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Resumé

Note: the following chapter is a resumé in French from a non-mothertongue
speaker, it is not 100% accurate, nevertheless it is a clear sum up of the work I
carried on, and please appreciate the effort.

On peut considérer que la médecine nucléaire clinique a commencé dès
1927 avec l’analyse de la circulation sanguine normale et pathologique par
Blumgart et Weiss par l’utilisation du radio-isotope Bi214. Les premiers dé-
tecteurs médicaux, principalement issus de la physique expérimentale nu-
cléaire, étaient constitués de scintillateurs couplés à des photomultiplicateurs
via un guide d’onde pour lire le signal. Dans les années 1970, les systèmes de
tomodensitométrie ont été inventés suite à la découverte des principes de re-
construction tomographique. Dans les mêmes années, l’imagerie de résonance
magnétique a été développée, et plus tard, les systèmes d’imagerie de tomo-
graphie d’émission de reconstruction (TEP) et de tomographie d’émission
monophotonique (TEMP).

Aujourd’hui, la médecine nucléaire permet l’étude de la biologie in vivo
et des processus métaboliques dans le corps utilisant principalement deux
modalités d’imagerie fonctionnelles : l’imagerie TEMP et TEP. Ces deux
modalités d’imagerie sont basées sur l’utilisation de radiopharmaceutiques
(ou radiotraceurs), dont la biodistribution dans le corps peut être évaluée
par détection externe en utilisant la reconstruction tomographique. Le radio-
traceur est composé d’une substance qui suit un processus physiologique,
marqué par un isotope radioactif qui émet un rayonnement détectable depuis
l’extérieur du corps. Pour le diagnostic TEMP, le radiopharmaceutique est un
émetteur d’un seul photon, détecté par une caméra gamma tournant autour
du patient, tandis que dans les études TEP, des émetteurs de positons sont
utilisés et la détection se produit dans un détecteur de forme annulaire autour
du patient.
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Bien que l’imagerie nucléaire permette d’améliorer le dépistage, le diagnos-
tic et le suivi de plusieurs maladies, elle introduit également certains risques
liés à la radio-exposition. De nos jours, lesfacteurs qui guident la recherche et
le développement de l’imagerie nucléaire sont principalement la réduction
de la dose et la réduction du temps d’acquisition, pour des raisons autant
pratiques qu’en terme de sûreté radiologique.

Ces deux facteurs ont une influence critique sur la qualité de l’image
car le rapport signal sur bruit (SNR) dépend principalement du nombre de
photons dans les détecteurs. Pour maintenir des normes de qualité d’image
requises par la médecine moderne tout en diminuant l’activité totale, un
certain nombre de méthodes software de traitement d’image ont été mises en
œuvre en parallèe de l’utilisation de nouveaux systèmes d’imagerie.

De nouveaux systèmes, appelés TOF-PET (imagerie temps de vol), ont
d’abord été conçus dans les années 1970. Leur objectif est de mesurer la dif-
férence de temps entre les deux arrivées de photons par coïncidence dans des
détecteurs opposés dans l’espace pour estimer la position le long de la ligne
de réponse (LOR) où l’annihilation a eu lieu. L’incertitude de localisation
est déterminée par la résolution temporelle du détecteur, qui peut être carac-
térisée par la largeur à mi-hauteur de la distribution centrée sur x = c · Dt,
où c est la vitesse de la lumière et Dt la différence de temps. En utilisant un
détecteur idéal avec une résolution temporelle infiniment précise, on pourrait
localiser exactement la position d’annihilation et donc avoir directement accès
à la biodistribution des radiotraceurs. Cependant, en raison des limites de
techniques d’instrumentation actuelles, les techniques tomographiques sont
toujours nécessaires.

Les algorithmes utilisés pour reconstruire les images tomographiques
peuvent être classés en deux groupes principaux: les méthodes analytiques
et itératives. Dans le premier cas, nous traitons un problème d’inversion
entre une fonction et son intégrale curviligne. Dans dans le second cas, nous
modélisons tous les aspects possibles de l’acquisition de données et toutes
les interactions physiques qui peuvent se produire et nous cherchons l’image
qui correspond le mieux aux données de manière itérative. Les données sur
lesquelles nous basons notre la reconstruction sont acquises en détectant des
photons de coïncidence de 511 keV en TEP et photons uniques en SPECT.
Dans les deux cas, le nombre limité d’événements

et le comportement stochastique des particules entraîne l’apparition de
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bruit. Historiquement, la justification du passage d’une reconstruction d’image
analytique à une reconstruction d’image itérative était liée à une meilleure
modélisation du bruit par les algorithmes itératifs. Shepp et Vardi ont été
les premiers à proposer une méthode MLEM qui a montré une améliora-
tion significative sur l’approche de rétroprojection filtrée (FBP). Aujourd’hui
l’algorithme de reconstruction d’image le plus utilisé est basé sur leur premier
modèle et ses variations (LM -MLEM, OSEM).

Dans cette thèse, nous présentons l’imagerie three-gamma (3-g), où le
système d’imagerie repose sur le principe de l’acquisition de trois photons
gammas, venants d’un émetteur b+ et g. Les motivations du principe de
l’imagerie 3-g sont que les informations de détection du troisième gamma
peuvent aider à fournir une meilleure localisation du point d’annihilation, per-
mettant ainsi une meilleure qualité d’image et moins de dose administrée au
patient. Des détecteurs profitant d’un troisième gamma ont déjà été proposés
dans un certain nombre d’études. Parmi ces efforts, nous présentons dans ce
travail le XEMIS2, un scanner 3-g préclinique développé a Nantes, France.
Deux caractéristiques principales de XEMIS2 le rendent adapté a l’imagerie
3-g: l’utilisation du liquid xenon (LXe) comme milieu de scintillation, qui offre
une géométrie continue, et l’utilisation du Scandium-44 (Sc-44), un émetteur
b+ et g, qui permet la détection 3-g.

Le système XEMIS2 est une caméra corps entier pour le petit animal
qui présente un géométrie particulière: un champ de vue allongé dans la
direction axiale et un détecteur monolithique, afin de maximiser la sensibilité
du scanner. Dans le système XEMIS2, à l’inverse de détecteurs cristaux ou
bloc, tout le volume entourant le petit animal est rempli du milieu de détection
LXe. Le scanner est un cylindre composé de deux TPCs remplis de LXe; les
TPC sont placées côte à côte et séparées par une cathode partagée entre elles.
La zone de détection active est située entre 7 cm de rayon intérieur au cylindre
jusqu’à 19 cm de rayon extérieur et mesure 24 cm de long (12 cm pour chaque
TPC).

Tout autour du cylindre détecteur, 380 PMTs sont utilisés pour détecter
la lumière de scintillation générée pendant l’interaction photon-LXe. Un
champ électrique homogène est appliqué entre la cathode et les anodes, afin
de dériver les charges d’ionisation et les mesurer sur les anodes. Dans la
Fig. 1, nous montrons un diagramme de la zone active, montrant seulement
un quart du scanner, le reste étant symétrique. L’animal est positionné dans
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le cylindre de 7 cm de rayon. Pour empêcher toute hypothermie, 7,5 mm de
vide et un cylindre supplémentaire en acier inoxydable de 1,5 mm d’épaisseur
sont placés autour du premier tuyau en aluminium.

FIGURE 1: Geometrie du XEMIS2.

FIGURE 2: Vision transversale du scanner.

L’émetteur trois gammas (positon et g) choisi pour le projet XEMIS2 est
le Scandium-44. Ce radioisotope est un bon candidat pour notre étude en
raison de sa durée de vie de 4 heures, idéal pour des applications médicales.
L’interaction la plus probable se fait par la désintégration b, avec un rapport
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d’embranchement (branching ratio, BR) = 94,27% lors de laquelle il transmute
en Calcium⇤-44 (Ca⇤-44) avec émission d’un positron et d’un neutrino. Le
positron émis connaît un parcoursdans le corps jusqu’à s’annihiler avec un
électron de l’environnement, tandis que le Ca⇤-44 se désexcite en émettant
un photon de 1157 keV avec une distribution isotrope de probabilité dans
l’espace (Fig. 3). Ainsi, le rayonnement que nous pouvons détecter est com-
posé des deux gamma dos à dos générés lors de l’annihilation, et du troisième
gamma émis pendant le processus de désexcitation. En raison des différences
d’énergie entre les photons de coïncidence (511 keV) et le troisième gamma
(1157 keV), nous sommes en principe en mesure de discriminer les interactions
dans le processus d’acquisition, et nous pouvons également exclure les cas à
trois gammas dérivant de l’état ortho-positronium pendant la désintégration
du positron. Une caractéristique importante du Sc-44 comme émetteur de
positons est le parcours du positon. La particule est émise dans une gamme
d’énergie qui va de 0 à 1474 keV, ce qui conduit à une plage moyenne de
positons de 2,4 mm, par rapport aux 0,5 mm du radio-isotope TEP le plus
courant, le Fluor-18.

FIGURE 3: Schéma de la désintégration b du Sc-44 [1].

L’objectif de ce travail est de présenter une nouvelle méthode de reconstruc-
tion d’image basée sur la détection 3-g ayant le double objecif de permettre
une meilleure qualité d’image et une réduction de la dose administrée. Le
principe de la reconstruction d’image 3-g est basé sur l’utilisation des deux
photons de coïncidence pour déterminer une ligne de réponse (LOR) et sur la
détection d’un troisième gamma pour obtenir un cône Compton permettant
d’affiner la localisation de la position d’annihilation sur la ligne de réponse.
Le troisième photon est le plus susceptible de subir une diffusion Compton
dans le LXe en raison de son énergie initiale plus élevée (1,157 MeV). L’objectif
est ainsi d’identifier un cône Compton pour définir la direction dans laquelle
le photon a été émis. Pour y parvenir, la connaissance de la position et de
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l’énergie des deux premières interactions du troisième gamma dans LXe sont
nécessaires. Une fois le cône construit, on l’intersecte avec la LOR pour obtenir
les coordonnées de l’intersection cone-LOR (LCI). Ce point peut alors être
identifié, lors de la reconstruction de l’image, au centre d’une densité Gaussi-
enne de probabilité d’annihilation le long de la LOR de manière similaire à
une différence temporelle en TOF, donnant lieu à l’appellation "pseudo-TOF"
de la méthode proposée. Dans ce cas, nous avons conduit une étude sur
la largeur de la distribution qui dépend non seulement de la résolution du
scanner mais aussi de plusieurs facteurs (parcours du positon, résolution
énergétique, diffusion Compton, etc.).

Le calcul est effectué pour un cône et une ligne infinis, ainsi seules les
solutions à l’intérieur du FOV sont acceptées. Nous avons aussi décidé de
supprimer tous les événements présentant une double intersection (2%), ainsi
que les événements sans point commun entre la LOR et le cône (4%). Ces deux
types d’événements se produisent principalement en raison de la diffusion
Compton avant d’atteindre le détecteur. Il y a plusieurs couches métalliques
entre le FOV et le volume LXe, qui augmentent la probabilité de diffusion
avant détection, qui doivent alors être ajoutées à la probabilité déjà existante
de diffusion dans le corps du patient. Cela peut conduire à une erreur de
calcul du point d’intersection, soit par une erreur dans la LOR ou dans le
calcul du cône. Nous voyons sur la Fig. 4 comment une petite erreur sur
l’angle de Compton peut donner une incertitude beaucoup plus grande sur
la LOR. Dans notre cas, où nous traitons de trois photons, des événements
sans diffusion sont rares et même de petits écarts peuvent être un problème
à la détermination de l’intersection LCI. La Fig. 5 montre des cas possibles:
(a) un vrai événement, (b) un photon de coïncidence qui subit une diffusion
dans les couches métalliques autour du FOV, et (c) un photon de 1157 keV
qui se disperse dans le fantôme. D’autres cas peuvent également être liés à la
diffusion dans le fantôme pour un, deux ou trois photons en même temps, etc.
Toutes ces situations peuvent affecter la détermination correcte de la LCI, et
l’incertitude sur le calcul des coordonnées doit être inclus dans la largeur de
la gaussienne sur la LOR lors de la reconstruction d’image.

Le principal problème de l’imagerie 3-g est l’utilisation des informations
portées par le troisième gamma pour améliorer la reconstruction de l’image,
en determinant un cône Compton et le point de croisement entre cet objet et
la LOR. La précision sur les coordonnées LCI dépend de plusieurs facteurs,
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FIGURE 4: Influence de l’erreur lie a l’angle Compton sur la
LOR.

parmi lesquels l’énergie et la résolution spatiale des interactions du troisième
gamma, la distance entre les deux premières détections et la distance LOR-
vertex du cone.

Comme déjà discuté dans la section sur les préréquis de l’imagerie 3-g,
le LCI peut être affecté par plusieurs effets: photon subissant une diffusion
Compton dans le fantôme, parcours du positon, énergie du détecteur et
résolution spatiale, distance entre les interactions, angle entre le cône et LOR,
etc. Ainsi, nous devons introduire un paramètre de reconstruction appelé
l’écart type de pseudo-TOF (pseudo TOF standard deviation) qui caractérise
l’incertitude sur le LCI intégrant tous les effets possibles.

Afin de mesurer l’impact de tous les effets de biais sur cette LCI, nous
avons étudié la distance d entre la LCI calculée et la projection sur la LOR
du troisième point d’émission gamma (Fig. 6) grâce à une simulation d’un
fantôme aux propriétés similaires au NEMA.

La Fig. 7 montre la distribution résultante: la courbe obtenue est large et
montre un maximum en 0. Le RMS de cette courbe 22 mm a été utilisé et, qui
se traduit par 70 ps en unités temporelles TOF.

L’utilisation d’un écart-type fixe dans la reconstruction sous-estime l’incertitude
pour une partie des événements. Ainsi, deux reconstructions d’images dif-
férentes ont été effectuées. Nous avons utilisé la valeur de résolution de 70 ps
résultant de l’étude de distance NEMA et une résolution pseudo-TOF variante,
qui a été calculée événement par événement comme l’équivalent en temps de
la distance d. En incorporant la LCI dans un système TEP et en tenant compte
de l’incertitude relative, nous nous attendons à une amélioration des images
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FIGURE 5: (a) Événement sans diffusion.
(b) Événement où un des photons diffuse avant d’être détecté.
(c) Événement où le troisième gamma diffuse dans le corps.

reconstruites. Cette idée est confortée par le fait que les scanners TOF ont
déjà démontré des améliorations en terme de SNR et CNR par rapport aux
systèmes TEP conventionnels.

