
HAL Id: tel-03123485
https://theses.hal.science/tel-03123485

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intersection Types and Resource Calculi in the
Denotational Semantics of Lambda-Calculus

Federico Olimpieri

To cite this version:
Federico Olimpieri. Intersection Types and Resource Calculi in the Denotational Semantics of Lambda-
Calculus. Mathematics [math]. Aix-Marseille Universite, 2020. English. �NNT : �. �tel-03123485�

https://theses.hal.science/tel-03123485
https://hal.archives-ouvertes.fr

Aix-Marseille Université
Università degli Studi Roma Tre
École Doctorale en Mathématiques et Informatique
Dipartimento di Matematica e Fisica
Institut de Mathématiques de Marseille

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline : Mathématiques

Federico OLIMPIERI

Intersection Types and Resource Calculi in the Denotational
Semantics of λ-calculus

Dirigée par Laurent Regnier, Lorenzo Tortora de Falco et Lionel Vaux.
Rapportée par Marcelo Fiore et Paul-André Melliès.
Soutenue le 27/11/2020 devant le jury composé de :

Marcelo FIORE University of Cambridge Rapporteur
Ugo DAL LAGO Università di Bologna Examinateur
Giuseppe ROSOLINI Università di Genova Examinateur
Christine TASSON Université Paris 6 Examinateur
Laurent REGNIER Aix-Marseille Université Directeur de thèse
Lionel VAUX Aix-Marseille Université Co-directeur de thèse
Lorenzo TORTORA DE FALCO Università degli Studi Roma Tre Directeur de thèse

Numéro national de thèse/suffixe local : 2020AIXM0380/018ED184

Cette œuvre est mise à disposition selon les termes de la Licence Creative
Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0
International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

Résumé
Cette thèse étudie la notion d’approximation dans le lambda-calcul selon diffé-

rentes perspectives.
Ehrhard et Regnier ont introduit le développement de Taylor des lambda-termes :

on peut voir un lambda-terme comme une série infinie des ses approximations
linéaires. Une autre notion d’approximation dans le lambda-calcul est donné par
les types intersections, introduits par Coppo et Dezani dans les années 80.
Dans une première partie, nous étendons la définition standard du développe-

ment de Taylor à un lambda-calcul non-déterministe. On introduit un calcul avec
ressources rigide et on établit une relation combinatoire entre les termes de ce calcul
et les éléments du développement. On démontre un théorème de commutation entre
développement de Taylor et arbres de Böhm dans ce contexte non-déterministe.
Dans une deuxième partie de la thèse, on introduit le cadre bicatégorique des

distributeurs. On présente une collection de 2-monades, les monades de ressources,
et on les transpose dans la bicatégorie des distributeurs, en utilisant une méthode
introduite par Fiore, Gambino, Hyland et Winskel. On considère les bicatégories
de Kleisli pour ces pseudomonades et on donne une condition suffisante pour
qu’une telle bicatégorie soit cartésienne fermée, donc un modèle du lambda-calcul
simplement typé.
Dans une troisième et dernière partie, on introduit les distributeurs de types

intersections et, inspiré par le travail de Tsukada, Asada et Ong, le développement
rigide des lambda-termes. Ces deux notions d’approximation sont une présentation
syntaxique de la sémantique bicatégorique induite par les bicatégories de Kleisli
étudiées dans la deuxième partie. La notion de distributeur de types intersections
nous permet de considérer des systèmes de types intersections avec sous-typage. Ces
modèles donnent une sémantique dénotationnelle sensible aux preuves, au sens où
la sémantique d’un terme lui associe l’ensemble des ses dérivations de typage dans
ces systèmes. Le sous-typage est induit par la structure particulière d’une catégorie
de types. Notre construction est paramétrique sur les monades de ressources et
produit quatre systèmes de types intersections. On montre que les distributeurs
de types intersections sont naturellement isomorphes au développement rigide. On
étudie ces structures sous réduction.

Mots clés : sémantique dénotationnelle, lambda-calcul, logique linéaire, dévelop-
pement de Taylor, types intersections, distributeurs.

3

Riassunto
Questa tesi studia il concetto di approssimazione nel lambda-calcolo da diverse

prospettive.
Ehrhard e Regnier hanno introdotto lo sviluppo di Taylor dei lambda-termini:

si può vedere un lambda-termine come somma formale infinita delle sue approssi-
mazioni lineari. Un’altra nozione di approssimazione nel lambda-calcolo è data dai
tipi intersezione, introdotti da Coppo e Dezani negli anni Ottanta.
Nella prima parte della tesi, estendiamo la definizione standard dello sviluppo

di Taylor a un lambda-calcolo non deterministico. Introduciamo un calcolo con
risorse rigido e stabiliamo una relazione combinatoria tra termini con risorse rigidi
e gli elementi dello sviluppo di Taylor. Proviamo un teorema di commutazione tra
lo sviluppo di Taylor e gli alberi di Böhm in questo contesto non deterministico.

Nella seconda parte della tesi viene introdotto il quadro bicategorico dei distribu-
tori. Presentiamo una raccolta di dottrine, le monadi con risorse, e le estendiamo alla
bicategoria dei distributori, utilizzando un metodo introdotto da Fiore, Gambino,
Hyland e Winskel. Consideriamo le bicategorie di Kleisli di queste pseudomonadi
e diamo una condizione sufficiente che rende queste bicategorie cartesiane chiuse,
quindi modelli del lambda-calcolo semplicemente tipato.
Nella terza e ultima parte, introduciamo i distributori di tipi intersezione e,

ispirandoci al lavoro di Tsukada, Asada e Ong, lo sviluppo rigido dei lambda-termini.
Queste due nozioni di approssimazione sono una presentazione sintattica della
semantica bicategorica indotta dalle costruzioni di Kleisli studiate nella seconda
parte. I distributori di tipi intersezione determinano dei sistemi di tipi intersezione
con sottotipaggio. Questo modello fornisce una semantica denotazionale sensibile
alle derivazioni, nel senso che la semantica di un termine associa ad esso l’insieme
delle sue derivazioni di tipaggio in sistemi di tipi appropriati. Il sottotipaggio è
indotto dalla particolare struttura di una categoria di tipi. La nostra costruzione è
parametrica sulle monadi con risorse e produce quattro sistemi di tipi intersezione.
Mostriamo che i distributori di tipi intersezione sono naturalmente isomorfi allo
sviluppo rigido. Studiamo queste strutture sotto riduzione.

Parole chiave: semantica denotazionale, lambda calcolo, logica lineare, sviluppo
di Taylor, tipi intersezione, distributori.

4

Abstract
This thesis studies the notion of approximation in lambda-calculus from different

perspectives.
Ehrhard and Regnier introduced the Taylor expansion of lambda-terms: one

can see a lambda-term as an infinite formal sum of its linear approximants. An-
other notion of approximation in lambda-calculus is given by intersection types,
introduced by Coppo and Dezani in the 80s.
In a first part, we extend the standard definition of Taylor expansion to a

non-deterministic lambda-calculus. We introduce a rigid resource calculus and we
establish a combinatorial relation between rigid resource terms and the elements of
the Taylor expansion. We prove a commutation theorem between Taylor expansion
and Böhm trees in this non-deterministic context.
In a second part of the thesis, the bicategorical framework of distributors is

introduced. We present a collection of doctrines, the resource monads, and we
lift them to the bicategory of distributors, using a method introduced by Fiore,
Gambino, Hyland and Winskel. We consider the Kleisli bicategories of these
pseudomonads and we give a sufficient condition that makes these bicategories
cartesian closed, thus models of simply typed lambda-calculus.

In a third and last part, we introduce intersection type distributors and, inspired
by the work of Tsukada, Asada and Ong, the rigid expansion of lambda-terms.
These two notions of approximation are a syntactic presentation of the bicate-
gorical semantics induced by the Kleisli constructions studied in the second part.
Intersection type distributors determine intersection type systems with subtyping.
This model gives a proof-relevant denotational semantics, in the sense that the
semantics of a term associates to it the set of its typing derivations in appropriate
systems. Subtyping is induced from the particular structure of a category of types.
Our construction is parametric on resource monads and produces four intersection
type systems. We show that intersection type distributors are naturally isomorphic
to the rigid expansion. We study these structures under reduction.

Keywords: denotational semantics, lambda-calculus, linear logic, Taylor expan-
sion, intersection types, distributors.

5

Remerciements
Je commence par remercier Lionel pour avoir d’abord encadré mon stage de

recherche et après avoir accepté de diriger ma thèse. Ce travail dépends énormément
des nos fréquent discussions et de ses observations, toujours éclairantes.
Je remercie aussi Laurent et Lorenzo, mes deux autres directeurs, toujours très

disponibles et prêts à donner des conseils valables. Lorenzo, en particulier, c’est le
principal responsable de ma migration à Marseille. Le double diplôme entre Rome
et Marseille, qu’il gère du côté romain, c’est une opportunité remarquable et c’était
une des conditions de possibilité principales de mon travail de recherche.
Merci à Marcelo Fiore et Paul-André Melliès pour avoir accepté d’être les

rapporteurs de cette thèse. Merci également à Ugo dal Lago, Christine Tasson et
Giuseppe Rosolini pour leur participation au jury de ma soutenance.

Merci à toute l’équipe LDP, j’ai toujours profité des échanges avec vous et grâce
aux Groupes de Travail j’ai appris beaucoup de jolies mathématiques.
Merci aux membres de l’IRN Linear Logic et des Groupes de Travail LHC

(Logique, Homotopie, Catégories) et Scalp (Structures formelles pour le CALcul et
les Preuves) pour avoir crée une ambiance favorable à la recherche et au partage des
idées. En particulier je remercie Giulio Guerrieri, Zeinab Galal, Thomas Ehrhard,
Damiano Mazza, Luc Pellissier, Flavien Breuvart, Marie Kerjean, Kenji Maillard,
Giulio Manzonetto, Stefano Guerrini.

Merci à tou(te)s les copain(e)s que j’ai rencontré pendant mon séjour en France
et avec lesquel(le)s j’ai pas mal rigolé: Eugène, Davide B., Davide C., Andrea,
Guillaume, Elena, Matteo A., Jean-Michel, Mamah, Bastien, Leonardo C., Jules,
Alejandro, Alberto, Diogo, Marta, Santiago, Claudio, Marianna, Davo, Sofia,
Serena, Mélodie, Nicolas, Axel, Gaia, Letizia, Jacopo, Paolo P., Paolo M., Riccardo,
Léa, Pavlo, Lorenzo, Luigi, Edoardo, Francesca, Giulia, Jean-Baptiste, Rasa, Zac,
tou(te)s les participants du Café de langues, les camarades du 9-10 et tou(te)s
les autres que je n’ai pas mentionné mais avec lesquel(le)s j’ai fait des choses
sympathiques.
Merci à mes copains italiens de longue date: les romains, Matteo C., Vitto-

rio, Valerio, Leonardo L., la gente non alla moda della Tana; les plus au moins
”étrusques”, Francesco, Felice, Jacopo, Giacomo, Guido, Emanuele. En particulier,
merci aux copain(e)s du PB, un vrai refuge dans ces temps bizarres.

Merci à Marseille, une ville avec des énormes problèmes mais aussi avec grande
beauté humaine et naturelle. C’est difficile de partir.

Je termine en remercient ma famille et, en particulier, mes parents, Francesca et
Angelo, pour leur soutien inconditionnel. Cette thèse est dédie à eux.

6

Contents

Contents 7

List of Figures 10

Introduction 17

1 Taylor Expansion for λ-Terms with Choice Operator 18
1.1 Introduction . 18
1.2 Some Basic Facts on Groups and Group Actions 21
1.3 A Generic Non-Deterministic λ-Calculus 22

1.3.1 λ⊕-Terms . 22
1.3.2 Böhm Trees . 24

1.4 Taylor Expansion in a Uniform Non-Deterministic Setting 25
1.4.1 Resource terms . 25
1.4.2 Taylor Expansion of λ⊕-Terms 27
1.4.3 Multiplicity Coefficients . 29
1.4.4 Taylor Expansion of Böhm Trees 30

1.5 The Groupoid of Permutations of Rigid Resource Terms 32
1.5.1 Rigid Resource Terms and Permutation Terms 32
1.5.2 Rigid Substitution . 34
1.5.3 Substitution for Permutation Expressions 36
1.5.4 The Combinatorics of Permutation Expressions under Co-

herent Substitution . 40
1.6 Normalizing the Taylor Expansion 43

1.6.1 Normalizing Resource Expressions in a Uniform Setting . . . 43
1.6.2 Commutation . 45

2 Categorical Interlude 47
2.1 Monoidal Categories . 48

2.1.1 Unbiased Monoidal Categories 52
2.2 Bicategories . 54

2.2.1 Cartesian Closed Structure 59
2.3 Two-Dimensional Monad Theory 60

2.3.1 Pseudomonads and Lax Algebras 61
2.3.2 Relative Pseudomonads . 63
2.3.3 (Pseudo) Algebras Lifting of Relative Pseudomonads 65

7

2.4 Kan Extensions and Coends . 68
2.4.1 Coends . 68
2.4.2 Kan Extensions . 71

2.5 The Category of Presheaves . 72
2.5.1 Free Cocompletion of (Product) Categories 72
2.5.2 Day Convolution . 74

2.6 Monads and Resources . 77
2.6.1 Boom Hierarchy of Data Types 78
2.6.2 Integers and Lists . 79
2.6.3 Resource Monads . 82

2.7 Relations, Preorders, Distributors 85
2.7.1 The Category of Sets and Relations 85
2.7.2 The Category of Preorders and Monotonic Relations 86
2.7.3 The Bicategory of Distributors 88

2.8 The Bicategories S-Dist and S-CatSym 89
2.8.1 The Bicategory S-Dist . 90
2.8.2 The Bicategory S-CatSym 91

3 Intersection Type Distributors 95
3.1 Introduction . 95
3.2 Models for the Simply Typed λ-calculus 97
3.3 Models for pure λ-calculus . 101
3.4 Intersection Types as Distributors 103

3.4.1 The Denotation is Isomorphic to the Semantics 106
3.4.2 The Denotation as an Intersection Type System 107
3.4.3 Type Derivations under Reduction 118

3.5 Normalization Theorems . 121
3.6 Some Worked Out Examples . 127

3.6.1 Example 1: Linear Resources 127
3.6.2 Example 2: Cartesian Resources 132

4 Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary
λ-Terms 134
4.1 Introduction . 134
4.2 The Calculus of Subtyping-Aware Polyadic Terms 137

4.2.1 Actions on Polyadic Type Derivations 142
4.2.2 Congruence on Polyadic Type Derivations 147
4.2.3 Substitution Operation on Type Derivations 149
4.2.4 Points of Type Derivations 154
4.2.5 Congruence on Points . 160

4.3 Rigid Expansion . 161
4.3.1 Reduction and Congruence 164

4.4 An Example: the Linear Case . 167

8

4.4.1 Points of Linear Type Derivations 169

Conclusion 173

Bibliography 174

Appendix 182
A Technical Proofs of Chapter 3 . 182
B Technical Proofs of Chapter 4 . 187

B.1 Actions and Congruence under Substitution of Type Derivations187
B.2 Canonical Forms of Type Derivations 192
B.3 Actions and Congruence under Reduction of Points 198
B.4 Linear Case . 205

9

List of Figures
1.1 Reduction rules of the λ⊕-calculus 23
1.2 The approximation order on Λ⊥. 24
1.3 Reduction rules of the resource calculus with sums 26
1.4 Rules for the coherence relation on ∆(!)

⊕ 29
1.5 Rules for the rigid representation relation 32
1.6 Action of permutation expressions on rigid expressions 33
1.7 Graphical representation of σ · (τ1, . . . , τn) 38
1.8 Rules for the coherence relation on D(!). 40
1.9 Reduction rules of the rigid resource calculus 43

3.1 Simply typed λ-calculus . 98
3.2 Denotation of simply typed λ-terms. 99
3.3 Category of Types DA and parametric Intersection Type System ES

A.102
3.4 Denotation of λ-terms. 103
3.5 Left action on derivations. 107
3.6 Right action on derivations. 110
3.7 Intersection type systems RA and CA. 130

4.1 Right action on polyadic type derivations. 143
4.2 Left action on polyadic type derivations. 144
4.3 Left action on points. 157
4.4 Polyadic approximation of λ-terms. 161
4.5 Approximation of β-reduction steps. 165
4.6 Polyadic approximation of resource terms. 170

.1 Canonical forms. 193

10

Introduction
Curry-Howard-Lambek Correspondence Denotational semantics was intro-

duced in the 70s, mostly by the work of Strachey and Scott [Sco70; SS71], and
has since then represented an elegant tool to obtain a mathematical understanding
of programs. Roughly speaking, a denotational semantics for a class of programs
consists of finding appropriate invariants for computations in some kind of mathe-
matical structure. This approach to the semantics of programming languages was
fruitfully recast into the Curry-Howard-Lambek correspondence [LS86]. The slogans

Formulae as Types as Objects

Proofs as Programs as Morphisms

in their simplicity and elegance offer a direct way to give a mathematical interpre-
tation to programs as morphisms in an appropriate category. Minimal implicative
logic, simply typed λ-calculus and cartesian closed categories are the three tiers
of the seminal version of this correspondence. Scott’s work fits completely in this
framework: the first denotational semantics of λ-calculus was given in the category
of domains, a special kind of lattices, and continuous functions.

Linear Logic A direct descendent of this approach to programming language
semantics is linear logic. The introduction of coherence spaces led Girard [Gir87]
to the discovery that the intuitionistic arrow A⇒ B can be decomposed into two
more fundamental connectives:

A⇒ B = !A(B.

From a Curry-Howard-Lambek perspective the former formula determines the
decomposition of a model of computation, i.e. a cartesian closed category, into
more essential structures 1.

It turns out that the new implication connective, A(B, called linear implication,
can be interpreted in a resource-sensitive way: a program typed with A(B is a
program which uses its input exactly once during computation. The modality ! then
breaks this kind of linearity: !A(B means that we are allowed to use the input
as much as we want, allowing duplication and erasing of resources. Linear logic
is then an appropriate framework for the formalization of computational resource

1. We refer to [Mel09] for what concerns the categorical semantics of linear logic.

11

structures. In particular, this quantitative aspect of linear logic is correlated to a
quantitative approach to denotational semantics.

Quantitative Semantics The field of quantitative semantics, in the sense
originally introduced by Girard [Gir88], is rooted on the basic idea to interpret
λ-terms as generalized power series, hence associated with analytic maps — instead
of continuous maps, à la Scott. It was later revisited, e.g. by Lamarche [Lam92]
and Hasegawa [Has02], to provide a denotational interpretation of linear logic
proofs as matrices. More recently Ehrhard [Ehr05] introduced models of linear logic
based on a particular class of topological vector spaces, and thus accommodating
differentiation.

In that setting, the analytic maps associated with λ-terms are also smooth maps,
i.e. they are infinitely differentiable. This led to the differential extensions of
λ-calculus [ER03] and linear logic [ER06b] by Ehrhard and Regnier. The keystone
of this line of work is an analogue of the Taylor expansion formula, which allows to
translate terms (or proofs) into infinite linear combinations of finite approximants
[ER08]: in the case of λ-calculus, those approximants are the terms of a resource
calculus, in which the copies of arguments of a function must be provided explicitly,
and then consumed linearly, instead of duplicated or discarded during reduction.

Indeed, by contrast with denotational semantics, resource approximants retain a
dynamics, albeit very simple and finitary: the size of terms is strictly decreasing
under reduction. The seminal result relating the reduction of λ-terms with that of
their approximants is the commutation between Taylor expansion and normalization:
Ehrhard and Regnier have shown that the Taylor expansion M∗ of a λ-term M can
always be normalized, and that its normal form is nothing but the Taylor expansion
of the Böhm tree BT (M) of M [ER08; ER06a]. In particular, the normal form of
Taylor expansion defines a proper denotational semantics.

Denotation via Types A few years before Girard’s introduction of linear logic,
Coppo and Dezani [CD78] proposed intersection types, a type-theoretic framework
sensitive to the fact that a λ-term can be typed in several ways. In order to
define an intersection type system, they add another constructor to the syntax:
a∩ b. The basic intuition for intersection types derives from realizability semantics:
programs that realize a ∩ b are exactly the programs that realizes both a and b,
i.e. Ja ∩ bK = JaK ∩ JbK. Typability with an intersection type is then equivalent to
being typable with both types a and b.

This kind of type disciplines are very useful to characterize fundamental notions
of normalization in λ-calculus (e.g., head-normalization, β-normalization, strong
normalization) [Kri93; BL13; BKV17]. Moreover, if we consider a non-idempotent
version of the intersection operator [Gar94; Car07], i.e., a ∩ a 6= a, the considered
type system is resource sensitive. In that case, the arrow type

a1 ∩ · · · ∩ ak ⇒ a

12

encodes the exact number of times that the program needs its input during computa-
tion. The resource awareness of non-idempotent intersection has been used to prove
normalization and standardization results by combinatorial means [BKV17] and
to express the execution time of programs and proof-nets [Car07; CPF11; CF16].
Another important feature of intersection type systems is that they determine a
class of filter models for pure λ-calculus [Cop+84]. The correspondence between
intersection types and Engeler-like models is also well-known [Hyl+06]. Hence
intersection types are both syntactic and semantic objects.

A Categorical Approach to Intersection Types The semantic side of intersec-
tion types is connected also to linear logic-inspired categorical semantics. A simple
and informative categorical model for λ-calculus is the relational model (MRel),
that is roughly what is left of coherence spaces when we forget about coherence 2.
Objects of MRel are sets, while morphisms are multirelations f ⊆ Mf(A) × B,
where Mf(A) is the free commutative monoid over A. This model arises from
the linear logic decomposition. The relational model can be considered as the
most canonical example of quantitative semantics. Indeed, it is well-known that
the semantics induced by the category MRel corresponds to the non-idempotent
intersection type system R [Car07]. This correspondence says that the abstract
categorical interpretation of a λ-term can be presented in a concrete way, as a form
of type assignment. The intersection type constructor ∩ corresponds to the product
in the free commutative monoid over types. This fact suggests the possibility to
model, in all generality, the intersection type construction via monads. With some
relevant modifications, one can also achieve in this way an idempotent intersec-
tion [Ehr12b; Ehr16]. Moreover, the non-idempotent intersection type system R
is also tightly connected to the Taylor expansion of λ-terms [ER08; Car07]. In
particular, the interpretation of a term M in the relational model can be recovered
straightforwardly from the normal form of its expansion [Car07].

Lifting to the Second Dimension Intersection types and λ-terms approxi-
mants are also related to more complex categorical structures. Melliès and Zeil-
berger [MZ15] gave a categorification of type systems: a type system is a functor
between a category of type derivations and a category of terms:

U : D → Λ

where U can be seen as a sort of forgetful functor 3. Building on that work and
on the 2-categorical and operadic approaches to λ-calculus studied respectively
in [See87; Hir13] and [Hyl17], Mazza, Pellissier and Vial [MPV18] presented a
novel perspective on intersection types and linear approximation, rooted in the
framework of multicategories and relational (discrete) distributors. Intersection type

2. For a general survey about the main results on the relational model we refer to [Ong17].
3. In all generality, every functor can be interpreted in this type-theoretic way.

13

systems are seen as as special kind of fibrations, that gives rise, via a Grothendieck
construction, to an approximation presheaf which depends on the correspondence
between intersection types and a special kind of approximants, the polyadic terms
[Maz17]. This construction can be seen as a ”syntactic categorification” of inter-
section types. Indeed, while the construction of Mazza et al. is an elegant and
very general approach to intersection type disciplines, that also allows to prove
normalization theorems in a modular way, it does not provide a type-theoretic
denotational semantics 4.

Contributions The main conceptual objective of the thesis is to sublate the
opposition between a static denotational semantics and a dynamic operational one.
Bicategories are a natural appropriate setting for this: the interpretation of λ-terms
is preserved under reduction only up to isomorphism. More precisely, if M →β N,
then

β : JMK ∼= JNK

hence, the strictness of invariance imposed by standard denotational semantics
is gone. Moreover, Tsukada, Asada and Ong [TAO17] showed how the former
isomorphism can be interpreted via a reduction relation over a special kind of
approximants of λ-terms. Hence, the isomorphism is given by an appropriate
operational semantics for a resource calculus.

We consider this to be a major technical and theoretical improvement, and
we take it as the starting point of our semantic investigations. We advocate a
novel approach to denotational semantics, which builds on [Fio+08; Fio+17; GJ17;
TAO17; MZ18]. The denotational semantics we are looking for has to satisfy the
following informal conditions.

1. We want to be able to interpret simply typed and untyped λ-calculi, in all
their generality. In particular, we want that the following diagram ”commutes”
up to ”invertible 2-cell”

ST (Λ) Λ

C

U

J−KSt
J−KΛ

where ST (Λ),Λ denote respectively simply typed λ-calculus and the untyped
one and U is a ”forgetful functor”. C is our chosen bicategory and J−KSt, J−KΛ
are respectively our typed and untyped interpretation. We believe that the
former diagram can be formalized in the 2-operadic framework, following
[MZ15; MPV18; Maz17], giving rise to an appropriate interpretation pseud-

4. Given M →β N, the value of the approximation presheaf on M is not in general isomorphic
to its value on N [Maz17][pp. 65-66]. Hence, the approximation presheaf is not a pseudofunctor
but only a lax morphism.

14

ofunctor 5. However, we leave this formalization to future work. We then
stick to a classic notion of interpretation of λ-calculi [AC98], adding to it the
2-dimensional ingredient: an interpretation of β-reduction steps.

2. We want to lift the correspondence

Intersection Types - Relational Semantics - (NF of) Taylor Expansion

to our considered bicategorical framework. The natural choice is then the
bicategory of distributors [Bén00]. Distributors can be seen as a categorifi-
cation of relations between sets. A relation f ⊆ A × B is equivalent to its
characteristic function

χf : A×B → {0, 1}.

In particular, the former function naturally induces a functors form A×B,
taken as discrete category, to the 2 elements category. It is then natural to
relax the hypothesis and consider functors of the shape

F : Bo × A→ Set

where A and B are arbitrary small categories. These functors are called
distributors 6. We want to obtain a corresponding generalization for what con-
cerns intersection types and Taylor expansion. In particular, our construction
will be proof-relevant, in a sense that will be clarified in Chapter 3.

Distributors-induced semantics of λ-calculus has already an history of its own.
Cattani and Winskel [CW05] proposed a bicategorical model of linear logic in the
category of distributors, generalizing Scott’s domains. In a subsequent paper, Fiore,
Gambino, Hyland and Winskel [Fio+08] introduced the bicategory of generalized
species of structures (Esp), a rich framework encompassing both multirelations and
Joyal’s combinatorial species [Joy86]. They also proved that Esp is cartesian closed
and, hence, a bicategorical model for λ-calculus. It is in this setting that Tsukada,
Asada and Ong introduced a rigid Taylor expansion for a non deterministic simply
typed λ-calculus with fixpoints. The rigid Taylor expansion consists roughly of a
distributor which take as input a type context ∆ and a type a, that lives in an
appropriate groupoid of types, and returns a set

Trig(M)(∆, a) = {p̃ | p is an approximant of M s.t. ∆ ` p : a}.

Approximants are a special kind of Mazza’s polyadic terms [Maz12]. The equivalence
relation is induced by the structure of the model and it is central in establishing
the denotational semantics 7. Hence, this construction overcomes the semantic

5. In the context of [Maz17] this would imply that the approximation presheaf is a pseudo-
functor.

6. Another popular name for this kind of structures is profunctor.
7. Without it there would not be an isomorphism Trig(M) ∼= Trig(N) whenever M →β N .

15

”limitation” of the standard Taylor expansion, which, as we saw, does not directly
induce a denotational semantics. The rigid Taylor expansion is even isomorphic to
the categorical semantics induced by the generalized species of structures. Hence,
it can be seen as the syntactic presentation of this semantics. Moreover, the
cardinality of Trig(M)(∆, a), under some specific conditions, is equal to the number
of reduction paths form M to its normal form. Thus, we obtain a new quantitative
information that was not directly deducible from the standard relational semantics.

However, their work is restricted to the η-long fragment of their calculus and, as
we shall see, it does not directly lift to the full simply typed λ-calculus and to the
untyped one (Chapter 4). Hence, our main goal will be to find a suitable workable
generalization of their approach, which also encompasses intersection types.

Outline of the Thesis Each chapter begins with a small introduction, which
will give the technical context of its particular content, together with a concise
discussion of related work.
— In Chapter 1, we extend the definition of standard Taylor expansion to a

non-deterministic setting, preserving the uniformity condition on resource
terms [ER08]. Moreover, as a first attempt towards a dynamic denotational
semantics, we introduce a rigid resource calculus. We show that the groupoid
structure of these rigid terms determines a fine-grained combinatorial charac-
terization of the quantitative information given by coefficients in the Taylor
expansion. We also generalize the commutation theorem between Taylor
expansion and Böhm trees to this non-deterministic setting.

— In Chapter 2 we introduce some categorical background that we shall need
in the rest of the thesis. The main objective of the chapter is to define a
family of Kleisli bicategories of distributors, associated with the lifting of
suitable collection of doctrines, the resource monads. In order to do so, we
detail the method introduced in [Fio+17], that allows to lift 2-monads over
categories to pseudomonads over distributors, via the introduction of relative
pseudomonads.

— In Chapter 3 we define intersection type distributors, which will constitute
the main ingredient of our denotational semantics. We prove that intersection
type distributors give a syntactic presentation, up to isomorphism, of the
λ-calculus bicategorical semantics induced by the family of bicategories built
in Chapter 2. We give a refined statement of subject reduction and expansion
for intersection type distributors, making explicit the natural isomorphism

β : JMK ∼= JNK

associated with a β-reduction stepM →β N.We prove normalization theorems
for intersection type distributors, adapting classic realizability arguments
[Kri93]. We conclude the chapter by studying two concrete examples of our
construction.

16

List of Figures

— In Chapter 4 we consider the question of giving a denotational semantics
of approximants. In order to do so, we define a subtyping-aware extension
of polyadic calculus. We show that the dynamical information of a type
derivation in our system is encoded not only in its associated polyadic term
but also in a morphism. For this reason, we shall introduce the points of type
derivations, that consist in couples of terms and morphisms. We then define
the rigid expansion of ordinary λ-terms and we study this structure under
reduction, proving that it is isomorphic to intersection type distributors.

Notations
Most of the notations that we shall use are introduced in the thesis, we recall

here some general notational choices for well-known structures.
— We use N for the set of natural numbers and, given n ∈ N, we denote as Sn

the symmetric group over n.
— Given a binary relation on a set →⊆ X2 we write →= for its reflexive closure.
— Given a category A, we denote as Ao its opposite category. Given (bi)

categories A1, . . . , An we denote as ∏n
i=1Ai their product. Given categories

A1, . . . , An we denote as either ⊔ni=1Ai or
∑n
i=1Ai their coproduct. Given

categories A,B, we use either [A,B] or Cat(A,B) to denote functor categories.
We denote the initial category as ∅ and the terminal one as 1. We use linear
logic notations for the general notions of product, linear exponential, etc.

17

1. Taylor Expansion for λ-Terms
with Choice Operator

1.1. Introduction
This chapter integrates, almost verbatim, the paper [OA20]. For the scope of

this thesis, the content of the chapter can be seen as a first attempt in defining
an appropriate resource calculus that could eventually determine a syntactic pre-
sentation of a distributors-induced (bicategorical) denotational semantics in an
untyped λ-calculus (non-deterministic) setting. We define a rigid resource calculus,
where instead of multisets of terms we have lists. This refinement determines a
natural groupoid structure four our term language, where morphisms are given by
inductive permutations. However, while our approach leads to finer understanding
of the combinatorics of Ehrhard’s and Regnier’s Taylor expansion [ER08] and to an
uniform approach to non-determinism, the rigid resource calculus presented here is
not suitable for the semantic constructions of Chapter 3 and 4. As we shall see, we
need to make an ulterior step in rigidification and consider polyadic terms [Maz12;
MPV18].

Contributions Ehrhard and Regnier’s proof of the identity BT (M)∗ = nf(M∗)
can be summed up as follows:
Step 1: The non-zero coefficients of resource terms in M∗ do not depend on M .

More precisely, we can writeM∗ = ∑
s∈T (M)

1
m(s)s, where T (M) is the support

set of Taylor expansion and m(s) is an integer coefficient depending only on
the resource term s.

Step 2: The set T (M) is a clique for the coherence relation obtained by setting
s ¨ s′ iff s and s′ differ only by the multiplicity of arguments in applications.

Step 3: If s is uniform, i.e. s ¨ s, and t is in the support of NF (s) (the normal
form of s, which is a finite sum of resource terms) then m(t) divides m(s) and
the coefficient of t in NF (s) is m(s)

m(t) .
Step 4: The respective supports of NF (s) and NF (s′) are disjoint cliques whenever

s ¨ s′ and s 6= s′. Then one can set NF (M∗) = ∑
s∈T (M)

1
m(s)NF (s), the

summands being pairwise disjoint.
Step 5: By Step 1, BT (M)∗ = ∑

t∈T (BT (M))
1

m(t)t. To deduce the identityBT (M)∗ =
nf(M∗) from the previous results, it is then sufficient to prove that t ∈

18

1. Taylor Expansion for λ-Terms with Choice Operator – 1.1. Introduction

T (BT (M)) iff there exists s ∈ T (M) such that t is in the support of NF (s).
The first two steps are easy consequences of the definitions. For Step 4, it is sufficient
to observe that elementary resource reduction steps preserve coherence. Step 3
relies on a careful investigation of the combinatorics of substitution in the resource
calculus: this involves an elaborate argument about the structure of particular
subgroups of the group of permutations of variable occurrences [ER08, Section 4].
Finally, Ehrhard and Regnier establish Step 5 by relating Taylor expansion with
execution in an abstract machine [ER06a].
In the present work, we propose to revisit this seminal result, along three

directions.
(i) We largely simplify Step 5, relying on a technique introduced in [Vau17]. We

consider the hereditary head reduction strategy (a slight variant of leftmost
reduction, underlying the construction of Böhm trees) and show that it can
be simulated directly in the resource calculus, through Taylor expansion. We
thus avoid the intricacies of an abstract machine with resource state.

(ii) We extend all the results to a model of non-determinism, introduced as a
formal binary choice operator in the calculus. By contrast with previous
proposals from Ehrhard [Ehr10], or Pagani, Tasson and Vaux Auclair [PTV16;
Vau17], we show that uniformity can still be relied upon, provided one keeps
track of choices in the resource calculus: the coherence associated with non-
deterministic choice is then that of the with connective (&) of linear logic.

(iii) We analyse coefficients in the Taylor expansion by introducing a groupoid of
permutation terms acting on a rigid variant of resource terms, where multisets
of arguments are replaced with lists. This is more in accordance with the
intuition that m(s) is the number of permutations of arguments that leave
s (or rather, any rigid representation of s) invariant: Ehrhard and Regnier
rather worked on permutations of variable occurrences, which allowed them
to consider groups rather than a groupoid.

Those three contributions are completely independent from each other.

Discussion of Related Work Our contribution (i) establishes that, although
it is interesting in itself, Ehrhard and Regnier’s study of the relationship between
elements in the Taylor expansion of a term and its execution in an abstract machine
is essentially superfluous for proving the commutation theorem.
Barbarossa and Manzonetto have independently proposed another technique

which amounts to show that any reduction from an element of T (M) can be
completed into a sequence of reductions simulating a β-reduction step [BM20,
Section 4.1]. The strength of our own proposal is that it is a commutation result
itself: hereditary head reduction commutes with Taylor expansion, even taking
coefficients into account [Vau17]. Moreover, the Böhm tree of a λ-term is the
limit of its hereditary head reducts and, if the convergence of the sum defining the
normal form of Taylor expansion is already known, the main commutation theorem

19

1. Taylor Expansion for λ-Terms with Choice Operator – 1.1. Introduction

ensues directly. This is the path followed in [Vau17] for the algebraic λ-calculus
[Vau09], and by Dal Lago and Leventis [LL19] for the probabilistic case.
As stated before, our proposal (ii) to restore uniformity in a non deterministic

setting is only valid because the resource calculus keeps a syntactic track of choices.
The corresponding constructors are exactly those used by Tsukada, Asada and
Ong [TAO17] who were interested in identifying equivalent execution paths of
non deterministic programs, but those authors do not mention, nor rely upon
any coherence property: this forbids Steps 1 to 4 and, instead, they depend on
infinite sums of arbitrary coefficients to be well defined. By contrast, Dal Lago
and Leventis have independently proposed nearly the same solution as ours [LL19,
Section 2.2], with only a minor technical difference in the case of sums.
The previous two proposals (i) and (ii) may be considered as purely technical

improvements of the state of the art in the study of Taylor expansion. What we
deem to be the most meaningful contribution of the present work is our study of
the groupoid of rigid resource terms. This provides us with a new understanding
of the coefficients in the Taylor expansion of a term, in which we can recast the
proof of the commutation theorem, especially Step 3: apart from this change of
focus, the general architecture of our approach does not depart much from that of
Ehrhard and Regnier, but we believe the obtained combinatorial results are closer
to the original intuition behind the definition of m. In fact, a notable intermediate
result is that the function that maps each permutation term to the permutation it
induces on the occurrences of a fixed variable is functorial: one might understand
Ehrhard and Regnier’s proof of Step 3 as the image of ours through that functor.
Moreover, our study suggests interesting connexions with otherwise independent
approaches to denotational semantics based on generalized species of structures
[Fio+08; TAO17] and rigid intersection type systems [MPV18].

It is indeed most natural to compare our proposals to the line of work of Tsukada,
Asada and Ong [TAO17; TAO18]. On the one hand, Tsukada et al. thrive to develop
an abstract understanding of reduction paths in a non-deterministic λ-calculus.
They are led to consider a polyadic calculus à la Mazza [Maz12; MPV18] with
syntactic markers for non-deterministic choice, moreover obeying linearity, typing
and η-expansion constraints. Then they can define a groupoid of types, whose
isomorphisms act on typed terms by permuting variables bound in abstractions
and lists of arguments in applications. They show that the obtained groupoid is
a bicategorical model of the simply typed λY-calculus, the interpretation being
given by a variant of Taylor expansion. This interpretation is moreover isomorphic
to the one obtained in generalized species of structures [Fio+08].

On the other hand, our results show that Ehrhard and Regnier’s technique can
already be adapted to same kind of non determinism without introducing any
new concept, and we only introduce the groupoid of rigid resource terms and
permutation terms to unveil the combinatorial structure of ordinary resource terms
under reduction and normalization. Besides having markers for non-deterministic
choice, the only difference between our rigid terms and the ordinary resource terms

20

1. Taylor Expansion for λ-Terms with Choice Operator – 1.2. Some Basic Facts
on Groups and Group Actions

is that arguments are linearly ordered. Nevertheless, the action of our permutation
terms on rigid terms is very similar to that of the typed isomorphisms considered
by Tsukada et al., and this suggests directions for further investigations.

Structure of the Chapter In the very brief Section 1.2, we review some results
from group theory that will be useful later.
In Section 1.3 we extend the ordinary untyped λ-calculus with a generic non

deterministic choice operator, and present its operational semantics, inspired from
that of the algebraic λ-calculus, as well as the corresponding notion of (non
extensional) Böhm trees.

Section 1.4 recalls and adapts the definitions of the resource calculus and Taylor
expansion. We obtain Step 2 as a straightforward consequence of the definitions
and Step 5 by showing that the support of Taylor expansion is compatible with
hereditary head reduction. We moreover complete Step 1, making prominent the
rôle played by permutations acting on lists of resource terms.
Section 1.5 is the core of the chapter, in which we introduce both the rigid

version of resource terms and the permutation terms acting on them, and explore
the relationship between the groupoid thus formed and the combinatorics of Taylor
expansion. We first show that the coefficient m(s) is nothing but the cardinality of
the group of endomorphisms of any rigid version of s. Then we study the structure
of permutation terms acting on a substitution, and leverage the obtained results
to determine the coefficient of any resource term in the symmetric multilinear
substitution associated with a reduction step in the resource calculus.

The final Section 1.6 builds on the study of rigid resource terms and permutation
terms to achieve Steps 3 and 4. We conclude the chapter with the commutation
theorem.

1.2. Some Basic Facts on Groups and Group Actions
Let G be a group, X be a set, and write (g, a) ∈ G × X 7→ [g]a ∈ X for a

left action of G on X. If a ∈ X, then the stabilizer of a under this action is
St(a) := {g ∈ G | [g]a = a}, which is a subgroup of G (also called the isotropy
group of a); and the orbit of a is the set [G]a := {[g]a | g ∈ G} ⊆ X. If H,K ⊆ G,
we write HK := {hk | h ∈ H, k ∈ K}. If f : X → Y , X ′ ⊆ X and Y ′ ⊆ Y we
write f(X ′) := {f(x) | x ∈ X ′} and f−1(Y ′) := {x | f(x) ∈ Y ′}.

Assuming that G is finite, the following three facts are standard results of group
theory.

Fact 1.2.1. For any a ∈ X,

Card([G]a) = Card(G)
Card(St(a)) .

21

1. Taylor Expansion for λ-Terms with Choice Operator – 1.3. A Generic
Non-Deterministic λ-Calculus

Proof. [Lan02, Proposition 5.1].

Fact 1.2.2. Let H and K be any subgroups of G. Then

Card(HK) = Card(H)Card(K)
Card(H ∩K) .

Proof. [Suz82, §(3.11)].

Fact 1.2.3. Let f : G → H be a group homomorphism and K be a subgroup of H.
Then

Card(G)
Card(f−1(K)) = Card(f(G))

Card(f(G) ∩ K) .

Proof. Since f−1(K) is a subgroup of G that contains the kernel of f , we can
apply the theorem of correspondence under homomorphisms [Suz82, Theorem 5.5
(1)], which gives: |G : f−1(K)| = |f(G) : f(f−1(K))|. We conclude observing that
f(f−1(K)) = f(G) ∩ K.

1.3. A Generic Non-Deterministic λ-Calculus
1.3.1. λ⊕-Terms

We consider a non-deterministic version of λ-calculus in a pure, untyped setting.
The terms are those of the pure λ-calculus, augmented with a binary operator ⊕
denoting a form of non-deterministic superposition: 1

Λ⊕ 3M,N,P,Q ::= x | λx.M |MN |M ⊕N.

As usual λ⊕-terms are considered up to renaming bound variables, and we write
M [N/x] for the capture avoiding substitution of N for x in M . We give precedence
to application over abstraction, and to abstraction over ⊕, and moreover associate
applications on the left, so that we may write λx.MNP ⊕Q for (λx.((MN)P))⊕Q.
We write λ~x.M for a term of the form λx1. · · ·λxn.M .

Rather than specifying the computational effect of ⊕ explicitly, we consider two
reductions rules

(M ⊕N)P →MP ⊕NP and λx.(M ⊕N)→ λx.M ⊕ λx.N

in addition to the β-reduction rule. 2 Formally, → is defined inductively by the
inference rules of Figure 1.1: we simply extend the three base cases contextually.

1. Throughout the thesis, we use a self explanatory if not standard variant of BNF notation
for introducing syntactic objects: here we define the set Λ⊕ as that inductively generated by
variables, λ-abstraction, application and sum, and we will denote terms using letters among

22

1. Taylor Expansion for λ-Terms with Choice Operator – 1.3. A Generic
Non-Deterministic λ-Calculus

(λx.M)N →M [N/x] (M ⊕N)P →MP ⊕NP λx.(M ⊕N)→ λx.M ⊕ λx.N

M →M ′

λx.M → λx.M ′
M →M ′

MN →M ′N

M →M ′

NM → NM ′
M →M ′

M ⊕N →M ′ ⊕N
M →M ′

N ⊕M → N ⊕M ′

Figure 1.1. – Reduction rules of the λ⊕-calculus

In fact we will not really consider this reduction relation in the present work,
and rather focus on the hereditary head reduction strategy obtained by defining the
function L : Λ⊕ → Λ⊕ inductively as follows:

L(M ⊕N) := L(M)⊕ L(N)
L(λ~x.λy.(M ⊕N)) := λ~x.(λy.M ⊕ λy.N)

L(λ~x.(M ⊕N)PQ1 · · ·Qk)) := λ~x.(MP ⊕NP)Q1 · · ·Qk

L(λ~x.yQ1 · · ·Qk) := λ~x.yL(Q1) · · ·L(Qk)
L(λ~x.(λy.M)NQ1 · · ·Qk)) := λ~x.M [N/y]Q1 · · ·Qk .

Observe that this definition is exhaustive because any term in Λ⊕ is either of the
form M ⊕ N or of the form λ~x.λy.(M ⊕ N) or of the form λ~x.RQ1 · · ·Qk with
R = (λy.M)N or R = (M ⊕N)P or R = y.

It should be clear thatM →∗ L(M) and that L(M) = M wheneverM is normal 3

but the converse does not necessarily hold. It can moreover be shown that any
normalizable term M reaches its normal form by repeatedly applying the function
L, for instance by adapting the standardization techniques of Leventis [Lev16;
Lev19], but this is not the focus of the present work. Indeed, we are only interested
in the construction of Böhm trees: the Böhm tree of a term M can be understood
as the limit of the sequence (Ln(M))n∈N.

M,N,P,Q, possibly with sub- and superscripts.
2. This is in accordance with most of the literature associated with the Taylor expansion of

λ-terms [ER03; Ehr10; PTV16; Vau17] and quantitative denotational semantics [Ehr05], where
non-deterministic choice is modelled by the sum of denotations: λ-abstraction is linear and term
application is left-linear. In fact, only the rule (M ⊕N)P → MP ⊕NP is really necessary in
order to enable the potential redexes that can occur if M or N is an abstraction. The other
reduction rule can be derived in case one admits extensionality in the models or the η-rule in
the calculus (here we don’t, though); and the results of this chapter could be developed similarly
without it. We chose to keep it nonetheless, because it simplifies the underlying theory of Böhm
trees and allows us to obtain Ehrhard and Regnier’s results [ER08; ER06a] as a particular case of
our own.

3. If one considers ⊕ as a non-deterministic choice operator, normalizability is meant in its
must flavour here. Indeed, we do not perform the choice within the reduction relation itself, so
M ⊕N is normal iff M and N both are.

23

1. Taylor Expansion for λ-Terms with Choice Operator – 1.3. A Generic
Non-Deterministic λ-Calculus

⊥ ≤M M ≤M
M ≤ N N ≤ P

M ≤ P

M ≤M ′

λx.M ≤ λx.M ′

M ≤M ′ N ≤ N ′

MN ≤M ′N ′
M ≤M ′ N ≤ N ′

M ⊕N ≤M ′ ⊕N ′

Figure 1.2. – The approximation order on Λ⊥.

1.3.2. Böhm Trees
We first define the set Λ⊥ of term approximants as follows:

Λ⊥ 3M,N,P,Q ::= ⊥ | x | λx.M |MN |M ⊕N

then we consider the least partial order ≤ ⊆ Λ⊥ × Λ⊥ that is compatible with
syntactic constructs and such that ⊥ ≤M for eachM ∈ Λ⊥. Formally, ≤ is defined
inductively by the rules of Figure 1.2.

The set N ⊂ Λ⊥ of elementary Böhm trees is the least set of approximants such
that:
— ⊥ ∈ N ;
— λ~x.xN1 · · ·Nn ∈ N as soon as N1, . . . , Nn ∈ N ; and
— N1 ⊕N2 ∈ N as soon as N1, N2 ∈ N .

The partial order ≤ on N is inherited from that on Λ⊥. For each λ⊕-term M , we
construct an elementary Böhm tree N (M) as follows:

N (M ⊕N) := N (M)⊕N (N)
N (λ~x.xQ1 · · ·Qk) := λ~x.xN (Q1) · · · N (Qk)

N (M) := ⊥ in all other cases.

Lemma 1.3.1. For any M ∈ Λ⊕, N (M) ≤ N (L(M)).
Proof. By induction on M . If M = M1 ⊕M2 then N (M) = N (M1) ⊕ N (M2)
and L(M) = L(M1) ⊕ L(M2), hence N (L(M)) = N (L(M1)) ⊕ N (L(M2)) and
we conclude by induction hypothesis. The case M = λ~x.xQ1 · · ·Qk is similar.
Otherwise, N (M) = ⊥ ≤ N (L(M)).

Hence for a fixed λ⊕-term M , the sequence (N (Ln(M)))n∈N is increasing, and
we call its downwards closure the Böhm tree of M , that we denote by BT (M). It
could be shown that Böhm trees define a denotational semantics: if M →M ′ then
BT (M) = BT (M ′). 4 Here we only use the fact that Böhm trees are invariant
under hereditary head reduction, which follows directly from the definition:

4. Again, this would require the adaptation of standardization techniques to λ⊕, similar to
those developed by Leventis for the probabilistic λ-calculus [Lev19].

24

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

Lemma 1.3.2. Let M ∈ Λ⊕. Then BT (M) = BT (L(M)).

This result will allow us to establish Step 5, i.e. the qualitative version of the
commutation between normalization and the Taylor expansion of λ⊕-terms, to be
defined in the next section.

1.4. Taylor Expansion in a Uniform
Non-Deterministic Setting

In order to define Taylor expansion, we need to introduce an auxiliary language:
the resource calculus.

1.4.1. Resource terms
We call resource expressions the elements of ∆(!)

⊕ = ∆⊕ ∪∆!
⊕, where the set of

resource terms ∆⊕ and the set of resource monomials ∆!
⊕ are defined by mutual

induction as follows: 5

∆⊕ 3 s, t, u, v ::= x | λx.s | 〈s〉t̄ | s⊕• | •⊕s ∆!
⊕ 3 s̄, t̄, ū, v̄ ::= [s1, . . . , sn]

and, in addition to α-equivalence, we consider resource expressions up to permu-
tations of terms in monomials, so that [s1, . . . , sn] denotes a multiset of terms.
We give precedence to application and abstraction over − ⊕ • and • ⊕ −, and
we write 〈s〉t̄1 · · · t̄n for 〈· · · 〈s〉t̄1 · · · 〉t̄n, so that we may write λx.〈s〉t̄ ū ⊕ • for
(λx.(〈〈s〉t̄〉ū))⊕ •. We write λ~x.s for a term of the form λx1. · · ·λxn.s. We more-
over write s̄ · t̄ for the multiset union of s̄ and t̄, and if s̄ = [s1, . . . , sn] then
len(s̄) := n for the size of s̄.

If X is a set, we write N[X] for the set of finite formal sums of elements of X, or
equivalently the set of finite linear combinations of elements of X with coefficients
in N. We extend the syntactical constructs of the resource calculus to finite sums
of resource expressions by linearity, so that:
— if S = ∑n

i=1 si then λx.S = ∑n
i=1 λx.si, • ⊕ S = ∑n

i=1 • ⊕ si and S ⊕ • =∑n
i=1 si ⊕ •;

— if moreover T̄ = ∑m
j=1 t̄j then 〈S〉T̄ = ∑n

i=1
∑m
j=1〈si〉t̄j and [S]·T̄ = ∑n

i=1
∑m
j=1[si]·

t̄j.
For any resource expression e, we write nx(e) for the number of occurrences of

variable x in e. If e ∈ ∆(!)
⊕ , ū = [u1, . . . , un] ∈ ∆!

⊕ and x ∈ V, we introduce the

5. Recall that the cartesian product of vector spaces is given by the disjoint union of bases:
this is the intuition behind the operators −⊕• and •⊕−, which will serve in the Taylor expansion
of the operator ⊕ of Λ⊕. Indeed, we leave the exact computational behavior of ⊕ unspecified,
and we treat it generically as a pairing operator (without projections): in this we follow Tsukada,
Asada and Ong [TAO17].

25

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

〈λx.s〉t̄→∂ ∂xs · t̄ 〈s⊕ •〉t̄→∂ 〈s〉t̄⊕ • 〈• ⊕ s〉t̄→∂ • ⊕ 〈s〉t̄

λx.(s⊕ •)→∂ λx.s⊕ • λx.(• ⊕ s)→∂ • ⊕ λx.s

s→∂ S
′

λx.s→∂ λx.S
′

s→∂ S
′

〈s〉t̄→∂ 〈S ′〉t̄
s̄→∂ S̄

′

〈t〉s̄→∂ 〈t〉S̄ ′

s→∂ S
′

s⊕ • →∂ S
′ ⊕ •

s→∂ S
′

• ⊕ s→∂ • ⊕ S ′
s→∂ S

′

[s] · t̄→∂ [S ′] · t̄

Figure 1.3. – Reduction rules of the resource calculus with sums

symmetric n-linear substitution ∂xe · ū ∈ N[∆(!)
⊕] of ū for x in e, which is informally

defined as follows:

∂xe · ū :=


∑

σ∈Sn
e[uσ(1)/x1, . . . , uσ(n)/xn] if nx(e) = n

0 otherwise

where x1, . . . , xnx(e) enumerate the occurrences of x in e. 6

Formally, ∂xe · ū is defined by induction on e, setting:

∂xy · ū :=


y if y 6= x and n = 0
u1 if y = x and n = 1
0 otherwise

∂xλy.s · ū := λy.(∂xs · ū)
∂x(s⊕ •) · ū := ∂xs · ū⊕ •
∂x(• ⊕ s) · ū := • ⊕ ∂xs · ū

∂x〈s〉t̄ · ū :=
∑

(I0,I1) partition of {1,...,n}
〈∂xs · ūI0〉∂xt̄ · ūI1

∂x[t1, . . . , tk] · ū :=
∑

(I1,...,Ik) partition of {1,...,n}
[∂xt1 · ūI1 , . . . , ∂xtn · ūIk]

where we write ū{i1,...,ij} := [ui1 , . . . , uij] whenever 1 ≤ i1 < . . . < ij ≤ n. 7

The reduction of the resource calculus is the relation from resource expressions

6. Enumerating the occurrences of x in e only makes sense if we fix an ordering of each
monomial in e: the rigid resource calculus to be introduced later in this chapter will allow us to
give a more formal account of this intuitive presentation. For now we stick to the alternative
definition given in the next paragraph.

7. To be precise, we say (I1, .., Ik) is a partition of a set X if the Ij ’s are (possibly empty)
pairwise disjoint subsets ofX andX =

⋃
j Ij . This data is equivalent to a functionX → {1, . . . , k}.

26

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

to finite formal sums of resource expressions induced by the rules of Figure 1.3:
the first rule is the counterpart of β-reduction in the resource calculus; the next
four rules implement the commutation of ⊕ with abstraction and application to a
monomial; the final six rules ensure the contextuality of the resulting relation.

It is extended to a binary relation on ∆(!)
⊕ by setting e+ F →∂ E

′ + F whenever
e→∂ E

′. As for the original resource calculus [ER08], the reduction relation →∂ is
confluent and strongly normalizing. We write nf(E) for the unique normal form of
E ∈ N[∆(!)

⊕], which is a linear operator: nf(∑k
i=1 ei) = ∑k

i=1 nf(ei).
Again, we do not focus on the reduction relation itself, and we rather consider the

hereditary head reduction strategy obtained by defining the function L∂ : ∆(!)
⊕ →

N[∆(!)
⊕] inductively as follows:

L∂(s⊕ •) := L∂(s)⊕ • L∂(• ⊕ s) := • ⊕ L∂(s)
L∂(λ~x.λy.(s⊕ •)) := λ~x.(λy.s⊕ •) L∂(λ~x.λy.(• ⊕ s)) := λ~x.(• ⊕ λy.s)

L∂(λ~x.〈〈s⊕ •〉t̄〉ū1 · · · ūk) := λ~x.〈〈s〉t̄⊕ •〉ū1 · · · ūk
L∂(λ~x.〈〈• ⊕ s〉t̄〉ū1 · · · ūk) := λ~x.〈• ⊕ 〈s〉t̄〉ū1 · · · ūk

L∂(λ~x.〈y〉s̄1 · · · s̄k) := λ~x.〈y〉L∂(s̄1) · · ·L∂(s̄k)
L∂([s1, . . . , sk]) := [L∂(s1), . . . , L∂(sk)]

L∂(λ~x.〈λy.s〉t̄ ū1 · · · ūk) := λ~x.〈∂ys · t̄〉ū1 · · · ūk

extended to sums of resource expressions by linearity, setting L∂(
∑k
i=1 ei) :=∑k

i=1 L∂(ei).
It should be clear that E →∗∂ L∂(E), and E = L∂(E) iff E is normal: here

we obtain an equivalence because, if e →∂ E
′ then each e′ ∈ supp(E ′) is strictly

smaller than e (in the sense of the number of syntactic constructs). It moreover
follows that L∂ is normalizing: for all s ∈ ∆⊕, there is n such that Ln∂(s) = nf(s).

1.4.2. Taylor Expansion of λ⊕-Terms
The Taylor expansion of a λ⊕-term will be an infinite linear combination of

resource terms: to introduce it, we first need some preliminary notations and
results.

If X is a set, we write Q+〈X〉 for the set of possibly infinite linear combinations
of elements of X with non negative rational coefficients (in fact we could use any
commutative semifield): equivalently, Q+〈X〉 is the set of functions from X to the
set of non negative rational numbers. We write A = ∑

a∈X Aa.a ∈ Q+〈X〉 and then
the support set of A is supp(A) = {a ∈ X | Aa 6= 0}. If ~a = (a1, . . . , an) ∈ An, we
write A~a = ∏n

i=1Aai : observe that this does not depend on the ordering of the ai’s,
so if ā = [a1, . . . , an] is a finite multiset of elements of A, we may as well write
Aā = A(a1,...,an).
All the syntactic constructs we have introduced on resource expressions can be

extended by linear-continuity: e.g, if S ∈ Q+〈∆⊕〉 then λx.S = ∑
s∈∆⊕ λx.Ss. They

27

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

also extend to sets of expressions, via the support function: e.g, if E ⊆ ∆(!)
⊕ and

T̄ ⊆ ∆!
⊕ then ∂xE · T̄ = ⋃

e∈E
⋃
t̄∈T̄ supp(∂xe · t̄). 8

Let S ∈ Q+〈∆⊕〉. We define Sn ∈ Q+〈∆!
⊕〉 by induction on n: S0 = [] and

Sn+1 = [S] · Sn. Then we define the promotion of S as the series S! = ∑∞
n=0

1
n!S

n:
because the supports of Sn and Sp are disjoint when n 6= p, this sum is pointwise
finite. If S ⊆ ∆⊕ is a set of terms, we may also write S! = {[s1, . . . , sn] | s1, . . . , sn ∈
S} for the set of monomials of terms in S, so that supp(S!) = supp(S)! for any
S ∈ Q+〈∆⊕〉.

We define the Taylor expansion M∗ ∈ Q+〈∆⊕〉 of M ∈ Λ⊕ inductively as follows:

x∗ := x

(λx.N)∗ := λx.N∗

(PQ)∗ := 〈P ∗〉(Q∗)!

(P ⊕Q)∗ := (P ∗ ⊕ •) + (• ⊕Q∗) .

Note that this definition follows the one for the ordinary λ-calculus given by Ehrhard
and Regnier [ER08], in the form described in their Lemma 18. We extend it to ⊕
by encoding the pair of vectors (P ∗, Q∗) as the sum vector (P ∗ ⊕ •) + (• ⊕Q∗).
Writing T (M) := supp(M∗) for the support of Taylor expansion, we obtain:

T (x) = {x}
T (λx.N) = λx.T (N) = {λx.t | t ∈ T (N)}
T (PQ) = 〈T (P)〉T (Q)! = {〈s〉[t1, . . . , tn] | s ∈ T (P) and t1, . . . , tn ∈ T (Q)}

T (P ⊕Q) = (T (P)⊕ •) ∪ (• ⊕ T (Q)) = {s⊕ • | s ∈ T (P)} ∪ {• ⊕ t | t ∈ T (Q)}

so that M∗ = ∑
s∈T (M) M

∗
s s.

We can immediately check that Step 2 still holds for our extension of Taylor
expansion to λ⊕-terms: we prove that T (M) is always a clique for the coherence
relation ¨ ⊆ ∆(!)

⊕ ×∆(!)
⊕ inductively defined by the rules of Figure 1.4. The first four

rules are exactly those for the ordinary resource calculus [ER08, Section 3], while
the last three rules are reminiscent of the definition of the cartesian product of
coherence spaces [Gir87, Definition 5]. Again, this is consistent with the fact that
we treat ⊕ as a pairing construct, denoting an unspecified superposition operation.

Observe that the relation ¨ is automatically symmetric, but not reflexive: e.g.,
[s, t] 6¨ [s, t] when s 6¨ t. We say a resource expression e is uniform if e ¨ e, so that
uniform expressions form a coherence space in the usual sense.
We obtain the expected result by a straightforward induction on λ⊕-terms:

8. Alternatively, we could consider subsets of ∆(!)
⊕ as infinite linear combinations of resource

expressions with boolean coefficients, and apply linear-continuity in this context: the two
approaches coincide here because syntactic constructs extended by linear-continuity commute
with the support function, e.g., λx.supp(S) = supp(λx.S).

28

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

x ¨ x
s ¨ s′

λx.s ¨ λx.s′
s ¨ s′ t̄ ¨ t̄′

〈s〉t̄ ¨ 〈s′〉t̄′
ti ¨ tj for 1 ≤ i, j ≤ n+m

[t1, . . . , tn] ¨ [tn+1, . . . , tn+m]
s ¨ s′

s⊕ • ¨ s′ ⊕ •
s ¨ s′

• ⊕ s ¨ • ⊕ s′ s⊕ • ¨ • ⊕ s′

Figure 1.4. – Rules for the coherence relation on ∆(!)
⊕ .

Theorem 1.4.1 (Step 2). The Taylor support T (M) is a clique: s ¨ s′ for all
s, s′ ∈ T (M).

1.4.3. Multiplicity Coefficients
We now generalize Step 1 in our generic non-deterministic setting: we can

define a multiplicity coefficient m(s) for each s ∈ ∆⊕ so that M∗
s = 1

m(s) whenever
s ∈ T (M).
Given any set X and n ∈ N, we consider the left action of the group Sn of

all permutations of {1, . . . , n} on the set Xn of n-tuples, defined as follows: if
~a = (a1, . . . , an) and σ ∈ Sn then [σ]~a = (aσ−1(1), . . . , aσ−1(n)). Writing [σ]~a =
(a′1, . . . , a′n), we obtain a′σ(i) = ai. Let us recall that if ~a ∈ Xn, then the stabilizer
of ~a is St(~a) = {σ ∈ Sn | [σ]~a = ~a}.

Lemma 1.4.2. Let S ∈ Q+〈∆⊕〉 and s̄ ∈ supp(S!). If ~s = (s1, . . . , sn) is an

enumeration of s̄, i.e. [s1, . . . , sn] = s̄, then (S!)s̄ = S s̄

Card(St(~s)) .

Proof. By definition and by linearity we have

S! =
∞∑
n=0

∑
(s1,...,sn)∈∆n

Ss1 · · ·Ssn
n! [s1, . . . , sn] .

If len(s̄) = n, we thus obtain:

(S!)s̄ = Card({(s1, . . . , sn) | [s1, . . . , sn] = s̄})
n! S s̄ .

Observing that {(s1, . . . , sn) | [s1, . . . , sn] = s̄} is the orbit of any enumeration of s̄
under the action of Sn, and that Card(Sn) = n!, we conclude by Fact 1.2.1.

Let s ∈ ∆⊕. We inductively define m(s), the multiplicity coefficient of s, as

29

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

follows:

m(x) := 1
m(λx.s)
m(s⊕ •)
m(• ⊕ s)

 := m(s)

m(〈s〉t̄) := m(s)m(t̄)

m([tn1
1 , . . . , t

nn
n]) :=

n∏
i=1

ni! m(ti)ni

assuming the ti’s are pairwise distinct in the case of a monomial. Again, this
definition extends straightforwardly the one given by Ehrhard and Regnier for their
resource calculus [ER08, Section 2.2.1], given that −⊕• and •⊕− are both linear.
Observe that, considering the function m as a vector m ∈ N〈∆(!)

⊕ 〉 ⊆ Q+〈∆(!)
⊕ 〉, if ~s

is an enumeration of s̄ then m(s̄) = ms̄Card(St(~s)).

Theorem 1.4.3 (Step 1). Let s ∈ T (M). Then M∗
s = 1

m(s) .

Proof. The only interesting case is that of an application: M = PQ. Assume
s ∈ T (M): then s = 〈u〉v̄ with u ∈ T (P) and v̄ = [v1, . . . , vn] ∈ T (Q)!. By
definition, M∗

s = (〈P ∗〉(Q∗)!)〈u〉v̄ = P ∗u (Q∗)!
v̄. Setting ~v = (v1, . . . , vn), we ob-

tain M∗
s = P ∗u (Q∗)v̄/Card(St(~v)) by Lemma 1.4.2. By the induction hypoth-

esis applied to P and Q, we obtain 1/P ∗u = m(u) and 1/Q∗vi = m(vi) hence
1/M∗

s = m(u)mv̄Card(St(~v)) = m(u)m(v̄) = m(s).

We could as well obtain Step 3 following Ehrhard and Regnier’s study of permu-
tations of variables occurrences. At this point, however, we hope the reader will
share our opinion that the combinatorics of Taylor expansion is more intimately
connected with the action of permutations on the enumerations of monomials
occurring in resource expressions.

In the upcoming Section 1.5, we propose to flesh out this viewpoint, and to recast
resource expressions as equivalence classes of their rigid (i.e. non-commutative)
representatives, up to the action of a groupoid of permutation terms inductively
defined on the syntactic structure.

The other remaining Steps 4 and 5 are purely qualitative properties of the Taylor
support. We chose to also treat Step 4 in the rigid setting, to be introduced later,
because it is essentially a property of rigid reduction. On the other hand, the
commutation of Step 5 can be established directly.

1.4.4. Taylor Expansion of Böhm Trees
The Taylor expansion of a Böhm tree is obtained as follows. First we extend the

definition of Taylor expansion from Λ⊕ to Λ⊥ by adding the inductive case ⊥∗ := 0,
hence T (⊥) = ∅. Then we set T (BT (M)) := ⋃

B∈BT (M) T (B).

