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Chapter 1: General introduction 

 

I) Biodiversity: a multifaceted entity threatened by human activities 

Biodiversity changes as a consequence of human activities, has been a key focus of political, 

economic, and scientific debates in the last decades. However, how are human activities 

inducing biodiversity changes and why is it critical for human societies? 

Over the last centuries, human impact has deeply transformed the form and function of 

all ecosystems on earth. Before the Industrial Revolution, 50 % of the terrestrial biosphere was 

without human settlements or substantial land use and by the year 2000 only 25% remained 

wild (Ellis et al. 2010). This anthropogenic transition resulted from the widespread and growing 

presence of human populations and their economic development. Land transformation, mainly 

for agricultural intensification and infrastructure development, combined with the introduction 

of non-native species and the overexploitation of natural resources such as minerals, wood, 

water and animals are confronting ecosystems with unprecedented levels of disturbance (Dirzo 

and Raven 2003). Moreover, these activities are driving other environmental changes such as 

habitat loss, pollution, climate change and the alteration of biogeochemical cycles (Vitousek et 

al. 1997; Rockström et al. 2009). All of the impacts mentioned above are interacting and 

affecting directly (e.g. hunting and fishing) and indirectly (e.g. land use) the Earth’s 

biodiversity. 

Biodiversity is the variety of life and it can be described from local to global scales, and 

across different levels of organization, from the variation among genes to the diversity between 

species and their traits. Change is a natural feature of species and is the baseline of Evolution 

Theory as species emerge, adapt and/or become extinct without human actions. Naturally, 

extinction events are balanced by speciation events, but this balance has been disrupted. In fact, 

human alterations are accelerating the current rates of extinction as they are higher than 

expected from fossil records (Barnosky et al. 2011). In addition, Pimm et al. (1995), estimated 

that current extinction rates were 100 to 1000 times higher than pre-human rates. The global 

number of species is not the only diversity component that is altered by human impacts. 

Between 1970 and 2014, the population size of overall world’s species declined by 60% (Living 

planet report 2018), with the Neotropics and freshwater ecosystems suffering the most dramatic 
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declines of population sizes (89% and 83% respectively), showing that the species from those 

ecosystems are highly threatened. 

Globally, the number of species and their population sizes are declining and those 

estimates are the result of changes in biodiversity from local to regional scales. Locally, at the 

community level, species are responding to anthropogenic impacts by disappearing or shifting 

and/or adapting their distribution range, as well as changing their behavior and phenology. 

Newbold et al. (2015), using a global multi-taxa assessment, quantified that land use reduced, 

on average, 14 % of the species richness of local terrestrial communities. However, it has been 

illustrated that local communities facing human impacts do not always exhibit decreases of 

species richness but mostly changes on species composition (Sax and Gaines 2003; Thomas 

2013). It is important to note that under severe disturbance levels, species richness always 

decreased. The alteration of the environment might result on local extirpations of sensitive 

species, but tolerant species can resist (McKinney and Lockwood 1999). Moreover, tolerant 

widespread species may colonize the disturbed community and benefit from the new 

environment thereby adding species to the community. Consequently, this species exchange 

among communities will lead to a homogenization of the species composition of communities 

and thus increase the similarity among communities within a region. For instance, marine fish 

communities under climate change showed important changes on species composition through 

time, with species from warmer southern localities colonizing northern localities, without 

systematic changes in species richness (Dornelas 2015). Similarly, land use led to taxonomic 

homogenization in communities of terrestrial plants, vertebrates and invertebrates (Newbold et 

al. 2018). 

Taxonomic homogenization due to human impact will often be mediated by a transition 

from communities dominated by specialist species to a dominance of tolerant and widespread 

generalist species (McKinney and Lockwood 1999). The replacement of specialist species with 

unique functional traits by generalists more adapted to disturbed environments may eventually 

lead to a functional homogenization of communities (Clavel et al. 2011). Indeed, functional 

homogenization of bird communities under urbanization (Devictor et al. 2007b), land use and 

landscape fragmentation (Devictor et al. 2007a) has been recorded. General patterns of traits 

that replace specialist traits are omnivory, rapid growth and dispersal, as well as breeding in 

ephemeral habitats (McKinney and Lockwood 1999). Nevertheless, functional homogenization 

without associated taxonomic homogenization was found for North Sea fish communities after 

three decades of warming (McLean et al. 2019b). While diverging in species composition, 
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Southern and Northern North Sea communities converged towards similar traits such as small 

pelagic fishes with fast life history strategies.  

Human activities are altering biodiversity across different geographical scales. From a 

local reorganization of species, through regional homogenization of taxonomic and functional 

diversity, to the global erosion of species. Importantly, ecosystem functions and services 

depend on local species and the traits they exhibit (Cardinale et al. 2012). Specifically, the loss 

of a species in an ecosystem can also lead to habitat loss, as well as the alteration of 

biogeochemical cycles and ecosystem productivity. Experimental studies illustrated that 

ecosystem functions, such as biomass production and nutrient cycling, were strongly influenced 

by changes in local diversity (Naeem et al. 1994; Tilman et al. 1996). Moreover, high local 

diversity was reported to increase ecosystem function, resistance and stability to environmental 

changes (Tilman et al. 2006). Accordingly, during drastic climate events, the productivity of 

low-diversity plant communities decreased by 50%, whereas that of high-diversity communities 

decreased by 25% (Isbell et al. 2015). The disruption of ecosystem functions results from the 

limited range of species-specific responses available after human impacts. This may be a 

consequence of the loss of specialist species or to the synchronized biological responses due to 

the biotic homogenization of communities. Furthermore, functional simplification may have a 

great impact on ecosystems processes given the strong links between organismal traits and 

ecosystem functioning (Cardinale et al. 2012). For example, experimental evidence pointed that 

functional composition and functional diversity were the main factors explaining ecosystem 

processes such as plant productivity, nutrient cycling, and light penetration (Tilman 1997). 

Besides the ethical and aesthetical value of species, local diversity is essential to 

maintain the functioning of ecosystems and their benefits to societies. Biodiversity changes at 

local scales are more complicated to understand because they depend on the level and type of 

disturbance, the ecosystem and the studied taxa (Sax and Gaines 2003). Consequently, it is 

necessary to develop efficient sampling methods and frameworks to assess the effects of 

anthropization on local biodiversity in different regions around the world. 
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II) Tropical ecosystems: highly diverse and strongly vulnerable  

The type and intensity of human activities widely differ across ecosystems and regions. At 

global scale, land transformation has been highlighted as the hardest driver of changes in 

biodiversity, mainly by local extinction of associated species (Sala 2000). This impact is 

particularly accentuated in tropical rainforests, which are among the most threatened 

ecosystems on the world (Sala 2000; Morris 2010). In fact, agro-industrial and logging activities 

are removing thousands of hectares of tropical forest every year (Hansen et al. 2010).  

Diversity patterns also differ across regions and ecosystems. This fact should be 

accounted to deeply understand the impact of human activities on biodiversity because the 

vulnerability of species may differ among ecosystems. Tropical regions host huge amounts of 

diversity (Barlow et al. 2018) with high species turnover between localities (Kraft et al. 2011). 

For instance, higher species richness were found in these ecosystems comparing with temperate 

ecosystems for freshwater fishes (Toussaint et al. 2016), mammals (Safi et al. 2011) and birds 

(Jetz and Rahbek 2002). Many hypotheses have been proposed to explain this high diversity: 

higher diversification rates (Rolland et al. 2014), higher available energy, diversity of habitats 

and/or decreased abiotic harshness (Cilleros et al. 2016). In view of its high diversity, tropical 

ecosystems are expected to be particularly resilient to human disturbances, as species loss may 

be compensated by the remaining species that perform similar functions. Indeed, the strength 

of human impacts on biological communities will depend on the levels of functional 

redundancy, which reflects how traits are ensured in terms of number of species and individuals 

(Naeem and Li 1997). While taxonomic diversity will count species, functional diversity will 

count functions, and species with the same functions will increase the functional redundancy in 

the community. This will increase the resilience of ecosystem processes under human 

disturbances, as the loss of some species will be compensated by the remaining functionally 

similar species. Accordingly, marine fish communities exhibiting high redundancy levels were 

less sensitive to global warming in the Seychelles islands (McLean et al. 2019a).  

Functional diversity was also found to be concentrated in tropical ecosystems for 

freshwater fishes and mammals (Safi et al. 2011; Toussaint et al. 2016). Additionally, this rich 

functional diversity exhibited high levels of functional redundancy in mammals and freshwater 

fishes from the Afrotropical region. In contrast, low levels of redundancy were found for 

freshwater fishes in the Neotropical region. Specifically, the high functional diversity found in 

the Neotropical region was suggested to be due to a few orders with high levels of functional 
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uniqueness. Moreover, D’agata et al. (2016) found that in tropical coral reef fish communities, 

only 40% of trait combinations were redundant among species, leaving the other 60% highly 

vulnerable to fishing pressures. This trend to disproportionately pack into a few trait 

combinations was also found in a global study of the functional diversity of coral reef fish 

(Mouillot et al. 2014). Similarly, Leitão et al. (2016) illustrated that rare species had unique 

attributes and contribute disproportionately to the functional diversity of Australian birds and 

Amazonian fishes and plants. Tropical ecosystems have a high proportion of rare species, which 

are sensitive to local extinction induced by human impacts due to their low representativeness, 

narrow geographical size and habitat breadth (Leitão et al. 2016). Therefore, the low functional 

redundancy and the important contribution of sensitive rare species to trait diversity highlight 

the vulnerability of the functions supported by communities inhabiting tropical ecosystems.  

 

III)  Values and threats of Amazon freshwater ecosystems 

Among all tropical ecosystems, the Amazon forest hosts the highest levels of local diversity 

(Hubbell et al. 2008; Peres et al. 2010) and the most extensive tropical forest on the planet. For 

instance, this region hosts the most diverse freshwater fish fauna on earth, corresponding 

roughly to 20% of global fish species diversity (Lévêque et al. 2008). Additionally, this 

ecosystem provides significant goods and services for their inhabitants but also around the 

world, such as wood, timber and agricultural products. Importantly, many local populations still 

rely on Amazonian rivers and streams to transport use, water use and food acquisition. In spite, 

of its high value, little attention has been addressed to the management of freshwater 

ecosystems comparing to terrestrial ecosystems in the Amazonian region (Castello et al. 2013; 

Castello and Macedo 2016). Indeed, developing countries share the Amazonian forest, where 

the economic growth is favored over biodiversity conservation, which results in limited 

conservation policies, monitoring and data for empiric studies.  

Besides facing the same threats than other freshwater ecosystems, such as deforestation and 

pollution due to human settlement, damming, overharvesting, as well as intensified agriculture 

and livestock (Vörösmarty et al. 2010; Carpenter et al. 2011), Amazonian streams and rivers 

are highly threatened by unprecedented levels of mining, logging, oil and gas extraction. Those 

activities are polluting freshwater systems and altering their hydrology and physico-chemical 

conditions (Castello et al. 2013). Furthermore, those activities expanded from artisanal 

exploitation, to domestic and international markets. This results in an intensification of resource 
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exploitation and an increase of infrastructure constructions, which ultimately leads to large-

scale degradation and disruption of the hydrological connectivity of Amazon freshwater 

ecosystems (Castello and Macedo 2016). Thus, assessing the integrity of freshwater systems 

becomes highly urgent due to the vulnerability of tropical biodiversity mentioned in section II. 

In particular, the Amazonian diversity was structured in a stable environment in terms of 

climate and landscape changes (Peres et al. 2010). Considering that historical stability promotes 

diversification rates (Ricklefs 2006) and thus higher levels of functional specialization and 

originality (Rodrigues-Filho et al. 2018), Amazonian biodiversity may be specially sensitive to 

the variation of environmental conditions induced by the current growing human perturbations.  

 

IV) Measuring human impacts on Amazonian fish communities: an overview 

Most of the studies assessing the impacts of mining and land use on Amazonian freshwater 

ecosystems concluded that they alter stream physical habitat and water chemistry (Mol and 

Ouboter 2004; Dias et al. 2010; Prudente et al. 2017). Contrastingly, the consequences on fish 

diversity are more contrasted. The commonly used diversity descriptors, the number of species 

and their abundance, were found not sensitive to human pressures or lacked of consistency. 

While Mol & Ouboter (2004) found an erosion of fish species richness due to small scale gold-

mining, the majority of studies failed to detect changes on this variable (Bojsen and Barriga 

2002; Brosse et al. 2011; Allard et al. 2016; Prudente et al. 2017). Surprisingly, Bojsen & 

Barriga (2002) found that total fish density increased with deforestation. Nonetheless, all the 

above-cited studies, found that species composition consistently changed under disturbance.  

More recently, studies focused on the functional aspects of communities and this 

diversity facet appeared to be more sensitive to the effects of human activities. Indeed, low 

forest cover was found to induce trends towards functional homogenization in Brazilian streams 

(Bordignon et al. 2015; Arantes et al. 2018; Leitão et al. 2018), with functionally specialized 

species sensitive to forest loss. However, the identity of the shifts displayed some discrepancies 

among studies. Community shifts towards a dominance of periphyton-feeders under 

deforestation were observed in Ecuadorian (Bojsen and Barriga 2002) and Brazilian streams 

(Leitão et al. 2018). In opposition, in logged streams and rivers in French Guiana, phytophagous 

fish were unrepresented (Allard et al. 2016). Finally, planktivorous species were favored in 

areas with low forest cover in the Amazon river floodplain (Arantes et al. 2018). 
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The effects of anthropogenic activities on Amazonian freshwater ecosystems depend on 

the type and intensity of activities (Allard et al. 2016; Brejão et al. 2018). Even though the 

majority of studies failed to report a decrease in species richness, low levels of deforestation 

(<20% of deforested watershed) caused abrupt responses of Amazonian fishes (Brejão et al. 

2018). Therefore, fish communities inhabiting Amazonian streams appear to be vulnerable to 

human activities. Species composition and functional diversity consistently responded to 

disturbances suggesting that the severity of human impacts should be assessed in a community 

ecology approach, evaluating both diversity patterns and processes (see below). Furthermore, 

all but one of the mentioned studies were performed in upstream streams, where the fauna and 

environment differ considerable from those in downstream rivers (Allard et al. 2016; Cilleros 

et al. 2017). Additionally, human impacts affect the two ecosystems differently: upstream 

streams are directly impacted whereas rivers are directly impacted but also may receive 

cumulative effects from upstream disturbances (Lindberg et al. 2011; McCluney et al. 2014). 

Thus, the effects of human activities on riverine communities need to be studied to have a more 

complete picture of the severity of biodiversity degradation in the Amazonian region. 

 

V)  How are species assembled into communities?  

To assess the severity of human impact on local communities, it is important to define how 

species are assembled into communities. The answer roots on several ecological theories, 

encompassing different mechanisms and processes acting at different spatial and temporal 

scales. Local communities are the result of a hierarchical filter in which species are 

progressively filtered from a regional pool. The regional pool represents the global diversity of 

a region and is constrained by historical and evolutionary events (Chase 2003). For instance, 

the Neotropical region is characterized by a high species richness, which has been explained by 

the complex history of this region and the high diversification rates (Rolland et al. 2014). From 

the regional pool, species will be filtered by assembly rules (Gleason 1926; Keddy 1992) and/or 

neutral processes (Connor and Simberloff 1979). Assembly rules are deterministic processes 

constraining the co-occurrences of species in local communities, whereas neutral processes 

refer to stochastic events independent to the species traits or abiotic interactions (Hubbel 2001). 

These processes may act simultaneously and their relative importance depends on the 

considered spatial scale (Weiher and Keddy 1999; Webb et al. 2002). At large scales, the size 

of the local and regional species pools, as well as random colonization events and differences 
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in species dispersal abilities will determine the species capacity to arrive to a community 

(Hubbel 2001; Fraaije et al. 2015). At local scales, two main processes, based on the niche 

concept (Hutchinson 1957), will structure communities. First, local environmental conditions 

act as filters and select species able to persist in a given community according to their traits. 

This process is called environmental filtering (Keddy 1992). Then, limiting similarity will also 

shape local communities (Macarthur and Levins 1967), this process represents the competitive 

exclusion from a suitable environment by species having similar ecological strategies. 

The ecological processes structuring local communities shape diversity patterns and the 

comparison between diversity facets across different spatial scales allow to disentangle their 

relative importance (Keddy 1992; Götzenberger et al. 2012). Lower functional dissimilarity 

compared to taxonomic dissimilarity among communities within a region may suggest that 

environmental conditions select particular species traits and strongly structures community 

assembly. For instance, this pattern was found for temperate fish communities in France, 

suggesting that they are mainly structured by environmental filtering (Cilleros et al. 2016). 

Contrastingly, fish communities inhabiting tropical streams in French Guiana exhibited higher 

functional dissimilarity among communities than taxonomic dissimilarity, suggesting that they 

are mainly structured by dispersal limitation (Cilleros et al. 2016). Furthermore, at local scale, 

communities mainly ruled by limiting similarity should harbour species with different 

ecological strategies than expected randomly (Weiher and Keddy 1999). In contrast, under 

predominant environmental filtering, communities are expected to have mostly similar species 

sharing traits that allow them to tolerate specific abiotic conditions.  

As explained before, human activities are reorganizing local diversity patterns mediated 

by biotic homogenization and species loss. Moreover, considerable losses of functional 

diversity were recorded for coral reef fish communities due to increasing human population 

density (D’agata et al. 2014) and for amphibians, birds and mammals under land use (Ernst et 

al. 2006; Flynn et al. 2009). Thus, ecological processes shaping communities may be also 

influenced by anthropization. Accordingly, functional diversity was found to decrease faster 

than taxonomic diversity under global change (Kuczynski and Grenouillet 2018) and land use 

(Gutiérrez-Cánovas et al. 2015) in temperate freshwater ecosystems. This suggests that 

disturbed communities are mainly structured by environmental filtering, excluding functions 

not adapted to those altered environments (See Figure 1A for an illustration). Therefore, 

assessing how structuring processes interact with disturbance may provide a deeper 

understanding of the effect of anthropogenic activities on Amazonian biodiversity. 
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Figure 1: Illustration of the diversity patterns resulting from ecological process acting at local scale. Expectations 

under disturbance (A) and along the upstream-downstream gradient (B). 

 

VI)  Assessing human impacts in a directionally connected network 

Freshwater ecosystems are also among the most threatened ecosystems in the world (Sala 2000; 

Carpenter et al. 2011) and assessing the severity of human impacts on freshwater ecosystems 

needs to take into account their dendritic network structure. Indeed, an important feature of 

freshwater ecosystems is the longitudinal directional connectivity due to the movement of water 
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from the headwaters to the ocean (McCluney et al. 2014; Moore 2015). Therefore, two 

considerations are necessary to measure human impacts on diversity patterns and processes. 

First, given the longitudinal connectivity of freshwater ecosystems, upstream 

disturbances can have consequences downstream. Indeed, effects of mountaintop mining have 

been documented for the water quality and biodiversity downstream from the mining sites 

(Palmer et al. 2010). Furthermore, the combined effect of multiple upstream perturbations can 

lead to cumulative downstream impacts (Lindberg et al. 2011) (Figure 2A). Accordingly, rivers 

are suggested to integrate and redistribute disturbance effects from upstream to downstream 

(Vörösmarty et al. 2010). Nonetheless, rivers can also promote resilience and resistance to 

human disturbances (Figure 2B). Specifically, river systems integrate processes across multiple 

spatial scales and broad distances over time resulting in temporal asynchrony and habitat 

heterogeneity across connected patches (McCluney et al. 2014). Individuals can move 

throughout the river system and recolonize new patches to avoid locally unsuitable conditions. 

Moreover, tributaries that are less or not impacted can vehicle undisturbed water inputs and 

therefore dilute disturbance effects (Vörösmarty et al. 2010). Thus, it is important to determine 

the spatial extent of upstream impacts to better assess the effects of human activities on 

freshwater communities.  

 

Figure 2: Possible downstream ecological responses to upstream perturbations. 

(A) Downstream sensitivity and cumulative effects.  

(B) Downstream resilience and resistance.  

 

Second, environmental conditions and diversity patterns vary along the upstream-

downstream gradient (Vannote et al. 1980; Ibanez et al. 2007). Consequently, network position 

may influence community assembly processes, as the relative importance of assembly 

processes may vary along natural environmental gradients. For instance, upstream streams are 
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strongly influenced by local environmental conditions and exhibit high environmental 

variability (Poff 1997), this leaves few species with particular traits able to tolerate these 

conditions. In opposition, environmental stability, habitat size and complexity increase 

downstream stability promoting high species richness in downstream large rivers. Therefore, in 

headwater streams, environmental filtering may be of greater importance, whereas limiting 

similarity may be predominant in downstream habitats (Figure 1B).  

 

VII) The study area: French Guiana 

1) Description of the territory 

French Guiana is located in the Northern East of the Amazonian region (sensu lato, including 

the Guiana shield and the Amazon river drainage, see Figure 3). Almost the entire territory (c.a. 

96%) is covered by a dense primary Amazonian rainforest, representing the largest area of un-

fragmented rainforest in the world (c.a. 80 000 km²). This territory is part of a unique geological 

unit, the Guiana Shield (Figure 3). The forests of the Guiana Shield cover around 30% of the 

Amazonian forest (c.a. 1.6 million km2).  

A dense river network composed of seven large river basins covers French Guiana. 

Small streams (water depth <1 m; stream width <10 m) represent 70% of all running waters in 

the territory and have been found to display environmental conditions and diversity patterns 

contrasted with large rivers (Dedieu et al. 2015; Allard et al. 2016; Cilleros et al. 2017). This 

river network shelter typical Amazonian freshwater fauna with more than 400 described fish 

species that exhibit a high diversity of forms (See Figure 1 for some illustrations). In addition, 

the rivers basins share 50% of the species and the other half is represented by species endemic 

to the different basins (Le Bail et al. 2012). These distribution patterns result from a mixture of 

different species pools arising from the complex biogeographical history of the Neotropical 

region (Cilleros et al. 2016) and Guineans basins. In fact, most of the Amazonian basins dried 

up during the last Quaternary glaciation with the exception of the Maroni and the Eastern 

Amazon, which acted as fish refugees. Thus, post-glacial recolonization resulted from those 

river basins (de Mérona et al. 2012).  
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Figure 3: Map of the study area indicating the main human impacts threatening freshwater biodiversity in 

French Guiana. Deforestation and Gold-mined surfaces were extracted from landsat images (Hansen et al. 

2010; WWF 2016; Rham et al. 2017). Inhabited places were obtained from Geonames website. The inset map 

on the right indicates the location of the study area in South America. The Guiana Shield is delimitated with 

dashed green lines.  

Despite representing the largest area of un-fragmented rainforest in the world, French 

Guiana is facing an unprecedented rise of human threats (Figure 3) due to deforestation for 

agriculture, gold-mining and urbanization, like the rest of the Guiana shield (Rham et al. 2017). 
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In the last decades, gold-mining activities have increased with the rise in the gold price 

(Hammond et al. 2007). Even though deforestation induced by gold-mining still represents a 

low proportion compared to other regions (Rham et al. 2017), its rapid expansion is alarming. 

Deforestation induced by mining activities increased from more than 40 km2 of forest in 2001, 

to nearly 115 km2 in 2006 (Hammond et al. 2007). For instance, in the sampling sites used for 

this work (see below), the percentage of deforested surfaces upstream of the sites for gold-

mining increased considerably (Figure 4) between 2000 and 2015. Mining activities are 

developed through legal enterprises or illegal small-scale mining. Besides the impact of 

deforestation for roads or infrastructure on the surrounding vegetation, this activity has a 

detrimental effect on the benthic habitat and turbidity levels (Mol and Ouboter 2004; Dedieu et 

al. 2014). These consequences deeply affect community structure even after the cessation of 

the mining activity (Brosse et al. 2011; Tudesque et al. 2012). Furthermore, the mercury used 

to amalgamate the gold is accumulated downstream and bio-amplifies through trophic transfer 

(Hammond et al. 2007).  

 

 

Figure 4: Comparison of the percentage of surfaces deforested for gold-mining between 2000 

and 2015 across French Guiana. The percentage of deforested surfaces was calculated within 

the sub-basin area upstream of our sampling sites (see Figure 6). 

