published in 2016 and has been shown to be a very robust TI method since then [4]. In this method, the high-dimensional data (composed of thousands of genes) is first reduced into a low-dimensional space by principal component analysis. This dimensionality reduction will have the effect of compressing the information that was contained in the original high-dimensional space. The main sources of variability between the cells will be kept and easy to visualise in the reduced dimensions, while the noise in the data will be reduced. In the lowdimensional space, Slingshot then performs a clustering step, in which groups of similar cells are defined. The Slingshot algorithm then fits a minimal spanning tree through these clusters, which allows the tool to identify clusters that should be linked together to form a continuum. Principal curves are then fitted along this tree, which results in the definition of a smooth trajectory that will pass through the different clusters.

TinGa [5] is a TI method that we recently published and that showed promising results when compared to state-of-the-art methods such as Slingshot. This method also first relies on the embedding of the high-dimensional scRNA-Seq data into a low-dimensional space, using multi-dimensional scaling, which can be seen as a non-linear principal component analysis. However, the way in which a trajectory is then identified in the reduced dimensions is drastically different from the Slingshot method. A small trajectory consisting of two points linked by an edge is first randomly placed in the low-dimensional space. Then, one cell is picked at a time and will pull the trajectory towards itself. In short, the point in the trajectory that is closest to the picked cell will slightly move towards it. The trajectory will thus move towards the data. The trajectory is also allowed to grow: up to eight points can appear along the trajectory, in places where the trajectory did not fit the data well yet. This allows the trajectory to evolve into more complex patterns such as a branching trajectory, or even a disconnected trajectory. As a result, TinGa will return a graph consisting of a maximum of 8 points that will have evolved in such a way that it will effectively represent the structure of the data.

Inferring regulatory patterns between genes

By measuring transcripts in single cells, we have access to information on the genes that are being expressed together or not in each cell. If two genes are significantly associated (if the expression of one of the genes allows us to robustly predict the expression values of another gene), we can assume that one of these genes is regulating the other, or that they are the targets of another gene that is regulating both of them. Some genes are known regulators: they are called transcription factors (TFs). If expressed, these TFs can regulate the expression of other genes, either by activating or inhibiting them.

Many computational tools have been developed to infer gene regulatory networks (GRNs) from scRNA-Seq datasets. In order to be able to infer one regulatory network per cell (or per group of cells), some of these tools rely on all-minus-one studies, in which the cells of interest are removed from the data and the resulting inferred network is compared to the original one to see which regulatory processes were specific to these cells. Another approach consists in modeling interactions between genes by taking into account additional information about cell ordering (which is typically derived from trajectory inference studies, as described above). For more details on these network inference methods, see chapter 5.

In this study, we used BRED [6], a tool that allows to directly derive one GRN per cell without using the all-minus-one method, which makes it faster than these methods typically are, and without relying on any cell ordering. It relies on an approach developed for bulk RNA-seq data ( [7]), using random forests to assess how different transcription factors regulate the expression of target genes. Let us define a dataset in which we would have n c cells, n t target genes and n r regulators (e.g. transcription factors). expression values (Figure 6.1 H). If the prediction errors are much higher after one specific TF was perturbed, then we know that this TF was important to predict the target gene's expression. This procedure allows us to derive the importance of each TF in the prediction of a specific target gene in each of the out-of-bag cells.

Applying the same method to infer regulatory networks between all TFs and all target genes in all single-cells: Random forest models are then built by generating 10'000 such decision trees to predict the expression values of every target gene. In total, n t random forests are thus computed in the BRED method. As we showed earlier, every unique decision tree provides information on a small subset of out-of-bag cells. By generating 10'000 such trees, we obtain information on all cells from the dataset, as they are randomly selected in the out-of-bag subsets. The resulting random forests thus eventually allow us to extract information on the predictive importance of every TF for every target gene in every cell of the dataset.

Identifying the type of regulations occurring between a TF and its target gene: However, knowing how important a TF is to predict the expression value of a target gene is not sufficient. It is interesting to know that a gene A influences the expression of a gene B, but we also need to know how it influences it, to know if gene A activates or inhibits gene B. This information is extracted from the n r perturbed datasets described above. On one side, we extract a vector indicating how the expression of a TF was perturbed in each cell (it could be either under or overexpressed compared to its original value). On the other side, we extract a similar vector from the predicted expression values of the target gene: in each cell, we can see if a decrease or an increase of the target gene's expression was predicted. The correlation between these two vectors informs us on the effect of a TF on its target gene. If an increase of the TF led to an increase of the target gene, then this TF has an activating effect on this target gene. On the other hand, if the two vectors are anti-correlated, which is to say that the increase of the TF leads to a decrease of the target gene, then we deduce that the TF has an inhibitory effect on the target gene.

Applying BRED on a scRNA-Seq dataset thus allows to derive one GRN per cell, in which the importance and effect of TFs on their gene targets are defined.

Introduction

The number of naive CD8 T cells that are specific for a given pathogen is relatively low, ranging from 100 to 1000 cells [8,9]. Upon infection, these pathogen specific CD8 T cells will be recruited and activated. This, under appropriate conditions, leads to their extensive proliferation and differentiation in a large (10 6 -10 7 ) population of effector CD8 T cells that display the capacity to eliminate infected cells. The majority of effector cells will die by apoptosis, except for a smaller subset of memory precursor cells that will further differentiate to give rise to a long-lived population of resting memory cells (10 5 to 10 6 ) that will provide protection upon subsequent infection [10,11]. Although these cells are mainly quiescent, they retain the capacity, upon re-exposure to pathogens, to rapidly display effector functions due to epigenetic modification of genes involved in these processes [12,13]. In order to better understand the properties of memory cells generated in different settings [14], many studies have focused on defining cell subsets, relying on a restricted number of surface proteins [15,16,17]. These cell subsets include central and effector memory cells, exhausted memory cells or tissue resident memory cells. Over the years, the study of these subsets has brought a wealth of knowledge on the responsiveness [18,16,15], homing [19], and self-renewal capacities [20,21] of these cells. The molecular pathway sustaining their development has also been largely uncovered. Indeed, the involvement of numerous transcription factors [22,23,24,25], and epigenetic reprogramming factors [26] in the differentiation of different classes of effector and/or memory cells has been uncovered.

Lineage study of CD8 T cells: the lineage relationship between the different subsets of CD8 T cells [27] and the stage at which activated CD8 T cells diverge from the effector fate to commit to the memory lineage have been extensively studied, with many different experimental approaches leading to results supporting alternative models [25] (Figure 6.2). A linear pathway where memory cells are derived from effector cells is supported by early studies using genetic marking of memory cells [28] (Figure 6.2 a). A linear model where activated naïve cells first differentiate into memory precursor cells that give rise to effector cells has been suggested following in vivo fate mapping of single cells [29] (Figure 6.2 b). These early memory precursor cells could correspond to the memory stem cells described in a restricted number of experimental systems [21]. Fate mapping experiments have highlighted the heterogeneity of effector cells in terms of their functional capacities and their differentiation potential into memory cells [30,18,31,32]. Hence a new classification of effector cells based on the expression of KLRG1 and CD127 has emerged with on one side short-lived effector cells doomed to die at the end of the primary response and on the other memory-precursor cells that maintain the capacity to differentiate into memory cells [30] (Figure 6.2 c). In these models (Figures 6.2 a, c), memory cells are derived from cells that express effector functions and that have maintained the potential to differentiate into memory cells [33,34]. In contrast,

N M E MP N E
Memory cells are derived from cells that have acquired effector functions

The population of effector cells is heterogeneous, it contains memory precursor that will differentiate in memory cells and short live effector cells that are terminally differentiated.

Once activated, naive cells first give rise to memory precursor cells that give rise to effector cells

Linear models

Branching models a number of other studies have suggested a separation of memory precursors at an earlier stage that precedes the differentiation into effector cells. Indeed, branching as early as following the first division has been proposed based on single cell transcriptome analysis [35,36] and would potentially result from an asymmetric division of CD8 T cells [37](Figure 6.2 d). Although these models agree on the early commitment of activated naïve CD8 T cells to the memory lineage their remains some debate about the existence of an early branching [38] (Figure 6.2 b, d). More recently, Crauste et al. [11], based on numerical analysis of memory CD8 T cells generation, demonstrated that the total pool of memory CD8 T cells could mainly be generated by a linear pathway, where the majority of quiescent memory cells are generated following the transition of naive cells through an early activation effector stage characterized by active cell cycling followed by a late quiescent effector stage [11]. In this model, an early branching of memory cells was permitted but could not account for the generation of the full supply of memory cells. Overall functional studies of memory differentiation routes by genetic ablation or cell fate mapping studies have led to the description of multiple possible pathways that lead to a diversity of effector/memory populations. They suggest that memory commitment could take place at several stages of the primary immune response. However, some of these pathways might represent routes followed by only a fraction of cells and that are minor in terms of the number of memory cells they generate.

MP

In order to uncover the different trajectories followed by naive CD8 T cells to differentiate in memory cells, we have used new trajectory analysis tools that 6.3 Methods

Experimental procedure

Mice: C57BL/6J mice were purchased from the Charles River Laboratories. F5 TCR [B6/J-Tg(CD2-TcraF5,CD2-TcrbF5) 1Kio/Jmar] transgenic mice were provided by Prof. D. Kioussis (National Institute of Medical Research, London, U.K.) and backcrossed on CD45.1 C57BL/6 background [40]. Mice were bred or housed under specific pathogen free conditions in our animal facility (AniRA-PBES, Lyon, France). All experiments were approved by our local ethics committee (CECCAPP, Lyon, France) and accreditations have been obtained from governmental agencies.

BrdU labelling: Mice received 2.10 5 naive CD45.1 F5-Tg CD8 T cells by intravenous (i.v.) injection one day prior intranasal (i.n.) infection with VV-NP68 (2.10 5 pfu under 20 µL). Mice then received one intraperitoneal (i.p.) BrdU injection (2 mg, Sigma). BrdU labelling was analyzed 24h or 32 days after BrdU administration. Blood samples (100 uL) were collected on EDTA by retroorbital bleeding after a brief anesthesia with isoflurane. Mice were sacrificed by cervical dislocation and spleen and draining lymph nodes (cervical and mediastinal) were collected. Flow cytometry staining was performed on single-cell suspensions from each organ. Briefly, cells were first incubated with efluor780coupled Fixable Viability Dye (Thermo Scientific) for 20 minutes at 4 Ct o label dead cells. Surface staining was then performed for 45 minutes at 4 Ci n PBS (TFS) supplemented with 1% FBS (BioWest) and 0.09% NaN3 (Sigma-Aldrich). Cells were then fixed and permeabilized in 96 wells plates using 200 uL of BrdU staining solution from the BrdU Staining Kit for Flow Cytometry APC (ThermoScientific) according to manufacturer instructions. The following mAbs(clones) were utilized: CD8(53.6.7), CD45.1 (A20) from BD Biosciences and CD44(IM7.8.1) from Biolegend. Samples were acquired on a FACS LSR Fortessa (BD biosciences) and analyzed with FlowJo software (TreeStar).

Data preprocessing

Single-cell RNAseq data preprocessing

Existing single cell data from Yao et al. were used (GEO, accession no. GSE119943). A feature-barcode matrix by replicate was generated using the Cell Ranger v.3.1 software (10X genomics) and only effector CD8 T cells in acute infection sampled at day 4.5 and day 7 post infection were kept for the analysis. The two replicates were pooled since no batch effect was observed. The cell filtering was made with the scater package [41]. Briefly, cells with a log-library size and a log-transformed number of expressed genes that were more than 3 median absolute deviations below the median value were excluded. The cells with less than 5% of mitochondrial counts were kept. These criteria were applied separately on the cells from day 4.5 and day 7 leading to 20 295 cells that were kept in total. The data was then normalized using the sctransform function in Seurat [42] and variable genes were selected based on variance modelling statistics from the modelGeneVar function in Scran [43]. The log-normalized expression values of the 2000 highly variable genes were used for downstream analysis.

Cell-type classification

The cells were automatically annotated and the cell type to which they best corresponded was defined using the SingleR R package [44]. The labelled normalized expression values of 830 microarray samples of pure mouse immune cells, generated by the Immunologic Genome Project (ImmGen), were used as reference. Cells that were clearly identified as non-T cells (7 B cells, 2 dendritic cells, 3 fibroblasts, 25 macrophages and 62 monocytes) were removed before further analyses were applied.

Advanced analyses

Cell-cycle assignment

The Seurat R package was used to classify cells into G1, S or G2/M phases. The classifier relies on a list of genes from [45], that contains markers of the G2/M and S phase. It attributes a class to each cell with a certain probability, with the possibility to attribute the G1 class to cells for which the G2/M or S scores were low.

Trajectory inference

Two recently published trajectory inference tools, Slingshot and TinGa, were used to identify a trajectory in the data. The normalised data was first wrapped into a dataset object with the dynwrap R package. The slingshot implementation in dynwrap, as found on the github/dynverse/dynwrap github page, was applied to the data using the default parameters. The TinGa implementation as found on the github/Helena-todd/TInGa repository was applied to the data using the default parameters. The dynplot R package was then used for an easy visualisation of the resulting trajectories.