30

1. Taylor Expansion for λ-Terms with Choice Operator – 1.4. Taylor Expansion in
a Uniform Non-Deterministic Setting

We can already observe that if s ∈ T (BT (M)) then s is normal. Moreover, it is
not difficult to extend Theorem 1.4.3 to elementary Böhm trees, hence Bs = 1

m(s)
whenever s ∈ T (B). Thus, it only makes sense to define the Taylor expansion of a
Böhm tree as: BT (M)∗ := ∑

s∈T (BT (M))
1

m(s) .
We shall achieve Step 5 by showing that the parallel left strategy in Λ⊕ can be

simulated in the support of Taylor expansion, and that T (BT (M)) is formed by
accumulating the normal forms reached from T (M) by this strategy.

Lemma 1.4.4. Let M be a λ⊕-term. Then L∂(T (M)) = T (L(M)).

Proof. The proof is the same as for λ-terms [Vau17], the case of ⊕ being direct.
The base case requires to prove that T (M [N/x]) = ∂xT (M) · T (N)!, which is done
by a straightforward induction on M .

Lemma 1.4.5. Let A,B ∈ Λ⊥. If A ≤ B then T (A) ⊆ T (B).

Proof. By induction on A. If A = ⊥ the proof is trivial. If A = λ~x.x.A1 · · ·An
then by definition of the partial order B = λ~x.xB1 · · ·Bn with Ai ≤ Bi for
i ∈ {1, . . . , n}. By induction hypothesis we have that T (Ai) ⊆ T (Bi). Therefore
by definition T (A) ⊆ T (B). If A = A1 ⊕ A2, we reason similarly, as we necessarily
have B = B1 ⊕B2.

Lemma 1.4.6. For any M ∈ Λ⊕, T (N (M)) = {s ∈ T (M) | s is normal}.

Proof. The inclusion⊆ follows from Lemma 1.4.5 and the obvious fact thatN (M) ≤
M . Conversely, if s ∈ T (M) and s is normal, then either M = N ⊕ P and
s = t ⊕ • or s = • ⊕ u with t ∈ T (N) or u ∈ T (P); or M = λ~x.xQ1 · · ·Qk

and s = λ~x.〈x〉q̄1 · · · q̄k with q̄i ∈ T (Qi)! for 1 ≤ i ≤ k. We obtain inductively
t ∈ T (N (N)) or u ∈ T (N (P)) or q̄i ∈ T (N (Qi))! for 1 ≤ i ≤ k, and then
s ∈ T (N (M)).

Step 5 then follows, using the fact that BT (M) is the downwards closure of
{N (Ln(M)) | n ∈ N}:

Theorem 1.4.7 (Step 5). Let M ∈ Λ⊕. Then T (BT (M)) = nf(T (M)).

Proof. Observe that nf(T (M)) = ⋃
s∈T (M) supp(nf(s)). The proof is by double

inclusion.
(⊆) Let t ∈ T (BT (M)), i.e. t ∈ T (B) for some B ∈ BT (M). By the definition of

BT (M), there exists n ∈ N such that B ≤ N (Ln(M)), and then by Lemma 1.4.5 t ∈
T (N (Ln(M))). By Lemma 1.4.6, t is normal and t ∈ T (Ln(M)). By Lemma 1.4.4,
t ∈ Ln∂(T (M)), hence there exists s ∈ T (M) such that t ∈ supp(Ln∂(s)). Since t is
normal, t ∈ supp(nf(s)).

(⊇) If t ∈ nf(T (M)) we can fix s ∈ T (M) such that t ∈ supp(nf(s)). Then
there exists n ∈ N such that nf(s) = Ln∂(s). Hence t is normal and t ∈ Ln∂(T (M)).
By Lemma 1.4.4, t ∈ T (Ln(M)) and since t is normal, Lemma 1.4.6 entails that
t ∈ T (N (Ln(M))), hence t ∈ T (BT (Ln(M))) and we conclude by Lemma 1.3.2.

31

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

xC x
aC s

λx.aC λx.s
aC s

a⊕ •C s⊕ •
aC s

• ⊕ aC • ⊕ s

cC s ~dC t̄

〈c〉~dC 〈s〉t̄

a1 C t1 · · · an C tn

(a1, . . . , an)C [t1, . . . , tn]

Figure 1.5. – Rules for the rigid representation relation

1.5. The Groupoid of Permutations of Rigid
Resource Terms

1.5.1. Rigid Resource Terms and Permutation Terms
We introduce the set of rigid resource terms D and the set of rigid monomials

D! by mutual induction as follows:

D 3 a, b, c, d ::= x | λx.a | 〈a〉~b | •⊕a | a⊕• D! 3 ~a,~b,~c, ~d ::= (a1, . . . , an) .

Rigid resource terms are considered up to renaming of bound variables: the
only difference with resource terms is that rigid monomials are ordered lists
rather than finite multisets. We write len((a1, . . . , an)) := n, and (a1, . . . , an) ::
(an+1, . . . , an+m) := (a1, . . . , an+m). We call rigid resource expressions the elements
of D(!) = D ∪D!. Again, for any r ∈ D(!), we write nx(r) for the number of free
occurrences of the variable x in r, and we use notations and priority conventions
similar to those for non rigid expressions: e.g., we may write λ~x.〈a〉~b~c ⊕ • for
(λx1.λxn.(〈〈a〉~b〉~c))⊕ •.

As we have already stated, rigid resource expressions are nothing but resource
expressions for which the order of terms in monomials matter. To make this
connexion formal, consider the representation relation C ⊆ D(!) ×∆(!)

⊕ defined by
the rules of Figure 1.5. Observe that the relation C is the graph of a function: if
r ∈ D(!), there exists a unique e ∈ ∆(!)

⊕ such that r C e, and then we write e = ‖r‖.
Moreover observe that, if ~aC t̄ and len(~a) = n then for any σ ∈ Sn, [σ]~aC t̄, i.e.
‖[σ]~a‖ = ‖~a‖.
We now introduce a syntax for the trees of permutations that can act on

monomials at any depth in a rigid expression. The language of such permutation
expressions is given as follows:

D 3 α, β, γ, δ ::= idx | λx.α | 〈α〉β̃ | α⊕• | •⊕α D! 3 α̃, β̃, γ̃, δ̃ ::= (σ, (α1, . . . , αn))

where x ranges over variables and σ ranges over Sn in the pair (σ, (α1, . . . , αn)).
In other words, a permutation term (resp. permutation monomial) is nothing but
a rigid term (resp. rigid monomial), with a permutation attached with each list

32

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

idx : x ∼= x
α : a ∼= a′

λx.α : λx.a ∼= λx.a′
γ : c ∼= c′ δ : ~d ∼= ~d′

〈γ〉δ : 〈c〉~d ∼= 〈c′〉~d′

α : a ∼= a′

α⊕ • : a⊕ • ∼= a′ ⊕ •
α : a ∼= a′

• ⊕ α : • ⊕ a ∼= • ⊕ a′

σ ∈ Sn α1 : a1 ∼= a′σ(1) · · · αn : an ∼= a′σ(n)

(σ, α1, . . . , αn) : (a1, . . . , an) ∼= (a′1, . . . , a′n)

Figure 1.6. – Action of permutation expressions on rigid expressions

of arguments. In general, we will simply write (σ, α1, . . . , αn) for the permutation
monomial (σ, (α1, . . . , αn)).

We say ε ∈ D(!) maps r ∈ D(!) to r′ ∈ D(!) if the statement ε : r ∼= r′ is derivable
from the rules of Figure 1.6. Observe that, given r ∈ D(!) and ε ∈ D(!) there is
at most one r′ ∈ D(!) such that ε : r ∼= r′, in which case we write [ε]r := r′. We
then write D(!)(r, r′) for the set of permutation expressions that map r to r′, i.e.
D(!)(r, r′) = {ε ∈ D(!) | ε : r ∼= r′}. We moreover write r ∼= r′ if there exists some
ε ∈ D(!) such that ε : r ∼= r′.
As a direct consequence of the definitions, we obtain that ∼= is nothing but the

equivalence kernel of the function r ∈ D(!) 7→ ‖r‖ ∈ ∆(!)
⊕ :

Lemma 1.5.1. For all r, r′ ∈ D(!), r ∼= r′ iff ‖r‖ = ‖r′‖.

The equivalence classes for ∼= are thus exactly the sets of rigid representations of
each resource expression. We can organize the permutation expressions witnessing
this equivalence relation into a groupoid G: take D(!) as the collection of objects
and for r, r′ ∈ D(!), G(r, r′) = {(r, r′, ε) | ε : r ∼= r′}. We will in general abuse
the definition and identify (r, r′, ε) ∈ G(r, r′) with ε ∈ D(!)(r, r′). The composition
ε′ε ∈ G(r, r′′) of ε ∈ G(r, r′) and ε′ ∈ G(r′, r′′) is defined by induction on the
syntax of rigid resource expressions in the obvious way: the only interesting case is
that of permutation monomials, for which we set (σ′, α′1, . . . , α′n)(σ, α1, . . . , αn) :=
(σ′σ, α′σ(1)α1, . . . , α

′
σ(n)αn). And the identity 1r on r is the same as r, with each

variable occurrence x replaced with 1x. Inverses are also defined inductively, the
key case of monomials being: (σ, α1, . . . , αn)−1 := (σ−1, α−1

σ−1(1), . . . , α
−1
σ−1(n)).

We obtain a left action of the groupoid G on D(!): [1r]r = r and [ε′ε]r = [ε′][ε]r
whenever either side of the identity is defined. It is also worth noting thatG = D⊕D!

where D is the full subcategory of G defined by rigid terms, while D! is the full
subcategory of G defined by rigid monomials. Moreover observe that D! is the free
symmetric strict monoidal category over D [Fio+08]. Then if [αi]ai is defined for
1 ≤ i ≤ n then [(σ, α1, . . . , αn)](a1, . . . , an) = [σ]([α1]a1, . . . , [αn]an).

33

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

If ~a = (a1, . . . , an) and ~a′ = (a′1, . . . , a′n), we set ~D(~a,~a′) := ∏n
i=1G(ai, a′i). Ob-

serve that G(~a,~a′) = ∑
σ∈Sn

~D(~a, [σ−1]~a′). We call quasi-stabilizer of ~a the subgroup
of Sn defined by S(~a) := {σ ∈ Sn | for 1 ≤ i ≤ n, ai ∼= aσ(i)}. Observe that
S(~a) = St((‖a1‖, . . . , ‖an‖)) and σ ∈ S(~a) iff ~D(~a, [σ−1]~a) 6= ∅.

Let us write G(r) for the group of automorphisms of r: G(r) := G(r, r). Similarly,
we will write ~D(~a) := ~D(~a,~a).

Lemma 1.5.2. For any ~a = (a1, ..., an) ∈ D!, Card(G(~a)) = Card(S(~a)× ~D(~a)).

Proof. Since G is a groupoid, for any morphism ε : r ∼= r′, postcomposition by ε de-
fines a bijection from G(r) to G(r, r′). It follows that G(~a) = ∑

σ∈Sn
~D(~a, [σ−1]~a) =∑

σ∈S(~a)
∏n
i=1G(ai, aσ(i)) is in bijection with ∑σ∈S(~a)

∏n
i=1G(ai) = S(~a)× ~D(~a).

We are then able to formalize the interpretation of the multiplicity of a resource
term s as the number of permutations of monomials in s leaving any of its writings
a C s unchanged:

Lemma 1.5.3. Let e ∈ ∆(!)
⊕ and let r C e. Then m(e) = Card(G(r)).

Proof. By induction on the structure of e. We prove the multiset case. Assume
e = s̄ and ~a = (a1, . . . , an) C s̄. Then we can write s̄ = [s1, . . . , sn] so that ai C si
and the induction hypothesis gives m(si) = Card(G(ai)) for 1 ≤ i ≤ n. Then
m(e) = Card(St((s1, . . . , sn)))∏n

i=1Card(G(ai)) = Card(S(~a))×Card(~D(~a)), and
we conclude by Lemma 1.5.2.

1.5.2. Rigid Substitution
We are now able to formalize the intuitive definition of the symmetric multilinear

substitution.
For any r ∈ D(!) and ~b ∈ D! such that len(~b) = nx(r) = n, we define the n-linear

substitution r[~b/x] of ~b for x in r inductively as follows:

x[(b)/x] := b

y[()/x] := y

(a⊕ •)[~b/x] := a[~b/x]⊕ •
(• ⊕ a)[~b/x] := • ⊕ a[~b/x]
(λz.a)[~b/x] := λz.a[~b/x]

〈c〉~d [~b0 :: ~b1/x] := 〈c[~b0/x]〉~d [~b1/x]
(a1, . . . , an)[~b1 :: · · · :: ~bn/x] := (a1[~b1/x], . . . , an[~bn/x]})

where we assume that y 6= x, z /∈ {x} ∪ FV (~b), len(~b) = nx(a), len(~b0) = nx(c),
len(~b1) = nx(~d), and len(~bi) = nx(ai) for 1 ≤ i ≤ n.

34

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

Observe that this substitution is only partially defined. In order to deal with
the general case, we will use the nullary sum of rigid expressions 0 ∈ N[D(!)]:
again, we consider all the syntactic constructs to be linear so that we may write,
e.g., λx.a for a ∈ D ∪ {0} with λx.0 = 0. We call partial rigid expressions the
elements of D(!) ∪ {0}: we generally use the same typographic conventions for
partial expressions as for regular ones.

Whenever r ∈ D(!)∪{0}, x ∈ V and ~b ∈ D!∪{0}, we define the rigid substitution
r[~b/x] of ~b for x in r as above if r ∈ D(!), ~b ∈ D! and nx(r) = len(~b), and set
r[~b/x] := 0 otherwise.

Lemma 1.5.4. If rC e and ~bC t̄ then nx(r) = nx(e) and len(~b) = len(t̄). Moreover
∂xe · t̄ = ∑

σ∈Slen(~b)

∥∥∥r[[σ]~b/x]
∥∥∥.

Proof. The first two identities follow directly from the definitions. If nx(r) 6= len(~b)
then both sides of the third identity are 0. Otherwise, it is proved by induction on
r.
Let us treat the case of a monomial: write r = (a1, . . . , an) and e = [s1, . . . , sn]

with ai C si for 1 ≤ i ≤ n. Then

∂xe · t̄ =
∑

(I1,...,In) partition of {1,...,len(~b)}

[∂xs1 · t̄I1 , . . . , ∂xsn · t̄In]

=
∑

(I1,...,In)∈Pk1,...,kn (len(~b))

[∂xs1 · t̄I1 , . . . , ∂xsn · t̄In]

where we write ki = nx(si) for 1 ≤ i ≤ n and Pk1,...,kn(k) is the set of partitions
(I1, . . . , In) of {1, . . . , k} such that Card(Ii) = ki for 1 ≤ i ≤ n.

If I ⊆ {1, . . . , len(~b)} then we write ~bI = (bi1 , . . . , bik) where i1 < · · · < ik
enumerate I. By induction hypothesis we obtain

∂xe · t̄ =
∑

(I1,...,In)∈Pk1,...,kn (len(~b))

[∑
σ1∈Sk1

∥∥∥a1[[σ1]~bI1/x]
∥∥∥ , . . . , ∑

σn∈Skn

∥∥∥an[[σn]~bIn/x]
∥∥∥]

=
∑

(I1,...,In)∈Pk1,...,kn (len(~b))

∑
σ1∈Sk1

· · ·
∑

σn∈Skn

∥∥∥r[[σ1]~bI1 :: · · · :: [σ1]~bI1/x
]∥∥∥

and we conclude, observing that the families(
[σ1]~bI1 :: · · · :: [σn]~bIn

)
(I1,...,In)∈Pk1,...,kn (len(~b)), (σ1,...,σn)∈Sk1×···×Skn

and
(
[σ]~b

)
σ∈Slen(~b)

coincide up to reindexing.

Informally, everything works out as if [s1, . . . , sn] = ∑
σ∈Sn(s1, . . . , sn), which is

to be related with the 1
n! coefficient in the Taylor expansion, cancelling out the

cardinality of Sn.

35

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

Forgetting about coefficients, we obtain:

Lemma 1.5.5. If nx(e) = len(t̄) then, for any r C e and ~b C t̄, supp(∂xe · t̄) =
{
∥∥∥r[[σ]~b/x]

∥∥∥ | σ ∈ Slen(~b)}. Conversely, if r′ C e′ ∈ supp(∂xe · t̄) then nx(e) = len(t̄)
and there exist r C e and ~bC t̄ such that r′ = r[~b/x].

Proof. The first part follows directly from Lemma 1.5.4. We prove the second part
by induction on the structure of e.
If e = x then t̄ = [t] for some t ∈ ∆⊕ and e′ = t. If r′ C e′ = t then we can set

r = x and ~b = (r′). If e = y 6= x then t̄ = [] and we can set r = y and ~b = (). The
abstraction and sum cases follow immediately from the induction hypothesis.
If e = 〈s〉v̄, we write t̄ = [t1, . . . , tn] and obtain

∂xe · t̄ =
∑

(I0,I1) partition of {1,...,n}
〈∂xs · t̄I0〉∂xv̄ · t̄I1 .

Then e′ = 〈s′〉v̄′ with s′ ∈ supp(∂xs · t̄I0) and v̄′ ∈ supp(∂xv̄ · t̄I1) for some partition
(I0, I1) of {1, . . . , n}. It follows that r′ = 〈a〉~d with aC s′ and ~dC v̄′. By induction
hypothesis, we obtain c0 C s, ~b0 C t̄I0 , ~c1 C v̄ and ~b1 C t̄I1 such that a = c0[~b0/x]
and ~d = ~c1[~b1/x]. Then we conclude by setting r = 〈c0〉~c1 C 〈s〉v̄ = e and
~b = ~b0 :: ~b1 C t̄I0 · t̄I1 = t̄.

The case of monomials is similar.

1.5.3. Substitution for Permutation Expressions
The key intermediate result for Step 3 is the fact that if e ¨ e and e′ ∈ supp(∂xe·t̄)

then (∂xe · t̄)e′ = m(e)m(t̄)
m(e′) : this will be established in Lemma 1.5.18, which concludes

the present section. With that goal in mind, and having characterized m(e) as the
cardinality of the group G(r) for any r C e, it becomes essential to study how the
permutation expressions acting on r′ C e′ ∈ supp(∂xe · t̄) are related with those
acting on some r C e and ~b C t̄: by Lemma 1.5.5, we can choose r and ~b such
that r′ = r[~b/x]. Then it seems natural to consider some form of substitution for
permutation expressions, following the structure of rigid substitution.

We define the substitution of permutation terms for a variable as follows. Given
ε ∈ G(r, r′) and ~β ∈ ~D(~b,~b′) with len(~b) = nx(r), we construct ε[~β/x] by induction

36

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

on ε:

(idx)[(β)/x] := β

(idy)[()/x] := idy

(λy.α)[~β/x] := λy.α[~β/x]
(α⊕ •)[~β/x] := α[~β/x]⊕ •
(• ⊕ α)[~β/x] := • ⊕ α[~β/x]

(〈γ〉δ̃)[~β0 :: ~β1/x] := 〈γ[~β0/x]〉δ̃[~β1/x]
(σ, (α1, . . . , αn))[~β1 :: · · · :: ~βn/x] := (σ, (α1[~β1/x], . . . , αn[~βn/x]))

where we assume that y 6= x, z /∈ {x} ∪ FV (~β), len(~β0) = nx(γ), len(~β1) = nx(δ),
and len(~βi) = nx(αi) for 1 ≤ i ≤ n.

The action of ε[~β/x] on r[~b/x] is quite intricate: in general, ε[~β/x] 6∈ G(r[~b/x], r′[~b′/x]).

Example 1.5.6. Consider the rigid monomials ~a = (x, x) and ~b = (〈z〉(), 〈z〉(z)).
Writing τ for the unique transposition of S2, we obtain α = (τ, idx, idx) ∈ G(~a).
Let ~β = (id〈z〉(), id〈z〉(z)) ∈ ~D(~b). Then α[~β/x] = (τ, id〈z〉(), id〈z〉(z)), hence α[~β/x] :
a[~b/x] ∼= (〈z〉(z), 〈z〉()) 6= a[~b/x].

To describe the image of r[~b/x] through ε[~β/x], we first introduce two operations
on permutations. If σ ∈ Sn, τ ∈ Sp and τ1 ∈ Sk1 , ..., τn ∈ Skn , we define the
concatenation σ ⊗ τ ∈ Sn+p and the multiplexing σ · (τ1, ..., τn) ∈ Sk1+...+kn by:

(σ ⊗ τ)(i) := σ(i) (σ ⊗ τ)(n+ j) := n+ τ(j)

(σ · (τ1, ..., τn))
(
i−1∑
j=1

kj + l

)
:=

σ(i)−1∑
j=1

kσ−1(j) + τi(l)

for 1 ≤ i ≤ n, 1 ≤ j ≤ p and 1 ≤ l ≤ ki.
The tensor product nomenclature is justified since, in the category P of natural

numbers and permutations, the concatenation of permutations defines a tensor
product (which is the sum of natural numbers on objects). Multiplexing may be
described in this category as follows: σ · (τ1, ..., τn) = σk1,...,kn ◦ (τ1⊗ · · ·⊗ τn) where
σk1,...,kn is the canonical symmetry map k1 + · · · + kn → kσ−1(1) + · · · + kσ−1(n) =
[σ](k1 + · · ·+ kn) (see Figure 1.7).
Multiplexed permutations compose as follows:

Lemma 1.5.7. If σ, σ′ ∈ Sn, τi ∈ Ski and τ ′i ∈ Skσ−1(i)
for 1 ≤ i ≤ n, then

(
σ′ · (τ ′1, ..., τ ′n)

)(
σ · (τ1, ..., τn)

)
= (σ′σ) · (τ ′σ(1)τ1, . . . , τ

′
σ(n)τn)

and (
σ · (τ1, ..., τn)

)−1
= σ−1 · (τ−1

σ−1(1), . . . , τ
−1
σ−1(n)) .

37

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

τ1

k1︷ ︸︸ ︷
1 + · · ·+ 1() +

τn

kn︷ ︸︸ ︷
1 + · · ·+ 1+ ()· · ·

σk1,...,kn

1 + · · ·+ 1︸ ︷︷ ︸
kσ−1(1)

() + 1 + · · ·+ 1︸ ︷︷ ︸
kσ−1(1)

+ ()· · ·

Figure 1.7. – Graphical representation of σ · (τ1, . . . , τn)

Proof. We detail the proof only in case the result is not obvious to the reader
from the above categorical presentation of multiplexing. Let α = σ · (τ1, ..., τn) and
α′ = σ′ · (τ ′1, ..., τ ′n). For 1 ≤ i ≤ n and 1 ≤ l ≤ ki:

α′
(
α
(i−1∑
j=1

kj + l
))

= α′
(σ(i)−1∑

j=1
kσ−1(j) + τi(l)

)

=
σ′(σ(i))−1∑

j=1
k′σ′−1(j) + τ ′σ(i)(τi(l)) (writing k′i = kσ−1(i))

=
(σ′σ)(i)−1∑

j=1
k(σ′σ)−1(j) + (τ ′σ(i)τi)(l)

which establishes the first identity. The second identity follows directly.

The action of multiplexed permutations on sequences is as follows:

Lemma 1.5.8. Let ~b,~b1, . . . ,~bn ∈ D!, σ ∈ Sn and τi ∈ Slen(~bi) for all i ∈
{1, . . . , n}. If ~b = ~b1 :: · · · :: ~bn then [σ · (τ1, ..., τn)]~b = [τσ−1(1)]~bσ−1(1) :: · · · ::
[τσ−1(n)]~bσ−1(n).

Proof. Again, we detail the proof only in case the result is not obvious from
the categorical presentation. Set len(~bi) = ki, so that len(~b) = ∑n

i=1 ki. Write
~b′ = [σ · (τ1, ..., τn)]~b. For 1 ≤ p ≤ len(~b′) = len(~b) = ∑n

j=1 kσ−1(j), we can write p =∑i−1
j=1 kσ−1(j) + l with i ∈ {1, ..., n} and l ∈ {1, . . . , kσ−1(i)}. Then, by Lemma 1.5.7,

(σ·(τ1, ..., τn))−1(p) = ∑σ−1(i)−1
j=1 kj+τ−1

σ−1(i)(l) and b′p = b(σ·(τ1,...,τn))−1(p) = (~bσ−1(i))τ−1
σ−1(i)

(l) =

([τσ−1(i)]~bσ−1(i))l.

38

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

We can now define the restriction ε|x ∈ Snx(r) of ε ∈ G(r, r′) to the occurrences
of x in r, by induction on ε:

(idx)|x := id{1}

(idy)|x := id∅

(λy.α)|x
(α⊕ •)|x
(• ⊕ α)|x

 := α|x

(〈γ〉δ̃)|x := γ|x ⊗ δ̃|x
(σ, α1, . . . , αn)|x := σ · (α1|x , · · · , αn|x)

where we assume x 6= y. Intuitively ε|x is the permutation induced by ε on the
occurrences x1, . . . , xnx(r) of x in r, taken from left to right.

We recall that P denotes the category of finite cardinals and permutations. For
any x ∈ V , we define an application Fx from G to P as follows: Fx(r) := nx(r) and
Fx(α) := α|x .

Lemma 1.5.9. Fx is a functor from G to P.

Proof. By induction on permutation expressions. We focus on the composition
condition for the list case. Let α̃ : ~a = (a1, . . . , an) ∼= ~b = (b1, . . . , bn) and
β̃ : ~b ∼= ~c = (c1, ..., cn). By definition α̃ = (σ, α1, · · · , αn) and β̃ = (τ, β1, . . . , βn),
for some σ, τ in Sn and with αi : ai ∼= bσ(i) and βi : bi ∼= cτ(i). The composition β̃α̃
is then defined as the isomorphism (τσ, βσ(1)α1, . . . βσ(n)αn).
We have to prove that (β̃α̃)|x = β̃|xα̃|x, that is

(τσ) ·
(
(βσ(1)α1)|x, . . . , (βσ(n)αn)|x

)
= (τ · (β1|x, . . . , βn|x))(σ · (α1|x, · · · , αn|x))

which is a direct consequence of the inductive hypothesis, (βσ(i)αi)|x = βσ(i)|xαi|x
for 1 ≤ i ≤ n, via Lemma 1.5.7.

Observe in particular that (ε|x)−1 = (ε−1)|x, so that we may simply write ε−1
|x in

the following.
We can now describe the action of ε[~β/x] on r[~b/x] as follows:

Lemma 1.5.10. If ε : r ∼= r′ and ~β ∈ ~D(~b,~b′) with len(~β) = nx(r) then ε[~β/x] :
r[~b/x] ∼= r′[[ε|x]~b′/x].

Proof. By induction on the structure of r. The interesting case is the list case.
Assume r = (a1, . . . , an), r′ = (a′1, . . . , a′n), ε = (σ, α1, . . . , αn) and ~β = ~β1 :: · · · ::
~βn, with αi : ai ∼= a′σ(i), ~b = ~b1 :: · · · :: ~bn, ~b′ = ~b′1 :: · · · :: ~b′n, len(~βi) = nx(ai)
and ~βi ∈ ~D(~bi,~b′i). By definition, we have α[~β/x] = (σ, α1[~β1/x], . . . , αn[~βn/x]).
Since αi : ai ∼= a′σ(i), we obtain αi[~βi/x] : ai[~bi/x] ∼= a′σ(i)[[αi|x]~b′i/x] by induction
hypothesis.

39

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

We obtain

α[~β/x] : r[~b/x] ∼= [σ]
([
α1[~β1/x]

]
(a1[~b1/x]), . . . ,

[
αn[~βn/x]

]
(an[~bn/x])

)
= [σ]

(
a′σ(1)

[
[α1|x]~b′1/x

]
, . . . , a′σ(n)

[
[αn|x]~b′n/x

])
=
(
a′1
[
[ασ−1(1)|x]~b′σ−1(1)/x

]
, . . . , a′n

[
[ασ−1(n)|x]~b′σ−1(n)/x

])
= r′

[
[ασ−1(1)|x]~b′σ−1(1) :: · · · :: [ασ−1(n)|x]~b′σ−1(n)/x

]
and we conclude by Lemma 1.5.8.

1.5.4. The Combinatorics of Permutation Expressions under
Coherent Substitution

Substitution is injective on parallel permutation expressions, in the following
sense:

Lemma 1.5.11. Let r, r′ ∈ D(!) and ~b,~b′ ∈ D! with len(~b) = nx(r) and len(~b′) =
nx(r′), and let ε, ε′ ∈ G(r, r′) and ~β, ~β′ ∈ ~D(~b,~b′). If ε[~β/x] = ε′[~β′/x] then ε = ε′

and ~β = ~β′.

Proof. By a straightforward induction on the structure of r.

On the other hand, surjectivity does not hold in general, because the substitution
might enable new morphisms r[~b/x] ∼= r′[~b′/x], not induced by morphisms in G(r, r′)
and ~D(~b,~b′):

Example 1.5.12. Let a = 〈〈y〉(x)〉〈z〉(x), a′ = 〈〈x〉(y)〉〈z〉(x) and ~b = (y, z).
Then a[~b/x] = a′[~b/x] but a 6∼= a′.

Observe that, in the above example, ‖a‖ 6̈ ‖a′‖. Indeed, in the following, we
will establish that coherence allows to restore a precise correspondence between
the permutation expressions acting on a substitution r[(b1, . . . , bn)/x] and the
(1 + n)-tuples of permutation expressions acting respectively on r and each of the
bi’s. It will be useful to consider the coherence relation defined on rigid expressions
by the rules of Figure 1.8, so that r ¨ r′ iff ‖r‖ ¨ ‖r′‖.

x ¨ x
a ¨ a′

λx.a ¨ λx.a′
c ¨ c′ ~d ¨ ~d′

〈c〉~d ¨ 〈c′〉~d′
bi ¨ bj for 1 ≤ i, j ≤ n+m

(b1, . . . , bn) ¨ (bn+1, . . . , bn+m)

a ¨ a′

a⊕ • ¨ a′ ⊕ •
a ¨ a′

• ⊕ s ¨ • ⊕ s′ a⊕ • ¨ • ⊕ a′ .

Figure 1.8. – Rules for the coherence relation on D(!).

40

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

Then we obtain:

Lemma 1.5.13. Let r, r′ ∈ D(!) and ~b,~b′ ∈ D! with len(~b) = nx(r) and len(~b′) =
nx(r′). If r ¨ r′ then for all φ ∈ G(r[~b/x], r′[~b′/x]) there exist ε ∈ G(r, r′) and
~β ∈ ~D(~b, [ε−1

|x]~b′) such that φ = ε[~β/x].

Proof. By induction on the structure of r: the coherence hypothesis r ¨ r′ induces
that r and r′ are of the same syntactic nature.

If r = x then r′ = x and we can write ~b = (b), ~b′ = (b′) with φ : b ∼= b′. Then we
set ε = 1x and ~β = (β). If r = y 6= x then r′ = y and φ = 1y, and we set ε = 1y
and ~β = (). The abstraction and application cases follow straightforwardly from
the induction hypotheses. We detail the list case.
We have r = (a1, . . . , an) and r′ = (a′1, . . . , a′m). Since φ : r[~b/x] ∼= r′[~b′/x] we

must have m = n, ~b = ~b1 :: · · · :: ~bn, ~b′ = ~b′1 :: · · · :: ~b′n and φ = (σ, γ1, . . . , γn)
with γi ∈ G(ai[~bi/x], a′σ(i)[~b′σ(i)/x]). Since r ¨ r′ we have in particular ai ¨ a′σ(i) for
1 ≤ i ≤ n.

By the induction hypothesis, we obtain γi = αi[~βi/x] with αi ∈ G(ai, a′σ(i)) and
~βi ∈ ~D(~bi, [α−1

i|x]~b′σ(i)). Then by definition ε := (σ, α1, . . . , αn) : r ∼= r′ and

~β := ~β1 :: · · · :: ~βn : ~b ∼= [α−1
1|x]~b

′
σ(1) :: · · · :: [α−1

n|x]~b
′
σ(n)

= [σ−1 · (α−1
σ−1(1)|x, . . . , α

−1
σ−1(n)|x)]~b

′ (by Lemma 1.5.8)

and it remains only to prove that σ−1 · (α−1
σ−1(1)|x, . . . , α

−1
σ−1(n)|x) = ε−1

|x , which follows
from Lemma 1.5.7.

In particular, we obtain (ε|x, ~β) ∈ G(~b,~b′), hence:

Corollary 1.5.14. If r ¨ r′ and r[~b/x] ∼= r′[~b′/x] then r ∼= r′ and ~b ∼= ~b′.

Given r C e, ~bC t̄ and e′ ∈ supp(∂xe · t̄) such that r[~b/x]C e′, we are about to
determine the coefficient of e′ in ∂xe · t̄ by enumerating the permutations σ such
that r[[σ]~b/x]C e′, i.e. r[[σ]~b/x] ∼= r[~b/x]. We thus define Sx(r,~b) := {σ ∈ Snx(r) |
r[~b/x] ∼= r[[σ]~b/x]} whenever len(~b) = nx(r).

Lemma 1.5.15. Let r ∈ D(!) and ~b ∈ D! with len(~b) = nx(r). If r ¨ r then
Sx(r,~b) = G(r)|xS(~b).

Proof. Let τ ∈ S(~b): by definition, we obtain ~β ∈ ~D(~b, [τ]~b). If moreover ε ∈ G(r)
then, by Lemma 1.5.10, ε[~β/x] ∈ G(r[~b/x], r[[ε|xτ]~b/x]) hence ε|xτ ∈ Sx(r,~b). It
remains only to show that the function (ε, τ) ∈ G(r) × S(~b) 7→ ε|xτ ∈ Sx(r,~b) is
surjective.
If σ ∈ Sx(r,~b), there exists φ ∈ G(r[~b/x], r[[σ]~b/x]). Since r ¨ r, we can apply

Lemma 1.5.13 and obtain ε ∈ G(r) and ~β ∈ ~D(~b, [ε−1
|x σ]~b): in particular, ε−1

|x σ ∈ S(~b),
and we conclude since σ = ε|x(ε−1

|x σ) by Lemma 1.5.9.

41

1. Taylor Expansion for λ-Terms with Choice Operator – 1.5. The Groupoid of
Permutations of Rigid Resource Terms

Our argument will moreover rely on the following construction: if len(~b) = nx(r),
we set Ix(r,~b) := {ε ∈ G(r) | ε|x ∈ S(~b)} = F−1

x (S(~b)), which is a subgroup of G(r)
because Fx is a group homomorphism from G(r) to Snx(r) by Lemma 1.5.9.

Lemma 1.5.16. Let r ∈ D(!) and ~b ∈ D! with len(~b) = nx(r). If r ¨ r then
Card(G(r[~b/x])) = Card(Ix(r,~b))Card(~D(~b)).

Proof. By Lemma 1.5.10, if ε ∈ G(r) and ~β ∈ ~D(~b, [ε−1
|x]~b) then ε[~β/x] ∈ G(r[~b/x]).

If moreover ε ∈ Ix(r,~b) then ε−1
|x ∈ S(~b): as already remarked in the proof of

Lemma 1.5.2, this entails that Card(~D(~b, [ε−1
|x]~b)) = Card(~D(~b)). It is thus sufficient

to establish that the substitution operation (ε, ~β) 7→ ε[β/x] defines a bijection from∑
ε∈Ix(r,~b)

~D(~b, [ε−1
|x]~b) to G(r[~b/x]). This fact derives immediately from Lemma 1.5.11

(injectivity) and Lemma 1.5.13 (surjectivity).

Lemma 1.5.17. Let r ∈ D(!) and ~b ∈ D! with r ¨ r and len(~b) = nx(r). Then

Card(Sx(r,~b)) = Card(G(r))Card(G(~b))
Card(G(r[~b/x]))

.

Proof. Write k = nx(r). We know that S(~b) and G(r)|x are subgroups of Sk.
Lemma 1.5.15 and Fact 1.2.2 entail that

Card(Sx(r,~b)) = Card(G(r)|x)Card(S(~b))
Card(G(r)|x ∩ S(~b))

.

Using Lemma 1.5.16, it will thus be sufficient to prove:

Card(G(r))Card(G(~b))
Card(Ix(r,~b))Card(~D(~b))

= Card(G(r)|x)Card(S(~b))
Card(G(r)|x ∩ S(~b))

which simplifies to

Card(G(r))
Card(Ix(r,~b))

= Card(G(r)|x)
Card(G(r)|x ∩ S(~b))

by Lemma 1.5.2. We conclude by Fact 1.2.3.
Lemma 1.5.18. Let e ∈ ∆(!)

⊕ be such that e ¨ e and let t̄ ∈ ∆!
⊕. If e′ ∈ supp(∂xe · t̄)

then (∂xe · t̄)e′ = m(e)m(t̄)
m(e′) .

Proof. Let r′ C e′ and k = nx(r). By Lemma 1.5.5 there exists r C e and ~b C t̄
such that r′ = r[~b/x]. Then, by Lemma 1.5.4, (∂xe · t̄)e′ = Card({σ ∈ Sk |
r[[σ]~b/x]Ce′}). By Lemma 1.5.1, we have r[[σ]~b/x]Ce′ iff r[~b/x] ∼= r[[σ]~b/x], hence
(∂xe · t̄)e′ = Card(Sx(r,~b)). Then we conclude by Lemmas 1.5.17 and 1.5.3.

42

1. Taylor Expansion for λ-Terms with Choice Operator – 1.6. Normalizing the
Taylor Expansion

〈λx.a〉~b→r a[~b/x] 〈a⊕ •〉~b→r 〈a〉~b⊕ • 〈• ⊕ a〉~b→r • ⊕ 〈a〉~b

λx.(a⊕ •)→r λx.a⊕ • λx.(• ⊕ a)→r • ⊕ λx.a

a→r a
′

λx.a→r λx.a
′

a→r a
′

〈a〉~b→r 〈a′〉~b
~a→r ~a

′

〈b〉~a→r 〈b〉~a′

a→r a
′

a⊕ b→r a
′ ⊕ b

a→r a
′

b⊕ a→r b⊕ a′
a→r a

′

a :: ~b→r a
′ :: ~b

~a→r ~a
′

b :: ~a→r b :: ~a′

Figure 1.9. – Reduction rules of the rigid resource calculus

1.6. Normalizing the Taylor Expansion
In this final section we leverage our results on the groupoid of rigid expressions

and permutation expressions in order to achieve Steps 3 and 4. This allows us to
complete the proof of commutation between Taylor expansion and normalization.

1.6.1. Normalizing Resource Expressions in a Uniform Setting
Lemma 1.5.18 is almost sufficient to obtain Step 3, as it fixes the coefficients in

a hereditary head reduction step from a uniform expression:

Lemma 1.6.1. Let e ∈ ∆(!)
⊕ with e ¨ e. If e′ ∈ supp(L∂(e)) then (L∂(e))e′ = m(e)

m(e′) .

Proof. By induction on the structure of e applying Lemma 1.5.18 in the redex
case: observe indeed that if e = λ~x.〈λy.s〉t̄ ū1 · · · ūk then e′ = λ~x.〈v〉ū1 · · · ūk with
v ∈ supp(∂ys · t̄), and then (L∂(e))e′ = (∂ys · t̄)v = m(s)m(t̄)

m(v) and we conclude since
m(e)
m(e′) = m(s)m(t̄)

m(v) . All the other cases follow directly from the induction hypothesis
by multilinearity.

To iterate Lemma 1.6.1 along the reduction sequence to the normal form, it only
remains to show that uniformity is preserved by L∂. As before, we prefer to focus
on the rigid setting first.

The reduction of the rigid resource calculus is the relation from rigid expressions to
partial rigid expressions induced by the rules of Figure 1.9: these rules mimick those
for the resource calculus. Considered as a binary relation on partial expressions,→r

is again confluent and strongly normalizing. We write nf(r) for the unique normal
form of r, that is a normal rigid expression or 0. Again, we will only consider the

43

1. Taylor Expansion for λ-Terms with Choice Operator – 1.6. Normalizing the
Taylor Expansion

hereditary head reduction strategy defined as follows:

Lr(a⊕ •) := Lr(a)⊕ • Lr(• ⊕ a) := • ⊕ Lr(a)
Lr(λ~x.λy.(a⊕ •)) := λ~x.(λy.a⊕ •) Lr(λ~x.λy.(• ⊕ a)) := λ~x.(• ⊕ λy.a)

Lr(λ~x.〈〈a⊕ •〉~b〉~c1 · · ·~ck) := λ~x.〈〈a〉~b⊕ •〉~c1 · · ·~ck
Lr(λ~x.〈〈• ⊕ a〉~b〉~c1 · · ·~ck) := λ~x.〈• ⊕ 〈a〉~b〉~c1 · · ·~ck

Lr(λ~x.〈y〉~a1 · · ·~ak) := λ~x.〈y〉Lr(~a1) · · ·Lr(~ak)
Lr((a1, . . . , ak)) := (Lr(a1), . . . , Lr(ak))

Lr(λ~x.〈λy.a〉~b~c1 · · ·~ck) := λ~x.〈a[~b/y]〉~c1 · · ·~ck

extended to partial rigid expressions by setting Lr(0) := 0. For any r ∈ D(!), there
exists k ∈ N such that nf(r) = Lkr(r). Moreover, r is in normal form iff Lr(r) = r.

Lemma 1.6.2. If e ∈ ∆(!)
⊕ then:

1. supp(L∂(e)) = {‖Lr(r)‖ | r C e and Lr(r) 6= 0};
2. supp(nf(e)) = {‖nf(r)‖ | r C e and nf(r) 6= 0}.

Proof. We first prove that r′Ce′ ∈ supp(L∂(e)) iff there exists rCe with r′ = Lr(r),
which gives the first result: this is done by a straightforward induction on the
structure of e, using Lemma 1.5.5 for the β-redex case.
Now fix k ∈ N such that nf(e) = Lk∂(e): by iterating the previous result, we

obtain r′Ce′ ∈ supp(nf(e)) iff there exists rCe with r′ = Lkr(r). Then we conclude,
observing that if r′ C e′, then r′ is in normal form iff e′ is.

Lemma 1.6.3. If r ¨ r′ and ~b ¨ ~b′ with nx(r) = len(~b) and nx(r′) = len(~b′) then
r[~b/x] ¨ r′[~b′/x].

Proof. By a straightforward induction on r.

Lemma 1.6.4. For all r, r′ ∈ D(!) such that r ¨ r′:
1. if Lr(r) 6= 0 and Lr(r′) 6= 0 then Lr(r) ¨ Lr(r′);
2. if nf(r) 6= 0 and nf(r′) 6= 0 then nf(r) ¨ nf(r′).

Proof. The first item is easily established by induction on r, using Lemma 1.6.3
in the case of a β-redex. Having fixed k such that both nf(r) = Lkr(r) and
nf(r′) = Lkr(r′), the second item follows by iterating the first one.

Lemma 1.6.5. For all e, e′ ∈ ∆(!)
⊕ such that e ¨ e′, both supp(L∂(e))∪supp(L∂(e′))

and supp(nf(e)) ∪ supp(nf(e′)) are cliques.

Proof. This is a direct consequence of Lemma 1.6.4, via Lemma 1.6.2.

We can finally establish:

44

1. Taylor Expansion for λ-Terms with Choice Operator – 1.6. Normalizing the
Taylor Expansion

Theorem 1.6.6 (Step 3). Let e ∈ ∆(!)
⊕ with e ¨ e and let e′ ∈ supp(NF (e)). Then

(NF (e))e′ = m(e)
m(e′) .

Proof. Thanks to Lemma 1.6.5, we can iterate Lemma 1.6.1 on any sequence
e0, . . . , en such that e0 ¨ e0 and ei ∈ supp(L∂(ei−1)) for 1 ≤ i ≤ n.

Lemma 1.6.5 entails that the normal form of a clique of expressions is also a
clique: Step 4 amounts to the fact that distinct elements in a clique have disjoint
normal forms. In other words, if the normal forms of two coherent expressions
intersect on a common element, then they must coincide:

Lemma 1.6.7. For all r, r′ ∈ D(!) such that r ¨ r′:
1. if Lr(r) ∼= Lr(r′) then r ∼= r′;
2. if nf(r) ∼= nf(r′) then r ∼= r′.

Proof. Observe that ∼= is defined on rigid expressions only so that if, e.g., Lr(r) ∼=
Lr(r′) then in particular Lr(r) 6= 0 6= Lr(r′). The first item is established by
induction on r, using Corollary 1.5.14 in the case of a β-redex. Having fixed k such
that both nf(r) = Lkr(r) and nf(r′) = Lkr(r′), the second item follows by iterating
the first one, thanks to Lemma 1.6.4.

Theorem 1.6.8 (Step 4). Let e, e′ ∈ ∆(!)
⊕ be such that e ¨ e′. If supp(nf(e)) ∩

supp(nf(e′)) 6= ∅ then e = e′.

Proof. Let e0 ∈ supp(nf(e)) ∩ supp(nf(e′)) and fix r0 C e0. By Lemma 1.6.2, there
are r C e and r′ C e′ such that r0 = nf(r) = nf(r′). Since e ¨ e′, we have r ¨ r′

and, since r0 ∼= r0, we obtain r ∼= r′ by Lemma 1.6.7, hence e = e′.

1.6.2. Commutation
By assembling all our previous results, we obtain the desired commutation

theorem:

Theorem 1.6.9. Let M ∈ Λ⊕. Then BT (M)∗ = nf(M∗).

Proof. By Theorem 1.4.3
M∗ =

∑
s∈T (M)

1
m(s)s

and by Theorem 1.4.1 and Theorem 1.6.8 we are allowed to form

nf(M∗) =
∑

s∈T (M)

1
m(s)nf(s) =

∑
s∈T (M)

∑
u∈supp(nf(s))

nf(s)u
m(s) u

45

1. Taylor Expansion for λ-Terms with Choice Operator – 1.6. Normalizing the
Taylor Expansion

the inner sums having pairwise disjoint supports. Then, if u ∈ supp(nf(M∗)),
there is a unique s ∈ T (M) such that u ∈ supp(nf(s)) and we obtain nf(M∗)u =
nf(s)u
m(s) = 1

m(u) by Theorem 1.6.6. We conclude since supp(nf(M∗)) = T (BT (M)) by
Theorem 1.4.7.

46

2. Categorical Interlude
In this chapter we present some categorical concepts that we shall need for the

semantic investigations led in the rest of the thesis. The results presented are
not original, with the exception of some minor ones, that are however corollary
of already known theorems and methods. We presuppose familiarity with basic
category theory and with the categorical semantics of linear logic, in particular the
notion of Seely category [Mel09][pp. 145-150].
An important conceptual point is made in Section 2.6, where our point of view

about an algebraic theory of resources is explained. We build on the ideas presented
in [MZ18] and on the fundamental intuition of linear logic categorical semantics.
Even if our semantic standpoint is deeply rooted in intuitions from linear logic, we
shall keep this aspect rather implicit, since we focus on the denotational semantics
of λ-calculus. For this reason, we are happy with cartesian closed bicategories
(Section 2.2.1) and we do not introduce all the imposing technical machinery linked
with monoidal bicategories.

The main categorical tool that we shall present here is a method, introduced in
[Fio+17], that allows to lift 2-monads over the 2-category Cat of small categories,
functors and natural transformations to (relative) pseudomonads over the bicategory
Dist of small categories, distributors and natural transformations, without the need
of introducing distributive laws in the bicategorical setting.

The Kleisli bicategories for an appropriate class of lifted 2-monads, the resource
monads (Section 2.6.3) constitute a family of cartesian closed bicategories (Section
2.8.2.1), hence, in particular, bicategorical models of the λ-calculus. From this
family of Kleisli bicategories we build our denotational semantics in Chapters 3
and 4.
These constructions depend on a considerable amount of theorems of advanced

category theory, for this reason we try to recall most of the basic ingredients needed.
However, we do not intend in any way to give an exhaustive presentation of these
results, that would be beyond the scope of this thesis.

Structure of the Chapter We begin recalling some basic notions of monoidal
categories. We introduce both monoidal and monoidal unbiased versions.

We then introduce bicategories, with some related structures, such as pseudofunc-
tors, pseudonatural transformations, pseudoadjoints etc. Particularly important
for our purposes is the definition of cartesian closed bicategories (Section 2.2.1).

Section 2.3 introduces some elements of two-dimensional monad theory and some
algebras constructions for (relative) pseudomonads. Particularly important is the

47

2. Categorical Interlude – 2.1. Monoidal Categories

notion of lifting to pseudoalgebras for a relative pseudomonad (Section 2.3.3).
Section 2.4 just recalls some facts about two well-known universal categorical

constructions, (Left) Kan extensions and coends. In the following chapters, we
shall use very often the fundamental theorems of coend calculus, such as Theorems
2.1 and 2.4.4.

Section 2.5 deals with some properties of presheaves. In particular, we recall
that the presheaves construction determines free cocompletions of small categories.
We then introduce a tensor product on presheaves, the Day convolution. We recall
some properties of the Day convolution together with the strong monoidal structure
induced on the Yoneda embedding. The universal property of the Day convolution
(Theorem 2.5.5) is crucial for the results of Sections 2.6 and 2.8.

Section 2.6 introduces fundamental intuitions for our semantic investigations.
We briefly recall the Boom hierarchy of data types and we give a natural monadic
interpretation of it. We then define the categories of integers and lists. Finally,
we consider a collection of doctrines, the resource monads, giving a concrete
characterization of them in terms of lists and showing that the relative pseudomonad
of presheaves lifts to resource monads pseudoalgebras.

Section 2.7 contains some particular categorical structures that determine models
of linear logic. We start by recalling the well-known relational model and its
preorder-induced generalization. We define the bicategory of distributors, which
generalizes in a categorified setting the former two one-dimensional structures.
We conclude with Section 2.8, proving that the resource monads can be lifted

to relative pseudomonads over the bicategory of distributors, exploiting much of
the technical machinery introduced in former sections. We consider the family
of Kleisli bicategories for these relative pseudomonads and we prove how their
opposite bicategories aare cartesian closed.

2.1. Monoidal Categories
In this section we present several notions of monoidal categories.

Definition 2.1.1. A monoidal category is a 6-tuple A = 〈C,⊗, 1, α, λ, ρ〉, where
C is a category, −⊗− : C × C → C is a bifunctor,1 ∈ C is called the unit of the
tensor product and α, λ, ρ are natural isomorphisms

αa,b,c(a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

λa : a⊗ 1 ∼= a ρa : 1⊗ a ∼= a

called, respectively, the associator, left unitor and right unitor, such that the

48

2. Categorical Interlude – 2.1. Monoidal Categories

following diagrams commute:

a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d))

(a⊗ (b⊗ c))⊗ d ((a⊗ b)⊗c)⊗ d

(a⊗ b)⊗ (c⊗ d)

1 ∗ α

α

α ∗ 1

α

α

(a⊗ 1)⊗ b a⊗ (1 ◦ b)

a⊗ b

α

ρ∗1
1∗λ

A monoidal category is strict if the natural isomorphisms α, λ, ρ are identities.

Definition 2.1.2. A lax monoidal functor F : A = 〈C,⊗, 1, α, λ, ρ〉 → B =
〈C ′,⊗′, 1′, α′, λ′, ρ′〉 is a functor F : A→ B together with natural transformations
φ1
a,b : F (a)⊗′ F (b)→ F (a⊗ b) and φ0 : 1′ → F (1) such that the following diagrams

commute:

(F (a)⊗′ F (b))⊗′ F (c) F (a)⊗′ (F (b)⊗′ F (c))

F (a⊗ b)⊗′ F (c) F (a)⊗′ F (b⊗ c)

F ((a⊗ b)⊗ c) F (a⊗ (b⊗ c))

φ1(a,b)⊗1

α′a,b,c

1⊗φ1(b,c)

φ(a⊗b)⊗c φa⊗(b⊗c)

F (αa,b,c)

1′ ⊗ F (a) F (a)

F (1)⊗ F (a) F (1⊗ a)

φ0

λ′a

F (λa)

φ1
1,a

49

2. Categorical Interlude – 2.1. Monoidal Categories

F (a)⊗ 1′ F (a)

F (a)⊗ F (1) F (a⊗ 1)

1⊗φ0

ρ′a

F (ρa)

φ1
a,1

A strong monoidal functor is a lax monoidal functor such that the arrows φ1
a,b, φ

0

are isomorphisms.

Definition 2.1.3. A symmetric monoidal category is a monoidal category A =
〈C,⊗, 1, α, λ, ρ〉 equipped with a natural isomorphism σa,b : a⊗ b ∼= b⊗ a, called the
ssymmetry, such that the following diagrams commute:

(a⊗ b)⊗ c (b⊗ a)⊗ c

a⊗ (b⊗ c) b⊗ (a⊗ c)

(b⊗ c)⊗ a b⊗ (c⊗ a)

σa,b⊗1c

αa,b,c αb,a,c

σa,b⊗c 1b⊗σa,c

αb,c,a

a⊗ 1 1⊗ a

a
λa

σa,1

ρa

a⊗ b b⊗ a

a⊗ b

σa,b

σb,a

A symmetric monoidal functor is then a monoidal functor that preserves the struc-
ture on the nose. More precisely, given A = 〈C,⊗, 1, α, λ, ρ, σ〉,B = 〈C ′,⊗′, 1′, α′, λ′, ρ′, σ′〉
a monoidal functor is symmetric if the following diagram commutes:

F (a)⊗′ F (b) F (b)⊗′ F (a)

F (a⊗ b) F (b⊗ a)

σ′a,b

φa,b φb,a

F (σa,b)

Definition 2.1.4. A relevant monoidal category is a symmetric monoidal category
A = 〈C,⊗, 1, α, λ, ρ, σ〉 equipped with a natural transformation ca : a → a ⊗ a,
called the diagonal, such that the following diagrams commute:

a a⊗ a (a⊗ a)⊗ a

a a⊗ a a⊗ (a⊗ a)

ca ca⊗1a

αa,a,a

1a⊗ca

50

2. Categorical Interlude – 2.1. Monoidal Categories

1 1⊗ 1

1

c1

ρ=λ

a a⊗ a

a⊗ a
ca

ca

σa,a

A relevant monoidal functor is then a symmetric monoidal functor that preserves
the structure on the nose. More precisely, given A = 〈C,⊗, 1, α, λ, ρ, σ, c〉,B =
〈C ′,⊗′, 1′, α′, λ′, ρ′, σ′, c′〉 a symmetric monoidal functor is relevant if the following
diagram commutes:

F (a) F (a)⊗′ F (a)

F (a) F (a⊗ a)

c′a

φa,b φb,a

F (ca)

Definition 2.1.5. A semicartesian monoidal category is a symmetric monoidal
category A = 〈C,⊗, 1, α, λ, ρ, σ〉 such that the unit is a terminal object. We write
then ea : a→ 1 for the terminal morphism.

A semicartesian monoidal functor is then a monoidal functor that preserves the
structure on the nose.

Definition 2.1.6 (Colimits and monoidality). Given A1, . . . , An categories, we
say that F : ∏n

i=1Ai → C is separately cocontinuous if for all i ∈ [n] and a1 ∈
A1, . . . ai ∈ Ai, . . . , an ∈ An the functors F (a1, . . . , ai−1,−, ai+1, . . . , an) : Ai → C
are cocontinuous.

Given a monoidal category A = 〈A,⊗, 1〉 such that A is a cocomplete category,
we say that A is monoidally cocomplete if ⊗ is a separately cocontinuous functor.

Definition 2.1.7. Given monoidal functors F = 〈F, φ1, φ0〉,G = 〈F, ψ1, ψ0〉 a
monoidal natural transformation α : F → G is just a natural transformation
α : F → G such that the following diagrams commute:

F (a)⊗′ F (b) F (a⊗ b)

G(a)⊗′ G(b) G(a⊗ b)

αa⊗′αb

φ1
a,b

αa,b

ψ1
a,b

1′ F (1)

G(1)
ψ0

φ0

α1

Remark 2.1.8. In any semicartesian monoidal category we can define canonical
projections:

π1 : a⊗ b→ a π2 : a⊗ b→ b

51

2. Categorical Interlude – 2.1. Monoidal Categories

π1 = 1a ⊗ eb π2 = ea ⊗ 1b.

If a monoidal category is both relevant and semicartesian then its tensor product
is a cartesian product.

2.1.1. Unbiased Monoidal Categories
In a standard monoidal category we can define n-ary tensor products in the

natural way, exploiting the binary functor −⊗− : C × C → C. For this reason we
can say that the standard definition of monoidal category is ”biased” toward the
arity n = 2. It is then possible, and useful, to present also an unbiased definition of
monoidal category. Standard monoidal categories and unbiased ones are equivalent
[Lei03].

Definition 2.1.9. An unbiased lax monoidal category is the collection of the
following data:
— a Category C.
— A family of functors ⊗n : Cn → C called the n-fold tensor product

〈a1, . . . , an〉 7→ (a1 ⊗ · · · ⊗ an).

— For n, n1, . . . , nkn ∈ N and double sequence of objects of A ,

〈〈a1,1, . . . , a1,k1〉, . . . , 〈an,1, . . . , an,kn〉〉

a family of arrows

γ〈〈a1,1,...,a1,k1 〉,...,〈an,1,...,an,kn 〉〉 : ((a1,1 ⊗ · · · ⊗ a1,k1)⊗ · · · ⊗ (an,1 ⊗ · · · ⊗ an,kn))

→ (a1,1 ⊗ · · · ⊗ a1,k1 ⊗ · · · ⊗ an,1 ⊗ · · · ⊗ an,kn)

natural in the aj,i.
— a family of arrows

ιa : a→ (a)

natural in a ∈ C.
The families γ, ι must satisfy associativity and identity laws [Lei03]. We call
⊗0(∗) = () the unit.

An unbiased monoidal category is a lax monoidal category where the arrows
γ〈〈a1,1,...,a1,k1 〉,...,〈an,1,...,an,kn 〉〉, ιa are isomorphisms. An unbiased strict monoidal cate-
gory is a lax monoidal category where the arrows γ〈〈a1,1,...,a1,k1 〉,...,〈an,1,...,an,kn 〉〉, ιa are
identities.

Definition 2.1.10. An unbiased symmetric monoidal category is an unbiased
monoidal category C = 〈C,⊗n, γ, ι〉 equipped, for all n ∈ N and σ ∈ Sn with a

52

2. Categorical Interlude – 2.1. Monoidal Categories

family of arrows

σ〈a1,...,an〉 : (a1 ⊗ · · · ⊗ an)→ (aσ(1) ⊗ · · · ⊗ aσ(n))

for a1, . . . , an ∈ C, natural in the ai and functorial, i.e. σ〈a1,...,an〉 ◦ τ〈a1,...,ak〉 =
(σ ◦ τ)〈a1,...,ak〉 and id[n] = 1〈a1,...,ak〉. Moreover, we impose the following coherence
conditions:
— For all σ1 ∈ Sk1 , . . . , σn ∈ Skn

((a1,1 ⊗ · · · ⊗ a1,k1)⊗ · · · ⊗ (an,1 ⊗ · · · ⊗ an,kn)) (a1,1 · · · ⊗ an,kn)

((a1,σ1(1) ⊗ · · · ⊗ a1,σ1(k1))⊗ · · · ⊗ (an,σn(1) ⊗ · · · ⊗ an,σn(kn))) (a1,σ1(1) ⊗ · · · ⊗ an,σn(kn))

γ

(σ1⊗···⊗σn) σ

σ∑n

i=1 ki

— For all τ ∈ Sn

((a1,1 ⊗ · · · ⊗ a1,k1)⊗ · · · ⊗ (an,1 ⊗ · · · ⊗ an,kn)) (a1,1 · · · ⊗ an,kn)

((aτ(1),1 ⊗ · · · ⊗ aτ(1),kτ(1))⊗ · · · ⊗ (aτ(n),1 ⊗ · · · ⊗ aτ(n),kτ(n))) (aτ(1),1 ⊗ · · · ⊗ aτ(n),kτ(n))

γ

τ τ◦(1k1 ,...,1kn)

α

where we recall that τ ◦ (1k1 , . . . , 1kn) is the multiplexing operation (Subsection
1.5.3).

Definition 2.1.11. An unbiased relevant monoidal category is an unbiased sym-
metric monoidal category C = 〈C,⊗n, γ, ι, σ〉 equipped, for all n ∈ N, with a family
of arrows

cna : a→
n times︷ ︸︸ ︷

(a⊗ · · · ⊗ a)

for a ∈ C, such that the following diagrams commute

a (a⊗ · · · ⊗ a) (ak1 ⊗ · · · ⊗ akn)

a
∑n

i=1 ki

cn ck1⊗···⊗ckn

γ

a (a⊗ · · · ⊗ a)

(a⊗ · · · ⊗ a)

cn

cn

σ

for σ ∈ Sn, letting an =
n times︷ ︸︸ ︷

(a⊗ · · · ⊗ a) .

53

2. Categorical Interlude – 2.2. Bicategories

Definition 2.1.12. An unbiased semicartesian monoidal category is an unbiased
symmetric monoidal category C = 〈C,⊗n, γ, ι, σ〉 where the unit () is terminal.

Definition 2.1.13. An unbiased cartesian monoidal categories is an unbiased
symmetric monoidal category C = 〈C,⊗n, γ, ι, σ〉 where the functors ⊗n are finite
products.

2.2. Bicategories
Bicategories are weak 2-dimensional categorical structures, where we have objects,

arrows between objects (called 1-cells) and arrows between arrows (called 2-cells).
Identity and associativity laws for compositions of 1-cells hold only up to coherent
isomorphisms, for this reason bicategories are weak structures. We refer to [Bor94]
for the basics of bicategory theory.
A bicategory C is the collection of the following data:
— A set of objects, also called 0-cells Obj(C) 3 A,B,C . . . ;
— for all A,B ∈ Obj(C), a category C(A,B). Objects of these categories are

called 1-cells or morphisms, while arrows are called 2-cells or 2-morphisms.
Composition of 2-cells is generally called vertical composition;

— For every A,B,C ∈ Obj(C) a functor

◦A,B,C : C(B,C)× C(A,B)→ C(A,C)

(G,F) 7→ G ◦ F

(β, α) 7→ β ? α

called horizontal composition;
— for every A ∈ ob(C) a functor 1A : 1→ C(A,A). With an abuse of notation

we identify 1A(∗) with 1A and we call it the identity of A;
— For all A,B,C,D ∈ ob(C) a natural isomorphism αA,B,C,D:

C(C,D)× C(B,C)× C(A,B) C(D,C)× C(A,C)

C(B,D)× C(A,B) C(A,D)

1×◦A,B,C

◦B,C,D×1 ◦A,C,D
αA,B,C,D

◦A,B,D

— For all A ∈ ob(C), natural isomorphisms λA and ρA :

54

2. Categorical Interlude – 2.2. Bicategories

C(A,B)× 1 C(A,B)

C(A,B)× C(A,A)

1×1A

◦A,A,B

ρA

1× C(A,B) C(A,B)

C(B,B)× C(A,B)

1B×1

◦A,A,B

λA

— Finally, we impose two coherence conditions, i.e. the commutation of the
following two diagrams:

K ◦ (H ◦ (G ◦ F))

K ◦ ((H ◦G) ◦ F))

(K ◦ (H ◦G)) ◦ F ((K ◦H)◦G) ◦ F

(K ◦H) ◦ (G ◦G)

K ◦ α

α

α ◦ F

α

α

(G ◦ 1) ◦ F G ◦ (1 ◦ F)

G ◦ F

α

ρ◦F
G◦λ

Given a bicategory C, there exists its opposite bicategory, where we reverse only
the 1-cells, denoted as Cop.

A 2-category is a bicategory where the natural isomorphisms α, ρ, λ are identities.

Example 2.2.1. We list some examples of bicategories that we will use in what
follows.
— The associativity and identity laws for bicategories look very much alike the

conditions that one imposes over the associativity and unity natural transfor-
mations of monoidal categories. Indeed, we have that all monoidal categories
are one object bicategories (easy check of the definitions).

55

2. Categorical Interlude – 2.2. Bicategories

— For this work, the most important example of bicategory is the bicategory of
distributors (Section 2.7.3), where objects are small categories, 1-cells are
functors F : Bo × A→ Set and 2-cells are natural transformations.

— Categories, functors and natural transformations determine a 2-category,
CAT. We write Cat for its full sub-2-category of small categories.

— Locally small monoidal categories, strong monoidal functors and monoidal
natural transformations determine a 2-category , MON. We write Mon for its
full sub-2-category of small monoidal categories.

— Locally small symmetric monoidal categories, strong symmetric monoidal func-
tors and monoidal natural transformations determine a 2-category , SMMON.
We write SMMon for its full sub-2-category of small symmetric monoidal
categories.

— Locally small monoidally cocomplete categories, strong monoidal cocontinu-
ous functors and monoidal natural transformations determine a 2-category,
MONCOC.

— Locally small semicartesian monoidal categories, strong semicartesian monoidal
functors and monoidal natural transformations determine a 2-category, SCMON.
We write SCMon for its full sub-2-category of small semicartesian monoidal
categories. relevant monoidal categories, strong relevant monoidal functors
and monoidal natural transformations determine a 2-category , RMON. We
write RMon for its full sub-2-category of small relevant monoidal categories.

Definition 2.2.2. Let A,B be two bicategories. A lax functor Φ : A → B is the
collection of the following data:
— A function Φ : ob(A)→ ob(B).
— For each pair of objects A,B a functor ΦA,B : A(A,B)→ B(Φ0(A),Φ0(B)).
— For all A,B,C ∈ ob(A) a natural transformation φA,B,C

A(B,C)×A(A,B) B(ΦB,ΦC)× B(ΦA,ΦC)

A(A,C) B(ΦA,ΦC)

ΦA,B×ΦB,C

◦A,B,C ◦ΦA,ΦB,ΦC
φA,B,C

ΦA,C

with components φF,G : Φ(G) ◦ Φ(F)→ Φ(G ◦ F).
— For all A ∈ ob(C) a natural transformation φA

56

2. Categorical Interlude – 2.2. Bicategories

1 A(A,A)

1 B(ΦA,ΦA)

1A

ΦA,A
φA

1ΦA

with components ΦA : Φ(1A)→ 1ΦA

Finally, we impose three coherence axioms (see [Lei98][p.4]).
If the two natural transformation are isomorphisms, Φ is called a pseudofunctor.