 

2) Sampling issues  

Unfortunately, there is a technical issue in French Guiana for sampling freshwater fish 

communities. Traditional sampling methods are destructive (Hubert et al. 2012) or inefficient  

and vary between streams and rivers (Allard et al. 2014; Cilleros et al. 2018). Small streams 

have been usually sampled using rotenone or electrofishing. However, rotenone is banned in 
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the territory because it is destructive and the low conductivity of the Guianense water makes 

electro-fishing inefficient. For rivers, the current fish sampling method is gillnet sampling. This 

method corresponds to passive captures based on the movement of fishes and is thus species 

selective (Murphy and Willis 1996; Cilleros et al. 2018). In fact, the probability of catching 

fishes with this method will vary depending on species morphology (small species are not 

caught and species with high bodies and prickly teeth or fins have a higher probability of 

catching than elongated species) and behavior (gregarious and mobile species have a higher 

probability of capture than solitary and less mobile species). Moreover, gill nets are also habitat 

selective since they can be only installed in deep and stagnant waters. Finally, both types of 

sampling methods collect fishes in a limited range of habitats, giving partial inventories of the 

fauna (Cilleros et al. 2018). 

The environmental DNA (eDNA) metabarcoding approach has been claimed as a 

promising tool for measuring biodiversity (Taberlet et al. 2012). In aquatic systems, the method 

involves capturing DNA molecules that flow in the water. The obtained DNA is extracted, 

amplified, sequenced and assigned to species by comparing the DNA sequences to a reference 

molecular database (see Figure 5). Ultimately, species inventories can be built according to the 

detected species.  

 

Figure 5: Illustration of the main steps of the eDNA procedure. Water is filtrated to collect the DNA released by 

organisms. The DNA is extracted, amplified using taxa specific primers and sequenced. The obtained reads are 

filtered using bio-informatic analyses and assigned to species present in a reference database according to a 

similarity threshold. 
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In spite of a wide use in temperate rivers and streams (Civade et al. 2016; Valentini et 

al. 2016; Pont et al. 2018), the method is still under development in other ecosystems, such as 

tropical ecosystems. In Guianese streams and rivers, the method has proved to be efficient 

(Cilleros et al. 2018; Jerde et al. 2019). Preliminary tests in French Guiana were performed, in 

which 39 freshwater fish communities were sampled using the protocol designed by Valentini 

et al. (2016) for temperate rivers. These tests showed that one water sample permitted to detect 

a substantial part of the fauna without erroneous detections (i.e. species not expected to occur 

in the detected sites according to their known habitat preferences and watershed occurrence). 

However, this standard protocol did not permit to detect the whole fish fauna of the studied 

sites (Cilleros et al. 2018) compared to traditional methods. We hence hypothesized that 

increasing the sampling effort will enhance detection rates. Indeed, some aspects of the method 

remain poorly evaluated even in temperate ecosystems. The growing interest in this method 

resulted in the development of a plethora protocols for each step of the eDNA procedure and 

the protocol choice may influence the detection of aquatic species (Goldberg et al. 2016). 

Despite an extended literature on optimizing the analyses of eDNA samples to improve 

detection performance (marker choice, extraction, sequencing and bioinformatics protocols), 

the sampling effort (i.e. the volume of sampled water) has benefitted from much less attention. 

This results in a high variability in sampling efforts across studies (ranging from few centiliters 

to tens of liters), making comparisons between studies difficult and raising uncertainties about 

the completeness of such inventories. Thus, this method needs to be optimized to be used for 

the assessment of human impact on tropical rivers and streams. 
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VIII) Objectives 

The main objective of this work is to better understand how deeply anthropogenic disturbances 

are affecting fish communities in Amazonian streams and rivers. A community ecology 

approach is proposed to define how anthropogenic activities are affecting taxonomic and 

funcional diversity patterns, as well as ecological processes, in which the longitudinal 

connectivity of freshwater ecosystems is considered. This work was performed using a non-

invasive sampling method that allows to equally sampling streams and rivers across French 

Guiana.  

This work is divided in 4 parts: 

1) Optimization of the eDNA method for sampling species-rich communities in tropical 

rivers 

The aim of this part is to determine the sampling effort (filtered water volume) needed to get 

optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. 

Ten eDNA replicates were collected in six sites (Figure 6) following the protocol developed by 

Valentini et al. (2016) for temperate rivers. Each replicate was collected by filtering water for 

30 minutes, corresponding to 34 liters of filtered water. Specifically, we sought to define the 

optimal sampling effort to describe communities through three diversity descriptors: species 

richness, dissimilarity of species composition and community structure patterns among sites. 

Additionally, we compared eDNA inventories with capture-based inventories collected in the 

same sites. The sampling, laboratory and bio-informatic protocols validated during this study 

achieved in 2016, were then used with the optimal sampling effort for the rest of the 81 other 

study sites sampled in 2017. 

2) Definition of the spatial extent and strength of anthropogenic impacts on fish 

biodiversity in rivers 

The main goal of this part was to measure the strength of anthropogenic impacts on fish 

taxonomic diversity and functional diversity in riverine habitats. We also investigated the 

optimal spatial extent to measure upstream anthropogenic effects on local fish fauna. The eDNA 

technique validated in Chapter 2 was used to collect data from 50 river sites (see Figure 6). The 

intensity of anthropogenic impacts was calculated by summing deforested surfaces due to gold-

mining, agriculture and urbanization extracted from GIS data. Therefore, we used a global 

deforestation variable that accounts for the effects of those three types of human impacts. 
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Upstream deforestation intensity at each site was then calculated at different spatial extents by 

widening the spatial extent in which deforestation surfaces were calculated, from the immediate 

vicinity of the site (0.5 km upstream) to 150 km upstream. From this Chapter the molecular 

reference database developed by (Cilleros et al. 2018) was actualized. In 2016, I collected tissue 

from 264 fish individuals across French Guiana. This allowed to add 158 individuals and 24 

species to the reference database, which includes now 255 species and 661 individuals. 

3) How anthropogenic impacts modify diversity patterns and ecological processes? 

The aim of this part was to compare the effects of two environmental gradients, a deforestation 

gradient and the upstream-downstream gradient, on fish diversity patterns but also on the 

ecological processes shaping fish communities. We used 50 river sites and 37 stream sites 

(Figure 6) sampled with the eDNA protocol validated in Chapter 2. The deforestation intensity 

upstream from our fish sampling sites was calculated using the method developed in the Chapter 

3. Ecological processes were assessed at local scale by analysing the relationships between 

taxonomic and functional richness. These relationships were confronted to null models 

simulating random species assembly, which permitted to test the hypothesis that deforestation 

constitutes a strong environmental filter and therefore drive assemblages toward non-random 

functional and ecological clustering (see Chapter 1, part V). Rivers and streams sites were 

considered separately given that stream and river fauna and environment significantly differ. 

4) How anthropogenic impacts modify the functional structure of fish communities? 

In this part, the multifaceted effects of anthropogenic impacts on the functional structure of fish 

communities were described. Thus, we deepened the results of Chapter 4 by not only 

considering the effect of anthropogenic disturbances on functional richness, but also on the 

overall functional structure of assemblages including different facets such as functional 

richness, divergence, evenness and identity as proposed by Villéger et al. (2008) and Mouillot 

et al. (2013). As in Chapter 3, we used 50 river sites and 37 stream sites (Figure 6) sampled 

using the eDNA protocol validated in Chapter 2 and we analyzed separately stream and river 

communities. Deforestation intensity upstream from our fish sampling sites was calculated 

using the method developed in the Chapter 3.  
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IX) Data description 

1) Sampling sites 

 

Figure 6: Map of the study area indicating the 86 fish sampling sites used for this work. Orange triangles correspond to 

stream (N= 37) sites and green circles correspond to river sites (N= 50) sampled with one eDNA replicate. Black dots 

in the center of the symbols indicated the sites used in the Chapter 2, which were sampled with 10 replicates. For the 

Chapter 3 only river sites were used. For the Chapters 4 and 5 all sites were used. The 9 main river basins were indicated. 

For this work, 87 sites were sampled during the dry season (September-November) 

across nine river basins of French Guiana from 2016 to 2017 (Figure 6). We sampled 50 river 

sites and 37 stream sites. The stream sites were less than 10 meters wide and 1 meter depth, 

while river sites were wider than 30 meters and deeper than 1 meter. This distinction between 

streams and rivers is frequently used to distinguish these two distinct environments where the 
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fauna and environmental conditions significantly (Dedieu et al. 2015; Allard et al. 2016). 

Moreover, sampling sites were selected to take into account undisturbed sites but also sites 

subject to human disturbances such as urbanization, agriculture and gold-mining. The sampling 

was funded by the TULIP and CEBA Labex, the DEAL Guyane, Office de l’Eau Guyane 

(Aquatic Metabarcoding project), SPYGEN (for more details see Appendix). The Parc 

Amazonien de Guyane and Hydreco provided logistical facilities to access to some of the sites. 

Of the 87 sites, I contributed to the sampling of 50 sites and the remaining 37 sites were sampled 

during a VigiLife project along the Maroni River. 

2) Biodiversity measures 

For each site, the number of detected species in the eDNA samples was used to measure 

taxonomic diversity. To describe the functional diversity of the sampled communities, 

morphological and ecological traits were attributed to the detected species using information 

from Fishbase (www.fishbase.org), the Atlas of fish species from French Guiana (Planquette et 

al. 1996; Le Bail et al. 2000) and fish pictures. We used two types of traits as they are 

complementary to measure the functional diversity of freshwater fish (Kuczynski et al. 2018a). 

Functional trait 
Measure  

(ratio or categories) 
Function Type References 

Maximum body length Fish base (cm) 

Synthetic: 

metabolism, trophic 

impacts, locomotion 

nutrient cycling 

Morphological 

Toussaint et al. (52) 

and Blanchet et al. 

(36) 

Body elongation Bl/Bd 

Locomotion 

Reecht Yves (53) 

Eye vertical position Eh/Bd Winemiller (54) 

Body lateral shape Hd/Bd Toussaint et al. (52) 

Pectoral fin vertical 

position 
PFi/Bd Dumay et al. (55) 

Pectoral fin size  PFl/Bl Fulton et al. (56) 

Caudal peduncle throttling CFd/CPd Webb (57) 

Relative eye size Ed/Hd 

Food acquisition 

Boyle & Horn (58) 

Oral gape position Mo/Bd Dumay et al. (55) 

Relative maxillary length Jl/Hd Toussaint et al. (52) 

Relative barbell length Bbl/Bl Villéger et al. (59) 

Territoriality Yes, no 

Behavior 

Ecological Villéger et al. (59) 

Motility Mobile, sedentary 

Gregariousness Gregarious, solitary 

Position in the water 

column 

Benthic, bentho-

pelagic, pelagic Habitat preference 

Preferred substrate Hard, soft, none 

Table 1: Morphological and ecological traits and measures used to describe functional diversity for Chapter 2, 3 

and 4. Their corresponding functions are indicated. See Su et al. (2019), Toussaint et al. (2016) and Villéger et al. 

(2010) for details on morphological measures. 

For the morphological traits, 12 measurements (Figure 7) were achieved on side view 

pictures gathered during the last 10 years to compute 10 unit-less ratios reflecting two key 

http://www.fishbase.org/
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functions: locomotion and food acquisition (see Table 1 for details). Locomotion is related to 

habitat use, vertical position in the water column, hydro-dynamism, as well as fin use for 

manoeuvrability, propulsion and acceleration efficiency. Food acquisition considers the 

functional traits related to the size of food items, feeding method in the water column, filtering 

ability, prey detection and trophic position. We measured morphological traits on as much 

individuals as possible (1 to 20, according to the species) and used the average value of all 

measures per species. We did not consider intraspecific variability in morphological traits, 

because it has been found to be negligible in a recent study conducted using the same dataset 

(Toussaint et al. 2018). Additionally, the maximum body length of species obtained from 

Fishbase (www.fishbase.org) was used to represent species maximal body size, which is 

considered as a synthetic functional trait (Blanchet et al. 2010). Thus, we used 11 continuous 

variables to characterize fish morphological diversity.  

 

 

For ecological traits, I compiled a database of ecological traits using Fishbase 

(www.fishbase.org) and the Atlas of fish species from French Guiana (Planquette et al. 1996; 

Le Bail et al. 2000). The ecological database includes five qualitative traits related to trophy, 

behavior and habitat (see Table 1 for details) preference of 390 Guianese species.  

The ecological and morphological traits were combined to build functional spaces and 

assess functional diversity through different facets according to the Chapter. Trait distances 

between all the species detected in each part of the study were calculated using Gower’s 

distance, which considers different types of traits (here categorical and continuous) while 

standardizing them and handling missing data. The distance matrix was ordered into a 

multidimensional space using Principal Coordinates Analysis (PCoA). Then, a global 

functional space was built with the five retained axes of the PCoA, which accounted for 45% 

of total variance. The number of dimensions was chosen as the optimal number of axes 

determined according to (Maire et al. 2015). 

Figure 7: Morphological measures (from Toussaint et al. 2016). 
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Chapter 2: Optimization of the eDNA method for sampling species-

rich communities 
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Abstract 

Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic 

biodiversity. It is based on the capture of DNA from a water sample. The sampled water 

volume, a crucial aspect for efficient species detection, has been empirically variable 

(ranging from few centiliters to tens of liters). This results in a high variability of sampling 

effort across studies, making comparisons difficult and raising uncertainties about the 

completeness of eDNA inventories.  

Our aim was to determine the sampling effort (filtered water volume) needed to get 

optimal inventories of fish assemblages in species-rich tropical streams and rivers using 

eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), 

resulting in sampling efforts ranging from 17 to 340 liters of water.  

We show that sampling 34 liters of water detected more than 64% of the expected fish 

fauna and permitted to distinguish the fauna between sites and between ecosystem types 

(stream versus rivers). Above 68 liters, the number of detected species per site increased 

slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters 

provided little additional information, testifying that filtering 34 to 68 liters is sufficient 

to inventory most of the fauna in highly diverse tropical aquatic ecosystems.  
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Introduction 

In recent years, environmental DNA (eDNA) metabarcoding has been claimed as a promising 

tool to estimate biodiversity and its change through time (Taberlet et al. 2012; Thomsen and 

Willerslev 2015; Keck et al. 2017). In particular, this technique is now employed to identify 

the free DNA released by organisms in their environment (Taberlet et al. 2012). In aquatic 

ecosystems, the use of eDNA has been widely developed during the last years and has turned 

from the detection of specific species of amphibians, fish, mammals, insects and crustaceans 

(Thomsen et al. 2012) to the detection of whole communities (Evans et al. 2017; Lopes et al. 

2017; Civade et al. 2016; Hänfling et al. 2016; Olds et al. 2016; Valentini et al. 2016). The 

latter studies besides reconstructing entire aquatic communities of fishes and amphibians, 

compared the detection performance between eDNA metabarcoding and capture-based 

sampling methods used to collect specimens in streams and rivers. Through this, they showed 

that both methods provided similar or more complete species inventories, hence opening 

avenues to use this method for ecological and conservation studies.  

Obtaining biodiversity inventories with eDNA metabarcoding requires several 

subsequent steps including: DNA sampling and collection, laboratory protocols (DNA 

purification, marker targeting and sequencing) bioinformatics analyses and taxonomic 

assignment of sequences. The growing interest in this method resulted in the development of a 

considerable variety of protocols for each step of the eDNA procedure (Goldberg et al. 2016). 

This makes comparisons between studies challenging considering that it has been illustrated 

that the choice of markers (Hänfling et al. 2016; Evans et al. 2017), DNA collection methods 

(Deiner et al. 2015; Eichmiller et al. 2016) and laboratory protocols (Deiner et al. 2015; 

Eichmiller et al. 2016; Evans et al. 2017) may influence the detection of aquatic species. 

Furthermore, the environmental conditions and the targeted taxon can also affect detection rate 

because eDNA release varies among taxa (Deiner et al. 2015; Mächler et al. 2016) and water 

physiochemical factors may impact eDNA degradation (Barnes et al. 2014). Therefore, the 

performance of biodiversity detection in the water depends on a combination of protocols 

choice, as well as the environmental conditions and the targeted taxonomic group.  

Despite an extended literature about the optimization of eDNA samples analysis to 

improve detection performance, less attention has been paid to how eDNA sampling design can 

be optimized. Consequently, there is a wide range of variation in the volume of sampled water 

among studies, ranging from a few centiliters to tens of liters (Mächler et al. 2016). 
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Nonetheless, sampling effort is a fundamental aspect for any ecological study or monitoring 

procedure (Gotelli and Colwell 2001) and might deeply affect results and interpretations. Some 

eDNA studies suggested that increasing the volume of sampled water improved the quality of 

the biodiversity assessment. For example, detection rates of anurans in tropical streams were 

higher when increasing sampling effort from 20 to 60 liters of water (Lopes et al. 2017). 

Moreover,  Mächler et al. (2016) found a significant positive relationship between the sampled 

water volume and the detection rate for a macro-invertebrate species. In spite of this, due to 

financial and technical limitations, a threshold must be fixed in order to optimize eDNA 

inventories. This consists in determining the best compromise between sampling effort (and its 

associated financial and time costs) and accuracy of the biodiversity estimate.  

Recently, the sampling effort needed to accurately estimate the fish species richness in 

temperate lakes has been assessed using spatial replicates and revealed that 5 to 20 liters of 

water were needed to detect the entire fish fauna (Hänfling et al. 2016; Evans et al. 2017). 

However, to date, the optimization of the eDNA sampling effort for the assessment of the whole 

community diversity in running waters (streams and rivers) has never been assessed. A better 

understanding of this effect will allow optimizing sampling efforts without reducing diversity 

estimates. For instance, Nascimento et al. (2018) found that the volumes of sampled sediments 

strongly impacted diversity assessments of benthic eukaryotic communities. The stakes of this 

understanding will be higher in tropical ecosystems, where large sampling efforts are often 

needed (Schneck and Melo 2010). Indeed, describing tropical communities can be challenging 

given the wide range of species diversity they host (Albert and Reis 2011), and the strong 

contribution of rare species to tropical biodiversity and ecosystem functioning (Mouillot et al. 

2013, 2014). 

The aim of this study was to determine the optimal sampling effort for fish inventories 

using eDNA metabarcoding in tropical streams and rivers. We built on preliminary tests in 

French Guiana in which 39 freshwater fish communities were sampled using the protocol 

designed by Valentini et al. (2016) for temperate rivers. Those tests showed that one water 

sample of ca. 50 liters permitted to detect a substantial part of the fauna without erroneous 

detections (Cilleros et al. 2018) (i.e. species not expected to occur in the sampled sites according 

to their known habitat preferences and watershed occurrence). Nevertheless, the standard 

protocol designed by Valentini et al. (2016), did not permitted to detect the whole fish fauna of 

the studied sites (Cilleros et al. 2018) comparing with traditional methods. We hence 
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hypothesized that increasing sampling effort will enhance detection rate. To test this, we filtered 

water in four highly diverse Guianese streams and rivers using the VigiDNA 0.45 μm; 

SPYGEN filtering system. In each site we took 10 replicates. Each replicate was collected by 

filtering for 30 minutes, corresponding to 34 liters of filtered water (standard protocol). We 

then analyzed how sampling effort (from 34 to 340 liters) affects the estimation of fish 

biodiversity. Specifically, we sought to define the optimal sampling effort to describe 

communities through three diversity descriptors: species richness, dissimilarity of species 

composition and community structure patterns between sites. In addition, two sites were 

sampled for half of the time (relaxed protocol) than the other four sites to test whether reducing 

the filtering volume to 17 liters per replicate will degrade the diversity estimates (due to a lower 

filtered volume), or will improve the results as increasing filtering time can increase the 

accumulation of PCR inhibitors in the filter (Matheson et al. 2014). 

 

Materials and methods 

eDNA sampling 

This study was conducted in French Guiana in November 2016 (during the dry season). This 

territory is subjected to an equatorial climate, and is covered by a dense primary rainforest. 

Freshwater bodies in this country host nearby 405 fish species (Le Bail et al. 2012), making 

Guianese freshwater ecosystems and excellent place to optimize eDNA sampling effort in 

species-rich communities. Six sites corresponding to three small streams and three rivers, were 

sampled (See Figure 6 in Chapter 1-VIII). Stream sites (S1, S2, and S3) are less than 10 meters 

wide and 1 meter depth whereas river sites (R1, R2, and R3) are wider than 30 meters and 

deeper than 1 meter. Those sites belong to distinct watersheds (Mana (S1); Maroni (S2); Comté 

(R1); Sinnamary (R2); Approuague (S3, R3)). They are free from human settlements upstream 

and are therefore little affected by human activities (See supplementary Table S1 for more 

details on localities and their characteristics).  

At each site, 10 filtrations were performed in the same place, resulting in 10 field 

replicates per site. Each filtration was done following Valentini et al. (2016) protocol for 

running waters. Per replicate, we filtered 34 liters of water during 30 minutes in four sites (S1, 

S2, R1 and R2). In two complementary sites (S3 and R3) we filtered 17 liters of water during 

15 minutes. This resulted in two different treatments called “standard protocol” and “relaxed 
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protocol” respectively. This permitted to test if filtering volume can be optimized without 

decreasing detection performance. For each replicate, a peristaltic pump (Vampire sampler, 

Burlke, Germany) and a single-use tubing were used to pump the water into a single-use 

filtration capsule (VigiDNA 0.45 μm; SPYGEN, le Bourget du Lac, France). The input part of 

the tubing was placed few centimeters below the surface in zones with high water flow as 

recommended by Cilleros et al. (2018). Sampling was achieved in turbulent area (rapid 

hydromorphologic unit) to ensure an optimal homogenization of the DNA throughout the water 

column. To avoid DNA contamination among sites, the operator always remained downstream 

from the filtration area and stayed on the bank (for streams) or on emerging rocks (for rivers). 

At the end of the filtration, the filtration capsule was emptied of water, filled with 80 mL of 

CL1 conservation buffer (SPYGEN) and stored in individual sterile plastic bags kept in the 

dark. Samples were then stored at room temperature for less than one month before DNA 

extraction. 

Table 1: Site chatacteristics: site local name, watershed membership, average width in meters, site position 

(WGS84) and distance from the source in kilometers. The standard sampling protocol consists in collecting eDNA 

from 34 liters of filtered water whereas the relaxed protocol consists in collecting eDNA from 17 liters of filtered 

water. 

 

Laboratory and bioinformatics analyses of eDNA 

For DNA extraction, each filtration capsule was agitated for 15 min on an S50 shaker (cat 

Ingenieurbüro™) at 800 rpm and then emptied into a 50-mL tube before being centrifuged for 

15 min at 15,000×g. The supernatant was removed with a sterile pipette, leaving 15 mL of 

liquid at the bottom of the tube. Subsequently, 33 mL of ethanol and 1.5 mL of 3M sodium 

acetate were added to each 50-mL tube and stored for at least one night at -20°C. The tubes 

were centrifuged at 15 000 ×g for 15 min at 6°C, and the supernatants were discarded. After 

this step, 720 µL of ATL buffer from the DNeasy Blood & Tissue Extraction Kit (Qiagen) was 

Code Site name Watershed Width (m) Latitude Longitude 
Distance from 

the source (km) 

Sampling 

protocol 

S1 Crique à l’est Mana 3.4 - 3.97 3.66 -53.22 4.1 Standard 

S2 Point chaud Maroni 4.1 - 10 3.61 -53.17 8.3 Standard 

S3 
Crique 

Museum 
Approuague 1.7 - 5.5 4.04 -52.68 4.7 Relaxed 

R1 Lysis Comté 45 - 55 4.51 -52.51 89.3 Standard 

R2 Saut dalles Sinnamary 30 - 40 4.55 -52.90 124.6 Standard 

R3 Aratai Approuague 30 - 40 4.03 -52.70 95.5 Relaxed 
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added. The tubes were then vortexed, and the supernatants were transferred to 2-mL tubes 

containing 20 µL of Proteinase K. The tubes were finally incubated at 56°C for two hours. 