Generating heatmaps of gene expression along trajectories

We used the plot heatmap() function from the dynplot package to visualise the expression of specific genes along the Slingshot and TinGa trajectories. We either used the function as a discovery tool to identify the top n genes that varied the most along the trajectories, or we provided lists of genes associated with a certain signature to see in which parts of the trajectories these genes were the most expressed.

Differential expression analysis

The transitional populations that were identified along the TinGa trajectory were used as clusters defining similar cells. Differential expression analysis was performed between these clusters using the Seurat R package. Wilcoxon rank sum tests were applied and genes were selected as differentially expressed if the difference in the fraction of detection of the gene between the two compared groups of cells was higher than 0.25, and if the log fold-change difference between the two groups was higher than 0.3. The differentially expressed genes were then visualised using the triwise R package [46] and in a volcano plot that was generated manually in R with the ggplot2 R package. A gene ontology analysis was performed using PANTHER on (either upregulated or downregulated) differentially expressed genes between cluster 1 and 2, 1 and 5 or 1 and 8.

Gene Set Enrichment Analysis

Gene rankings were computed in cells using the AUCell R package. This allowed to identify cells that showed specific gene signatures. Of the 122 genes described as associated with a memory-precursor signature by [1], only 42 genes were present in the 2000 HVGs that we selected. We thus decided to use all genes available instead of restricting ourselves to the 2000 HVGs for this analysis. 833 cells out of the 20196 studied acute responding CD8 T-cells were assigned to a memory precursor signature.

Inferring the number of memory precursors in the spleen

The number of memory precursors in the spleen was calculated based on the percentage of memory precursors identified by gene set enrichment among total day 4.5 or day 7 cells and the average number of CD8 T cells found in the spleen of mice on those same days ( Number of MP on day x = % of MP among single cell from day X * average total number of CD8 T cells in spleen on day X).

Gene regulatory network inference

The BRED R package was used to identify regulatory interactions between a list of transcription factors (that was identified among the 2000 HVGs using the database in the org.Mm.eg.db R package, and manually curated), and the 2000 target genes. The scaled importances corresponding to these interactions were filtered, and the top 100 interactions corresponding to the 8 populations identified in the TinGa trajectory were selected, resulting in a gene regulatory network containing 800 interactions. A layout of these interactions was then generated using Cytoscape. In the resulting gene regulatory network, we define modules as groups of target genes linked to one central transcription factor.

Results

Trajectory inference of a CD8 T cell response to an acute infection.

In order to gain insight into the differentiation dynamics of CD8 T-cells in response to an acute infection (LCMV-Armstrong), we performed trajectory inference on a scRNA-Seq data set generated by Yao et al using two recently published methods, Slingshot [3] and TinGa [5]. This dataset consisted of measurements on 20'295 splenic CD8 T cells generated following LCMV Armstrong acute infection and isolated at two different time points (4.5 and 7 days post infection (DPI)), and in two separate replicates. Slingshot is a method that was shown to be very efficient in a comparative study that compared more than 40 methods on a large number of datasets ( [4]). Tinga is a new method for trajectory inference that showed comparable results to Slingshot on simple trajectories, and better results than Slingshot on complex trajectories ( [5]). These two methods both share a first step in which the dimensions of the data are reduced, either by principal component analysis for Slingshot, or by multidimensional scaling (MDS) for TinGa. We identified the 2000 most highly variable genes in the dataset using variance modelling statistics from the Scran R package, on which we applied both these methods. In the two resulting representations of the data, the cells formed a continuum from cells taken 4.5 days post infection to cells taken 7 days post infection (Figure 6.4 a and b).

Slingshot is a method that first applies clustering to the data and then identifies transitions between these clusters. It identified a linear trajectory that transited through four such clusters, that started among cells from day 4.5 post-infection, transitioned through a mix of cells from day 4.5 and 7 postinfection, and ended in a part of the data that was enriched with cells from day 7 post-infection (figure 6.4a and c). The genes that varied the most along this trajectory are identified in Supplementary Figure 6.14. The linear Slingshot trajectory seemed to start in early activated cells (Ybx1, Rps2, Rps8 genes involved in the initiation of transcription), then transition through a state where the cells seemed to be undergoing divisions (Tubb4b, Tuba1b, Ccna2, Cks1B genes), and ended in cells that expressed genes associated with immune functions (such as Ccl5, Hcst, B2m, H2-D1) . In comparison, the trajectory that was identified by TinGa started similarly to the Slingshot trajectory, but it then split into two branches (Figure 6.4 d). One small branch (identified by the number 3) corresponded to cells that seemed to be in a highly cycling state, whereas the other longer branch ended in the effector-memory-like state that we described previously in Slingshot's trajectory, after several transitional states (Supplementary Figure 6.15). Eight transitional states were identified along the TinGa trajectory. For convenience, these eight transitional populations will be referred to as clusters from now on.

Network inference shows distinct modules of genes linked to the cell cycle and to immune functions along the trajectory: To further characterise the transitional stages defined along the TinGa trajectory, we identified regulatory interactions between transcription regulators and their target genes in our dataset using the BRED tool [6]. We identified 6 main GRN-modules, that we define as groups of target genes gathered around a regulator (Figure 6.7). As expected based on previous results on the cell cycle, 3 of these modules (Pcna, Hmgb2, Cenpf) were strongly enriched in genes involved in cell cycle regulation. The Ybx1 GRN-module contained two groups of genes, one coding for proteins involved in RNA and protein synthesis metabolism that were upregulated in the cells from cluster 2, the other for immune receptors that were enriched in clusters 6 and 8 (Supplementary Figure 6.20). Two GRN-modules were composed essentially of genes associated with the immune response. The GRN module Spi1 was expressed in very few cells along the trajectory (Supplementary Figure 6.21). In contrast, the Id2/Phb2 GRN-module contained genes coding for transcription factors and immune functions, associated with the CD8 Tc e l ld i fferentiation in effector and memory cells. These genes were expressed in different clusters along the trajectory (Supplementary Figure 6.22). Interestingly, the cells in cluster 1 seemed to coexpress genes from the Id2/Phb2 module that were associated with a memory precursor cell phenotype as defined by a number of studies [1,47,48,49]. Indeed, they expressed Tcf7 and Id3, two transcription factors that were previously associated with a memory precursor potential [1]. Two target genes, Slamf6 and Tnfsf8, were found to be positively correlated with the presence of Tcf7 in the Id2/Phb2 module. In contrast, the Id2 transcription factor, that has previously been associated with an effector fate [50], seemed to be repressed by the Id3 transcription factor in the cells from cluster 1, as was the effector associated gene Gzmb (Figure 6.7 b and Supplementary Figure 6.22). In summary, cluster 1 seemed to contain an interesting set of cells in which effector functions were being down-regulated, while genes associated with a memory precursor signature were over-expressed in these cells from day 4.5. We thus decided to further characterise the cells in cluster 1.

TinGa identifies distinct clusters associated with a memory-precursor phenotype

Cluster 1 was mainly composed of cells from day 4.5, a large fraction of which (40%) was classified as being in the G1 phase of the cell cycle (Table 6.1). This contrasted with other clusters that were clearly enriched in cells from day 4.5, such as the clusters 2 and 5, but contained very few cells classified as being in G1 (in cluster 2, 2% of cells were in G1, in cluster 5, 1% of cells were in G1).

CD8 T cells in cluster 1 have been activated:

To ascertain that cells in cluster 1 had been activated, we compared their transcriptome with the genes expressed in cells in cluster 2, that were located at the beginning of the trajec-in which clusters of the TinGa trajectory memory precursors were identified. 833 memory precursor cells were identified, that were mainly localized in clusters 1 and 8 (Figure 6.10 a). The majority of these cells were associated with the G1 phase of the cell cycle (Figure 6.10 c). Figures 6.10 b and d show the proportion and number of cells that were identified as memory precursors in each of the TinGa clusters. Unsurprisingly, cluster 1 was the most enriched in the memory-precursor signature with 15% of the cells presenting the signature. Cluster 8 also contained a significant fraction (9%) of memory precursor cells. Numerically, however, the majority of precursor cells was associated with cluster 8, that contained 3 times more memory precursor cells than cluster 1. The memory precursors in cluster 8 essentially came from day 7 (83% cells) and corresponded to quiescent effector cells (99% of cells in G1) (Table 6.3).

More memory precursors are generated at day 7 than at day 4.5:

Importantly, the number of CD8 T cells present in the spleen of infected mice on day 4.5 is typically much lower than on day 7 (for the dataset that we used, 116'000 CD8 T cells had been collected on day 4.5, versus 12'800'000 on day 7).

To allow for equal analysis of these two experimental days, [1] then subsampled equal amounts of cells from these two days (10920 from day 4.5 and 9375 from day 7) and proceeded with their analysis. This however means that the fractions of memory precursors that we identified in clusters 1 and 8 need to be rescaled to the relative number of cells sampled at day 4.5 (enriched in cluster 1) and 7 (enriched in cluster 8). If we took into account the difference in the number Table 6.2: Four genes were differentially expressed in cluster one compared to the rest of the cells. The p-values, averaged log fold-changes, averaged expression in cluster one and the other cells and the adjusted p-values are reported in this table. Three genes, Tcf7, Id3 and Ltb, were over-expressed in cluster one whereas one gene, Klrg1, was under-expressed in cluster one compared to the other cells. 6.11). The memory precursors in both clusters 1 and 8 differed from the other memory precursor cells by genes driving the cell cycle, in agreement with their position in G1 of the cell cycle (figure 6.11). Memory precursors in cluster 8 differed from cluster 1 by an increased expression of genes involved in effector functions (Gzmb, Ctla2, Ccl5) or cytokine response (Il7ra, Il18r1, Ifngr1) indicating that, although they had maintained a memory precursor gene expression signature, they had also acquired effector cells properties. This was in agreement with the data showing that effector cells could dedifferentiate into quiescent memory cells [51].

Gene p val avg logFC pct 1 pct others p val adj

Overall these results suggest that memory precursor cells are present at different points along the trajectory going from activated cycling cells to quiescent effector cells.

Memory cells are generated at different time points

following activation of CD8 T cells.

Our in silico analysis strongly suggested that after CD8 T cells activation by a virus causing an acute infection, activated CD8 T cells became quiescent and differentiated in memory cells at different stages following activation. We thus reasoned that, using BrdU pulse-chase experiments, we could trace memory cells derived from memory precursor cells that proliferated during the pulse time, then stopped and differentiated in memory cells soon after that, thus maintaining their BrdU labelling in the memory phase. We thus infected mice intra-nasally with vaccinia virus harboring the NP68 epitope and followed the activation of Tcr transgenic F5 cells. Mice were given one injection of BrdU on day 4, 7 and 11 (Figure 6.12 a). The fraction of CD8 T cells labelled following the pulse was measured after 24 hours in the blood, the lymph nodes draining the lung and nasal cavity and the spleen (Figure 6.12 b).

When BrdU was given on day 4/ analysed on day5 (day4/5), proliferating CD8 T cells were only detected in the draining lymph node, in agreement with the sequential activation of T cells when the infection is localised in one tissue. On day 7/8, proliferating CD8 T cells were detected in all organs, while on day 11/12 only a limited amount of cycling CD8 T cells were detected, indicating that the peak of proliferation was over. 30 days after the BrdU pulse, in the memory phase, separate groups of mice were analysed and the fraction of memory CD8 T cells that were labelled with BrdU was determined (Figure 6.12 c). As predicted by the in silico data, we found that memory cells could derive from activated/effector cells at all stages of activation. However, in terms of number of generated memory cells, the largest fraction of cells was derived from cells labelled on day 7 or later, confirming that the majority of memory cells follow the early-late-memory differentiation pathway (Supplementary Figure 6.17).

ing trajectory that started similarly to Slingshot, and then divided into a small branch of cells that were in the G2/M cycling phase, and a longer branch of cells that were becoming quiescent and that ended similarly to the Slingshot trajectory. Although the day of sampling and the cycling phase clearly influenced the trajectory, genes responsible for immune functions also showed clearly varying expression patterns along the trajectory. We were interested in a specific subset of memory precursors, that we could identify using a list of genes defined by [1]. Interestingly, a small subset of cells that were clearly enriched in this gene signature could be clearly identified in a heatmap corresponding to the trajectory retrieved by TinGa, whereas the cells enriched in this signature were more spread over the trajectory identified by Slingshot. We observed that Slingshot returned a smooth trajectory that passed centrally through the PCA representation of the cells on which it was applied. Conversely, the trajectory returned by TinGa was more intricate and modeled different parts of the data more specifically. As a result, the cells that we were most interested in were clearly identified in a section of the TinGa trajectory, whereas these cells were completely mixed in the Slingshot trajectory. TinGa thus allowed us to divide the cells into subgroups along the trajectory (that we conveniently called clusters), that we could then further investigate. This was especially convenient as it allowed us to identify gene regulatory networks that were enriched in these different clusters. We used BRED, a network inference tool based on random forest models, to infer cell-specific GRNs. However, looking at one GRN per cell would have been unfeasible in our case, since we worked with more than 20'000 cells. Defining so-called clusters along the TinGa trajectory allowed us to group single cell GRNs into cluster GRNs, and to identify how the gene regulatory processes were evolving along the TinGa trajectory. Many of the modules that we identified in these GRNs consisted of genes involved in cell division, as was expected since the trajectory was clearly driven by these processes. However, BRED also allowed us to identify an interesting regulatory network that disclosed the regulatory processes involved in T cell activation, acquisition of effector functions, and differentiation into memory precursor cells. Interestingly, BRED was relatively robust to the list of transcription factors that it requires as an input. In a first attempt, we had automatically extracted a list of TFs from databases that were not necessarily up-to-date and ended up with common genes being listed as TFs and true TFs not appearing in this list. The BRED GRN that resulted from this first attempt contained modules that were quite similar to the ones described in this work, except for the fact that the wrong genes were at the center of the modules. This leads us to think that BRED might be a versatile tool, that can identify gene regulatory networks in single cells, but that might as well be able to identify co-expression networks, depending on the list of regulators provided to it.