A 2-functor is a pseudo-functor where the two natural isomorphisms are identities.

Definition 2.2.3. Let Φ,Ψ : A → B be two morphisms. A pseudonatural trans-
formation P : Φ⇒ Ψ is the collection of the following data:

— A family of 1-cells (PA : ΦA→ ΨA)A∈A.
— for each 1-cell F : A→ B an invertible 2-cell PF :

ΦA ΨA

ΦB ΨB

PA

ΦF ΨF

PB

PF

— We impose the following conditions:

1. For all F : A→ B and G : B → C we have

ΦA ΨA

ΦB ΨB

ΦC ΨC

PA

ΦF ΨF

PB

ΦG ΨG

PF

PC

PG

=

ΦA ΨA

ΦC ΨC

PA

ΦG◦F ΨG◦F

PB

PG◦F

57

2. Categorical Interlude – 2.2. Bicategories

2. for all A ∈ A
ΦA ΨA

ΦA ΨA

PA

Φ1A Ψ1A

PA

P1A =

ΦA ΨA

ΦA ΨA

PA

1ΦA 1ΨA

PA

A 2-natural transformation is a pseudonatural transformation where the invertible
2-cells PF are identities.

Definition 2.2.4. Let P,Q : Φ ⇒ Ψ be two pseudo-natural transformations. A
modification σ : P ⇒ Q consists in a family of 2-cells σA : P (A)→ Q(A) such that

ΦA ΨA

ΦB ΨB

PA

QA

ΦF ΨF

QB

σ

QF

=

ΦA ΨA

ΦB ΨB

PA

ΦF ΨF

PB

QB

PF

σ

2.2.0.1. Pseudoadjunctions

We can now introduce the notion of pseudoadjunction. We do so by giving a
definition based on biuniversal arrows [Fio06] [Sav20].

Definition 2.2.5. Let Φ : C → D be a pseudofunctor and D ∈ D. A biuniversal
arrow from Φ to D consists of a pair 〈C ∈ C, qC : ΦC → D〉 and for every B ∈ C
an adjoint equivalence of categories

D(ΦB,D) C(B,C)
(−)[

qC◦Φ(−)

⊥

Definition 2.2.6 ((Right) pseudoadjoint). Let Φ : A → B be a pseudo-functor. A
right pseudoadjoint Φ a Ψ is given by the following data:
— A function Ψ : ob(B)→ ob(A).
— For every B ∈ B a universal arrow 〈ΨB, qA : ΦΨB → B〉 from Φ to B.

These data univocally determine a pseudo-functor Ψ : B → A such that Φ a Ψ.
For example, the functor ψB,CB(B,C)→ A(ΨB,ΨC) is defined as (−◦qC)[, where

58

2. Categorical Interlude – 2.2. Bicategories

the action on 2-cells is given by precomposition with the identity idqC : qC ⇒ qC .
The former definition of pseudoadjunction is particularly suitable for calculations,
this is the main reason for which we choose such presentation.
It is possible to give a formalization of basic category theory in the context of

an arbitrary bicategory. More precisely, we can define the notions of equivalence,
adjunctions, monads exploiting the structure of 1-cells and 2-cells. We give a
particular example of this process of formalization with the following definition of
a retraction.

Definition 2.2.7 (Retraction). Let D,E be 0-cells in a bicategory C. A retraction
of D to E is a couple of 1-cells i : E → D, j : D → E together with an invertible
2-cell β such that the diagram below commute. We write E C D is there is a
retraction of D to E.

E D

E

i

1E

j
β

If we have both E CD and D C E we say that E is equivalent to D, in symbols
E ' D, and we call the pair (i, j) an equivalence.

2.2.1. Cartesian Closed Structure
Cartesian closed bicategories are of particular interest for our purpose, since the

classic categorical semantics of λ-calculus is given by its one-dimensional analogue.
This kind of structures has been thoroughly studied in [Sav20; FS19; FS20], where
one of the main results is an important theorem of coherence for cartesian closed
bicategories, proven via a type theoretic method 1. In the definition of cartesian
closed bicategory we mostly follow [Sav20; GJ17].

Given bicategories A1, . . . ,An with n ∈ N there exists the finite product bicate-
gory ∏n

i=1Ai, defined in the natural way. Given a bicategory C, we define the n-ary

diagonal pseudo-functor ∆n
C : C →

n times︷ ︸︸ ︷
C × · · · × C as follows:

— On objects ∆n(C) = 〈C, . . . , C〉.
— For all C,D ∈ C,

∆n
C,D : C(C,D)→ C × C(∆n(C),∆n(D))

(F,G) 7→ ((F, . . . , F), (G, . . . , G))

1. More precisely, a notion of type theory for cartesian closed bicategories is introduced and it
is used to prove that in the free cartesian closed bicategory over a set X there is at most one 2-cell
between two different 1-cells. This is a very important coherence result, since intuitively means
that the cartesian closed structure on a bicategory can be studied ”forgetting” about coherences
conditions on 2-arrows.

59

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

(α, β) 7→ ((α, . . . , α), (β, . . . , β))

The natural isomorphisms ∆n
F,G and ∆n

A are the identities. We say that a
bicategory admits all finite products if for very n ∈ N the pseudofunctor ∆n admits
a right pseudoadjoint. If we spell this out, following Definition 2.2.6 , we demand
the following:
— A function ∏n(−) : ob(Cn)→ ob(C).
— For every A1, . . . , An ∈ ob(C), a 1-cell πn,i : ∏n〈A1, . . . , An〉 → Ai called the

i-th projection.
— For every B ∈ ob(C) an adjoint equivalence

∏n
i=1 C(B,Ai) C(B,∏n〈A1, . . . , An〉)

(−)

〈πn,1◦−,...,πn,n◦−〉

⊥

where the right adjoint (−) is called the tupling. We shall write ∏n(A1, . . . , An) =
&n
i=1Ai and, for n = 2,∏2(A,B) = A&B.
A bicategory that admits finite products is closed if the pseudofunctor −&B :
C → C admits a right pseudoadjoint −B. If we spell this out, we get the following:
— For every B ∈ ob(C) function −B : ob(C)→ ob(C).
— For every A,B ∈ ob(C), a 1-cell evA,B : AB & A → B called the evaluation

morphism.
— For every A,B,C ∈ ob(C) an adjoint equivalence

∏n
i=1 C(A&B,C) C(A,CB)

λ(−)

evB,C◦(−×B)

⊥

the counit of the former adjunction εf : evB,C ◦ (λ(f)×B) ∼= f models β-reduction.

2.3. Two-Dimensional Monad Theory
Two-dimensional monad theory is the study of algebraic constructions in the

framework of bicategories. Monads over bicategories are called pseudomonads. Of
particular relevance are the possible algebras structure that we can associate to
pseudomonads. While in the one-dimensional framework the notion of algebra is
unique, in the two-dimensional one we can consider lax algebras, pseudoalgebras

60

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

and strict algebras 2.We will focus on strict and pseudoalgebras. The main reference
on two-dimensional monad theory is the classic [BKP89].

2.3.1. Pseudomonads and Lax Algebras
Definition 2.3.1. A pseudomonad over a bicategory A is the collection of the
following data:
— A triple 〈T, η, µ〉 where T : A → A is a pseudo-functor, and η : 1A → T and

µ : T 2 → T are pseudonatural transformations.
— Invertible modifications

T 3 T 2

T 2 T

Tµ

µT µ

µ

σ

T T 2

T 2 T

Tη

ηT µ

µ

τ1
τ2

We also impose two additional coherence conditions [Lac00][p.180].

A 2-monad is a pseudomonad (T, η, µ, σ, τ1, τ2) where T is a 2-functor, η, µ are
2-natural transformations and σ, τ1, τ2 are identity modifications.

Given a pseudomonad 〈S : C → C, η, µ, σ, τ1, τ2〉 we can build the 2-category of
lax algebras of S, S-LAlgC as follows:
— An object of S-LAlgC is given by an object A ∈ C, called the underlying object,

a 1-cell hA : SA→ A called the structure map and 2-cells ι1, ι2:

SSA SA

SA A

µA

hSA hAι1

hA

A SA

A

ηSA

hSA
ι2

We impose two additional coherence conditions on the 2-cells [Luc18]. If the
2− cells ι1, ι2 are isos, A is called a pseudoalgebra. If they are identities, A is
a strict algebra.
We generally denote lax algebras by A,B, . . .

— For lax algebras A,B a 1-cell or morphism ϕ : A→ B is a morphism F : A→ B
together with an invertible 2-cell

2. Moreover, one can choose between various degree of strictness also for 1-cells.

61

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

SA SB

A B

SF

hA hB
ζ

F

required to satisfy two coherence conditions [BKP89][p.3]. If ζ is an isomor-
phism, then the morphism is called a pseudomorphism. If ζ is the identity,
then the morphism is called a strict morphism.

— Given two lax morphisms ϕ = 〈F, ζ〉, ψ = 〈F ′, ζ ′〉 : A→ B, a 2-cell ᾱ : A→ B
consists of a 2-cell α : F → F ′ satisfying

SA SB

A B

SF

SF ′

hA hB

F ′

α

ζ′

=

SA SB

A B

SF

hA hB

F ′

F
α

ζ

We denote the 2-category of pseudoalgebras and strict algebras as respectively
S-PAlgC and S-AlgC, in both cases the 1-cell considered are pseudomorphisms.
Clearly we have that S-AlgC is a full 2-subcategory of S-PAlgC. We will often write
A = 〈A, hA〉 for a pseudo S-algebra, keeping the 2-arrows implicit.

Example 2.3.2. We give some examples of (pseudo)algebras for some 2-monads
on the 2-category CAT that are important for the present work (Section 2.6).
— Consider the 2-monad S for monoidal categories. Strict algebras for this

2-monad are monoidal categories. More precisely, the 2-category S-AlgCAT is
equivalent to the 2-category MON. A similar result holds for the strict, sym-
metric, relevant, semicartesian and cartesian cases. This example expresses
very well why we chose pseudomorphisms of strict algebras as the 1-cells of
S-AlgC. Strict morphisms are too restrictive: the structure of strong monoidal
functors corresponds to pseudomorphisms.

— Consider the 2-monad S for strict monoidal categories. A pseudoalgebra
for this kind of 2-monad consists exactly of an unbiased monoidal category
[Lei03][pp. 69-70]. We briefly detail the proof in the case where S is the
2-monad for symmetric monoidal categories. Let 〈A, hA, ι1, ι2〉 be a pseudoal-

62

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

gebra for S, by definition, this means that we have the following

SSA SA

SA A

µA

hSA hAι1

hA

A SA

A

ηSA

hSA
ι2

we want to define the n-fold tensor products on A. Let 〈~a1, . . . ,~ak〉 ∈ SSA.
By the first diagram and definition of S we have

hA(
k⊕
i=1

~ai) ∼= hA(〈hA(~a1), . . . , hA(~ak)〉).

Then we set ⊗n(a1, . . . , ak) = hA(〈a1, . . . , ak〉). If we denote as natural

⊗n(a1, . . . , an) = (a1 ⊗ · · · ⊗ an),

we get, just rephrasing the former formula,

ι1 : (a1,1 ⊗ · · · ⊗ a1,k1)⊗ · · · ⊗ (an,1 ⊗ · · · ⊗ an,kn)) ∼= (a1,1 ⊗ · · · ⊗ an,kn)

hence the natural isomorphism ι1 will give the associativity isomorphism.
The natural isomorphism ι2 will instead give ι2 : a → (a), just imposing
hA(ηA(a)) = (a). The coherence conditions for associativity and identity
are satisfied just writing down the associativity and identity conditions for
pseudoalgebras. For what concerns symmetries, lets consider the symmetries
between lists

σ : 〈a1, . . . , ak〉 → 〈aσ(1), . . . , aσ(k)〉.

Then we set σ : (a1 ⊗ · · · ⊗ ak) → (aσ(1) ⊗ · · · ⊗ aσ(k)) just as hA(σ). The
functoriality is then immediately derived by functoriality of hA.

2.3.2. Relative Pseudomonads
It is well-known given a pair of adjoint functors, we get a monad. We want now

to extend this result to the two-dimensional setting. In order to do so, we relax
the notion of pseudoadjunction (Def 2.2.6) to the one of relative pseudoadjunction,
that is more useful for our purposes. For the content of this section we refer to
[Fio+17].

Definition 2.3.3 (Relative (left) pseudoadjunction). Let Ψ : E → D, J : C → D

63

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

be two pseudofunctors. A relative left pseudoadjoint Φ to Ψ over J, denoted

E

C D

ΨΦ

J

is the collection of the following data:
— for all A ∈ C, an object ΦA ∈ E ;
— for all A ∈ C, a family of morphisms iA : JA→ ΨΦA;
— for all A ∈ C and B ∈ E a family of adjoint equivalences

D(JA,ΨB) E(ΦA,B)
Ψ(−)◦iA

(−)[

⊥

We perform the same kind of generalization also for the notion of pseudomonad.

Definition 2.3.4 (Relative pseudomonad). Let J : C → D be a pseudofunctor
between 2-categories. A relative pseudomonad T over J is the collection of the
following data:
— for A ∈ C, an object TA ∈ D;
— for A,B ∈ C, a functor (−)∗A,B : D(JA, TB)→ D(TA, TB);
— for A ∈ C, a morphism iA : JA→ TA;
— for F : A → B and G : B → C a family of invertible two-cells µF,G :

(G∗ ◦ F)∗ ∼= G∗ ◦ F ∗;
— for F : JA→ TB a family of invertible two cells ηF : F ∼= F ∗ ◦ ix;
— a family of invertible two cells θA : i∗A ∼= 1TA.

This data has also to satisfy two coherence conditions [Fio+17].

We set (−)∗ = 〈(−)∗A,B〉A,B∈C, i = 〈iA〉A∈A, µ = 〈µF,G〉F,G∈C(A,B), η = 〈ηF 〉F∈D(JA,TB)
and θ = 〈θA〉A∈C.

Remark 2.3.5 (Relative Pseudomonads from Relative Pseudoadjunctions). Given
a relative (left) pseudoadjunction we can define its associated relative pseudomon-
ads, following the construction presented in [Fio+17][Theorem 3.8]. Given a left
pseudoadjunction

E

C D

ΨΦ

J

64

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

we set TA = ΨΦA. The data of the relative pseudoadjunction gives 1-cells iA : A→
TA and adjoint equivalences

D(JA,ΨΦB) E(ΦA,ΦB)
Ψ(−)◦iA

(−)[

⊥

The 2-cells are build form the unit and counit of the family of adjoint equivalences
that determines the pseudoadjunction.

The relative pseudomonads have Kleisli bicategories, built in a completely natural
way:

Proposition 2.3.6 (Kelisli Bicategory, Fiore-Gambino-Hyland-Winskel). Given
a relative pseudomonad T = 〈〈TA〉A∈C, (−)ast, i, µ, η, θ〉 over J : C → D there is a
bicategory Kl(T) called the Kleisli Bicategory of T such that

ob(Kl(T)) = ob(C) Kl(T)(A,B) = D(JA, TB)

identities are given by the family i and, for F ∈ Kl(T)(A,B), G ∈ Kl(T)(B,C)
horizontal composition is given as follows:

G ◦Kl(T) F = G∗ ◦D F.

with associativity and identities isomorphisms:

(H∗ ◦G)∗ ◦ F (H∗ ◦G∗) ◦ F (H∗ ◦ (G∗ ◦ F)µH◦G,F αD
H∗◦G∗,F

i∗A ◦ F 1TA ◦ F F
θA◦F λDF F ◦ i∗A F ◦ 1TA F

F◦θA ρDF

2.3.3. (Pseudo) Algebras Lifting of Relative Pseudomonads
Given a pseudofunctor S : D → D and a pseudofunctor J : C → D we say that

S restricts to C if for all A ∈ C, SA ∈ C. We denote SC the restriction of S to C,
defined in the natural way as

SC(A) = S(A).

65

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

We say that a 2-monad S restricts along J if its endofunctor restricts to C, µA ∈
C(SSA, SA), ηA ∈ C(A, SA) and the following diagram commutes

C D

C D

J

S|C S

J

If S restricts along J, the restriction induces pseudofunctors JS,PsA : S-PAlgC →
S-PAlgD, JS,A : S-AlgC → S-AlgD making the following diagram commute

S-AlgC S-AlgD

S-PAlgC S-PAlgD

C D

JS,A

Υ

JS,PsA

Υ

J

Where Υ denotes the evident forgetful functors. From now on, we shall call just J
the former two pseudofunctors.

Definition 2.3.7. Given a relative pseudomonad T over the pseudofunctor J : C →
D and a 2-monad S over D that restricts along J, A lifting of T to pseudoalgebras
of S is the collection of the following data:
— For every A = 〈A, hA〉 ∈ S-PAlgC a pseudoalgebra structure on TA, denoted

as TA ∈ S-PAlgD.
— For every pseudo morphism ϕ = 〈f, σ〉 : A = 〈A, hA〉 → B = 〈B, hb〉 a

pseudomorphism structure on f ∗ : JA→ TB, denoted as ϕ∗ : JA→ TB.
— For every A = 〈A, hA〉, a pseudomorphism structure on iA : A→ TA, denoted

as iA : A→ TA such that
— µf,g : (g∗ ◦ f)∗ → g∗ ◦ f ∗ is an algebra 2-cell for every pseudomorphism
〈f, σ〉∗ : JA→ TB, 〈g, τ〉∗ : JB→ TC.

— ηf : f → f ∗ ◦ iA is an algebra 2-cell for every pseudomorphism 〈f, σ〉 : JA→
TB.

— θA : i∗A → 1TA is an algebra 2-cell for every A = 〈A, hA〉 ∈ S-PAlgC.

If a pseudomonad T over J : C → D admits a lifting to (pseudo) algebras of S,
then T induces an evident relative pseudomonad T̄ over J : S-PAlgC → S-PAlgD.
The data of this relative pseudomonad are given directly by the definition of lifting
and of pseudoalgebras. One only needs to check that the construction (−)∗ induces
a functor and that the coherences hold.

66

2. Categorical Interlude – 2.3. Two-Dimensional Monad Theory

The following theorem is the fundamental technical tool that we are going to
use in Section 2.8 to build the family of Kleisli bicategories of distributors that will
constitute the mathematical setting for our semantic investigations in Chapter 3
and 4.

Theorem 2.3.8 (Fiore-Gambino-Hyland-Winskel). If a relative pseudomonad T
over J : C → D admits a lifting to either algebras or pseudoalgebras of S = 〈S, η, µ〉,
then S can be extended to a relative pseudomonad over the identity 1Kl(T) : Kl(T)→
Kl(T).

Proof. We recall the proof of [Fio+17], since the construction of the considered
pseudomonad is relevant for Section 2.8. We do the case of pseudoalgebras, the
strict one being completely analogous. Consider the Kleisli bicategory of the relative
pseudomonad T̄ over J : S-PAlgC → S-PAlgD. Objects of Kl(T̄) are strict algebras
and homcategories are defined as

Kl(T̄)(A,B) = S-PAlgD(JA, TB).

We remark that there is an evident forgetful pseudofunctor Υ : Kl(T̄)→ Kl(T).
In particular then, we have families of functors

Kl(T̄)(A,B) Kl(T)(ΥA,ΥB)

S-PAlgD(JA, TB) D(JA, TB)

ΥA,B

ΥA,B

where we suppose that A = 〈A, hA〉 and B = 〈B, hb〉. We claim that Υ has a left
biadjoint Φ. We build the appropriate data for Φ.
— For A ∈ Kl(T), we set ΦA = 〈SA, hSA : SSA→ SA〉, that is the free algebra

on A, which, in particular, is a pseudoalgebra.
— For A ∈ Kl(T) we define a morphism ẽA ∈ C(A, SA) as the composite

JA SJA = JSA TSA
ηJA iSA

in D, where ηJA is the unit of the 2-monad S. We have the following diagram

Kl(T)(A,B) Kl(T̄)(ΦA,B)

D(JA, TB) S-PAlgD(ΦJA, TB)

Υ(−)◦ẽA

Υ(−)◦eA

where we suppose that the underling object of B is B. The former diagram
commutes up to natural isomorphism by the following property of ẽA. Given

67

2. Categorical Interlude – 2.4. Kan Extensions and Coends

a pseudomorphism ϕ = 〈F, ζ〉 : ΦJA→ TB we get the following isomorphism

F ◦ ẽA = F ∗ ◦ ẽA = (F ∗ ◦ iSA) ◦ ηA ∼= F ◦ ηA

now, since Υ(−) ◦ eA : S-PAlgD(ΦJA, TB)→ D(JA, TB) defines an equiva-
lence of categories, we get in particular a relative left pseudoadjunction

Kl(T̄)

Kl(T) Kl(T)

Υ
Φ

then following the construction presented in Remark 2.3.5, we get our relative
pseudomonad.

2.4. Kan Extensions and Coends
We recall in this section two standard universal categorical constructions: coends

and (left) Kan extensions. Both construction arises fairly often when reasoning
about categories and they are strictly related to some colimit constructions. They
are also interrelated concept: under some conditions, we can compute left Kan
extension with a coend formula.

2.4.1. Coends
Definition 2.4.1. Let F : Co ×C → D be a functor. A cowedge of F is an object
T ∈ D together with a family of morphisms 〈wc : F (c, c) → T 〉c∈C such that the
following diagram commutes

F (c′, c) F (c, c)

F (c′, c′) T

F (f,1)

F (1,f) wc

wc′

for f : c→ c′.

Definition 2.4.2. Let F : Co × C → D be a functor. A coend of F is a cowedge
〈T,w〉 of F such that for any other cowedge 〈K, u〉 of F there exists a unique
morphism h : K → T that makes the following diagram commutes:

68

2. Categorical Interlude – 2.4. Kan Extensions and Coends

F (c, c′) F (c, c)

F (c′, c′) K

∫ c∈C F (c, c)

F (c,f)

F (f,c′) uc wc
uc′

wc′

h

Coends are unique up to isomorphism. We denote the coend of F as
∫ c∈C F (c, c).

The integral notation is justified by the formal calculus connected with this notion 3.
A coend of a functor F : Co×C → D is a kind of colimit, precisely the following

coequilizer:

∑
c,c′∈C

C(c′, c)× F (c, c′)
f−→−→
g

∑
c∈C

F (c, c)→
∫ c∈C

F (c, c).

Where the two parallel morphisms are the coproduct of the two following families
of morphisms

fc,c′ : C(c′, c)× F (c, c′)→ F (c, c)

〈f, x〉 7→ F (c, f)(x)

and
gc,c′ : C(c′, c)× F (c, c′)→ F (c′, c′)

〈f, x〉 7→ F (f, c′)(x)

Since we will work in the Set enriched setting, it is useful to explicitly compute
that coequilizer in the case when D = Set. We get the following quotient:∑

c∈C
F (c, c)/ ∼

where ∼ is the smallest equivalence relation generated as follows: 〈c, x〉 ∼ 〈c′, x′〉 if
there exists f : c′ → c and y ∈ F (c, c′) such that F (c, f)(y) = x and F (f, c′)(y) = x′.
In particular, given a functor F : Co × C ×D → Set, we can canonically build a
functor

∫ c∈C F (c, c,−) : D → Set as follows :

e 7→
∫ c∈C

F (c, c, e)

∫ c∈C
F (c, c, f) :

∫ c∈C
F (c, c, e)→

∫ c∈C
F (c, c, e′)

3. For a proper introduction to coend calculus see [Lor15].

69

2. Categorical Interlude – 2.4. Kan Extensions and Coends

〈̃c, x〉 7→ ˜〈c, F (1, 1, f)(x)〉

where f : e→ e′. The action on morphisms is well-defined since if 〈c, x〉 ∼ 〈c′, x′〉
then 〈c, F (c, c, f)(x)〉 ∼ 〈c′, F (c, c, f)(x′)〉 4.

Lemma 2.4.3. Every cocontinuous functor preserves coends.

Proof. Immediate, since a coend is a coequalizer.

Lemma 2.4.4 (Fubini). Let F : Co × C ×Do ×D → E be a functor. We have∫ 〈c,d〉
F (c, c, d, d) ∼=

∫ c ∫ d

F (c, c, d, d) ∼=
∫ d ∫ c

F (c, c, d, d)

Proof. We refer to [Lor15].

Theorem 2.4.5 (Yoneda, Density Theorem). Let K,H : C → D be, respectively, a
contravariant and a covariant functor. We have the following natural isomorphisms

K(−) ∼=
∫ c∈C

K(c)× C(−, c). (2.1)

H(−) ∼=
∫ c∈C

H(c)× C(c,−). (2.2)

Proof. For the general proof we refer to [Lor15]. However, we build the natural
isomorphism explicitly in the particular case where D = Set. We prove (2.1), the
two being dual to each other.
Let b ∈ C. We define a function

fb : K(b)→
∫ c∈C

K(c)× C(b, c)

x 7→ ˜〈b, x, 1b〉.

The injectivity of fb is immediate by definition. We prove its surjectivity. Let
˜〈c, x, f〉 ∈

∫ c∈C K(c)×C(b, c). By definition of equivalence, 〈c, x, f〉 ∼ 〈b,K(f)(x), 1b〉.
Then we have that fb(K(f)(x)) = ˜〈c, x, f〉. In order to prove the naturality, we
need to show that the following diagram commutes:

K(b′) K(b)

F (b′) F (b)

fb′

K(f)

fb

F (f)

4. This functor trivially corresponds to the one given by the universal property of the coend
construction.

70

2. Categorical Interlude – 2.4. Kan Extensions and Coends

for any f : b′ → b and F (−) =
∫ c∈C K(c)× C(−, c). By definition we have

F (f) :
∫ c∈C

K(c)× C(b′, c)→
∫ c∈C

K(c)× C(b, c)

˜〈c, x, g〉 7→ ˜〈c, x, g ◦ f〉

then F (f) ◦ fb′(x) = ˜〈b′, x, f〉 and fb ◦K(f)(x) = ˜〈b,K(f)(x), 1b〉. By definition of
equivalence we have 〈b,K(f)(x), 1b〉 ∼ 〈b′, x, f〉. We can then conclude.

In what follows we will constantly refer to the former result as the ”Yoneda
Lemma”. The context will make it clear if we are referring to the standard Yoneda
Lemma or to the former result on coends.

2.4.2. Kan Extensions
Definition 2.4.6. Let G : A → C and F : A → B be two functors. A left Kan
extension of F along G is a functor LG(F) : C → B together with a natural
transformation η : F → LG(F) ◦ G such that, for any K : C → B and natural
transformation θ : F → K ◦ G there exists a unique natural transformation
σ : LG(F)→ K such that θ = η ? (σ ◦G).

The following is a classic result on the existence of Kan extensions:

Theorem 2.4.7. Let F : A → B and G : A → C be functors. If A is small and
B cocomplete there exists the left Kan extension 〈LG(F), η〉. Moreover, if G is full
and faithful we have η : F ∼= LG(F) ◦G.

It is possible to explicitly compute left Kan extensions as a special kind of coends.
We first define the notion of copower in our Set-enriched setting.

Definition 2.4.8. Let C be a category and c ∈ C,X ∈ Set. The copower of c by
X is an object X � c such that we have an isomorphism

C(X � c, Y) ∼= Set(x,C(X, Y))

natural in Y ∈ Set.

The copower is unique up to isomorphism. In particular we have (X × Y)� c ∼=
(X � (Y � c).

Proposition 2.4.9 ([Lor15][Proposition 2.3.5]). Let F : A→ B and G : A→ C.
Suppose that LG(F) exists and for all c ∈ C, copowers C(G(c),−) � F (c) exist.
Then

LG(F)(−) ∼=
∫ c∈C

C(G(c),−)� F (c).

71

2. Categorical Interlude – 2.5. The Category of Presheaves

2.5. The Category of Presheaves
For a small category A define PA = [Ao, Set], the category of presheaves of A

and natural transformations. We write yA for the Yoneda embedding of the category
A in PA defined as the functor

yA : A→ PA

a 7→ A(−, a)

and the action of yA on morphisms is given by composition. It is well-known that
the former functor is full and faithful as a corollary of the Yoneda Lemma. For
this reason A can be seen as a full subcategory of PA. The category of presheaves
is in particular cocomplete, as corollary of what is known as the density theorem,
i.e. any presheaf is a canonical colimit of representable functors (Theorem 2.1).

2.5.1. Free Cocompletion of (Product) Categories
We present the classic results of [IK86] on the relationship between monoidality

and presheaves. We start by proving that PA is the free cocompletion of a small
category A. This means that given any cocomplete category B and functor F,
there exists a unique cocontinuous functor (F)∗ such that the following diagram
commutes up to natural isomorphism:

A PA

B

yA

F

(F)∗

The functor (F)∗ is the left Kan extension of F along the Yoneda embedding
LY (F), which, by Theorem 2.4.7 always exists. We are now going to recall the
proof of this classic and crucial fact in a slightly more general setting, where A is a
finite product category and F is separately cocontinuous.

Let A1, . . . , Ak be small category and let C be a cocomplete category. Separately
cocontinuous functors (Definition 2.1.6) F : ∏k

i=1 P (Ai)→ C together with natural
transformations forms a category SCoc(∏k

i=1 P (Ai), C). We define functors

Rk : SCoc(
k∏
i=1

P (Ai), C)→ Cat(
k∏
i=1

Ai, C)

F 7→ F ◦ (
k∏
i=1

yAi)

72

2. Categorical Interlude – 2.5. The Category of Presheaves

and
Lk : Cat(

k∏
i=1

Ai, C)→ SCoc(
k∏
i=1

P (Ai), C)

S 7→
∫ a1∈A1,...,ak∈Ak

−(a1)× · · · × −(ak)� S(a1, . . . , ak)

The functor Lk(S)(−) : ∏k
i=1 P (Ai)→ C is separately cocontinuous (Definition

2.1.6), i.e. for any i ∈ [k], the functors Lk(S)(P1, . . . , Pi−1,−, Pi+1, . . . , Pk) : PAi →
C are cocontinuous, since colimits commutes with colimits. We remark that in the
case where k = 1 we have

L1(S)(P) =
∫ a∈A

P (a)� S(a)

that is the left Kan extension of S along the Yoneda embedding yA. We set R1 = R
and L1 = L.

Proposition 2.5.1. For all k ∈ N the functors Rk and Lk describes an equivalence
of categories

SCoc(∏k
i=1 P (Ai), C) Cat(∏k

i=1Ai, C)

Rk

Lk

Proof. We follow the proof of [IK86]. First we prove that we have a natural
isomorphism

ηS : RLkS ∼= S. (2.3)

By definition and Yoneda we have RkLkS(a′1, . . . , a′k) =∫ a1∈A1,...,ak∈Ak
yA(a′1)(a1)× · · · × yA(a′k)(ak)� S(a1, . . . , ak) ∼= S(a′1, . . . , a′k).

Now for arbitrary Pi ∈ PAi with i ∈ [k] we have by Yoneda

Pi(−) ∼=
∫ ai∈Ai

Pi(ai)× Ai(−, ai)

this means that, if F : ∏k
i=1 PAi → C, is separately cocontinuous we have

F (P1, . . . , Pk) ∼=
∫ a1∈A1,...,ak∈Ak k∏

i=1
Pi(ai)� F (yA1(a1), . . . , yAk(ak))

then we have a natural isomorphism

εF : LkRkF ∼= F. (2.4)

73

2. Categorical Interlude – 2.5. The Category of Presheaves

2.5.2. Day Convolution
In the case where A exhibits a structure of monoidal category, we can define a

tensor product on the category P (A), called the Day convolution[Day70], exploiting
the construction presented in the former paragraph.

Definition 2.5.2 (Day Convolution). Let A = 〈A,⊗, 1, α, ρ, λ〉 be a monoidal
category. We define the Day convolution ⊗̂ : PA× PA→ PA as

L2(yA ◦ ⊗).

By definition,

P ⊗̂Q(−) =
∫ a1,a2∈A

P (a1)×Q(a2)× A(−, a1 ⊗ a2)

since in Set the copower � trivially collapses on the cartesian product. Exploiting
the unbiased version of the tensor product of A, one can straightforwardly define
an n-ary version of the Day convolution:

(P1⊗̂ . . . ⊗̂Pn)(−) =
∫ a1,...,an∈A ∏

i∈[n]
Pi(ai)× A(−,

n⊗
i=1

ai).

Proposition 2.5.3. Let A = 〈A,⊗, 1, α, λ, ρ〉 be a monoidal category. The follow-
ing statements hold.

1. The Day convolution exhibits a structure of tensor product on the presheaf
category PA.

2. If the product of A is symmetric (resp. semicartesian, relevant, cartesian) then
the Day convolution is symmetric (resp. semicartesian, relevant, cartesian).

Proof. 1. Corollary of Proposition 2.5.1. By definition we have that yA ◦ ⊗ ∈
Cat(A× A,PA). Now, consider R2L2(yA ◦ ⊗)(a, b) =∫ a1,a2∈A

yA(a)(a1)× yA(b)(a2)× yA(−)(a1 ⊗ a2) = yA(a)(−)⊗̂yA(b)(−).

Hence, the natural isomorphism (2.3) gives

ι1(a, b) : yA(a)⊗̂yA(b) ∼= yA(a⊗ b).

Let ⊗3,1 = (−⊗−)⊗− and ⊗3,2 = −⊗(−⊗−). By Proposition 2.5.1 we know
that L3(yA ◦ ⊗3,1) ∼= L3R3L3(yA ◦ ⊗3,1), L3(yA ◦ ⊗3,2) ∼= L3R3L3(yA ◦ ⊗3,2).
Since

R3L3(yA ◦ ⊗3,1) = (yA(−)⊗̂yA(−))⊗̂yA(−)

74

2. Categorical Interlude – 2.5. The Category of Presheaves

R3L3(yA ◦ ⊗3,2) = yA(−)⊗̂(yA(−)⊗̂yA(−))

if we find a natural family of isomorphisms

α̂a,b,c : (yA(a)⊗̂yA(b))⊗̂yA(c) ∼= yA(a)⊗̂(yA(b)⊗̂yA(c))

we get

L3(α̂) : L3((yA⊗̂yA)⊗̂yA) = L3(yA◦⊗3,1) ∼= L3(yA⊗̂(yA⊗̂yA)) = L3(yA◦⊗3,2).

Then we define α̂a,b,c as the composite

(yA(a)⊗̂yA(b))⊗̂yA(c) yA(a)⊗̂(yA(b)⊗̂yA(c))

yA(a⊗ b)⊗̂yA(c) yA(a)⊗̂yA(b⊗ c)

yA((a⊗ b)⊗ c) yA(a⊗ (b⊗ c))

α̂a,b,c

ιa,b⊗̂1 1⊗̂ιb,c

ιa⊗b,c ιa,b⊗c

yA(αa,b,c)

we take as unit 1̂ = yA(1). We set

ι0 : 1̂ ∼= yA(1)

as the identity. We then define the natural isomorphisms λ̂, ρ̂ exploiting
Proposition 2.5.1 in a similar way as for associativity case. The commutation
of coherence diagrams follows directly by the former construction, exploiting
again Proposition 2.5.1. We remark that the natural isomorphisms ι0, ι1 gives
to the Yoneda embedding the structure of a strong monoidal functor.

2. We need to respectively define a natural isomorphism

σ̂P,Q : P ⊗̂Q→ Q⊗̂P

and natural transformations

êP : P → 1̂ ĉP : P → P ⊗̂P

satisfying the appropriate coherence conditions. We proceed as for the first
point of this lemma, defining the appropriate structure on representables. For
instance, the symmetry σ̂yA(a),yA(b) : yA(a)⊗̂yA(b)→ yA(b)⊗̂yA(a) is given as

75

2. Categorical Interlude – 2.5. The Category of Presheaves

the composite

yA(a)⊗̂yA(b) yA(b)⊗̂yA(a)

yA(a⊗ b) yA(b⊗ a)

ι1a,b

σ̂yA(a),yA(b)

ι1b,a

yA(σa,b)

and the diagonal as the composite

yA(a) yA(a)⊗̂yA(a)

yA(a) yA(a⊗ a)

ι1a

ĉyA(a)

ι1b,a

yA(ca)

For the cartesian case, we have the following isomorphism

P ⊗̂Q =
∫ a1,a2∈A

P (a1)×Q(a2)× A(−, a1 ⊗ a2)

∼= P ⊗̂Q =
∫ a1,a2∈A

P (a1)×Q(a2)× A(−, a1)× A(−, a2)

given by the fact that the cartesian product ⊗ is left adjoint to the diagonal
functor. Then we can apply Yoneda twice and conclude

∼= P (−)×Q(−)

that is the cartesian product of presheaves.

We set PA = 〈PA, ⊗̂, 1̂, α̂, λ̂, ρ̂〉. For a monoidal category A = 〈A,⊗, 1〉 we set
YA = 〈YA, ι0, ι1〉.

Proposition 2.5.4. Let A = 〈A,⊗, 1〉 be a monoidal category. If A is symmetric
(resp. semicartesian, relevant, cartesian) then the Yoneda embedding is a strong
symmetric (resp. semicartesian, relevant, cartesian) monoidal functor.

Proof. We already mentioned in the proof of Proposition 2.5.3 that YA is strong
monoidal. The results are immediate by definition of symmetries, diagonals,
terminal morphisms in the category of presheaves PA. For instance, in the case of
symmetries we need to prove that the following diagram commutes

yA(a)⊗̂yA(b) yA(b)⊗̂yA(a)

yA(a⊗ b) yA(b⊗ a)

σ̂a,b

ι1a,b ι1b,a

yA(σa,b)

76

2. Categorical Interlude – 2.6. Monads and Resources

but the former diagram is exactly the definition of symmetries for representables
in the presheaf category. The same happens for diagonals. The semicartesian and
cartesian cases follow by the fact that the Yoneda embedding is continuous.

Theorem 2.5.5. Let A be a small monoidal category and B be a locally small
monoidally cocomplete category (Definition 2.1.6). We have the following equiva-
lence

MON(A,B) MONCOC(PA,B)
R

L

The former equivalence restricts to the symmetric (resp. semicartesian, relevant,
cartesian) case.

Proof. The proof for the basic case and the symmetric one is given in [IK86]. The
other cases follow as a simple corollary of Proposition 2.5.1. The proof follows the
following structure:

1. We prove that the functor R = U(−) ◦ YA is full and faithful. In order to do
so we exploit Proposition 2.5.1.

2. We prove that the left Kan extension LYA(F) = L(F) can be equipped with a
strong monoidal structure, exploiting the natural isomorphism ηF : RL(F) ∼=
F given in the proof of Proposition 2.5.1. This makes the functor R essentially
surjective on objects.

3. We observe that, again by Proposition 2.5.1, it is enough to define the appro-
priate structure for L(F) restricting its domain to representable presheaves.
Then the symmetric (resp. semicartesian, relevant, cartesian) structure on
L(F) is defined each time just as a composite determined by the image of the
Yoneda embedding.

Lemma 2.5.6 (Fiore-Gambino-Hyland-Winskel). The presheaf construction PA
induces a relative pseudomonad on the inclusion 2-functor J : Cat→ CAT.

Proof. The proof consists in presenting the necessary structure. We detail some of
it. For a small category A ∈ Cat, we set PA as the category of presheaf of A. For
A,B ∈ Cat the functor (−)∗A,BCAT(JA, PB)→ CAT(PA, PB) is induced by the
left Kan extension construction along the Yoneda embedding, i.e. (F)∗ = LY (F).
The morphism iA : JA→ PA is he Yoneda embedding of A.

2.6. Monads and Resources
The goal of this section is to present some monadic construction that we shall

utilise to model resource consumption. We start by recalling the Boom Hierarchy

77

2. Categorical Interlude – 2.6. Monads and Resources

of data types [Bun94], for which we give an intuitive monadic interpretation. We
then introduce the categories of integers and lists presenting some of their basic
structure. Finally we introduce a collection of 2-monads that we call resource
monads, which we will use (Section 2.8) to build a family of Kleisli bicategories
over the bicategory of distributors (Section 2.7.3).

2.6.1. Boom Hierarchy of Data Types
The Boom Hierarchy [Bun94] is an algebraic model of fundamental data types

in computer science. We recall it in this paragraph, since it is useful to understand
our semantic standpoint.
We consider sets equipped with a binary operation ⊕, that can satisfy one ore

more of the following conditions:
1. For all x, y, z ∈ X, (x⊕ y)⊕ z = x⊕ (y ⊕ z). (Associativity)
2. There exists 1 ∈ X such that for all x ∈ X, 1⊕ x = x = x⊕ 1. (Unity)
3. For all x, y ∈ X, x⊕ y = y ⊕ x. (Commutativity)
4. For all x ∈ X, x⊕ x = x. (Idempotency)

If ⊕ satisfy only (1), then we are dealing with semigroups, if it satisfies (1,2) with
monoids, if it satisfies (1,2,3) with commutative monoids and if it satisfies the
four of them with commutative idempotent monoid. However, in principle, one
could consider just operation which satisfy, e.g., the unital condition (2) and not
the others. Each condition generates then a variety of algebras. Using this very
broad framework, it is possible to give a simple algebraic model for the 4 basic
data structures : trees, lists, multisets and sets.

When we are talking about algebraic constructions we are talking about monads.
The standard combinations of the former conditions that we recalled, semigroups,
monoids, etc. determine monads on the category of Set. Each data structure can
be then identified with an appropriate monadic construction.
— Given a set X, the tree structure on X is given by T X, where T : Set→ Set

is the endofunctor associated to the monad corresponding to the condition
(2).

— Given a set X, the list structure on X is given by LX, where L : Set→ Set
is the endofunctor associated with the free monoid monad. The unit element
is the empty list and the operation ⊕ performs list concatenation.

— Given a set X, the multiset structure on X is given by MX, where M :
Set→ Set is the endofunctor associated with the free commutative monoid
monad. The unit element is the empty multiset and the operation ⊕ performs
multiset sum.

— Given a set X, the set structure on X is given by SX, where S : Set→ Set
is the endofunctor associated with the free idempotent commutative monoid

78

2. Categorical Interlude – 2.6. Monads and Resources

monad. The unit element is the empty set and the operation ⊕ performs the
set union.

A data structure value is then an element of the former free constructions. This
means that, in all generality, a value is either a unit 1 or a ”join” of two other
values x⊕ y(eventually a singleton join, when one of the two values is the unit).

The former model is very simple and effective, but, due to its one-dimensional
nature, cannot directly express the possible operation that one can perform on the
data values. Consider the case of lists: given a set X, and ~a = 〈a1, . . . , ak〉,~b =
〈a′1, . . . , a′k′〉 ∈ LX, we know that the concatenation ~a ⊕ ~b is not commutative,
but clearly one can eventually perform a shuffle operation σ~a,~b : ~a ⊕~b → ~b ⊕ ~a.
This works for any ~a,~b ∈ LX. Again, the concatenation is non-idempotent, but
clearly we can perform a copying operation c~a : ~a→ ~a⊕ ~a and deleting operations
π1 : ~a1 ⊕ ~a2 → ~a1, π2 : ~a1 ⊕ ~a2 → ~a2. We shall see that these operations gives to
⊕ some special kind of tensor product structure. Moreover, this new framework
can model resource sensitivity. If we just allow a shifting operation on lists but
neither copying or deleting, the data can be used only once, hence we do not have
a potentially infinite access to resources. Instead, if we allow the copying operation,
we can eventually duplicate data and, fort this reason we can use resources as many
times as we want.
In what follows, we are going to present a categorical model for this refined

framework in the setting of two-dimensional monad theory, that was first introduced
in [MZ18]. We shall focus on the list data structure, keeping the operational point
of view discussed above.

2.6.2. Integers and Lists
We define the category Of of finite ordinals and functions.
1. ob(Of) = {[n] = {1, . . . , n} | n ∈ N}.
2. Of ([n], [m]) = [m][n].

3. the category Of is symmetric strict monoidal, with tensor product given by
addition:

[n]⊕ [m] = [n+m]

Let α : [k1]→ [k′1] and β : [k2]→ [k′2], then

(α⊕ β)(i) =

α(i) if i ≤ k1

β(i− k1) + k′1 otherwise.

Let k1, . . . , kn be integers and α : [m]→ [n] we define ᾱ : [∑m
j=1 kα(j)]→ [∑n

i=1 ki]
as follows:

79

2. Categorical Interlude – 2.6. Monads and Resources

ᾱ(
l−1∑
j=1

kα(j) + p) =
α(l)−1∑
i=1

ki + p

with l ∈ [m], and 1 ≤ p ≤ kα(l). We remark that this operation is just a
generalization of the notion of multiplexing from Subsection 1.5.3.

From Of we can build categories of indexed families of objects over finite ordinals.
Let 〈a1, . . . , ak〉 be a list of elements of A. We write len(~a) for its length. We denote
lists as ~a,~b,~c . . . Given a list ~a = 〈a1, . . . , ak〉 and a function α : [k] → [k′] we
define the right action of α on ~a as ~a{α} = 〈aα(1), . . . , aα(k)〉. Given a category A,
we define the category OfA of lists of A, as follows:

1. Obj(OfA) = {〈a1, . . . , an〉 | ai ∈ A}.
2. OfA(〈a1, . . . , an〉, 〈b1, . . . , bm〉) = {〈α, f1, . . . , fm〉 | α : [m] → [n] and fi :
aα(i) → bi}.

3. For 〈α, ~f〉 : ~a→ ~b and 〈β,~g〉 : ~b→ ~c, composition is given by

〈β,~g〉 ◦ 〈α, ~f〉 = 〈α ◦ β,~g ◦ ~f{α}〉

The category OfA is monoidal strict, with tensor product given by list
concatenation. We consider also the category of tuples of A, An. We denote
as ~f,~g . . . the morphisms of this category, being simply tuple of morphisms.

4. We exhibit some of the structure of OfA that we will use later.

a) Symmetries: for ~a1, . . . ,~ak ∈ OfA with len(~ai) = ki and σ ∈ Sk symme-
tries

σ? :
k⊕
i=1

~ai →
k⊕
i=1

~aσ(i)

are defined as 〈σ̄, 1a1 ,~1⊕k

i=1 ~aσ(i)
〉.

b) Diagonals: for ~a = 〈a1, . . . , an〉 ∈ OfA there is a morphism

c~a = 〈c[n], 1a1 , ..., 1an , 1a1 , ..., 1,an 〉 : ~a→ ~a⊕ ~a

where c[n] : [n]⊕ [n]→ [n] is a surjective function, defined in the natural
way as

c[n](i) =

i if i ≤ n

i− n otherwise.

c) Terminal morphisms: for ~a ∈ OfA, there is a unique morphism

>~a : ~a→ 〈〉

in particular, the empty list is a terminal object.

80

2. Categorical Interlude – 2.6. Monads and Resources

d) Projections: for ~a = 〈a1, . . . , an〉,~b = 〈b1, . . . , bm〉 ∈ OfA, there are
canonical morphisms

π1,2 = 〈p1,2, 1a1 , . . . , 1an〉 : ~a⊕~b→ ~a

π2,2 = 〈p2,2, 1b1 , . . . , 1bn〉 : ~a⊕~b→ ~b

where p1,2 : [n]→ [n]⊕ [m] and p2,2 : [m]→ [n]⊕ [m] are the inclusion
functions. The former data give to ⊕ the structure of a cartesian product.

e) Structural morphisms: For 〈~a1, . . . ,~an〉 and α : [m]→ [n] with len(~ai) =
ki we define

α? :
n⊕
i=1

~ai →
m⊕
j=1

~aα(j)

as α? = 〈ᾱ,~1⊕k

i=1 ~aα(i)
〉. Structural morphisms intuitively are all mor-

phisms generated by composition of the free structure of OfA (symme-
tries, projections, etc). We remark that α? is a natural transformation
α? = {α?〈~a1,...,~ak〉 | α

?
〈~a1,...,~ak〉 : ⊗k

j=1~aj →
⊗k′

j′=1~aα(j′)}. We shall constantly
keep the list parameter implicit.

Remark 2.6.1. We remark that finite product categories OfA1×· · ·×OfAn admit
a strict tensor product, defined as

〈~a1, . . . ,~an〉 ⊗ 〈~a′1, . . . ,~a′n〉 = 〈~a1 ⊕ ~a′1, . . . ,~an ⊕ ~a′n〉.

The unit is clearly ~〈〉 = 〈〈〉, . . . , 〈〉〉. In particular, the former tensor product inherits
all the structure from ⊕ in the natural way. We use capital Greek letters Γ,∆ . . .
to denote tuples. Given a tuple Γ = 〈~a1, . . . ,~an〉 and a sequence of tuples ~Γ)〈Γ1 =
〈~a1,1, . . . ,~a1,n〉, . . . ,Γk = 〈~ak,1, . . . ,~ak,n〉〉 we set

Γ⊗ ~Γ = Γ⊗
k⊗
i=1

Γi.

The (−)? construction on lists lifts to this setting in the natural way. We then have
a natural transformation α? = {α?〈Γ1,...,Γk〉 | α

?
〈Γ1,...,Γk〉 : ⊗k

j=1 Γj →
⊗k′

j′=1 Γα(j′)}.
Given a permutation τ, we shall constantly denote τ ? as ~τ . We shall constantly keep
the list parameter implicit.

We introduce some notation on lists that we shall use extensively in Chapters
3 and 4. Let ~a = 〈a1, . . . , ak〉. We write ~a 3ai meaning that ai is the i-the element
of ~a. When we do not want to make explicit all the elements of a list ~a, we will
denote the i-th element of ~a as ~a(i). Given b ∈ A, we set ~a+bi as the list such that

81

2. Categorical Interlude – 2.6. Monads and Resources

len(~a+bi) = len(~a) + 1 and

~a+bi(j) =


~a(j) if j < i

b if i = j

~a(j − 1) if i < j.

We set ~a−ai = 〈a1, . . . , ai−1, ai+1, . . . , ak〉.

2.6.3. Resource Monads
We start by giving a canonical presentation of some free monoidal constructions.

Proposition 2.6.2. For A ∈ Cat and ~a,~b ∈ OfA with n = l(~a),m = l(~b) we
define

OfA
∗(~a,~b) =

∑
α:[m]→[n]

∏
i∈[m]

A(aα(i), bi)

for α : [m]→ [n] being restricted either to general functions, bijections, surjec-
tions, injections or identities. The following holds:

1. If α is restricted to identities, then OfA
∗(~a,~b) is the homset of the free strict

monoidal category on A.
2. If α is restricted to bijections, then OfA

∗(~a,~b) is the homset of the free
symmetric strict monoidal category on A.

3. If α is restricted to injections, then OfA
∗(~a,~b) is homset of the free semi-

cartesian monoidal strict category on A.
4. If α is restricted to surjections, then OfA

∗(~a,~b) is the homset of free relevant
monoidal strict category on A.

5. If α is a general function then OfA
∗(~a,~b) is the homset of the free cartesian

monoidal strict category on A.
Proof. The proof exploits the fact that each OfA

∗(~a,~b) defines a subcategory of
OfA. The unit ηA : A→ OfA

∗ is given by the singleton embedding

a 7→ 〈a〉

we give the general structure of the proof.
Let B be a strict monoidal category with the appropriate structure and F be a

functor. We need to define a unique strong monoidal functor F] that preserves the
structure on the nose and makes the following diagram commute

A OfA
∗

B

ηA

F

F]

82

2. Categorical Interlude – 2.6. Monads and Resources

The general form of F] : OfA
∗ → B is

F](〈a1, . . . , an〉) =
⊗
i∈[n]

F (ai).

The action of F] on morphisms is defined case by case. The unicity is proved
pointwise.

We present a list of 2-monads over CAT, the 2-category of categories, functors
and natural transformations. We call these monads resource monads. The intuition
is that each of these monadic constructions gives a particular notion of resource
management.

1. The strict monoidal resource monad: the 2-monad over CAT that sends a
category A to its free strict monoidal completion;

2. The linear resource monad: the 2-monad over CAT that sends a category A
to its free symmetric strict monoidal completion;

3. The semicartesian resource monad: the 2-monad over CAT that sends a
category A to the free semicartesian strict monoidal category on A;

4. The relevant resource monad: the 2-monad over CAT that sends a category
A to the free relevant strict monoidal category on A;

5. The cartesian resource monad: the 2-monad over CAT that sends a category
A to its free cartesian strict monoidal completion. One can see it also as the
free semicartesian strict monoidal completion with diagonals 5.

The unit of each resource monad is given by the free construction. Multiplication
is just list concatenation: for 〈~a1, . . . ,~ak〉 ∈ SSA,

µA : SSA→ SA

〈~a1, . . . ,~ak〉 7→
k⊕
i=1

~ai.

We call the non strict version of the former 2-monads non-strict resource monads.
For S resource monad, we call the tensor product of S the tensor product on

SA. We call S-monoidal functor a functor that preserves the structure on the
nose. We denote as S-MON the 2-category of locally small S-monoidal categories,
strong S-monoidal functors an monoidal transformations and as S-Mon its full
2-subcategory of small S-monoidal categories. We denote as S-MONCOC the
2-category of locally small S-monoidally cocomplete categories, strong S-monoidal
cocontinuous functors and monoidal natural transformations.

Theorem 2.6.3. Let S be a non-strict resource monad. The relative pseudomonad
of presheaves P (Lemma 2.5.6) admits a lifting to the strict algebras of S.

5. Since products are limits, this construction is equivalent to its non-strict version.

83

2. Categorical Interlude – 2.6. Monads and Resources

Proof. Corollary of the Theorem 2.5.5. The equivalence

S-MON(A,B) S-MONCOC(PA,B)
R

L

⊥

gives a left relative pseudoadjunction

S-MONCOC

S-Mon S-MON
ΥP

where Υ is the evident forgetful pseudofunctor, which provide the lifting of P to
the pseudoalgebras of S.
Theorem 2.6.4. Let S be a resource monad. The relative pseudomonad of
presheaves P (Lemma 2.5.6) admits a lifting to the pseudoalgebras of S.
Proof. Let S ′ the 2-monad for the unbiased version of an arbitrary non-strict
resource monad S. As remarked in Example 2.3.2, the pseudoalgebras of S are
unbiased monoidal categories. In particular, we have an equivalence of 2-categories
S-PAlgD ' S ′-AlgD 6. Moreover, S-AlgD is a full 2-subcategory of S ′-AlgD. Hence
the lifting of P obtained by the former Theorem restricts to the embedding
S-AlgD ↪→ S ′-AlgD.
Proposition 2.6.5 (Seely Equivalences). Let A,B ∈ Cat and S be a resource
monad. If the tensor product of S is symmetric, then we have

1 ∼= S∅ (2.5)

S(A tB) ' SA× SB. (2.6)
Proof. The first one is immediate, since S∅ = {〈〉}. We build the equivalence,
exploiting the universal property of SA. We define a functor F : AtB → SA×SB
as follows

F (ιi(c)) =

〈〈c〉, 〈〉〉 if i = 1
〈〈〉, 〈c〉〉 if i = 2.

Then the universal property of S(A tB) gives a functor µ0 = F] : S(A tB)→
SA× SB. We define a functor µ1 : SA× SB → S(A tB) by concatenation. The
symmetry hypothesis is used to prove that µ1 ◦ µ0 ∼= 1S(AtB).

6. This passage is actually more subtle than it seems and depends on the fact that non-strict
resource monads are flexible monads, in the sense of [BKP89]. Resource monads fail to be flexible,
due to the strictness of their tensor product.

84

2. Categorical Interlude – 2.7. Relations, Preorders, Distributors

Remark 2.6.6. We can extend the former proposition to finite products and
coproducts of categories

S(A1 t · · · t An) ' SA1 × · · · × SAn (2.7)

we denote he two components of the former equivalence as respectively

µ0 : S(A1 t · · · t An)→ SA1 × · · · × SAn

µ1 : SA1 × · · · × SAn → S(A1 t · · · t An).

2.7. Relations, Preorders, Distributors
We sketches the structure of some (bi) categories providing categorical models

of linear logic. With linear logic categorical model we mean the given of a Seely
category [Mel09]. All these (bi) categories are ”relations-like categories”, in the
sense that morphisms are given by some kind of generalization of relations between
sets.

2.7.1. The Category of Sets and Relations
A simple model of linear logic is the category Rel of sets and relations. It

is a prototype of quantitative semantics: the interpretation of a program gives
information about its resource consumption during computation.
Objects of Rel are sets, X, Y, . . . and Rel(X, Y) = P(X × Y). Identities are

diagonal relations 1X = {〈x, x〉 | x ∈ X} . Composition of morphisms in Rel is the
usual composition of relations

g ◦ f = {〈x, z〉 | ∃ y ∈ Y : 〈x, y〉 ∈ f , 〈y, z〉 ∈ g} for f ⊆ X × Y and g ⊆ Y × Z.

For X1, X2 ∈ ob(Rel), the cartesian product X1 &X2 in Rel is the disjoint union
of sets X1tX2 = ({1}×X1)∪ ({2}×X2), where projections πi : X1 &X2 → Xi (for
i ∈ {1, 2}) are defined using the canonical coproduct injections {〈〈i, x〉, x〉 | x ∈ Xi},
and the terminal object > is the empty set ∅.

Rel is a symmetric monoidal category, where the tensor X ⊗ Y is the cartesian
product of sets X × Y and its unit 1 is an arbitrary singleton set. It is closed,
with X (Y = X × Y and evaluation evX,Y : (X (Y) × X → Y defined by
{〈〈〈x, y〉, x〉, y〉 | x ∈ X, y ∈ Y }.

Rel can be quipped with an exponential comonad 〈M, der, dig〉. The set MX
is the free commutative monoid over X, (cfr. Section 2.6.1) which has a very
well-known description

MX =Mf(X) = {[a1, . . . , ak] | k ∈ N, ai ∈ X}

85

2. Categorical Interlude – 2.7. Relations, Preorders, Distributors

that is the set of finite multisets over X. The action on morphisms is given as follows:
f ∈ Rel(X, Y), Mf = {〈[x1, . . . , xn], [y1, . . . , yn]〉 | n ∈ N, 〈x1, y1〉, . . . , 〈xn, yn〉 ∈
f}. Dereliction derX ∈ Rel(MX,X) is {〈[x], x〉 | x ∈ X}, and digging digX ∈
Rel[MX,MMX] is {〈m1 + · · ·+mk, [m1, . . . ,mk]〉 | m1, . . . ,mk ∈MX} (for two
finite multisets ā = [a1, . . . , ak] and b̄ = [b1, . . . , bn], we set ā + b̄ = [a1, . . . , ak,
b1, . . . , bn]). We denote as MRel the coKleisli category of the comonad !.

2.7.2. The Category of Preorders and Monotonic Relations
To work within a more informative setting, providing not only quantitative, but

also qualitative information, consider the category Polr of preordered sets and
monotonic relations [Ehr12a; Ehr16]. All the constructions in Polr are refinements
and generalizations of the ones for Rel.
In Polr, objects are preordered sets; a morphism f from X = 〈|X |,≤X 〉 to Y =
〈|Y|,≤Y〉 is a monotonic relation 7 from |X | to |Y|, i.e., if 〈x, y〉 ∈ f with x′ ≤X x
and y ≤Y y′ then 〈x′, y′〉 ∈ f . The identity at X is {〈x, x′〉 | x ≤X x′}. Composition
preserves monotonicity.
In Polr the cartesian product X1 & X2 is the disjoint union of sets |X1| t |X2|

with the preorder ≤X1 t ≤X2 defined as 〈i, x〉 ≤X1&X2 〈j, y〉 if i = j and x ≤Xi y.
The terminal object is ∅ with the empty order. Projections πi : X1 & X2 → Xi are
πi = {〈〈i, x〉, x′〉 | x ≤Xi x′}.

Polr has a symmetric monoidal structure. The tensor X1 ⊗X2 is the cartesian
product of sets with the product order. The endofunctor X ⊗ _ admits a right
adjoint _(Y defined as follows: |X (Y| = |X | × |Y| and 〈x, y〉 ≤X(Y 〈x′, y′〉
if x′ ≤X x and y ≤Y y′. The evaluation morphism evX1,X2 : (X1 (X2) & X1 → X2
is {〈〈〈x, y〉, x′〉, y′〉 | x ≤ x′, y ≤ y′}.

Rel is the full subcategory of Polr where objects are sets equipped with the
discrete order.

Exponential Comonads for Polr The richer setting of Polr allows several
interesting possible choices of exponential comonads. We present two particular
comonadic constructions, already considered in [Ehr12a]. The First one is a
completely straightforward extension of the exponential in Rel, given as follows.
We define a comonad 〈M, der, dig〉 based again on the free commutative monoid
construction. The endofunctorM : Polr→ Polr is given byMX = 〈Mf(|X |),≤X 〉
with [x1, . . . , xn] ≤MX [x′1, . . . , x′n′] if n = n′ and there is σ ∈ Sn such that xi ≤X
x′σ(i) for all 1 ≤ i ≤ n; for f ∈ Polr(X ,Y), we setMf = {〈[x1, . . . , xn], [y1, . . . , yk]〉 |
〈xi, yi〉 ∈ f , k ∈ N}. Dereliction derX : MX → X is {〈[x], x′〉 | x ≤X x′}, and
digging digX : MX →MMX is {〈m, [m1, . . . ,mk]〉 | m ≤!X m1 + · · ·+mk}.

We denote as MPolr the coKleisli category of the comonadM. MRel is the full
subcategory of MPolr where objects are sets equipped with the discrete order.

7. Our framework is actually dual to [Ehr12a; Ehr16].

86

2. Categorical Interlude – 2.7. Relations, Preorders, Distributors

We now consider the second comonad 〈C, der, dig〉. The endofunctor action on
objects C : Polr → Polr is given as CX = 〈Mf(|X |),≤X 〉 with [x1, . . . , xn] ≤CX
[x′1, . . . , x′n′] if for all j ∈ [n′] there exists i ∈ [n] such that xi ≤X xj. For f ∈
Polr(X ,Y), we set

Cf = {〈m,m′〉 | for all y ∈ m′ there existsx ∈ ms.t. 〈x, y〉 ∈ f}.

Dereliction derX : CX → X is {〈x̄, x〉 | x̄ ≤CX [x]}, and digging digX : CX → CCX
is {〈m, [m1, . . . ,mk]〉 | m ≤CX m1 + · · ·+mk}.

The former two comonadic constructions have a nice interpretation in the frame-
work of resource structures (cfr. Section 2.6.1). Both functorsM and C builds free
preorder constructions on multisets. Given a preorder X , that could be thought
as arbitrary atomic data, the construction MX gives a canonical way to build
a preorder relation on finite collections (multisets) of this data. The relation on
M can be seen as resource sensitive: multisets of different sizes are incomparable.
Moreover, two multisets x̄, ȳ of the same size are comparable iff given x ∈ x̄ there
exists exactly one element y ∈ ȳ such that x ≤X y and vice-versa. The construction
C instead allows a more liberal preorder. In particular, it is easy to prove that CX
admits a greatest element, that is the empty multiset []. The structure in this case
loses resource sensitivity: multisets of different size are in general comparable and
we have [a] ∼= [a, a], i.e. up to isomorphism idempotency. In particular, these are
the basic properties satisfied by the preorder relation of CX :

[a] ≤CX [] [a, b] ≤CX [a] [a, b] ≤CX [b]

[a, a] ∼= [a]

The former conditions make CX equivalent to the free bounded meet-semilattice
on X 8.

From Rel and Polr to Dist. We recall a basic but pivotal fact: a relation
f ⊆ X × Y can be identified with its characteristic function χf : X × Y → 2 where
2 = {0, 1} is the two-element boolean algebra with sum and product. Composition
is then defined as

χg◦f (x, z) =
∨
y∈Y

χg(y, z)∧χf (x, y) where χf : X×Y → 2 and χg : Y ×Z → 2 .

(2.8)
All the constructions in Rel and Polr can be reformulated in this character-

istic function perspective. For instance, in Rel, the identity at X becomes the
characteristic function of X.
In Polr, a monotonic relation f from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉 can be

8. Indeed, as remarked in [Ehr12a], the construction CX could be replaced with an equivalent
one, where instead to consider multisets one considers finite sets.

87

2. Categorical Interlude – 2.7. Relations, Preorders, Distributors

seen as a monotonic characteristic function χf : X o ×Y → 2, where X o = 〈X,≥X 〉
and 2 is endowed with the boolean order. Any preorder X = 〈|X |,≤X 〉 forms a
category where ob(X) = |X | and X (x, x′) is a singleton (if x ≤X x′) or the empty
set (otherwise), so X o is the opposite category of X . Thus, χf : X o × Y → 2 is a
bifunctor, contravariant in X and covariant in Y .
It is then natural to generalize the characteristic function viewpoint to generic

categories, which gives rise to the notion of distributor (also known as profunctors).

2.7.3. The Bicategory of Distributors
For two small categories A,B, a distributor F : A9 B is a functor F : Bo×A→

Set.
Distributors determine a bicategory, Dist. For a complete presentation of the

structure of this bicategory we refer to [Bor94; Bén00; GJ17].
— 0-cells are small categories A,B,C 1-cells F : A9 B are distributors, i.e.

functors F : Bo × A→ Set. 2-cells α : F ⇒ G are natural transformations.
— Given any 0-cells A and B, 1-cells and 2-cells are organized as a category

Dist(A,B). Vertical composition α ? β is given by the usual composition of
natural transformations.

— For A ∈ Dist, the identity 1A : A 9 A is Yoneda’s embedding 1A(a′, a) =
A(a′, a);

— For 1-cells F : A9 B and G : B 9 C, their horizontal composition is given
by

(G ◦ F)(a, c) =
∫ b∈B

G(b, c)× F (a, b)

Note the analogy with (2.8). Composition associativity and identity laws
hold only up to canonical isomorphisms, that one can easily derives via coend
manipulations. For this reason Dist is a bicategory.

