
HAL Id: tel-03122824
https://theses.hal.science/tel-03122824v1

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Solutions for Data Stream Processing
Applications on Cloud-Edge Infrastructure

Felipe Rodrigo de Souza

To cite this version:
Felipe Rodrigo de Souza. Scheduling Solutions for Data Stream Processing Applications on Cloud-
Edge Infrastructure. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lyon, 2020.
English. �NNT : 2020LYSEN082�. �tel-03122824�

https://theses.hal.science/tel-03122824v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN082

THÈSE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512

Informatique et Mathématiques de Lyon

Discipline : Informatique

présentée et soutenue publiquement le 10/12/2020, par :

Felipe Rodrigo DE SOUZA

Scheduling Solutions for Data Stream Processing
Applications on Cloud-Edge Infrastructure

Solutions de planification pour les applications de traitement
de flux de données sur une infrastructure Cloud-Edge

Devant le jury composé de :
Gabriel ANTONIU Directeur de Recherche Inria Rapporteur

Rajiv RANJAN Professeur à l’Université de Newcastle Rapporteur
Frédéric LE MOUËL Professeur à l’Université de Lyon Examinateur
Sébastien MONNET Professeur à l’Université Savoie Mont Blanc Examinateur
Patricia STOLF Maître de Conférences à l’Université Paul Sabatier Examinatrice
Valeria CARDELLINI Professeure Associée à l’Univ. de Rome Tor Vergata Examinatrice
Eddy CARON Maître de Conférences HDR ENS de Lyon Directeur
Marcos DIAS DE ASSUNÇÃO Docteur Co-encadrant

ii

Contents

Acknowledgments ix

Abstract xi

French Abstract xiii

1 Introduction 1
1.1 Challenges in Operator Placement for Data Stream Processing (DSP) Applications 4

1.1.1 Edge Computing . 4
1.1.2 Operator Placement and Replication . 5

1.2 Research Problems and Objectives . 5
1.3 Evaluation Methodology . 6
1.4 Contributions . 6
1.5 Thesis Organization . 6

2 DSP Scheduling on Cloud-Edge Infrastructure 7
2.1 Introduction . 7
2.2 Background . 8
2.3 Data Stream Processing Frameworks . 9
2.4 Target Computing Infrastructure for DSP Placement 12

2.4.1 Data Stream Processing Solutions for Cloud Computing 12
2.4.2 Data Stream Processing Solutions for Edge Computing 13

2.5 Mechanisms for Data Stream Processing Scheduling 14
2.5.1 Optimal Solutions . 14
2.5.2 Heuristic-Based Solutions . 15
2.5.3 Machine-Learning Solutions . 16

2.6 Discussion and Positioning . 18
2.7 Conclusion . 19

3 Mixed-Integer Programming Model 21
3.1 Introduction . 21
3.2 Deployment Architecture . 22
3.3 System Model . 23

3.3.1 Infrastructure Model . 24
3.3.2 Application Model . 24
3.3.3 Metrics Model . 26
3.3.4 Infrastructure and Application Constraints 27

iii

iv CONTENTS

3.4 Throughput Estimation Model . 29
3.4.1 Scenario and Model Description . 29
3.4.2 Experimental Setup . 31

Infrastructure . 31
Data Stream Processing Application . 32
Scenarios . 33

3.4.3 Performance Evaluation Results . 34
3.5 Conclusion . 35

4 Optimal Scheduling Solution 37
4.1 Introduction . 37
4.2 Impact of Three-Layered Cloud-Edge Infrastructure 38
4.3 Performance Evaluation . 38

4.3.1 Experimental Setup . 39
4.3.2 Price Model . 40
4.3.3 Evaluated approaches and metrics . 41
4.3.4 No Bandwidth Control versus Bandwidth Control 41
4.3.5 CESP versus the Standard Approach . 43

4.4 Conclusion . 45

5 Pruning Heuristics for Scheduling 47
5.1 Introduction . 47
5.2 Resource Selection Technique . 48
5.3 Performance Evaluation . 48

5.3.1 Experimental Setup . 48
5.3.2 Price model . 51
5.3.3 Evaluated approaches and metrics . 52
5.3.4 Resolution Time versus Solution Quality 52
5.3.5 Cloud-Edge data Stream Placement with Resource Selection (CESP–RS)

versus the State-of-the-Art . 52
5.4 Conclusion . 54

6 Conclusion and Future Directions 57
6.1 Discussion and Contributions . 57

6.1.1 Thesis Contributions . 58
6.2 Future Directions . 59

6.2.1 Reconfiguration Techniques . 59
6.2.2 Real Infrastructure Deployment . 60
6.2.3 Stateful Operators . 60
6.2.4 Scalability . 61
6.2.5 Machine Learning for DSP Placement and Reconfiguration 61

Bibliography 63

Publications 69

List of Figures

1.1 Data stream processing application. 2
1.2 Cloud-edge infrastructure overview. 4

2.1 Overview of the deployment process of DSP applications on cloud-edge infras-
tructures. 9

2.2 Apache Storm components . 10
2.3 Twitter Heron components. 11
2.4 Apache Flink components. 11

3.1 Overview of the architecture for deployment of DSP applications on cloud-edge
infrastructures. 23

3.2 Three-layered cloud-edge computing infrastructure. 24
3.3 Deployment sequences for each layer of a cloud-edge infrastructure. 29
3.4 Difference between the finish processing times of two consecutive messages. . . . 31
3.5 Experimental Cloud-Edge Infrastructure. 32
3.6 The operator graph for the sentiment analysis application. 33
3.7 Results throughput estimation for DSP applications on cloud-edge computing. . . 34

4.1 Application graphs used in the evaluation. 40
4.2 Throughput and end-to-end latency under Cloud-Only and Cloud-Edge data

Stream Placement (CESP) with and without bandwidth control. 42
4.3 Throughput and end-to-end latency under Cloud-Only and CESP. 44
4.4 Replica distribution per resource for both CESP versions. 45
4.5 Computational and network costs under Cloud-Only, CESP–All and CESP–IC. . 45

5.1 End-to-end latency and deployment costs under CESP and CESP–RS. 53
5.2 Resolution time to obtain a deployment solution. 53
5.3 Throughput and latency under CESP–RS and state-of-the-art solutions. 54
5.4 Computational and network costs under CESP–RS and state-of-the-art solutions. 55

v

vi LIST OF FIGURES

List of Tables

2.1 State-of-the-art solutions for the operator placement problem and reconfiguration
of DSP applications. 17

3.1 Summary of notation used in this thesis. 25
3.2 Deployment scenarios for throughput estimation. 34

4.1 Operator properties in the application graphs. 40
4.2 Computing and network costs. 41
4.3 Average resource consumption per operator instance. 44

5.1 Operator properties in the application graphs. 51
5.2 Computing and network costs. 51

vii

viii LIST OF TABLES

Acknowledgments

I would like to express my deepest gratitude to my advisor Dr. Marcos Dias de Assunção, for the
many discussions, the continuous support, and motivation to reach the milestone of writing this
thesis. I also would like to thank Eddy Caron for the incentives and enthusiastic participation
during this process. Both of them helped me to achieve this goal and to whom I will always
grateful.

I would like to thank my family and close friends. Whom stood by my side through this
journey, giving me support and strength to pursue this goal. A special thanks to my father
and mother, who always support no matter my decision and always guided me to make smart
decisions. There are no words to express my gratitude.

Finally, I would like to thank my pears at the AVALON team, welcoming me and providing
tools to achieve this thesis. A distinguished thank you to the former AVALON member and office
mate Alexandre Da Silva Veith, with I had many discussions and collaborations that helped me
improve my work.

ix

x ACKNOWLEDGMENTS

Abstract

Technology has evolved to a point where applications and devices are highly connected and
produce ever-increasing amounts of data used by organizations and individuals to make daily
decisions. For the collected data to become information that can be used in decision making, it
requires processing. The speed at which information is extracted from data generated by a moni-
tored system or environment affects how fast organizations and individuals can react to changes.
One way to process the data under short delays is through Data Stream Processing (DSP) ap-
plications. DSP applications can be structured as directed graphs, where the vertexes are data
sources, operators, and data sinks, and the edges are streams of data that flow throughout the
graph. A data source is an application component responsible for data ingestion. Operators
receive a data stream, apply some transformation or user-defined function over the data stream
and produce a new output stream, until the latter reaches a data sink, where the data is stored,
visualized or provided to another application.

Usually, DSP applications are designed to run on cloud computing or on a homogeneous
cluster of computing resources, due to the large set of resources that such infrastructures can
provide and the high speed network used to interconnect the resources. In scenarios where the
data consumed by the DSP application is produced on the cloud itself, deploying the entire ap-
plication on the cloud looks like a sensible approach. However, as the Internet of Things (IoT)
becomes more pervasive, there is an increasing number of scenarios where DSP applications
consume data streams that are generated at the edges of the network, by numerous geograph-
ically distributed devices. In such scenarios, sending all the data through the Internet to be
processed on a distant cloud, far from the network edges where the data was originated, leads to
considerable network traffic, hence substantially increasing the application end-to-end latency;
the time from when the data is collected until processing completes.

Edge computing has emerged as a paradigm to offload processing tasks from the cloud to
resources located more closely to data sources. Edge computing resources, however, are often
more constrained than those available in the cloud. A recent trend consists in exploring the
combination of cloud and edge computing resources to execute DSP applications. Although the
combined use of cloud and edge computing resources is sometimes referred to as fog computing,
the research community does not seem to have reached a consensus on the terminology. We call
the combination of cloud and edge computing resources as cloud-edge infrastructure.

Regardless the terminology in place, the rationale is that resources located at the edges of
the network can provide low latency, process parts of the application, and reduce the amount
of data sent to the cloud, whereas the cloud can be used as a central place that receives data
from geographically distributed streams. The drawback of using resources at the network edges,
however, is that these resources are constrained with respect to CPU, memory, storage, and
even power availability. When scheduling applications on cloud-edge infrastructure, in addition
to solving the operator placement problem, which consists of finding a set of resources to host

xi

xii ABSTRACT

the operators of a DSP application, a scheduling solution needs to consider the computing
constraints of edge resources. It must decide which parts of the application to offload to the
edge and which parts keep in the cloud. Moreover, the solution must explore the resources at the
edges of the network by adapting the application parallelism to split the application load among
the numerous edge resources to cope with the application load. An operator whose requirements
can be easily met by a single cloud resource may have to be transformed into multiple replicas
– each of which process less data – deployed across a number of edge computing resources.
This gives rise to two inter-related problems, namely the operator placement and the degree of
parallelism of each operator.

In this thesis, we propose a model for the operator placement and parallelism problems,
accounting for both cloud and edge computing resources and their heterogeneity. The model
addresses the operator parallelism by creating multiple replicas to explore a large number of
computationally constrained devices at the network edges. Along with the model, we propose
an optimal solution based on linear formulation to reduce the application end-to-end latency
and deployment costs. Since an optimal solution based on linear formulation suffers from scal-
ability issues – and a cloud-edge infrastructure may comprise a large number of resources –
we propose a heuristic-based approach to reduce the search space without compromising the
solution’s performance. Simulation results show that the proposed solution can achieve an ap-
plication end-to-end latency at least ' 80% and monetary costs at least ' 30% better than a
traditional cloud deployment that places the entire application on the cloud. When combin-
ing the proposed solution with the heuristic approach to reduce the search space, it can find
placements 94% faster, with a performance degradation of 12%, which is still much better than
state-of-the-art approaches.

French Abstract

L’évolution des technologies ont conduit à une forte connection entre les applications et le
matériel produisant des quantités de données en perpétuelle augmentation. Ces données sont
utilisées par les entreprises, les organisations et les individus pour prendre des décisions quotidi-
ennes. Pour que les données collectées soient réellement utiles il convient de les traiter à temps
et donc suffisament rapidement. La vitesse à laquelle les informations sont extraites depuis les
données générées par un système ou un environnement surveillé a un impact sur la capacité des
entités (entreprises, organisations ou individus) à réagir aux changements. Une solution pour le
traitement des données dans un délais réduit consiste à utiliser des applications de traitement de
flux de données. Les applications de traitement de flux de données peuvent être modélisées sous
forme de graphes orientés, où les sommets sont des sources de données, des opérateurs ou des
récepteurs de données (i.e., data sinks), et les arêtes représentent les flux de données entre les
opérateurs. Une source de données est un composant d’application responsable de la génération
des données. Les opérateurs reçoivent un flux de données, appliquent une transformation ou
effectuent une fonction définie par l’utilisateur sur le flux de données entrant et produisent un
nouveau flux de sortie, jusqu’à ce que ce dernier atteigne un récepteur de données, où les données
sont alors stockées, visualisées ou envoyées à une autre application.

Habituellement, les applications de traitement de flux de données sont conçues pour fonc-
tionner sur des infrastructures cloud ou sur une grappe homogène de ressources (i.e., cluster) en
raison du nombre de ressources que ces infrastructures peuvent fournir et de la bonne connec-
tivité de leur réseau. Dans les scénarios où les données utilisées par l’application de traitement
du flux de données sont produites dans le cloud lui-même alors le déploiement de l’ensemble
de l’application sur le cloud est une approche pertinente. Cependant, à l’heure où l’Internet
des objets devient de plus en plus omniprésent, il existe un nombre croissant de scénarios où
les applications de traitement de flux de données consomment des flux de données générés à la
périphérie du réseau (via les nombreux appareils et capteurs répartis géographiquement). Dans
de tels scénarios, l’envoi de toutes les données via Internet pour être traitées sur un cloud dis-
tant, loin de la périphérie du réseau d’où proviennent les données, conduirait à générer un trafic
réseau considérable. Cela augmente ainsi de façon significative la latence de bout en bout pour
l’application; c’est-à-dire, le délai entre le moment où les données sont collectées et la fin du
traitement.

L’informatique de périphérie (edge computing) est devenu un paradigme pour aléger les tâches
de traitement du cloud vers des ressources situées plus près des sources de données. Cependant,
les ressources informatiques de périphérie sont souvent plus limitées en puissance et en capacité
que celles disponibles dans le cloud. Une tendance récente consiste à explorer la combinaison
de ressources cloud et périphérique pour exécuter des applications de traitement de flux de
données. Bien que l’utilisation combinée de ces ressources soit parfois appelée fog computing,
la communauté scientifique ne semble pas avoir atteint un consensus sur la terminologie. Nous

xiii

xiv FRENCH ABSTRACT

appelons la combinaison de ressources cloud et de ressources périphériques une infrastructure
cloud-edge.

Quelle que soit la terminologie choisie, il est classique de constater que les ressources situées
en périphérie du réseau offre une faible latence, et ne peuvent traiter qu’une partie des don-
nées de l’application mais permettent cependant de réduire la quantité de données envoyées au
cloud. Le cloud peut être utilisé comme un lieu pour centraliser les flux de données distribués
géographiquement. Cependant, l’inconvénient de l’utilisation de ressources périphériques, est
qu’elles sont limitées d’un point de vue de leur puissance processeur, de leur mémoire, de leur
capaité de stockage et même de la disponibilité de l’énergie pour les alimenter. Lors de la planifi-
cation et l’ordonnancement d’applications sur une infrastructure cloud-edge, en plus de résoudre
le problème de placement des opérateurs, qui consiste à trouver un ensemble de ressources pour
héberger ces opérateurs, une solution de planification doit aussi prendre en compte les con-
traintes de calcul des ressources périphériques. Cette solution doit déterminer quelles parties
de l’application est à placer vers la périphérie de l’infrastructure et quelles parties restent à la
charge du cloud. De plus, la solution doit analyser les ressources en périphérie du réseau en adap-
tant le parallélisme applicatif pour répartir la charge applicative entre les nombreuses ressources
pour faire face à la charge applicative. Un opérateur dont les besoins peuvent être facilement
satisfaits par une seule ressource cloud peut être transformé en plusieurs instances - chacune
traitant moins de données - déployées sur un certain nombre de ressources périphériques. Cela
pose deux problèmes concomitants, à savoir le placement des opérateurs et l’optimisation du
degré de parallélisme de chaque opérateur.

Dans cette thèse, nous proposons un modèle qui adresse les problèmes de placement et de
parallélisme des opérateurs, tenant compte à la fois des ressources de cloud et de ressources
périphériques ainsi que leurs hétérogénéités. Le modèle aborde le parallélisme des opérateurs en
créant plusieurs instances pour explorer un grand nombre de ressources périphériques. Parallèle-
ment au modèle, nous proposons une solution optimale basée sur une formulation linéaire pour
réduire la latence de bout en bout ainsi que les coûts de déploiement. Étant donné qu’une solu-
tion optimale basée sur une formulation linéaire souffre de problèmes d’évolutivité - et qu’une in-
frastructure en périphérie du cloud peut inclure un grand nombre de ressources - nous proposons
une approche heuristique pour réduire l’espace de recherche sans sacrifier les performances de
la solution. Les résultats des simulations montrent que la solution proposée peut atteindre une
latence de bout en bout d’environ 80% de moins et des coûts monétaires diminué d’environ 30%
par rapport à un déploiement cloud traditionnel qui centralise l’ensemble de l’application. En
combinant la solution proposée avec l’approche heuristique pour réduire l’espace de recherche, la
solution proposée peut accélérer de 94% les déploiements, avec une dégradation des performances
de la plateforme de seulement 12% (ce qui reste acceptable).

Chapter 1

Introduction

Contents
1.1 Challenges in Operator Placement for Data Stream Processing

(DSP) Applications . 4
1.1.1 Edge Computing . 4
1.1.2 Operator Placement and Replication . 5

1.2 Research Problems and Objectives . 5
1.3 Evaluation Methodology . 6
1.4 Contributions . 6
1.5 Thesis Organization . 6

Over the past year, computing has become very pervasive to most areas and environments of
society, generating ever increasing amounts of data [1]. These large amounts of data are usually
used to extract valuable information in a process commonly referred as big data [2]. With a
lot of information gathered by connected systems and big data, our society emerged into a data
driven economy, where individuals and organizations would take decisions over collected data [3].
This benefits areas going from fraud detection, resource management, health care and natural
disaster management [4, 5]. Extracting valuable information from large volumes of data requires
processing, often following mostly two common approaches:

• Batch Processing: An approach that applies a store-and-process scheme, where a large
volume of data is stored in data centers, and then processed using programming models
such as MapReduce [5].

• Data Stream Processing (DSP): This approach applies on-the-fly processing, where the
data is processed as it is generated, hence producing near real-time results [5].

Batch processing is widely adopted by individuals and organizations[6], but according with
IBM in 2012, 2.5 exabytes of data were generated daily [7]. On the data driven economy the
speed in which individuals and organizations take actions is critical. Then, processing exabytes
of data daily almost in real time to extract valuable information, using a store-and process
approach became unfeasible [8, 9]. With the demand for fast processing DSP applications posed
as a solution. In scenarios such as stock exchange, fraud detection, health care, and many others,
fast decisions are crucial [10].

Usually DSP applications are designed as dataflow graphs, as depicted in Figure 1.1, with
vertexes representing operators, data sources, and data sinks and edges representing how data

1

2 CHAPTER 1. INTRODUCTION

flows between operators [11]. Data sources are the part of the application responsible for data
ingestion, whereas data sinks consume the processed data, providing it to end-users, to other
systems, or acting on it. DSP applications have at least one source and one sink. Between
sources and sinks, each data message traverses a series of operators, where the data is trans-
formed, discarded, or replicated. An operator is a processing unit that receives a continuous
incoming stream, applies any user-defined function on it, and generates a new output stream [12].
Some operators require maintaining a state for further processing, for instance, operators that
compute average values, operators that discard messages according to some criteria. Operators
can be categorized according to their state, where an operator can be stateless, in which case it
does not maintain any state between executions; partitioned stateful where a given data struc-
ture maintains state for each down stream based on a partitioning key, and stateful where no
particular structure is required [13].

Data
Source

Data
Stream

Data
SinkOperator

Figure 1.1: Data stream processing application.

Commonly, DSP applications are deployed on clouds to leverage the virtually unlimited
number of resources that clouds can provide [14]. The cloud deployment approach allows DSP
applications to achieve high scalability and handle large data streams. Cloud deployment is a
suitable solution for DSP applications that either do not have very stringent latency requirements
or that process data originated in the cloud itself. An example is web analytics, where the web
application is hosted in the same cloud and provides data to the DSP application which aims to
identify patterns, security breaches, etc. [15].

The Internet of Things (IoT) industry has experienced a huge growth over the past few years,
likely reaching around 15 millions of devices in 2019 [16]. According to Cisco, it is expected that
by 2025 there will be more than 75 million IoT devices [17]. This scenario places a large number
of devices at the edges of the network, generating ever-increasing data streams that need to be
analyzed under short delays and from which valuable information must be extracted. Forwarding
these data streams from the edges of the Internet to a distant cloud for processing generates a
lot of network traffic and incurs high application end-to-end latency, which is beyond the near
real-time requirements of DSP applications [11, 18].

DSP applications applied to process data collected from IoTs or sensors, can be found in
the aviation, where DSP applications are used to evaluated data collected from sensors spread
through the airplane, to make sure that the collected data is reliable and that the pilot can
make decisions over the information obtained from the data [19]. Another example is traffic
control, where multiple cameras as sensors are spread through the city continuously generating
data that is sent to a cloud for processing and then decisions over open freeways, traffic lights
timer are taken to reduce traffic congestion [20]. Energy grid management with IoT resources
spread through the grid generating data that will be collected and analyzed to identify anomalies,
frauds, blackouts etc. [21], among many other scenarios.