Afterwards, DNA extraction was performed using NucleoSpin® Soil (MACHEREY-NAGEL 

GmbH & Co., Düren Germany) starting from step six and following the manufacturer’s 

instructions. The elution was performed by adding 100 µL of SE buffer twice. Four negative 

extraction controls were also performed. They were amplified and sequenced in the same way 

as and in parallel to the field replicates to monitor possible laboratory contaminants. After the 

DNA extraction, the samples were tested for inhibition by qPCR following the protocol in Biggs 

et al. (2015) If the sample was considered inhibited, it was diluted 5-fold before the 

amplification. 

We performed DNA amplifications in a final volume of 25 μL including 1 U of 

AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA), 10 mM of Tris-HCl, 

50 mM of KCl, 2.5 mM of MgCl2, 0.2 mM of each dNTP, 0.2 μM of “teleo” primers (Valentini 

et al. 2016) and 3 μL of DNA template. We also added human blocking primer for the “teleo” 

primers with a final concentration of 4 μM and 0.2 μg/μL of bovine serum albumin (BSA, 

Roche Diagnostic, Basel, Switzerland) to the mixture. We performed 12 PCR replicates per 

field replicate. The forward and reverse primer tags were identical within each PCR replicate. 

The PCR mixture was denatured at 95°C for 10 min, followed by 50 cycles of 30 s at 95°C, 30 

s at 55°C and 1 min at 72 °C and a final elongation step at 72°C for 7 min. This step was done 

in a room dedicated to amplified DNA with negative air pressure and physical separation from 

the DNA extraction rooms (with positive air pressure). We also amplified the four negative 

extraction controls and three PCR negatives controls (with 12 replicates as well) and sequenced 

them in parallel with the 720 PCR replicates (6 sites, 10 field replicates per site and 12 PCR 

replicates per field replicate). We pooled the purified PCR products in equal volumes to achieve 

an expected sequencing depth of 500,000 reads per sample before the libraries preparation. Five 

libraries were prepared using the Metafast protocol (https://www.fasteris.com/metafast), a 

PCR-free library preparation, at Fasteris facilities (Geneva, Switzerland). Sequencing were 

performed using an Illumina HiSeq 2500 (2x125 bp) (Illumina, San Diego, CA, USA) and the 

HiSeq SBS Kit v4 (Illumina, San Diego, CA, USA) following the manufacturer’s instructions 

at Fasteris facilities (Geneva, Switzerland).  

The sequence reads were analyzed using the programs in the OBITools package 

(http://metabarcoding.org/obitools (Boyer et al. 2016)) following the protocol described in 

https://www.fasteris.com/metafast
http://metabarcoding.org/obitools
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Valentini et al. (2016). The ecotag program was used for the taxonomic assignment of 

molecular operational taxonomic units (MOTUs) using a threshold of 98% of identity with the 

reference database available from Cilleros et al. (2018), that counts 130 Guianese fish species. 

The GenBank nucleotide database was checked but Guianese fishes being poorly informed 

(most of the sequences are from Cilleros et al. (2018)), it did not provided additional 

information in our case. We discarded all MOTUs with a frequency of occurrence below 0.0003 

per library in each sample, considered as tag-jumps (Schnell et al. 2015). These thresholds were 

empirically determined to clear all reads from the extraction and PCR negative controls 

included in our global data production procedure as suggested by De Barba et al. (2014) and 

Taberlet et al. (2018). 

Comparisons with traditional capture-based methods 

All the capture-based samplings were achieved during the dry season from 2008 to 2016 as part 

of research and biodiversity management programs supported by the French ministry of 

environment (DEAL), the French Guyana National park (PAG), and the French National Center 

for Scientific Research (CNRS). Stream fishes were sampled using rotenone, following the 

protocol described by Allard et al. (2016). Riverine fishes were sampled using a standardized 

gill-net protocol designed by Tejerina-Garro and De MéRona (2001). Since neither rotenone 

nor gill-net samples provide an exhaustive image of the fish fauna (Cilleros et al. 2018), we 

combined local inventories using gillnets and rotenone available in each site and eDNA results 

to estimate the overall fauna inhabiting each site.  

 

 Additionally, we compared the occurrence of species in the eDNA replicates with the 

commonness of the species. Since absolute commonness values are not available, the 

percentage of occurrence of each species in the watershed was used as a surrogate to species 

commonness (species occurring in more than 50% of the sampling occasions) or rarity (species 

occurring in less than 50% of sampling occasions) (Gaston, K. J 1994). More specifically, we 

compared in each site, the percentage of eDNA replicates in which a species was detected 

against the percentage of sites in which the species was captured though all the capture-based 

sampling campaigns ran since 2008 in the stream or river stretches of the considered watershed 

for stream and river eDNA sites, respectively. In streams, the captures were performed in 25, 

50, and 34 sites in the Mana, Maroni and Approuague watersheds, to which sites S1, S2 and S3 

belong, respectively. In rivers, the captures were performed in 31, 26, and 36 sites in the Comté, 
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Sinnamary and Approuague watershed, to which sites R1, R2 and R3 belong, respectively.  

 

Statistical analyses 

The obtained sequences were used to build a presence/absence matrix per field replicate and 

per site, in which only taxa detected to the species level were incorporated. Species 

accumulation curves (Gotelli and Colwell 2001) with confidence intervals were drawn for each 

site using the speccacum function to examine the impact of replication on the number of species 

detected. Additionally, expected species richness and confidence intervals were calculated for 

each site using the Chao II estimator (Chao 1989). This allowed to estimate the detection rate 

(i.e. the percentage of detected fauna with the eDNA) according to sampling effort (from one 

to ten replicates per site). The dissimilarity in species composition among replicates was 

assessed by calculating pairwise Jaccard’s distances with the vegdist function. Then, the 

dissimilarity values were ordinated using non-metric multidimensional scaling (NMDS) to 

visualize how replicated eDNA data discriminate sites and habitat (streams vs. rivers) patterns 

and to determine the sampling effort needed to identify community changes among sites. 

Differences in species compositions between sites and habitat types were statistically tested by 

permutational analysis of similarities (ANOSIM). This analysis tool allows to test the statistical 

significance of dissimilarity between groups comparing to the within groups dissimilarity using 

the rank of dissimilarity values (Clarke 1993). All the statistical analyses were performed in R 

(R Core Team 2016) using the vegan package version 2.4-4 (Oksanen et al. 2013). 

 

Results 

Total biodiversity detected  

In total, 40,838,558 reads were obtained. After the bioinformatic filtering (see Materials and 

Methods) 22,488,969 reads were retained, corresponding to 55.1% of the total reads. We found 

reads in all of the 720 PCR replicates while no reads were found in the extraction and PCR 

controls. Among all the sites and replicates, we detected 106 species, seven genus (Bryconops, 

Guianacara, Krobia, Laimosemion, Leporinus, Moenkhausia, Pimelodella) and two families 

(Characidae, Hypopomidae). A total of 279 species occurrences were detected in the six sites. 

Among those occurrences, only 5 (1.8%) were not consistent with the known distribution of the 
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species per watershed and habitat preference. The total number of species detected per site, 

when summing across the 10 replicates, ranged from 21 to 60, which accounts for 57 to 83% 

(on average 71%) of the local fauna derived from fish surveys using both capture-based and 

eDNA samples (see Materials 

and Methods) in each site 

(Figure 1). A proportion of the 

undetected species using 

eDNA are not informed in the 

molecular reference database 

(on average 19% of the fauna), 

but some species were not 

detected although referenced 

in our reference database (on 

average 10% of the fauna). 

This explains why Chao II 

estimated a lower species 

richness than the combined 

eDNA and capture-based 

inventories. Nevertheless, 

Chao II estimations of species 

richness using eDNA samples 

remained consistent with the 

combined eDNA and capture-

based inventories (Figure 1). 

Replication effects on detected species richness 

Under the standard protocol, replicates provided consistent numbers of detected species, as 

shown by the narrow interquartile ranges in Figure 2a. This repeatability was particularly 

marked in stream sites where species richness differed by fewer than three species between 

replicates. For river sites, species richness varied by up to 10 species between replicates. The 

number of species found in the sites sampled under the relaxed protocol was less consistent 

among replicates, with a variation of up to 15 species between replicates for the stream site and 

up to 19 species between replicates for the river site (Figure 2b).  

Figure 1: Species richness per site detected with traditional capture-

based and eDNA metabarcoding methods with the standard (a) and 

relaxed (b) protocols. The species caught only with traditional 

methods are indicated with white, those detected only with eDNA are 

indicated with grey, and those detected by both eDNA and traditional 

methods are indicated with black. The Chao II estimation of species 

richness using eDNA samples is indicated with grey asterisk. R1, R2 

and R3 are river sites and S1, S2 and S3 are stream sites. 
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Figure 2: Number of detected species among the ten replicates for each site. 

Boxplots indicate the number of detected species per replicate. Triangles indicate 

the total number of species detected in each site (combining the 10 replicates). 

(a) Sites sampled under the standard protocol. (b) Sites sampled under the 

relaxed protocol. R1, R2 and R3 are river sites and S1, S2 and S3 are stream 

sites. 

 

With one replicate, detection rate represented 64-95 % of the Chao II estimation of expected 

species richness (Figure 3). Using the standard protocol, a single replicate detected, on average, 

67% of the expected richness in rivers and 87% of the expected richness in streams. Using the 

relaxed protocol, detection rate was lower in the stream site (i.e. 79%), but remained similar to 

that obtained with the standard protocol in the river site (i.e. 69%). Adding a second replicate 

slightly increased detection rate in sites sampled under the standard protocol, with a gain of less 

than 4% and 7% in species richness for stream and river sites, respectively (Figure 3a-d). In 

contrast, under the relaxed protocol, adding a second replicate increased detection rate by more 

than 10% (Figure 3e-f). Finally, increasing sampling effort from three to 10 replicates 

marginally affected the estimates of species richness using the standard protocol, whereas a 

substantial gain of species was still observed when increasing the sampling effort with the 

relaxed protocol. In the latter case, species accumulation curves did not saturate from one to 10 

replicates (Figure 3e-f), while a species saturation was obtained until the second replicate using 

the standard protocol (Figure 3a-d). In addition, confidence intervals of the estimated species 

richness with the relaxed protocol were larger than those obtained using the standard protocol. 

This indicates that the standard protocol consistently detected similar species richness in the 10 
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replicates whereas substantial variations among replicates were observed using the relaxed 

protocol. 

 
Figure 3: Species accumulation curves (solid lines) with increasing number of replicates for sites sampled 

under the standard protocol (a-d) and the relaxed protocol (e-f). River sites are on the left and stream sites 

on the right. Confidence intervals are represented by the shaded area. Estimated species richness with the 

Chao estimator are indicated with a dashed line. The percentage of detected fauna per replicate according 

to the Chao estimator is represented on the right axis. 

 

 



40 

 

 

Species composition among replicates 

The differences in species composition between replicates were low for the sites sampled under 

the standard protocol (Figure 4a). Pairwise Jaccard’s dissimilarity indices ranged from 0.07 to 

0.32 for rivers (mean= 0.22) and from 0 to 0.19 (mean= 0.17) for streams, with significantly 

higher dissimilarity values between replicates in rivers than in streams (Kruskal-Wallis rank 

sum test: χ² =27.2; p <2.2e-16). On average, river faunas differed by 22% between replicates, 

whereas stream faunas differed by less than 17%. These results contrasted with those obtained 

using the relaxed protocol (Figure 4b), which showed a mean species dissimilarity between 

replicates higher than 30% for both stream and river sites. Accordingly, species dissimilarity 

between replicates was significantly higher with the relaxed protocol than with the standard 

protocol (Kruskal-Wallis rank sum test: χ² 149.76; p <1.8e-07). 

 

 

Figure 4: Pairwise Jaccard’s distances between replicates for each site. 

Boxplots summarize species dissimilarity values (n=40 per site) among 

replicates. (a) Sites sampled under the standard protocol. (b) Sites sampled 

under the relaxed protocol. 

 

The frequency of detection among the eDNA replicates was not influenced by the species 

commonness in any site. Indeed, common and rare species were systematically detected in all 

the replicates (Figure 5). Nevertheless, in the sites sampled under the standard protocol, most 

of the species that were detected in few eDNA replicates were rare species, given that they were 

captured in less than 50% of the traditional sampling campaigns. In contrast, using the relaxed 
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protocol, some common species (occurring in more than 60% of the capture-based sampling 

campaigns) were only detected in a few eDNA replicates. 

 

Figure 5: Relationships between the species occurrence in eDNA replicates and the species rarity. Species rarity 

was measured as the percentage of the occurrence of each species in all the capture-based samples ran in the stream 

(for stream eDNA sites) or river (for river eDNA sites) stretches of the considered watershed (see methods for 

details). Some species of interest are indicated on the figure. (a-d) Sites sampled under the standard protocol. (e-

f) Sites sampled under the relaxed protocol. River sites are on the left and stream sites are on the right. 
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Distinguishing assemblages 

The first two axes of the NMDS provided a good two dimensional representation of the 

replicates according to their species composition (Figure 6a), as the stress of the plot was lower 

than 0.1 (Clarke 1993). The first axis discriminated between river replicates and stream 

replicates. The ordination distinguished sites, without overlap between replicates from different 

sites (ANOSIM statistic R = 0.996; p < 0.001, Figure 6b), in spite of a more pronounced 

dispersion of the replicates collected under the relaxed protocol. Furthermore, the fish 

composition of the river sites were significantly distinct from those of the stream sites 

(ANOSIM R = 0.996, p < 0.001, Figure 6c), as shown by the separation of the stream and river 

sites on the NMDS. 

 

Discussion  

The eDNA metabarcoding approach has been claimed as an efficient tool to obtain inventories 

of aquatic organisms (Valentini et al. 2016), but the optimal sampling effort to get those 

inventories has never been investigated in running waters. Here we show that eDNA replicates 

not only have a high repeatability on the estimation of species richness but also on the identity 

of the species detected, which both exhibited slight variations among replicates. Besides, the 

fish fauna detected in each site was consistent with the one known from each river basin 

(Planquette et al. 1996; Le Bail et al. 2000, 2012) giving that the fish fauna of French Guiana 

is spatially structured into several freshwater ecoregions (Lemopoulos and Covain 2018). 

Moreover, our results are also consistent with the habitat preferences (streams vs rivers) of 

Guianese fishes (Planquette et al. 1996; Le Bail et al. 2000, 2012). The rare erroneous 

detections (1.8% of the detections) were already reported as the result of an incompleteness in 

our molecular reference database (Cilleros et al. 2018). Indeed, a few species not included in 

the molecular reference database were erroneously assigned to their closest relative available 

in the reference database. Furthermore, the fish fauna derived from the eDNA method 

accounted on average for 71% of the known fauna from each site whereas capture-based 

methods detected on average 61% of the fauna, making eDNA more efficient than traditional 

capture based methods. Nevertheless, discrepancies remain between methods, and none can 

provide an exhaustive image of the local fauna due to the technical limitations of the sampling 

methods. For instance, capture-based methods are size and species selective (Murphy and 
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Willis 1996), whereas eDNA detection ability is limited by the completeness of the reference 

database. Therefore, capture-based and eDNA methods complement each other and should be 

combined to get the most realistic image of the fauna.  

 

Figure 6: Species composition patterns of the six sites. (a) First two axes of the NMDS ordination of 

the water samples filtered with the standard (triangles) and the relaxed (circles) protocols. The stress of 

the plot is 0.09. Black segments represents the distance between each replicate and the centroid of their 

respective site in the two-dimensional space. The dashed lines indicate convex hulls grouping stream 

and river sites. (b) Boxplots indicate the dissimilarity ranks values between and within sites. (c) 

Boxplots indicate the dissimilarity ranks values between and within habitats. 
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The standard protocol, consisting in the filtration of 34 liters of water, provided little 

variation in the species richness and in the species composition among replicates. Those trends 

were more marked in stream sites where replicates gave consistent number and identity of the 

detected species, with no more than two species differing among replicates. Conversely, in 

rivers, the differences between replicates reach up to 10 species, suggesting that the sampling 

effort needed to survey all the detectable species may be less important in streams than in rivers. 

Certainly, higher species richness is expected in rivers than in streams, given that larger areas 

are expected to offer more niches and habitat space and potentially host more species and larger 

population sizes (McGuinness 1984). Indeed, this trend was confirmed in freshwater 

ecosystems, where species richness increases from upstream to downstream (Oberdorff et al. 

1993; Cilleros et al. 2017). Accordingly, the volume of water needed to get a realistic image of 

the fauna should increase with the size of the system.  

For both stream and river sites, a substantial part of the fish fauna was recovered with 

only few eDNA replicates using the standard protocol. On average, 87% of the expected fauna 

from small streams, counting 21 to 48 species, was detected with a single replicate of 34 liters. 

Adding a second replicate (i.e. 68 liters of water) enhanced this detection up to 91%. For river 

sites, a single replicate was sufficient to detect 67% of the fauna, counting 54 to 60 species, and 

adding a second replicate enhanced the detection rate up to 74%. In addition, in the four sites 

most of the species were systematically detected in 100% of the eDNA replicates. This part of 

the fauna detected in all replicates included both common and rare species. For instance, 

Hoplias aimara or Myloplus ternetzi, two common and widespread fish species in French 

Guiana rivers (Planquette et al. 1996), were detected in all the eDNA replicates of all the river 

sites. Similarly, Hypopomus artedi and Sternopygus macrurus, although rarely captured in 

rivers, are known to have colonized all the major watersheds of French Guiana (Planquette et 

al. 1996) and were consistently detected in all of the eDNA replicates of the rivers. In addition, 

the few species not systematically detected in all the eDNA replicates of a given site were rare 

species, such as Hyphessobrycon roseus in site S2, an uncommon species in French Guiana 

(Planquette et al. 1996; Le Bail et al. 2000). This parallels Mächler et al. (2016) results, 

showing that the detection of a rare macro-invertebrate species needs a higher sampling effort 

than the detection of the common species. Likewise, Lopes et al. (2017) showed that increasing 

sampling effort resulted in an increase of 41% of the detection rates for rare species and of only 

8-15% for common species of amphibians in tropical rivers. Consequently, although a trend 

towards species saturation after 68 litters of water, if the purpose is to exhaustively inventory 



45 

 

 

the fauna, it will be required to filter more than 68 liters to improve the detection probability of 

rare species.  

Our study offers guidelines to optimize and standardize the volume of filtered water in 

eDNA studies without reducing the representativeness of the fauna. Previous studies in 

temperate and less diversified ecosystems, showed a strong heterogeneity in the sampling effort 

needed to obtain an exhaustive image of the fish fauna. For example, 16 liters of water were 

sufficient to detect 16 of the 18 historically recorded species in a temperate stream (Olds et al. 

2016). Similarly, Evans et al. (2017) estimated that 5 liters of water are needed to accurately 

estimate the fish species richness in a small freshwater reservoir colonized by 21 fish species, 

and (Hänfling et al. (2016) considered that filtering 20 liters of water was sufficient to identify 

14 of the 16 species inhabiting an English lake. Conversely, Civade et al. (2016) and Valentini 

et al. (2016) filtered very large water volumes (up to 6 samples of 34 liters and 6 samples of 60 

liters per site, respectively) to detect nearby 20 species in European rivers. We illustrated that 

filtering intermediates water volumes (2 samples of 34 liters), is sufficient to get a 

representative picture of the fish fauna inhabiting our sites. Consequently, we recommend using 

two replicates of approximately 34 liters to sample species rich communities in tropical running 

waters.  

We advise not to reduce the filtering volume per replicate below 34 liters, since reducing 

filtering volume by 50% (filtering 17 liters instead of 34 liters during 15 minutes instead of 30 

minutes) increased the discrepancy between replicates in terms of both species richness and 

species identity. Moreover, sampling a lower water volume per replicate (relaxed protocol) 

resulted in replicates missing common species. For instance, Characidium zebra, frequently 

found in Guianese streams (Cilleros et al. 2017) or Poptella brevispina, occurring in almost all 

the capture-based samples from the rivers, were not systematically detected with the relaxed 

protocol (sites S3 and R3, respectively), whereas they were frequently detected in the sites 

sampled under standard protocol. Therefore, our results underline the need to collect a sufficient 

volume of water to get reliable and repeatable estimates of fish diversity. It might also be 

proposed to replace the two replicates by a single filtration of more than 34 liters to reduce the 

financial costs, but this might be risky due to filter clogging by suspended material. Our trials 

to increase filtered water volume per replicate, led to damage either the filter, the peristaltic 

tube or the peristaltic pump. We thus discourage increasing filtered water volume per replicate 

over 34 liters, with the used materials.  
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Although 68 liters of water were needed to detect most of the fauna, a single replicate 

of 34 liters was enough to identify the core of fish assemblages and therefore distinguish 

between sites and between ecosystem types (stream versus rivers). In spite of the close 

proximity of the sites sampled under the relaxed protocol (only separated by nearby 300 

meters), the eDNA data distinguished R3 and S3 sites. Notably, we did not observed any trend 

toward nestedness of the stream fauna within the riverine fauna. This indicates that even though 

streams and rivers have been suggested to act as conveyor belts of eDNA (Deiner et al. 2016), 

DNA flowing through the water might not be conserved between distant sites. Therefore, our 

results reinforce the idea of a detection distance of the eDNA limited to 500 meters in flowing 

waters, as shown by Jane et al. (2015). Forthcoming studies should specify to which extent 

distance detection of eDNA in the water and species detection rate vary between tropical and 

temperate ecosystems. Indeed, physiochemical factors such as temperature, pH, conductivity 

or UV radiation can impact DNA degradation and transport (Pilliod et al. 2014; Barnes et al. 

2014). Nevertheless, our results highlight the ability of eDNA to inventory local species 

assemblages in tropical running waters, limited up to now to temperate environments (Civade 

et al. 2016; Port et al. 2016; Yamamoto et al. 2017). 

The eDNA approach using the standard sampling protocol deserves to be applied to 

ecological and conservation studies of highly diverse ecosystems such as tropical waters. Its 

applicability to Guianese freshwater ecosystems is of particular interest since current fish 

sampling methods vary among ecosystems, besides being time consuming, destructive and 

species selective. Indeed, both rotenone sampling in streams and gillnet sampling in rivers are 

destructive for fishes (Hubert et al. 2012), and collect fish from a limited range of habitat 

resulting in partial images of the fauna (Cilleros et al. 2018). In opposition, eDNA sampling 

was efficient in both streams and large rivers thereby standardizing the potential sampling bias 

among ecosystems and making possible to compare stream and river samples. Going further in 

the development of the eDNA inventories requires to complement the reference database to 

consider more species and to avoid rare, but still existing, false detections. Another forthcoming 

issue, might be to improve the distinction between closely related species using multiple 

molecular markers, and by optimizing bioinformatics protocols as proposed by Hänfling et al. 

(2016) and (Evans et al. (2017) Moreover, DNA releases may vary among species and affect 

detection rate, and it would therefore be useful to test for phylogenetic, functional and 

behavioral signals in species detectability. Finally, as stated before, a plethora of protocols has 

emerged for every step of the eDNA procedure. For the collection of DNA from water samples, 
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three common protocols are used: filtration (Valentini et al. 2016), precipitation (Ficetola et al. 

2008) and centrifugation (Klymus et al. 2015). The filtration method, consisting on filtering 

large volumes of water, has proved to yield higher detection rates compared to other methods 

in both natural ecosystems (Deiner et al. 2015) and laboratory conditions13. Here we tested one 

specific filtering system VigiDNA 0.45 μm; SPYGEN, le Bourget du Lac, France, but 

alternative filtering systems may require different sampling efforts due to differences in filter 

types and pore sizes (Rees et al. 2014; Thomas et al. 2018). Therefore, the optimal water 

volume to obtain robust diversity estimates may vary with the used system and collection 

method. This highlight the need of forthcoming studies comparing the performance of different 

filtering systems to gain a more comprehensive view on the performance of the eDNA 

metabarcoding method in aquatic environments. 
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Abstract 

Measuring anthropogenic impacts on natural systems is crucial for biodiversity preservation. 

Such measures are often achieved by determining how local human disturbances affect the 

fauna from the same locality. In rivers, local biodiversity can also suffer from distant upstream 

disturbances, as water and materials are transported from headwaters to the ocean. This 

connectivity of river ecosystems makes pivotal to account for distant upstream disturbances 

when measuring anthropization impacts on biodiversity. However, the distance to which 

upstream disturbances influence local fauna remains poorly understood.  