— We define the zero distributor ∅A,B ∈ ob(Dist(A,B)) as ∅A(a, b) = ∅ for all
a ∈ ob(A) and b ∈ ob(B).

The cartesian closed structure of the 2-category CAT gives, in particular, the
following isomorphism

CAT(Bo × A, Set) ∼= CAT(A,PB)

where we recall that PB is the category of presheaves of B. Hence we have a
correspondence

F : Bo × A→ Set
λ(F) : A→ PB

From this basic fact, one would be able to see the bicategory of distributors as a
Kleisli bicategory for a pseudomonad of presheaves on Cat. Unfortunately, this is

88

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

not possible since for a small category A, PA is not small any more. However, the
notion of relative pseudomonads (Definition 2.3.4) comes to help (Lemma 2.5.6).

Lemma 2.7.1 (Fiore-Gambino-Hyland-Winskel). Distributors are the Kleisli bi-
category for the relative pseudomonad of presheaves P over the inclusion functor
j : Cat→ CAT.

2.8. The Bicategories S-Dist and S-CatSym
The content of this section is a corollary of the constructions and results presented

in [GJ17; Fio+08; Fio+17].
In [Fio+17] is introduced a method to extend 2-monads over Cat to (relative)

pseudomonads over Dist. The construction is based on the intuition that the bicate-
gory of distributors is the Kleisli bicategory for a suitable (relative) pseudomonad of
presheaf on the 2-category Cat (Lemma 2.7.1) and the notion of lifting of (pseudo)
algebras for a 2-monad (Section 2.3.3).

We work with an arbitrary resource monad S over CAT and we suppose that its
tensor product is symmetric. Let J : Cat→ CAT be the inclusion functor and P the
relative pseudomonad of presheaves over J (cfr. Lemma 2.5.6). By Theorem 2.6.4,
the relative pseudomonad of presheaves P admits a lifting to the pseudoalgebras of
S, where we recall that the pseudoalgebras of S are unbiased S-monoidal categories.
Hence, by Theorem 2.3.8, the 2-monad S lifts to a relative pseudomonad S̃ over
the identity 1Kl(P) : Kl(P) → Kl(P). We recall that Kl(P) = Dist. We want to
explicitly define the Kleisli bicategory of S̃, which we denote as S-Dist. In order
to do so, we need an explicit definition of S̃. This is the relative pseudomonad
associated to the relative pseudoadjunction

Kl(P̄)

Kl(P) Kl(P)

Υ
Φ

Were Υ is the forgetful pseudofunctor Υ : Kl(P̃)→ Kl(P), and P̄ is the relative
pseudomonad associated to the lifting of P to pseudoalgebras of S. The former
(relative) pseudoadjunction consists of the following:
— for A ∈ Cat we have that the free algebra ΦA = (SA, hA : SSA → SA) is

clearly an object of Kl(P̄), since, in particular, ΦA is a strict algebra, hence
a pseudoalgebra (this derives by the fact that S is a 2-monad).

— A family of morphisms ẽA : A→ ΥΦA = SA, defined as the composite

JA SJA = JSA PSA
ηA ySA

89

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

where we recall that ηA is the unit of the 2-monad S and yA is the Yoneda
embedding, such that, for A ∈ Cat and B = 〈B, hb〉 ∈ S-PAlgCAT, we have
the adjoint equivalence of categories

CAT(JA, PB) S-PAlgCAT(ΦJA, PB)
Υ(−)◦ẽA

(−)[

⊥

where for F ∈ Dist(A,B) = CAT(JA, PB) we have F [∈ S-PAlgCAT(ΦJA, PB)
is induced by the essentially unique functor defined by the universal property
of the free construction

SSA SPB

SA PB

hSA hPPBσ

F [

PB being equipped with the Day convolution, it admits a (unbiased) S-
monoidal structure. Being non-strict, the former diagram commutes only up
to invertible (coherent) 2-cell σ. Hence F [is a pseudomorphism. Concretely

F [(〈a1, . . . , an〉) = ⊗i∈[n]F (ai)

then, here, it will be the n-ary Day convolution

〈a1, . . . , an〉 → Fa1⊗̂ . . . ⊗̂Fan .

By Remark 2.3.5, we get a relative pseudomonad S̃ on the identity 1Kl(P) :
Kl(P)→ Kl(P) with the following basic structure:
— For A ∈ Cat, S̃A = SA.

— For A ∈ Cat, iA : A→ S̃A is given by the 1-cell ẽA.
— For F ∈ CAT(JA, PSB), F ∗ ∈ CAT(SJA, PSB) is defined as the underling

morphism of the pseudoalgebra F [, that is given by the n-ary Day convolution.

2.8.1. The Bicategory S-Dist
We give an explicit presentation of the Kleisli bicategory for the relative pseu-

domonad S̃, applying Theorem 2.3.6. We call this bicategory S-Dist The explicit
structure of S-Dist is as follows:

1. ob(S-Dist) = Obj(Dist) = Obj(Cat).
2. For A,B ∈ S-Dist, we have S-Dist(A,B) = Dist(A, SB).

90

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

3. The identity S-distributor is defined as

YSA ◦ ηA

Explicitly, 1A(~a, a) = SA(~a, 〈a〉).
4. For F : A→ PSB, we have F [: SA→ PSB, that is given by the n-ary Day

convolution, as seen in the former section.
5. For F : A9 SB and G : B 9 SC, composition is given as follows

(G ◦ F)(~c, a) =
∫ ~b∈SB

G[(~c,~b)× F (~b, a).

2.8.2. The Bicategory S-CatSym
We define the bicategory of S-categorical symmetric sequences by S-CatSym =

S-Distop. It is useful to give an explicit definition of the relevant structure of
S-CatSym.

1. ob(S-CatSym) = ob(Cat).
2. For A,B ∈ S-Dist, we have S-CatSym(A,B) = S-Dist(B,A) = Dist(B, SA).
3. The identity is again defined as

1A(~a, a) = SA(~a, 〈a〉).

4. For F : A B and G : B C S-categorical symmetric sequences, composi-
tion is given by considering F and G as S-distributors:

(G ◦ F)(~a, c) =
∫ ~b∈SB

G(~b, c)× F [(~a,~b).

5. S-CatSym is cartesian (Proposition 2.8.1). The cartesian product is the
disjoint union A&B = A tB and the projections are defined as follows:

πi,2(~c, a) = S(A tB)(~c, 〈ιi(a)〉).

The terminal object is the empty category.
6. We shall see that the bicategory S-CatSym is cartesian closed (Theorem

2.8.2.1). Indeed, if the tensor product on SA is symmetric, we have the
following Seely equivalence (Proposition 2.6.5):

S(A tB) ' S(A)× S(B).

From that, one can build the following chain of equivalences, that gives the right
pseudoadjoint to the cartesian product:

91

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

S-CatSym(A&B,C) = Dist(C, S(A tB)) =

CAT(S(A tB)o × C, Set) ' CAT(SAo × (SBo × C), Set) =

S-Dist(SBo × C,A) = S-CatSym(A, SBo × C)

This chain of equivalences suggests to consider SBo × C as the exponential
object.

2.8.2.1. The Cartesian Closed Structure of S-CatSym

In this section we extend the results of [Fio+08] and [GJ17] to our parameterized
setting.
Proposition 2.8.1. The bicategory S-CatSym is cartesian.
Proof. We prove it by building a right biadjoint to the diagonal pseudofunctor. For
small categories (Ai)i∈[n] we set

&i∈[n]Ai =
∑
i∈[n]

Ai

We define the projections

πi,n : &i∈[n]Ai Ai

πi,n(~c, a) = S(&Ai)(~c, 〈ιi(a)〉)

we define the pairing

〈F1, . . . , Fn〉(~v, ιi(a)) = Fi(~v, a)

We now prove that we have an equivalence

S-CatSym(B,&i∈[n]Ai)
∏
i∈[n] S-CatSym(Ai, B)

〈−〉

(π1,n◦(−),...,πn,n◦(−))

In order to do so, we compute the unit and counit isomorphisms. For F : B
&i∈[n]Ai, the components of the unit are given by a natural isomorphism

F ∼= 〈π1,n ◦ F, . . . , πn,n ◦ F 〉

We prove it by coend manipulations.

〈π1,n ◦ F, . . . , πn,n ◦ F 〉(~b, ιi(a)) = πi,n ◦ F (~b, ιi(a))

92

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

πi,n ◦ F (~b, a) =
∫ ~c∈&Ai

πi,n(~c, ιi(a))× F [(~b,~c)

We develop ∫ ~c∈&Ai
S(&Ai)(~c, 〈ιi(a)〉)× F [(~b,~c)

Then we apply Yoneda and we conclude. The counit case is again by coend
manipulations.

Theorem 2.8.2. The bicategory S-CatSym is cartesian closed.

Proof. First, we consider the equivalence of categories (Proposition 2.6.5)

S(A tB) ' SA× SB

We denote the components as µ0 : S(A tB)→ SA× SB and µ1 : SA× SB →
S(A tB). We have the following corresponding distributors:

µ̄0 : S(A tB) 9 SA× SB

(〈~a,~b〉,~c) 7→ (SA× SB)(〈~a,~b〉, µ0(~c))

µ̄1 : SA× SB 9 S(A tB)

(~c, 〈~a,~b〉) 7→ (S(A tB))(~c, µ1(~a,~b))

We set
BA = SAo ×B

Then we define the S-categorical symmetric sequence evA,B : BA & A B as

evA,B = µ̄1 ◦ 1BA

Explicitly,

evA,B(~c, b) =
∫ ~d∈S(SAo×B) ∫ ~a∈SA

S((SAo ×B) t A)(~c, ~d⊕ ~a)

×S(SAo ×B)(~d, 〈〈~a, b〉〉)
∼=∫ ~a∈SA

S((SAo ×B) t A)(~c, 〈〈~a, b〉〉 ⊕ ~a)

Then we proceed to show that the cartesian product pseudofunctor admits a right
biadjoint. For G : A&B C we define its currying as

λB(G)(~a, 〈~b, c〉) = G(~a⊕~b, c)

93

2. Categorical Interlude – 2.8. The Bicategories S-Dist and S-CatSym

We now prove that there is an equivalence

S-CatSym(A&B,C) S-CatSym(A,CB)
λB(−)

evB◦(−&B)

In order to do so, we compute the unit and counit isomorphisms. For F : A CB

the components of the unit are given by a natural isomorphism

F ∼= λB(evB,C ◦ (F &B))

We show it by coend manipulations.

λB(evB,C ◦ (F &B))(~a, 〈~b, c〉) = evB,C ◦ (F &B)(~a⊕~b, c)

=
∫ ~d∈S((SBo×C)tB)

evB,C(~d, c)× (F &B)[(~a⊕~b, ~d)

By definition of ev and Yoneda

∼=
∫ ~b′∈SB

(F &B)[(~a⊕~b, 〈~b, c〉 ⊕~b)

By definition of the product pseudofunctor

∼=
∫ ~b′∈SB

F (~a, 〈~b′, c〉)×
∫ ~bi∈SB ∏

i∈[l(~b)]

SB(~bi, 〈b′i〉)× SB(,~b,
⊕

~bi)

Applying several times Yoneda we can then conclude

∼= F (~a, 〈~b, c〉)

The counit case is again by lengthy coend manipulations.

Remark 2.8.3. In the case where S is the linear resource monad, S-CatSym is the
bicategory of Categorical Symmetric Sequences [GJ17; Fio+17]. This bicategory
is biequivalent, via an appropriate dualizing pseudofunctor, to the bicategory of
Generalized Species of Structures [Fio+08]. Generalized species of structures are a
very rich framework which categorifies both Joyal’s Combinatorial Species [Joy86]
and the cartesian closed category MPolr (Section 2.7.2).

94

3. Intersection Type Distributors

3.1. Introduction
In this Chapter we present a categorification of the classic correspondence between

intersection type assignments and categorical semantics of λ-calculus induced by
(generalizations of) the category of sets and relations. It it is well known [Car07;
Ehr12a; Ter12] that in several coKleisli categories of Polr (which contains Rel,
Section 2.7.2) the interpretation of a λ-term M is given by a monotonic relation
that behaves as follows:

JMK = {〈∆, a〉 | ∆ `M : a}

Where ∆ is a type context, a is a type and the judgment ∆ `M : a refers to an
appropriate intersection type system 1. The former relation corresponds, taking
the characteristic functions point of view, to

JMK(∆, a) =

1 if ∆ `M : a
0 otherwise.

We shall present a denotational semantics in the parametric bicategory S-CatSym
which improves and refines the former intersection type semantics in several way.

1. In our setting, the denotation of a λ-term M is given, up to isomorphisms,
by a distributor (Theorem 3.4.10) that behaves as follows:

JMK(∆, a) =


π̃...

∆ `M : a


where π is a type derivation in an appropriate intersection type system
(Figure 3.3) whose intersection type ∩ is given by the list construction and
the equivalence relation is generated by the specific horizontal composition of
S-CatSym. More precisely, the intersection type constructor corresponds to a
tensor product, whose particular structure depends on the resource monad S.
We call JMK the S-intersection type distributor ofM . The former bicategorical
semantics is then proof-relevant: the intersection type distributor of M not

1. Where the intersection type a∩ b, which corresponds to the product of the appropriate free
commutative monoid construction, that can be non-idempotent [Car07] or idempotent [Ehr12a;
Ter12].

95

3. Intersection Type Distributors – 3.1. Introduction

only testes, given as input a type context ∆ and a type a, the typability
relation Γ ` M : a, but it returns the set of all (equivalence class of) type
derivations that witness that relation. Moreover, if M →β N, the equivalence
relation on type derivations induces a natural isomorphism

α : JMK ∼= JNK.

For this reason, intersection type distributors are a bicategorical denotational
semantics.

2. Types live in a category (Figure 3.3) that we denote as D, where morphisms
gives a notion of generalized subtyping relation. This is a completely natural
generalization of what happens in the category Polr, where types lives in a
preorder. However, this more general kind of subtyping is sensitive to the
particular witness of the relation a ≤ b, that is a morphism f ∈ D(a, b). This
allows the definition of left and right actions on type derivations (Figures
3.6 and 3.5). In the standard intersection type systems with subtyping, if
∆ `M : a and ∆′ ≤ ∆, a ≤ a′ then ∆′ `M : a′. In our framework the action
of morphisms η : ∆′ → ∆, f : a→ a′ produces a type derivation of conclusion
∆′ `M : a′.

3. Usually, the behaviour of the intersection type is characterized by the fact
that the intersection operation is either associative, commutative or idempo-
tent. Our bicategorical setting refines this point-of-view. As in [MZ18], the
emphasis is shifted from the strictness of commutativity and idempotency to
the exhibition of morphisms (Section 2.6). More explicitly, the standard com-
mutativity condition a ∩ b = b ∩ a is replaced by the existence of symmetries
σa,b : a ∩ b ∼= b ∩ a in the category SD. The standard idempotency condition
is replaced by the existence of diagonals ca : a→ a ∩ a in the category SD.
Throughout the chapter we shall make an extensive use of the notations and
operations on lists introduced in Section 2.6.2.

Structure of the Chapter First we present the bicategorical semantics of
simply typed λ-calculus induced by the bicategory S-CatSym. We prove that this
semantics is equivalent, up to isomorphism, to another interpretation for simply
typed λ-terms, called the denotation, that we shall use for defining intersection type
distributors. We extend the two interpretations to the untyped case and we prove
that the typed one embed in this latter. We then define the intersection type system
ES
A and S-intersection type distributors, proving that they are naturally isomorphic

to denotations of λ-terms. We study intersection type distributors under reduction,
showing that they induce a proof-relevant bicategorical denotational semantics.
We then prove several normalization theorems, where the standard normalization
properties are characterized trough intersection type distributors. The proofs follow
from an adaptation of standard reducibility techniques to our categorified setting.

96

3. Intersection Type Distributors – 3.2. Models for the Simply Typed λ-calculus

We conclude presenting two concrete examples of our parametric construction: the
cases where S is respectively linear and cartesian.

Discussion of Related Work In this chapter we define four intersection type
systems, corresponding to the four resource monads that make S-CatSym a cartesian
closed bicategory i.e. the linear, semicartesian, relevant and cartesian resource
monads. A similar phenomenon appears in [MPV18], were a general categorical
interpretation of intersection type disciplines is presented. The setting of [MPV18]
is 2-dimensional and the λ-calculus is there presented as a 2-operad, a construction
akin to other 2-dimensional generalizations of λ-calculus [See87; Hir13]. In that
framework, the authors define linear, affine, relevant and cartesian intersection type
systems, giving an elegant presentation of these systems in terms of a special kind
of fibrations. However, their intersection type systems are discrete, in the sense that
they do not exhibit subtyping. Duplication and erasing is simulated via inference
rules. We already discussed how in our setting instead the structural behaviour of
the intersection type is completely determined by type morphisms. This fact makes
our systems syntax directed, contrary to the systems of [MPV18]. One can also
straightforwardly embed the type systems of [MPV18] in our type systems. We
believe that an extension of Mazza’s point of view to our setting would be of great
interest 2. However, this would be far from trivial. Mazza’s construction relies on
the correspondence between a special kind of resource calculi, the polyadic terms,
and an appropriate class of intersection type systems. This correspondence fails in
our case, as shown in the preliminary discussion of Chapter 4 of this thesis. For
this reason one needs to introduce subtyping-aware polyadic terms, an extension of
standard polyadic calculi that is sensitive to the subtyping feature of intersection
type distributors.

3.2. Models for the Simply Typed λ-calculus
In this section we present two denotational bicategorical models for simply typed

λ-calculus and we prove that they are isomorphic up to Seely equivalence. The
first model is just the standard bicategorical semantics induced by the bicategory
S-CatSym, parametric over resource monads, where S admits a symmetric tensor
product. The second one will be fundamental in the definition of the intersection
types semantics and it is inspired by Linear Logic. When we write SAn (resp. SAo)

2. As we already discussed in the main introduction, their construction deals only with
relational discrete distributors. Their category of types is just a set. However, they clearly stated
the possibility of extending their approach to the non-discrete setting, taking subtyping into
consideration [Maz17][p.66]. We present such an extension. We deal with standard distributors,
where natural transformations are given by functions, not relations. Moreover, if M →β N not
only we get natural transformation β : JMK → JNK, but β is also invertible. This happens thanks
to a non-trivial quotient on type derivations, that is naturally induced by the structure of our
bicategories.

97

3. Intersection Type Distributors – 3.2. Models for the Simply Typed λ-calculus

A,B := a | A⇒ B

Γ, x : A ` x : A
Γ, x : A `M : B

Γ ` λx.M : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ `MN : B

Figure 3.1. – Simply typed λ-calculus

we always mean (SA)n (resp. (SA)o). Let At be a set, called the set of atoms. We
define the simple types by the following grammar:

A,B ::= o ∈ At | A⇒ B

Figure 3.1 recalls the syntax of simply typed λ-calculus. We fix an evaluation
function ρ : At→ ob(Cat). We recall that in the bicategory S-CatSym the product
A&B is given by the coproduct of small categories AtB and the exponential object
AB by SAo ×B (Section 2.8.2) . The model follows the standard one-dimensional
definition:

1. On types:

JoKρ = ρ(o) JA⇒ BKρ = SJAKoρ × JBKρ

JΓ = A1, . . . , AnKρ = JA1Kρ t · · · t JAnKρ

We will often write JAK instead of JAKρ, keeping the parameter ρ implicit.
2. We associate to each simply typed λ-term Γ `M : A a S-categorical symmetric

sequence JΓ `M : AK : JΓKρ JAKρ by induction as follows:

Jx1 : A1, . . . , xn : An ` xi : AiK(~c, a) = πn,i(~c, a) = S(
n⊔
j=1

JAjKρ)(~c, ιi(a))

JΓ ` λx.M : A⇒ BK(~c, 〈~a, b〉) = λ(JΓ, x : A `M : BK)(~c, 〈~a, b〉) =
JΓ, x : A `M : BKρ(~c⊕ ~a, b)

JΓ ` PQ : BK(~c, b) = evA,B ◦ 〈JΓ ` P : A⇒ BK, JΓ ` Q : AK〉(~c, b) =∫ ~d∈S(JA⇒BKtJAK) ∫ ~a∈SJAKρ
S(JA⇒ BKρ t JAKρ)(~d, 〈〈~a, b〉〉 ⊕ ~a)

×(〈JΓ ` P : A⇒ BK, JΓ ` Q : AK〉)[(~c, ~d)

98

3. Intersection Type Distributors – 3.2. Models for the Simply Typed λ-calculus

JxKAiΓ (∆, ai) = JΓKdn(∆, 〈〈〉, . . . , 〈ai〉, . . . , 〈〉〉)
Jλx.MKA⇒BΓ (∆, 〈~a, b〉) = JMKBΓ,A(∆⊕ 〈~a〉, b)

JMNKBΓ (∆, B) =∫ ~a=〈a1,...,ak〉∈SJAKdn ∫ Γ0,...,Γk∈JΓKdn
JMKA⇒BΓ (Γ0, 〈~a, b〉)×

k∏
i=1

JNKAΓ (Γi, ai)×JΓKdn(∆,
k⊗
i=0

Γi)

Figure 3.2. – Denotation of simply typed λ-terms.

We now define a family of S-distributors that we will prove to be isomorphic, up
to Seely equivalence, to the bicategorical semantics of λ-terms.
We define a denotation for types as follows:

JAKρdn = JAKρ JΓ = A1, . . . , AnKρdn = SJA1Kρdn × · · · × SJAnKρdn
By the Seely equivalence (Remark 2.6.6) we have JA1 . . . AnKρdn ' S(JA1, . . . , AnKρ).

We will often write JAKdn instead of JAKρdn, again keeping the parameter ρ implicit.
Given Γ `M : A, we define the typed denotation ofM, JMKAΓ : JΓKodn×JAKdn → Set
by induction in Figure 3.2. We recall (see Section 2.6.1) that the tensor product
Γ1 = 〈~a1, . . . ,~alen(Γ)〉 ⊗ Γ2 = 〈~a′1, . . . ,~a′len(Γ)〉, for Γ1,Γ2 ∈ JΓKdn, is defined as

Γ1 ⊗ Γ2 = 〈~a1 ⊕ ~a′1, . . . ,~an ⊕ ~a′n〉.

We also recall that we denote as µ1 the component of the Seely equivalence that
goes from SA× SB to S(A tB). We denote as µ̄ the corresponding distributor of
µ1, defined as µ̄(~c, 〈~a,~b〉) = S(A tB)(~c, (µ1(~a,~b) = ~a⊕~b)).

Theorem 3.2.1. Let M ∈ Λ and Γ `M : A. We have a natural isomorphism

JMKAΓ ∼= JΓ `M : AK ◦Dist µ̄1.

Proof. By induction on the structure of M , via lengthy but straightforward coend
manipulations.
If M = x then we have JΓ ` xi : AiK(~c, ai) = S(JΓK)(~c, 〈ιi(ai)〉) with Γ =

A1, . . . , Ai, . . . , An and ai ∈ JAiK . Then

JΓ `M : AiK ◦Dist µ1(∆, ai) =
∫ ~c∈JΓK

S(JΓK)(~c, 〈ιi(ai)〉)× JΓKdn(∆, µ1(~c))

We apply Yoneda and we conclude

99

3. Intersection Type Distributors – 3.2. Models for the Simply Typed λ-calculus

∼= JΓKdn(∆, µ1(〈ιi(a)〉) = JΓKdn(∆, (〈〉, . . . , 〈ai〉, . . . , 〈〉).

If M = λx.M ′, we have

JΓ ` λx.M ′ : A⇒ BK(~c, 〈~a, b〉) = λ(JΓ, x : A `M ′ : BK)(~c⊕ ~a, b).

Now we precompose with µ̄1 :∫ ~a∈SJAK
JΓK(∆, µ1(~c))× JΓ, x : A `M ′ : BK(~c⊕ ~a, b)

By IH
∼= JK

Γ,ABM(∆⊕ ~a, b) = JMKA⇒BΓ (∆, 〈~a, b〉).

If M = PQ we have JΓ ` M : BK = evA⇒B,A ◦ 〈JΓ ` P : A⇒ BK, JΓ ` Q : AK〉.
By definition JΓ `M : BK(~c, b) =

∫ ~d∈S(JA⇒BKtJAK) ∫ ~a∈SJAK
S(JA⇒ BK t JAK)(~d, 〈(~a, b〉)⊕ ~a)

×(〈JΓ ` P : A⇒ BK, JΓ ` Q : AK〉)[(~c, ~d)

By Yoneda

∼=
∫ ~a∈SJAK

(〈JΓ ` P : A⇒ BK, JΓ ` Q : AK〉)[(~c, 〈〈~a, b〉〉 ⊕ ~a)

If we precompose with µ̄1 and we apply Yoneda we get∫ ~a∈SJAK ∫ ~a0,...,~al(~a)∈SJAK
JΓ ` P : A⇒ BK(~a0, 〈~a, b〉)×

∏
i∈[l(~a)]

JΓ ` Q : AK(~ai, ai)× JΓKdn(∆,
⊗

µ1(~aj))

Now we develop the other side.

JPQKBΓ (∆, b) =
∫ ~a∈SJAK ∫ Γj∈JΓKdn

JP KA⇒BΓ (Γ0, 〈~a, b〉)×

∏
JQKAiΓ (Γi, ai)× JΓKdn(∆,

⊗
Γj)

By the IH we can conclude, applying Yoneda several times.
Remark 3.2.2. We observe that the construction JMKAΓ is not formally an S-
symmetric sequence, but a distributor JMKAΓ : JAKdn 9 JΓKdn. However, by the
former theorem, one can canonically build a S-categorical sequence from JMKAΓ ,
just precomposing the former distributor with the other component of the Seely
equivalence, i.e. µ̄2. We chose to make this passage from S-categorical sequences to

100

3. Intersection Type Distributors – 3.3. Models for pure λ-calculus

distributors because the corresponding intersection type system (Figure 3.3) has a
more type-theoretic familiar structure then the one which can be build directly from
the S-categorical sequence JΓ `M : AK 3. However both choices are legitimate and
equivalent.

3.3. Models for pure λ-calculus
We build a family of non-extensional bicategorical models for pure λ-calculus.

Definition 3.3.1. Let A be a small category. We define by induction a family of
small categories as follows:

D0 = A Dn+1 = (SDo
n ×Dn) t A

We define by induction on n ∈ N a sequence of inclusions ιn : Dn ↪→ Dn+1:

ι0 = ιA ιn+1 = (S(ιn)o × ιn) t 1A

Then we set DA = lim−→
n∈N

Dn
4.

We denote as ξn : SDo
n × Dn → Dn+1 the canonical inclusion, for all n ∈ N.

The category DA is the filtered colimit for the diagram (Dn ↪→ Dn+1)n∈N. If we
set 〈a1, . . . , ak〉 ⇒ a ::= ι(〈a1, . . . ak〉, a), we can give a completely type-theoretic
presentation of the category DA as in Figure 3.3.

Proposition 3.3.2. There exists a canonical inclusion functor ι : SDo
A ×DA ↪→

DA.

Proof. The result derives directly from the filtered colimit construction. We remark
that

SDo
A ×DA

∼= lim−→
n∈N

SDo
n × lim−→

n∈N
Dn.

Hence we can define ι : SDo
A ×DA ↪→ DA as

ι((a1, . . . , ak), a) = yj+1(ξj(〈a1, . . . , ak〉, a)

where j = min{n ∈ N | (〈〈a1, . . . , ak〉, a〉 ∈ !Do
n ×Dn} and yj+1 : Dj+1 → D is the

canonical injection of Dj+1.

3. Choosing the other presentation we would end up with intersection type systems where
in the context side of a derivation a variable could appear more then once, as for the systems
presented in [MPV18].

4. This definition is a generalisation of the standard construction for reflexive objects in
relational models. Both constructions are actually a special case of the standard free-algebra
construction for an (unpointed) endofunctor [Kel80]. In our case the endofunctor is S(−)o × (−) :
Cat→ Cat.

101

3. Intersection Type Distributors – 3.3. Models for pure λ-calculus

Types:
a := o ∈ A | 〈a1, . . . , ak〉 ⇒ a

Morphisms:

f ∈ A(o, o′)
f : o→ o′

〈α, ~f〉 : ~a′ → ~a f : a→ a′

〈α, ~f〉 ⇒ f : (~a⇒ a)→ (~a′ ⇒ a′)
α : [k]→ [k′] f1 : aα(1) → a′1 · · · fk : aα(k) → a′k

〈α, f1, . . . , fk〉 : 〈a1, . . . , ak′〉 → 〈a′1, . . . , a′k〉

Derivations:

f1 : ~a1 → 〈〉, . . . , f : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
x1 : ~a1, . . . , xi : ~ai, . . . xn : ~an ` xi : a

Γ0 `M : 〈a1, . . . , ak〉 ⇒ a (Γi ` N : ai)ki=1 η : ∆→⊗k
i=0 Γi

∆ `MN : a
∆, x : ~a `M : a

∆ ` λx.M : ~a⇒ a

Figure 3.3. – Category of Types DA and parametric Intersection Type System ES
A.

We remark that DA
∼= (SDo

A ×DA) t A. We now define our retraction pair in
S-CatSym:

i : (S(SDo
A ×DA))o ×DA → Set

〈~d, a〉 7→ SDA(S(ι)(~d), 〈a〉)

j : SDo
A × (SDo

A ×DA)→ Set
〈~a′, 〈~a, a〉〉 7→ SDA(~a′, 〈ι(~a, a)〉)

Theorem 3.3.3. We have that j ◦ i ∼= 1
D
DA
A

.

The interpretation of a λ-term is defined by induction in the usual way, following
the definition given in [AC98, Section 4.6]. We fix a constant type D such that
D = D ⇒ D. 5

1. On types:
JDK = DA

5. It is worth noting that we do not require for this equation to be semantically satisfied, i.e.
we consider non-extensional models.

102

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

JΓ = A1, . . . , AnK =
n times︷ ︸︸ ︷

JDK & · · ·& JDK

2. On terms:
Jx1 : D, . . . , xn : D ` xi : DK = πi,n

JΓ ` λx.M : DK = i ◦ λ(JΓ, x : D `M : DK)

JΓ ` PQ : DK = evD,D ◦ 〈j ◦ JΓ ` P : DK, JΓ ` Q : DK〉.

JxK~x(∆, a) = SDn(∆, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉)

Jλx.MK~x(∆, a) =

JMK~x⊕〈x〉(∆⊕ 〈~a′〉, a′) if a = ι(~a′, a′)
∅ otherwise.

JMNK~x(∆, a) =
∫ ~a=〈a1,...,ak〉∈SD ∫ Γ0,...,Γk∈SDn

JMK~x(Γ0, ι(~a, a))×
k∏
i=1

JNK~x(Γi, ai)×SDn(∆,
k⊗
i=0

Γi)

Figure 3.4. – Denotation of λ-terms.

Remark 3.3.4. We recall that SDA is the free S-monoidal category build from
DA. Hence, given a morphism 〈α, ~f〉 = 〈α, f1, . . . , fk′〉 : 〈a1, . . . , ak〉 → 〈b1, . . . , bk′〉
we have the following canonical decomposition
〈a1, . . . , ak〉 〈aα(1), . . . , aα(k′)〉

〈b1, . . . , bk〉

α?

〈α,~f〉
〈1,f1,...,fk′ 〉

Where we recall that α? = 〈α, 1aα(1) , . . . , 1aα(k′)〉. We define the canonical repre-
sentation of f as the couple cr(f) = 〈〈1, f1, . . . , fk′〉, α〉. We define the structural
function of f as the function sm(f) = α. We recall that ~a{α} = 〈aα(1), . . . , aα(k)〉.
We have that sm(g ◦ f) = sm(f) ◦ sm(g) and sm(f ⊕ g) = sm(f)⊕ sm(g). We also
remark that we can canonically decompose a morphism with trivial structural func-
tion f = 〈1, ~f〉 : ~a→ ⊕

i∈[k]
~bi as

⊕
i∈[k] fi : ⊕i∈[k]~ai →

⊕
i∈[k]

~bi where
⊕

i∈[k] fi = ~f
and ⊕i∈[k]~ai = ~a. These decompositions naturally extend to morphisms between
tuples of type lists ∆ = 〈~a1, . . . ,~an〉.

3.4. Intersection Types as Distributors
Theorem 3.3.3 says that the category DA is a non-extensional model for pure

λ-calculus. We will denote, with a small abuse of language, SDA as SD and DA

103

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

as D. We now want to make explicit the idea that the semantics induced by this
category is an intersection type system. We proceed as for the simply typed case.
We call intersection type contexts, or contexts for short, the objects of SDn.

We recall that SDn admits a tensor product, that we denote as ⊗ (Section 2.6.1).
This tensor product inherits all the structure from ⊕, i.e., if ⊕ is symmetric (resp.,
semicartesian, relevant, cartesian) then also ⊗ is so.
We define the denotation of a λ-term by induction in Figure 3.4. In general we

have that JMK~x : D 9 SDn.

Remark 3.4.1. The denotation of an application deserves some commentaries.
Consider the functor

F : SDo × SD × (SDn)o ×D → Set

〈~a,~b = 〈b1, . . . , bk〉,∆, a〉 7→(
JMK~x(−,~a⇒ a) ⊗̂

⊗̂k

i=1JNK~x(−, bi)
)

(∆)

Then we can write the denotation of an application in a very suggestive way, via
the Day convolution tensor product:

JMNK~x(∆, a) =(∫ 〈a1,...,ak〉∈SD
JMK~x(−, 〈a1, . . . , ak〉 ⇒ a) ⊗̂

⊗̂k

i=1JNK~x(−, ai)
)

(∆).

We observe that, for what we have seen in Section 2.4.1, we have that the denotation
of an application can be rewritten as a coequalizer. Since the formula contains two
coends, we will first make explicit the coend produced by the Day convolution. We
fix ~a, 〈b1, . . . , bk〉 ∈ SD,∆ ∈ SDn and a ∈ D. We have that(

JMK~x(−,~a⇒ a) ⊗̂
⊗̂k

i=1JNK~x(−, bi)
)

(∆) =

∫ Γ0,...,Γk∈SDn
JMK~x(Γ0,~a⇒ a)×

k∏
i=1

JNK~x(Γi, bi)× SDn(∆,
k⊗
j=0

Γj). (3.1)

(3.1) is the coend of the functor

Fk : ((SDn)k+1)o × (SDn)k+1 → Set

〈〈Γ0, . . . ,Γk〉, 〈∆0, . . . ,∆k〉〉 7→

JMK~x(Γ0,~a⇒ a)×
k∏
i=1

JNK~x(Γi, bi)× SDn(∆,
k⊗
j=0

∆j).

104

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

(3.1) is the coequalizer of the following diagram:

∑
~Γ,~Γ′∈SDn

SDn(~Γ′, ~Γ)× Fk(~Γ, ~Γ′)⇒
∑

~Γ∈SDn
Fk(~Γ, ~Γ)→

∫ ~Γ∈SDn
Fk(~Γ, ~Γ)

where the components of the two parallel arrows are

f~Γ, ~Γ′ : SDn(~Γ′, ~Γ)× Fk(~Γ, ~Γ′)→ Fk(~Γ, ~Γ)

〈〈η1, . . . , ηk〉, ϕ, 〈ψ1, . . . , ψk〉, η〉 7→ 〈ϕ, 〈ψ1, . . . , ψk〉, (
k⊗
j=0

ηj) ◦ η〉

and
g~Γ, ~Γ′ : SDn(~Γ′, ~Γ)× Fk(~Γ, ~Γ′)→ Fk(~Γ′, ~Γ′)

〈〈η1, . . . , ηk〉, ϕ, 〈ψ1, . . . , ψk〉, η〉 7→

〈JMK~x(η0, ~Γ′)(ϕ),
k∏
i=1

JNK~x(〈η1, . . . , ηk〉)(〈ψ1, . . . , ψk〉), η〉

where ~Γ = 〈Γ1, . . . ,Γk〉, ~Γ′ = 〈Γ′1, . . . ,Γ′k〉, ϕ ∈ JMK~x(Γ0,~a⇒ a), ψi ∈ JNK~x(Γi, ai), η :
∆→⊗k

j=0 Γ′j and ηj : Γ′j → Γj.
The coend(∫ 〈a1,...,ak〉∈SD

JMK~x(−, 〈a1, . . . , ak〉 ⇒ a) ⊗̂
⊗̂k

i=1JNK~x(−, ai)
)

(∆)

corresponds to the coequalizer of the following diagram:

∑
~a,~a′∈SDn

SD(~a′,~a)× F (~a,~a′,∆, a)⇒
∑
~a∈SD

F (~a,~a,∆, a)→
∫ ~a∈SD

F (~a,~a,∆, a)

where the components of the two parallel arrows are

f ′tyl,~a′ : SD(~a′,~a)× F (~a,~a′,∆, a)→
∑
~a∈SD

F (~a,~a,∆, a)

〈f = 〈α, ~f = f1, . . . , fk′〉, ϕ, 〈ψ1, . . . , ψk′〉, η〉 7→

〈ϕ,
α(k′)∏
i=α(1)

JNK~x(〈Γα(1), . . . ,Γα(k′)〉, ~f)(〈ψ1, . . . , ψk′〉), (1Γ0 ⊗ α?) ◦ η〉

and
g′~a,~a′ : SD(~a′,~a)× F (~a,~a′,∆, a)→

∑
~a∈SD

F (~a′,~a′,∆, a)

〈f = 〈α, ~f = f1, . . . , fk′〉, ϕ, 〈ψ1, . . . , ψk′〉, η〉 7→ 〈JMK~x(Γ0, f)(ϕ), 〈ψ1, . . . , ψk′〉, η〉

105

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

where ϕ ∈ JMK~x(Γ0,~a ⇒ a), ψi ∈ JNK~x(Γi, a′i), for i ∈ [k′]η : ∆ → ⊗k
j=0 Γ′j and

f : ~a→ ~a′ = 〈a′1, . . . , a′k”〉.
Hence, we can rewrite the denotation of an application as the following quotient: ∑
~a=〈a1,...,ak〉∈SD

∑
Γ0,...,Γk∈SDn

JMK~x(Γ0, ι(~a, a))×
k∏
i=1

JNK~x(Γi, ai)× SDn(∆,
k⊗
i=0

Γi)
 / ∼

 / ∼′
where the two equivalence relations are generated by, respectively, the two following
rules:

〈~a, 〈Γ0, . . . ,Γlen(~a)〉, ϕ, 〈ψ1, . . . , ψlen(~a)〉, (
k⊗
j=0

ηj) ◦ η〉 ∼

〈~a, 〈Γ′0, . . . ,Γ′len(~a)〉, JMK~x(η0, 1)(ϕ0),
len(~a)∏
i=1

JNK~x(〈η1, . . . , ηlen(~a)〉, 1)(〈ψ1, . . . , ψlen(~a)〉), η〉

where ηj : Γ′j → Γj for 0 ≤ j ≤ len(~a).

〈~a, ~Γ = 〈Γ0, . . . ,Γlen(~a)〉, JMK~x(Γ0, 〈α, ~f〉)(ϕ), 〈ψ1, . . . , ψlen(~a)〉, η〉 ∼′

〈~a′, 〈Γ0,Γα(1) . . . ,Γα(len(~a))〉, ϕ,
α(len(~a))∏
i=α(1)

JNK~x(~Γ{α}, 〈f1, . . . , flen(~a)〉)〈ψα(1), . . . , ψα(len(~a))〉, (1Γ0⊗α?)◦η〉

with ~f = 〈f1, . . . , flen(~a)〉 and 〈α, ~f〉 : ~a→ ~a′.

3.4.1. The Denotation is Isomorphic to the Semantics
Also the untyped denotation of a term is isomorphic to its bicategorical interpre-

tation via the Seely equivalence (Remark 2.6.6).

Theorem 3.4.2. Let M ∈ Λ, ~x ⊃ FV (M) and Γ `M : D such that supp(Γ) = ~x.
We have a natural isomorphism

JMK~x ∼= JΓ `M : DK ◦Dist µ̄1.

Proof. Straightforward adaptation of the proof of Theorem 3.2.1.

Embedding of the Simply Typed Denotation in the Untyped One In this
paragraph we establish a relationship between the typed and untyped denotations
of a simply typed λ-term. Consider a grammar for simple types. Let ρ be an
evaluation function At→ ob(Cat). We set ρ(At) = ⊔

o∈AT ρ(o).

Proposition 3.4.3. Let A be a simple type. The category JAKρ is a full subcategory
of Dρ(At).

106

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

[g : a→ b]
(
f1 : ~a1 → 〈〉, . . . , fi = 〈α, f〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉

x1 : ~a1, . . . , xi : ~ai, . . . xn : ~an ` xi : a

)
=

f1 : ~a1 → 〈〉, . . . , 〈g〉 ◦ fi = 〈α, g ◦ f〉 : ~ai → 〈b〉, . . . , fn : ~an → 〈〉
x1 : ~a1, . . . , xi : ~ai, . . . xn : ~an ` xi : b

[〈α,~g〉 ⇒ g : ~a⇒ a→ ~b⇒ b]


π...

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

 =

[g]π{〈1, 〈α,~g〉〉}
...

∆, x : ~b `M : b

∆ ` λx.M : ~b⇒ b

[g : a→ b]


π0...

Γ0 `M : ~a⇒ a

 πi...
Γi `M : ai

k
i=1 η : ∆→⊗k

0 Γj
∆ `MN : a

 =

[1⇒ g]π0...
Γ0 `M : ~a⇒ b

 πi...
Γi `M : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆ `MN : b

Where ~a = 〈a1, . . . , ak〉.

Figure 3.5. – Left action on derivations.

Proof. By induction on A, we exploit the isomorphism Dρ(At) ∼= SDo
ρ(At)×Dρ(At) t

ρ(At). If A = o the result is immediate by definition. If A = B ⇒ C then, by IH,
JAKρ ↪→ Dρ(At), JBKρ ↪→ Dρ(At). It is easy to see that we have SJAKoρ ↪→ SDo

ρ(At).
Thus

SJAKoρ × JBKρ SDo
ρ(At) ×Dρ(At) Dρ(At).

ι

By the former proposition, we have that, for Γ `M : A and ~x = supp(Γ),

JMKAΓ ∼= (JMK~x)|Γ,A

where (JMK~x)|Γ,A(∆, a) is the restriction functor. Then the simply typed denotation
is just the restriction of the untyped denotation. For this reason, in what follows
we will focus just on the untyped denotation.

3.4.2. The Denotation as an Intersection Type System
We now give a type-theoretic description of the denotation of a λ-term. We

define the intersection type system ES
A, where types and morphisms live in the

category DA (Figure 3.3). Thanks to this type theoretic description, we can present

107

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

the denotation’s action on morphism as right and left actions on type derivations:

π...
∆ `M : a

([f] π){η}

...
∆′ `M : a′

with f : a→ a′ and η : ∆′ → ∆. The actions are inductively defined in Figures 3.5
and 3.6.

Remark 3.4.4. We observe that in the variable rule of our system (Figure 3.3)
the morphisms fj : ~aj → 〈〉 for j 6= i ∈ [n], are unique, by the structure of resource
monads. In particular, if S is irrelevant (cartesian or semicartesian resource
monad), fj is the terminal morphism >~aj : ~aj → 〈〉. Otherwise (linear or relevant
resource monad) fj is the identity 1〈〉 : 〈〉 → 〈〉. We shall denote this unique
universal morphism as ♦~aj .

Lemma 3.4.5 (Actions). Let π ∈ ES
A of conclusion ∆ ` M : a and let η : ∆′ →

∆, η′ : ∆′′ → ∆′, g : a→ a′, f ′ : a′ → a′′. The following statements hold.
1. (π{η}){η′} = π{η ◦ η′}.
2. [f](π{η}) = ([f]π){η}.
3. [f ′]([f]π) = [f ′ ◦ f]π.

Proof. 1. By induction on the structure of M. In the variable and application
case the result is given by morphisms composition, while in the abstraction
case is an immediate application of the IH.

2. By induction on the structure of M. If M = xi Then π =

f1 : ~a1 → 〈〉, . . . , fi = 〈α, g〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
x1 : ~a1, . . . , xi : ~ai, . . . xn : ~an ` xi : a

Let η = 〈g1, . . . , gn〉, then π{η} =

f1 ◦ g1 : ~b1 → 〈〉, . . . , fi ◦ gi : ~bi → 〈a〉, . . . , fn ◦ gn : ~bn → 〈〉

x1 : ~b1, . . . , xi : ~bi, . . . xn : ~bn ` xi : a

and [f](π{η}) =

f1 ◦ g1 : ~b1 → 〈〉, . . . , 〈f〉 ◦ (fi ◦ gi) : ~bi → 〈a〉, . . . , fn ◦ gn : ~bn → 〈〉

x1 : ~b1, . . . , xi : ~bi, . . . xn : ~bn ` xi : a

then the result derives by associativity of morphisms composition, since
〈f〉 ◦ (fi ◦ gi) = (〈f〉 ◦ fi) ◦ gi.

108

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

If M = λx.M ′ then π =
π′...

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

then π{η} =
π′{η ⊕ 〈1~a〉}...

∆′, x : ~a `M : a
∆′ ` λx.M : ~a⇒ a

.

Let f = 〈α,~g〉 ⇒ g : ~a⇒ a→ ~a′ ⇒ a′. Then [f](π{η}) =

([g](π′{η ⊕ 〈1~a〉})){1∆′ ⊕ 〈〈α,~g〉〉}...
∆′, x : ~a′ `M : a′

∆′ ` λx.M : ~a′ ⇒ a′

By IH we have ([g](π′{η⊕ 〈1~a〉})){1∆′ ⊕ 〈〈α,~g〉〉} = (([g]π′){η⊕ 〈1~a〉}){1∆′ ⊕
〈〈α,~g〉〉}. Since (η ⊕ 〈1~a〉) ◦ (1∆′ ⊕ 〈〈α,~g〉〉) = η ⊕ 〈〈α,~g〉〉 = (1∆ ⊕ 〈〈α,~g〉〉) ◦
(η ⊕ 〈1~a′〉) we apply the former point of the lemma and we conclude.
If M = PQ the result is immediate by definition.

3. We prove the abstraction case, the others being trivial applications of the
definition and the IH. Let M = λx.M ′ and

π =

π′...
∆, x : ~a `M ′ : a

∆ ` λx.M ′ : ~a⇒ a

.

Let f = 〈α,~g〉 ⇒ g : ~a ⇒ a → ~a′ ⇒ a′ and f ′ = 〈α′, ~g′〉 ⇒ g′ : ~a′ ⇒ a′ →
~a′′ ⇒ a′′. By definition

[f ′]([f]π) =

([g′](([g]π′){1∆ ⊕ 〈〈α,~g〉〉)){1∆ ⊕ 〈〈α′, ~g′〉〉}}...
∆, x : ~a′′ `M ′ : a′′

∆ ` λx.M ′ : ~a′′ ⇒ a′′

By the former point of this lemma we have ([g′](([g]π′){1∆ ⊕ 〈〈α,~g〉〉)){1∆ ⊕
〈〈α′, ~g′〉〉}} = (([g′](([g]π′))){1∆ ⊕ 〈〈α,~g〉〉){1∆ ⊕ 〈〈α′, ~g′〉〉}} and by the first
point of this lemma (([g′]([g]π′)){1∆⊕〈α,~g〉){1∆⊕〈α′, ~g′〉}} = ([g′]([g]π′)){1∆⊕
〈〈α,~g〉 ◦ 〈α′, ~g′〉〉}}. We then apply the IH and we get ([g′ ◦g]π′){1∆⊕〈〈α,~g〉 ◦

109

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

(
f1 : ~a1 → 〈〉, . . . , fi : ~ai → 〈a〉, . . . , fn : ~an → 〈〉

x1 : ~a1, . . . , xi : ~ai, . . . xn : ~an ` xi : a

)
{η} =

f1 ◦ g1 : ~b1 → 〈〉, . . . , fi ◦ gi : ~bi → 〈a〉, . . . , fn ◦ gn : ~bn → 〈〉

x1 : ~b1, . . . , xi : ~bi, . . . xn : ~bn ` xi : a
π...

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

 {η} =

π{η ⊕ 〈1〉}
...

∆′, x : ~a `M : a
∆′ ` λx.M : ~a⇒ a

π1...
Γ1 `M : ~a⇒ a

 πi...
Γi `M : ai

k
i=1 θ : ∆→⊗k

j=0 Γj
∆ `MN : a

 {η} =

π1...
Γ1 `M : ~a⇒ a

 πi...
Γi `M : ai

k
i=1 θ ◦ η : ∆′ →⊗k

j=0 Γj
∆′ `MN : a

Where ~a = 〈a1, . . . , ak〉 and η = 〈g1, . . . , gn〉 : ∆′ → ∆.

Figure 3.6. – Right action on derivations.

〈α′, ~g′〉〉}}. Then we can conclude, since by definition of left action

[f ′ ◦ f]π =

([g′ ◦ g]π′){1∆ ⊕ 〈〈α,~g〉 ◦ 〈α′, ~g′〉〉}}...
∆, x : ~a′′ `M ′ : a′′

∆ ` λx.M ′ : ~a′′ ⇒ a′′

Congruence on Type Derivations The definition of denotation of an appli-
cation MN depends on the notion of coend. As we saw (Remark 3.4.1), in the
Set enriched setting this notion boils down to an appropriate quotient sum of
sets. Hence, if we want to give a syntactic presentation of the denotation via the
intersection type system ES

A, we shall need to translate the quotient in the setting
of type derivations.
A relation R ⊆ (ES

A)2 is called a congruence if it is an equivalence relation and
it satisfies the following additional conditions:

1. If
π...

∆, x : ~a `M : a
R

π′...
∆, x : ~a `M : a

110

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

then
π...

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

R

π′...
∆, x : ~a `M : a

∆ ` λx.M : ~a⇒ a

.

2. If
π0...

∆ `M : ~a = 〈a1, . . . , ak〉 ⇒ a
R

π′0...
∆ `M : ~a = 〈a1, . . . , ak〉 ⇒ a

and  πi...
Γi ` N : ai

k
i=1

R

 π′i...
Γi ` N : a′i


k

i=1

then
π0...

∆ `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆ `MN : a

R

π′0...
∆ `M : ~a⇒ a

 π′i...
Γi ` N : a′i


k

i=1 η : ∆→⊗k
j=0 Γj

∆ `MN : a
We set π̃ as the equivalence class of π for the smallest congruence generated by

following two rules:

π0...
Γ0 `M : ~b⇒ a

 [fi]πα(i)...
Γα(i) `M : bi


k′

i=1 (1⊗ α?) ◦ η : ∆→ Γ0 ⊗
⊗k′

i=1 Γα(i)

∆ `MN : a

∼

(3.2)

[〈α, ~f〉 ⇒ 1]π0...
Γ0 `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆ `MN : a

111

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

π0{θ0}...
Γ0 `M : ~a⇒ a

 πi{θi}...
Γi ` N : ai


k

i=1 η : ∆→⊗k
j=0 Γj

∆ `MN : a

∼ (3.3)

π0...
Γ′0 `M : ~a⇒ a

 πi...
Γ′i ` N : ai

k
i=1 (⊗k

j=0 θj) ◦ η : ∆→⊗k
j=0 Γ′j

∆ `MN : a
Where 〈α, f1, . . . , fk′〉 : ~a = 〈a1, . . . , ak〉 → ~b = 〈b1, . . . , bk′〉 and θi : Γi → Γ′i.
We prove that the actions are stable under congruence.

Lemma 3.4.6. Let π ∈ ES
A of conclusion ∆ `M : a and let θ : ∆′ → ∆, g : a→ a′.

The following statements hold.
1. If π ∼ π′ then π{θ} ∼ π{θ}.
2. If π ∼ π′ then [g]π ∼ [g]π′.

Proof. By induction on π. We just prove the cases (3.2) and (3.3), the others being
trivial applications of the definitions the IH.

1. (3.2) Let π =

π0...
Γ0 `M : ~b⇒ a

 [fi]πα(i)...
Γα(i) ` N : bi


k′

i=1 (1⊗ α?) ◦ η : ∆→ Γ0 ⊗
⊗k′

i=1 Γα(i)

∆ `MN : a

and π′ =

[〈α, ~f〉 ⇒ 1]π0...
Γ0 `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆ `MN : a

by definition π{θ} =

π0...
Γ0 `M : ~b⇒ a

 [fi]πα(i)...
Γα(i) ` N : bi


k′

i=1 ((1⊗ α?) ◦ η) ◦ θ : ∆′ → Γ0 ⊗
⊗k′

i=1 Γα(i)

∆′ `MN : a

112

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

and π′{θ} =

[〈α, ~f〉 ⇒ 1]π0...
Γ0 `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η ◦ θ : ∆′ →⊗k

j=0 Γj
∆′ `MN : a

then we can conclude by associativity of composition.
(3.3) Let π =

π0{θ0}...
Γ0 `M : ~a⇒ a

 πi{θi}...
Γi ` N : ai


k

i=1 η : ∆→⊗k
j=0 Γj

∆ `MN : a

and π′ =
π0...

Γ′0 `M : ~a⇒ a

 πi...
Γ′i ` N : ai

k
i=1 (⊗k

j=0 θj) ◦ η : ∆→⊗k
j=0 Γ′j

∆ `MN : a

we have π{θ} =

π0{θ0}...
Γ0 `M : ~a⇒ a

 πi{θi}...
Γi ` N : ai


k

i=1 η ◦ θ : ∆→⊗k
j=0 Γj

∆′ `MN : a

and π′{θ} =

π0...
Γ′0 `M : ~a⇒ a

 πi...
Γ′i ` N : ai

k
i=1 ((⊗k

j=0 θj) ◦ η) ◦ θ : ∆→⊗k
j=0 Γ′j

∆′ `MN : a

we conclude again by associativity of composition.
2. (3.2) Let π =

π0...
Γ0 `M : ~b⇒ a

 [fi]πα(i)...
Γα(i) ` N : bi


k′

i=1 (1⊗ α?) ◦ η : ∆→ Γ0 ⊗
⊗k′

i=1 Γα(i)

∆ `MN : a

113

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

and π′ =

[〈α, ~f〉 ⇒ 1]π0...
Γ0 `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆′ `MN : a

by definition [g]π =

[1⇒ g]π0...
Γ0 `M : ~b⇒ a

 [fi]πα(i)...
Γα(i) ` N : bi


k′

i=1 (1⊗ α?) ◦ η : ∆→ Γ0 ⊗
⊗k′

i=1 Γα(i)

∆ `MN : a′

and [g]π′ =

[1⇒ g]([〈α, ~f〉 ⇒ 1]π0)
...

Γ0 `M : ~a⇒ a

 πi...
Γi ` N : ai

k
i=1 η ◦ θ : ∆′ →⊗k

j=0 Γj
∆ `MN : a′

then we can conclude by Lemma 3.4.5, since [1 ⇒ g]([〈α, ~f〉 ⇒ 1]π0) =
[〈α, ~f〉 ⇒ 1]([1⇒ g]π0).
(3.3) Let π =

π0{θ0}...
Γ0 `M : ~a⇒ a

 πi{θi}...
Γi ` N : ai


k

i=1 η : ∆→⊗k
j=0 Γj

∆ `MN : a

and π′ =
π0...

Γ′0 `M : ~a⇒ a

 πi...
Γ′i ` N : ai

k
i=1 (⊗k

j=0 θj) ◦ η : ∆→⊗k
j=0 Γ′j

∆ `MN : a

we have [g]π =

[1⇒ g](π0{θ0})...
Γ0 `M : ~a⇒ a

 πi{θi}...
Γi ` N : ai


k

i=1 η : ∆→⊗k
j=0 Γj

∆ `MN : a′

114

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

and [g]π′ =

[1⇒ g]π0...
Γ′0 `M : ~a⇒ a

 πi...
Γ′i ` N : ai

k
i=1 ((⊗k

j=0 θj) ◦ η) ◦ θ : ∆→⊗k
j=0 Γ′j

∆ `MN : a′

then we can conclude again by Lemma 3.4.5, since [1⇒ g](π0{θ0}) = ([1⇒
g]π0){θ0}.

Definition 3.4.7. Let ~x ⊃ fv(M) and len(~x) = n. We now define the S-intersection
type distributor of M, TD(M)~x : D 9 SDn, as follows:

1. on objects

TD(M)~x(∆, a) =


π̃...

∆ `M : a


2. on morphisms

TD(M)~x(f, η) : TD(M)~x(∆, a)→ TD(M)~x(∆′, a′)

π̃ 7→ ˜[f]π{η}
We will often use the term intersection type distributor, keeping the parameter

implicit. Given a simply typed λ-term Γ `M : A, its intersection type distributor
its just T (M)AΓ = (TDρ(At)(M)supp(Γ))|Γ,A.
Lemma 3.4.8. TD(M)~x is a functor.

Proof. The result is a corollary of Lemmas 3.4.5 and 3.4.6. Indeed, given η : ∆′ → ∆
and f : a→ a′ the function

TD(M)~x(f, η) : TD(M)~x(∆, a)→ TD(M)~x(∆′, a′)

π̃ 7→ ˜[f]π{η}

is well-defined since actions are stable under equivalence. Moreover, given η′ :
∆′′ → ∆′ and f ′ : a′ → a′′ we have that

TD(M)~x(f ′ ◦ f, η ◦ η′) = TD(M)~x(f ′, η) ◦ TD(M)~x(f, η′)

pointwise, again by Lemmas 3.4.5 and 3.4.6. The preservation of identities is
immediate by definition.

We now prove that S-intersection type distributors are isomorphic to the bicate-
gorical semantics of λ-calculus induced by S-categorical symmetric sequences, up
to Seely equivalence.

115

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

Remark 3.4.9. Let us denote as ∼1 and ∼2 respectively the smallest congruences
generated by Rule 3.2 and Rule 3.3. For π̃, π̃′ ∈ ES

A/ ∼1 we set π̃ ∼2 π̃
′ when we

have π ∼2 π
′. Then we have the following isomorphism

(ES
A/ ∼1)/ ∼2 ∼= ES

A/ ∼.

Consider now the intersection type distributor of an application MN. If we
develop the definition, by the former observation we get TD(MN)~x(∆, a) ∼=

∑
~a∈SD

((
∑

Γ0,...,Γk∈SDn
TD(P)~x(Γ0,~a⇒ a)×

k∏
i=1

TD(Q)~x(Γi, ai)×SDn(∆,
k⊗
j=0

Γj))/ ∼1)/ ∼2

where the functor
〈~b,~a = 〈a1, . . . , ak〉,∆〉 7→

(
∑

Γ0,...,Γk∈SDn
TD(P)~x(Γ0,~b⇒ a)×

k∏
i=1

TD(Q)~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj))/ ∼1

acts on morphisms g : ~b′ → ~b, f = 〈α, f1, . . . , fk′〉 : ~a→ ~a′ = 〈a′1, . . . , a′k′〉 as follows

˜
〈〈Γ0, . . . ,Γk〉, π̃0, ˜〈π1, . . . , πk〉, η〉 7→

˜
〈〈Γ0, . . . ,Γα(k′)〉, (˜[g ⇒ 1]π0), 〈 ˜[f1]πα(1), . . . , ˜[fk′]πα(k′)〉, (1 ◦ α?) ◦ η〉.

Theorem 3.4.10. Let M ∈ Λ. We have a natural isomorphism

JMK~x(∆, a) ∼= TD(M)~x(∆, a).

Proof. We set len(~x) = n. We prove it by induction on the structure of M. If
M = x then the result is immediate, since JMK~x(∆, a) is just the hom-set functor
SDn(∆, 〈〈〉, . . . 〈a〉, . . . , 〈〉〉). If M = λx.M ′ then the result follows immediately
by IH. If M = PQ we exploit the Remark 1. let p ∈ JMK~x(∆, a) then p =
(b0, 〈b1, . . . , bk〉, ~β) with a0 ∈ JP K~x(Γ0, ι(〈~a, a〉), 〈b1, . . . , bk〉 ∈

∏k
i=1JQK~x(Γi, ai) for

some ~a = 〈a1, . . . , ak〉 ∈ SD and Γj ∈ SDn. Following the definitions,

JPQK~x(∆, a) =
∫ 〈a1,...,ak〉∈SD ∫ Γ0,...,Γk∈SDn

JP K~x(Γ0, ι((~a, a)))

×
∏
i∈[k]

JQK~x(Γi, ai)× SDn(∆,
k⊗
j=0

(Γj))

116

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

By Remark 3.4.1, we get that:

JPQK~x(∆, a) ∼=∑
〈a1,...,ak〉∈SD

((
∑

Γ0,...,Γk∈SDn
JP K~x(Γ0, ι(~a, a))

×
∏
i∈[k]

JQK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj))/ ∼)/ ∼′

The equivalences are defined as follows:
— let b0 ∈ JP K~x(,Γ0, ι(~a, a)), 〈b1, . . . , bk〉 ∈

∏k
i=1JQK~x(Γi, ai) and η ∈ SDn(∆,⊗k

j=0(Γj)).

— Let 〈α, ~f〉 = 〈α, f1, . . . , fk′〉 : 〈a1, . . . , ak〉 → 〈a′1, . . . , a′k′〉 and 〈θ0, . . . , θk〉 :
〈Γ′0, . . .Γ′k〉 → 〈Γ0, . . . ,Γk〉.

Then we have
〈JP K~x(〈α, ~f〉)(b0), 〈b1, . . . , bk〉, η〉

∼

〈b0, 〈JQK~x(f1)(bα(1)), . . . , JQK~x(fn)(bα(k′))〉, α? ◦ η〉

and
〈JP K~x(θ0)(b0), 〈JQK~x(θ1)(b1), . . . , JQK~x(θn)(bn)〉, η〉

∼′

〈b0, 〈b1, . . . , bn〉, (
k⊗
j=0

θj) ◦ η〉

BY IH, there is a natural isomorphism

fPΓ,aJP K~x(Γ, a) ∼= TD(P)~x(Γ, a)

for ~a ∈ SD, a ∈ D,Γ ∈ SDn.
Again , by IH, Lemma 3.4.6 and a simple inspection of the definitions we get a

natural isomorphism

FQ
Γ,a : JQK~x(Γ, a) ∼= TD(Q)~x(Γ, a).

For ~a = 〈a1, . . . , ak〉,~b ∈ SD,∆ ∈ SDn we have then a natural isomorphism

∫ Γ0,...,Γk∈SDn
JP K~x(Γ0,~b⇒ a)×

k∏
i=1

JQK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj) ∼=

(
∑

Γ0,...,Γk
TD(P)~x(Γ0,~b⇒ a)×

k∏
i=1

TD(Q)~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj))/ ∼1

117

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

where the congruence ∼1 is defined in Remark 3.4.9. Then we can make the same
kind of reasoning to get the following natural isomorphism

∫ ~a∈SD ∫ Γ0,...,Γk∈SDn
JP K~x(Γ0,~a⇒ a)×

k∏
i=1

JQK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj) ∼=

∑
~a∈SD

((
∑

Γ0,...,Γk
TD(P)~x(Γ0,~a⇒ a)×

k∏
i=1

TD(Q)~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj))/ ∼1)/ ∼2 .

Then we can conclude by Remark 3.4.9.

3.4.3. Type Derivations under Reduction
In this section we will prove that

JMK~x(∆, a) ∼= JNK~x(∆, a)

when M →β N, refining the standard subject reduction and expansion for intersec-
tion types. Indeed, we recall that, by Theorem 3.4.2,

JMK~x ∼= TD(M)~x

hence, if we prove that
JMK~x(∆, a) ∼= JNK~x(∆, a)

when M →β N, in particular we have TD(M)~x ∼= TD(N)~x. This means that we
have a natural bijection between the set of equivalence classes of type derivations
with conclusion ∆ ` M : a and the set of equivalence classes of type derivations
with conclusion ∆ ` N : a, that is what we called a proof relevant denotational
semantics. In the next chapter we will see as the witness of the former natural
isomorphism can be seen as a reduction relation on (equivalence classes of) type
derivations.
Let M,N ∈ Λ, (fv(M)/{x}) ∪ fv(N) ⊆ ~x and x /∈ ~x. We set SubM,x,N

~x (∆, a) =

∫ ~a∈SD ∫ Γ1,...,Γlen(~a)∈SDn

JMK~x⊕〈~x〉(Γ0 ⊕ 〈~a〉, a)×
l(~a)∏
i=1

JNK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj).

We can now state the following substitution lemma:

Lemma 3.4.11. Let M,N ∈ Λ, (fv(M)/{x}) ∪ fv(N) ⊆ ~x and x /∈ ~x. We have a
natural isomorphism

JM [N/x]K~x(∆, a) ∼= SubM,x,N
~x (∆, a).

118

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

Proof. The proof is detailed in Section A.4.

Remark 3.4.12. Reconstructing all the passages of the proof of the former lemma
and exploiting the constructions of Theorems 2.4.4 and 2.4.5, we give an explicit
definition of the natural isomorphism

subM,x,N : SubM,x,N
~x

∼= JM [N/x]K~x.

This will be very useful to define the interpretation of β-reduction steps.
Let n = len(~x). We work up to the natural isomorphism established in Theo-

rem 3.4.10, hence considering elements of JMK~x as (equivalence classes of) type
derivations.
— If M = x then

SubM,x,N
~x (∆, a) =∫ ~a,Γj

SDn+1(Γ0⊕〈~a〉, 〈〈〉, . . . , 〈〉, 〈a〉〉)×
∏

i∈[len(~a)]
JNK~x(Γi, ai)×SDn(∆,

len(~a)⊗
j=0

Γj)

subM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= JM [N/x]K~x(∆, a)

˜〈~a, 〈Γj〉len(~a)
j=0 , 〈♦Γ0 , 〈α, f〉〉, 〈ϕ1, . . . , ϕlen(~a)〉, η〉 7→ [f]ϕα(1){πn,α(1) ◦ η}.

where πn,α(1) : ⊗len(~a)
j=0 Γj → Γα(1) is indeed the projection in the case where

S is an irrelevant resource monad, while it is simply the identity morphism
1Γα(1) : Γα(1) → Γα(1) otherwise 6.