Dans ce travail, nous explorons la méthode de reconstruction d’image
pseudo-TOF et ses avantages et nous comparons la technique de reconstruc-
tion proposée à la reconstruction d’image 2-g conventionnelle. Le premier
fantôme simulé est un fantôme de type NEMA, en analogie avec les études de
qualité d’image menées pour caractériser les détecteurs, et en général utilisé
dans les comparaisons TOF versus non-TOF.

Le fantôme est constitué d’un cylindre d’eau homogène de 12 cm de long
et d’un rayon de 3,5 cm, contenant cinq sphères. Les centres de toutes les
sphères sont équidistants de l’axe central du cylindre et positionnés sur la
tranche centrale du cylindre. Le rayon des sphères mesure 2, 4, 8, 10 et 12 mm,
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FIGURE 7: Incertitude sur la position du LCI.

voir Fig.8 et Table 1 pour plus de détails.
L’activité totale simulée dans le fantôme est de 20 kBq, avec un facteur 15

de rapport de contraste entre la sphère et l’arrière-plan. 30 doublons ont été
simulés pour étudier la variance de l’image.

Pour compléter la caractérisation, en tant que deuxième fantôme, nous
avons choisi de simuler un objet plus réaliste: une souris mâle de 28 g (fantôme
Digimouse). Le petit animal présente une structure complète, composée du
cerveau, des muscles, des yeux, des glandes, du cœur, des poumons, du foie,
de l’estomac, de la rate, du pancréas, des reins, des testicules, de la vessie, du
squelette et de la peau. Une tumeur sphérique de rayon de 2 mm a été ajoutée
dans le cerveau en tant que ROI à analyser pour l’étude de qualité d’image.
Le figure 9 montre une vue transaxiale de la tranche centrale de Digimouse et
le tableau 2 la distribution simulée d’absorption de la souris.

Le radiopharmaceutique utilisé dans cette simulation est le [44Sc]Sc-J591
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FIGURE 8: Coupe axiale du fantôme type NEMA.

Radius [mm] Position (X,Y,Z) [mm]
2 (0.0, 17.5, 0.0)
4 (-8.8, 15.1, 0.0)
8 (-17.5, 0.0, 0.0)

10 (0.0, -17.5, 0.0)
12 (17.2, 3.7, 0.0)

TABLE 1: Dimensions et positions des cinq sphères dans le fan-
tôme.

marqué au Sc-44, un anticorps recombinant monoclonal marqueur de l’antigène
PSMA spécifique de la membrane prostatique l’absorption biologique est
connue de Carter [2] et des études de Holland [3]. Un des avantages de
l’utilisation du [44Sc]Sc-J591 est que la molécule est également utilisée pour
les études de parcours du positon puisqu’elle est facilement associée aussi au
F-18.

L’activité totale simulée dans le fantôme était d’environ 22 kBq et le temps
d’acquisition des données était de 20 minutes. En raison de la structure plus
détaillée du fantôme Digimouse, un temps de calcul plus long a été nécessaire
et une seule acquisition a été simulée.

Toutes les images que nous avons reconstruites dans ce travail sont obtenues
grâce à l’algorithme de reconstruction LM-MLEM dans CASTOR v2.3, pour le
pseudo-TOF et le non-TOF, que nous appelons respectivement 3-g et 2-g .

Comme pour tous les algorithmes d’optimisation itérative comme MLEM,
la reconstruction dans CASTOR est basée sur un projecteur gérant à la fois la
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FIGURE 9: Coupe axiale du Digimouse avec les structures in-
ternes.

Organ activity/voxel Organ activity/voxel
[Bq/0.5 mm3] [Bq/0.5 mm3]

Skin 0.1 Testes 0.1
Spinebone 1.7 Stomach 0.1

Eye 0.1 Spleen 3.2
Brain 0.1 Pancreas 0.1

Muscle 0.1 Liver 1.5
Bladder 2.25 Kidney 0.7

Lung 0.1 Tumor (brain) 2.25

TABLE 2: Biodistribution du [44Sc]Sc-J591 dans le corp du Digi-
mouse.

projection arrière et avant et il y a un optimiseur et un convolveur, au cas où
tout type de convolution serait nécessaire (par exemple pour la correction du
parcours du positon).

Dans CASTOR, le calcul des éléments de la matrice système suit le pro-
jecteur Siddon et la méthode dite ray-tracer, pour laquelle la probabilité dépend
de la partie de LOR traversant chaque voxel. L’optimiseur standard utilisé
pour les événements à deux gamma est de Shepp et Vardi; tandis que pour
l’algorithme LM-MLEM/TOF nous nous référons à Filipovic.

L’algorithme LM-MLEM pseudo-TOF peut être exprimé comme suit:

l
(k+1)
j =

l
(k)
j

Âi,b pi,j,b
Â

i

pi,j,b

Âj0 pi,j0,bl
(k)
j0

. (1)

où i fait référence au bin de la LOR et b au bin pseudo-temporel correspon-
dant à l’événement considéré; l

(k)
j est la valeur de l’image dans le voxel j

pour l’estimation k-th. On désigne comme pseudo-time-bin le bin du temps
correspondant à l’équivalent en ps de la position LCI.
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Nous montrons des résultats liés au fantôme de type NEMA obtenu par
reconstruction de 3-g et 2-g MLEM. Pour la reconstruction pseudo-TOF, nous
avons utilisé deux approches pseudo-TOF différentes: dans une reconstruction
nous avons utilisé un écart-type gaussien fixe de 70 ps, qui est la valeur
correspondant à l’incertitude moyenne sur le calcul LCI. Dans la seconde
approche, la résolution était basée sur les événements, donc variable, calculée
pour chaque événement comme l’équivalent en temps de la différence entre
le LCI et la projection du point d’annihilation sur la LOR, comme le montre la
Fig. 7.

La raison de montrer les résultats avec la résolution pseudo-temporelle
moyenne et avec la résolution variable est d’étudier les bénéfices potentiels
de l’approche proposée dans des scénarios favorables et moins favorables de
précision du cône reconstruit.

(a) (b) (c)

(d) (e) (f)

FIGURE 10: Coupe axiale du fantôme type NEMA après avoir
applique un filtre gaussien (s = 1 mm). Images reconstruite util-
isant (a) reconstruction TEP classique, et la technique proposée
dans ce travail (3-g) avec (b) 70-ps et (c) un écart type variable
événement par événement. Les images sont les résultats a la 30th

itération. (d), (e) et (f) montrent les profiles sur la ligne jaune.

La première différence entre l’étude de type NEMA et celle de Digimouse
est que, dans le second cas, les images n’ont été obtenues que par reconstruc-
tion classique 2-g et reconstruction pseudo-TOF avec plusieurs valeurs de
résolution (70 ps, 100 ps , 150 ps et 200 ps). De plus, dans ce cas, les événe-
ments avec et sans point LCI ont tous deux été utilisés pour la reconstruction
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d’image, en raison de la faible quantité d’événements 3-g dans l’acquisition.
Les images reconstruites sont montrées sur la Fig. 11: on voit la tranche

centrale du Dimouse sur le 30 th itération pour 2-g et pour tous les valeurs de
résolution pseudo-TOF. De gauche à droite: reconstruction 2-g, pseudo-TOF
avec une résolution de 200 ps, 150 ps, 100 ps et 70 ps. Nous avons également
calculé le profil le long de la ROI dans le cerveau du Digimouse, qui peut être
vu sur la Fig. 12 pour toutes les différentes reconstructions.

(a) (b) (c) (d) (e)

FIGURE 11: Images reconstruites du Digimouse: reconstruction
2-g, reconstruction pseudo-TOF avec un ecart type de 200 ps,

150 ps, 100 ps, et 70 ps.
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FIGURE 12: Profile sur la ligne qui croise la ROI dans le cerveau
du Digimouse.

Pour le projet XEMIS2, l’intérêt de la correction du parcours du positrons
concerne l’utilisation du Sc-44 comme radio-isotope a trois gammas, dont
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le parcours de positrons n’est pas négligeable. Nous discutons des deux
approches implémentées dans CASTOR pour corriger l’effet: d’abord par
une approche a noyau invariant et ensuite par un a noyau variant basé sur le
matériau. La carte des matériaux a été obtenue à partir du fichier du fantôme
GATE.

Le fantôme choisi pour cette étude est composé d’un cylindre de 12 cm
de long avec un rayon de 3,5 cm positionné au centre du FOV, dans lequel
nous trouvons cinq sphères, voir Fig. 13 et Table 3. Les matériaux choisis sont
l’eau, le poumon et l’os, pour explorer trois milieux de densités très différentes
(1,00 g/cm3 eau, 0,26 g/cm3 poumon et 1,42 g/cm3 os).

Les données sont simulées dans GATE v6 en utilisant le modèle Penelope
pour les interactions. L’activité totale simulée est de 20 kBq pour un temps
d’acquisition des données de 20 minutes, avec un facteur 15 de contraste entre
les points chauds et le fond.

Sphere nb Position [mm] Radius [mm] Material Density [g/cm3]
1 (0.0, 17.5, 0.0) 2 water 1.00
2 (-8.8, 15.1, 0.0) 4 water 1.00
3 (-17.5, 0.0, 0.0) 8 water 1.00
4 (0.0, -17.5, 0.0) 10 lung 0.26
5 (17.2, 3.7, 0.0) 12 bone 1.42

TABLE 3: Description des sphères a l’intérieur du fantôme.

FIGURE 13: Coupe axiale du fantôme pour l’étude sur la correc-
tion de range du positon.

La reconstruction a été effectuée dans CASTOR en utilisant un algorithme
LM-MLEM dans lequel nous avons implémenté la correction de le parcours
du positon par convolution. Nous montrons les résultats obtenus avec la
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reconstruction conventionnelle 2-g et 3-g pour pouvoir comparer les deux ap-
proches, avec et sans correction du range de positons. En particulier, pour un
noyau stationnaire, la convolution est déjà implémentée dans le logiciel, avec
des choix multiples au moment de l’appliquer: sur l’image à projeter en avant,
sur les termes de correction de la rétroprojection, sur l’image reconstruite, ou
sur l’image estimée.

Dans nos techniques de correction implémentées avec un noyau variant,
nous avons choisi d’appliquer une convolution isotrope sur l’image à pro-
jeter en avant à chaque itération. L’algorithme développé accepte 4 noyaux
différents, pour les 4 matériaux du fantôme, et pour chacun d’eux, on peut
spécifier le nombre de sigmas gaussiens a utiliser et le FWHM (axial et transax-
ial).

Les valeurs des FWHM de noyaux ont été calculées à partir d’une simula-
tion de 20 minutes de trois sources ponctuelles, une de chaque matériau, avec
1000 Bq d’activité initiale dans chacune d’elles. Afin d’associer le bon noyau à
chaque voxel, l’algorithme de convolution prend en entrée une label image
avec des nombres de 0 à 3, chacun d’eux correspondant à un noyau différent à
utiliser lors de la convolution. Dans notre cas, la label image a été directement
obtenue à partir du fantôme GATE et basée sur les matériaux simulés.

Nous avons reconstruit des images via une reconstruction classique TEP
et via une reconstruction pseudo-TOF, en utilisant une résolution de 70 ps.
Dans les deux algorithmes, nous avons ajouté la correction du parcours de
positrons par convolution de noyau variant et invariant.

Pour le cas a noyau invariant, nous avons effectue une convolution avec un
FWHM de 2,0 mm. Pour le cas a noyau variant, la sphère de 10 mm de rayon
et la sphère de 12 mm de rayon ont été associées aux valeurs correspondantes
calcules par l’étude précédent et le reste de l’image a été convolué avec une
FWHM égal à 1,9 mm, considérant que nous sommes en présence d’eau et
d’air.

Outre a l’amélioration du contraste due à l’utilisation de 3-g au lieu de
la reconstruction TEP classique, le contraste général des cinq sphères est
amélioré dans les images corrigées, en particulier pour pseudo-TOF dans
Fig. 14 (d) et (f), respectivement la convolution a noyau variant et invariante.
L’amélioration est correctement quantifiée sur la Fig. 15, où nous montrons le
profil le long des lignes jaunes pour les six reconstructions. Entre les profils
des reconstructions 2-g et ceux liés au 3-g, nous avons un écart de 20% sur
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(a) (b)

(c) (d)

(e) (f)

FIGURE 14: Coupe transversale du fantome. Images reconstru-
ites avec differents techniques: (a) TEP classique et (b) 3-g,pas
corrigee; (c) 2-g et (d) 3-g convolues avec des noyaux variantes,

(e) 2-g et (f) 3-g convolues avec un noyau stationaire.
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FIGURE 15: Profile sur la ligne jaune.

l’échelle de gris, alors qu’il n’y a pas de différence remarquable entre les
images corrigées et non corrigées pour les mêmes technique de reconstruction
d’image.

Les travaux présentés dans cette thèse ont porté sur le développement
d’une nouvelle technique de reconstruction pour l’imagerie 3-gammas, qui a
été évaluée sur la géométrie du système d’imagerie XEMIS2. L’étude XEMIS2
est la partie préclinique du projet plus général XEMIS, qui a déjà développé
un premier prototype, le XEMIS1. La caractérisation de la caméra Compton
XEMIS1 a donné la démonstration expérimentale de la faisabilité de l’imagerie
trois gammas, on retrouve les études précédentes dans Gallego-Manzano [4],
Oger [5] et Grignon [6].

Dans ce travail, nous utilisons les interactions du troisième-gamma dans
le LXe pour déterminer un cône Compton, dont le point d’intersection avec
le LOR, obtenu à partir des photons de coïncidence, permet de restreindre
la localisation des LOR section impliquée dans l’événement combiné annihi-
lation + émission. L’événement est ensuite reconstruit à l’aide d’un pseudo-
TOF/MLEM algorithme où l’intersection ligne-cône est prise comme centre
d’un PDF gaussien utilisé dans la reconstruction, de la même manière que
dans TOF-PET, d’où la dénomination de la méthode proposée comme pseudo-
TOF. Un avantage principal associé à l’approche proposée est de permettre
l’intégration de l’information du troisième gamma dans des cadres de recon-
struction existants avec une capacité TOF, tels que CASTOR.
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Nous avons montré une étude basée sur la simulation d’une acquisition de
données de 20 minutes avec 20 kBq de radioactivité initiale dans le détecteur
XEMIS2. Nous avons simulé un fantôme de type NEMA et Digimouse et
montré une amélioration de la qualité d’image pour des objets de différentes
densités et dimensions. Nous avons présenté le calcul des coordonnées LCI,
sur lequel nous basons la méthode de reconstruction d’image 3-g. Nous avons
discuté des caractéristiques obligatoires du détecteur en termes de résolution
spatiale, énergétique et angulaire pour réduire l’incertitude sur le point LCI.