Here, we propose a framework to measure the strength and spatial extent of disturbance by 

analyzing the relationships between local fish fauna diversity and the intensity of disturbances 

measured within spatial scales ranging from the immediate vicinity of the site to 150 km 

upstream. Fish assemblages were inventoried using Environmental DNA metabarcoding. Those 

inventories were used to compute taxonomic (species richness) and functional richness (based 

on the morphological and ecological characteristics of the species) of species assemblages. 

Testing this framework in 50 river sites in French Guiana and Suriname revealed a strong and 

spatially extended effect (up to 70 km) of distant upstream deforestation on fish fauna. 

Importantly, less than 5% of deforestation within a range of 70 km upstream from the sites 

caused a decline of more than 36% of both taxonomic and functional richness of the fish 

assemblages. The results underline the vulnerability of Amazonian fishes and suggest that 

human impacts on rivers are often underestimated, and need to be re-evaluated in light of its 

spatially extended effect. 
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Introduction 

Measuring the impact of anthropogenic disturbances on natural systems is crucial for the 

preservation of biodiversity, and the maintenance of the services it provides to human societies 

(Dirzo and Raven 2003). Such measures are often achieved by determining how human 

activities affect the local fauna, leading to define the strength of impacts as changes in local 

biodiversity. Numerous studies have explored the consequences of human-induced impacts on 

local fauna, including changes in land use (Newbold et al. 2015b), hunting and fishing (Myers 

and Worm 2003; Benítez-López et al. 2019) or non-native species (Kuczynski et al. 2018b). 

For instance, Newbold et al. (2015) quantified that intensive agriculture or urban expansion 

reduced on average 40% of site species richness. However, local biodiversity can also suffer 

from distant impacts. This is particularly true in riverine ecosystems, where directional 

connectivity transport water from headwaters to the ocean (McCluney et al. 2014). Thus, 

disturbances in one part of a river basin can affect a distant downstream part of that basin. For 

instance, mountaintop mining has an extended effect on water quality and biodiversity 

downstream (Palmer et al. 2010). Furthermore, the impacts of multiple upstream disturbances 

can cumulate over the stream network, as illustrated in an Appalachian river, where 

mountaintop mining modified water quality for more than 10 kilometers downstream, with 

changes in water quality being proportional to the mining area (Lindberg et al. 2011). 

Therefore, local biodiversity may not only be influenced by local disturbances but also by 

multiple distant disturbances, which effects may cumulate along the watershed draining a site.  

Despite the sensitivity of local habitats and fauna to distant disturbances, river connectivity can 

also promote species recovery and thus ecosystem resilience downstream from disturbances 

(McCluney et al. 2014). Indeed, less or un-impacted tributaries can transport undisturbed water 

inputs and thus reduce downstream effects of disturbance by diluting pollutants, as shown in 

the Amazon river basin where biodiversity threats decreased downstream (Vörösmarty et al. 

2010). The interplay between the accumulation of multiple upstream impacts and the 

downstream ecosystem resilience may contribute to the strength of the local impacts 

experienced by a site. It is therefore pivotal to determine the spatial extent of disturbances to 

measure properly the strength of their impact on biodiversity.  

We here propose a framework to measure the strength and the spatial extent of 

disturbance impacts in rivers by analysing the relationships between the diversity of local fauna 

and the intensity of upstream disturbances. We calculated upstream disturbance intensity at  
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different spatial extents by widening the spatial extent in which disturbance intensity was 

calculated, from the immediate vicinity of the site (0.5 km upstream) to 150 km upstream 

(Figure 1). This provided measures of disturbance intensity (here the percentage of deforested 

surface) for each spatial extent. The larger the spatial extent, the more distant disturbances are 

integrated in the disturbance variable. Generalized Linear Mixed Models relating fish diversity 

(species and functional richness) and disturbance intensity were built for each spatial extent. 

We considered that the most relevant model indicates the representative spatial extent to 

measure deforestation effects and the slope of the relationship between deforestation and fish 

diversity was used as a measure of disturbance strength. 

 

 

Figure 1: Schematic representation of the measurement of the percentage of deforestation upstream from each fish 

sampling site for each spatial extent. For clarity, we here illustrated only 5 out of the 14 spatial extents considered 

in our study. Spatial extents are represented by the surface of the watershed comprised between the fish sampling 

site and the extent value (here 5 km, 30 km, 50 km, 70 km and 90 km). The fish sampling site is represented by a 

triangle. The hydrographic network is represented in blue and the watershed boundaries are indicated by a black 

continuous line. Disturbance surfaces are represented in yellow. For each site, we calculated the percentage of 

deforested area for each spatial extent. For instance, a 70 km extent of disturbance measures the percentage of 

disturbed area within the river basin from the biodiversity sampling site to a maximal distance of 70 km upstream 

from this sampling site. 

 

We applied this framework to rivers of French Guiana, which remain among the most 

pristine areas on earth, but also face an unprecedented rise of human threats due to deforestation 

for agriculture, mining and urbanization (Castello et al. 2013). Such disturbances are putting at 
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risk the most diverse freshwater fish fauna on earth, as the Amazonian region hosts about 20% 

of fish species diversity (Lévêque et al. 2008). Studies of fish assemblages in Amazonian rivers 

remain scarce because common inventory methods (nets, traps, and toxicants) cannot efficiently 

gather fish data for comprehensive studies without causing massive mortality (Cilleros et al. 

2018). To overcome this issue, we inventoried local fish assemblages using eDNA, which 

proved to be efficient in characterizing such species rich ecosystems (Jerde et al. 2019; Cantera 

et al. 2019). 

 

Materials and methods 

Sampling  

Fifty river sites located across the principal rivers of French Guiana were sampled in 2016 and 

2017 during the dry season (Figure 6, Chapter 1-IX). Ecologically homogenous sites in rivers 

wider than 50 meters and deeper than one meter (Strahler orders 3-6, Figure S1) were selected. 

Following the protocol implemented by Cantera et al. (2019) (Chapter 2), we filtered 34 liters 

of water at each site to collect eDNA and build fish inventories per site. See the materials and 

methods sections of Chapter 2 for details on field sampling, laboratory procedures and bio-

informatic analyses. 

Deforestation intensity 

For each site, we delineated the upstream sub-basin by applying a Flow Accumulation 

algorithm to the SRTM Global 30 m Model Elevation (NASA 2013). We delineated 14 spatial 

extents using buffer areas intersected with the sub-basin area, with distances of 0.5 km, 3 km, 

5 km, 10 km, 20 km, 30 km, 40 km, 50 km, 60 km, 70 km, 80 km, 90 km, 120 km and 150 km 

upstream from each sampling site (See Figure 1). For each spatial extent and for each site, 

upstream deforestation intensity was quantified by summing deforested surfaces from three data 

sets obtained from Landsat satellite images.  

Information about gold-mined surfaces in French Guiana was compiled by the WWF 

using Landsat satellite images of deforestation due to gold-mining in 2015 (WWF 2016). This 

dataset represents the most recent information available on gold-mining over the Guianese 

territory. Given that some sites from the Maroni and Oyapock drainage basins have upstream 

areas in Suriname and Brazil, we also used the dataset compiled by Rham et al. (2017). The 
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gold-mining intensity was quantified as the percentage of gold-mined surfaces upstream of the 

sites for each spatial extent.  

Forest loss surfaces upstream of the sites were extracted using the Global Forest Change 

dataset (Hansen et al. 2013). This dataset identifies the areas deforested from 2001 to 2017 

using global Landsat satellite image at 30 meters spatial scale. To incorporate the areas 

deforested before 2000, we used the information of tree canopy cover measured in 2000. The 

pixels having less than 25% of canopy closure were considered deforested, excepting river 

courses. The deforested surfaces were combined to obtain an estimate of deforestation intensity 

upstream from the sites for each spatial extent. The deforested surfaces are the results of global 

human activities on French Guiana: logging, agriculture and human settlements 

The percentage of gold-mined and forest loss surfaces upstream of the sampling sites 

were found to be significantly and highly correlated (Table S1). Therefore, we merged the two 

datasets to create an integrative disturbance variable that quantifies the percentage of global 

deforestation upstream from the sampling sites, for each spatial extent area (Table S1). 

Upstream deforestation intensity was then measured as the percentage of deforested surfaces 

upstream of the sites, which are the result of gold-mining (46% of deforested surfaces, Table 

1), logging, agriculture and human settlements. Hereafter, we relate fish diversity to this 

variable that represents deforestation intensity upstream of each fish sampling site.  

Biodiversity measures 

The fish biodiversity of each site was measured through species and functional diversity. 

Species richness corresponded to the number of detected species in the eDNA sample. This 

measure, although not exhaustive, provided a more comprehensive image of the fish species 

richness and species composition than other capture methods (Cantera et al. 2019). 

Morphological and ecological traits of the species detected in each site were used build a global 

functional space (see Chapter 1-IX-2 for details). To measure the functional richness (“FRic”, 

Villéger et al. 2008) of each site, we quantified the convex hull volume occupied by co-

occurring species in a given site within the global functional space. This measure ranges from 

0 to 1, with higher values reflecting high volume occupation and thus high functional diversity. 
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 Statistical analyses 

For each spatial extent, we build a specific model to analyze deforestation effects on species 

and functional richness using Generalized Linear Mixed Models (GLMM) with Poisson 

distribution for species richness and Linear Mixed Models (LMM) for functional richness. 

River basin identity and site position in the upstream-downstream river continuum (Strahler 

order, Figure S1) were included as random effects because site position determines the size of 

the rivers and thus the hosting capacity of species (Blanchet et al. 2010). This allowed the 

measurement of deforestation impacts as changes in local biodiversity due to upstream 

deforestation, while controlling for river basin identity and position of the fish sampling site in 

upstream-downstream gradient. The variables were test for spatial autocorrelation using 

Moran's I but the effect was not significant. The models were built using the lmer function from 

the lme4 package (Bates et al. 2015).  

First, we assessed the significance and the quality of the models using determination 

coefficients (R2 values) to determine which spatial extent provides a better prediction of 

changes in local biodiversity due to upstream deforestation. R2 values were calculated using the 

r.squaredGLMM function from the MuMIn package. We used marginal R2 values which 

account for the explained variance by fixed variables only as we were interested in the pure 

effect of deforestation. 

The slope of the best model was used as a measure of the strength of deforestation 

impacts. As a check, we grouped sites according to their Strahler order and distinguished 

between medium size rivers (Strahler orders 3 and 4), and large rivers (Strahler orders 5 and 6, 

Figure S1). We then compared the fish diversity between deforested and non-deforested areas 

in medium and large rivers separately. Deforested sites were those with a percentage of 

upstream deforested area exceeding 0.4%. Less than 0.4% of deforestation accounted for the 

natural rate of forest turnover (natural tree falls), and where considered as non-deforested. 

 

Results 

Deforestation intensity was on average lower than 6% whatever the spatial extent considered 

(Figure 2, Table 1). At reduced spatial extents (from 0.5 to 10 km), more than 25% of the sites 

experienced upstream deforestation intensities higher than 6%, which peaked at more than 20% 
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for some sites. In contrast, at larger extents, deforestation intensity remained lower than 3% in 

more than 75% of sites. Therefore, the intensity and the variability of upstream deforestation 

decreased with increasing spatial extents (Figure 2). 

 
Figure 2: Percentage of deforestation upstream from the sampling sites for each spatial extent. Deforestation 

intensity is summarized with a boxplot: the central box encompasses the interquartile range, the whiskers represent 

minimum and maximum deforestation values, and the horizontal line inside the box is the median deforestation. 

Outliers are represented by circles. Color shades are consistent with the spatial extent, as indicated in Figure 1. 

Upstream deforestation intensity had a negative effect on local species richness. This 

negative effect was significant for all spatial extents, except for deforested surfaces below 0.5 

km upstream from the sampling sites (Figure 3A; Table 1). For models considering upstream 

deforestation at local spatial extents (from 3 to 5km), GLMM quality was low (R² <0.2). R² 

values increased from 10 to 30 km and peaked for spatial extents between 40 and 60 km to 

reach R² values of 0.74. (Figure 3A; Table 1). Beyond 60 km, R² values lowered but remained 

higher than at local spatial extents. Such increases of model quality with increasing spatial 

extent, paired with an increase of the strength of the negative effect of deforestation on species 

richness (Figure 3C; Table 1). Indeed, the slope values decreased with the spatial extent and 

maximal negative slope values were reached at 60 and 150 km extents. Interestingly, the models 
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considering deforestation at small extents did not detect marked species richness decreases 

through the deforestation gradient (slopes < -0.1). The model accounting for deforestation 

measured within 60 km upstream from the sampling sites was considered the best model to 

predict species richness according to upstream deforestation because it had the maximal R2 and 

slope values (0.74 and -0.51, respectively). 

Spatial 

extent 

Gold-mining 

Others 

human 

activities Global 

deforestation 

(%) 

Species richness 

models 

Functional richness 

models 
Deforestation 

(%) 
Deforestation 

  (%) Slope p.value R2m Slope p.value R2m 

0.5 km 0.0 5.5 5.5 -0.02 0.09 0.02 0.01 0.62 0 

3 km 0.1 4.9 5.0 -0.07 <0.01 0.15 -0.01 0.65 0 

5 km 0.3 3.6 3.8 -0.1 <0.01 0.19 -0.02 0.28 0.02 

10 km 0.9 2.2 3.0 -0.17 <0.01 0.42 -0.04 0.03 0.1 

20 km 0.8 1.2 2.0 -0.29 <0.01 0.66 -0.09 0.01 0.3 

30 km 0.6 0.9 1.5 -0.38 <0.01 0.73 -0.12 <0.01 0.37 

40 km 0.5 0.7 1.3 -0.43 <0.01 0.74 -0.14 <0.01 0.37 

50 km 0.5 0.6 1.1 -0.48 <0.01 0.74 -0.16 <0.01 0.37 

60 km 0.4 0.6 1.0 -0.51 <0.01 0.74 -0.17 <0.01 0.4 

70 km 0.4 0.5 1.0 -0.45 <0.01 0.66 -0.18 <0.01 0.45 

80 km 0.4 0.5 0.9 -0.45 <0.01 0.62 -0.2 <0.01 0.44 

90 km 0.5 0.5 1.0 -0.43 <0.01 0.56 -0.19 <0.01 0.36 

120 km 0.4 0.5 0.8 -0.4 <0.01 0.31 -0.2 0.01 0.24 

150 km 0.3 0.4 0.7 -0.56 0.03 0.64 -0.17 0.05 0.17 

Table 1: Mean percentage of upstream deforested surfaces due to gold-mining, mean percentage of upstream 

deforested surfaces due to other human activities and mean global percentage of upstream deforested surfaces are 

also indicated for each spatial scale. Results of the mixed models relating fish diversity (species and functional 

richness) and global deforestation intensity for the 14 spatial extents. For each spatial extent, a specific model was 

built using GLMM with Poisson distribution for species richness and LMM for functional richness. River basin 

identity and site position in the upstream-downstream river continuum (Strahler order) were included as random 

effects. Significant p-values and most relevant R² are indicated in bold.  

Functional richness was significantly and negatively linked to upstream deforestation 

intensity when considering deforestation from 10 km to 120 km upstream from the sampling 

sites. Model quality peaked for R² values around 0.4 corresponding to spatial extents from 60 

to 80 km (Figure 3B; Table1). The effect of deforestation was maximal at large spatial extents 

(beyond 70 km) with slope values higher than -0.18 (Figure 3D; Table 1). For this diversity 

facet, the model measuring deforestation intensity within a spatial extent of 70 km upstream 

from the fish sampling sites was considered the best model (R² = 0.45 and slope =-0.18).  
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Figure 3: Results of the mixed models relating fish diversity and the percentage of deforested area upstream from 

the sampling sites for each spatial extent. R2 values (A, B) represent the model quality of the models and the slope 

values (C, D) represent the strength of the effect of deforestation on species richness (A, C) and functional richness 

(B, D). For each spatial extent. a specific model accounting for site network position and basin identity as random 

effects was built. Significant models (p<0.05) are indicated by filled circles. Non-significant models (p>0.05) are 

indicated by open circles (see Table 1 for details). Color shades are consistent with the spatial extent. The grey 

vertical bars indicate the most relevant models. 

 

At the most relevant spatial extents, deforestation intensity ranged from 0 to 4.6%. 

Along the deforestation gradients, both species and functional richness showed marked 

decreases (Figure 4A and B), despite some variability depending on sites. Overall, both 

functional and species richness decreased according to the position of the sites within the river 

upstream-downstream gradient measured using the Strahler stream order (Strahler 1957) 

(Figure 4C&D, Figure S1). Nevertheless, within sites with similar Strahler orders, we recorded 

a significant decline of fish diversity in deforested areas due to anthropogenic activities 

(deforestation intensity >0.4%) compared to non-deforested areas (deforestation intensity 

<0.4%). Those decreases were significant for both species richness (Kruskal-Wallis test: χ² = 

8.36 and p < 0.01 for medium size rivers; χ² = 11.63 and p < 0.01 for large rivers) and functional 

richness (Kruskal-Wallis test: χ² =10.26 and p-value < 0.01 for me medium dian size rivers; χ² 

=8.82 and p < 0.01 for large rivers). On average, we report a loss of 36% of species richness 
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(37.5% and 34.4% for medium and large rivers, respectively) and 38% of functional richness 

(37.6 and 39.6% for medium and large rivers respectively) in deforested areas. 

Figure 4: Effects of upstream deforestation on fish diversity. The species richness (A) and functional richness (B) 

are represented according to percentage of upstream deforestation. Fitted values of the mixed models accounting 

for site network position and basin identity are shown with red solid lines and 95% confidence intervals with light 

red shades. Deforestation corresponds to the percentage of deforested area at the most relevant spatial extents for 

each diversity facet (60 and 70 km for species and functional richness, respectively). Deforestation values were 

squared root transformed for a better representation (Real deforestation values ranged from 0 to 4.3%). Sites were 

subjected to anthropogenic deforestation when deforested area exceed 0.4% of the upstream area (see methods). 

Losses of species richness (C) and of functional richness (D) due to deforestation when accounting for the network 

position of sites are represented using boxplots for medium (stream order 3 and 4) and large sized rivers (stream 

order 5 and 6). Significant differences between low and high deforestation intensities were tested using Kruskal 

Wallis tests (*** p<0.01).  

 

Discussion  

Rivers are among the most threatened ecosystems with deforestation severely threatening 

biodiversity (Carpenter et al. 2011). Studies of local diversity change following local 

deforestation in Amazonian rivers revealed shifts in taxonomic and functional without species 

richness declines (Brosse et al. 2011; Allard et al. 2016; Arantes et al. 2018; Leitão et al. 2018). 

However, the potential cumulative effects of upstream distant disturbances in large spatial 

extents was not considered. Here we show that deforestation can affect biodiversity beyond 

local effects, revealing an extended and cumulative effect of distant upstream deforestation on 

fish biodiversity. 
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The effect of deforestation on fish diversity reported here peaked when considering 

disturbance extents from 60 to 70 km upstream of the sampling sites. Notably, the deforestation 

intensities measured at these extents were less marked and less variable than at local extents 

(from 0.5 to 10 km), in which deforestation intensities ranged from 0 to 60% of the upstream 

area (Figure 2). This suggests that even though the intensity of deforestation is more marked at 

local extents, it does not properly predict nearby biodiversity decline. In contrast, considering 

upstream deforestation at larger extents, capturing both local and more distant deforestation 

effects, makes deforestation a strong predictor of fish biodiversity. Therefore, deforestation 

effects on fish fauna cumulated downstream up to 70 km. Such cumulative downstream effects 

of deforestation have been reported for water chemistry but this result was directly related to 

an increase of disturbed surface with increasing spatial extent (Lindberg et al. 2011). Here, 

despite a declining percentage of deforested surface with increasing spatial extents, we report 

a stronger decline of biodiversity with deforestation intensity over large extents. Moreover, this 

suggests that previous studies linking local deforestation to local biodiversity missed an 

important part of deforestation impacts on fish fauna. For instance, Brosse et al. (2011) and 

measured Allard et al. (2016) the impact of gold-mining and forestry induced deforestation on 

Guianese fish diversity and failed to detect a decline of fish species diversity, paralleling our 

results when reduced extents are considered. We can therefore suppose that a stronger impact 

of deforestation might have been detected if a more relevant spatial extent had been considered.  

Measuring the impact of deforestation intensity at the most relevant spatial extent (60 

km for species richness and 70 km for functional richness) on local biodiversity revealed a 

drastic decline of biodiversity along the deforestation gradient. Slight deforestation intensities 

(< 4.3% of the upstream area) caused on average a 36% and 38% decline in species and 

functional richness respectively, testifying for a drastic negative effect of upstream 

deforestation. We highlight a particular vulnerability of the Amazonian freshwater fish fauna, 

and of the functions it supports, to slight environmental changes. This parallels studies of coral 

reef and tropical forest mammal vulnerability which show that low levels of fishing and hunting 

were responsible for a decline in taxonomic and functional diversity (D’agata et al. 2014; 

Benítez-López et al. 2019). Similarly, negative threshold responses (i.e. a point where there is 

an abrupt negative change of an ecological variable (Scheffer et al. 2009)), were found at low 

disturbance intensities for several aquatic taxa. For instance, negative threshold responses in 

Amazonian fish (Brejão et al. 2018) and temperate diatom assemblages (Smucker et al. 2013) 

were detected at moderate deforestation levels (<20% of deforested watershed). Such 
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deforestation percentages were higher than those measured in our study, but they included the 

whole upstream river basin, and did not consider a potential ecosystem resilience for the most 

distant sites. They may therefore overestimate the response threshold. For instance, a decline 

in the relationship between fish diversity and upstream deforestation was detected beyond 80 

km, indicating that beyond this distance, disturbances are less influential on the downstream 

fauna. 

The considerable loss of river fish biodiversity documented here is the result of 

deforestation driven by several anthropogenic activities (agriculture, human settlements and 

gold-mining). These activities are known to influence water quality through organic matter 

release and/or increases in the suspended sediment load (Castello and Macedo 2016), thus 

affecting fish diversity via different pathways. Nearly 46% of the deforested surfaces are due 

to gold-mining (Table 1), which severely damages water quality due to the massive release of 

suspended sediments (Hammond et al. 2007), and has detrimental effects on fishes (Mol and 

Ouboter 2004; Allard et al. 2016). However, disentangling the effects of gold-mining, 

agriculture and urbanization on downstream fish diversity is complicated as downstream 

assemblages collect different anthropogenic inputs.  

The demonstrated vulnerability of Amazonian fauna is of particular interest given the 

unprecedented deforestation rates throughout the Amazonian forest (Malhi et al. 2008). In the 

Guyana shield , deforestation caused by gold-mining is rapidly expanding whilst representing 

a relatively low deforestation surface across the region (Rham et al. 2017). Ongoing increases 

in human disturbances of Amazonian ecosystems, due to demographic increases, mining and 

agriculture (Castello et al. 2013) are prone to further affect Amazonian freshwater fauna, 

through cumulative impacts over large parts of the upstream drainage. We therefore call for 

future studies and conservation practices to not only consider local disturbances on fauna but 

also consider disturbances accumulating upstream. This is of paramount importance to avoid 

underestimating deforestation effects on riverine fauna, and to capture the actual human impacts 

on aquatic ecosystems. 

  



61 

 

 

Supplementary information 

Table S1: Correlations between the percentage of 

gold-mined areas and deforested areas upstream of 

the sampling sites for each spatial extent. 

 

 

Figure S1: Diagram illustrating Strahler river classification. The headwaters 

without any confluence are first order streams. A river reach a second order at the 

confluence of two first order streams. At a confluence of two streams with the 

same order, the downstream segment order increases by one. At a confluence, if 

the two streams are not of the same order then the highest numbered order is 

maintained on the downstream segment. Orders 1 and 2 account for streams and 

small rivers, orders 3 and 4 for medium sized rivers and orders 5 and 6 to large 

rivers. Orders over 6 account for very large rivers. 