3

To improve the performance of DSP in IoT scenarios a recent trend consists in exploring, in
addition to cloud resources, resources that are at the edges of the network [5, 21, 22]. Existing
work sometimes calls the combination of cloud and edge computing resources as fog computing,
although the use of this terminology is not unanimous. In this thesis, we refer to the combination
of cloud and edge computing resources produces as cloud-edge infrastructure, as depicted in
Figure 1.2.

The considered cloud-edge infrastructure is three-layered [23, 24]. The first layer, namely IoT
layer, contains numerous geo-distributed resources commonly explored just as data sources, data
sinks, or actuators. Resources on the IoT layer are sensors and IoT devices, and these devices
are grouped under different domains, composing a site. IoT resources have several constraints in
terms of CPU, memory, storage, and even power source, but the computing capabilities of such
devices are non-negligible and can be explored. The second layer, named MD, contains limited
sets of resources, geographically distributed but with low latency to IoT resources. Resources on
this layer are routers, gateways, and Micro Datacenter (MD). Regarding computational power,
MD resources are still constrained but more capable than resources in the IoT layer. IoT and
MD layers are considered here as edge computing resources. The third layer, the cloud, contains
all the powerful and virtually unlimited resources that any cloud can provide at a high latency
distance from the application data sources.

Due to the computing constraints of edge resources, operators offloaded from the cloud usu-
ally do not have their requirements met by a single resource [25]. Then, despite the low network
latency provided by edge resources, DSP applications’ overall performance might face degra-
dation. A common approach to circumvent this problem aims to explore operator parallelism,
where multiple replicas or instances of each operator are deployed [26]. Each replica is respon-
sible for processing a fraction of the overall operator’s load, hence requiring less computational
power. Since edge resources are numerous, using distributed processing, with replicas deployed
on different resources, they handle the overall load of the operator.

There is a lack of consensus regarding how edge resources are provided for deployment, at
what costs, and what are their computational capacities. The IoT part of the edge infrastructure
usually contains application-focused resources, making it difficult for an Infrastructure Service
Provider (ISP) to offer resources that both meet the specific demand of DSP applications and are
generic enough to support many applications. Since MD resources are not application focused, it
is possible to find some deployment options on major Infrastructure as a Service (IaaS) providers
as Amazon AWS Local Zones1 or AWS Outpost2, and other small providers. This work considers
a cloud-edge infrastructure as a combination of public and private resources, where IoT resources
are considered private and MD and cloud resources are public.

The process of deciding on which resources to deploy the operators of a DSP application,
commonly know as operator placement problem [15, 27], aims to find a set of resources with
computational capacities greater than or equal to the sum of requirements of all operators. The
operator placement problem is guided through the optimization of performance metrics such as
application end-to-end latency and throughput, or other Quality of Service (QoS) metrics (i.e.,
monetary cost). The search for a solution to the operator placement problem is known to be
NP-Hard [28]. The cloud-edge infrastructure poses additional challenges, due to the wide range
of heterogeneous devices, computational constraints, and even the network between each layer,
that usually crosses the Internet and faces traffic congestion.

1https://aws.amazon.com/about-aws/global-infrastructure/localzones/
2https://aws.amazon.com/outposts/

4 CHAPTER 1. INTRODUCTION

Cloud

Micro
Datacenters

IoT Sites

Public
Infrastructure

Private
Infrastructure

Figure 1.2: Cloud-edge infrastructure overview.

1.1 Challenges in Operator Placement for DSP Applications

The performance metrics that guide a scheduling solution are directly affected by operators’
requirements, given in terms of CPU, memory, and storage. The ability of a scheduling solution
to provide a placement that guarantees performance improvement depends on how it models
the performance metrics and the operator’s placement. Even if the performance metrics and
requirements are adequately modeled, if the requirements are not met, the scheduling solution
cannot perform a suitable placement. These requirements are often specified by application
owners with little to no knowledge to do so.

Another challenging aspect of the operator placement problem addressing the cloud-edge
infrastructure is the large resource heterogeneity and geographical distribution. DSP applica-
tions are time-sensitive, with stringent time constraints, with which the cloud can deal to some
extent by providing more powerful resources, but there are still physical limitations due to its
distance from the data sources. The alternative is the utilization of edge resources with lower
latency to the data sources but with lower computational power. To complicate matters further,
deployments on public infrastructure such as MDs and cloud incur a monetary cost, that should
be considered.

1.1.1 Edge Computing

Edge computing pushes computation to the edges of the network, through several highly dis-
tributed resources. It is a paradigm that can be used to leverage the performance of mobile
computing [29], or any application that receives data generated at the edges of the network,
such as DSP applications [30]. There is, however, a lack of consensus regarding the definition
of edge computing. Existing work considers edge computing as numerous IoT devices collecting
data at the edges of the network [21, 31, 32], other works consider MD, routers etc. [14, 33,
34], and part of the existing work, like in this thesis, consider edge computing as a two-layered
infrastructure with one layer containing IoT devices, and another layer with MD, routers and
gateways [35, 36, 37].

While the edge computing approach allows for new possibilities regarding near real-time
for IoT applications, it lacks computational power. Some edge computing resources are gate-
ways, routers, and small computers often with a fraction of the computational power of cloud
resources. To give a little more support to edge computing, MDs are able to provide more pow-
erful resources, but still far from their cloud counterparts. The limited computational capacity
of edge computing resources commonly does not meet the requirements of operators offloaded

1.2. RESEARCH PROBLEMS AND OBJECTIVES 5

from the cloud. Thus, without any technique such as operator replication, to reduce the re-
quirements of each operator’s instance, it would be counter productive to deploy operators on
edge resources that cannot meet the operator’s requirements, resulting in overall performance
degradation. Hence, the goal is to identify which operators can be offloaded from the cloud,
that would benefit from low network latency provided from edge computing, and how to offload
such operators in terms of requirements.

1.1.2 Operator Placement and Replication

To properly explore edge computing resources, scheduling solutions need to determine the most
suitable operators for edge resources. Beyond this decision, it needs to adjust the requirements
used to configure each operator, due to computational constraints from edge resources. Even
after deciding to use edge computing, it needs to decide between IoT or MD resources since they
face different limitations and offer different benefits.

Because edge computing resources have computational constraints, especially IoT ones, and
DSP applications require timely processing of large volumes of data, resource with such compu-
tational constraints might not pose as the most suitable ones. Scheduling solutions circumvent
computational constraints of edge computing through the creation of multiple replicas per oper-
ator with significantly smaller computational requirements and balancing the load between such
replicas. Then, scheduling solutions need to compute the number of replicas, where to place
them and the computational requirements given to each replica.

1.2 Research Problems and Objectives

My research focuses on the placement of DSP applications with operator replication and band-
width guarantees on cloud-edge infrastructure to improve performance and QoS metrics. To
tackle this challenge, we seek to meet the following objectives:

• How to model a DSP application on cloud-edge infrastructure? Commonly math-
ematical models are created based on a linear formulation. Some of these models include
Queueing Theory elements; others consider just integers; other models mix integers with
non-integer numbers. Currently, models for DSP applications are usually oversimplified.
Some create a very simplistic model of operators, or ignore the data streams between them.
The infrastructure often faces the same oversimplifications, especially regarding the net-
work. With the inclusion of edge resources and their limitations, aspects such as different
clock speeds, CPU, and memory capacities are neglected.

• How to create replicas and distribute the load of each operator? To avoid
overload computationally constrained resources at the edge, operator replication becomes
a requirement. Even when accounting only for cloud deployment, scheduling solutions
already explore operator replication. Most models base their operator replication on a
maximum number of replicas provided by the user, which again can lead to overloaded
resources. The challenge relies on deciding on the number of replicas, how to distribute
the load to each replica, and the resource capacity to provide to each replica

• How to place DSP applications considering a multi-objective optimization?
Most DSP frameworks use as a scheduling solution round-robin techniques, which essen-
tially does not provide any performance optimization. Even scheduling solutions optimize

6 CHAPTER 1. INTRODUCTION

performance metrics optimize one at a time, and more common than not, QoS metrics are
neglected.

1.3 Evaluation Methodology

We provide a mechanism for placing DSP applications across cloud-edge infrastructure, with
operator replication, bandwidth guarantees, in a multi-objective optimization. The mechanisms
proposed in this document are evaluated using real environment and discrete-event simulations
in order to create controllable environments for repeatable experiments. While for experiments
performed in real environment we used a sentiment analysis application [38], the simulated
applications are crafted based on the shape and load of state-of-the-art evaluations and on a
benchmark for real-time IoT applications, RIoTBench [39]. Applications have variable commu-
nication patterns and operators’ requirements.

1.4 Contributions

The key contributions of this thesis are listed below:

1. An optimal mathematical model based on Mixed Integer Linear Programming (MILP)
for DSP operator placement and replication with optimization of end-to-end latency and
deployments costs, and throughput guarantees.

2. Pruning heuristics based on resource capacities to reduce the search space used by the
proposed model without performance drawbacks

3. Techniques for configuring DSP application on the cloud-edge infrastructure with band-
width guarantee.

1.5 Thesis Organization

In this current chapter (Chapter 1) we introduced key components to schedule DSP applications
across cloud-edge infrastructures. In Chapter 2 we survey the state-of-the art, the open chal-
lenges and position our contribution on the topic. Based on the open challenges identified during
the review of the state-of-the-art in Chapter 3 we present the problem statement addressed in
this thesis and propose a system model with details on how optimization metrics are modeled
as well as the operator parallelism [40, 41, 42]. Then, in Chapter 4 we present and evaluate an
optimal placement solution based on the proposed scheduling model and compare it with stan-
dard solutions [41]. As an optimal model for the operator placement problem is likely to face
scalability issues under large settings, Chapter 5 introduces a deployment solution also based
on the scheduling model proposed in Section 3.3, but with a heuristic approach to overcome
scalability issues that the optimal solution faces [42].

Chapter 2

Data Stream Processing Scheduling on
Cloud-Edge Infrastructure

Contents
2.1 Introduction . 7

2.2 Background . 8

2.3 Data Stream Processing Frameworks 9

2.4 Target Computing Infrastructure for DSP Placement 12

2.4.1 Data Stream Processing Solutions for Cloud Computing 12

2.4.2 Data Stream Processing Solutions for Edge Computing 13

2.5 Mechanisms for Data Stream Processing Scheduling 14

2.5.1 Optimal Solutions . 14

2.5.2 Heuristic-Based Solutions . 15

2.5.3 Machine-Learning Solutions . 16

2.6 Discussion and Positioning . 18

2.7 Conclusion . 19

2.1 Introduction

Advances in Internet of Things (IoT) technologies are creating new challenges and opportunities
for Data Stream Processing (DSP) applications where the data is generated by geographically
distributed devices located at the edges of the network. In such scenarios, solutions focused on
cloud deployment might not be ideal, despite the virtual unlimited resources that the cloud can
provide. A recent trend consists in exploring resources at the edges of the network to offload
parts of the processing from the cloud. Resources at the edge of the network include Micro
Datacenters (MDs) and IoT devices [43].

In this chapter, we review scheduling solutions for DSP deployment and what elements they
take into consideration, such as target infrastructure and its size, what challenges they address
and how they are positioned in the literature. We present some of the frameworks for DSP, and
review the state-of-the-art in DSP placement.

7

8 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

2.2 Background

DSP applications, depicted in Figure 2.1, are often long running. In the general workflow, a
user of the application submits a deployment request containing the description of the applica-
tion graph, the properties of the operators and their requirements. A DSP application graph
is commonly structured as a Directed Acyclic Graph (DAG) whose vertexes are data sources,
operators or data sinks, and edges represent how the data flows from sources, through operators,
until it reaches the data sinks. A data source is responsible for receiving the data, sometimes
connecting with an external system, and ingesting it into the application for processing. As
the bottom part of Figure 2.1 depicts, this data may come from a sensor, an IoT device, an-
other application, etc. The data sink is responsible for storing or providing the processed data
to another application or user. DSP applications have at least one source and one sink, but
commonly have more than that. Operators are responsible for processing the data stream by
applying a pre-defined transformation (i.e., it could be a filter, flat mapping, convolution, etc.)
or any user-defined function.

An operator has multiple properties including operator selectivity, data transformation factor,
and operator state [11, 25]. The operator selectivity refers to the number of messages the operator
discards [44], and its selectivity could be classified as selective when the operator produces fewer
messages than it receives, one-to-one when the operator produces the same number of messages
that it receives, and prolific when the operator produces more messages than it consumes.

The data transformation factor reflects on how the operator changes the size of each message.
It could be classified as expansion when the size of each message grows when compared to the
size upon arrival, stable when the message size does not change, and compression when the
operator reduces the size of the message.

The state of an operator refers to whether the operator maintains any information to process
arriving messages. It can be further categorized under stateless, where the operator does not
maintain any state, partitioned stateful where the operator maintains a key-based data structure
to decide how to split processed data under downstream operators and stateful where there is
no structured data but maintains some state for processing arriving messages.

Along with the application graph, the deployment request contains requirements, including
Quality of Service (QoS) constraints and/or computing demands for each individual operator.
QoS constraints are usually associated with throughput, application end-to-end latency or re-
sponse time, and monetary costs. Since DSP are focused on near real-time processing of large
amounts of data, throughput and application end-to-end latency are the main performance met-
rics. Requirements can comprise the number of replicas, CPU, memory, storage, etc. The correct
assessment of requirements has a huge impact on the performance of the application, and usu-
ally they are done by the application owner/developer who has little or no expertise on how to
perform these tasks [45].

The deployment request along with the requirements and the application graph are submitted
to the Application Scheduler of a Infrastructure Service Provider (ISP) (Figure 2.1). Upon
receiving the deployment request, the Application Scheduler tries to optimize the application
graph towards the requirements, by creating multiple replicas for each operator and deciding
how the load should be distributed between replicas. For instance, deciding how to share the
load to create the required number of replicas, or how many replicas to create to guarantee a
given response time or throughput. Parallelism can be explored in three ways [46]:

• Task parallelism where two different segments of the application graph process the same set
of data at the same time. Since, only the application owner/developer has the knowledge to

2.3. DATA STREAM PROCESSING FRAMEWORKS 9

1

2

3

4

Application Optimization

Operator Placement

Application Scheduler

1.1
2.1

2.2
4.1

3.1
4.21.2

Deployment RequestUser

1.1 2.1
2.2

4.1
4.2

3.11.2

Figure 2.1: Overview of the deployment process of DSP applications on cloud-edge infrastruc-
tures.

determine if two segments of the application should process the same set of data, scheduling
solutions do not explore Task parallelism.

• Data parallelism balance the load of a single operator among multiple replicas of it.

• Pipeline parallelism creates multiple instances of pipeline regions of the application and
balances the load among these regions.

After optimizing the application, the solution needs to decide where and how to deploy op-
erators or replicas within the physical infrastructure. This is known as the operator placement
problem, which is NP-Hard [28], and consists in finding a subset of the physical infrastructure
to host either the operators and/or their replicas. A solution for the operator placement problem
aims to optimize one or multiple metrics and comprises an application model and an infrastruc-
ture model. The infrastructure model represents the target infrastructure, its complexity, and
constraints that need to be met. For instance, in a model focused only on cloud deployment the
network does not face as much congestion as in deployment on cloud-edge infrastructure where
the communication between sites usually traverses the Internet without any bandwidth guar-
antees. The same goes for computing capabilities of resources; cloud servers are more powerful
and pose much less constraints than edge resources.

2.3 Data Stream Processing Frameworks

Over the years, several DSP frameworks have been designed, such as Apache Storm that fol-
lows a master-worker architecture, depicted in Figure 2.21. While the master is responsible
for scheduling operators and handling failures, the work is deployed on numerous resources –
physical or Virtual Machines (VMs). Each Worker Node can host multiple operators managed
by a Supervisor. The number of operators in a worker is defined by the number of slots, which
is an administrator-defined property. The actual number of replicas used by each operator of a
DSP application is defined by the application owner.

1Figures 2.2, 2.3 and 2.4 are adapted from Dias de Assunção et al. [13]

10 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

JVM

Executor

Spout
 or
bolt

Executor

Spout
 or
bolt

Spout
 or
bolt

Nimbus

Master Node
Supervisor

Worker Node

Worker
Process

Worker
Process

...

Supervisor

Worker Node

Worker
Process

Worker
Process

...

Supervisor

Worker Node

Worker
Process

Worker
Process

...

Storm Cluster

Figure 2.2: Apache Storm components

Twitter Heron works in a similar way to Apache Storm, with a master-worker architecture
depicted in Figure 2.3. The master, also called Topology Master, is responsible for scheduling
and handling workers. Workers are deployed in containers, where each container hosts: a Stream
Manager responsible for forwarding messages; Heron Instances where the operators are deployed;
and a Metrics Manager responsible for collecting execution and performance metrics. Twitter
Heron differs from Apache Storm regarding the isolation for each operator, enabling a more
fine-grained metric collection, used by the Topology Master, to apply a built-in back-pressure
mechanism to adjust the number of messages processed by each operator instance. Despite
having a back-pressure mechanism, Heron does not adjust the requirements provided by each
operator instance, sometimes leading to under usage of resources and still requires application
owners intervention to specify the number of instances for each operator.

Similar to Apache Storm, Apache Flink has the notion of slots, where the ISP defines the
number of slots for each worker. The execution model for Apache Flink, Figure 2.4, is com-
posed of a master called JobManager and workers named Task Manager. The JobManager is
responsible to coordinate all the Task Managers, deploy operators, handle failures and many
other management tasks, where the Task Manager host subtasks inside a Java Virtual Ma-
chine (JVM). The DSP application is broken into subtasks and partial streams, based on the
parallel degrees of operators and streams defined by the applications owner/developer. Unlike
other frameworks, Apache Flink has an efficient memory management mechanism that helps to
adapt the requirements for each subtask in a fair and load-based fashion.

Moreover, in recent past years multiple data stream solutions have been conceived to run on
constrained devices. Examples include: Apache Edgent [47], conceived by IBM and originally
called Quarks [48]; lightweight versions of dataflow systems such as Apache MiNiFi [49]; data
stream processing APIs such as Apache Kafka streams [50]; and software frameworks such as
Node-RED [51] to interface with data collecting devices and design dataflows. Existing work has
also attempted to create custom versions of Apache Storm able to run across multiple sites [52].
Most of these lightweight frameworks are designed to run on an individual resource, but multiple
instances can be interconnected by using messaging systems such as message brokers or publish-
subscribe software frameworks.

2.3. DATA STREAM PROCESSING FRAMEWORKS 11

M
o
n
ito

rin
g

 S
y
ste

m
Topology
Master

Stream
Manager

Heron
Instance

Metrics
Manager

Heron
Instance

Heron
Instance

Container

Stream
Manager

Heron
Instance

Metrics
Manager

Heron
Instance

Heron
Instance

Container
Zookeeper

data-in
data-out

metrics-out

Task
Execution

Thread

Task
Execution

Thread

Stream
Manager

Metrics
Manager

Figure 2.3: Twitter Heron components.

Figure 2.4: Apache Flink components.

12 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

2.4 Target Computing Infrastructure for DSP Placement

Frameworks and scheduling solutions are designed focused on a target infrastructure that has
a major effect on performance metrics. On one hand, the use of edge resources can provide a
performance boost for DSP applications in IoT scenarios. On the other hand, DSP applications
for web analytics can be constrained to cloud resources with more simplistic application and
infrastructure models since the network does not pose as many challenges as in the Internet.
DSP applications for IoT scenarios can explore three organizational infrastructures: cloud, edge,
and edge with IoT devices. This section discusses placement solutions targeted for DSP on cloud
and edge computing environments. For the reader interested in a more general discussion on
service placement and resource management aspects for cloud-edge infrastructure in general, we
refer to references [53] and [54].

2.4.1 Data Stream Processing Solutions for Cloud Computing

There is a wide range of works in the literature that address deployment of DSP applications
on cloud. Aljoby et al. [55] propose a solution to improve the performance of DSP applications
through network reconfiguration imposing bandwidth guarantees via Software Defined Network-
ing (SDN). The work evaluates the amount of data arriving at and leaving each operator, the
direction towards which the data is flowing, and impose a fair share of bandwidth between flows
crossing the same network path. The performance improvement obtained by Aljoby et al. is
limited for two main reasons. First, it only addresses network reconfiguration, and secondly, the
application model is very limited, which could create a large gap between real application and
model. Zhang et al. [56] take a step further and account not only for the network reconfiguration
but also for the operator placement, where operators are modeled considering only a resource re-
quirement and the ratio between the volume of data arriving at and leaving the operator for each
downstream. Given the application DAG, the information from the operator placement, and
the information from the infrastructure, the solution proposed by Zhang et al. place operators
aims to reduce the communication costs. They consider a more detailed operator model, but
it optimizes deployment costs ignoring performance metrics such as bandwidth and application
end-to-end latency, which are important for near real time processing. Moreover, the opera-
tor requirements and resource capacity are generic elements, and they do not address specific
requirements in terms of CPU, memory, and storage requirements.

Liu and Buyya [45] address the placement problem with a more detailed resource model
that considers CPU and memory, but with a simple operator model, composed only by the size
of streams arriving at the operator. Their work considers deployment with pre-defined sizes of
VMs or physical resources. To reduce deployment costs, their work aims to explore at maximum
each resource, which reduces deployment costs and inter-node communication. The reduction of
inter-node communication improves the application performance. Liu and Buyya also consider
operator replication, but with equal load distribution between replicas. Although it is very
interesting to use operator replication, their work considers a limited operator model, which
might lead to inefficient deployment.