Le calcul des coordonnées LCI est une étape cruciale vers l’application
de l’approche proposée dans un contexte clinique réel. Pour cela, il faut être
capable de déterminer avec suffisamment de précision la localisation de trois
clusters d’interaction dans LXe: les deux clusters correspondant aux photons
d’annihilation et celui correspondant au troisième gamma.

Les principaux défis liés à la détection de trois événements gamma dans
des données réelles concernent le clustering des groupes d’interactions, ainsi
que la détermination de l’angle de Compton et des deux premiers points
d’interactions pour le troisième gamma utilisé pour déterminer le cône.
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Introduction

Clinical nuclear medicine can be considered to have started as early as 1927
when Blumgart and Weiss [7] analyzed the normal and abnormal circulation of
blood in patients using the radioisotope Bi214. The first medical detectors were
mainly borrowed from experimental and nuclear physics, made of scintillators
coupled to photomultipliers (PMTs) through a light guide to read the signal.
In the 1970s computed tomography (CT) scanning systems were invented in
conjunction with tomographic reconstruction. In the same years magnetic
resonance imaging (MRI) was developed, and later on positron emission
tomography (PET) and single photon emission tomography (SPECT) imaging
systems [8].

Nowadays, nuclear medicine allows for the study of in vivo biological
and metabolic processes in the body using mainly two functional molecular
imaging modalities: SPECT and PET imaging. Both imaging modalities are
based on the use of radiopharmaceuticals (or radiotracer), whose biodistribu-
tion in the body can be evaluated using external detection and tomographic
reconstruction. The radiotracer is composed of a substance that follows a
physiological process labeled with a radioactive isotope that emits radiation
detectable from outside the body. For SPECT diagnostics the radiopharma-
ceutical is a single photon emitter, detected through a gamma camera rotating
around the patient, while in PET studies positron emitters are employed and
the detection occurs in a ring-shaped detector surrounding the body.

While nuclear imaging allows for improved screening, diagnosis and
follow-up of several diseases, it also introduces some risks related to radia-
tion exposure [9]. Nowadays the two main factors that guide research and
development in nuclear imaging are arguably the reduction of the adminis-
tered dose and of the acquisition time, for both safety and practical purposes.
These two factors have a critical influence on image quality as the signal to
noise ratio (SNR) is mostly dependent on the number of photon counts in the
detectors [10, 11, 12]. To maintain sufficient image quality standards required
in modern medicine while decreasing the total activity, image processing and
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software-based methods have been implemented [13, 14], together with the
use of new imaging systems [15, 16, 17]

New systems, known as time of flight (TOF)-PET, were first conceived
in the 1970s. Their goal is to measure the time difference between the two
coincidence photons’ arrival in opposite detectors to estimate the position
along the line of response (LOR) where the annihilation took place. The
localization uncertainty is determined by the time resolution of the detector,
which can be characterized by the full width half maximum (FWHM) of the
distribution centered in x = c ·Dt, where c is the speed of light and Dt the time
difference. Using an ideal detector with infinitely accurate time resolution,
one could exactly locate the annihilation position and therefore have direct
access to the radiotracer biodistribution. However, due to the limitations of
current instrumentation techniques, tomographic techniques are still required.

Algorithms used to reconstruct tomographic images can be classified into
two main groups: analytical and iterative methods. In the first case, we
deal with an inversion problem between a function and its line integral. In
the second case we model all the possible aspects of data acquisition and
all the physical interactions that can occur and we look for the image that
best fits the data in an iterative fashion. The data on which we base our
reconstruction are acquired detecting 511-keV coincidence photons in PET
and single photons in SPECT. In both cases, the limited amount of events
and the particle stochastic behavior result in noisy outputs. Historically, the
rationale for changing from analytical to iterative image reconstruction was
related to better noise-modeling of the latest iterative algorithms. Shepp
and Vardi [18] were the first to propose an maximum likelihood expectation
maximization (MLEM) method that showed significant improvement over
the previous analytical filtered backprojection (FBP). Today the most used
image reconstruction algorithm is based on their first model and its variations
(list mode (LM)-MLEM, ordered subset expectation maximization (OSEM)).

In this thesis we present three-gamma (3-g) imaging, where the acquisition
system relies on a b+ and g emitter. The reasoning behind 3-g imaging is that
the third gamma detection information may help to provide better localization
of the annihilation point, thus enabling higher image quality of reduced
dose delivered to the patient. Detectors taking advantage of a third gamma
emission have been proposed in a number of studies [19, 20, 21, 22], [23, 24].
Among these efforts, in this work we present the xenon medical imaging
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system 2 (XEMIS2) camera, a preclinical 3-g imaging scanner developed in
Nantes, France. Two main characteristics of XEMIS2 make it suitable for 3-g
imaging: the use of liquid xenon (LXe) as scintillation medium, that offers a
continuous geometry, and the use of Scandium-44 (Sc-44), a b+ � g emitter,
which enables the 3-g detection.

The aim of this work is to present a new image reconstruction method
based on 3-g detection, which could allow better image quality and thus
a reduction of the administered dose. The principle on which 3-g image
reconstruction is based is the intersection between a LOR and a Compton
cone belonging to the same event. From the two coincidence photons we
obtain a LOR, while from the third gamma, emitted as a prompt gamma, we
determine a cone. The intersection between the LOR and the cone provides
the LOR/cone intersection (LCI) coordinates that locate the most probable
annihilation position on the LOR, as for the time difference in TOF, whence
the pseudo-TOF denomination of the proposed reconstruction method. In
this case, we proposed to carry on a study on the distribution sigma, which
depends not only on the scanner resolution but on multiple factors (positron
range, energy resolution, scattering, etc).

This work is composed of five main chapters in addition to general intro-
duction and conclusion. In Chapter 1 we introduce nuclear imaging, starting
with the physics behind nuclear medicine: positron decay, positron-electron
annihilation and other positron interactions with matter, positron range, pho-
ton attenuation and interactions. The second part of the chapter is about PET
imaging, we illustrate how the coincidence photons are detected, we present
the challenges concerning scattering and random coincidences, and also the
sensitivity and the depth of interaction (DOI) problem in PET. In Chapter 2
we introduce Image Reconstruction in a historical way: first, discussing data
acquisition and then talking about analytical image reconstruction algorithms
and model-based ones. At the end of the chapter we present the system matrix
and all the effects that can be included in the modelization, as the detector
geometry, the attenuation, the normalization, the scattering, and the positron
range. In Chapter 3 we present the proposed 3-g reconstruction method. We
begin addressing our attention to the XEMIS2 project, we discuss the detector
and its geometry, the used radioisotope, the data acquisition, and detection
process. Then we expose the proposed image reconstruction technique, based
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on 3-g detection, including the LCI computation, and all the needed require-
ments as a matter of spatial and energy resolution and, even more important,
as angular resolution. The second part of the chapter deals with the Geant4
Application for Emission Tomography (GATE) Monte Carlo simulation used
to obtain data. We show the simulated phantoms and talk about customiz-
able and advanced software for tomographic reconstruction (CASToR), the
reconstruction software, in which we implemented the 3-g reconstruction
algorithm. In Chapter 4 we show the results obtained from the simulation,
and the image analysis that was carried on. First, we present the figures of
merit used in the analysis, and then the results: the reconstructed image using
3-g and conventional PET method and some metrics and profile plots. In
Chapter 5 we discuss the positron range correction issue related to the use of
Sc-44. We talk about the state-of-the-art techniques to correct the effect and
we show what has been done in our case using variant and invariant kernel
convolution, implemented directly in CASToR reconstruction software. At the
end of this work, in the conclusion 5.6, we discuss all that has already been
done for 3-g image reconstruction and possible future developments among
which is the use of Neural Networks to correctly compute the LCI point.

Notation: vectors will be denoted by bold italic letters (e.g. v), matrices
will be written in upper-case bold italic letters (e.g. A), with aij being the entry
at row i, column j.
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Chapter 1

General principles of nuclear
imaging

Summary

In this chapter, we introduce the main subject of this work and we gather
all the necessary information to fully understand the 3-g image recon-
struction method, starting with the introduction to PET imaging. We first
present the physics of PET, the radioactive b+ decay and the interaction
of particles with matter, in particular positron and photon’s interaction at
low energies. We then introduce the basics of PET imaging, as a matter of
detection, coincidence discrimination, and all the challenges encountered
with detector sensitivity and DOI. At the end of the chapter we mention
TOF-PET introducing briefly the theory and the basic notions that will be
helpful in the following of this work.
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1.1 Introduction

Nuclear imaging is based on the use of radioactive compounds, composed of a
molecule labeled with a radioisotope, that follow physiologic or pathological
processes linked to a variety of diseases. There exist more than 100 different
types of diagnostic exams for nuclear medicine, that can detect early stages of
oncological or neurological diseases, when cures are more effective. Unlike
other medical imaging procedures, which map the anatomy of the body
with almost no information about the metabolism, nuclear imaging, and in
particular PET imaging, is a valuable mean for providing disease-related
quantitative and qualitative information.

1.2 Physical principles

In this section, we discuss some of the basic principles of nuclear physics,
especially the ones in which we are most interested, as radioactive decay and
photon and positron’s interactions with matter.

1.2.1 Radioactive decay

There exist six different modes of radioactive decay [25], but the only one
interesting in PET imaging is positron decay, also called b+ decay. More
generally, in PET, radiotracers are labeled with positron emitters (see Table 1.2)
that are unstable elements decaying through b+ emission. Positron decay
consists of the conversion of a proton into a neutron with the emission of a
positron and a neutrino, according to the following expression:

p⇤ ! n + e+ + n + energy. (1.1)

where the ⇤ indicates that the proton is not a free particle but belongs to a
nucleus.
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And furthermore through this equation involving the parent and daughter
nuclide:

A
ZX

b+�! A
Z�1Y. (1.2)

A minimum transition energy requirement is expected for b+ decay, since
the nucleus reduces its atomic number by one and after losing a positron, the
daughter-atom loses an electron to reach its ground state. The mass of both
electron and positron being respectively particle and anti-particle, is 511 keV,
from which the total minimum of 1.022-MeV energy is required [26].

As the positron travels in the surrounding tissue, it loses its kinetic en-
ergy in Coulomb interactions with the atomic electrons. As the rest mass
approaches the electron mass, the trajectory deviation may be accentuated,
giving an intricate and twisted path to the particle. When the positron reaches
thermal energy (few keV), it interacts with an electron by annihilation or
forming a positronium atom with a lifetime of about 0.12 ns [27]. Two forms
are possible in its ground state: ortho-positronium (parallel particles’ spins)
or para-positronium (anti-parallel particles’ spins), the latter decays in self-
annihilation producing two 511-keV photons as for positron-electron annihila-
tion, while the former annihilates producing three gammas. The back-to-back
emission of free annihilation is required for the momentum conservation in
the electron-positron pair. Since the photons emission takes place in a frame
of reference that moves with a different velocity than the one of the detection
system, the photons can be emitted in a slightly different direction from the
ideal 180� by a few tenths of degree (s ⇡ 0, 5�) [28].

FIGURE 1.1: Positron emission and annihilation scheme for F-
18 [29].
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Mathematics of radioactive decay

Nuclear radioactive decay obeys the following equation:

dN
dt

= lN(t). (1.3)

in which dN is the number of nuclei decaying in a very short amount of time
dt, l is the decay constant, and N(t) the number of nuclei at time t. The decay
constant does not depend on external factors, but only on the effective decay
of the nuclei and it is not tabulated. Instead, we refer to the half-life, defined
as the amount of time it takes to reduce the original activity by a factor two:

T1/2 =
ln(2)

l
. (1.4)

1.2.2 Charged particle’s energy loss

A charged particle of mass M1 and charge Z1 penetrating a material of atomic
number Z2 and atomic mass M2, slows down losing energy to the medium’s
atoms. It interacts with the matter via electromagnetic force with the electrons
and protons and via strong nuclear force with the nuclei. The particle’s
stopping process involves complex interactions, although we can measure
the particle’s average energy loss per unit pass length, called stopping power,
dE
dx [30]. The computation of this quantity requires a complete knowledge
about the particle energy loss mechanisms and it changes drastically from
particle to particle. In particular between ions and electrons/positrons, due to
the difference in mass.

In this work, we are mostly interested in the energy loss of the positron,
which is mainly caused by two mechanisms: Coulomb interaction with orbital
electrons of the nuclei or collision stopping power (CSP) and Bremsstrahlung
emission or radiation stopping power (RSP) [31]:

✓
dE
dx

◆

tot
=

✓
dE
dx

◆

c
+

✓
dE
dx

◆

r
. (1.5)

The first term is the CSP and the second term is the RSP. CSP was firstly
studied by Bethe and Bloch [32] and later on by Bhabha [33], which formalized
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it as follows:
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where me is the electron/positron mass, b = v
c , with v the particle velocity

and c the speed of light; g = 1p
1�b2

is the Lorentz factor. The variable I

represent the mean excitation energy, Z the atomic number, A the atomic mass
of the material, K = 4pe4N0

mec2 = 0.307075 is a coefficient, being N0 the Avogadro
number and e the electron charge, and d is the density correction effect.

On the other hand, the RSP was studied by Lindhard and Ritchie [34, 35].
In the positron case, due to the small mass, the particle deviates from its
trajectory when in the nucleus’ electric field, with a radial acceleration causing
the Bremsstrahlung emission. When the particle reaches the critical energy,
that is when the radiative energy loss equals the collision energy loss, the
Bremmstrahlung becomes dominant. The computation of the energy loss due
to radiation emission is rather complex and we define it through a parameter,
called radiation length X0, that corresponds to the distance over which the
positron energy is reduced by 1

e due to radiative loss only [36]:

✓
dE
dx

◆

r
=

E
X0

. (1.7)

1.2.3 Positron range

A positron is emitted during nuclear decay with an energy that spans from 0
to the maximum available energy, following an asymmetrical distribution cen-
tered around half of the Emax. In Table 1.1 we see some reference values for the
most common PET radionuclides. Due to its initial kinetic energy, the positron
path can be not negligible for high energy positrons. The positron range
depends also on the material in which it propagates since the interactions
probability is calculated on the atomic number and atomic mass.

