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The necessity and importance of representing a scene in 3-D have been exemplified through numerous remote sensing applications, such as urban planning, disaster management, etc. In these applications, LiDAR and optical imagery data have been used extensively. A complementarity existing between airborne LiDAR and aerial/satellite optical imagery datasets motivates the fusion between them, allowing to represent the observed scenes in 3-D with a better precision and completeness.

In recent years, automatic building footprint extraction in urban and residential scenes has become a subject of growing interest among the field of 3-D scene representation and reconstruction.

With the rising availability of massive amount of data captured by different LiDAR and imagery sensors onboard airborne and spaceborne platforms, new opportunities arise to perform this task on a large scale. However, existing fusion methods generally consider either hybrid acquisition systems consisting of LiDAR and optical cameras rigidly fixed, or datasets acquired from the same platform at identical or very close dates, and having the same spatial resolution. They do not intend to cope with datasets collected from different platforms with different acquisition configuration at different moments, having different spatial resolutions and levels of detail. Such a context is referred to as unconstrained acquisition context. Furthermore, extracting buildings on a large scale is a complex task. Existing methods reported over the years have achieved relatively significant results by assuming building shapes, enforcing geometrical constraints, or limiting on specific urban areas. Such assumptions are no longer applicable when dealing with large-scale datasets.

This research work is devoted to the development of a versatile coarse-to-fine registration method between airborne LiDAR and aerial/satellite optical imagery datasets collected in an unsconstrained acquisition context. It aims at overcoming the challenges associated with this context such as the spatial shift between the datasets, the differences of spatial resolution and level of detail, etc. In addition, this research work elaborates an efficient building footprint extraction method, providing a high accuracy level while being an unsupervised method dedicated to largescale applications. The proposed method, called Super-Resolution-based Snake Model (SRSM), consists in an adaptation of snake models-a conventional image segmentation technique-to operate on high-resolution LiDAR-based elevation images generated by a super-resolution process.

It pertains the unconstrained data acquisition context, serving as a prime application example.

Relevant results have been achieved when rigorously assessing the proposed methods, namely a highly desirable accuracy level compared to existing methods.

Résumé

La nécessité et l'importance de représenter une scène en 3-D ont été illustrées par de nombreuses applications en télédétection, telles que la planification urbaine, la gestion des catastrophes, etc.

Dans ces applications, les données issues du LiDAR et de l'imagerie optique aérienne et satellitaire ont été largement utilisées. Il existe une complémentarité entre les données issues du LiDAR aéroporté et de l'imagerie optique aérienne/satellite, qui motive la fusion de ces données permettant de représenter des scènes observées en 3-D avec une meilleure précision et complétude.

Ces dernières années, l'extraction automatique de l'empreinte des bâtiments dans les scènes urbaines et résidentielles est devenue un sujet d'intérêt croissant dans le domaine de la représentation et de la reconstruction de scènes en 3-D. Avec l'augmentation de la disponibilité d'une quantité massive de données capturées par différents capteurs LiDAR et d'imagerie installés sur des plateformes aériennes et spatiales, de nouvelles opportunités se présentent pour effectuer cette tâche à grande échelle. Cependant, les méthodes de fusion existantes considèrent généralement soit des systèmes d'acquisition hybrides composés de LiDAR et de caméras optiques fixés rigidement, soit des jeux de données acquis à partir de la même plateforme à des dates identiques ou très proches, et ayant la même résolution spatiale. Elles n'ont pas été conçues pour traiter des jeux de données acquis avec des plateformes différentes, dans différentes configurations, à des moments différents, ayant des résolutions spatiales et des niveaux de détail différents. Un tel contexte est appelé contexte d'acquisition non-contraint. D'autre part, l'extraction automatique de l'empreinte des bâtiments à grande échelle est une tâche complexe. Des méthodes existantes ont obtenu des résultats relativement significatifs mais en définissant des formes a priori pour les bâtiments, en imposant des contraintes géométriques, ou en se limitant à des zones spécifiques.

De telles hypothèses ne sont plus envisageables pour des jeux de données à grande échelle.

Ce travail de recherche est consacré au développement d'une méthode versatile de recalage grossier puis fin de jeux de données collectés selon un contexte d'acquisition non-contraint. Il vise à surmonter les défis associés à ce contexte tels que le décalage spatial entre les jeux de données, la différence de résolution spatiale et de niveau de détail, etc. De plus, ce travail de recherche propose une méthode d'extraction efficace des empreintes des bâtiments, offrant un niveau de précision élevé tout en étant une méthode non-supervisée dédiée aux applications à grande échelle. La méthode proposée, appelée "Super-Resolution-based Snake Model" (SRSM), consiste en une adaptation des modèles de snakes-une technique classique de segmentation d'images-pour exploiter des images d'élévation LiDAR à haute résolution générées par un processus de super-résolution. Il se rapporte au contexte d'acquisition de données non-contraint, servant d'exemple d'application de premier ordre. Des résultats pertinents ont été obtenus lors des évaluations rigoureuses des méthodes proposées, à savoir un niveau de précision hautement souhaitable par rapport aux méthodes existantes.

Mots-clés :

LiDAR aéroporté, imagerie optique satellitaire et aérienne, recalage de données, information mutuelle, super-résolution, scènes urbaines, extraction de bâtiments, grande échelle. 
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The article presented in chapter 3 is the following: T. H. Nguyen, S. Daniel, D. Guériot, C. Sintès and J.-M. Le Caillec, "Super-Resolution-based Snake Model -An Unsupervised Method for Large-Scale Building Extraction using Airborne LiDAR Data and Optical Image", Remote Sensing, vol. 12 (11), pp. 1702, 2020. Date of publication: 26 May 2020. Compared to the published version, several changes have been made in order to renumber sections/subsections, and replace the term "this paper" with "this chapter". In addition, small corrections have been made according to the committee suggestions. Figure 3.12 has also been enlarged for better readability.

Introduction

In recent years, the industry and community of remote sensing and Earth observation have been evolving with an explosive growth 1 . Such a growth combined with the modern data storage technologies is leading to an era of ever-increasing amount of acquired data. Current developments involving satellite missions, airborne acquisitions, and unmanned aerial vehicles (UAV) are providing more opportunities than ever before to collect data of the Earth's surface. Contributing to this growth, the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS) has been organizing a Data Fusion Contest every year since 2006. They focus on many research topics-e.g., classification, pansharpening, change detection-related to the fusion of data from various sources, namely Synthetic Aperture Radar (SAR), Light Detection and Ranging (LiDAR), optical imagery, etc. Leveraging the results from these contests, a summary and analysis were brought forward by Dalla Mura et al. [3] touching on the main challenges and opportunities for data fusion in remote sensing. They provided three main assertions:

• The exploitation of multiple modalities (e.g., optical imagery, SAR, and LiDAR) through a data fusion paradigm is crucial to perform the analyses for many applications, such as scene classification, object 3-D reconstruction, etc.;

• It is important to be mindful of the characteristics of sensors and data, especially when they exhibit different resolutions and/or involve different acquisition geometry;

• Additional challenges can stem from different data structures and missing data inherent to the data sources.

All three assertions apply strongly in the context of this research project.

Research Context

The necessity and importance of representing a scene in three-dimension (3-D) have been exemplified through many applications in remote sensing, such as urban planning, disaster management, city twin digital construction, road extraction for autonomous navigation [4,5,6]. In these applications, aerial and satellite optical imagery has been used extensively. It provides high and very high-resolution images with rich spectral, textural, and semantic information. It is also practical to perform scene analyses and interpretations using such optical images. On the other hand, LiDAR is one of the most significant technologies for topographic mapping and geospatial data acquisition [7]. It provides a direct method to collect dense 3-D data with a high level of accuracy, 1 The remote sensing industry revenues were estimated at 2.4 billion USD in 2001-according to a survey published jointly by the American Society for Photogrammetry and Remote Sensing (ASPRS) and the US National Aeronautics and Space Administration (NASA) [1]. It was valued at 10.68 billion USD in 2016. The industry is expected to continue at an annual growth rate of 15.14% between 2017 and 2022, and reach 21.62 billion USD by 2022 according to a report by MarketsandMarkets [2]. reports on the Earth's surface material content with its spectral characteristics of a few (typically 3 to 15) adjacent broad spectral bands within the visible light spectrum range and beyond. In contrast, the hyperspectral imaging consists typically of hundreds of contiguous narrow bands. 

Building Footprint Extraction

In the recent years, automatic building footprint extraction in urban and residential scenes has become a subject of growing interest in the community of photogrammetry and remote sensing.

This topic relates to many other terms, such as building detection, building footprint delineation, or building instance segmentation and so on. Despite the different terminologies, many building extraction techniques have been reported over the last few decades, particularly with the emergence of LiDAR systems since mid-1990s [13]. This task aims for a wide range of applications, such as urban planning [14], city digital twin construction [15], census studies [16], disaster and crisis management, namely earthquake and flood [17,18].

In the context of climate change impact analysis and prevention, the assessment and anticipation of flood risks are asserted of paramount importance [19], especially in the province of Quebec, Canada [20]. The building extraction task plays an important role within this context, providing accurate and regularly updated building footprint location and boundaries. Subsequently, the resulting footprints enable the extraction of essential structural and occupational characteristics of the buildings, e.g., first floor, basement openings. It also aims at populating a database on buildings in the areas that have high risk to be flooded. Considering the scale of the study, the scalability of this solution-i.e., the ability to maintain its effectiveness when expanding from a local area to a large area [21]-is crucially important. As a matter of fact, large-scale applications up to a provincial, national, or even continental scale has attracted great interest in the remote sensing community [22]. In this regard, there exist a number of supervised building extraction methods. However, they require a large amount of training data, and a high computational capacity in order to learn and carry out the building extraction on a large-scale dataset. For instance, the Canadian building footprint project produced by Microsoft collaborating with Statistics Canada [23]. This project provides building footprints in a nation-wide scale. However, it was carried out by a deep learning approach which was trained on three million labeled building images. As a result, an efficient solution for extracting buildings from urban and residential environments on a large scale, without requiring large amount of training data, is still not available yet.

An accurate building extraction task is also relevant in other contexts, such as for Building Information Modeling (BIM) and Building Energy Modeling (BEM). For example, building extraction is crucial in the context of energy efficiency optimization inside buildings, requiring accurate information concerning the building height, orientation, type (e.g., commercial, residential) and facade design [24]. In a related domain, another example can be given involving the structural 3-D reconstruction of building indoor space for 5G signal simulation [25]. In summary, in these (exemplified but not exclusive) contexts, the development of an accurate large-scale building footprint extraction method is necessary.

Problem Statement LiDAR and Optical Imagery Data Imperfections

The individual use of a sensor-either imagery or topography-faces many challenges when carrying out a 3-D scene representation conforming to the reality. They originate from the errors and missing information inherent to the employed data. Considering an optical imagery system, radiometric errors-e.g., sensor sensibility, lighting condition changes, and atmospheric effects [26]-as well as geometric errors caused by relief displacement, occlusions, and shadows, induce distortions within the information extracted from the images [27,28]. In addition, several image corrections require integrating with the elevation information of the scene. For instance, to produce an orthorectified image, the ground control points with known coordinates provided by a Digital Elevation Model (DEM) are required [29,Chap. 14]. On the other hand, LiDAR system is advantageous for providing accurate 3-D information, making it the dataset of choice when addressing the scene 3-D representation and reconstruction [8]. However, due to the lack of semantic information it is difficult to carry out tasks such as object classification, forest stand segmentation, etc. using only LiDAR data [12,30,31]. LiDAR measurements may also be missing due to occlusion or presence of water [32]. As a result, these errors and missing data induce incompleteness, imprecisions and uncertainties within the resulting 3-D representation. Fortunately, these limitations associated with one sensor can be compensated by integrating with another one.

A complementarity exists between airborne LiDAR and aerial/satellite optical imagery data [33],

summarized by Table 0.1. Such a complementarity motivates the fusion of optical imagery and LiDAR data, allowing to represent the observed scene in 3-D with a better precision and completeness, compared to the individual uses of these sensors [34,35]. Such a fusion approach also enables a better performance in various applications than using the individual data source [36,37,38]. Moreover, it can also provide a 3-D mosaic of the observed scene, namely a georeferenced rasterized dataset, in which all the pixels are associated with an elevation value. Such a rasterized dataset is shown exploitable and beneficial through many applications, such as forest inventory, segmentation [30], and change detection [39].

Table 0.1: Complementarity between a LiDAR dataset and an optical imagery dataset.

Unconstrained Data Acquisition Context

In order to take advantage of the complementarity between LiDAR and optical imagery, a number of airborne hybrid systems-i.e., having both sensors-have been developed. A description of several recent hybrid systems available on the market can be found in Table C.1 in section C.1.

Such systems involve a configuration in which the LiDAR and imagery units are statically fixed on the same platform, and thus, acquisitions of LiDAR and imagery data are simultaneously carried out. As a result, this physical linkage facilitates the integration and fusion of the two datasets. For instance, the spatial shift between the datasets can be offset straightforwardly with the fixed distance and angles between the two sensors specified through calibration.

There also exist other contexts that take advantage of the complementarity of LiDAR and optical imagery without involving hybrid systems. However, they involve dedicated acquisition contexts in which the concerned datasets were acquired from the same platform at identical or very close dates and having the same spatial resolution. For instance, solutions submitted to the 2013 Data Fusion Contest of the IEEE GRSS [31] focused on the fusion between LiDAR data and hyperspectral imagery which were already registered and had the same spatial resolution. The contest in 2015 [41,42] was interested in the fusion of extremely high resolution LiDAR data and RGB imagery that were collected from the same aircraft where the sensors being rigidly fixed to this platform. Similar to the hybrid systems, when involving simultaneous acquisitions from the same platform or same flight track, the flexibility of the optical camera would be sacrificed, i.e., the camera position is constrained yielding a limited ability to adjust the focal length for a particular scene [43].

Methods in the literature, including the solutions submitted to the IEEE GRSS Data Fusion Contests or [9,44,45], have not intended to address the inherent obstacles of a context where the datasets were acquired from different platforms with different acquisition configuration (i.e., different flying track, height, orientation, and so on), at different moments, and having different spatial resolutions and levels of detail. We refer to this context as the unconstrained acquisition context. The need for a registration in such a crucial context has also been exemplified in the work undertaken by Cura et al. [46]. It also relates to the increase of the data availability captured by different heterogeneous sensors which demands an efficient integration and fusion [47].

Nevertheless, a solution that is versatile enough to address the registration of LiDAR and optical imagery data acquired in this difficult context still remains an unsolved research problem [8]. In addition, when performing the fusion of airborne LiDAR data and optical imagery, a small misalignment between them can result in a significant reduction on the fusion quality [48]. In this regard, existing works in the literature insist on a resulting discrepancy between the registered datasets ranging from 45 to 50 cm to be a decent registration accuracy level [44,49].

Accuracy and Scalability of Building Footprint Extraction

Regarding the building extraction task, an integration and fusion between LiDAR and optical imagery data presents many interests enabling to overcome a number of challenges from each data source. On the one hand, buildings usually exhibit sharp and clear edges in the optical images, but it is difficult to obtain the complete and precise 3-D building surfaces, despite a number of image dense matching methods that have been developed over the years [50,51]. On the other hand, compared to aerial and satellite optical imagery, using LiDAR data can improve greatly the accuracy and the level of automation of the building extraction thanks to the advantageous height change cues [52]. However, because of the 3-D point irregular distribution and the subsample point density, it is difficult to produce geometrically accurate building boundaries [53].

As a result, the exploitation of the complementary features of LiDAR data and aerial/satellite optical imagery for the building extraction task has been studied rigorously since the trailblazing work of Schenk [54]. It is also worth noting that a number of building extraction and classification methods have been carried out based on a naive fusion between LiDAR and optical imagery datasets [55,56,57,58]. They require a DSM (and a DTM) derived from the LiDAR data to have the same resolution with the optical image.

Nevertheless, the nature of urban and residential environments can be very complex where buildings can be found with various sizes, colors and shapes, within urban areas of different density and vegetation coverage. Such a complexity is problematic for developing a building extraction solution. As a result, a number of studies have been reported over the years with relatively significant results regarding accuracy by assuming building shapes [59,60,61], enforcing geometrical constraints [62], or limiting on specific urban areas. However, such assumptions and constraints limit the scalability of the building extraction method, especially over large areas composed of diverse and complex structures. In other words, the accuracy of such methods has been achieved by limiting their scalability.

Research Question

Knowing that the aerial or satellite imagery data and the airborne LiDAR data were acquired at different times, from different platforms, with different configurations in the context of urban scenes, how to perform the fusion of these datasets and the extraction of building footprints in large-scale urban contexts, given:

• The differences of point of view and field of view between the two datasets;

• Their different level of detail and spatial resolution;

• The different appearance of the same scene element in these datasets;

• The uncertainties of the information in these datasets;

• The complexity and variability of urban and residential environments.

Research Hypotheses

In order to provide a solution to the problem raised in the context of this research project, the following hypotheses are established:

• Given the performance variability of existing methods when applied to different urban environments (e.g., residential neighborhood, downtown area, industrial and residential areas) [28], it is required to integrate a contextualization approach, taking into account the scene characteristics and elements in order to be able to carry out the registration between the datasets and the building extraction regardless of the urban scene.

• Multi-resolution or multi-scale analyses carried out on the two heterogeneous datasets allow dealing with the different representations of the scene elements and objects [63,64,65,66], and overcoming the difficulties caused by the differences of resolution and level of detail between them.

• Considering the limitations of existing building extraction methods involving the trade-off between scalability and accuracy when expanding over large and complex urban areas, it is necessary to adapt the fusion strategy of the airborne LiDAR data and aerial or satellite optical imagery to achieve an accurate and scalable building extraction. It involves relying mainly on LiDAR data for their advantageous features, e.g., height change cues and high level of automation, and integrating with optical image features related to spectral differences between buildings and vegetation.

Research Objective

General Objective

The general objective of this thesis is to design and develop a versatile and efficient fusion methodology between airborne LiDAR data and aerial/satellite optical imagery acquired in unconstrained conditions for the purpose of extracting building footprints with a satisfactory accuracy level and scalability.

Specific Objectives

The general objective can be met by achieving the following specific objectives:

• Design and develop a contextualization approach allowing to adapt the data registration and building extraction according to the nature of the scene, its characteristics and elements.

• Design and develop an accurate and scalable registration method between the concerned datasets acquired in unconstrained conditions, integrating a multi-resolution or multi-scale analysis.

• Design and develop an automatic, accurate and large-scale building extraction method, involving no building priors or assumptions, through the fusion of airborne LiDAR data and aerial/satellite optical imagery datasets. The registration of LiDAR data and optical imagery data could be conducted by adopting either feature-based or area-based methods. Both categories were worth examining with their own merits [28]. The feature-based registration methods consist in extracting and matching the salient features available in the two datasets, such as geometric primitives (e.g., points, lines, and regions). In order to achieve an accurate feature-based registration, reliable primitives are typically required. This becomes especially crucial when considering the difficult unconstrained acquisition context. For instance, taking into account the different acquisition times of the two datasets, these primitives should be persistent over a relatively long period of time. Therefore, this research work investigated the sources providing geometric primitives such as man-made objects like buildings (providing building corners, edges, rooftop surfaces, etc.) in built areas. It also focused on the methods to extract these primitives, as well as on their inherent geometric accuracy and reliability. On the other hand, the majority of area-based registration methods of LiDAR and optical imagery data has been carried out based on the maximization of Mutual Information (MI). The existing approaches have achieved relative successes by leveraging the measurement of MI between the optical image and either the LiDAR-based elevation image or the intensity image, or both images [9,67]. However, these methods are devoted to registering LiDAR and optical imagery datasets acquired from the same platform and having the same resolution. Hence, such approaches are not applicable to datasets acquired under unconstrained conditions. The computational cost of the area-based registration methods is higher than that of feature-based registration methods. However, it provides a higher registration accuracy, while also not depending on the existence of physical object-based primitives [9]. Given these advantages and limits, both registration approaches were examined in this research work. It consisted in analyzing their respective operational conditions and requirements, then reconsidering and evaluating them in the unconstrained acquisition context. Once the registration was achieved, it allowed minimizing the misalignment between the two datasets, which is problematic when performing building extraction using LiDAR and optical imagery jointly [68]. The research work related to the data fusion investigated how to combine the raw measurements and features of the two datasets for the purpose of extracting building effectively.

Methodology

Building extraction, as aforementioned, remains very challenging due to the complexity of building size, shape, color, and their surrounding. Existing methods rely on several assumptions and prior knowledge on the urban areas and buildings to achieve a desirable accuracy level. As a result, the accuracy of such methods is often achieved by limiting the scope of the urban areas and buildings-either limiting the solution to the buildings of similar size or similar shape or to specific urban areas-and as a result, conceding its scalability over large areas. Given the research context and its focus on scalability, building extraction based on unsupervised methods were favored in order to relax the prior knowledge constraints. Many conventional unsupervised techniques-e.g. k-means, mean shift, active contour model-have been proposed for building and road detection using remote sensing images. In particular, active contour models have attracted strong interests given their advantageous computational simplicity and flexibility [69].

This research work has investigated these approaches and analyzed their shortcomings regarding initialization and sensitivity to image noise.

Expected Results

The expected results of this research work are the methods dedicated to the registration and building extraction. They have potential impacts on advancing the knowledge of the field, both in theory and application. Indeed, this research work focuses on the registration and the fusion of airborne LiDAR and aerial/satellite optical imagery datasets acquired under unconstrained conditions. This context requires a relevant and versatile solution, related to a theoretical gap that these methodologies aim to fill.

Considering the registration, the goal is to advance towards the synergistic exploitation and utilization of the two concerned datasets. Such an outcome can be appreciated with abundant benefits across multiple applications in remote sensing [47]. The research work also aims at overcoming the modality difference, the misalignment, and the resolution and size difference between the two datasets when exploiting them jointly.

Accurate extraction of building footprints in urban and residential scenes has been studied for many years, supplying a wide range of applications in photogrammetry and remote sensing. An accurate extraction holds a crucial role within the context of flood risk anticipation and assessment. It is also relevant for other tasks within the context of analyzing and preventing the impacts of climate changes [19]. Moreover, a building footprint extraction method that is able to maintain high accuracy when expanding to a large-scale urban scene without any major difficulties for training and/or re-parameterization is very prosperous. This research work aims to accomplish both requirements, i.e., accuracy and scalability, regarding a building extraction method.

Lastly, a rigorous performance assessment methodology of the building extraction methods is additionally expected through this research work. It involves evaluating the performance using benchmark datasets widely used by the photogrammetry and remote sensing community, facilitating the comparison with the state-of-the-art methods. Moreover, the building extraction performance should also be assessed on a large-scale dataset, such as a city or even larger. Such an assessment on large-scale urban scenes with high diversity and complexity would allow appraising effectively the building extraction method scalability.

Research Scope

This research work focuses on urban scenes. The registration method versatility is reflected through the ability to register datasets that were not acquired simultaneously, but actually from different platforms, different campaign configurations, and having different spatial resolution and level of detail. Despite relying on the availability of buildings on the observed scenes, it should be noted that the usability and versatility of the proposed method are not necessarily limited, since urban scenes with buildings (even very sparse) are available most of the time [70].

Nevertheless, the limitations on other environments such as rural and forest scenes, which lack man-made objects like buildings providing reliable primitives, can be anticipated.

The building extraction is carried out on two different datasets, namely the Vaihingen benchmark datasets provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) [71], and the Quebec City datasets provided by the Communauté Métropolitaine de Québec (QC, Canada) and managed by the Centre GéoStat (Université Laval). These two datasets involve two different geographical contexts, namely Europe and North America. They are relatively different in terms of compactness, density and regularity of urban areas [72]. Therefore, the applicability and versatility of this building extraction method on these tested scenes should be validated, and by extension, on other similar urban and residential scenes.

Outline of the Thesis

The structure of the thesis is organized as follows:

• This chapter has been devoted to introducing the research context and the motivations of the thesis. In detail, the problem statement of the research context, the research question, hypotheses, general and specific objectives, proposed methodological approach, expected results, and research scope have been described.

• Next, chapter 1 brings the state of the art. The first two sections are dedicated to review- ing the principles of the two concerned acquisition systems, namely LiDAR and optical imagery. Then, the state of the art regarding the registration methods between airborne Li-DAR with aerial/satellite optical imagery data, and the building extraction methods will be presented.

• Chapter 2 is dedicated to elaborating and presenting the registration methodology between airborne LiDAR and optical imagery data acquired on urban scenes. A coarse-to-fine registration method is proposed to address the challenges associated with the unconstrained acquisition context.

• Then, chapter 3 is devoted to presenting an accurate unsupervised large-scale building foot- print extraction method. The proposed method is developed based on the snake model and the fusion of LiDAR data and optical imagery data.

• Finally, chapter Conclusions and Perspectives provides the overall conclusions of this thesissummarizing the conducted research project, the contributions in terms of findings and research outputs, as well as the potential impacts-and the perspectives related to the future research directions.

Chapter 1

State of the Art

(This chapter includes sections redundant with the contents of chapter 2 and chapter 3. This is intentional for the sake of completeness and self-containment of this chapter. Furthermore, chapter 2 and chapter 3 consist of inserted articles.

Thus, they are presented as published.)

Principles of Light Detection and Ranging (LiDAR)

LiDAR is the technique using laser light to densely and accurately acquire 3-D information of the Earth's surface. It is widely considered as one of the most significant technologies in the mainstream topographic mapping and geospatial data acquisition in the last several decades [7]. The main advantage of this technique is that it provides a direct method to collect 3-D data with very high accuracy (e.g., up to a centimeter to decimeter level, depending on the measuring distance).

The outcome of a LiDAR system is an accurately georeferenced set of dense 3-D points, called a 3-D point cloud. Such highly accurate acquisitions are achieved thanks to the high accuracy level of laser ranging measurements, and the precise sensor platform orientation supported by an integrated positioning and orientation system (POS). In addition, one of the LiDAR strengths lies in the capability of laser pulses to penetrate small gaps in vegetation and other semi-transparent objects on the terrain surface. This provides additional information about the physical properties of the observed objects.

Many advantageous characteristics of the airborne LiDAR technology have been identified by

Vosselman and Maas [73] and Baltsavias [74]:

• High-speed data collection for large areas, with each data point having 3-D positional information and signal backscatter information;

• LiDAR system can acquire very dense 3-D point cloud, which can be up to 30 points/m 2 .

• LiDAR system provides high degree of spatial coverage and high level of automation during the data acquisition and post-processing;

• Compared to traditional photogrammetry, operating a LiDAR system is much less dependent on the observed area characteristics, the atmosphere and the weather conditions;

• The capability of multiple returns per laser pulse can be a great source of information in vegetated areas, and hence beneficial in many forestry applications. It can provide insights of the vertical forest structure and complexity1 [75].

In the following subsections (subsection 1.1.1 to 1.1.4), a brief introduction-summarizing the literature given by Shan and Toth [7]-on the laser ranging unit and the crucial components of an airborne LiDAR system is provided.

Laser Ranging Basic Principle

The core of an airborne LiDAR system (or any laser ranging, profiling, and scanning operations) is a laser-based opto-electronical ranging instrument, usually referred to as the laser range-finder unit. It is composed of a transmitter and a receiver. The range measurement can be determined based on the time-of-flight (ToF) of a laser pulse or by a phase comparison method of continuouswave laser [7,Ch. 1]. The ToF method relies on measuring the traveling time ∆t between the pulse emission and reception, and computes the range as described in Equation (1.1).

R = c ⇥ ∆t 2 (1.1)
where R is the distance between the range-finder unit and the terrain surface, and c is the speed of light.

On the other hand, the phase comparison method involves measuring the difference in phase, denoted by f, between the transmitted signal and the reflected signal (subjected to amplification and demodulation). It yields the fractional part of a wavelength l within the total distance, i.e., ∆l =( f/2p) ⇥ l. The integral part comprise of k wavelengths can be determined by varying the modulation pattern. Equation (1.2) describes the addition of the two parts to yield the range measurement.

R = kl + ∆l 2 (1.2)
In practice, the ToF pulse method is widely preferred in using airborne and spaceborne LiDAR systems, whereas the phase comparison method is more used in short-range terrestrial laser scanner with a typical distance less than 100 meters [7, Ch. 1].

Airborne LiDAR System Configuration

A typical airborne LiDAR system comprises the following main components:

1. A laser range-finder unit: This unit includes the actual laser sensor, the transmitting and receiving optics, the receiver with its detector, and time-to-digital converter.

2. An optical scanning mechanism is used to carry out the scanning of the terrain. It involves an optical element-e.g., a rotating plane, a polygon mirror, or a fiber-optic linear array-to send a series of laser pulses rapidly at known angles, along a line crossing the terrain, in other words, in the cross-track direction perpendicular to the platform's flight path. This allows collecting sequential measurements of ranges and corresponding angles and converting them into successive points along the scanned line. Then, the forward motion of the airborne platform, on which the laser scanner is mounted, allows collecting series of range measurements along successive lines.

3.

A position and orientation system comprising an integrated differential GPS/IMU, an essential element of the overall airborne LiDAR system. During the flight, it records raw navigation data continuously. After the mission is completed, the accurate position, altitude and attitude of the laser range-finder and its attached scanning mechanism are determined during a post-flight processing operation.

Hardware part:

It is typically a computer-based unit equipped with a display and an operator interface through which the commands are given to the system to execute specific actions. It provides the controls of the laser range-finder (1) and the scanning mechanism

(2) operations, and the data recording systems.

5.

A software part allows controlling and coordinating the operation of the main elements of the system, and carry out the recording, storage and preliminary processing of the measured data collected in-flight. For example, a module is responsible for mission planning before the flight, and for assisting the implementation of the planned flight lines during the flight.

Another module allows setting various parameters such as scan rate, pulse rate and scan angle. They are also needed to carry out the post-flight processing in order to create the LiDAR point cloud.

During the flight, the range-finder unit measures the distances to the terrain surface with reference to the local coordinate system. Simultaneously the POS stores the GPS data and IMU orientation data. At the same time, ground GPS stations gather the data at known ground fixed positions. They are used to compute the differential GPS (DGPS) positions of the airborne platform. Using the DGPS and IMU data, the position of the laser scanner can be computed with an accuracy level of centimeters to decimeters, whereas its orientation can be determined smaller than one hundredth of a degree [7]. These position and orientation data, with the laser scanner data (i.e., ranges and angles) are stored with the time stamps generated from the received GPS signal, facilitating the synchronization between them. After the synchronization, the laser measurement for each sampled ground point can be directly transformed into an earth fixed coordinate system.

LiDAR Data Attribute

Besides the three spatial coordinates, a LiDAR point cloud also involves a number of other attributes, derived from the acquisition or due to a post-processing. 

Scan direction

Boolean Direction the scanning mirror traveling at the time of the emitted pulse. 1: positive scan direction, 0: negative scan direction.

Flight line edge

Boolean Points at the edge of the flight line will be given a flag value of 1, and all other points will be given a flag value of 0.

Scan angle

Degree The scan angle is a value in degrees between -90 (to the left) and +90 (to the right).

Classification -Post-processed LiDAR points can have a classification to designate the type of object having reflected the laser pulse.

Point source ID -Unique identifier to reference this point back to a collection source

Uncertainties of LiDAR Data Irregular Point Distribution

As aforementioned, LiDAR point cloud is composed of irregularly distributed points in 3-D space [76]. Consequently, the point cloud data structure is inherently more difficult to work with when performing processes such as point searching, and interpolating a location between points [73,Chap. 2]. Therefore, in many airborne applications, the point cloud data is structured into a 2.5-D structure, e.g., elevation map and slope map [7].

In addition, at some small scan angles, an assumption usually made is that the sampling distances between the two directions, i.e., along-track and across-track, are nearly identical thanks to the manual setting of the LiDAR sensor parameters by the users. However, this is not the case for the points at the end of a measured profile, where the along-track sampling distances may be twice larger than the across-track ones [7]. Another problem relates to the vertical surfaces, e.g., buildings and walls, where the point density can be significantly decreased causing a discontinuity of information along these surfaces.

Laser Point Accuracy

As previously presented, a LiDAR system is composed of multiple sensors that can have many potential error sources, including both systematic and random error components. The basic relations and error formulas regarding airborne LiDAR systems were outlined by Baltsavias [START_REF] Emmanuel | Airborne laser scanning: basic relations and formulas[END_REF],

whereas an early error analysis on LiDAR data was presented by Schenk [START_REF] Schenk | Modeling and analyzing systematic errors in airborne laser scanners[END_REF]. In general, the errors in LiDAR data can stem from individual sensor calibration (called measurement errors), lack of synchronization, and misalignment between the different sensors. Even after rigorous system calibrations, some errors could still be present in the data. Most of the systematic errors can be rectified using strip adjustment, with or without ground control. Indeed, the discrepancy between overlapping LiDAR strips can be eliminated using various methods, such as 3-D strip adjustment based on least-squares matching [START_REF] Maas | Methods for measuring height and planimetry discrepancies in airborne laserscanner data[END_REF], strip adjustment based on sensor calibration [START_REF] Skaloud | Rigorous approach to bore-sight self-calibration in airborne laser scanning[END_REF], or based on intensity data [START_REF] Maas | On the use of pulse reflectance data for laserscanner strip adjustment[END_REF].