The results obtained indicate that following CD8 activation by an acute viral infection, memory precursor cells are found at multiple points: early after activa-A number of questions are also raised by this study and will need to be addressed in further studies. We might for instance ask whether the memory cells that are generated at an early timepoint differ from memory cells derived at the effector stage, and whether they express different effector functions, whether they show different self renewal capacities.
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Immune landscape of operational tolerance after allogeneic stem cell transplantation

Graft-versus-Host Disease (GvHD) is still poorly understood, with dramatic consequences. Only a rare subset of the patients who receive the graft will respond positively to the transplantation, while the others will develop GvHD, and the majority of these patients will not survive more than two years after the operation. In this context, we gathered an unprecedented amount of data to study allogeneic hematopoietic stem cell transplantation. Proteins, metabolites and transcripts were systematically measured in donors and recipients in two separated french cohorts.

We then tackled the tremendous task of pre-processing, filtering, analysing and integrating these three data types to gain a better understanding of the tolerance mechanisms after transplantation.

Introduction

The immune system has evolved to protect the host from danger, as caused by infectious pathogens or cancer cells. This process involves the capacity of the immune system to discriminate self from non-self. Indeed, individuals from one species differ from each other by a number of antigens (called histocompatibility antigens) that can drive a strong immune response when transferred from a host to a donor. For example, when an organ such as skin is transferred from one donor to a host which differs for these antigens, the host will mount a strong immune response against the histocompatibility antigens of the donor that will lead to the rejection of the transplant. Similarly, when the immune system of one individual is transferred to a recipient that differs for these antigens, it will attack the host tissues, causing what is called Graft-versus-Host Disease (GvHD).

The understanding of the rules governing tissue rejection has open the road for a number of therapies based on tissue transplantation. For example, one can now transplant the hematopoietic stem cells of a healthy donor into a histocompatible recipient to reconstitute his hematopoietic system. Some new therapies take advantage of the GvHD reaction to fight hematopoietic malignancies. For instance, allogeneic hematopoietic stem cell transplantation (allo-HSCT) consists in transplanting the immune cells of a donor to a recipient whose immune system is too weak to fight malignant cells. One difficulty is that during allo-HSCT, the whole donor's immune system has to face major or minor antigen incompatibilities in the recipient, which can lead to the graft-versus-host disease (GvHD) in recipients. One tremendous advantage however is that, in patients with hematologic malignancy, the donor's immune system prevents relapse as the donor's lymphocytes mediate a graft-versus-tumor effect (GvT) ( [1,2,3]).

Long-term survival without relapse indicates the existence of an effective alloimmune response. However, allo-HSCT is hampered by frequent occurrence of acute or chronic GvHD, when the donor's immune cells target and damage the recipient's healthy tissues ( [4,5]). Understanding the biological mechanisms underlying an allo-immune response which will not affect recipient tissues is thus of major biological and clinical interest.

Study design: Herein, we conducted a multi-omics study to characterize tolerance mechanisms in patients who received an HLA-identical allo-HSCT from a sibling donor. We collected blood samples from recipients 1 to 2 years after allo-HSCT, together with blood samples from their related donors before stem cell collections, in two independent cohorts of patients. At this time after transplantation, tolerant recipients have a fully functional immune system, able to prevent hematologic relapse or to control infections, and do not present symptoms of immune deficiency. The recipients could thus be subdivided into three groups corresponding to two different stages of tolerance and one stage of non tolerance. Patients who did not develop acute or chronic GvHD, and whose immunosuppressive drugs had been withdrawn since several months, were classified as primary operational tolerant. Patients who experienced acute and/or chronic GvHD, but were cured and in whom immunosuppressive drugs were finally stopped were referred as secondary tolerant. Finally, patients who developed acute and/or chronic GvHD, and in whom physicians were unable to stop immunosuppressive drugs were considered as non-tolerant (patients and donors characteristics are available in Supplementary Table 7.9). The aim of this study was to decipher the immune landscape associated with operational tolerance using deep cell immunophenotyping, transcriptomics and metabolomics profiles.

Applying a new supervised feature selection method on these three data modalities allowed us to identify biological features that characterized tolerance in two successive comparisons of tolerant and non-tolerant patients, and of primary and secondary tolerant patients. We first compared the multi-omics profiles of donors to their respective recipients, which could inform us on the evolution of the immune system in the patients during the two years that followed their transplantation. We then identified differences directly between the recipients, which helped us to gain insight into the mechanisms of tolerance. In order to gain a global vision of the mechanisms of tolerance in GvHD, we finally integrated the immunophenotypic, transcriptomic and metabolomic features that we had selected in the different groups of recipients. These integrative models highlighted main processes involved in how the immune system is shaped toward immune tolerance after allo-HSCT.

Methods

Patients included in the study

This study includes recipients and their HLA-identical sibling donors who underwent an allogeneic hematopoietic stem cell transplantation (allo-HSCT). The peripheral blood mononuclear cells (PBMC) and plasma were isolated from the patients blood, which was collected 15 days before transplantation in the donors and 1-2 years after transplantation in the recipients (Figure 7.1 A). Three types of analyses were then performed on the blood samples to derive the metabolomic, immunophenotypic, and transcriptomic profiles of the patients, by mass spectrometry, mass cytometry and RNA-sequencing respectively. Two cohorts have been analyzed: a first monocentric cohort of patients (local cohort 1, 41 couples) was used as a discovery cohort, and a second multicentric cohort of patients (national cohort 2, 73 couples) as a confirmatory cohort (Figure 7.1 B).

The monocentric cohort was mostly enriched in non-tolerant donor-recipient couples, and contained only 9 primary tolerant and 7 secondary tolerant couples. The data gathered from the multicentric cohort, on the other hand, was selectively enriched in tolerant couples, and thus contained a more balanced distribution of primary, secondary and non-tolerant couples. For each patient and his donor, clinical data were extracted from medical records and included gender, age, CMV status, underlying hematological diagnosis, HLA matching between donor and recipient, blood group, stem cell source, conditioning reg-

Data preprocessing

The experimental procedures that allowed to isolate metabolomic, immunophenotypic, and transcriptomic profiles from the patients blood are described in Appendix Section 7.5. Here, we report the computational pre-processing that was applied to the data from the three data sources.

Metabolomics Mass spectrometry allowed to detect 841 metabolites in the local cohort samples and 853 metabolites in the national cohort samples. 719 of those metabolites were common in both cohorts and were kept for statistical analysis. Xenobiotic drugs were filtered out of the analysis. Metabolites for which more than 50% of the values were missing in all the tolerance groups were removed. The remaining missing values were then replaced by half of the minimum value of the metabolite, +/-noise. Metabolites that did not vary enough among the patients were removed using the elbow method on the variance of all metabolites. The data was then log-transformed, centered and scaled.

Mass cytometry The files obtained by mass cytometry were compensated and arcsinh transformed in R using the FlowCore package. In the local cohort, the samples D1073 and D1502 showed abnormally high values and had to be rescaled using the 0.001 and 0.999 quantiles of samples taken on the same experimental day as reference. In the national cohort, we observed that the CD19 marker had positively tagged all cells in a significant number of patient samples, and we thus decided to remove this feature from the analysis of the national cohorts' samples. Clustering was performed using the FlowSOM algorithm ( [8]) to identify relevant immune cell subsets in the local cohort in an unsupervised way. This allowed us to group the patients' cells into 225 clusters. Forty metaclusters were defined by merging the 225 clusters, and their immune phenotypes were manually verified to identify corresponding immune cell subsets (see annotations in Supplementary Figure 7.10). Only phenotypic markers were used to build this FlowSOM map. We then derived 520 additional features by extracting the percentage of cells expressing the 13 remaining markers (41BB, CD24, CD25, CD38, CTLA4, GranzymeB, HLADR, ICOS, IL10, Lag3, OX40, PD1 and Tim3) in the 40 FlowSOM metaclusters, using manually defined thresholds of positivity. The FlowSOM model of the local cohort was then used to map the phenotypic profiles of the national cohort, which allowed us to identify the same 40 metaclusters and 520 functional features in the patients of the second cohort. For analysis, the cell percentages were scaled, centered and log2 transformed.

Transcriptomics In the expression matrix resulting from RNA-sequencing, the genes that had an expression < 1 cpm in 3 patients or less were filtered out. The expression values of the remaining genes were normalised using the limma R package. Read-counts were converted to log2 counts per million, and the mean-variance relationship was modelled with precision weights, using the voom function of the limma package.

Feature processing

Feature selection: A supervised feature selection approach was then performed to identify features that were associated with tolerance in each data modality (immunophenotypic, metabolomic and transcriptomic). Since we observed significant differences between the local and the national cohort, we decided to analyse them separately. This led to smaller groups of patients. We thus could not perform the comparison of patients from the three tolerance groups directly. Instead, we proceeded with a two-step comparison of tolerant (primary + secondary) versus non-tolerant patients, followed by a comparison of primary versus secondary tolerant patients. The small number of patients in each group also prevented us from applying parametric statistical tests in order to identify features of interest in these patients. We thus followed a procedure that allowed us to derive statistical power from small samples using permutation distributions. Figure 7.2 illustrates how this procedure allowed us to identify whether a feature varied significantly between tolerant (primary + secondary) and non-tolerant recipients. A logistic regression model was first built in which patient's tolerance versus non-tolerance was used as outcome and the feature was used as predictor. This model was built using the stats R package on CRAN and the average AUC for the pairwise outcome comparison was extracted using the pROC R package on CRAN. Next, the feature was permuted 1000 times and 1000 corresponding logistic regression models were computed. By extracting the AUC for all these models, we obtained a permutation distribution of AUCs. We then compared the AUC computed on the original non-permuted feature to this feature distribution and identified the quantile value of the feature in the distribution. If the quantile associated with the AUC of the original feature exceeded 90% of the permuted AUCs (qAUC>0.9), the feature was selected. The same procedure was applied on the data from both cohorts separately. Only features that had a qAUC>0.9 and that varied in the same way in both cohorts (i.e., if the feature was over-expressed in tolerant recipients in cohort 1, it also had to be over-expressed in tolerant recipients in cohort 2), were retained. This feature selection method was used to identify features of interest from the three data modalities. It allowed us to derive features that varied among the tolerant versus non-tolerant recipients and in the primary versus secondary tolerant recipients. For the direct comparison of donors and recipients, we took adifferent approach. For each data modality (immunophenotypic, metabolomic and transcriptomic), the feature values in donors and recipients were centered and scaled. Recipients' values were then subtracted from donors' values per couple, to determine how much the value of the feature had changed between the time of graft and the 2 years time point in each donor-recipient couple. Nonparametric paired Wilcoxon ranked-tests were performed to compare donors and recipients and a Benjamini-Hochberg correction for multiple testing was applied to calculate a p-value associated with the False Discovery Rate.

Age and gender influence on the selected features: The analysis of the patients' clinical features showed clear associations between the disease, the < 0.001 in both cohorts were kept. We then represented these correlations in graphs, where the width of an edge between two features corresponded to the mean of the correlation between these two features in both cohorts.

In order to identify metabolic and regulatory links between the features that we had selected, we then performed pathway analyses. In the metabolomics data, the metabolites that had been selected by feature selection were used to build over-representation analyses (ORA). Enrichment (E) was calculated by considering the number of metabolites identified in each pathway (k), the total number of metabolites identified (n), the number of metabolites in each pathway (m) and the total number of metabolites used for analysis (N) as follow: E=(k/m)/((n-k)/(N-m)). For each pathway, the associated p-value was determined by calculation of the hypergeometric distribution. In the transcriptomics data, two enrichment analyses were conducted on the genes that had been identified by feature selection. Canonical pathways (i.e. signaling and metabolic pathways) and biological processes were analyzed with IPA (Ingenuity pathway analysis, Qiagen, v51963813) and Gene Ontology atlas ( [9]). Statistical significance was calculated using Fischer's exact tests. For the final integrative analysis (see next section on Multi-omics data integration), the biological processes associated with the selected features were analysed using the reactome database ([10]).