Positron range is one of the main sources of blur in PET imaging: for F-18,
the most used PET radionuclide, we deal with 0.5-mm range correction in the
human body, while for Sc-44, the radioisotope chosen for the image recon-
struction method proposed in this work, the correction is around 2 mm [37].
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We show in Fig. 1.2 a comparison between the energy spectra of the two
isotopes. The energy distribution function used to obtain the histograms can
be approximated following Levin and Hoffman’s formula [38]:

N(E)dE = pF(Z � 1, E)
✓

1 +
E

0.511

◆
(Emax � E)2dE. (1.8)

where Z is the atomic number of the nucleus that undergoes b+ decay, E is
to the kinetic energy of the positron in MeV, Emax is the maximum kinetic

energy in MeV, p is the momentum of the positron p =
q�

1 + E
0.511

�2 � 1 and
F(Z, E) is the Fermi function:

F(Z, E) =
2ph

1 � e�2ph
. (1.9)

in which h = �Za
p
�
1 + E

0.511
�
, a = 1

137 being the fine structure constant.
Due to the small correction, positron range for F-18 can be neglected for

all those cases in which the scanner resolution is higher than the correction
itself [39].

Isotope Mean positron range Isotope Mean positron range
[mm] [mm]

18F 0.5 15O 2.5
64Cu 0.57 60Cu 3.09
13N 1.31 76Br 3.09

61Cu 1.32 62Cu 4.39
44Sc 2.4 66Ga 6.13

TABLE 1.1: Mean positron range in water for isotopes of interest
in PET [40, 41].

The blurring introduced in the reconstructed images by the positron range
effect is due to the displacement of the LOR. In Fig. 1.3 we can see how
the distance d influences the LOR positioning. This quantity is not directly
proportional to the three-dimensional (3D) range of the positron, r. The
distance d is computed as the projection of the positron range distribution on
the LOR [42].

1.2.4 Photon interactions with matter

High-energy photons are secondary ionizing radiation, meaning that they
interact with atoms, nuclei, and electrons without causing direct ionization.
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FIGURE 1.2: Normalized energy spectra distributions for Sc-44
(green) and F-18 (blue).

FIGURE 1.3: Scheme of positron decay: the range r is the distance
from the annihilation point. The real effect is the LOR displace-
ment, measured as the distance d between the annihilation point

and the LOR.

The interaction can be seen as a collision, that results in the ejection of an
electron, which can cause ionization. There are four significant photon-matter
interactions in nuclear medicine: photoelectric effect, Compton scattering,
pair production, and Rayleigh scattering.

The photoelectric effect consists of a collision between a photon and an
atom. The incident photon is absorbed by the atom and all its energy is passed
over to an orbital electron. If the transferred energy E0 is higher than the
binding energy Eb, this particle, also called photoelectron, can be ejected with
an energy given by the following equation:

Epe = E0 � Eb. (1.10)

this interaction can in turn create a vacancy in an orbital shell, which leads to
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FIGURE 1.4: The Klein-Nishina distribution of Compton scatter-
ing angles over a various range of energies.

the emission of characteristic x-ray due to the downgrading of outer orbital
electrons towards the vacancy.

When the collision occurs between a photon and an atomic external elec-
tron, we deal with Compton scattering. If the photon’s deposited energy is
higher than the electron’s binding energy, then the electron is ejected as a
recoil electron. In any case, the photon is only deflected, not absorbed, with
an angle qC and an energy that is calculated as in the following equation:

E0 =
E0

1 +
⇣

E0
mec2

⌘
(1 � cosqC)

. (1.11)

where E0 is the incident photon’s energy, me is the mass of the electron and c is
the speed of light. Thus the Compton scattering angle can then be calculated
as follows:

cos qC = 1 + mec2
✓

1
E0

� 1
E0

◆
. (1.12)

The transferred energy range goes from 0 keV to a maximum value Emax.
The extreme cases occur when there is a back-scattering event, see Fig. 1.4.
Compton scattering is not equally probable at all energies or for all scattering
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angles, the interaction probability follows the Klein-Nishina’s formula:

ds

dW
= Zr2

0

✓
1

1 + (1 � cosqC)

◆2 ✓1 + cos2qC
2

◆

✓
1 +

(1 � cosqC)2

(1 + cos2qC)(1 + (1 � cosqC))

◆
.

(1.13)

where ds
dW is the differential cross-section, Z the atomic number of the material,

r0 the electron radius.

(a) (b)

(c)

FIGURE 1.5: Photon interactions with matter: (a) photoelectric
effect, (b) Compton scattering and (c) pair production [43].

For energies higher than 1.022 MeV we can deal with pair production.
This consists of the interaction between a photon and a charged particle’s
electric field, in which the photon is converted into an electron-positron pair.
The requirement of minimum energy is due to the sum of the electron and
positron mass, which accounts for 1.022 MeV. The difference between the
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incident photon’s energy and the sum of the two masses is equally shared
between the new particles pair as kinetic energy.

Another kind of scattering named coherent or Rayleigh scattering involves
a photon and an atom: due to the great atomic mass almost no energy is
absorbed in the collision as recoil energy, and the photon is scattered with
very few energy loss.

These four main photon interactions do not occur at all energies and in all
materials with the same probability. We can see in Fig. 1.6 how for lower ener-
gies in low Z materials the photoelectric effect is the most probable interaction,
while for energies higher than 1.022 keV pair production is predominating.
Compton scattering is most likely to happen for 511-keV photons in an organic
body, however in case of small diffusion angles the two gammas can still be
recorded as coincidence photons in PET. Scattered events represent between
40% and 60% of the total events in a scanner acquisition [44].

FIGURE 1.6: Main photon interactions versus photon energies
for different atomic number [43].

1.2.5 Photon attenuation

When a photon beam passes through an object, some of the photons interact
with the material and the beam intensity is attenuated. This effect depends on
four factors: thickness, density, atomic number, and the photons energy. The
beam intensity follows this equation widely known in literature [45, 46, 47]:

Ix = I0e�µ(r,Z,E)x. (1.14)
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Isotope Function Reference
Fluorine-18 glucose metabolism [48]

Scandium-44 neuroendocrine system [49]
Oxygen-15 blood flow [50]

Nitrogen-13 myocardial blood flow [51]
Carbon-11 neuron-transmettors [52]

TABLE 1.2: Common radiotracers and some of their specific
applications.

where I0 is the initial intensity of the beam, µ is the linear attenuation co-
efficient depending on the density r, on the atomic number Z, and on the
photons energy, and x is the thickness of the object. The linear coefficient can
be seen as a measure of the probability of photon attenuation in a material
unit length [µ]=cm�1.

1.3 PET imaging

PET imaging is used to obtain the uptake distribution of a radiopharmaceu-
tical in the patient’s body, mostly in oncological studies, before and after
treatment and during radiotherapy. PET scans are also important diagnostic
tools in neurology for degenerative disease, for example Alzheimer’s. See
Table 1.2 for some common radiotracers and their conventional applications.

Fig. 1.7 shows the schematic functioning of a PET exam: first a radiophar-
maceutical labeled with a b+ emitter is injected in the patient body. After a
certain amount of time determined by the marker half life, the isotope decays
emitting a positron. The particle travels in the body losing its energy until it
annihilates with one of the surrounding electrons. Positron-electron annihila-
tion results in two nearly co-linear photons, each carrying 511 keV of kinetic
energy. Data acquisition starts when the patient is positioned in the scanner.
The radiation reaching the detector is converted in electric pulses, which are
collected in the acquisition system to be analyzed and reconstruct the image.

The detection is based on the knowledge of these two photons’ character-
istics: co-linearity and 511-keV of initial energy. Several factors can influence
the correct event detection, among them we find scattering in the body and/or
in the detector and positron range.
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FIGURE 1.7: Complete process of a PET scan exam [53].

Properties Bi4Ge3O12 Lu2SiO5 Gd2SiO5 plastic LXe
[29] [29] [29] [55] [4, 56]

Density [g/cm3] 7.13 7.40 6.71 1.03 2.9 (at 168 K)
Atomic number 74.2 65.5 58.6 water-like 54

Decay constant [ns] 300 40 60 2.5 4.3

TABLE 1.3: Physical properties of some common detectors in
PET.

1.3.1 Detection

Conventional PET cameras are composed of a first layer of detector mean
(e.g. scintillators) and a second layer of photo-detectors (e.g. photomulti-
plier tubes). The detection material needs to convert the radiation signal
into visible light and to fulfill some properties in order to be suitable for
PET imaging: good stopping power for 511-keV photons, short signal decay
time, high light output, and good energy resolution. Some of the most com-
mon PET scintillators are organic, such as bismuth germanate (Bi4Ge3O12),
lutetium oxyorthosilicate (Lu2SiO5), gadolinium oxyorthosilicate (Gd2SiO5),
or plastic as well as liquid or gaseous (e.g. LXe, argon) [54]. Table 1.3 shows
some conventional scintillators and their density, atomic number, and decay
constant.

The scintillating material needs to be coupled to an electronic system
equipped with a light detector to collect the radiation light yield. There are
two principal ways: the one-to-one coupling technique (one crystal for one
photo-detector) and the block detector one (multiple crystals coupled to the
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same photo-detector through a light guide). The coupling system to adopt is
chosen upon a study on the photodetector and on the scintillator to employ.
If a light guide needs to be used, the properties of the transparent material
ought to match the scintillator: similar refraction index, almost no reflection
and so on.

The event detection and acquisition process occurs as follows: a photon
scintillate in the detector producing light, that is converted into a pulse from
the PMT, giving information about the position of the incident photon. Two
pulses belonging to the same time window are recorded together as a coinci-
dence. The line connecting the two detected events is called LOR and it joins
two sides of the detector, crossing the field of view (FOV), where the patient
is located.

Scintillation in LXe

The way photons are produced depends on the type of scintillator we are
using; in LXe this can happen via atomic ionization or atomic excitation [57,
58]. The atomic excitation consists of the excitation of an atom in the xenon by
a photoelectron, that combines with another xenon atom creating an excited
dimer. After few picoseconds, the dimer de-excites and emits an ultraviolet
photon. For the atomic ionization case, the photoelectron creates an electron-
ion pair with one of the xenon atoms, that combines with another atom
producign an ionized dimer. Eventually, a visible photon will be emitted in
the same way as in the atomic excitation case [4].

Photodetectors

The conversion between radiation and visible light is performed by a pho-
todetector, typically a PMT. Fig. 1.8 shows a scheme of the most common
photodetector used in PET imaging. The functioning is the following: a
511-keV photon is converted into a visible photon inside the scintillator, and
the light particle strikes the PMT surface and, due to photoelectric absorp-
tion, some photoelectrons are emitted. The electrons are directed, through
a focusing electrode, to the first of a series of dynodes. On each dynode is
applied a voltage higher than on the previous dynode, in order to accelerate
the electrons and multiply them through secondary emissions. The signal is
then collected at the end of the PMT on the last dynode, called anode.
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FIGURE 1.8: Schematic functioning of a PMT.

The total number of electrons that reach the end of the PMT for each
photoelectron defines the gain of the PMT, which is normally around 105-
108 [59]. The current pulse contains both time and energy information about
the arrival of the photon on the PMT photocatode.

Other photodetectors based on semiconductors (i.e. Silicon PMTs) are also
widely used in medical imaging due to their insensitivity to the magnetic
field.

1.3.2 Coincidences

In PET imaging we are interested in the collection of coincidences, since we
aim at detecting the two 511-keV photons produced by the same annihilation.
Due to several factors (e.g. spatial and energy resolution of the detector,
scattering in the phantom, positron range, etc.) the acquired coincidences do
not always cross the real annihilation point.

In a classical PET acquisition we can find three types of events: true, ran-
dom, and scatter coincidences. With true coincidence we denominate the
ideal case in which two photons that do not undergo significant interactions
before being acquired, track a correct LOR. In the other two cases, we have an
effect of LOR mispositioning, that carries an error on the activity distribution.
A scatter coincidence occurs when one or both photons are scattered before
being detected and it is more likely to happen in large objects, see Fig. 1.9, ex-
ample 1. We refer to a random event if the coincidence photons do not belong
to the same annihilation event, see Fig. 1.9, example 2 and 3. Random events



1.3. PET imaging 37

can be due to a large time window or to multiple annihilations occurring in
the same time window.

These events add bias to the reconstructed image if not accounted for
properly: for the randoms it increases proportionally to the amount of activity
A as 2tA2, where t is the coincidence resolving time of the system. We can
limit their acquisition by working with a narrow time window and with
a good time resolution scintillator. Moreover, for scattered events we can
work with an energy window (> 400 keV), rejecting events that lost already
a conspicuous part of their energy, and use detectors with a high energy
resolution.

FIGURE 1.9: Event 1 represents a double scattered event, events
2 and 3 show a random coincidence. [29]

1.3.3 Sensitivity and Depth Of Interaction

The term sensitivity referred to a PET system indicates the ability to detect
photons and it mainly depends on two characteristics: the detector stopping

FIGURE 1.10: Parallax error due to the unknown event DOI [29].
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power and the scanner geometry. High sensitivity is often related to a large
solid-angle coverage in the scanner, as in the case of narrow and long axial
FOV, and of a material with high atomic number.

The ability of efficiently contain and detect photons is useful not only to
improve the sensitivity but also to account for another phenomenon, called
the DOI effect. When a photon enters the detector, its interaction position is
determined on the detector entrance surface and it is not the actual interaction
point. If the detector is sufficiently deep for these coordinates to not match
the actual interaction point, we have an effect of LOR mispositioning, that
increases with the depth, as seen in Fig. 1.10. This effect is important espe-
cially for deep detectors and in the oblique coincidence case, for which every
recorded event carries a systematic error that needs correction.

1.3.4 Time of Flight PET

FIGURE 1.11: TOF-PET scan model: A and B represent the
detectors and X the position of the annihilation respect to the
scanner center. The time registered in A and B is proportional to

the distance TOFA and TOFB [60].