Impact of Beam Divergence

In topographic applications, the impact of the laser beam divergence is also significant where a terrain surface elevation varies considerably. At many locations where the sensor-to-surface distances are greater than the usual (i.e., the ranges intended by the system configuration setting), the beam divergence can become relatively large, and result in a footprint size-relationship defined by Equation (1.3)-that can be significant with respect to the surface variations.

D = 2R ⇥ tan ✓ ∆q 2 ◆ cos(b a) (1.3)
where D is the diameter of the footprint, R is the distance between the laser sensor and the surface, ∆q is the beam divergence, b is the scan angle of the laser beam and a is the angle between the surface normal and the vertical.

For steep terrains, the uncertainty of the range measurement-related directly to the vertical accuracy of the point cloud-could become large, even for small scan angles, as illustrated by Fig- 

Aerial and Satellite Photogrammetry

Photogrammetry is the science of obtaining reliable measurements from photographs and digital images, captured by optical cameras. Optical cameras are passive sensors, measuring the sunlight backscattered from the terrain. It comprises an elementary sensor-e.g., a bolometer, a lightsensitive emulsion film, or a charge-coupled device (CCD)-which captures the photons coming from a line-of-sight in a period of time, called exposure time. An optical camera can be mounted on a manned aircraft or a UAV (called aerial or airborne photogrammetry), or on a satellite (called satellite or spaceborne photogrammetry). It is usually pointed down toward the ground, vertically or at an oblique angle.

Camera Models

A camera model is a mapping between the 3-D world (object space) and the 2-D image [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF].

Most of the cameras used in photogrammetry produce images that can be considered as central projections of the 3-D objects in a particular view [START_REF] Kraus | Photogrammetry: geometry from images and laser scans[END_REF].

Pinhole Camera Model

The most basic central projection camera model is the pinhole camera model, where a point with coordinates X =(X, Y, Z) T in object space is mapped to the point x =(u, v) T on the image plane, or focal plane, i.e., the plane z = f where f is the focal length. Figure 1.2 shows the geometry of this model, where C is the camera center placed at the coordinate origin, and p is the principal point.

By the similar triangle rule, the image coordinates of the mapped point x can be determined as x =(fX/Z, fY/Z) T . The mapping can be written as,

X 7 ! x (X, Y, Z) T 7 ! ( fX/Z, fY/Z) T (1.4)
which describes the central projection from 3-D world to 2-D image coordinates. Many simplifications are made in this model, such as the camera center is placed at the coordinate system, the image principal point is located at (0, 0, f ), and there is no rotation between the camera coordinate system and the world coordinate system.

parameters. The interior orientation parameters (or internal parameters) consist of the scale factors in the x-and y-coordinate direction, respectively a x and a y , the skew parameter s and the coordinates of the principal point (u 0 , v 0 ) in terms of pixel dimensions. On the other hand, the exterior orientation parameters (or external parameters) are the position (X 0 , Y 0 , Z 0 ) and the orientation angles (w, f, k) of the camera when the image was acquired.

The camera matrix P allows an object with real world coordinate X to be projected into the image coordinate x, as follows, x = PX (1.8)

Given that PX =(x, y, w) T , the corresponding image point is (x/w, y/w) T .

By assuming the skew s = 0 and the scale factors in both image directions are equal a x = a y = a (i.e., square pixels), the relationship between the coordinates u and v of an image point x and the coordinates (X, Y, Z) of an object point X can be expressed as follows,

u = u 0 + a r 11 (X X 0 )+r 12 (Y Y 0 )+r 13 (Z Z 0 ) r 31 (X X 0 )+r 32 (Y Y 0 )+r 33 (Z Z 0 ) (1.9a) v = v 0 + a r 21 (X X 0 )+r 22 (Y Y 0 )+r 23 (Z Z 0 ) r 31 (X X 0 )+r 32 (Y Y 0 )+r 33 (Z Z 0 ) (1.9b)
These equations are called Collinearity Equations. They involve 9 degrees of freedom, consisting of (X 0 , Y 0 , Z 0 , w, f, k, a, u 0 , v 0 ).

Pushbroom Camera

The Linear Pushbroom (LP) camera is a sensor type common in satellites, for instance the SPOT 3or Pléiades sensor. Under such a camera model, a linear sensor array is used to capture a single line of imagery at a time. As the platform moves, the sensor sweeps a horizontal area of the terrain (hence called pushbroom), capturing the image one line at a time. As such, the second dimension of the image is provided by the motion of the platform. The x-axis in the image is the direction of the platform motion, whereas the y-axis is in the direction of the linear sensor array. In the LP model, the platform is assumed to move in a straight line at constant velocity with respect to the ground. The orientation of the sensor array with respect to the travel direction is also assumed constant. Figure 1.3 illustrates the geometry of the LP camera. Because of such an acquisition geometry, in the x-direction the image is an orthographic projection, whereas in the y-direction the image is effectively a perspective image [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF].

Similar to a general projective camera, the mapping from object space into the image can also be described by a 3 ⇥ 4 camera matrix, with one difference. Let X =( X, Y, Z,1) T be the homogeneous coordinates of an object point, and P is the camera matrix of the LP camera. Given that PX =( x, y, w) T , the corresponding image point is (x, y/w) T (represented as an inhomogeneous 2-element vector) [82, chap. 5].

Image Distortions

A number of typical distortion types exist in aerial and satellite imagery data. They are summarized by Table 1.2.

Camera Calibration -Determination of Interior Orientation

Photogrammetric cameras can be calibrated in a laboratory with the help of an optical goniometer [START_REF] Timothy | The development of camera calibration methods and models[END_REF]. However, this technique can be exclusively effective for high-quality cameras, in which the elements of interior orientation are expected to remain unchanged over a long period of time after the calibration. Otherwise, this process can be carried out by photographing a test field providing a relatively large number of control points with known (X, Y, Z) object coordinates.

From the photograph, the 2-D image coordinates of the control points can also be measured.

In this approach, it is assumed that the elements of interior orientation remain unchanged only during the test field photography. They are considered unknowns like the exterior orientation parameters, and are addressed at the same time during the bundle adjustment, which will be presented later in this section. The approach of estimating both interior and exterior orientation is called self-calibration [START_REF] Brown | The bundle adjustment-progress and prospect[END_REF][START_REF] Fraser | Digital camera self-calibration[END_REF].

Determination of Exterior Orientation

In aerial surveys, the exterior orientation of the optical camera, its position and attitude, can be accurately provided based on the GPS/IMU recordings from the flight. This approach is known as direct georeferencing, in which the GPS and IMU information allows the direct transformation from the local coordinate into a world coordinate system.

When the GPS and IMU information are not available or not accurate enough, the exterior orientation can be determined by performing an aerial triangulation (or aerotriangulation). The aerial triangulation aims at estimating the orientation parameters of all photographs in the block and the 3-D coordinates of discrete tie points in a global coordinate system [START_REF] Kraus | Photogrammetry: geometry from images and laser scans[END_REF], while reducing the number of field-surveyed control points. This approach is usually carried out by a block adjustment using tie points-i.e., readily identifiable points in the overlap areas between the adjacent photographs of the block.

Bundle Block Adjustment

The most widely used aerial triangulation technique is bundle block adjustment. Relying on the collinearity equation (1.9), a bundle adjustment aims to compute simultaneously the 3-D coordinates of tie points and the exterior orientation associated to each image in the block. In order to carry out a bundle adjustment of a strip or a block of images, the images are required to have at least 60% forward overlap (or longitudinal overlap) and 20% side overlap (or lateral overlap).

The image coordinates x and the interior orientation parameters of a photograph define a spatial bundle of rays. The exterior orientation parameters of the bundles in the block are computed simultaneously for all photographs. During the adjustment, the bundles are rotated (w, f, k) and displaced (X 0 , Y 0 , Z 0 ) until:

• Conjugate rays intersect as closely as possible at the tie points.

• Rays corresponding to ground control points pass through the points as closely as possible.

As previously mentioned, if an amateur camera is used instead of a photogrammetric camera, then the elements of interior orientation can also be determined within the bundle block adjustment process. In this case, since the interior orientation parameters are also considered unknowns-increasing the number of unknowns-it is necessary to have a greater number of control points and tie points. In other words, depending on the number of unknown parameters, more or less control points will be required. There are three different types of control points: full control points (with known X, Y, Z), or plane control points (with known X, Y) and height control points (with known Z).

The advantages and limitations of this technique can be summarized [START_REF] Kraus | Photogrammetry: geometry from images and laser scans[END_REF] as follows.

Advantages:

• High accuracy (most accurate method of aerial triangulation, since we have direct transformation between image and ground coordinates);

• Potential of extending the technique to compensate for systematic errors;

• Potential of incorporating observed elements of exterior orientation to the adjustment.

Disadvantages:

• Non-linear problem;

• High computational cost;

• Separate adjustments along the vertical and horizontal directions are not possible.

Orthorectification

Orthorectification is the process of removing the effects of image distortions-induced by the sensor, the viewing perspective, and the relief-for the purpose of creating a planimetrically correct image. It can be accomplished based on the relationship of the image coordinates to the real-world GCP coordinates. The real-world GCPs are typically provided by a DEM. As a result, the mathematical relationship between the DEM-based ground coordinates and the image can be computed, and used to determine the correct position of each pixel in the source image.

The orthoimage generation involves warping the source image so that the distance and area are coherent with real-world measurements. The resulting accuracy of the orthoimage relies on the accuracy of the aerial triangulation, the resolution of the source image, and the accuracy of the utilized DEM.

From a practical point of view, there are several requirements to produce an orthoimage from raw imagery data:

• Digital raw images;

• Camera calibration matrix K;

• Adjustment points consisting of GCPs, image tie points, and check points (used for assessing the orthorectification process accuracy). The GCPs are usually provided from the ground survey or from the DEM. Secondary control points can also be reused from a map or an existing orthoimage with known accuracy, as long as the known accuracy exceeds the expected outcome accuracy by a factor of three to five times.

The direct georeferencing of airborne sensors made possible by the integration with GPS/IMU has become a generally accepted approach for airborne mapping [START_REF] Vallet | Gps/imu and LiDAR integration to aerial photogrammetry: Development and practical experiences with helimap system[END_REF]. Indeed, a number of studies carried out the registration of airborne images with LiDAR data by the virtue of GPS/IMU. However, the misalignments between the optical images and the LiDAR data cannot be neglected, even when using the direct georeferencing [START_REF] Vallet | Gps/imu and LiDAR integration to aerial photogrammetry: Development and practical experiences with helimap system[END_REF]89]. Similar problems are also found with the aerial triangulation, causing the images even being orthorectified to still yield a relatively significant misalignment when compared to the LiDAR data [9]. Such processes are still problematic due to systematic errors in actual integrated sensor orientation system, such as lever arms, boresights, synchronizations, etc. [9,[START_REF] Huang | Registration of aerial optical images with LiDAR data using the closest point principle and collinearity equations[END_REF].

Registration of LiDAR Data and Optical Imagery

As a crucial prerequisite to the applications based on fusion of LiDAR data and optical imagery data [44,48], studies for an accurate registration method between these two datasets have been conducted for many years. In order to carry out a registration, correspondences between the two datasets need to be found. Such correspondences are determined based on salient features on the datasets usually corresponding to physical objects (i.e., feature-based registration), or based on the intensity values within the datasets (i.e., area-based registration) [START_REF] Ardeshir | 2-D and 3-D image registration: for medical, remote sensing, and industrial applications[END_REF].

Area-based Registration Methods

Area-based methods, also known as intensity-based methods, estimate the pose of the camera (within the world coordinate frame) by minimizing a cost function, or maximizing a statistical similarity measurement. Such a function or similarity measurement is computed directly from the pixel values of the two input images-one is the optical image, while the other one is derived from LiDAR data-without a feature extraction step. The most widely used area-based approach is based on the maximization of Mutual Information (MI) between an optical image and a LiDARderived image. The LiDAR-derived image could be an elevation image (i.e., a DSM), an intensity image, and so on.

The registration approach based on the maximization of MI is originally introduced by Maes et al.

[92], for registering medical brain images from different modalities. Since then, it has been extensively studied in many research areas, particularly for the registration of an optical image with an image derived from LiDAR data. Given two random variables A and B with marginal probability distribution functions (pdf), p A (a) and p B (b) and joint pdf p AB (a, b), the Mutual Information between A and B, denoted by MI(A; B), measures the degree of dependence of A and B by the distance between the joint pdf p AB (a, b) and the pdf associated with the case of complete independence p A (a).p B (b). This entropic distance is expressed by the means of the Kullback-Leibler divergence measure [START_REF] Vajda | Theory of statistical inference and information[END_REF], given by Equation (1.10),

MI(A; B)= ∑ a,b p AB (a, b) log p AB (a, b) p A (a).p B (b) = H(A)+H(B) H(A; B) (1.10)
where H(X)= ∑ x p X (x) log p X (x) is the Shannon entropy of random variable X. Its estimation is proposed by Mokkadem [START_REF] Mokkadem | Estimation of the entropy and information of absolutely continuous random variables[END_REF]. Among the three approaches, the authors showed that the combination (c) yields the most accurate registration, whereas the approach (b) yields better accuracy than (a).

Parmehr et al. [9] improved this idea of using both elevation and intensity image derived from the LiDAR data for the registration. Instead of an addition (like by Mastin et where A and B are the LiDAR-derived elevation and intensity images (which are inherently registered), and C represents the optical image. This combined similarity measurement is shown to be more informative than the conventional MI and NMI [START_REF] Nathan | Normalized measures of mutual information with general definitions of entropy for multimodal image registration[END_REF]. As a result, it is shown to yield a higher registration accuracy level than the MI-based method between the optical image and the LiDAR images.

These approaches were built on an assumption based on the strong dependency between some predefined pairs of 2-D and 3-D attributes, e.g., the reflectance from the optical image and the intensity from the LiDAR data. In order to avoid such an assumption, Zhao et al. [START_REF] Zhao | 2d-image to 3d-range registration in urban environments via scene categorization and combination of similarity measurements[END_REF] proposed a supervised method to register an optical image to LiDAR data dedicated to a street-view context. They presented two main contributions, namely a scene categorization and a category-depending area-based registration. First, they proposed a scene categorization step based on the composition of the scene-i.e., how much of the scene image is about buildings, roads, etc. For this purpose, a training step using datasets composed of registered images and LiDAR data was carried out. Next, a new scene (with unregistered image and LiDAR data) was classified into one of the trained categories. Finally, the registration was carried out based on the similarity measurement (MI or NMI) between the trending 2-D and 3-D attribute pairs within the determined category, instead of fixating on one specific pair of attributes. In other words, the selection of the feature pair to compute the MI/NMI depends on the category of the scene. For instance, in one category, they may use the NMI between the optical image grayscale value and the LiDAR intensity value.

In another category, the trending pair of attributes could be the x-direction gradient image of the optical image and the LiDAR-based image of normal vector component n x . The latter consists of pixels indicating the value n x of the normal vector n =( n x , n y , n z ) computed from the 3-D point cloud. They asserted that such flexibility-by choosing the trending attribute pair according to the category-allows a better registration accuracy than a fixed attribute pair. However, the low scene type diversity and representative of the dataset can be problematic for this method.

In addition, such a supervised registration approach can also be limited to some typical range of scenes, and inapplicable for large-scale scenes.

Beside MI, there also exist other area-based approaches. Castorena et al. [START_REF] Castorena | Autocalibration of lidar and optical cameras via edge alignment[END_REF] proposed a registration method between optical image and LiDAR data in a street-view context, based on the alignment of edges present in the data. The main idea is based on a joint calibration and depth map super-resolution in an iterative process. Using a set of camera pose parameters (the outcome of a calibration), a high-resolution depth map is generated-the depth measurements are given by the LiDAR. A cost function is defined based on the edge misalignment between the optical image and this high-resolution depth map. By minimizing this cost function, the optimal calibration is determined. Using the super-resolution depth map, the method avoids the sparsity problem of the LiDAR data, which may cause imprecision in exhibiting edges.

The main drawbacks of these area-based methods are the necessities for the datasets to be spatially close to each other, as well as to have the same resolution and display similar intensity characteristics. The high computational cost is also problematic, requiring an initial registration close to the final results.

Feature-based Registration Methods

The second category of registration approaches consists of feature-based methods. They establish the correspondences between the datasets based on available distinguishable features. These methods involve feature extraction algorithms and feature matching strategy. The employed features can be from built environment, such as corner points, break lines and planar surfaces found in man-made objects such as buildings and roads. They can also be natural features like treetops, bushes and ground surface features. In general, the features from built environments provides a higher accuracy level regarding the registration results than the natural features [89].

Wong and Orchard [START_REF] Wong | Efficient FFT-accelerated approach to invariant optical-LIDAR registration[END_REF] proposed a registration method between LiDAR image and optical image, given that they have the same resolution. This method consists in using a modified Harris corner detector [START_REF] Alison | Descriptions of image surfaces[END_REF] to extract control points from the optical image and the LiDAR intensity image. Then, a Fast Fourier Transform-accelerated exhaustive search for correspondences among all extracted control points is carried out. Palenichka and Zaremba [66] proposed a registration method between a LiDAR-derived DSM and an optical image. It involves an automatic extraction of salient points from both the DSM and the optical image that discriminate the objects of interest from their surroundings. However, the high computational cost and the lack of concern for the relief displacement are the drawbacks of this method [28]. Liu et al. [49] proposed a registration method between airborne LiDAR data and UAV remote sensing imagery, based on 3-D and 2-D line segments extracted, respectively, from the LiDAR point cloud and the image. Based on the location of each 3-D line segment, several candidate 2-D line segments are extracted. Then, a manual selection for the correspondences-i.e., the conjugated 2-D and 3-D line segments-is carried out. This matching step can be prone to human bias. In addition, this method does not account for the potential spatial shift between the datasets. Therefore, it could work on the datasets with a small spatial shift, but fails for large spatial shifts.

Many research works have proposed using different features to improve the registration accuracy.

For example, Ding et al. [START_REF] Ding | Automatic registration of aerial imagery with untextured 3D LiDAR models[END_REF] performed a coarse-to-fine approach to register oblique aerial image and LiDAR data. They rely on vanishing points estimated from parallel vertical building edges at the coarse level, and then based on building corners at the fine level. While the vanishing points can be estimated using oblique images, this can be problematic when using vertical aerial and satellite images. Huang et al. [63] proposed a registration method involving two different features derived from two different scales, i.e., a network of lines representing roads extracted using k-means clustering at the first scale, and then building corners at the second scale. However, the use of k-means clustering, an unsupervised classification, on aerial images is seemingly too simple to extract the road network effectively.

Coarse-to-fine approach has been shown suitable for the registration between LiDAR data and optical imagery data. For instance, Abayowa et al. [26] proposed a coarse-to-fine strategy to register optical aerial images with a LiDAR point cloud. They rely on a number of aerial image sequences to generate an optical image point cloud using the Structure-from-Motion method. Then, two DSMs are generated from the two 3-D point clouds. A coarse registration is carried out based on the extraction and matching of salient regional features (done by morphological reconstruction [START_REF] Arefi | A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data[END_REF]) from the two DSMs. Having a coarsely estimated set of camera pose parameters, they proceed to the fine registration by performing the Iterative Closest Point algorithm between the two 3-D point clouds to finely estimate the camera pose. However, the approach of reconstructing 3-D point clouds from the images are shown to be erroneous, low resolution and difficult to carry out processes and analyses [40,[START_REF] Brell | 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction[END_REF]. A similar coarse-to-fine approach is also proposed by Brell et al. [44] to register airborne hyperspectral image and LiDAR data that were simultaneously acquired from the same aircraft. First, Scale-Invariant Feature Transform (SIFT) [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF] keypoint detector is applied to determine tie points between the hyperspectral image and the LiDAR data. Then, an area-based optimization is carried out to find optimal camera pose parameters. From the values coarsely estimated using the tie points, these parameters are then refined. The refinement is based on the minimization of the zero-mean sum squared distances calculated between the pixels of the hyperspectral image and those of the image generated from LiDAR intensity data. However, this method does not address the registration between the datasets that were acquired separately, in which case the spatial shift between the two datasets can be problematic to the tie-point-based registration. Also, there could be a potential issue due to the LiDAR data spatial resolution regarding the generation of suitable images for the subsequent area-based optimization. This issue was not addressed in their work.

In summary, all the methods reviewed in this subsection either assume that the airborne LiDAR data and the optical imagery data are spatially close to each other, have been recorded simultaneously (or on very close dates), and/or have identical spatial resolution. These constraints are challenging to carry out a registration method within an unconstrained acquisition context.

Building Footprint Extraction 1.4.1 Literature Review

Many building extraction methods have been reported in the past few decades, particularly with the evolution of LiDAR systems since mid-1990s [13]. However, this task remains very challenging due to the complexity of building size and shape, as well as their surrounding. Even with the recent developments of Deep Learning approaches for this problem, the task is still considered to be far from being solved [START_REF] Wang | Torontocity: Seeing the world with a million eyes[END_REF]. Based on the type of data utilized, the existing building extraction methods can be classified into three categories: (i) using aerial or satellite imagery, (ii) using 3-D data, e.g., directly acquired by LiDAR or constructed from multi-view or stereo imagery, and (iii) using jointly imagery and 3-D data.

In the first category, aerial and satellite imagery have been intensively used for urban and residential building extraction. For instance, early works such as [START_REF] Huertas | Detecting buildings in aerial images[END_REF][START_REF] Bruce | Methods for exploiting the relationship between buildings and their shadows in aerial imagery[END_REF] focused on the extraction of building fundamental features-i.e., edges, ridge lines and corners. Other methods employed the advantages of multispectral information to detect buildings in a classification framework [START_REF] Scott | Class-guided building extraction from ikonos imagery[END_REF][START_REF] Turker | Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (svm) classification, hough transformation and perceptual grouping[END_REF]. However, it is worth noting that an increase of spectral and textural information in imagery can contribute unfavorably to spectral ambiguities, rather than resulting in a reciprocal improvement of building extraction accuracy [START_REF] Qin | A hierarchical building detection method for very high resolution remotely sensed images combined with dsm using graph cut optimization[END_REF]. In addition, it is difficult to extract the complete building boundaries from optical image due to occlusions, poor contrasts, shadows, and disadvantageous image perspectives [START_REF] Ekhtari | Automatic building extraction from lidar digital elevation models and worldview imagery[END_REF]. These factors are problematic to the performance of the building extraction using only spectral and textural information from optical imagery [START_REF] Zhang | Classification of ultra-high resolution orthophotos combined with dsm using a dual morphological top hat profile[END_REF].

A worth noting trend in this first category is the recent rise in popularity of deep learning approaches for building extraction using aerial and satellite imagery. Indeed, recent studies have demonstrated that Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs) could achieve remarkable performance on scene classification and detection of urban objects (i.e., buildings, roads, and trees) [START_REF] Kaiser | Learning aerial image segmentation from online maps[END_REF]. However, CNN-based methods often generate lower resolution feature maps compared to that of the input optical images, hence yielding subsampled results in pixel-wise labeling [START_REF] Badrinarayanan | Segnet: A deep convolutional encoderdecoder architecture for image segmentation[END_REF]. On the other hand, FCN proposed by Long et al. [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] provides an advantageous ability to get full-resolution classification maps, making it become the state-of-the-art framework for semantic segmentation methods [START_REF] Marmanis | Classification with an edge: Improving semantic image segmentation with boundary detection[END_REF]. However, concerning the building extraction task, deep learning-based methods typically perform poorly at delineating precisely the building boundaries with sharp corners [START_REF] Dai | R-fcn: Object detection via region-based fully convolutional networks[END_REF]. As a result, these methods yield a high detection rate but they are unable to achieve relevant spatial coverage and geometric accuracy [55].

Since height changes allow distinguishing urban objects more effectively than the spectral and textural changes from optical images, numerous works [START_REF] Khoshelham | Segment-based classification of damaged building roofs in aerial laser scanning data[END_REF][START_REF] Zhang | Svm-based classification of segmented airborne LiDAR point clouds in urban areas[END_REF] proposed to exploit 3-D information from LiDAR to extract buildings. They belong to the second category. Many methods [START_REF] Khoshelham | Segment-based classification of damaged building roofs in aerial laser scanning data[END_REF][START_REF] Zhang | Svm-based classification of segmented airborne LiDAR point clouds in urban areas[END_REF] involve segmentation and classification techniques on LiDAR data, using attributes such as building size, shape, height, and Principal Component Analysis features. Brédif et al. [START_REF] Brédif | Extracting polygonal building footprints from digital surface models: A fully-automatic global optimization framework[END_REF] proposed an approach to extract rectangular buildings directly from the DSM, using a Marked Point Process of rectangles and then to refine them into polygonal boundaries. However, these methods usually face problems of misclassification of vegetation as buildings [8]. In addition, the accuracy of the extracted boundaries can be imperiled owing to the LiDAR point cloud sparsity problem [START_REF] Gerke | Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification[END_REF][START_REF] Chen | Building detection in an urban area using LiDAR data and quickbird imagery[END_REF].

Therefore, many researchers have developed a consensus strategy to use multi-source data in order to increase the building detection rate. A number of studies [START_REF] Sohn | Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[END_REF][START_REF] Awrangjeb | Automatic extraction of building roofs using lidar data and multispectral imagery[END_REF] focusing on the integration of LiDAR and optical imagery data have been reported, constituting the last category.

For instance, Sohn and Dowman [START_REF] Sohn | Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[END_REF] focused on exploiting the synergy of IKONOS multispectral imagery combined with a hierarchical segmentation of a LiDAR DEM to extract buildings.

Awrangjeb et al. [27] proposed a building detection based on building masks obtained from Li-DAR and multispectral imagery. They succeed at improving the building extraction accuracy, compared to the use of individual data source [START_REF] Zhang | Multi-source remote sensing data fusion: status and trends[END_REF]. However, such approach of integrating multi-source data can be problematic due to data misalignment [START_REF] Gilani | An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage[END_REF].

A taxonomy has been provided by the ISPRS Working Group II/44 on the methods submitted to the urban object detection benchmark test based on their processing strategy [71]. A large number of methods are classified as supervised, since they require training labeled data from LiDAR point cloud and/or optical image. For instance, Niemeyer et al. [START_REF] Niemeyer | Conditional random fields for LiDAR point cloud classification in complex urban areas[END_REF] and Chai [START_REF] Chai | A probabilistic framework for building extraction from airborne color image and dsm[END_REF] provided two of the highest accuracy methods submitted to the ISPRS Vaihingen benchmark.

Many others are categorized as model-based methods, since they involve an explicit model or a series of predefined rules imposed on the appearance of the buildings. For instance, the authors of [START_REF] Bayer | Brief description of procedures used for building and tree detection at vaihingen test site[END_REF] and [START_REF] Maria Poznanska | Derivation of urban objects and their attributes for large-scale urban areas based on very high resolution UltraCam true orthophotos and nDSM: a case study Berlin, Germany[END_REF] proposed segmentation-based approaches consisting in multiple thresholds on the DSM and Normalized Difference Vegetation Index (NDVI) to discriminate buildings and trees. Similarly, Grigillo and Kanjir [START_REF] Grigillo | Urban object extraction from digital surface model and digital aerial images[END_REF] proposed two variants of a model-based method that relies on rule-set classifiers on image color and NDVI values. However, the selection of such thresholds is strongly empirical and scene dependent.

Active contour model [69], or colloquially known as snake model, is an object boundary extraction technique widely used in computer vision and image processing [133, chap. 5]. Snakes, or active contours, are energy-minimizing curves, defined within an image domain that are deformable under the influence of internal forces within the curves themselves and other external forces. This technique has also been studied to extract buildings from urban and residential areas. In contrast to other approaches mentioned above, it allows a building extraction without the prior knowledge nor the labeled data concerning the images and the buildings. Moreover, this technique provides a favorable flexibility regarding external constraint forces introduced by users and a computational simplicity. These characteristics suggest that snake model is relevant for the development of a large-scale solution that fits our research purposes.

Snake Model

An active contour (or a snake) is a dynamic curve x(s)=( x(s), y(s)), where s 2 [0, 1] stands for the normalized arc length, defined within an image domain. It is deformable under the influence of internal and external forces. The behavior of the snake is governed by an energy function defined as follows,

E snake = Z 1 0 (E int (x(s)) + E ext (x(s)))ds (1.13) with E int (x(s)) = 1 2 a ∂x ∂s 2 + b ∂ 2 x ∂s 2 2 ! and E ext (x(s)) = E img (x(s)) + E con (x(s))
where E int and E ext , respectively, represent the internal and external energy terms. The internal energy term relates to the amount of stretch and the amount of curvature of the snake, respectively controlled by weighting parameters a and b. Small values of a and b, respectively, encourage short and smooth contours, and vice versa. On the other hand, the external energy term E ext is composed of the forces related to the image itself E img and other constraint forces E con . The external image-based energy E img involving salient features of the image, i.e., lines, edges, and terminations (i.e., line segment end-points, corners) is formulated as follows,

E img = w line E line + w edge E edge + w term E term (1.14)
where w line , w edge , w term represent the weights of the respective image salient features. Mathematical formulation of these energy terms [69] are provided in Appendix 3.9.1 (in chapter 3).

A snake that minimizes E snake described by Equation (1.13) must satisfy the following Euler equation,

a ⇥ ∂x 2 ∂s 2 + b ⇥ ∂x 4 ∂s 4 + rE ext = 0 (1.15)
In order to solve Equation (1.15), the snake is made dynamic by regarding x as a function of time as well as of the arc length, i.e., x = x(s, t). Then, the partial derivative of the snake with respect to time is then set equal to the left-hand side of Euler Equation (1.15), as follows,

∂x ∂t = a ⇥ ∂x 2 ∂s 2 b ⇥ ∂x 4 ∂s 4 rE ext (1.16)
As x(s, t) stabilizes, the partial derivative term ∂x/∂t vanishes and a solution for Equation (1.15) is obtained. A numerical approach for Equation (1.16) can be carried out by discretizing the equation and solving the discrete problem iteratively [69].

External constraint forces are included to the snake energy function to guide it toward or away from a particular feature, as well as resolving several snake problems such as initialization, convergence, and robustness against image noises. In this regard, Xu and Prince [START_REF] Xu | Gradient vector flow: A new external force for snakes[END_REF] proposed Gradient Vector Flow (GVF) to improve the traditional snake model by allowing more flexible initialization and encouraging its convergence to boundary concavities, as well as improving its robustness. GVF field is defined as the vector field v(x, y)=( u(x, y), v(x, y)) that minimizes the energy functional

E GVF = ZZ µ GVF (u 2 x + u 2 y + v 2 x + v 2 y )+|r f | 2 |v rf | 2 dxdy (1.17)
with µ GVF being a controllable smoothing term and f representing external forces from Equation (1.15), i.e., f (x, y)= E ext . Using [START_REF] Courant | Methods of Mathematical Physics: Partial Differential Equations[END_REF] the GVF field v can be found by solving

µ GVF r 2 u (u f x )( f 2 x + f 2 y )=0 µ GVF r 2 v (v f y )( f 2 x + f 2 y )=0 (1.18)
where r 2 is the Laplacian operator. The Euler equations (1.18) can also be solved by regarding u and v as functions of time,

∂u ∂t = µ GVF r 2 u(x, y, t) [u(x, y, t) f x (x, y)] • [ f x (x, y) 2 + f y (x, y) 2 ] ∂v ∂t = µ GVF r 2 v(x, y, t) [v(x, y, t) f y (x, y)] • [ f x (x, y) 2 + f y (x, y) 2 ] (1.19)
Once computed, v(x, y) replaces the potential force rE ext in the dynamic Equation (1.16), yield-

ing ∂x ∂t = a ⇥ ∂x 2 ∂s 2 b ⇥ ∂x 4 ∂s 4 + v (1.20)
Similar to the traditional snake model, this equation is solved by a discretization and iterative solution. The parametric curve solving the dynamic Equation (1.20) is thus called a GVF snake.

Cohen [START_REF] Laurent D Cohen | On active contour models and balloons[END_REF] proposed an inflation term as an external force, known as balloon model, as follows,

F balloon = k ⇥ ñ(s) (1.21)
where k is the magnitude of the force and ñ(s) stands for the normal unitary vector of the curve at x(s). This model mimics the inflation of a balloon that continuously pushes the snake points outward. Therefore it would prevent the snake from shrinking and converging into a single point.