Gedik et al. [57] propose a scheduling solution for throughput optimization that considers
partitioned stateful operators. The solution breaks the application graph into multiple regions
that can be executed in parallel to achieve higher throughput. Parallel regions are evaluated,
and they can trigger some replication of a region to maintain the throughput performance.
Although the work proposed by Gedik et al. addresses several elements related to scheduling

2.4. TARGET COMPUTING INFRASTRUCTURE FOR DSP PLACEMENT 13

problems, it still considers a very simple application and resource models that do not account for
requirements and physical constraints. Hochreiner et al. [58] propose a solution that explores a
generic placement and, through performance evaluation, adapts the application to reduce costs
and the amount of used resources. Like other solutions, they consider a limited resource model
that takes into account only CPU capacity, and an application model that does not consider the
operators’ requirements.

Tudoran et al. [59] propose a solution to improve the throughput of DSP applications, focused
on scenarios where the data source of an application is in another cloud. Their solution creates
micro batches of data that are sent from one cloud to another with less network interference.
The size of the micro batch varies according with the network congestion, and multiple routes
between clouds are explored to improve network transfer. By creating batches, the solution
trades on maximizing throughput to small detriment of application end-to-end latency.

Eidenbenz and Locher [60] first provide mathematical proof that the operator placement
problem is NP-Hard and then propose a placement solution assuming the DSP application as
series of parallel dependent tasks that can be executed in parallel or a combination of such
parallel series.

2.4.2 Data Stream Processing Solutions for Edge Computing

The advances in IoT technologies are creating scenarios where stream processing can leverage
resources at the edge of the network. Cardellini et al. [11] explore a combination of IoT, MD,
and cloud resources to deploy and reconfigure DSP applications to reduce deployment costs
and response time on the graph critical path. The solution proposed by Cardellini et al. takes
into consideration stateful operators and selects resources based on the requirements of each
operator. The requirements for each operator are based on reference resources. Based on the
application load the solution determines the number of replicas up to a maximum number.
Peng et al. [22] focus only on edge resources, with a more detailed application and a resource with
memory and CPU capacities, where the CPU capacity is expressed in Millions of instructions
per second (MIPS). Operators have a probability of flow distribution for down streams, and the
rate between the volume between arriving and after processing. The goal of Peng et al. work is
to reduce deployment costs while guaranteeing a given response time. Beyond deployment, the
work proposes a reconfiguration process based on bottleneck identification.

Aazam and Huh [23] proposed a solution for deployment and management on cloud-edge
infrastructure. Their solution computes deployment costs and predicts the required resources
on edge/MDs based on the risk of the application owner to release resources after leasing them.
The rationale behind their approach is that resources at the MD are scarce. To maximize the
profitability of the infrastructure owner, it either considers loyal users who would not release
resources after leasing, or charge higher prices from risky users.

Taneja and Davy [61] propose a scheduling solution to explore both resources at the edge and
at the cloud. It aims to reduce the application latency. It focuses on offloading operators from
the cloud to the edge of the network. Then, for each operator, it iterates through all the resources
at the edge of the network, trying to find a resource that fits the operator’s requirements, in
terms of CPU, memory and storage. If it does not find a resource at the edge, it searches for
one among cloud resources.

Fu et al. [14] propose a data stream processing engine that considers resources at the edges
of the network, such as IoT resources, sensors, gateways, amnong other resources. The proposed
data processing engine, named EdgeWise, is operator-congestion aware and has a limited pool

14 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

of resources. Fu et al. argue that most processing engines create a mapping of one operator per
thread, which in the cloud is not much of a problem due to high computational power of cloud
resources, but with constrained resources such as the edge ones, this can create scenarios where
threads with operators with a large processing queue are not scheduled frequently, affecting
the performance of the whole application. In such scenario, EdgeWise has a thread pool and
a hank of deployed operators ordered by the size of their processing queue, and at each time
the operators with the highest queue size are scheduled to the thread pool, it increases the
throughput and reduces end-to-end latency.

Zhang et al. [21] proposes a solution for the placement and reconfiguration of DSP appli-
cations exploring resources at the edge of the network. They argue that with the advances on
IoT, devices deployed at the edges of the network it is more efficient to move computation than
to move data. With that in mind, they proposed a solution that deploys operators onto edge
resources exploring co-location of operators to reduce network interference. They also proposed
a reconfiguration technique that creates a prediction model based on genetic algorithms that
determine when the load of the application is going to increase. If the difference between the
predicted load and the current load is higher than a given threshold it triggers a reconfiguration.

2.5 Mechanisms for Data Stream Processing Scheduling

Regardless the infrastructure that frameworks target, they need to decide where to deploy each
operator and sometimes how to configure it in terms of allocated CPU, memory and, storage
capacity. The deployment decision is commonly done using scheduling solutions. There are
multiple ways to develop scheduling solutions with pros and cons on each of them.

2.5.1 Optimal Solutions

Cardellini et al. [11] propose a scheduling solution based on a linear formulation that aims to
reduce deployment costs and the response time in a dataflow critical path. Their solution is
also used to reconfigure DSP applications at runtime. The proposed model composes a multi-
weighted objective function that, along with the deployment costs and response time in the
critical path, accounts for the reconfiguration downtime. The model is also used to determine
the number of replicas by using multi-sets, which are limited to a maximum number of replicas
per operator. The solution proposed by Cardellini et al. evaluated multiple weights for each
metric. As it is an optimal model based on linear formulation, it faces scalability issues due to
the large distributed infrastructure of cloud-edge scenarios.

Amarasinghe et al. [25] claim that solutions that explore resource at the cloud-edge in-
frastructure should not just take into consideration performance metrics and computational
requirements, but also the energy constraints that the use of an edge resource incurs. In this
sense, Amarasinghe et al. proposed a deployment solution that tries to offload operators from
the cloud, aiming to reduce the processing and transfer latency, while also ensuring that all the
operators deployed inside the same edge resource would not demand more energy for processing
than the power source available for the device can provide.

Hiessl et al. [62] argue that edge resources are dynamic and volatile in IoT scenarios. Such
characteristics should be taken into consideration when deploying DSP applications. The work
proposed by Hiessl et al. [62] considers multiple QoS metrics, among them the availability of
edge resources, the end-to-end application latency, and deployment costs. The solution is based
on Integer Linear Programming (ILP) with a multi-objective optimization function composed

2.5. MECHANISMS FOR Data Stream Processing SCHEDULING 15

of availability and end-to-end application latency. Also, the solution proposed by Hiessl et al. is
designed to run over the infrastructure periodically and continually optimize DSP applications,
then it also accounts for the migration costs of each operator.

According to Gu et al. [63], due to the virtually unlimited resources and elasticity, the cloud
poses as a suitable solution for DSP solutions. However, ISP such as Amazon, Google, etc. usu-
ally run their solutions over multiple Datacenter (DC) infrastructures, which communicate over
the Internet, introducing both network delay and monetary costs. The proposed solution aims to
compose a virtual graph with sources and sinks and one replica per operator per DC infrastruc-
ture. After composing the virtual graph, the solution finds a placement solution to determine in
which DC should be deployed replicas for each operator, the amount of data processed by each
replica, focusing on reducing the network communication costs. The problem is modeled as a
Mixed Integer Linear Programming (MILP), and to avoid scalability issues commonly faced by
MILPs, and obtain solutions in polynomial time, integer variables are relaxed.

2.5.2 Heuristic-Based Solutions

The scalability issues imposed by optimal solutions and the large search space of cloud-edge
infrastructure demand a sub-optimal, but more flexible approach. Zhang et al. [56] modeled the
problem as a MILP, but explored a heuristic to relax and solve the model. The infrastructure
model considered a multi-path network, and the goal was to reduce network costs. Despite
the large search space, the solution proposed by Zhang et al. obtains deployment solutions
in polynomial time. Peng et al. [22] also created a model based on linear formulation, with
elements of queuing theory that compute each operator’s load and service time. Beyond operator
placement, the solution proposed by Peng et al. is applied to the reconfiguration though the
bottleneck identification. The objective of the solution proposed by Peng et al. is to reduce
deployment costs and guarantee a maximum response time through constraints, and to handle
the scalability issue, it applies a binary generic algorithm to find a solution.

Despite not proposing a solution for operator placement Aljoby et al. [64] proposed a network
reconfiguration solution for DSP applications. Aljoby et al. propose a heuristic that, based on
the load of each stream of the application applies a fair share of the network bandwidth. Liu
and Buyya [45] proposed a solution based on linear formulation. Based on the properties of the
application and profiling information, it can determine the required number of replicas for load-
balancing with the goal of reducing deployment costs and inter-node traffic. Due to scalability
reasons Liu and Buyya develop a heuristic that is a variation of the First Fit Decreasing algorithm
for solving the bin packing problem.

Truong et al. [65] propose a solution based on queueing theory to predict throughput and
latency of DSP applications deployed on the cloud. Based on the expected load and on the
prediction model, the solution of Truong et al. can determine the number of replicas for each
operator and their respective placement. Eskandari et al. [66] aims to explore the data locality
that edge resources can provide and the collocation of operators and their respective replicas,
and therefore reduce end-to-end latency and increase throughput. The solution proposed by
Eskandari et al. is composed of two steps: first it identifies highly communicating operators and
groups them in such a way that they can fit available resources in the underlying infrastructure;
second, for each group it finds the most communicating operators to run inside the same process,
aiming to reduce the inter-process communication.

Elgamal et al. [31] recognize the benefits that resources with non-negligible computational
power at the edges of the network can introduce to DSP applications. The high asymmetry

16 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

between cloud and edge resources, however, requires a model carefully elaborated to explore the
trade-off between constrained computation with low latency and virtually unlimited computation
with high latency. To this end, Elgamal et al. propose a model based on profiling estimates the
response time of each operator, and with that it places operators with an algorithm based on
dynamic programming to reduce end-to-end latency. Gedik et al. [44] propose a solution for the
pipeline fission problem, that is automatically finding the best configuration of combined pipeline
and data parallelism in order to optimize application throughput. The heuristic proposed on [44]
aims to identify pipelined regions on the application graph that can be fused to be executed
inside the same process without any queue between operators, and further fissioned, creating
multiple replicas of such pipeline.

2.5.3 Machine-Learning Solutions

Cardellini et al. [52] propose a reconfiguration solution for DSP applications based on self-
adaptation without any intervention from the application owner, and that explores the strength
of both centralized and decentralized management solutions. The reconfiguration happens in
two levels. First, at operator level, the performance of each operator is evaluated and recon-
figured if necessary. At the second level, the whole application is evaluated, considering the
communication and load distribution between operators. Both levels of reconfiguration use the
Monitoring, Analysis, Planning and Execution (MAPE) architecture to decide when and how to
reconfigure the operator or the whole application, and instead of using a strategy that triggers a
reconfiguration based on threshold, the solution composes a reconfiguration cost metric based on
reinforcement learning that adapts the evaluation based on the current state of the applications
and avoids constant reconfiguration on the first level (operator level) without global knowledge
of the application.

Da Silva Veith et al. [67] propose a reconfiguration solution based on reinforcement learning
with a multi-objective optimization function. The work models the reconfiguration as a Markov
Decision Process and explores two reinforcement learning solutions to find a solution. In the
proposed solution the reconfiguration is triggered considering de MAPE architecture, and to
avoid constant reconfiguration it takes into consideration the migration of operators and the
time it requires for the applications to be paused before migrating.

Ni et al. [68] argues that a good resource allocation strategy should well balance the trade-
offs between distributing computation evenly across devices and minimizing communication cost
between devices. However, existing models either have strong assumptions of data arrival rate
and node connectivity, or fail to fully capture the complex factors affecting the data processing
throughput in practical stream processing systems. Then Ni et al. [68] propose a solution that
explores Deep Reinforcement Learning to find an accurate model for the application and then
propose a solution for the graph partitioning problem. The proposed solution aims to learn meta
information from the application graphs that are generic and able to represent any application
graph, creating a meta model that is trained just once, and with that information find a solution
for the graph partitioning that is able to place operators into resources.

The work proposed by Russo et al. [69], claims that most solutions addressing the elasticity
in stream processing applications assume a very simplistic view of the underlying infrastructure,
which is often heterogeneous. Then, it addresses the problem of controlling elasticity of DSP
applications deployed on heterogeneous infrastructure with the goal of minimizing the response
time, resource usage and reconfiguration overhead. Their solution aims to create a infinity-
horizon Markov Decision Process (MDP). MDP systems, however, have two major limitations,

2.5. MECHANISMS FOR Data Stream Processing SCHEDULING 17

T
ab

le
2.
1:

St
at
e-
of
-t
he
-a
rt

so
lu
ti
on

s
fo
r
th
e
op

er
at
or

pl
ac
em

en
t
pr
ob

le
m

an
d
re
co
nfi

gu
ra
ti
on

of
D
SP

ap
pl
ic
at
io
ns
.

S
ol

u
ti

on
T
ar

ge
t

M
et

ri
cs

A
p
p
ro

ac
h

R
ep

li
ca

ti
on

In
fr

as
tr

u
ct

u
re

In
fr

as
tr

u
ct

u
re

S
iz

e

A
ljo

by
et

al
.
[5
5]

cl
ou

d
th
ro
ug

hp
ut

he
ur
is
ti
c

no
10

re
so
ur
ce
s

Zh
an

g
et

al
.
[5
6]

cl
ou

d
m
on

et
ar
y
co
st
s

he
ur
is
ti
c

no
5
re
so
ur
ce
s

L
iu

an
d
B
uy

ya
[4
5]

cl
ou

d
m
on

et
ar
y
co
st
s
an

d
th
ro
ug

hp
ut

he
ur
is
ti
c

ye
s

3
re
so
ur
ce
s

G
ed

ik
et

al
.
[5
7]

cl
ou

d
th
ro
ug

hp
ut

he
ur
is
ti
c

ye
s

4
re
so
ur
ce
s

C
ar
de

lli
ni

et
al

.
[1
1]

cl
ou

d-
ed

ge
m
on

et
ar
y
co
st
s
an

d
en

d-
to
-e
nd

la
te
nc
y

op
ti
m
al

ye
s

15
re
so
ur
ce
s

A
za
m

an
d
H
uh

[2
3]

cl
ou

d-
ed

ge
m
on

et
ar
y
co
st
s

op
ti
m
al

no
re
so
ur
ce

es
ti
m
at
io
n

Fu
et

al
.
[1
4]

cl
ou

d-
ed

ge
th
ro
ug

hp
ut

an
d
en

d-
to
-e
nd

la
te
nc
y

he
ur
is
ti
c

no
1
re
so
ur
ce

Za
ng

et
al

.
[2
1]

cl
ou

d-
ed

ge
ne

tw
or
k
la
te
nc
y

he
ur
is
ti
c

no
52
0
re
so
ur
ce
s

P
en

g
et

al
.
[2
2]

ed
ge

on
ly

m
on

et
ar
y
co
st
s

he
ur
is
ti
c

no
10
0
re
so
ur
ce
s

E
sk
an

da
ri

et
al

.
[6
6]

ed
ge

on
ly

th
ro
ug

hp
ut

an
d
en

d-
to
-e
nd

la
te
nc
y

op
ti
m
al

no
8
re
so
ur
ce
s

E
lg
am

al
et

al
.
[3
1]

cl
ou

d-
ed

ge
en

d-
to
-e
nd

la
te
nc
y

op
ti
m
al

no
2
re
so
ur
ce
s

G
ed

ik
et

al
.
[4
4]

cl
ou

d
th
ro
ug

hp
ut

op
ti
m
al

ye
s

1
re
so
ur
ce

C
ar
de

lli
ni

et
al

.
[5
2]

cl
ou

d-
ed

ge
m
on

et
ar
y
co
st
s

re
in
fo
rc
em

en
t
le
ar
ni
ng

ye
s

8
re
so
ur
ce
s

da
Si
lv
a
V
ei
th

et
al

.
[6
7]

cl
ou

d-
ed

ge
m
on

et
ar
y
co
st
s
an

d
en

d-
to
-e
nd

la
te
nc
y

re
in
fo
rc
em

en
t
le
ar
ni
ng

no
42

re
so
ur
ce
s

N
ie

t
al

.
[6
8]

cl
ou

d
co
st

de
ep

re
in
fo
rc
em

en
t
le
ar
ni
ng

no
5
re
so
ur
ce
s

R
us
so

et
al

.
[6
9]

cl
ou

d
en

d-
to
-e
nd

la
te
nc
y

re
in
fo
rc
em

en
t
le
ar
ni
ng

ye
s

10
re
so
ur
ce
s

18 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

first it has a large search space that grows with the size of the infrastructure and its heterogeneity,
and secondly an MDP requires a complete system knowledge, which sometimes is not possible
at run-time.

2.6 Discussion and Positioning

Table 2.1 summarizes the solutions investigated in this chapter. Regarding the target infras-
tructure, the cloud still poses as a viable option because depending on the domain of the DSP
application, the data source is at the cloud as well. The table also highlights works that explore
edge computing either alone or in combination with the cloud. As mentioned beforehand, edge
computing poses challenges that go beyond finding a placement for the application. As edge
resources are computationally constrained, along with searching a placement for operators, a
scheduling solution needs to find options to overcome such resource constraints by deciding how
to run the operator code in the resource itselfs. An example is a work proposed for Fu et al. [14],
that controls the scheduling decisions of the CPU to schedule threads or processes of operators
that are with high processing queue. Or the work of Elgamal et al. [31] that decides which
operators to offload to the edge with a queuing theory based model that evaluates the trade-off
between computation and communication.

Another option to explore constrained edge resources is operator replication. Even though
edge resources are computationally constrained they may be available in large numbers. A
solution that creates multiple replicas for each operator and shares the load among such replicas
might produce better results. This approach has been previously explored in the literature.
Cardellini et al. [11] proposed a model to decide the number of replicas for each operator, but
the number of replicas is limited to a given maximum. With a maximum number of replicas,
there is a limitation to the load balancing among edge resources, which might overload replicas.
Liu and Buyya [70] propose a solution to create replicas, but assume an even load distribution
for each replica on a heterogeneous infrastructure, which might overload certain replicas.

DSP applications are long-running and designed to process large amounts of data in a short
time. In summary, it explores the trade-off between using powerful computational resources from
the cloud and low latency resources from the edge, with a performance goal that maximizes the
processing time or maximizes the amount of processed data. This is reflected in the literature,
where throughput and end-to-end latency are very common metrics as shown in Table 2.1,
either for cloud or cloud-edge solutions. Since most of theses solutions explore some type of
public infrastructure, metrics such as monetary cost are very common because companies and
organizations usually have limited budgets.

In order to find placement solutions, existing work usually explores heuristic solutions as
demonstrated in the table. We believe that the reason is the scalability issues that optimal
solutions often impose, and the fact that a cloud-edge infrastructure can be very large with
geographically distributed resources. Despite this fact, some efforts towards optimal solutions in
the cloud-edge have been made, such as Eskandari et al. [66] and Cardellini et al. [11]. However,
most approaches usually evaluate the proposed solutions in small-sized environments that do
not reflect the reality of cloud-edge infrastructure. The same holds true for heuristic approaches,
except for Zang et al. [21] that account for an infrastructure with 520 resources, but 480 of these
are sensors that are not considered as candidates to host operators.

This thesis proposes an optimal model to schedule DSP applications exploring cloud-edge
resources, that accounts for the heterogeneity of the target infrastructure, the network limitations
connecting edge and cloud, and the characteristics of the application and its operators, such as

2.7. CONCLUSION 19

stream patterns, operator selectivity, data transformation factor, etc. By coping with network
and resource limitations from edge resources, we explore bandwidth guarantees and operator
replication with the load processed by each replica decided by the model, and without limiting
the number of replicas.

2.7 Conclusion

The operator placement problem has several inherent challenges. Although some of them have
already been addressed by the community, there is still space for improvement or other ap-
proaches to evaluate. For instance, some solutions address the operator replication, but often
the number of replicas needs to be defined by the application owner/developer. Sometimes the
model itself determines the number of replicas, but it is limited to a maximum number or the
load among replicas is uniformly distributed. In such scenarios, despite operator replication
being addressed there is yet much to be explored. We have shown the pros and cons of focusing
either on cloud infrastructure or on cloud-edge infrastructures, and the different ways to solve
the placement problem.

Among the open challenges, we investigate a solution for the operator placement problem
for DSP applications focused on IoT scenarios, exploring the benefits of the edge and the cloud,
with operator replication on constrained devices such as IoT ones, network configuration with
bandwidth guarantees and requirements estimation to reduce response time and deployment
costs.

20 CHAPTER 2. DSP SCHEDULING ON CLOUD-EDGE INFRASTRUCTURE

Chapter 3

Mixed-Integer Programming Model for
Data Stream Processing

Contents
3.1 Introduction . 21
3.2 Deployment Architecture . 22

3.3 System Model . 23
3.3.1 Infrastructure Model . 24
3.3.2 Application Model . 24
3.3.3 Metrics Model . 26
3.3.4 Infrastructure and Application Constraints 27

3.4 Throughput Estimation Model . 29
3.4.1 Scenario and Model Description . 29
3.4.2 Experimental Setup . 31
3.4.3 Performance Evaluation Results . 34

3.5 Conclusion . 35

3.1 Introduction

As presented in Chapter 2, there are several solutions for addressing the placement and paral-
lelism of Data Stream Processing (DSP) applications. Despite the fact that a large part of these
solutions focus on cloud computing, there is a growing demand for exploiting edge computing
resources or the combination of cloud and edge computing resources to improve the Quality of
Service (QoS) and reduce incurred costs. The work that focuses on the cloud-edge infrastructure
provides new opportunities for deploying DSP applications on heterogeneous environments, but
still many issues need to be addressed, such as devising more detailed models of the infras-
tructure considering the CPU, memory, and storage capacities of resources, and a more precise
application model that takes into consideration operator characteristics such as selectivity, data
transformation pattern, among other factors. Another aspect is that existing work either over-
looks or is limited in the manner it addresses operator replication; an essential feature when
dealing with constrained devices such as those provided by edge computing. The few solutions

21

22 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

that address operator replication, do so assuming an even load distribution between replicas, or
have a cap to the number of replicas created, hence limiting the solution’s performance.