— If M = λy.M ′ and a = ~b⇒ b 7 then SubM,xi,N
~x (∆,~b⇒ b) =

∫ ~a=〈a1,...,ak〉∈SD ∫ Γj∈SDn
JM ′K~x⊕〈x〉⊕〈y〉(Γ0⊕〈~a〉⊕〈~b〉, b)×

l(~a)∏
i=1

JNK~x(Γi, ai)×SDn(∆,
k⊗
j=0

Γj)

subM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= JM [N/x]K~x(∆, a)

˜〈~a, 〈Γj ⊕ 〈〈〉〉〉len(~a)
j=0 , ϕ, 〈ϕ1, . . . , ϕlen(~a)〉, η〉 8 7→

subM
′,x,N

∆⊕〈~b〉,b(
˜〈~a, 〈Γj ⊕ 〈〈〉〉〉len(~a)

j=0 , ϕ, 〈ϕ1, . . . , ϕlen(~a)〉, η〉)

where
subM ′,x,N : SubM,x,N

~x⊕〈y〉
∼= JM [N/x]K~x⊕〈y〉

is the natural isomorphism given by the IH.

6. It is easy to check that in the relevant and linear cases, ~a is necessarily a singleton.
7. We recall that if the type is not an implication then the structures considered are empty.
8. We are working up the the straightforward ”embedding” JMK~x(∆, a) → JMK~x⊕〈y〉(∆ ⊕

〈〈〉〉, a), where we suppose that y /∈ fv(M).

119

3. Intersection Type Distributors – 3.4. Intersection Types as Distributors

— If M = PQ then
SubM,x,N(∆, a) =∫ ~a=〈a1,...,ak〉 ∫ Γ0,Γi

JPQK~x⊕〈x〉(Γ0 ⊕ 〈~a〉, a)×
k∏
i=1

JNK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj).

and we recall that by definition of substitution of an application and by IH

JM{N/x}K~x(∆, a) ∼=
∫ ~a ∫ Γj

(∫ ~a0
∫ Γ0,0,~Γ0

JP K~x⊕〈x〉(Γ0,0 ⊕ 〈~a0〉,~a⇒ a)× JNK~x(~Γ,~a0)× SDn(Γ0,Γ0,0 ⊗ ~Γ0)
)
×

len(~a)∏
i=1

(∫ ~ai
∫ Γi,0,~Γi

JQK~x⊕〈x〉(Γi ⊕ 〈~ai〉, ai)× JNK~x(~Γi,~ai)× SDn(Γi,Γ0,i ⊗ ~Γi)
)

×SDn(∆,
len(~a)⊗
j=0

Γj)

The natural isomorphism is then given by the following family of functions

subM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= JM [N/x]K~x(∆, a)

〈~a, ~Γ = 〈Γ〉len(~a)
j=0 , 〈~b, 〈Γ′j′ ⊕ 〈~aj′〉〉

len(~b)
j′ , 〈ϕ, ~ψ, η ⊕ 〈f〉〉〉, ~ϕ, θ〉 7→

〈~b, 〈Γ′j′,0 ⊗ ([f]~Γ)j′〉len(~b)
j′=0 , subP,x,NΓ′0,0⊗([f]~Γ)0,~b⇒a

(
〈Γ′0,0 ⊗ Γ~a1 , ϕ, ([f]~ϕ)0, 1〉

)
,

〈subQ,x,NΓ′0,i′⊗([f]~Γ)i′ ,bi′

(
Γ′0,i′ ⊗ ([f]~Γ)i′ , ψi′ , ([f]~ϕ)i′ , 1

)
〉len(~b)
i′=1 ,

(~τ ◦ (η ⊗ sm(f)?))〉

where
subP,x,N : SubP,x,N~x

∼= P{N/x}

subQ,x,N : SubQ,x,N~x
∼= Q{N/x}

are the isos given by the IH. and ~τ is the permutation

~τ :
len(~b)⊗
j′=0

Γ′j′,0 ⊗ (~Γ{α})→
len(~b)⊗
j′=0

(Γ′j′,0 ⊗ (~Γ{α})j′).

Theorem 3.4.13. Let M,N ∈ Λ, ~x ⊇ fv(M) ∪ fv(N) and M →β N. We have a
natural isomorphism

JMK~x(∆, a) ∼= JNK~x(∆, a).

Proof. By induction on the reduction step M →β N. We suppose that len(~x) = n.

120

3. Intersection Type Distributors – 3.5. Normalization Theorems

Let M = (λx.P)Q and N = M{N/x}. Then JMK~x(∆, a) =

∫ ~a=〈a1,...,ak〉∈SD ∫ Γ0,...,Γk∈SDn
JP K~x⊕〈x〉(Γ0⊕〈~a〉, a)×

k∏
i=1

JQK~x(Γi, ai)×SDn(∆,
k⊗
j=0

Γj).

Then we conclude applying the former lemma.
If M = λx.M ′ then N = λx.N ′ with M ′ →β N

′. By definition we have

Jλx.M ′K~x(∆,~a⇒ a) = JM ′K~x⊕〈x〉(∆⊕ 〈~a〉, a)

then we apply the IH and conclude.
If M = PQ then either N = P ′Q and P →β P

′ or N = PQ′ and Q→β Q
′. Both

cases are a direct consequence of the IH.

Remark 3.4.14. Simply applying Remark 3.4.12 and the former theorem, we can
extend the denotation to β-reduction steps, by induction as follows:
— If M →β N = (λx.M)N →β M{N/x} then

JM →β NK~x = subM,x,n

— If M →β N = λy.M ′ →β λy.N
′ then

JM →β NK~x = βM ′,N ′

where βM ′,N ′ : JM ′K~x⊕〈y〉 ∼= JN ′K~x⊕〈y〉 is given by the IH.
— If M →β N = PQ→β P

′Q with P →β P
′ then

JM →β NK~x =
∫ ~a=〈a1,...,ak〉,Γj

βP,P
′

Γ0,~a⇒− ×
k∏
i=1

JQK~x(Γi, ai)× SDn(−,
k⊗
j=1

Γj)

where βP,P ′ : JP K~x ∼= JP ′K~x is given by the IH.
— If M →β N = PQ→β PQ

′ with Q→β Q
′ then

JM →β NK~x =
∫ ~a=〈a1,...,ak〉,Γj

JP K~x(Γ0,~a⇒ −)×
k∏
i=1

βQ,Q
′

Γi,ai × SD
n(−,

k⊗
j=1

Γj)

where βQ,Q′ : JQK~x ∼= JQ′K~x is given by the IH.

3.5. Normalization Theorems
In this section we present a parametric normalization theorem for our systems,

adapting the reducibility argument of [Car07; Kri93] to our categorified setting.

121

3. Intersection Type Distributors – 3.5. Normalization Theorems

The construction of the argument is classical, but there is a technical improvement
to be made in order to lift it to a category-theoretic perspective.

We shall consider the three fundamental notions of normalization for λ-calculus,
that is head-normalization, β-normalization and strong normalization.

Lemma 3.5.1. Let M ∈ Λ be a head-normal form. Then

JMK~x 6= ∅DA,SDlen(~x)
A

.

Proof. We have that M = λx1 . . . λxm.xQ1 · · ·Qn. We prove it for xQ1 · · ·Qn,
choosing as list of variables ~y = ~x⊕〈x1, . . . , xm〉 = 〈y1, . . . , yk〉 where k = m+len(~x),
the extension being immediate.
Let b = 〈〉 ⇒ · · · ⇒ 〈〉 ⇒ a. It is enough to take the following type derivation

π =

1〈〉, . . . , 1〈b〉, . . . , 1〈〉
y1 : 〈〉, . . . , x : 〈b〉, . . . , yk : 1〈〉 ` x : 〈〉 ⇒ · · · ⇒ 〈〉 ⇒ a

y1 : 〈〉, . . . , x : 〈b〉, . . . , yk : 〈〉 ` xQ1 · · ·Qn : a
Then TD(M)~y(〈〈〉, . . . , 〈b〉, . . . , 〈〉〉, a) is non-empty for all types a ∈ D. By Theo-

rem 3.4.10 we have JMK~y(〈〈〉, . . . , 〈b〉, . . . , 〈〉〉, a) 6= ∅.

Corollary 3.5.2. Let M ∈ Λ. If M is head-normalizable then JMK~x 6= ∅DA,SDlen(~x)
A

.

Proof. Corollary of the former lemma and Theorem 3.4.13.

Definition 3.5.3. We inductively define two subsets Pos,Neg of ob(D):
— ob(A) ⊂ Pos and ob(A) ⊂ Neg;
— if ~a ∈ Neg! and a ∈ Pos then ~a⇒ a ∈ Pos.
— if ~a ∈ Pos! such that ~a 6= 〈〉 and a ∈ Neg then (~a, a) ∈ Neg.

We remark that the two considered subset defines two full subcategories of D
in the natural way. If a ∈ Pos(resp. a ∈ Neg) we say that a is positive (resp.
negative). For Γ ∈ SDn for some n ∈ N, we say that it is positive (resp. negative)
it all its components are. We set (JMK~x)|Pos : ((S(Neg))len(~x))o × Pos → Set for
the evident restriction of the distributor JMK~x to the two categories.
We also define another subset of D+ ⊆ ob(D) as the smallest set generated by

the following grammar:
o ∈ A | 〈a0, . . . , ak〉 ⇒ a

hence if ~a⇒ a ∈ D+ then ~a 6= 〈〉. Clearly also D+ defines a full-subcategory of D
in the natural way. We set (JMK~x)|D+ for the evident restriction of JMK~x to D+.

Lemma 3.5.4. Let M ∈ Λ be a β-normal form. Then

(JMK~x)|Pos 6= ∅Pos,(S(Neg))len(~x) .

122

3. Intersection Type Distributors – 3.5. Normalization Theorems

Proof. By induction on the size of M = λx1. . . . λxm.xQ1 . . . Qn. We set ~y = ~x⊕
〈x1, . . . , xm〉. We prove the result for M ′ = xQ1 . . . Qn, the extension being immedi-
ate. By IH we have that (JQiK~y)|Pos(Γi, ai) 6= ∅ for some Γi ∈ S(Neg)len(~y), ai ∈ Pos
for i ∈ [n]. L Consider the type b = 〈a1〉 ⇒ · · · ⇒ 〈an〉 ⇒ o for a ∈ Pos. Since
a1, . . . , an ∈ Pos and o ∈ Neg we have that b ∈ Neg.
Let Γ0 = 〈〈〉, . . . 〈b〉, . . . 〈〉〉. Then we have by definition

(JM ′K~y)|Pos(
n⊗
j=0

Γj, o) 6= ∅.

Corollary 3.5.5. Let M ∈ Λ. If M is β-normalizable then

(JMK~x)|Pos 6= ∅Pos,(S(Neg))len(~x) .

Proof. Corollary of the former lemma and Theorem 3.4.13.

Lemma 3.5.6. Let M ∈ Λ be a β-normal form and S be an irrelevant resource
monad. Then

(JMK~x)|D+ 6= ∅D+,(S(D+))len(~x) .

Proof. By induction on the size of M = λx1. . . . λxm.xQ1 . . . Qn. We set ~y =
~x ⊕ 〈x1, . . . , xm〉. We prove the result for M ′ = xQ1 . . . Qn, the extension being
immediate. If n = 0 we use the irrelevancy of the resource monad and we type x
as follows

♦~a1 , . . . 1a, . . . ,♦~alen(~y)

y1 : ~a1, . . . , x : 〈a〉, . . . , ylen(~y) ` x : a
and by Theorem 3.4.10 we conclude. If n 6= 0 then the proof follows the same
pattern as the one of Lemma 3.5.4.

Corollary 3.5.7. Let M ∈ Λ and S be an irrelevant resource monad. If M is
β-normalizable then

(JMK~x)|D+ 6= ∅D+,(S(D+))len(~x) .

Proof. Corollary of the former lemma and Theorem 3.4.13.

We are now ready to present our reducibility argument. For a a set X ⊆ Λ we say
that X is saturated when ifM{N/x}N1 . . . Nn ∈ X then ((λx.M)N)N1 . . . Nn ∈ X .
Given X1,X2 ⊆ Λ, we write X1 ⇒ X2 = {M ∈ Λ | for all N ∈ X1,MN ∈ X2}.
Given a small category A an interpretation is a functor I : A → ((℘Λ)∗,⊆),

where (℘Λ)∗ = {X ⊆ Λ | X is saturated }. Given δ ∈ DA t SDA we define the set
of realizers of δ by induction as follows:

JoKI = I(o) J〈〉KI = Λ J〈a0, . . . , ak〉KI =
k⋂
i=0

JaiKI

123

3. Intersection Type Distributors – 3.5. Normalization Theorems

J~a⇒ aKI = J~aKI ⇒ JaK

by construction we have that JδKI is saturated.

Lemma 3.5.8. Let δ, δ′ ∈ DA t SDA. If f : δ → δ′ then JδKI ⊆ Jδ′KI .

Proof. By induction on the structure of δ′. If δ′ = o ∈ A then δ = o′ ∈ A
and the result follows immediately by functoriality of I. If δ′ = ~a ⇒ a then
δ = ~a′ ⇒ a′, 〈α,~g〉 : ~a′ → ~a and g : a → a′ with f = 〈α,~g〉 ⇒ g. By IH,
J~a′KI ⊆ J~aKI and JaKI ⊆ Ja′KI . By a simple inspection of the definitions we can
conclude, since if M ∈ J~a ⇒ aK then for all N ∈ J~a′KI ⊆ J~aKI one has that
MN ∈ JaKI ⊆ Ja′KI . If δ′ = 〈〉 then the result is immediate since J〈〉KI = Λ. If
δ′ = 〈a0, . . . , ak〉 then δ = 〈a′0, . . . , a′k′〉 and f = 〈α, f0, . . . , fk〉 with fi : a′α(i) → ai.

By inductive hypothesis then Jaα(i)KI ⊆ JaiKI . Since
⋂k′
j=0Ja′jKI ⊆

⋂k
i=0Ja′α(i)KI we

can conclude.

Lemma 3.5.9. Let M,N1, . . . , Nn ∈ Λ and I be an interpretation. If x1 :
~a1, . . . , xn : ~an `M : a and Ni ∈ J~aiKI then M{N1, . . . , Nn/x1, . . . , xn} ∈ JaKI .

Proof. If M = xi then M{N1, . . . , Nn/x1, . . . , xn} = Ni ∈ JaK. We have

f1 : ~a1 → 〈〉, . . . , fi : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
x1 : ~a1, . . . , xi : ~ai, . . . , xn : ~an ` xi : a

By hypothesis Ni ∈ J~aiK then, by Lemma 3.5.8 we can conclude. The abstraction
case is immediate by IH and the application case is again a corollary of Lemma
3.5.8 and the IH.

We define
— HN = {M ∈ Λ | The head-reduction of M ends} and HN 0 = {xN1 . . . Nn |

Ni ∈ Λ}.
— N = {M ∈ Λ | the left reduction of M ends} and N0 = {xN1 . . . Nn | Ni ∈
N}.

— SN = {M ∈ Λ | M is strongly normalizable },SN 0 = {xN1 . . . Nn | Ni ∈
SN}.

Lemma 3.5.10. The following statements hold.
1. HN is saturated.
2. N is saturated.
3. SN is saturated.

Proof. — Immediate by definition.
— Immediate by observing that λx1. . . . λxm.P{Q/x}Q1 · · ·Qn is exactly the left

reduct of λx1. . . . λxm.(λx.P)QQ1 · · ·Qn.

124

3. Intersection Type Distributors – 3.5. Normalization Theorems

— Direct consequence of the definition of strong normalization, it is proven in
[Kri93].

We set IHN : A → ((℘Λ)∗,⊆) to be the functor such that for all a ∈ A,
IHN(a) = HN , the action on morphisms being the trivial one. We define in the
same way IN and ISN .

Lemma 3.5.11. For all a ∈ DA we have
1. HN 0 ⊆ JaKIHN ⊆ HN .
2. If a is positive (resp. negative) then N0 ⊆ JaKIN (resp.JaKIN ⊆ N).
3. if a ∈ D+ then SN 0 ⊆ JaKISN ⊆ SN .

Proof. 1. By induction on a. If a = o then the result is immediate by definition.
If a = ~a ⇒ a′, with ~a = 〈a1, . . . , ak〉. by IH HN 0 ⊆ JaiKIHN ⊆ HN for
0 ≤ i ≤ k and HN 0 ⊆ Ja′KIHN ⊆ HN . By definition, if M ∈ JaKIHN then
for all N ∈ J~aKIHN we have MN ∈ Ja′KIHN ⊆ HN . Take xN1 . . . Nn ∈ HN 0.
Then for Q ∈ J~aKIHN we have xN1 . . . NnQ ∈ Ja′KIHN .

2. By induction on a. If a = o then the result is immediate by definition. If
a = ~a⇒ a′ then suppose that a is positive. This means that ~a (resp. a′) is
negative (resp. positive). Then, by IH , J~aKIN ⊆ N and N0 ⊆ Ja′KIN . Then for
xN1 . . . Nn ∈ N0 take Q ∈ J~aKIN . By IH, Q ∈ N and xN1 . . . NnQ ∈ Ja′KIN .
Then by definition, xN1 . . . Nn ∈ JaKIN .
Suppose that a is negative. Then ~a 6= 〈〉 is positive and a is negative. By
IH Ja′KIN ⊆ N and N0 ⊆ J~aKIN . Given M ∈ JaKIN we have that for all
Q ∈ J~aKIN ⊆ N MQ ∈ Ja′KIN ⊆ N . Then the left reduction of MQ ends. In
particular, this means that the left reduction of M ends. Then M ∈ N .

3. By induction on a. If a = o then the result is immediate by definition. If
a = ~a ⇒ a′, since a ∈ D+ we have ~a = 〈a0, . . . , ak〉 and by IH SN 0 ⊆
JaiKISN ⊆ SN for 0 ≤ i ≤ k and SN 0 ⊆ Ja′KISN ⊆ SN . By definition, if
M ∈ JaKISN then for all N ∈ J~aKISN we have MN ∈ Ja′KISN ⊆ SN . Take
xN1 . . . Nn ∈ SN 0. Then for Q ∈ J~aKISN we have xN1 . . . NnQ ∈ Ja′KISN .

Lemma 3.5.12. Let M ∈ Λ. The following statements hold.
1. If M is typable in the system ES

A then the head-reduction of M ends.
2. Let Γ be a negative context and a a positive type. If Γ `ESA M : a then the left

reduction of M ends.
3. Let Γ ∈ (SD+)n for some n ∈ N and a ∈ D+ . If Γ `ESA M : a then M is

strongly normalizable.

125

3. Intersection Type Distributors – 3.5. Normalization Theorems

Proof. 1. By lemma 3.5.11 we have xi ∈ JaiKIHN . By Lemma 3.5.9 we have that

M{x1, . . . xn/x1, . . . , xn} = M ∈ JaKIHN .

By Lemma 3.5.11 we have JaKIHN ⊆ HN . Then M ∈ HN .
2. By lemma 3.5.11 we have xi ∈ JaiKIN . By Lemma 3.5.9 we have that

M{x1, . . . xn/x1, . . . , xn} = M ∈ JaKIN .

By Lemma 3.5.11 we have JaKIN ⊆ HN . Then M ∈ N .
3. By lemma 3.5.11 we have xi ∈ JaiKISN . By Lemma 3.5.9 we have that

M{x1, . . . xn/x1, . . . , xn} = M ∈ JaKISN .

By Lemma 3.5.11 we have JaKISN ⊆ SN . Then M ∈ SN .

Theorem 3.5.13. Let M ∈ Λ. The following statements are equivalent.
1. JMK~x 6= ∅D,SDlen(~x) .

2. The head-reduction of M ends.
3. M is head-normalizable.

Proof. (1) ⇒ (2) Corollary of Theorems 3.4.10 and Lemma 3.5.12. (2) ⇒ (3)
immediate by definition. (3)⇒ (1) by Theorem 3.4.2 and Corollary 3.5.2.

Theorem 3.5.14. Let M ∈ Λ. The following statements are equivalent.
1. (JMK~x)|Pos 6= ∅Pos,(S(Neg))len(~x) .

2. The left reduction of M ends.
3. M is β-normalizable.

Proof. (1) ⇒ (2) Corollary of Theorems 3.4.10 and Lemma 3.5.12. (2) ⇒ (3)
immediate by definition. (3)⇒ (1) by Theorem 3.4.2 and Corollary 3.5.5.

Theorem 3.5.15. Let M ∈ Λ and S be an irrelevant resource monad. The
following statements are equivalent.

1. (JMK~x)|D+ 6= ∅D+,(S(D+))len(~x) .

2. M is strongly normalizable.

Proof. (1) ⇒ (2) Corollary of Theorems 3.4.10 and Lemma 3.5.12. (2) ⇒ (3)
immediate by definition. (3)⇒ (1) by Theorem 3.4.2 and Corollary 3.5.7.

126

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

3.6. Some Worked Out Examples
We present two concrete constructions of the distributor-induced denotational

semantics that we introduced in the previous sections.
We chose the examples of the linear resource monad (symmetric monoidal strict

completion) and of the cartesian one (cartesian strict completion). Those two
examples are particularly relevant since they correspond to the categorification of
the two best known intersection type systems: the linear logic induced Gardner-De
Carvalho System R [Gar94; Car07] and the original Coppo-Dezani System DΩ
[CD78]. The first one is non-idempotent, the second one is idempotent. In our
setting, the idempotency issue is replaced by an operational one: which operations
do we allow on intersections?

3.6.1. Example 1: Linear Resources
We present a refinement of the standard Gardner-De Carvalho non-idempotent

intersection type system R. That system has a categorical counterpart in the linear
logic induced relational model for pure λ-calculus [Car07]. The intersection type is
given by multisets. In our case, we achieve a non-idempotent and commutative (up
to isos) intersection type system applying our construction in the special case where
the resource monad S is the 2-monad for symmetric strict monoidal categories.
The corresponding intersection type system is system RA in Figure 3.7.

In the linear case, we can prove the head-normalization theorem in a combinatorial
way 9. We set JMKRA~x to be the denotation of M in the case where S is the linear
resource monad. We define the size of a type derivation by induction as follows:

s
(

α : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

)
= 0

s


π...

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

 = s (π)

s


π0...

Γ0 `M : ~a⇒ a

 πi...
Γi `M : ai

k
i=1 η : ∆→⊗k

j=0 Γj
∆ `MN : a

 = s (π0) +
∑
i∈[k]

s (πi) + 1

By an easy inspection of the definitions, we have that the size is stable under
actions and under congruence: if π, π′ ∈ RA and π ∼ π′ then s (π) ∼ s (π′) .

Let ρ∆,a : JMKRA~x (∆, a) ∼= TD(M)RA~x (∆, a) be the isomorphism given by Theorem
3.4.2. Then for α ∈ JMK~x(∆, a) we set s (α) = s (ρ∆,a(α)) . Given ~α = 〈α1, . . . , αk〉
with αi ∈ JMK~x, we set s (~α) = ∑k

i=1 s (αi) .
Lemma 3.6.1. Let M,N be two λ-terms, ~x ⊃ fv(M) ∪ fv(N) with x /∈ ~x and

subM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= JM{N/x}KRA~x (∆, a)

9. Actually, the same argument can be used also in the semicartesian case.

127

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

be the natural isomorphism defined in Remark 3.4.12. For all α = ˜〈π, ~ψ, η〉 ∈
SubM,x,N

~x (∆, a), we have

s
(
subM,x,N

∆,a (α)
)

= s (π) + s
(
~ψ
)
.

Proof. By induction on the structure of M{N/x}, exploiting Remark 3.4.12. If
M = x then M{N/x} = N and

SubM,x,N
~x (∆, a) ∼=

∫ a′∈D ∫ Γ∈SDn
SDn(〈〈〉, . . . , 〈〉, 〈a′〉〉, 〈a〉)×J~xKN(Γ, a′)×SDn(∆,Γ).

By Remark 3.4.12 the natural isomorphism subM,x,N
∆,a is given by the following

function:
˜〈a′,Γ, 〈 ~1〈〉, 〈f〉〉, 〈ρ〉, η〉 7→ [f]ρ{η}.

Since the size is stable under actions, we can conclude, since s (〈ρ〉)+s
(
〈 ~1〈〉, 〈f〉〉

)
=

s (ρ).
If M = y with y 6= x the result is immediate by definition. If M = λy.M ′ the

result is immediate by IH. If M = PQ we have

subM,x,N
∆,a : SubM,x,N

~x (∆, a) ∼= JM [N/x]K~x(∆, a)

〈~a, ~Γ = 〈Γ〉len(~a)
j=0 , 〈~b, 〈Γ′j′ ⊕ 〈~aj′〉〉

len(~b)
j′ , 〈ϕ, ~ψ, η ⊕ 〈f〉〉〉, ~ϕ, θ〉 7→

〈~b, 〈Γ′j′,0 ⊗ ([f]~Γ)j′〉len(~b)
j′=0 , subP,x,NΓ′0,0⊗([f]~Γ)0,~b⇒a

(
〈Γ′0,0 ⊗ Γ~a1 , ϕ, ([f]~ϕ)0, 1〉

)
,

〈subQ,x,NΓ′0,i′⊗([f]~Γ)i′ ,bi′

(
Γ′0,i′ ⊗ ([f]~Γ)i′ , ψi′ , ([f]~ϕ)i′ , 1

)
〉len(~b)
i′=1 ,

(τ ◦ (η ⊗ sm(f)?))〉

where
subP,x,N : SubP,x,N~x

∼= P{N/x}

and
subQ,x,N : SubQ,x,N~x

∼= Q{N/x}

are the isos given by the IH and ~τ is the appropriate permutation. By IH, we have
that

s
(

subP,x,NΓ′0,0⊗([f]~Γ)0,~b⇒a

(
〈Γ′0,0 ⊗ Γ~a1 , ϕ, ([f]~ϕ)0, 1〉

))
= s (ϕ) + s (([f]~ϕ)0)

and

subQ,x,NΓ′0,i′⊗([f]~Γ)i′ ,bi′

(
Γ′0,i′ ⊗ ([f]~Γ)i′ , ψi′ , ([f]~ϕ)i′ , 1

)
= s (ψi′) + s (([f]~ϕ)i′)

128

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

now, by commutativity of the sum we have s ([f]~ϕ) = ∑len(~b)
j′=0 s (([f]~ϕ)j′) . Since the

size is stable under left action, we get s ([f]~ϕ) = s (~ϕ) . Let

β = 〈~b, 〈Γ′j′,0 ⊗ ([f]~Γ)j′〉len(~b)
j′=0 , subP,x,NΓ′0,0⊗([f]~Γ)0,~b⇒a

(
〈Γ′0,0 ⊗ Γ~a1 , ϕ, ([f]~ϕ)0, 1〉

)
,

〈subQ,x,NΓ′0,i′⊗([f]~Γ)i′ ,bi′

(
Γ′0,i′ ⊗ ([f]~Γ)i′ , ψi′ , ([f]~ϕ)i′ , 1

)
〉len(~b)
i′=1 ,

(τ ◦ (η ⊗ sm(f)?))〉.

By definition of the size of a derivation of an application we get

s (β) = (s (ϕ) + s (([f]~ϕ)0)) + (
len(~b)∑
i′=1

s (ψi′) + s (([f]~ϕ)i′)) + 1 =

(s (ϕ) + s
(
〈ψ1, . . . , ψlen(~b)〉

)
+ 1) + s (~ϕ) .

We denote the head-reduct of M as H(M).

Theorem 3.6.2. Let M ∈ Λ. We have a natural isomorphism

ϕ∆,a : JMKRA~x (∆, a) ∼= JH(M)KRA~x (∆, a)

such that for α ∈ JMKRA~x (∆, a), s (ϕ∆,a(α)) � s (α) .

Proof. Direct corollary of the former lemma.

Theorem 3.6.3. Let M ∈ Λ. If JMKRA~x 6= ∅D,SDlen(~x) the head reduction of M ends.

Proof. We have that, for ϕ : JMKRA~x ∼= JH(M)KRA~x . If JMKRA~x 6= ∅D,SDlen(~x) then
JH(M)KRA~x 6= ∅D,SDlen(~x) . We consider α ∈ JMKRA~x (∆, a) for some 〈∆, a〉 ∈ SDlen(~x)×
D. Then, by the former theorem, s (ϕ∆,a) < s (α) . Then we can apply the IH and
conclude.

Example 3.6.4. We provide some example of type derivations in system RA, giving
also some intuition for what concerns the congruence on type derivations.

1. We fix two types a, a′ and a morphism f : a′ → a between them. One can
think of them as, e.g. a = 〈∗, 〈∗〉 ⇒ ∗〉 and a′ = 〈〈∗〉 ⇒ ∗, ∗〉 with f = σ ⇒ 1
being the obvious permutation.
Let us type the term xx :

1 : 〈a〉 ⇒ a→ 〈a〉 ⇒ a

x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

1 : a→ a

x : 〈a〉 ` x : a 〈(1, 2), f, 1〉
x : 〈a′, 〈a〉 ⇒ a〉 ` xx : a

129

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

System RA :

α : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
∆, x : ~a `M : a

∆ ` λx.M : ~a⇒ a

Γ0 `M : ~a⇒ a (Γi ` N : ai)i∈[k] η : ∆→⊗k
j=0 Γj

∆ `MN : a

System CA :

f1 : ~a1 → 〈〉, . . . , fi : ~a→ 〈a〉, . . . , fn : ~an → 〈〉
x1 : ~a1, . . . , xi : ~a, . . . xn : ~an ` xi : a

∆, x : ~a `M : a
∆ ` λx.M : ~a⇒ a

∆ `M : ~a⇒ a (∆ ` N : ai)i∈[k]

∆ `MN : a

Where ~a = 〈a1, . . . , ak〉.

Figure 3.7. – Intersection type systems RA and CA.

We call π the previous derivation. Now consider the following type derivation
π′

1 : (〈a〉 ⇒ a)→ (〈a〉 ⇒ a)
x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

f : a′ → a

x : 〈a′〉 ` x : a 〈(1, 2), 1, 1〉
x : 〈a′, 〈a〉 ⇒ a〉 ` xx : a

We produced π′ by anticipating the morphism induced by α in π. The equivalence
induced by the semantics (3.3) says that we have the right to consider π and
π′ as the same type derivation.

2. Let us type the λ-term (λx.x)z :

π =

f : a′ → a

x : 〈a′〉 ` x : a
` λx.x : 〈a′〉 ⇒ a

1 : a′ → a′

z : 〈a′〉 ` z : a′ 1
z : 〈a′〉 ` (λx.x)z : a

Now consider the following derivation

π′ =

1 : a→ a

x : 〈a〉 ` x : a
` λx.x : 〈a〉 ⇒ a

f : a′ → a

z : 〈a′〉 ` z : a 1
z : 〈a′〉 ` (λx.x)z : a

130

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

We produced π′ by swapping the role of the morphism f in π. The equivalence
induced by the semantics (3.2) says that we have the right to consider π and
π′ as the same type derivation.

Example 3.6.5. We provide a simple example of reduction of type derivations to
ease the understanding of the congruence’s role in establishing the natural isomor-
phisms. Consider M = (λx.x)y. We type it with the following type derivations:

π1 =

h ◦ f : a→ b

x : 〈a〉 ` x : b
` λx.x : 〈a〉 ⇒ b

g : c→ a

y : 〈c〉 ` y : a 1
y : 〈c〉 ` (λx.x)y : b

π2 =

h ◦ f ′ : d→ b

x : 〈a〉 ` x : b
` λx.x : 〈d〉 ⇒ b

g′ : c→ d

y : 〈c〉 ` y : d 1
y : 〈c〉 ` (λx.x)y : b

suppose that f ◦ g = f ′ ◦ g′ and h : b → b, f : a → b, f ′ : d → b. We have that
π1 ∼ π2. Indeed, by the first rule of Figure 3.2:

π1 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ◦ g : c→ b

y : 〈c〉 ` y : b 1
y : 〈c〉 ` (λx.x)y : b

π2 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ′ ◦ g′ : c→ b

y : 〈c〉 ` y : b 1
y : 〈c〉 ` (λx.x)y : b

and by the hypothesis that f ◦ g = f ′ ◦ g′ we can conclude by transitivity. In
particular, this means that the quotient identify all couple of morphisms leading
to the same composition. Now, we have that M → y. Consider the following type
derivation of y :

π3 =
h ◦ (f ◦ g) : c→ b

y : 〈c〉 ` y : b
By an easy inspection of the definitions we have that for ϕ〈c〉,b : JMK〈y〉(〈c〉, b) ∼=
JyK〈y〉(〈c〉, b), ϕ〈c〉,b(π̃1) = π3, where we keep implicit the isomorphism given by
Theorem 3.4. There is then a nice correspondence between substitution on the term
side and composition on the morphism side, that validates the basic intuition of
categorical semantics 10.

10. The natural isomorphism ϕ〈c〉,b : JMK〈y〉(〈c〉, b) ∼= JyK〈y〉(〈c〉, b) is a particular instance of
the Yoneda Lemma for coends (Theorem 2.4.5).

131

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

3.6.2. Example 2: Cartesian Resources
In this section we focus on the type theoretic semantics induced by the cartesian

resource monad. In this framework, a resource can be copied and deleted at will.
When SA is cartesian, the Day convolution on PSA is isomorphic to the cartesian

product. Hence, we have the following natural isomorphism (see Proposition 2.5.3)

G ◦ F (~a, c) ∼=
∫ 〈b1,...,bk〉∈SB

G(~b, c)×
∏
i∈[n]

F (~a, bi).

By straightforward coend manipulations 11, we derive the type system CA de-
scribed in Figure 3.7. Actions on type derivations are defined in the straightforward
way. The equivalence on type derivation in this case is generated only by (3.2),
since now the coend on contexts disappeared. It is worth noting that the cartesian
category SDA admits all the basic axioms imposed on the preorder over idempotent
intersection types [ABD06]. This means that our construction generalizes the
standard subtyping relation, as expected. However, the two conditions

πi,2 : ~a1 ⊕ ~a2 → ~ai c~a : ~a→ ~a⊕ ~a

do not determine an idempotency ~a⊕~a ∼= ~a. In our categorified setting, idempotency
is replaced by the possibility to perform two operations on resources: copying and
deleting.

Example 3.6.6. We provide some example of type derivations in system CA, giving
also some intuition for what concerns the congruence on type derivations.

1. Let us type the term M = (λx.(xx)x). Let b = 〈a〉 ⇒ 〈a〉 ⇒ a. Consider the
following type derivation π :

π1 : 〈b, a〉 → 〈b〉
x : 〈b, a〉 ` x : 〈a〉 ⇒ 〈a〉 ⇒ a

π2 : 〈b, a〉 → 〈a〉
x : 〈b, a〉 ` x : a

x : 〈b, a〉 ` xx : 〈a〉 ⇒ a

π2 : 〈b, a〉 → 〈a〉
x : 〈b, a〉 ` x : a

x : 〈b, a〉 ` (xx)x : a
` λx.(xx)x : 〈b, a〉 ⇒ a

Now consider the following type derivation ρ :
π...

` λx.(xx)x : 〈b, a〉 ⇒ a ` N : b ` N : a
` (λx.(xx)x)N : a

and π′ :

11. Simply observing that the tensor product over SDn is cartesian.

132

3. Intersection Type Distributors – 3.6. Some Worked Out Examples

π1 : 〈b, a, a〉 → 〈b〉
x : 〈b, a, a〉 ` x : 〈a〉 ⇒ 〈a〉 ⇒ a

π2 : 〈b, a, a〉 → 〈a〉
x : 〈b, a, a〉 ` x : a

x : 〈b, a, a〉 ` xx : 〈a〉 ⇒ a

π3 : 〈b, a, a〉 → 〈a〉
x : 〈b, a, a〉 ` x : a

x : 〈b, a, a〉 ` (xx)x : a
` λx.(xx)x : 〈b, a, a〉 ⇒ a

We have that π = [c∗ ⇒ 1]π′ where c∗ = 1〈b〉 ⊕ c〈a〉. If we consider then the
following derivation ρ′ :

π′...
` λx.(xx)x : 〈b, a, a〉 ⇒ a ` N : b ` N : a ` N : a

` (λx.(xx)x)N : a

We have that ρ ∼ ρ′ by the first rule of congruence (3.2).

133

4. Subtyping-Aware Polyadic
Calculus and Rigid Expansion of
Ordinary λ-Terms

4.1. Introduction
In [TAO17] the rigid Taylor Expansion of λ-terms is introduced and studied

in a simply typed η-long framework with fixpoints. The rigid Taylor expansion
is a bicategorical denotational semantics for λ-terms in the particular setting of
generalized species of structures. A term is interpreted as a distributor that takes
as inputs a type context ∆ and a type a and returns sets of well-typed linear
approximants 1, roughly

JMK(∆, a) = {p̃ | pCM and ∆ ` p : a}

where the equivalence relation on approximants depends on the coend formula
quotient and pCM means that p approximates M .

In this chapter we extend that notion to the pure λ-calculus and we establish a
formal relationship between rigid Taylor Expansion and Intersection Type Distrib-
utors. In particular, we will not limit ourself to the linear case, but we will carry
out a parametric construction over resource monads, as we have already done for
intersection type distributors.

The main goal of the chapter is to find an appropriate calculus of approximants
for ordinary λ-terms that could be seen as the term language for the intersection
type systems introduced in the previous chapter. We will find out that the right
notion of approximant in this context is an hybrid between type derivations and a
standard resource calculus (Section 4.2.4). These approximants are connected to
λ-terms via a rigid expansion, that can be seen as the structure which ”corresponds”
in our setting to the ordinary Taylor expansion.
We will finally obtain (Definition 4.2.3) a reduction relation on approximants,

that makes explicit the dynamical content of the natural isomorphisms defined
in Remark 3.4.14. Hence, modulo the isomorphism between intersection type
distributors and rigid expansion (Theorem 4.3.4), we have that the 2-cell

βM,N : JMK~x ∼= JNK~x

1. The typing is given in a standard linear intersection type system.

134

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.1. Introduction

associated to a β-reduction step M →β N is given by performing a corresponding
reduction step on approximants.
Throughout the chapter we shall make an extensive use of the notations and

operations on lists introduced in Section 2.6.2.

Structure of the Chapter First we introduce the subtyping-aware polyadic
calculus, that has to be understood as the term language for our parametric
intersection type system ES

A, defined in Chapter 3 (Figure 3.3). We present a
type assignment for these terms and we define right and left morphisms actions.
We introduce a congruence on polyadic type derivations which mimics the one
already introduced in Chapter 3 (3.3). We prove that a polyadic type derivation
is univocally determined by its point, i.e., by the morphism and term associated
to it. For this reason, we can restrict our consideration to points. We define an
appropriate reduction relation on points. We then introduce the rigid expansion of
ordinary λ-terms, that is a distributor that, given as input a context ∆ ∈ SDn and
a type a ∈ D, returns sets of well-typed approximants of ordinary λ-terms, i.e.,
subtyping-aware polyadic terms together with morphisms information. We prove
that the rigid expansion of a λ-term is naturally isomorphic to its intersection
type distributor. We study this structure under reduction, extending basic results
already known about the Taylor expansion (see Chapter 1) to this finer setting.
Finally, we study a particular case of our construction, that is the linear one. We
present a relationship between rigid expansion and ordinary Taylor expansion in
this setting.

Discussion of Related Work In [TAO17] the rigid Taylor Expansion is intro-
duced via a specific class of resource terms, the polyadic terms [MPV18]. However,
since we deal with greater generality, we need to define a new polyadic calculus,
what we call subtyping-aware polyadic terms. In particular, we shall see that, while
in the η-long fragment one can reason simply considering standard polyadic terms,
this does not work any more already for the whole simply typed λ-calculus 2. Before
starting with the technicalities, we want to briefly and informally explain why
standard polyadic calculi are not enough in our setting.
Consider linear polyadic terms, generated by the following grammar:

p ::= x | λ〈x1, . . . , xk〉.p | p~q

2. It is easy to see that the corresponding distributor is not well-defined if we relax the
hypothesis about η-longness. Let us denote as Trig(M)Γ,A

std (∆, a) the distributor defined in
[TAO17][p.8] associated to Γ ` M : A, without supposing M being η-long. Just consider
Trig(x)Γ,A

std (〈y : 〈〈?〉 ⇒ ?, 〈〉 ⇒ ?〉 ⇒ ?〉, 〈〈?〉 ⇒ ?, 〈〉 ⇒ ?〉 ⇒ ?) = {y} where M = x,Γ = x : (o⇒
o) ⇒ o and A = (o ⇒ o) ⇒ o. Then take σ ⇒ 1 : 〈〈?〉 ⇒ ?, 〈〉 ⇒ ?〉 ⇒ ? → 〈〈〉 ⇒ ?, 〈?〉 ⇒
?〉 ⇒ ?, with σ being the symmetry σ : 〈〈〉 ⇒ ?, 〈?〉 ⇒ ?〉 → 〈〈?〉 ⇒ ?, 〈〉 ⇒ ?〉. By definition
Trig(x)Γ,A

std (〈y : 〈〈?〉 ⇒ ?, 〈〉 ⇒ ?〉 ⇒ ?〉, 〈〈〉 ⇒ ?, 〈?〉 ⇒ ?〉 ⇒ ?) = ∅ and then Trig(x)Γ,A
std (−,−)

cannot be a functor, since there is no function from a set to the empty set.

135

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.1. Introduction

~q = 〈〉 | 〈p〉 ⊕ ~q | ⊥

Where each variable in a term must appear exactly once. The operational
semantics is given contextually by the following base case:

(λ~x.p)~q →

p{~q/~x} if len(~q) = len(~x)
⊥ otherwise.

Where the substitution operation is linear. We consider terms up to renaming of
bound variables and up to linearity wrt ⊥, i.e., ⊥ = λ~x.⊥ = ⊥~q etc.

Since we want to link a calculus of approximants to intersection type distributors,
the first thing to check is that the calculus satisfies subject reduction and expansion
for system ES

A. We give the following naive type assignment:

f : a′ → a

〈〉 : 〈〉, . . . , 〈x〉 : 〈a′〉, . . . , 〈〉 : 〈〉 ` x : a
ζ ⊕ 〈~x〉 : ∆⊕ 〈~a〉 ` p : a
ζ : ∆ ` λ~x.p : ~a⇒ a

ζ0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a (ζi : Γi ` qi)i∈[k] η : ∆→⊗k
j=0 Γj

(⊗k
j=0 ζj){η} : ∆ ` p〈q1, . . . , qk〉 : a

Where in the application case the right action (⊗k
j=0 ζj){η} only means that we

have to rearrange the positions of free variables in context along the permutation
induced by the morphism η. This is reasonable and necessary, since the morphism
η can in general rearrange the position of types. We do not formally define this
action for the moment, since the problem with the former type assignment is even
more fundamental. It is easy to see that ⊥ is not typable in the former system.
Example 4.1.1. We present a counter-example for the subject reduction of the for-
mer system. Take the polyadic term p = (λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉)〈λ〈z1, z2〉.z1〈z2〉〉.
This term clearly reduces to ⊥, but it is typable in the former type system. Let π =

g : b′ → b

〈x〉 : 〈b′〉, 〈〉 ` x : b 〈〉 : 〈〉, 〈y1〉 : 〈〈〉 ⇒ a〉 ` λ〈〉.y1〈〉 : 〈〉 ⇒ a 〈〉 : 〈〉, 〈y1〉 : 〈〈c〉 ⇒ a〉 ` λ〈f〉.y1〈f〉 : 〈c〉 ⇒ a

〈x〉 : 〈b′〉, 〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : a
〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

Where c = 〈〉 ⇒ a and b′ = 〈〈c〉 ⇒ a, 〈〉 ⇒ a〉 ⇒ a and b = 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ⇒
a the morphism g being of the shape 〈σ, 1〈〉⇒a, 1〈a〉⇒a〉 ⇒ 1 with σ being the obvious
permutation. Consider ρ =

〈z1〉 : 〈〈c〉 ⇒ a〉 ` z1 : 〈c〉 ⇒ a 〈z2〉 : 〈c〉 ` z2 : c
〈z1, z2〉 : 〈〈c〉 ⇒ a, c〉 ` z1〈z2〉 : a
` λ〈z1, z2〉.z1〈z2〉 : 〈〈c〉 ⇒ a, c〉 ⇒ a

136

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Now take π′ =
π...

〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

ρ
...

` λ〈z1, z2〉.z1〈z2〉 : b′

〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` p : a

Then p→ ⊥ and p is typable, while ⊥ it is not. The problem relies completely in
the variable rule: the subtyping feature of the system is not detected by the syntax
of the standard polyadic calculus. If we want to find an appropriate term language
for our system, whose elements are also approximants of ordinary λ-terms, we need
to take seriously the qualitative information produced by the subtyping.

4.2. The Calculus of Subtyping-Aware Polyadic
Terms

We fix a countable set of variables V . Given a set A we denote the free non-
commutative monoid on A as A!. Then A! is just the set of lists over A. We call
variable lists the elements of V !.

We introduce the syntax of the subtyping-aware polyadic calculus by the following
grammar:

p ∈ ΞS
A ::= x | λ〈x1, . . . , xn〉 : f.p | p~q with f ∈ mrp(SDA)

~q ::= 〈〉 | 〈p〉 ⊕ ~q

The set of standard polyadic terms is then generated by the same rule, just ignoring
the morphism in the abstraction case. In what follows we will constantly write
Ξ instead of ΞS

A, keeping the parameters implicit 3 . We consider polyadic terms
up to renaming of bound variables. Given a polyadic term p, we use fv(p) for the
set of free variables of p. Given a variable list ~x = 〈x1, . . . , xk〉 we write ~x ∈ fv(p)
meaning that for all i ∈ [k] , xi ∈ fv(p). A polyadic term p is
— affine if S is the semicartesian resource monad;
— relevant if S is the relevant resource monad;
— linear if S is the linear resource monad;
— cartesian if S is the cartesian resource monad.
Given a variable list ~x = 〈x1, . . . , xk〉 we define the list of occurrences of ~x in p

by induction as follows:
3. It is also worth noting that, if the small category A admits homsets of uncountable

cardinality, the set of terms ΞA will also be uncountable. This is not a standard feature of calculi,
but it does not affect our results. However, if the reader is more comfortable with ΞA being
countable, one can restrict without problem to any small category with countable homsets he/she
likes the most.

137

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

— if p = x and x ∈ ~x then occ~x (p) = 〈x〉. If x /∈ ~x then occ~x (p) = 〈〉;
— if p = λ~y : f.p′ then occ~x (p) = occ~x (p′) ;
— if p = s~t then occ~x (p) = occ~x (s)⊕ occ~x

(
~t
)

;
— if p = 〈q1, . . . , qk〉 then occ~x (p) = ⊕k

i=1 occ~x (qi) .
We define the size of a polyadic term by induction as follows:

s (x) = 1 s (λ~x : f.p) = s (p) + 1 s (s〈t1, . . . , tk〉) = s (s) +
∑
i∈[k]

s (ti) + 1

The following remark is central for most of the technicalities that follows.

Notions of Substitution for Polyadic Terms We introduce standard and
linear substitution operations for our calculus. While the standard one can perform
structural operation on the term, like copying and deleting, the linear one cannot.

Definition 4.2.1. Let p ∈ Ξ, ~q = 〈q1, . . . , qk〉 ∈ Ξ! and ~x = 〈x1, . . . , xk〉 be a
repetitions-free variable list. We define the substitution of ~x in p by ~q by induction
as follows:

xi[〈q1, . . . , qk〉/~x] = qi y[〈q1, . . . , qk〉/~x] = y

(λ~y : f.p)[~q/~x] = λ~y : f.(p[~q/~x]) (s~t)[~q/~x] = s[~q/~x]~t[~q/~x]
〈p1, . . . , pn〉{~q/~x} = 〈p1{~q/~x}, . . . , pn{~q/~x}〉

whenever ~y ∩ ~x = ∅ and y /∈ ~x.

The n-linear substitution operation on polyadic terms is defined by induction as
follows:

Definition 4.2.2. Let p ∈ Ξ, ~q ∈ Ξ! and ~x = occ~x (p) with len(~q) = len(~x).

x{〈q〉/〈x〉} = q y{〈〉/〈〉} = y

(λ~y : f.p){~q/~x} = λ~y : f.(p{~q/~x}) (s~t){~q1 ⊕ ~q2/~x1 ⊕ ~x2} = s{~q1/~x1}~t{~q2/~x2}
〈p1, . . . , pn〉{~q1 ⊕ · · · ⊕ ~qn/~x1 ⊕ · · · ⊕ ~xn} = 〈p1{~q1/~x1}, . . . , pn{~qn/~xn}〉

whenever ~y 6= ~x, y /∈ ~x.
~x = ~x1 ⊕ ~x2 and ~x1 = occ~x (s) , ~x2 = occ~x

(
~t
)
.

~x = ⊕i∈[n]~xi and ~xi = occ~x (qi) .

We define tlen(〈~q1, . . . , ~qn〉) = 〈len(~q1), . . . , len(~qn)〉. Given a repetitions-free tuple
of variable lists ζ = 〈~x1, . . . , ~xn〉, ~ρ = 〈~q1, . . . , ~qn〉 ∈ (Ξ!)n and a polyadic term
p ∈ Ξ we define occζ (p) in the natural way. For the substitution being well-defined,
we require that tlen(ζ) = tlen(~ρ). We also extend the notion of substitution and
n-linear substitution to tuples of variables in the natural way, supposing that
occζ (p) = ζ.

138

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Proposition 4.2.3. Let p ∈ Ξ The following statements hold.
1. Given ~x, ~y, ~z ∈ V ! we have p{~y/~x}{~z/~y} = p{~z/~x}.
2. Given ζ, ζ1, ζ2 ∈ (V !)n we have p{ζ1/ζ}{ζ2/ζ1} = p{ζ2/ζ}.

Proposition 4.2.4. Let p, p ∈ Ξ such that fv(p) = fv(p′). The following statements
hold.

1. Given ~x, ~y ∈ V ! if p{~y/~x} = p′{~y/~x} then p = p′.

2. Given ζ1, ζ2 ∈ (V !)nif p{ζ2/ζ1} = p′{ζ2/ζ1} then p = p′.

Proposition 4.2.5. Let p ∈ Ξ, ~q ∈ Ξ!, ~x ∈ V ! with α : [len(occ~x (p))] → [len(~x)]
such that xi = yα(i) and len(~q) = len(~x). We have p[~q/~x] = p{~q{α}/occ~x (p)}.

Proof. By induction on the structure of p. If p = x with x ∈ ~x, then occ~x (p) = 〈x〉.
By definition, α(1) is the index of x in ~x. Hence p[~q/~x] = qα(1). We conclude
since ~q{α} = 〈qα(1)〉 and p{~q{α}/occ} (=) qα(1). IF p = x and x /∈ ~x the result is
immediate by definition. If p = λ~y : f.p′ then the result is a direct consequence of
the IH. If p = s~t then occ~x (p) = occ~x (s) ⊕ occ~x

(
~t
)
. Let α|s and α|~t respectively

the restrictions of α to occ~x (s) and occ~x
(
~t
)
/ By IH we have that s[~q/~x] =

s{~q{α|s}/occ~x (s)} and ~t[~q/~x] = ~t{~q{α|~t}/occ~x (s)}. Then we can conclude simply
applying the IH, observing that ~q{α} = ~q{α|s} ⊕ ~q{α|~t}.

4.2.0.1. Type Assignment for Polyadic Terms

In order to give an operational semantics, we firstly need to introduce a typing
assignment for our calculus. Indeed, types will clarify the computational role of
morphisms.
We define SD?, an extension of the category SD, as follows:
— ob(SD?) = {~x : ~a | ~a ∈ SD, ~x ∈ V !and len(~x) = len(~a)}.
— (SDn)?(~x : ~a, ~x′ : ~a′) = SD(~a,~a′).

We define (SDn)?, an extension of the category SDn, as follows:
— ob((SDn)?) = {ζ : ∆ | ∆ ∈ SDn, ζ ∈ (V !)nand tlen(ζ) = tlen(∆)}.
— (SDn)?(ζ : ∆, ζ ′ : ∆′) = SDn(∆,∆′).
It is worth noting that SD? = SD × V !. Moreover, we have SD ' SD?.
By the former definition, one obtains several copies of the same morphism,

indexed by tuples of variable lists. In particular, there will be fake identities
1∆ : ζ : ∆→ ζ ′ : ∆, while the categorical identities clearly are 1∆ : ζ : ∆→ ζ : ∆.
For the rest of the chapter, when we consider a morphism ζ : ∆ → ζ ′ : ∆′ we
suppose ζ being repetitions-free, while ζ ′ could admits repetitions, if not stated
otherwise. We have an evident forgetful functor U? : (SDn)? → SDn.
Let η = 〈f1, . . . , fn〉 ∈ (SDn)?(〈~x1, . . . , ~xn〉 : 〈~a1, . . . ,~an〉, ζ : ∆). The tuple

Σ = ~x1 : f1 : ~a1, . . . , ~xn : fn : ~an is a polyadic type context. For the rest of the

139

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

chapter, when we say type context we mean polyadic type context if not specified
otherwise. We set ~x : ~a ::= ~x : 1~a : ~a. We write ζ : η : ∆ to denote the three
components of a context.
Given two type contexts Ψ1 = ~x1 : f1 : ~a1, . . . , ~xn : fn : ~a1 and Ψ2 = ~y1 : g1 :

~b1, . . . , ~yn : gn : ~bn we define the tensor product as follows Ψ1 ⊗ Ψ2 = ~x1 ⊕ ~y1 :
f1 ⊕ g1 : ~a1 ⊕ ~b1, . . . , ~xn ⊕ ~yn : fn ⊕ gn : ~an ⊕ ~bn. We give the following type
assignment:

f1 : ~a1 → 〈〉, . . . , fi : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,sm(fi)(1) : a

ζ ⊕ 〈~z〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 ` p : a
ζ : η : ∆ ` λ~z : f.p : ~a⇒ a

ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a (ζi : ηi : Γi ` qi : ai)ki=1 η : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

Where in the application case ζ must be repetitions-free and

pη = p[ζ{sm(η)}/
k⊗
j=0

ζj].

We remark that the inference rules preserves the properties of context variable
tuples being repetitions-free. Context variable lists admit two types. The first one is
a morphism in the category SDA, the second one is the source of this morphism, i.e.,
the standard type. From the syntactic point of view, the subtyping-aware polyadic
calculus is just the standard polyadic calculus typed à la Church in the former
intersection type system. However the Church-style typing concerns morphisms
and it is not standard at all. Indeed, we shall see that the morphisms typing deeply
affects the dynamics of subtyping-aware polyadic terms 4.
It is easy to check that
— if p is affine and it is typable, then a variable appears at most once in its

body;
— if p is relevant and it is typable, then for any subterm of p that is an abstraction

λ~x : f.p′, we have ~x ∈ fv(p′).
— if p is linear and it is typable, it satisfies the two former conditions.
If we need to make explicit an i-th element of a context, such as in ζ = (ζ1 ⊕
〈~xi〉 ⊕ ζ2) : η = (η1 ⊕ 〈fi〉 ⊕ η2) : ∆ = (∆1 ⊕ 〈~ai〉 ⊕ ∆2) ` p : a, we write
ζ 3~xi : η 3fi : ∆ 3~ai ` p : a.When π is a type derivation of conclusion ζ : η : ∆ ` p : a
we write π `aζ:∆ 〈η, p〉.

4. This fact will determine subject reduction wrt the standard typing (but not wrt the
morphisms typing) for subtyping-aware polyadic terms, see Section 4.2.3.

140

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Lemma 4.2.6. Let ζ 3~xi : η 3fi : ∆ 3~ai ` p : a we have occ~xi (p) = ~xi{sm(fi)} 5.

Proof. By induction on the structure of p. Let p = xi,sm(fi)(1) and let xi ∈ ~xi. The
result is then immediate by definition. If xi /∈ ~x, then fi = ♦~ai and we can conclude,
since ~xi{sm(♦~ai)} = 〈〉. The abstraction case is an immediate consequence of the
IH. If p = s~t then there exist s′ ∈ Ξ,~t′ ∈ Ξ!, ζj : Γj ∈ (SDlen(ζ))?, η : ζ : ∆→ ⊗

ζj :⊗Γj such that

ζ 3
~y0,i

i : η 3f0,i
0 : Γ 3~a0,i

0 ` s′ : 〈a1, . . . , ak〉 ⇒ a (ζ 3~yl,ii : η 3fl,il : Γ 3~al,il ` t′l : al)ki=l η′ 3fi : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj

ζ 3~xi : (⊗k
j=0 η

3fj,i
j) ◦ η 3f ′i : ∆ 3~ai ` p = (s′〈t′1, . . . , t′k〉)η : a

where fi = (⊕k
j=0 fj,i) ◦ f ′i . By IH, occ~y0,i (s′) = ~y0,i{sm(f0,i)} and occ~y0,i (t′l) =

~yl,i{sm(fl,i)}. Then occ⊕k

j=0 ~yj,i

(
s′~t′
)

= ⊕k
j=0 ~yj,i{sm(⊕k

j=0 fj,i)}.By definition f ′i :

~xi : ~ai →
⊕k

j=0 ~yj,i : ⊕k
j=0~aj,i. By definition (s′~t′)f ′i = s~t′[~xi{sm(f ′i)}/

⊕k
j=0 ~yj,i] and

by Proposition 4.2.5 and definition of right action

s~t′[~xi{sm(f ′i)}/
k⊕
j=0

~yj,i] = s′~t′{~xi{sm(fi)}/occ⊕k

j=0 ~yj,i

(
s′~t′
)
}.

Since ζ is repetitions-free, we have that occ(~xi

(
s′~t′)η

)
= ~xi{sm(fi)}.

We can generalize the observation to variable tuples: if ζ : η : ∆ ` p : a then
occζ (p) = ζ{sm(η)}. We also get that, given a type derivation π `aζ:∆ 〈η, p〉 with
θ : ζ ′ : ∆′ → ζ : ∆ we have p[ζ ′{sm(θ)}/ζ] = p{ζ ′{sm(η ◦ θ)}/occζ (p)}.
We denote as T D the set of all type derivations. We define TDζ(∆, a) = {π ∈
T D | π `aζ:∆ 〈η, p〉 for some η ∈ SDlen(ζ) and p ∈ Ξ}. We clearly have that the sets
TDζ(∆, a) are pairwise disjoint. Hence we can write

T D =
⊔
n∈N

⊔
〈ζ:∆,a〉∈(SDlen(ζ))?×D

TDζ(∆, a).

We introduce some syntactic sugar for type derivations.
Let

π =
π...

ζ ⊕ 〈~z〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 ` p : a
We set

λ~z : f.π =

π...
ζ ⊕ 〈~z〉 : η : ∆⊕ 〈~a〉 ` p : a
ζ : η : ∆ ` λ~z : f.p : ~a⇒ a

5. It is worth noting that, in general, while ~x in this case is repetitions-free, ~xi{sm(fi)} is not.
Just consider the case where ~xi = 〈x〉 and fi = 〈α, ~f〉 = 〈c[2], 1, 1〉 : 〈a〉 → 〈a, a〉 is the diagonal.

141

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Let

π0 =
π0...

ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a
〈π1, . . . , πk〉 =

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1

and let η : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj. We set (π0〈π1, . . . , πk〉) ◦ η =

π0...
ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

Let π `aζ:∆ 〈η, p〉. We set term(π) = p,mrp(π) = η, supp(π) = ζ : ∆. Let x ∈ V ,
we say that x is relevant (resp. irrelevant) to π if x ∈ fv(term(π))(resp.x /∈
fv(term(π))). Let ~x ∈ V !, we say that ~x is relevant (resp. irrelevant) to π if
~x ∈ fv(term(π))(resp. for allx ∈ ~x, x /∈ fv(term(π))).

Example 4.2.7. We provide some examples of type assignment for polyadic terms.

— Let p = (λ〈x1, x2〉 : 〈σ, f, 1〈a〉⇒a〉.x2〈x1〉) where σ is the permutation that
performs the swap and f : a′ → a. We type it as follows:

1
〈z1〉 : 〈〈a〉 ⇒ a〉 ` z1 : 〈a〉 ⇒ a

〈f〉 : 〈a′〉 → 〈a〉
〈z2〉 : 〈f〉 : 〈a〉′ ` z2 : a 〈σ〉 : 〈〈x1, x2〉〉 : 〈a′, 〈a〉 ⇒ a〉 → 〈〈z1, z2〉〉 : 〈〈a〉 ⇒ a, a′〉
〈x1, x2〉 : 〈σ, f, 1〉 : 〈a′, 〈a〉 ⇒ a〉 ` x2〈x1〉 : a
` λ〈x1, x2〉 : 〈σ, f, 1〉.x2〈x1〉 : 〈a′, 〈a〉 ⇒ a〉 ⇒ a

— Let p = x〈y, y〉 and b = 〈a, a〉 ⇒ a. We recall that ca : 〈a〉 → 〈a, a〉 denotes
the diagonal morphism.

〈x〉 : 〈b〉, 〈〉 : 〈〉 ` x : 〈a, a〉 ⇒ a 〈〉 : 〈〉, 〈zi〉 : 〈a〉 ` zi : a 〈1, ca〉 : 〈〈x〉, 〈y〉〉 : 〈〈b〉, 〈a〉〉 → 〈〈x〉, 〈z1, z2〉〉 : 〈〈b〉, 〈a, a〉〉
〈x〉 : 〈b〉, 〈y〉 : 〈a〉 ` x〈y, y〉 : a

— Let p = λ〈x1, . . . , xk〉 : πi.xi with πi : 〈a1, . . . , ak〉 → 〈ai〉 being the i-th
projection.

πi : 〈a1, . . . , ak〉 → 〈ai〉
〈x1, . . . , xk〉 : πi : 〈a1, . . . , ak〉 ` xi : ai

` λ〈x1, . . . , xk〉 : πi.xi : ai

4.2.1. Actions on Polyadic Type Derivations
We can extend the definition of morphisms action on type derivation given in

Chapter 3 to the polyadic framework.

142

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

(
f1 : ~a1 → 〈〉, . . . , fi = 〈αi, f〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : a

)
{η} =

f1 ◦ g1 : ~b1 → 〈〉, . . . , (fi ◦ gi) = 〈βi ◦ αi, (〈f〉{βi}) ◦ ~gi〉 : ~bi → 〈a〉, . . . , fn ◦ gn : ~bn → 〈〉

~y1 : f1 ◦ g1 : ~b1, . . . , ~yi : fi ◦ gi : ~bi, . . . , ~yn : fn ◦ gn : ~bn ` yi,(β◦α)i(1) : a
π...

ζ ⊕ 〈~x〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 : ~a ` p : a
ζ : η : ∆ ` λ~x : f.p : ~a⇒ a

 {η} =

π{〈η〉 ⊕ 〈1~a〉}...
ζ ′ ⊕ 〈~x〉 : η′ ⊕ 〈f〉 : ∆′ ⊕ 〈~a〉 ` pη : a
ζ ′ : η′ : ∆′ ` λ~x : f.(pη) : ~a⇒ a

π1...
ζ1 : η1 : Γ1 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 θ : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ θ : ∆ ` (p〈q1, . . . , qk〉)η : a

 {η} =

π1...
ζ1 : η1 : Γ1 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 θ ◦ η : ζ ′ : ∆′ →⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ ′ : (⊗k
j=0 ηj) ◦ (θ ◦ η) : ∆′ ` (p〈q1, . . . , qk〉)θ◦η : a

Where ~a = 〈a1, . . . , ak〉, η = 〈g1, . . . , gn〉 : ζ = 〈~y1, . . . , ~yn〉 : ∆′ = 〈~b1, . . . ,~bn〉 →
ζ ′ = 〈~x1, . . . , ~xn〉 : ∆ = 〈~a1, . . . ,~an〉 with gi = 〈βi, ~gi〉. In the abstraction case we
take 〈1~a〉 : 〈~x〉 : 〈~a〉 → 〈~x〉 : 〈~a〉.

Figure 4.1. – Right action on polyadic type derivations.

Given π `aζ:∆ 〈θ, p〉 and a morphism η : ζ ′ : ∆′ → ζ : ∆ where ζ ′ is repetitions-
free 6, we define the right action of η on π by induction in Figure 4.1, that performs
the following transformation on type derivations:

 π...
ζ : θ : ∆ ` p : a

 {η} =
π{η}

...
ζ : θ ◦ η : ∆ ` pη : a

The former action can be seen as a generalization of what happens in the typing
rule of an application, where a morphism of contexts acts on the free variables of
a polyadic term. It essentially consists of free variables substitution and context
morphisms precomposition. This substitution performs structural operations on
the term’s free variables: they can eventually be duplicated or shifted.
Let f : a→ a′. We define the left action of f on π by induction in Figure 4.2,

that performs the following transformation on type derivations:

6. We remark that, by convention and definition of the type assignment, both tuples ζ, ζ ′ are
repetitions-free.

143

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

[g : a→ b]
(
f1 : ~a1 → 〈〉, . . . , fi = 〈αi, f〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : a

)
=

f1 : ~a1 → 〈〉, . . . , 〈g〉 ◦ fi = 〈α, g ◦ f〉 : ~ai → 〈b〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : 〈g〉 ◦ fi : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : b

[〈τ,~g〉 ⇒ g : (~a⇒ a)→ (~b⇒ b)]


π...

Σ, ~x : f : ~a ` p : a
Σ ` λ~x : f.p : ~a⇒ a

 =

([g]π){1∆ ⊕ 〈〈τ,~g〉〉}...
[g]Σ, ~y : ([g]f) ◦ 〈τ,~g〉 : ~b ` [g]p[~y{τ}/~x] : b

[g]Σ ` λ~y : ([g]f) ◦ 〈τ,~g〉.([[g]p[~y{τ}/~x]) : ~b⇒ b

[g : a→ b]


π1...