Spatial 

extent 
p-value 

Correlation 

coefficients 

0.5 km NA NA 

3 km 0.571 -0.082 

5 km 0.291 0.152 

10 km <0.01 0.755 

20 km <0.01 0.766 

30 km <0.01 0.76 

40 km <0.01 0.815 

50 km <0.01 0.836 

60 km <0.01 0.865 

70 km <0.01 0.893 

80 km <0.01 0.912 

90 km <0.01 0.922 

120 km <0.01 0.94 

150 km <0.01 0.964 
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Chapter 4: How anthropogenic impacts modify diversity patterns and 

ecological processes? 
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Abstract 

Environmental gradients, induced by natural or disturbed conditions, structure diversity 

patterns and may therefore influence local ecological processes that shape local 

communities, such as environmental filtering and biotic interactions. The variation of 

diversity patterns and processes was analysed along a deforestation gradient and the 

upstream-downstream gradient.  

We sample 50 river sites and 37 stream sites across French Guiana using environmental 

DNA. Rivers and streams sites were considered separately given that they associated 

fauna and environment markedly differ. Deforested surfaces upstream from the fish 

sampling sites were extracted from spatial data to create a global deforestation variable 

that integrates the effects urbanization, agriculture, gold-mining and logging. Ecological 

processes were assessed by confronting the observed relationships between taxonomic 

and functional diversity to null models simulating random species assembly. This 

permitted to test the hypothesis that deforestation constitutes a strong environmental filter 

and therefore drive assemblages toward non-random functional clustering.  

In streams, diversity patterns were more influenced by the upstream-downstream gradient 

than by the deforestation gradient and the opposite was found for the ecological processes. 

The strength of environmental filtering increased along the deforestation gradient. In 

rivers, the deforestation gradient affected significantly both species and functional 

richness but no the ecological processes. In opposition, a trend towards limiting similarity 

along the upstream-downstream gradient was observed. Our results highlight the 

complexity of deforestation impacts on Amazonian biodiversity, as they reveal a context-

dependency of deforestation impacts. 
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Introduction 

In the current global trend of reorganization of local communities, both natural ecological 

processes and anthropogenic disturbances are shaping biological diversity patterns across the 

world (Sax and Gaines 2003). Understanding the relative role of natural and anthropogenic 

processes, which determine the assembly of species onto communities, is the baseline to assess 

the depth of the anthropogenic impacts on biodiversity. Community structure results from a 

combined effect of local environmental conditions and biotic interactions and ecological theory 

predicts that at local scale, two main deterministic processes drive community structure (Weiher 

and Keddy 1999): environmental filtering (Keddy 1992) and limiting similarity (Macarthur and 

Levins 1967). While assemblages ruled mainly by limiting similarity harbor species with 

different ecological strategies due to competitive exclusion, under environmental filtering, 

assemblages have more ecologically similar species than expected randomly due to a limited 

availability of environmental niches. Those two processes may act simultaneously to shape 

communities and their relative importance may vary according to environmental gradients. 

Indeed, the majority of ecosystems are directly affected by environmental gradients, which have 

been reported to shape community structure in terrestrial communities. For instance, it has been 

shown that limiting similarity dominated ccommunity assembly at low altitudes while 

environmental filtering dominated at high altitudes for tropical hummingbirds (Graham, Parra, 

Rahbek, & McGuire, 2009) and temperate bees (Hoiss et al. 2012). 

The assembly of communities in freshwater ecosystems might be particularly sensitive 

to environmental gradients as those systems are complex networks strongly influenced by 

directional connectivity due to movement of the water from upstream headwaters to the ocean 

(McCluney et al. 2014; Moore 2015). The position of a locality in the upstream-downstream 

gradient influences environmental conditions and thus the community structure of the aquatic 

fauna inhabiting this locality (Vannote et al. 1980; Grenouillet et al. 2004). This pattern, 

primarily formalized in temperate rivers, was then expanded to tropical ecosystems (Ibañez et 

al. 2009; Cilleros et al. 2017). Habitat size and complexity increase along the upstream-

downstream gradient, generally leading to an increase in species richness and changes on 

species composition along the gradient. Therefore, as diversity patterns change along the 

gradient, the relative importance of ecological processes shaping communities may also change 

along this gradient. Streams communities located in the headwater part of hydrological 

networks are isolated and have been found to be strongly influenced by abiotic conditions such 
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as water velocity, substrate type, dissolved oxygen, water temperature and transport of 

particulate organic matter (Poff 1997). Moreover, streams have high variability in abiotic 

conditions and thus stream communities are expected to have a low number of species able to 

tolerate those conditions (Jackson et al. 2001). All of these features suggest that environmental 

filtering may preponderantly shape the structure of stream communities by excluding functions 

not adapted to those harsh environments. In opposition, environmental stability, habitat size 

and complexity increase downstream promoting high species richness (Willis et al. 2005) in 

large rivers. As riverine communities are less influenced by abiotic conditions, limiting 

similarity may govern community structure in those communities by promoting the coexistence 

of species with different traits. Therefore, the importance of ecological processes ruling aquatic 

communities may progressively change along the upstream-downstream gradient. Specifically, 

environmental filters may have a main role in upstream communities while limiting similarity 

may be predominant in downstream large rivers. Indeed, fish communities in Brazilian streams 

were mostly structured by environmental filtering resulting in a significant functional 

homogeneity. In contrast, a coexistence of more functionally dissimilar species was found in 

communities inhabiting downstream rivers (Carvalho and Tejerina-Garro 2015). 

Progressive changes on the type and/or intensity of the ecological processes shaping 

community structure have also been reported under human disturbances. Through an expected 

decline of species richness under human disturbances, trait diversity can decrease more than 

expected under a random selection of extirpated species. This might suggest that human 

disturbances filter out species with similar traits, indicating an increase of environmental 

filtering (Webb et al. 2002). In contrast, the disturbance can also drive the community toward 

less functional similarity between species by increasing competitive interactions (Webb et al. 

2002). The few works exploring the relationships between those facets in the context of human 

disturbances showed contrasting results. In temperate environments, functional diversity 

decreased faster than taxonomic diversity under global change (Kuczynski and Grenouillet 

2018) and land use gradients (Gutiérrez-Cánovas et al. 2015) revealing an increase in 

environmental filtering processes. Contrastingly, in a Neotropcial lowland stream, high 

functional diversity was associated with deforested streams and that was suggested to be the 

result of new conditions favoring species with particular traits (e.g., detritivorous, species 

inhabiting stream margins and tolerant to hypoxia) (Teresa and Casatti 2012), relaxing therefore 

environmental filtering effects. 
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Amazonian streams and rivers host the most diverse freshwater fish fauna on earth (c.a. 

20% of global fish species diversity, Lévêque et al. 2008) and provide significant goods and 

services (Castello and Macedo 2016). However, those ecosystems are facing unprecedented 

levels of deforestation impacts due to increasing agriculture, mining and urbanization (Castello 

et al. 2013). Those activities are polluting freshwater systems and altering their hydrology and 

physico-chemical conditions (Castello and Macedo 2016; Leitão et al. 2018). Consequently, it 

is urgent to assess the impacts of deforestation on the ecological processes shaping aquatic 

communities to understand if the degradation of Amazonian biodiversity has consequences on 

the processes ruling local species assembly.  

Such approaches were until now limited by our constrained ability to get relevant fish 

inventories in Neotropical rivers and streams, but the recent development of environmental 

metabarcoding techniques made possible to get fast and relevant fish inventories in Neotropical 

freshwaters (Zinger et al. 2020). This was particularly verified in French Guiana where eDNA 

metabarcoding has been proven to be efficient in characterizing species assemblages in both 

streams and rivers (Cilleros et al. 2018; Jerde et al. 2019; Cantera et al. 2019). Although fish 

fauna was inventoried using the same eDNA protocols, we here considered separately streams 

and rivers fish separately because deforestation may affect the two ecosystems differently. 

While stream ecosystems mainly suffer from local deforestation (Dedieu et al. 2014, 2015; 

Allard et al. 2016), due to the limited spatial extend of their drainage basin (a few square 

kilometers), rivers act as recipient for deforestation effects cumulating from substantial 

upstream distances (several hundreds of square kilometers, see Chapter 3). 

The aim of this study is to define how diversity patterns and processes vary along a 

deforestation gradient and along the upstream-downstream gradient (natural versus disturbance 

gradients). We hypothesized that: (1) environmental filtering govern community assembly in 

small streams with the strength of the process progressively decreasing along the upstream-

downstream gradient (See Figure 1A), because increasing the distance to the source accounts 

for an increase of habitat diversity (Willis et al. 2005). Conversely, limiting similarity is 

predicted to be the predominant processes ruling community assembly in large rivers, because 

of a saturation of habitat diversity (Willis et al., 2005), and the strength of this process should 

increase from the upstream to the downstream of rivers (See Figure 1C). (2) Environmental 

filtering should govern community assembly under high deforestation levels because in 

deforested sites, the degraded conditions may filter species according to their traits. In contrast, 

in undisturbed sites, the higher resource availability and habitat complexity will promote the 
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coexistence of functionally distinct species (Willis et al. 2005), and therefore reduce the 

environmental filtering effect. However, the strength of this process will differ between rivers 

and streams. As streams communities are expected to be mainly ruled by environmental 

filtering, we expect that the strength of this processes will increase along the deforestation 

gradient (See Figure 1B). For river communities, we expect a progressive transition from 

limiting similarity as the predominant process to environmental filtering, when increasing the 

anthropogenic disturbances summarized by the deforestation intensity (See Figure 1D). 

 

Figure 1: Conceptual framework illustrating our hypotheses about the changes in the relative importance of 

ecological processes (limiting similarity vs environmental filtering) across the environmental gradients (upstream-

downstream and deforestation). Dashed horizontal lines indicate an equal strength of the two processes. (A, C) 

Contribution of the processes along the upstream-downstream gradient for streams and rivers, respectively. (B, D) 

Contribution of the processes along a deforestation gradient for streams and rivers, respectively.  
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Materials and Methods 

Sampling sites and deforestation intensity 

Sampling was undertaken at 37 stream and 50 river sites located across nine river basins of 

French Guiana (Figure 6, Chapter 1-IX). Stream sites were less than 10 meters wide and 1 meter 

depth while river sites were wider than 30 meters and deeper than 1 meter. Following the 

protocol implemented by Cantera et al. (2019), we filtered 34 liters of water at each site to 

collect eDNA. See the materials and methods section of Chapter 2 for details on field sampling, 

laboratory procedures and bio-informatic analyses.  

For each sampled site, we calculated deforestation intensity as the percentage of 

deforested surfaces upstream from each site following the same method used in Chapter 3. For 

streams, buffer areas were delineated with a distance of 0.5 km upstream from each sampling 

site. For rivers, buffer distance was of 70 km as it was found as the appropriate spatial extent 

to measure deforestation impacts on fish functional diversity in large Guianese rivers (Chapter 

3).  

Fish species and functional diversity 

For each site, species inventories based on presence/absence were build based on the 

assigned sequences. The fish biodiversity of each site was measured through species and 

functional diversity. Species richness corresponded to the number of detected species in the 

eDNA sample. This measure, although not exhaustive, provided a more comprehensive image 

of the fish species richness and species composition than other capture methods (Cantera et al. 

2019). Morphological and ecological traits of the species detected in each site were used to 

build a global functional space (see Chapter 1-IX-2 for details). Among the 187 detected 

species, traits were available for 178 species for the morphological data (95% of the total 

number of detected species) and for 182 species for ecological data (97%). Moreover, to assess 

the differences on species composition due to upstream deforestation, Jaccard dissimilarity 

values between sites were calculated for each habitat separately and ordinated using non-metric 

multidimensional scaling. 

Null models to assess ecological processes 

The relations between functional and species diversity were analyzed using null models (Gotelli 

and Graves 1996) to determine if taxonomic and functional changes are paired. Given that trait 
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diversity is directly influenced by taxonomic diversity, it is important to control this effect. The 

number of detected species were fixed for each site and the species identity were randomized 

999 times. By doing so, 999 null values of functional richness were generated per site. Then, 

we compared observed functional richness to the one expected by chance by calculating 

standardized effect size (SES) values per site. SES values correspond to the difference between 

the observed functional richness and the mean of the 999 null values of functional richness 

divided by the standard deviation of the 999 null values. Negative values of SES indicate that 

the functional diversity is lower than expected by chance given the observed taxonomic 

diversity and thus that environmental filtering is predominant. In contrast, positive values of 

SES indicate that functional richness is higher than expected under random assembly, indicating 

that limiting similarity is governing community structure. 

 

 

Statistical analyses 

Linear Mixed Models were used to test the effects of the upstream-downstream and 

deforestation gradients on diversity patterns and processes. The upstream-downstream gradient 

was coded using the basin surface area upstream from the sampling site considering that the 

area increases from upstream to downstream. Diversity patterns corresponded to species 

composition (measured by the variation of sites along NMDS axes 1 and 2), species richness 

and functional richness. Diversity processes were measured with the SES values. For each 

diversity pattern and the SES values (response variables), we built a specific model in which 

the upstream-downstream and deforestation gradients were scaled fixed variables. The 

variables were test for spatial autocorrelation using Moran's I, and the effect was not significant. 

The effect of the interaction between the two gradients was also assessed. Basin identity was 

included as a random effect, to control for differences in fish species between river basins. The 

models were built using the lmer function from the lme4 package (Bates et al. 2015) in R (R 

Core Team 2016). Rivers and streams sites were considered separately (see Introduction). 
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Results 

Species composition 

Once controlling for basin identity, the upstream-downstream gradient affected significantly 

species composition of fish communities along the NMDS axis 1, for both stream and river sites 

(Table 1). Moreover, the deforestation gradient significantly influenced the species composition 

of fish communities along the NMDS axis 2, for both stream and river sites (Table 1). Stream 

communities under high deforestation levels were scattered in a limited portion of the NMDS 

plane (positive values of NMDS axis 2), indicating that stream fish communities affected by 

deforestation are constituted of similar species assemblages regardless of the basin identity 

(Figure 2A). Contrastingly, river communities under high levels of deforestation differed in 

species composition, as they were more dispersed in the NMDS plane (Figure 2B). 

Habitat Response variable Upstream-downstream gradient effect Deforestation gradient 

Slope p-value Slope p-value 

Streams 

Species richness 6.18 0.021 2.25 0.24 

Functional richness 0.070 0.043 -0.004 0.48 

SES 0.157 0.5 -0.529 <0.01 

NMDS axis1 -0.33 0. 03 -0.05 0.68 

NMDS axis2 -0.04 0.71 0.25 0. 008 

Rivers 

Species richness -7.028 0.065 -11.345 0.001 

Functional richness -0.052 0.102 -0.076 <0.01 

SES 0.480 0.044 -0.136 0.501 

NMDS axis1 0.34 <0. 01 0.02 0.71 

NMDS axis2 -0.04 0.71 -0.13 0. 03 

Table 1: Results of the linear mixed models. For each response variable, a specific model was build 

controlling by basin identity as random effect.  

 

 

Figure 2: NMDS ordination of the sites based on species composition in stream (A) and river (B) fish communities. 

Deforestation intensity in each site was indicated as a blue to brown color shade. Upstream area was log 

transformed.  
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Species and functional richness 

On average, we found a higher species richness and functional richness in rivers communities 

than in streams communities (Table 2). The upstream-downstream gradient had a significant 

effect on diversity patterns for stream communities (Table 1): species and functional richness 

increased from upstream to downstream (Figure 3). In contrast, the effect of deforestation was 

not significant on stream communities (Table 1). Opposite patterns were found for riverine 

communities, as the upstream-downstream gradient had not a significant influence on diversity 

patterns (Table 1), but the effect of deforestation was significantly negative for both species 

and functional richness (Figure 4, Table 1). 

Habitat Response variable Mean 

Standard 

deviation 

Mean percentage of upstream 

deforested surfaces 

Streams 

Species richness 28.25 11.7 

9.1 (0 -67%) Functional richness 0.22 0.16 

SES -0.23 1.02 

Rivers 

Species richness 48.76 17.06 
1% (0 -4.3%) 

 
Functional richness 0.40 0.13 

SES 0.00 0.79 

Table 2: Mean and standard deviation of species richness, functional richness and SES values for each habitat. 

The mean percentage of upstream deforested surfaces for each habitat is also indicated. 

 

Ecological processes 

In streams communities, the mean of the SES values was negative despite a large standard 

deviation (Table 2). In river communities the mean values of SES values was null. The effect 

of the upstream-downstream gradient was not significant for the SES values (Table 1), in spite 

of a slight trend towards increasing values of SES downstream (Figure 4). Although, the 

majority of the SES values were within the neutral interval [-1.75 to 1.75], the SES values 

significantly decreased along the deforestation gradient (Table 1). At low deforestation 

intensities, SES values exhibited a marked heterogeneity but this variability declined with 

increasing deforestation intensity (Figure 4). At high deforestation levels, SES values were all 

negative, indicating a trend towards species having lower functional richness than expected 

randomly with increasing deforestation intensity. 
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Figure 3: Effects of the upstream-downstream gradient (left) and the deforestation gradient (right) on species 

richness (A, B), functional richnss (C, D) of fish communities for stream sites, and standardized effect size (SES) 

values of functional diversity (E, F). The sign of the SES value indicates if the functional diversity is lower 

(negative) or higher (positive) than expected by chance given the observed species richness. Fitted values of the 

mixed models are shown with solid lines for significant effects and 95% confidence intervals are indicated with 

grey shades. Dashed lines represent non significant effects. For a better representation, deforestation values were 

squared root transformed (real deforestation values ranged from 0 to 67%) and the basin surface areas upstream 

from the sampling were log transformed. 

 

In riverine communities, the deforestation gradient effect on SES values was not significant, 

whereas the effect of the upstream-downstream gradient was significant. SES values increased 

from upstream to downstream suggesting a trend towards communities having higher functional 

richness than expected given the number of species in downstream communities. Finally, the 

effect of the interaction between deforestation and the upstream-downstream gradient was not 

significant for any response variable. 
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Figure 4: Figure 3: Effects of the upstream-downstream gradient (left) and the deforestation gradient (right) on 

species richness (A, B), functional richnss (C, D) of fish communities for river sites. Standardized effect size 

(SES) values of functional diversity (E, F). The sign of the value indicates if the functional diversity is lower 

(negative) or higher (positive) than expected by chance given the observed species richness. Fitted values of the 

mixed models are shown with solid lines for significant effects and 95% confidence intervals are indicated with 

grey shades. Dashed lines represent non significant effects. Deforestation values were squared root transformed 

(real deforestation values ranged from 0 to 4%) and the basin surface areas upstream from the sampling were log 

transformed. 

 

Discussion 

Environmental gradients, be they natural or generated by anthropic disturbances, structure 

diversity patterns. This is a fairly well known trend in temperate rivers and streams (Grenouillet 

et al. 2004; Buisson et al. 2008). It has also been verified in tropical rivers (Cilleros et al. 2017), 

although tropical ecosystems benefitted from much less attention than their temperate 

counterparts. We here confirm such trends, but interestingly show that taxonomic and 
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functional changes in diversity across environmental gradients also account for changes in 

ecological processes shaping local communities. 

In stream communities, the percentage of deforested surfaces upstream from the fish 

sampling sites ranged from 0 to 75%. This impact resulted in differences in community 

composition according to the deforestation level. Furthermore, the dissimilarity in species 

identity between high deforested communities was low (Figure 3), even between stream sites 

belonging to different watersheds. This means that highly disturbed communities are composed 

of the same set of species, whereas natural streams show a strong species dissimilarity. 

Nevertheless, the changes on species composition did not result in significant losses of 

taxonomic and functional richness of stream communities. Similarly, other studies in the region 

failed to detect an effect of deforestation on species richness but reported changes on species 

composition (Bojsen and Barriga 2002; Brosse et al. 2011; Allard et al. 2016; Prudente et al. 

2017). Such discrepancy in species turnover between non-deforested and deforested streams 

indicate changes on ecological processes. The significantly negative effect of the deforestation 

gradient on SES values validate our hypothesis stipulating that the strength of environmental 

filtering increases with deforestation intensity (Figure 1B). Such a tendency has already been 

suggested in temperate streams for both fish and invertebrate communities (Gutiérrez-Cánovas 

et al. 2015; Kuczynski and Grenouillet 2018), but has not, to date, been reported in species rich 

tropical streams. This finding illustrates that the degraded conditions in deforested sites may 

filter out species according to their traits resulting in assemblages with ecologically similar 

species. Indeed, deforestation in Amazonian streams was found to mainly affect the physical 

structure of the streambed through reductions in bottom complexity and bed stability (Leitão et 

al. 2018). Additionally, the deforestation measured in our study is mainly due to gold-mining 

which have pronounced detrimental effects on stream physico-chemical conditions and 

streambed physical structure (Dedieu et al. 2015). Consequently, deforestation filters out 

species according to their habitat use and species associated with the benthic compartment 

might be more vulnerable than pelagic ones.  

For river communities, upstream deforestation intensity was lower, compared to streams 

(from 0 to 4%), but was more extended over a large part of the upstream drainage basin (Chapter 

3). Nevertheless, this low deforestation intensity significantly modified species composition 

and drive a marked erosion of both species and functional richness along the deforestation 

gradient. This parallels and extends the few studies assessing human impact on large rivers 
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illustrating a drastic effect of human impacts on biodiversity and ecosystem functioning 

(Vörösmarty et al. 2010). Despite a significant species and functional richness loss and contrary 

to our expectations (Figure 1C), ecological processes were not affected by the deforestation 

gradient. Therefore, the observed functional erosion is the result of random species loss, 

regardless of their functional traits. This finding suggests that in rivers, the observed decline of 

biodiversity is not due to habitat loss but rather to a chronic effect of pollution, which affects 

all of the species in the same way, without taxonomic or functional distinction. This type of 

chronic effect was indeed reported in increases of suspended matter contents downstream from 

mining sites for rivers in French Guiana but also in North America (Palmer et al. 2010; 

Lindberg et al. 2011; Gallay et al. 2018). Finally, the lack of deforestation effects on ecological 

processes should be considered with caution, because deforestation intensity remained low (less 

than 4% of the upstream drainage basin considered), and species extirpations are known to 

occur under extreme conditions (Mouillot et al. 2013b).  

Contrary to our expectations, not all the diversity patterns and processes were influenced 

by the upstream-downstream gradient. In fish communities inhabiting streams, species and 

functional richness both increased from upstream to downstream. For species richness, the same 

pattern was found in Guianese streams by Cilleros et al. (2017) with capture-based fish 

inventories. Moreover, habitat structural diversity was found to increase from upstream to 

downstream and promote local species richness (Cilleros et al. 2017). Therefore, the increase 

of functional diversity observed along the upstream-downstream gradient is the result of an 

addition of species. However, those species are not more functionally dissimilar than expected 

randomly, as SES values did not increase along the upstream-downstream gradient. Therefore, 

even if functional richness is increasing from upstream to downstream it is paired with an 

increase of species richness and therefore not associated to a higher than expected increase in 

functional traits. The unexpected lack of global predominance of environmental filtering in 

stream communities (as hypothesized in Figure 1A) can be the result of either a predominance 

of neutral processes or an equal contribution of limiting similarity and environmental filtering. 

This suggests that the streams sampled in French Guiana may exhibit less harsh conditions than 

expected. Indeed, Cilleros et al. (2017) found that the environment explained poorly the 

variability on the species composition of Guianese stream communities. Moreover, at the 

regional scale, those communities are more structured by dispersal limitation than by 

environmental filtering (Cilleros et al. 2016), highlighting again a weak role of the abiotic 

conditions.  
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In river communities, the lack of an upstream-downstream gradient on diversity patterns 

was unexpected, because such trend is recognized as an almost universal pattern for rivers 

(Vannote et al. 1980; Osborne 2002; Allan and Ibañez Castillo 2009). Indeed, deforestation 

impacts may be altering the expected gradient of increasing diversity along the upstream-

downstream gradient. Indeed, the percentage of deforested surfaces was positively correlated 

with the upstream-downstream gradient on rivers sites (r=0.8; p<0.01), which is explained by 

the fact that Guianese human population is mainly concentrated in the coastal zone and around 

large rivers. In other side, converging with an expectation of a relaxation of environmental 

filters in downstream habitats (Figure 1A), SES values increased significantly from upstream 

to downstream in river sites. Even though, limiting similarity did not governed community 

assembly in rivers (the SES values were within the neutral interval), we found a trend towards 

species having more different traits than expected randomly in downstream sites. This result 

combined with the lack of environmental filtering on deforested rivers advocates for dispersal 

processes gaining importance in downstream rivers compared to environmental factors 

(Henriques‐Silva et al. 2019). According to the network position hypothesis, the central 

position of rivers facilitates the dispersion of species and may promote mas effects (Schmera et 

al. 2018), which means that under high colonization rates, species can temporarily occupy 

habitat patches that are not suitable for them (Pulliam 1988). Thus, the low contribution of 

environmental process mediated by the high dispersal rates of species in rivers may be 

compensating the diversity erosion induced by deforestation. Answering this hypothesis is 

currently difficult because abundance data is needed to detect mass effect processes, and neither 

traditional fish inventory methods nor eDNA metabarcoding is able to provide relevant 

abundance data in Guianese streams (Cilleros et al. 2018). Further studies might therefore 

investigate the potential of eDNA to provide fish abundance, as highlighted by Zinger et al. 