Snake Model-based Building Extraction

Guo and Yasuoka [START_REF] Guo | Snake-based approach for building extraction from high-resolution satellite images and height data in urban areas[END_REF] proposed using snake model with balloon force to extract buildings on urban scenes using high-resolution satellite images and height data. Peng et al. [START_REF] Peng | An improved snake model for building detection from urban aerial images[END_REF] focused on improving the stability of snake convergence on aerial images. Kabolizade et al. [START_REF] Kabolizade | An improved snake model for automatic extraction of buildings from urban aerial images and LiDAR data[END_REF] proposed a snake model using imagery data coupled with a DSM generated from LiDAR data. This model relies on the minimization of variances of the height and the gray level values between the snake points. Consequently, it requires height information for every pixel of the image, in other words, the DSM must be of the same size and resolution as the optical image. Such requirement is problematic since LiDAR datasets usually have subsampled spatial resolution compared to the aerial imagery, yet a simple interpolation of height data could be unreliable. In contrast, Ahmadi et al. [START_REF] Ahmadi | Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours[END_REF] proposed a building extraction using a geometrical snake model on aerial images, which does not require height information or manual initial points. On the contrary, this model requires a priori gray levels of the buildings and the ground to use as training data to attract the snakes toward the desired buildings. Consequently, it results in mis-detected buildings when they consist of untrained color. Additionally, it does not cope well with building roofs having varying gray levels. Fazan and Dal Poz [START_REF] Juliano | Rectilinear building roof contour extraction based on snakes and dynamic programming[END_REF] proposed a building extraction method involving exhaustive searches for rectilinear building corners on the optical images, based on the basic snake model optimized by dynamic programming. Yet this method depends heavily on initial points to have decent results. Yari et al. [START_REF] Yari | Automatic reconstruction of regular buildings using a shape-based balloon snake model[END_REF] proposed a snake model involving an energy term based on the similarity between the snake and one of the three predefined shapes, i.e., rectangle, L-or U-shape.

Such constraint affects its applicability on large areas with buildings having diverse and complex shapes.

Interestingly, snake models have also been demonstrated as an efficient supporting tool for deep learning-based building extraction. For example, they are used to refine the public Geographic Information System (GIS) building footprints in the work undertaken by Griffiths and Boehm [57]-namely from OpenStreetMap. The footprints improved by the snake models are then fed into CNNs (specifically RetinaNet and Mask R-CNN) as labeled data for the building segmentation. The application of snake models in this work focuses on addressing the low-quality footprints provided by OSM datasets and the over-generalization of buildings. The latter problem relates to the case where multiple buildings close to each other are extracted together as one single big building. Sun et al. [START_REF] Sun | Extracting building boundaries from high resolution optical images and LiDAR data by integrating the convolutional neural network and the active contour model[END_REF] proposed two strategies to integrate the snake models with CNNs. In both strategies, the CNNs are trained with datasets composed of optical images and nDSM for classifying building pixels. The first solution starts with the CNNs, and then uses the snake models to refine the resulting boundaries. In contrast, the second strategy involves using the snake model as a feature extraction to produce the boundary features from the image separately. These features are then fed into the CNN architecture alongside with the optical image and the nDSM to perform a final classification.

Despite these interests, snake models still concede a number of problems, namely its sensitivity against image noise and undesired details, and the hyperparameter tuning in a large-scale study. While there is not currently any effective solution regarding the problem of snake sensitivity when using optical imagery, the hyperparameter tuning problem has been partially addressed by Marcos et al. [START_REF] Marcos | Learning deep structured active contours end-to-end[END_REF] with a deep learning-based approach. It involves using CNNs to learn the characteristics of the snake model parameters and energy terms from training labeled optical images and corresponding ground truth polygons. These CNN-inferred parameters and energy terms enabled this snake model to achieve a higher accuracy level than other deep learning-based building extraction methods. However, the main drawback of this method is that it requires every image patch-each one containing a building-to have an identical size, i.e., 512 ⇥ 512 pixels, for both the training dataset and the test dataset. This expects that every concerned buildings (either in training or testing) must have similar size so that the CNNs to learn and predict the parameters and energy terms. In other words, to resolve the snake parametrization problem, the approach proposed by Marcos et al. [START_REF] Marcos | Learning deep structured active contours end-to-end[END_REF] requires the building size consensus. This requirement directly affects the method reproducibility on buildings of different sizes. Consequently, such a snake parametrization approach could not be scalable over large areas consisting of buildings of various sizes.

Chapter 2

Coarse-to-fine Registration of Airborne

LiDAR and Optical Imagery Data on Urban

Scenes

In this chapter, we are interested in conceptualizing and developing a methodology dedicated to the registration of airborne LiDAR and optical imagery datasets acquired in an unconstrained context. It involves a coarse-to-fine registration method concentrating on urban scenes.
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Résumé

Les applications basées sur l'intégration de manière synergique de l'imagerie optique et des données LiDAR suscitent un intérêt croissant de la communauté de télédétection. Cependant, un mauvais alignement de ces jeux de données ne permet pas de tirer pleinement parti du po- De plus, l'incompatibilité de taille et de résolution spatiale entre les jeux de données a été surmontée à l'aide de la super-résolution. Enfin, une haute précision d'alignement des ensembles de données est également obtenue, mise en évidence par une erreur de 40 cm basée sur une évaluation avec des points de contrôle ainsi qu'une erreur de 64 cm basée sur une évaluation avec des paires de lignes de contrôle. Ces résultats prometteurs permettent de poursuivre les recherches pour une méthodologie de fusion complète entre ces jeux de données dans ce contexte difficile.

Abstract

Applications based on synergistic integration of optical imagery and LiDAR data are receiving a growing interest from the remote sensing community. However, a misaligned integration of these datasets fails to fully profit from the potential of both sensors. An optimum fusion of optical imagery and LiDAR data requires an accurate registration. This is a complex problem since a versatile solution is still missing, especially when data are collected at different times, from different platforms, under different acquisition configurations. This chapter presents a coarse-tofine registration method of optical imagery with airborne LiDAR data acquired in such a context.

First, a coarse registration involves processes of extraction and matching of building candidates from the two datasets. Then, a Mutual Information-based fine registration is carried out. It involves a super-resolution approach applied to LiDAR data to generate images with the same resolution as the optical image, and a local approach of transformation model estimation. The proposed method succeeds at overcoming the challenges associated with this difficult context. For instance, considering the experimented airborne LiDAR (2011) and orthorectified aerial imagery (2016) datasets, their spatial shift is reduced by 48.15% after the proposed coarse registration. Moreover, the incompatibility of size and spatial resolution is well addressed by the super-resolution. Finally, a high accuracy of dataset alignment is also achieved, highlighted by a 40-cm error based on a check-point assessment and a 64-cm error based on a check-pair-line assessment. These promising results enable further researches for a complete fusion methodology between these datasets in this challenging context.

Introduction

The perception of an environment on the Earth's surface and follow-up exploitations require using multiple sensors to capture specific and complementary characteristics of this environment [1]. In many areas of remote sensing, observations from heterogeneous sources are coupled and jointly analyzed to achieve a richer description of a scene. This approach allows to mutually benefit from their strengths, as well as reducing the data uncertainty and incompleteness relating to each sensor [2,3,4]. As a matter of fact, the fusion of multisource data has become one of the mainstream research topics in the remote sensing community nowadays [1,5].

Light Detection And Ranging (LiDAR) and photogrammetry systems are major sources for fast and reliable spatial data acquisition. They provide data that are complementary to each other while the two systems differ fundamentally in their operation and data collection principles. The first one is an active sensor while the second is passive. On the one hand, airborne LiDAR systems are widely used for providing accurate three-dimensional (3-D) surface information and 3-D geometry of objects and ground elements, in the modality of scattered point clouds (recorded according to range detection principle). On the other hand, aerial and satellite photogrammetry supplies rich semantic and texture information, in the form of multispectral images. By integrating the two technologies, many applications have been enabled such as building extraction [3,6],

city digital twin construction [7], land use and land cover classification [8] and so on [9,10].

Motivation

Over the years, existing works in the domain of data fusion between optical imagery and airborne LiDAR data have addressed dedicated acquisition contexts, in which the respective image and the LiDAR point cloud are already registered and/or they are acquired from the same platform at identical or very close dates. For instance, solutions submitted to the 2013 Data Fusion Contest of the IEEE Geoscience and Remote Sensing Society (GRSS) [11] focused on the fusion between LiDAR data and hyperspectral imagery with the same spatial resolution, acquired on two consecutive days. The same contest in 2015 [12,13] involved extremely high resolution LiDAR data and RGB imagery collected from the same aircraft with the sensors being rigidly fixed to the same platform. In other words, the solutions submitted to these contests, as well as many others [14,15,16], have not intended to cope with the inherent obstacles of the context where datasets are collected from different platforms with different acquisition configuration (i.e., different flying track, height, orientation, and so on) at different moments, and even in different seasons, with different spatial resolutions and levels of detail.

This chapter aims to propose a relevant registration method in this unresolved context. Table 2.1

summarizes the specifications of the sensors and their platforms considered in this work. The need for a relevant registration in such a crucial context is exemplified in the work undertaken by Cura et al. [17]. It also relates to the rise of the availability of data captured by different heterogeneous sensors that requires an efficient integration [5]. However, a solution that is versatile enough to overcome this difficult context still remains an unsolved research problem [18].

Challenges

The development of a relevant registration approach in this unresolved context faces many challenges.

Spatial Shift Between Datasets

The first challenge relates to the differences between the dataset point of view and field of view, which lead to a significant spatial shift between them. For instance, a spatial shift exists approximately 1-2 meters between the orthorectified airborne image (2016) and the LiDAR data (2011), or up to 40 meters between the Pléiades image and the LiDAR data (2011). According to our literature review, a coarse registration, which is necessary to reposition the two datasets, has not been rigorously studied by existing works. This step is often inadvertently bypassed using the dataset geospatial coordinates provided by a GPS/IMU system [16,7,19]. The boldface rows highlight the differences between datasets notably concentrated in this study. 1 Classification of LiDAR point cloud is: unclassified (U), ground (G), low vegetation (LV), medium vegetation (MV), high vegetation (HV) and building (B).

Uncertainty, Imprecision and Incompleteness

Distortions in the information extracted from optical images can be caused by radiometric errors like sensor sensibility, illumination changes, atmospheric effects, and geometric errors such as relief displacement, occlusions or shadows [20]. On the other hand, points may be missing in the LiDAR data due to occlusion or presence of water [21]. These errors, distortions and missing data from each of the two datasets induce incompleteness, imprecisions, and uncertainties within the registration and fusion processes of these data [22].

Spatial Resolution and Level of Detail

There are significant differences in spatial resolution and level of detail between the airborne or satellite imagery and LiDAR data. For example, as highlighted in Table 2.1, the considered LiDAR datasets in 2011 and 2017, respectively, have a point spacing 70 cm and 35.4 cm. On the other hand, the aerial image (2016) has a ground sampling distance (GSD) of 15 cm, whereas that of the Pléiades panchromatic (PAN) and multispectral (MS) images are 50 cm and 2 meters, respectively. Such differences affect the appearance of the same scene elements to be different on the two datasets, making it difficult to determine and extract the corresponding features between them [23]. This issue has not always been addressed by existing multi-source registration works.

For instance, Ye et al. [24] and [25] proposed a registration framework between LiDAR image and optical image in a context where the datasets always have the same spatial resolution. Among the proposed solutions to overcome the spatial resolution and level of detail differences between the datasets, some involve a multi-resolution approach [10,26] or a resampling step [20,27].

Relevance of Registration Features

The nature of a scene, either in urban or natural environment, conditions strongly the entities within the datasets that would be relevant to perform the registration [28].

Accuracy of Dataset Registration

When performing the fusion of airborne LiDAR data and optical imagery, even a small misalignment between them can lead to an unfavorable impact on the quality of the integrated product, or a significant reduction of data information content [29]. Thus, an accuracy level of 1-pixel is recommended for the data set registration [15]. As a matter of fact, a sub-pixel level of accuracy, assessed by measuring the distances between control points, is usually preferred for a good registration. However, such a qualitative criterion is difficult to achieve because the image pixel resolution can vary from several dozens of centimeters to several meters depending on the platform (i.e., airborne versus satellite). Current works in the literature involve resulting discrepancies between the registered datasets ranging from 45 to 50 cm [14,30]. They state that such discrepancies are a decent and desirable registration accuracy.

Contribution

This chapter addresses the need for a versatile and relevant registration approach able to overcome the aforementioned challenges. The versatility of our proposed method is reflected through its capability of registering the datasets that are not acquired simultaneously, nor from the same platform and same acquisition configuration, nor having same spatial resolution. These assumptions are crucial to the existing works [14,15,16,24,25]. It should be noted that the proposed method does not aim to address every scene possible, as we focus on a registration on urban scenes. In this regard, we propose a coarse-to-fine registration approach.

1. First, a coarse registration is performed to reposition the datasets closer to each other. It addresses the challenge of spatial shifts between datasets which is problematic but usually overlooked [16,7,19,30]. In this chapter, we present a coarse registration relying on the primitives that are buildings.

2. Second, a fine registration is carried out based on a local transformation model estimation.

It is enabled by a super-resolution (SR) approach applied to LiDAR data in order to generate images with the same resolution as the optical image. This approach is devoted to overcome the hindering caused by the spatial resolution difference between datasets.

Such a coarse-to-fine approach is necessary in order to register an airborne LiDAR dataset with an optical image. The mentioned coarse registration aims to reposition the two datasets in a fast but reliable manner. As a result, a global transformation model, composed of a set of coarsely estimated camera pose parameters, is determined. Even though the global transformation does not permit the dataset to be precisely registered, it narrows down the search space for optimal camera pose parameters from an initial set of values during the fine registration. However, the main drawback of this feature-based coarse registration is that the building primitives are not distributed evenly throughout the datasets. Hence, the global transformation has the tendency to prioritize a region exhibiting more primitives than others. Therefore, we propose a subsequent fine registration that focuses on determining the optimal parameters for each local region of the considered urban area. Such a local approach brings two benefits, namely a higher registration accuracy and a reduced computational cost of this fine registration. Then, we also propose a refinement of locally optimized transformation models, in order to avoid conflicts between them.

Lastly, the proposed method relies on tailored series of well-known processes and algorithms while avoiding complicated and labor-intensive processes.

The remainder of this chapter is organized as follows. A brief review of existing works related to the registration of optical imagery and airborne LiDAR data is provided in section 2.4. Then, section 2.5 presents the proposed methodological approach, consisting of two parts: coarse registration, then fine registration. Then, multiple quantitative assessments involving different datasets are presented and discussed in section 2.6. Finally, section 2.7 concludes this chapter.

Literature Review

Accurate registration of LiDAR data and optical imagery is the crucial prerequisite to any data fusion applications using them [14]. Most of automatic methods for registering such datasets can be classified into two categories, namely area-based and feature-based methods. On the one hand, area-based methods determine the optimal pose of the camera by maximizing a statistical similarity, e.g., Mutual Information (MI), between the values of optical image pixels and LiDAR-derived image pixels [15,7,26]. The LiDAR-derived image is either a Digital Surface Model (DSM), an intensity image, or an image of pdet (probability of detection) attributes derived from the LiDAR point cloud [7]. Their main drawbacks, in addition to the high computational cost, are the necessities for the datasets to be spatially close to each other, as well as to have the same resolution and display similar intensity characteristics. For instance, the similarity of characteristics between two-dimensional (2-D) images and normals to a 3-D surface has been shown to be of paramount importance for area-based registration methods [31].

On the other hand, feature-based methods establish correspondence between the datasets based on available distinguishable features. They involve feature extraction algorithms and feature matching strategy [32,33,34,35]. The employed features can be either from built environment, such as corner points, break lines and planar surfaces found in man-made objects, or natural features like trees, bushes and ground surface features. In general, features from built environment usually yield higher registration accuracy result than natural features [32].

Wong and Orchard [33] proposed a registration method between LiDAR data and optical image, assuming that they are two images of the same resolution. From the LiDAR data, it is an image of laser return intensity data. This method consists in using a modified Harris corner detector to extract control points from the two images. Then, an exhaustive search for correspondences, accelerated by the Fast Fourier Transform, among all extracted control points is carried out. However, this method fails to produce accurate registration result in the case of very high resolution images [28]. Palenichka and Zaremba [34] proposed a registration method between LiDAR-derived DSM and optical imagery. It involves an automatic extraction of salient points from both the DSM and the optical image that allows the discrimination of the objects of interest from the background. This method facilitates the automatic selection of control points that also works on natural scenes. According to [28], the high computational cost and the lack of concern for the relief displacement are the drawbacks of this method. Liu et al. [30] proposed a registration method between airborne LiDAR data and UAV (Unmanned Aerial Vehicle) remote sensing imagery, based on 3-D and 2-D line segments extracted, respectively, from the LiDAR point cloud and the image. For each 3-D line segment, a number of 2-D line segments are extracted from the same location on the image. Then, a manual selection is carried out to yield the correspondences (i.e., the conjugated line segments). Such a manual approach is prone to human bias. Also, this method does not account for the potential spatial shift between the datasets. Therefore, it could work on the datasets with a small spatial shift, but fails for large spatial shifts.

Many studies have proposed to use different features to increase the registration accuracy. For example, Huang et al. [36] proposed a registration method using two different features at two scales, i.e., a line network of roads extracted using k-means clustering at the first scale, and building corners at the finer scale. However, the use of k-means clustering as an unsupervised classification on aerial images is seemingly too simple to extract roads effectively. Ding et al. [35] performed a coarse-to-fine approach to register oblique aerial image and LiDAR data based on vanishing points estimated from parallel vertical building edges at the coarse level, and then based on building corners at the fine level. While the vertical vanishing points can be estimated using oblique images, this can hardly be done using vertical aerial and satellite images, as well as orthorectified images. A similar coarse-to-fine approach is also proposed by Brell et al. [14] to register hyperspectral image and LiDAR data simultaneously acquired from the same aircraft. First, Scale-Invariant Feature Transform (SIFT) [37] keypoint detector is used to determine tie points between the LiDAR data and the hyperspectral image. Then, an area-based optimization is carried out to find optimal camera pose parameters. Within a small range from the values coarsely estimated using the tie points, these parameters are then refined based on the minimization of a cost function. Such cost function is the zero-mean sum squared distances calculated between the pixels of the hyperspectral image and the image generated from LiDAR intensity data using a ray-tracing module. However, this method does not address the registration between the datasets acquired separately, in which the spatial shift between the two datasets can be problematic to the tie-point-based registration. Also, there is a potential issue due to the spatial resolution of the LiDAR data for generating a suitable image for the area-based optimization. This issue was not addressed in their work.

In conclusion, all the methods reviewed in this section either assume that the airborne LiDAR data and the optical imagery data are spatially close to each other, have been recorded simultaneously (or on very close dates), and/or have similar spatial resolution and level of detail. These constraints have been previously discussed (see subsection 2.3.2) to be challenging to a registration method in the considered context. To the best of our knowledge, a method explicitly devoted to the registration of LiDAR and image datasets acquired from two different platforms, with different configurations at different times and even seasons, has not yet been proposed. In what follows, we present how our method is able to achieve such purposes. which is represented by a set of camera pose parameters, denoted by q global . Second, a fine registration based on an SR of LiDAR values and an area-based optimization is carried out. Such SR process takes into account a transformation model (i.e., q global at the first iteration) and generates high-resolution LiDAR-based images. Next, a statistical similarity measure, namely Mutual Information (MI) or Normalized Combined Mutual Information (NCMI), between these superresolved images and the optical image is estimated. Thus, the estimated MI (or NCMI) value can be considered as a function of the transformation model. The maximum value of such measures is expected to be achieved when the involved images (i.e., the optical image and the superresolved LiDAR-based images) are geometrically aligned [15]. As a result, an optimal transformation model associated to this maximum MI (or NCMI) value is determined. We describe the two registrations in the two following sections.

Proposed Method

Coarse Registration

Figure 2.2 sums up the proposed coarse registration, which has been originally introduced in our previous work [38]. Man-made structures in urban scenes like buildings are more suitable for accurate registration, compared to natural features [32]. In addition, they remain unchanged through a relatively long period of time (e.g., several years). However, in airborne Li-DAR datasets, the point density around vertical surfaces like building facades can be low. Hence, the localization accuracy of features like building corners and edges is deficient. Therefore, our coarse registration method relies on region-based primitives namely buildings.

Different series of processing steps are carried out on the LiDAR and optical image datasets respectively in order to extract buildings. On the one hand, we apply a series of processing steps starting with an elevation thresholding on LiDAR point cloud. On the other hand, mean shift segmentation [39] is performed on the optical image with a contextually chosen bandwidth parameter. Further processing is then applied to remove unwanted segments and preserve building-like ones. The respective process of building extraction from the LiDAR point cloud and the optical image are described in the next subsections. Then, the building candidates from each dataset are matched and yield a set of correspondences, which are then used to estimate the global transformation model.

Building Extraction From LiDAR Data

The extraction of buildings from LiDAR point cloud is carried out through a series of steps. They are depicted in Figure 2.3, whereas the input point cloud is shown by Figure 2.3a. First, nonground points are separated from ground points using an elevation thresholding. This thresholding is proposed by many existing works as a necessary initial step [40]. The threshold T e is set as follows, T e = H g + T rf , where H g denotes the ground elevation and T rf is a relief factor. The first value H g , as proposed by [40], can be determined from a Digital Terrain Model (DTM) generated from the LiDAR point cloud data, e.g., by performing the DTM generation algorithm proposed by [41]. This DTM generation method allows us to handle complex terrains, such as combination of hills, steep slopes and plateaus. Also, since the LiDAR point cloud can be classified as described in Table 2.1, e.g., using the classification method proposed by [42], we can measure H g by the average elevation of ground points, i.e., H g = mean(z g ) where z g represents the elevation of ground points. The second value T rf is empirically set to T rf = 2.5 meters (usual minimum height of a building).

All non-ground points are then vertically projected onto the plane z = 0. A raster grid representing these projected points is created (Figure 2.3b). The resolution of the grid is set according to many years in the field of computer vision and image processing. However, its relevance cannot yet be dismissed. Nevertheless, determining the best bandwidth parameter for mean shift still remains difficult despite many investigated approaches [48]. This parameter can be set adaptively according to the type of urban area (either residential, industrial, mixed, etc.), and the size of objects of interest. In other words, a contextualization is needed to set up the mean shift parameter.

Such a contextualization is carried out based on the meaningful information in the observed area, such as an estimated number of buildings and their relative distance-this knowledge is derived from the building extraction process using LiDAR data-as well as the resolution and the color range of the optical image. Future works will investigate the automation of this step.

Once the mean shift segmentation is performed, a refinement of the extracted segments is carried out. First, we compute the size of the segments, and remove the small ones, since they usually correspond to trees and cars. Large segments corresponding to street regions are similarly removed. This filtering is simple and efficient [49], but depends on the image resolution. Therefore, it needs a manual intervention to be set correctly. In this chapter, we propose to remove segments whose actual area is smaller than 20 square meters or larger than 2,000 square meters, which are not the typical area of buildings. Second, we identify the Minimal Bounding Rectangle (MBR) [50] of each of the remaining segments and calculate, using Equation (2.1), the percentage of their area over the area of the MBR.

% MBR_filling = area(segment) area(MBR) ⇥ 100 (2.1)
This filling percentage aims to eliminate coarsely the irregular segments such as trees and grass, while retaining highly regular shape building segments. Figure 2.4 depicts a comparison between the MBR filling percentages of two building segments and a tree segment, from which a clear margin between the two types of segment can be observed. In this chapter, a threshold of 50% for the MBR filling percentages is typically applied. However, on a scene with numerous irregular shape buildings, this threshold can be relaxed. It is worth noting here that this MBR-based refinement only acts as a preliminary filter. Although it cannot remove every non-building segment, it allows to effectively eliminate coarsely the irregular segments. Then, these extracted and refined segments, even with a number of potential outliers, will be fed into the graph-based matching step.

Graph-based Matching of Extracted Segments

The two sets of building candidates extracted from the LiDAR and optical image datasets are taken into consideration and matched. Regarding the optical image, only the segments having a higher percentage than the fixed threshold are considered as stated in the previous point. On the other hand, all building regions extracted from the LiDAR point cloud are taken into consideration. The comparison and matching of these segments can be difficult due to several issues. First, several tree and grass segments wrongly extracted as buildings still remain after the MBRbased segment refinement. In addition, the datasets can be relatively distant to each other (as mentioned in section 2.3.2), making a direct matching of segments based on their location not suitable. Therefore, a matching of segments based on their relative position with respect to their neighbors is more relevant than comparing their individual values, such as location, area, shape similarity, and so on.

A common pattern connecting the centers of neighboring building segments representing their relative spatial arrangement on both datasets is determined using the Graph Transformation Matching (GTM) algorithm [51]. GTM is a graph-based point matching algorithm designed for non-rigid registration between images. Compared to a conventional method like RANSAC [52], this algorithm performs a better removal of outliers, i.e., wrongly paired buildings in this work.

In practice, both GTM and RANSAC require an initial one-to-one matching of segment centers, which can be carried out based on the positions of vertically projected 3-D building region centers onto the plane z = 0 and the centers of 2-D segments extracted by mean shift segmentation. In the specific case of satellite imagery and LiDAR data where the relative shifts are large (i.e., approximately up to 40 meters), this initial matching is guided by a translation vector. It is calculated based on the shift of the largest segment in the area. The largest segment is determined relying on the segment absolute area value and its relative area value with respect to other segments.

Result of the segment matching is shown in Figure 2.5, whereas Figure 2.5a depicts the initial matching. As we could expect, a number of wrongly paired buildings (i.e., outliers) result from the initial matching. They are originated from the tree and grass segments extracted as buildings, or from the buildings that exist on one dataset but not on the other one. These outliers are then removed using GTM. Figure 2.5b depicts the result of GTM, whereas Figure 2.5c presents the result of RANSAC. As we have been considering only the relative position of the segment centers, a refinement of false positives from GTM result is carried out based on the area value and the direction of segments. Here, we allow some tolerance for the area value (i.e., a 15% difference) and direction (i.e., a 2 difference) between paired segments provided by GTM. Such tolerance values are chosen empirically. Only the pairs of segments having area and direction differences smaller than the tolerances are preserved. With the selected tolerance values, we consider that only reasonable correspondences of buildings will remain. The result of this refinement is presented by Figure 2.5d.

The capability of GTM to cope with high amount of outliers-theoretically up to three times more numerous than the correct pairs [51]-is advantageous when handling the potential high number of outliers among the extracted segments from the optical image using mean shift. It is also anticipated to handle well the registration of datasets that were acquired within a large timespan, e.g., several years. This temporal variability can lead to significant changes in urban area, such as construction or deconstruction of buildings.

Global Transformation Model Estimation

Next, the coordinates of the matched building segment centers are used to determine the trans- 

R = R z (k)R y (f)R x (w) (2.3c)
where R x , R y , R z are the rotation matrices for rotations around x-, y-and z-axis. As presented by Equation (2.3), the transformation model involves eleven degrees of freedom, related to the camera internal and external parameters.

Fine Registration

After coarsely repositioning the datasets, the next step is dedicated to register them precisely.

An area-based optimization approach is relevant in the present context, in order to determine the optimal set of parameters that enables the most accurate registration [14,15]. However, this approach involves several constraints, such as the datasets need to be spatially close to each other, as well as to have the same resolution and display similar intensity characteristics. As a result of the presented coarse registration and the SR process (elaborated later in this section), these constraints are fulfilled.

We propose a fine registration method, summarized by Figure 2.6, which involves a SR applied on the LiDAR data. Then, an estimation of local transformation models is performed based on the maximization of the NCMI or MI measured between the optical image and the high-resolution

LiDAR-based images, resulting from the SR. The high-resolution term means that these images have the same resolution and size as the optical image. NCMI achieves its maximum values when the images are geometrically aligned [15], yielding an optimal set of camera pose parameters, denoted by q ⇤ . We describe these points in what follows.

SR of LiDAR Data

LiDAR point cloud is usually significantly subsampled compared to optical image. This subsample problem is usually addressed by a sparse reconstruction (e.g., for pansharpening [54]) or an SR of low-resolution depth maps [55]. Thus, we propose a process of transferring and propagating values from LiDAR point cloud onto the frame of the optical image. Such process is to At the first iteration of the fine registration, q is given by q global obtained from the coarse registration. Mathematically, the value transfer is presented by the following equation,

f Ω ⇤ = H Ω ⇤ y z or f Ω ⇤ = H Ω ⇤ y i (2.4)
where Ω ⇤ and Ω denote, respectively, the subsets containing the indices of pixels from f, having or not an associated altitude value (or intensity value) transferred from y. Thus, f Ω ⇤ and f Ω , respectively, denote the sub-vector containing the pixels with and without a transferred altitude value; whereas f denotes the vector containing all pixels. The dimension of f Ω ⇤ and f Ω , respectively, are m ⇥ 1 and (n m) ⇥ 1. The matrix H Ω ⇤ associated to the camera pose parameters q, is an index matrix allowing selecting only the pixels whose values are transferred from the LiDAR point cloud. It is computed based on the projection related to q (Equation (2. 

f = arg min f F (f) with F (f)=kr x fk 2 2 + r y f 2 2 | {z } f SSDG (f) +l kfk 1 , subject to f Ω ⇤ = H Ω ⇤ y z or f Ω ⇤ = H Ω ⇤ y i (2.5)
where k•k p stands for the L p -norm, r x and r y represent the directional gradient operators along the x-and y-axis, whereas the parameter l controls the amount of the L 1 -regularization.

Our SR approach is inspired by the work of Castonera et al. [56]. However, they proposed a cost function that is solely defined by SSDG for the fusion of terrestrial LiDAR data with optical imagery. It is based on hypothetical characteristics of a depth map, namely that the magnitude and occurrence of depth discontinuities inside such depth map should be minimum. The advantage of using this cost function is its convexity and ease to compute. Castonera's method showed good results in propagating depth values across homogeneous regions. However, the mentioned hypothetical characteristics are not suitable in an airborne context, where off-terrain objects like buildings or trees always exhibit strong elevation discontinuities. By iteratively minimizing the SSDGs, these discontinuities will be gradually flattened, hence resulting in inaccurately estimated z-image at these elevation-transitioning regions. Such discontinuities should be preserved during the super-resolution process. Thus, a L 1 -norm term is additionally proposed in our approach to promote sparsity of the z-image, i.e., to preserve the elevation discontinuities stemming from buildings and trees.

(d) Propagation algorithm

The optimization problem described by Equation (2.5), containing the term kfk 1 , is solved iteratively. Each iteration involves calculating the gradient descent of the SSDG term (i.e., r f SSDG ) followed by a shrinkage/soft-threshold step. The shrinkage operator T a : R n ! R n is defined as follows,

T a (x)=(|x| a) + ⇥ sign(x) (2.6)
where (|x| a) + = max(|x| a,0), and a is a threshold value, which is set to a = lg in Algorithm 2.1.

Algorithm 2.1 presents the process of solving Equation (2.5), using the Fast Iterative Shrinkage-Thresholding algorithm (FISTA) [57] with a constant step size. In this Algorithm, the superscript (k) of a vector denotes its state at the k-th iteration. The sub-vector x Ω ⇤ (and y Ω ⇤ ) contains only the values of pixels indexed by Ω ⇤ , i.e., the pixels having a LiDAR transferred value. They remain unchanged during the propagation process. On the other hand, x Ω (and y Ω ) represents the subvector containing the values of pixels indexed by Ω, i.e., the null-valued pixels before the value propagation. The vector f without an index subscript is the vector containing all pixels, i.e., f =

f Ω[Ω ⇤ . For instance, f spa represents the sparse image where pixels of index in Ω ⇤ are transferred from LiDAR data, while other pixels (i.e., the one of index from Ω) are null-valued.

FISTA with its computational simplicity is adequate for solving large-scale problems. It also converges more quickly than ISTA, with a rate of O(1/k 2 ) [57]. The convergence rate of the SRs is depicted in Figure 2.8. Indeed, Figure 2.8a and 2.8c, respectively, depict the errors between the estimated z-images and i-images at two consecutive iterations, i.e., f (k+1) f (k)

2

. The values of the cost function F (f (k) ) through iterations are also shown in Figure 2.8b and 2.8d. We can remark that after approximately 600 iterations, the estimated z-image and i-image have converged into stable solutions.