ζ1 : η1 : Γ1 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

 =

[1⇒ g]π1...
ζ1 : [1⇒ g]η1 : Γ1 ` [1⇒ g]p : ~a⇒ b

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (1⇒ g]η0 ⊗
⊗k

j=0 ηi) ◦ η : ∆ ` (([1⇒ g]p)〈q1, . . . , qk〉)η : b

Where, ~a = 〈a1, . . . , ak〉 and in the abstraction case,
~y is a fresh variable list s.t. len(~y) = len(~a′).

Figure 4.2. – Left action on polyadic type derivations.

[f]
 π...
ζ : θ : ∆ ` p : a

 =
[f]π
...

ζ : [f]θ : ∆ ` [f]p : a′

It is worth noting that the left action depends on the right one in the abstraction
case. This is due to the contravariant nature of a morphism between implications: a
morphism 〈α, ~f〉 ⇒ f : ~a⇒ a→ ~a′ ⇒ a′ consist of 〈α, ~f〉 : ~a′ → ~a and f : a→ a′.
The left action changes the type of the leftmost variable of a polyadic term (
Remark 4.2.8) and transforms lambda abstractions 7. Hence, on the contrary to
what happened with the actions defined in Chapter 3, now the structure of terms
is affected. This is completely in accordance to the intuition that our polyadic
calculus is the term language of the intersection type system ES

A.

Remark 4.2.8. We define the leftmost variable of a polyadic term p by induction
as follows:

lv(x) = x lv(λ~x : f.p) = lv(p) lv(s~t) = lv(s)

Given π `aζ:∆ 〈η, p〉, supposing that lv(p) is free, we set lv(ζ) as the unique variable
list ~x ∈ ζ such that lv(p) ∈ ~x. We denote its typing as lv(ζ) : lv(η) : lv(∆). We

7. Notice that the size of the abstracted variable list can eventually change.

144

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

remark that for θ = 〈g1, . . . , gn〉 we have [f]θ = 〈g1, . . . , [f]lv(θ), . . . , gn〉 if lv(p) is
free, otherwise [f]θ = θ. Hence the left action transforms the typing of the leftmost
variable of a polyadic term.

We prove that actions respect compositionality of arrows.

Lemma 4.2.9. Let π `aζ:∆ 〈η, p〉 and θ1 : ζ1 : ∆1 → ζ : ∆, θ2 : ζ2 : ∆2 → ζ1 :
∆1, f1 : a→ a1, f2 : a1 → a2. The following statements hold.

1. (π{θ1}){θ2} = π{θ1 ◦ θ2}.
2. [f1](π{θ1}) = ([f1]π){θ1}.
3. [f2]([f1]π) = [f2 ◦ f1]π.

Proof. The proof of both statements follow a specular path to the one already seen
for actions on type derivations in Chapter 3(Lemma 3.4.5). However, in this case
the term can be transformed by the actions, so we need to check that everything
still works fine.

1. The result derives from a completely straightforward induction on π by associa-
tivity of morphisms composition, observing that given π `aζ:∆ 〈η, p〉, π{θ1} `aζ1:∆1

〈η ◦ θ1, p
θ1〉 and (π{θ1}){θ2} `aζ2:∆2 〈(η ◦ θ1) ◦ θ2, (pθ1)θ2〉 then (pθ1)θ2 = pθ1◦θ2 .

Indeed, by definition (pθ1)θ2 = p[ζ1{sm(θ1)}/ζ][ζ2{sm(θ2)}/ζ1]. By Lemma
we can rewrite it as p{ζ1{sm(θ1) ◦ sm(η)}/occζ (p)}{ζ2{sm(θ2) ◦ (sm(θ1) ◦
sm(η))}/occζ1

(
pθ
)
}. By definition, sm((η◦θ)◦θ′) = sm(θ2)◦(sm(θ1)◦sm(η)).

Then by associativity of composition and definition of right action we can
conclude, since pθ1◦θ2 = p[ζ2{sm(θ2) ◦ sm(θ1)}/ζ] = p{ζ2{(sm(θ2) ◦ sm(θ1)) ◦
η}/occζ (p)}.

2. The variable case derives by associativity of morphisms composition and
the application case is immediate by definition of actions. We prove the
abstraction case. Let π =

π′...
ζ ⊕ 〈~z〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 ` p : a

ζ : η : ∆ ` λ~z : f.p : ~a⇒ a

By definition π{θ1} =

π′{θ1 ⊕ {1~a}}...
ζ1 ⊕ 〈~z〉 : (η ◦ θ1)⊕ 〈f〉 : ∆1 ⊕ 〈~a〉 ` pθ⊕〈1~a〉 : a

ζ1 : η ◦ θ1 : ∆1 ` λ~z : f.(pθ⊕〈1~a〉) : ~a⇒ a

Let f1 = 〈α,~g〉 ⇒ g : ~a ⇒ a → ~a′ ⇒ a′ and len(~z′) = len(source(〈α,~g〉)). By

145

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

definition [f1](π{θ1}) =

([g](π′{θ1 ⊕ 〈1~a〉})){1∆′ ⊕ 〈〈α,~g〉〉}...
ζ1 ⊕ 〈~z′〉 : [g](η ◦ θ1)⊕ 〈([g]f) ◦ 〈α,~g〉〉 : ∆1 ⊕ 〈~a′〉 ` ([g](p)θ⊕〈1〉))~1⊕〈〈α,~g〉〉 : a′

ζ1 : [g](η ◦ θ1) : ∆1 ` λ~z′ : ([g]f) ◦ 〈α,~g〉.[g]((p)θ⊕〈1〉))~1⊕〈〈α,~g〉〉 : ~a′ ⇒ a′

by IH [g](π′{θ1⊕〈1~a〉}){1∆′⊕〈〈α,~g〉〉} = (([g]π′){θ1⊕{1}}){~1⊕〈〈α,~g〉〉}. By
the former point of this lemma we have (([g]π′){θ1 ⊕ {1~a}}){1∆′ ⊕ 〈〈α,~g〉〉 =
([g]π′){θ ⊕ 〈〈α,~g〉〉}. Now, consider ([f1]π){θ1} =

(([g]π′){1∆ ⊕ 〈〈α,~g〉〉}){θ1 ⊕ 〈1~a′〉}...
ζ1 ⊕ 〈~z′〉 : (([g]η) ◦ θ1)⊕ 〈([g]f) ◦ 〈α,~g〉〉 : ∆1 ⊕ 〈~a′〉 ` (([g]p)~1⊕〈〈α,~g〉〉)θ⊕〈1〉 : a′

ζ1 : [g](η) ◦ θ1 : ∆1 ` λ~z′ : ([g]f) ◦ 〈α,~g〉.(([g]p)~1⊕〈〈α,~g〉〉)θ⊕〈1〉 : ~a′ ⇒ a′

Again, by the former point, we get (([g]π′){1∆ ⊕ 〈〈α,~g〉〉}){θ1 ⊕ 〈1~a′〉} =
([g]π′){θ ⊕ 〈〈α,~g〉〉}. We then apply the IH and conclude.

3. We prove the abstraction case. Let f1 = 〈α1, ~g1〉 : ~a ⇒ a → ~a1 ⇒ a1 and
f2 = 〈α2, ~g2〉 : ~a1 ⇒ a1 → ~a2 ⇒ a2. Let len(~z1) = len(~a1) and len(~z2) = len(~a2).
Let π =

π′...
ζ ⊕ 〈~z〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 ` p : a

ζ : η : ∆ ` λ~z : f.p : ~a⇒ a

We have [f1]π =

([g1]π′){1∆ ⊕ 〈〈α1, ~g1〉〉}...
ζ ⊕ 〈~z1〉 : ([g]η)⊕ 〈[g]f ◦ 〈α1, ~g1〉〉 : ∆⊕ 〈~a1〉 ` ([g1]p)1∆⊕〈α1,~g1〉 : a1

ζ : [g]η : ∆ ` λ~z1 : 〈[g]f ◦ 〈α1, ~g1〉〉.([g1]p)1∆⊕〈α1,~g1〉 : ~a⇒ a

Then [f2]([f1]π) =

([g2](([g1]π′){1∆ ⊕ 〈〈α1, ~g1〉〉})){1∆ ⊕ 〈〈α2, ~g2〉〉}...
ζ ⊕ 〈~z2〉 : [g2]([g1]η)⊕ 〈([g2](([g1]f) ◦ 〈α1, ~g1〉)) ◦ 〈α2, ~g2〉〉 : ∆⊕ 〈~a2〉 ` ([g2](([g1]p)1∆⊕〈α1,~g1〉))1∆⊕〈α2,~g2〉 : a2

ζ : [g2]([g1]η) : ∆ ` λ~z1 : 〈([g2](([g1]f) ◦ 〈α1, ~g1〉)) ◦ 〈α2, ~g2〉〉.([g2](([g1]p)1∆⊕〈α1,~g1〉))1∆⊕〈α2,~g2〉 : ~a2 ⇒ a2

by the former point of this lemma we get ([g2](([g1]π′){1∆ ⊕ 〈α1, ~g1〉})){1∆ ⊕
〈〈α2, ~g2〉〉} = (([g2]([g1]π′){1∆ ⊕ 〈〈α1, ~g1〉〉})){1∆ ⊕ 〈〈α2, ~g2〉〉}. Then, by IH:
(([g2]([g1]π′){1∆⊕〈〈α1, ~g1〉〉})){1∆⊕〈〈α2, ~g2〉〉} = (([g2◦g1]π′){1∆⊕〈〈α1, ~g1〉〉})){1∆⊕

146

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

〈〈α2, ~g2〉〉}. By the first point of this lemma we can rewrite it as ([g2 ◦
g1]π′){1∆ ⊕ 〈〈α2, ~g2〉 ◦ 〈α2, ~g2〉〉}. Then we can apply the IH and conclude.

4.2.2. Congruence on Polyadic Type Derivations
Let R ⊆ T D2 We say that R is a congruence if it is an equivalence relation that

satisfies the following contextual rules:
1. If π `aζ⊕~x:∆⊕〈~a〉 〈η ⊕ 〈f〉, p〉 and π′ `aζ⊕~x:∆⊕〈~a〉 〈η′ ⊕ 〈f ′〉, p′〉 such that π R π′

then λ~x : f.π R λ~x : f ′.π′.
2. If π0 `~a⇒aζ0:Γ0 〈η0, s〉, π′0 `~a⇒aζ0:Γ0 〈η

′
0, s
′〉 and πi `aiζi:Γi 〈ηi, ti〉, π

′
i `

ai
ζi:Γi 〈η

′
i, t
′
i〉 for

i ∈ [k] such that π0 R π′0 and πi Rζi:Γi,ai π′i with η : ∆→⊗k
j=0 Γj then

(π0〈π1, . . . , πk〉) ◦ η R (π′0〈π′1, . . . , π′k〉) ◦ η.

We define a congruence on polyadic type derivations as the smallest congruence
generated by the following rule:

π0{η0}...
ζ0 : θ0 ◦ η0 : Γ0 ` sη0 : ~a⇒ a

 πi{ηi}...
ζi : θi ◦ ηi : Γi ` qηii : ai


k

i=1 θ : ζ : ∆→ ⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 θj) ◦ (⊗k
j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1

1 , . . . , q
ηk
k 〉)θ : a

∼
π0...

ζ ′0 : θ0 : Γ′0 ` s : ~a⇒ a

 πi...
ζ ′i : θi : Γ′i ` qi : ai

k
i=1 (⊗k

j=0 ηj) ◦ θ : ζ : ∆→ ⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ (⊗k

j=0 ~ηj) ◦ θ : ∆ ` (s~q)(
⊗k

j=0 ηj)◦θ : a

Where ~q = 〈q1, . . . , qk〉 and ηj : ζj : Γj → ζ ′j : Γ′j. By the former equivalence,
we get that any choice of free variable tuples in the application rule is actually
equivalent. Indeed:

π0{1Γ′0}...
ζ0 : θ0 ◦ 1Γ′0 : Γ0 ` s

1Γ′0 : ~a⇒ a


πi{1Γ′i}...

ζi : θi ◦ 1Γ′i : Γ′i ` q
1Γ′
i

i : ai


k

i=1 θ : ζ : ∆→ ⊗k
j=0 ζj : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ θ : ∆ ` (s1Γ′0 〈q

1Γ′1
1 , . . . , q

1Γ′
k

k 〉)θ : a
∼

π0...
ζ ′0 : θ0 : Γ′0 ` s : ~a⇒ a

 πi...
ζ ′i : θi : Γ′i ` qi : ai

k
i=1 (⊗k

j=0 1Γ′j) ◦ θ : ζ : ∆→ ⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ θ : ∆ ` (s~q)

(
⊗k

j=0 1Γ′
j
)◦θ

: a

147

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Where we took 1Γ′j : ζj : Γ′j → ζ ′j : Γ′j. Then, from now on, we do not need to
care too much about the choice that we made in the typing of an application, since
all working choices are equivalent.

We prove that the basic operations on type derivations are stable under congru-
ence.

Lemma 4.2.10. Let π `aζ:∆ 〈η, p〉 and θ : ζ ′ : ∆′ → ζ : ∆, f : a→ a′. The following
statements hold.

1. If π ∼ π′ then [f]π ∼ [f]π′.
2. If π ∼ π′ then π{θ} ∼ π′{θ}.

Proof. The two statements follow from a completely straightforward induction on
π, applying Lemma 4.2.9. We prove the application case of the first point.

1. Let π =

π0{η0}...
ζ0 : θ0 ◦ η0 : Γ0 ` sη0 : ~a⇒ a

 πi{ηi}...
ζi : θi ◦ ηi : Γi ` qηii : ai


k

i=1 θ : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 θj) ◦ (⊗k
j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1

1 , . . . , q
ηk
k 〉)θ : a

Then by definition of left action and by Lemma 4.2.9 we have [f]π =

([1⇒ f]π0){η0}...
ζ0 : θ0 ◦ η0 : Γ0 ` sη0 : ~a⇒ a′

 πi{ηi}...
ζi : θi ◦ ηi : Γi ` qηii : ai


k

i=1 θ : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 θj) ◦ (⊗k
j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1

1 , . . . , q
ηk
k 〉)θ : a′

By definition of congruence we conclude, since [f]π′ =

[1⇒ f]π0...
ζ ′0 : θ0 : Γ′0 ` s : ~a⇒ a′

 πi...
ζ ′i : θi : Γ′i ` qi : ai

k
i=1 (⊗k

j=0 1Γ′j) ◦ θ : ζ : ∆→⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ θ : ∆ ` (s~q)

(
⊗k

j=0 1Γ′
j
)◦θ

: a′

.

We now define a construction on type derivations that account for weakening.
Given π `aζ:∆ 〈η, p〉 we define π •j 〈〉 `aζ+〈〉j :∆+〈〉j 〈η+〈〉j , p〉 for j ∈ len(ζ) by

induction on π as follows: f1 : ~b1 → 〈〉, . . . , fi : ~bi → 〈a〉, . . . , fn : ~bn → 〈〉

~x1 : f1 : ~b1, . . . , ~xi : fi : ~bi, . . . , ~xn : fn : ~bn ` xi,αi(1) : a

 •j 〈〉 =

f1 : ~b1 → 〈〉, . . . , fi : ~bi → 〈a〉, . . . , 1〈〉 : 〈〉 → 〈〉, . . . , fn : ~bn → 〈〉

~x1 : f1 : ~b1, . . . , ~xi : fi : ~bi, . . . , 〈〉 : 1〈〉 : 〈〉, . . . , ~xn : fn : ~bn ` xi,αi(1) : a

148

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

(λ~x : f.π′) •j 〈〉 = λ~x : f.(π′ •j 〈〉)

((π0〈π1, . . . , πk〉) ◦ η) •j 〈〉 = ((π0 •j 〈〉〈π1 •j 〈〉, . . . , πk •j 〈〉〉) ◦ η(1〈〉)j

Given a list of type derivations ~ρ = 〈ρ1, . . . , ρk〉 we write ~ρ •j 〈〉 meaning 〈ρ1 •j
〈〉, . . . , ρk •j 〈〉〉. We use the same notations for the components of the conclusions
of these derivations, e.g., if mrp(~ρ) = ~θ = 〈θ1, . . . , θk〉 then ~θ •j 〈〉 = 〈θ〈〉j1 , . . . , θ

〈〉j
k 〉.

Proposition 4.2.11. Let π `aζ:∆ 〈η, p〉 and π′ `a
′
ζ′:∆′ 〈η′, p′〉. The following state-

ments hold.
1. If π ∼ π′ then η = η′ and p = p′.

2. If η = η′ and p = p′ then ∆ = ∆′ and a = a′. If moreover ζ = ζ ′ then π ∼ π′.

Proof. The result depends on a fine-grained analysis of the congruence on polyadic
type derivations. In particular, we introduce and use an appropriate notion of
canonical form of type derivations wrt the congruence. The proof is detailed in
Section B.2.

4.2.3. Substitution Operation on Type Derivations
We fix some notation that we will use in what follows. Let ~q = 〈q1, . . . , qk〉 ∈ Ξ!

and let ρi `aiζi:∆i
〈θi, qi〉. We set ~ρ = 〈ρ1, . . . , ρk〉, ~θ = 〈θ1, . . . , θk〉. We write ~ρ `~a~ζ:~∆

〈~θ, ~q〉. Given f = 〈α, f1, . . . , fk′〉 : ~a = 〈ai, . . . , ak〉 → ~a′〈a′1, . . . , a′k′〉, we extend the
left action to lists of type derivations as follows [f]~ρ = 〈[f1]ρα(1), . . . , [fk′]ρα(k′)〉.
We define in the same way [f]~θ, [f]~q, that depend on [f]~ρ. In particular, by def-
inition of left action, one has [fj]ρα(j) `

a′j
ζα(j):∆α(j)

〈[fj]θα(j), [fj]qα(j)〉 for j ∈ [k′].
If ~a′ = 〈a′1, . . . , a′k′〉 = ⊕l

j=1~aj then we denote 〈([f]ρ)1, . . . , ([f]ρ)l〉 the canonical
decomposition of [f]ρ that the former decomposition 〈~a1, . . . ,~al〉 of ~a′ determines.
If fi : ~bi → ~ai for i ∈ [k] and ~ρ `

⊕k

i=1 ~ai
~ζ:~∆ 〈~θ, ~q〉 then [⊕k

i=1 fi]~ρ = ⊕k
i=1[fi](~ρ)i

where (~ρ)i are the univocally determined list of derivations such that (~ρ)i `~ai(~ζ)i:(~∆)i
〈(~θ)i, (~q)i〉 with ~ζ = ⊕k

i=1(~ζ)i, ~∆ = ⊕k
i=1(~∆)i, ~θ = ⊕k

i=1(~θ)i and ~q = ⊕k
i=1(~q)i.

We also extend the definition of right action to list of type derivations. Given
~η = 〈η1, . . . , ηk〉 with ηi : ζ ′i : ∆′i → ζi : ∆i we set ~ρ{~η} = 〈ρ1{η1}, . . . , ρk{ηk}〉.

Now we are ready to define the substitution operation on type derivation.

Definition 4.2.12. Let π `a
ζ 3~xi :∆ 3~ai 〈η

3fi , p〉 and ~ρ `~ai~ζ:~Γ 〈
~θ, ~q〉 for j ∈ [len(~ai)], i ∈

[len(∆)]. We inductively define

π[~ρ/~xi] `a(ζ−~xi⊗~ζ):∆−~ai⊗~Γ 〈η ~
~xi
p
~θ, p[~q/~xi]fi〉

as follows:

149

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

— If

π =
f1 : ~a1 → 〈〉, . . . , fi = 〈αi, f〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : a

then
π[~ρ/~xi] = ([f]~ραi(1)){παi(1),len(~ai)+1}

p[~q/~xi]fi = ([f]qαi(1))παi(1),len(~ai)+1

η ~~xip ~θ = ([f]θαi(1)) ◦ παi(1),len(~ai)+1

where the morphism πα(1),len(~a)+1 is either the projection

πα(1),len(~a)+1 : ζ−~xi ⊗ ~ζ : ∆−~ai ⊗ ~Γ→ ζα(1) : Γα(1)

in the case where S is an irrelevant resource monad, or the identity.
— If

π =
f1 : ~a1 → 〈〉, . . . , fj = 〈αj, f〉 : ~aj → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : 〈~a1〉, . . . , ~xi : fj : ~aj, . . . , ~xn : fn : ~an ` xj,αj(1) : a

with j 6= i then
π[~ρ/~xi] = π−~aj{π0,len(~ai)+1}

p[~q/~xi]fi = xj,αj(1)

η ~~xip ~θ = η−fi ◦ π0,len(~ai)+1

where the morphism π0,len(~a)+1 is either the projection

π0,len(~a)+1 : ζ−~xi ⊗ ~ζ : ∆−~ai ⊗ ~Γ→ ζ−~xi : ∆−~ai

in the case where S is an irrelevant resource monad, or the identity.
— If π = λ~x : g.π′, term(π) = λ~y : g.p′ and mrp(π) = η then

λ~y : g.π′[~ρ/~xi] = λ~x : g′.(π′[~ρ • 〈〉/~xi])

λ~y : g.p′[~q/~xi]fi = λ~x : g′.(p′[~q/~xi]fi)

η ~~xip ~θ = ((η ⊕ 〈g〉)~~xip (~θ • 〈〉))− 〈g′〉

where we suppose that ~y 6= ~xi and

(η ⊕ 〈g〉)~~xip (~θ • 〈〉) = η′ ⊕ 〈g′〉

for some morphism η′.

— If π = (π0〈π1, . . . , πk〉) ◦ η, p = (s〈t1, . . . , tk〉)θ and mrp(π) = (⊗k
j=0 η

3fj,i
j) ◦

θ 3f
′
i then

(π0〈π1, . . . , πk〉) ◦ η[~ρ/~xi] =

150

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

(π0[([f ′i]~ρ)0/~y0]〈π1[([f ′i]~ρ)1/~y1], . . . , πk[([f ′i]~ρ)k/~yk]〉) ◦ θ∗

(s〈t1, . . . , tk〉)θ[~q/~xi]fi =

(s[([f ′i]~q)/~y0]f ′0,i〈s[([f
′
i]~q)0/~y0]f ′0,i〉〈t1[([f ′i]~q)1/~y1]f ′1,i , . . . , tk[([f

′
i]~q)k/~yk]f ′k,i〉)

θ∗

η ~~xip ~θ =

((η0 ~
~y0
s ([f ′]i~θ)0)⊗

k⊗
l=1

(ηl ~~yltl ([f ′]i~θ)l)) ◦ θ∗

where fi = (⊕k
j=0 f

′
j,i) ◦ f ′i and θ∗ =

~τ ◦ (η−f ′i ⊗ sm(f ′i)?) :

ζ−~xi⊗~ζ : ∆−~ai⊗~Γ→
k⊗
j=0

(ζ−~yj,lj ⊗~ζj{sm(f ′i)}) :
k⊗
j=0

(source(η)−~aj,ij ⊗~Γj{sm(f ′i)}).

Where ~τ is the permutation

~τ :
k⊗
j=0

source(ηj)−~aj,i ⊗ (~Γ{sm(f ′i)})→
k⊗
j=0

(source(ηj)−~aj,i ⊗ (~Γ{sm(f ′i)})j).

The definition given above is quite dense and for this reason it deserves some
comments.

The idea behind the former definition derives from the fine-grained study of type
derivations under reduction made in Chapter 3 (Remark 3.4.12). The intuition
that the invertible 2-cell of Remark 3.4.12 describes a kind of substitution is then
vindicated.

In the variable and application cases the left action on type derivations plays a
central role: this is due to the fact that the type of a variable list is not symmetric,
i.e., it depends on its type morphism. One could say that the ”true” type of a
variable list is the target of its morphism, since it represents the typing of the
occurrences of the list in the considered term. Hence, in order to perform the
substitution we need a well-typed derivation list and we produce it by acting on ~ρ
with the morphism of ~xi. In the application case this operation is quite intricate:
the morphism of a variable list is given by composition between a concatenation of
morphisms in the various components of the term and a new morphism.
It is worth noting that the substitution operation performs a concatenation of

variable tuples and type tuples, while its action on morphisms and terms is far
more complicated. Indeed, we will see that the former definition grants directly
subject expansion and subject reduction for what concerns the standard typing,
while it does not for the morphism typing. Intuitively this means that not only
terms, but also morphisms are subject to the dynamics of reduction. This is a
completely new phenomenon wrt standard resource calculi.

151

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

For what concerns the abstraction case, the inductive hypothesis does not allow
per se to prove that g′ is actually the same of g. However, this is a corollary of the
following lemma:

Lemma 4.2.13. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi,fj , p〉 with i 6= j and ~ρ `~ai
~ζ 3〈〉j :~Γ 3〈〉j

〈~θ 3〈〉j , ~q〉.
Then the j-th component of mrp(π[~ρ/~xi]) is fj.

Proof. By induction on the structure of π. The proof is detailed in Section B.1.

Then, as corollary, we can characterize the action of substitution in the term
component of a type derivation completely by the linear substitution on polyadic
terms:

Proposition 4.2.14. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉 and ~π `~ai~ζ:~Γ 〈
~θ, ~q〉.We have term(π[~ρ/~xi]) =

p{[fi]~q/occ~xi (p)}.

Remark 4.2.15. By the former proposition we have that

point(π{~ρ/~xi}) = 〈mrp(π)~~xiterm(π) mrp(~ρ), term(π){[fi]term(~ρ)/~x}〉.

Lemma 4.2.16. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉. The following statements hold.

1. Let ~ρ `~a
′
i
~ζ:~Γ 〈

~θ, ~q〉 and θ 3gi : ζ 3~yi1 : ∆ 3~a′i
1 → ζ 3~xi : ∆ 3~ai . We have

π{θ}[~ρ/~yi] = (π[[gi]~ρ/~xi]){θ 3−gi ⊗ sm(gi)?}.

2. Let Let ~ρ `~ai~ζ:~Γ 〈
~θ, ~q〉 and ~η = 〈η1, . . . , ηlen(~ai)〉 : ~ζ : ~Γ→ ~ζ ′ : ~Γ′ we have

π[~ρ{~η}/~xi] ∼ π[~ρ/~xi]{1∆ ⊗
k⊗
l=1

ηl}.

3. Let ~ρ `~ai~ζ:~Γ 〈
~θ, ~q〉 and f : a→ a′ we have

[f]π[~ρ/~xi] = [f](π[~ρ/~xi]).

Proof. By induction on the structure of π. The proof is detailed in Section B.2.

We are now ready to prove that the substitution operation is stable under
congruence.

Proposition 4.2.17. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉, π′ `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉 such that

π ∼ π′ and ~ρ `~ai~ζ 3 :~Γ 3 〈
~θ 3 , ~q〉, ~ρ′ `~ai~ζ 3 :~Γ 3 〈

~θ′
3
, ~q′〉 such that ~ρ ∼ ~ρ′. Then π[~ρ/~xi] ∼

π′[~ρ′/~xi].

Proof. By induction on the structure of π. The proof is detailed in Section B.3.

152

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

Reduction of Type Derivations We define a reduction relation on type deriva-
tions →d ⊆ T D2 such that if π ∈ TDζ(∆, a) and π →d π

′ then π′ ∈ TDζ(∆, a)
inductively as follows:

1. Let π =
π0...

ζ0 ⊕ 〈~x〉 : η0 ⊕ 〈f〉 : Γ0 ⊕ 〈~a〉 ` s : a
ζ0 : η0 : Γ0 ` λ~x : f.s : ~a⇒ a

 πl...
ζl : ηl : Γl ` tl : al

k
l=1 η : ζ : ∆→⊗k

l=0 ζl : ⊗k
l=0 Γl

ζ : (⊗k
l=0 ηj) ◦ η : ∆ ` (λ~x : f.s〈t1, . . . , tk〉)η

Then π →d π0[〈π1, . . . , πk〉/~xi]{η}.
2. If π `aζ⊕〈~x〉:∆⊕〈~a〉 〈η⊕〈f〉, p〉 and π′ `aζ⊕〈~x〉:∆⊕〈~a〉 〈η′⊕〈f ′〉, p′〉 such that π →d π

′

then λ~x : f.π →d λ~x : f ′.π′.
3. If π0 `~a⇒aζ0:Γ0 〈η0, s〉, π′0 `~a⇒aζ0:Γ0 〈η

′
0, s
′〉 such that π0 →d π

′
0 and πi `aiζi:Γi 〈ηi, ti〉, π

′
i `

ai
ζi:Γi

〈η′i, t′i〉 for i ∈ [k] such that πi →d π
′
i with η : ζ : ∆→⊗k

j=0 Γj then

π0〈π1, . . . , πk〉 →d π
′
0〈π′1, . . . , π′k〉.

The reduction→d univocally determines a family of reductions→ζ:∆,a
d ⊆ TDζ(∆, a)

in the natural way.
There is an unusual phenomenon in the contextual abstraction case. The

morphism typing changes under reduction. This can appear surprising at first,
but it is actually a direct consequence to the fact that not only term, but also
morphisms represent the dynamic content of a type derivation.

Example 4.2.18. We give some examples of type derivations reduction.
— Let b = 〈a, a〉 → a and π =

1
〈x〉 : 〈b〉 ` x : b

π1 : 〈a, a〉 → 〈a〉
〈〉, 〈z1, z2〉 : π1 : 〈a, a〉 ` z1 : a

1
〈〉, 〈z3〉 : 〈a〉 ` z3 : a 〈1, c3

a〉
〈x〉 : 〈b〉, 〈y〉 : (π1 ⊕ 1a) ◦ c3

a : 〈a〉 ` x〈y, y〉 : a
〈x〉 : 〈b〉 ` λ〈y〉 : (π1 ⊕ 1a) ◦ c3

a.x〈y, y〉 : 〈a〉 ⇒ a

where 〈1, c3
a〉 : 〈〈x〉, 〈y〉〉 : 〈〈b〉, 〈a〉〉 → 〈〈x〉, 〈z1, z2, z3〉〉 : 〈〈b〉, 〈a, a, a〉〉. Now

consider π′ =

π • 〈〉
...

〈x〉 : 〈b〉, 〈〉 ` λ〈y〉 : (π1 ⊕ 1a) ◦ c3
a.x〈y, y〉 : 〈a〉 ⇒ a

1
〈〉, 〈w〉 : 〈a〉 1

〈x〉 : 〈b〉, 〈w〉 : 〈a〉 ` (λ〈y〉 : (π1 ⊕ 1a) ◦ c3
a.x〈y, y〉)〈w〉 : a

we have that π′ →d π
′′ where π′′ =

153

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

1
〈x〉 : 〈b〉 ` x : b

π1 : 〈a, a〉 → 〈a〉
〈〉, 〈w, z2〉 : π1 : 〈a, a〉 ` w : a

1
〈〉, 〈w〉 : 〈a〉 ` w : a 〈1, c3

a〉
〈x〉 : 〈b〉, 〈w〉 : (π1 ⊕ 1a) ◦ c3

a : 〈a〉 ` x〈w,w〉 : a

where 〈1, c3
a〉 : 〈〈x〉, 〈w〉〉 : 〈〈b〉, 〈a〉〉 → 〈〈x〉, 〈, w, z2, w〉〉 : 〈〈b〉, 〈a, a, a〉〉 and

we used the fact that 1a ⊕♦b = π1 : 〈a, b〉 → 〈a〉. Hence the morphism typing
does not enjoy subject reduction, as expected.

— Just take π′ and π′′ from the former example. Consider λ〈w〉 : 1a.π′ and
λ〈w〉 : (π1 ⊕ 1a) ◦ c3

a.π
′′. We have by contextuality that λ〈w〉 : 1a.π′ →d λ〈w〉 :

(π1 ⊕ 1a) ◦ c3
a.π
′′.

Lemma 4.2.19. Let π `aζ:∆ 〈η, p〉 with η : ζ ′ : ∆′ → ζ : ∆ and f : a → a′. The
following statements hold.
— If π →d π

′ then π{η} →d π
′{η}.

— If π →d π
′ then [f]π →d [f]π′.

Proof. The two results follow from a completely straightforward induction on the
reduction step, applying Lemma 4.2.16.

4.2.4. Points of Type Derivations
Proposition 4.2.11 gives an important characterization of equivalent type deriva-

tions that shares the same context: two derivations π and π′ are equivalent iff their
morphism and term is the same. This fact says that the quotient TDζ(∆, a)/ ∼ is in
bijection with the set Ωζ(∆, a) = {〈η, p〉 | for some π ∈ TDζ(∆, a), π `aζ:∆ 〈η, p〉}.
For this reason, we will now study couples of morphisms and terms, that we call the
points of type derivations and see them as equivalence classes of type derivation.

Given 〈ζ : ∆, a〉 ∈ (SDn)?×D with n ∈ N and ζ = 〈~x1, . . . , ~xn〉,∆ = 〈~a1, . . . ,~an〉
we define the set of points along 〈ζ : ∆, a〉,Ωζ(∆, a) by induction as follows:
— If η = 〈f1, . . . , fi = 〈αi, f〉, . . . , fn〉 : ζ : 〈~a1, . . . ,~ai, . . . ,~an〉 → 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉

then 〈η, xi,αi(1)〉 ∈ Ωζ(∆, a).
— If 〈η ⊕ 〈f〉, p〉 ∈ Ωζ⊕〈~x〉(∆⊕ 〈~a〉, a) then 〈η, λ~x : f.p〉 ∈ Ωζ(∆,~a⇒ a).
— If 〈η0, s〉 ∈ Ωζ0(Γ0, 〈a1, . . . , ak〉 ⇒ a), 〈ηi, ti〉 ∈ Ωζi(Γi, ai) for i ∈ [k] and

η : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=1 Γj then 〈(
⊗k

j=1 ηj) ◦ η, (s〈t1, . . . , tk〉)η〉 ∈ Ωζ(∆, a).
Let ϕ = 〈η, p〉 be a point. We say that ϕ is a variable (resp. an abstraction an

application) when p is.
We range over points with Greek letters as ϕ, ψ Let ~ϕ = 〈ϕ1, . . . , ϕk〉, ~Γ =
〈Γ1, . . . ,Γk〉,~a = 〈a1, . . . , ak〉, ~ζ = 〈ζ1, . . . , ζk〉 such that ϕi ∈ Ωζi(Γi, ai). We then
write ~ϕ ∈ Ω~ζ(~Γ,~a). Trivially we have

Ωζ(∆, a) = {〈η, p〉 | there exists a type derivation π s.t. π `aζ:∆ 〈η, p〉}.

154

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

We define the set of points

Ω =
⋃
n∈N

⋃
〈ζ:∆,a〉∈(SDn)?×D

Ωζ(∆, a).

Given ϕ = 〈η, p〉 ∈ Ωζ(∆, a) with ζ = 〈~z1, . . . , ~zn〉. Let xi,j ∈ ~zi for some i ∈ [n]
and j ∈ [len(~zi)]. We say that the variable xi,j is relevant (resp. irrelevant) for ϕ if
xi,j ∈ fv(p) (resp. xi,j /∈ fv(p)). We extend this definition to variable lists in the
natural way.
For a point ϕ = 〈η, p〉, we set mrp(ϕ) = η and term(ϕ) = p. For a list of

points ~ψ = 〈ψ1, . . . , ψk〉 with ψi = 〈ηi, pi〉, we set mrp(~ψ) = 〈η1, . . . , ηk〉 and
source(mrp(~ψ)) = 〈source(η1), . . . , source(ηk)〉. We define some syntactic sugar for
points as follows:

λ~x : f.〈η ⊕ 〈f〉, p〉 = 〈η, λ~x : f.p〉 〈η0, s〉〈〈ηi, ti〉〉ki=1 = 〈
k⊗
i=0

ηj, s〈t1, . . . , tk〉〉

〈η, p〉 ◦ θ = 〈η ◦ θ, pθ〉

Where 〈η⊕ 〈f〉, p〉 ∈ Ωζ⊕〈~x〉(∆⊕ 〈~a〉, a), 〈η0, s〉 ∈ Ωζ(Γ0, 〈a1, . . . , ak〉 ⇒ a), 〈ηi, ti〉 ∈
Ωζ(Γ0, ai) with len(ζi) = len(ζj) for i 6= j and trg(η) = source(θ). Intuitively, points
represent all the dynamical information of derivations.

Lemma 4.2.20. Let ϕ = 〈η, p〉 ∈ Ωζ(∆, a) ∩ Ωζ′(∆, a). Then occζ (p) = occζ′ (p) .

Definition 4.2.21. Let ϕ ∈ Ωζ(∆, a). We define the set RP(ϕ)(ζ : ∆, a) of repre-
sentations of ϕ along ζ : ∆, a by induction on ϕ as follows:
— If ϕ = 〈η 3fi , xi,sm(fi)(1)〉 then RP(ϕ)(ζ : ∆, a) = {〈ζ, 〈η 3fi , xi,sm(fi)(1)〉〉}.
— If ϕ = λ~x : f.ϕ′ then RP(ϕ)(ζ : ∆, a) = {〈ζ, λ~x : f.α〉, s.t. α ∈ RP(ϕ)(ζ ⊕
〈~x〉 : ∆⊕ 〈source(f)〉, a).

— If ϕ = (ψ0〈ψ1, . . . , ψk〉) ◦ η then RP(ϕ)(ζ : ∆, a) = {〈ζ, 〈α, 〈β1, . . . , βk〉, θ〉〉 |
α ∈ RP(ψ′0)(ζ0 : Γ0,~a⇒ a), βi ∈ RP(ψ′i)(ζi : Γi, ai), θ : ∆→⊗Γj, for some ψ′j ∈
Ω,Γj ∈ (SDlen(ζ))?,~a ∈ SD s.t. (ψ′0〈ψ′1, . . . , ψ′k〉) ◦ θ = (ψ0〈ψ1, . . . , ψk〉) ◦ η}.

Given a representation α ∈ RP(ϕ)(ζ : ∆, a) we associate to it its point by
induction as follows:

point(〈ζ, 〈, η 3fi , xi,sm(fi)(1)〉〉) = 〈η 3fi , xi,sm(fi)(1)〉

point(〈ζ, λ~x : f.α〉) = λ~x : f.point(α)

point(〈ζ, 〈α, ~β, η〉〉) = (point(α)point(~β)) ◦ η

Trivially, if α ∈ RP(ϕ)(ζ : ∆, a) then point(α) = ϕ. Each representation of a point
ϕ corresponds to a type derivation π ∈ T D such that point(π) = ϕ in a natural
way. Indeed, the former definition can be seen as just a formalization of the fact

155

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

that points are equivalence classes of type derivations (Proposition 4.2.11). When
we write a point we are implicitly choosing a representation of it.

Given an application point (ϕ〈ψ1, . . . , ψk〉) ◦ η ∈ Ωζ 3~xi (∆ 3~ai , a) such that ϕ ∈
Ω
ζ
3~x0,i

0
(Γ 3~a0,i

0 , 〈b1, . . . , bk〉 ⇒ b), ψl ∈ Ω
ζ
3~xl,i
l

(Γ 3~al,il , bl), η : ∆ → ⊗k
j=0 Γj for l ∈ [k]

and some n ∈ N, ζ : ∆, ζjΓj ∈ (SDn)?, 〈b1, . . . , bk〉 ⇒ b ∈ D, we say that ~xl,i
(resp. ~al,i) for all l ∈ [k], i ∈ [n] is an antecedent of ~xi(resp. ~ai). Clearly, each
representation of a point gives rise to a family of antecedents for ~xi,~ai.

Example 4.2.22. We present some examples of representations for points. Each
representation corresponds to an element of the equivalence class of type derivations
associated to the point.

1. Let ϕ = 〈〈〈σ, g, f, 1〈a,a〉⇒a〉〉, x3〈x2, x1〉〉 where f : b→ a, g : c→ a where σ is
the permutation (3, 2, 1). We consider ϕ ∈ Ω〈〈x1,x2,x3〉〉(〈〈c, b, 〈a, a〉 ⇒ a〉〉, a).
Now we have the possible following representation of ϕ : ϕ′ = 〈〈1〈a,a〉⇒a〉, z1〉 ∈
Ω〈〈z1〉〉(〈〈a, a〉 ⇒ a〉, 〈a, a〉 ⇒ a), ψ1 = 〈〈f〉, z2〉 ∈ Ω〈〈z2〉〉(〈〈b〉〉, a), ψ2 = 〈〈g〉, z3〉 ∈
Ω〈〈z3〉〉(〈〈c〉〉, a) and η = 〈〈σ〉〉 : 〈〈x1, x2, x3〉〉 : 〈〈c, b, 〈a, a〉 ⇒ a〉〉 → 〈〈z1, z2, z3〉〉 :
〈〈〈a, a〉 ⇒ a〉, b, c〉. Another possible representation is then the following:
ϕ′ = 〈〈1〈a,a〉⇒a〉, z1〉 ∈ Ω〈〈z1〉〉(〈〈a, a〉 ⇒ a〉, 〈a, a〉 ⇒ a), ψ1 = 〈〈1a〉, z2〉 ∈
Ω〈〈z2〉〉(〈〈a〉〉, a), ψ2 = 〈〈1b〉, z3〉 ∈ Ω〈〈z3〉〉(〈〈c〉〉, a) and η = 〈〈σ, g, f, 1〉〉 :
〈〈x1, x2, x3〉〉 : 〈〈c, b, 〈a, a〉 ⇒ a〉〉 → 〈〈z1, z2, z3〉〉 : 〈〈〈a, a〉 ⇒ a〉, a, a〉.

2. Let ϕ = 〈〈1〈b〉, c〈a〉〉, x〈y, y〉〉 where b = 〈a, a〉 ⇒ a and we recall that c〈a〉 :
〈a〉 → 〈a, a〉 is the diagonal. A representation of ϕ is then: ϕ′ = 〈〈1〈b〉〉, x〉 ∈
Ω〈〈x〉〉(〈〈b〉〉, b), ψ1 = 〈〈1a〉, z〉, ψ2 = 〈〈1a〉, z〉 ∈ Ω〈〈z〉〉(〈〈a〉〉, a) and η = 〈〈1〈b〉〉, 〈ca〉〉 :
〈〈x〉, 〈y〉〉 : 〈〈b〉, 〈a〉〉 → 〈〈x〉, 〈z, z〉〉 : 〈〈b〉, 〈a, a〉〉.

3. Consider the point ϕ = 〈〈♦~a, 1〈a〉〉, x〉. This point is a weakening point.
Points cannot detect the non relevant variables, i.e., ϕ ∈ Ω〈~z,〈x〉〉(〈~a, 〈a〉〉, a) ∩
Ω〈~y,〈x〉〉(〈~a, 〈a〉〉, a) for any repetitions-free ~x, ~y of the same length as ~a.

Thanks to Proposition 4.2.11, we can extend all the operations on type deriva-
tions that are stable under congruence to operations on points. This passage in
general simplifies the technicalities, since points are just equivalence classes of type
derivations. In particular, for the right action we get a much more concise definition:
given η : ζ ′ : ∆′ → ζ : ∆, 〈θ, p〉{η} = 〈θ ◦η, pη〉. For g : a→ a′ and 〈η, p〉 ∈ Ωζ(∆, a)
The definition of left action [g]〈η, p〉 = 〈[g]η, [g]p〉 ∈ Ωζ(∆, a′) is given in Figure
4.2.4. Trivially we have that if point(π) = 〈η, p〉 then point([g]π) = [g]〈η, p〉. The
same is true for the right action.
We extend the actions to lists of points. Let ~ϕ = 〈ϕ1, . . . , ϕk〉 ∈ Ω~ζ(~Γ,~a) and

f = 〈α, f1, . . . , flen(~a′)〉 : ~a→ ~a′. We set [f]~ϕ = 〈[f1]ϕα(1), . . . , [flen(~a′)]ϕα(len(~a′))〉. Let
~η = 〈η1, . . . , ηk〉, then ~ϕ{~η} = 〈ϕ1{η1}, . . . , ϕk{ηk}〉.
We fix some notations. Let ~ψ = 〈ψ1, . . . , ψk〉, ~ζ = 〈ζ1, . . . , ζk〉, ~Γ = 〈Γ1, . . . ,Γk〉

with ψi ∈ Ωζi(Γi, ai) for some ζi : Γi, ai.We set ~ψ ∈ Ω~ζ(~Γ,~a). Let f = 〈α, f1, . . . , f
′
k〉 :

~a = 〈a1, . . . , ak〉 → ~a′ = 〈a′1, . . . , a′k′〉. We extend the definition of left action to list

156

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

[g]〈〈f1, . . . , fi = 〈αi, f〉, . . . , fn〉, xi,αi(i)〉 = 〈〈f1, . . . , fi = 〈αi, f ◦ g〉, . . . , fn〉, xi,αi(i)〉
[〈β,~g〉 ⇒ g](λ~x : f.ϕ) = λ~y : ([g]f) ◦ 〈β,~g〉.(([g]ϕ){1∆ ⊕ 〈〈β,~g〉〉})

[g]((ϕ〈ψ1, . . . , ψk〉) ◦ η) = (([1⇒ g]ϕ)〈ψ1, . . . , ψk〉) ◦ η

Where we suppose that the points are well-defined and in the abstraction case
len(~y) = len(source(〈β,~g〉)).

Figure 4.3. – Left action on points.

of points as follows: [f]~ψ = 〈[f1]ψα(1), . . . , [fk′]ψα(k′)〉 ∈ Ω~ζ{sm(f)}(~Γ{sm(f)},~a′). If
~a′ = ⊕l

i=1~ai we denote as

〈([f]~ψ)1, . . . , ([f]~ψ)l′〉, 〈(~ζ{sm(f)})1, . . . , (~ζ{sm(f)})l〉, 〈(~Γ{sm(f)})1, . . . , (~Γ{sm(f)})l〉

the canonical partitions induced by the former partition of ~a′. This means that
([f]~ψ)i ∈ Ω(~ζsm(f))i((~Γ{sm(f)})i,~ai).

We define a substitution operation on points as follows:

Definition 4.2.23. Let ϕ ∈ Ωζ 3~xi (Γ 3
~ai

0 , a) with ~ai = 〈ai,1, . . . , ai,ki〉 and ψl ∈
Ωζi(Γi, ai,j) with l ∈ [ki] and len(ζ) = len(ζl). We set 〈ψ1, . . . , ψki〉 = ~ψ. We define
the substitution ϕ[~ψ/~xi] ∈ Ωζ(

⊗ki
j=0 Γj, a) of ~xi in the point ϕ by ~ψ by induction on

ϕ as follows:

〈ηfi=〈αi,f〉, xi,αi(1)〉[~ψ/~xi] = ([f]ψαi(1)){παi(1),len(~ai)+1}
〈η 3fj , xj,αj(1)〉[~ψ/~xi] = 〈η−fj , xj,αj(1)〉{π0,len(~ai)+1}

λ~y : g.ϕ[~ψ/~xi] = λ~y : g′.ϕ[~ψ • 〈〉/~xi]
(ϕ0〈ϕ1, . . . , ϕk〉) ◦ η 3f

′
i [~ψ/~xi] =

(ϕ0[([f ′i]~ψ)0/~y0]〈ϕ1[([f ′i]~ψ)1/~y1], . . . , 〈ϕk[([f ′i]~ψ)k/~yk]〉〉) ◦ (~τ ◦ ((η−〈f ′i〉)⊗ sm(f ′i)?)).

Where i 6= j in the variable cases.
In the abstraction case, ~y 6= ~xi and g′ is the morphism assigned to the variable

list ~y after performing the substitution.
In the application case we have ~τ : (⊗k

j=0 supp(ϕj))⊗ ((⊗ki
l=1 ζl) = ~ζ{sm(f ′i)}) :

(⊗k
j=0 source(mrp(ϕj)))⊗((⊗ki

l=1 Γl) = ~Γ{sm(f ′i)})→
⊗k

j=0(supp(ϕj)⊗(~ζ{sm(f ′i)})j) :⊗k
j=0(source(mrp(ϕj))⊗ (~Γ{sm(f ′i)})j).

A straightforward inspection of the definitions gives

point(π[ρ/~xi]) = point(π)[point(ρ)/~xi].

The former substitution relation is actually just the restriction of Definition 4.2.12
to points. Hence given ϕ = 〈η 3fi , p〉 and ~ψ = 〈~θ, ~q〉 we can write, by Remark

157

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

4.2.15 and the former consideration, ϕ[~ψ/~xi] = 〈η 3fi ~~xp ~θ, p{[fi]~q/occ~xi (p)}〉. In
particular, we have that in the substitution abstraction case g = g′, as expected.
This is an important feature of points, since it says that the substitution operation
on the term part is completely determined the standard linear substitution on
polyadic terms.

Definition 4.2.24. We define a reduction relation on points →p ⊆ Ω2 such that
if ϕ ∈ Ωζ(∆, a) and ϕ→p ϕ

′ then ϕ′ ∈ Ωζ(∆, a) by induction as follows:

((λ~x : f.ϕ)~ψ) ◦ η →p ϕ[~ψ/~x]{η}

〈〈η, f〉p〉 →p 〈〈η′, f ′〉, p′〉
〈η, λ~x : f.p〉 →p 〈η′, λ~x : f ′.p′〉

ϕ0 →p ϕ
′
0 ϕi →p ϕ

′
i η : ∆→⊗k

j=0 source(mrp(ϕj))

(ϕ0〈ϕ1, . . . , ϕk〉) ◦ η →p (ϕ′0〈ϕ′1, . . . , ϕ′k〉) ◦ η

We now define some dynamic properties of this reduction, that will rely entirely
on the structure of polyadic terms. For ϕ = 〈η, p〉 ∈ Ωζ(∆, a), we say that ϕ is a
normal form if p does not contain redexes as subterms. We say that ϕ normalizes
if there exists n ∈ N and ϕ1, . . . , ϕn ∈ Ωζ(∆, a) such that ϕ = ϕ0 →p ϕ1 · · · →p ϕn
and ϕn is a normal form. We say that ϕ strongly normalizes if there are no infinite
reduction chains starting from ϕ.

Corollary 4.2.25. Let ϕ = 〈ηfi , p〉 ∈ Ωζ 3~xi (∆ 3~ai , a), ~ψ = 〈~θ, ~q〉 ∈ Ω~ζ(~Γ,~ai), f :
a → a′, g : a′ → a′′, θ 3gi : ζ 3~yi : (∆′) 3gi → ζ 3~xi : ∆ 3gi , θ′ : ζ ′′ : ∆′′ → ζ ′ : ∆′ and
~η : ~ζ ′ : ~Γ′ → ~ζ : ~Γ. The following statements hold.

1. We have ([f]ϕ){θ} = [f](ϕ{θ}), [g ◦ f]ϕ = [g]([f]ϕ) and (ϕ{θ}){θ′} = ϕ{θ ◦
θ′}.

2. We have ([g]ϕ)[~ψ/~xi] = [g]ϕ[~ψ/~xi].
3. ϕ{θ 3gi}[~ψ/~xi] = (ϕ[[gi]~ψ/~yi]){θ 3−gi ⊗ sm(gi)?}.
4. We have ϕ[~ψ{~η}/~xi] = ϕ[~ψ/~xi]{1∆−~ai ⊗ ~η}.
5. If ϕ→p ϕ

′ then [f]ϕ→p [f]ϕ′ and ϕ{θ} →p ϕ{θ}.

Proof. These results are an immediate corollary of Proposition 4.2.11 and the
corresponding results already proven for type derivations.

Example 4.2.26. We present some examples of reduction for points.
— Let 〈〈1, 1〉, (λ〈x, y〉 : 〈σ, f1, f2〉.x〈y〉)〈w, z〉〉 ∈ Ω〈〈w,z〉〉(〈〈∗, 〈∗〉 ⇒ ∗〉〉, ∗) with

σ being the permutations that perform the swap. We have 〈〈1, 1〉, (λ〈x, y〉 :
〈σ, f1, f2〉.x〈y〉)〈w, z〉〉 → 〈〈f2, f1〉, z〈w〉〉.

158

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

— We give a more complicated example to understand the subtleties of the
reduction. Let 〈η, p〉 =

〈〈〈1, h1, h2〉〉, (λ〈w1, w2〉 : 〈1, g1, g2〉.(λ〈x, y〉 : 〈σ, f1, f2〉.x〈y〉)〈w1, w2〉)〈z1, z2〉〉

∈ Ω〈〈z1,z2〉〉(〈〈∗, 〈∗〉 ⇒ ∗〉〉, ∗)

with σ being the permutation that performs the swap. We have 〈η, p〉 →∗
〈〈σ, f2 ◦ (g1 ◦ h1), f1 ◦ (g2 ◦ h2)〉z2z1〉.

— We introduced the new polyadic calculus to obtain a correspondence between
approximants of a termM and intersection type derivations ofM. Before going
deeper in the technicalities, we present a very simple example to give some
intuition. Take M = (λx.x)y. Now consider the following type derivations:

π1 =

〈f〉 : 〈a〉 → 〈a〉
x : 〈a〉 ` x : a
` λx.x : 〈a〉 ⇒ a

〈g〉 : 〈a′〉 → 〈a〉
y : 〈a′〉 ` y : a 〈h〉 : 〈b〉 → 〈a′〉

y : 〈b〉 ` (λx.x)y : a

π2 =
〈(g ◦ f) ◦ h〉 : 〈b〉 → 〈a〉

y : 〈b〉 ` y : a

We have that M → y. We would like to say that π1 → π2. If we consider
the natural bijection f : JMK〈y〉 → JyK〈y〉 we have indeed that f(π̃) = π̃′.
However, this kind of bijection is actually quite complicated to explicitly define.
In order to give a workable explicit definition of the bijection, we shall use
subtyping-aware polyadic terms via a Curry-Howard style correspondence.
Consider p = λx : 〈f〉.x〈y〉. We have that 〈y〉C y ` pCM. We would like to
say p ≈ π1, but we lack the information about subtyping of free variables, i.e.,
y. Consider then the type derivations:

π1 =

〈f〉 : 〈a〉 → 〈a〉
〈x〉 : 〈f〉 : 〈a〉 ` x : a
` λ〈x〉 : 〈f〉.x : 〈a〉 ⇒ a

〈g ◦ h〉 : 〈b〉 → 〈a〉
〈y〉 : 〈g ◦ h〉 : 〈b〉 ` y : a

〈y〉 : 〈g ◦ h〉 : 〈b〉 ` (λ〈x〉 : 〈f〉.x)〈y〉 : a

π2
〈f ◦ (g ◦ h)〉 : 〈b〉 → 〈a〉

〈y〉 : 〈f ◦ (g ◦ h)〉 : 〈b〉 ` y : a

Again, we have p → y . Hence, in order to capture π1 we need the extra
information about the subtyping of y. For this reason we are considering points
of type derivations. We would like say 〈〈(g◦h)〉, p〉 ≈ π1 and 〈〈f ◦(g◦h)〉, y〉 ≈
π2 with 〈〈g ◦ h〉, p〉 → 〈〈f ◦ (g ◦ h)〉, y〉, clearly taking also into account the
equivalence. The former intuition is rooted in one of the basic ideas of
categorical semantics: substitution corresponds to composition. In this case, a
reduction step performs both a substitution in the term side and a composition
in the morphism side. The aim of the next sections is to formally clarify this
intuition.

Proposition 4.2.27. For all n ∈ N the family 〈Ωζ(∆, a)〉〈ζ:∆,a〉∈(SDn)?×D defines

159

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.2. The Calculus of Subtyping-Aware Polyadic Terms

a functor
Ω−(−,−) : ((SDn)?)o ×D → Set

〈ζ : ∆, a〉 7→ Ωζ(∆, a)

Proof. By Corollary 4.2.25.

4.2.5. Congruence on Points
We say that R is a congruence on points if R ⊆ Ω2 and R is an equivalence

relation that satisfies the following contextual rules:

〈η ⊕ 〈f〉〉 = ϕ ∼ 〈η′ ⊕ 〈f ′〉〉 = ϕ′

λ~x : f.ϕ ∼ λ~x : f ′.ϕ′

ϕ ∼ ϕ′ ~ψ ∼ ~ψ′ η

(ϕ~ψ) ◦ η ∼ (ϕ′ ~ψ′) ◦ η

ψ1 ∼ ψ′1 . . . ψk ∼ ψ′k

〈ψ1, . . . , ψk〉 ∼ 〈ψ′1, . . . , ψ′k〉

where in the abstraction case we suppose that ϕ, ϕ′ ∈ Ωζ⊕〈~x〉(∆ ⊕ 〈source(f) =
source(g)〉, a) for some n ∈ N, ζ : ∆ ∈ (SDn)?, a ∈ D. In the application case we
suppose that (ϕ~ψ) ◦ η, (ϕ′ ~ψ′) ◦ η ∈ Ωζ(∆, a) for some n ∈ N, ζ : ∆ ∈ (SDn)?, a ∈
D with η : ∆ → (source(mrp(ϕ)) = source(mrp(ϕ′))) ⊗ (source(mrp(~ψ)) =
source(mrp(~ψ′))).
Until now, we just considered a congruence generated by a rule on contexts,

which corresponds to the rule (3.3) of the congruence on type derivations given in
Chapter 3. 8. We now present a congruence generated by the rule (3.2).
We define a congruence ∼ ⊆ Ω2 as the smallest congruence generated by the

following rule:

ϕ = (([〈α, ~f〉]⇒ 1〈η0, p〉)〈〈η1, q1〉, . . . , 〈ηk′ , qk′〉〉) ◦ η ∼

ϕ′ = (〈η0, p〉〈[f1]〈ηα(1), qα(1)〉, . . . , [fk]〈ηα(k), qα(k)〉〉) ◦ (1∆ ⊗ α?) ◦ η

Where ϕ ∈ Ωζ(∆, a), 〈η0, p〉 ∈ Ωζ0(Γ0, 〈a1, . . . , ak〉 ⇒ a), 〈ηi, qi〉 ∈ Ωζi(Γi, a′i), i ∈
[k′], 〈α, ~f = 〈f1, . . . , fk〉〉 : 〈a′1, . . . , a′k′〉 → 〈a1, . . . , ak〉, η : ζ : ∆ → ⊗

ζj : ⊗Γj for
some ζj : Γj ∈ (SDlen(η))? with ∆ = source(η). We recall that α? : ⊗ ζi : ⊗Γi →⊗
ζα(i) : ⊗Γα(i). We call the former rule the application congruence base case.

Example 4.2.28. We give some examples of congruence over points.
— An informative is the following. In general, we have that

((λ~x : f.ϕ)~ψ) ◦ η ∼ ((λ~y : 1trg(f).(ϕ{~y/occp (~x)}))[f]~ψ) ◦ (1⊗ sm(f)?) ◦ η

8. We did not consider the first rule since the congruence generated by the second rule has an
interesting quotient, i.e., the set of points of type derivations. The rule(3.2) instead affects the
structure of points: if one wrote it down in the polyadic type derivations framework, you do not
get any more that if π ∼ π′ then point(π) = point(π′).

160

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

~y1, . . . , ~yn ∈ V !, j ∈ [len(~yi)]
~y1 C x1, . . . , ~yi C xi, . . . , ~yn C xn ` yi,j C xi

ζ C χ, 〈x1, . . . , xk〉C x ` pCM f ∈ mrp(SD)
ζ C χ ` λ〈x1, . . . , xk〉 : f.pC λx.M

ζ0 C χ ` pCM (ζi C χ ` qi CN)ki=1 ~α : ζ C χ→⊗k
j0(ζj C χ)

ζ C χ ` (p~q)~α CMN

Figure 4.4. – Polyadic approximation of λ-terms.

where we take ~y such that len(~y) = len(trg(f)).
— A concrete example of the former schema is given by 〈〈1a, 1a′〉(λ〈x1, x2〉 :

σ.x2〈x1〉)〈y1, y2〉〉 ∼ 〈〈1a′ , 1a〉, (λ〈x2, x1〉 : 1.x2〈x1〉)〈y2, y1〉〉, where σ is the
permutation σ : 〈a, a′〉 → 〈a′, a〉.

— We also have

(λ~x : 1.ϕ~ψ) ◦ η ∼ (λ(~x{σ−1}) : σ.ϕ[σ−1]~ψ) ◦ (1⊗ ~σ−1) ◦ η

where σ ∈ Slen(~x), that is the main example of this kind of equivalence in
[TAO17] 9. The morphism that witnesses the former equivalence is σ−1 ⇒ 1.

Proposition 4.2.29. Let ϕ ∈ Ωζ(∆, a). Let η : ζ ′ : ∆′ → ζ : ∆, f : a → a′. The
following statements hold.

1. If ϕ ∼ ϕ′ then [f]ϕ ∼ [f]ϕ′.
2. If ϕ ∼ ϕ′ then ϕ{η} ∼ ϕ′{η}.
3. If ϕ ∼ ϕ′ and ϕ ∈ Ωζ 3~xi (∆ 3~ai , a), ~ψ, ~ψ′ ∈ Ω~ζ(~Γ,~ai) such that ~ψ ∼ ~ψ′. Then
ϕ[~ψ/~xi] ∼ ϕ′[~ψ′/~xi].

Proof. By induction on the structure of ϕ. The proof is detailed in Section B.7.

4.3. Rigid Expansion
In this section we introduce a semantics of approximants that generalizes the

Taylor expansion. In our setting, the approximants are not just terms, but points
of type derivations. The subtyping information of free variables is indeed essential
for the operational semantics of our calculus, as we saw.
From now on we restrict the construction (SDn)? to repetitions-free tuples

of variable lists. Let χ = 〈x1, . . . , xn〉 ⊃ fv(M). We define an approximation
assignment for λ-terms by induction in Figure 4.4.

9. Notice the variance of σ in the second term of the equivalence.

161

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

Let ζ = ~z1, . . . , ~zn, 〈ζ : ∆, a〉 ∈ (SDn)? ×D. We define the rigid expansion of M
along 〈ζ : ∆, a〉 as follows:

Trig(M)~x(ζ : ∆, a) = {〈̃η, p〉 | ~z1 C x1, . . . , ~zn C xn ` pCM and ζ : η : ∆ ` p : a}.

Remark 4.3.1. If we explicit inductively the former compact definition we get

Trig(xi)~x(ζ : ∆, a) = {〈ηfi=〈αi,f〉, yi,αi(1)〉 | 〈ηfi=〈αi,f〉, yi,αi(1)〉 ∈ Ωζ(∆, a)} ∼=

SDlen(~x)(∆, 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉).

Trig(λx.M)~x(ζ : ∆,~a⇒ a) = { ˜λ~x : f.ϕ | ϕ̃ ∈ Trig(M)~x⊕〈x〉(ζ ⊕ 〈~x〉 : ∆⊕ 〈~a〉, a)}

Trig(PQ)~x(ζ : ∆, a) = ∑
~a=〈a1,...,ak〉∈SD

∑
ζ0:Γ0,...,ζk:Γk∈(SDn)?

(
Trig(P)~x(ζ0 : Γ0,~a⇒ a)

k∏
i=1
Trig(Q)~x(ζi : Γi, ai)

)
◦ SDn(∆,

k⊗
j=0

Γj)
 / ∼

Where in the application case(
Trig(P)~x(ζ0 : Γ0,~a⇒ a)

k∏
i=1
Trig(Q)~x(ζi : Γi, ai)

)
◦ SDn(∆,

k⊗
j=0

Γj) =

{(ϕ〈ψ1, . . . , ψk〉) ◦ η | ϕ ∈ Trig(M)~x(ζ0 : Γ0,~a = 〈a1, . . . , ak〉 ⇒ a),

ψi ∈ Trig(P)~x(ζi : Γi, ai) and η : ζ : ∆→
⊗

ζj :
⊗

Γj}.

The former definition makes the rigid expansion look very much alike the denotation
of λ-terms (Figure 3.4). Indeed, in the application case the considered quotient sum
is clearly a coend.

Example 4.3.2. We present some examples of elements in the rigid expansion of
ordinary λ-terms.

1. Let M = λx.xx, and suppose that S is the cartesian resource monad. Let
a0 = 〈a1, . . . , ak〉 ⇒ a and ai = a for i ∈ [k]. We have

Trig(M)〈〉(〈〉, (~a = 〈a0, . . . , ak〉)⇒ a) =

{ ˜〈〈〉, λ(~x = 〈x1, . . . , xk〉) : f = 〈α, ~f〉.xα(1)〈xα(2), . . . , xα(k′)〉〉 | there exist

f0, f1, . . . , fk, f
′ such that

f = (
k′⊕
j=0

fj) ◦ f ′ : ~x : ~a→
k′⊕
j=0

~yj :
⊕

~aj with 〈〈fj〉, yj〉 ∈ Ω〈~yj〉(~aj, aj)

for 1 ≤ j ≤ k′}/ ∼ .

162

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

2. We have that ˜〈〈〉, λ〈x, y〉 : 1〈a0〉 ⊕ c〈a〉.x〈y, y〉〉 ∈ Trig(M)〈〉(〈〉, 〈a0, a〉 ⇒ a). Ac-
tually we can generalize it to points of the shape ϕ̃ = ˜〈〈〉, λ〈x, yn〉 : 1〈a0〉 ⊕ c〈an〉.x〈yn〉〉
for all n ∈ N.We also have that ϕ̃′ = ˜〈〈〉, λ〈x0, x1, . . . , xk〉 : 1~a.x0〈x1, . . . , xk〉〉 ∈
Trig(M)〈〉(〈〉, (~a = 〈a0, . . . , ak〉) ⇒ a) for all k ∈ N and choice of variables
x0, . . . , xk. There are also ”degenerate cases”, such as

˜〈〈〉, λ〈x, y, z〉 : 1〈a0〉 ⊕ c〈a〉 ⊕ 1a.x〈y, y, z〉〉 ∈ Trig(M)〈〉(〈〉, 〈a0, a, a〉 ⇒ a).

Proposition 4.3.3. Let M ∈ Λ. The family 〈Trig(M)~x(ζ : ∆, a)〉〈ζ:∆,a〉∈(SDn)?

induces a functor Trig(M)~x : ((SDn)?)o ×D → Set.