(2020), which will provide a finer assessment of community assembly, functional structure and 

the impact of human activities (Mouillot et al. 2013b; Cadotte and Tucker 2017).  

 Despite above cited uncertainties in fish inventories, the deforestation gradient and 

the upstream-downstream gradient had consistent contrasting effects on rivers and streams as 

well as on diversity patterns and processes. Such results reveal a context-dependency of 

deforestation impacts on Amazonian biodiversity, rivers and streams therefore exhibiting 

distinct responses to perturbation. Communities inhabiting streams suffered from direct effects 

of deforestation and gold extraction, which has drastic consequences on water quality and the 

physical structure of the river bed by reducing the complexity of bed bottom and stability 
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(Hammond et al. 2007; Dedieu et al. 2014; Leitão et al. 2018). These physical changes caused 

a strengthening of environmental filters, which did not reduce taxonomic or functional diversity 

but reduced species dissimilarity between sites. However, Guianese streams host endemic 

species that occupy specific habitats and have limited dispersal capacities (e.g. genera 

Harttiella, Lithoxius, Melanocharacidium, Farlowella). Those species, some of which are 

already listed as endangered by the IUCN (IUCN 2017), are probably the first to suffer from 

physical habitat degradation. Consequently, “species-centered” conservation measures seem 

necessary to preserve the diversity of stream fauna. Conversely, fish communities inhabiting 

rivers face more indirect disturbances. The lack of an effect of the disturbance gradient on 

ecological processes highlights a chronic decline in diversity where the entire species 

assemblages are affected, generating random local species extirpations. Therefore, a 

conservation approach centered on the protection of the whole community would be relevant 

in rivers. 
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Abstract 

Quantifying biodiversity responses to anthropogenic disturbances is fundamental to assess 

the severity of human impacts. Functional diversity allows a deeper assessment of 

anthropogenic impacts on natural ecosystems because functional traits are more tightly 

linked to ecosystem processes than taxonomic diversity. However, the functional diversity 

is multifaceted and the different facets can have different responses to human impacts. The 

aim of this study was to describe the multifaceted effects of anthropogenic impacts on the 

functional structure of freshwater fish communities.  

We sample 50 river sites and 37 stream sites across French Guiana using environmental 

DNA. Rivers and streams sites were considered separately given that they associated fauna 

and environment markedly differ. Deforested surfaces upstream from the fish sampling 

sites were extracted from spatial data to create a global deforestation variable that integrates 

the effects urbanization, agriculture, gold-mining and logging. Functional spaces were built 

using morphological and ecological traits of the detected fish species in our eDNA samples 

to measure different functional indexes and assess the multifaceted effect of deforestation 

on functional diversity.  

In streams communities, deforestation affected significantly the functional evenness and 

the functional identity but not the functional richness or the functional specialization. This 

results in modifications in the internal structure of the functional space with fish 

communities overrepresented by pelagic detritivorous while underrepresented by benthic 

phytophagous species, but remaining functionally specialized. In rivers, deforestation was 

not significantly related to the functional specialization or evenness of communities but 

had a negative effect on functional richness and the positive relationship between the 

upstream-downstream gradient and those indices. Finally, deforestation did not to modify 

trait composition, which was more structured by the upstream-downstream gradient. We 

observed a global simplification in a multifaceted way in the functional diversity of fish 

communities under high levels of deforestation but the pathways were different between 

streams and rivers. 
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Introduction 

Natural ecosystems are facing increasing and unprecedented anthropogenic impacts that are 

eroding the diversity of biological communities (Barnosky et al. 2011). Quantifying 

biodiversity responses to anthropogenic disturbances is fundamental as biodiversity maintains 

the functionality of ecosystems (Tilman et al. 2006; Mouillot et al. 2011) and therefore the 

multitude of ecosystem services they provide to human societies (Cardinale et al. 2012). 

Biodiversity is a multi-faceted concept with each facet providing complementary 

information (Le Bagousse-Pinguet et al. 2019). Among the different facets, taxonomic diversity 

corresponds to the number of species occurring in a community whereas the functional facet 

captures the variety of morphological, ecological, behavioral and physiological traits among 

species within a community (Villéger et al. 2017). In the last decades, functional diversity has 

been claimed as a more appropriate tool to assess the impact of anthropogenic activities on 

natural ecosystems (Mouillot et al. 2013b), as functional diversity is more closely linked to 

ecosystem processes than taxonomic diversity (Cadotte et al. 2011; Mori et al. 2013). This 

suggests that functional changes will better relate alterations in community structure to changes 

in ecological processes that maintain ecosystem functions and will therefore better quantify the 

depth of human impacts on natural ecosystems. Indeed, previous studies have reported more 

pronounced functional changes than taxonomic changes as a result of disturbances regardless 

of the ecosystems or taxa considered. For instance, the introduction of non-native fish to rivers 

across the world over the past two centuries resulted in functional changes 10 times higher than 

taxonomic changes (Toussaint et al. 2018). Likewise, ocean acidification resulted in losses of 

functional diversity twice as high than taxonomic diversity in benthic marine communities.  

The functional structure of communities is also multifaceted and can be represented in 

a multidimensional space built constructed by ordinating species based on trait distances and 

multivariate analyses (Villéger et al. 2008). In this multidimensional space, the axes correspond 

to functional traits or to synthetic traits summarizing several raw traits. Hence, species are 

located according to their trait values within the functional space and communities are 

represented in terms of the functional abilities of both the entire community and the component 

species (Mouillot et al. 2013b). The functional structure of a community can describe several 

facets of the functional diversity (see Villéger et al. 2008, 2010; Mouillot et al. 2013 for more 

details): 
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i) The amount of the traits supported by all of the species co-occurring in a given 

community. This facet is commonly called “Functional richness” and represents the 

multidimensional volume occupied by the community within the functional space.  

ii) How traits are supported by the species in a given community and are distributed within 

the functional space. This facet is commonly called “Functional evenness” and represents 

the internal structure of the multidimensional volume of the community.  

iii) The identity of the traits supported by all of the species co-occurring in a given 

community. This facet is commonly called “Functional identity” and consists on the 

localization of a given community along the axis of the multidimensional space. 

Those facets provide different information about the functional diversity supported by a given 

community. For instance, coral reef fish communities exhibit a high diversity of but low 

evenness, as species were found to be packed into a few traits combinations, leaving the 

majority of traits without redundancy (Mouillot et al. 2014; D’agata et al. 2016). Notably, the 

different facets of functional structure can respond differently to human disturbances. Indeed, 

functional evenness was highly impacted by fragmentation and habitat loss in tropical 

communities of birds and trees, but the functional richness remained unchanged. It is thus 

important to assess the multifaceted responses of functional structure under disturbance because 

even if one component remain unchanged, the others components can have different responses.  

Deforestation is one of the major causes of ecosystem degradation, especially in 

Amazonian forest environments (Hansen et al. 2010; Gibbs et al. 2010; Morris 2010), where 

rivers and streams are facing growing rates of deforestation due to agricultural expansion, 

mining and logging (Castello et al. 2013). It is thus mandatory to define the functional structure 

of freshwater communities to understand the relations among community structure, trait 

diversity, and ecosystem functioning. Figure 1A represents the functional structure of a 

hypothetical non-impacted community within the global functional space (constructed with all 

of the species present in a set of sites). We propose three non-exclusive hypotheses describing 

the impacts on functional structure due to deforestation. Environmental filtering theory predicts 

that communities will progressively became functionally simplified along disturbance gradients 

(Mouillot et al. 2013b) resulting in:  

i) Disturbed communities showing a lower range of traits (lower functional richness) than 

non-deforested ones (Figure 1B). 
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ii) Deforested communities experiencing higher trait packing in the functional space than 

non-deforested ones. This results in deforested communities having low functional 

redundancy and thus low functional evenness in the distribution of the species within 

the functional space (Figure 1C). 

iii) Deforested communities having distinct functional traits from those non-deforested 

ones and thus different functional identity values along the axis (Figure 1D). 

 

Figure 1: Illustration of the potential multifaceted effects of human impacts on functional structure. The 

global functional space is delimitated with grey solid lines. The functional space of hypothetical communities 

are delimited by dashed lines with blue representing the non-deforested communities and yellow the 

deforested ones. Species are represented with dots and the Community barycenter is indicated with a cross. 

Three non-exclusive changes from the functional space of a hypothetical community (A) are proposed: (B) 

Decrease on functional richness due to trait losses. (C) Shifts in the identity of traits reflected by changes in 

the average position of the community along the ordination axis. (D) Species are less unevenly distributed 

within the functional space, with few species having extreme trait values and many generalists’ species. 
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We applied this framework to assess the impacts of deforestation on the functional 

structure of freshwater fish communities inhabiting tropical forests. Local fish assemblages in 

rivers and streams across French Guiana were inventoried using eDNA. This method allows to 

efficiently gather fish data for comprehensive studies without causing massive fish mortality 

and has been proven to be efficient in characterizing species rich ecosystems, such as Guianese 

streams and rivers (Cilleros et al. 2018; Jerde et al. 2019; Cantera et al. 2019). We assessed 

stream and large river communities separately to ensure environmental and faunistic 

homogeneity of the fish assemblages among sites. Moreover, deforestation may affect the two 

ecosystems differently because streams are directly impacted by deforestation whereas rivers 

act as recipient for deforestation effects cumulating from substantial upstream distances 

(Chapter 3). 

 

Materials and methods 

Sampling sites and deforestation intensity 

Sampling was undertaken in 37 stream and 50 river sites located across nine river basins of 

French Guiana (see Figure 6 in Chapter 1-IX). Following the protocol implemented by Cantera 

et al. (2019), we filtered 34 liters of water at each site to collect eDNA. See the materials and 

methods section of Chapter 2 for details on field sampling, laboratory procedures and bio-

informatic analyses.  

For each sampled site, we calculated deforestation intensity as the percentage of 

deforested surfaces upstream from each site following the same method used in Chapter 3. For 

streams, buffer areas were delineated with a distance of 0.5 km upstream from each sampling 

site. For rivers, buffer distance was of 70 km, as it was found as the appropriate spatial extent 

to measure deforestation impacts on fish functional diversity in large Guianese rivers (Chapter 

3). 

Fish species and functional diversity 

For each site, inventories based on the presence/absence of species were build based on the 

assignment of the obtained sequences in our eDNA replicates. The fish biodiversity of each site 

was measured through species and functional diversity. Species richness per site corresponded 
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to the number of detected species in the eDNA sample. This measure, although not exhaustive, 

provided a more comprehensive image of the fish species richness and species composition 

than other capture methods (Cantera et al. 2019).  

Morphological and ecological traits of the species detected in each site were used to build a 

global functional space (see Chapter 1-IX for details). Among the 187 detected species, traits 

were available for 178 species for the morphological data (95% of the total number of detected 

species) and for 182 species for ecological data (97%). Based on the position of species and 

communities within the multidimensional functional space, functional indices were calculated 

to describe the functional structure of fish communities using the function multidimFD 

available online (http://villeger.sebastien.free.fr/Rscripts.html). See (Villéger et al. 2008; 

Mouillot et al. 2013b) for more details. 

The amount of traits supported by fish communities was measured using Functional richness 

(“FRic”), which corresponds to the convex hull volume occupied by co-occurring species for a 

given community in the functional space. This index ranges from 0 to 1, with higher values 

reflecting high volume occupation of the community and thus high diversity of traits. In 

addition, trait composition was measured using Functional identity (“Fide”), which is the mean 

position of the community in each ordination axis and calculated as the average PCoA scores 

of the species present in a community. This index reflects trends on the identity of traits 

displayed by the species present in a given community. Differences in Fide values between 

deforested and non-deforested communities will reflect qualitative impacts of deforestation in 

the types of traits. Moreover, the regularity of species’ distributions within the internal structure 

of the functional space was quantified using Functional evenness (“FEve”). High values suggest 

greater regularity of species distribution. Finally, functional specialization (“FSpe”) was also 

quantified. This index measures the extent of functionally unique species present in a 

community relative to the regional pool of species. This index is measured as the mean 

Euclidean distance between each species and the average position of all species (i.e. the 

barycenter) in the functional space. FSpe decreases when a community is dominated by 

generalist’s species (species close to the center of the functional space) and increases when a 

community is dominated by specialist’s species (species with extreme trait combinations). 

 

 

 

http://villeger.sebastien.free.fr/Rscripts.html
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Data analysis 

Linear Mixed Models were used to test if upstream deforestation significantly affects the 

functional structure of fish communities. For each functional index (response variables), we 

built a specific model in which the upstream-downstream and deforestation gradients were 

scaled fixed variables. The variables were test for spatial autocorrelation using Moran's I but 

the effect was not significant. The effect of the interaction between the two variables was also 

assessed and basin identity was included as a random effect, to control for the regional pool 

context (Le Bail et al. 2012). The models were built using the lmer function from the lme4 

package (Bates et al. 2015). Rivers and streams sites were considered separately given that 

stream and river fauna and environment markedly differ (Allard et al. 2016; Cilleros et al. 

2017). 

 To define how the impacts on the functional indices translate into impacts on trait 

composition and identify the traits that were significantly affected by deforestation, the function 

envifit from the vegan package was used. The function fits variables (here traits) onto the PCoA 

ordination in order to identify strong or weak correlations between traits and the ordination 

axes. A determination coefficient (R²) was calculated to assess the strength of those 

correlations. Traits having high R² correspond to strong predictors of the ordination axis. In 

addition, p-values were calculated by comparing if the observed R² values were significantly 

higher than permuted R² values, based on 999 random permutations of the data. To quantify the 

contribution of the continuous traits, they were transformed onto vectors with its direction 

according to the correlation type with the axes (positive or negative) and the length of the 

vectors proportional to the strength of the correlation between the axis and the trait (R2 values). 

For categorical variables, average ordination scores were computed for each category of the 

traits to locate the different categories within the functional spaces.  

 

Results  

Functional richness and species distribution on the functional space 

In stream communities, the effect of upstream deforestation on functional richness and 

functional specialization was not significant (Table 1) but was significant on functional 

evenness (p=0.001, slope= -0.006). The functional evenness of communities significantly 
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decreased with deforestation intensity. The upstream-downstream gradient only had a 

significantly effect on functional richness (Table 1). Finally, the interaction between 

deforestation and the upstream-downstream gradient was not significant for any index (Table 

1). 

Habitat Functional index 

Upstream-downstream 

gradient 
Deforestation effect Interaction 

Slope p-value Slope p-value Slope p-value 

Streams 

Functional richness 0.055 0.026 -0.004 0.732 0.022 0.670 

Functional evenness -0.002 0.687 -0.006 0.001 0.010 0.280 

Functional specialization 0.006 0.175 -0.001 0.565 0.006 0.513 

Rivers 

Functional richness -0.057 0.28 -0.143 0.001 0.024 0.42 

Functional evenness 0.036 0.006 0.016 0.078 -0.027 0 

Functional specialization 0.021 0.001 0.004 0.391 -0.008 0.043 

Table 1: Results of the linear mixed models relating upstream deforestation and the upstream-downstream gradient 

to the functional indices in river and stream sites. For each index, a specific model was build controlling by basin 

identity. 

In river communities, functional evenness and functional specialization significantly 

increased along the upstream-downstream gradient (Table 1). The effect of upstream 

deforestation was only significant on functional richness (Table 1). Increasing deforestation 

induced a steep decrease of functional richness. Nonetheless, the interaction between the 

upstream-downstream gradient and deforestation had a significant negative effect on functional 

evenness and functional specialization (Table 1). 

 

Trait composition 

In order to assess if deforestation influences trait composition in fish communities, we analyze 

the relationships between deforestation intensity and the functional identity of communities. 

 

For stream sites, deforestation had a significant effect on FIde values along the PCoA1 

(p=0.003, slope= 0.006). As the intensity of upstream deforestation increased, FIde values 

increased along the PCoA1 (Figure 4B). Moreover, the upstream-downstream gradient had a 

significant effect on FIde values along the PCoA2 (p=0.013, slope= 0.013). FIde values 

increased along this axis from upstream to downstream. The gradients had no effect on the FIde 

values along the other axes and the interaction between the gradients had non-significant effect 

on FIde.  
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Measured trait Measured trait p-value R2 Axis.1 Axis.2 

Morphological traits 

Ed/Hd 0.001 0,36 0,92 -0,39 

Bbl/Bl 0.001 0,18 -0,44 0,90 

Mo/Bd 0.001 0,56 0,52 -0,85 

Jl/Hd 0.001 0,26 0,38 -0,93 

Eh/Bd 0.001 0,75 -0,90 0,43 

Bl/Bd 0.001 0,20 -0,90 0,43 

Hd/Bd 0.001 0,64 -0,95 0,32 

PFi/Bd 0.001 0,40 -0,15 -0,99 

PFl/Bl 0.247 0,03 -0,98 -0,21 

CFd/CPd 0.001 0,30 0,37 0,93 

Maximum body length 0.502 0,02 -0,87 -0,49 

Ecological traits 

Motility 0.001 0,50   

Gregariousness 0.001 0,36   

Water column position 0.001 0,53   

Prefered substrate 0.001 0,23   

Territorial 0.001 0,32   

Table 2: Contribution of each the trait to the axes of the functional space of stream communities. 

Only the axes significantly related to deforestation and the upstream-downstream gradient were 

included (i.e. PCoA 1 and PCoA 2, see results). The table shows the determination coefficient 

R2 of the correlation between each trait and the ordination, p-values based on random 

permutations of the data indicate if observed R2 are higher than R2 with randomly permuted data 

and the direction cosines of the continuous variables on the PCoA axes. 

 

Relating the ordination based on PCoA1 and PCoaA2 axes with functional traits showed 

that in stream communities, all the traits except maximum body length and pectoral fin 

(“PFl/Bl”) were significantly related with the ordination (Table 2). The first axis of the 

functional space was mainly characterized by differences between benthic and pelagic species. 

Benthic species associated to hard substrates and exhibiting a sedentary, solitary and territorial 

behavior had lower PCoA1 values, whereas pelagic and bentho-pelagic species with mobile, 

gregarious and non-territorial behavior had higher PCoA1 values. For the morphological 

variables, eye vertical position “Eh/Bd”, body lateral shape “Hd/Bd” and body elongation 

“Bl/Bd” were negatively correlated to the PCoA1, while the eye size “Ed/Hd” was positively 

correlated to this axis (Table 2). The PCoA axis 2 was negatively positively with pectoral fin 

position “PFi/Bd”, oral gape position “Mo/Bd” and maxillary length “Jl/Hd” (Table 2). 

Conversely, relative barbell length “Bbl/Bl” and caudal peduncle throttling “CFd/CPd” were 

positively correlated to this axis. Figure 4 illustrates that high deforested communities tend to 

be less represented by elongated “Bl/Bd” species having big heads “Hd/Bd” and relatively small 

eyes “Ed/Hd” positioned toward the top of the head “Eh/Bd” (positive PCoA1 scores, Figure 

4). These species mostly belong the Loricarideae family, which are benthic algae feeders. 

Conversely, under high deforestation levels, sites were characterized by a dominance of pelagic 
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detritivorous species. Furthermore, upstream communities were characterize by species having 

small caudal peduncle throttling “CFd/CPd”, a basal mouth pectoral fin “PFi/Bd” and oral gape 

positioned towards the top of the head (Figure 4). 

 

Figure 3: The functional space build with the axes significantly impacted by deforestation and the upstream-

downstream gradient in stream communities. (A) Trait structure within the functional space. Only traits 

significantly related to the ordination are indicated (see Table 2 and results). Black arrows indicate the direction 

and the strength of the correlation between morphological continuous traits and the PCoA axes. The mean average 

position of each category is indicated by colored text corresponding to the five ecological categorical traits. Fish 

illustrations indicate typical morphologies for the different areas of the morphological planes. (B) Location of the 

fish communities within the functional space. 

For river sites, we did not find any significant effect of upstream deforestation on the 

functional identity of fish communities. Conversely, the upstream-downstream gradient had a 

significant effect on functional identity along all of the five axes (p<0.05). 

Discussion 

Amazonian rivers and streams are highly diverse, but are facing multiple and increasing human 

impacts that are affecting Amazonian biodiversity (Castello et al. 2013). Here we show that 

anthropogenic impacts in French Guiana modify the functional diversity of freshwater fish 

communities by affecting not only the amount of functional traits but also their identity and 

their distribution within the functional space. Following the environmental filtering theory, we 

hypothesized that highly deforested communities facing harsh conditions will exhibit more 

ecologically similar traits among the remaining species. Overall, we observed a simplification 

of the functional structure of communities under high levels of deforestation, but the pathways 

to this simplification were different between streams and rivers.  

The percentage of deforested surfaces upstream from the fish communities in stream 

sites ranged from 0 to 75% (mean=9%). In spite of this considerable impact, the functional 
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richness of stream communities was not significantly affected by upstream deforestation, 

rejecting therefore our first hypothesis (see Figure1B). However, as expected according to our 

second hypothesis (see Figure 1C), the functional evenness of communities significantly 

decreased under deforestation. As deforestation percentages increased, the resulting 

environmental degradations may filter out some species according to their traits, leaving some 

parts of the functional space underrepresented while other parts are overrepresented. Similarly, 

increases in functional redundancy due to local and watershed scale deforestation were reported 

for fish communities in Amazonian streams of Brazil (Bordignon et al. 2015; Leitão et al. 

2018). Nevertheless, deforestation was not significantly related to the functional specialization 

of communities. This suggests that the conditions encountered in deforested sites are not 

particularly disfavoring species with extreme trait combinations (i.e. in the extremes of the 

functional space), which should explain why the functional richness was not significantly 

eroded. Therefore, our results point that high deforestation levels lead to modifications in the 

internal structure of the functional space but fish communities remain functionally specialized. 

The persistence of specialized species may be explained by the low percentages of upstream 

deforested surfaces recorded in our study sites. Indeed, 81% of our sites experienced less than 

20% of upstream deforestation, which was the threshold proposed by Brejão et al. (2018) to 

observe abrupt responses to deforestation for Amazonian fishes. Thus, the functional changes 

reported here may be early warnings of more drastic functional responses and suggest that if 

deforestation intensity continues to increase in streams, the influence of environmental filtering 

might be stronger and fish communities would lose species with extreme trait values and be 

less functionally diverse.  

Deforestation had also a significant effect on the functional identity of fish communities 

inhabiting stream sites (confirming hypothesis 3, Figure 1D). Importantly, the deforestation 

gradient was significantly related with PCoA1 axis and the upstream-downstream gradient with 

the PCoA2. This illustrates that, in those sites, the deforestation gradient explained more the 

variation in trait composition than the upstream-downstream gradient. A shift from 

communities dominated by benthic species towards communities dominated by pelagic 

detritivorous species along the deforestation gradient was detected, paralleling shifts observed 

in marine fish communities under global warming in both tropical and temperate ecosystems 

(McLean et al. 2019a). Deforestation and gold-mining were found to drastically affect the 

physical structure of stream bottoms through reductions in bottom complexity and bed stability 

in Amazonian streams (Hammond et al. 2007; Leitão et al. 2018). This will disproportionately 
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affect species associated with the benthic compartment. In addition, most benthic species absent 

from high-deforested sites feed on algae. Similarly, Allard et al. (2016) found that 

phytophagous species were underrepresented in logged sites in French Guiana using capture-

based inventories. In fact, logging and gold-mining were reported to increase the turbidity and 

fine particle siltation in streams (Hammond et al. 2007; Brosse et al. 2011; Dedieu et al. 2014), 

leading to negative effects on algal growth (Tudesque et al. 2012) and thereby reducing food 

availability for algae feeders. Therefore, the anthropogenic activities assessed here may be 

arising environmental filters related to food availability and habitat alteration, thereby 

explaining the shift from a dominance of benthic phytophagous to pelagic detritivorous species 

along the deforestation gradient. Moreover, this shift may drive the observed decreases on 

functional evenness. As the deforestation intensity increases, benthic phytophagous species 

may be disfavored while pelagic detritivorous fish would be favored, which would result on 

species disproportionally packing into traits related with the pelagic compartment and the 

detritivorous guild. This shift can lead to consequences on ecosystem functioning, such as 

nutrient cycling (Cao et al. 2018) and the regulation of plant communities, especially when 

considering that local deforestation might lead to increases of aquatic vegetation due to shading 

decreases (Leitão et al. 2018). 