Multi-omics data integration

The features that had been selected by feature selection in the three data modalities (metabolomics, immunophenotypic, and transcriptomics) were used to build two integrative analyses in tolerant versus non-tolerant recipients, and in primary-versus secondary-tolerant recipients. To do so, we could only use the data from patients for which these three types of data had been generated. This resulted in 23 donor-recipient couples in the local cohort and 38 couples in the national cohort for the comparison of tolerant and non-tolerant couples. In the comparison of primary versus secondary patients, the integrative analysis was done on 10 donor-recipient couples in the local cohort and 27 couples in the national cohort. We first used a published factor analysis approach (MOFA [11]) to integrate the data. Since the features from the different data modalities had all been log-transformed, centered and scaled, we also reasoned that these features could directly be integrated into one model. We thus performed principal component analysis on all these features taken together, and compared the main informative principal components of the PCA to the factors identified by MOFA that were associated with tolerance.

Data and code availability

The mass cytometry raw data is accessible on the Flow Repository ( [12]) under the accession number FR-FCM-Z2JP. The metabolomics raw data is available on the MetaboLights repository ( [13]) under the references MTBLS220 (cohort Tolerance after a transplantation involves complex mechanisms that can be partly driven by physiologic characteristics. We thus first performed an exploratory analysis to assess whether some clinical features would be significantly associated with tolerance. We focused on four clinical features, that were available for all patients in the study: the age of the patients, the gender matching between the donor and recipient, the CMV status of donors and recipients ( "+" if they had the virus, "-" if they did not), and the compatibility of blood type between the donor and recipient. We grouped this last category into compatibility, minor incompatibility and major incompatibility, as defined in [15]. We pooled patients from both cohorts and performed logistic regression to assess whether each of these clinical features would show an association with tolerance. For this study, primary and secondary tolerant patients were merged into one group of tolerant patients, that we compared to non-tolerant patients.

Figure 7.3 A) shows the resulting forest plots, in which we see that age was the only feature that was significantly associated with tolerance. This association can be visualised in Figure 7.3 B), showing that non-tolerance was more often observed in donors and recipients above 50 years. We observed a strong correlation between the donors and the recipient's age, which was expected since they were siblings. The gender association with tolerance was tested by assessing whether any gender matching modality would increase the chances of tolerance compared to the female donor to female recipient modality. No association was identified, as can be seen in Figure 7.3 C), bottom. The different modalities of CMV status were compared to the modality in which the donor and recipient were both clear of the CytoMegaloVirus. We observed a small association with tolerance, as chances of non-tolerance seemed to be slightly increased when both the donor and the recipient had CMV (Figure 7.3 C), top). Finally, we did not observe a significant association between blood type compatibility and tolerance. genes (Figure 7.4C) revealed an upregulation of interferon gamma (IFNG) expression and a downregulation of CD40L and IL23R, consistent with a defect in antigen presenting cell activation and in Th17 function. Altogether, these results strongly suggest that primary tolerance is associated with an increased proportion of regulatory T cell subsets, and decreased T cell activation, proliferation and differentiation of Th17 cells.

Phenotypic, transcriptomic and metabolomic profil-

ing of tolerant recipients as opposed to non-tolerant recipients.

Our supervised feature selection approach based on permutation distributions of AUCs allowed us to identify features in each data modality that significantly varied between tolerant and non-tolerant recipients. For each modality, we compared the features identified in the monocentric and the multicentric cohort, and we selected the features that had a quantile AUC > 0.9 in the permutation distributions in both cohorts. We also applied a second filter in order to select only the features that were systematically over expressed in the same group in both cohorts (e.g., features that were over expressed in the tolerant recipients in the first cohort but under expressed in this same group in the second cohort were removed). Altogether, 24 phenotype markers, 278 genes and 42 metabolites were consistently retrieved in the comparison of tolerant and non-tolerant recipients in both cohorts. In tolerant recipients, three metaclusters were overrepresented: CD8 naive T cells (metacluster 4), CCR5+ CD8 central memory T cells (metacluster 7) and double negative (DN) T cells (metacluster 23). By contrast, non-tolerant recipients were characterized by an increased proportion of 21 additional metaclusters and functional markers (Figure 7.5 A). In order to identify features that varied together in the patients, we visualised them under the form of a correlation graph (Figure 7.5 B). In the graph, features that were significantly correlated in the patients form both cohorts are linked by an edge. The edge width represents the mean correlation computed over the two cohorts. Three main groups were manually identified in this correlation graph, characterized by the expression of CD38, CTLA4 and CD24.

In the non-tolerant patients, the expression of CD38, CTLA4 and CD24 on multiple T-, B-, NK-and dendritic cell subsets revealed a broad and persistent activation state of the immune system after transplantation. It has been previously shown that the CD24 expression on immune cells could contribute to enhance a Th17 response and autoimmunity ( [17,18]). We observed an over expression of CD38 on central and effector memory T cells, double negative T cells, NK cells and naive B cells. CD38 is an ectoenzyme that catabolizes NAD+ into ADP ribose and contributes to intracellular calcium signaling ( [19]). As a regulator of extracellular NAD+ homeostasis, it was previously shown that the CD38 activity is involved in multiple immune cell regulations, through cell metabolism reprogramming ( [20]). (A) FlowSOM map highlighting metaclusters that were increased in tolerant patients (blue nodes) or in non-tolerant patients (red nodes). (B) A correlation map was built to identify the immune subsets (nodes) that were correlated in both cohorts. The edge width represents the mean correlation coefficient computed over the two cohorts. Only edges that had an adjusted pvalue < 0.001 in Spearman correlation tests are shown. Three metaclusters were increased in tolerant recipients and 21 were increased in non-tolerant patients. Three clusters of highly correlated populations were identified in nontolerant patients, associated with the expression of CD38, CD24 or CTLA4. (C) Correlation map of the 278 genes identified as informative in the comparison of tolerant and non-tolerant recipients. The genes represented as blue nodes were increased in tolerant recipients and the red nodes were increased in nontolerant recipients. Biological processes were analyzed with IPA (Qiagen) and grouped in main modules, with gene names in blue when increased in tolerant recipients and red when increased in non-tolerant recipients (Fisher's exact test, p<0.01). Upstream regulators were predicted with IPA and represented inside dotted line circles (p<0.01). (D) For the same set of genes, enrichment of metabolic and signaling pathways were calculated with IPA and ranked by -log (p value). (E) Correlation map of the 42 selected metabolites that were associated with tolerance or non-tolerance in recipients. The nodes that are colored in blue were increased in tolerant recipients, the red ones were increased in non-tolerant recipients. The main metabolic pathways are represented as colored squares. (F) Over-representation analysis of metabolic pathways based on metabolites identified by comparing tolerant and non-tolerant recipients, and ranked by p value (hypergeometric distribution).

The correlation map associated with the 278 selected genes suggested that tolerance or the absence of tolerance were related to two distinct gene expression profiles (Figure 7.5C). Multiple biological processes linked to the immune response regulation were associated with these genes, including adhesion and binging, migration, differentiation, survival and homeostasis. Tolerance (in blue) was associated with the overexpression of genes associated with T cell differentiation (IL23R, ICOS) and with the ectoenzyme NT5E (ecto-5'-nucleotidase, CD73). It was previously shown that CD73 could inhibit the adaptive immune response ( [21]). Canonical pathway enrichment analyses highlighted multiple changes in metabolic pathways, but mainly showed that the absence of tolerance was associated with genes regulated by the interferon gamma response, IL10 upregulation (Figure 7.5C) and complement pathway activation (Figure 7.5D).

It was previously shown that acute GvHD was associated with specific metabolomic profiles in recipients, including both host-and microbiota-derived metabolites ( [22]). In this study, feature selection on the metabolites uncov-ered 42 metabolites that were associated with tolerance in both cohorts (Figure 7.5E). The metabolites that were mostly increased in tolerant recipients belonged to the androgenic and pregnenolone steroids pathways. Overrepresentation analyses also highlighted modifications associated with amino-acids and complex lipids metabolisms, especially of phosphatidylcholine and sphingolipid metabolism (Figure 7.5F). Consistent with a putative role of AMP catabolism in adenosine by CD73, we observed a significant increase of urate in tolerant recipients, which is the final metabolite of adenosine degradation through adenosine deaminase and xanthine oxidase activity. In addition to androgenic steroids metabolites, correlation maps revealed that tolerant recipients had higher amounts of metabolites that belonged to the phosphatidylcholine, amino-acids and ascorbate/aldarate metabolism pathways (Figure 7.5E). By contrast with what was previously described in acute GvHD, microbiota-derived metabolites were sparse, suggesting that at a later time point, microbiota alterations play a minimal role in tolerance.

We then aimed at identifying possible latent factors in our models including biological features and tolerance. For each selected feature, we thus performed additional logistic regression models including the recipients age and gender compatibility, to determine the impact of these two clinical variables on the association between the biological features and tolerance. We identified 3 phenotypic markers and 19 genes that were significantly associated with the recipients age (Supplementary Figure 7.11). The associations between tolerance and the recipients age, gender compatibility, or both these variables are represented in forest plots (Supplementary Figure 7.11). These forest plots represent the odds ratio (OR) and 95% confidence interval of tolerance over non-tolerance, with a 1-unit increase of the variable. Three phenotypic variables were associated with the recipients age. CD8 T central memory CCR5+ cells were significantly decreased in older non-tolerant recipients, whereas CD38 was significantly increased in these central memory and double negative T cells of older non-tolerant recipients. 26 genes were significantly associated with tolerance and age, and are represented in (Supplementary Figure 7.11). Finally, two genes were associated with tolerance and gender compatibility. The ENSG00000225936 transcript was significantly increased in non tolerance couples where the donor was a woman. The AGA12P transcript, on the other hand, was significantly increased in tolerant couples in which the donor was a male.

Integration of multiple data sources to describe the immune landscape associated with operational tolerance

The immune response results from a network of multiple cell subsets interacting together and with microenvironment signals, leading to gene expression regulation. A previous integrative computational analysis approach has modeled the immune network associated with the immune response to a vaccine ( [23]). In order to better understand the mechanisms involved in tolerance, we integrated the patients from both cohorts in a subspace defined by these two components (Figure 7.8C). The resulting 2D visualisation showed a clear separation between tolerant patients (represented in blue, at the bottom-left corner of the figure) and non-tolerant patients (in red, at the top right corner) in the two cohorts (Figure 7.8C). The correlation between PC1, PC4 and all the available clinical variables is represented in bar plots, showing the notable contribution of recipients' age to PC4, which is consistent with our observation that older recipients had higher chances of non-tolerance. The PC1 was mainly correlated with ABO compatibility and the patients chronic GvHD history. The features that were used to build the PCA described in Figure 7.8B and C were then used to build a correlation map, in which the nodes are colored according to the data type (with phenotypic markers being represented in green, genes in orange and metabolites in purple), circled according to the outcome (blue = tolerant, red = non-tolerant), and edge width represents the correlations between features. Two main clusters of nodes were identified, associated with tolerance (blue dashed line) or the absence of tolerance (red dashed line) respectively (Figure 7.8D). In non-tolerant recipients, the CD38-expressing cluster was correlated with complement activation pathways (C1QA, C1QB, C1QC), P2Y purinergic receptor signaling (P2RY1) and platelets activation (SERPING1) (Figure 7.8F). These results suggest that the absence of tolerance in recipients is strongly linked to CD38 expression on activated immune cells, signaling through the purinergic receptors P2Y ( [24]) and complement activation, that could lead to sustained alloimmune response. In tolerant recipients, the androgenic steroids pathway was correlated with an increase of naive CD8 T cells (metacluster 4) and multiple gene expression pathways. Both androgenic steroids and immune cells abundance in tolerant recipients correlated with a cluster of genes involved in circadian rhythm of genes expression, lipid metabolism, RORA (Nuclear receptor RAR-related orphan receptor A) and PPARA (Peroxysome proliferatoractivated receptors alpha) pathways (NPAS2, ABCB4). Multiple studies have stressed the role of the circadian clock as a core regulator for innate or adaptive immune response ( [25,26]). Recently, the disruption of the circadian genes network was associated with T cell exhaustion in cancers ( [27]). Our results suggest that a similar mechanism could be involved during operational tolerance. In addition, both naive CD8+ and double negative T cells, as well as androgenic steroids, correlated with genes involved in pyrimidine and purine catabolism (NT5E). This seems to suggest that lymphocyte homeostasis and the emergence of regulatory subsets during tolerance might be linked to the production of adenosine by the ecto-5'nuclotidase CD73. Androgens also appear to be associated with tolerance. Recently, a low DHEAS level was linked to chronic GvHD in women, even in the absence of glucocorticoid therapy ( [28]), while low level of testosterone was associated with worse overall survival and increased non-relapse mortality in men ( [29]).