This chapter introduces models for DSP applications, cloud-edge infrastructure, and perfor-
mance metrics. The application model includes elements such as selectivity, data transformation
pattern, and probability of load distribution. The infrastructure model takes into consideration
the heterogeneity of edge resources, with different computational power modeled as the clock
speed of each resource. Also, the application model explores operator parallelism by splitting
an operator into smaller replicas to fit edge resources, and provides the requirements according
the load that each replica should process, which might not be even for all replicas. The load
of each replica is determined considering the network latency and congestion and the capacity
of the resources into which they are deployed. The model aims to find a solution to reduce
the application end-to-end latency, by reducing the network interference on data transfer with
bandwidth guarantees, and deployment costs. We employ a cost model based on elements from
AWS Fargate Pricing [71] and AWS Direct Connection [72]. Application end-to-end latency is
a very important metrics in many of the current and emerging DSP scenarios.

3.2 Deployment Architecture

An architecture to assist deployment solutions and ease the process of scheduling DSP appli-
cations onto cloud-edge infrastructure is depicted in Figure 3.1. The architecture comprises
modules to manage and extract information from the physical resources and a deployment en-
gine for DSP applications. We envision that this architecture can be realized using existing
software frameworks for DSP applications and message-brokering systems as later demonstrated
in Section 3.4.2, which evaluates a throughput model. Moreover, the operator placement and
replication techniques can be incorporated into existing DSP frameworks, such as a custom
scheduler for Apache Storm.

The computational resources follow the three-layered structure of cloud-edge described be-
forehand: Internet of Things (IoT) resources, Micro Datacenters (MDs), and cloud computing.
On each computing resource there is an instance of a Node Manager, in turn composed of two
modules, namely the Operator Manager and Performance Monitor. While the Operator Manager
is responsible for managing operators of DSP applications deployed on the resource – including
deploying, releasing, and scaling operators – the Performance Monitor collects performance met-
rics both from the resource and each operator instance, and reports the metrics to the Resource
Manager in the Data Stream Processing Engine, a centralized module responsible for managing
the computing resources. The Resource Manager combines the performance metrics collected
from the Performance Monitor module from each resource, with network information obtained
via techniques such as Vivaldi [73] or Software Defined Networking (SDN) [74] used to discover
the network topology and build an infrastructure graph with the capacity and availability of
each computing resource and the network, as well as, impose network guarantees.

The Dataflow API is utilized by users to interface with the Data Stream Processing Engine
and submit a deployment request for a DSP application. A deployment request contains the
description of the DSP application graph, the requirements and properties of each operator, and
the QoS requirements, which can be throughput maximization, application end-to-end latency
minimization, cost minimization, or a combination thereof. The application and its requirements
are then passed to the Application Scheduler, which is continuously provided with information
gathered by the Resource Manager on available resources, their residual capacity, their network
interconnections, and the network capacity. Along with information from the DSP application

3.3. SYSTEM MODEL 23

IoT devices

Node Manager

Performance Monitor

Operator Manager

Edge Cloud

Deployed
application

User

Deployment plan

Deployment request

Data Stream
Processing Engine

Resource
Manager

Dataflow API

Application Model

Application Scheduler

System Model

Figure 3.1: Overview of the architecture for deployment of DSP applications on cloud-edge
infrastructures.

and the infrastructure the Application Scheduler devises a schedule/deployment plan that speci-
fies how many instances of each operator must be created and on which resources these instances
ought to be placed.

In order to compute a deployment plan, a scheduling algorithm often needs to work with
models that describe how a system or application might behave in practice once it is deployed
on the actual infrastructure. Such models are important to ensure that one or multiple QoS
requirements for a DSP application can be met when the application is executed on the un-
derlying system. Hence, the quality of the scheduling decisions computed by the Application
Scheduler strongly depend on the accuracy of the system and application models it uses. As
depicted in Figure 3.1, Application Scheduler uses the infrastructure and application models to
identify how many instances of an operator must be created and where they must be placed in
order to optimize the required performance metrics.

Once the Application Scheduler finds a deployment plan with the description of resources
where each operator or replica should be placed, the requirements of each operator and the
required network configuration, this plan is passed to the Resource Manager that coordinates
with Node Managers and employs SDN techniques to enforce the network configuration. The
DSP application can then start its execution.

3.3 System Model

This thesis considers a three-layered cloud-edge infrastructure, as depicted in Figure 3.2, where
each layer contains multiple sites. The IoT layer contains numerous geo-distributed constrained
computing resources often acting as data sources or sinks, but with non-negligible computational
capacity to support some DSP operators. MDs provide geographically distributed resources (e.g.,
routers, gateways, and micro datacenters), but with less computational constraints than those
in the IoT layer. The cloud comprises high-end servers with fewer resource constraints [75]. The

24 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

notation used through this thesis is summarized in Table 3.1.

...

...

...
Micro Datacenters Layer

IoT Layer

Cloud Layer

Edge

Computing

Figure 3.2: Three-layered cloud-edge computing infrastructure.

3.3.1 Infrastructure Model

The three-layered cloud-edge infrastructure is represented as a graph GI = 〈R,P〉, where R is
the set of computing resources of all layers (RIoT ∪RMD ∪Rcloud), and P is the set of network
interconnections between computing resources. Each k ∈ R has CPU (CPUk) and memory
(Memk) capacities, given respectively in 100 × num_of_cores, and bytes. The processing
speed (Vk) of a resource k is its CPU clock in GHz. Similar to existing work [29], the network
has a single interconnection between a pair of computing resources k and l, and the bandwidth
of this interconnection is given by Bwk,l and its latency is Latk,l.

3.3.2 Application Model

The application graph specified by a user is a directed graph GA = 〈O, E〉, where O repre-
sents data source(s) SourceO, data sink(s) SinkO and transformation operators TransO, and
E represents the streams between operators, which are unbounded sequences of data (e.g., mes-
sages, packets, tuples, file chunks) [11]. The application graph contains at least one data source
and one data sink. Each operator j ∈ O is the tuple 〈Sj , Cj ,U j , ARj〉, where Sj is the se-
lectivity (message discarding percentage), Cj is the data transformation factor (how much it
increases/decreases the size of arriving messages), U j is the set of upstream operators directly
connected to j, and ARj is the input rate in bytes/s that arrives at the operator. When opera-
tor j is a data source (i.e., j ∈ SourceO) its input rate is the amount of data ingested into the
application since U j = ∅. Otherwise, ARj is recursively computed as:

ARj =
∑
i∈Uj

ρi→j ×DRi (3.1)

where ρi→j is the probability that operator i will send an output message to operator j, which
captures how operator i distributes its output stream among its downstream operators. DRi is
the departure rate of operator i, given by:

DRi = ARi × (1− Si)× Ci (3.2)

3.3. SYSTEM MODEL 25

Table 3.1: Summary of notation used in this thesis.

Symbol Description

GI Infrastructure graph
R Set of computing resources (RIoT ∪RMD ∪Rcloud)
P Set of paths between computing resources
p A path p that belongs to P
ps Source of path p
pd Destination of path p

CPUk CPU capacity of resource k
Memk Memory capacity of resource k
Vk Clock speed of resource k

Bwk,l Bandwidth of the path between resources k and l
Latk,l Network latency of the path between resources k and l
GA The DSP application graph
O Set of operators
E Set of streams between operators

SourceO Subset of sources from O
SinkO Subset of sinks from O
TransO Subset of transformation operators from O
Sj Selectivity of operator j
Cj Data transformation factor of operator j
Uj Subset of operators that send data to j
ARj Byte arrival rate of operator j
GRj Data generation rate of source operator j
ρi→j Probability that operator i sends data to operator j
DRj Byte departure rate of operator j
Reqjcpu CPU requirements to process the data arriving at operator j
Reqjmem Memory requirements to process the data arriving at operator j
Reqjbytes Requirements in bytes/s to execute operator j
Ref j

data Ref. data volume (bytes/s) processed to obtain Ref j
cpu and Ref j

mem

Ref j
cpu Reference values of CPU usage for operator j to process Ref j

data

Ref j
mem Reference values of memory usage for operator j process Ref j

data

Ref j
V Processing speed of reference resource where j was evaluated

Ωj Speedup/slowdown w.r.t. the ref. clock V and the clock of resource k (Vk)
x(j, l) Amount of data that operator j processes on resource l

f(i, k → j, l) Amount of data flowing from operator i to j deployed on resources k and l
Ccpu(l) and Cmem(l) Cost per CPU unit and cost of storing one byte in memory at resource l

Cbw(k, l) Cost of transferring a byte over the network from resource k to l
CC and NC Computational and network costs

ATT Aggregate data Transfer Time
β Variation in the processing requirements of an application
L Layers of the cloud-edge infrastructure

SourceL Set of operators that receive data from operators in other infrastructure layers
SinkL Set of operators that send data from operators in other infrastructure layers
`j Infrastructure layer in which operator j is deployed

PT (j) Processing time for sink operator j
PP (j) Higher processing time path for sink operator j
AR(j, l) Arrival rate of operator j deployed on resource l
DR(j, l) Departure rate of operator j deployed on resource l

26 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

which is the size of the input stream after applying the selectivity Si and the data transformation
factor Ci.

The quality of a placement is guaranteed by meeting the application requirements. The
CPU and memory requirements of each operator j for processing its incoming byte stream
are expressed as Reqjcpu and Reqjmem and they are obtained by profiling the operator on a
reference resource [76]. Ref jcpu, Ref jmem and Ref jdata refer to the reference CPU, memory and
processed data of operator j, respectively. Since CPU and memory cannot be freely fractioned,
the reference values are rounded up and combined with ARj of j in order to compute Reqjcpu
(Equation 3.3) and Reqjmem (Equation 3.4) that handle the arriving data stream.

Reqjcpu =

⌈
Ref jcpu ×ARj

Ref jdata

⌉
(3.3)

Reqjmem =

⌈
Ref jmem ×ARj

Ref jdata

⌉
(3.4)

3.3.3 Metrics Model

The rate of data ingested by sources is constant and stable, hence making it possible to compute
the CPU and memory requirements recursively for the entire application to handle the expected
load. Placing an application onto computing resources incurs a cost. By taking a closer look
at services provided by a major Infrastructure Service Provider (ISP) such as Amazon, multiple
services would be required to deploy a DSP application on IoT scenarios with operator isolation
and bandwidth guarantees. To deploy operators with some level of performance isolation and
with performance guarantees, the first service required would be Amazon AWS Fargate [71],
that is a serverless solution to deploy containers with memory and CPU guarantees. As we
consider IoT scenarios, the second service would be Amazon AWS IoT Core [77], that is a
service to manage and collect data from IoT resources to the AWS infrastructure. Last, a
deployment needs network guarantees, which is where Amazon AWS Direct Connect [72] and
Amazon AWS Private Links [78] come into play. Amazon AWS Private Links [78] is a service
where Amazon provides a private link with bandwidth guarantees between their infrastructure
and the client’s infrastructure. In the context of this thesis, these services could be used to
realise the network interconnection between IoT resources and MD/cloud. Also, despite both
being considered public infrastructure here, MD and cloud resources are on distinct geographical
locations. Amazon AWS Direct Connect [72] is a service that provides bandwidth guarantees
between other services deployed inside Amazon’s infrastructure. The cost of using one unit of
CPU and storing one byte in memory at resource l is given by Ccpu(l) and Cmem(l), respectively,
while the cost of transferring a byte over the network from resource k to l is denoted by Cbw(k, l).

As cloud-edge infrastructure comprises heterogeneous resources, the model applies a coeffi-
cient Ωl = Ref jV /Vl to adapt the operator requirements to resource l. Ref jV is the reference
processing speed of the resource for operator j, and Vl is the clock speed of resource l. The
computational cost is given by:

CC =
∑
l∈R

∑
j∈O

Ccpu(l)×
Req

j
cpu

Ωl
×β×x(j,l)

ARj

maxCcpu(l)
+
Cmem(l)× Reqjmem×x(j,l)

ARj

maxCmem(l)
(3.5)

3.3. SYSTEM MODEL 27

where maxCcpu(l) and maxCmem(l) are the cost of using all the CPU and memory capacity of
resource l. The CPU and memory costs are normalized using their maximum amounts resulting
in values between 0 and 1. β refers to a safety margin to each replica requirements aiming
to a steady safe system. This margin relies on queueing theory premises to avoid an operator
reaching the CPU limits of a given computing resource, which requires a higher queuing time.

The network cost NC is computed as:

NC =
∑
p∈P

∑
a,b∈p

∑
j∈O

∑
i∈Uj

Cbw(a, b)× f(i, ps → j, pd)

maxCbw(a, b)
(3.6)

where a, b is a link that represents one hop of path p, and a, b can belong to multiple paths.
The resources at the extremities of path p hosting replicas i and j are given by ps and pd,
respectively. NC is normalized by maxCbw(a, b), the cost of using all the bandwidth available
between resources a and b.

The Aggregate data Transfer Time (ATT) sums up the network latency of a link and the
time to transfer all the data crossing it, and is normalized by the time it takes to send an amount
of data that fills up the link capacity:

ATT =
∑
p∈P

∑
k,l∈p

∑
j∈O

∑
i∈Uj

f(i, ps → j, pd)× (Latk,l + 1
Bwk,l

)

Latk,l + 1
(3.7)

The multi-objective function aims at minimizing the data transfer time and the application
deployment costs:

min : ATT + CC +NC (3.8)

3.3.4 Infrastructure and Application Constraints

The problem is modeled as a Mixed Integer Linear Programming (MILP) with variables x(j, l)
and f(i, k → j, l). Variable x(j, l) accounts for the amount of bytes that a replica of operator j
can process on resource l, whereas variable f(i, k → j, l) corresponds to the number of bytes that
operator replica i on resource k sends to downstream operator replica j deployed on resource l.

The objective function is subject to:

Physical constraints: The requirements of each operator replica j on resource l are a
function of x(j, l); i.e., a fraction of the byte rate operator j should process (ARj) with a safety
margin (β). The processing requirements of all operator replicas deployed on resource l must
not exceed the processing capacity as follows:

CPUl ≥
∑
j∈O

Reqjcpu
Ωl
× β × x(j, l)

ARj
(3.9)

Meml ≥
∑
j∈O

Reqjmem × x(j, l)

ARj
(3.10)

28 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

The following guarantees that the amount of data traversing every link a, b does not exceed
its bandwidth capacity:

∑
j∈O

∑
i∈Uj

f(i, ps → j, pd) ≤ Bwa,b ∀a, b ∈ p; ∀p ∈ P (3.11)

Processing constraint: The amount of data processed by all replicas of j must be equal
to the byte arrival rate of j:

ARj =
∑
l∈R

x(j, l) ∀j ∈ O (3.12)

Flow constraints: Except for sources and sinks, it is possible to create one replica of
operator j per resource, although the actual number of replicas, the processing requirements,
and the interconnecting streams are decided within the model. The amount of data that flows
from all replicas of i to all the replicas of j is equal to the departure rate of upstream i to j:

DRi × ρi→j =
∑
k∈R

∑
l∈R

f(i, k → j, l) ∀j ∈ O;∀i ∈ U j (3.13)

Likewise, the amount of data flowing from one replica of i can be distributed among all
replicas of j:

x(i, k)× (1− Si)× Ci × ρi→j =
∑
l∈R

f(i, k → j, l)

∀k ∈ R;∀j ∈ O;∀i ∈ U j
(3.14)

On the other end of the flow, the amount of data that flows from all the replicas of all
upstream operators i to each replica of j must be equal to the amount of data processed in
x(j, l):

∑
i∈Uj

∑
k∈R

f(i, k → j, l) = x(j, l) ∀j ∈ O;∀l ∈ R (3.15)

Domain constraints: The placement k of sources and sinks is fixed and provided in the
deployment requirements. Variables x(j, l) and f(i, k → j, l) represent respectively the amount
of data processed by j in l, and the amount of data sent by replica i in k to replica j in l.
Therefore the domain of these variables is a real value greater than zero:

x(j, l) = ARj ∀j ∈ SourceO ∪ SinkO;∀l ∈ R (3.16)

x(j, l) ≥ 0 ∀j ∈ TransO; ∀l ∈ R (3.17)

f(i, k → j, l) ≥ 0 ∀k, l ∈ R; j ∈ O; i ∈ U j (3.18)

3.4. THROUGHPUT ESTIMATION MODEL 29

3.4 Throughput Estimation Model

Although the main contribution of this thesis is a model and algorithms for computing solutions
to the operator placement and parallelism problems on cloud-edge infrastructure, this chap-
ter also describes a model that can be used to estimate the throughput of DSP applications
onto cloud-edge infrastructure. The goal of this model is to estimate the throughput that a
deployment plan can achieve under certain environmental and application conditions.

3.4.1 Scenario and Model Description

The solution to the operator placement and parallelism problem consists of finding a deployment
plan that establishes how many replicas of each operator must be created and onto which
resources these replicas should be deployed. This section introduces a model for estimating
the throughput that a given deployment plan for DSP applications on cloud-edge computing
can achieve. As the throughput model and the scheduling model presented in Section 3.3 are
interrelated, some equations and functions look similar. However, unlike the scheduling model
that initially deals with the logical application graph specified by the user and aims to devise
the physical graph for deployment, the throughput model deals already with the physical graph
whose placement has already been decided by the scheduling. Hence, for instance, while ARj
represents the byte arrival rate of operator j in the logical graph, the throughput model uses
AR(j, l) to represent the byte arrival rate of operator j deployed on resource l. The notation
used to describe the model is summarized in Table 3.1.

The estimation model follows both the infrastructure and the application models presented
in Section 3.3. However we add another representation of an operator’s requirements, where
instead of requesting a given amount of CPU and memory, we consider that theses values are
derived from a processing rate requirement Reqjbytes given in bytes/s that operator j should
process.

The proposed model considers that a deployment plan follows the three-layered structure
of the cloud-edge computing infrastructure and hence splits the set of operators O into three
deployment sequences, one for each layer L of the cloud-edge infrastructure (i.e., IoT , MD,
cloud) as depicted in Figure 3.3. This division into sequences is used to compute the throughput
in each layer and to account for the network interference between layers. As it is essential to
understand how operators deployed in one layer interact with operators in other layers, we use
SourceL and SinkL to represent, respectively, the set of operators of layer L that receive data
from operators in others layers — or from data sources in the case of L = IoT — and the
operators of L that stream data to downstream operators in other layers; or to the application
data sinks for operators hosted on the cloud. The layer of an operator j is given by `j .

IoT sequence MD sequence cloud sequence

SinkIoT

SourceIoT

Op 6 Op 7

SourceMD

SinkMD

Op 8 Op 9

Sourcecloud

Sinkcloud

Op 2

Op 1
Op 3

Op 4

Op 5

Source Sink

Figure 3.3: Deployment sequences for each layer of a cloud-edge infrastructure.

30 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

We assume that data sources are always deployed on resources at the IoT layer. Hence, for
operators in SourceIoT the arrival rate AR(j, l) of operator j deployed on resource l ∈ R is equal
to the data generation rate GRj in bytes/s, which, as explained beforehand, is computed based
on the number and size of messages ingested into the application. For the remaining operators,
the AR(j, l) of j on resource l is computed using Equation 3.19 that considers the parallelism
level of operator j (i.e., how many operator instances/tasks are executed) and the departure
rate of all upstream operators U j that send data to j:

AR(j, l) =

∑
i∈Uj

∑
k∈M(i) S(i, k → j, l)

|M(j)|
(3.19)

where M(j) returns a mapping 〈operator, resource〉 for all the deployed instances of operator j
so that the number of replicas of j is given by |M(j)|. S(i, k → j, l) is the byte rate that each
upstream operator i deployed on resource k sends to operator j deployed on l. S(i, k → j, l) is
computed by Equation 3.20 as follows. If j and a previous operator i are on the same resource,
only the departure rate DR(i, k) of operator i on resource k is considered to compute the byte
rate. Otherwise, it takes into account the departure rate of all operators in M(i). Moreover,
since i could send its output stream to various operators, the probability ρi→j that i forwards
its outgoing stream to j is used again here.

S(i, k → j, l)=

ρ
i→j ×DR(i, k) if k = l

min

[
ρi→j×DR(i,k)
Max(PT (i),1) , Bwk,l

]
otherwise

(3.20)

The departure rate DR(i, k) of operator i onto resource k is given by Equation 3.21, which
applies the selectivity Sj and data transformation pattern Cj on the arrival rate, changing the
number and size of messages in the income stream to produce the output stream. The departure
rate is also given in bytes/s.

DR(j, l) = AR(j, l)× (1− Sj)× Cj (3.21)

The application graph contains several paths between data sources and data sinks, and they
can be decomposed into pipelines executed in parallel. To compute the throughput of each layer
L considers the paths between SourceL and SinkL, where the throughput of each operator
j ∈ SinkL is computed considering the path with greatest processing time from SourceL to the
operator itself. For instance, in the application in Figure 3.3 the throughput of MD layer is
based on the throughput of Op 7, and the paths to this operator are Op 4→ Op 6→ Op 7 and
Op 5→ Op 7. The path with the greatest processing time is picked to compute the throughput.
This process of identifying and selecting the path with the greatest processing time, from the
SourceL to j ∈ SinkL, is represented by PP (j).