Algorithm 2.1 Solving Equation (2.5) by FISTA algorithm with constant step size g.

input:

• sparse image f spa (f spa Finally, Figure 2.9 shows the results of a transfer and propagation of altitude and intensity values from the LiDAR data onto the frame of the optical image. The value transfer results are depicted through the sparse images (Figure 2.9a and 2.9b), while the value propagation results are shown by the dense images (Figure 2.9c and 2.9d). On the z-images, the pixel color represents the altitude in meters. In contrast, the pixel color on the i-images represents the intensity value between 0 and 255. The reference optical image on the same urban scene (Figure 2.9e) allows a visual quality assessment of the super-resolved images. On the one hand, we can observe that the elevation of follows,

Ω ⇤ = H Ω ⇤ y z or f spa Ω ⇤ = H Ω ⇤ y i , f spa Ω = 0) • a maximum number of iterations k max • step size g > 0 • soft thresholding parameter l > 0 • a tolerance value e for stopping criterion set: k 1, t 0 1, y (0) f spa repeat x (k) Ω = T lg ⇣ y (k 1) Ω gH Ω r f SSDG ⇣ y (k 1) ⌘⌘ t k = 1 2 ⇣ 1 + q 1 + 4t 2 k 1 ⌘ y (k) Ω = x (k) Ω + ✓ t k 1 1 t k ◆ ⇥ ⇣ x (k) Ω x (k 1) Ω ⌘ k k + 1 until k > k max or ky (k) y (k 1) k 2 < e set: b f Ω ⇤ f spa Ω ⇤ and b f Ω y ( 
q ⇤ t = arg max q2Θ MI( f i SR (q, y t ); u t ) (2.7) q ⇤ t = arg max q2Θ NCMI(( f i SR (q, y t ), f z SR (q, y t )); u t ) (2.8)
Equation (2.7) and (2.8) present the maximizations based on, respectively, MI and NCMI. f i SR and f z SR represent the SR process that generates, respectively, the i-image and z-image (denoted by f in the section 2.5.2), given the camera pose parameters q and the LiDAR data y t .

Given two random variables A and B with marginal probability distribution functions (pdf), p A (a) and p B (b) and joint pdf p AB (a, b), the Mutual Information between A and B, denoted by MI(A; B), measures the degree of dependence of A and B by the distance between the joint pdf p AB (a, b) and the pdf associated with the case of complete independence p A (a).p B (b). This entropic distance is expressed by means of Kullback-Leibler divergence measure [58], given by Equation (2.9),

MI(A; B)= ∑ a,b p AB (a, b) log p AB (a, b) p A (a).p B (b) = H(A)+H(B) H(A, B) (2.9)
where H(X)= ∑ x p X (x) log p X (x) is the Shannon entropy of random variable X. Its estimation is proposed by Mokkadem [59]. The registration method based on the maximization of MI is originally introduced by [60]. Since then it has been extensively studied in many research areas, particularly to register an optical image with an image derived from LiDAR data. This image is either the LiDAR-derived DSM or the intensity image, which has the same resolution as the optical image [7,19].

Another statistical similarity measurement used for the registration between LiDAR data and optical imagery (Equation (2.8)) is the Normalized Combined Mutual Information (NCMI) [15],

given by Equation (2.10). LiDAR images, i.e., DSM and intensity image which are inherently registered. This combined similarity measurement is shown to be more informative than the conventional MI [61].

NCMI((

Mastin et al. [7] compared the three usages of LiDAR-derived images in the MI-based registration involving measuring its/their similarity with the optical image, i.e., first, using only the DSM image, second, using only the intensity image, and third, using both images. They demonstrate that the usage of the intensity image yields more accurate registration result than using the DSM image. The usage of both images is also shown to yield more accurate result than the two individual usages [15].

(b) Implementation

To resolve Equation (2.7) and Equation (2.8) we use Nelder-Mead simplex algorithm [62]. Such algorithm is derivative-free and also straightforward in terms of implementation. The initial values for the optimization are given by the q global , resulting from the coarse registration. In this chapter, the considered urban area is divided into equal patches, of which the size is chosen as 500 ⇥ 550 pixels. This patch size for the fine registration has been selected based on the study of [63]. It is not related to the building size. It only aims at reducing the computational cost while maintaining a sizable patch for a reliable MI calculation. The division of the area into equal patches is irrespective of the distribution of buildings, or in other words, independent of the distribution of correspondences used in the coarse registration.

average of neighboring local transformation models, given by Equation (2.11).

q(p)= 8 > > < > > : ∑ N i=1 w i q i ∑ N i=1 w i , if d(p, C i ) 6 = 0 q i , if d(p, C i )=0
(2.11)

The weights w i are computed by the inverse squared Euclidean distance from the considered point p to the neighboring patch centers C i , as follows,

w i = 1 d(p, C i ) 2 , i = 1, .., N (2.12) 
Figure 2.10c and 2.10d depict the outcomes of the resolved incoherence problem between patches, using the IDW-based interpolation of patch-based camera pose parameters.

Results and Discussions

Assessment Methodology

Experiments have been carried out to evaluate the quality of the registration and determine whether it is good enough to be beneficial for a subsequent data fusion or other applications.

However, the lack of a ground truth, i.e., true values of the camera pose parameters, makes such an evaluation difficult. To overcome this problem, Mastin et al. [7] proposed to use expert-chosen control points to determine these values. Otherwise, without a ground truth, the registration quality of existing methods has been assessed in these following manners:

1. Using a subjective quality indicator or by a visual assessment: e.g., a good assignment of 3-D point-to-pixel on the colorized point cloud [13, Sec. 3], or assessing whether the images are close enough for the projective texture mapping [7], or based on how well the representations of objects (e.g., buildings, vegetation) align.

2. Using the average spatial discrepancy between datasets measured at manually determined check points, or using check pair lines.

3. Involving a determination of an optimal set of parameters that minimizes a cost function or maximizes a statistical dependency measurement. In other words, a registration is considered successful when the determined parameters are optimal. The cost function can be the MI or its variation between the optical image and the LiDAR intensity image [15,19,7]. It can also be defined by the pixel-wise distances calculated between the hyperspectral image and the LiDAR-derived image [14].

Since a thorough quality assessment of a registration method is still missing, we present multiple evaluations in this chapter. First, a visual assessment is carried out based on the alignments of scene elements. Second, an evaluation of building candidate extraction and matching steps from the coarse registration is carried out. Third, since our proposed registration method already involves a maximization of MI between datasets for determining optimal camera pose parameters, we perform subsequently two spatial discrepancy evaluations. They are based on, first, check points which are the centroids of manually determined building roofs, and second, check pair lines manually sketched from the two datasets. shift segmentation on both areas, 85.71% and 91.67%.

Considering the matching step, despite yielding relatively high precision (i.e., 100% on the first area and 87.5% on the second one), RANSAC provides a very low number of TPs and a high number of misses. GTM outperforms RANSAC on both areas, yielding more correct matches of building segments. However, on the first area, GTM yields a 95% of recall, with a relatively high number of FAs (i.e., 7 segment pairs are wrongly matched). These FAs are then eliminated by the subsequent validation based on segment area and direction (cf. Figure 2.5).

Patch-based Transformation Model Estimation

The division of a considered urban area into equal patches, and the local transformation model estimation are shown by Figure 2.14. On each patch, the maximized value of MI between the optical imagery and LiDAR data is displayed, as well as the variations of q ⇤ t compared to q global . It should be noted that there is no relationship between the maximized MI values and the number of correspondences in each patch. For example, the patch (2, 1) with no correspondence can have a higher maximized MI value results than the patch (1, 3) with four correspondences. The relative difference among the maximized MI values stems from the different content of each patch. These variations of q ⇤ t compared to q global are different from one patch to another without any noticeable common pattern. Thus, potential incoherences between them can be expected. Such incoherences are resolved as a result of the IDW-based smoothing presented in section 2.5.2. Table 2.3 summarizes the evolution of the resulting MI measurements between the global transformation model (i.e., outcome of the coarse registration) and the local transformation model (i.e., outcome of the fine registration) on each individual patch. Taking into account the number of correspondences among patches (as shown in Figure 2.14a), we remark lower MI gains (not maximized MI values) for the patches with three to four correspondences than for the patches with fewer correspondences. In fact, the higher MI gains on the patches with few or no correspondence (the bold rows in Table 2.3) shows the interest of the fine registration. Indeed, the coarse registration on these patches is less effective than on the patches with many correspondences, requiring the fine registration step to compensate for more data misalignment, hence resulting in higher MI gains. troids of each pair are measured. A smaller distance indicates a more accurate registration. Each column of Table 2.4 presents the spatial discrepancy evaluation between one LiDAR dataset and one optical imagery dataset, among the four datasets described in Table 2.1. The evaluation is presented by the mean and standard deviation of the measured distances. Indeed, the assessments on the registration between the LiDAR data 2011 and then the LiDAR data 2017 with the orthorectified aerial imagery 2016 are given by the column one and two of Table 2 2.4. The resolution of the Pléiades optical image is 50 cm, and its horizontal accuracy is theoretically between 1 and 3 meters, depending on the usage of ground control points on the considered area. These two characteristics of the Pléiades imagery data, especially the horizontal accuracy, are the major factors causing its registration with the LiDAR data (both 2011 and 2017) to be not as accurate as the registration between the LiDAR data and the aerial image (2016). When regarding the resulting average discrepancy (i.e., 0.99 and 0.82 meters) and taking into account the spatial resolution of the datasets (i.e., 50 cm for the Pléiades imagery data and 70 cm or 35.4 cm for the LiDAR point spacing), one may interpret that these results are not good enough. However, as the horizontal As we can see from Table 2.5, the discrepancy between the datasets measured based on manually sketched line segments is significantly reduced after each of the registration, i.e., the coarse and the fine registration. On the one hand, the proposed registration method ultimately yields an average discrepancy of 0. Both spatial discrepancy assessments and all these mentioned elements show that the results yielded by our proposed method are relevant. These presented assessments have also shown and validated the versatility of the proposed method, through the differences between the registered datasets and the complexity of the test areas. However, it should be noted that it is virtually impossible for a registration method to perform well on any other scene without an adaptation or re-parametrization. Notwithstanding, in another context, namely European urban scenes, the same registration approach should be applicable without major difficulties.

Conclusions

In this chapter, we have presented and evaluated a coarse-to-fine registration method between airborne LiDAR data and optical imagery. It is dedicated to overcome the challenges associated with the difficult context, where the two datasets are not acquired from the same platform, neither from the same point of view nor having the same spatial resolution and level of detail. In the literature, even one or several of these constraints have been shown problematic for carrying out a registration method (see section 2.4). To the best of our knowledge, there is currently no solution able to achieve the registration between airborne LiDAR and optical imagery under such constraints altogether. As a matter of fact, the proposed registration method has been evaluated according to its own quality, before and after the registration. Indeed, it is not compared with existing methods because they were not designed to address the considered context. Nevertheless, we reconsidered the subjective accuracy suggestion related to a sub-pixel level of accuracy for a registration (see section 2.3.2). Instead, we rely on an objectively quantitative accuracy which is that, if the resulting spatial discrepancy is less than 50 cm, then the registration will be considered accurate. In this regard, the proposed registration method has achieved a highly desirable accuracy.

The proposed method can be summarized as follows. First, a coarse feature-based registration is carried out based on the extraction and matching of building candidates on the two datasets, reducing significantly the spatial shift between them. Here, it should also be noted that this building-based approach certainly does not limit the usability and versatility of our method, since urban scenes with buildings (even very sparse) are available most of the time [69]. Then, a fine registration based on the maximization of MI or NCMI (both measures have been performed separately) is carried out to determine the optimal camera pose, granting the datasets to be precisely aligned. It involves a process of super-resolution of LiDAR data to generate high-resolution images of altitude and intensity values. This approach neutralizes the difference of spatial resolution and level of detail between datasets, enabling the MI-based and NCMI-based fine registration.

The fine registration also involves in dividing the considered area into many equal patches. For each patch a local transformation model is estimated. This approach allows reducing significantly the computational cost of the fine registration. Lastly, a smoothing of the patch-based transformation models is carried out to resolve the conflicts and discontinuities between them. It involves an IDW average of camera pose parameters from neighboring patches.

As one can realize, many elements of the proposed method are intended as the solution to the challenges associated with the considered context. First, in order to address the spatial shift between datasets caused by the differences of points of view and fields of view, a coarse registration is carried out. It relies on using buildings as primitives, which is a relevant choice of primitive considering the low density of airborne LiDAR point cloud around vertical surfaces. Then, the differences of spatial resolution and level of detail between datasets have been dealt with by the SR approach. An area-based fine registration using MI or NCMI measurement is carried out to finely tune the optimal local transformation model. Overall, as highlighted by the comprehensive spatial discrepancy assessments, the proposed method has achieved a very high registration accuracy. It is especially desirable when taking into account the difficulties of the considered context, and the horizontal accuracy of the datasets.

It is suggested that only one registration approach is not sufficient to register the data accurately from heterogeneous sensors, even when they are rigidly fixed to the same platform [14]. In this chapter, we presented a coarse-to-fine registration method consisting of two steps of registration.

It reinforces the relevance of a coarse-to-fine approach for registering an optical aerial/satellite imagery with an airborne LiDAR dataset. Nevertheless, it can be anticipated that the proposed approach could have limitations to operate in an environment lacking of man-made objects providing reliable primitives, such as forest and desert areas. Thus, a study on the relevance and reliability of primitives found on these environments is necessary for an effective solution therein. However, if we could carry out the coarse registration with manual control points, the proposed subsequent fine registration would not be limited and can be well carried out on these scenes. Finally, with these promising results, the reported research has established a basis for a comprehensive fusion of aerial/satellite optical imagery and airborne LiDAR data in future researches.

2.9 Complements to the Article

Impacts of the Data Uncertainties, Imprecision and Incompleteness on the

Development of the Registration Method

The uncertainty, imprecision and incompleteness inherent to the LiDAR and optical imagery datasets have influenced the design of the proposed registration method. Firstly, the unconstrained acquisition context leads to a substantial spatial shift between the two datasets. For instance, the datasets considered in this chapter present a spatial shift varying from 1-2 meters up to more than 40 meters. It affects notably the matching of the primitives (i.e., the building segments) extracted from the two datasets. Suffering from such a spatial shift, a location-based approach-i.e., comparing and matching the extracted primitives based on their location-would fail. Therefore, it is more relevant to compare and match the extracted primitives based on their relative position with respect to their neighbors. With such a purpose, the GTM algorithm has been carried out. It allowed determining a common pattern between the graphs connecting the neighboring primitives on the two datasets. As a result of the performed coarse registration (in which the GTM algorithm participates), the spatial shift between the two datasets was reduced significantly.

Secondly, another uncertainty is due to the difference between the dataset spatial coverage. Consequently, the set of primitives extracted from one dataset is usually not the same as the other.

In this regard, a repositioning involving the reduction of the spatial shift mentioned above and a determination of the common region between the two datasets is necessary. In addition, the different acquisition time between the two datasets can lead to new primitive occurrence (i.e., new buildings) or primitive disappearance (i.e., demolished buildings). As a result, these primitives are present on one dataset but not on the other. For instance, in the selected area displayed in Figure 2.11b, two buildings were not built at the time when the LiDAR dataset was collected, i.e., in 2011. Hence, these two buildings yield two non-conjugate primitives, in other words, two outliers in the registration process. The capability of GTM to deal with a high percentage of outliers enables avoiding a performance decrease when dealing with these problems.

Lastly, as we have carried out the fine registration on small patches divided from a considered urban area, potential incoherences of the estimated transformation model parameters between the patches have been anticipated. Two examples have been shown in Figure 2.10a and 2.10b. In the first example, due to the difference of their transformation model parameters, a conflict can be noted when projecting the 3-D points from the neighboring patches onto the image space. On the other hand, there can also exist a case of discontinuity in the representation when projecting the 3-D points from neighboring patches. Therefore, a smoothing approach of the patch-based parameters has been proposed. It allows refining the parameters using the Inverse Distance Weighting to obtain a weighted average of the neighboring patch parameters.

Adjustment of Parameters in the Registration Method

In this complementary subsection, the adjustment of the important registration parameters is reflected through two aspects, namely the contextualization for the mean shift segmentation and the tolerance values applied when comparing the corresponding segments.

Firstly, the mean shift segmentation algorithm has been performed on the optical images for the purpose of extracting building segments. It requires determining a bandwidth parameter. As mentioned in section 2.5.1, this parameter is set manually according to the urban type and the size of the buildings. An alternative guided approach to determine this parameter can be carried out by comparing the mean shift results with the building extraction process carried out separately on the LiDAR data. Indeed, leveraging the building extraction result from the LiDAR data, meaningful information can be obtained, namely the rough number of buildings, their density and their size. Thus, this parameter can be adjusted until having obtained a comparable result.

Beside the building occurrence and disappearance mentioned previously, there also exist less significant changes in urban scenes, such as the addition or removal of building parts, due to the different acquisition time between the two datasets. In other words, some buildings are present on both datasets but with relatively different appearances due to a part of them being changed, i.e., removed or added. Consequently, these building segments, despite being at the same location, are different on the two datasets. Such problems have been prevented by applying the tolerances when comparing the area and direction of the extracted segments (see section 2.5.1). It allowed removing the pairs of extracted segments that are significantly different in terms of area and direction, thus the impact of such building changes can be avoided.

Super-resolution

The SR process is performed to neutralize the resolution and level of detail differences between the two datasets-or more specifically, the subsample spatial resolution of the LiDAR data compared to the optical imagery data. Moreover, the impacts of a relevant SR process is beyond this specific task. It allows generating rasterized high-resolution datasets of LiDAR-based elevation and intensity measurements, having the same size and resolution with the optical image.

Given the same size and resolution images, a direct pixel correspondence between them can be established. As a result, in addition to its coordinates (i.e., X and Y), every pixel in the optical images can have five different values (R, G, B, Z, I), where R, G, B are the color values, Z and I are, respectively, the elevation and intensity measurement from the LiDAR data.

The utility of such rasterized datasets has been shown relevant throughout this research workboth in the registration and later on, in the building extraction-and in many other applications such as scene segmentation and classification. For instance, several works such as Griffiths and Boehm [70] and Huang et al. [71] have proposed a building extraction approach which involves replacing the blue channel of the RGB images with a nDSM. The resulting composite image-i.e., red, green, and nDSM-is then fed into deep neural networks to classify building pixels. For the same task, Sun et al. [72] proposed to feed the RGB images with the nDSM into a CNN. A similar naive data fusion is proposed by Audebert et al. [73] for the scene semantic segmentation. It consists in concatenating six channels-infrared, red, green and DSM, nDSM, NDVI-from both optical imagery and LiDAR data, and feeding them into a SegNet-like architecture [74]. Luo et al. [75] proposed a fusion of LiDAR data and hyperspectral imagery data for land cover classification task. Firstly, they performed a manual registration between the two datasets involving manually chosen tie points. Then, they stacked the registered images, i.e, four images from LiDAR data (DTM, DSM, nDSM, and intensity) and the hyperspectral imagery data with 48 bands-all have the same resolution and size-to create a multiband image, with a total of 52 bands. Lastly, using a Principal Component Analysis on the stacked multiband image, they select the first five principal components and carry out the classification. All these mentioned research works have been carried out under the requirement that the DTM, DSM, nDSM and intensity image derived from the LiDAR data have the same resolution and size with the optical images.

Applicability of the Registration on Rural and Natural Scenes

This chapter has presented and evaluated the registration method designed and developed for urban scenes. It relies on the existence of buildings to provide the primitives required for the coarse registration. On the other hand, the fine registration approach can be carried out on any type of scene without requiring such primitives. Consequently, an adaptation of the proposed registration method on other different types of scene can be interesting.

On peri-urban areas where there are substantially fewer buildings or rural scenes with only a few buildings, carrying out the proposed registration method can be difficult. In such cases, a consideration on a large area is necessary in order to have a sufficient number of buildings. In addition, if necessary, instead of extracting the buildings and use them as region primitives, it is also possible to turn the focus on extracting the building corners. This would allow multiplying the number of primitives on the same scene. However, it is worth noting that the extraction of building corners on LiDAR data can be challenging if the point cloud density is low, especially on the vertical surfaces. Also, the reliability of such primitives also needs to be examined rigorously when using them for the coarse registration.

On the other hand, considering natural scenes such as forest or grassland regions, an absence of buildings can be easily remarked. Similarly to buildings, trees can provide a source of primitives, granted not as accurate and reliable. It can be difficult to extract their geometric property such as the tree crowns or treetops [76], especially in a forest area. They can also be quite variant considering the gap in acquisition time between the two datasets. Otherwise, on these scenes, the existence of other interesting cues in the optical image (e.g., salient features) and the LiDAR data (e.g., significant elevation changes) can be uncommon. Consequently, a semi-automatic registration approach can be pragmatically interesting. Firstly, a manual selection of control points on the scenes can be carried out. It is worth noting that this process can be laborious and prone to human bias. Then, the proposed fine registration can be carried out, similarly to how it has been developed on the urban scenes.

Elaboration on the Patch-based Fine Registration

Concerning the proposed fine registration, there are two important aspects when dividing the considered urban area into multiple equal patches, namely the computational cost reduction and the registration accuracy improvement. An analysis of the impact of patch size on area-based registration method has been carried out by Parmehr et al. [63]. It involves experimenting the registration between an optical image and a DSM having the same resolution (i.e., both 20 cm GSD) interpolated from LiDAR point cloud using natural neighbor interpolation. The amount of information contained in the patches varies with their size. A large patch increases the complexity of the MI maximization process, and consequently, the overall computational cost. In contrast, the amount of information contained in a small patch size may be insufficient to enable the statistical similarity of the images (optical and z-or i-image) due to the lack of common regions. Several remarks can be obtained by analyzing the results provided by [63]. When decreasing the patch size from 900 ⇥ 900 to 700 ⇥ 700, the time cost decreases averagely 1.5 times. Similarly, this time cost is reduced 2.7 and 7.4 times when the patch size is decreased from 900 ⇥ 900 to 500 ⇥ 500 and 300 ⇥ 300, respectively. They asserted that the average 500 ⇥ 500 patch size was the most suitable for carrying out the registration. This patch size allows a significant amount of information to enable the MI-based registration, as well as a reasonable computational cost. Influenced by this study, in this research work we have selected a similar patch size, given the similar spatial resolution of the experimented datasets compared to that of the concerned datasets (i.e., 15 cm GSD). Indeed, in parallel to the reduction of computational time, such a patch-based approach also allows improving the registration accuracy. Table 2.3 has highlighted the evolution of the MI measures from the coarse registration to the patch-based fine registration. Nevertheless, such a patch-based registration brings a drawback involving potential conflicts and discontinuities between patches. Thus, a smoothing of the patch-based results is necessary. Highlighted by the spatial discrepancy (cf. subsection 2.6.5), the overall registration accuracy after the patch-based fine registration has been improved significantly.

Complements on the Registration Approaches

Regarding the feature-based coarse registration, different types of primitive could present different challenges in terms of accuracy and reliability, e.g., corners and lines compared with regions.

For instance, building corners and edges extracted from LiDAR point cloud could be inaccurate given the vertical surfaces are usually incomplete for airborne LiDAR point cloud. In addition, the extraction of feature points and lines from optical images can also be difficult because of roof objects and road edges which could be found abundant on urban scenes. Therefore, if one is to rely on these low level primitives of different types (e.g., points and lines) as a group to represent a higher level primitive (e.g., a surface)-for instance in a bag-of-words principle-it would require extensive further study. On the other hand, a feature-based approach involving the extraction and matching of building segments still remains reliable for the coarse registration.

Regarding the potentiality of the fine registration to converge towards local maximums, such an outcome is thoroughly possible. However, according to Parmehr et al. [15,Sec. 5], by coupling both elevation and intensity information from the LiDAR data and registering with the optical images-based on the maximization of NCMI-it allows the global maximum of NCMI becoming more evident while reducing the presence of potential local maximums. As such, this approach allows decreasing the probability of a registration to be blocked by local maximums (and thus not being able to converge to a global maximum), compared to the approach of maximization of MI between the optical image and either one of the LiDAR images.

Complements on the Implementation Environment and Software

The research work presented in this chapter has been developed solely with Matlab (version R2017b). In addition, QGIS and ArcGIS have been used to manipulate raster and vector data.

Lastly, CloudCompare has also been used to visualize and analyze LiDAR point clouds.

Two machines were mainly used for the development of this work:

• Windows PC with Intel® Xeon® E5620 (clock rate: 2.40 GHz, 4 cores, 8 threads), and 16 GB of RAM;

• MacBook Pro with Quad-Core Intel Core i7 (clock rate: 2.70 GHz), and 16 GB of RAM.

The execution time of the coarse registration is around one hour, in which the mean shift segmentation on the optical images (using all three layers L*, a*, b* from the CIE L*a*b* color space) is responsible for 30-40 minutes. The fine registration takes significantly longer, i.e., almost 5-6 hours. This stems from the fact that for each iteration during the maximization of MI or NCMI, the SR process has to be recomputed using the parameters q of the current iteration.

Concerning the SR process, the FISTA algorithm was performed. Its stopping conditions consist in a maximum number of iterations k max , and a tolerance value e. Originally k max was set equal to 1000, but later empirically reduced to 700 to reduce the execution time. On the other hand, the tolerance was set as follows e = 10 5 ⇥ky (0) k 2 , where y (0) is the initial matrix for the SR (cf. Algorithm 2.1). Considering the convergence shown in Figure 2.8a (and again in Figure 2.16a below), the initial matrix yields a value of ky (0) k 2 = 1.4372 ⇥ 10 4 . Thus, the tolerance value becomes e = 0.1437. Even though the convergence can be perceived in Figure 2.16a as it is achieved at an earlier iteration (e.g., at 500 iterations), the actual iteration at which the tolerance was satisfied is 644, as shown by Figure 2.16b. Date of Publication: 26 May 2020. 

Résumé

Abstract

Automatic extraction of buildings in urban and residential scenes has become a subject of growing interest in the domain of photogrammetry and remote sensing, particularly since the mid-1990s.

Active contour model, colloquially known as snake model, has been studied to extract buildings from aerial and satellite imagery. However, this task is still very challenging due to the complexity of building size, shape, and its surrounding environment. This complexity leads to a major obstacle for carrying out a reliable large-scale building extraction, since the involved prior information and assumptions on building such as shape, size, and color cannot be generalized over large areas. This chapter presents an efficient snake model to overcome such a challenge, called Super-Resolution-based Snake Model (SRSM). The SRSM operates on high-resolution Light Detection and Ranging (LiDAR)-based elevation images-called z-images-generated by a superresolution process applied to LiDAR data. The involved balloon force model is also improved to shrink or inflate adaptively, instead of inflating continuously. This method is applicable for a large scale such as city scale and even larger, while having a high level of automation and not requiring any prior knowledge nor training data from the urban scenes (hence unsupervised). It achieves high overall accuracy when tested on various datasets. For instance, the proposed SRSM yields an average area-based Quality of 86.57% and object-based Quality of 81.60% on the ISPRS Vaihingen benchmark datasets. Compared to other methods using this benchmark dataset, this level of accuracy is highly desirable even for a supervised method. Similarly desirable outcomes are obtained when carrying out the proposed SRSM on the whole City of Quebec (total area of 656 km 2 ), yielding an area-based Quality of 62.37% and an object-based Quality of 63.21%.

Introduction

Motivation

Automatic and accurate extraction of building footprints from urban scenes using remote sensing data has become a subject of growing interest for a wide range of applications, such as urban planning [1], city digital twin construction [2], census studies [3], and disaster and crisis management, namely earthquake and flood [4,5].

This research work presents an effective solution for extracting buildings from urban and residential environments in a large scale. Such a task plays an important role in the context of flood risk anticipation, which is asserted with a particular importance in the province of Quebec, Canada [6]. Such a context requires accurate and regularly updated building footprint location and boundary, which enable the extraction of further essential structural and occupational characteristics of buildings (e.g., first floor, basement openings). In addition, the scalability of this solution-i.e., the ability to maintain its effectiveness when expanding from a local area to a large area [7]-is crucially important considering the scale of the study (i.e., at the scale of the province of Quebec).

The nature of urban and residential environments can be very complex, where buildings can be found with various sizes, colors, and shapes, within urban areas of different density and vegetation coverage. Such complexity is problematic for developing a large-scale building extraction solution. Indeed, a number of studies have been reported over the years with relatively significant results by assuming building shapes [8,9,10], enforcing geometrical constraints [11], or limiting on specific urban areas. However, such assumptions and constraints limit the scalability of the building extraction method, in particular over large areas composed of numerous and complex structures. Based on these premises, it is necessary that such a solution is (i) versatileapplicable on different urban scenes without relying on predefined assumptions, constraints, or prior knowledge about the involved scenes and buildings; (ii) highly accurate; (iii) and easily scalable over large areas with a relative computational simplicity. To the best of our knowledge, such a solution has not yet been found.

Literature Review

A large number of building extraction methods have been reported over the last few decades, particularly with the emergence of Light Detection and Ranging (LiDAR) systems since the mid-1990s [12]. However, this task remains very challenging due to various difficulties. For instance, many works [13,14,15,16] have been carried out using aerial and satellite imagery. They face many problems due to occlusions, poor contrasts, shadows, and disadvantageous image perspectives [17]. Since height changes allow distinguishing urban objects more effectively than the spectral and textural changes from optical images, numerous works [18,19] proposed to exploit 3-D information from LiDAR to extract buildings. However, these methods usually face problems of misclassification of vegetation as buildings [20]. In addition, the accuracy of extracted boundaries can be compromised due to the LiDAR point cloud sparsity [21]. Therefore, many researchers have developed a consensus strategy to use multisource data in order to increase the building detection rate. Hence, a number of studies [22,23] focusing on the integration of LiDAR and optical imagery data have been reported. They succeed at improving the building extraction accuracy, compared to the use of individual data source [24]. However, such an approach of integrating multisource data can be problematic due to data misalignment [25].

The International Society for Photogrammetry and Remote Sensing (ISPRS) Working Group II/4 "3D Scene Reconstruction and Analysis" provided a taxonomy for methods submitted to the urban object detection benchmark test [26], based on their processing strategy. Some of the methods are categorized as supervised methods requiring training data from LiDAR point cloud or optical image, such as Niemeyer et al. [27] and Chai [28]. They provided two of the highest accuracy methods submitted to the ISPRS Vaihingen benchmark. Many other methods are categorized as model-based methods, as they rely on an explicit model or a set of predefined rules on the appearance of the buildings in the data. For instance, Bayer et al. [29] proposed a segmentationbased method involving multiple thresholds applied on the Digital Surface Model (DSM) and Normalized Difference Vegetation Index (NDVI) to separate buildings and trees. Similarly, Grigillo and Kanjir [30] proposed two versions of a model-based method based on rule-set classifiers on image pixel colors and NDVI. However, the selection of such thresholds and rules is strongly scene-dependent.

Active contour model [31], or colloquially known as snake model, is an object boundary extrac-tion technique widely used in computer vision and image processing [32, chap. 5]. Snakes or active contours are energy-minimizing curves, defined within an image domain, that move under the influence of internal forces within the curve itself and other external forces. This technique has also been intensively studied to extract buildings from urban and residential areas. In contrast to other approaches mentioned above, it provides a building extraction solution without prior knowledge about the image and the building shapes. Moreover, this technique provides a computational simplicity and an advantageous flexibility allowing external constraint forces introduced by the user. These characteristics show that snake model is suitable to be developed into a large-scale solution that fits our purposes.

Snake Model-based Related Works

Guo and Yasuoka [33] used snake model with balloon force to extract buildings using highresolution satellite images and height data. Peng et al. [34] focused on improving the stability of snake convergence on aerial images. Kabolizade et al. [35] proposed a snake model using imagery data coupled with a DSM generated from LiDAR data. This model involves the minimization of variances of height and gray level between snake points. Consequently, it requires height information for every pixel of the image; in other words, the DSM must be of the same size and resolution as the optical image. Such a requirement is problematic since LiDAR datasets usually have subsampled spatial resolution compared to the aerial imagery, yet a simple interpolation of height data could be unreliable. In contrast, Ahmadi et al. [36] proposed a geometrical snake model to detect building boundaries from aerial images, without height information or manual initial points. However, this model requires a priori gray levels of buildings and ground and uses them as training data to attract the snakes toward desired buildings. Consequently, it yields a high number of misdetected buildings when they consist of untrained color. Additionally, it does not work well with the building roofs having varying gray levels. Fazan and Dal Poz [37] proposed a method involving exhaustive searches for rectilinear building corners in the optical images, based on the basic snake model optimized by dynamic programming. Yet this method depends heavily on initial points to have decent results. Snake models have also been demonstrated as an efficient tool to refine the public Geographic Information System (GIS) building footprints [38]. The improved footprints are then fed into Convolutional Neural Networks (CNNs) as labeled data for the building segmentation.