Figure 7.8 (previous page): Description of the immune landscape of tolerant and non-tolerant recipients by data integration (A) Phenotypic, transcriptomics and metabolomics features identified by comparing tolerant and non-tolerant recipients were integrated in a global analysis using principal component analysis. (B) For each principal component (PC), the correlation with the outcome (tolerance or no tolerance) was measured and the contribution of each data type was measured (immune phenotype, green; metabolomics, violet; transcriptomics, orange). (C) The two PCs that were the most correlated with the clinical outcome were used to visualise the patients from both cohorts (cohort 1, triangles; cohort 2, dots) according to their tolerance status (blue, tolerance; red, no tolerance). For each of these two PCs, the correlation rate with clinical variables is represented as a histogram. (D) A correlation map was built using all of the features described in Figure 7.5. The nodes are colored according to the type of data (phenotypic, n=24, transcriptomics, n=278 and metabolomics, n=42) and circled according to the clinical outcome (blue if increased in tolerant recipients and red if increased in non-tolerant recipients). The edges width is representative of the mean correlation between these features computed over both cohorts. (E) The nodes that were associated with tolerance were analyzed together to identify main metabolic pathways, immune subsets and genes-associated biological processes (based on the reactome database (Sidiropoulos2017)). Biological pathways were connected by edges if they were correlated in both cohorts. (F) The same representation was used to analyze the biological features and pathways that were associated with non-tolerance.

Androgen steroids may affect the immune response by different mechanisms, including decreased antigen presentation by dendritic cells ( [30]), impaired B cell lymphopoiesis ( [31]) and could improve the negative selection of T cells in the thymus through the upregulation of Aire ( [32]).

Discussion

Allogeneic Hematopoietic stem cell transplantation (HSCT) is widely used for acquired and congenital disorders of the hematopoietic system. The estimated annual number of allogeneic transplants recipients surpasses 9,000 a year in the US in 2018, and in Europe nearly 20,000 allogeneic HSCT were performed in 50 countries in 2018 ( [33]). Reaching a tolerant state after allo-HSCT remains the Holy Grail for avoiding the devastating effect of GvHD. Using two independent cohorts of patients who underwent allo-HSCT from an HLA-identical sibling donor, we described how the immune system was reshaped two years after transplantation. We then provided the first integrated description of phenotypic, transcriptomic and metabolomic features of the immune landscape associated with tolerance in recipients after allo-HSCT.

The mechanisms that differ between patients that never contract GvHD (pri-mary tolerant) and those who need medication to overcome GvHD (secondary tolerant) remain poorly understood to this day. This is one of the reasons that motivated this large-scale multi-omics study. However, although the two cohorts of patients that were brought together to conduct this study were large, direct comparison of the patients did not allow us to derive information on primary tolerance that would significantly hold in the two cohorts. This motivated us to develop a two-step supervised approach to first select the main variations between tolerant and non-tolerant patients, and secondly the more subtle differences between primary and secondary tolerant patients.

In order to cast light on the mechanisms that drive tolerance after all-HSCT, we attempted integrating phenotypic, transcriptomic and metabolomic features into one global model. Factor analysis has recently been used to integrate this type of multi-modal data (MOFA [11]). However, investigation of the different factors returned by MOFA (and especially the factor 1, which was most associated to tolerance), revealed very few differences between MOFA's results and the principal components identified by a regular PCA analysis. Since the latter also allowed us to investigate direct associations between features coming from different modalities, we eventually opted for this method. The resulting principal components contained a mixture of three data modalities rather than components that would segregate these three types of features (except for PC2), which comforted us in our idea that these features could be directly compared. The fact that some PCs would be highly enriched in transcriptomics features was expected, since this type of data was over-represented in the features that we had selected by feature selection. As a reminder, we had identified 278 genes, 24 immunophenotypic features and 42 metabolites in the comparison of tolerant and non-tolerant recipients.

We observed that the absence of operational tolerance after HSCT was largely associated with the expression of markers such as CD24, CTLA4 and CD38 on multiple immune cell subsets, including T-, B-, NK-cell and conventional dendritic cells. Our results highlight a central role for CD38 in a persistent immune response in non-tolerant patients and suggest that targeting CD38 or purinergic signaling could have therapeutic potential in GvHD. The integrated analyses in secondary tolerance suggest that the immune system moved from a highly activated state of non-tolerance to an active phenomenon dominated by regulatory cells encompassing mechanisms closer to what has been described as operational transplantation after solid organ transplantation ( [34,35]). Our results also suggest that metabolome variations associated with age and gender can shape the immune landscape toward tolerance. The balance of the immune signal from an activated state (associated with expression of the ectoenzyme CD38) to a steady state (associated with CD73-related production of adenosine) appears key in the regulation of this network. These observations are the result from our exploratory study and now need to be confirmed by functional assays, in larger cohorts, or in animal models.

Appendix: STAR methods

Patients

All patients gave their written consent for clinical research. This non-interventional research study with no additional clinical procedure was carried out in accordance with the Declaration of Helsinki. Data analyses were carried out using a database with all patient identifiers removed. This study was declared to the CNIL (Commission National Informatique et Liberté, number KoT1175225K) and was approved by the local ethic committee and Institutional Review Board (CPP Ile de France IV, IRB number 00003835).

The monocentric cohort included patients who underwent allo-HSCT at Saint Louis hospital (Paris, France). The multicentric cohort included patients transplanted in one of the 33 French national transplant centers involved in CRYOSTEM Consortium, funded under the French Government's National Investment Program (Investissement d'Avenir). Inclusion criteria were adult patients (more than 18-year-old), with an HLA-identical sibling donor. Patients with HIV or HTLV co-infection were excluded. Donors' samples were collected during medical visit before any stem cell collection procedure. Recipients' samples were collected 1 to 2 years after allogeneic stem cell transplantation. CRYOSTEM samples (cohort 2) have been provided by the CRYOSTEM Consortium (https://doi.org/10.25718/cryostem-collection/2018) and the SFGM-TC (Société Francophone de Greffed eM o e l l ee td eT h é r a p i eC e l l u l a i r e ) .

Data generation

PBMC and plasma collection

All PBMCs and plasma samples were isolated from whole blood collected on EDTA tubes (BD Vacutainer, K3E 7.2 mg, Plus blood Collection Tubes) and cryopreserved according to the same protocol described below.

Plasma cryopreservation procedure: EDTA tubes were centrifuged 10 minutes at 800 g under room temperature then supernatant was transferred into a new 15 mL Falcon tube. Next, Falcon tubes were centrifuged a second time for 10 minutes at 1200g under room temperature and supernatant was recovered and aliquot in cryotubes (4 tubes maximum of 1 mL each). Soon after, cryotubes were stored at -80 Cbe f o r et h e i ri n t r od u c t i o ni n t on i t r o g e n . After shipping, aliquots of 1 mL were divided in four aliquots of 250 microL for further study and sent to Metabolon Company (Morrisville, US) for further process.

PBMCs cryopreservation procedure: The volume of blood from EDTA tubes was diluted with RPMI before centrifugation 20 minutes at 1000g under room temperature without brake. Ring of mononuclear cells was recovered and bring into 50 mL Falcon tube. A second centrifugation 10 minutes at 400 g under room was accomplished. Supernatant was removed and cells resuspension in 1 mL of 4% albumin was done on a refrigerated rack or in ice. Cell count, calculation for cellular concentration between 4 x 106 to 8 x 106 and preparation of tubes composed of half-cell suspension and half cryopreservation solution (cryopreservation solution: DMSO 10-20% in human albumin 4% or fetal bovine serum). On refrigerated rack or in ice, the cryopreservation solution was rapidly added to cell suspension, tubes were place in the temperature lowering container and the assembly was set to -80 Cbeforebeingtransferred to the nitrogen containers.

Antibodies and Antibody Labeling

Clone, metal tag and provider of each antibody used in this study are available in table S2. Metal labeling of the antibodies anti-human CD19, CCR5, CD27, CD45RA, CD95, IgD and Lag-3 was done using the MaxPar antibody conjugation kit by Fluidigm R .A n t i -H u m a nI l -10 metal labeling was performed using the SiteClickTM Qdot R 800 Antibody Labeling Kits (Life Technologies R ). After conjugation, concentration of each antibody was measured and volume adjusted to a final concentration of 1µg/µL.

Antibody Staining

Cryopreserved PBMCs were thawed and washed with pre-warmed RPMI/FBS 50%/50% solution. To avoid cells clumping, 250 units of Pierce TM Universal Nuclease for Cell Lysis (Thermofisher) was added to each sample following by 30 minutes 37 Ci n c u b a t i o n . C e l l s were washed 2 times with pre-warmed RPMI and stained afterwards for viability with Cisplatine Cell-IDTM (Fluidigm R )2 . 5 µMc o n c e n t r a t i o n . C e l l sw e r ew a s h e do n c ea n dp l a c ei n Staining buffer (Fluidigm R )f o l l o w e db yt w os t a i n i n gs t e p s : o n ea t3 7 Ca n dt h eo t h e ra t C 30 minutes incubation each (see supplementary table S8 for details). Cells were afterwards fixed in PFA 2% and permeabilized with Perm Buffer (eBioscience) before intracellular staining with a 30 minutes incubation. Cells were then put in a solution of Intercalator-Iridium (Fluidigm R )1 / 6 0 0 0d i l u t e di nP F A2 %f o l l o w e db ya no v e r n i g h ti n c u b a t i o n .

Mass cytometry acquisition

Al a r g e -s c a l em a s sc y t o m e t r ya n a l y s i so fa l l o g e n e i ch e m a t o p o i e t i cs t e mc e l lt r a n s p l a n t a t i o n has been performed using 38 phenotypic and functional markers allowing the identification of populations and sub-populations of CD4 and CD8 T cells, B cells, myeloid and natural killer cells. Identification of nucleated and alive cells was done with Intercalator-Iridium (Fluidigm R )a n dC i s p l a t i n eC e l l -I D T M( F l u i d i g mR )m a r k e r sr e s p e c t i v e l y . B e f o r em a s sc ytometry acquisition, cells were washed 2 times in Staining Buffer and 2 times in MaxPar water Fluidigm. Cells were then resuspended in MaxPar water Fluidigm at ⇠1m i l l i o nc e l l sp e rm L and mixed with 10% of EQ Beads (Fluidigm R )andpassedthroughacellstrainercapwith35 micrometers pores (BD Biosciences, USA) immediately before acquisition. Cell events were acquired on the HELIOS mass cytometer (Fluidigm, Inc Canada) and CyTOF software version 6.7.1014 (Fluidigm, Inc Canada) at the Plateforme de Cytométrie de la Pitié-Salpetriere (CyPS). An average of 500 000 events was acquired per sample. Dual count calibration, noise reduction, cell length threshold between 10 and 150 pushes, and a lower convolution threshold equal to 10 were applied during acquisition. The standard mass cytometry files produced by HELIOS have been standardized using CyTOF v. 6.7.1014 software. This method normalizes each data to a global standard, called a log passport, determined for each equalization log (Fluidigm, Inc. Canada) as recommended by the software developers. Once all samples are acquired, to control the normalization of each sample, they are again normalized together using MATLAB-based normalization software.

RNA Extraction and deep sequencing

RNA Extraction: Cryopreserved PBMCs were thawed and washed with pre-warmed RP-MI/FBS 50%/50% solution. Total RNA extraction was performed using Promega Maxwell R technology (simply RNA tissue kit, AS1340) according to manufacturer's protocol. After this procedure, RNA samples concentration was measured using NanoDrop TM 2000 spectrophotometer and aliquots of minimal 20 ng/L concentration were done. The quality of RNA was evaluated by a NanoDrop TM spectrophotometer and BioAnalyzer (Agilent Technologies). Deep sequencing: Total Stranded RNAseq sequencing was p erformed by the Centre National de Recherche en Génomique Humaine (CNRGH, Institut de Biologie François Jacob, Evry, France). A complete RNA quality control on each sample (quantification in duplicate on aNanoDrop TM 8000 spectrophotometer and RNA6000 Nano LabChip analysis on Bioanalyzer from Agilent) have been done and only sample with sufficient quality have been selected for further analysis: median RNA integrity number of 8.2 for cohort 1 (5.7-9.2 range) and 7.8 for cohort 2 (5.9-9.2 range). Libraries have been prepared using the "TruSeq Stranded Total RNA Gold" Kit from Illumina, which removes both cytoplasmic and mitochondrial ribosomal RNA as a first step of library preparation. An input of 200 ng total RNA was used for all samples, and libraries were prepared on an automated platform, according to manufacturer's instructions. Library quality has been checked by LabGx (Perkin Elmer) analysis for profile analysis and quantification, and sample libraries have then been pooled before sequencing to reach the expected sequencing depth. Sequencing has been performed on an Illumina HiSeq4000 as paired-end 100 bp reads, using Illumina sequencing reagents. Libraries were generally pooled by 4 samples per lane, corresponding on average to 70 to 90 million sequenced fragments (or 140 to 180 million total reads). Fa s t q fi l e s q u a l i ty c o nt r o l : Fastq files pro duced after RNA-seq sequencing have b een processed by in-house CNRGH tools in order to assess quality of raw and genomic-aligned nucleotides. Briefly, a quality control was performed on a random selection of 2 x 10 million reads, including the following steps: removal of adaptors and poor-quality sequences to evaluate the % of usable reads (use of trimmomatic); alignment on the reference genome (Hisat2) as well as on the transcriptome and rRNAs (Bowtie2); use of rseqc and picardTools to evaluate the % of mapping on the genome and transcriptome, the % of duplicate sequences, the % of ribosomal RNA and the total number of usable sequences. acid and NAD+ were purchased from MP Biomedicals, LLC. (Santa Ana, CA).