Proof. We want to prove that, for f : a → a′ and η : ζ ′ : ∆′ → ζ : ∆ we have a
function

Trig(M)~x(η, f) : Trig(M)~x(ζ : ∆, a)→ Trig(M)~x(ζ ′ : ∆′, a′)

Such that Trig(M)ζ(η ◦ θ, g ◦ f) = Trig(M)ζ(θ, g) ◦ Trig(M)ζ(η, f). We take

〈η, p〉 → [f]〈η, p〉{η}

By the Corollary 4.2.25 and the definition of actions we can conclude.

We are finally ready to prove the central theorem of the chapter, that is the
isomorphism between intersection type distributors and the rigid expansion.

Theorem 4.3.4. Let M ∈ Λ, ~x ⊃ fv(M). We have a natural isomorphism

JMK~x(U?(ζ : ∆), a) ∼= Trig(M)~x(ζ : ∆, a).

Proof. We work up to the natural isomorphism of Theorem 3.4.10. This means that
we consider the elements of JMK~x as type derivations. The variable and abstraction
cases are immediate by definition and IH.

We prove the application case. If M = PQ and n = len(~x). By IH we have that
there exist natural bijections

φP∆,a : JP K~x(∆, a) ∼= Trig(P)~x(ζ : ∆, a)

φQ∆,a : JQK~x(∆, a) ∼= Trig(Q)~x(ζ : ∆, a).

Given ~a = 〈a1, . . . , ak〉 ∈ SD,Γ0, . . .Γk ∈ (SDn)? we can build a natural transfor-
mation

φPQ~a,∆,a :
∑

Γj∈SDn

(
Trig(P)~x(Γ0,~a⇒ a)×

k∏
i=1
Trig(Q)~x(Γiai)

)
◦ SDn(∆,

k⊗
j=0

Γj)

163

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

→
∫ Γj∈SDn

JP K~x(Γ0,~a⇒ a)×
k∏
i=1

JQK~x(Γiai)× SDn(∆,
k⊗
j=0

Γj)

(ϕ~ψ) ◦ η 7→
˜

〈φPΓ0,~a⇒a(ϕ),
k∏
i=1

φQΓi,ai(~ψ), η〉

we observe that the former map is well-defined, since by definitions of points given
two different representations of (ϕ~ψ) ◦ η we get the same equivalence class 10.

Let φPQ∆,a = ∑
~a∈SD φ

PQ
~a,∆,a. By IH and Lemma 3.4.5, the former map is in particular

a natural transformation. We prove that φPQ∆,a is bijective and stable under the
additional congruence induced by type lists ~a ∈ SD. We use∼ for the corresponding
congruence of points and ∼′ for the corresponding congruence on type derivations
generated by the rule (3.2).
We need to prove the following three conditions
1. If ϕ ∼ ϕ′ then φPQ∆,a(ϕ) ∼′ φPQ∆,a(ϕ).

2. If φPQ∆,a(ϕ) ∼′ φPQ∆,a(ϕ) then ϕ ∼ ϕ′.

3. For all π there exits ϕ such that π = φPQ∆,a(ϕ).
The three former conditions are a direct consequence of naturality and the IH.

4.3.1. Reduction and Congruence
In this section we finally formalize the intuition that the invertible 2-cell associated

to a β-reduction step can be described by the means of the operational semantics
that we gave for our λ-terms approximants. More precisely, we shall prove that if
M →β N, then we have

βM,N : Trig(M)~x(∆, a) ∼= Trig(N)~x(∆, a)

where βM,N
∆,a (ϕ̃) = ψ̃, when ϕ̃ →p ψ̃. This is a very strong result: the reduction

relation on points that approximate an ordinary λ-term collapses into a function.
Moreover, this function will be a bijection. The key ingredient of this result is the
equivalence relation. We shall prove that if two approximants reduce to equivalent
terms then they are equivalent to each other.
We start by proving two lemmas about substitution.

Lemma 4.3.5. Let ϕ̃ ∈ Trig(M{N/x})~x(ζ : ∆, a) with ~x ⊇ (fv(M)/{x}) ∪ fv(N).
There exist ~a = 〈a1, . . . , ak〉 ∈ SD, ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, . . . , ζk : Γk ∈ (SDn)?, η : ζ :
∆→⊗

ζj : Γj and ϕ̃ ∈ Trig(M)~x⊕〈x〉(ζ0⊕〈~y〉 : Γ0⊕〈~a0〉, a), ψ̃i ∈ Trig(N)~x(ζi : Γi, ai)

for i ∈ [k] such that ϕ̃ = ˜
ϕ′[~ψ = 〈ψ1, . . . , ψk〉/~y] ◦ η.

10. This happens because points are indeed the equivalence classes for the considered equivalence
relation. See Proposition 4.2.11 and Definition 4.2.21.

164

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

((λ~x : f.ϕ)~ψ) ◦ η →p ϕ[~ψ/~x]C (λx.P)Q→β P{Q/x}
ϕ = 〈η ⊕ 〈f〉, p〉 →p ψ = 〈η ⊕ 〈g〉, p〉CM →β N

λ~x : f.ϕ→p λ~x : g.ψ C λx.M →β λx.N

ϕ→p ϕ
′ C P →β P

′

(ϕ~ψ) ◦ η →p (ϕ′ ~ψ) ◦ η C PQ→β P
′Q

~ψ →p
~ψ′ CQ→β Q

′

(ϕ~ψ) ◦ η →p (ϕ~ψ′) ◦ η C PQ→β PQ
′

Q→β Q
′

(ϕ〈〉) ◦ η →p (ϕ〈〉) ◦ η C PQ→β PQ
′

ψ1 →p ψ
′
1 CM →β N . . . ψl →p ψ

′
k CM →β N

〈ψ1, . . . , ψk〉 →p 〈ψ′1, . . . , ψ′k〉CM →β N

whenever the points are well-defined.

Figure 4.5. – Approximation of β-reduction steps.

Proof. By induction on the structure ofM. The proof is detailed in Section B.11.

Lemma 4.3.6. Let M,N ∈ Λ, ~x ⊇ (fv(M)/{x}) ∪ fv(N) and x /∈ ~x. Let ~a =
〈a1, . . . , ak〉 ∈ SD, ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, . . . , ζk : Γk ∈ (SDn)?, η : ζ : ∆ → ⊗

ζj :
Γj, ϕ̃ ∈ Trig(M)~x⊕〈x〉(ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, a), ψ̃i ∈ Trig(N)~x(ζi : Γi, ai) for i ∈ [k].

Then ˜
ϕ{~ψ = 〈ψ1, . . . , ψk〉/~x} ∈ Trig(M{N/x})~x(ζ : ∆, a).

Proof. By induction on the structure ofM. The proof is detailed in Section B.12.

We define the approximation relation (Figure 4.4) directly over points.
We write ϕCM if ϕ̃ ∈ Trig(M)~x(ζ : ∆, a) for some 〈ζ : ∆, a〉 ∈ (SDlen(~x))?×D. In

particular, by the former two lemmas we have that if ((λ~x : f.ϕ)~ψ) ◦ η C (λx.M)N
then ϕ[~ψ/~x] ◦ η CM{N/x}.
Let ϕCM,ψ CN with M →β N. We define ϕ→p ψ CM →β N by induction

in Figure 4.5. In particular, we have that if ϕ→p ψ CM →β N then ϕ→=
p ψ.

Remark 4.3.7. It is necessary to consider the reflexive closure of →p in Figure
4.5. Consider M = x((λy.y)z)→β N = xz. Clearly, 〈〈1〉, x〈〉〉, where we keep the
typing implicit, is an approximant of both M and N , but it is a normal form.

Proposition 4.3.8. Let ϕ1 →p ϕ
′
1 CM →β N,ϕ2 →p ϕ

′
2 CM →β N. If ϕ1 ∼ ϕ2

then ϕ′1 ∼ ϕ′2.

165

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.3. Rigid Expansion

Proof. By induction on the β-reduction step M →β N. Let M = (λx.P)Q and
N = P{Q/x}. Then ϕ1 = ((λ~x1 : f1.ψ1)~ψ1) ◦ η1 and ϕ2 = ((λ~x2 : f2.ψ2)~ψ2) ◦ η2.
By hypothesis we have that ϕ1 ∼ ϕ2. Suppose that they are equivalent by the
application base case. Then ϕ1 = (([h ⇒ 1](λ~x2 : f2.ψ2))~ψ1) ◦ η1 and ϕ2 =
((λ~x2 : f2.ψ2)[h]~ψ2) ◦ (1 ⊗ sm(h)) ◦ η1 for some morphism h. Let ~y such that
len(~y) = len(source(h)). Then [h⇒ 1](λ~x2 : f2.ψ2) = λ~y : f2 ◦ h.(ψ2{1⊕ 〈h〉}). By
Corollary 4.2.25 we get

ψ2[[h]~ψ1/~x] ◦ (1⊗ sm(h)) ◦ η1 = ψ2{1⊕ 〈h〉}[~ψ1/~y] ◦ η1

Then we can conclude. If ϕ ∼ ϕ′ by contextuality, the result follows directly by
Proposition 4.2.29.
If M = λx.M ′ →β N = λx.N ′ with M ′ →β N

′ then ϕ1 = λ~x1 : f1.ψ1 →p ϕ
′
1 =

λ~x : f ′.ψ′1 and ϕ2 = λ~x2 : f2.ψ2 →p ϕ
′
2 = λ~x2 : f ′2.ψ′2. By hypothesis we have that

ψ1 ∼ ψ2. Hence, by definition of congruence, ~x1 = ~x2. Then we conclude applying
the IH.
If M = PQ →β N = P ′Q with P →β P ′ the result is again an immediate

corollary of congruence contextuality and the IH. The same happens for the other
application case.

By the former proposition, the reduction relation for point that approximate
ordinary λ-terms lifts to equivalence classes. Under these specific conditions, if
ϕ→p ψ we can then write ϕ̃→p ψ̃.

We now introduce a notion of coherence for points, adapting the corresponding
notion on resource terms that we introduced in Chapter 1. Intuitively, two points
are coherent if the respective associated terms represent the same syntactic tree.
Hence, coherence is tightly connected to approximation.

Definition 4.3.9. We define a coherence relation on points ¨ ⊆ Ω2 by induction
as follows:

〈η, x〉 ¨ 〈θ, y〉 ϕ ¨ ϕ′

λ~x : f.ϕ ¨ λ~x : f ′.ϕ′

ϕ ¨ ϕ′ ~ψ ¨ ~ψ′ η, η′

(ϕ~ψ) ◦ η ¨ (ϕ′ ~ψ′) ◦ η′
ψi ¨ ψj for 1 ≤ i, j ≤ k + k′

〈ψ1, . . . , ψk〉 ¨ 〈ψk+1, . . . , ψk+k′〉

whenever the points are well-defined.

We observe that if ϕ ∼ ϕ′ then ϕ ¨ ϕ′ and [f]ϕ ∼ [f]ϕ′, ϕ{η} ¨ ϕ′{η} whenever
those points are well-defined.

Proposition 4.3.10. Let M ∈ Λ, fv(M) ⊆ ~x and 〈ζ : ∆, a〉 ∈ (SDlen(~x))?×D. The
set Trig(M)~x(ζ : ∆, a) is a clique for the coherence relation on points.

Proof. Straightforward induction on the structure of M.

166

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

Theorem 4.3.11 (Uniformity of Reduction). Let ϕ1, ϕ2 ∈ Ωζ(∆, a),M,N ∈ Λ
such that ϕ1 →p ϕ

′
1CM →β N and ϕ2 →p ϕ

′
2CM →β N. If ϕ′1 ∼ ϕ′2 then ϕ1 ∼ ϕ2.

Proof. The result is a corollary of an appropriate substitution lemma. The proof is
detailed in Section B.9.

The former proposition can be seen as the computational meaning of the semantic
equivalence on points and, more generally, on type derivations. Intuitively, we can
rephrase it as follows: two approximants that represent the same dynamics must
be considered as equivalent.
Proposition 4.3.12. Let M,N ∈ Λ, ~x ⊇ fv(M) ∪ fv(N) such that M →β N. We
have

1. For all 〈ζ : ∆, a〉 ∈ (SDlen(~x))? ×D and ϕ̃ ∈ Trig(M)~x(ζ : ∆, a) there exists
ψ̃ ∈ Trig(N)~x(ζ : ∆, a) such that ϕ̃→p ψ̃ CM →β N.

2. For all 〈ζ : ∆, a〉 ∈ (SDlen(~x))? × D and ψ̃ ∈ Trig(N)~x(ζ : ∆, a) there exists
ϕ̃ ∈ Trig(M)~x(ζ : ∆, a) such that ϕ̃→p ψ̃ CM →β N.

Proof. Completely straightforward induction on the β-reduction step. The non-
trivial case is the base case, that is a corollary of Lemmas 4.3.5 and 4.3.6.
Theorem 4.3.13. Let M,N ∈ Λ, ~x ⊇ fv(M)∪ fv(N) such that M →β N. We have
a natural isomorphism

βM,N
∆,a : Trig(N)~x(∆, a) ∼= Trig(M)~x(∆, a)

induced by the reflexive closure of the reduction relation on points.
Proof. We can define the following function

βM,N
∆,a : Trig(N)~x(∆, a) ∼= Trig(M)~x(∆, a)

βM,N
∆,a (ϕ̃) = ψ̃ s.t. ϕ̃→p ψ̃ CM →β N

Since, by Proposition 4.3.12, for all ϕ̃ ∈ Trig(M)~x(∆, a) there exists ψ̃ ∈ Trig(N)~x(ζ :
∆, a) such that ϕ̃ →p ψ̃ CM →β N and by Proposition 4.3.8 ψ̃ is unique. The
former function is also natural in both ∆ and a by Corollary 4.2.25 and Proposition
4.2.29. By Theorem 4.3.11 βM,N

∆,a is injective and by Proposition 4.3.12 βM,N
∆,a is

surjective.

4.4. An Example: the Linear Case
In this section we present a concrete example of our construction, in the case

when the resource monad S is the linear resource monad, i.e. the 2-monad where
SA is the symmetric strict monoidal completion of A. As already seen in the
context of intersection type distributors, this particular construction corresponds
to the categorification of the standard relation semantics for linear logic.

167

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

Subtyping-Aware Linear Polyadic Terms The syntax of the calculus is just a
particular instance of the parametric syntax for subtyping-aware polyadic terms.
A simple inspection of the definitions gives the following type assignment for

polyadic terms:

1〈〉 : 〈〉 → 〈〉, . . . , 〈f〉 : 〈a′〉 → 〈a〉, . . . , 1〈〉 : 〈〉 → 〈〉
〈〉 : 1〈〉 : 〈〉, . . . , 〈x〉 : 〈f〉 : 〈a′〉, . . . , 〈〉 : 1〈〉 : 〈〉 ` x : a

π...
ζ ⊕ 〈~z〉 : η ⊕ 〈f〉 : ∆⊕ 〈~a〉 ` p : a

ζ : η : ∆ ` λ~z : f.p : ~a⇒ a
π0...

ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

We call R1 the former type system. The first thing to notice is that, in the
application case, the substitution (p〈q1, . . . , qk〉)η = p[ζ{sm(η)}/⊗k

j=0 ζj] does not
perform any copying operation, since the structural function of morphisms are just
permutations. Hence this kind of substitution just boils down to linear substitutions
where the position of free variables needs to be rearranged. This phenomenon
suggests to restrict the typing of applications as follows:

π0...
ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 (⊗k

j=0 Γj){sm(η)−1} : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
(⊗k

j=0 Γj){sm(η)−1} : (⊗k
j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

where we additionally impose that in a term p ∈ Ξ each variable appears exactly
once. We call R2 the type system obtained by replacing the application rule of
system R1 with the former one. Clearly we have that the system R2 is contained
in R1. Then we observe that (p〈q1, . . . , qk〉)η = p〈q1, . . . , qk〉. Hence the operation
performed on contexts in that case is quite familiar and its just an exchange rule
mixed within the application rule of our type system. This restriction is legitimate,
in the sense that all the construction that we made in the previous sections does
not depend on a particular choice of free variables in the application case.
It is completely straightforward to see that the two type systems are actually

equivalent, in the sense that ζ : η `R1 p : a iff ζ : η `R2 p : a. Moreover, they are
equivalent in a stronger sense:

Lemma 4.4.1. Let π ∈ R1. Then there exists π′ ∈ R2 such that π′ ∼ π.

Proof. By induction on the structure of π. The proof is detailed in Section B.13.

168

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

4.4.1. Points of Linear Type Derivations
Lemma 4.4.1 allows us to give an easier definition of points in the linear framework:

Given 〈ζ : ∆, a〉 ∈ (SDn)? ×D with n ∈ N we define the set of linear points for
〈ζ : ∆, a〉,Ωζ(∆, a) by induction as follows:
— If η = 〈1, . . . , fi = 〈αi, f〉, . . . , 1〉 : ζ : 〈〈〉, . . . ,~ai, . . . , 〈〉〉 → 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉

then 〈η, xi〉 ∈ Ωζ(〈〈〉, . . . , 〈a′〉, . . . , 〈〉〉, a).
— If 〈η ⊕ 〈f〉, p〉 ∈ Ωζ⊕〈~x〉(∆⊕ 〈~a〉, a) then 〈η, λ~x : f.p〉 ∈ Ωζ(∆,~a⇒ a).
— If 〈η0, s〉 ∈ Ωζ0(Γ0, 〈a1, . . . , ak〉 ⇒ a), 〈ηi, ti〉 ∈ Ωζi(Γi, ai) for i ∈ [k] and η :

(⊗k
j=0 ζj){sm(η)} : ∆→⊗k

j=0 ζj : ⊗k
j=1 Γj then 〈(

⊗k
j=1 ηj)◦η, (s〈t1, . . . , tk〉)〉 ∈

Ωζ(∆, a).
In particular, since the linear system is relevant, a point completely determines

its typing, i.e. if ϕ ∈ Ωζ(∆, a) ∩ Ωζ′(∆′, a′) then ζ = ζ ′,∆ = ∆′ and a = a′. Hence
the set of linear points Ωl can be written as⊔

n∈N

⊔
〈ζ:∆,a〉∈(SDn)?

Ωl
ζ(∆, a).

If we consider the reduction relation →p ⊆ Ωl we can prove that it is strongly
normalizable in a completely combinatorial way, following the standard argument
for strong normalization for resource terms [ER08]. We define the size of a point
as follows s (〈η, p〉) = s (p) .

Lemma 4.4.2. Let ϕ ∈ Ωζ 3~xi (∆ 3~ai , a) and ~ψ ∈ Ω~ζ(~Γ,~ai). We have s
(
ϕ[~ψ/~xi]

)
=

s (ϕ) + s
(
~ψ
)
.

Proposition 4.4.3. Let ϕ ∈ Ω. If ϕ→p ϕ
′ then s (ϕ) = s (ϕ′)− 1.

Theorem 4.4.4. The reduction →l
p is strongly normalizing.

Proof. By induction on the size of a term. Let ϕ→p ϕ
′ then, by former lemma, we

have that s (ϕ′) = s (ϕ)− 1 and we can apply the IH and conclude.

We call the linear rigid expansion of a λ-term the rigid Taylor expansion of it.

Recovering the Ordinary Taylor expansion In this section we will denote
standard resource terms (Definition 1.4.1) as s, t, . . . and polyadic terms as p, q . . .
We want to establish an explicit relationship between standard resource terms and
subtyping-aware polyadic terms.
We define the approximation assignment for resource terms by induction in

Figure 4.6.
Let 〈ζ : ∆, a〉 ∈ (SDn)?×D for some n ∈ N , s be a resource term and ~x ⊃ fv(s)

such that len(~x) = n. We define the rigid expansion of s on 〈ζ : ∆, a〉 as follows

Trig(s)~x(ζ : ∆, a){〈̃η, p〉 | ζ C ~x ` pC s and ζ : η : ∆ ` p : a}.

169

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

y ∈ V
〈〉C x1, . . . , 〈yi〉C xi, . . . , 〈〉C xn ` y C x

ζ C χ, 〈x1, . . . , xk〉C x ` pC s f ∈ mrp(SD)
ζ C χ ` λ〈x1, . . . , xk〉 : f.pC λx.s

ζ0 C χ ` pC s (ζi C χ ` qi C tσ(i))ki=1 ~τ : ζ C χ→⊗k
j0(ζj C χ) σ ∈ Sk

ζ C χ ` (p〈q1, . . . , qk〉)~τ C s[t1, . . . , tk]

Figure 4.6. – Polyadic approximation of resource terms.

If we develop inductively the former definition we get the following:

Trig(x)~x(ζ : ∆, a) = {〈η, y〉 | 〈η, y〉 ∈ Ωζ(∆, a)}.

Trig(λx.s)~x(ζ : ∆, a) = { ˜λ~z : f.ϕ | ϕ̃ ∈ Trig(s)~x⊕〈x〉(ζ ⊕ 〈~z〉 : ∆⊕ 〈source(f)〉, a)}.

Trig(〈s〉[t1, . . . , tk])~x(ζ : ∆, a) = { ˜(ϕ〈ψ1, . . . , ψk〉) ◦ η | ϕ̃ ∈ Trig(s)~x(ζ0 : Γ0,~a⇒ a)

ψ̃i ∈ Trig(tσ(i))~x(ζi : Γi, ai) for i ∈ [k] and η : ζ : ∆→
k⊗
j=0

ζj :
k⊗
j=0

Γj

for some ζ0 : Γ0, ζi : Γi ∈ (SDlen(~x))?,~a = 〈a1, . . . , ak〉 ∈ SD and σ ∈ Sk}.

Theorem 4.4.5. Let M ∈ Λ. We have

Trig(M)~x(ζ : ∆, a) =
∑

s∈T (M)
Trig(s)~x(ζ : ∆, a).

Proof. The variable and abstraction cases are immediate, we prove the application
case. Let M = PQ we have

Trig(PQ)~x(ζ : ∆, a) = { ˜(ϕ〈ψ1, . . . , ψk〉) ◦ η | ϕ̃ ∈ Trig(P)~x(ζ0 : Γ0,~a⇒ a)

ψ̃i ∈ Trig(Q)~x(ζi : Γi, ai) for i ∈ [k] and η : ζ : ∆→
k⊗
j=0

ζj :
k⊗
j=0

Γj

for some ζ0 : Γ0, ζi : Γi ∈ (SDlen(~x))?,~a = 〈a1, . . . , ak〉 ∈ SD}

and ∑
s∈T (M)

Trig(s)~x(ζ : ∆, a) =

∑
s∈T (P),[t1,...,tk]∈!T (Q)

Trig(〈s〉[t1, . . . , tk])~x(ζ : ∆, a) =

170

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

{ ˜(ϕ〈ψ1, . . . , ψk〉) ◦ η | ϕ̃ ∈ Trig(s)~x(ζ0 : Γ0,~a⇒ a)

ψ̃i ∈ Trig(tσ(i))~x(ζi : Γi, ai) for i ∈ [k] and η : ζ : ∆→
k⊗
j=0

ζj :
k⊗
j=0

Γj

for some ζ0 : Γ0, ζi : Γi ∈ (SDlen(~x))?,~a = 〈a1, . . . , ak〉 ∈ SD and σ ∈ Sk}.

We prove the result by double inclusion.
(⊆) Let ˜(ϕ〈ψ1, . . . , ψk〉) ◦ η ∈ Trig(PQ)~x(ζ : ∆, a), by IH we have ϕ ∈ Trig(s)~x(ζ0 :

Γ0,~a ⇒ a) and ψi ∈ Trig(ti)~x(ζi : Γi, ai) for a unique s ∈ T (M), ti ∈ T (Q). Then,
by definition

˜(ϕ〈ψ1, . . . , ψk〉) ◦ η ∈ Trig(〈s〉[t1, . . . , tk])~x(ζ : ∆, a).

(⊇) Let ˜(ϕ〈ψ1, . . . , ψk〉) ◦ η ∈ Trig(〈s〉[t1, . . . , tk])~x(ζ : ∆, a) for a unique s ∈
T (M), ti ∈ T (Q). Then for some σ ∈ Sk, ϕ ∈ Trig(s)~x(ζ0 : Γ0,~a ⇒ a) and
ψi ∈ Trig(tσ(i))~x(ζi : Γi, ai). Then we apply the IH and conclude.

171

Conclusion
We conclude the present work by discussing ongoing further work and speculating

about some interesting perspectives.
1. We are currently working on proving that the reduction relation on points

(Definition 4.2.24) is both strongly normalizing and confluent. While strong
normalization seems to follow from a non-trivial extension of the classic
reducibility method, the confluence of the reduction is technically very chal-
lenging 11. Supposing that the reduction satisfies both properties, we believe
that we can get a completely natural general commutation theorem between
normal form of the rigid expansion and Böhm Trees. This would improve the
standard result on Taylor expansion from a semantic point of view: the rigid
expansion is now isomorphic to its normal form.

2. Moreover, we are also working to extend our framework to an untyped call-by-
push value setting [OG21]. In this way, we can get, through a nice factorization
of the semantics, both an interpretation of call-by-name and call-by-value
dynamics. Moreover, this opens the path to the more general setting of
Multiplicative Exponential Linear Logic.

3. The first question opened by this thesis that deserves to be further considered
is the relationship between the bicategorical denotational semantics introduced
in Chapters 3 and 4 and the more syntactic 2-operadic approach to intersection
type systems and approximants of λ-terms studied in [MPV18; Maz17]. As
already briefly observed, an extension of the results of Mazza et al. to our
setting would overcome some limitations of their original framework. Indeed,
we could probably obtain in this way an improvement of the approximation
presheaf [Maz17][pp. 63-67]. Roughly speaking, the approximation presheaf is
a (lax) morphism from the 2-operad of λ-terms 12 to the bicategory of relational
distributors which takes a term M as input and returns a distributor TD(M)
that works as follows: given ∆, a respectively a type context and a type in an
appropriate (discrete) category of types D, we get the following set

TD(M)(∆, a) = {p | p is an approximant of M s.t. ∆ ` p : a}.

11. However, since this reduction relation corresponds to the 2-cell associated to a β-reduction
step; we believe that it is confluent. Maybe, some kind of ”universal construction” approach
could spare us a technical nightmare.
12. Actually, the construction works for any calculus that can be meaningfully embedded in

Multiplicative Exponential Linear Logic.

172

4. Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary λ-Terms –
4.4. An Example: the Linear Case

The former intuitive presentation is very reminiscent of the structures consid-
ered in [TAO17] and, in greater generality, in the present work. We believe
that an eventual extension of our approach to that framework would deter-
mine the lifting of the approximation presheaf from a lax morphism to an
appropriate pseudofunctor. This would be a relevant improvement: in that
case, the approximation presheaf would describe a bicategorical denotational
semantics. Moreover, it would then possible to exploit the Grothendieck
construction of [Maz17][pp. 59-63] in all its generality, without the need to
limit oneself to discrete categories, adding in his way the subtyping feature to
the considered intersection type systems and approximants.
This perspective would be very beneficial also for our work: Mazza et al.
framework is much broader then ordinary λ-calculus and the 2-operadic point
of view is a very natural setting for bidimensional categorical considerations.

4. Another interesting issue arises in the context of resource monads. The
relationship between the linear resource monad and the cartesian one is
reminiscent of what happens in the one-dimensional framework between the
relational model and the Scott model of linear logic [Ehr12b; Mel04]. If we
lift to distributors, we get that the bicategory S-CatSym, where S is the
cartesian resource monad, is biequivalent by dualization to the bicategory
ProfC introduced in [Gal20], which generalizes the Scott model of linear logic.
Hence, it is natural to consider the question of some kind of ”extensional
collapse” in the sense of [Ehr12b] in this categorified setting.

5. The rigid Taylor expansion semantics [TAO17] has been extended to quan-
tum and probabilistic computation in [TAO18], where a notion of weighted
profunctor is introduced. This result encourages a possible extension of the
results of our thesis at least to the probabilistic λ-calculus [Lev16] and the
algebraic one [Vau09]. Much of the classic results of advanced category theory
presented in Chapter 2 have a natural generalization to enriched category
theory. However, there would clearly be some highly non-trivial work on
(relative) pseudomonads and enriched bicategories to be done.

6. Finally, an extension of the present semantics to the context of Multiplicative
Exponential Linear Logic could eventually led to the definition of a determin-
istic reduction relation on some kind of refined proof-nets experiments [Fal03;
CPF11], shedding some light on a long-standing problem. Indeed, intuitively
an experiment is to a proof-net what a type derivation in an appropriate
intersection type system is to a λ-term. Hence, it is natural to think that
the proof-nets semantics corresponding to our construction should somehow
generalize the notion of experiment.

.

173

Bibliography
[ABD06] F. Alessi, F. Barbanera, and M. Dezani-Ciancaglini. “Intersection types

and lambda models”. In: Theoretical Computer Science 355.2 (2006).
Logic, Language, Information and Computation, pp. 108–126. doi:
https://doi.org/10.1016/j.tcs.2006.01.004 (cit. on p. 132).

[AC98] R. M. Amadio and P.-L. Curien. Domains and Lambda-calculi. New
York, NY, USA: Cambridge University Press, 1998. isbn: 0-521-62277-8
(cit. on pp. 15, 102).

[BM20] D. Barbarossa and G. Manzonetto. “Taylor subsumes Scott, Berry,
Kahn and Plotkin”. In: Proc. ACM Program. Lang. 4.POPL (2020),
1:1–1:23. doi: 10.1145/3371069 (cit. on p. 19).

[Bén00] J. Bénabou. “Distributors at Work”. In: 2000. url: http : / / www .
entretemps.asso.fr/maths/Distributors.pdf (cit. on pp. 15, 88).

[BL13] A. Bernadet and S. J. Lengrand. “Non-idempotent intersection types
and strong normalisation”. In: Logical Methods in Computer Science
Volume 9, Issue 4 (2013). doi: 10.2168/LMCS-9(4:3)2013 (cit. on
p. 12).

[BKP89] R. Blackwell, G. M. Kelly, and A. J. Power. “Two-dimensional monad
theory”. In: Journal of Pure and Applied Algebra 59.1 (1989), pp. 1–41.
issn: 0022-4049. doi: https://doi.org/10.1016/0022-4049(89)
90160-6 (cit. on pp. 61, 62, 84).

[Bor94] F. Borceux. Handbook of Categorical Algebra. Vol. 1. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994.
doi: 10.1017/CBO9780511525858 (cit. on pp. 54, 88).

[BKV17] A. Bucciarelli, D. Kesner, and D. Ventura. “Non-idempotent intersection
types for the Lambda-Calculus”. In: Logic Journal of the IGPL 25.4
(2017), pp. 431–464. doi: 10.1093/jigpal/jzx018 (cit. on pp. 12, 13).

[Bun94] A. Bunkenburg. “The Boom Hierarchy”. In: Functional Programming,
Glasgow 1993: Proceedings of the 1993 Glasgow Workshop on Functional
Programming, Ayr, Scotland, 5–7 July 1993. Ed. by J. T. O’Donnell
and K. Hammond. London: Springer London, 1994, pp. 1–8. isbn:
978-1-4471-3236-3. doi: 10.1007/978-1-4471-3236-3_1 (cit. on
p. 78).

174

https://doi.org/https://doi.org/10.1016/j.tcs.2006.01.004
https://doi.org/10.1145/3371069
http://www.entretemps.asso.fr/maths/Distributors.pdf
http://www.entretemps.asso.fr/maths/Distributors.pdf
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-1-4471-3236-3_1

Bibliography

[Car07] D. de Carvalho. “Semantique de la logique lineaire et temps de calcul”.
In: PhD thesis, Aix-Marseille Université, 2007 (cit. on pp. 12, 13, 95,
121, 127).

[CF16] D. de Carvalho and L. T. de Falco. “A semantic account of strong
normalization in linear logic”. In: Inf. Comput. 248 (2016), pp. 104–129.
doi: 10.1016/j.ic.2015.12.010 (cit. on p. 13).

[CPF11] D. de Carvalho, M. Pagani, and L. T. de Falco. “A semantic measure
of the execution time in linear logic”. In: Theoretical Computer Science
412.20 (2011), pp. 1884–1902. issn: 0304-3975. doi: https://doi.org/
10.1016/j.tcs.2010.12.017 (cit. on pp. 13, 173).

[CW05] G. L. Cattani and G. Winskel. “Profunctors, open maps and bisimula-
tion”. In: Mathematical Structures in Computer Science 15.3 (2005),
pp. 553–614. doi: 10.1017/S0960129505004718 (cit. on p. 15).

[Cop+84] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. “Extended
Type Structures and Filter Lambda Models”. In: Logic Colloquium
’82. Vol. 112. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1984, pp. 241–262. doi: https://doi.org/10.1016/S0049-
237X(08)71819-6 (cit. on p. 13).

[CD78] M. Coppo and M. Dezani-Ciancaglini. “A new type-assignment for
lambda terms”. In: Archiv für Mathematische Logik und Grundlagen-
forschung. 1978, pp. 139–156 (cit. on pp. 12, 127).

[Day70] B. Day. “On closed categories of functors”. In: Reports of the Midwest
Category Seminar IV. Berlin, Heidelberg: Springer Berlin Heidelberg,
1970, pp. 1–38. isbn: 978-3-540-36292-0 (cit. on p. 74).

[Ehr05] T. Ehrhard. “Finiteness spaces”. In: Mathematical Structures in Com-
puter Science 15.4 (2005). doi: 10.1017/S0960129504004645 (cit. on
pp. 12, 23).

[Ehr10] T. Ehrhard. “A Finiteness Structure on Resource Terms”. In: LICS
2010. 2010. doi: 10.1109/LICS.2010.38 (cit. on pp. 19, 23).

[Ehr12a] T. Ehrhard. “Collapsing non-idempotent intersection types”. In: Com-
puter Science Logic (CSL’12) - 26th International Workshop/21st An-
nual Conference of the EACSL, CSL 2012. Vol. 16. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 259–273. doi:
10.4230/LIPIcs.CSL.2012.259 (cit. on pp. 86, 87, 95).

[Ehr12b] T. Ehrhard. “The Scott model of linear logic is the extensional collapse
of its relational model”. In: Theoretical Computer Science 424 (2012),
pp. 20–45. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2011.11.027 (cit. on pp. 13, 173).

175

https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1017/S0960129505004718
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71819-6
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71819-6
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1109/LICS.2010.38
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/https://doi.org/10.1016/j.tcs.2011.11.027

Bibliography

[Ehr16] T. Ehrhard. “Call-By-Push-Value from a Linear Logic Point of View”.
In: Programming Languages and Systems. Ed. by P. Thiemann. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 202–228. isbn: 978-3-
662-49498-1 (cit. on pp. 13, 86).

[ER03] T. Ehrhard and L. Regnier. “The differential lambda-calculus”. In:
Theoretical Computer Science 309.1-3 (2003). doi: 10.1016/S0304-
3975(03)00392-X (cit. on pp. 12, 23).

[ER06a] T. Ehrhard and L. Regnier. “Böhm Trees, Krivine’s Machine and
the Taylor Expansion of Lambda-Terms”. In: CiE 2005. 2006. doi:
10.1007/11780342_20 (cit. on pp. 12, 19, 23).

[ER06b] T. Ehrhard and L. Regnier. “Differential Interaction Nets”. In: Theoreti-
cal Computer Science 364.2 (2006). doi: 10.1016/j.tcs.2006.08.003
(cit. on p. 12).

[ER08] T. Ehrhard and L. Regnier. “Uniformity and the Taylor Expansion of
ordinary λ-terms”. In: Theoretical Computer Science 403.2-3 (2008).
doi: 10.1016/j.tcs.2008.06.001 (cit. on pp. 12, 13, 16, 18, 19, 23,
27, 28, 30, 169).

[Fal03] L. T. de Falco. “Obsessional Experiments For Linear Logic Proof-Nets”.
In: Mathematical Structures in Computer Science 13.6 (2003), pp. 799–
855. doi: 10.1017/S0960129503003967 (cit. on p. 173).

[Fio+08] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. “The cartesian
closed bicategory of generalised species of structures”. In: Journal of
the London Mathematical Society (2008). doi: 10.1112/jlms/jdm096
(cit. on pp. 14, 15, 20, 33, 89, 92, 94).

[Fio+17] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. “Relative pseu-
domonads, Kleisli bicategories, and substitution monoidal structures”.
In: Selecta Mathematica 24.3 (Nov. 2017), pp. 2791–2830. issn: 1420-
9020. doi: 10.1007/s00029-017-0361-3 (cit. on pp. 14, 16, 47, 63,
64, 67, 89, 94).

[FS19] M. Fiore and P. Saville. “A type theory for cartesian closed bicategories
(Extended Abstract)”. In: 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019. IEEE, 2019, pp. 1–13. isbn: 978-1-7281-3608-0. doi: 10.
1109/LICS.2019.8785708. url: https://ieeexplore.ieee.org/
xpl/conhome/8765678/proceeding (cit. on p. 59).

[FS20] M. Fiore and P. Saville. “Coherence and Normalisation-by-Evaluation
for Bicategorical Cartesian Closed Structure”. In: Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science. LICS
’20. Saarbrücken, Germany: Association for Computing Machinery, 2020,

176

https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1007/11780342_20
https://doi.org/10.1016/j.tcs.2006.08.003
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1017/S0960129503003967
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.1109/LICS.2019.8785708
https://ieeexplore.ieee.org/xpl/conhome/8765678/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8765678/proceeding

Bibliography

pp. 425–439. isbn: 9781450371049. doi: 10.1145/3373718.3394769
(cit. on p. 59).

[Fio06] T. M. Fiore. “Pseudo limits, biadjoints, and pseudo algebras: categorical
foundations of conformal field theory”. In:Mem. Amer. Math. Soc (2006)
(cit. on p. 58).

[Gal20] Z. Galal. “A Profunctorial Scott Semantics”. In: 5th International Con-
ference on Formal Structures for Computation and Deduction (FSCD
2020). Ed. by Z. M. Ariola. Vol. 167. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, 16:1–16:18. isbn: 978-3-95977-155-9. doi:
10.4230/LIPIcs.FSCD.2020.16 (cit. on p. 173).

[GJ17] N. Gambino and A. Joyal. “On operads, bimodules and analytic func-
tors”. In: Memoirs of the American Mathematical Society 249.1184
(Sept. 2017). issn: 1947-6221. doi: 10.1090/memo/1184 (cit. on pp. 14,
59, 88, 89, 92, 94).

[Gar94] P. Gardner. “Discovering needed reductions using type theory”. In:
Theoretical Aspects of Computer Software. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994, pp. 555–574. isbn: 978-3-540-48383-0 (cit. on
pp. 12, 127).

[Gir87] J.-Y. Girard. “Linear Logic”. In: Theor. Comput. Sci. 50 (1987), pp. 1–
102 (cit. on pp. 11, 28).

[Gir88] J.-Y. Girard. “Normal Functors, Power Series and Lambda-Calculus”.
In: Annals of Pure and Applied Logic 37.2 (1988), p. 129 (cit. on p. 12).

[Has02] R. Hasegawa. “Two applications of analytic functors”. In: Theor. Com-
put. Sci. 272.1-2 (2002), pp. 113–175. doi: 10.1016/S0304-3975(00)
00349-2 (cit. on p. 12).

[Hir13] T. Hirschowitz. “Cartesian closed 2-categories and permutation equiv-
alence in higher-order rewriting”. In: Log. Methods Comput. Sci. 9.3
(2013). doi: 10.2168/LMCS-9(3:10)2013 (cit. on pp. 13, 97).

[Hyl17] M. Hyland. “Classical lambda calculus in modern dress”. In: Mathe-
matical Structures in Computer Science 27.5 (2017), pp. 762–781. doi:
10.1017/S0960129515000377 (cit. on p. 13).

[Hyl+06] M. Hyland, M. Nagayama, J. Power, and G. Rosolini. “A Category The-
oretic Formulation for Engeler-style Models of the Untyped λ-Calculus”.
In: Electronic Notes in Theoretical Computer Science 161 (2006). Pro-
ceedings of the Third Irish Conference on the Mathematical Founda-
tions of Computer Science and Information Technology (MFCSIT 2004),
pp. 43–57. doi: https://doi.org/10.1016/j.entcs.2006.04.024
(cit. on p. 13).

177

https://doi.org/10.1145/3373718.3394769
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1090/memo/1184
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.1017/S0960129515000377
https://doi.org/https://doi.org/10.1016/j.entcs.2006.04.024

Bibliography

[IK86] G. B. IM and G. Kelly. “A universal property of the convolution
monoidal structure”. In: Journal of Pure and Applied Algebra 43.1
(1986), pp. 75–88. doi: https://doi.org/10.1016/0022-4049(86)
90005-8 (cit. on pp. 72, 73, 77).

[Joy86] A. Joyal. “Foncteurs analytiques et espèces de structures”. In: Com-
binatoire énumérative. Berlin, Heidelberg: Springer Berlin Heidelberg,
1986, pp. 126–159 (cit. on pp. 15, 94).

[Kel80] G. M. Kelly. “A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on”. In:
Bulletin of the Australian Mathematical Society 22.1 (1980), pp. 1–83.
doi: 10.1017/S0004972700006353 (cit. on p. 101).

[Kri93] J.-L. Krivine. “Lambda-calculus, types and models”. In: Ellis Horwood
series in computers and their applications. 1993 (cit. on pp. 12, 16, 121,
125).

[Lac00] S. Lack. “A Coherent Approach to Pseudomonads”. In: Advances in
Mathematics 152.2 (2000), pp. 179–202. issn: 0001-8708. doi: https:
//doi.org/10.1006/aima.1999.1881 (cit. on p. 61).

[LL19] U. D. Lago and T. Leventis. “On the Taylor Expansion of Proba-
bilistic λ-terms”. In: 4th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany. Ed. by H. Geuvers. Vol. 131. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 13:1–13:16. doi:
10.4230/LIPIcs.FSCD.2019.13 (cit. on p. 20).

[Lam92] F. Lamarche. “Quantitative Domains and Infinitary Algebras”. In:
Theor. Comput. Sci. 94.1 (1992), pp. 37–62. doi: 10 . 1016 / 0304 -
3975(92)90323-8 (cit. on p. 12).

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical
Logic. USA: Cambridge University Press, 1986. isbn: 0521246652 (cit.
on p. 11).

[Lan02] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York,
2002. isbn: 9780387953854 (cit. on p. 22).

[Lei98] T. Leinster. Basic0 Bicategories. 1998. arXiv: math/9810017 [math.CT]
(cit. on p. 57).

[Lei03] T. Leinster. Higher Operads, Higher Categories. 2003. arXiv: math/
0305049 [math.CT] (cit. on pp. 52, 62).

[Lev16] T. Leventis. “Probabilistic lambda-theories”. Theses. Aix-Marseille
Université, Dec. 2016. url: https://tel.archives-ouvertes.fr/
tel-01427279 (cit. on pp. 23, 173).

178

https://doi.org/https://doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/https://doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/10.1017/S0004972700006353
https://doi.org/https://doi.org/10.1006/aima.1999.1881
https://doi.org/https://doi.org/10.1006/aima.1999.1881
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.1016/0304-3975(92)90323-8
https://doi.org/10.1016/0304-3975(92)90323-8
https://arxiv.org/abs/math/9810017
https://arxiv.org/abs/math/0305049
https://arxiv.org/abs/math/0305049
https://tel.archives-ouvertes.fr/tel-01427279
https://tel.archives-ouvertes.fr/tel-01427279

Bibliography

[Lev19] T. Leventis. “A deterministic rewrite system for the probabilistic λ-
calculus”. In: Mathematical Structures in Computer Science 29.10
(2019), pp. 1479–1512. doi: 10.1017/S0960129519000045 (cit. on
pp. 23, 24).

[Lor15] F. Loregian. Coend calculus. 2015. arXiv: 1501.02503 [math.CT] (cit.
on pp. 69–71).

[Luc18] F. Lucatelli Nunes. “On lifting of biadjoints and lax algebras”. In: Cat-
egories and General Algebraic Structures with Applications 9.1 (2018),
pp. 29–58. issn: 2345-5853. eprint: http : / / cgasa . sbu . ac . ir /
article_50747_e7751692a69d525e49259ebe2763142f.pdf. url: http:
//cgasa.sbu.ac.ir/article_50747.html (cit. on p. 61).

[MZ18] D. Marsden and M. Zwart. “Quantitative Foundations for Resource
Theories”. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL 2018, September 4-7, 2018, Birmingham, UK. Ed. by D. R.
Ghica and A. Jung. Vol. 119. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, 32:1–32:17. isbn: 978-3-95977-088-0. doi: 10.
4230/LIPIcs.CSL.2018.32 (cit. on pp. 14, 47, 79, 96).

[Maz12] D. Mazza. “An Infinitary Affine Lambda-Calculus Isomorphic to the
Full Lambda-Calculus”. In: 2012 27th Annual IEEE Symposium on
Logic in Computer Science. 2012, pp. 471–480 (cit. on pp. 15, 18, 20).

[Maz17] D. Mazza. “Polyadic Approximations in Logic and Computation”. Ha-
bilitation thesis. Université Paris 13, 2017 (cit. on pp. 14, 15, 97, 172,
173).

[MPV18] D. Mazza, L. Pellissier, and P. Vial. “Polyadic approximations, fibrations
and intersection types”. In: 2018. doi: 10.1145/3158094 (cit. on pp. 13,
14, 18, 20, 97, 101, 135, 172).

[Mel04] P.-A. Melliès. “Comparing hierarchies of types in models of linear logic”.
In: Information and Computation 189.2 (2004), pp. 202–234. issn: 0890-
5401. doi: https://doi.org/10.1016/j.ic.2003.10.003 (cit. on
p. 173).

[Mel09] P.-A. Melliès. “Categorical semantics of linear logic”. In: In: Interactive
Models of Computation and Program Behaviour, Panoramas et Syn-
thèses 27, Société Mathématique de France 1–196. 2009 (cit. on pp. 11,
47, 85).

[MZ15] P.-A. Melliès and N. Zeilberger. “Functors Are Type Refinement Sys-
tems”. In: SIGPLAN Not. 50.1 (Jan. 2015), pp. 3–16. issn: 0362-1340.
doi: 10.1145/2775051.2676970 (cit. on pp. 13, 14).

[OA20] F. Olimpieri and L. V. Auclair. On the Taylor expansion of λ-terms
and the groupoid structure of their rigid approximants. 2020. arXiv:
2008.02665 [cs.LO] (cit. on p. 18).

179

https://doi.org/10.1017/S0960129519000045
https://arxiv.org/abs/1501.02503
http://cgasa.sbu.ac.ir/article_50747_e7751692a69d525e49259ebe2763142f.pdf
http://cgasa.sbu.ac.ir/article_50747_e7751692a69d525e49259ebe2763142f.pdf
http://cgasa.sbu.ac.ir/article_50747.html
http://cgasa.sbu.ac.ir/article_50747.html
https://doi.org/10.4230/LIPIcs.CSL.2018.32
https://doi.org/10.4230/LIPIcs.CSL.2018.32
https://doi.org/10.1145/3158094
https://doi.org/https://doi.org/10.1016/j.ic.2003.10.003
https://doi.org/10.1145/2775051.2676970
https://arxiv.org/abs/2008.02665

Bibliography

[OG21] F. Olimpieri and G. Guerrieri. “Categorifying Non-Idempotent Intersec-
tion Types”. In: To appear in the proceedings of the 29th International
Conference Computer Science Logic, CSL 2021. 2021 (cit. on p. 172).

[Ong17] C.-H. L. Ong. “Quantitative semantics of the lambda calculus: Some
generalisations of the relational model”. In: 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Ice-
land, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12. doi:
10.1109/LICS.2017.8005064 (cit. on p. 13).

[PTV16] M. Pagani, C. Tasson, and L. Vaux. “Strong Normalizability as a
Finiteness Structure via the Taylor Expansion of λ-terms”. In: FoSSaCS
2016. 2016. doi: 10.1007/978-3-662-49630-5_24 (cit. on pp. 19,
23).

[Sav20] P. Saville. Cartesian closed bicategories: type theory and coherence. 2020.
arXiv: 2007.00624 [math.CT] (cit. on pp. 58, 59).

[Sco70] D. S. Scott. “Outline of a mathematical theory of computation”. In:
Oxford, United Kingdom: Oxford University Computing Laboratory,
1970 (cit. on p. 11).

[SS71] D. S. Scott and C. Strachey. “Toward a mathematical semantics for com-
puter languages”. In: Oxford Programming Research Group Technical
Monograph (1971) (cit. on p. 11).

[See87] R. A. G. Seely. “Modelling Computations: A 2-Categorical Framework”.
In: LICS. 1987 (cit. on pp. 13, 97).

[Suz82] M. Suzuki. Group theory I. Springer-Verlag Berlin ; New York, 1982.
isbn: 3642618065 (cit. on p. 22).

[Ter12] K. Terui. “Semantic Evaluation, Intersection Types and Complexity of
Simply Typed Lambda Calculus”. In: 23rd International Conference
on Rewriting Techniques and Applications (RTA’12). Ed. by A. Tiwari.
Vol. 15. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2012, pp. 323–338. isbn: 978-3-939897-38-5. doi: 10.4230/LIPIcs.RTA.
2012.323 (cit. on p. 95).

[TAO17] T. Tsukada, K. Asada, and C.-H. L. Ong. “Generalised Species of
Rigid Resource Terms”. In: Proceedings of the 32rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS 2017. 2017. doi: 10.
1109/LICS.2017.8005093 (cit. on pp. 14, 20, 25, 134, 135, 161, 173).

180

https://doi.org/10.1109/LICS.2017.8005064
https://doi.org/10.1007/978-3-662-49630-5_24
https://arxiv.org/abs/2007.00624
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1109/LICS.2017.8005093

Bibliography

[TAO18] T. Tsukada, K. Asada, and C.-H. L. Ong. “Species, Profunctors and
Taylor Expansion Weighted by SMCC: A Unified Framework for Mod-
elling Nondeterministic, Probabilistic and Quantum Programs”. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’18. Oxford, United Kingdom, 2018, pp. 889–
898. isbn: 978-1-4503-5583-4. doi: 10.1145/3209108.3209157 (cit. on
pp. 20, 173).

[Vau09] L. Vaux. “The algebraic lambda calculus”. In: Mathematical Struc-
tures in Computer Science 19.5 (2009), pp. 1029–1059. doi: 10.1017/
S0960129509990089 (cit. on pp. 20, 173).

[Vau17] L. Vaux. “Taylor Expansion, β-Reduction and Normalization”. In:
Ccomputer Science Logic 2017. 2017. doi: 10.4230/LIPIcs.CSL.2017.
39 (cit. on pp. 19, 20, 23, 31).

181

https://doi.org/10.1145/3209108.3209157
https://doi.org/10.1017/S0960129509990089
https://doi.org/10.1017/S0960129509990089
https://doi.org/10.4230/LIPIcs.CSL.2017.39
https://doi.org/10.4230/LIPIcs.CSL.2017.39

Appendix

A. Technical Proofs of Chapter 3
Lemma A.1. Let M ∈ Λ, ~x ⊃ fv(M) and x ∈ V . We have the following natural
isomorphism

JMK~x(∆, a) ∼= JMK~x⊕〈〈〉〉(∆⊕ 〈〈〉〉, a)

Lemma A.2. let M ∈ Λ, ~x ⊃ fv(M), i, j ∈ len(~x) and {τi,j} : len(~x) → len(~x) be
the permutation that swaps i with j. We have the following natural isomorphism

JMK~x(∆, a) ∼= JMK~x{τi,j}(∆{τi,j}, a).

Lemma A.3. Let M ∈ Λ, ~x ⊃ fv(M) and y /∈ ~x. We have the following natural
isomorphism

JMK~x(∆⊕ 〈♦~b〉, a) : JMK~x⊕〈y〉(∆⊕ 〈〈〉〉, a) ∼= JMK~x⊕〈y〉(∆⊕ 〈~b〉, a)

for all ~b ∈ SD.

Proof. The proof is a straightforward induction on the structure of M, via coend
manipulations. The hypothesis that ♦~bis suitably universal is necessary, as expected.

Let M,N ∈ Λ, (fv(M)/{x}) ∪ fv(N) ⊇ ~x and x /∈ ~x. We set SubM,x,N
~x (∆, a) =

∫ ~a∈SD ∫ Γ1,...,Γlen(~a)∈SDn

JMK~x⊕〈~x〉(Γ0 ⊕ 〈~a〉, a)×
l(~a)∏
i=1

JNK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj).

We can now prove the following substitution lemma:

Lemma A.4. Let M,N ∈ Λ, (fv(M)/{x}) ∪ fv(N) ⊆ ~x and x /∈ ~x. We have a
natural isomorphism

JM [N/x]K~x(∆, a) ∼= SubM,x,N
~x (∆, a).

Proof. By Induction on the structure of M{N/x} via lengthy coend manipulations.
It is worth noting that, in the proof of the application case, the hypothesis about
the symmetry of the tensor product over SD is crucial, as expected. We do the
variable case. Let M = x, then M{N/x} = N and

182

Bibliography – A. Technical Proofs of Chapter 3

SubM,x,N
~x (∆, a) ∼=∫ ~a,Γj

SDn(Γ0, 〈〈〉, . . . , 〈〉〉)× SD(~a, 〈a〉)

×
∏

i∈[len(~a)]
JNK~x(Γi, ai)× SDn(∆,

len(~a)⊗
j=0

Γj)

We apply Yoneda twice and, since the number of contexts Γi depends on the length
of the list, we get ∫ Γ0

JNK~x(Γ0, a)× SDn(∆,Γ0)

We can then conclude by applying Yoneda one more time.
If M = y and y 6= x then M{N/x} = y and

SubM,x,N
~x (∆, a) ∼=∫ ~a,Γj

SDn(Γ0, 〈〈〉, . . . 〈a〉, . . . , 〈〉〉)× SD(~a, 〈〉)

×
∏

i∈[len(~a)]
JNK~x(Γi, ai)× SDn(∆,

len(~a)⊗
j=0

Γj)

we apply Yoneda twice and we get∫ ,Γ0
SDn(Γ0, 〈〈〉, . . . 〈a〉, . . . , 〈〉〉)× SDn(∆,Γ0)

we conclude applying Yoneda one more time.
If M = λx.M ′ then SubM,xi,N

~x (∆,~b⇒ b) =

∫ ~a=〈a1,...,ak〉∈SD ∫ Γj∈SDn
Jλy.M ′K~x⊕〈x〉(Γ0⊕〈~a〉,~b⇒ b)×

l(~a)∏
i=1

JNK~x(Γi, ai)×SDn(∆,
k⊗
j=0

Γj) =

∫ ~a∈SD ∫ Γj∈SDn
JM ′K~x⊕〈x〉⊕〈y〉(Γ0 ⊕ 〈~a〉 ⊕ 〈~b〉, b)×

l(~a)∏
i=1

JNK~x(Γi, ai)× SDn(∆,
k⊗
j=0

Γj)

by Lemma A.1

∼=
∫ ~a∈SD ∫ Γj∈SDn

JM ′K~x⊕〈x〉⊕〈y〉(Γ0⊕〈~a〉⊕〈~b〉, b)×
l(~a)∏
i=1

JNK~x,y(Γi⊕〈〉, ai)×SDn+1(∆,
k⊗
j=0

Γj)

183

Bibliography – A. Technical Proofs of Chapter 3

by Yoneda

∼=
∫ ~a,~c∈SD ∫ Γj∈SDn

JM ′K~x⊕〈x〉⊕〈y〉(Γ0⊕〈~a〉⊕〈~c〉, b)×
l(~a)∏
i=1

JNK~x,y(Γi⊕〈〉, ai)×SDn(∆,
k⊗
j=0

Γj)×SD(~b,~c)

by the former lemma

∼=
∫ ~a,~c∈SD ∫ Γj∈SDn

JM ′K~x⊕〈y〉⊕〈x〉(Γ0⊕〈~c〉⊕〈~a〉, b)×
l(~a)∏
i=1

JNK~x,y(Γi⊕〈〉, ai)×SDn(∆,
k⊗
j=0

Γj)×SD(~b,~c)

By IH we have
JM ′{N/x}K~x⊕〈y〉(∆, a) ∼=∫ ~a,~bj∈SD ∫ Γj∈SDn

JM ′K~x⊕〈y〉⊕〈x〉(Γ0 ⊕ 〈~b0〉 ⊕ 〈~a〉, b)×
l(~a)∏
i=1

JNK~x⊕〈y〉(Γi ⊕ 〈~bi〉, ai)

×SDn(∆,
k⊗
j=0

Γj)× SD(~b,
k⊕
j=0

~bj)

Then we can conclude by Lemma A.3

∼=
∫ ~a,~bj∈SD ∫ Γj∈SDn

JM ′K~x⊕〈y〉⊕〈x〉(Γ0 ⊕ 〈~b0〉 ⊕ 〈~a〉, b)×
l(~a)∏
i=1

JNK~x⊕〈y〉(Γi ⊕ 〈〉, ai)

×SDn(∆,
k⊗
j=0

Γj)× SD(~b,~b0).

If M = QP then

SubM,x,N(∆, a) =
∫ ~a=〈a1,...,ak〉 ∫ Γ0,Γi

JQP K~x⊕〈x〉(Γ0⊕〈~a〉, a)×
k∏
i=1

JNK~x(Γi, ai)×SDn(∆,
k⊗
j=0

Γj).

with i ∈ [k] and 0 ≤ j ≤ k. We develop JQP K~x⊕〈x〉(Γ0 ⊕ 〈~a〉, a) :

∫ ~b=〈b1,...,bk′ 〉 ∫ Γ′0⊕〈~a0〉,Γ′i′⊕〈~ai′ 〉JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))×
k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉,~b)

×SDn(Γ0 ⊕ 〈~a〉,
k′⊗
j′=0

Γ′j′ ⊕ 〈~aj′〉)

with i′ ∈ [k′] and 0 ≤ j′ ≤ k′. By the structure of the product category we get

∼=
∫ ~b ∫ Γ′1Γ′

i′
∫ ~a0,~ai′

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a0〉, ι(~b, a))×
k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉, bi′)

184

Bibliography – A. Technical Proofs of Chapter 3

×SDn(Γ0,
k′⊗
j′=0

Γ′j′)× SD(~a,
k′⊕
j′=0

~aj′).

We apply Yoneda on Γ0 and on ~a and we get

SubM,x,N(∆, a) ∼=
∫ Γi ∫ ~b ∫ Γ′

j′
∫ ~a′

j′ JQK~x⊕〈x〉(Γ′0 ⊕ 〈~a0〉, ι(~b, a))×

k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉,~b)×
l∏

i=1
JNK~x(Γi, ci)

×SDn(∆, (
k′⊗
j′=0

Γ′j′)⊗
l⊗

i=1
Γi)

where i ∈ [l] and ⊕k′

j′=0~aj′ = 〈c1, . . . , cl〉. We denote ~Γj′ = 〈Γj′,1, . . . ,Γj′,kj′ 〉 for
j′ ∈ [k′] the partition of 〈Γ1, . . . ,Γl〉 induced by the partition ~aj′ = 〈aj′,1, . . . , aj′,kj′ 〉
of 〈c1, . . . , cl〉. We set JNK~x(~Γj′ ,~aj′) = ∏kj′

ij′=1JNK~x(Γij′ , aij′). Then we get

∼=
∫ Γi ∫ ~b ∫ Γ′

j′
∫ ~a′

j′ JQK~x⊕〈x〉(Γ′0 ⊕ 〈~a0〉, ι(~b, a))×
k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉, bi′)

×JNK~x(~Γ0,~a0)×
k′∏
i′=1

JNK~x(~Γi′ ,~ai′)

×SDn(∆, (
k′⊗
j′=0

Γ′j′)⊗ (
l⊗

i=1
Γl)).

Now, by the symmetry of the tensor product ⊗ and by the fact that functors
preserves isomorphisms, we get

∼=
∫ Γi ∫ ~b ∫ Γ′

j′
∫ ~a′

j′ JQK~x⊕〈x〉(Γ′0 ⊕ 〈~a0〉, ι(~b, a))×
k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉, bi′)

×JNK~x(~Γ0,~a0)×
k′∏
i′=1

JNK~x(~Γi′ ,~ai′)

×SDn(∆, (
k′⊗
j′=0

(Γ′j′ ⊗ ~Γj′))

where we set Γ′j′ ⊗ ~Γj′ = Γ′j′ ⊗ (⊗kj′
ij′=1 Γij′).

Now, we apply Yoneda several times and we obtain

185

Bibliography – A. Technical Proofs of Chapter 3

∼=
∫ Γi ∫ ~b ∫ Γ′

j′
∫ ~a′

j′
∫ ∆j′

JQK~x⊕〈x〉(Γ′0 ⊕ 〈~a0〉, ι(~b, a))×
k′∏
i′=1

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉, bi′)

×JNK~x(~Γ0,~a0)×
k′∏
i′=1

JNK~x(~Γi′ ,~ai′)

×SDn(∆,
k′⊗
j′=0

∆j′)× SDn(∆0,Γ′0 ⊗ ~Γ0)× · · · × SDn(∆kj′
,Γ′kj′ ⊗

~Γkj′)

Then by cocontinuouty and commutativity we have

∼=
∫ ~b ∫ ∆j′

∫ ~a0
∫ Γ′0,~Γ0

JQK~x⊕〈x〉(Γ′0⊕〈~a0〉, ι(~b, a))× JNK~x(~Γ0,~a0)×SDn(∆0,Γ′0⊗~Γ0)

×JNK~x(~Γ0,~a0)×
k′∏
i′=1

(∫ ~ai′
∫ Γ′

i′ ,
~Γi′

JP K~x⊕〈x〉(Γ′i′ ⊕ 〈~ai′〉, bi′)× JNK~x(~Γi′ ,~ai′)× SDn(∆i′ ,Γ′i′ ⊗ ~Γi′)
)

×SDn(∆,
k′⊗
j′=0

∆j′)

By definition, the former coend is just

∫ ~b ∫ ∆0,...,∆k′

SubQ,x,N~x (∆0, ι(~b, a))×
k′∏
i′=1

SubP,x,N~x (∆i′ , bi′)× SDn(∆,
k′⊗
j′=0

).

By definition, we have

JQP{N/x}K~x(∆, a) =
∫ ~b ∫ ∆0,...,∆k′

JQ{N/x}K~x(∆0, ι(~b, a))

×
k′∏
i′=1

JP{N/x}K~x(∆i′ , bi′)× SDn(∆,
k′⊗
j′=0

∆j′).

Then applying the IH we get natural isos JQ{N/x}K~x(∆0, ι(~b, a)) ∼= SubQ,x,N (∆0, ι(~b, a))
and JP{N/x}K~x(∆i′ , bi′) ∼= SubP,x,N(∆i′ , bi′). We can then conclude, since isos are
preserved by the coend construction.

186

Bibliography – B. Technical Proofs of Chapter 4

B. Technical Proofs of Chapter 4
B.1. Actions and Congruence under Substitution of Type

Derivations
Lemma B.1. Let π `a

ζ 3~xi :∆ 3~ai⊕~a 〈η
fi,fj , p〉 with i 6= j and ~ρ `~ai

~ζ 3〈〉j :~Γ 3〈〉j
〈~θ 3〈〉j , ~q〉.

Then the j-th component of mrp(π[~ρ/~xi]) is fj.

Proof. By induction on the structure of π. If π =

f1 : ~a1 → 〈〉, . . . , fi : ~ai → 〈a〉, . . . , fj : ~aj → 〈〉, . . . , fn : ~an → 〈〉
~x1 : f1 : 〈~a1〉, . . . , ~xi : fi = 〈αi, f〉 : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : a

Then π[~ρ/~xi] =
([f]ραi(1)){παi(1),len(~ai)}

By definition of left action, we know that the only typing affected is the type of
the leftmost variable of qαi(1), hence ([f]θαi(1))(j) = 1〈〉. Moreover, by definition of
right action, (θαi(1) ◦ παi(1),len(~ai))(j) = fj. We can then conclude.
If ~xi is an irrelevant variable list, we have π[~ρ/~xi] =

π 3−~ai{π0,len(~ai)}.

By hypothesis, Γ 3〈〉i,ji , then we can conclude, since 〈fj〉 ⊕ 〈〉 ⊕ · · · ⊕ 〈〉 = 〈fj〉. If
π =

π′...
ζ 3~xi ⊕ 〈~y〉 : ηfi,fj ⊕ 〈g〉 : ∆ 3~ai ⊕ 〈~a〉 ` p : a

ζ 3~xi : ηfi,fj : ∆ 3~ai ` λ~y : g.p : ~a⇒ a

Then π[~ρ/~xi] =

π′[~ρ • 〈〉/~xi]...
(ζ ⊕ 〈~y〉)⊗ (~ζ • 〈〉) : ηfi,fj ⊕ 〈g〉~~xip (~θ • 〈〉) : (∆ 3−~ai ⊕ 〈~a〉)⊗ (~Γ • 〈〉) ` p[~q/~xi]fi : a

ζ ⊗ ~ζ : (ηfi,fj ⊕ 〈g〉)~~xip (~θ • 1〈〉) : ∆ 3−~ai ⊗ ~Γ ` λ~y : g′.p[~q/~x]f : a⇒ a

We apply the IH and we conclude.
If π = π0〈π1, . . . , πk〉 ◦ ηf

′
i ,f
′
j then

π{~ρ/~x} =

π0{([f ′i]~ρ)0/~yi,0}〈π1{([f ′i]~ρ)1/~yi,1}, . . . , πk{([f ′i]~ρ)k/~yi,k}〉 ◦ η∗.

By IH we have that (mrp(πl{([f ′i]~ρ})l/~yi,l}))(j) = (mrp(πl))(j). Since the j-th

187

Bibliography – B. Technical Proofs of Chapter 4

element of the Γl is empty, we have that (mrp(π{~ρ/~x}))(j) = (⊕k
l=0(mrp(πl))(j)) ◦

f ′j = (mrp(π))(j).

Lemma B.2. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉. The following statements hold.