Our previous work [39] presented an unsupervised and automatic snake model to extract buildings from optical imagery. It is carried out based on a snake model operating on optical image, initialized and enhanced by integrating with LiDAR data. This snake model involves a novel external energy term computed based on the shape similarity between the snake and the projected LiDAR building boundary. Such an energy term encourages the snake to maintain a shape similar to the building boundary extracted from LiDAR data, while moving under the attractions of salient features provided by optical image. In contrast to the snake models mentioned above, this method succeeds at extracting buildings in various difficult cases, e.g., building roof with similar color to its background, gable-roof houses, or varying-color roof buildings. Without any human intervention or training data, it is able to achieve higher accuracy than existing snake models and many existing building extraction methods such as [25,40,41] on multiple test areas (see [39] for the full assessment). Nevertheless, similarly to other existing snake models, it still concedes a number of challenges, namely its sensitivity against image noise and undesired details and the hyperparameter tuning for snake model in a large scale.

While there is not currently any effective solution regarding the former problem (i.e., snake sensitivity) when using optical imagery, the latter problem (i.e., hyperparameter tuning) has been partially addressed by Marcos et al. [42] with a deep learning-based approach. It involves using a CNN to learn the characteristics of the snake model elements, i.e., parameters and energy terms, from training optical images and associated ground truth polygons. The CNN-inferred parameters and energy terms enabled this snake model to achieve higher accuracy compared to other deep learning-based building extraction methods. However, the main drawback of this method is that it involves every image patch-each one containing a building-to have the same size, i.e., 512 ⇥ 512 pixels, for both the training dataset and the test dataset. This means that all the concerned buildings (training and testing) must have similar size in order for the CNN to learn and predict the parameters and energy terms. In other words, in order to resolve the snake parametrization problem, this approach proposed by Marcos et al. [42] requires the building size consensus. This requirement affects directly the method reproducibility on buildings of different sizes. Consequently, such a CNN-based snake parametrization approach is not scalable for large areas consisting of buildings of various sizes.

Contribution

The objective of this research work is to develop a large-scale automatic and accurate building extraction based on snake model, fulfilling the following requirements. Firstly, such an effective snake model would require an automatic and reliable initialization. Secondly, the snake model should not be sensitive to noise and details in the image. Thirdly, the snake model parameters should be relevant when applied to a large extended area with buildings of various shapes, sizes, and colors. While the first requirement is addressed by using the boundaries preliminarily extracted from LiDAR point cloud, the second and the third remain very challenging. In this regard, the contributions of this work are threefold:

• We propose an effective solution to compute the external energy for the snake modelwhich is initialized by the LiDAR-based boundaries. Such a solution enables the snake model to be insensitive to image noise and details, as well as easing the snake model parametrization. In addition, this snake model involves an improved balloon force that behaves adaptively by either shrinking or inflating the snake (as opposed to the classic balloon force that always inflates it).

• In order to build a reliable foundation for this novel snake model, a super-resolution process is proposed to reliably improve the LiDAR point cloud sparsity. Such a sparsity issue has been problematic to building extraction methods using LiDAR data, including snake models.

• Lastly, we present a comprehensive performance assessment of the proposed SRSM on two different geographical contexts, namely Europe (with the Vaihingen benchmark dataset) and North America (with the Quebec City dataset). Such contexts involve various differences in terms of compactness, density, and regularity of urban areas [43], demonstrating the scalability and versatility of the proposed method.

Together, these elements constitute a large-scale automatic and unsupervised building extraction method, which achieves high thematic and geometrical accuracy when tested on various urban scenes.

Chapter Organization

This chapter is structured as follows: this section has been devoted to an introduction to the building extraction research topic, our motivation, and a literature review of the related works.

The contributions of this research work have also been summarized. Section 3.4 presents the proposed method. Then, multiple assessments on the performance of the SRSM involving various study areas and datasets are carried out in section 3.5. Next, section 3.6 brings the discussions on the relevance of the proposed SR, then on the SRSM results, and lastly on the impact of the snake model parametrization. Finally, section 3.7 provides conclusions and perspectives of this work. This chapter presents a novel unsupervised building extraction method, built around the Super-Resolution-based Snake Model (SRSM). Figure 3.1 depicts the flowchart of the proposed method.

Proposed Method

It employs predominantly the LiDAR data, with additional information from the optical image in order to remove vegetation. First, the SRSM is automatically initialized by the preliminary candidate building boundaries extracted from the LiDAR point cloud. This extraction process is carried out as presented in [39]. It relies on an elevation thresholding, a proximity regrouping, and an envelope boundary detection. The ground elevation value is determined by a DTM, generated using the method proposed by [44]. This process is also similar to other research works such as [25,45]. Since LiDAR-based building extraction can be difficult due to nearby vegetation [46], this process also involves a vegetation removal based on the Normalized Difference Vegetation Index (NDVI) derived from an optical image. As the two data sources are used jointly, a registration is necessary in order to avoid misalignment problems. This registration can be carried out a priori (i.e., data acquisition using the same platform) or a posteriori [47,48]. It aims to estimate the transformation model, allowing reducing the misalignment between the two datasets. The 3-D building boundary points extracted from the LiDAR point cloud are denoted by B i , where i represents the building index. The registration results in a set of transformation model parameters q, which is then used for the projection of the 3-D building boundary points B i onto the image space, denoted by P q (B i ). Then, they are used as initial points (denoted by b 0 i ) for the snake model, as well as to generate the building masks (denoted by M i ) used in the balloon force.

The SRSM operates on high-resolution LiDAR-based z-images generated by a super-resolution process. It also involves an improved balloon force model based on the building masks M i . The resulting building boundary is denoted by b i .

Mathematical Formulation

An active contour or a snake, is a dynamic curve x(s)=( x(s), y(s)), where s 2 [0, 1] is the normalized arc length, defined within an image domain that is deformable under the influence of internal and external forces. The behavior of the snake is governed by an energy function defined as follows,

E snake = Z 1 0 (E int (x(s)) + E ext (x(s)))ds (3.1) with E int (x(s)) = 1 2 a ∂x ∂s 2 + b ∂ 2 x ∂s 2 2 ! and E ext (x(s)) = E img (x(s)) + E con (x(s))
where E int and E ext , respectively, represent the internal and external energy terms. The internal energy term relates to the amount of stretch and curvature of the snake, respectively controlled by weighting parameters a and b. Small values of a and b, respectively, encourage short and smooth contours and vice versa. The external energy E ext is composed of the forces due to the image itself E img and other constraint forces E con . The external image-based energy E img involving salient features of the image, i.e., lines, edges, and terminations (i.e., line segment end-points, corners) is formulated as follows,

E img = w line E line + w edge E edge + w term E term (3.2)
where w line , w edge , w term are the weights of the respective salient features. Mathematical formulation of these energy terms [31] are provided in Appendix 3.9.1.

A snake that minimizes E snake described by Equation (3.1) must satisfy the following Euler equation,

a ⇥ ∂x 2 ∂s 2 + b ⇥ ∂x 4 ∂s 4 + rE ext = 0 (3.3)
In order to solve Equation (3.3), the snake is made dynamic by regarding x as a function of time t as well as of the arc length s. Then, the partial derivative of x with respect to t is then set equal to the left-hand side of Equation (3.3), as follows,

∂x ∂t = a ⇥ ∂x 2 ∂s 2 b ⇥ ∂x 4 ∂s 4 rE ext (3.4)
As x(s, t) stabilizes, the partial derivative term ∂x/∂t vanishes and a solution for Equation (3.3) is obtained. A numerical approach for Equation (3.4) can be carried out by discretizing the equation and solving the discrete problem iteratively [31].

External constraint forces are added to the snake energy function in order to guide it toward or away from a particular feature, as well as addressing snake problems such as initialization, convergence, and robustness against noise. In this regard, Xu and Prince [49] proposed Gradient Vector Flow (GVF) to improve the traditional snake model by allowing more flexible initialization and encouraging its convergence to boundary concavities, as well as improving its robustness.

GVF field is defined as the vector field v(x, y)=( u(x, y), v(x, y)) that minimizes the energy functional

E GVF = ZZ µ GVF (u 2 x + u 2 y + v 2 x + v 2 y )+|r f | 2 |v rf | 2 dxdy (3.5)
with µ GVF being a controllable smoothing term and f representing external forces from Equation (3.3), i.e., f (x, y)= E ext . Using [50] the GVF field v can be found by solving

µ GVF r 2 u (u f x )( f 2 x + f 2 y )=0 µ GVF r 2 v (v f y )( f 2 x + f 2 y )=0 (3.6)
where r 2 is the Laplacian operator. The Euler equations (3.6) can also be solved by regarding u and v as functions of time,

∂u ∂t = µ GVF r 2 u(x, y, t) [u(x, y, t) f x (x, y)] • [ f x (x, y) 2 + f y (x, y) 2 ] ∂v ∂t = µ GVF r 2 v(x, y, t) [v(x, y, t) f y (x, y)] • [ f x (x, y) 2 + f y (x, y) 2 ] (3.7)
Once computed v(x, y) replaces the potential force rE ext in the dynamic Equation (3.4), yield- ing

∂x ∂t = a ⇥ ∂x 2 ∂s 2 b ⇥ ∂x 4 ∂s 4 + v (3.8)
This equation is solved similarly as the traditional snake model, i.e., by discretization and iterative solution. The parametric curve solving the above dynamic equation is thus called a GVF snake.

Cohen [51] proposed an inflation term as an external force, known as balloon model, as follows,

F balloon = k ⇥ ñ(s) (3.9)
where k is the magnitude of the force and ñ(s) stands for the normal unitary vector of the curve at x(s). This model mimics the inflation of a balloon by continuously pushing the snake points outward. Thus it prevents the snake from shrinking into a single point.

Proposed z-image-based Energy Term

Despite the recent developments, the existing snake models still struggle to yield a satisfactory reproducibility in complex environments. Such low reproducibility stems from a number of reasons. For instance, these environments can be composed of complex structures such as multiplanar roof buildings which can also be shadowed or occluded by trees. For a multiplanar roof building, different roof planes can have different shades, causing ridge lines (i.e., the intersection lines between the different planes) exhibiting high-gradient values in the image-based energy term. In addition, the performance of the snake model on optical images can be affected by image small details, namely roof objects (like chimneys, attic windows), cars, trees, etc. There are also possible null-valued pixels on the orthoimage. Consequently, if a building involves these unwanted elements, then the snake model would be drawn toward them. Hence, the resulting performance on delineating such a building would decrease significantly. Fortunately, these problems relate directly to the use of the optical image. Therefore, we propose to operate the snake model on the z-image derived from LiDAR data. This approach allows the snake model to focus only on the most salient features in a z-image, i.e., height changes involving off-terrain objects such as buildings and trees.

Generation of z-image by the Super-Resolution of LiDAR Data

The accuracy of a building extraction method using LiDAR data is usually compromised by the sparsity problem [21]. Therefore, we propose a process dedicated to the projection and propagation of LiDAR data onto the image space in order to augment its spatial resolution. Such a process is called super-resolution (SR), and it is illustrated by the flowchart in Figure 3.2. It consists in generating a z-image that contains the altitude values derived from the LiDAR 3-D point cloud.

Such an image has the same size and resolution as the optical image. The inputs of the SR process are the LiDAR point cloud, a set of transformation model parameters, the frame of reference, and the size of the optical image. The LiDAR 3-D point cloud is denoted by y 2 R m⇥3 where m is the number of points. Each point has three spatial coordinates (x, y, z). We also use y z 2 R m for the column of altitude values. The z-image is denoted by f 2 R n x ⇥n y , where n x and n y are, respec- tively, the number of rows and columns. During the SR process, f is vectorized into a column vector of n = n x ⇥ n y elements. The set of transformation model parameters q results from the registration [48]. It aims to define the projection of 3-D points onto the image space.

LiDAR point cloud y

Transf. model q 

3-D projection Sparse z-image f Ω ⇤ Value propagation z-image f

(a) Projection of LiDAR 3-D points

The first step of the SR process consists in projecting the LiDAR 3-D points onto the z-image space using the transformation model parameters q. As the LiDAR point cloud is subsampled compared to the optical image, such a projection leads to a sparsity effect on the z-image f. Here, we use Ω ⇤ and Ω to denote, respectively, the subset of the pixel indices in the z-image f, having or not a projected altitude value. In other words, f Ω ⇤ denotes the sparse z-image or the subvector containing the pixels of projected altitude value, whereas f Ω denotes the subvector containing the null pixels. The dimensions of f Ω ⇤ and f Ω , respectively, are m ⇥ 1 and (n m) ⇥ 1. As such, f = f Ω[Ω ⇤ is the vector containing all pixels, i.e., the whole z-image. The projection is mathematically presented as follows,

f Ω ⇤ = P q (y z ) (3.10)
where P q is the 3-D projection associated with the transformation model parameters q. The x-and y-coordinates of the LiDAR 3-D points are used to locate the pixels in the z-image associated with such points. Next, the projected values indexed by Ω ⇤ will be propagated to their neighboring pixels (which are indexed by Ω).

(b) Propagation of the projected values

Our SR approach is inspired by the work of Castorena et al. [52] on the fusion of terrestrial LiDAR data with optical imagery. It involves reconstructing a sparse depth map by minimizing the sum of its squared directional gradients (SSDGs). This approach relies on hypothetical characteristics of a depth map, which involve the magnitude and occurrence of depth discontinuities inside the depth map to be minimized. In an airborne nadir view context, their method shows good performance in propagating elevation values across homogeneous regions. However, in elevation-discontinued transitioning regions, e.g., near the edges of a building, the propagated elevation values would be gradually flattened as a result of the minimized SSDGs. In other words, such hypothetical characteristics are not suitable in this context, where the off-terrain objects like trees and buildings always exhibit strong elevation discontinuities. Such discontinuities should be preserved during the value propagation process. Thus, an l 1 -norm term is added in our minimization approach. This preservation allows the resulting z-image to exhibit elevation changes as tight as possible compared to the scene reality.

The propagation of the projected values is carried out through the minimization of a cost function F (f), defined by Equation (3.11). It is composed of the SSDGs and a l 1 -norm term of the z-image f, subjecting to the values previously projected from the point cloud (i.e., described by Equation (3.10)).

b f = arg min f 8 > > < > > : f SSDG (f) z }| { kr x fk 2 2 + r y f 2 2 +l kfk 1 | {z } F (f) 9 > > = > > ; , subject to f Ω ⇤ = P q (y z ) (3.11)
where k•k p stands for the l p -norm, r x and r y , respectively, represent the directional gradient operators along the x-axis and y-axis. The parameter l > 0 controls the amount of the l 1regularization.

(c) Propagation implementation The minimization of the cost function described in Equation (3.11) is carried out using the Fast Iterative Shrinkage-Thresholding algorithm (FISTA) [53]. Its computational efficiency is adequate for solving large-scale problems, with a convergence rate of

O(1/k 2 ),
where k is the iteration counter. FISTA is significantly faster than standard gradientbased methods such as Iterative Shrinkage-Thresholding algorithms (ISTA). Full details on the implementation of the proposed SR process can be found in [48]. The convergence rate of the SR is illustrated in Figure 3.3. Figure 3.3a depicts the differences between the estimated z-images at consecutive iterations, i.e., f (k+1) f (k)
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. The cost values F (f (k) ) through iterations are shown in Figure 3.3b. One can observe that the z-image has nearly converged into a stable solution after approximately four hundred iterations. Figure 3.4 shows the outcomes of the projection and the propagation of altitude values from the LiDAR data onto

Experimental Results

In this section, multiple performance evaluations are carried out. First, we introduce the building extraction accuracy metrics as well as the study areas and the datasets used in this work. Then, the performance of the SR process is evaluated. Next, a visual assessment between the snake models is also carried out. Lastly, the proposed SRSM is evaluated on various urban and residential scenes.

Building Extraction Accuracy Metrics

Multiple accuracy assessments, thematically and geometrically, are proposed to evaluate the performance of a building extraction method based on the ground truth boundaries.

Thematic Accuracy Metrics

Based on the evaluation methodology described by Rutzinger et al. [54], three metrics, namely Quality (Q), Completeness1 (Cp), and Correctness2 (Cr), are measured per-object and per-area.

Particularly, the per-object evaluation involves either all objects regardless of their area or only the objects with an area larger than 50 m 2 . The three metrics are computed based on the count of true positive (TP), false positive (FP), and false negative (FN) elements between the extracted and the reference building boundaries from the ground truth. These elements (TP, FP, FN) are defined differently if the evaluation is carried out per-object or per-area.

For the per-object evaluation, an extracted building is counted as a TP if at least 50% of its area coincides with its ground truth. On the other hand, a FP is an extracted building without a corresponding building in the ground truth or if the coincided area with the ground truth is less than 50%. Whereas a FN means the proposed approach fails to extract a building existing in the ground truth. The corresponding Cp, Cr, Q metrics are then computed using Equation (3.14).

Cp = TP TP + FN , Cr = TP TP + FP , Q = TP TP + FP + FN (3.14)
For the per-area evaluation, such metrics are computed using the count of pixels on the image. The area-based Quality Q is measured by the Intersection over Union (IoU) metric, which is the ratio between the intersection area over the union area of the extracted building boundary E and the corresponding ground-truth R (Equation (3.15)). It reflects the overall accuracy of the building extraction method according to the ground truth. The Completeness Cp measures the fraction of relevant identified building pixels over the total number of actual building pixels, whereas the Correctness Cr computes the fraction of relevant identified building pixels among all identified pixels.

Cp = #(E \ R) #(R) , Cr = #(E \ R) #(E) , Q = #(E \ R) #(E [ R) (3.15)
where #(•) denotes the number of pixels inside the given region. All three metrics Cp, Cr, and Q reach their best value at 100% and worst at 0%.

Geometrical Accuracy Metrics

The geometrical accuracy of the method can also be evaluated by measuring the root-meansquare error (RMSE) of distances from extracted building outlines to the reference outlines, with-out considering points with distance greater than three meters. Such a threshold is defined by the assessment methodology [26]. A smaller distance indicates a better geometrical accuracy.

Study Areas and Involved Datasets Vaihingen Dataset

The proposed building extraction method is tested using the ISPRS benchmark dataset on Vaihingen, Germany [55]. The test aims to demonstrate its effectiveness on complex environments and to compare it with other methods. The ISPRS Vaihingen benchmark dataset involves three test areas consisting of buildings with diversified characteristics. In these test areas, the ground truth boundaries consisting of roof outline polygons were generated based on manual stereo plotting, with an associated planimetric accuracy of approximately 10 cm [26]. The columns two and three of the Table 3.1 describe the involved LiDAR and optical imagery datasets on these areas.

Concerning the LiDAR data, we only use the data from one strip for each area. The orthoimage was generated based on the DSM derived from the LiDAR data. As a result, the misalignment between them is relatively small (i.e., less than 30 cm). 

Quebec City Dataset

Besides the assessments on the Vaihingen dataset representing a European urban context, we additionally conduct a performance assessment in another geographic context, namely North America. In this regard, the method is carried out on the urban areas of Quebec City, QC, Canada.

They cover a total area of 656 square kilometers. The whole area is divided into tiles of 1 km ⇥ 1 km, as shown in Figure 3.7, for the sake of processing time and memory constraints. The involved LiDAR and optical imagery datasets are described in column four and five of Table 3 formance assessment using the mentioned ground truth building boundaries in Quebec City, in order to compare with the SRSM results.

It should be noted that this assessment does not only allow evaluating the performance of the proposed SRSM on such a large dataset, but it also serves as an example demonstrating the scale of the study-i.e., the Quebec province, in which other cities and large areas should not cause any adaptability problem on such an unsupervised method.

Performance Evaluation of the Super-Resolution

Besides the visual assessment provided in section 3.4.2, the performance of the proposed SR process is also quantitatively evaluated. We compare it with other conventional 2-D interpolation methods, namely nearest neighbor (NN), bilinear, and natural interpolation [59]. This evaluation and comparison are depicted by Figure 3.8. The four methods are examined on a real LiDAR point cloud with an average density of 3.8 points/m 2 (Figure 3.8a). Such point cloud is then subsampled by a chosen factor, namely 2, 4, and 8, yielding a subsampled point cloud which serves as an input for these SR/interpolation methods. These experimented factors are chosen based on the proportion between the respective spatial resolution of the datasets (cf. Table 3.1). For example, Figure 3.8b depicts the 3-D point cloud subsampled by a factor of 2. Based on the sparse DSM generated from this subsampled point cloud (Figure 3.8c), each interpolation method generates a DSM having the spatial resolution equal to that of the subsampled LiDAR point cloud times the upscaling factor-in other words, equivalent to the spatial resolution of the original point cloud.

The resulting interpolated DSM provided by each method (e.g., Figure 3.8d or 3.8e) is compared with the DSM generated from the full-resolution LiDAR point cloud, which is considered as the ground truth for the assessment (Figure 3.8f).

In order to evaluate the quality of these interpolation and SR methods-i.e., the closeness between the interpolated image and the ground truth image-we measure the following metrics: root-mean-square error (RMSE), structural similarity (SSIM) [60], and the peak signal-to-noise ratio (PSNR). SSIM and PSNR are two widely used objective metrics for evaluating image superresolution quality [61]. Their mathematical explanations can be found in Appendix 3.9.2. Table 3.2

summarizes the quality measurements of each interpolation method for all three upscaling factors, i.e., ⇥2, ⇥4 and ⇥8. Overall, compared to the other methods, the proposed SR process yields better results, i.e., smaller RMSE, higher SSIM and PSNR. However, it yields a disadvantageous SSIM compared to the natural interpolation and the bilinear interpolation, in the ⇥4 and ⇥8 upscaling. Considering the RMSE, one can remark that the improvement in the case of ⇥2 upscaling between the proposed SR and the others is only marginal (i.e., 1.96 compared to 2.00-2.18). In contrast, in the ⇥4 and ⇥8 upscaling, this margin of RMSE improvement becomes more significant. Similar remarks can be made when considering the PSNR. These improved quality measures show that the proposed SR is more reliable compared to the conventional interpolation methods. This quantitative assessment and the visual assessment (previously presented in section 3.4.2) have demonstrated the relevance of the proposed SR method. It is deemed to fit the purpose to be used in the proposed SRSM.

Comparison Between Snake Models

We also perform an assessment on the performance of the proposed SRSM and compare it with other existing snake models previously mentioned in subsection 3.3.3. They are carried out on the gable-roof building previously discussed in subsection 3.4.2 and displayed in Figure 3.5. First, the ground truth building region is overlaid by a transparent green area, while the surrounding ground is displayed in transparent red color, as in Figure 3.9b. These overlaying colors allow gain of 9.33% between the basic and the SRSM-is not as high as suggested by the clear advantage drawn from the visual assessment from Figure 3.9c.

One can also remark that the snake models were not able to extract two particular parts of the building (highlighted by yellow-dashed circles in Figure 3.9b) because they do not exhibit significant elevation change or color change from the surrounding ground (cf. Figure 3.5). On one hand, the inability of the SRSM stems from the absence of elevation changes. On the other hand, the other snake models are unable to extract these parts because of the absence of color changes. We are convinced that these undetected parts can be the reason for the low margin between the snake models mentioned above. Therefore, we also conduct another evaluation of all four snake models with a modified version of the ground truth building boundary, in which the two undetected parts are removed. Such a modified ground truth boundary aims to provide the unbiased reference for the snake models. In Figure 3.9b, this modified ground truth boundary is depicted in blue outlines. The columns 4 and 5 of Table 3.3 reveal the involved comparison based on this modified ground truth. As expected, the new margin between the proposed snake model and the others is now much larger, i.e., a margin of 21.21% of Quality between the basic snake model and the proposed SRSM. It is coherent with the inference drawn from the visual assessment (Figure 3.9c). This comparison has shown that the proposed SRSM yields better accuracy than the other snake models. In the next two subsections, the overall performance of the SRSM on different datasets will be assessed.

Performance on ISPRS Vaihingen Dataset

The three test areas of the ISPRS Vaihingen dataset are shown by Figure 3.10. Area 1 (Figure 3.10a) is situated in the center of the city and characterized by dense construction consisting of historic buildings with rather complex shapes. Area 2 (Figure 3.10b) is composed of high-rise residential buildings surrounded by trees. Lastly, Area 3 (Figure 3.10c) is residential with detached houses and many surrounding trees. The results of SRSM are also depicted in Figure 3.10a, 3.10b, and 3.10c in green. Then, Figure 3.10d, 3.10e, and 3.10f illustrate the area-based accuracy assessment, denoting TP (in yellow), FP (in red), and FN (in blue) pixels. Overall, the proposed method yields a very high accuracy, reflected by a very high number of TPs on all three areas. However, a number of unresolved problems can be remarked in Figure 3.10. Firstly, many FP pixels can still be noted in all three areas. They relate to the problem of shadowed tree regions near buildings. Such tree regions are circled in green in Figure 3.10d, 3.10e and 3.10f. An example of this problem is from Area 2, which is shown by Figure 3.11a. Secondly, several small buildings from all three areas have not been detected.

Table 3.4 summarizes the area-based accuracy assessment result on all three test areas. In averag-methods proposed by Bayer et al. [29] yield an area-based Quality of 89.8%, and the two versions of a method by Grigillo and Kanjir [30] yield an area-based Quality of 89.4% and 89.7%.

In addition, considering the object-based Quality for buildings with an area larger than 50 m 2 , our method is placed 12 th among 42 methods. However, considering the RMSE (Figure 3.12d), our method yields a result (averaging 1.09 m) among the highest RMSE, in other words, the least desirable. Future works will concentrate on improving such accuracy.

The proposed SRSM also faces several problems when performed on the ISPRS Vaihingen benchmark dataset, such as the problem of nearby shadowed vegetation shown in Figure 3.11a. Grigillo and Kanjir [30] proposed to solve such a problem with the rule-set classifiers on image pixel colors and NDVI. However, this approach involves multiple manually selected thresholds which require a high level of supervision. There also exists other classification approaches (in order to better classify shadowed trees from buildings) involving graph-cut-based method [63]. However, such method may require a high amount of a priori information or user inputs in order to yield accurate results [32]. Therefore, by opting for such mentioned approaches, the level of supervision of the building extraction method should be reconsidered.

Performance on Quebec City

In order to test the performance and applicability of the proposed SRSM on a large scale, we carry it out on the Quebec City dataset. Many areas in Quebec City are composed of different types of urban, residential, and industrial scenes. Two of these typical scenes are shown in Figure 3.13.

They are also representative of the North American context. Based on a visual assessment, the SRSM succeeds at delineating the building boundaries accurately on the two exemplified scenes. Typically, the size of the buildings shown in both scenes varies greatly from small to very large buildings. One can remark that many buildings that have similar color as their background (i.e., parking lots, open areas, etc.) are also well delineated. Other optical image-related problems such as roof objects and nearby cars are also avoided. This re-emphasizes the benefits of using the z-images encoding LiDAR elevation data instead of the optical images. In addition, similar to the Vaihingen datasets (particularly Area 1 and 2), the shape of buildings presented in these two examples-also verified across the whole Quebec City area-can be very complex. These three factors related to the scene complexity-i.e., varying building size, color, and shape-can be problematic to other methods, whereas the proposed SRSM is able to overcome such complexity.

Table 3.6 summarizes the area-based and object-based accuracy yielded by the Microsoft open Canada building footprints and the proposed SRSM. It can be noted that the Completeness and Correctness yielded by the two methods are quite different. These differences mainly stem from the fact that the two methods were carried out using different data sources with different characteristics. However, based on the resulting Quality values reflecting the overall accuracy, it can be noted that the SRSM provides a competitive outcome compared to the Microsoft method.

Indeed, the Quality margins between the SRSM and the Microsoft method are well balanced.

The SRSM yields a 6.65% higher object-based Quality, while in contrast, the Microsoft method provides a 7.40% higher area-based Quality. On the one hand, the difference of the area-based Quality stems from the fact that the resulting footprints from SRSM have the tendency to be slightly "rounded" around the building corners. Whereas the Microsoft footprints were generated (with their own polygonization method) without such a problem. On the other hand, the SRSM with the advantage of the z-images encoding elevation data allows one to detect the buildings more precisely, hence yielding the higher object-based Quality. Nevertheless, it is al- The outcomes of the SRSM on the Quebec City dataset are relevant, visually and quantitatively. However, there still remain two issues. Firstly, from a practical perspective, the SRSM was carried out separately on tiles (Figure 3.7) for the sake of processing time and memory constraint. Then, the tile-based results were combined in QGIS. Such a step is crucial for the buildings located in the transitioning areas between two neighboring tiles. Several of those buildings can be identified near the borders of the tiles shown in Figure 3.13. Secondly, the SRSM is unable to separate connected or nearby buildings with similar height. Given the z-images involves only elevation information, such a separation task can be difficult. Therefore, we shall investigate the usefulness of other information for such a task. Overall, these two issues can affect unfavorably the resulting accuracy of the SRSM. Future efforts will concentrate on addressing these two issues to improve the SRSM results.

Discussions

In this section, three discussions are addressed: (i) on the relevance of the proposed SR, (ii) on the SRSM results, and (iii) on the impact of the snake model parametrization.

Relevance of the Super-Resolution

As suggested by the name of the proposed method (i.e., SRSM), the SR process plays a critical role. However, such a process is not only relevant for snake models. Indeed, the need and potential of such a process to enhance the spatial resolution of LiDAR data is high. For instance, in the topic of building extraction, several methods [38,13] proposed to replace the blue channel of RGB images with a normalized DSM (nDSM). Such a composite image-i.e., red, green, and nDSMis then fed into deep neural networks for extracting buildings. However, these approaches did not account for the fact that the two input images-the RGB image and the nDSM-usually have different resolutions, hence an SR was not proposed. On the other hand, the SR process could resolve one of the problems of the snake model proposed by Kabolizade et al. [35] (cf. subsection 3.3.3). A super-resolved DSM could improve the height variance-based external energy term proposed in their work. However, it is worth-noting that the main drawback of their snake model is still the use of optical image as the target image, i.e., for computing the E img . In other topics, the study of SR applied to LiDAR depth measurements is also very active. Indeed, a reliable SR would benefit many applications, such as calibration for autonomous driving [52] or land cover classification [64].

Discussion on the SRSM Resulting Footprints

The accuracy level of the SRSM results carried out on the Vaihingen dataset and the Quebec City dataset have been shown-through multiple assessments and comparisons-to be desirable. It has achieved our objectives for a large-scale high-accuracy building extraction method, without any assumptions on the building characteristics nor any training data. However, two important aspects concerning the building footprints provided by the proposed method should be discussed. First, it can be noted from the results in Vaihingen (Figure 3.10) and Quebec City (Figure 3.13) that the resulting snakes have the tendency to be slightly "rounded" around building corners. Such a problem can be addressed with an efficient polygonization method. However, such a step can be quite challenging considering the complexity of building shape on the two study areas.

The second aspect worth mentioning involves the acquisition time difference between the LiDAR data, the optical image data, and the reference ground truth boundaries. On the one hand, considering a benchmark dataset like the ISPRS Vaihingen dataset, such an aspect is minimal since the data were acquired almost concurrently (cf. Table 3.1). In addition, the Vaihingen ground truth building boundaries were prepared using the same data. On the other hand, considering the large scale of Quebec City, such a temporal aspect is much more complicated. Firstly, the LiDAR data were acquired one year after the optical images. Secondly, the Empreintes des bâtiments dataset consisting of the ground truth building boundaries was produced using multiple different sources and updated monthly. Thirdly, the comparative Microsoft results were carried out using Bing Imagery data. Since Bing Imagery is a composite of multiple sources, we are unable to determine the exact dates for individual pieces of data [57]. Such temporal difference and uncertainty can affect the building extraction accuracy. This issue requires a dedicated study in order to account for all of the involved factors.

Impacts of Snake Parametrization

A snake model involves a number of parameters, such as a, b, k (the balloon force magnitude), µ GVF (the GVF smoothing parameter), etc. In the existing models [34,35,36], these parameters have been set empirically in order to extract buildings effectively. The snake parametrization becomes extremely difficult over a large extended area. However, some parameters are more important than others. In this regard, Marcos et al. [42] partially addressed such a problem with a CNN-based approach. It involves learning the characteristics of the most important elements of the snake model, namely the snake internal energy term weights (a and b), the image-based energy term (E img ), and the balloon force (F balloon ). Additionally, they asserted that one fixed scalar value of b for all parts of a building can lead to problems of oversmoothing at building corners and undersmoothing at other regions. To avoid such a problem, they proposed a local penalization approach, by assigning a different b penalization to each pixel depending on whether the pixels are near the building edges or corners, whereas a remains a fixed scalar value for every pixel.

In this discussion, let us analyze the relevance of such a parametrization approach and compare it with our fixed parametrization for the SRSM. The characteristics of the CNN-inferred energy terms and parameters differ with respect to the features from the optical image (e.g., building corners, edges, etc.), as summarized by Table 3.7.