After selecting the path with greatest processing time, the model computes the time difference
between the departure timestamp of two consecutive messages, from the last operator on the
path. Let us assume that for the throughput of the MD layer of the application in Figure 3.3
the path with greates processing time is Op 4 → Op 6 → Op 7; the pipeline execution of this
path is depicted in Figure 3.4. Message M1 arrives at Op 4 and is processed during 1 time unit,
after which it is handed to Op 6. While Op 6 starts to process M1, Op 4 starts to process M2.
After 1 time unit Op 4 finishes M2 and stores it in a queue while Op 6 finishes processing M1.

3.4. THROUGHPUT ESTIMATION MODEL 31

Op 4 Op 6 Op 7
3t

Op 4 Op 6 Op 7

1t 2t

1t 3t 2t

M1

M2

Time Difference

Figure 3.4: Difference between the finish processing times of two consecutive messages.

Both messages leave the path at Op 7, so that we compute the time difference with the departure
timestamp from this operator. This time difference is given by PT (j) (Equation 3.22), which is
used to compute the throughput of operator j. The model computes this time difference for the
arrival rate of the first operator of the path, whereby if this time difference is lower than one
second, operator j can process more than the arrival rate. However, since the throughput is the
departure rate produced in one second, we consider one second as the minimum time difference
between two consecutive messages.

PT (j) =
AR(first(PP (j)),M(first(PP (j)))

Req
first(PP (j))
bytes

+Q(j)−
∑

i∈PP (j)

AR(i,M(i))

Reqibytes
(3.22)

where Q(j) is given by:

Q(j) =
∑

i∈PP (j)

AR(i,M(i))

Reqibytes
i = last(PP (j))

max

[
AR(i,M(i))

Reqibytes
, AR(i+1,M(i+1))

Reqi+1
bytes

]
otherwise

(3.23)

The proposed model computes the throughput of each layer L (Equation 3.24) based on the
departure rate of all operators j ∈ Sink(L) and the time difference PT (j). Since the throughput
is based on the departure rate, it is given in bytes/s. The throughput of the DSP application is
given by Rate(cloud):

Rate(L) =
∑

j∈Sink(L)

DR(j,M(j))

max(PT (j), 1)
(3.24)

3.4.2 Experimental Setup

To evaluate the proposed throughput model we use a real testbed as our cloud-edge environment
on which we deploy a DSP application. We compare the throughput obtained by the model
against the throughput achieved by deploying the application on the testbed.

Infrastructure

The cloud-edge infrastructure testbed depicted in Figure 3.5 is organized as follows. The IoT
layer comprises 2 Raspberry PI’s 3 (i.e., ARMv7 at 1.2 GHz and 1 GB of RAM), both con-
nected to a gateway via a 100Mb/s network and latency of 0.4ms [29]. The gateway is a server

32 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

EdgeIoT Devices Cloud

100 Mb/s

10 Gb/s

Layer 1 Layer 2 Layer 3

Gateway OVS-1 OVS-2

IoT 1

IoT 2

IoT n

100 Mb/s

10
0

M
b/

s
10 Gb/s

10
 G

b/
s

10 G
b/s

Figure 3.5: Experimental Cloud-Edge Infrastructure.

with an IntelR© XeonR© E5-2620 at 2.10GHz and 64GB RAM, where the operators in the subse-
quence SinkIoT of the IoT layer will publish their output stream to be read by the subsequence
SourceMD on the MD layer.

The MD and cloud layers contain four servers with an IntelR© XeonR© X5550 at 2.67GHz with
32GB RAM and a NetFPGA card with four 10Gb/s ports. Two of those servers are used for
the operator deployment, one in each layer (MD and cloud), and the two remaining servers are
used as routers for the layers, running instances of Open vSwitch1 2.9 (OVS). The servers and
their respective OVS are connected by 10Gb/s links, but due to limitations of the NetFPGA
driver and from OVS the maximum bandwidth achieved is '2.3Gb/s. The latency between the
gateway and the MD resource is configured as '24ms and the latency between the MD resource
and the cloud is '50ms [29].

Data Stream Processing Application

The proposed model estimates the throughput based on a deployment plan for a DSP application.
In this experiment we use a sentiment analysis application [38], which evaluates the positive or
negative sentiment associated with a tweet. The application structure is depicted in Figure 3.6.
The data source of the application is a data set with 50K tweets as JSON-format files with sizes
ranging from 4 to 24 KB. The tweet data set is recursively read during the application execution.
The data sink stores the data produced by the last operator.

The application is composed of a pipeline with five operators. The selectivity for operators
1 to 5 are 9.5%, 0.4%, 8.7%, 52.4% and 117.1% respectively, and the transformation on the data
stream applied by each operator are described as follows:

• Language Filter (Op 1): filters and discards every tweet that is not in English.

• Special Characters Filter (Op 2): removes non-letter characters from the tweet text.

• Non-sentiment Words Filter (Op 3): removes irrelevant or non-sentiment words (e.g.
the, and, or).

1https://www.openvswitch.org/

3.4. THROUGHPUT ESTIMATION MODEL 33

• Positive/Negative Words Counter (Op 4): creates a score and counts the number of
words with positive and negative sentiments.

• Scorer (Op 5): scores the sentiment of the tweet based on the number of positive and
negative words.

Op 1 Op 2 Op 3 Op 5Op 4

SRC SNK

ScorerLanguage
Filter

Non-sentiment
Word Filter

Positive/Negative
Counter

Data
Source

Special
Characters

Filter

Data
Sink

Figure 3.6: The operator graph for the sentiment analysis application.

Since to the best of our knowledge there is no framework that address the cloud-edge infras-
tructure and therefore attend our needs, we use multiple software solutions to ease de deployment
on such infrastructure. As depicted in Figure 3.6 each operator is coupled with an output queue
that works as a buffer for the output data stream that will be read by the following operator in
a First In First Out (FIFO) manner. To implement the queues for each operator we resorted
to a lightweight message broker that could be executed on the Raspberry Pi’s, called Mosquitto
MQTT 2. The operators are implemented in Java using the DSP framework Apache Edgent 3.
Apache Edgent is lightweight framework solution to run on edge resources. Each operator is
executed as an independent instance of the Apache Edgent framework.

Scenarios

We designed six scenarios to compare the estimated and the actual throughput (Table 3.2), each
with a different deployment plan for the sentiment analysis application (Figure 3.6) considering
the cloud-edge infrastructure (Figure 3.5). The deployment proposal for each scenario differs
regarding the operator assigned for the sequence of each layer. Data source and data sink have
fixed position at the IoT and cloud sequence respectively. Also, each sequence has at least one
operator; therefore Op 1 is always in the IoT sequence, and Op 5 is always in the cloud sequence.
The sequence of each layer is replicated for all devices of the layer.

The processing requirements of the operators change in each scenario. The requirements are
defined after profiling the application execution according to the deployment plan for the sce-
nario, where the processing capacities of the resources are shared among the operators deployed
on the device. Since Op 1 reads the tweets from a data set, the rate at which it reads tweets
is affected by the processing requirements of the operator, hence the generation rates change
according to the scenario.

The evaluation executed the DSP application for 1440 seconds for each scenario. This time
is large enough for the application to execute beyond the warm-up phase, a period needed for
the application to achieve a state where all the operators are processing messages at a given
time. From observation, the noise created by the warm up phase always lasts less than 300
seconds. Therefore, to ensure that we collect data during the stable phase, we disregard the first
300 seconds.

2https://mosquitto.org/
3http://edgent.apache.org/

34 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

Table 3.2: Deployment scenarios for throughput estimation.

Scenario IoT MD Cloud

1 Op 1 Op 2 Op 3 Op 4 Op 5

2 Op 1 Op 2 Op 3 Op 4 Op 5

3 Op 1 Op 2 Op 3 Op 4 Op 5

4 Op 1 Op 2 Op 3 Op 4 Op 5

5 Op 1 Op 2 Op 3 Op 4 Op 5

6 Op 1 Op 2 Op 3 Op 4 Op 5

3.4.3 Performance Evaluation Results

The average of actual and estimated throughput is depicted in Figure 3.7(a). Once the system
reaches a stable state, the throughput does not vary much. The estimated throughput is close
to the actual throughput. Even in the first scenario that produced a very low throughput, the
model estimated a close value.

The reason for the low throughput under the first scenario is that the deployment plan
deploys three operators in a device with constrained capacity (i.e. a Raspberry PI). The third
operator in particular, that removes non-sentimental words from tweets, has a significant impact
on the application performance. It is very demanding in terms of processing capacity. As it runs
on a constrained device, it affects the throughput of the whole application. This reinforces the
importance of setting the right requirements for each operator.

Another indicator of the quality of the proposed model is the error of less than 1% in the
difference between the estimation and the collected values. We also computed the mean square
error to highlight estimated outliers and verify the quality of results. The lower the values the
better the quality of the estimation. As depicted in Figure 3.7(b), our estimation achieved low
values reinforcing the precision on the proposed model.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
0

10

20

30

40

50

60

M
ea

n
Th

ro
ug

hp
ut

 (M
B/

s)

Throughput
Estimated

(a) Mean throughput and estimation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
0

10 13

10 12
10 11

10 10

10 9

10 8
10 7

10 6
10 5

10 4

10 3

10 2
10 1

M
SE

0.013
0.155 0.108 0.088 0.075 0.06

(b) Mean square error.

Figure 3.7: Results throughput estimation for DSP applications on cloud-edge computing.

3.5. CONCLUSION 35

3.5 Conclusion

This chapter presented an architecture designed to ease the deployment and management process
of DSP application on the cloud-edge infrastructure. Beyond the proposed architecture this
chapter presented a model to solve the operators placement problem, and a model to estimate the
throughput of DSP application on cloud-edge infrastructures. The model to solve the operator
placement is based on MILP, and comprise infrastructure and application models designed to
deploy DSP applications on cloud-edge environments. While the infrastructure model takes into
consideration the resource heterogeneity in terms of computational power and network latencies
faced by resources, the application model contains characteristics previously overlooked in the
literature, such as selectivity, data transformation pattern, probability of load distribution for the
streams, and requirements obtained based on profiling information. The model splits an operator
into multiple replicas, each responsible for processing a fraction of the operator’s overall load,
and the requirements are adapted according to the load of the replica and the device in which
it should be deployed.

The objective of the proposed model is to reduce the application end-to-end latency and
deployment costs. The application end-to-end latency is minimized though the Aggregate data
Transfer Time (ATT), which aims to reduce the amount of data crossing the Internet, which
faces network congestion. Regarding the computational costs, we built a model that considers
both computational and network costs, using elements from solutions proposed by Amazon, such
as AWS Fargate Pricing [71], AWS Direct Connection [72], AWS IoT Core [77] and AWS Private
Links [78].

The scheduling model is used in subsequent chapters to devise a solution for placement and
parallelism of DSP applications. This chapter also provided a throughput estimation model
that used the scheduling model to compute the throughput that a given deployment plan can
achieve, considering the challenges introduced by the cloud-edge environment and the operator
replication process. The quality of estimation model is measured by how accurate they are when
compared with the reality. and according to evaluation the estimation model proposed in this
thesis has an accuracy of 99%.

36 CHAPTER 3. MIXED-INTEGER PROGRAMMING MODEL

Chapter 4

Optimal Scheduling Solution for
Stream Processing Applications on
Cloud-Edge Infrastructures

Contents
4.1 Introduction . 37
4.2 Impact of Three-Layered Cloud-Edge Infrastructure 38
4.3 Performance Evaluation . 38

4.3.1 Experimental Setup . 39
4.3.2 Price Model . 40
4.3.3 Evaluated approaches and metrics . 41
4.3.4 No Bandwidth Control versus Bandwidth Control 41
4.3.5 CESP versus the Standard Approach . 43

4.4 Conclusion . 45

4.1 Introduction

Problems in placement and scheduling of Data Stream Processing (DSP) applications are of-
ten NP-Hard even when ignoring cloud-edge infrastructure [28]. The inclusion of cloud-edge
infrastructure adds more challenges as a placement solution needs to consider the high degree
of heterogeneity created by the combination of cloud and edge computing resources and the
communication between operators deployed at different places of the infrastructure since data
transfers often traverse Internet links. Moreover, edge resources are computationally constrained.
Thus a solution needs to adapt the operators deployed on such resources to avoid infrastructure
saturation and performance degradation.

In this chapter, we use the Mixed Integer Linear Programming (MILP) scheduling model
proposed in Section 3.3 into a solution named Cloud-Edge data Stream Placement (CESP)
to deploy and replicate operators throughout the cloud-edge infrastructure with bandwidth
guarantees. This solution accounts for cloud and edge resources, where the edge infrastructure
is composed of Internet of Things (IoT) resources and Micro Datacenters (MDs). MD and cloud
resources incur some monetary costs for deployment, whereas IoT resources are free of charge.

37

38 CHAPTER 4. OPTIMAL SCHEDULING SOLUTION

IoT and MD resources are computationally constrained, but can provide low latency as they
are often closer to data sources. CESP aims to explore the trade-off between paid and free of
charge resources, computationally constrained and low latency resources, in order to minimize
the application end-to-end latency and deployment costs, and ensure the maximum theoretical
throughput that the application can achieve.

4.2 Impact of Three-Layered Cloud-Edge Infrastructure

As discussed beforehand, a cloud-edge infrastructure can comprise hundreds or even thousands
of resources [79], organized into three layers (IoT, MD and cloud). Since IoT and cloud resources
have clear benefits to DSP applications on IoT scenarios, where IoT provides low network latency
and the cloud offers high computational power, one might wonder on the benefits that using MDs
brings. A MD acts as a middle ground between IoT and cloud resources both in terms of network
latency and computational power. Therefore, instead of evaluating only CESP considering the
entire resource search space and compare it against a standard approach that is focused only on
cloud deployment, we also investigated the the impact of using MDs to host operator replicas.

Hence, CESP is evaluated as two approaches, where each approach differs from the other
regarding which part of the infrastructure is considered in the search space. The first approach,
named CESP–All, considers all the infrastructure resources as possible candidates to host either
an operator or one of its replicas. The second approach, called CESP–IC, investigates if MDs
have any effect on the overall performance of the application and on its deployment costs. CESP–
IC aims to place operator replicas in the low-end (IoT) resources as much as possible. Unlike
CESP–All, CESP–IC is likely to generate many more replicas in order to meet the operator
requirements by using low-end devices. We want to evaluate this increase in the number of
replicas. The standard solution against which the model versions are compared is called Cloud-
Only, which applies a random walk to place the application operators only onto cloud resources.

The placement solutions presented in this chapter therefore consist in solving the optimal
scheduling model proposed in Section 3.3 for different sets of resources (i.e., the entire infrastruc-
ture, or a subset of it). This approach is further improved in the next chapter, which presents
an additional solution to reduce the search space during the optimization of placement and
parallelism.

4.3 Performance Evaluation

CESP is a scheduling solution for DSP applications on IoT scenarios that considers cloud-edge
infrastructures for deployment, and that explores operators replication and bandwidth guaran-
tees to achieve performance improvement. Then, our evaluation is divided in two scenarios.
In the first scenario we focus into investigate the benefits of bandwidth guarantees, where we
compare CESP against the standard solution Cloud-Only with and without bandwidth guaran-
tees. In the second scenario we evaluate CESP–All and CESP–IC and compare it against the
standard approach Cloud-Only, focusing on the benefits of operator replication and the usage
of cloud-edge infrastructure to the application end-to-end latency and deployments costs.

Beyond the discussion of the obtained results, the rest of this section presents the perfor-
mance metrics evaluated, cost elements and the experimental setup. For the most part the
experimental setup is equivalent on both scenarios of the performance evaluation, with the ex-
ception of the WAN bandwidth considered. Before the discussion of the results of each evaluation

4.3. PERFORMANCE EVALUATION 39

the considered WAN bandwidth is explained.

4.3.1 Experimental Setup

On both scenarios CESP is evaluated via discrete-event simulation using a framework built on
OMNET++ to model and simulate DSP applications. The model is solved using CPLEX v12.9.0.
The infrastructure comprises 105 resources: 35 IoT resources, 35 MD servers, and 35 cloud
servers. The resource capacity is modeled according to the characteristics of DSP applications
and the layer in which a resource is located. IoT resources are modeled as Raspberry Pi’s 3 (i.e.,
1 GB of RAM, 4 CPU cores at 1,2 GHz). As DSP applications are often CPU and memory
intensive, the selected MD and cloud resources should be optimized for such cases. The offerings
for MDs are still fairly recent. Existing work highlights that the choices of MD resources are
more limited than those of the cloud, with more general-purpose resources. In an attempt to
use resources similar to those available on Amazon EC2, MD resources are modeled as general-
purpose t2.2xlarge machines (i.e., 32 GB of RAM, 8 CPU cores at 3.0 GHz). Cloud servers are
high-performance C5.metal machines (i.e., 192 GB of RAM, 96 CPU cores at 3.6 GHz).

Resources within a site communicate via a LAN, whereas IoT sites, MDs, and cloud are
interconnected by a single WAN path. The LAN has a bandwidth of 100 Mbps and 0.8 ms of
latency. The WAN bandwidth is shared on the path from the IoT to the MD or to the cloud
and its capacity is defined in each scenario, and the latency from IoT is 20 ms and 90 ms to
the MD and cloud, respectively. The latency values are based on those obtained by empirical
experiments carried out by Hu et al. [29].

To evaluate CESP considering diverse and generic applications, we crafted multiple applica-
tion graphs with various shapes and sizes. Existing work evaluated application graphs of several
orders and interconnection probabilities, usually assessing up to 3 different graphs [11, 57, 62,
70]. Using a built-in-house python library, we built five graphs to mimic the behavior of large
DSP applications. The graphs have various shapes and data replication factors for each oper-
ator, as depicted in Figure 4.1. The applications have 25 operators, often more than what is
considered in the literature [80]. They also have multiple sources, sinks, and paths, similar to
previous work by Liu and Buyya [70]. As the present work focuses on IoT scenarios, the sources
are placed on IoT resources, and sinks are uniformly and randomly distributed across layers
as they can be acting as actuators – except for one sink responsible for data storage, which is
placed in the cloud.

The operator properties are based on the RIoTBench [39]; an IoT application benchmark that
offers 27 operators common to IoT applications and 4 datasets with IoT data. The experiments
use the CITY dataset with 380 bytes messages collected every 12 seconds containing environ-
mental information (temperature, humidity, air quality) from 7 cities across 3 continents. It has
a peak rate of 5000 tuples/s, which is continuous and divided among sources. The remaining
properties are drawn from the values in Table 4.1.

The Reqjcpu1 of an operator j can be computed based on measurements obtained via ap-
plication profiling, including Ref jcpu and Ref jdata, using techniques proposed in existing work
[76]. In practice, the arrival byte rate ARj , the probability that an upstream operator i sends
data to j, i.e. ρi→j , selectivity Sj , and data transformation pattern Cj could be average values
obtained via application profiling. However, to create a worst-case scenario in terms of load,
ρi→j is set to 1 for all streams in each application request, meaning that operator j replicates

1For a list of the notation used in this chapter, please refer to Table 3.1.

40 CHAPTER 4. OPTIMAL SCHEDULING SOLUTION

(a) App 1 (b) App 2 (c) App 3

(d) App 4 (e) App 5

Figure 4.1: Application graphs used in the evaluation.

Table 4.1: Operator properties in the application graphs.

Property Value Unit

Selectivity 0 - 20 %
Data Transformation Factor 70 - 130 %

Reference CPU 1 - 26 CPU units
Reference Memory 1 - 27300000 bytes
Reference Data 38 - 2394000 bytes

its outgoing messages to all its down streams. As CESP creates multiple replicas, ρi→j gets di-
vided among instances of operator j, hence creating variations on the arrival rate of downstream
operators during runtime. The operator processing requirements estimated by the model may
not be enough to handle the actual load during certain periods, so resulting in large operator
queues. To circumvent this issue, we add a small safety margin, the β factor, which is a per-
centage increase in the application requirements estimated by CESP. A β too high results in
expensive over-provisioning. We evaluated multiple values of β and set it to 10%, which gives a
performance boost to handle the queues without incurring high costs.

4.3.2 Price Model

The price for resources is derived from Amazon AWS services, considering the US East Virginia
location. The CPU and memory prices are computed based on the AWS Fargate Pricing [71]
under a 24/7 execution. We consider a Direct Connection [72] for bandwidth guarantees between
the IoT site and the AWS infrastructure. As DSP applications generate large amounts of data, we

4.3. PERFORMANCE EVALUATION 41

Table 4.2: Computing and network costs.
Resource Unit Cost

CPU CPU/month $0.291456
Memory bytes/month $3.2004e-09

Direct Link IoT to AWS 10GB link/Month $1620

Link IoT to AWS Connection/Month $0.003456
KB $0.0000002

Communication IoT to cloud, GB $7.2 + 0.01 per GBIoT to MD, and MD to cloud

consider a Direct Connection of 10 GB/s. The data sent from IoT sites to AWS infrastructure
uses AWS IoT Core [77]. Connections between operators either on MD or IoT resources to
the cloud use Private Links [78] for bandwidth guarantees. Amazon provides the values for
CPU, memory, and network as, respectively, a fraction of a vCPU, GB, and Gbps, but in our
formulation, the values for the same metrics are computed in CPU units (100 × num_cores),
bytes and Mbps. The values provided by Amazon, but converted to the scale used in our
formulation are presented in Table 4.2. As the environment combines both public and private
infrastructure, deployment costs are applied only to MDs and cloud resources, the network
between these two, and the network between these two and IoT resources. The communication
between IoT resources is free since they are on the same private network infrastructure.

4.3.3 Evaluated approaches and metrics

Five different configurations of deployment requests are submitted for each application during
120 simulated seconds. The reported values for each application are averages of these five
executions. Each request has a different placement for sources and sinks, but still respecting
the rule of sources always on IoT resources and at least one sink in the cloud. The operator
properties such as selectivity and data transformation factor vary across configurations.