One aliquot was analyzed using acidic positive ion conditions (LC pos), chromatographically optimized for more hydrophilic compounds. In this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05 % perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA) at pH=2.5. Elution was performed at 0.35mL.min 1i nal i n e a rg r a d i e n tf r o m5 %t o8 0 %o f methanol containing 0.1% FA and 0.05% PFPA over 3.35 minutes. A second aliquot was also analyzed using acidic positive ion conditions. However, it was chromatographically optimized for more hydrophobic compounds. In this method, the extract was gradient eluted from the same afore mentioned C18 column using methanol 50%, acetonitrile 50%, water, 0.05 %P F P Aa n d0 . 0 1%F Aa tp H = 2 . 5a n dw a so p e r a t e da ta no v e r a l lh i g h e ro r g a n i cc o n t e n t . Elution was performed at 0.60mL/min in a linear gradient from 40% to 99.5% over 1 minute, hold 2.4 minutes at 99.5% of methanol 50%, acetonitrile 50%, 0.05 % PFPA and 0.01 % FA. At h i r da l i q u o tw a sa n a l y z e du s i n gb a s i cn e g a t i v ei o no p t i m i z e dc o n d i t i o n sw i t has e p a r a t e dedicated C18 column (LC neg). The basic extracts were gradient eluted from the column using methanol 95% and water 5%, with 6.5mM ammonium bicarbonate at pH 8. Elution was performed at 0.35mL.min 1w i t hal i n e a rg r a d i e n tf r o m0 . 5 %t o7 0 %o fm e t h a n o l9 5 % , water 5% with 6.5mM ammonium bicarbonate over 4 minutes, followed by a rapid gradient to 99% in 0.5 minutes. The sample injection volume was 5 µLa n da2 xn e e d l el o o po v e r fi l lw a s used. Separations utilized separate acid and base-dedicated 2.1 mm x 100 mm Waters BEH C18 1.7 µmc o l u m n sh e l da t4 0 C. The fourth aliquot was analyzed via negative ionization following elution from a HILIC column (LC HILIC) (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm, held at 40 C) using a gradient consisting of water (15%), methanol (5%) and acetonitrile (80%) with 10 mM ammonium formate, pH 10.16. Elution flow rate was 0.5mL/min with a linear gradient from 5% to 50% in 3.5 minutes, followed by a linear gradient from 50% to 95% in 2 minutes, of water (50%), acetonitrile (50%) with 10mM ammonium formate, pH 10.6. The MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slightly between methods but covered 70-1000 m/z.

Quality assurance and quality control (QA/QC) Several types of controls were analyzed in concert with the experimental samples: a pooled matrix sample generated by taking a small volume of each experimental sample (or alternatively, use of a pool of well-characterized human plasma, named MTRX for sample matrix) served as a technical replicate throughout the data set; extracted water samples served as process blanks; and a cocktail of QC standards listed below, that were carefully chosen not to interfere with the measurement of endogenous compounds were spiked into every analyzed sample, allowed instrument performance monitoring and aided chromatographic alignment. In LC neg conditions, internal standards were D7-glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d15-octanoic acid, d19-decanoic acid, d27-tetradecanoic acid, d35-octadecanoic acid, d2-eicosanoic acid. In LC HILIC conditions, internal standards were D35-octadecanoic acid, d5-indole acetic acid, bromophenylalanine, d5-tryptophan, d4-tyrosine, d3-serine, d3-aspartic acid, d7-ornithine, d4-lysine. In LC pos conditions, internal standards were d7-glucose, d3methionine, d3-leucine, d8-phenylalanine, d5-tryptophan, bromophenylalanine, d4-tyrosine, d5-indole acetic acid, d5-hippuric acid, amitriptyline, d9-progesterone, d4-dioctylphthalate. Instrument variability was determined by calculating the median relative standard deviation (RSD) for the internal standards that were added to each sample prior to injection into the mass spectrometers (median RSD = 3-4%). Instruments are calibrated at least weekly in the utilized polarity using Thermo and mass accuracy is monitored at the batch level for the internal standards. A batch fails QC if any of the internal standards are more than 5ppm away from the theoretical mass.

Data preprocessing

Mass cytometry

The standard mass cytometry files produced by HELIOS have been standardized using CyTOF version 6.7.1014 software. This method normalizes each data to a global standard, called a log passport, determined for each equalization log (Fluidigm, Inc Canada) as recommended by the software developers. These files were secondly normalized simultaneously using MATLAB-based normalization software R2013 version 1 with Fluidigm R normalization beads. Normalized files were then uploaded into Cytobank (https://premium.cytobank.org) for FCS cleaning using manual gating in order to discard non-viable cells, doublets and CD45 negative cells.

Metabolomics Raw data was extracted, peak-identified and QC processed using Metabolon's hardware and software. Compounds were identified by comparison to library entries of purified standards or recurrent unknown entities ( [36,37]). Briefly, Metabolon maintains a library based on authenticated standards that contains the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules present in the library. Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI window of the proposed identification, accurate mass match to the library ± 10 ppm, and the MS/MS forward and reverse scores between the experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions present in the experimental spectrum to the ions present in the library spectrum. While there may be similarities between these molecules based on one of these factors, the use of all three data points can be utilized to distinguish and differentiate biochemicals. More than 3300 commercially available purified standard compounds have been acquired and registered for analysis on all platforms for determination of their analytical characteristics. Microbiota-derived metabolites identification was based on the Human Metabolome Database (www.hmdb.ca). The QC and curation processes were designed to ensure accurate and consistent identification of true chemical entities, and to remove those representing system artifacts, mis-assignments, and background noise. Metabolon data analysts use proprietary visualization and interpretation software to confirm the consistency of peak identification among the various samples. Library matches for each compound were checked for each sample and corrected if necessary. Peaks were quantified using area-under-the-curve. A data normalization step was performed to correct variation resulting from instrument inter-day tuning differences. Essentially, each compound was corrected in run-day blocks by registering the medians to equal one (1.00) and normalizing each data point proportionately.

Tr a n s c r i p t o m i c s Fastq files were aligned against the human GRCh38 genome assembly using STAR-2.6.0 according to author's procedure ( [38]). The following commands were set up: -runThreadN 4 -sjdbOverhang 100 -outSAMtype BAM SortedByCoordinate -quantMode GeneCounts. 

Supplementary material

Conclusion and future perspectives

This PhD manuscript is the result of four years during which I have either designed or applied and adapted computational tools in the optic of gaining insight into immune processes. The different methods that I used to extract information from the different data types described in this manuscript have led to various questions. This closing chapter contains a critical discussion of the work that I presented, a vision of this research in a broader scientific context, as well as a reflection on possible future perspectives.
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In this manuscript, I have presented different computational tools and applications to single cell data in an immunological context. I have presented a new tool for trajectory inference, that I have compared to state-of-the-art TI methods in a large-scale comparative study, and that proved to be flexible, efficient and fast compared to the other methods. Working in the topic of trajectory inference has led me to question the data representation on which TI methods rely. I thus explored new perspectives to reduce dimensions in high-dimensional datasets in a way that would facilitate structure learning. I have then presented different use cases of computational tools, that allowed me to model biological processes and to gain insight into the features that were the main drivers of these processes.

In this section, I reflect on the different approaches that I have used along this manuscript. I discuss the advantages, drawbacks and limitations of the computational solutions that I came up with to resolve biological or technical issues. I also reflect on potential novel applications of the research that I described in this manuscript, and on possibilities of alternative usage and development of the tools that I developed.

Changes in the way we do trajectory inference

Trajectory inference is a young discipline. The approach of reconstructing a developmental trajectory among single cells was first applied on flow cytometry data in 2014, to uncover a linear differentiation trajectory from hematopoietic stem cells to naive B cells [1]. Many authors then published new trajectory inference tools, for the simple reason that no such tool existed yet to analyse their specific trajectory type. A plethora of papers that presented new TI tools thus appeared, to identify trajectories in scRNA-Seq data [2], to uncover branching [3] and more complex [4] trajectories, to uncover branching in large datasets [5], cyclical trajectories [6], and so on. Papers presenting these pioneering tools typically presented the tool's usability on one dataset (in the worst case), and on a very restricted number of datasets in the best case. These tools were also compared to none or to very few similar tools, due to the novelty of their approach.

This led to the publication of more than 60 TI tools over the last 15 years. The discipline of trajectory inference has now significantly matured. Benchmark studies have been designed in which many of the existing TI tools have been compared [7], which now allows to apply trajectory inference in a new way. New TI tools can now be systematically compared to state-of-the-art TI methods, on many different datasets. I believe that this type of large-scale analysis is a step in the direction of more reproducible research, since testing tools on a large number of datasets reduces the chances of overfitting, i.e. of a tool being biased towards a certain specificity in datasets. Resulting from the recent benchmark study [7], datasets for trajectory inference were made available, as well as state-of-the-art ready-to-use tools and comparative metrics. This gave us the opportunity to compare TinGa to state-of-the-art methods and to assess its efficiency and scalability in a robust comparative study. In discovery analyses of a new dataset, applying different TI tools to the same data also increases one's understanding of the data, by reducing the effect that one specific TI type of methods might have on the resulting trajectory.

In this work, I have applied TinGa to scRNA-Seq data, in the context of trajectory inference. I however foresee alternative use cases of the Growing Neural Gas algorithm [8], on which TinGa relies. This method could for instance be applied on bulk data, to identify structure among samples or among patients. TinGa could also be applied on cytometry data, either directly on the original features, or on a dimensionality reduction in case more that a dozen features would be used. One other interesting extension of the tool in scRNA-Seq data analysis would be to include RNA velocity in the analysis [9]. RNA velocity takes into account the splicing state of transcripts to derive a dynamic transcriptomic profile in single-cells. This method makes a distinction between unspliced and mature transcripts, thus allowing to derive information on transcripts that are currently available in the cells, and transcripts that will be available in the near future. RNA velocity has recently been used in the context of trajectory inference [10]. It could help defining the TinGa trajectory as it is being processed, and lead to faster and more accurate convergence towards a final trajectory. I also foresee that new technologies that allow the simultaneous measurement of transcripts and proteins in single cells (CITE-seq [11], REAP-seq [12]), will play an important role in improving the quality of trajectory inference, as protein measurements are typically more stable than transcript measurements. By integrating these two modalities in one single model, the incorporation of information carried by proteins could thus help to reduce the technical and biological noise coming from transcripts, and lead to more robust and smooth trajectories. An additional advantage of using this type of data for trajectory inference would be that, similarly to RNA velocity, dynamics could be extracted from the ratios of proteins and transcripts (and possibly spliced and unspliced transcripts) in single cells, allowing to identify transitional dynamics among cells in the resulting trajectories.

Specific steps in data analysis will have strong consequences on trajectory inference

The experience that I have acquired by trying to improve the representation of trajectories in scRNA-Seq data has allowed me to draw some conclusions. Several steps seem to have a strong impact on the resulting trajectory: 1) the preprocessing, 2) data selection, and 3) dimensionality reduction. Preprocessing: I believe that technical artefacts such as batch effects or differences in sequencing depth between cells are certainly processes that will have an effect on the trajectory if they are not corrected, but that their influence on the trajectory can be controlled by applying accurate preprocessing to the data. During the preprocessing, the question of whether biological sources of variability, such as the cell-cycle, should be regressed out is often raised. In my experience, these biological sources of variability can be strongly correlated to the trajectory that 205 one is trying to model. In this context, regressing out these sources of variability would also result in the removal of the very information that we were interested in, and I would thus not advise to regress them out. Data selection: Once thorough preprocessing has been applied, the next step consists in selecting features and cells of interest for the rest of the analysis. The genes that present the highest biological variability (top highly variable genes, or HVGs) can be selected. This process allows to reduce the dimensions of the data, while removing noisy dimensions and keeping only the most informative ones. We have observed in Chapter 6 of this manuscript that the number of kept HVGs could strongly impact the trajectory. It would thus be advisable to verify that the trajectory is relatively robust to the number of HVGs on which it was computed. The set of cells on which the analysis is performed also has an influence on the resulting trajectory. Even though new tools [13,14,15] are able to model disconnected trajectories, it would still be advisable to carefully select a set of cells to apply trajectory inference to, by first computing clustering and selecting the clusters that one is interested in for instance. Dimensionality reduction is probably what will have the biggest influence on a trajectory. Linear DR methods such as PCA can help to extract meaningful features, especially if the original dimensions were strongly linearly correlated. In other datasets, it might be more useful to apply non-linear dimensionality reduction methods. These methods strongly rely on the computation of similarities/ distances/ proximity between cells. From what we observed in Chapter 4, it seems that the choice of the distance metric has an impact on the resulting data embedding, and that computing similarities between cells based on correlation metrics is preferable to using distance metrics. Finally, it seems that methods that enhance data structure while reducing dimensions, such as Multi-dimensional scaling, or DR methods based on graphs, are particularly appropriate if one wishes to apply trajectory inference on the resulting reduced dimensions.