The idea of using the arrival time of the two photons to locate the annihila-
tion point developed in the 80s, when the first TOF-PET systems were built.
Such systems were designed to improve the SNR of the reconstructed images
and reduce the random rate acquisition.

In TOF-PET we impose a time window on the coincidence detection
(few ns), in order to accept photons belonging to the same annihilation, and
we record the time difference between the two. If we assume to have an ideal
detector with a perfect time resolution, we can determine the location x of the
event on the LOR as follows:

x =
cdT

2
. (1.15)
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FIGURE 1.12: (a) classical PET reconstruction, (B) TOF probabil-
ity, in which the time resolution dt limits the number of voxels

contributing to the event [60].

where c is the speed of light and dT the arrival time difference between the
photons, see Fig. 1.11.

In the ideal case, using only the LOR coordinates and the time difference,
we can determine the annihilation point in a 3D volume, without passing
through image reconstruction [61].

In reality we need to consider the actual time resolution of the detector,
which gives us the uncertainty on the position computed through Eq. (1.15).
We can see in Fig. 1.12 how the localization through TOF is considered the
center of a Gaussian distribution, whose FWHM depends on the time reso-
lution. For example, with a 600 ps timing resolution our uncertainty on the
LOR would be around 9 cm.

The main difference compared to conventional PET is that in classic recon-
struction the probability associated with the LOR voxels is the same for each
of them, while in the TOF case we give a Gaussian-shaped distribution to the
LOR.

Looking at the benefits carried by this technology, we could list noise
reduction, especially for little objects [62], the earlier convergence of the
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iteration method and at a clinical level, the reduction of the acquisition time
due to the improvement in image quality. As for the SNR reduction compared
to non-TOF-PET, the gain factor can be seen from the following equation
from [62]:

SNRTOF
SNRnon�TOF

=

r
D
Dx

. (1.16)

where D is the size of the patient body and Dx the spatial equivalent to the
TOF measurement. The gain factor depends on the size of the emitting object,
thus we expect a higher value for heavier bodies. For a 20-cm-diameter object
(human head) we have a gain around 2.1, with a scanner time resolution of
300 ps. No high improvements in terms of SNR is expected in TOF small
animal systems, however for clinical scanners the SNR gain is exploited to
reduce the acquisition time and the injected dose [63].
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Chapter 2

Image Reconstruction

Summary

This chapter is an introduction to image reconstruction as historically
developed, from analytical to iterative algorithms. We begin introduc-
ing the concept of sinogram and projection in data acquisition and we
present the image reconstruction theory starting with analytical methods,
in two-dimensional (2D) and in 3D. Afterward we pass over to iterative
image reconstruction algorithms mentioning many of them (algebraic
reconstruction technique (ART), simultaneous ART (SART), simultaneous
iterative reconstruction technique (SIRT), multiplicative ART (MART))
and going in the specific of MLEM and OSEM. At last, we introduce the
system modelization through the system matrix (SM), with a look into the
correction factors for geometrical effects, attenuation and positron range.
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2.1 Introduction

Tomographic image reconstruction aims to form images of the radiotracer
distribution in the patient’s body starting from raw PET data. In the data
acquisition process we collect LORs through projections or coordinates pairs
and the image reconstruction process can be seen as the estimation of the
function f (x): Rn ! R, with n = 2, 3 for a 2D or a 3D image. f (x) gives the
value of the image in the point x and it corresponds to the activity distribution,
following this equation:

Edet.photons/second =
Z Z

VOR
s(x) f (x)dx. (2.1)

where the integral is on the volume of response (VOR), the parallelepiped
that joins the pair of detector in which the coincidence occurred, and s(x) is
the scanner sensitivity.

If we consider the ideal case without attenuation, random or scattered
coincidences, and detector geometry effect, we can assume that the total
number of events detected in this volume is proportional to the amount of
activity in the same.

In image reconstruction, there are two types of algorithms to obtain images:
analytical and model-based or iterative. Analytical techniques are based on
back-projection, an inversion of the data, collected as projections. Statistical or
iterative image reconstruction uses complex computational models, which are
based on a statistical pattern of the acquisition, including all prior information
about the radiotracer and the biodistribution.
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FIGURE 2.1: From projections to sinograms. [29]

2.2 Data acquisition

In PET imaging, data acquisition consists of collecting the information on the
coincidence photons, looking for the detection of colinear 511-keV gammas in
the time and energy acceptance windows.

In order to collect a high number of events and to maximize detector sensi-
tivity, a PET system is typically composed of multiple ring-shaped detectors
with a wide-volume coverage around the patient, positioned in the center. All
events are recorded, including scattered and random coincidences, and raw
data are stored in sinograms [64, 65].

In the data acquisition process detectors produce coincidence pairs with
opposed detectors (axially and transaxially), which form a LOR identified
by the rotational angle f and the radial displacement s, see Fig. 2.1. Every
LOR is collected in a sinogram, a bi-dimensional array in which each voxel
corresponds to a single LOR and the voxel value is incremented every time
a coincidence matches the same LOR. Events along the same row in the
sinogram represent events associated with parallel LORs. If the acquisition
occurs in LM the events are collected separately, one by one.

During the reconstruction process, we need to consider a correction factor
for LORs’ spacing, since they tend to be closer together as we approach the
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edge of the ring; this effect is not considered during the acquisition.
In TOF-PET the difference in time between the coincidence photons arrival

is also measured and stored. For a LM acquisition the dt-value is stored
event by event, while in sinogram mode the sinogram is divided into several
TOF-bin, each of them corresponding to a time difference.

2.2.1 Deadtime

All detectors present a limit due to the data treatment speed. When a PET
system starts the event acquisition, there is a time interval in which other
events cannot be detected, due to the system saturation while treating the first
impulse. This amount of time is defined as the deadtime of the system. It is
mostly due to the time the electronics take to register the first signal, but it can
also depend on the scintillation time of the detector’s material. This time gap
can be seen as a blind time for the detector, during which we are unable to
treat new interactions, and it is characteristic for each scanner.

In most high count rate situations another effect can affect measurements,
known as pile-up. This happens when two signals arrive too close to each
other and are summed up as one signal only, leading to energy resolution
degradation and a count rate loss [66].

2.3 Analytic Image Reconstruction

Analytical approaches are based on the hypothesis that for every registered
event we have a measure of the line integral associated that describes the
radioactive distribution on the line. The first to solve this problem was Radon,
in 1917 [67]. He proposed what we call the Radon transform, illustrated in
Fig. 2.2:

R f (s, f) =
Z

Ls,f
f (x, y)dxdy =

Z •

�•
f (s cos f � l sin f, s sin f + l cos f)dl.

(2.2)
in which Ls,f is the unit sphere, s and f are the radial displacement and the
angle that determine the LOR and f (x, y) is the function to be determined.
Actually, the integral is constrained by the FOV size and it occurs only between
�RFOV and RFOV.
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In TOF-PET systems the same equation becomes:

RTOF f (s, f, t) =
Z •

�•
f (�s sin f + l cos f, s cos f + l sin f)h(t � l)dl. (2.3)

where t is the time difference and h(t) is the Gaussian kernel used to modulate
the probability on the LOR.
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FIGURE 2.2: Projection of an image and its Radon transform [68].

Analytical image reconstruction is considered to give direct results and
linearity, which allows to better control noise correlation during the recon-
struction process; and for its speed, mandatory in large 3D data sets [69].

2.3.1 2D analytic image reconstruction

Some properties of the Radon transform need to be stressed out: first, the
operator R is linear

R[ f + lh] = R f + lRh, (2.4)

It is also continuous and invariant for rotations [29]:

R f (�s, f + p) = R f (s, f). (2.5)
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This is valid for scanners that collect all the LORs crossing the object,
corrections to raw data need to be applied in case of incomplete scanner ring,
to cover for the missing part of data, for example through interpolation.

The main objective of analytical reconstruction is to reconstruct an image
f , given a sinogram g, for which:

g(s, f) = R f (s, f). (2.6)

meaning that we need to find R�1 the inverse operator of R.
Let us introduce the central slice theorem [70, 71], which ties the 2D Fourier

transform F2{(x, y)} of the function f (x, y) to the 1D Fourier transform F1{(x, y)}
of the Radon transform p(s, f) = R f (s, f), an illustration of the theorem is
shown in Fig. 2.3.

For all (s, f) 2 Z:
gf(s) = R f (s, f), (2.7)

we can write then:
ĝf(s) = f̂ (sw(f)). (2.8)

where s = r · w(f) with r 2 R2 and w(f) = (cos f, sin f).
For a fixed angle f we can write:

ĝf(s) =
Z

R
e�2ipssgf(s)ds = (2.9)

=
Z

R
e�2ipss

Z

R
f (sw?(f) + tw(f))dtds. (2.10)

Let r be equal to sw?(f) + tw(f), dr = dtds and r · w(f) = s:

ĝf(s) =
Z 2

R
e�2ipsr·w(f) f (r)dr = f̂ (sw(f)). (2.11)

We can now find the values of f (x, y) relative to the image through an
inverse Fourier transform, this algorithm is also called direct Fourier reconstruc-
tion:

f (r) =
1
2

Z 2p

0

Z •

�•
|s|ĝf(s)e2ipsr·w(f)dsdf. (2.12)

where |s| is a ramp filter. Ramp filtering can be seen as a convolution in the
spatial domain or as a multiplication in the Fourier domain.
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FIGURE 2.3: Central section theorem in 2D [72].

2.3.2 Back-projection

Two of the main operators in image reconstruction are back-projection and
its adjoint, forward projection. They can be seen as the Radon transform
(forward projector) and its adjoint, the back-projection operator R⇤, defined
as:

R⇤p(s, f) =
Z 2p

0
p(x cos f + y sin f, f)df. (2.13)

and for a fixed angle f is also valid:

b1(x, y; f) = p(x cos f + y sin f, f). (2.14)

where b1(x, y; f) is the 2D function formed through the back-projection of the
single projection indexed by f.

In reality, we do not observe directly g = R f , but a noisy version of it:

ge = R f + e. (2.15)
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Noise is amplified by the back-projection operation, in fact if we take the
norm:

||R⇤[g + e]� R⇤g||X = ||R⇤e||X. (2.16)

where X is the image space, R⇤g = f and ||R⇤e||X does not tend to zero
when e ! 0. A small perturbation on g can disrupt the reconstruction of f .
A solution to this problem is to apply a ramp filter |s|, the Jacobien of the
transformation, which amplifies high frequencies corresponding to the image
details, since high spatial resolution requires high frequency information. The
ramp filter in 2D is obtained through apodization and discretization, using
the fact that we can sample |s| resulting in a discrete ramp-filter [73].

This method is called back-projection filtering or FBP [74], depending on
when the filter is applied. The ramp filter could not be sufficient due to its
behavior that ensures high spatial resolution at the expense of noise, especially
since it carries the

FBP is the most traditional image reconstruction approach. It is based on
an idealized model that does not consider noise, scatter, attenuation, and other
real data important features. In fact, it assumes that the number of detected
events in a specific direction can give an approximation of the radiotracer
distribution along the same direction, that is one of the projections introduced
earlier. The only way to consider noise in FBP is smoothing the projection
before image reconstruction.

f (x, y) =
Z p

0
RF f (s, f)df. (2.17)

where RF f (s, f) = F�1
1 {|s|F1{pf(s)}} is the filtered projection, |s| being the

ramp filter. The FBP method works as follows: first, the data are collected
through a projection for a specific angle and a sinogram is created; then the
algorithm exploits the back-projection operation to smear each projection
back to the region along with the acquired direction (or angle) of acquisition.
Adding the back-projections for all the angles, we will obtain a blurred ap-
proximation of the original object. Sharpening the projections is also possible,
using a Fourier filter [75]; although analytical methods like FBP are mostly
used to produce fast and practical solutions that highlight issues about data
acquisition. Techniques which are used to implement real statistical estima-
tions are of the iterative kind and they include the corrections already in the
reconstruction process [76].
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2.3.3 3D analytic image reconstruction

One of the main 3D reconstruction’s challenges is the time-consuming compu-
tation. Due to this problem, the first reconstructed 3D volumes were ensem-
bles of independent 2D reconstructions [77]. Other methods were also used to
avoid long computation time as for example transforming 3D projections into
2D ones through rebinning, single-slice rebinning [78], multi-slice rebinning [79],
direct Fourier [80] and Fourier rebinning [81].

Image reconstruction algorithms using directly 3D sinograms are called
fully 3D and the methods seen for 2D can be extended to this category. In order
to generalize them, we need to introduce a representation for the fully-3D
data, the Radon transform operator in 3D can be written as follows, see Fig 2.4:

R f (t, ô) = p(t, f, q) =
Z Z Z

R3
f (x)d(x · ô(f, q)� t)dx. (2.18)

where d(x) is the Dirac function and the vector ô(f, q) locates the plane related
to t 2 R, signed distance between the origin and the perpendicular plane to
ô(f, q) 2 S3, where S3 is a 3D unit sphere.

FIGURE 2.4: Integral of a 2D plane used for the Radon transform
of a 3D object [75].

Before approaching the analytic algorithms for 3D data, we need to in-
troduce the 3D generalized central slice theorem, that states the equivalency
between the 2D Fourier transform of a projection of arbitrary direction ẑ(f, q)

and the central section of the 3D Fourier transform of the object at the same
angle. This implies that the image can be reconstructed from a set of non-
truncated projections, if the set has an intersection with every equatorial circle
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on the sphere S2. What is known as Orlov’s condition assesses that the image
can be reconstructed from the set of non-truncated projections if there is no
great circle on the unit sphere that does not intersect the set of non-truncated
2D parallel projections. We can imagine that the acquisition is repeated for
a large range of z and once we get the stack of images from different planes
we can form a 3D image. This is a way of considering 3D imaging, although
the fully 3D imaging includes the acquisition on all the planes perpendic-
ular to the scanner axis, called direct planes, and on all the oblique planes
that cross the direct planes as well, in Fig. 2.5 some examples of different 3D
reconstructions.

FIGURE 2.5: From left to right: reconstructions from fully 3D
PET data on the left, 2D rebinned non-TOF, 3D rebinned non-

TOF and fully 3D PET-TOF [82].

2.3.4 Back-projection

For the 3D back-projection operation, it is often more efficient to back-project
keeping a fixed direction (fixed angles f and q) and placing back the values of
the projection into a 3D array along the corresponding LORs.

b1(x, y, z; f, q) = p(r · ô(f, q), f, q). (2.19)

where r = (x, y, z). The complete back-projection can be obtained integrating
in df and dq.