As for performance metrics, we consider:

• throughput, which is the processing rate, in bytes/s, of all sinks in the application; and

• end-to-end latency, which is the average time span between the generation until the mes-
sage reaches a sink.

CESP takes the throughput into account in the constraints and the end-to-end latency
indirectly by optimizing the Aggregate data Transfer Time (ATT).

4.3.4 No Bandwidth Control versus Bandwidth Control

In this scenario we focus on evaluating how the bandwidth control affects the overall performance
of an application. To create a background traffic to resemble real traffic on the Internet we rely on
studies in the literature that show that around 80% of the Infrastructure Service Provider (ISP)
infrastructure is used at any given time [81, 82]. We mimic this characteristic to the WAN links
of the simulated infrastructure, by creating multiple resources that continuously send messages
traversing the Internet links, to create a load of around 80% of the capacity of such links.

42 CHAPTER 4. OPTIMAL SCHEDULING SOLUTION

The number of resources to produce background traffic is determined by the bandwidth
on WAN links and the size of messages created by these resources. Regarding the size of
messages produced we once again rely on existing work in the literature. The Internet is a very
heterogeneous environment, which makes it difficult to determine an average, or even a range
for the size of messages. However a study developed by Hu et al. [29] that evaluated messages
produced at the edges of the network, text messages had around 10 bytes, pictures/objects
50 KB, and voice records around 200 KB. The study developed by Hu et al. proposed a discrete
set of values, but to create a more heterogeneous environment, we used a continuous set of values
ranging between 10 bytes and 200 KB messages.

With respect to the bandwidth of WAN links, we set it to 1Gbps. Other values higher
than this would result into a simulated environment overloaded with a tremendous amount of
messages produced as background, which would increase the time to produce results. Besides,
as the number of messages produced increases, the memory requirements to run the simulation
increase as well, which at some point exceeds the physical memory available in the machine
running the simulation. With 1Gbps WAN links and messages with sizes ranging between 10
bytes and 200 KB, to keep an average of 80% usage of WAN links, we need 500 resources to
produce background traffic.

We compared CESP against the standard Cloud-Only solution with and without bandwidth
control. Hereafter, CESP and Cloud-Only with bandwidth control are called CESP – BW and
Cloud-Only – BW, respectively. To impose bandwidth guarantees we consider services such
AWS Direct Connection [72] for WAN links and AWS Private Links [78] for LAN link inside the
MD and cloud infrastructures. Figure 4.2 summarizes results for throughput and application
end-to-end latency. The first thing to notice is that in some scenarios CESP overcomes the
performance of Cloud-Only – BW. This means that even for application with data produced
at the edges of the network, scheduling decisions might have a bigger impact on the overall
performance than bandwidth control, both on throughput and application end-to-end latency.
When we compare CESP against CESP – BW and Cloud-Only against Cloud-Only – BW, it is
easy to identify that bandwidth guarantees can boost the performance of DSP applications on
IoT scenarios.

App1 App2 App3 App4 App5
0

5

10

15

20

25

30

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

bp
s)

Cloud-Only
CESP
Cloud-Only - BW
CESP - BW

(a) Throughput

App1 App2 App3 App4 App5

102

103

104

Av
er

ag
e

en
d-

to
-e

nd
 la

te
nc

y
(m

s)

Cloud-Only
CESP
Cloud-Only - BW
CESP - BW

(b) End-to-end latency

Figure 4.2: Throughput and end-to-end latency under Cloud-Only and CESP with and without
bandwidth control.

4.3. PERFORMANCE EVALUATION 43

However, there are scenarios where CESP overcomes Cloud-Only – BW both on throughput
and end-to-end latency and others where it does not happen. The reason for that is the structure
of the applications. CESP overcomes Cloud-Only – BW for applications App1 and App2. If we
look at Figure 4.1 we can observe that App1 and App2 can be considered as “thin” applications,
and Apps 3 to 5 “fat” applications. While in fat applications there is a lot of communication
between operators due to the high degree of data replication of each operator, in thin applications
there are just a few operators that send data to more than one operator. This has a bigger effect
on the overall network requirements and susceptibility to network congestion interference.

Hence, with less network requirements, bandwidth control does not play a key role in the
overall performance of DSP applications on IoT scenarios. Since App1 and App2 do not imposed
heavy network requirements, there is more room to improve it regarding scheduling decisions.
Contrary to the bandwidth control, scheduling decisions have a major impact in the overall
performance of DSP applications. Since CESP does not optimize throughput, Figure 4.2(a) does
not depict how good CESP can perform, but how poorly Cloud-Only perform and how much
some applications can suffer from such deployment. On the the other hand, the application
end-to-end latency is a performance metric that CESP optimizes, the it show improvements on
any kind of application, and that the bandwidth control can be leverage to improve even further
the performance of some applications.

4.3.5 CESP versus the Standard Approach

In this scenario we consider bandwidth guarantees to all evaluated approaches. The network can
hence provide higher bandwidth availability, and to this end the WAN bandwidth considered
is of 10 Gbps. Throughput results are summarized in Figure 4.3(a). Under most scenarios,
Cloud-Only and CESP achieve similar throughput. However, under App1 and App2, Cloud-
Only performs much worse than both CESP versions because these apps have less data sources,
then, with a single source producing messages every few milliseconds that goes from the edges of
the network to the cloud, takes more time in the network then processing. That becomes an issue
to Cloud-Only, while both CESP versions are able to cope with this scenario better. Apps 3-5,
on the other hand, have more data sources spread across many resources thus producing more
data simultaneously, increasing the amount of data reaching the cloud, then Cloud-Only can
handle similar to CESP.

Processing data only in the cloud has a negative effect on end-to-end latency, as shown
in Figure 4.3(b). The network becomes a bottleneck, especially in the LAN sections. Messages
are queued, producing a high end-to-end latency for Cloud-Only, even in scenarios where Cloud-
Only had similar throughput. CESP tackles this network problem by placing communicating
operators closer to one another in terms of network latency – i.e., placing sources and their
immediate downstream operators on the same resource. As IoT resources are computationally
constrained, placing communicating operators on the same device becomes challenging. CESP
breaks an operator into small replicas, thus allowing this co-placement. Even if the replica
processes only part of an operator’s load, it helps by reducing the data sent through the network,
hence reducing congestion. With this process of co-placement and operator replication, CESP
reduces the end-to-end latency by at least 80%

Table 4.3 contains the average CPU and memory requirements per operator instance for the
evaluated DSP applications. As Cloud-Only does not create replicas, its reported values are the
average requirements per operator, computed as the one used by both CESP implementations.
Results demonstrate that CESP divides the operator into multiple replicas, each of which has

44 CHAPTER 4. OPTIMAL SCHEDULING SOLUTION

App1 App2 App3 App4 App5
0

5

10

15

20

25

30

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

bp
s)

Cloud-Only
CESP-All
CESP-IC

(a) Throughput

App1 App2 App3 App4 App5

102

103

104

Av
er

ag
e

en
d-

to
-e

nd
 la

te
nc

y
(m

s)

Cloud-Only
CESP-All
CESP-IC

(b) End-to-end latency

Figure 4.3: Throughput and end-to-end latency under Cloud-Only and CESP.

Table 4.3: Average resource consumption per operator instance.

Cloud-Only CESP-All CESP-IC

CPU (%) Memory
(bytes) CPU (%) Memory

(bytes) CPU (%) Memory
(bytes)

App1 436.1760 8177966180 0.0018 3202 0.0019 3462
App2 550.5440 10979496789 0.0006 2790 0.0007 2521
App3 411.9440 4325880180 0.0012 4099 0.0023 3014
App4 390.2320 1861834684 0.0043 7895 0.0044 8691
App5 430.4480 6167321808 0.0028 7161 0.0030 6950

significantly smaller requirements allowing for better utilization of IoT and MD resources with co-
placement at the edges of the network hence experiencing lower network latency. By breaking an
operator into replicas with lower requirements and using IoT and MD resources, CESP achieves
better end-to-end latency and deployment costs.

Figure 4.4 shows the percentage of replicas deployed in each layer. The bottom part of each
bar presents the percentage of sources and sinks deployed in the respective layer, whereas the top
part corresponds to other operators. CESP–All provides better end-to-end latency than CESP–
IC due to the use of MD resources. MD resources are computationally more powerful than IoT
resources, so enabling the co-placement of more replicas on the same node. When the volume of
data processed by each operator grows, it becomes inefficient to create several replicas on IoT
resources. CESP creates multiple replicas of communicating operators as pipelines and places
each pipeline in a different device, resulting in the end-to-end latency improvement of CESP–All
when compared with CESP–IC. As CESP–IC does not use MD resources, it continues to explore
IoT resources, by creating multiple replicas combined into pipelines into different devices. The
downside of using IoT resources for this is that the pipeline is shorter, requiring the use of the
network to communicate with the downstream replica, resulting in higher end-to-end latency.

4.4. CONCLUSION 45

Io
T

App1

Ed
ge

App1

Cl
ou

d

App1

Io
T

App2

Ed
ge

App2

Cl
ou

d

App2

Io
T

App3

Ed
ge

App3

Cl
ou

d

App3

Io
T

App4

Ed
ge

App4

Cl
ou

d

App4
Io

T
App5

Ed
ge

App5
Cl

ou
d

App5

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Sources/Sinks
Other replicas

(a) CESP–All

Io
T

App1

Ed
ge

App1

Cl
ou

d

App1

Io
T

App2

Ed
ge

App2

Cl
ou

d

App2

Io
T

App3

Ed
ge

App3

Cl
ou

d

App3

Io
T

App4

Ed
ge

App4

Cl
ou

d

App4

Io
T

App5

Ed
ge

App5

Cl
ou

d

App5

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Sources/Sinks
Other replicas

(b) CESP–IC

Figure 4.4: Replica distribution per resource for both CESP versions.

Figure 4.5 shows the deployment costs. Cloud-Only does not consider IoT resources, which
are free of charge, and does not reduce the amount of data traversing the Internet. It yields the
highest deployment cost, both computational and network. Along with the end-to-end latency
gain from co-placing small replicas into IoT resources, CESP–IC explores such devices as they
are free of charge. CESP–All, which explores MDs in addition to IoT resources, is able to deploy
more replicas at the edges of the network, thus reducing the network usage and costs. CESP–All
experiences the cheaper deployment costs.

Cl
ou

d-
On

ly

App1

CE
SP

-A
ll

App1

CE
SP

-IC

App1

Cl
ou

d-
On

ly

App2

CE
SP

-A
ll

App2

CE
SP

-IC

App2

Cl
ou

d-
On

ly

App3

CE
SP

-A
ll

App3

CE
SP

-IC

App3

Cl
ou

d-
On

ly

App4

CE
SP

-A
ll

App4

CE
SP

-IC

App4

Cl
ou

d-
On

ly

App5

CE
SP

-A
ll

App5

CE
SP

-IC

App5

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Co
st

s (
US

$)

(a) Computational costs

Cl
ou

d-
On

ly

App1

CE
SP

-A
ll

App1

CE
SP

-IC

App1

Cl
ou

d-
On

ly

App2

CE
SP

-A
ll

App2

CE
SP

-IC

App2

Cl
ou

d-
On

ly

App3

CE
SP

-A
ll

App3

CE
SP

-IC

App3

Cl
ou

d-
On

ly

App4

CE
SP

-A
ll

App4

CE
SP

-IC

App4

Cl
ou

d-
On

ly

App5

CE
SP

-A
ll

App5

CE
SP

-IC

App5

0

25000

50000

75000

100000

125000

150000

Av
er

ag
e

Co
st

s (
US

$)

(b) Network costs

Figure 4.5: Computational and network costs under Cloud-Only, CESP–All and CESP–IC.

4.4 Conclusion

This chapter presented CESP, a solution for the operator placement and parallelism of DSP
applications that uses the MILP scheduling model proposed in Section 3.3 to optimize the

46 CHAPTER 4. OPTIMAL SCHEDULING SOLUTION

application end-to-end latency and deployment costs. CESP combines profiling information with
the computed amount of data that each operator should process in order to obtain the application
processing requirements so that each operator can handle the arriving load. CESP also creates
multiple lightweight replicas to offload operators from the cloud to the edges of the network hence
obtaining lower end-to-end latency. Since the communication between IoT, MD and cloud layers
crosses the Internet, to reduce the network interference CESP imposes bandwidth guarantees
thought services such as AWS Private Links [78] and AWS Direct Connect [72].

We evaluated CESP under two scenarios. Firstly, CESP was evaluated to identify the effects
and benefits of imposing bandwidth guarantees, and was compared against the standard solu-
tion Cloud-Only, where both solutions were evaluated with and without bandwidth guarantees.
Results show that the bandwidth guarantees for DSP applications deployed on IoT scenarios
can boost the performance of the application. But its benefits are limited to characteristics of
the application, where on some cases scheduling decisions have a bigger performance impact.

Secondly, two versions of CESP were evaluated using various applications with different
configurations in terms of selectivity, data transformation pattern, and CPU and memory re-
quirements. Both versions provide at least ' 1% throughput improvement, ' 80% end-to-end
latency reduction and deployment costs ' 30% cheaper than a traditional placement scheme.
The results also show that by using MD resources, the end-to-end latency can be improved by
at least ' 6% and deployment costs reduced by ' 4%.

Chapter 5

Pruning Heuristics for Scheduling
Stream Processing Applications on
Large Cloud-Edge Infrastructures

Contents
5.1 Introduction . 47

5.2 Resource Selection Technique . 48

5.3 Performance Evaluation . 48

5.3.1 Experimental Setup . 48

5.3.2 Price model . 51

5.3.3 Evaluated approaches and metrics . 52

5.3.4 Resolution Time versus Solution Quality 52

5.3.5 Cloud-Edge data Stream Placement with Resource Selection (CESP–RS)
versus the State-of-the-Art . 52

5.4 Conclusion . 54

5.1 Introduction

A cloud-edge infrastructure can contain numerous geographically distributed resources. A solu-
tion to the operator placement problem that addresses cloud-edge infrastructure requires scala-
bility, which is not something that optimal solutions usually can provide.

In Chapter 4 we have shown that Cloud-Edge data Stream Placement (CESP) is able to
overcome the standard solution, Cloud-Only, both on performance metrics and costs. In this
chapter we intent to make CESP more scalable by proposing Cloud-Edge data Stream Place-
ment with Resource Selection (CESP–RS). CESP–RS combines CESP with a resource selection
technique that aims to reduce the search space by sorting all the resources in the infrastructure
and selecting a resource subset based on a worst-fit technique.

47

48 CHAPTER 5. PRUNING HEURISTICS FOR SCHEDULING

5.2 Resource Selection Technique

The three-layered cloud-edge infrastructure may contain thousands of computing resources re-
sulting in an enormous combinatorial search space when finding an optimal operator placement.
This work therefore proposes a pruning technique that reduces the number of evaluated re-
sources and finds a sub-optimal solution under feasible time. The proposed solution extends the
worst-fit sorting heuristic from Taneja et al. [61] by applying a resource selection technique to
reduce the number of considered computing resources when deploying operators. The proposed
solution selects from each layer a subset of R1 resources that are candidates to deploy replicas
of the application.

Since in this thesis we consider the Internet of Things (IoT) infrastructure as private, and
the data is being generated at this infrastructure, its location needs to be provided in the
deployment request. Each deployment request can consider one or multiple IoT infrastructures
(iotSite) that serve as input to the resource selection technique, depicted in Algorithm 1. For
each iotSite received as input it selects one Micro Datacenter (MD)(mdSite), the one with the
shortest latency. Also, all the MDs that should contain a data sink are selected (line 2). For last,
one cloud site is chosen based on the average latency-closeness to the selected mdSite as well
as the position of data sinks (line 3). The information about data sinks is also provided at the
deployment request. The rationale behind the selection of sites for each layer is that it reduces
the search space based on closeness, to resources that are more likely to provide performance
gain to Data Stream Processing (DSP) applications. Then, for each layer a subset of resources
is selected using the GetResources function.

The GetResources function has as input the layer name, the vector of selected sites in
the layer and the set of operators. First, it calls GetResourcesOnSites, to get all computing
resources from the selected sites (line 12). Second, it selects resources that host sources or
sinks (lines 13-17). Third, CPU and memory requirements from the operators that are neither
sources or sinks are summed to ReqCPU and ReqMem, respectively (line 20). When the eval-
uated layer is IoT, the set of resources is sorted by CPU and memory capacity in descending
order and ReqCPU and ReqMem are used to select a subset of computing resources whose
combined capacity meets the requirements (lines 29-34). For the other two layers, the function
iterates through the list of operators selecting a worst-fit resource that supports the operator’s
requirements. Since the goal is just to select candidate resources and not a deployment place-
ment, if there is no resource fit, it ignores the operator and moves to the next one (lines 23-27).
Resources that are selected as worst-fit for one operator cannot be selected for another operator
At last, the combination of resources evaluated by the model contains those selected in each
layer.

5.3 Performance Evaluation

This section describes the experimental setup, the price model for computing resources, and
performance evaluation results.

5.3.1 Experimental Setup

We perform an evaluation in two steps as follows. First CESP is compared against CESP–RS
to evaluate the effects that the resource selection has on the quality of the placement solutions

1For a list of the notation used in this chapter, please refer to Table 3.1.

5.3. PERFORMANCE EVALUATION 49

Algorithm 1: Resource selection technique.
1 Function ResourceSelection(iotSite, O)
2 mdSite← GetEdgeSite (iotSite)
3 cloudSite← GetCloudSite (edgeSite)
4 Selected← GetResources (IoT , iotSite, O)
5 Selected← Selected ∪ GetResources (MD, GetEdgeSite (iotSite), O)
6 Selected← Selected ∪ GetResources (cloud, GetCloudSite (iotSite), O)
7 return Selected

8 Function GetResources(resourceType, site, O)
9 Selected← {}

10 ReqCPU ← 0
11 ReqMem← 0
12 Resources← GetResourcesOnSite (site)
13 foreach j ∈ (SourceO ∪ SinkO) do
14 if j.placement ∈ Resources then
15 r ← j.placement
16 Selected← Selected ∪ r
17 Resources← Resources− r
18 foreach j ∈ (O − (SourceO ∪ SinkO)) do
19 ReqCPU ← ReqCPU + j.CPU
20 ReqMem← ReqMem+ j.Mem
21 if resourceType! = IoT then
22 Sort (Resources)
23 foreach r ∈ Resources do
24 if r.CPU ≥ j.CPU and r.Memory ≥ j.Memory then
25 selected← selected ∪ r
26 Resources← Resources− r
27 break

28 if resourceType == IoT then
29 Sort (Resources)
30 foreach r ∈ Resources do
31 if r.CPU ≤ ReqCPU and r.Memory ≥ ReqMem then
32 Selected← Selected ∪ r
33 ReqCPU ← ReqCPU − r.CPU
34 ReqMem← ReqMem− r.Memory

35 return Selected

50 CHAPTER 5. PRUNING HEURISTICS FOR SCHEDULING

and on resolution time. Second, we compare CESP–RS against state-of-the-art approaches. The
evaluations differ in the number of resources in the infrastructure and the solutions evaluated.
Similar to the previous chapter, both evaluations are performed via discrete-event simulation
using a framework built on OMNET++ to model and simulate DSP applications. We resort to
simulation for this evaluation because it offers a controllable and repeatable environment. The
model is solved using CPLEX v12.9.0.

The infrastructure comprises three layers with an IoT site, one MD and one cloud. The
resource capacity was modeled according to the characteristics of the layer in which a resource
is located, and intrinsic characteristics of DSP applications. IoT resources are modeled as
Raspberry Pi’s 3 (i.e., 1 GB of RAM, 4 CPU cores at 1,2 GHz). As DSP applications are
often CPU and memory intensive, the selected MD and cloud resources should be optimized for
such cases. The offerings for MD infrastructure are still fairly recent and, although there is a
lack of consensus surrounding what the MD is composed of, existing work highlights that the
options are more limited than those of the cloud, with more general-purpose resources. In an
attempt to use resources similar to those available on Amazon EC2, MD resources are modeled
as general purpose t2.2xlarge machines (i.e., 32 GB of RAM, 8 CPU cores at 3.0 GHz), and
cloud servers are high-performance C5.metal machines (i.e., 192 GB of RAM, 96 CPU cores
at 3.6 GHz). Resources within a site communicate via a LAN, whereas IoTs, MDs, and cloud
are interconnected by single WAN path. The LAN has a bandwidth of 100 Mbps and 0.8 ms
latency. The WAN bandwidth is 10 Gbps and is shared on the path from the IoT to the MD or
to the cloud, and the latency from IoT is 20 ms and 90 ms to the MD and cloud, respectively.
The latency values are based on those obtained by empirical experiments carried out by Hu et
al. [29].

Existing work evaluated application graphs of several orders and interconnection probabili-
ties, usually assessing up to 3 different graphs [11, 57, 62, 70]. To evaluate CESP and CESP–RS
we considered the five graphs described in the previous chapter, crafted to mimic the behaviour
of large DSP applications using a built-in-house python library. The graphs are depicted in Fig-
ure 4.1 in Chapter 4. The applications have 25 operators, often more than what is considered in
the literature [80]. They also have multiple sources, sinks and paths, similar to previous work
by Liu and Buyya [70]. As the present work focuses on IoT scenarios, the sources are placed on
IoT resources, and sinks are uniformly and randomly distributed across layers as they can be
actuators – except for one sink responsible for data storage, which is placed on the cloud.