In opposition with streams, river sites experienced low levels of deforestation intensity 

(from 0 to 4%, mean= 1%) but it was enough to significantly impact functional richness. As 

expected in our first hypothesis (Figure1B), a marked erosion of functional richness was 

observed along the deforestation gradient. Nonetheless, we did not found direct significant 

effects of deforestation on the functional evenness or functional specialization, but 

deforestation had a negative effect on the positive relationship between the upstream-

downstream gradient and those indices. Indeed, the functional evenness and functional 

specialization of fish communities significantly increased from upstream to downstream. 

Environmental stability, habitat size and complexity increase from upstream to downstream 

(Willis et al. 2005), driving an relaxation of abiotic filters and promoting an increasing resource 

availability along the upstream-downstream gradient. Thus, the observed increases of 

functional evenness and functional specialization from upstream to downstream, may be 

mediated by a limiting similarity process that governs community structure in riverine habitats 

and promotes the coexistence of species with different traits (Carvalho and Tejerina-Garro 

2015). However, deforestation seems to be disrupting this pattern, as it had a negative effect on 

this positive relationship. This suggests that if deforestation levels are higher than the levels 



91 

 

 

observed here, the effect of the upstream-downstream gradient on the functional structure on 

fish communities will be complete disrupted. This interception with the upstream-downstream 

gradient may come from the fact that deforestation intensity increases from upstream to 

downstream (r=0.8; p<0.01), as the Guianese human population is mainly concentrated in the 

coastal zone and around large rivers. Finally, in river communities, deforestation did not have 

a significant effect on trait composition or on the relationship between functional identity and 

the upstream-downstream gradient (Hypothesis 3 rejected, Figure 1D). Since the upstream-

downstream gradient had significant effects on the functional identity along all axes of the 

PCoA, trait composition should be primarily governed by the upstream-downstream gradient 

in these habitats.  

In general, the functional structure of freshwater fish communities in our sites was 

affected by deforestation but the responses were different between river and stream 

communities. Moreover, the deforestation responses differ among the different facets of the 

functional diversity. Thus, we advocated that the functional structure of communities should be 

assessed in a multifaceted way. The functional richness of fish communities was significantly 

eroded with increasing deforestation in rivers sites (confirming hypothesis 1, Figure 1B) but 

not in stream sites (rejecting hypothesis 1, Figure 1B). Additionally, deforestation affected 

significantly the functional evenness of stream communities, resulting in communities 

unrepresented by benthic herbivore species compared to pristine sites (confirming hypothesis 

2, Figure 1C). In rivers, deforestation did not directly affected the functional evenness of the 

communities but affected the positive relationship between the upstream-downstream gradient 

and functional evenness. Finally, deforestation affected the functional identity of fish 

communities in stream sites (confirming hypothesis 3, Figure 1C) but not in river communities. 

Our findings strongly support that that vulnerable traits (which may vary with the type of 

disturbance) represented here by benthic herbivores can be locally extirpated, leaving the 

related functions unaccomplished and this will severely hamper the functioning of ecosystems.  
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General discussion 

 

Amazonian rivers and streams host enormous levels of species diversity, but are also facing 

increasing and unprecedented anthropogenic impacts (Barlow et al. 2018). This work attempted 

to understand the depth of those impacts in Guianese streams and rivers using an integrative 

community ecology approach with an innovative and non-invasive sampling method. 

 

 

1) Optimization of the eDNA method for sampling species-rich communities  

This study provides guidelines for the application of eDNA in running waters and, specially, 

for standardizing and optimizing eDNA-based fish inventories in species-rich ecosystems, 

without reducing the representativeness of the fauna. Collecting eDNA from 34 liters of water 

was sufficient to obtain a good characterization of fish communities (87% of the expected 

fauna) in both stream and river sites. Increasing eDNA sampling effort to 68 liters of water 

enhanced detection rate by up to 91%. Higher sampling efforts only identified a few additional 

species. Consequently, if the purpose is to exhaustively inventory the fauna, it will be necessary 

to filter more than 68 liters to improve the detection probability of rare species.  

Nevertheless, the core of fish communities is efficiently detected when 

collecting eDNA from a single sample of 34 liters of water, and such 

inventories were i) more efficient and less biased by fish morphology than 

traditional capture-based methods and ii) sufficient to distinguish fish 

assemblages among sites and to identify ecologically relevant patterns. 

 

 

2) Definition of the spatial extent and strength of anthropogenic impacts on biodiversity  

The anthropogenic impacts measured in this study had an extended effect on fish biodiversity. 

Deforestation impacts cumulated up to 70 kilometers upstream from fish sampling sites and 

caused steep declines of both species and functional diversity. Indeed, less than 5% of 
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deforested area within a buffer zone up to 70 kilometers away upstream of the fish sampling 

site, has caused a decline of more than 30% of fish biodiversity. We advocate that measuring 

deforestation intensity (here the percentage of deforested surfaces upstream from the sites) at 

large extent, capturing both local and more distant deforestation effects, explains better 

deforestation impacts on fish biodiversity.  

Distant and low levels of anthropogenic impacts were linked to 

considerable erosions of fish diversity, suggesting that the impact of 

deforestation in rivers, often measured at the vicinity of the site, has 

been strongly underestimated in previous studies. 

 

 

3) How anthropogenic impacts modify diversity patterns and ecological processes? 

Fish biodiversity patterns and processes presented different responses to human activities 

depending on the habitat. In stream communities, the strength of environmental filtering 

filtering became more important in highly deforested sites resulting in assemblages with 

ecologically similar species. In rivers, in spite of a drastic erosion of functional and taxonomic 

diversity along the deforestation gradient, these communities were less influenced by 

environmental filtering. In contrast, the high habitat size, complexity and stability of 

downstream large rivers may be promoting fish functional complementary and thus 

compensating the potential environmental filters that deforestation can arise. 

The deforestation gradient had contrasting effects on rivers and streams 

as well as on diversity patterns and processes, revealing the complexity 

of the impacts of anthropogenic activities on Amazonian biodiversity. 

 

4) How anthropogenic impacts modify diversity the functional structure of fish communities? 

A global simplification of the functional structure of communities under high levels of 

deforestation was observed. The functional richness was significantly eroded with 

increasing deforestation in rivers sites but not in stream sites. Deforestation leads to an 

overrepresented of stream communities by pelagic detritivorous species while they were 
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underrepresented by benthic phytophagous species. In rivers, deforestation did not 

impacted significantly the functional specialization and evenness of communities but had 

a negative effect on the positive relationship between the upstream-downstream gradient 

and those indices.  

Anthropogenic impacts modified the functional structure of fish 

communities in a multifaceted way and the responses of the different 

functional facets varied between streams and rivers. 
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I) Environmental DNA, a tool to assess human impacts on Amazonian aquatic biodiversity  

Gathering realistic biodiversity inventories is a prerequisite to measure the strength of human 

impacts on biodiversity. Describing Amazonian biodiversity is challenging given the wide 

range of species diversity and the strong proportion of rare species (Leitão et al. 2016; Barlow 

et al. 2018). In French Guiana, sampling freshwater fishes is particularly challenging since 

current fish sampling methods vary among ecosystems, besides being destructive and species 

selective (see Chapter 1). We developed an eDNA metabarcoding procedure, which was 

validated and optimized. Our results might nevertheless be considered with caution because the 

measure of fish biodiversity in tropical rivers and streams cannot be exhaustive. Nevertheless, 

in the Chapter 1, we demonstrated that this method is equivalent, and even more effective than 

traditional methods to inventory fish fauna in Guyanese streams and rivers. Additionally, the 

method provided a realistic image of fish communities and exhibited a high repeatability in 

terms of species richness and identity. Finally, eDNA sampling was efficient in both streams 

and rivers, standardizing potential sampling bias among ecosystems and making possible to 

compare stream and river samples.  

One uncertainty of the method lies in the distance detection of species in the water. 

Indeed, DNA in the water can be transported downstream along the river network. The distance 

detection was assessed in temperate ecosystems and the obtained estimations display a high 

variability among studies. Deiner et al. (2016) claimed a distance detection at the watershed 

scale, but these results were partly due to biases in the bioinformatic treatment of the data 

(Taberlet et al. 2018). Furthermore, a more recent study showed that eDNA of abundant species 

can be detected up to 130 km downstream, whereas the detection of less abundant species was 

restricted to a few kilometers, suggesting that abundant species are detected farther downstream 

than rare ones. Moreover, the introduction of caged animals in streams revealed that eDNA was 

detected 5 m but not 50 m downstream from caged salamander (Pilliod et al. 2014) and up to 1 

km downstream from caged trout (Wilcox et al. 2016). In addition, DNA from a lacustrine fish 

species was detected up to 3 km downstream from the outlet of a lake by Civade et al. (2016), 

and Deiner and Altermatt (2014) detected two lake invertebrate species up to 12.3 km 

downstream from a lake. Similarly, our results on Chapter 2 showed that the method was able 

to discriminate between the fauna of a main course site from the fauna of an affluent site located 

nearby 300m upstream, without any trend toward nestedness of the stream fauna within the 

riverine fauna as claimed in other studies (Deiner et al. 2016; Cilleros et al. 2018).  
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Finally, this work highlights the ability of the method to distinguish among sites, 

ecosystems types (rivers versus streams) and therefore to inventory local species assemblages 

in tropical running waters, which was limited up to now to temperate environments (Civade et 

al. 2016; Port et al. 2016; Yamamoto et al. 2017). The eDNA metabarcoding approach has been 

claimed as a promising tool to measure biodiversity. Several studies tested its reliability (Evans 

et al. 2017; Lopes et al. 2017; Civade et al. 2016; Hänfling et al. 2016; Olds et al. 2016; 

Valentini et al. 2016) and advocated that the method provides similar or more complete species 

inventories. However, its application in ecological and conservation studies has not been widely 

exploited. Our results showed that the method can be used to sample disturbed communities 

and was able to discriminate between deforested and non-deforested sites (Chapters 2, 3 and 

4).  

 

II) Anthropogenic impacts on fish communities in Amazonian streams and rivers 

A community ecology approach was used to define how deeply anthropogenic activities affect 

diversity patterns and ecological processes of Amazonian fish communities, in which the 

connectivity of freshwater ecosystems was considered. Deforested surfaces from spatial data 

were extracted to create a global deforestation variable that integrates the effects of 

urbanization, agriculture, gold-mining and logging. Globally, we observed differences on 

species composition and a simplification of the functional structure of communities under high 

levels of deforestation, but the pathways to this simplification were different between streams 

and rivers.  

In stream communities, the taxonomic and functional richness of fish communities were 

mainly shaped by the upstream-downstream gradient, while ecological processes were mainly 

influenced by the deforestation gradient. The direct and detrimental impacts of human activities 

on stream habitats resulted on changes on species composition, without significantly decreasing 

species and functional richness (Chapter 4). Those alterations were mediated by the 

environmental filtering process that gained strength in highly deforested sites. The analyses of 

the functional structure of fish communities allowed to deepen those findings and revealed that 

the increasing environmental filtering affected the internal structure of the functional space 

without affecting the functional richness (Chapter 5). Indeed, species were less evenly 

distributed within the functional space, leaving traits related with the pelagic compartment and 
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the detritivorous guild overrepresented, whereas benthic phytophagous species were 

underrepresented. Therefore, the anthropogenic activities assessed here may be arising 

environmental filters related to food availability and habitat alteration.  

For river communities, we found that the effects of upstream deforestation are 

cumulating along the river network (Chapter 3) resulting in a marked erosion of fish diversity 

in downstream large rivers. Indeed, distant and low deforestation (<5% of deforested area 

upstream from the sampling sites) caused a decline of more than 30% of fish species and 

functional diversity (Chapter 3). This extended effect on biodiversity may be the result of an 

accumulation of alterations related with water and habitat conditions, as it has been largely 

reported for chemistry changes induced by mountain top mining (Palmer et al. 2010; Lindberg 

et al. 2011; Hitt and Chambers 2014). Nonetheless, this perturbation was not determinant on 

the ecological processes shaping fish communities in rivers, which were more influenced by 

the upstream-downstream gradient than by the deforestation gradient (Chapter 4). Contrary to 

our expectations, deforestation did not lead to an increase of environmental filters in these 

habitats. Furthermore, the lack of predominance of environmental filtering under high 

deforestation levels found in Chapter 4 advocates that in spite of the diversity erosion, the 

ecological rule shaping fish communities remains unchangeable. The Chapter 5 confirmed that 

the observed functional erosion might be the result of random species loss, regardless of their 

traits. Indeed, deforestation did not have a significant effect on trait composition, which was 

more influenced by the upstream-downstream gradient, nor on the functional evenness or 

functional specialization of river communities. This parallels with the results of Chapter 4, 

where we demonstrated that the ecological processes were more influenced by the upstream-

downstream gradient than by deforestation. Nevertheless, deforestation had a negative effect 

on the pattern of increasing functional evenness and functional specialization from upstream to 

downstream. Deforestation intensity increases upstream from downstream, as Guianese human 

population is mainly concentrated in the coastal zone and around large rivers. Thus, 

deforestation can perturb this pattern towards more functionally simplified communities (less 

specialized and less evenly distributed within the functional space) in the highly disturbed 

downstream rivers. 

Rivers and streams responded differently to the effects of anthropogenic activities in 

terms of both diversity patterns and processes. The way in which streams and rivers are 

impacted by human activities varies in French Guiana. Streams are often directly impacted by 



98 

 

 

gold-mining, logging and agriculture, which results in high disturbance levels, as we observed 

in our study (0 to 75% of upstream deforested surfaces). Moreover, their small size make them 

more prone to be complete damaged after disturbance. Indeed, deforestation and gold-mining 

in Amazonian streams was found to severely modify stream water quality, due to the massive 

release of suspended sediments (Hammond et al. 2007), and the physical structure of the 

streambed, through reductions in bottom complexity and bed stability (Leitão et al. 2018). In 

contrast, rivers may act as a recipients of diffused upstream impacts, excepting for large cities 

which directly affect rivers (Vörösmarty et al. 2010). Accordingly, we pointed out that the 

measured disturbances affected fish biodiversity beyond local effects (Chapter 3). Indeed 

upstream deforested surfaces located between 30 and 70 km away from our sampling sites, 

were still related to detrimental changes on biodiversity and our models better predict declines 

in fish biodiversity by measuring deforested surfaces over large spatial extents, capturing both 

local and large disturbances. Interestingly, in spite of being higher and more variable, local 

deforestation did not influence local biodiversity descriptors. Therefore, riverine biodiversity is 

impacted by distant upstream disturbance that cumulated downstream.  

Furthermore, streams and rivers differ in environmental conditions and the ecological 

processes ruling community assembly (see the introduction of Chapter 4 for details). Small 

stream communities are mostly influenced by abiotic conditions, which converges with the 

significant impacts of deforestation observed in assembly processes (Chapter 4) and functional 

structure (Chapter 5). In opposition, downstream large rivers are less shaped by environmental 

conditions, paralleling with the lack of environmental filtering that we found in Chapter 4. 

Moreover, according to the network position hypothesis (Schmera et al. 2018; Henriques‐Silva 

et al. 2019), those habitats are highly influenced by spatial processes due to the central position 

of rivers, which means that under high colonization rates, species can temporarily occupy 

habitat patches that are not suitable for them (Pulliam 1988). Thus, the low contribution of 

environmental process mediated by the high dispersal rates of species in rivers may maintain 

functionally diverse communities in spite of the loss of functional richness induced by 

deforestation. Correspondingly, in the Chapters 4 and 5, we observed that the upstream-

downstream gradients have more strong effects on diversity patterns and community assembly 

that the deforestation gradient. 
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III) Conclusion 

Throughout the different Chapters, our findings strongly support the complexity of 

anthropogenic impacts on Amazonian biodiversity. Besides habitat-dependent responses, 

anthropogenic impacts modified the biodiversity of freshwater fish communities in a 

multifaceted way. Thus, we advocated that the sole consideration of local disturbances (Chapter 

3) and/or one diversity facet can mask deeper impacts of anthropogenic disturbances on fish 

communities (Chapters 3, 4 and 5). Indeed, as many other studies, we found that the impacts of 

local deforestation in streams communities were masked by changes on species composition. 

This converges with previous studies that failed to detect changes in species richness of stream 

fish communities under deforestation or gold-mining (Chapter 1 section IV). Nonetheless, we 

revealed that anthropogenic activities in French Guiana’s streams had deeper impacts on fish 

communities than reported before, as they modified the ecological processes ruling assembly.  

This work underlined the vulnerability of tropical fauna to slight environmental 

changes, even in relatively well-preserved regions, such as Guianese forests. These findings are 

aligned with the high vulnerability of tropical ecosystems exposed in the Chapter 1 (section II). 

Importantly, this study highlights the vulnerability of the functions supported by Amazonian 

biodiversity as well as the vulnerability of the whole functioning of the ecosystem, considering 

the strong link between species traits and ecosystem functioning (see Chapter 1 Section I). In 

the Chapter 5, we observed that even if stream communities remained functionally diverse 

under high levels of deforestation, the trait structure changed strongly. Indeed, benthic 

herbivores are prone to be locally extirpated leaving their related functions unaccomplished and 

this may strongly hamper the ecosystem functions, such as nutrient cycling and the regulation 

of plant communities. 

In light of the spatially extended and cumulative effect of human activities reported in 

Chapter 3 and the interactions between the upstream-downstream gradient and the deforestation 

gradient (Chapter 5), we call for future studies and conservation practices to not only consider 

local disturbances on fauna. This will avoid underestimating deforestation effects on riverine 

fauna, and will capture the actual human impacts on aquatic ecosystems. This also means that 

the way in which conservation policies are planned should be re-evaluated too and re-oriented 

towards a catchment based framework (Castello et al. 2013). For instance, protected areas 

should take into account the spatially extended impacts of human activities in freshwater 

systems.  
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III) Perspectives 

1) Methodological perspectives 

Although we were able to distinguish communities separated only by 300m (Chapter 1), 

forthcoming studies should explicitly define the distance detection of species in tropical rivers 

and streams. As mentioned before the distance detection displays a high variability among 

studies and all of the studies that assessed this issue explicitly were performed on temperate 

ecosystems. Unfortunately, their findings cannot be transposable to tropical waters, as tropical 

and temperate streams have distinct physical and chemical characteristics and these differences 

affect the rate of DNA degradation (Barnes et al. 2014). Moreover, comparing eDNA detections 

with the known distribution range of the species requires precise inventories. However, the 

current state of knowledge about the distribution range of Guinness species is very limited. In 

part, because of the inefficiency of traditional sampling methods. One solution is to assess the 

distance detection as the distance in which downstream communities became significantly 

dissimilar from one upstream community. This measure will be more a measure of the ability 

to distinguish communities than a species distance detection itself. Sites located linearly along 

the upstream-downstream gradient of a river can be used to test if the eDNA is transported: 

i) at the watershed scale (Figure 2a) as suggested by Deiner et al. (2016), which means that 

there is no significant dissimilarity between the red dot and all of the upstream sites. 

ii) at intermediates distances (Figure 2b), according to Deiner and Altermatt (2014).  

iii) at low distances (Jane et al. 2015; Civade et al. 2016), following and Pilliod et al. (2014) 

Wilcox et al. (2016). 

 

Figure 1: Illustration of the assessment of distance detection based 

on dissimilarities on species composition 
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Moreover, as discussed in the Chapter 4, we failed to report an increasing pattern of fish 

species richness and functional richness along the upstream-downstream gradient in large 

rivers. One explanation is that the eDNA method is failing to detect all the species on 

downstream habitats. This can be explained by the fact that downstream large rivers have more 

diverse habitats and higher species richness comparing to small rivers. Consequently, if the 

method has limited distance detection, not all the habitats may be extensively sampled with one 

eDNA replicate. Indeed, in the Chapter 2, we observed that species accumulation curves 

saturated faster in streams than in rivers and that stream replicates exhibited less variability than 

river replicates. This suggests that water volume should be adapted to the size of the sampled 

water system and that in very large rivers located downstream, the sampling effort should be 

higher than in upstream streams. 

Finally, an important pitfall of this work is the inability to have information about the 

abundance of species. Indeed, deforestation effects in our study can be underestimated as 

species extirpations will only occur in extreme conditions (Mouillot et al. 2013b). This suggests 

that, the fact that a species was detected in one site, does not imply that the species has 

sustainable population sizes. Including the abundance of species may better reveal 

environmental filtering effects and thus provide a finer assessment of community assembly, 

functional structure and the impact of human activities (Mouillot et al. 2013b; Cadotte and 

Tucker 2017). It has been proposed that the number of reads can be an estimate of the abundance 

of individuals. However, the amount of free DNA on the water may also depend on the size of 

the fish, the behavior (for instance, mobile species might release more DNA than settle species), 

the metabolism, the proximity of the fish to the filter, etc. Thus, at the moment, it is complicated 

to measure species abundance with eDNA data. Assessing the release rate of each species in 

experimental designs would be ideal to have insights into the correlation between reads and 

abundance but it is impossible. One possible solution is to assess the release rate of some 

ecological groups (e.g. small vs. big, mobile vs sedentary) to define if the release rate varies 

considerable between ecological traits. 

 

2) Theoretical perspectives 

Given the observed significant effect of the upstream-downstream gradient on the diversity 

patterns of river communities (Chapter 4) and the known importance of dispersal processes in 

downstream areas (Henriques‐Silva et al. 2019), it will fruitful to explicitly add large scale 
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processes to the assessment of the impact of human activities on fish communities. An 

approach, in which we compare beta-diversity patterns of taxonomic and functional diversity 

among communities, can provide insights into the effect of deforestation on ecological 

processes shaping riverine communities at large scale. For instance, we can test the network 

positon hypothesis (Schmera et al. 2018; Henriques‐Silva et al. 2019) in our sites and test if we 

obtained different results between deforested and non-deforested sites.  

 The findings reported here apply only to one taxonomic group, freshwater fishes. A 

comparative study using a multi taxa approach will allow extending our conclusions to different 

compartments of the aquatic ecosystem. Moreover, it will allow a better understanding how 

human activities are affecting the global ecosystem and its functioning. For instance, we can 

expect that more pronounced responses would be obtained if we use the same approach with 

aquatic invertebrates or algae, which are less mobile. Contrastingly, if we compare our results 

with taxa that occasionally use aquatic ecosystems and are therefore less dependent, such as 

birds and mammals, we might expect less pronounced responses. Such approach is feasible 

using eDNA data as the extracted DNA can be used to identify other taxa if a reference data 

base is accessible. 

 

3) Towards the development of a fish-based index of biotic integrity using eDNA 

This study enabled the validation and optimization of the eDNA method as a tool for assessing 

the strength of human impacts on fish communities across the rivers and streams of French 

Guiana. As stated before, a reliable definition of the distance detection will considerably 

improve the application of the eDNA sampling method in studies evaluating the ecological 

impacts of human activities on diversity but also for biodiversity monitoring and conservation 

goals, such as the development of an index of biotic integrity. This tool consists on the analysis 

of the characteristics of biological communities to assess the quality of aquatic habitats. The 

development of biotic indices is a prerequisite to systematically and uniformly assess the quality 

of ecosystems and their potential degradation by human disturbance. Biotic indices measure the 

condition of a given stream or river and are rely on comparisons between an undisturbed 

reference situation and the observed situation. Those biotic indices are often based on the 

prediction of species occurrences derived from species distribution models (Oberdorff et al. 