Table 3.7: Characteristics of the Convolutional Neural Network (CNN)-inferred balloon force term F balloon , image-based energy term E img , and snake curvature weight b among the optical image features (provided by [42]). E img can have either positive or negative values, whereas F balloon 0 and b 0. Firstly, concerning the balloon force, the second column of Table 3.7 shows the characteristics of the balloon force inferred by the CNN. If a snake is initialized inside a building boundary, the balloon force-being positive-will inflate it outward until it reaches the building corners and edges. Then, the balloon force sharply drops to zero and remains zero right outside the building boundary, which means that the snake is not allowed to inflate anymore. However, if the snake is provided with initial points outside the building boundary, the balloon force-being null-valued-is unable to shrink inward to approach the building true boundaries. Such behavior is not optimal. In contrast, the approach to generate F balloon proposed in this chapter based on the LiDAR-based building mask is more relevant. It allows the snake to be shrunk or inflated adaptively, regardless of where it is initialized, without relying on any learning process.

CNN-inferred energy terms and parameter

Secondly, we address the image-based energy term E img . The characteristics of the CNN-inferred image-based energy term E img are revealed in Table 3.7. However, they are similar to those exhibited by the traditional snake model mathematical approach (cf. Equation (3.2)). Such a similarity is illustrated by Lastly, concerning the snake curvature weight b, we retain the use of a fixed scalar b in our method. The immediate reason is that without a training phase, the generation of a different b value for each pixel is difficult, or even virtually impossible. In addition, as we changed the target image of the snake model, the needed dynamics for b should also change. Since the only sources of attraction for the snake model are now the height changes from off-terrain objects, the snake curvature does not need to be different pixel to pixel. The snake should be able to correct itself from such sources of attraction. A comparison is conducted to confirm whether using the CNN-inferred pixel-wise b would bring a real benefit compared with a fixed scalar b. As such, the SRSM is experimented where the value of a and b are, either inferred from CNN as in [42] or set to fixed scalar values. Such a comparison is carried out on seven buildings in the proximity of Area 1 (ISPRS benchmark dataset) selected by Marcos et al. [42]. One of these buildings is exemplified in Figure 3.15. The optical image and the initial points for SRSM in blue are revealed in Figure 3.15a, whereas the z-image is shown in Figure 3.15b. These initial points were used in the work of Marcos et al. [42] and also in this comparison. The SRSM carried out with the CNNinferred a and b results in the building boundary in green (Figure 3.15a). The CNN-inferred value of a is 0.767, whereas the image of b values (each pixel with a different b value) is shown by Figure 3.15c. Then, the SRSM carried out using the scalar a and b-both set equal to 0.2-yields the red building boundary (Figure 3.15a). The two snakes in red and in green are shown to be similar. Quantitatively, the area-based Quality provided by the CNN-based approach on all seven buildings averages 73.62%, whereas the fixed scalar parametrization approach yields 72.03%. By visual and quantitative assessment, it is shown that the CNN-inferred approach as well as the pixel-wise b does not bring a practical benefit to our SRSM. In summary, the proposed SRSM succeeds in providing a relevant solution, regarding all three main aspects of the snake parameterization. Indeed, since almost every building exhibits a strong elevation variation with respect to its surrounding area, the characteristics of building appearances on their respective z-image should all be similar. As a result, the proposed SRSM can be generalized with the same set of influential parameters on buildings of various size and shape as well as in complex environments.

Conclusions

In this chapter, we proposed and evaluated an unsupervised and automatic building extraction method dedicated to a large-scale urban scene. This method is built around an efficient snake model, named SRSM. First, a preliminary extraction of building boundaries from the LiDAR point cloud is carried out. These boundaries are used as initial points for the SRSM as well as in the improved balloon force. Second, in order to resolve the sparsity problem related to the LiDAR data spatial resolution compared to an optical imagery dataset [21], we propose a superresolution process. Such a process is devoted to the projection and propagation of LiDAR data onto the image space, enabling the augmentation of its spatial resolution. Then, the snake model is carried out based on the resulting z-images. Such z-images encoding LiDAR elevation data are highly beneficial since the height changes provide a more reliable cue for extracting buildings than the spectral and textural changes provided by the optical images. In addition to such a benefit, the useful elevation data are now provided with high spatial resolution. Third, the balloon force is improved to behave more adaptively compared to the classical balloon force.

By using the z-image, a number of typical problems related to the optical image have also been addressed. Until now, all of the existing snake models have conceded the sensitivity problem against image noises and details, such as roof objects and nearby cars and trees. Such scene elements prompt undesired sources of attraction, causing the snake model to be unable to converge toward the true building edges. Operating on the z-image which only exhibits significant height changes, the SRSM is provided with relevant sources of attraction. In addition, such a fundamental replacement-i.e., using the z-image instead of the optical image-also affects the parametrization of the snake model. Indeed, the need for a hyperparameter tuning, e.g., by a deep learning approach [42], becomes less substantial. Thus, the SRSM is parametrized with fixed scalar values. By the virtue of the proposed improvements, such static parametrization does not restrain the applicability and scalability of the z-image-based snake model over large extended area. A comprehensive comparison and discussion of this parametrization with the deep learning approach by [42] has also been carried out in this chapter.

Concerning the performance assessment, the SRSM is tested in two different geographical contexts, namely Europe (with the Vaihingen benchmark dataset) and North America (with the Quebec City dataset). The two contexts involve various differences in terms of compactness, density, and regularity of urban areas [43]. The proposed SRSM yields very high accuracy on the ISPRS Vaihingen benchmark dataset, namely 86.57% of area-based Quality and 81.60% of object-based

Quality. These values show that the SRSM is highly desirable, especially as a fully unsupervised method, as opposed to many other high-accuracy methods. Concerning the Quebec City dataset with the total area of 656 km 2 , the SRSM succeeds at providing a relatively high accuracy, namely area-based Quality of 62.37% and object-based Quality of 63.21%. Such an accuracy level on this dataset may seem less desirable than the one on the Vaihingen dataset mentioned above. However, it can be well expected on such a large-scale dataset, with various types of complex residential, urban, and industrial scenes. Indeed, compared to the building footprints produced by Microsoft by a deep neural network approach, our unsupervised method succeeds at providing a competitive accuracy level. The two geographical contexts also show the very high capacity of the SRSM for extending over very large and complex areas. With the proposed SRSM, this study has achieved our objectives for a scalable, versatile, and accurate building extraction solution. Indeed, in the context of the flood risk assessment in the province of Quebec, such a method-capable of yielding accurate building footprint boundaries and locations in such a large scale-enables us to achieve subsequent critical tasks, namely the extraction of building structural and occupational characteristics. Future works will focus on improving the resulting geometrical accuracy, as well as on several remaining problems such as shadowed vegetation and misdetection of small buildings.

The edge functional is based on the image gradient, which attracts the snake to move towards the edges with high gradient value.

E edge = |r [G s (x, y) ⇤ I(x, y)]| 2 (3.17)
where G s (x, y) is a two-dimensional Gaussian function with a standard deviation s and ⇤ denotes the 2-D convolution operator.

Curvature of level lines in a slightly smoothed image can be used to detect corners and line segment terminations in an image. Using this method, let C(x, y)=G s ⇤ I(x, y) be the smoothed image. With an angle q = tan 1 (C y /C x ), the unit vectors which are along and perpendicular to the gradient direction are: n =(cos q, sin q), n ? =( sin q, cos q) (3.18)

The termination functional of energy is defined as:

E term = ∂q ∂n ? = ∂ 2 C/∂n 2 ? ∂C/∂n = C yy C 2 x 2C xy C x C y + C xx C 2 y (C 2 x + C 2 y ) 3/2 (3.19)

Super-resolution Quality Metrics

Given the super-resolved image I and the reference image R, the Structural Similarity (SSIM) quality assessment index is based on the computation of three terms, namely the luminance term, the contrast term, and the structural term.

SSIM(I, R)=[l(I, R)] g • [c(I, R)] d • [s(I, R)] e (3.20)
where

l(X, Y)= 2µ X µ Y + C 1 µ 2 X + µ 2 Y + C 1 , c(X, Y)= 2s X s Y + C 2 s 2 X + s 2 Y + C 2 , s(X, Y)= s XY + C 3 s X s Y + C 3 (3.21)
with µ X , µ Y , s X , s Y , and s XY respectively are the local means, standard deviations, and crosscovariance for images X and Y. The parameters for SSIM index are set as follows, g = d = e = 1; and

C 1 =( 0.01 ⇥ L) 2 , C 2 =( 0.03 ⇥ L) 2 , C 3 = C 2 /2
, where L = 2 #bits per pixels 1 denotes the dynamic range value of the images. With these parameters, the SSIM index (Equation (3.20)) is simplified into,

SSIM(I, R)= 2µ I µ R + C 1 µ 2 I + µ 2 R + C 1 • 2s I,R + C 2 s 2 I + s 2 R + C 2 (3.22)
Another metric for evaluating a method of super-resolution of image is Peak Signal-to-Noise Ratio (PSNR) in decibels, which is defined by Equation (3.23).

PSNR(I, R)=10 ⇥ log 10 peak_val 2 MSE(I, R)

! (3.23)
where peak_val is the maximum possible value of the images, and MSE is the mean square error between I and R.

are affected directly from the building size and shape, which can vary depending on the urban area context.

Secondly, as mentioned above, the vegetation removal is an important process to improve the accuracy of the building extraction method. However, even with the NDVI features from the optical images, this vegetation removal is still far from ideal. A difficult situation is typically found when the vegetations are shadowed by nearby buildings or other trees. Therefore, future works should investigate a more accurate vegetation removal, other than the NDVI-based thresholding approach. Some suggestions can be made, for instance with graph-cut-based classification approaches [63] that could allow classifying shadowed trees from buildings better. However, it should be noted that these approaches may require a high amount of a priori information or user inputs in order to yield accurate results [32].

Boundary Polygonization

The building polygonization, also known as boundary regularization, or boundary generalization, is an important post-processing step of a building extraction method. It consists in simplifying the extracted irregular boundary of a building into regular line segments, usually straight line segments. Indeed, the resulting building outlines from image segmentation-such as the proposed SRSM, or other classification processes from optical or elevation images-consist of small line segments with many redundant points, thus requiring a polygonization. As a matter of fact, the generalized or simplified building outlines are preferred in the 3-D modeling of buildings or to be integrated into a GIS database [66].

Such a task has been actively studied in the recent years. The most basic method is the Douglas-Peucker line simplification algorithm, also known as iterative end-point fit algorithm [67]. Another worth-mentioning polygonization method is proposed by Dutter [68] due to its computational simplicity. However, this method is not advanced enough to cope with the complexity of building shapes, since it only allows dealing with three levels of shape, i.e., rectangular; Z-, T-or L-shape; U-shape. Yan et al. [69] proposed an algorithm based on an energy minimization approach. It involves adjusting the 2-D topology of buildings based on its parallelism and the deviation between the adjusted topology and its original position. Jung et al. [70] proposed a graph-cut based rectification algorithm to remove geometric and topological errors from building models. This method aims to determine the optimal shape regularity-i.e., orthogonality, symmetry and directional simplification-of the buildings. The main drawback of these two methods, namely Yan et al. [69], Jung et al. [70], is the high computational cost. In addition, they employed the Douglas-Peucker line simplification as a first step, which can cause potential losses of useful information in the building boundaries. Deep learning approaches have also been applied for building boundary polygonization, e.g., Zorzi and Fraundorfer [71] proposed a regularization of building boundaries in satellite images using Generative Adversarial Nets [72].

With the perspective highlighted previously in this chapter to focus on improving the resulting geometric accuracy, this polygonization step is indeed worth investigating. As a matter of fact, many challenges shall be addressed in order to propose a versatile method without imposing specific constraint on the building shape and size. The computational simplicity and the capability of dealing with irregular building shapes are also the main concerns for such a task. results, if there were no errors. In reality, nearly two weeks were needed to get the final desired result. 

Production of ISPRS Vaihingen Results

The performance assessment of the SRSM method on the ISPRS Vaihingen benchmark datasets faced similar computational complexity as the assessment on the Quebec City dataset. However, since the test areas were significantly smaller, the computational times were approximately 5-10 minutes for all three test areas. They were done on a MacBook Pro with Quad-Core Intel Core i7 (clock rate: 2.70 GHz), and 16 GB of RAM.

Analysis and Comparison Conducted on the Work of Marcos et al. [42]

The discussion on the parametrization of the snake models has been previously presented in subsection 3.6.3. It involves the analysis of the method proposed by Marcos et al. [42]. This method was run on a server computer with the following specifications: AMD Ryzen™ Thread-ripper™ 1900X 8-core CPU (clock rate: 3.80 GHz, 8 cores, 16 threads), NVIDIA Titan V GPU, and 62 GB of RAM. On this machine, the CNN architecture proposed by Marcos et al. [42] was trained with 100 labeled 512 ⇥ 512 images using Tensorflow (version 1.15). This training took around two hours. The resulting parameters a, b by the CNNs were then compared and analyzed in aforementioned discussion.

Conclusions and Perspectives

Conclusions Summary

This thesis has been devoted to the development of the registration and fusion of airborne LiDAR and aerial/satellite imagery datasets acquired under unconstrained conditions. These conditions are specified as follows: the LiDAR and optical imagery datasets were acquired from different platforms with different acquisition configurations, at different times, and have different resolutions and levels of detail. Such a context-referred to as the unconstrained context-involves a number of problematic factors when performing a registration and fusion of these datasets:

• Spatial shift between datasets: The differences between the sensor point of view and field of view lead to a significant spatial shift between the two datasets. However, a needed repositioning between the two datasets has not been rigorously studied by the existing works [45,67,[START_REF] Parmehr | Automatic registration of optical imagery with 3D LiDAR data using local combined mutual information[END_REF].

• Differences of spatial resolution and level of detail: The scene elements and objects can appear very different on the two datasets. Such differences make it difficult to determine and extract the corresponding features between them [START_REF] Castorena | Autocalibration of lidar and optical cameras via edge alignment[END_REF].

• Accuracy of dataset registration: A level of discrepancy less than a pixel between the datasets has often been used as a reference for a good registration [9]. However, such a qualitative criterion is difficult to conclude and achieve, since the image pixel size can vary from several dozen of centimeters to several meters depending on the platform (i.e., airborne versus satellite). The resulting discrepancies from the existing registration methods in the literature (e.g., [44,49]) ranging from 45 to 50 cm have been asserted as decent and desirable registration accuracy.

• Scalability of a building extraction method: Existing building extraction methods involve either a training step, or rely on several assumptions and prior knowledge of the building characteristics [START_REF] Niemeyer | Conditional random fields for LiDAR point cloud classification in complex urban areas[END_REF][START_REF] Chai | A probabilistic framework for building extraction from airborne color image and dsm[END_REF][START_REF] Grigillo | Urban object extraction from digital surface model and digital aerial images[END_REF] in order to achieve a relevant accuracy level. Consequently, these dependencies affect the scalability of the methods over large-scale and complex urban areas.

Knowing that the airborne LiDAR and the aerial/satellite optical imagery datasets were acquired in such an unconstrained context and given the listed challenges, the research question focusing on dedicated approaches to perform a fusion between these datasets and a large-scale building footprint extraction has been established. In order to provide an answer to the research question, the general objective of the thesis was set out towards the design and development of a versatile and efficient fusion methodology between airborne LiDAR and aerial/satellite imagery datasets, which were acquired under unconstrained conditions, in order to achieve building footprint extraction with a satisfactory level of accuracy and scalability. Three specific objectives were identified in order to accomplish this general objective. Through the progress of this thesis, all three specific objectives have been accordingly achieved. The general objective of this thesis can thus be considered as fulfilled. Nevertheless, the solutions proposed to each objective have shown to be effective to varying degrees.

The first specific objective concerned the development of a contextualization to assist the empirical selection of several important parameters in the registration and building footprint extraction, namely the mean shift bandwidth parameter in the registration method, and snake model parameters, such as the internal energy term weights, in the building extraction method. This process takes into account the nature of a scene, its elements and their distribution, e.g., the number of buildings, their size and their distance from each other on an urban scene, and the vegetation coverage. Such a contextualization approach, despite being effective, still shows some limitations regarding its automation. For instance, considering the proposed building extraction method, using the same parameters could be relevant for different areas (e.g., residential, commercial, industrial, etc.) on the same dataset. However, it is inappropriate when applying the same parameters on different datasets with different spectral and spatial resolution. Hence, it requires user interventions to set up the parameter values more adaptively for the specific contexts. In future works, we aim at developing the registration method with an automatic contextualization and an automatically parameterized snake model-based building extraction method.

The second specific objective of the thesis work focused on designing and developing a versatile registration method between the airborne LiDAR and the aerial/satellite imagery datasets. It consists in a coarse-to-fine registration method dedicated on urban scenes, where the coarse registration involves the extraction and matching of building primitives, and the fine registration relies on the maximization of Normalized Combined Mutual Information between the optical images and the super-resolved LiDAR-based images. The latter are LiDAR-based elevation images and intensity images, respectively called z-images and i-images. They are generated by performing a super-resolution (SR) process applied on LiDAR data. Despite the dependence of the coarse registration on the availability of buildings, it should be noted that this should not limit the usability and applicability of the proposed method, since urban scenes with buildings are available most of the time [70]. Nevertheless, difficulties can be anticipated when addressing rural and natural scenes due to the lack of man-made objects providing reliable primitives. Thus, future efforts could be made by analyzing the availability and relevance of the natural elements and objects on these scenes. The proposed registration method provides relevant results, i.e., a satisfactory accuracy level demonstrated by the spatial discrepancy between the datasets after the registration, namely less than 50 cm. It enables further research works to take advantage of the unconstrained acquisition context when dealing with the integration and fusion of airborne LiDAR and optical imagery. As a result, it can be considered that the proposed registration method has performed well, which accomplished this second specific objective of the thesis.

The third specific objective concerned the design and development of an automatic accurate and large-scale building extraction solution. In this regard, a large-scale unsupervised building extraction method has been proposed, called Super-Resolution-based Snake Model (SRSM). It involves an efficient snake model operating on the high-resolution LiDAR-based z-images, resulting from the SR process. The proposed SRSM is initialized by a preliminary extraction of building points from the LiDAR point cloud. In addition, it is integrated with Normalized Difference Veg-etation Index (NDVI) features provided by the optical imagery data, in order to facilitate the vegetation removal. The data fusion approach enabling such a method involves two key elements:

• A conventional machine learning approach for image segmentation, i.e., snake model, has been adapted to operate on the z-images derived from LiDAR data instead of the optical images. Such a cross-modality adaptation also involves augmenting the spatial resolution of the z-images up to that of the optical images. In addition, it allows avoiding a number of typical problems when using optical images, e.g., shadows and image unwanted details.

• The carried out registration of the datasets allows integrating effectively NDVI features from the optical images. Leveraging such features computed from an available optical imagery is also possible given the unconstrained acquisition context of the proposed approach.

The proposed SRSM also involves a balloon force improved with an adaptive behavior. It consists in either shrinking or inflating instead of continuously inflating as the classical balloon force. The performance of the proposed method has been assessed rigorously on two different geographical contexts, namely Europe and North America. Despite being an unsupervised method, it brings relevant accuracy level and scalability to the state-of-the-art of the building footprint extraction task. As a result, the third specific objective can also be considered accomplished. However, several problems still remain unresolved by the proposed method, such as the shadowed vegetation and the misdetection of small buildings. They shall be investigated in future works. Further improvements can be made to address the dependence of the proposed method on initial points, the snake parametrization, and the vegetation removal. In addition, efforts can be put into developing a boundary polygonization for the purpose of simplifying the extracted building boundaries and increasing the resulting geometrical accuracy.

Contributions

This research work has advanced the knowledge in the domains of heterogeneous data registration, fusion and large-scale building extraction. Throughout its progress, many remarks concerning the development of the registration, the fusion and the building extraction method have been affirmed.

First, it was pointed out and validated that only one registration approach was not sufficient to accurately register LiDAR and optical imagery datasets, even if they were collected simultaneously [44]. For instance, a combination of two registration stages using different features [63,[START_REF] Ding | Automatic registration of aerial imagery with untextured 3D LiDAR models[END_REF],

or a combination of a feature-based and an area-based registration [26,44] have been proposed

to achieve relevant accuracy level, i.e., a spatial discrepancy less than 50 cm. However, such an accuracy level is even more difficult to meet considering the unconstrained acquisition context. In this regard, a coarse-to-fine registration approach combining two registration methods at two different levels has been proposed and able to reach this goal.

Second, when dealing with LiDAR and optical imagery data, one of the main challenges relates to the difference of data structure and representation between the two datasets, i.e., a 3-D point cloud and a 2-D image. It is problematic to carry out a registration facing such a difference, both for area-based and feature-based registration approaches. As a result, it is necessary to bring the two datasets to the same representation. Thus, this data structure problem has been handled through the development of a rasterized dataset in which the pixels encode the projected LiDAR measurements, i.e., elevation and return intensity. In addition, the differences of spatial resolution and level of detail make it difficult to determine homologous features between the datasets. As such, multi-resolution analyses are needed to deal with the different representations of the scene elements in the two datasets [3]. This is exemplified by the works [64,65] which carry out the registration between LiDAR and optical imagery datasets at two different scales, whereas [66] generates primitives containing information from multiple scales. In this regard, a super-resolution process to increase the spatial resolution of the LiDAR data to level that of the optical imagery data has been accordingly proposed by this research work.

Conventionally, the accuracy of a building extraction method has been achieved by limiting the scope of target areas and buildings-either by considering only buildings of similar size, or of similar shape, etc.-hence conceding its scalability. An unsupervised solution, without involving any assumptions or prior knowledge of the building characteristics, able to provide a desirable and competitive accuracy level has been shown achievable. In addition, the proposed solution involves a cross-modality adaptation by operating snake models-a conventional segmentation method designed for optical images-on LiDAR-based high-resolution image without difference in resolution and size. Moreover, this research work has emphasized the advantages of having LiDAR-based high-resolution rasterized datasets. Such datasets can be used either separately such as in the work of Gilani et al. [68] or this work, or in a combined approach, e.g., with a naive fusion approach by stacking the images together-which requires the images to have the same resolution and size. It is also worth noting that many of these naive fusion-based methods [55,56,57] fail to consider the problematic misalignment between the concerned datasets. In this research work, the SR process generating the high-resolution LiDAR dataset has been carried

out with an accurate and versatile registration method that allows addressing this overlooked misalignment problem.

In terms of research outputs, this research work has contributed to the domain of photogrammetry and remote sensing with:
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Potential Impacts Versatile Registration Methodology

The capability to register airborne LiDAR and aerial/satellite imagery datasets acquired in an unconstrained context opens many possibilities in the domain of photogrammetry and remote sensing.

Indeed, due to the increasing number of systems and sensors operating with different characteristics and acquisition modalities, the outcomes and potentialities of multimodal data fusion are consequently increasing. In addition, a current trend regarding the improvements of geometric, spectral and radiometric resolution of these sensors can be observed [3,[START_REF] Schmitt | Data fusion and remote sensing: An ever-growing relationship[END_REF]. Such improvements provide the capability to capture a scene more finely with an increasing amount of meaningful information. As a result, it yields more complexity in the primitive extraction process and joint data analyses [START_REF] Atli Benediktsson | Very high-resolution remote sensing: Challenges and opportunities [point of view[END_REF]. This research work contributes to the study of efficient data fusion algorithms that are able to cope with such a large amount and diversity of data. It provides a crucial prerequisite towards the objective of bridging the gap between the potential offered by new generations of heterogeneous sensors and the needs of the end users when facing the challenges in real-world applications with a high societal impact [START_REF] Atli Benediktsson | Very high-resolution remote sensing: Challenges and opportunities [point of view[END_REF].

In addition, this research work also enables the possibility to benefit from the datasets acquired at very different times. This capability can lead to great potential when looking at the big picture. Indeed, with an accurate approach to register and integrate LiDAR data with the optical images, a more timely and less expensive technique to update 3-D representation of an observed scene, such as orthoimagery or 3-D city models [52], can be expected. In other words, the frequency (or recurrence) of data acquisition on a scene to serve a particular task can be significantly lessened, due to the capability to leverage the optical imagery data and LiDAR data acquired in recent past. Furthermore, such a capability makes it possible to profit from the large quantity of available archived remote sensing data, which has been becoming increasingly numerous over time [START_REF] Michael A Wulder | Opening the archive: How free data has enabled the science and monitoring promise of landsat. Remote Sens[END_REF].

Large-scale Unsupervised Building Extraction Method

The automatic extraction of urban objects (e.g., buildings, roads, power lines) from airborne and spaceborne sensor data has been an important research topic in the domain of photogrammetry and remote sensing for the recent decades [START_REF] Mayer | Object extraction in photogrammetric computer vision[END_REF]. Ever since, it is an active field of research, with the focuses being shifted towards detailed object representations, data collected by new sensors and technologies, or towards more advanced processing techniques [71]. In this regard, the task of extracting buildings in urban and residential scenes holds a special interest. Indeed, up-to-date building maps are necessary for urban planning, population modeling, disaster management and many other geospatial applications. It has been studied intensively and extensively for years using aerial/satellite optical imagery data or airborne LiDAR data. Nevertheless, when using either LiDAR or optical imagery data as the only source, the building extraction task encounters many difficulties and challenges. In this research work, the relevance of an approach based on the fusion of LiDAR and optical imagery data to achieve this task has been demonstrated.

Accuracy is evidently the principal indication of the performance of building extraction methods. Moreover, the scalability over large areas is also one of the objectives when developing a building extraction solution [13,22]. A trade-off between the accuracy and scalability can be noted in a number of existing research works. In this research work, an unsupervised large-scale and accurate building extraction method has been proposed. Yet, the proposed method is able to achieve a high accuracy and flexibility when carrying out a building footprint extraction on an urban scene without any major difficulties for re-parameterization.

In terms of application domain, the interests of the proposed building extraction solution can be anticipated in many contexts. In the context of flood risk assessment and anticipation, which is crucial in the climate change impact [19], where the aspect of addressing a large scale is necessary, such a solution is highly desirable. The building extraction task is also crucial in other contexts, such as in the domain of Building Information Modeling and Building Energy Modeling [24,25], cadastral database updating [START_REF] Hecht | Measuring completeness of building footprints in openstreetmap over space and time[END_REF], or human settlement detection [START_REF] Alshehhi | Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[END_REF].

Perspectives

The research works conducted in this thesis also provide a number of perspectives and worthexploring research suggestions. They are related to the registration of heterogeneous datasets, the building extraction, and the underwater domain.

Future Work and Perspectives Related to the Heterogeneous Data Registration

The reported research work has provided several insights regarding a methodology to investigate and develop an automatic registration in other contexts and environments between two heterogeneous datasets with many differences-e.g., data modality and structure, point and field of view, spatial resolution and coverage, level of detail, etc. In order to achieve a relevant registration of datasets within such contexts, inclusive knowledge should be gathered, allowing us to investigate the dedicated topics. This investigative process can be summarized as follows. First, the knowledge on the sensor modality and their acquisition processes and geometry shall be established. They constitute the basis to understand the characteristics of the sensors and their datasets, allowing determining the features within the datasets that can be relevant to the registration. Second, it would be necessary to identify the transformation model that generates or simulates one dataset from the other, allowing dealing difference in the data structure and representation. It is worth noting that the complexity of this transformation model pertains to the modality and acquisition geometry of the sensors. In addition, registration approaches of two heterogeneous datasets depend strongly on the correlation and/or similarity between the raw measurements and/or the features provided within the two datasets. Hence, such correlation and similarity should be examined. In addition, the data georeferencing processes assisted by the availability and accuracy level of the localization systems are also important and should be taken into account, since they could facilitate the registration approaches. Lastly, the uncertainty, imprecision and incompleteness inherent to the two data sources and their influence need to be carefully considered when performing a registration between them. These insights can apply on a context very different from the ones presented in this thesis, such as the underwater context, which will be presented later in this section. In addition, the interests in registering and fusing heterogeneous datasets can also be extended into other data modality. In this regard, SAR data are particularly interesting, as they are complementary with optical imagery and LiDAR data [3]. Moreover, SAR imagery is especially advantageous given its active acquisition that is independent of the weather and atmospheric conditions. Such advantage makes SAR relevant for all-weather and/or emergency mapping applications, such as for the building extraction [START_REF] Shermeyer | Spacenet 6: Multi-sensor all weather mapping dataset[END_REF], water and flood detection [START_REF] Irwin | Fusion of sar, optical imagery and airborne LiDAR for surface water detection[END_REF],

etc.

Given the proposed registration method (cf. chapter 2) having focused on urban scenes viewed from an aerial vertical view, several opportunities for further investigations can be suggested.

First, as mentioned above, future research works shall aim at adapting the registration method on rural and natural scenes. On natural scenes such as forests and deserts, a number of natural primitives have been elaborated such as tree tops [START_REF] Lee | An Individual Tree-Based Automated Registration of Aerial Images to LiDAR Data in a Forested Area[END_REF], bushes [START_REF] Li | Registration of Aerial Imagery and LiDAR Data in Desert Areas Using the Centroids of Bushes as Control Information[END_REF], and sand ridges [START_REF] Li | Registration of Aerial Imagery and LiDAR Data in Desert Areas Using Sand Ridges[END_REF], given that the LiDAR and optical imagery data were acquired simultaneously. It is necessary to analyze their relevance and reliability for the registration purpose when dealing with the datasets acquired in unconstrained conditions.

Second, in order to address the different types of scene, different registration approaches under one common framework can also be investigated. Interests in this direction have been shown and exemplified by the work of Zhao et al. [START_REF] Zhao | 2d-image to 3d-range registration in urban environments via scene categorization and combination of similarity measurements[END_REF] previously presented in subsection 1.3.1. They proposed an area-based registration method using different attributes of the input datasets according to the category of the scene 1 . In other words, instead of fixating on one set of input data-i.e., optical images and LiDAR z-or i-images-this approach suggests using different input attributes depending on the scene category. In addition, this approach could be expanded by adding another selection of the optimal similarity measurement for the scene category. Such a flexibility to select a similarity measurement and a pair of attributes from the datasets should be able to address the registration for the different type of scenes. The drawback of this approach is the training step that would require registered LiDAR and optical imagery datasets which can be a difficult prerequisite. A further study with more focus on such a drawback is therefore suggested.

Ultimately, this category-based selection of relevant registration approach can be integrated into the contextualization component of the proposed registration methodology. Such an integration would enable approaching towards an automatic registration on different scenes regardless of its type.

Lastly, another future research work shall be interested in the registration and fusion of LiDAR and optical imagery data in other contexts and usage scenarios, such as terrestrial, street view, and indoor. These contexts involve ground-based systems (either static or moving platforms) and/or hand-held devices such as smart phones and tablets 2 . Compared to the airborne context, they provoke considerably more freedom in the location and orientation of the employed sensors. As a result, the unconstrained acquisition conditions are relevant in these contexts, and more importantly, present more challenges to carry out a registration. Other than the similar difficulties reported in this research work, several additional challenges for these contexts can be anticipated, such as (i) the occlusion problem for both LiDAR data and optical imagery data which increases significantly in street-view perspectives (compared to aerial views), (ii) dynamic factors for subjects in the scenes such as moving cars, pedestrians, etc. Further studies, which take these variables into account, will need to be undertaken.

Future Work and Perspectives Related to the Building Extraction

Considering the building extraction task, future work will be dedicated to the integration of a boundary polygonization process into the building extraction approach (cf. subsection 3.10.3).

This process aims at simplifying the extracted boundaries into regular line or curve segments.

A desirable boundary polygonization should be geometrically accurate and able to cope with complex building shapes and sizes. In this regard, the boundary polygonization based on deep learning approaches can be promising. The learning process for such a method can benefit from leveraging the large amount of regularized footprint datasets, given the public GIS database such as OpenStreetMap and its alternatives. However, it is necessary to take into account the quality and consistency of these footprint datasets. Furthermore, a cross-modality adaptation-similar to the adaptation involving the SRSM, i.e., adapting from the typical usage regarding optical images to the usage of z-images-can be intriguing for the future works. In other words, the existing polygonization methods have been carried out to regularize the boundaries extracted from optical images. In contrast, to our knowledge, none of them involves the boundaries extracted directly from the LiDAR data or its rasterized products (e.g., z-images). This stems from the considerable shortage in amount of LiDAR data compared to that of optical imagery data. Therefore, a polygonization method trained on optical images, with the purpose to operate on z-images can be very interesting. Additional studies will be needed in order to develop a full picture of this direction.

Another direction to improve the building extraction method would be the detection of small buildings. This is one of the widely known problems of the building extraction task, as previously discussed in chapter 3, as well as of the object detection task in general. As such, recent progresses have been dedicated to improving the small object detection [START_REF] Chen | R-cnn for small object detection[END_REF][START_REF] Li | Perceptual generative adversarial networks for small object detection[END_REF]. In the context of building extraction, the detection of small buildings is challenging in several aspects. The extraction performance on small buildings is compromised by the presence of noise and unwanted objects, such as trees, cars and street lights. In order to avoid such objects, strict classifiers are typically applied which also eliminate small buildings in the final results. Considering supervised methods, the misdetection of small buildings stems from the lack of representative within training dataset. Otherwise, it can relate to the unbalanced labeled data distribution, where big buildings usually outnumber small buildings in the training dataset. These challenges suggest further investigation in order to progress in this direction.