The operator properties were based on the RIoTBench IoT application benchmark [39].
RIoTBench offers 27 operators common to IoT applications and 4 datasets with IoT data. The
CITY dataset is used with 380 byte messages collected every 12 seconds containing environmental
information (temperature, humidity, air quality) from 7 cities across 3 continents. It has a peak
rate of 5000 tuples/s, which in the experiments is continuous and divided among sources. The
remaining properties are drawn from the values in Table 5.1.

We consider that Ref jcpu, Ref jdata, the arrival byte rate ARj , probability that an upstream
operator i sends data to j ρi→j , selectivity Sj , and data transformation pattern Cj , are average
values obtained via application profiling, using techniques proposed in existing work [76]. With
Ref jcpu and Ref jdata we are able to compute requirements for each operator To create a worst
case scenario in terms of load, ρi→j is set to 1 for all streams in the application request. As
the model creates multiple replicas, ρi→j gets divided among instances of operator j, hence
creating variations on the arrival rate of downstream operators during runtime. The operator
processing requirements estimated by the model may not be enough to handle the actual load
during certain periods, so resulting in large operator queues. To circumvent this issue we add a

5.3. PERFORMANCE EVALUATION 51

Table 5.1: Operator properties in the application graphs.

Property Value Unit

Selectivity 0 - 20 %
Data Transformation Pattern 70 - 130 %

Reference CPU 1 - 26 CPU units
Reference Memory 1 - 27300000 bytes
Reference Data 38 - 2394000 bytes

Table 5.2: Computing and network costs.
Resource Unit Cost

CPU CPU/month $0.291456
Memory bytes/month $3.2004e-09

Direct Link IoT to AWS 10GB link/Month $1620

Link IoT to AWS Connection/Month $0.003456
KB $0.0000002

Communication IoT to cloud, GB $7.2 + 0.01 per GBIoT to MD, and MD to cloud

small safety margin, the β factor, which is a percentage increase in the application requirements
estimated by the proposed model. A β too high results in expensive over-provisioning. After
multiple empirical evaluations, β was set to 10% of each replica requirement.

5.3.2 Price model

The price of using resources is derived from Amazon AWS services, considering the US East
Virginia location. The CPU and memory prices are computed based on the AWS Fargate Pric-
ing [71] under a 24/7 execution. Regarding the network, we consider a Direct Connection [72]
between the IoT site and the AWS infrastructure. Direct Connections are offered under two
options, 1 GB/s and 10 GB/s. As DSP applications generate large amounts of data, we con-
sider the 10 GB/s offer. The data sent from the IoT to AWS infrastructure uses AWS IoT
Core [77]. Connections between operators on the edge or on IoT resources to the cloud use
Private Links [78]. Amazon provides the values for CPU, memory and network as, respectively,
fraction of a vCPU, GB and Gbps, but in our formulation the values for the same metrics are
computed in CPU units (100× num_cores), bytes and Mbps. The values provided by Amazon
converted to the scale used in our formulation are presented in Table 5.2. As the environment
combines both public and private infrastructure, deployment costs are applied only to MD and
cloud resources, the network between these two, and the network between these two and IoT
resources. As IoT resources are on the same private network infrastructure, the communication
between IoT resources is free.

52 CHAPTER 5. PRUNING HEURISTICS FOR SCHEDULING

5.3.3 Evaluated approaches and metrics

Five different configurations of deployment requests are submitted for each application. The
reported values for each application are averages of these five executions. Each deployment
request has a different placement for sources and sinks with sources always on IoT resources and
at least one sink in the cloud. The operator properties such as selectivity and data transformation
pattern vary across configurations.

As discussed earlier, the performance of DSP applications is usually measured considering
two main metrics:

• throughput, which is the processing rate, in bytes/s, of all sinks in the application; and

• end-to-end latency, which is the average time span from when a message is generated until
it reaches a sink.

The Mixed Integer Linear Programming (MILP) model takes the throughput into account in
the constraints, and the end-to-end latency indirectly by optimizing the Aggregate data Transfer
Time.

5.3.4 Resolution Time versus Solution Quality

Here we evaluate how much the quality of a solution is sacrificed by reducing the search space.
The simulation, which runs for 220 seconds, considers 100 IoT devices, a MD with 50 resources
and a cloud with 50 resources. The throughput is the same in all scenarios since it is guaranteed
as a model constraint.

Figure 5.1 shows the end-to-end latency and deployment costs under CESP and CESP–RS.
There are some variations regarding the end-to-end latency both on CESP and CESP–RS. Since
CESP–RS aims to reduce the search space, it might be counter intuitive to see cases where the
resource selection with less options obtains better end-to-end latency, such as in App3. However,
the objective function considers both latency and deployment costs as optimization metrics. As
CESP searches to strike a balance between cost and end-to-end latency, the average deployment
costs obtained with CESP–RS for App 3 (Figure 4.5) are higher. This behavior happens because
under the limited search space, CESP–RS finds sub-optimal solutions, where the best trade-off
resulted in better end-to-end latency. To do so, it needed to use more edge or cloud devices,
which incurs higher computational and network costs.

As CESP considers the whole search space, it explores more options and yields better results.
Despite reduced search space CESP–RS can produce very similar results – in the worst case
yielding an end-to-end latency ' 12% worse, and deployment costs ' 12% higher. The resolution
time (Figure 5.2), clearly shows that CESP considering the whole infrastructure faces scalability
issues. Despite producing results that sometimes are worse than those achieved under CESP,
CESP–RS can obtain a solution up to ' 94% faster. CESP–RS would yield even more similar
results on a larger infrastructure because their search space is limited by the application size
and requirements rather then by the infrastructure size.

5.3.5 CESP–RS versus the State-of-the-Art

CESP–RS is compared against two state-of-the-art approaches, namely Cloud-Only and Taneja’s
Cloud-Edge Placement (TCEP). Cloud-Only applies a random walk considering only cloud
resources, and TCEP is the work proposed by Taneja et al. [61], where all resources (IoT,

5.3. PERFORMANCE EVALUATION 53

App1 App2 App3 App4 App5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
cy

 (
se

co
n
d
s) CESP

CESP-RS

(a) End-to-end latency

App1App1 App2App2 App3App3 App4App4 App5App5

0

20000

40000

60000

80000

100000

A
v
e
ra

g
e
 C

o
st

s
(U

S
$

)

Fixed Cost

Variable Costs

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

(b) Deployment costs

Figure 5.1: End-to-end latency and deployment costs under CESP and CESP–RS.

App1 App2 App3 App4 App5

0

10

20

30

40

S
o
lu

ti
o
n
 T

im
e
 (

se
co

n
d
s)

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

C
E
S
P
-R

S

C
E
S
P

Figure 5.2: Resolution time to obtain a deployment solution.

MD and cloud) are sorted accordingly with their capacities, and for each operator it s elects a
resource from the middle of the sorted list. This experiment was executed during 120 seconds
and considered 400 IoT resources, 100 MD resources, and 100 resources on the cloud.

Figure 5.3 shows the throughput and end-to-end latency for all solutions, with averages for
each application. Since CESP–RS guarantees a maximum throughput through a constraint, on
the best case the other approaches would achieve the same values, and this can be observed
on App3, App4 and App5. But under App1 and App2 Cloud-Only struggles because these
are applications with a single data source each, then sending a single data message every few
milliseconds from the edge all the way to the cloud, considering the network latency is inefficient,
because messages spend more time in the network then processing. It is even more evident when
we look at the application end-to-end latency of App1 and App2, where despite Apps 3 to 5
have a higher communication between operators, replicate more messages and have more data
sources, they have a better application end-to-end latency on Cloud-Only. Because with more
data sources, there are more messages crossing the internet simultaneously, then there is more
data to process, and with more messages the average time between generating the message

54 CHAPTER 5. PRUNING HEURISTICS FOR SCHEDULING

and reaching a sink is smaller. When compared to Cloud-Only, TCEP provided better results,
but still ' 80% worse than the results provided by CESP–RS. CESP–RS achieves low values
because, different from Cloud-Only and TCEP, it creates several replicas, being able to better
explore the IoT resources considering their computational capacities and even further reducing
the amount of data that is send through the internet, facing less network congestion.

App1 App2 App3 App4 App5
0

5

10

15

20

25

30

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(M
b
p
s)

Cloud-Only

TCEP

CESP-RS

(a) Throughput

App1 App2 App3 App4 App5

102

103

104

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
cy

 (
m

s)

Cloud-Only

TCEP

CESP-RS

(b) End-to-end latency

Figure 5.3: Throughput and latency under CESP–RS and state-of-the-art solutions.

Figure 5.4 contains the costs results. Beyond better end-to-end latency, CESP–RS provides
better computational costs. The reason that makes CESP–RS achieve computational costs at
least ' 6% better than the traditional approaches is the creation of replicas. The considered
cost model, accounts for an IoT infrastructure without deployment costs, making such devices
very attractive for deployment. Since IoT devices have constrained computational capacity, it is
hard to deploy on such devices. Due to CESP, CESP–RS breaks an operator into several small
replicas, allowing the use of IoT resources.

Regarding network costs, CESP–RS provides cheaper deployments on most cases except on
App4 and App5. In these two applications, IoT resources support the operators’ requirements
without creating operator replicas allowing TCEP to exploit it and result in fewer data transfers.
TCEP has higher computational costs because it cannot split operators into multiple replicas,
thus resulting in placing the whole operator on powerful and expensive computing resources
located on the cloud or a MD. When CESP–RS is compared to TCEP, it achieves a lower
computational cost and a shorter end-to-end latency.

5.4 Conclusion

CESP explores profiling information on a reference infrastructure to obtain requirements for each
operator. The profiling information combined with a stable arrival rate provides information on
the maximum throughput that the application can achieve. Then, CESP enforces this maximum
throughput and reduces the application end-to-end latency and deployment costs by creating
multiple lightweight replicas to offload them from the cloud to edge resources.

Optimal solutions, such as CESP, are known for scalability issues, and the cloud-edge in-
frastructure is composed of numerous geographically distributed resources. To overcome the

5.4. CONCLUSION 55

C
lo

u
d
-O

n
ly

App1App1

T
C

E
P

App1

C
lo

u
d
-O

n
ly

App2App2

T
C

E
P

App2

C
lo

u
d
-O

n
ly

App3App3

T
C

E
P

App3

C
lo

u
d
-O

n
ly

App4App4

T
C

E
P

App4
C

lo
u
d
-O

n
ly

App5App5

T
C

E
P

App5

0

1000

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 C

o
st

s
(U

S
$

)

Fixed Cost

Variable Costs
C

E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

(a) Computational costs

C
lo

u
d
-O

n
ly

App1App1

T
C

E
P

App1

C
lo

u
d
-O

n
ly

App2App2

T
C

E
P

App2

C
lo

u
d
-O

n
ly

App3App3

T
C

E
P

App3

C
lo

u
d
-O

n
ly

App4App4

T
C

E
P

App4

C
lo

u
d
-O

n
ly

App5App5

T
C

E
P

App5

0

25000

50000

75000

100000

125000

150000

175000

A
v
e
ra

g
e
 C

o
st

s
(U

S
$

)

Fixed Cost

Variable Costs

C
E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

C
E
S
P
-R

S

(b) Network costs

Figure 5.4: Computational and network costs under CESP–RS and state-of-the-art solutions.

scalability issue faced by CESP, this chapter presented a resource selection technique that re-
duces the number of resources evaluated during placement and parallelization decisions. The
proposed model, coupled with the resource selection technique (i.e., CESP–RS), is 94% faster
than solving CESP alone, produces solutions that are only 12% worse than those achieved under
CESP, and performs better than traditional and state-of-the-art approaches.

56 CHAPTER 5. PRUNING HEURISTICS FOR SCHEDULING

Chapter 6

Conclusion and Future Directions

Contents
6.1 Discussion and Contributions . 57

6.1.1 Thesis Contributions . 58
6.2 Future Directions . 59

6.2.1 Reconfiguration Techniques . 59
6.2.2 Real Infrastructure Deployment . 60
6.2.3 Stateful Operators . 60
6.2.4 Scalability . 61
6.2.5 Machine Learning for DSP Placement and Reconfiguration 61

6.1 Discussion and Contributions

The most diverse areas of society are permeated by connected systems [1]. Such connected
systems are generating ever growing amounts of data that are used on decision making. This
is part of the data driven economy we are currently living, where organizations and individuals
take decisions upon information obtained over collected data. In order for the data to become
information it requires some processing [3]. A common approach to process data to obtain
information is through batching processing where a large amount of data is collected and stored,
then processed to become information to be used to decision making [5].

An important characteristic of the data-driven economy is that fast decisions make a dif-
ference [3]. Then, the information is required almost in real time, which is difficult to achieve
through batching processing. Another approach to process and provide data to decision making
processes is Data Stream Processing (DSP), where the data is processed as soon it is generated,
with a major reduction from the time between generating the data and the time it becomes
usable information [5].

Advances on the Internet of Things (IoT) are creating scenarios where the data used for de-
cision making is generated at the edges of the network [16]. Since most DSP applications explore
the cloud infrastructure for deployment, data generated at the edges introduces a challenge to
cloud processing, due to the fact that sending large amounts of data through the Internet faces
network congestion introducing delay to the processing tasks [14]. While the advances on IoT
introduce challenges, they also present themselves as a solution. IoT resources have constrained

57

58 CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

but non-negligible computational power and can be explored to offload computing from the cloud
to the edges of the network [5, 21, 22].

A solution for the deployment of DSP applications at the edges of the network would ben-
efit healthcare applications, where users with wearable devices are continuously monitored to
identify health problems and contact emergency systems as fast as possible [10]. Another ap-
plication that would benefit from fast responses is natural disaster management, where sensors
and cameras would make it possible to identify critical areas that require more attention and
schedule rescue teams to such areas [8]. There are many other cases, such as, traffic monitoring,
camera surveillance, energy grid management, etc. All these applications require fast response
time [9]. Hence, there is a growing demand for solutions to schedule DSP applications exploring
the low network latency provided by edge resources and high computational power from cloud
to provide near real-time information.

6.1.1 Thesis Contributions

This thesis described algorithmic solutions for addressing the joint optimization of operator
placement and parallelism for DSP applications deployed on infrastructure that combines both
cloud and edge computing resources; where edge computing comprises IoT and Micro Datacen-
ters (MDs) resources. We proposed solutions that seek to explore the operator parallelism for
scheduling operators aiming to improve performance and Quality of Service (QoS) metrics such
as application end-to-end latency, throughput, and monetary costs.

The development of the proposed solutions stemmed from investigating other approaches
in the literature that aim to solve the operator placement problem for DSP applications. This
investigation allowed us to identify common characteristics both for the application and opera-
tors, such as operator selectivity, data transformation pattern, probability of flow distribution,
and how the operator parallelism is addressed. Moreover, the investigation also enabled us to
identify how existing work in the literature considers the operator’s requirements.

Beyond the elements accounted for in the literature, the investigation showed limitations,
such as a restricted operator parallelism model and simplistic application and infrastructure
models. Another important aspect is that despite the fact that some approaches address cloud-
edge infrastructure, most of the approaches are still cloud-focused, even for DSP applications
targeting IoT scenarios. This thesis proposed two solutions for the operator placement problem,
known to be NP-Hard [28], to tackle existing limitations of the state-of-the-art.

Both of the proposed solutions rely on a Mixed Integer Linear Programming (MILP) model
that aims to find optimal placements for DSP applications. The proposed MILP model has
a detailed application model with operator selectivity, data transformation model, probability
of flow distribution, and application requirements. Along with a detailed application model,
there is an elaborate infrastructure model that accounts for the heterogeneity of cloud-edge
infrastructure, CPU and memory capacity, and the resources’ clock speed. The proposed model
focuses on exploring edge resources, by splitting an operator into multiple replicas, each of which
processing a fraction of the overall load of the operator. Thus, each replica’s requirements are
computed as a fraction of the operators’ overall requirements as a function of the replica’s load
and the speed of the selected resource.

The proposed model explores edge resources by evaluating the trade-off between offloading
the operator as multiple replicas to constrained devices with low network latency versus explor-
ing cloud resources with high computational power but latency-distant from the data sources.
Moreover, the model accounts for the network congestion between each layer of the cloud-edge

6.2. FUTURE DIRECTIONS 59

infrastructure (IoT, MD, and cloud), that usually crosses the Internet. Beyond computing the
operator placement, the proposed model decides how the created replicas should communicate
with each other, considering the communication pattern between the DSP application graph
operators.

Usually, DSP applications explore some sort of public infrastructure for deployment. There-
fore, monetary cost is usually a metric that needs to be taken into consideration. In this thesis
we considered cloud-edge infrastructure as a combination of public and private infrastructure,
where IoT resources belong to private infrastructure and MD and clouds are public. Then, we
embedded a cost model with elements obtained from AWS Fargate [71], AWS Direct Connec-
tion [72], AWS IoT Core [77], and AWS Private Links [78]. We selected Amazon AWS services
because Amazon is a major Infrastructure as a Service (IaaS) provider.

Both of the proposed solutions were developed on top of the proposed model. The first solu-
tion, named Cloud-Edge data Stream Placement (CESP), seeks an optimal operator placement,
with a multi-objective optimization function to reduce the application end-to-end latency and de-
ployment costs. We understand that application end-to-end latency and deployment costs have
equal importance on the evaluated context, but the importance could be shifted either way. The
second solution, called Cloud-Edge data Stream Placement with Resource Selection (CESP–RS),
is an extension of CESP, addressing the optimal solution’s scalability issues, which are a major
problem when addressing a cloud-edge infrastructure with numerous geographically distributed
resources.

When compared with a solution that focuses on cloud deployment only, CESP is able to
reduce the application end-to-end latency by ' 80% and the deployment costs by ' 30%. A
discussion was provided on whether the obtained benefits come from the usage of IoT resources
only or the whole edge infrastructure. According to obtained results, the usage of MDs improves
both application end-to-end latency and deployment costs when compared with a solution that
explores a combination of IoT and cloud resources. On the one hand, the use of resources
on all cloud-edge infrastructure layer provides benefits. On the other hand, this creates a
very large search space and complicates a deployment. To this end, we proposed CESP–RS,
which obtains deployments for DSP applications ' 94% faster than CESP, with only ' 12%
degradation of optimal deployments. Regarding the comparison against Taneja’s state-of-the-art
approach, CESP–RS is able to provide ' 91% reduction in the end-to-end application latency,
and on most cases ' 18% reduction on deployment costs. On the cases where CESP–RS did
not provide cheaper deployment costs, it still provided ' 83% reduction on the application
end-to-end latency.

6.2 Future Directions

The demand for deploying DSP applications onto cloud-edge infrastructure will continue to rise
over the next few years, but as technology advances, it will require performance improvements.
In this section we highlight some of the areas in which this work could continue to be explored.

6.2.1 Reconfiguration Techniques

DSP applications deployed on cloud-edge resources might require adjustments to adapt to en-
vironmental changes. Two main factors require a DSP application to be reconfigured. First,
edge resources are often less reliable than their cloud counterparts and generally powered by
renewable and intermittent power sources [83], making them more prone to failures than cloud

60 CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

or MD resources. Second, depending on the scenario in which the DSP application is deployed,
load variations are common. Therefore it is required to explore either vertical or horizontal
elasticity to reconfigure the application [84, 85].

There are already some efforts in the literature regarding the reconfiguration of DSP applica-
tions [67, 86, 87], but there is much to be explored such: as migrating operators and guarantee-
ing fault-tolerance; migration processes that do not affect other, non-migrated, operators; and
techniques to evaluate the benefits of the migration. Similar to deployment solutions, reconfig-
uration solutions are mainly focused on cloud resources, leaving a large space for optimization
on the cloud-edge infrastructure. Even further, solutions usually focus only on the application
for optimization, creating more or less replicas, using more or less resources, but neglect net-
work optimization, which on cloud-edge scenarios has a major impact on the performance of the
application [29].

6.2.2 Real Infrastructure Deployment

The goal of any mathematical model is to represent the reality with the most accuracy as possible,
and with that in mind, we created a model to predict the throughput of DSP applications, end
evaluated it under a real environment. Results are available in [40], and our model was able to
predict the throughput with ' 99% accuracy. The prediction model was used as cornerstone
to develop the scheduling model proposed in this thesis and its implementations (CESP and
CESP–RS).

Despite using a prediction model as cornerstone for the development of the scheduling model
proposed in Section 3.3, some aspects needed to be adapted to obtain a schedule proposal.
We developed it trying to replicate as much as possible all the application and infrastructure
elements that best represent the reality. But it is undeniable that there is a gap between a
simulated environment and a real infrastructure, with other applications sharing network and
computational resources, different isolation techniques, and so on.

In this way, a natural continuation of this work is to evaluate the proposed model and
solutions on a real infrastructure, with different deployment frameworks such as those presented
in Section 2.3 (e.g. Apache Storm, Apache Flink) or isolation technologies such as containers,
Virtual Machine (VM), etc. Such evaluation would allow identifying possible limitations of the
model regarding the reality and how to fine-tune the model to overcome these limitations.

6.2.3 Stateful Operators

As mentioned early in this thesis, operators on DSP applications can be classified according
to their state, where an operator can be stateless, in which case it does not maintain any
state between executions; partitioned stateful where a given data structure maintains state for
each down stream based on a partitioning key, and stateful where no particular structure is
required [13]. The state of the operator is a property that was not addressed in this thesis.

The state of the operator is an important aspect that needs to be taken into consideration. It
adds more complexity to the operator placement problem, especially with operator replication.
Operators that maintain state or a partial state require some level of knowledge about the overall
data arriving in the application, and with replication, not all the data will cross through the
operator, and the challenge relies upon deciding how to split such operators, and at the same
time maintain their states updated.