To better understand the parallel with the 2D case, we can derive the FBP
equation to be used in reconstruction, for which the back-projection operator
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can be written as:
R⇤g(r) =

Z

S2
g(r · ô, f)dô. (2.20)

Filtering in 3D becomes more complex: we can see the 2D filter as the cross-
section of the 3D one. For symmetry the filter will be independent of the
projection angle f, but dependent on q and on the maximum acceptance
angle [83].

If we write gô(t) = R f (t, ô), we obtain:

f (r) =
1
2

Z

S2

Z •

�•
|s|2 ĝô(s)e2ipsr·ôdsdô. (2.21)

Reconstruction with analytic techniques remains more efficient for very
large 3D data sets, especially when multiple data sets are acquired in whole-
body or dynamic studies, due to the amount of required time. However the
speed is not the only FBP strength: analytic algorithms are linear and thereby
allow easier control of the spatial resolution and noise correlations in the
reconstruction.

2.4 Model-based Image Reconstruction

Tomographic image reconstruction can be seen as the operation of inversion
of the Radon transform. This simplistic approach can be solved through FBP,
without considering random detection, scattering in the tissues and the ac-
quired data’s noise properties. Unlike analytic approaches, statistical methods
incorporate all known information in a discrete framework: through A the
SM, detailed in section 2.6, we are able to discretize the problem and consider
attenuation, noise, scattering, detector response, and a priori information about
the images.

For analytic methods we required some common steps to reconstruct (i.e.
filtering and back-projection), for iterative methods, we need five elements:
- Basis function: the whole image is discretized and composed of basis func-
tions, for example, voxels. This way the image can be represented as a vector
of basis function coefficients (i.e. the voxel’s uptake), and we deal with a
discretized problem in the data and image domain.
- System model: a model including the scanner geometry effects and the physi-
cal effects on data acquisition.
- Noise model: this model concerns the data deviation from their expected
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values based on a Poisson model.
- Objective function: the objective function measures the fit between the ob-
served data p and the modeled data p̄, that need to be optimized.
- Numerical optimizer: this is the mathematical algorithm that maximizes (or
minimizes) the objective function.

All iterative methods are based on a first forward modeling step followed
by a correction step. The activity is discretized voxel by voxel, every element
aij of the SM corresponds to the probability of a positron emitted in the voxel
j to be detected by the crystals’ couple i, connected by a LOR.

p = Af + n = p̄(f) + n. (2.22)

where p is the measured projection, f the radioactive distribution, and n
represents the projections’ noise, that can be seen as a shifted Poisson variable,
since p ⇠ Poisson(p; f ).

As for maximizing (or minimizing) the discrepancy between measured
and expected data p̄, we can take as objective function the least-square (LS)
function [84]:

OLS =
I

Â
i=1

(pi � p̄i(f))2. (2.23)

where the sum is on the projection bins’ values and pi represents the measured
data, while p̄i( f ) is the expected LOR data. In case we have some knowledge
about the projection data, we can weight each element in the sum differently
and obtain the weighted-least squares (WLS) function, in which the weights can
be estimated directly from the projections of the current image estimate.

LOR projection data are typically based on Poisson statistics, due to the
positron emission following the same probability, thus we can introduce the
Poisson distributed objective function from Shepp and Vardi [18] known as
the maximum-likelihood (ML) function:

OML = L(f) =
I

’
i=1

Pr(pi| p̄i(f)) =
I

’
i=1

( p̄i(f))pie� p̄i(f)

pi!
. (2.24)

where Pr(pi| p̄i(f)) is the Poisson distribution and it gives the probability
of obtaining a measured value equal to pi in the LOR i while p̄i(f) is the
expectation. The multiplication is due to the assumption that all the LOR
counts are mutually independent and the probability of obtaining the vector
p is the product of the Poisson probabilities L(f), also called likelihood [85].
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Starting from Eq. (2.24), many algorithms have been proposed to maximize
the logarithm of the likelihood:

l(f) = ln L(f) =
I

Â
i=1

(pi ln p̄i(f)� p̄i(f)� ln pi!). (2.25)

where ln pi! is a constant and it can be omitted. Since the log-likelihood
l(f) depends on p, which are unknown measurements, we cannot directly
calculate the ML estimate for f, altough there are algorithms to maximize the
expected value of l(f):

f̂(k+1) = argmax
f

E
h
l(f)|p, f̂(k)

i
. (2.26)

ML estimators have interesting properties that make them useful in many
situations. First of all they are asymptotically unbiased, their bias is reduced with
the growth of the observations. Second, they are asymptotically efficient as they
yield the minimum variance for large numbers. Although these properties
make them not particularly susceptible to noise, their variance is still high
and the images are often filtered to introduce spatial smoothing.

2.4.1 Iterative algorithms

The process of iterative reconstruction begins with an estimated f(k) of the
values in the image. The current image estimate is then projected, giving a
set of values that would be expected if this was the true image. The predicted
projections are then compared to the measured ones to elaborate a set of error
values in the projection space. These are back-projected to obtain image-space
error values that are used to update the image estimate f(k+1). And this whole
process is reproduced for each iteration.

The main difference with analytical back-projection-based algorithms is
that there is no feedback about the image estimate in the direct reconstruction.

Another way to estimate fk is to find the image that satisfies all the con-
straints imposed by the measured data and the prior knowledge. ART [86] is
one of the methods using this process: the difference between the measured
value and the expected value is calculated for each LOR and through the
transpose SM the correction is applied in the image space. Neglecting the



54 Chapter 2. Image Reconstruction

noise parameter from Eq. (2.22) we have:

f(k) = f(k�1) � aif(k�1) � pi

||a2
i ||.

ai (2.27)

where ai is the SM line associated to the i-th LOR. This algorithm corresponds
to what is known as the Kaczmarz method [87], which allows the iterative
solution of a system consisting of N equations in N unknown variables.

Taking Eq. (2.22) we can easily see how it represents a system of I equations
of hyperplanes in the J dimensional space. The algorithm projects the current
image vector f(k) orthogonal on the hyperplanes and updates the image
accordingly, as done in ART. Several algorithms originated from ART, i.e.
SART, SIRT [88], MART, all neglecting the noise factor, thus not very efficient
in PET imaging.

The most famous iterative algorithm for PET and SPECT is MLEM. It was
studied by Shepp and Vardi [18], Dempster [89], Lange and Carson [90] and
others. The basic problem consists in the estimation of an image vector f from
the counts measurements stored in a vector g. fi is the number of events
taking place in the i-th voxel, and gj is the number of events occured in the
j-th LOR connecting two detector elements.

Let A be the SM, for which each element aij gives the probability of an
event detected in the i-th LOR to have occurred in LOR bin j. The relation
between the average number of events detected on a LOR and the matrix is
then:

E[p] = Af. (2.28)

where f is the image we want to reconstruct inverting this equation.
Let p be the incomplete observed data, incomplete because we only know

that an event occurred on a LOR, we do not know exactly from where it
originates. P is the matrix having as elements the number of events detected
on the i-th LOR that originated from the j-th bin. Being able to observe P
directly we could solve our problem as:

f̂ j = Â
i

pij. (2.29)

Since the likelihood depends on the elements pij, which refer to unknown
measurements, we cannot directly calculate the ML estimate and obtain f,
thus we are going to maximize its expected value. From Eq. (2.26) we can
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rewrite the expected value inserting the log-likelihood as:

E

"

Â
i

Â
j
� fiaij + pij ln f jaij

���p, f̂(k)
#

, (2.30)

due to linearity we can rewrite:

Â
i

Â
j

⇣
� fiaij + E

h
pij
��p, f̂(k)

i
ln f jaij

⌘
. (2.31)

For the probability theory we know that for independent Poisson random
variables, as pij and p, the conditional probability distribution given the sum

of its values, its a binomial distribution with parameters
⇣

Âj pij,
E[pij]

Âj E[pij]

⌘
[91].

With E[pij] = f jaij we obtain:

E
h

pij|p, f̂(k)
i
= pi

f̂ (k)j aij

Ân f̂ (k)n ain
. (2.32)

Once the expectation value is developed, we can proceed with the maxi-
mization step:

∂

∂ fl
E
h
l(f)

��p, f̂(k)
i
= 0, (2.33)

Â
i
�ail + Â

i
E
h

pil
��p, f̂(k)

i 1
fl
= 0, (2.34)

fl =
Âi E

h
pil
��p, f̂(k)

i

Âi ail
, (2.35)

fl =
f̂ (k)l

Âi ail
Â

i

ail pi

Ân f̂ (k)n ain
, (2.36)

where fl is the l-th component of our estimation. The MLEM equation is the
following:

f k+1
l =

f̂ (k)l
Âi ail

Â
i

ail pi

Ân f̂ (k)n ain
. (2.37)

In Fig. 2.6 we show the convergence properties of MLEM algorithm in
different situations.

One of the characteristics of MLEM is the slow convergence: we need
around 30-50 iterations to reach convergence, with a forward projection and
a back-projection in each of them, meaning that it is twice as slow as FBP.
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FIGURE 2.6: Convergence properties of MLEM algorithm from
simulated SPECT brain data. First row noise-free images, second

row noisy, third row noisy filtered reconstruction [92].

However, in general, MLEM performs better than any analytic method, due
to the possibility of including nonuniform constraints.

Other algorithms can be obtained from similar logic, especially envisioning
improvements of the MLEM algorithm, as for example to accelerate conver-
gence and reduce the iteration number. An algorithm following this logic is
the OSEM, in which the projections are divided in ordered subsets to reach
convergence earlier [93, 94]:

f (k,m+1)
l =

f (k,m)
l

Âi2S ail
Â
i2S

ail
pi

Âl0 ail0 f (k)k,m

. (2.38)

where m is the subset index, ans S is the group of subsets [95, 96, 97]. To
reach the one-iteration step all the subsets need to be treated, if only one
subset is used, we go back to the MLEM algorithm. This modification of the
MLEM algorithm leads to a more efficient update, due to the computation
being a factor m smaller [98]. The main problem with OSEM is that we face an
interations limit corresponding to the number of subsets, thus convergence to
an ML estimated is lost.

In all these algorithms the projections pi are considered as the sum of the
detected events in a bin, without considering the data format (sinogram or
histogram). A variation of the MLEM algorithm was proposed in 1998 by
Parra and Barrett [99] and later by others [100, 101, 102], in order to consider
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LM data with no prior conversion:

f (k+1)
l =

f (k)l
Âi ail

Â
i2ML

ail

Âl0 ail0 f (k)l0
. (2.39)

this algorithm is known as list-mode expectation maximization (LMEM) and ML
represents the events index.

In Fig. 2.7 we can see some images obtained through OSEM reconstruction
for different subsets number at different iterations. It seems that the OSEM
algorithm has all the properties of the MLEM algorithm but requires fewer
iterations to achieve a stable result, nevertheless, it adds the difficulty of
choosing the right number of subsets.

FIGURE 2.7: The images show the iterated image estimates of
OSEM for SPECT brain data. For every image, we indicate the
iteration number while the subsets number is reported on the

left of each row [92].

All the methods shown in this section are ray-driven, although there exist
some voxel-driven techniques. Instead of updating multiple voxel values based
on some LOR values, they try to minimize (or maximize) the objective function
on a single voxel basis [103, 104]. The minimum (or maximum) is found for a
single value in the image and all the other values are constant. The procedure
needs to be repeated for each voxel in order to end the iteration.
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2.5 System modelization and corrections

To achieve a quantitative reconstruction in which we obtain the real radio-
pharmaceutical’s uptake in each voxel, we should model all the effects hap-
pening during data acquisition: the positron range, the scattering and the
attenuation, etc. Evidences from multiple studies [105, 106, 107, 108, 109,
110] show that all these non-linear corrections can make a difference in the
reconstructed image quality.

2.6 System matrix

Iterative algorithms model the system through a SM, which is applied to
the forward and back-projection operators and its elements can include the
corrections for the bias-carrying effects. Due to the matrix size (e.g. 1014 for a
Philips PET system) and to the computation time required to calculate all the
elements, the SM is not entirely stored and often computed on the fly. There
exist several models to make the system matrix computation easier, one of
which is known as the factored system model [111, 112], which considers the
system matrix as a multiplication of matrices.

A 2 RM⇥N is the SM in which the element aij defines the probability
of detecting an emission from voxel j, j = 1, · · · , N in the detector i with
i = 1, · · · , M, and we can express it as:

A = AsensAblurAattAgeomApositron. (2.40)

where Aatt 2 RM⇥M is a diagonal matrix containing the attenuation factors,
expressed in cm�1; Asens 2 RM⇥M is the normalization matrix, a diago-
nal matrix measured through the acquisition of a homogeneous cylinder;
Apositron 2 RN⇥N is the matrix considering the positron range correction;
Ageom 2 RM⇥N considers the geometrical sensitivity of the detector and it
represents the probability that a photon pair produced in voxel j reaches the
detector i in absence of other effects (attenuation and non-colinearity). Ablur

is the sinogram blurring matrix that considers non-colinearity, scattering in
the detector, and DOI effect. In this section we present some of the over-
mentioned effects and the correction approaches that can be adopted during
the image reconstruction process.
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2.6.1 Detector geometry

The SM detector geometry correction factor is mainly related to the parallax
error, which can be worsened by the scattering in the detector [113], and it
needs to be accounted for.

In the factored system model the correction is carried by the Ageom matrix,
which can be determined in advance through empirical [114, 115], analyti-
cal [116] or Monte Carlo based studies [69]; or on the fly to avoid large memory
storage [117, 118]. The Ageom matrix controls the projection operation between
the image and the projection space: the forward projection is the multiplica-
tion of the image vector and the Ageom matrix, while the back-projection is
the multiplication of the projection vector and the AT

geom (transposed matrix).
This operation can be carried on through two different strategies: the

LOR-driven or the voxel-driven approach. The difference consists in associating
the Ageom’s coefficient to a LOR or to a voxel. In LM is normally preferred the
LOR-driven method since each event is associated with a LOR, for the voxel-
driven approach all the events have to be read in order to determine which
LORs cross the considered voxel, with an increase of the needed computation
time.