Supervised building extraction methods typically require training data [71]. Consequently, they result in high accuracy on some buildings-i.e., the ones having similar characteristics with the training samples-but low accuracy on the other buildings. On the other hand, unsupervised methods like our proposed SRSM method, by not relying on any assumptions or training data, yields an average accuracy level on most of the buildings. This trade-off is another challenge for the building extraction task. In other words, we either have prioritized some typical characteristics of buildings within the method design (supervised methods), or we have treated the buildings as they are equally important by omitting the learning process (unsupervised methods). In order to overcome this trade-off, new research investigations can be undertaken with a self-supervised learning approach. It involves a learning process where the labeled data are not selected manually, but generated automatically by another unsupervised approach. For instance, we can be inspired by the integration of CNNs trained by samples generated by other conventional machine learning techniques, e.g., snake models [57,[START_REF] Sun | Extracting building boundaries from high resolution optical images and LiDAR data by integrating the convolutional neural network and the active contour model[END_REF]. Without the dependency on a specific training dataset or a set of assumptions and prior knowledge, this approach could be generalized more straightforwardly on large areas, allowing a better scalability. However, additional studies examining the quality and potential biases of the preliminary results (i.e., the samples) yielded by the machine learning approaches are necessary for this future work.

Lastly, in another future research topic, efforts can be invested in extending the proposed SR approach to a larger topic, namely the reconstruction and interpolation of missing data in LiDAR point cloud. This work aims at addressing the occlusion problems in LiDAR data by leveraging information and knowledge from the point cloud itself or provided by another data source such as the optical image [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF]. Several methods have proposed to upsample the LiDAR data based on the optical image textural information [START_REF] He | Guided image filtering[END_REF][START_REF] Ferstl | Image guided depth upsampling using anisotropic total generalized variation[END_REF] or segments [START_REF] Lu | Sparse depth super resolution[END_REF]. In this future work, we shall be interested in completing/interpolating the missing LiDAR information caused by occlusions. They shall allow an enhancement of both the spatial resolution and the completeness of the LiDAR point cloud data. The future work can elaborate these developments, improve other missing aspects, and advance towards the 3-D surface reconstruction and 3-D building modeling with better completeness.

Perspective of Application in the Underwater Domain

This research work has presented the coarse-to-fine registration methodology between airborne LiDAR and optical imagery datasets designed specifically for urban scenes (cf. chapter 2). In this subsection, the perspective regarding an adaptation of this methodology on the registration of imagery and topographic datasets collected by heterogeneous underwater sensors will be presented. Such an adaptation is inspired by the similarities between this underwater domain and the LiDAR-optical imagery domain. It also takes into account their differences such as the active acoustic acquisition geometry compared to the passive principles of optical cameras. In what follows, the rationale of this perspective including the introduction of this context and the involved datasets will be presented. Then, the approaches for the coarse registration and fine registration, as well as some preliminary results, will be described. Finally, a summary of this adaptation will be provided.

Rationale

The underwater and marine environment is characterized by a very important economic and environmental potential [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF]. In this environment, the observations of the sea-bottom are usually carried out using side-scan sonar3 (SSS) imagery illustrated by Figure 4.1a, and multi-beam echosounder (MBES) illustrated by Figure 4.1b. The SSS provides high-resolution acoustical images of the sea-bottom with information about objects, sedimentology, fauna and flora indications, etc. [START_REF] Blondel | Handbook of seafloor sonar imagery[END_REF]; whereas the MBES provides 3-D bathymetric data of the sea-bottom, but with a lower spatial resolution and level of detail [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF].

One can immediately note the similarity between the context involving these datasets with the considered research context, where the equivalence of the optical image in this underwater context is the SSS image, and its counterpart is a 3-D MBES point cloud data which is similar to the LiDAR point cloud data. On the one hand, we have a high-resolution imagery dataset providing The fusion of these datasets is interesting as it enables further effort towards building a rich and reliable representation of underwater scene. This research topic has always been a major interest for various critical applications, such as underwater drone autonomous navigation [START_REF] John | Autonomous underwater vehicle navigation[END_REF], surveillance mission implementation and tracking [START_REF] Smith | Approaches to multisensor data fusion in target tracking: A survey[END_REF], monitoring of environments and infrastructure [START_REF] Van Overmeeren | Acoustic habitat and shellfish mapping and monitoring in shallow coastal watersidescan sonar experiences in the netherlands[END_REF][START_REF] Huy Nguyen | Correlation bias analysis -a novel method of sinus cardinal model for least squares estimation in cross-correlation[END_REF].

In this future research work, the registration between 2-D SSS imagery and 3-D MBES bathymetric point cloud datasets is considered. The datasets considered in this context were acquired in the Sydney bay (Australia) as a part of the "Common Dataset Set" designed for the "Shallow Survey 99" conference [START_REF]Shallow Survey 99 -International Conference on High Resolution Surveys in Shallow Water[END_REF]. They are sea-bottom SSS images coming from a Klein 5400 system, whereas the bathymetry point clouds are provided by a RESON Seabat 8101 MBES. More details on these datasets can be found in section C.2. Since the presented registration methodology involves three main parts: the coarse registration, the super-resolution (SR) and the fine registration, we intend to carry out a preliminary study for each of these parts for the registration between an SSS image and an MBES bathymetric point cloud. (a) Potential of Sea-bottom Objects The previous work [START_REF] Huy Nguyen | Heterogeneous data registration for 3D underwater scene reconstruction[END_REF] focused on a shipwreck, a particular object not usually found on the sea-bottom. Therefore, a registration method relying solely of the presence of such objects would not be productive. Therefore, we shall consider the possibility of expanding this method to take into account smaller (and less recognizable) objects that occur frequently on the sea-bottom, such as boulders or other marine structures. In addition, taking into account the average point spacing of the MBES point cloud, i.e., 1.15 meters, these objects should have an average size large enough to be visible on the MBES point cloud, i.e., at least bigger than 2 meters. They should also present a significant height, and cast some shadow regions on the sea-bottom.

(b) Leveraging MBES Side-scan Imagery Data One feature of RESON SeaBat 8101 dataset is the side-scan acoustic images acquired from the MBES, thus called MBES side-scan images. Such a dataset availability enables an alternative registration approach between the side-scan image datasets. the registration between SSS images [START_REF] Daniel | Side-scan sonar image matching[END_REF][START_REF] Gueriot | Sonar image registration through symbolic matching: A fuzzy local transform approach using genetic algorithms[END_REF][START_REF] Chailloux | Intensity-based block matching algorithm for mosaicing sonar images[END_REF]. In addition, the registration between the MBES bathymetric point cloud and the MBES images can be done intrinsically, since they were acquired simultaneously and the offsets between the two sensors are static [START_REF] Gueriot | Bathymetric and side-scan data fusion for sea-bottom 3D mosaicing[END_REF]. As a result, the registration between the MBES and SSS images, once carried out, would facilitate the subsequent registration between the MBES point cloud and the SSS image.

However, two problems remain when carrying out the registration between the MBES and SSS images. First, these MBES images have a low resolution compared to the SSS images due to the longer distance from the vessel to the sea-bottom. Second, the differences in the point of view and field of view lead to a significant spatial shift between the two datasets. These two problems are similar to the airborne context (i.e., with LiDAR and optical imagery datasets), and have been addressed accordingly. The knowledge and solutions developed in the airborne context could be applied to this underwater environment. However, it should be reemphasized that this approach would be applicable only to MBES systems having the capability to record side-scan images.

(c) Morphology-based Registration An approach focusing on extracting the morphology of the sea-bottom can also be interesting. For instance, there exists some methods such as Geomorphon [START_REF] Tomasz | Geomorphons-a new approach to classification of landforms[END_REF] that allows characterizing the terrain relief using a DTM. This could be applied on the DTM derived from the MBES bathymetric point cloud. On the other hand, it is more difficult to extract the morphology of the sea-bottom using the SSS images, due to the lack of 3-D information.

Nevertheless, there exist a number of shape-from-shading methods that allows reconstructing the 3-D shape of the sea-bottom using the SSS images [START_REF] Moszy Ński | Reconstruction of 3d shape from sidescan sonar images using shape from shading technique[END_REF][START_REF] Bikonis | Application of shape from shading technique for side scan sonar images[END_REF]. Compared to relying on small objects on the sea-bottom, such an approach can be more reliable. Similar to the other approaches, the spatial shift and the spatial resolution difference are the challenges for this approach.

Fine Registration

(a) General Description Concerning the fine registration between the MBES and SSS datasets, the approaches based on the maximization of mutual information (MI) are interesting. Indeed, Chailloux et al. [START_REF] Chailloux | Intensity-based block matching algorithm for mosaicing sonar images[END_REF] proposed a registration method between two SSS images from overlapping tracks-i.e., the same platform, same configuration, and consecutive tracks-based on an algorithm called block matching which involves a combination of two similarity measures, namely correlation ratio and MI. They showed that not only the use of MI for the registration of SSS images is relevant even with active acoustic acquisition geometry, but also showed that MI is the best choice when compared with a list of 36 similarity measures-MI ranks as the most accurate one.

As aforementioned, MBES side-scan images are not always available, and even if they are provided, they do not have the same resolution as the SSS images. Thus, it is more relevant to perform the fine registration between an SSS image and an image simulated from the MBES bathymetric point cloud. In the context of the LiDAR-optical image registration on urban scene, the fine registration has been carried out based on the maximization of MI between the optical image and the high-resolution z-and i-image derived from the LiDAR data. Within this registration, the SR process aims at augmenting the spatial resolution of the LiDAR point cloud, and at the same time, at generating the two LiDAR-based images based on a given optical camera model. However, given the different acquisition geometry and principles of the SSS, compared to the optical passive acquisition technique, some adjustments are required. First, in order to simulate side-scan images having the same resolution as the SSS images, the spatial resolution of the MBES point cloud needs to be augmented. Second, we rely on a simulation model of SSS images based on the 3-D high-resolution bathymetric point cloud.

(b) Simulation of SSS Images Coiras et al. [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF] proposed a method of 3-D seafloor reconstruction using an Expectation-Maximization scheme. It involves a simulation of the SSS images knowing the location of the sensor, and use them to determine the most probable configuration of the seabed topography compatible with the side-scan image actually observed. They include the seafloor elevation (denoted by Z) and reflectivity (denoted by R), and sonar incidence beam profile (denoted by Φ4 ) that allows simulating an image as similar as possible to the actual SSS image.

The Expectation-Maximization is carried out to resolve the least mean squares problem, stated as follows,

(Z, R, Φ)=arg min(I Î) 2 (3.24) where Î represents the simulated image and I denotes the real SSS image.

The image simulation is developed based on Lambertian diffuse model, under the assumption that the backscattering intensity depends only on the angle of incidence of the illuminating sound pulses, and not on the sonar heading direction or the pulse frequency [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF]. According to this model, the intensity at a pixel p is formulated mathematically as in (3.25).

I(p)=KΦ(p)R(p) |cos(q(p))| (3.25)
where K is a normalization constant, and q is the incidence angle of the wave front. This angle is related to the grazing angle subtended by the vector r(p) from the sensor point to p and the orientation of the surface normal Ñ(p).

cos (q(p)) = r(p) • Ñ(p) |r(p)| • Ñ(p) (3.26) 
Many problems can be identified in the work undertaken by Coiras et al. [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF], such as the relevance of initial values for (Z, R, Φ) affecting the computational cost, the convergence of the optimization, as well as the possibility of local minimums. More importantly, this work has been enabled under the assumption that the side-scan sonar location and attitude (i.e., the sensor pose) are known exactly. In addition, this pose was assumed unchanged during the determination of the other unknown variables, such as seabed elevation Z, reflectivity R and sonar beam profile Φ. In reality, this is not the case, since the location and attitude of a side-scan sonar are usually unknown or uncertain, due to cable layback behavior-i.e., case of a towfish as the carrying platform-and suffering the ocean current drift [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF][START_REF] Chailloux | Intensity-based block matching algorithm for mosaicing sonar images[END_REF]. Therefore, the registration approach should follow an opposite path. In the proposed approach, we aim to determine the optimal sensor pose from where the side-scan images were acquired, based on the SSS image contents and the actual landmarks and objects on the sea-bottom (information provided by the MBES point cloud). The SSS image simulation based on the Lambertian diffuse model, inspired by [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF] described above, can be relevant in the proposed fine registration approach. In the next part, some preliminary results related to a similar simulation are presented. It is carried out based on the given inexact/uncertain location and attitude of the side-scan sonar, with the precise 3-D bathymetric point cloud given by MBES system.

(c) Preliminary Results

The SSS data are provided in an XTF 5 format, in which each data packet involves one ping. Each ping contains the location and attitude of the vehicle, the recorded backscattered signals in port and starboard sides, and other parameters, e.g., sound velocity, ship speed, etc. Since the low density of the MBES point cloud (i.e., 1.17 meters) is problematic to simulate a relatively high resolution image (i.e., 50 cm in this experiment), an SR is necessary. We apply a similar SR process as in [START_REF] Huy Nguyen | Coarse-to-fine registration of airborne LiDAR data and optical imagery on urban scenes[END_REF] for the LiDAR point cloud, using a vertical projection. The grid size of the new high-resolution point cloud is selected as 25 cm. Then, the SSS image simulation is carried out as follows. For each ping, we take into account the location and attitude of the sensor and determine what the sonar is seeing from that point of view.

For this purpose, a number of 3-D points from the high-resolution bathymetric point cloud that are acoustically seen (i.e., ensonified by the sound waves) by the SSS for each ping are determined, according to its location and heading. the Lambertian diffuse model, on each lateral ensonified region, the angle of incidence (denoted by q) between the vector sonar-to-target and the surface normal vector is determined. The values of cos 2 (q) from the consecutive pings in the region of interest are then stacked together into one matrix-similar to how the SSS images are collected. This matrix represents the variation in the angle of incidence between the sound waves and the seafloor surface, which is strongly correlated with the image intensity [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF]. Two matrices of cos 2 (q) are computed and visually compared with the raw images, as shown by Figure 4.8. On these figures, the x-axis represents the ping number, whereas the y-axis for the raw images relates to time of the signal reception, while the y-axis for the matrices of cos 2 (q) relates to the ground distance sample.

As one can see from Figure 4.8, the matrices of cos 2 (q) exhibit very similar characteristics compared to the raw SSS images. All significant objects can be well distinguished from the background and show resemblance between the matrices of cos 2 (q) and the actual SSS images. This preliminary result shows promises to be pursued in future research works. Moreover, in order to simulate realistic SSS images, the following tasks need to be realized: • Taking into account other attitude information (roll, pitch, heave), as well as the platform's velocity;

• Simulating the effect of the water column and shadow in the simulated image;

• Converting the ground-range sampled matrices to slant-range sampled images.

Summary of the Adaptation of the Proposed Heterogeneous Data Registration Methodology to the Underwater Context

In this subsection, we have presented a preliminary study on the adaptation of the proposed coarse-to-fine registration methodology to the underwater context. The following components of the methodology, namely the coarse registration, the super-resolution, and the fine registration, have been focused.

Firstly, even though the coarse registration has previously been studied in [START_REF] Huy Nguyen | Heterogeneous data registration for 3D underwater scene reconstruction[END_REF], other solutions still need to be considered, since shipwrecks are not always available. In this regard, the following three approaches appear the most interesting. The first approach involves considering other objects occurring more frequently on the sea-bottom but less recognizable than a shipwreck. Another suitable registration approach would be to use MBES side-scan images (also provided by RESON SeaBat) and register them with the SSS image. Finally, a morphology-based registration can also be interesting using dedicated methods (e.g., geomorphon) to extract the morphological features of the sea-bottom.

The second component of this method consists in the SR of MBES point cloud and then the simulation of SSS images using the high-resolution point cloud. The SR applied on the MBES point cloud can be carried out similarly to the LiDAR context using a vertical projection. It has been shown to be effective to augment the MBES point cloud density. Then, the SSS image simulation could be carried out based on the Lambertian diffuse model. Some very promising early results have been presented with a basic model computing the angle of incidence using the highresolution bathymetric point cloud. To advance further in this direction, more efforts should be put in increasing the complexity of the simulation model by taking into account other SSS features (e.g., attitude, velocity) and image effects (i.e., water column, shadow, etc.), as well as the impact of uncertain SSS locations and attitudes on the simulation.

Lastly, the fine registration between MBES and SSS datasets has also been considered to be developed by the same approach as the airborne context, i.e., an MI-based registration approach involving an SR of the 3-D point cloud. Indeed, MI-based registration approach between SSS images has been performed by Chailloux et al. [START_REF] Chailloux | Intensity-based block matching algorithm for mosaicing sonar images[END_REF], showing its potential in the underwater context. In addition, MBES side-scan images are not always available and, if provided, they have a different resolution compared to the SSS images. Based on these premises, we propose an adaptation by studying and developing a registration approach between a real SSS image and a simulated SSS image derived from the MBES point cloud. However, it is still uncertain how to carry out optimally the estimation of transformation model, whereas Coiras et al. [START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF] proposed an optimization-based approach. In addition, as the relevance of this registration approach depends strongly on the quality of the SSS image simulation-which has provided some interesting preliminary results-a more sophisticated SSS image simulation needs to be elaborated. La fusion des données issues de l'imagerie optique et du LiDAR permet de tirer profit de cette complémentarité afin de mieux comprendre un environnement et de le représenter en 3-D avec une meilleure précision et complétude, par rapport aux usages individuels des capteurs [34,35].

En plus de tirer profit de la complémentarité de ces données, il apparaît pertinent de fusionner les acquisitions réalisées depuis des plateformes différentes, à des moments différents et dans différentes configurations de vols. Une telle approche permet une haute flexibilité dans l'utilisation de la caméra optique en évitant de l'attacher rigidement avec le système LiDAR, ainsi qu'une diversité de caractéristiques spatiales et temporelles dans les jeux de données. Elle permet également de profiter de la grande quantité des données archivées disponibles [START_REF] Michael A Wulder | Opening the archive: How free data has enabled the science and monitoring promise of landsat. Remote Sens[END_REF]. Ainsi, il y a de plus en plus de capteurs qui sont utilisés pour effectuer la surveillance du territoire par exemple, ce qui multiplie les sources de données hétérogènes exploitables. Pourtant, les travaux existants de fusion des données d'imagerie aérienne ou satellitaire avec le LiDAR aéroporté ont abordé des contextes d'acquisitions spécifiques, dans lesquels les images et les nuages de points sont déjà recalés ou bien acquis depuis une même plateforme à des moments identiques ou proches. Donc, développer une solution de fusion suffisamment versatile pour satisfaire un contexte où les données sont collectées à des moments différents depuis différentes plateformes, selon des points de vue et des résolutions spatiales et niveaux de détail distincts reste un problème de recherche non résolu [8].

Dans le cadre de l'analyse des impacts des changements climatiques, l'évaluation et l'anticipation des risques d'inondations sont affirmées d'une importance primordiale [19], en particulier dans la province de Québec, Canada [20]. L'extraction de bâtiment joue un rôle important dans ce contexte, fournissant l'emplacement et les empreintes des bâtiments précis et à jour. Pour réaliser cette tâche, une intégration et fusion de données LiDAR et imagerie optique présentent de nombreux intérêts permettant de surmonter les inconvénients individuels des sources de données [54]. Cependant, une solution efficace pour extraire des bâtiments des environnements urbains et résidentiels à grande échelle n'est toujours pas disponible. En effet, la capacité de mise à l'échelle d'une telle solution-i.e., la capacité de maintenir son efficacité lors de l'expansion d'une zone locale à une grande zone [21]-est importante compte tenu de l'échelle de l'étude. En fait, les applications à grande échelle jusqu'à une échelle provinciale, nationale ou même continentale ont également suscité un grand intérêt dans la communauté de la photogrammétrie et télédétection [22]. Néanmoins, la nature des environnements urbains et résidentiels peut être très complexe, où des bâtiments peuvent être trouvés avec différentes tailles, couleurs et formes, dans des zones urbaines de densité et de couverture végétale différentes. Une telle complexité est problématique pour le développement d'une solution d'extraction de bâtiments. En conséquence, un certain nombre d'études ont été rapportées avec des résultats relativement significatifs en utilisant des informations a priori sur la forme des bâtiments [59,60,61], imposant des contraintes géométriques [62] ou se limitant à des zones urbaines spécifiques. Cependant, de telles hypothèses et contraintes limitent la capacité de mise à l'échelle d'une méthode d'extraction de bâtiments, en particulier sur de grandes surfaces composées de structures nombreuses et complexes.

B.1.2 Question et Objectifs de Recherche

Sachant que les données d'imageries aériennes/satellitaires et du LiDAR aéroporté ont été acquises à différents moments, depuis des plateformes différentes, selon des configurations différentes, dans le cadre des scènes urbaines, ces travaux de recherche ont pour but de répondre à la question suivante : comment effectuer la fusion entre ces jeux de données et extraire les empreintes des bâtiments dans des contextes urbains à grande échelle, étant donné:

• la différence de point de vue et de champ de vue entre les jeux de données ;

• leur différent niveau de détail et résolution ;

• la différence d'apparence d'un même élément de la scène dans les jeux de données ;

• les incertitudes et incomplétudes des informations dans les jeux de données ;

• la complexité et la variabilité des environnements urbains et résidentiels. 

B.2 État de l'Art

B.2.1 Recalage entre des Données LiDAR et des Images Optiques

Un recalage précis des données LiDAR et des images optiques est la condition préalable essentielle à toute application basée sur la fusion de données [44]. La majorité des méthodes de recalage automatique de tels jeux de données peuvent être classées en deux catégories, à savoir les méthodes iconiques et les méthodes symboliques. D'une part, les méthodes iconiques déterminent la Lors de la fusion des données LiDAR aéroportées et de l'imagerie optique, même un faible désalignement entre elles peut causer un impact défavorable sur la qualité du produit de la fusion [48]. Ainsi, un niveau de précision de 1 pixel est recommandé pour le recalage des jeux de données [9]. En fait, un niveau de précision sous-pixel, mesuré par les distances entre les points de contrôle, est généralement préféré pour un bon recalage. Cependant, un tel critère qualitatif est difficile à atteindre, car la résolution de l'image peut varier de dizaines de centimètres à plusieurs mètres dépendant de la plateforme (i.e., aéroporté par rapport au satellite). Les travaux de recherche actuels dans la littérature impliquent des écarts spatiaux résultants entre les jeux de données recalés allant de 45 à 50 cm [44,49] 

B.2.2 Extraction de l'Empreinte des Bâtiments

Un grand nombre de méthodes d'extraction de l'empreinte des bâtiments ont été rapportées au cours des dernières décennies, en particulier avec l'émergence des systèmes LiDAR depuis les années 1990 [13]. Cependant, cette tâche reste très difficile en raison de diverses difficultés. Par exemple, de nombreux travaux ont été réalisés à l'aide d'images aériennes et satellitaires [55,[START_REF] Huertas | Detecting buildings in aerial images[END_REF][START_REF] Scott | Class-guided building extraction from ikonos imagery[END_REF][START_REF] Turker | Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (svm) classification, hough transformation and perceptual grouping[END_REF]. Ils sont confrontés à de nombreux problèmes dus aux occlusions, aux faibles contrastes, aux ombres et aux perspectives d'image désavantageuses [START_REF] Ekhtari | Automatic building extraction from lidar digital elevation models and worldview imagery[END_REF]. De l'autre côté, puisque les changements d'élévation permettent de distinguer les objets urbains plus efficacement que les changements spectraux et texturaux des images optiques, de nombreux travaux [START_REF] Khoshelham | Segment-based classification of damaged building roofs in aerial laser scanning data[END_REF][START_REF] Zhang | Svm-based classification of segmented airborne LiDAR point clouds in urban areas[END_REF] ont proposé d'exploiter les informations 3-D de LiDAR pour extraire de bâtiments. Cependant, ces méthodes sont généralement confrontées à des problèmes de classification erronée de la végétation en tant que bâtiments [8]. De plus, la précision des bords extraits peut être compromise en raison de la faible densité des nuages de points LiDAR [START_REF] Chen | Building detection in an urban area using LiDAR data and quickbird imagery[END_REF]. Par conséquent, de nombreux chercheurs ont abouti à un consensus visant à utiliser des données multisources. En effet, un certain nombre d'études impliquant l'intégration des données LiDAR et d'imagerie optique ont été rapportées [START_REF] Sohn | Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction[END_REF][START_REF] Awrangjeb | Automatic extraction of building roofs using lidar data and multispectral imagery[END_REF]. Ils réussissent à améliorer la précision d'extraction du bâtiment, par rapport à l'utilisation individuelle de sources de données [START_REF] Zhang | Multi-source remote sensing data fusion: status and trends[END_REF]. Cependant, une telle approche d'intégration de données multisources peut être problématique à cause du désalignement entre ces données [START_REF] Gilani | An automatic building extraction and regularisation technique using LiDAR point cloud data and orthoimage[END_REF].

Le groupe de travail II/4 "Reconstruction et analyse 3-D de scènes" de la Société internationale de photogrammétrie et de télédétection ISPRS a fourni une taxonomie des méthodes soumises à la compétition consacrée à l'extraction de bâtiments [71], en fonction de leur stratégie de traitement. Certaines des méthodes sont supervisées nécessitant des données d'apprentissage à partir d'un nuage de points LiDAR ou d'une image optique, comme Niemeyer et al. [START_REF] Niemeyer | Conditional random fields for LiDAR point cloud classification in complex urban areas[END_REF] et Chai [START_REF] Chai | A probabilistic framework for building extraction from airborne color image and dsm[END_REF].

Ces deux méthodes sont parmi les méthodes les plus précises lors de l'évaluation sur les jeux de données ISPRS Vaihingen. De nombreuses autres méthodes impliquent des modèles explicites ou un ensemble de règles prédéfinies sur l'apparence des bâtiments dans une scène. Par ex-emple, Bayer et al. [START_REF] Bayer | Brief description of procedures used for building and tree detection at vaihingen test site[END_REF] ont proposé une méthode nécessitant de plusieurs seuils appliqués sur l'élévation fournie par le MNS et l'indice de végétation par différence normalisée (appelé NDVI), pour segmenter les bâtiments et les arbres. De même, Grigillo and Kanjir [START_REF] Grigillo | Urban object extraction from digital surface model and digital aerial images[END_REF] ont proposé deux méthodes de classification consistant en des ensembles de règles sur les couleurs des pixels de l'image et sur le NDVI. Certainement, la sélection de ces seuils et règles dépend fortement de la scène.

Le modèle de contour actif [69], ou familièrement connu sous le nom snake model, est une tech- 

B.3.1 Recalage Grossier

Tout d'abord, un recalage grossier symbolique est effectué. Il consiste à extraire et puis à mettre en correspondance des bâtiments à partir des jeux de données. Il repose sur l'utilisation de bâtiments comme primitives, ce qui est un choix pertinent de primitive tenant compte de la faible densité du nuage de points LiDAR aéroporté autour des surfaces verticales. Différentes séries de traitements sont appliquées respectivement sur les jeux de données LiDAR et d'image optique afin d'extraire les bâtiments. D'une part, nous appliquons une série de traitements commençant par un seuillage d'altitude sur des points LiDAR. Ceci permet de filtrer des points au sol et ceux au-dessus du sol. Les points au-dessus du sol sont ensuite projetés verticalement sur le plan z = 0. Ces points projetés sont ensuite représentés dans une grille binaire, où la valeur de cellule est définie selon la présence (valeur 1) ou absence (valeur 0) de points à l'intérieur. Une ouverture morphologique est appliquée pour enlever de petits artefacts sur cette grille binaire. Les cellules de grille restantes sont regroupées en segments étiquetés selon leur connexité. Enfin, une enveloppe est calculée sur chaque segments pour déterminer les bords des bâtiments. D'autre part, la segmentation de mean shift [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF] est effectuée sur l'image optique avec un paramètre de bande passante choisi contextuellement. Un traitement supplémentaire est ensuite appliqué pour supprimer les segments indésirables et préserver ceux qui ressemblent à des bâtiments. Ensuite, les bâtiments candidats dans les deux jeux de données sont appariés et mis en correspondance. Ces correspondances sont ensuite utilisées pour estimer le modèle de transformation global. Ce recalage permet de réduire considérablement le décalage spatial entre les jeux de données-causé par les différences de points de vue et de champs de vue-qui peut varier de 1-2 mètres jusqu'à approximativement 40 mètres (cas entre LiDAR et imagerie satellitaire). Ici, il devrait également être noté que cette approche appuyée sur des bâtiments ne limite certainement pas la versatilité de notre méthode, puisque des scènes urbaines avec des bâtiments (même très dispersés) sont disponibles la plupart du temps [70].

B.3.2 Recalage Fin

Ensuite, un recalage fin basé sur la maximisation de l'IM ou de l'Information Mutuelle Combinée Normalisée (IMCN) (les deux mesures ont été effectuées séparément) est effectué pour déterminer la pose optimale de la caméra, permettant d'aligner précisément les jeux de données. Ce recalage fin consiste également en un processus de super-résolution (SR) appliqué sur des données LiDAR pour générer des images à haute résolution dont les valeurs des pixels correspondent à, respectivement, l'altitude et l'intensité. Une résolution identique des jeux de données à recaler est un prérequis des approches de recalage iconique utilisant la maximisation d'IM. Cette approche SR permet donc de neutraliser la différence de résolution spatiale et de niveau de détail entre les jeux de données, permettant le recalage fin. Une telle précision sur ce jeu de données peut sembler moins souhaitable que celle obtenue lors de l'évaluation sur jeu de données Vaihingen mentionnée ci-dessus. Cependant, on peut s'y attendre sur un tel jeu de données à grande échelle, avec divers types de scènes résidentielles, urbaines et industrielles complexes. En effet, par rapport aux empreintes des bâtiments produites par Microsoft par une approche de réseaux neurones profonds [23], notre méthode non supervisée réussit à fournir une précision très compétitive, comme cela est illustré dans le Tableau B.3.
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Figure 0 .

 0 Figure 0.2 shows an example of airborne LiDAR data and aerial orthorectified optical imagei.e., obtained by removing the image distortions caused by the sensor, viewing angle and scene relief-on an urban scene.

Figure 0 . 2 :

 02 Figure 0.2: Example of (a) an airborne LiDAR data and an aerial orthorectified image, (b) the optical image, (c) LiDAR point elevation (top view), and (d) LiDAR point intensity (top view).

Figure 0 . 3 :

 03 Figure 0.3: Flowchart of the proposed methodology.

ure 1 . 1 .

 11 This introduces additional substantial errors in the reconstructed LiDAR point position.

Figure 1 . 1 :

 11 Figure 1.1: The impact of the beam divergence on range measurement uncertainty at a sloped surface. Reference: Shan and Toth [7].

  Pandey et al. [95] used the MI to register 2-D image to 3-D point cloud in a street-view context, based on the similarity between optical image and LiDAR intensity image. An extension of MI, named Normalized Mutual Information (NMI), was introduced by the work of Taylor and Nieto [96]. It is defined by Equation (1.11) as follows, NMI(A; B)= H(A)+H(B) H(A; B) (1.11) Compared to MI-based registration, NMI yields a more robust performance in registering 2-D image and 3-D data in urban scenes. These methods relied on the intuition that the characteristics of LiDAR intensity measurements-being the measure of laser return intensity depending on the material content and the surface roughness-are similar to those of the optical image. Intrigued by the question of which information from LiDAR exhibits the most similarity to an optical image, and yields the most accurate result, Mastin et al. [67] evaluated three MI-based approaches for the registration: (a) MI(optical image; LiDAR elevation image) (b) MI(optical image; LiDAR intensity image) (c) MI(optical image; LiDAR elevation image) + MI(optical image; LiDAR intensity image)
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Figure 2 . 1 :

 21 Figure 2.1: Flowchart of the registration of optical imagery and airborne LiDAR data (NCMI: Normalized Combined Mutual Information).

Figure 2 .

 2 Figure 2.1 presents the full flowchart of the proposed method. First, the coarse registration approach is presented. It aims to reposition the two datasets based on the extraction and matching of building candidates. Based on these primitives, a global transformation model is estimated,

Figure 2 . 2 :

 22 Figure 2.2: Flowchart of the building-based coarse registration between optical image and LiDAR point cloud.

Figure 2 . 4 :

 24 Figure 2.4: Comparison of the MBR filling percentage between a tree segment versus building segments. The segment pixels are in cyan, whereas the MBR of each segment is in red. (a) On a tree segment. (b) On building segments. (c) MBR filling percentage.
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 26 Figure 2.6: Flowchart of the proposed fine registration between optical image and LiDAR point cloud.