1. Let ~ρ `~a
′
i
~ζ:~Γ 〈

~θ, ~q〉 and θ 3gi : ζ 3~yi1 : ∆ 3~a′i
1 → ζ 3~xi : ∆ 3~ai . We have

π{θ}[~ρ/~yi] = (π[[gi]~ρ/~xi]){θ 3−gi ⊗ sm(gi)?}.

2. Let Let ~ρ `~ai~ζ:~Γ 〈
~θ, ~q〉 and ~η = 〈η1, . . . , ηlen(~ai)〉 : ~ζ : ~Γ→ ~ζ ′ : ~Γ′ we have

π[~ρ{~η}/~xi] ∼ π[~ρ/~xi]{1∆ ⊗
k⊗
l=1

ηl}.

3. Let ~ρ `~ai~ζ:~Γ 〈
~θ, ~q〉 and f : a→ a′ we have

[f]π[~ρ/~xi] = [f](π[~ρ/~xi]).

Proof. 1. By induction on π. If π =

f1 : ~a1 → 〈〉, . . . , fi = 〈αi, f〉 : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : ~a1, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,αi(1) : a

Then π{θ} =

f1 ◦ g1 : ~b1 → 〈〉, . . . , fi ◦ gi = 〈βi ◦ αi, 〈f〉 ◦ (~gi{αi})〉 : ~bi → 〈a〉, . . . , fn ◦ gn : ~bn → 〈〉

~y1 : f1 ◦ g1 : ~b1, . . . , ~yi : fi ◦ gi : ~bi, . . . , ~yn : fn ◦ gn : ~bn ` yi,(βi◦αi)(1) : a

Let ~g{αi} = g. Then by definition we have

π{θ}[~ρ/~yi] = ([f ◦ g]ρ(βi◦αi)(1)){π(βi◦αi)(1),len(~bi)}

Consider now [gi]ρ = 〈[gi,1]ρβi(1), . . . , [gi,ki]ρβi(ki)〉. Then

(π[[gi]~ρ/~xi]){θ 3−gi ⊗ sm(gi)?} =

([f]([g]ρβi(αi(1)))){πβi(αi(1)),len(~bi)}

Then by Lemma 4.2.9 we can conclude. The second variable case is immediate
by definition. The abstraction case is an immediate corollary of the IH.
If π = (π〈π1, . . . , πk〉) ◦ η, then

π{θ} = ((π〈π1, . . . , πk〉) ◦ η) ◦ θ = ((π〈π1, . . . , πk〉) ◦ (η ◦ θ)

188

Bibliography – B. Technical Proofs of Chapter 4

By definition π{θ}[ρ/~xi] =

(π0[([f ′i ◦ gi]ρ)0/~x0,i]〈π1[([f ′i ◦ gi]ρ)1,i/~x1], . . . , πk[([f ′i ◦ gi]ρ)k,i/~xk]〉) ◦ (η ◦ θ)∗

where ~xj,i ∈ supp(πj), f ′i ∈ η.
Consider now π[[gi]~ρ/~yi] =

(π0[([gi]ρ)0/~y0,i]〈π1[([gi]ρ)1,i/~y1], . . . , πk[([gi]ρ)k,i/~yk]〉) ◦ η∗

We act on the right π[[gi]~ρ/~yi]{θ−gi ⊗ sm(gi)?} :

(π0[([gi]ρ)0/~y0,i]〈π1[([gi]ρ)1,i/~y1], . . . , πk[([gi]ρ)k,i/~yk]〉) ◦ η∗ ◦ (θ−gi ⊗ sm(gi)?).

It is easy to see that ([f ′i]([gi]~ρ))l = ([f ′i ◦ gi]~ρ)l since [f ′i]([gi]~ρ) = [f ′i ◦ gi]~ρ.
Then we only need to prove that (η ◦ θ)∗ = η∗ ◦ (θ−gi ⊗ sm(gi)?). But this
follows directly by definition of symmetry group right action, monoidality and
associativity of composition, since (η◦θ)∗ = ~τ ◦ ((η 3−f ′i ◦θ 3−gi)⊗sm(f ′i ◦gi)?)
and η∗ = ~τ ◦ (η 3−f ′i ⊗ sm(f ′i)?).

2. By induction on π. We prove the application congruence base case, the other
cases being direct consequence of the IH and the definition of congruence. If

π = (π0〈π1, . . . , πk〉) ◦ η 3hi

then
π{~ρ{1⊗ ~η}/~x} =

π0{([hi](~ρ{~η}))0/~y0}

〈π1{([hi](~ρ{ ~1⊗ η}))1/~y1}, . . . , πk{([hi](~ρ{1⊗ ~η}))k/~yk}〉 ◦ η∗

we have that ([hi](~ρ{1⊗ ~η}))j = ([hi]~ρ)j){(1⊗ ~η{sm(hi)})j}. Then, by IH

πj{([hi](~ρ{1⊗ ~η}))j/~yj} ∼ πj{([hi]~ρ)j/~yj}{(1⊗ ~η{sm(hi)})j}

then by definition of congruence

π{~ρ{1⊗ ~η}/~x} ∼

π0{([hi]~ρ)0/~y0}〈π1{([hi]~ρ)1/~y1}, . . . , πk{([hi]~ρ)k/~yk}〉◦(
k⊗
l=0

(1⊗~η{sm(hi)})l)◦η∗

= π{~ρ/~xi}{1⊗
⊗

ηl}.

3. By induction on π. If π =

g1 : ~a1 → 〈〉, . . . , gi = 〈αi, g〉 : ~ai → 〈a〉, . . . , gn : ~an → 〈〉
~x1 : g1 : ~a1, . . . , ~xi : gi : ~ai, . . . , ~xn : gn : ~an ` xi,αi(1) : a

189

Bibliography – B. Technical Proofs of Chapter 4

Then [f]π =

g1 : ~a1 → 〈〉, . . . , 〈f〉 ◦ gi = 〈αi, f ◦ g〉 : ~ai → 〈a′〉, . . . , gn : ~an → 〈〉
~x1 : g1 : ~a1, . . . , ~xi : 〈f〉 ◦ gi : ~ai, . . . , ~xn : gn : ~an ` xi,αi(1) : a′

By definition [f]π[~ρ/~xi] =

([f ◦ g]ρ(βi◦αi)(1)){π(βi◦αi)(1),len(~a)1+1}

Then we can conclude by Lemma 4.2.9, since [f](π[~ρ/~xi]) =

[f](([g]ρβi(1)){πβi(1),len(~a)1+1)}

The second variable case is immediate by definition of left action and Lemma
4.2.9.
If π =

π′...
ζ ⊕ 〈~x〉 : η ⊕ 〈f ′〉 : ∆⊕ 〈~a〉 ` p : a
ζ : η : ∆ ` λ~x : f ′.p : ∆⇒ a

then f = 〈α,~g〉 ⇒ g and [f]π =

([g]π′){1∆ ⊕ 〈〈α,~g〉〉}...
ζ ⊕ 〈~y〉 : η ⊕ 〈f ′ ◦ 〈α,~g〉〉 : ∆⊕ 〈~a′〉 ` ([f]p)1∆⊕〈〈α,~g〉〉 : a′

ζ : η : ∆ ` λ~y : f ′ ◦ 〈α,~g〉.([f]p)1∆⊕〈〈α,~g〉〉 : ∆⇒ a′

we have that [f]π{~ρ/~xi} = λ~y : f ′.[f]π′{1∆ ⊕ 〈〈α,~g〉〉}{~ρ • 〈〉/~xi}. By IH
and the first point of this lemma we have [f]π′{1∆ ⊕ 〈〈α,~g〉〉}{~ρ • 〈〉/~xi} =
[f]π′{~ρ • 〈〉/~xi}{(1∆ 3~ai ⊕ 〈〈α,~g〉〉)⊗ 1}. We can then conclude.
If π =

π0...
ζ 3

~yi,0
0 : η0 : Γ0 ` s : a


πl...

ζ 3
~yi,l

l : ηl : Γl ` tl : al


k

l=1 η 3hi : ζ : ∆→⊗k
l=0 ζl : ⊗k

l=0 Γl
ζ : (⊗k

l=0 ηj) ◦ η : ∆ ` (s〈t1, . . . , tk〉)η

then [f]π{~ρ/~xi} =

[1⇒ f]π0{([hi]~ρ)i,0/~yi,0}〈π1{[hi](~ρ)1,i/~y1,i}, . . . , πk{([hi]~ρ)k,i/~yk,i}〉 ◦ η

then, by IH [1 ⇒ f]π0{([hi]~ρ)i,0/~yi,0} = [1 ⇒ f](π0{([hi]~ρ)i,0/~yi,0}) and we
can then conclude.

190

Bibliography – B. Technical Proofs of Chapter 4

Proposition B.3. Let π `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉, π′ `a
ζ 3~xi :∆ 3~ai⊕~a 〈η

fi , p〉 such that

π ∼ π′ and ~ρ `~ai~ζ 3 :~Γ 3 〈
~θ 3 , ~q〉, ~ρ′ `~ai~ζ 3 :~Γ 3 〈

~θ′
3
, ~q′〉 such that ~ρ ∼ ~ρ′. Then π[~ρ/~xi] ∼

π′[~ρ′/~xi].

Proof. We prove the application base case. Let π =

π0{η0}...
ζ 3

~y0,i
0 : θ0 ◦ η0 3

h◦g0,i : ∆0 ` sη0 : ~a⇒ a


πl{ηl}...

ζ 3
~yl,i

l : θl ◦ η 3
h◦gl,i

l : ∆l ` qηli : al


k

l=1 θ 3f
′
i : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 ∆j

ζ : (⊗k
j=0 θj) ◦ (⊗k

j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1
1 , . . . , q

ηk
k 〉)θ : a

and π′ =
π0...

(ζ ′0) 3~y′0,i : θ0 3
h0,i : ∆′0 ` s : ~a⇒ a


πl...

(ζ ′l) 3~y
′
l,i : θl 3hl,i : ∆′l ` ql : al


k

l=1 (⊗k
j=0 η

3gj,i
j) ◦ θ 3f ′i

ζ : (⊗k
j=0 θj) ◦ (⊗k

j=0 ~ηj) ◦ θ : ∆ ` (s~q)(
⊗k

j=0 ηj)◦θ : a

We have π[~ρ/~xi] =

(π0{η0}[([f ′i]~ρ)0/~y0,i]〈π1{η1}[([f ′i]~ρ)1/~y1,i], . . . , πk{ηk}[([f ′i]~ρ)k/~yk,i]〉) ◦ θ∗

Now consider π′[~ρ/~xi] =

(π0[(([
k⊕
j=0

gj)◦f ′i]~ρ)0/~y
′
0,i]〈π1[(([

k⊕
j=0

gj)◦f ′i]~ρ)1/~y
′
1,i], . . . , πk[(([

k⊕
j=0

gj)◦f ′i]~ρ)k/~y′k,i]〉)◦η∗

where η = (⊗ ηj) ◦ θ.
By the former Lemma we know that

πl{η 3gl,i}[([f ′i]~ρ)l/~yl,i] = πl[[gl,i]([f ′i]~ρ)l/~y′l,i]{η
−gl,i
l ⊗ sm(gl,i)?}.

By definition of left action we have [gl,i]([f ′i]~ρ)l = ([(⊕k
j=0 gj,i) ◦ f ′i]~ρ)l since

[(⊕k
j=0 gj,i) ◦ f ′i]~ρ = [⊕k

j=0 gj,i]([f ′i]ρ).
Then we just need to prove that (⊗k

j=0 ηj) ◦ θ)∗ = ((⊗k
j=0(η−gl,il ⊗ sm(gl,i)?)) ◦ θ∗.

By definition (⊗k
j=0 ηj) ◦ θ)∗ = ~τ1 ◦ ((⊗k

j=0 η
−gj,i
j) ◦ θ−f ′i) ⊗ sm((⊕k

j=0 gj,i) ◦ f ′i)?).
Again, by definition θ∗ = ~τ2 ◦ (θ−f ′i ◦ sm(f ′i)?). Now ((⊗k

j=0(η−gl,il ⊗ sm(gl,i))) ◦ θ∗ =
(⊗k

j=0(η
−gl,i
l ⊗ sm(gl,i))) ◦ (~τ2 ◦ (θ−f ′i ◦ sm(f ′i)?)). The explicit type of the two

permutations is

~τ1 :
k⊗
j=0

∆′j ⊗ (
k⊗
j=0

~Γ{
k⊕
j=0

gj,i ◦ f ′i} →
k⊗
j=0

(∆′j ⊗ (~Γ{
k⊕
j=0

gj,i ◦ f ′i})j)

191

Bibliography – B. Technical Proofs of Chapter 4

~τ2 :
k⊗
j=0

∆j ⊗ (
k⊗
j=0

~Γ{f ′i} →
k⊗
j=0

(∆′j ⊗ (~Γ{f ′i})j)

We set (⊗k
j=0 η

−gj,i
j) ◦ θ−f ′i)⊗ sm((⊕k

j=0 gj,i) ◦ f ′i)? = ι and ⊕k
j=0 gj,i ◦ f ′i = h. Hence

we need to prove that the following diagram commutes:

∆⊗ ~Γ ⊗∆j ⊗ (~Γ{f ′i})
⊗(∆j ⊗ (~Γ{f ′i})j)

⊗∆′j ⊗ (~Γ{h}) ⊗(∆′j ⊗ (~Γ{h})j)

θ−f
′
i⊗sm(f ′i)

?

ι

~τ2

⊗
η
−gj,i
j ⊗

⊗
sm(gj,i)?

⊗
(η
−gj,i
j ⊗sm(gj,i)?)

~τ1

The commutation of the former diagram is a direct corollary of tensor product
functoriality (triangle diagram) and naturality of symmetries (square diagram).

B.2. Canonical Forms of Type Derivations
Erasing Subtyping Information Let π be a polyadic type derivation of con-

clusion ζ : η : ∆ ` p : a and η = 〈g1, . . . , gn〉 : ζ = 〈~x1, . . . , ~xn〉 : ∆ = 〈~b1, . . . ,~bn〉 →
ζ ′ = 〈~y1, . . . , ~yn〉 : Γ = 〈~a1, . . . ,~an〉, where ζ ′ is a repetitions-free variable tuple. we
define π/ηζ′ with conclusion ζ ′ : 1Γ : Γ ` pζ′ : a, where pζ′ = p{ζ ′/occζ (p)}, by
induction as follows: f1 : ~b1 → 〈〉, . . . , fi : ~bi → 〈a〉, . . . , fn : ~bn → 〈〉

~x1 : f1 : ~b1, . . . , ~xi : fi : ~bi, . . . , ~xn : fn : ~bn ` xi,α(1) : a

 /ηζ′ =

1 : 〈〉 → 〈〉, . . . , 〈1a〉 : 〈a〉 → 〈a〉, . . . , 1〈〉 : 〈〉 → 〈〉
〈〉 : 1〈〉 : 〈〉, . . . , 〈y〉 : 〈1a〉 : 〈a〉, . . . , 〈〉 : 1〈〉 : 〈〉 ` y : a

(λ~x : f.π)/ηζ′ = λ~x : f.((π/(η ⊕ 〈f〉)ζ){1⊕ 〈f〉})

((π0〈π1, . . . , πk〉) ◦ θ)/ηζ
′ = ((π0/mrp(π0)ζ′0)〈π1/mrp(π1)ζ′1 , . . . , π1/mrp(πk)ζ

′
k〉) ◦ 1)

Where in the application case ζ ′ = ⊗k
j=0 ζ

′
j. We shall constantly wrote π/η instead

of π/ηζ′ , keeping the parameter ζ ′ implicit.
The operation π/η erases the subtyping on the context side of a type derivation.

However, it is important to keep in mind that the subtyping information of bound
variables remains untouched.

Lemma B.4. Let π `aζ:∆ 〈η, p〉 with η : ζ : ∆→ ζ ′ : ∆′ and θ : ζ ′′ : ∆′′ → ζ ′ : ∆′.
The following statements hold.

1. π ∼ (π/η){η}.

192

Bibliography – B. Technical Proofs of Chapter 4

CF

(
π =

f1 : ~a1 → 〈〉, . . . , fi : ~ai → 〈a〉, . . . , fn : ~an → 〈〉
~x1 : f1 : 〈~a1〉, . . . , ~xi : fi : ~ai, . . . , ~xn : fn : ~an ` xi,α(1) : a

)
= π

CF


π...

Σ, ~x : f : ~a ` p : a
Σ ` λ~x : f.p : ~a⇒ a

 =

CF (π)
...

Σ, ~x : f : ~a ` p : a
Σ ` λ~x : f.p : ~a⇒ a′

CF


π0...

ζ0 : η0 : Γ0 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 θ : ζ : ∆→ (⊗k

j=0 ζj) : ⊗k
j=0 Γj

ζ : η = (⊗k
j=0 ηj ◦ θ) : ∆ ` (pq)θ : a

 =

CF (πi)/η
ζ′0
0...

ζ ′0 : 1Γ′0 : Γ′0 ` pζ
′
0 : ~a⇒ a


CF (πi)/η

ζ′i
i...

ζ ′i : 1Γ′i : Γ′i ` q
ζ′i
i : ai


k

i=1
(⊗k

j=0 ηj) ◦ η : ζ : ∆→ (⊗k
j=0 ζ

′
j) : (⊗k

j=0 Γ′j)

ζ : η = ((⊗k
j=0 ηj) ◦ η : ∆ ` (pζ′0〈qζ

′
1

1 , . . . , q
ζ′k
k 〉)

(
⊗k

j=0 ηj)◦η : a

Where in the application case we took ζ ′ = ⊗
ζ ′j.

Figure .1. – Canonical forms.

2. π/η = (π{θ})/(η ◦ θ).
3. if π ∼ π′ then π/η = π/η′.

Proof. By induction on the structure of π.
1. We prove the variable case. Let ζ = 〈~x1, . . . , ~xn〉, ζ ′ = 〈~y1, . . . , ~yn〉,∆ =
〈~b1, . . . ,~bn〉 and ∆′ = 〈~a1, . . . ,~an〉. Let

π =
f1 : ~b1 → 〈〉, . . . , fi : ~bi → 〈a〉, . . . , fn : ~bn → 〈〉

~x1 : f1 : ~b1, . . . , ~xi : fi : ~bi, . . . , ~xn : fn : ~bn ` xi,α(1) : a

Then π/η =

1 : 〈〉 → 〈〉, . . . , 〈1a〉 : 〈a〉 → 〈a〉, . . . , 1〈〉 : 〈〉 → 〈〉
〈〉 : 1〈〉 : 〈〉, . . . , 〈y〉 : 〈1a〉 : 〈a〉, . . . , 〈〉 : 1〈〉 : 〈〉 ` y : a

By definition (π/η){η} =

1〈〉 ◦ f1 : ~b1 → 〈〉, . . . , (〈1a〉 ◦ fi) : ~bi → 〈a〉, . . . , 1〈〉fn : ~bn → 〈〉

~x1 : f1 : ~b1, . . . , ~xi : fi : ~bi, . . . , ~xn : fn : ~bn ` y[ζ{sm(η)} = xi,α(1)/〈y〉] : a

Then (π/η){η} = π and, in particular, they are equivalent.

193

Bibliography – B. Technical Proofs of Chapter 4

We prove the application case. Let

π =

π0...
ζ0 : η0 : Γ0 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 θ : ζ : ∆→ (⊗k

j=0 ζj) : ⊗k
j=0 Γj

ζ : η = (⊗k
j=0 ηj ◦ θ) : ∆ ` (p〈q1, . . . , qk〉)θ : a

Then, we consider ηj = 1Γj ◦ ηj : ζj : Γj → ζ ′j : Γ′j with 1Γ′j : ζ ′j : Γ′j → ζ ′j : Γ′j.
By definition π/η =

π0/η0...
ζ ′0 : 1Γ′0 : Γ0 ` pζ

′
0 : ~a⇒ a


πi/ηi...

ζ ′i : 1Γ′i : Γ′i ` q
ζ′i
i : ai


k

i=1 1⊗Γ′j
: (⊗k

j=0 ζ
′
j) : ⊗k

j=0 Γ′j → (⊗k
j=0 ζ

′
j) : ⊗k

j=0 Γ′j⊗k
j=0 ζ

′
j : 1⊗Γ′j

: ⊗k
j=0 Γ′j ` (p〈q1, . . . , qk〉)

⊗k

j=0 ζ
′
j : a

consider (π/η){η} =

π0/η0...
ζ ′0 : 1Γ′0 : Γ0 ` pζ

′
0 : ~a⇒ a


πi/ηi...

ζ ′i : 1Γ′i : Γ′i ` q
ζ′i
i : ai


k

i=1 η ◦ 1⊗Γ′j
: ζ : ∆→ (⊗k

j=0 ζ
′
j) : ⊗k

j=0 Γ′j

ζ : η : ∆ ` ((p〈q1, . . . , qk〉)
⊗k

j=0 ζ
′
j)η : a

By definition of equivalence we have (π/η){η} ∼

(π0/η0){η0}...
ζ0 : η0 : Γ0 ` (pζ′0)η0 : ~a⇒ a


(πi/ηi){ηi}...

ζi : ηi : Γi ` (qζ
′
i
i)ηi : ai


k

i=1 θ : ζ : ∆→ (⊗k
j=0 ζj) : ⊗k

j=0 Γj

ζ : η : ∆ ` (((pζ′0)η0〈(qζ
′
1

1)η1 , . . . , (qζ
′
k
k)ηk〉))θ : a

Then we apply the IH and we get πj ∼ (πj/ηj){ηj}.We conclude by congruence
and transitivity.

2. Completely straightforward induction on the structure of π.
3. We prove the application case, the other cases being immediate by definition

and IH. If π ∼ π′ then

π =

π0{η0}...
ζ0 : θ0 ◦ η0 : Γ0 ` sη0 : ~a⇒ a

 πi{ηi}...
ζi : θi ◦ ηi : Γi ` qηii : ai


k

i=1 θ : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 θj) ◦ (⊗k
j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1

1 , . . . , q
ηk
k 〉)θ : a

∼ π′ =

π0...
ζ ′0 : θ0 : Γ′0 ` s : ~a⇒ a

 πi...
ζ ′i : θi : Γ′i ` qi : ai

k
i=1 (⊗k

j=0 ηj) ◦ θ : ζ : ∆→⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ (⊗k

j=0 ~ηj) ◦ θ : ∆ ` (s~q)(
⊗k

j=0 ηj)◦θ : a

194

Bibliography – B. Technical Proofs of Chapter 4

By definition π/η =

(π0{η0})/(θ0 ◦ η0)
...

ζ ′′0 : 1Γ′′0 : Γ′′0 ` (sη0)ζ′′0 : ~a⇒ a


(πi{ηi})/(θi ◦ ηi)...

ζ ′′i : 1Γ′′i : Γ′′i ` (qηii)ζ′′i : ai


k

i=1
1⊗Γ′′j

: ⊗ζ′′j
: ⊗k

j=0 Γ′′j →
⊗k

j=0 ζ
′′
j : ⊗k

j=0 Γ′j⊗k
j=0 ζ

′′
j : 1⊗Γ′′j

: ⊗k
j=0 Γ′′j ` (sη0)ζ′′0 〈(qη1

1)ζ′′1 , . . . , (qηkk)ζ′′k 〉 : a

and π′/η =

(π0)/θ0...
ζ ′′0 : 1Γ′′0 : Γ′′0 ` sζ

′′
0 : ~a⇒ a


πi/θi...

ζ ′′i : 1Γ′′i : Γ′′i ` (qi)ζ
′′
i : ai


k

i=1
1⊗Γ′′j

: ⊗ζ′′j
: ⊗k

j=0 Γ′′j →
⊗k
j=0 ζ

′′
j : ⊗k

j=0 Γ′j⊗k
j=0 ζ

′′
j : 1⊗Γ′′j

: ⊗k
j=0 Γ′′j ` (sζ′′0 〈qζ

′′
1

1 , . . . , q
ζ′′k
k 〉) : a

Then by point (2) of this Lemma we can conclude.

Canonical Forms of Type Derivations We introduce the notion of canonical
form of a polyadic type derivations. Given π of conclusion ζ : η : ∆ ` p : a
and ζ ′ a repetitions-free variable tuple such that η : ζ : ∆ → ζ ′ : ∆′ we define
CF (π)ζ′ by induction in Figure .1. Also this construction formally depends on a
choice of free variables for the application case. The intuition is that canonical
forms are canonical representative for the equivalence class of type derivations,
up to the choice of variable tuple ζ ′. Also this time, we shall constantly write
CF (π) keeping the parameters ζ ′, ζ ′′ implicit. We are justified in doing so by the
congruence relation, that makes all possible choices equivalent (it’s easy to see that
CF (π)ζ ∼ CF (π)ζ′ for all valid variable tuples ζ, ζ ′).
Lemma B.5. We have π ∼ CF (π)ζ′ .
Proof. We prove the application base case. Let π =

π0...
ζ0 : η0 : Γ0 ` p : ~a⇒ a

 πi...
ζi : ηi : Γi ` q : ai

k
i=1 θ : ζ : ∆→ (⊗k

j=0 ζj) : ⊗k
j=0 Γj

ζ : η = (⊗k
j=0 ηj ◦ θ) : ∆ ` (pq)θ : a

We take ζ ′ = ⊗
ζ ′j. By Lemma B.4, definition of congruence and IH we have that

π ∼ π′ with π′ =

CF (πi)/η
ζ′0
0...

ζ ′0 : 1Γ′0 : Γ′0 ` pζ
′
0 : ~a⇒ a


CF (πi)/η

ζ′i
i...

ζ ′i : 1Γ′i : Γ′i ` q
ζ′i
i : ai


k

i=1
(⊗k

j=0 ηj) ◦ η : ζ : ∆→ (⊗k
j=0 ζ

′
j) : (⊗k

j=0 Γ′j)

ζ : η = ((⊗k
j=0 ηj) ◦ η : ∆ ` (pζ′0〈qζ

′
1

1 , . . . , q
ζ′k
k 〉)

(
⊗k

j=0 ηj)◦η : a

195

Bibliography – B. Technical Proofs of Chapter 4

and π′ = CF⊗ ζ′j
(π).

Proposition B.6. Let π `aζ:∆ 〈η, p〉 and π′ `a
′
ζ′:∆′ 〈η′, p′〉. The following statements

hold.
1. If π ∼ π′ then η = η′ and p = p′.

2. If η = η′ and p = p′ then ∆ = ∆′ and a = a′. If moreover ζ = ζ ′ then π ∼ π′.

Proof. We prove it by induction on π. The case of the variable and the lambda
abstraction are immediate by congruence and IH. We prove the application case.

1. Let π `aζ:∆ 〈η, p〉 with p = s~t. If π ∼ π′ then a = a′,∆ = ∆′ and

π =
π0{η0}...

ζ0 : θ0 ◦ η0 : Γ0 ` sη0 : ~a⇒ a

 πi{ηi}...
ζi : θi ◦ ηi : Γi ` qηii : ai


k

i=1 θ : ζ : ∆→⊗k
j=0 ζj : ⊗k

j=0 Γj
ζ : (⊗k

j=0 θj) ◦ (⊗k
j=0 ηj) ◦ θ : ∆ ` (sη0〈qη1

1 , . . . , q
ηk
k 〉)θ : a

∼ π′ =
π0...

ζ ′0 : θ0 : Γ′0 ` s : ~a⇒ a

 πi...
ζ ′i : θi : Γ′i ` qi : ai

k
i=1 (⊗k

j=0 ηj) ◦ θ : ζ : ∆→⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ (⊗k

j=0 ~ηj) ◦ θ : ∆ ` (s~q)(
⊗k

j=0 ηj)◦θ : a

We only need to prove that (sη0〈qη1
1 , . . . , q

ηk
k 〉)θ = (s~q)(

⊗k

j=0 ηj)◦θ. By definition
(sη0〈qη1

1 , . . . , q
ηk
k 〉)θ = sη0〈qη1

1 , . . . , q
ηk
k 〉[ζ{sm(θ)}/⊗k

j=0 ζj]. By Lemma 4.2.6

sη0〈qη1
1 , . . . , q

ηk
k 〉[ζ{sm(θ)}/

k⊗
j=0

ζj] =

s~t{
k⊗
j=0

ζj{sm(
k⊗
j=0

~ηj)◦sm(
k⊗
j=0

θj)}/occ⊗k

j=0 ζ
′
j

(
s~t
)
}{ζ{sm(θ)◦sm(

k⊗
j=0

~ηj)◦sm(
k⊗
j=0

θj)}/occ⊗k

j=0 ζj

(
(s~t)∗

)
}.

Where (s~t)∗ = s~t{⊗k
j=0 ζj{sm(⊗k

j=0 ~ηj) ◦ sm(⊗k
j=0 θj)}/occ⊗k

j=0 ζ
′
j

(
s~t
)
} and

occ⊗k

j=0 ζj

(
s~t
)

= ⊗k
j=0 ζj{sm(⊗k

j=0 ~ηj) ◦ sm(⊗k
j=0 θj)}.

By definition (s~q)(
⊗k

j=0 ηj)◦θ = s~t[ζ{sm(⊗k
j=0 ηj) ◦ θ)}/

⊗k
j=0 ζ

′
j]. Again, by

Proposition 4.2.6,

s~t[ζ{sm(
k⊗
j=0

ηj)◦θ)}/
k⊗
j=0

ζ ′j] = s~t{ζ{sm(
k⊗
j=0

θj)◦sm(
k⊗
j=0

ηj)◦θ)}/occ⊗k

j=0 ζ
′
j

(
s~t
)
}.

and by contravariance of right action sm(⊗k
j=0 ηj) ◦ θ) = sm(θ) ◦ sm(⊗k

j=0 ηj).
Then we can conclude by Lemma 4.2.3.

196

Bibliography – B. Technical Proofs of Chapter 4

2. Let

π =

π0...
ζ0 : η0 : Γ0 ` s : ~a⇒ a

 πi...
ζi : ηi : Γi ` ti : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` p = (s〈t1, . . . , tk〉)η : a

Now let π′ =

π′0...
ζ ′0 : η′0 : Γ′0 ` s′ : ~a′ ⇒ a

 π′i...
ζ ′i : η′i : Γ′i ` t′i : a′i


k′

i=1 η′ : ζ ′ : ∆′ →⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j
ζ ′ : (⊗k

j=0 η
′
j) ◦ η′ : ∆′ ` p′ = (s′〈t′1, . . . , t′k′〉)η

′ : a′

By hypothesis we have k = k′. Let ζ ′ = ⊗k
j=0 χj = ⊗k

j=0 ζ
′′
j be a repetitions-

free tuple and ηj : ζj : Γj → χj : ∆′j, η′j : ζ ′j : Γ′j → ζ ′′j : ∆′′j . Consider
CF (π)ζ′ =

CF (πi)/ηχ0
0...

χ0 : 1∆′0 : ∆′0 ` sχ0 : ~a⇒ a

 CF (πi)/ηχii...
χi : 1∆′i : ∆′i ` t

χi
i : ai


k

i=1 (⊗k
j=0 ηj) ◦ η : ζ : ∆→ (⊗k

j=0 χj) : (⊗k
j=0 ∆′j)

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` (sχ0〈tχ1

1 , . . . , t
χk
k 〉)

(
⊗k

j=0 ηj)◦η : a

now consider CF (π′)ζ′ =

CF (π′0)/(η′0)ζ′0
...

ζ ′′0 : 1∆′′0 : ∆′′0 ` (s′)ζ′′0 : ~a′ ⇒ a′


CF (π′i)/(η′i)ζ

′′
i

...
ζ ′′i : 1∆′′i : ∆′′i ` (t′)ζ

′′
i
i : a′i


k

i=1 (⊗k
j=0 η

′
j) ◦ η′ : ζ ′ : ∆→ (⊗k

j=0 ζ
′′
j) : (⊗k

j=0 ∆′′j)

ζ ′ : (⊗k
j=0 η

′
j) ◦ η′ : ∆ ` ((s′)ζ′′0 〈(t′)ζ

′′
1

1 , . . . , (t′)
ζ′′k
k 〉)

(
⊗k

j=0 ηj)◦η : a′

We set θ = (⊗k
j=0 ηj) ◦ η = (⊗k

j=0 η
′
j) ◦ η′. By hypothesis and the former point

of this lemma

(sχ0〈tχ1
1 , . . . , t

χk
k 〉)θ = ((s′)ζ′′0 〈(t′)ζ

′′
1

1 , . . . , (t′)
ζ′′k
k 〉)θ.

occ⊗χj
((sχ0〈tχ1

1 , . . . , t
χk
k 〉) = occ⊗ ζ′′j

(
(sζ′′0 〈tζ

′′
1

1 , . . . , t
ζ′′k
k 〉
)

In particular then (sχ0)θ = (s′ζ′′0)θ and ((ti)χi)θ = ((t′i)ζ
′′
i)θ. We apply Proposi-

tion 4.2.4 and 4.2.6 we get

(s′)ζ′′0 = sχ0 (t′)ζ
′′
i
i = tχii . (.1)

197

Bibliography – B. Technical Proofs of Chapter 4

We now prove that ∆′j = ∆′′j for 0 ≤ j ≤ k. Now consider ~xi : ~ai ∈ ζ :
∆, ~x′i : ~ai ∈ ζ ′ : ∆ and fi : ~xi : ~ai →

⊕
~yj,i : ⊕~aj,i with fi ∈ (⊗k

j=0 ηj) ◦ η =
(⊗k

j=0 η
′
j) ◦ η′. Then fi : ~x′i : ~ai →

⊕
~y′j,i : ⊕~a′j,i with ⊕

~y′j,i : ⊕~a′j,i =⊕
~yj,i : ⊕~aj,i ∈

⊗∆′′j . We know that occ~xi (p) = occ~x′i (p) = ~xi{sm(fi)} and
that we can decompose ~xi{sm(fi)} = ⊕k

j=0 ~xj,i with ~x0,i = occ~xi
(
((s)χ0)θ

)
=

occ~x′i
(
((s′)ζ′′0)θ

)
. Moreover fi defines a morphism fi : ~xi : ~ai → ~xi{sm(fi)} =⊕k

j=0 ~xj,i : ⊕~aj,i. Then ~xji : ~aj,i and ~xji : ~a′j,i. Now, since the type assignment
is functional on context variable lists, we get ~aj,i = ~a′j,i. Then we have ∆′j = ∆′′j
and we can apply the hypothesis and get ~a = ~a′, a = a′.

Suppose now that ζ = ζ ′, by hypothesis we get

(CF (πj)/ηχjj){η′j} ∼ (CF (π′0)/(η′0)ζ′0){η′0}.

By Congruence we can conclude that π ∼ π′.

B.3. Actions and Congruence under Reduction of Points
Erasing Subtyping in Points We can extend also the operation π/ηζ to points

in a completely straightforward way. If ϕ = 〈η, p〉 ∈ Ωζ(∆, a) then we fix a
repetitions-free variable tuple ζ ′ such that η : ζ : ∆ → ζ ′ : trg(η). We then
define ϕ/ηζ′ = 〈1trg(η), p

ζ′〉 ∈ Ωζ′(trg(η), a). We recall that pζ′ = p{ζ ′/occζ (p)}. In
particular, it is worth noting that now (ϕ/ηζ){η} = ϕ.

Congruence over Points

Proposition B.7. Let ϕ ∈ Ωζ(∆, a). Let η : ζ ′ : ∆′ → ζ : ∆, f : a → a′. The
following statements hold.

1. If ϕ ∼ ϕ′ then ϕ{η} ∼ ϕ′{η}.
2. If ϕ ∼ ϕ′ then [f]ϕ ∼ [f]ϕ′.
3. If ϕ ∼ ϕ′ and ϕ ∈ Ωζ 3~xi (∆ 3~ai , a), ~ψ, ~ψ′ ∈ Ω~ζ(~Γ,~ai) such that ~ψ ∼ ~ψ′. Then
ϕ[~ψ/~xi] ∼ ϕ′[~ψ′/~xi].

Proof. By induction on the definition of congruence ϕ ∼ ϕ′. We will prove only the
application congruence base case, since the others are direct corollaries of the IH
and Corollary 4.2.25.

1. Immediate by definition of congruence and morphisms precomposition.
2. Let ϕ =

〈(([〈α, ~f〉 ⇒ 1a]η0)⊗
k′⊗
i=1

ηi) ◦ η, (([〈α, ~f〉 ⇒ 1a]p)〈q1, . . . , qk′〉)η〉

198

Bibliography – B. Technical Proofs of Chapter 4

and ϕ′ =

〈(η0 ⊗
k′⊗
i=1

([fi]ηα(i))) ◦ ((1Γ0 ⊗ α?) ◦ η), (p〈[f1]qα(1), . . . , [fk′]qα(k′)〉)(1Γ0⊗α
?)◦η〉.

By definition of left action and corollary 4.2.25 we get [f]ϕ =

〈(([〈α, ~f〉 ⇒ f]η0)⊗
k′⊗
i=1

ηi) ◦ η, (([〈α, ~f〉 ⇒ f]p)〈q1, . . . , qk′〉)η〉

and [f]ϕ′ =

〈(([1⇒ f]η0)⊗
k′⊗
i=1

([fi]ηα(i)))◦((1Γ0⊗α?)◦η), (([1⇒ f]p)〈[f1]qα(1), . . . , [fk′]qα(k′)〉)(1Γ0⊗α
?)◦η〉

then we can conclude, since by Corollary 4.2.25 we have 〈[〈α, ~f〉 ⇒ f]η0, [〈α, ~f〉 ⇒
f]p〉 = [〈α, ~f〉 ⇒ f]〈η0, p〉 = [〈α, ~f〉 ⇒ 1a′]〈[1⇒ f]η0, [1⇒ f]p〉.

3. Let ϕ =
(([f ⇒ 1]ϕ′0)〈ϕ1, . . . , ϕk〉) ◦ η 3gi

and ϕ′ =

(ϕ′0(〈[f1]ϕ′α(1), . . . , [fk′]ϕ′α(k′)〉) ◦ (1⊗ (α?) 3αi) ◦ η 3gi

for some f = 〈α, f1, . . . , fk′〉 ∈ mrp(SD), k′ ∈ N that satisfies the conditions
of congruence. We recall that α? is a natural transformation α? = {α?〈Γ1,...,Γk〉 |
α?〈Γ1,...,Γk〉 : ⊗k

j=1 Γj →
⊗k′

j′=1 Γα(j′)}. Here, we keep the parameter implicit 1.
Then ϕ[~ψ/~xi] =

([f ⇒ 1]ϕ′0[([gi]~ψ)0/~y
′
0,i]〈ϕ1[([gi]~ψ)1/~y1,i], . . . , ϕk[([gi]~ψ)k/~yk,i]〉) ◦ η∗

and ϕ′[~ψ′/~x′i] =

(ϕ′0[([gi]~ψ′)0/~y
′
0,i]〈[f1]ϕα(1)[([gi]~ψ′)α(1)/~yα(1),i], . . . , [fk]ϕα(k)[([gi]~ψ′)α(k)/~yα(k),i]〉)◦((1⊗α?)◦η)∗

since [αi◦gi]~ψ′ = ⊕k′

l=1([gi]~ψ′)α(l). By Corollary 4.2.25 we get [f ⇒ 1]ϕ′0[([gi]~ψ′)0/~y
′
0,i] =

[f ⇒ 1](ϕ′0[([gi]~ψ′)0/~y
′
0,i]) and

[fl]ϕα(l)[([gi]~ψ′)α(l)/~yα(l),i] = [fl](ϕα(l)[([gi]~ψ′)α(l)/~yα(l),i])

for l ∈ [k′]. By hypothesis and the first point of this lemma, since ~ψ ∼ ~ψ′,

1. In this case, we are considering α?〈source(mrp(ϕ))j〉kj=1
.

199

Bibliography – B. Technical Proofs of Chapter 4

we get [fl](ϕα(l)[([gi]~ψ′)α(l)/~yα(l),i]) ∼ [fl](ϕα(l)[([gi]~ψ)α(l)/~yα(l),i]). By defini-
tion ((1 ⊗ α?) ◦ η)∗ = ~τ1 ◦ (((1 ⊗ (α?)−αi) ◦ η−gi) ⊗ sm((1) ◦ gi)?) and
η∗ = ~τ2 ◦ (η−gi ⊗ sm(gi)?) with τ1 ∈ Sk′+1, τ2 ∈ Sk+1 being appropriate
permutations. We observe that sm(g ◦ f)∗ = sm(g)∗ ◦ sm(f)∗ for all com-
posable morphisms f, g. Hence, by functoriality of tensor product, (((1 ⊗
(α?)−αi) ◦ η−gi)⊗ sm((1⊗ αi) ◦ gi)?) = ((1⊗ (α?)−αi)⊗ sm(1⊗ αi)?) ◦ (η−gi ⊗
sm(g)?). We remark that sm(αi)? = (α?)−αi〈source(mrp(ϕj))⊗source(mrp(~ψj))〉ki=1

where
(α?)−αi〈source(mrp(ϕj))⊗source(mrp(~ψj))〉ki=1

is the natural transformation α? evaluated
in 〈source(mrp(ϕj))⊗ source(mrp(~ψj))〉ki=1. That is the following morphism:

sm(αi)? :
k⊗
j=1

(source(mrp(ϕ))j ⊗ (source(mrp([gi]~ψ))j))→

k′⊗
j′=1

(source(mrp(ϕ))α(j′) ⊗ (source(mrp([gi]~ψ))α(j′))).

We can then conclude, since ~τ1◦((1⊗(α?)−αi)⊗(1⊗(α?)−αi)) = (1⊗sm(αi)?)◦
~τ2.

Congruence and Reduction We introduce some structures that we shall use
in dealing with the intricacies of substitution.
Let SubΩ(ζ : ∆, a) =

∑
~x:~a=〈a1,...,ak〉∈SD

∑
ζ1:Γ1,...,ζk:Γk∈(SDlen(ζ))?

Ωζ0⊕~x(Γ0,~a⇒ a)×
k∏
i=1

Ωζi(Γi, ai)×SDlen(ζ)(∆,
k⊗
j=0

Γj)

the former set is clearly reminiscent of the one introduced in Chapter 3 in order
to deal with substitution of type derivations.

We consider the smallest equivalence relation on SubΩ(ζ : ∆, a) generate by the
following two rules:

〈~x : ~a, 〈ζ0 : Γ0, . . . , ζlen(~a) : Γlen(~a)〉, ϕ, 〈ψ1{η1}, . . . , ψlen(~a){ηlen(~a)}〉, η〉 ∼ (.2)

〈~x : ~a, 〈ζ ′0 : Γ′0, . . . , ζ ′len(~a) : Γ′len(~a)〉, ϕ, 〈ψ1, . . . , ψlen(~a)〉, (
len(~a)⊗
j=0

ηj) ◦ η〉

where ηj : Γ′j → Γj.

〈~x : ~a, ~ζ : ~Γ, ϕ{1Γ0 ⊕ 〈f〉}, 〈ψ1, . . . , ψlen(~a)〉, η〉 ∼ (.3)

〈~x : ~a, (~ζ : ~Γ){id⊕ sm(h)}, ϕ, ([f]〈ψ1, . . . , ψlen(~a)〉), (1⊗ sm(f)?) ◦ η〉

200

Bibliography – B. Technical Proofs of Chapter 4

where f : ~a→ ~a′ and ~ζ : ~Γ = 〈ζ0 : Γ0, . . . , ζlen(~a) : Γlen(~a)〉. We shall make an abuse
of language and set ϕ{1Γ0 ⊕ 〈h〉} = [h⇒ 1]~xϕ.
We additionally impose two standard contextual rules:

ϕ ∼ ϕ′ ~ψ ∼ ~ψ′

〈ϕ, ~ψ, η〉 ∼ 〈ϕ′, ~ψ′, η〉

ψ1 ∼ ψ′1 . . . ψk ∼ ψ′k

〈ψ1, . . . , ψk〉 ∼ 〈ψ′1, . . . , ψ′k〉

whenever the points are well-defined. Since we added contextual rules, we shall
call the former equivalence relation a congruence.

Clearly, the former rules are just a variation of the kind of congruences to which
we got used to. We need to impose also a condition on contexts because the
elements of SubΩ(ζ : ∆, a) are not points. As should be clear by now, the former
equivalence determines a coend.
We observe that if 〈~x : ~a, 〈ζ0 : Γ0, ~ζ : ~Γ〉, ϕ, ~ψ, η〉 ∼ 〈~x′ : ~a, 〈ζ ′0 : Γ′0, ~ζ ′ :

~Γ′〉, ϕ′, ~ψ′, η′〉 then (λ~x : f.ϕ~ψ) ◦ η ∼ (λ~x : f.ϕ~ψ) ◦ η.

Lemma B.8. Let 〈ϕ, ~ψ, η〉, 〈ϕ′, ~ψ′, η′〉 ∈ SubΩ
~x:~a(ζ : ∆, a). If 〈ϕ, ~ψ, η〉 ∼ 〈ϕ′, ~ψ′, η′〉

then ϕ[~ψ/~x] ∼ ϕ′[~ψ′/~x].

Proof. Straightforward induction on the structure of ϕ.

Lemma B.9 (Uniformity of Substitution). Let 〈ϕ, ~ψ, η〉 ∈ SubΩ
~x:~a(ζ : ∆, a), 〈ϕ′, ~ψ′, η′〉 ∈

SubΩ
~x′:~a′(ζ : ∆, a) for some n ∈ N, 〈ζ : ∆, a〉 ∈ (SDn)? ×D,~x : ~a; ~x : ~a′ ∈ SD?. If

ϕ[~ψ/~x] ◦ η ∼ ϕ′[~ψ′/~x′] ◦ η′ and ϕ ¨ ϕ′, ~ψ ¨ ~ψ′ then 〈ϕ, ~ψ, η〉 ∼ 〈ϕ′, ~ψ′, η′〉.

Proof. By induction on ϕ. If ϕ = 〈η ⊕ 〈f〉, xsm(f)(1)〉 ∈ Ωζ⊕〈~x〉(∆⊕ 〈source(f)〉, a),
since ψ ¨ ψ′, we have that ϕ′ = 〈η′⊕ 〈f ′〉, x′sm(f ′)(1)〉 ∈ Ωζ⊕〈~x′〉(∆⊕ 〈source(f ′)〉, a).
Hence

ρ = 〈ϕ, ~ψ, η〉 = 〈〈η ⊕ 〈f〉, x′sm(f)(1)〉, ~ψ, η〉

ρ′ = 〈ϕ′, ~ψ′, η′〉 = 〈〈η′ ⊕ 〈f ′〉, x′sm(f ′)(1)〉, ~ψ′, η′〉.

We fix a variable z. By definition of congruence, we have

ρ ∼ ρ1 = 〈〈η ⊕ 〈1a〉, z〉, [f]~ψ, (1⊗ sm(f)?) ◦ η〉

ρ′ ∼ ρ2 = 〈〈η′ ⊕ 〈1a〉, z〉, [f ′]~ψ′, (1⊗ sm(f ′)?) ◦ η′〉.

Let f = 〈α, g〉, f ′ = 〈α′, g′〉. Consider

ψ1{~ψ = [g]ψα(1)/〈z〉}(1⊗ sm(f)?) ◦ η = ([g]ψα(1)){π2,2} ◦ (1⊗ α?) ◦ η

ψ′1{[f ′]~ψ′ = [g′]ψ′α′(1)/〈z〉}(1⊗ sm(f ′)?) ◦ η′ = ([g′]ψ′α′(1)){π′2,2} ◦ (1⊗ (α′)?) ◦ η′

By universal property we have

π2,2 ◦ (1⊗ α?) = πα(1),len(source(f))+1

201

Bibliography – B. Technical Proofs of Chapter 4

π′2,2 ◦ (1⊗ α′?) = πα′(1),len(source(f ′))+1

hence, by definition of right action

ψ1{[g]ψα(1)/〈z〉}(1⊗ sm(f)?) ◦ η = ([g]ψα(1)){πα(1),len(source(f))+1 ◦ η}

ψ′1{[g′]ψ′α′(1)/〈z〉}(1⊗ sm(f ′)?) ◦ η′ = ([g′]ψ′α′(1)){πα′(1),len(source(f ′))+1 ◦ η′}

by hypothesis and the former lemma we have ψ1{[g]ψα(1)/〈z〉}(1⊗ sm(f)?) ◦ η ∼
ψ2{[g′]ψ′α′(1)/〈z〉}(1⊗ sm(f ′)?) ◦ η′. By definition of congruence

ρ1 ∼ 〈〈〈1~〈〉, 1a〉, z〉, ([g]ψα(1)){πα(1),len(source(f))+1 ◦ η}, 1〉

ρ2 ∼ 〈〈〈1~〈〉, 1a〉, z〉, ([g
′]ψ′α′(1)){πα′(1),len(source(f ′))+1 ◦ η′}, 1〉

Since by hypothesis ([g]ψα(1)){πα(1),len(source(f))+1◦η} ∼ ([g′]ψ′α′(1)){πα′(1),len(source(f ′))+1◦
η′} we can conclude by transitivity and contextuality of congruence.

If ϕ = λ~y : g.ψ1 with ~y 6= ~x then ϕ′ = λ~y′ : g′.ψ2 for some ψ2 such that ψ1 ¨ ψ2.
The result is then a direct consequence of the IH.

If ϕ = (ϕ0〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈g〉) then ϕ′ = (ϕ′0〈ϕ′1, . . . , ϕ′l′〉) ◦ (θ′ ⊕ 〈g′〉). We
made g, g′ explicit because they are the morphism at the contextual position of ~x, ~x′
and hence thy will act on the lists of terms that will be substituted. By Hypothesis
we have that

(ϕ[~ψ/~x]) ◦ η =

(ϕ0[([g]~ψ)0/~y0]〈ϕ1[([g]~ψ)1/~y1], . . . , ϕl[([g]~ψ)l/~yl]〉) ◦ θ∗) ◦ η ∼

(ϕ′[~ψ′/~x′]) ◦ η′ =

(ϕ′0[([g′]~ψ′)0/~y
′
0]〈ϕ′1[([g′]~ψ′)1/~y

′
1], . . . , ϕ′l[([g]~ψ′)l′/~y′l]〉) ◦ (θ′)∗) ◦ η′

where ~yj, ~y′j′ for 0 ≤ j ≤ l, 0 ≤ j ≤ l′ are antecedents of respectively ~x, ~x′. Suppose
that the congruence if witnessed by the application base rule 2. We then have that
there exists h ∈ mrp(SD), such that

(ϕ[~ψ/~x]) ◦ η =

(([h⇒ 1]ϕ′0[([g′]~ψ′)0/~y
′
0])〈ϕ1[([g]~ψ)1/~y1], . . . , ϕl[([g]~ψ)l/~yl]〉) ◦ θ∗) ◦ η

(ϕ′[~ψ′/~x′]) ◦ η′ =

(ϕ′0[([g]~ψ′)0/~y
′
0]([h]〈ϕ1[([g]~ψ)1/~y1], . . . , ϕl[([g]~ψ)l/~yl]〉)) ◦ (1⊗ sm(h)?) ◦ ((θ∗) ◦ η)

By definition of congruence (Rule .3), we get

〈(ϕ0〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈g〉), ~ψ, η〉 ∼

2. We will not consider the contextual cases in what follows, since the results in that context
are a direct corollary of the IH.

202

Bibliography – B. Technical Proofs of Chapter 4

ρ = 〈(ϕ0〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈1trg(g)〉), [g]~ψ, (1⊗ sm(g)?) ◦ η〉

and
〈(ϕ′0〈ϕ′1, . . . , ϕ′l′〉) ◦ (θ′ ⊕ 〈g′〉), ~ψ′, η′〉 ∼

ρ′ = 〈(ϕ′0〈ϕ′1, . . . , ϕ′l〉) ◦ (θ′ ⊕ 〈1trg(g′)〉), [g′]~ψ′, (1⊗ sm(g′)?) ◦ η′〉

By definition of congruence and Proposition B.7, we then have the following

ρ1 = 〈(([h⇒ 1]ϕ′0)〈ϕ1, . . . , ϕl〉)◦(θ⊕〈1〉), ([g′]~ψ′)0⊕(
l⊕

i=1
([g]~ψ)i), (1⊗sm(g)?)◦η〉 ∼

ρ2 =

〈(ϕ′0([h]〈ϕ1, . . . , ϕl〉))◦((1⊗sm(h)?)◦(θ⊕〈1〉)), ([g′]~ψ′)0⊕(
sm(h)(l′)⊕

i′=sm(h)(1)
([g]~ψ)sm(h)(i′)), (1⊗sm(g)?)◦η〉

If we prove that ρ ∼ ρ1 and ρ′ ∼ ρ2 we can then conclude by transitivity.
We prove that ρ ∼ ρ1 By IH and Proposition B.7, we have

〈ϕ0, ([g]~ψ)0, 1〉 ∼ 〈[h⇒ 1]ϕ′0, ([g′]~ψ′)0, 1〉

then there exists r0 ∈ mrp(SD) such that either

ϕ0 = ([r0 ⇒ 1]~y′0([h⇒ 1]ϕ′0)) ([g′]~ψ)0 = [r0]([g]~ψ)0

or
[h⇒ 1]ϕ′0 = [r0 ⇒ 1]~y0ϕ0 [r0]([g′]~ψ)0 = ([g]~ψ)0

we do the first case, the second one being completely symmetric. We set r = r0⊕1 :
~y0 ⊕

⊕l
i=1 ~yi → ~y′0 ⊕

⊕l
i=1 ~yi

3. We set ~y′ = ~y′0 ⊕
⊕l

i=1 ~yi. Then, by definition of
congruence and IH we get

(ϕ0〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈1trg(g)〉) =

[r ⇒ 1]~y′(([h⇒ 1]ϕ′0)〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈1trg(g)〉)

and
[r]([g]~ψ) =

l⊕
i=1

([g]~ψ)i).

We can then conclude that ρ ∼ ρ1. An analogous argument, applying the IH, works
also for ρ′, ρ2. We can then conclude.

Theorem B.10 (Uniformity of Reduction). Let ϕ1, ϕ2 ∈ Ωζ(∆, a),M,N ∈ Λ such
that ϕ1 →p ϕ

′
1 CM →β N and ϕ2 →p ϕ

′
2 CM →β N. If ϕ′1 ∼ ϕ′2 then ϕ1 ∼ ϕ2.

Proof. Direct corollary of the former lemma.
3. Where we keep the type list implicit to not overcharge the text.

203

Bibliography – B. Technical Proofs of Chapter 4

Lemma B.11. Let ϕ̃ ∈ Trig(M{N/x})~x(ζ : ∆, a) with len(~x) = n. There exist ~a =
〈a1, . . . , ak〉 ∈ SD, ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, . . . , ζk : Γk ∈ (SDn)?, η : ζ : ∆→ ⊗

ζj : Γj
and ϕ̃′ ∈ Trig(M)~x⊕〈x〉(ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, a), ψ̃i ∈ Trig(N)~x(ζi : Γi, ai) for i ∈ [k]

such that ϕ̃ = ˜
ϕ′[~ψ/~y] ◦ η.

Proof. By induction on the structure of M. If M = x then Trig(M{N/x})(ζ :
∆, a) = Trig(N)~x(ζ : ∆, a). Given ϕ̃ = 〈̃η, q〉 ∈ Trig(N)~x(ζ : ∆, a), we consider
ϕ′ = 〈〈1〈〉, . . . , 1〈〉, 1a〉, y〉 and we take η = 1∆ : ζ : ∆ → ζ : ∆. By definition
ϕ′[〈ϕ〉/〈y〉] ◦ η = ϕ.
If M = λy.M ′ then by definition ϕ ∈ Trig(M{N/x})~x(ζ : ∆, a) is of the shape

λ~z : f.ϕ′ with ϕ′ ∈ Trig(M{N/x})~x(ζ ⊕ 〈~z〉 : ∆⊕ 〈~a〉, a′) for a = ~a⇒ a′ for some
variable list ~z and morphism f. The result is then an immediate corollary of the
IH.

IfM = PQ then by definition ϕ ∈ Trig(M{N/x})~x(ζ : ∆, a) = Trig(P{N/x}Q{n/x})~x(ζ :
∆, a) is of the shape ψ0〈ψ1, . . . , ψk〉◦η for some 〈b1, . . . , bk′〉 ∈ SD, ζ0 : ∆0, . . . , ζk′∆k′ ∈
(SDn)?, ψ0 ∈ Trig(P{N/x})~x(ζ0 : ∆0, 〈b1, . . . , bk′〉 ⇒ a), ψl ∈ Trig(Q{N/x})~x(ζl :
∆l, bl) for l ∈ [k′]. By IH there exist ~a0 = 〈a0,1, . . . , a0,k0〉 ∈ SD, ζ0,0 ⊕ 〈~y0〉 :
Γ0,0 ⊕ 〈~a0〉, . . . , ζ0,k : Γ0,k ∈ (SDn)?, η0 : ζ0 : ∆0 →

⊗
ζ0,j0 : Γj0 and ϕ′0 ∈

Trig(P)~x⊕〈x〉(ζ0,0 ⊕ 〈~y0〉 : Γ0,0 ⊕ 〈~a0〉,~b ⇒ a), ψ0,i0 ∈ Trig(N)~x(ζ0,i0 : Γ0,i0 , a0,i0) for
i0 ∈ [k0] such that ψ0 = ϕ′0[~ψ0/~y0]◦η0. Again, by IH there exist ~ai = 〈ai,1, . . . , ai,ki〉 ∈
SD, ζi,0 ⊕ 〈~yi〉 : Γi,0 ⊕ 〈~ai〉, . . . , ζi,k : Γi,k ∈ (SDn)?, ηi : ζi : ∆i →

⊗
ζi,ji : Γji and

ϕ′i ∈ Trig(Q)~x⊕〈x〉(ζi,0 ⊕ 〈~yi〉 : Γi,0 ⊕ 〈~ai〉, bi), ψ0,ii ∈ Trig(N)~x(ζi,ii : Γi,ii , ai,ii) for
ii ∈ [ki] such that ψi = ϕ′i[~ψi/~yi] ◦ ηi. Then

ϕ = ((ϕ′0[~ψ0/~y0] ◦ η0)(~ϕ′[~ψ/~~y] ◦ ~η)) ◦ η

Where ~ϕ′ = 〈ϕ′1, . . . , ϕ′k′〉, ~ψ = 〈ψ1, . . . , ψk′〉,~~y = 〈~y1, . . . , ~yk′〉, ~η = 〈η1, . . . , ηk′〉. By
definition of substitution ϕ′0[~ψ0/~y0] ∈ Ωζ0,0⊗~ζ0(Γ0,0 ⊗ ~Γ0,~b ⇒ b) and ϕ′i[~ψi/~yi] ∈
Ωζi,0⊗~ζi(Γi,0⊗~Γi, bi). Consider ϕ

′ = ϕ′0 ~ϕ
′ ∈ Ω⊗ ζj,0⊕〈~yj〉(

⊗Γj,0⊕〈~aj〉, a). By definition

and IH ϕ̃′0 ~ϕ
′ ∈ Trig(PQ)~x(

⊗
ζj,0 ⊕ 〈~yj〉 : ⊗Γj,0 ⊕ 〈~aj〉, a). We set ~a = ⊕

~aj. Then
we take ~ψ′ = ⊕

ψj and η′ = (⊗ ηj) ◦ η and we can conclude, since

ϕ = ϕ′[~ψ′/
⊕

~xj] ◦ η′.

Lemma B.12. Let M,N ∈ Λ, ~x ⊇ (fv(M)/{x}) ∪ fv(N) and x /∈ ~x. Let ~a =
〈a1, . . . , ak〉 ∈ SD, ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, . . . , ζk : Γk ∈ (SDn)?, η : ζ : ∆ → ⊗

ζj :
Γj, ϕ̃ ∈ Trig(M)~x⊕〈x〉(ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, a), ψ̃i ∈ Trig(N)~x(ζi : Γi, ai) for i ∈ [k].

Then ˜
ϕ{~ψ = 〈ψ1, . . . , ψk〉/~x} ∈ Trig(M{N/x})~x(ζ : ∆, a).

Proof. By induction on the structure ofM. LetM = x and ϕ̃ = ˜〈η ⊕ 〈f〉, xsm(f)(1)〉 ∈
Trig(M)~x⊕〈x〉(ζ0 ⊕ 〈~y〉 : Γ0 ⊕ 〈~a0〉, a) where xsm(f)(1) ∈ ~x. We have, by definition

204

Bibliography – B. Technical Proofs of Chapter 4

ϕ[~ψ/~x] ◦ η = ψsm(f)(1){πsm(f)(1),len(~a)}{η}. By definition of right action

ψsm(f)(1){πsm(f)(1),len(~a)}{η} ∈ Trig(N)~x(ζ : ∆, a).

I M = y with x 6= y he result is immediate by definition. If M = λx.M ′ the result
is a direct consequence of the IH. If M = PQ then ϕ = (ϕ0〈ϕ1, . . . , ϕl〉) ◦ (θ ⊕ 〈g〉)
and ϕ[~psi/~x] =

((ϕ0[([g]~ψ)0/~y0]〈ϕ0[([g]~ψ)1/~y1], . . . , ϕl[([g]~ψ)l/~yl]〉) ◦ θ∗) ◦ η

then we apply the IH and conclude by definition of rigid expansion of an application.

B.4. Linear Case
Lemma B.13. Let π ∈ R1. Then there exists π′ ∈ R2 such that π′ ∼ π.

Proof. The variable and abstraction cases are immediate. We prove the application
case. We exploit Remark 3.3.4. Let π =

π0...
ζ0 : η0 : Γ0 ` p : 〈a1, . . . , ak〉 ⇒ a

 πi...
ζi : ηi : Γi ` qi : ai

k
i=1 η : ζ : ∆→⊗k

j=0 ζj : ⊗k
j=0 Γj

ζ : (⊗k
j=0 ηj) ◦ η : ∆ ` (p〈q1, . . . , qk〉)η : a

We know that η = (⊗k
j=0 θj) ◦ sm(η)?, where θj : Γ′j → trg(ηj), sm(η)? : ∆ →

(∆{sm(η)} = ⊗k
j=0 Γ′j).We fix some repetitions-free variable tuples ζ ′j for 0 ≤ j ≤ k

such that ζ ′j : Γ′j ∈ (SDlen(ζ))? with ζ{sm(η)} = ⊗k
j=0 ζ

′
j. Again, we fix some

repetitions-free variable tuples ζ ′′j for 0 ≤ j ≤ k such that ζ ′′j : trg(ηj) ∈ (SDlen(ζ))?.
Then consider π′ =

(π0/η
ζ′′0
0){θζ

′
0

0 }...

ζ ′0 : θ0 : Γ′0 ` (pζ′′0)θ
ζ′0
0 : 〈a1, . . . , ak〉 ⇒ a


(πi/η

ζ′′i
i){θζ

′
i
i }...

ζ ′i : θi : Γ′i ` (qζ
′′
i
i)θ

ζ′
i
i : ai


k

i=1 sm(η) : ζ : ∆→⊗k
j=0 ζ

′
j : ⊗k

j=0 Γ′j

ζ : (⊗k
j=0 θj) ◦ sm(η)? : ∆ ` ((pζ′′0)θ

ζ′0
0 〈(qζ

′′
1

1)θ
ζ′1
1 , . . . , (qζ

′′
k
k)θ

ζ′
k
k 〉)sm(η)? : a

and it is easy to see that π′ ∼ CF (π)⊗ ζ′′j
. Then by Lemma 17 we can conclude.

205

	Page de titre
	Contents
	List of Figures
	Introduction
	Taylor Expansion for -Terms with Choice Operator
	Introduction
	Some Basic Facts on Groups and Group Actions
	A Generic Non-Deterministic -Calculus
	-Terms
	Böhm Trees

	Taylor Expansion in a Uniform Non-Deterministic Setting
	Resource terms
	Taylor Expansion of -Terms
	Multiplicity Coefficients
	Taylor Expansion of Böhm Trees

	The Groupoid of Permutations of Rigid Resource Terms
	Rigid Resource Terms and Permutation Terms
	Rigid Substitution
	Substitution for Permutation Expressions
	The Combinatorics of Permutation Expressions under Coherent Substitution

	Normalizing the Taylor Expansion
	Normalizing Resource Expressions in a Uniform Setting
	Commutation

	Categorical Interlude
	Monoidal Categories
	Unbiased Monoidal Categories

	Bicategories
	Cartesian Closed Structure

	Two-Dimensional Monad Theory
	Pseudomonads and Lax Algebras
	Relative Pseudomonads
	(Pseudo) Algebras Lifting of Relative Pseudomonads

	Kan Extensions and Coends
	Coends
	Kan Extensions

	The Category of Presheaves
	Free Cocompletion of (Product) Categories
	Day Convolution

	Monads and Resources
	Boom Hierarchy of Data Types
	Integers and Lists
	Resource Monads

	Relations, Preorders, Distributors
	The Category of Sets and Relations
	The Category of Preorders and Monotonic Relations
	The Bicategory of Distributors

	The Bicategories S-Dist and S-CatSym
	The Bicategory S-Dist
	The Bicategory S-CatSym

	Intersection Type Distributors
	Introduction
	Models for the Simply Typed -calculus
	Models for pure -calculus
	Intersection Types as Distributors
	The Denotation is Isomorphic to the Semantics
	The Denotation as an Intersection Type System
	Type Derivations under Reduction

	Normalization Theorems
	Some Worked Out Examples
	Example 1: Linear Resources
	Example 2: Cartesian Resources

	Subtyping-Aware Polyadic Calculus and Rigid Expansion of Ordinary -Terms
	Introduction
	The Calculus of Subtyping-Aware Polyadic Terms
	Actions on Polyadic Type Derivations
	Congruence on Polyadic Type Derivations
	Substitution Operation on Type Derivations
	Points of Type Derivations
	Congruence on Points

	Rigid Expansion
	Reduction and Congruence

	An Example: the Linear Case
	Points of Linear Type Derivations

	Conclusion
	Bibliography
	Appendix
	Technical Proofs of Chapter 3
	Technical Proofs of Chapter 4
	Actions and Congruence under Substitution of Type Derivations
	Canonical Forms of Type Derivations
	Actions and Congruence under Reduction of Points
	Linear Case