2.6.2 Attenuation and normalization

Before reaching the detector each photon is attenuated, first in the patient body
and then in every detector layer crossed. The attenuation effect needs to be
considered for each LOR separately due to the different trajectories. A CT scan
of the imaged object is often used to estimate the attenuation coefficients [119].
Dual systems PET-MRI have also been developed, with the great advantage
over PET-CT that the patient does not receive an additional radiation dose
for the attenuation study [120, 121]. The main disadvantage of using MRI
images is that the conversion from gray scale to attenuation coefficients is not
a straightforward operation as different materials can be seen under the same
color.

In the reconstruction process, images are normalized through the sensi-
tivity coefficients that vary for each scanner and each acquisition. Usually
the normalization values are obtained before reconstruction and stored in a
sensitivity map, sized as the image. A proper calculation of the sensitivity
coefficients takes in consideration the attenuation in the body and it is based
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on a hour-long acquisition (real or simulated) of a homogeneous phantom
covering entirely the FOV volume.

2.6.3 Positron range

Positron range correction is mandatory only for those acquisitions in which
we employ a radiopharmaceutical emitting an energetic positron for which
the range is relevant. In most PET imaging acquisitions, the employed ra-
dioisotope is F-18 which carries a submillimetrical correction, visible only if
the detector resolution is higher, thus the Apositron matrix is often equal to the
identity matrix I.

There are different ways to deal with the positron range effect, some meth-
ods to reduce it through the use of magnetic fields were developed in the
past [122]. More recent approaches operate a correction on the projection
or on the image. We can blur sinograms to simulate the average positron
range [123], with the disadvantage that this method is valid only in sinogram
mode. As an alternative, we can convolve (or deconvolve) the image during
or after reconstruction. Different kinds of convolution can be applied: on the
estimated image at each iteration, or directly on the reconstructed image. The
convolution kernel needs to be studied in advance, especially for dishomo-
geneous objects: it strictly depends on the imaged object density, thus on the
materials.

Another valid method is a Monte Carlo-based correction through the
simulation of the positron propagation in the object. This method allows to
reach a good correction factor, however, the use of GPUs is required [124].

2.7 Scattering and random coincidences

In clinical PET acquisition between 30 and 60% of the events undergo scatter-
ing before detection, consequently, the image quality is affected by a consistent
amount of noise. A first approach to the correction of this phenomenon is
the random coincidences estimation and subtraction. Hoffman in 1981 [106]
showed that the random coincidences number increases as the square of the
activity: the injected dose needs to be tuned in order to avoid a high number
of scattered events and to have a reasonable amount of counts.

Other methods include the use of one or multiple energy windows [125]
and the single scatter simulation by Watson [126]. This approach is based on
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the estimation of the coincidences that scattered only once, calculated through
the Klein-Nishina’s formula (1.13). We can write the estimated number of
coincidences detected by the AB pair that scattered only once, SAB, as:

SAB =
Z

Vs
dVs

 
sASsBS

4pR2
ASR2

BS

!
µ

sc

dsc

dW
[IA + IB], (2.41)

where Vs represents the scattering volume, s the scattering position, sAS,BS the
geometrical cross-sections of the two detectors and dsc

dW the total cross section
from the Klein-Nishina’s formula.

IA,B = eASe0BSe�(
R A

S µds+
R B

S µ0ds)
Z A,B

S
f ds. (2.42)

where eAS,BS is the detector efficiency for 511-keV photons and RAS,BS are
respectively the distances from the detectors A and B to the scattering point S;
at last, µ is the attenuation coefficient for 511-keV photons and f the emission
density.

This method known as single scatter simulation (SSS) is widely used in PET
for the estimation of the scatter contribution. When using SSS the modeled
correction can be scaled to match the data through tail-fitting techniques [127],
although they result in artifacts in the reconstructed images when the tail is
too noisy or small. The SSS method is fast and it reaches good results for
homogeneous phantoms, nevertheless it does not consider multiple scattered
events, and corrections based on Monte Carlo simulations have shown better
results [128]. Through a simulation of the photon propagation we can obtain
the estimation of the scattered events and random coincidences distribution.
The main advantage of the Monte Carlo method is that all the events can be
simulated in a realistic way, going from no scattering to multiple scattering;
the main disadvantage is related to the elevated computational cost in terms
of time, that can be partly avoided via GPUs [129].
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Chapter 3

3-g Image Reconstruction

Summary

In this chapter, we get into the details regarding the geometry and the
functioning of the XEMIS2 and we present the proposed 3-g image re-
construction algorithm. We expose the calculation of the LCI coordinates,
using Compton kinematics and LOR/Compton cone intersection. We
then present the 3-g or pseudo-TOF algorithm, whose name is due to the
similarity between the proposed technique and TOF image reconstruction.
We also present the Monte Carlo GATE simulation used for data acqui-
sition, and the simulated phantoms. At the end of the chapter, we deal
with the details of the image reconstruction software, CASToR. We explain
the theory behind the 3-g image reconstruction algorithm, defining the
SM elements and presenting the implementation of the reconstruction
algorithm into the CASToR framework.
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3.1 Introduction

In recent times the use of imaging procedures has been growing as they
develop and cover new and different diagnostics (oncological, neurological,
etc.), and concerns about administered dose have been raised, especially
regarding pediatric patients [9]. A typical amount of total activity for a
PET study can span between 25 and 290 MBq [130] for clinical scanners and
between 4 and 40 MBq for small animal systems [131]. In any case, we deal
with around 10 mSv of administered dose for a total data acquisition time
between 1 and 20 minutes. A dose reduction can cause image quality to
degrade [10, 11], thus post-acquisition image processing and software-based
methods may be used [13, 14] to recover SNR and contrast to noise ratio (CNR)
in the images. New imaging devices have also been studied [15], in order to
tackle this same problem, especially detectors and systems taking advantage
of three-gamma detection [20, 21, 23, 24].

The notion of triple coincidence was first introduced by Liang in 1987 [132]
and resumed in 2001 by Kurfess [133] for a solid-detector study. The J-PET [22,
19] project is based on the use of the three 511-keV photons originated from
the ortho-positronium annihilation to reconstruct the time and position of the
annihilation point on an event-by-event basis, using a TOF framework and
reaching an average time resolution of around 40 ps.

In 2006 the team of Thers [6, 134] proposed a monolithic LXe detector
used as a Compton camera. A first research project called xenon medical
imaging system (XEMIS) was launched to study the feasibility of the novel LXe
technology to detect and reconstruct a three-gamma signal generated from
Sc-44, a positron and prompt gamma emitter. A small-dimension single-phase
LXe time-projection chamber (TPC) known as xenon medical imaging system
1 (XEMIS1) was developed and tested [135] as a prototype. Promising results
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from this preliminary study brought the project to the actual preclinical state
with the XEMIS2 detector, a small animal LXe detector for 3-g data acquisition,
whose goal is to exploit the intersection of the LOR with the third-gamma
Compton cone to narrow the annihilation position on the LOR. In recent years,
other research teams started exploring the subject of 3-g direct reconstruction,
in which through the LCI we can obtain directly the annihilation position,
with no need for tomographic reconstruction [136].

In this chapter we explore the proposed image reconstruction technique,
we begin describing the LXe small animal imaging system, XEMIS2, suitable
for 3-g detection; we discuss the logic behind 3-g image reconstruction, and
we show the implementation and the challenges of the new technique.

3.2 The XEMIS2 project

The XEMIS2 project concerns a new small animal imaging system, whose
technology has been developing at the Subatech laboratory in Nantes, France
[137]. The camera uses LXe as detection mean and Sc-44, produced on-site
by the ARRONAX cyclotron [138, 139, 140], as 3-g (b+ and g) emitter. The
goal is to produce good quality images with less administered dose, using the
third-gamma information to narrow the annihilation position on the LOR.

3.2.1 Scanner geometry

The XEMIS2 is a whole-body camera for small animals that presents a par-
ticular geometry: an axially long FOV in a monolithic detector, in order to
maximize the scanner sensitivity. In the XEMIS2 system we do not deal with
crystals or block detectors, all the volume surrounding the small animal is
filled with the detection medium, LXe. The scanner is a cylinder composed
of two TPC filled with LXe; they are placed back to back and separated by a
shared cathode. The active zone of detection goes from the inner 7-cm-radius
cylinder to the outer 19-cm-radius cylinder and it is 24 cm long, 12 cm for
each TPC, see Fig. 3.1.

All around the detector cylinder, there are 380 PMTs used to detect the
scintillation light generated during photon-LXe interaction. A homogeneous
electric field is applied between the cathode and the anodes, in order to drift
the ionization charges and measure them on the anodes.
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FIGURE 3.1: Transversal view of the scanner to show where the
small animal is positioned, how the three gammas are emitted

and where they are detected.

In Fig. 3.2 we see a schematic diagram of the active zone, showing only a
quarter of the scanner, the rest being symmetrical. The animal is positioned in
the 7-cm radius cylinder filled with air and to prevent him from experiencing
hypothermia, all around the first Aluminum pipe there are 7.5 mm of vacuum
and a supplementary 1.5-mm-thick cylinder of stainless steel.

In Fig. 3.3 we show the experimental setup of the XEMIS2 at the Subatech
laboratory, including the cryogenic system to keep the xenon in the liquid
state and to cyclically purify it [4].

3.2.2 Radio-isotope

The positron-and-g emitter chosen for the XEMIS2 project is Sc-44. This radio-
isotope is a good candidate for our study due to its 4-hour lifetime, ideal
for medical applications. The most probable interaction is through b-decay,
branching ratio (BR)=94.27% [141], with the emission of a positron and a
neutrino it becomes Calcium*-44 (Ca*-44). The emitted positron travels in
the body and annihilates with an electron in the surroundings, while the Ca*-
44 de-excites emitting an 1157-keV photon with an isotropically distributed
probability in space, see Fig. 3.4. Thus, the radiation that we can detect is
composed of the two back-to-back photons generated in the annihilation,
and the third gamma emitted during the de-excitation process. Due to the
energy difference between the coincidence photons (511 keV) and the third
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FIGURE 3.2: Scheme of the XEMIS2: layer and dimensions for
one quarter of the scanner, the rest being similar through sym-

metry.

gamma (1157 keV), we are able to discriminate between the interactions in
the acquisition process, and we can also exclude three-gamma cases deriving
from the ortho-positronium state during positron decay.

An important characteristic of Sc-44 as positron emitter is the positron
range. The particle is emitted in a range of energies that goes from 0 to
1474 keV, which leads to a mean positron range of 2.4 mm [37], versus the
0.5 mm of the most common PET radioisotope, F-18.

3.2.3 Detection

The main characteristic that makes LXe a suitable detection material for 3-g
detection is the excellent scintillation property, with 68 photons/keV and
2.2 ns of fast scintillation decay time. Due to its liquid state, the density is
3.100 g/mL and characterizes the material also as a high stopping power
medium.

The photon detection process occurs as follows: due to the photon-LXe
interaction in the active area, scintillation light is produced [142] and detected
in the PMTs. This signal is used to trigger the event acquisition, giving the
interaction’s time and position on the z-axis [143, 144, 145]. All the other
information regarding the event, as x-y position and released energy, are
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FIGURE 3.3: XEMIS2 experimental setup at the Subatech labora-
tory: on the left the cryostat and on the right the camera.

FIGURE 3.4: Decay scheme of Sc-44 [1].

gathered through the ionization signal’s analysis. The ionization process
produces electron-ion pairs and, to avoid recombination between pairs, an
electric field is applied to drift the charges towards the segmented anodes.
The signal is recorded on the anodes and it provides the x � y position and
the arrival time. The z position is computed through a trivial operation:
z = vdrift · (tarrival � ttrigger), for which we need to know the drift velocity and
the time difference between the trigger and the arrival time. The amplitude
of the signal is proportional to the amount of produced charge, thus we can
obtain the deposited energy from the signal recorded on the anodes.

Preliminary studies regarding the spatial and energy resolution have been
carried on for the previous prototype XEMIS1 [135]. A whole calibration study
of the Compton camera was performed with a Sodium-22 (Na-22) source in
order to characterize the properties of the prototype. From the DOI profile of
the photoelectric 511-keV events in the detector, we obtained the longitudinal
resolution as the result of the Gaussian fit on the peak, with a sigma of 100 µm.
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A study on the ionization signal in LXe was also carried on to obtain the energy
resolution value, which is expected to be around 5 % for 511-keV photons in
an electric field of 1 kV/cm. While the angular resolution evaluation obtained
a value of 4� for an electric field of 0.75 kV/cm.

3.3 Proposed 3-g image reconstruction technique

The principle of 3-g image reconstruction is based on the use of the two coinci-
dence photons to determine the LOR and on the detection of the third-gamma
interactions to obtain a Compton cone to use for a better localization of the
annihilation position on the line. The third photon is most likely to undergo
Compton scattering in LXe due to the higher initial energy (1.157 MeV). The
aim is to identify a Compton cone to delineate the direction from where the
photon was emitted. In order to do so, information about the position and the
energy of the first two interactions in LXe are needed. Once the cone is built,
we intersect it with the LOR obtaining the LCI coordinates. This point can
be used as the center of a Gaussian probability distribution function (PDF)
that gives a non-constant probability of annihilation along the LOR in image
reconstruction.

3.3.1 LOR/cone intersection

For an 1157-keV photon the probability of scattering in LXe is 79% in 12 cm of
detection mean [1]. Due to this high probability, we can obtain a Compton
cone for most of the recorded events. The Compton cone axis corresponds
to the line connecting the first two detection points, A and C in Fig. 3.6,
and through the Klein-Nishina’s Compton scattering formula in Eq. (1.13),
knowing the energy before the interaction E0 and the deposited energy E1, we
can compute the cone aperture angle qC as:

cos qC = 1 � mc2 E1
E0(E0 � E1)

. (3.1)

To identify the LCI point(s), results of the intersection of the LOR and the
Compton cone, we compute the system in Eq. (3.2) considering an infinite line
and cone as in Fig. 3.5 [146]:
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FIGURE 3.5: Vectorial diagram of the cone/LOR intersection: C
and A are respectively the first and second third-gamma interac-
tion point, q = qC is the scattering angle, the vector D represents
the LOR direction and the points P and Q the two intersections

between the cone and the infinite line.

8
<

:
P = O + tD

P�C
||P�C||V = cos qC.