Figure 2 . 7 :

 27 Figure 2.7: Overview of the super-resolution process, to generate a high-resolution LiDAR-based image (z-or i-image).

  2)) of the LiDAR 3-D point cloud onto the 2-D optical image space. Next, the transferred values are propagated to their neighboring pixels. (c) Propagation of transferred LiDAR values The propagation of transferred values is carried out through the minimization of a cost function F (f), defined by Equation (2.5). It is composed of the sum of squared directional gradients (SSDG) of f, and a L 1 -norm term to promote the sparsity of f, subjecting to the values transferred from the point cloud (described by Equation (2.4)).

  b

Figure 2 . 8 :

 28 Figure 2.8: Differences f (k+1) f (k) 2 and the cost values F (f (k) ) plotted as a function of iterations. The vertical red-dashed lines indicate the first iteration where every pixels of the estimated image is filled. First row: the plots from the SR process of generating the z-image; Second row: the plots from the SR process of generating the i-image. (a and c) Difference f (k+1) f (k) 2 .( b

  A, B); C)= H(A; B)+H(C) H(A; B; C) (2.10) NCMI-based registration method relies on the similarity between the optical image and both

. 4 .

 4 Then, the ones between these LiDAR datasets with the Pléiades multispectral imagery data 2015 are provided by the column three and four. The spatial discrepancy values between the two considered datasets are averaged on all check points from the two selected areas. An insignificant difference of approximately 10-15 cm is obtained between the two areas. The gain values are computed based on average spatial discrepancy values after registration with respect to the values before registration.(a) Between orthorectified aerial image and LiDAR data Considering the orthorectified aerial image (2016), as a result of the image orthorectification, the average discrepancy between this dataset and the airborne LiDAR dataset (both 2011 and 2017) is already relatively small, i.e., respectively 1.08 and 1.05 meters. The results summarized by Table2.4 show that our proposed registration yields an even smaller discrepancy. Indeed, the proposed coarse registration method results in a reduction of these values by 48.15%. This reduction highlights the effectiveness of repositioning the datasets closer to each other. Then, a spatial discrepancy of 40 cm between the LiDAR data (2011) and the orthorectified aerial imagery (2016), and of 35 cm between the LiDAR data (2017) and the orthorectified aerial imagery (2016) are provided by the NCMI-based fine registration method. It is worth noting that both the LiDAR datasets acquired in 2011 and 2017 involve a horizontal accuracy of approximately 17 cm; whereas the horizontal accuracy of the orthorectified aerial imagery is 16.5 cm (cf. Table 2.1). It means that the resulting discrepancy values, respectively 40 and 35 cm, are only slightly bigger than the combination of horizontal accuracy of the considered datasets. Also, the reported average discrepancy between the LiDAR data 2011 and the orthorectified aerial imagery 2016 after the registration (i.e., 40 cm) is slightly bigger than 1/2 of the average point spacing of the considered LiDAR point cloud (i.e., 70 cm). On the other hand, regarding the registration between between LiDAR data 2017 and the orthorectified aerial imagery 2016, the resulting average discrepancy (i.e., 35 cm) approximates the average point spacing of the LiDAR point cloud (i.e., 35.4 cm). (b) Between Pléiades image and LiDAR data The discrepancy evaluation of the registration between the airborne LiDAR data (2011 and 2017) and the Pléiades imagery (2015) can be analyzed similarly from the results presented at the third and fourth columns of Table
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 2163 Figure 2.16: Detail on convergence moment for the SR. (a) Differences f (k+1) f (k) 2 plotted as

0 iFigure 3 . 1 :

 031 Figure 3.1: Flowchart of the proposed building extraction method based on the Super-Resolutionbased Snake Model (SRSM).

Figure 3 . 2 :

 32 Figure 3.2: Overview of the super-resolution process, generating a high-resolution Light Detection and Ranging (LiDAR)-based z-image.

Figure 3 . 3 :

 33 Figure 3.3: (a) Difference f (k+1) f (k) 2 and (b) cost function value F (f (k) ) displayed as a function of iterations, from the SR process of generating z-image f. The vertical red-dashed lines represent the first iteration where every pixel of the estimate z-image is filled.

  Dense z-image f (c) Reference optical image

Figure 3 . 4 :

 34 Figure 3.4: Examples of super-resolution outcome. (a) The sparse z-image f Ω ⇤ from the projection; (b) The dense z-image f from the whole SR process; (c) The reference optical image of the same scene for visual comparison.

Figure 3 . 7 :

 37 Figure 3.7: Quebec City dataset coverage visualized with ESRI ArcGIS Online World Imagery basemap (Source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community).

Figure 3 . 8 :

 38 Figure 3.8: Illustration of the conducted assessment. (a) The original LiDAR 3-D point cloud; (b) the subsampled 3-D point cloud (by a factor of 2); (c) sparse DSM generated from (b); (d) result of the NN interpolation; (e) result of the proposed SR; (f) the ground truth DSM generated from (a).

Figure 3 . 13 :

 313 Figure 3.13: SRSM results in red outlines on typical urban and residential areas in Quebec City (a and c), and the corresponding ground truth (b and d). Each example covers a 1 km ⇥1 km area.

Figure 3 . 14 .Figure 3 . 14 :

 314314 Figure 3.14: Image-based energy term E img of a rectangular building with a color-consistent roof.

Figure 3 . 15 :

 315 Figure 3.15: Comparison between the use of the CNN-inferred a and b and the fixed scalar values. (a) Snake results parametrized by CNN-inferred values compared with fixed scalar values; (b) The z-image used in the snake model; (c) The pixel-wise b resulted from CNN [42].

Figure 4 . 1 :

 41 Figure 4.1: Illustration of (a) a side-scan sonar and (b) a multi-beam echo-sounder (source:)

Figure 4 .

 4 Figure 4.2 shows a sea-bottom area, observed by two 3-D MBES point cloud from two different MBES tracks (in the south-west to north-east direction) and two SSS images from two different SSS tracks (in the north-west to south-east direction). The background figure depicts the 3-D MBES point clouds color-coded according to point elevation, whereas the four tracks are plotted in white. Several common objects can be remarked on both datasets, highlighted by magenta ellipses on the MBES point clouds. On the two bottom sub-figures, part of the SSS images are shown in grayscale for visual purpose. For instance, on the left-bottom sub-figure, the SSS image depicts a region of many vertical pillars which can also be found in the 3-D point cloud displaying some high elevation points (the red ones) and an absence of points behind them due to the signal occlusion. A shipwreck next to a smaller object can be seen both in the MBES point cloud and in the SSS image, as shown in right-bottom SSS image.

Figure 4 . 3 :

 43 Figure 4.3: Previous results on the registration between an SSS image and an MBES point cloud. (a) Segmentation highlighting the shadow region (green) and the water column (blue), and estimated height as a function of ping number of a shipwreck without topographic knowledge. (b) Local elevation profile measured from the 3-D bathymetric point cloud and estimated from the sonar image.

Figure 4 .

 4 4 presents three MBES side-scan images acquired in three different surveys, named Western 29, 30 and 31. Many research works have been conducted over the years on

Figure 4 . 4 :

 44 Figure 4.4: Side-scan sonar images from MBES datasets. The red circles highlight the area of the shipwreck previously presented (cf.Figure 4.3a).

Figure 4 .

 4 Figure 4.4: Side-scan sonar images from MBES datasets. The red circles highlight the area of the shipwreck previously presented (cf.Figure 4.3a).

Figure 4 .

 4 5 illustrates the setup of the experiment for a SSS image simulation, viewed from above. The inputs are the MBES bathymetric point cloud and the SSS locations. We present the simulation results around a shipwreck (shown previously in Figure 4.2) for the purpose of visual assessment. Two tests are carried out to simulate two SSS images from two tracks around the shipwreck, denoted by the red and the green triangles.

Figure 4 . 5 :

 45 Figure 4.5: MBES bathymetric point cloud in the region-of-interest (i.e., the shipwreck) and the SSS location.

Figure 4 .

 4 6 depicts the SR process applied on the MBES point cloud, in which the original point cloud with a 1.17 m point spacing has been super-resolved into a point cloud of 25 cm point spacing.

Figure 4 . 6 :

 46 Figure 4.6: Super-resolution of the MBES bathymetric point cloud. The point spacing of the MBES bathymetric point cloud is improved from 1.17 meters (left) to 0.25 meters (right).

Figure 4 .

 4 7 illustrates the geometry of this determination, where the location of the SSS is represented by the red triangle and the narrow lateral ensonified region for each ping is depicted by the green rectangle. It should be noted that this illustration only shows the port side of the SSS for the sake of simplicity. The ensonified region width should be set according to horizontal directional beam width of the employed SSS. Then, according to

Figure 4 . 7 :

 47 Figure 4.7: Overview of how the simulation is carried out on the high-resolution bathymetric point cloud. From each SSS location (represented by red triangles), a narrow lateral ensonified region of the seabed is determined (represented by green rectangles).

Figure 4 . 8 :

 48 Figure 4.8: Preliminary result of the SSS image simulation, on the same shipwreck which is seen by two different SSS tracks. Left column: raw SSS images; Right column: simulated ground-range sampled matrices of cos 2 (q) from the MBES bathymetric point cloud.

Tableau B. 1 :

 1 Complémentarité entre les données LiDAR et d'imagerie optique.

  En effet, l'objectif de cette recherche est de concevoir et de développer une méthodologie efficace et versatile de fusion entre les données d'imagerie optique aérienne ou satellitaire et les données LiDAR aéroportées dans ce contexte d'acquisition non-contraint dans le but de réaliser une extraction des empreintes des bâtiments, avec une précision et une capacité de mise à l'échelle satisfaisante. Afin d'atteindre cet objectif général, trois objectifs spécifiques ont été établis : • Concevoir et développer une approche de contextualisation permettant d'adapter le recalage des données et l'extraction de bâtiments en fonction de la nature de la scène, de ses caractéristiques et de ses éléments. • Concevoir et développer une méthode de recalage précise et versatile entre les jeux de données concernés acquis dans des conditions non-contraintes, intégrant une analyse multirésolution ou multi-échelle. • Concevoir et développer une méthode d'extraction de bâtiments automatique, précise et à grande échelle, n'impliquant aucune information a priori ni hypothèse sur les bâtiments, en s'aidant de la fusion des données LiDAR aéroporté et d'imagerie optique aérienne/satellite.

B. 3 Figure B. 1 :

 31 Figure B.1: Schéma-bloc du recalage des données LiDAR aéroportées et imagerie optique (IM: Information Mutuelle, IMCN: Information Mutuelle Combinée Normalisée). Source: Nguyen et al. [179].

Figure B. 2 :Figure B. 6 :

 26 Figure B.2: Schéma-bloc du processus de super-résolution, qui génère les images haute résolution issues des données LiDAR. Source: Nguyen et al. [181].

Table 1

 1 

	Attribute	Unit	Description
	X, Y	Meter	Planimetric ground location of the point
	Z	Meter	Elevation of the point
	Intensity	-	Laser pulse return intensity at the sensor
	GPS time	Second The GPS time stamp at which the laser pulse was emitted from the aircraft.
	Number of returns	-	Total number of returns for a given transmitted pulse
	Return number	-	The return number of this pulse (e.g., return two of the five returns)

.1 summarizes the attributes of a typical LiDAR point cloud dataset. Table

1

.1: Typical LiDAR per-point data attributes. Reference: Shan and Toth

[7]

.

  optique, et une approche locale d'estimation du modèle de transformation. La méthode proposée réussit à surmonter les défis liés à ce contexte difficile. Par exemple, compte tenu des données LiDAR aéroporté (2011) et d'imagerie aérienne orthorectifiée (2016) utilisées, le déplacement spatial a été réduit de 48.15% après le recalage grossier proposé.

tentiel des deux capteurs. Une fusion optimale de l'imagerie optique et des données LiDAR nécessite un recalage précis. Il s'agit-là d'un problème complexe, car une solution versatile fait encore défaut, notamment lorsque les données sont collectées à des moments différents, à partir de différentes plateformes, sous différentes configurations d'acquisition. Ce chapitre présente une méthode de recalage grossier à fin d'imagerie optique avec des données LiDAR aéroportées acquises dans un tel contexte. Premièrement, un recalage grossier implique des processus d'extraction et d'appariement de bâtiments à partir des deux jeux de données. Ensuite, un recalage fin basé sur la maximisation de l'information mutuelle est effectué. Il implique une approche de super-résolution appliquée aux données LiDAR pour générer des images avec la même résolution que l'image

Table 2 .

 2 1: Sensor and platform specifications.

		Optical multispectral imagery	Airborne LiDAR data
		Aerial image (2016)	Satellite image (2015)	LiDAR (2017)	LiDAR (2011)
	Principle	Passive	Passive	Active	Active
	Device (Camera/LiDAR) -Platform	Vexcel UltraCAM Xp -Piper Navajo	Pléiades HR	Optech ALTM Galaxy -Piper Aztec	Optech ALTM Gemini -Piper Navajo
	Sensor design	Time-Delay Integration Camera	Pushbroom	Whiskbroom	Whiskbroom
	Acquisition dates (season)	June 2016 (summer)	June 2015 (summer)	May-June 2017 (summer)	Oct.-Nov. 2011 (winter)
	Flying height	2955 m	695 km	1300 m	950 m
	Swath width	2597 m (cross-track)			

Table 2 .

 2 2: Performance of building extractions and matching processes on the selected areas. On the area 2, there are in total 12 buildings (after 2013), but there were only 10 (before 2013).

		Extracted from	Extracted from	Matching	Matching
		LiDAR data	image by mean	result by	result by GTM
			shift	RANSAC	
	TP/FA/M	28/0/0	24/21/4	8/0/12	19/7/1
	Precision	100%	53.33%	100%	73.08%
	Recall	100%	85.71%	40%	95%
		(a) On the area 1 with 28 buildings in total.	
		Extracted from	Extracted from	Matching	Matching
		LiDAR data	image by mean	result by	result by GTM
			shift	RANSAC	
	TP/FA/M	10/0/0	11/37/1	7/1/2	9/1/0
	Precision	100%	22.92%	87.5%	90%
	Recall	100%	91.67%	77.78%	100%
	(b)				

Table 2 .

 2 4: Building region centroids-based spatial discrepancy evaluation.

		LiDAR data (2011) and	LiDAR data (2017) and	LiDAR data (2011) and	LiDAR data (2017) and
		aerial imagery (2016)	aerial imagery (2016)	Pléiades imagery (2015)	Pléiades imagery (2015)
		Mean (Std)	Gain	Mean (Std)	Gain	Mean (Std)	Gain	Mean (Std)	Gain
	Before registration	1.08	(0.52)	-	1.05	(0.68)	-	42.89 (1.47)	-	44.43 (1.73)	-
	Coarse registration	0.56	(0.30)	48.15%	0.54	(0.55)	48.57%	2.06	(1.24)	95.20%	1.39	(0.44)	96.87%
	MI-based fine registration	0.46	(0.29)	57.41%	0.43	(0.32)	59.05%	1.41	(0.78)	96.71%	1.20	(0.58)	97.30%
	NCMI-based fine registration	0.40	(0.27)	62.96%	0.35	(0.31)	66.67%	0.99	(0.45)	97.69%	0.82	(0.45)	98.15%
	Gain of using NCMI over MI		13.04%			18.60%			29.79%			31.66%	

Table 2 . 5
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: Check pair line-based spatial discrepancy evaluation.

LiDAR data (2011) and aerial imagery (2016) LiDAR data (2017) and aerial imagery (2016) LiDAR data (2011) and Pléiades imagery (2015) LiDAR data (2017) and Pléiades imagery (2015)

  In this assessment, two sets of 72 line segments are manually sketched on the optical image and on the generated z-image of the two selected areas. They are then manually matched, yielding check pair line segments. The source for these line segments are mainly the building straight boundaries. Then, the Hausdorff distance between each pair is computed. A smaller distance indicates a more accurate registration. Table2.5 summarizes the quantitative results of check pair line-based evaluation of the registrations between airborne LiDAR data (2011 and 2017) with orthorectified aerial imagery (2016), and with the Pléiades multispectral imagery data (2015).

		Mean (Std)	Gain	Mean (Std)	Gain	Mean (Std)	Gain	Mean (Std)	Gain
	Before registration	1.19	(0.67)	-	1.08	(0.80)	-	44.61 (0.74)	-	44.68 (2.02)	-
	Coarse registration	0.95	(0.83)	20.17%	0.81	(0.32)	25.00%	2.01	(0.39)	95.49%	2.18	(1.00)	95.12%
	MI-based fine registration	0.64	(0.30)	45.82%	0.67	(0.29)	37.96%	1.95	(0.65)	95.63%	1.92	(1.25)	95.70%
	NCMI-based fine registration	0.64	(0.29)	45.95%	0.63	(0.26)	41.67%	1.47	(0.61)	96.70%	1.21	(0.33)	97.29%
	Gain of using NCMI over MI		2.33%			5.97%			24.62%			36.98%	

  63 and 0.64 meters between the LiDAR data (2017 and 2011) and the orthorectified aerial imagery (2016). On the other hand, for the registration of LiDAR data (2017 and 2011) and the Pléiades multispectral imagery (2015), the resulting check pair line-based discrepancy value is 1.21 and 1.47 meters. However, it is important to remind the principle of Hausdorff distance in order to evaluate the discrepancy results. For example, we consider two nearly identical horizontal line segments (i.e., parallel to x-axis), having same first end-point, and the second end-point of one line segment is four pixels away from the second end-point of the other line segment (with a pixel size of 15 cm). Consequently, the resulting Hausdorff distance between them is 60 cm. Therefore, it should be noted that the mentioned discrepancy values yielded by our proposed method are relatively small. Overall, for all four registrations, the check pair line-based discrepancy varies between three and four pixels. 79% and 31.66% from Table2.4), whereas the second percentage is computed from check pair line-based evaluation result (i.e., 24.62% and 36.98% from Table2.5). On the other hand, for the registration between the airborne LiDAR data and the orthorectification aerial image, these average gains are only 15.8% and 4.15%.

A discrepancy reduction of approximately 42% to 46% is achieved on the registration between the LiDAR data (2011 and 2017) and the orthorectified aerial imagery (2016). Similarly, a spatial discrepancy reduction of approximately 97% (96.70% and 97.29%) is benefited from the registration between the LiDAR data (2011 and 2017) and the Pléiades multispectral imagery (2015).

Finally, it can be noted that, in the registration between the LiDAR data and the Pléiades image, the benefit of using NCMI instead of MI is much more evident than in the registration between the LiDAR data and the orthorectified aerial image. Indeed, based on both check point-based and check pair line-based evaluation result, using NCMI instead of MI results in average gains of 30.7% and 30.8% of spatial discrepancy reduction for the registration between the LiDAR data and the Pléiades image. The first percentage is computed from check point-based evaluation result (i.e.,
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  données d'apprentissage issues des scènes urbaines (donc non supervisée). Elle atteint une précision globale élevée lorsqu'elle est testée sur divers jeux de données. Par exemple, le SRSM proposé donne une qualité par pixel moyenne de 86.57% et une qualité par objet moyenne de 81.60% sur le jeu de données de référence ISPRS Vaihingen. Comparé à d'autres méthodes utilisant ce jeu de données de référence, ce niveau de précision est hautement souhaitable même pour une méthode supervisée. De même, des résultats souhaitables sont obtenus lors de la réalisation du SRSM proposé sur l'ensemble de la ville de Québec (superficie totale de 656 km 2 ), ce qui donne une qualité par pixel de 62.37% et une qualité par objet de 63.21%.

	une extraction de bâtiment fiable à grande échelle, car les informations et les hypothèses préal-
	ables impliquées sur des bâtiments telles que la forme, la taille et la couleur ne peuvent pas être
	généralisées sur de grandes zones. Ce chapitre présente un modèle de contour actif efficace pour
	surmonter un tel défi, appelé Super-Resolution-based Snake Model (SRSM). Le SRSM fonctionne
	sur des images d'élévation à haute résolution du LiDAR, appelées images de z, générées par un

L'extraction automatique de bâtiments dans des scènes urbaines et résidentielles est devenue un sujet d'intérêt croissant dans le domaine de la photogrammétrie et de la télédétection, notamment depuis le milieu des années 1990. Le modèle de contour actif, familièrement connu sous le nom de snake model en anglais, a été étudié pour extraire des bâtiments de l'imagerie aérienne et satellite. Cependant, cette tâche reste très difficile en raison de la complexité de la taille, la forme et l'environnement du bâtiment. Cette complexité conduit à un obstacle majeur pour réaliser processus de super-résolution appliqué aux données LiDAR. Le modèle de force du ballon impliqué est également amélioré pour se rétrécir ou se gonfler de manière adaptative, au lieu de se gonfler en continu. Cette méthode est applicable à grande échelle telle qu'à l'échelle de la ville et même plus grande, tout en ayant un haut niveau d'automatisation et ne nécessitant aucune connaissance préalable ou

Table 3 .

 3 1: Description of the ISPRS Vaihingen benchmark dataset and the Quebec City dataset.

		Vaihingen	Quebec City
	Specifications	Optical image	LiDAR	Optical image	LiDAR
	Spectral resolution	NIR, R, G	1064 nm	R, G, B	1064 nm
	Spatial resolution	9 cm	50 cm	15 cm	35.4 cm
	(point density)	-	(4 pts/m 2 )	-	(8 pts/m 2 )
	Acquisition time	July-August 2008	August 21, 2008	June 2016	May 2017
	Geometry/Properties	Orthorectified Georeferenced	Mostly single-return Unclassified	Orthorectified Multireturn (4) Georeferenced Classified
	Relative misalignment	Less than 30 cm	1.05 m (before registration), 0.35 m (after registration [48])

Table 3 . 2
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			⇥2			⇥4			⇥8	
	Method	RMSE SSIM PSNR (dB)	RMSE SSIM PSNR (dB)	RMSE SSIM PSNR (dB)
	NN	2.18	0.40	-6.76	2.47	0.30	-7.85	3.08	0.18	-9.76
	Bilinear	2.08	0.37	-6.36	2.41	0.34	-7.65	4.39	0.24	-12.86
	Natural	2.00	0.40	-6.03	2.34	0.36	-7.40	4.33	0.25	-12.74
	Proposed SR	1.96	0.40	-5.83	2.04	0.33	-6.21	2.80	0.19	-8.94

: Performance evaluation of the SR process. The best result for each upscaling factor and each metric (i.e., the smallest value for RMSE, and the greatest for SSIM and PSNR) is highlighted, whereas the second best is underlined.

Table 3 .

 3 3: Quantitative results of snake models on the considered building. The best result for each metric (i.e., the smallest value for RMSE and the greatest for Quality Q) is highlighted.

		Benchmark ground truth	Modified ground truth
	Model	Q	RMSE (m)	Q	RMSE (m)
	Basic snake model	76.92 %	2.05	74.36 %	2.21
	Guo and Yasuoka [33] 77.38 %	1.90	78.15 %	1.92
	Kabolizade et al. [35] 79.66 %	2.08	76.01 %	2.36
	SRSM	86.25 %	1.80	95.57 %	1.75

Table 3 .

 3 6: Area-based and object-based accuracy of the SRSM on the Quebec City dataset, compared with the Microsoft open Canada building footprints.

		Area-based accuracy	Object-based accuracy
	Method	Cp	Cr	Q	Cp	Cr	Q
	SRSM footprints	82.32 % 72.02 % 62.37 %	74.25 % 80.95 % 63.21 %

Microsoft building footprints 77.42 % 87.61 % 69.77 % 59.01 % 93.16 % 56.56 %

Table 3 .

 3 8: Summary of the approximate total computational time to produce the SRSM results on the whole Quebec City dataset, on 8 machines in parallel.

	Task	Total execution time
	Conversion from LAS files to TXT files (Python code)	1.86 hours
	Running the SRSM (Matlab code)	50.19 hours
	Export Matlab results to ESRI Shapefile format	0.15 hours
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  . Cet ordre de grandeur des écarts spatiaux est pertinent et souhaitable.Pour résumer, toutes les méthodes examinées dans cette section supposent soit que les données LiDAR aéroportées et les données d'imagerie optique sont spatialement proches les unes des autres, ont été acquises simultanément ou à des dates très proches et/ou ont une résolution spatiale et un niveau de détail similaire. A notre connaissance, une méthode explicitement consacrée au recalage des jeux de données d'imageries et du LiDAR acquises à partir des plateformes différentes, dans différentes configurations, à différents moments et même à différentes saisons, n'a pas encore été proposée.

The approach of stereo imagery is capable of providing

3-D information, in the form of Digital Surface Models (DSM). However, due to the imperfections in the stereo matching methods, the resulting DSM can be noisy and imprecise[40].

It should be pointed out that this feature seems less important in this research work, since we focus mainly on the urban environment. However, it is worth mentioning as an evidently beneficial feature of LiDAR.

SPOT: Satellite Pour l'Observation de la Terre.

Thematic: "3D Scene Reconstruction and Analysis"

Equivalent to the Recall metric

Equivalent to the Precision metric

First, a categorization step is carried out to classify the thematic of the scene. It involves a classifier trained with registered images and LiDAR datasets. For each scene category, an optimal pair of optical imagery and LiDAR features is determined. Next, a new scene with unregistered image and LiDAR data would be classified into one of the trained categories. Finally, the registration between the datasets of this new scene would be carried out based on the similarity measurement between the optimal

2-D and 3-D attribute pairs of the determined category, instead of fixating on one specific pair of attributes.2 LiDAR systems have also recently been added and popularized in the smart mobile device market. They are capable of capturing 3-D point cloud within a short range (i.e., less than five meters).

Sonar, abbreviated for Sound Navigation and Ranging

Φ is also used in this paper to involve also "other intensity variations caused by the sensor's beam profile, the radial decay and the corrections"[START_REF] Coiras | Multiresolution 3-D reconstruction from side-scan sonar images[END_REF] 

XTF: eXtended Triton Format ( )

Ensuite, le modèle de contour actif est appliqué sur la base des images de z résultantes. De telles images de z codant des données d'élévation du LiDAR sont avantageuses, car les changements de hauteur fournissent des indications plus fiables pour l'extraction de bâtiments que les changements spectraux et texturaux fournis par les images optiques. En plus, les données d'altitude utiles sont désormais fournies avec une résolution spatiale plus élevée. Troisièmement, la force de ballon est améliorée pour se comporter de manière plus adaptative par rapport à la force de ballon classique.En utilisant l'image de z, un certain nombre de problèmes typiques liés à l'utilisation des images optiques ont également été surmontés. Jusqu'à présent, tous les modèles de contour actif existants ont concédé le problème de sensibilité aux bruits et aux détails des images optiques, tels que les objets sur les toits et les voitures et les arbres à proximité. De tels éléments de scène provoquent des sources d'attraction indésirables, empêchant le modèle de contour actif de pouvoir converger vers les vrais bords du bâtiment. Opérant sur l'image de z qui ne présente que des changements de hauteur, le SRSM est donc doté de sources d'attraction pertinentes. De plus,
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Complements to the Article

Impacts of the Data Uncertainties, Imprecision and Incompleteness on the

Design of the Building Extraction Method

Given the noise and distortions in the LiDAR and optical image datasets, some adjustments were needed when designing the building extraction method in order to warrant its robustness and accuracy.

Firstly, the existing building extraction approaches using snake models operate solely on the optical images. Such a dependency (on the optical images) leads to a number of problems such as shadows, relief displacement, etc. These problems are avoided in the proposed snake model (i.e., the SRSM) which operates on the z-images. In addition, in some of the existing models, the initial points are provided manually or by a public participation dataset such as from OpenStreetMap [38]. These approaches are either labor-intensive or inaccurate. In the proposed method, the initial points are provided by the LiDAR data, which grant a higher accuracy and reliability.

Secondly, LiDAR-based building extraction methods usually face the problem of misclassifying trees as buildings. Therefore, a vegetation removal has been carried out using NDVI features provided by the optical image. It should be noted that this vegetation removal based on the integration with the optical images is possible thanks to the registration performed between the LiDAR and optical imagery datasets. Without an accurate registration, such an integration is problematic due to the spatial shift between the datasets.

Thirdly, the irregular distribution of LiDAR measurements has been addressed thanks to the proposed SR process (cf. subsection 3.5.3), resulting in the advantageous z-images. The benefits of such rasterized products can be summarized as follows:

• Allowing carrying out subsequent analyses, visualization and interpretations with a raster representation, which are more seamless and intuitive than using the 3-D point cloud.

• Increasing the spatial resolution compared to the original LiDAR data.

• Allowing carrying out a naive fusion of these concerned datasets by stacking the z-image with the RGB images, since they now are registered and have the same resolution and size.

Limitations and Improvement Tracks for the SRSM

The proposed SRSM involves two main limitations, namely the parametrization, and the vegetation removal. They are the main tracks to be investigated in order to improve this method. Another improvement that can be added into this research work concerns the boundary polygonization, which will be discussed in subsection 3.10.3. However, it should be noted that this process is considered a post-processing step-in the sense that it follows the SRSM method and carries out on the extracted boundaries. In this subsection, we are interested in the tracks to improve the SRSM itself.

Firstly, despite being discussed comprehensively in this chapter (cf. subsection 3.6.3), the snake parameterization can still be improved. Indeed, this step can benefit from a contextualization, especially when applying on a new urban area which involves substantially different characteristics. In this regard, the internal energy term weights, i.e., a and b are the most interesting, as they The blue lines represent SSS tracks, whereas the red-dashed lines stand for MBES tracks. The green circle highlights the intersecting area between surveys, where the previous work [START_REF] Huy Nguyen | Heterogeneous data registration for 3D underwater scene reconstruction[END_REF] was carried out.

Side-scan sonar

No documentation included on the side-scan sonar dataset.

• Sensor: Klein 5400 (towfish);

• Operation frequency: 455 kHz;

• Depth below de sonar: approximately 20 meters [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF];

• Spatial resolution: 20 centimeters [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF];

• Range scale: 50, 75, 100, et 150 meters [START_REF] Lurton | An introduction to underwater acoustics: principles and applications[END_REF]. Résumé : La fusion de données issues du LiDAR aéroporté et de l'imagerie optique aérienne ou satellite permet de représenter des scènes observées en 3-D avec une meilleure précision et complétude. Une telle fusion a montré de forts avantages pour l'extraction de bâtiments à grande échelle ainsi que pour d'autres applications en télédétection, permettant à surmonter les défis inhérents à chaque source de données. Cependant, les méthodes de fusion existantes n'ont pas été conçues pour traiter des jeux de données acquis à partir de plateformes différentes, dans différentes configurations, à des moments différents, ayant des résolutions spatiales et des niveaux de détail différents. Ces conditions d'acquisition sont appelées les conditions non-contraintes. De plus, de nombreuses méthodes d'extraction de bâtiments proposées au fil des ans ont obtenu des résultats relativement significatifs mais en définissant des formes a priori pour les bâtiments, en imposant des contraintes géométriques, ou en se limitant à des zones spécifiques. De telles hypothèses ne sont plus envisageables lorsqu'il s'agit des jeux de données à grande échelle. Ce travail de recherche est consacré au développement d'une méthode versatile de recalage grossier à fin entre des jeux de données collectées dans un contexte d'acquisition non-contraint. De plus, une méthode efficace d'extraction de bâtiments a été proposée, offrant un niveau de précision élevé tout en étant une méthode non-supervisée dédiée aux applications à grande échelle. Des résultats pertinents ont été obtenus lors des évaluations rigoureuses des méthodes proposées, à savoir une précision hautement souhaitable par rapport aux méthodes existantes.

Title : A Versatile and Efficient Data Fusion Methodology for Heterogeneous Airborne LiDAR and Optical Imagery Data Acquired Under Unconstrained Conditions

Keywords : LiDAR, optical imagery, data registration, building extraction, super-resolution, urban scenes.

Abstract :

The fusion of airborne LiDAR and aerial/satellite optical imagery datasets allows representing observed scenes in 3-D with a better precision and completeness. Such a fusion has shown strong advantages for large-scale building extraction as well as other remote sensing applications, enabling to overcome the challenges from each data source. However, existing fusion methods do not cope with datasets collected from different platforms with different acquisition configurations, at different moments, and having different spatial resolutions and levels of detail. Such acquisition conditions are referred to as the unconstrained conditions. In addition, building extraction methods reported over the years have achieved relatively significant results by assuming building shapes, enforcing geometrical constraints, or limiting on specific urban areas. Such assumptions are no longer applicable when dealing with large-scale datasets. This research work is devoted to the development of a versatile coarse-to-fine registration method between datasets acquired in such an unconstrained context. In addition, an efficient building extraction method has been proposed, providing a high accuracy level while being an unsupervised method dedicated to large-scale applications. Relevant results have been achieved upon rigorous assessments of the proposed methods, namely highly desirable accuracy compared to existing methods.