Visualisation of scRNA-Seq data is affected by many parallel processes

The research that my colleagues and I have conducted to identify a trajectory inference method that would be able to identify proper trajectories in any dataset has led to many questions. The fact that even the best performing TI methods would never achieve good scores on average in real datasets seems to suggest that we are far from being able to correctly infer trajectories. The fact that all methods systematically perform better on synthetic data than on real data also seems to be giving us a hint that there are components or sources of noise in real data that we are not understanding. A developmental trajectory is often only one aspect of all the processes that cells are undergoing. The measurements that we have access to in single-cell RNA-seq data are the results of a mixture of biological and technical effects. When applying TI on such datasets, the resulting trajectories are therefore affected by biological processes such as cell-cycle, cellular apoptosis, but also simply by the bursty behaviour of gene expression in single cells. Moreover, these trajectories are also affected by technical artefacts 206 such as dropouts. The biological processes that lead to these datasets, that are containing many zeros, and very few hints on which of these zeros might be truly missing genes or technical zeros, are a real challenge to model. The fact that many of these datasets contain information on thousands of genes but only a few hundreds or thousands of cells also makes it very difficult to identify robust biological processes.

I now believe that the idea that developmental processes could simply be visualised in trajectories by applying unsupervised dimensionality reduction to the data is a utopia. The main forces that are driving cell differences, such as cell differentiation, might show up. They will however always be mixed with biological side effects of the cells life such as metabolic activity or cell division, and with technical noise. Autoencoders, in their way of identifying linear or non linear combinations of features that might be each associated with a different biological process might start to entangle this difficult task [16]. Bayesian models, in which known sources of variation such as the cellcycle would be modeled as priors, might also help to model the complexity of the processes that are driving a cell's development. In a sense, biology is lazy: some genes and proteins will have multiple functions and might be involved in different parallel processes. Taking them all into account through bayesian modeling, rather than trying to separate these processes, thus seems like a reasonable approach to model cell transitions in a better way.

Investigation of CD8 T cell differentiation by application of TI and NI methods

The way memory CD8 T cells are generated has an important impact, with some infections leading to better long lasting protection than others. Understanding the processes that lead to different types of memory T cells is thus crucial, as it can help to develop more efficient vaccines. In chapter 6, I reconstructed a trajectory that led to memory CD8 T cells upon acute activation with a virus. I compared the trajectories retrieved by two TI tools (Slingshot [17] and TinGa [15]), and saw that they were very similar. Genes associated with the cell cycle were main drivers of these trajectories, even leading to the appearance of a new branch that contained dividing cells in the TinGa trajectory. Reconstructing a developmental trajectory in this data allowed us to identify different types of memory precursor cells, that were generated either early or at a later stage after infection. Along the trajectory, I could identify genes that had specific expression patterns in the different types of memory precursors that I had identified. By applying trajectory and network inference to a scRNA-Seq dataset of CD8 T cells after acute viral infection, I was thus able to identify processes and genes that were associated with the generation of memory precursor cells, at different time points along the trajectory. Experiments should now be applied to characterise the memory cells being generated at different time points after infection, and to see whether we could impact the type of memory cells being generated by affecting the expression of certain genes that I identified in this study.

I believe that the approach that I used in this study could also be used to characterise other biological processes. As an example, computational tools for trajectory inference and network inference might help to characterise the differentiation of CD8 T cells after a chronic infection. In many chronic infections, as well as in cancer, CD8 T cells acquire an exhausted phenotype. The effector functions of T cells that are in this state are typically silenced, preventing them from fighting and removing the cause of infection, or the malignant cells, from the organism [18]. Better understanding this process could lead to new cancer therapies, similarly to the studies that have led to the identification of two proteins, CTLA4 and PD-1, that are now known inhibitors of effector T CD8 functions, the discovery of which led to a Nobel Price awarded to James P. Allison and Tasuku Honjo in 2018.

Ideas to increase reproducibility in research

There is growing concern about the fact that many published research studies cannot be reproduced. Whether the irreproducibility of these published studies is caused by too complex study designs, or intentionally magnified results, it hinders scientific progress by sending scientists on wrong tracks (see Nature collection on Challenges in irreproducible research, 2018). Computational science isn't spared by reproducibility issues [19], as results published on one dataset cannot be reproduced on another dataset for instance. In the next paragraph, I present a few solutions I foresee will improve reproducibility in computational research.

Adding controls to experiments allows to identify sources of bias between different experimental days, laboratory technicians, or machine settings, and to correct them. Although the use of identical samples along complex experimental studies is being increasingly applied, these samples typically consist of small quantities of biological material that are produced in-house for one experiment at a time [20]. If this type of controls would be produced at larger scale, they might allow to control research-center-dependent effects, thus allowing to standardise experiments across countries. The use of this type of controls in singlecell data generation is already being tested in multi-institute research programs such as [21]. Once the data has been generated, it needs to be pre-processed, to remove possible technical side-effects. I believe that standardised preprocessing procedures, that are increasingly being made available under the form of pipelines [22,23], can help in making pre-processing more accurate and reproducible. More refined analyses typically follow pre-processing, in which clustering can be applied to identify different cell-types, trajectories or regulatory networks can be identified, differences between patients can be investigated, etc. The possibilities of advanced analyses are so vast that it becomes difficult to imagine how one common pipeline could encompass all methods. However, I believe that this type of analyses would profit from being performed less manually, with programs that would be applicable to more than one specific dataset. To this end, I think that new methods would profit from being tested and compared to existing state-of-the-art methods on large amounts of datasets, which would lead to methods with broader ranges of use. The importance of code sharing (through GitHub, GitLab) is another crucial step that I trust can lead to more reproducible research, as it allows to any code users to apply the exact same analysis to datasets, provided these datasets are also made public of course. Finally, the same piece of code might return different results for two different users due to different software versions. Isolated containers (such as Docker, Singularity, Podman) are increasingly being used for this reason, as they can be used on any computer regardless of its settings, thus making results reproducible.

Challenges and possibilities of single-cell data

Single-cell technologies have cast light on the heterogeneity that exists among cells. They have led to new types of studies, in which refined mechanisms of cell-to-cell diversity can be modeled through structure learning, where groups of cells were previously compared in bulk studies. Moreover, new combined analyses in which single-cell RNA Sequencing is measured in combination with other features such as chromatine accessibility [24], or protein measurements [11], in the same single-cells, now allow to unravel cellular processes that could not be modeled before. Additionally, spatial information can now be obtained using new sequencing techniques [25,26]. This type of information can be used to better understand spatial cellular processes, such as cellular communication. Single-cell data also comes with its challenges, since the amount of material that can be studied in single cells is much lower than what can be analysed in bulk experiments [27]. This leads to low signal, increased noise, and the need to develop new sets of tools to incorporate the different sources of noise such that information could be extracted from this type of data.

The single-cell field is relatively new and raises many questions that will need to be addressed. Nevertheless, it allows to extract unprecedented knowledge on intra-, extra-, and inter-cellular processes. Mechanisms of the immune system, triggered by diseases, can now be dissected so precisely that molecules that play a central role in the disease can be identified. This represents a tremendous advantage in the medical domain, as these molecules can be targeted through gene therapy. This type of precise therapies might replace drugs or surgery in the treatment of some diseases in the future, with substantial advantages: by targeting precise genes instead of whole cells or even tissues, these therapies might be much less invasive, and work together with the immune system to eradicate the disease.
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 16 Figure1.6: Haematopoiesis and immune cell types[24] Haematopoiesis occurs in the bone marrow and is the process by which all blood cells are formed by differentiation of haematopoietic stem cells. In the bone marrow microenvironment (niche), haematopoietic stem cells can self-renew and differentiate into myeloid or lymphoid progenitor cells. Myeloid cells further differentiate into granulocytes -neutrophils, eosinophils and basophils -and into monocytes, which differentiate into macrophages. Lymphoid progenitor cells differentiate into dendritic cells, and into lymphocytes -T cells, B cells and natural killer (NK) cells.
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 21 Figure 2.1: The computational workflow for single cell experiments detailed in steps

  Figure 2.3:In order to identify structures in an expression data matrix, two types of methods can be used. Clustering based methods will tend to maximise the similarities between cells within clusters while maximising the differences between clusters. These methods thus help to identify homogeneous groups of cells in the data. On the other hand, trajectory inference methods will tend to preserve the local similarities between cells, ordering them along trajectories which represent gradual changes between similar cells.
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 24 Figure 2.4: There are several approaches to visualising trajectory models inferred by trajectory inference (TI) methods. a) The most common visualisation is a dimensionality reduction where similar cells are placed close together. The cells are typically coloured based on prior knowledge (e.g. cell type) or computationally inferred clustering, and are overlaid by the trajectory inferred by the TI method. b) A scatter plot can be used to demonstrate a response in gene expression over pseudotime. c) Colouring of the cells in the dimensionality reduction plot can also be used to compare the gene expression profiles. d) In order to obtain an overview of the dynamics of a large number of genes, these genes can be grouped together into modules, and one path along the trajectory can be visualised in the form of a heatmap.
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 2 4a). Various visualisation techniques can aid in interpreting the cell state-and branching point delineation, by visualising the expression value of a marker over time (Figure2.4b), comparing the gene expression values in cells within the reduced dimensions (Figure2.4c), or grouping genes together in pseudotemporally coregulated modules (Figure2.4d). Cannoodt et al[START_REF] Cannoodt | Computational methods for trajectory inference from single-cell transcriptomics[END_REF] provide an overview of several commonly used TI methods, organizing them by the different components they are based on.
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 3831 Figure 3.1: Different iterations of TinGa applied on a disconnected trajectory. The age of the graph edges is represented in different shades of blue to highlight edges that are getting old (in light blue) and are soon to be removed.
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 32 Figure 3.2: Examples of the possible trajectory topologies. In each graph, the ground truth trajectory is represented by oriented lines, separated by nodes. The cells are colored based on the node to which they are closest.

Figure 3 . 3 :

 33 Figure 3.3: The trajectories identified by TinGa on a linear dataset. Even though the global structure of the data is captured in both examples, a total of 30 nodes seems to be too high and leads to a noisy trajectory, whereas 8 nodes seem sufficient to return a clean trajectory.

Figure 3 . 5 :

 35 Figure 3.5: The mean score of 4 state-of-the-art methods, TinGa with the default number of dimensions = 5, and 4 other settings for this parameter, on 100 train datasets. The 5 original methods are represented in color, the four versions of TinGa with different numbers of dimensions are in grey.

Figure 3 . 7 :

 37 Figure 3.7: Methods on the x-axis are ordered by the number of datasets on which they outperformed the others. The y-axis represents the number of datasets on which each method had the best mean score across all methods. For each method, bars represent the different trajectory types for which the method performed best. These bars are ordered and coloured from most simple (in light yellow) to most complex trajectory type (in dark red).

54 Figure 3 . 10 :

 54310 Figure 3.10: Trajectories found by the different methods on a real dataset with a linear trajectory. The mean score of each method reflects the accuracy with which it inferred the trajectory compared to the gold standard, which is represented in the top left figure. TinGa and Slingshot inferred the most accurate trajectories on this dataset.