6.2. FUTURE DIRECTIONS 61

6.2.4 Scalability

Although we proposed CESP–RS, a solution to improve the scalability of CESP, further work
is required. The proposed heuristic is able to obtain fast placements at ' 12% reduction on the
quality of the optimal solution, but we can explore solutions to reduce even further this quality
degradation. However, a resource technique based on other characteristics, not just the worst
fit resource, might reduce the optimal solution’s degradation quality.

Moreover, we did not evaluate the infrastructure fragmentation over a long period of time
and multiple applications deployment. Then, a heuristic that is both able to reduce the search
space and provide resources to reduce the resource fragmentation on the infrastructure would be
beneficial both for the application user/owner and the IaaS. The application user/owner would
be able to explore latency-close resources and, therefore, obtain a better application end-to-end
latency. The IaaS would be able to deploy more applications simultaneously.

6.2.5 Machine Learning for DSP Placement and Reconfiguration

There is a recent trend exploring machine learning solutions to the most diverse problems, and
this is reflected in solutions for operator placement and reconfiguration. Then, the natural
direction to extend the current work is to identify how DSP applications could benefit from
using machine learning for placement and reconfiguration. Current work offers good insights
into how machine learning can be explored in this context [67, 88, 89, 90].

It is possible to create deployment models using machine learning or deciding how and
where to deploy operators within the infrastructure, or to reconfigure each operator or the
whole application. One can create prediction models using machine learning to guide whether
the application should be reconfigured (e.g., scale in/out). We performed preliminary work on
reconfiguration where classic reinforcement learning techniques were used to change the initial
operator placement [67]. Another interesting aspect in which machine learning solutions could
be employed is to reduce the search space evaluated for optimal solutions with minimal quality
degradation.

62 CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

Bibliography

[1] Thi Mai Trang Nguyen et al. “SDN-based Wi-Fi Direct clustering for cloud access in
campus networks.” In: Annals of Telecommunications 73.3-4 (2018), pp. 239–249.

[2] Hind Bangui et al. “Moving to the edge-cloud-of-things: recent advances and future re-
search directions.” In: Electronics 7.11 (2018), p. 309.

[3] Radhya Sahal, John G Breslin, and Muhammad Intizar Ali. “Big data and stream pro-
cessing platforms for Industry 4.0 requirements mapping for a predictive maintenance use
case.” In: Journal of Manufacturing Systems 54 (2020), pp. 138–151.

[4] Rajiv Ranjan et al. “Orchestrating Bigdata Analysis Workflows.” In: IEEE Cloud Com-
puting 4.3 (2017), pp. 20–28.

[5] Valeria Cardellini et al. “Joint operator replication and placement optimization for dis-
tributed streaming applications.” In: (2017), pp. 263–270.

[6] Saeed Shahrivari. “Beyond batch processing: towards real-time and streaming big data.”
In: Computers 3.4 (2014), pp. 117–129.

[7] Matthew. “Big Data: Are you ready for blast-off?” In: BBC News (2014). url: https:
//www.bbc.com/news/business-26383058.

[8] Avrilia Floratou et al. “Dhalion: self-regulating stream processing in heron.” In: Proceedings
of the VLDB Endowment 10.12 (2017), pp. 1825–1836.

[9] Paulo Ferrão, Hélder Marques, and Hervé Paulino. “Stream Processing on Hybrid CPU/Intel R©
Xeon PhiTM Systems.” In: (2018), pp. 796–810.

[10] Fuyuan Xiao and Masayoshi Aritsugi. “An adaptive parallel processing strategy for com-
plex event processing systems over data streams in wireless sensor networks.” In: Sensors
18.11 (2018), p. 3732.

[11] Valeria Cardellini et al. “Optimal operator deployment and replication for elastic dis-
tributed data stream processing.” In: Concurrency and Computation: Practice and Expe-
rience 30.9 (2018), e4334.

[12] Valeria Cardellini et al. “Optimal operator replication and placement for distributed stream
processing systems.” In: ACM SIGMETRICS Performance Evaluation Review 44.4 (2017),
pp. 11–22.

[13] Marcos Dias de Assuncao, Alexandre Da Silva Veith, and Rajkumar Buyya. “Resource elas-
ticity for distributed data stream processing: A survey and future directions.” In: CoRR,
abs/1709.01363 (2017).

[14] Xinwei Fu et al. “Edgewise: a better stream processing engine for the edge.” In: (2019),
pp. 929–946.

63

https://www.bbc.com/news/business-26383058
https://www.bbc.com/news/business-26383058

64 BIBLIOGRAPHY

[15] Valeria Cardellini et al. “Optimal operator placement for distributed stream processing
applications.” In: (2016), pp. 69–80.

[16] Tanissia Djemai et al. “A Discrete Particle Swarm Optimization approach for Energy-
efficient IoT services placement over Fog infrastructures.” In: (2019), pp. 32–40.

[17] Dave Evans. “The internet of things: How the next evolution of the internet is changing
everything.” In: CISCO white paper 1.2011 (2011), pp. 1–11.

[18] Luiz Angelo Steffenel. “Improving the Performance of Fog Computing through the use of
Data Locality.” In: (2018), pp. 217–224.

[19] Shigeru Imai et al. “Airplane flight safety using error-tolerant data stream processing.” In:
IEEE Aerospace and Electronic Systems Magazine 32.4 (2017), pp. 4–17.

[20] S. Amini, I. Gerostathopoulos, and C. Prehofer. “Big data analytics architecture for real-
time traffic control.” In: (2017), pp. 710–715.

[21] Shouli Zhang et al. “Latency-Aware Deployment of IoT Services in a Cloud-Edge Environ-
ment.” In: (2019), pp. 231–236.

[22] Qinglan Peng et al. “Joint Operator Scaling and Placement for Distributed Stream Pro-
cessing Applications in Edge Computing.” In: (2019), pp. 461–476.

[23] Mohammad Aazam and Eui-Nam Huh. “Fog computing micro datacenter based dynamic
resource estimation and pricing model for IoT.” In: (2015), pp. 687–694.

[24] N. Mohan and J. Kangasharju. “Edge-Fog cloud: A distributed cloud for Internet of Things
computations.” In: (2016), pp. 1–6.

[25] Gayashan Amarasinghe et al. “A data stream processing optimisation framework for edge
computing applications.” In: (2018), pp. 91–98.

[26] Henriette Röger and Ruben Mayer. “A comprehensive survey on parallelization and elas-
ticity in stream processing.” In: ACM Computing Surveys (CSUR) 52.2 (2019), pp. 1–
37.

[27] Peter Pietzuch et al. “Network-aware operator placement for stream-processing systems.”
In: (2006), pp. 49–49.

[28] Anne Benoit et al. “Scheduling Linear Chain Streaming Applications on Heterogeneous
Systems with Failures.” In: Future Gener. Comput. Syst. 29.5 (July 2013), pp. 1140–1151.
issn: 0167-739X.

[29] Wenlu Hu et al. “Quantifying the Impact of Edge Computing on Mobile Applications.” In:
APSys ’16 (2016).

[30] Weisong Shi et al. “Edge computing: Vision and challenges.” In: IEEE internet of things
journal 3.5 (2016), pp. 637–646.

[31] Tarek Elgamal et al. “Droplet: Distributed operator placement for iot applications spanning
edge and cloud resources.” In: (2018), pp. 1–8.

[32] Laurent Prosperi et al. “Planner: cost-efficient execution plans placement for uniform
stream analytics on edge and cloud.” In: (2018), pp. 42–51.

[33] Phu Lai et al. “Edge user allocation with dynamic quality of service.” In: (2019), pp. 86–
101.

65

[34] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. “Edge affinity-based
management of applications in fog computing environments.” In: (2019), pp. 61–70.

[35] Asad Javed et al. “IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant IoT
Applications.” In: Journal of Grid Computing (2020), pp. 1–24.

[36] Wei Yu et al. “A survey on the edge computing for the Internet of Things.” In: IEEE access
6 (2017), pp. 6900–6919.

[37] Abhishek Tiwari et al. “Reconfigurable Streaming for the Mobile Edge.” In: (2019), pp. 153–
158.

[38] Zhengping Qian et al. “Timestream: Reliable stream computation in the cloud.” In: (2013),
pp. 1–14.

[39] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. “Riotbench: A real-time iot
benchmark for distributed stream processing platforms. CoRR abs/1701.08530 (2017).”
In: arxiv. org/abs/1701.08530 (2017).

[40] F. R. d. Souza, M. D. d. Assunção, and E. Caron. “A Throughput Model for Data Stream
Processing on Fog Computing.” In: (2019), pp. 969–975.

[41] F. R. d. Souza et al. An Optimal Model for Optimizing the Placement and Parallelism of
Data Stream Processing Applications on Cloud-Edge Computing. Porto, Portugal, 2020.

[42] F. R. d. Souza et al. An Scalable Joint Optimization of Placement and Parallelism of
Data Stream Processing Applications on Cloud-Edge Infrastructure. Dubai, United Arab
Emirates, 2020.

[43] Roya Golchay et al. “Spontaneous proximity clouds: Making mobile devices to collaborate
for resource and data sharing.” In: (2016), pp. 480–489.

[44] Bugra Gedik, Habibe G Özsema, and Özcan Öztürk. “Pipelined fission for stream programs
with dynamic selectivity and partitioned state.” In: Journal of Parallel and Distributed
Computing 96 (2016), pp. 106–120.

[45] Xunyun Liu and Rajkumar Buyya. “Performance-oriented deployment of streaming appli-
cations on cloud.” In: IEEE Transactions on Big Data 5.1 (2017), pp. 46–59.

[46] Yuzhe Tang and Bugra Gedik. “Autopipelining for data stream processing.” In: IEEE
Transactions on Parallel and Distributed Systems 24.12 (2012), pp. 2344–2354.

[47] Apache Edgent. Retired Project Website. 2020. url: https://github.com/apache/
incubator-retired-edgent.

[48] Samantha Chan. Apache Quarks, Watson, and Streaming Analytics: Saving the World,
One Smart Sprinkler at a Time. Bluemix Blog. 2016. url: https://www.ibm.com/blogs/
bluemix/2016/06/better-analytics-with-apache-quarks/.

[49] Apache MiNiFi. Project Website. 2020. url: https://nifi.apache.org/minifi/index.
html.

[50] Kafka Streams. Project Website. 2020. url: https://kafka.apache.org/documentation/
streams/.

[51] Node-RED. Project Website. 2020. url: https://nodered.org/.

[52] Valeria Cardellini et al. “Decentralized self-adaptation for elastic data stream processing.”
In: Future Generation Computer Systems 87 (2018), pp. 171–185.

https://github.com/apache/incubator-retired-edgent
https://github.com/apache/incubator-retired-edgent
https://www.ibm.com/blogs/bluemix/2016/06/better-analytics-with-apache-quarks/
https://www.ibm.com/blogs/bluemix/2016/06/better-analytics-with-apache-quarks/
https://nifi.apache.org/minifi/index.html
https://nifi.apache.org/minifi/index.html
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://nodered.org/

66 BIBLIOGRAPHY

[53] Farah Aït Salaht, Frédéric Desprez, and Adrien Lebre. “An Overview of Service Placement
Problem in Fog and Edge Computing.” In: ACM Computing Surveys 53.3 (June 2020).
issn: 0360-0300. doi: 10.1145/3391196. url: https://doi.org/10.1145/3391196.

[54] Cheol-Ho Hong and Blesson Varghese. “Resource Management in Fog/Edge Computing:
A Survey on Architectures, Infrastructure, and Algorithms.” In: ACM Computing Surveys
52.5 (Sept. 2019). issn: 0360-0300. doi: 10.1145/3326066. url: https://doi.org/10.
1145/3326066.

[55] Walid Aljoby et al. “On SDN-Enabled Online and Dynamic Bandwidth Allocation for
Stream Analytics.” In: (2018), pp. 209–219.

[56] Yating Zhang et al. “On Cost Efficient Dataflow Computing Program Deployment in SDN
Managed Distributed Computing Environment.” In: (2017), pp. 27–36.

[57] Buğra Gedik et al. “Elastic scaling for data stream processing.” In: IEEE Transactions on
Parallel and Distributed Systems 25.6 (2013), pp. 1447–1463.

[58] Christoph Hochreiner et al. “Elastic stream processing for the internet of things.” In:
(2016), pp. 100–107.

[59] Radu Tudoran et al. “Jetstream: Enabling high throughput live event streaming on multi-
site clouds.” In: Future Generation Computer Systems 54 (2016), pp. 274–291.

[60] Raphael Eidenbenz and Thomas Locher. “Task allocation for distributed stream process-
ing.” In: (2016), pp. 1–9.

[61] Mohit Taneja and Alan Davy. “Resource aware placement of IoT application modules in
Fog-Cloud Computing Paradigm.” In: (2017), pp. 1222–1228.

[62] Thomas Hiessl et al. “Optimal placement of stream processing operators in the fog.” In:
(2019), pp. 1–10.

[63] Lin Gu et al. “A general communication cost optimization framework for big data stream
processing in geo-distributed data centers.” In: IEEE Transactions on Computers 65.1
(2015), pp. 19–29.

[64] Walid AY Aljoby, Tom ZJ Fu, and Richard TB Ma. “Impacts of task placement and
bandwidth allocation on stream analytics.” In: (2017), pp. 1–6.

[65] Tri Minh Truong et al. “Performance Analysis of Large-Scale Distributed Stream Process-
ing Systems on the Cloud.” In: (2018), pp. 754–761.

[66] Leila Eskandari et al. “T3-Scheduler: A topology and traffic aware two-level scheduler for
stream processing systems in a heterogeneous cluster.” In: Future Generation Computer
Systems 89 (2018), pp. 617–632.

[67] Alexandre da Silva Veith et al. “Multi-Objective Reinforcement Learning for Reconfiguring
Data Stream Analytics on Edge Computing.” In: (2019), pp. 1–10.

[68] Xiang Ni et al. “Generalizable Resource Allocation in Stream Processing via Deep Rein-
forcement Learning.” In: 34.01 (2020), pp. 857–864.

[69] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. “Reinforcement learning
based policies for elastic stream processing on heterogeneous resources.” In: (2019), pp. 31–
42.

[70] X. Liu and R. Buyya. “Performance-Oriented Deployment of Streaming Applications on
Cloud.” In: IEEE Tr. on Big Data 5.1 (2019), pp. 46–59. issn: 2372-2096.

https://doi.org/10.1145/3391196
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3326066

67

[71] AWS Fargate. https://aws.amazon.com/fargate/. Accessed: 2020-09-21.

[72] AWS Direct Connect. https://aws.amazon.com/directconnect/. Accessed: 2020-09-21.

[73] Frank Dabek et al. “Vivaldi: A decentralized network coordinate system.” In: 34.4 (2004),
pp. 15–26.

[74] Diego Kreutz et al. “Software-defined networking: A comprehensive survey.” In: Proc. of
the IEEE 103.1 (2015), pp. 14–76.

[75] Deepak Puthal et al. “Secure and Sustainable Load Balancing of Edge Data Centers in
Fog Computing.” In: IEEE Communications Magazine 56.5 (2018), pp. 60–65.

[76] Hamidreza Arkian et al. “An Experiment-Driven Performance Model of Stream Processing
Operators in Fog Computing Environments.” In: (2020).

[77] AWS IoT Core. https://aws.amazon.com/iot-core/. Accessed: 2020-09-21.

[78] AWS PrivateLinke. https://aws.amazon.com/privatelink/. Accessed: 2020-09-21.

[79] J. Gedeon et al. “From Cell Towers to Smart Street Lamps: Placing Cloudlets on Existing
Urban Infrastructures.” In: (2018), pp. 187–202.

[80] Steffen Zeuch et al. “Analyzing Efficient Stream Processing on Modern Hardware.” In:
Proc. VLDB Endow. 12.5 (Jan. 2019), pp. 516–530. issn: 2150-8097. doi: 10.14778/
3303753.3303758. url: https://doi.org/10.14778/3303753.3303758.

[81] A. Finamore et al. “Experiences of Internet traffic monitoring with tstat.” In: IEEE Net-
work 25.3 (2011), pp. 8–14.

[82] A. Callado et al. “A Survey on Internet Traffic Identification.” In: IEEE Communications
Surveys Tutorials 11.3 (2009), pp. 37–52.

[83] Minxian Xu et al. Green-aware Mobile Edge Computing for IoT: Challenges, Solutions and
Future Directions. 2020. arXiv: 2009.03598 [cs.DC].

[84] Dawei Sun et al. “Rethinking elastic online scheduling of big data streaming applica-
tions over high-velocity continuous data streams.” In: The Journal of Supercomputing 74.2
(2018), pp. 615–636.

[85] L. Xu, B. Peng, and I. Gupta. “Stela: Enabling Stream Processing Systems to Scale-in and
Scale-out On-demand.” In: (2016), pp. 22–31.

[86] Tiziano De Matteis and Gabriele Mencagli. “Proactive elasticity and energy awareness in
data stream processing.” In: Journal of Systems and Software 127 (2017), pp. 302–319.

[87] Thomas Heinze et al. “Online parameter optimization for elastic data stream processing.”
In: (2015), pp. 276–287.

[88] Valeria Cardellini et al. “Auto-scaling in data stream processing applications: A model-
based reinforcement learning approach.” In: (2017), pp. 97–110.

[89] M. Endler et al. “Towards stream-based reasoning and machine learning for IoT applica-
tions.” In: (2017), pp. 202–209.

[90] G. Pal, G. Li, and K. Atkinson. “Big Data Real Time Ingestion and Machine Learning.”
In: (2018), pp. 25–31.

https://aws.amazon.com/fargate/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/privatelink/
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.14778/3303753.3303758
https://arxiv.org/abs/2009.03598

68 BIBLIOGRAPHY

List of publications

Journal Publication

• de Souza, F. R.; Miers, C. C., Fiorese, A.; de Assunção, M. D.; Koslovski, G. P. (2019).
Qvia-SDN: Towards QOS-Aware Virtual Infrastructure Allocation on SDN-based Clouds.
Journal of Grid Computing, 17(3), 447-472. 2019. (Core Ranking B)

Publications in International Conferences

• de Souza, F. R.; de Assunção, M. D.; Caron, E. A Throughput Model for Data Stream
Processing on Fog Computing. International Conference on High Performance Computing
& Simulation (HPCS 2019), Dublin, Ireland, July 2019. (Core Ranking B)

• da Silva Veith, A.; de Souza, F. R.; Santos dos Anjos, J. C.; de Assunção M. D.; Lefèvre,
L. Multi-Objective Reinforcement Learning for Reconfiguration of Data Analytics on Edge
Computing. International Conference on Parallel Processing (ICPP 2019), Kyoto, Japan,
August 2019. (Core Ranking A)

• de Souza, F. R.; da Silva Veith, A.; de Assunção, M. D.; Caron, E. An Optimal Model
for Optimizing the Placement and Parallelism of Data Stream Processing Applications on
Cloud-Edge Computing. IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2020), Porto, Portugal, September 2020.
(Core Ranking B)

• de Souza, F. R.; da Silva Veith, A.; de Assunção, M. D.; Caron, E. Scalable Joint
Optimization of Placement and Parallelism of Data Stream Processing Applications on
Cloud-Edge Infrastructure. 18th International Conference on Service Oriented Computing
(ICSOC 2020), Dubai, United Arab Emirates, December 2020. (Core Ranking A)

Publication in a National Conference

• Raugust, A. S.; de Souza, F. R.; Pillon, M. A.; Miers, C. C.; Koslovski, G. P. Alocação
de Infraestruturas Virtuais Confiáveis em Múltiplos Provedores IaaS. Simpósio Brasileiro
de Redes de Computadores (SBRC), 36, 2018.

69

	Acknowledgments
	Abstract
	French Abstract
	Introduction
	Challenges in Operator Placement for DSP Applications
	Edge Computing
	Operator Placement and Replication

	Research Problems and Objectives
	Evaluation Methodology
	Contributions
	Thesis Organization

	DSP Scheduling on Cloud-Edge Infrastructure
	Introduction
	Background
	Data Stream Processing Frameworks
	Target Computing Infrastructure for DSP Placement
	Data Stream Processing Solutions for Cloud Computing
	Data Stream Processing Solutions for Edge Computing

	Mechanisms for Data Stream Processing Scheduling
	Optimal Solutions
	Heuristic-Based Solutions
	Machine-Learning Solutions

	Discussion and Positioning
	Conclusion

	Mixed-Integer Programming Model
	Introduction
	Deployment Architecture
	System Model
	Infrastructure Model
	Application Model
	Metrics Model
	Infrastructure and Application Constraints

	Throughput Estimation Model
	Scenario and Model Description
	Experimental Setup
	Infrastructure
	Data Stream Processing Application
	Scenarios

	Performance Evaluation Results

	Conclusion

	Optimal Scheduling Solution
	Introduction
	Impact of Three-Layered Cloud-Edge Infrastructure
	Performance Evaluation
	Experimental Setup
	Price Model
	Evaluated approaches and metrics
	No Bandwidth Control versus Bandwidth Control
	CESP versus the Standard Approach

	Conclusion

	Pruning Heuristics for Scheduling
	Introduction
	Resource Selection Technique
	Performance Evaluation
	Experimental Setup
	Price model
	Evaluated approaches and metrics
	Resolution Time versus Solution Quality
	CESP–RS versus the State-of-the-Art

	Conclusion

	Conclusion and Future Directions
	Discussion and Contributions
	Thesis Contributions

	Future Directions
	Reconfiguration Techniques
	Real Infrastructure Deployment
	Stateful Operators
	Scalability
	Machine Learning for DSP Placement and Reconfiguration

	Bibliography
	Publications