2001). Such approaches require a comprehensive sampling of fish communities to have many 

sites covering different environmental variables and then build reliable models. The 
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development of a biotic index is of a particular interest in French Guiana, as a French territory, 

it must comply with European regulations aimed at developing surveillance programmes on 

water quality. However, all attempts to develop a fish-based index of biotic integrity have failed 

due to low quality of the models, which may be partly explained by the inefficiency of the 

current sampling. Thus, eDNA may be an efficient and affordable solution for performing 

compressive samplings across the territory and improving the quality of the models to build a 

biotic index. 

 

4) Integrating social dimensions on the assessment of human impacts on rivers 

Over this work, the diversity of rivers has been described through different facets: the diversity 

of species hosted by the rivers, the diversity of traits carried by those species, the diversity of 

habitats that support those species and the diversity of the responses to anthropogenic 

disturbances. However, there is another diversity facet, which is even at the origin of 

anthropogenic impacts, the diversity of relationships between human populations and rivers. 

For instance, French Guiana represents an intercultural mosaic, this diversity is reflected in the 

diversity of the relationships between the human populations and rivers (see the epilogue 

below). This diversity facet must be taken into account in the assessment of anthropization 

effects on rivers and more importantly, in management and conservation strategies. Human 

populations depend on river systems and exploit their resources and these relationships will 

have an impact on river ecosystems. The intensity and type of the impact will vary according 

to the relationship considered and they will also determine the strengths of the impacts on the 

biodiversity inhabiting the rivers. Another characteristic to be taken into account is that certain 

human activities will induce biodiversity alterations and this will in turn affect the human 

populations that depend on the river resources (e.g. fishing). 
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Epilogue : Les peuples et les rivières, une autre facette de diversité 

 

Au cours de ce travail, la diversité des rivières a été décrite à travers de différentes facettes: la 

diversité en espèces abrités par les rivières, la diversité des traits portés pas ces espèces, la 

diversité des habitats qui abritent ces espèces et la diversité des réponses aux perturbations 

anthropiques. Cependant, il y a une autre facette de diversité, qui est même à l’origine des 

impacts anthropiques. C’est la diversité des relations entre les peuples et les rivières. La Guyane 

Française représente un mosaïque interculturel et cette diversité se reflète dans la diversité des 

relations entre les peuples et les rivières. 

 

Les rivières sont source d’énergie. Depuis 1994, le barrage hydroélectrique de Petit Saut a été 

construit sur le Fleuve Sinnamary. Ce barrage alimente en énergie surtout les villes de la région 

côtière.  

 

Lac artificiel du barrage de Petit Saut (Sinnamary). 
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Les rivières sont source de vie et transport. Sur les fleuves de l’Oyapock et du Maroni, les 

peuples amérindiens et noirs-marrons se sont installées. Ces fleuves sont fortement parcourus 

par des pirogues, puisqu’elles représentent le seul moyen de transport. En outre, ces peuplent 

dépendant du fleuve pour se nourrir et pour avoir de l’eau. 

 

Habitations au bord de la rivière Camopi (Affluent de l’Oyapock). 

 

 

 

 

Les rivières sont source d’irrigation pour l’agriculture. Les Hmongs, Laotiens réfugiés 

politiques se sont installés à la fin des années 1970 autour des cours d’eau de la Comte et 

fournissent la Guyane en fruits et légumes. 
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Les rivières sont source d’or. Les cours d’eau guyanais possèdent beaucoup d’or. 

L’accroissement du prix de l’or a entrainé une multiplication de l’orpaillage légale et illégale. 

L’extraction d’or se fait partout dans la Guyane, mais c’est sur la Mana que l’entreprise 

Montagne d’or s’est installé.  

 

 

Vue aérienne d'un chantier d’orpaillage illégal (haut) et ses conséquences sur la turbidité de 

l’eau (bas). Source : Le Parc Amazonien de Guyane 
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Abstract

Background

Environmental  DNA [eDNA] metabarcoding has recently  emerged as a non-destructive

alternative to traditional sampling for characterising species assemblages.

New information

We here  provide  a  consistent  dataset  synthetising  all  eDNA sampling  sites  in  French

Guiana to date.  Field collections have been initiated in 2014 and have continued until

2019. This dataset is however a work in progress and will be updated after each collecting

campaign. We also provide a taxon by site matrix for fishes presence / absence as inferred

from eDNA. Our aim is  to allow a transparent  communication to the stakeholders and

provide the foundation for a monitoring programme based on eDNA. The lastest version of

the dataset is publicly and freely accessible through the CEBA geoportal (http://vmcebagn-

dev.ird.fr) or through the French Guiana geographic portal (https://www.geoguyane.fr).
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Introduction

French Guiana is an overseas territory of France located on the north-eastern coast of

South America. With ca. 84,000 km (the size of Austria), it represents the largest outermost

region of Europe. About 96% of its surface is covered by undisturbed primary rainforest.

Due to its location in a tropical humid environment, the territory harbours a very dense

hydrographic network. This network is comprised of 112,000 km of water bodies and is

divided  into  8  drainage  basins  flowing  south-north  (Mourguiart  and  Linares  2013).  As

opposed to Amazonia sensu stricto, where all the basins are connected to the Amazon,

French Guiana basins are all disconnected and independently lead to the Atlantic Ocean.

The two largest basins, the Maroni and the Oyapock, are boundaries with Suriname and

Brazil, respectively. A total of 20% of the network is represented by rivers (Strahler order >

3) while the remaining 80% correspond to streams less than 10 m large and less than 1

metre deep.

As a European territory, French Guiana must comply with European regulations aiming at

developing  surveillance  programmes  on  water  quality  (Directive  2000/60/EC).  This

directive was translated into French law (n°2004-338) mainly under article R212-22 of the

environment code and the “Law on water and aquatic environment” (n°2006-1772). For the

territory of French Guiana, several surveillance programmes have been set up for the time

periods  2010-2015  and  2016-2021.  This  has  resulted  in  a  characterisation  of  both

reference physico-chemical environments and biological communities, as well as practical

tools (e.g. biological indices) to evaluate and monitor water quality. A set of sites have

been  defined  under  the  “Surveillance  Control  Network”  and  the  “Operational  Control

Network” that are monitored on a yearly basis.

However,  quantifying  the  composition  of  species  assemblages  in  Amazonian  aquatic

systems remains difficult because species inventories are harmful to the fauna. Indeed,

sampling fish in small streams consists in the use of toxicant (rotenone) that kill  all the

fishes within the stream reach (Allard et al. 2014). In rivers, gill nets are used and cause

lethal  injuries  to  the  fishes  entangled  in  the  nets  (Murphy  and  Willis  1996).  Such

destructive sampling no longer complies with ethics and European laws. Non-destructive

methods, such as diving and electrofishing are not efficient in those streams and rivers due

to their low water conductivity and their high turbidity (Allard et al. 2014, Melki 2016). As a

consequence, collecting data on entire assemblages is almost impossible using traditional

sampling methods, which act as a barrier to scientific advances on ecosystem structure

and function and associated applied issues on biodiversity conservation and management.

Since  2014,  we  used  a  non-destructive  alternative  to  traditional  fish  sampling  by

characterising  species  assemblages  using  environmental  DNA  [hereafter  eDNA]

2 Murienne J et al



metabarcoding (Taberlet et al. 2018, Taberlet et al. 2012). eDNA consists of collecting DNA

released by organisms directly into the water.  Environmental  DNA sequences are then

compared to reference molecular databases to assign sequences to species. This method

has been shown to efficiently characterise fish faunas in temperate rivers (Civade et al.

2016, Valentini et al. 2016) and has recently been successfully applied in French Guiana

(Cilleros  et  al.  2019,  Cantera  et  al.  2019).  We  here  provide  a  consistent  dataset

synthetising all eDNA sampling sites in French Guiana to date. We also provide a taxon by

site  presence/absence  matrix  for  the  fish  fauna.  Our  aim  is  to  allow  a  transparent

communication to the stakeholders and provide the foundation for a monitoring programme

based on eDNA.

Project description

Title:  Aquatic eDNA samples in French Guiana

Personnel: Personnel involved in data aquisition (by alphabetic order): Sébastien Brosse,

Isabel  Cantera,  Axel  Cerdan,  Kévin  Cilleros,  Jean-Baptiste  Decotte,  Gaël  Grenouillet,

Amaia Iribar, Jérôme Murienne, Pierre Taberlet, Pablo Tedesco and Régis Vigouroux.

Study  area  description: Collecting  trips  have  been  conducted  in  various  locations

throughout French Guiana.

Design  description: This  dataset  was  developed  to  provide  the  foundation  for  a

biodiversity  monitoring  programme based  on  eDNA but  also  to  better  understand  the

impact  of  human  activities  on  aquatic  biodiversity.  Locations  were  thus  selected  to

maximise the geographic coverage of rivers and streams, taking into account undisturbed

sites but also sites under human disturbances (close to villages, close to gold mining sites

etc.).

Funding: Data  for  this  resource  have  been  obtained  with  support  from  Labex  CEBA

(Center for the Study of Biodiversity in Amazonia), Labex DRIIHM (Dispositif de Recherche

Interdisciplinaire  sur  les  Interactions  Hommes-Milieux)  and  Labex  TULIP  (Towards  a

Unified  theory  of  biotic  interactions:  role  of  environmental  perturbations).  Labex

(Laboratoires d’Excellence) are funded by "Investissement d'Avenir" grants managed by

the French National Research Agency (ANR) under references ANR-10-LABX-25-CEBA,

ANR-11-LABX-0010-DRIIHM and ANR-10-LABX-0041-TULIP. Additional financial support

was also obtained from the DEAL Guyane, Office de l’Eau Guyane (Aquatic Metabarcoding

project) and through the ANR DEBIT project (ANR-17-CE02-0007-01). SPYGEN, a private

company specialised in eDNA, as well as VigiLife, a non-governmental agency, provided

financial  and  laboratory  support.  Logistic  support  was  also  provided  by  the  Parc

Amazonien de Guyane and Hydreco Laboratory (Kourou, Guyane).
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Sampling methods

Study extent: Sampling sites were located throughout French Guiana Fig. 1.

Sampling description: We collected eDNA samples from November 2014 to 2019. For

sampling, laboratory and bioinformatic protocols, we followed Valentini et al. (2016) from

2014 to 2016 and Pont et al. (2018) since 2016. For each sample, we used a filtration kit

made of  a  sterile,  single  use  filtration  cartridge  (Enviroteck  HV;  Pall  Corporation,  Ann

Arbor, MI, USA and VigiDNA 0.45 μm; SPYGEN, le Bourget du Lac, France), a peristaltic

pump (Vampir Sampler; Bürkle GmbH, Bad Bellingen, Germany) and sterile, single-use

tubing. All the materials were handled with sterile gloves. Initial sampling (2014-2015) was

performed using a 1 micrometre filtration cartridge (Enviroteck HV; Pall Corporation, Ann

Arbor, MI, USA) but 0.45 micron capsules (VigiDNA 0.45 μm; SPYGEN, le Bourget du Lac,

France) have been used as standard since 2016. Most of the samples consisted of 30

minutes water filtration using a portable battery powered peristaltic pump (Vampir sampler,

Burkle, Germany), but in a few sites, filtration time was reduced to 15 minutes. A single

sample per site was collected during initial sampling (2014-2015). Cantera et al. (2019)

collected 10 replicate samples in 6 selected sites and showed that two replicate samples

per  site  provided  a  realistic  species  list  while  limiting  sampling  costs.  Two  replicate

samples were therefore collected in each site since 2016.

Quality control: The operator always remained downstream from the filtration area and

stayed on the bank (for  small  streams)  or  on emergent  rocks (for  larger  streams and

rivers).  For  sites  located  along  the  same  river  course,  we  sampled  downstream  to

upstream to avoid contamination by eDNA transported by the boat (for rivers) or clothes.

 
Figure 1.  

Localisation of the environmental DNA sampling sites.
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Geographical coordinates were obtained using a GPSmap 64S device (Garmin) or similar.

Such devices report coordinates accuracy using the CEP50 (Circular Error Probability),

meaning that  there  is  only  50% probability  that  a  reported position  would  be within  a

distance of X metres to the real position. Considering other sources of GPS errors (such as

ionosphere delay and signal multi-path), we estimate the accuracy of the coordinates to be

around 30 metres at a 95% confidence level under dense forest cover.

Step description: At each site, we placed the input part of the tubing in a high-flow part of

the watercourse. Sampling was achieved in rapid hydromorphological units to ensure an

optimal homogenisation of the water throughout the water column. Water was pumped ca.

20 cm below the surface and each filtration lasted 30 min (except for a few sites where

filtration time was 15 minutes). Each sample results from the filtration of ~34 l of water (~17

litres when filtration time was 15 minutes).  At  the end of  the filtration,  we emptied the

filtration capsule of water, filled it with 150 ml of preservation buffer (Tris–HCl 0.1 M, EDTA

0.1 M, NaCl 0.01 M and N-lauroyl sarcosine 1%, pH 7.5–8) and stored it in the dark in

individual sterile plastic bags. Samples were then stored at room temperature before DNA

extraction.  Preliminary tests  demonstrated that  the preservation buffer  was suitable for

room temperature storage up to a month. Information on DNA extraction, amplification and

sequencing, as well as subsequent bioinformatic pipelines, can be found in Cilleros et al.

(2019) and Cantera et al. (2019).

Site scale variables were measured directly in the field at the sampling location. Width was

measured using a decameter for small streams (less than 15 metres width and 1 metre

depth) and using an electronic telemeter (Bushnell Sport 850) for larger rivers. Water depth

was measured using a graduated stick in small streams and a depth sounder (Plastimo

echotest II) in larger rivers. Turbidity was measured using a Eutech Instrument Turbimeter

(TN-100). Temperature, O  saturation, O  and pH were measured using a WTW 3420 field

multimeter.  Geographical  coordinates  were  obtained  using  a  GPSmap  64S  device

(Garmin)  or  similar.  Elevation  was  derived  for  the  geographic  coordinates  using  the

SRTM30 dataset.

Geographic coverage

Description: The sampling area is delimited by the current administrative boundaries of

the French Guiana territory. To the East, the Oyapock river delimits the frontier with Brazil.

To the West, the Maroni river delimits the frontier with Suriname. This is an important detail

as the delimitation of the territory has not been constant throughout history and a large

portion of northern Brazil was disputed between France and Brazil during the 19th century.

Even  though  French  Guiana  is  an  overseas  territory  of  France,  all  occurrences  are

considered as belonging to the French Guiana "country" to comply with the ISO 3166-1

standard.

Coordinates: 2.00000 and 6.00000 Latitude; -51.5000 and -54.5000 Longitude.

2 2
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Taxonomic coverage

Description: The  dataset  provides  information  on  eDNA  sampling  sites  and  fishes

presence/absence as inferred from metabarcoding analyses (Cilleros et al.  2019). DNA

extracted  from  the  sampling  cartridge  could,  in  theory,  be  used  for  amplifying  any

taxonomic  group,  depending  on  the  downstream  molecular  biology  protocols.  Local

metabarcoding reference databases for French Guiana biodiversity are currently available

for mammals (Kocher et al. 2017b, Kocher et al. 2017a) and insects (Talaga et al. 2017,

Kocher  et  al.  2016),  but  additional  databases  are  under  active  development  for  other

groups as well.

Temporal coverage

Notes: 2014-2019

Usage rights

Use license:  Creative Commons Public Domain Waiver (CC-Zero)

IP  rights  notes:  Users  of  this  resource  should  comply  with  the  CEBA  data  sharing

agreement  available  here:  www.labex-ceba.fr/assets/

CEBA_Data_Sharing_Agreement_nov2013.pdf

Data resources

Data package title:  Aquatic eDNA for monitoring French Guiana biodiversity

Resource  link:  http://vmcebagn-dev.ird.fr/geonetwork/srv/eng/search?=eng#|5617a9ff-

d0aa-48a9-b2c2-cb7fd5b92692 

Alternative identifiers:  5617a9ff-d0aa-48a9-b2c2-cb7fd5b92692

Number of data sets:  2

Data set name: Aquatic_eDNA_[date]

Data format: ESRI Shapefile (a spreadsheet in "tab separated value" format is also

provided for compatibility).

Description: This  dataset  provides  detailed  information  on  sampling  sites  and

sampling events. The latest version of the dataset is available on the CEBA geoportal (

http://vmcebagn-dev.ird.fr) under reference 5617a9ff-d0aa-48a9-b2c2-cb7fd5b92692.
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Column label Column description

Site code A unique identifier of the site that could be used for downstream analyses (optional).

Site name The name of the sampling location.

Site description The original textual description of the site.

Drainage Basin The name of the drainage basin (either Oyapock, Aprouague, Comte, Sinamary, Organabo,

Iracoubo, Mana, Maroni).

Latitude The geographic Latitude (in decimal degrees, WGS84) of the sampling point.

Longitude The geographic Longitude (in decimal degrees, WGS84) of the sampling point.

Elevation Altitude in metres above sea level inferred from the geographic coordinates and the SRTM30

dataset.

Watercourse

class

The watercourse class infered a posterio based on the BD Carthage dataset.

Event date The date of the sampling event.

Disturbance Level of disturbance at the site (either Reference for undisturbed site, gold mining, ancient gold

mining, agriculture and/or urbanisation). Estimated a priori.

Depth Water depth in metres (measured at the sampling site).

Width Watercourse width (in metres) measured at the sampling site.

Conductivity Water conductivity (in micro Siemens) measured at the sampling site using a WTW 3420 field

Multiparameter fitted with a TetraCon 925 conductivity probe

Temperature Water temperature (in degree Celcius) measured at the sampling site.

pH Water pH measured at the sampling site using a WTW 3420 field Multiparameter fitted with a SenTix

940-3 pH probe.

Turbidity Turbidity (in NTU) measured at the sampling site by a EUTECH TN-100 field turbidimeter.

O O  (in milligram per litre) measured at the sampling site using a WTW 3420 field Multiparameter fitted

with a FDO925 Oxygen probe.

0  saturation O  saturation (in percent) measured at the sampling site using a WTW 3420 field Multiparameter

fitted with a FDO925 Oxygen probe.

Salinity Water salinity measured at the sampling site using a WTW 3420 field Multiparameter

Time Filtering time (in minutes)

Filter Filter size (in micrometres)

Nb_replicates Number of replicates

replicatX For each replicate, the unique filter identifier

Data set name: Aquatic_eDNA_fishData_[date]

2 2

2 2
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Data format: Spreadsheet in "tab separated value"

Description: This  dataset  provides  a  taxon  by  site  matrix,  made  after  sequences

assignment to the reference database (Cilleros et al. 2019). For taxa described at the

genus level or higher, the number of included species is indicated within parentheses.

The latest version of the dataset is available on the CEBA geoportal (http://vmcebagn-

dev.ird.fr) under reference 5617a9ff-d0aa-48a9-b2c2-cb7fd5b92692.
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Abstract 
 

Natural ecosystems are facing increasing anthropogenic impacts that alter the diversity of 

biological communities. Amazonian rivers and streams shelter a unique and vast biodiversity. 

Yet, they are facing unprecedented deforestation levels due to human activities, such as mining, 

logging and agriculture. It is therefore urgent to deeply understand how human impacts affect 

biological communities in these ecosystems. The majority of studies addressing this issue were 

conducted in small streams and documented changes on species composition, but not responses 

on local species richness. This work proposes a community ecology approach, in which the 

connected nature of freshwater ecosystems is considered, to define how deforestation affects 

diversity patterns, but also the ecological processes shaping fish communities. Environmental 

DNA (eDNA), a non-invasive sampling method was used to equally sampling fish communities 

in streams and rivers across French Guiana. Deforested surfaces from spatial data were 

extracted to create a global deforestation variable that integrates the effects of urbanization, 

agriculture, gold-mining and logging.  

This work has optimized and validated the use of eDNA to assess the effects of human activities 

on species-rich ecosystems, such as tropical streams and rivers. The method showed high 

replicability, as well as the ability to distinguish local fish communities, habitats and disturbed 

sites from pristine sites. Moreover, we show that deforestation affected fish biodiversity beyond 

local effects and reveal an extended effect of distant upstream deforestation on downstream fish 

biodiversity. Distant and low-intensity deforestation caused a decline of over 30% in taxonomic 

and functional richness of riverine fish communities. Nonetheless, this perturbation was not 

determinant on the ecological processes shaping fish communities in rivers nor on the trait 

composition, which were more influenced by the upstream-downstream gradient than by the 

deforestation gradient. In stream communities, deforestation leads to changes in species 

composition, without a significant decrease in species or functional richness. These alterations 

were mediated by environmental filtering which was reinforced in highly deforested sites. As a 

result, species were less evenly distributed within the functional space, leaving the traits related 

to the benthic and phytophagous guild underrepresented while overrepresented by pelagic 

detritivorous. 

Our findings strongly support the complexity of deforestation impacts on Amazonian 

biodiversity. Besides, context-dependent responses, the diversity of freshwater fish 

communities responded to deforestation in a multifaceted way. This work underlined the 

vulnerability of tropical fauna to slight environmental changes, even in relatively well-

preserved region, such as French Guiana.  

 

Keywords: Neotropical fish | Amazonian rivers | Community ecology | Taxonomic diversity | 

Functional diversity | Deforestation | Assembly rules. 
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Les écosystèmes naturels subissent des impacts anthropiques croissants qui altèrent la diversité 

des communautés biologiques. Les cours d'eau amazoniens abritent une biodiversité unique et 

conséquente, mais sont confrontés à des taux de déforestation sans précédent. Il est donc urgent 

de comprendre comment l’anthropisation affecte la biodiversité dans ces écosystèmes. Ce 

travail propose une approche en écologie des communautés pour définir comment 

l’anthropisation affecte les patrons de diversité, mais aussi les processus écologiques qui 

façonnent les communautés de poissons. Une méthode d’échantillonnage non-invasive, l'ADN 

environnemental (ADNe), a été utilisée pour inventorier les communautés de poissons dans les 

ruisseaux et les grands fleuves en Guyane française. Des surfaces déforestées ont été 

cartographiées à partir de données spatiales pour créer une variable de déforestation globale qui 

intègre les effets de l'urbanisation, l'agriculture et l'exploitation aurifère et forestière. 

Ce travail a, premièrement, permis d'optimiser et valider l’utilisation de l’ADNe pour évaluer 

l’impact humain sur les écosystèmes riches en espèces, tels que les rivières tropicales. La 

méthode a montré une reproductibilité élevée, ainsi qu’une capacité à distinguer les 

communautés de poissons, les habitats et les sites perturbés des sites non perturbés. De plus, 

nous avons montré que la déforestation affecte la biodiversité au-delà des effets locaux et avons 

mis en évidence un effet étendu de la déforestation sur la biodiversité en aval. Cet impact 

lointain a provoqué un déclin de plus de 30% de la diversité taxonomique et fonctionnelle des 

communautés de poissons qui habitent les fleuves. Cependant, cette perturbation n’a pas été 

déterminante sur les processus écologiques qui façonnent les communautés de poissons, ni sur 

la composition des traits. Dans les petits ruisseaux, la déforestation a entraîné des modifications 

dans la composition spécifique, sans diminuer le nombre d’espèces ni la richesse fonctionnelle. 

Ces altérations ont été induites par un rôle prépondérant des filtres environnementaux sur 

l’assemblage des communautés. En conséquence, les espèces étaient moins uniformément 

réparties dans l'espace fonctionnel, laissant des traits liés au compartiment benthique et au 

régime phytophage sous-représentés alors que les espèces pélagiques et détritivores étaient 

surreprésentées. 

Nos résultats montrent la complexité des réponses de la biodiversité à la déforestation. Outre 

des réponses dépendantes de l’habitat, la déforestation a modifié la biodiversité des 

communautés de poissons d'eau douce à travers différentes facettes. Finalement, ce travail a 

souligné la vulnérabilité de la faune tropicale à des légers changements environnementaux, 

même dans des régions relativement bien préservées, comme la Guyane Française. 

 

Mots-clés : Poissons Néotropicaux | Fleuves amazoniens | Écologie des communautés | 

Diversité taxonomique | Diversité fonctionnelle | Déforestation | Règles d'assemblage.  
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