Algorithm 2 4 : 5 : 6 :

 2456 Multi-dimensional scaling pseudocode 1: input the pre-processed and normalised scRNA-seq matrix, containing N cells 2: parameters m, the number of dimensions in the final data embedding 3: procedure Compute a MDS embedding of the data Set up the squared proximity matrix D 2 Apply double centering to the matrix D 2 : B 2 = -1 2 HD 2 H, where H = I N -1 N ee T and e is an N × 1 column vector of all ones Determine the m largest eigenvalues 1 , 2 ,... m and the corresponding eigenvectors e 1 , e 2 ,. . . e m from the B 2 matrix 7:

Figure 6 . 2 :

 62 Figure 6.2: Different models of CD8 T cells differentiation proposed in the literature (N: naive cells, E: effector cells, M: memory cells, MP: memory precursors, SLEC: short-lived effector cells)

Figure 7 . 5 (

 75 Figure 7.5 (previous page): Phenotypic, transcriptomic and metabolomic features identified in the comparison of tolerant versus non-tolerant recipients.(A) FlowSOM map highlighting metaclusters that were increased in tolerant patients (blue nodes) or in non-tolerant patients (red nodes). (B) A correlation map was built to identify the immune subsets (nodes) that were correlated in both cohorts. The edge width represents the mean correlation coefficient computed over the two cohorts. Only edges that had an adjusted pvalue < 0.001 in Spearman correlation tests are shown. Three metaclusters were increased in tolerant recipients and 21 were increased in non-tolerant patients. Three clusters of highly correlated populations were identified in nontolerant patients, associated with the expression of CD38, CD24 or CTLA4. (C) Correlation map of the 278 genes identified as informative in the comparison of tolerant and non-tolerant recipients. The genes represented as blue nodes were increased in tolerant recipients and the red nodes were increased in nontolerant recipients. Biological processes were analyzed with IPA (Qiagen) and grouped in main modules, with gene names in blue when increased in tolerant recipients and red when increased in non-tolerant recipients (Fisher's exact test, p<0.01). Upstream regulators were predicted with IPA and represented inside dotted line circles (p<0.01). (D) For the same set of genes, enrichment of metabolic and signaling pathways were calculated with IPA and ranked by -log (p value). (E) Correlation map of the 42 selected metabolites that were associated with tolerance or non-tolerance in recipients. The nodes that are colored in blue were increased in tolerant recipients, the red ones were increased in non-tolerant recipients. The main metabolic pathways are represented as colored squares. (F) Over-representation analysis of metabolic pathways based on metabolites identified by comparing tolerant and non-tolerant recipients, and ranked by p value (hypergeometric distribution).
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  This review was published in the FEBS journal in July 2018. doi: https://doi.org/10.1111/febs.146132.1 IntroductionSingle-cell technologies are currently revolutionising the way life scientists are studying biological systems from different perspectives. Three major classes of technologies can be distinguished: imaging-based techniques, techniques based on flow or mass cytometry, and techniques based on next generation sequencing. However, this is only a rough classification, as some recent innovations combine elements of different classes of techniques. While many of the early data preprocessing steps are specific to each class of techniques, several downstream computational analyses are generally applicable to any form of single-cell data, and one of the goals of this work is to provide a unifying overview of these generally applicable approaches.

Table 2 .

 2 1: Dimensionality reduction based-and clustering based-tools for visualisation of single cell high dimensional data.

	Class of method	Name	Description
		PCA	Linear reduction of the dimensions holding the high-est variance into orthogonal principal components
			Non-linear reduction of the dimensions by preserving
		MDS	the intercellular distances of the high-dimensions in
	Dimensionality reduction		the lower dimensions
		tSNE	Non-linear dimensionality reduction, preserves the local similarities between cells
		Diffusion maps	Non-linear dimensionality reduction, computes tran-sition probabilities between cells

SPRING k-Nearest Neighbour force directed graph, preserves the high-dimensional relationships between cells UMAP Non-linear dimensionality reduction, similar to tSNE but preserves global distances between cells. DCA deep count autoencoder network Clustering SPADE Hierarchical clustering of the cells followed by the representation of these clusters in a minimal spanning tree FlowSOM SOM clustering followed by the representation of these clusters in a minimal spanning tree Scaffold Maps Semi-supervised method: new cells are grouped with the user-provided cell populations to which they are most similar FlowMAP Hierarchical clustering of the cells, followed by the representation of these clusters in a strong connected graph structure Phenograph Groups cells which share the same neighbours together and identifies communities which maximise the Louvain modularity PCA, principal component analysis; MDS, multi-dimensional scaling; tSNE, t-stochastic neighbour embedding; UMAP, uniform manifold approximation and projection; DCA, deep count autoencoder; SPADE, Spanning-tree Progression Analysis of Density-normalized Events; Scaffold, Single-Cell Analysis by Fixed Force-and Landmark-Directed. BOF-IOP grant from Ghent University; YS is an ISAC Marylou Ingram scholar.

8 :

 8 Age edges ← matrix(max nodes rows, max nodes columns) 9: initialise graph with two cells.:

	10: 11:	Nodes[c(1, 2), ] ← .25 and .75 quantiles d add edge of age 0 between nodes 1 and 2
	12: while (iter < max iter):
	13: 14: 15:	x i ← sample input cell in d s 1 ,s 2 ← 1st and 2nd closest nodes to x i increase age of all edges emanating from s 1
	16: add distance (x 21: remove it.
	22: 23:	if ∃ node of degree 0 then remove it.
	24:	if iter % =0then
	25:	if number of nodes < max nodes then
	26:	

i -s 1 ) to error of s 1

17:

Move s 1 towards x i a factor ✏ b

18:

Move s 1 's neighbors towards x i a factor ✏ n

19:

set age of edge between s 1 ands 2 to 0 20: if ∃ edge of age > age max then

Table 3 .

 3 

			1: Datasets used for parameter tuning
	Trajectory type	real datasets synthetic datasets total datasets
	linear	18	4	22
	cyclic	0	6	6
	bifurcating	6	10	16
	converging	1	5	6
	multifurcating	1	1	2
	tree	8	23	31
	acyclic graph	0	3	3
	connected graph	0	7	7
	disconnected graph 4	3	7
	total	38	62	100

Table 3 .

 3 

		2: Datasets used to evaluate the methods
	Trajectory type	real datasets synthetic datasets total datasets
	linear	21	26	47
	cyclic	2	21	23
	bifurcating	7	21	28
	converging	0	11	11
	multifurcating	8	6	14
	tree	11	45	56
	acyclic graph	1	13	14
	connected graph	0	28	28
	disconnected graph 22	7	29
	total	72	178	250

Table 3 .

 3 3: p-values associated with one-sided paired t-tests assessing whether TinGa performed significantly better than the other methods on the different trajectory types.

	Trajectory type	Monocle 3 Slingshot PAGA RaceID/StemID
	linear	0.004	0.433	0.005	0
	cyclic	0	0.016	0	0
	bifurcating	0.011	0.297	0.037	0
	converging	0.002	0.062	0.003	0
	multifurcating	0.104	0.546	0.495	0.005
	tree	0.742	0	0.356	0.001
	acyclic graph	0.210	0.007	0.204	0.001
	connected graph	0.942	0.163	0.064	0.001
	disconnected graph 0.597	0.086	0.806	0.006

Table 3 .

 3 4: p-values associated with one-sided paired t-tests comparing TinGa to other methods on real datasets.

	Trajectory type	Monocle 3 Slingshot PAGA RaceID/StemID
	linear	0.913	0.986	0	0
	cyclic	0.761	0.811	0.042	0.217
	bifurcating	0.378	0.635	0.119	0.021
	multifurcating	0.189	0.439	0.143	0
	tree	0.441	0.021	0.716	0
	acyclic graph	-	-	-	-
	disconnected graph 0.055	0	0.057	0

Table 4 . 2 :

 42 

		l1 l2 l2/3 maximum angular pearson spearman
	50 HIGs	11 23 6	1	10	8	18
	All genes 4	0	5	13	1	39	15

Table 6 .

 6 3: Numbers of memory precursor cells identified in cluster 8, according to the day they were sampled and their cell cycle phase.

	Tcf7	0		0.68	0.56	0.15	0
	Id3	9.62e-220 0.54	0.37	0.09	1.92e-216
	Ltb	4.30e-130 0.49	0.94	0.68	8.61e-86
	Klrg1 1.02e-89	-0.57	0.09	0.36	2.04e-86
	Day	G1 G2/M S Total		
	4.5	86	0	1 87		
	7	436 1	1 438		
	Total 522 1	2 525		

Motivation: During the last decade, trajectory inference methods have emerged as a novel framework to model cell developmental dynamics, most notably in the area of single-cell transcriptomics. At present, more than 70 trajectory inference methods have been published, and recent benchmarks showed that even state-of-the-art methods only perform well for certain trajectory types but not others. Results: In this work, we present TinGa, a new trajectory inference model that is fast and flexible, and that is based on Growing Neural Graphs. We performed an extensive comparison of TinGa to five state-of-the-art methods for trajectory inference on a set of 250 datasets, including both synthetic as well as real datasets. Overall, TinGa improves the state-of-the-art by producing accurate models (comparable to or an improvement on the state-of-the-art) on the whole spectrum of data complexity, from the simplest linear datasets to the most complex disconnected graphs. In addition, TinGa obtained the fastest execution times, showing that our method is thus one of the most versatile methods up to date. Availability: R scripts for running TinGa, comparing it to top existing methods and generating the figures of this paper are available at https://github.com/Helena-todd/TinGa
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Authors Abstract

Upon acute infection, a subset of CD8 T cells specific for the infectious pathogen gets activated to respond to the infection. In this work, we studied the processes that occurred in activated CD8 T cells by analysing a single-cell RNA-seq dataset from [1], that contained cells from an early timepoint post-infection (4.5 days), and from a later time-point post-infection (7 days). By reconstructing the developmental trajectory that CD8 T cells followed after activation, we were able to position the cells that exhibited a memory precursor signature on this trajectory. We observed that a small fraction of memory precursors were generated at an early timepoint, whereas the majority of memory precursors were associated with a subset of cells that had gone through cell division and acquired effector functions before becoming quiescent. We performed a pulse-chase experiment in vivo, that confirmed these findings. Finally, we characterised the regulatory processes that were activated in memory precursor CD8 T cells, and we identified gene interactions that were characteristic of these cells. Our findings on CD8 T cell differentiation after acute infection bring consensus upon the different differentiation models that were proposed to this day.
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Abstract

Immune tolerance is disrupted in autoimmunity, organ rejection, and graftversus-host disease (GvHD). Operational tolerance has been observed after transplantation, in patients who developed tolerance without a need for immunosuppressants. However, the mechanisms underlying operational tolerance in humans are poorly understood. In order to study the differences in tolerance between patients, we measured phenotypic, transcriptomic and metabolomic profiles in two independent cohorts of patients. A supervised feature selection approach allowed us to identify molecules of interest and pathways involved in the patients tolerance. We then integrated the features extracted from the three data sources in a principal component analysis, that revealed that the ectoenzyme CD38 played a crucial role in persistent immune response in non-tolerant patients. By contrast, tolerant patients exhibited higher androgenic steroids, associated with an immune network characterized by naive CD8 and double negative T cells, with a transcriptomic profile involving TCF7/LEF1-associated T-cell stemness, and nucleotide catabolism by NT5E/CD73. The balance between an activated state associated with CD38 expression and CD73-related production of adenosine appears a key regulator of operational tolerance.

Plasma Metabolomics using Mass spectrometry

Ultrahigh Performance Liquid Chromatography and Mass spectrometry (UPLC-MS/MS) Plasma aliquots were sent to Metabolon company, Durham, USA. The metabolomics data acquisition using mass spectrometry (UPLC-MS/MS Acquity R ), quality assurance/quality control, compounds identification and quantification were performed as previously described (Michonneau2019). Aliquots of 1 mL were divided in four aliquots of 250 µLf o r further study and sent to Metabolon Company (Morrisville, US) for further process. Samples were prepared using the automated MicroLab STAR R system from Hamilton Company. Several recovery standards were added prior to the first step in the extraction process for QC purposes. For the metabolomic analysis, a total of 100 microliters of sample was extracted under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) with methanol 80% containing the following recovery standards: DL-2-fluorophenylglycine, tridecanoic acid, d6-cholesterol, and DL-4-chlorophenylalanine. The resulting extract was divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, and one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI. The remaining aliquot was reserved for backup. Samples were placed briefly on a TurboVap R (Zymark) to remove the organic solvent. The sample extracts were stored overnight under nitrogen before preparation for analysis. All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at R = 35,000 mass resolution. The sample extract was dried then reconstituted in solvents compatible to each of the four methods. For each sample, two aliquots of each sample were reconstituted in 50 µLo f6 . 5m Ma m m o n i u mb i c a r b o nate in water (pH 8) for the negative ion analysis and another two aliquots of each were reconstituted using 50 µL0 . 1 %f o r m i ca c i di nw a t e r( p H 3 .

)f o rt h ep o s i t i v ei o nm e t h o d .

Each reconstitution solvent contained a series of standards at fixed concentrations to ensure injection and chromatographic consistency. The internal standards consist of a variety of deuterium labeled or halogenated biochemicals specifically designed both to cover the entire chromatographic run and to not interfere with the detection of any endogenous biochemicals. Authentic standards of d7-glucose, d3-leucine, d8-phenylalanine and d5-tryptophan were purchased from Cambridge Isotope Laboratories (Andover, MA). D5-hippuric acid, d5indole acetic acid and d9-progesterone were procured from C/D/N Isotopes, Inc. (Pointe-Claire, Quebec). Bromophenylalanine was provided by Sigma-Aldrich Co. LLC. (St. Louis, MO) and amitriptyline was from MP Biomedicals, LLC. (Aurora, OH). Recovery standards of DL-2-fluorophenylglycine and DL-4-chlorophenylalanine were from Aldrich Chemical Co. (Milwaukee, WI). Tridecanoic acid was purchased from Sigma-Aldrich (St. Louis, MO) and d6-cholesterol was from Cambridge Isotope Laboratories (Andover, MA). Standards for the HILIC dilution series of alpha-ketoglutarate, ATP, malic acid, NADH and oxaloacetic acid were purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO) while succinic acid, pyruvic 9
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