(3.2)

in which C and A are respectively the third-gamma first and second interac-
tion point; D is the LOR vector, V is the cone normal vector and P and Q are
the two LCI points. We can rewrite the system as:

8
<

:
P = O + tD

(P�C·V)2

(P�C)·(P�C)V = cos2 qC,
(3.3)

8
<

:
P = O + tD

(P � C · V)2 � (P � C) · (P � C) cos2 qC = 0,
(3.4)

Replacing P = O + tD we get a quadratic function:

t2((D · V)2 � cos2 qC) + 2t((D · V)(CO · V)� D · CO cos2 qC)+

(CO · V)2 � CO · CO cos2 qC = 0,
(3.5)

We can easily solve it, if we write it in the form at2 + bt + c = 0:
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8
>>>>>><

>>>>>>:

a = (D · V)2 � cos2 qC

b = 2((D · V)(CO · V)� D · CO cos2 qC)

c = (CO · V)2

�CO · CO cos2 qC.

(3.6)

To solve the system in Eq. (3.6) we must look at the determinant first:

D = b2 � 4ac (3.7)

in order to discriminate if there are solutions and how many of them:
- if D < 0, there is no intersection;
- if D > 0 there is a unique intersection point;
- if D = 0 there are two points of intersection.

The computation is carried on for infinite cone and line, thus we add
the requirement that only solutions within the FOV are accepted. We also
decided to discard all the events presenting a double intersection (2%), as well
as events with no common point between LOR and cone (4%). These two
types of event mostly occur due to Compton scattering before reaching the
detector. As shown in Section 3.2.1, there are several metallic layers between
the FOV and the LXe volume, that increase the probability of scattering before
detection, which needs to be summed up with the already existing probability
of scattering in the patient’s body. This can lead to LCI miscalculation, either
due to an error in the LOR or in the cone computation. In Fig. 3.6 we see how
a small error on the Compton angle can derive in a much bigger uncertainty
on the LOR.

In our case, where we deal with three photons, events with no scattering
are rare and even small-angle deviations can be an issue in the intersection
determination. In Fig. 3.7 we show only a part of the possible cases: (a) a
true event, (b) a coincidence photon that undergoes scattering in the metallic
layers around the FOV, and (c) a 1157-keV photon that scatters in the phantom.
Other cases can be related to the scattering in the phantom for one, two or
three photons at the same time, etc. All these situations can affect the LCI
correct determination, and the uncertainty on the coordinates computation
needs to be included in the width of the Gaussian PDF applied on the LOR
during image reconstruction.
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FIGURE 3.6: Scheme of the influence of the scattering angle’s
error on the LOR.

3.3.2 Requirements for 3-g imaging

The main deal in 3-g imaging is the use of the information carried by the third
gamma to improve the image reconstruction. In order to do so, we need to
determine a Compton cone and the crossing point between this object and the
coincidence LOR. The precision on the LCI coordinates depends on several
factors, among which the energy and spatial resolution of the third-gamma
interactions, the distance between the first two detections and the distance
LOR-cone vertex. In the next paragraphs we explore some of the factors that
influence the LCI calculation and especially the angular resolution, which has
the most influence on the cone.

Energy resolution

In Eq. (3.1) we wrote the Compton angle formula, using two variables cor-
responding to the transferred energy in the scattering E1, and the incident
photon energy E0. We can also write the formula as:

cos qC = 1 + mec2
✓

1
E0

� 1
E1

◆
= 1 + mec2

✓
1

E0 � Ee

◆
. (3.8)

where Ee is the energy transferred to the ejected electron.
Any error in the energy measurement can deeply affect the Compton angle

value, if we consider E0 as a known variable and we apply error propagation
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FIGURE 3.7: (a) Event with no scattering.
(b) Event in which one coincidence photon scatters with a small
angle before reaching the LXe, causing a change in the LCI

coordinates.
(c) Event with an 1157-keV gamma scatter in the phantom: de-
pending on the angle width the cone can or not intersect the

LOR, anyways the LCI determination is highly affected.

on the previous equation, we obtain:

s2
E =

✓
∂q

∂Ee
sEe

◆2
. (3.9)

where s2
E is the detector energy resolution, and through the error propagation

formula applied on Eq. (3.8), we obtain:

∂q

∂Ee
=

1
sin q

mec2

(E0 � Ee)2 . (3.10)
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The detector energy resolution s2
E depends on three factors:

s2
E = s2

LXe + s2
el + s2

other. (3.11)

s2
LXe is the LXe intrinsic energy resolution due to the statistical fluctuations

in the number of electron-ion pairs produced during the ionization process.
The second factor s2

el is related to the readout electronics noise, which is as
low as 100 e� for the XEMIS2’s experimental setup [5]. The last term s2

other

comes from all the other contributions to the energy resolution degradation
as inefficiency of the materials and so on.

Spatial resolution

To determine the importance of the spatial resolution in the cone angular
resolution, we have to remember that the cone axis is defined by the line
connecting the first and the second third-gamma interaction.

If the source is positioned in the origin and r1 and r2 are the vectors that
identify the two third-gamma interactions (Fig. 3.8), we can write:

cos qC =
(r2 � r1) · (r1)
||r2 � r1|| · ||r1||

. (3.12)

  

r2-r1

FIGURE 3.8: Scheme of the vectors involved in the spatial reso-
lution calculation.

Thus the spatial resolution is proportional to the distance between the two
interaction points. Applying the error propagation theory we obtain:

s2
s = s2

(x1,y1,z1)
+ s2

(x2,y2,z2)
. (3.13)
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where s2
(x1,y1,z1)

and s2
(x2,y2,z2)

represent respectively the spatial resolution
of the first and second interaction of the third gamma. These quantities
depend on the PMTs’ light collection efficiency and on the pixelated anode’s
dimensions. For every charge cloud reaching the anode, the detection position
is recorded in the center of the pixel taken as the centroid of the distribution.
The pixel size, 3.125 ⇥ 3.125 mm2 in XEMIS2, is determinant in the error on
the spatial resolution both for the Compton cone and for the LOR coordinates.

Angular resolution

(a)

(b)

FIGURE 3.9: (a) Angular resolution as a function of the scatter
angle, in red the energy resolution, in green the spatial resolu-
tion, in black the total resolution. (b) The recoil energy of the
electron coming from Compton scattering as a function of the
scatter angle. The red lines determine the energy interval in

which we have an acceptable angular resolution [4].
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We presented the energy and spatial resolution and now we show the
angular resolution of the detector, which can be seen as a combination of the
two.

In Fig. 3.9 we display the angular resolution for a LXe Compton camera [5,
4]. In (a) we show it as a function of the scatter angle: we can notice that the
trend is mostly dominated by the energy resolution contribution, while the
spatial resolution one is almost constant. In Fig. 3.9 (b) we have on the y-axis
the energy transferred to the electron in a Compton interaction, and on the
x-axis the scatter angle going from zero to 180�. The maximum transferred
energy occurs when the photon is back-scattered, and the angular resolution
degrades for high scatter angles. Not all scatter angles are appropriate for
a valid Compton cone determination: only for angles between 10 and 60�

(between 40 and 610 keV of deposited energy) we obtain an acceptable angle
resolution.

3.3.3 Pseudo-TOF image reconstruction

The proposed 3-g image reconstruction technique is based on the use of the
isotropically emitted third photon to obtain clearer information about the
annihilation localization on the LOR. This is achieved through the intersection
of the LOR and the third-gamma Compton cone, which helps to determine
the direction from where the third gamma is coming, and to delineate a LCI
point. Once we compute and obtain the LCI coordinates, we can use this
information in a similar way to the time difference in TOF-PET, to modify the
way the PDF is distributed on the LOR.

In conventional PET image reconstruction, the probability distribution is
constant along the LOR, while in TOF-PET it depends on the detector and
event’s characteristics and it is applied as a Gaussian distribution on the
coincidence line. The center of the PDF is the length-equivalent of the time
difference between the arrival of the two coincidence photons, computed
following s = c · Dt, and the FWHM is related to the time resolution of the
detector.

In 3-g image reconstruction we proceed in a similar way as for TOF-
PET reconstruction, hence we refer to the proposed technique as pseudo-TOF.
Although, in this case, the Gaussian PDF used for the annihilation probability
is centered on the LCI coordinates and the standard deviation depends on the
uncertainty of the LCI calculation (see Fig. 3.10).
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(a)

(b)

(c)

FIGURE 3.10: Probability on the LOR for different image recon-
struction techniques: (a) classical PET with a uniform probability,
(b) TOF-PET with a Gaussian distribution in which the FWHM is
due to the time resolution and (c) pseudo-TOF with a Gaussian

distribution centered on the LCI coordinates.

As already discussed in the section about 3-g imaging requirements 3.3.2,
the LCI can be affected by several effects: photon undergoing Compton
scattering in the phantom, positron range [147], detector energy and spatial
resolution [148], distance between the interactions, angle between cone and
LOR, etc. Thus, we ought to introduce a reconstruction parameter called
pseudo-TOF standard deviation that characterizes the LCI uncertainty and
represents the PDF standard deviation, including all the possible effects.

In order to measure the impact of all the bias-carrying effects on the LCI,
we studied the distance d between the computed LCI and the projection on the
LOR of the third-gamma emission point (Fig. 3.11) through a similar-NEMA
phantom simulation.
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FIGURE 3.11: LCI coordinates’ uncertainty scheme: d is the
distance between the projection of the third-gamma emission
point on the LOR and the LCI coordinates computed through

the geometrical intersection.

Fig. 3.12 shows the resulting distribution: the obtained curve is wide and
shows a maximum on 0, thus we decided to use as reference value the root
mean square (RMS), 22 mm, that translates to 70 ps in TOF units.

  [mm]

FIGURE 3.12: Study on the LCI coordinates’ uncertainty on a
NEMA-like phantom: in the histograms the distance between
the computed LCI coordinates and the projection of the third-

gamma emission pointon the LOR.

The use of a fixed pseudo-TOF standard deviation in the reconstruction
underestimates the uncertainty for a part of the events, thus two different
image reconstructions were carried. We used the 70-ps resolution value
resulting from the NEMA-distance study and a variant pseudo-TOF resolution,
which was calculated event by event as the time-equivalent of the distance d in
ps. By incorporating the LCI into a PET system and accounting for the relative
uncertainty, we expect improvement in the reconstructed images, especially
since TOF scanners have already demonstrated SNR and CNR enhancement
over conventional PET systems [149, 150, 151].
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3.4 Simulation

The XEMIS2 system was simulated using GATE [152], which is an open-source
software for Monte Carlo simulations of personalized medical systems and it
is mostly used to test new designs and geometries, to optimize and experiment
new methods and new data acquisition techniques.

In GATE the detector geometry is defined as a multi-layer cylinder: the
active zone measures 240 mm of length and respectively 70 and 190 mm of
inner and outer radius. The cylinder is filled with LXe and the FOV with air.
The active volume is enclosed in a double-layer cylindrical armor of stainless
steel and aluminum. The only discontinuity in the detector active zone is
due to the central copper cathode that divides the two TPCs. In Fig. 3.13 an
overview of the detector geometry taken from the GATE visualization tool.

Particles and matter were simulated using GEometry ANd Tracking (Geant4),
particle generation based on CLHEP libraries [153], while photon interaction
follows the Penelope model in GATE [154].

FIGURE 3.13: Overview of the XEMIS2 simulated as a multi-
layer cylinder in GATE. We can see the phantom in pink, the

LXe in green and the PMTs around the active volume in red.

For every simulated event we obtain a chain of interactions to follow in
order to acquire the required information about 3-g. The radioisotope Sc-44
decays into Ca*-44 with a positron emission. The positron travels in the body
until it annihilates with an electron in the surroundings, and two colinear 511-
keV gammas are produced. Almost at the same time Ca*-44 emits an energetic
gamma (1.157 MeV) to reach the Calcium-44 (Ca-44)’s ground state. The
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Radius [mm] Position (X,Y,Z) [mm]
2 (0.0, 17.5, 0.0)
4 (-8.8, 15.1, 0.0)
8 (-17.5, 0.0, 0.0)

10 (0.0, -17.5, 0.0)
12 (17.2, 3.7, 0.0)

TABLE 3.1: Dimensions and coordinates of the five hot spheres
in the phantom, the origin being the center of the scanner.

third gamma is emitted isotropically and independently of the coincidence
photons’ direction. Although more particles and interactions are involved
in the event, we decided to consider only the detections directly related to
the 3-g. Scattering is allowed in the phantom and in the detector. For each
interaction we record position and deposited energy.

Data acquisition time is 20 minutes and the initial total activity 20 kBq. The
events are acquired in LM to associate an event-based pseudo-TOF standard
deviation.

3.4.1 Phantoms

FIGURE 3.14: Axial view of the central slice of the NEMA-like
phantom showing the five hot spheres of 2, 4, 8, 10, and 12-mm

radius.

In this work we explore the pseudo-TOF image reconstruction method
and its benefits and we compare the proposed reconstruction technique to
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FIGURE 3.15: Axial view of the central slice of the Digmouse
phantom showing some of the internal structures.

Organ activity/voxel Organ activity/voxel
[Bq/0.5 mm3] [Bq/0.5 mm3]

Skin 0.1 Testes 0.1
Spinebone 1.7 Stomach 0.1

Eye 0.1 Spleen 3.2
Brain 0.1 Pancreas 0.1

Muscle 0.1 Liver 1.5
Bladder 2.25 Kidney 0.7

Lung 0.1 Tumor (brain) 2.25

TABLE 3.2: Radiopharmaceutical uptake distribution for the
mouse phantom with 0.8 ⇥ 0.8 ⇥ 0.8-mm3 voxels: [44Sc]Sc-J591
uptake values in the Digimouse computed from the data in

Holland, 2010 [3].

conventional two-gamma (2-g) image reconstruction. Considering this, the
first simulated phantom is a NEMA-like phantom, in analogy to the image-
quality studies carried out to characterize detectors, and in general in TOF
versus non-TOF comparisons [155].

The phantom consists of a 12-cm-long homogeneous water cylinder of
3.5 cm radius, containing five spheres. All spheres’ centers are equidistant
from the cylinder central axis and positioned on the central slice of the cylinder.
The radius of the spheres measure 2, 4, 8, 10, and 12 mm, see Fig. 3.14 and
Table 3.1 for further details.

The total simulated activity in the phantom is 20 kBq, with a factor 15 of
contrast ratio between the sphere and the background. 30 duplicates were
simulated to study the image variance.

To complete the XEMIS2 characterization, as second phantom we chose
to simulate a more realistic object: a 28-g male mouse known as the Digi-
mouse [156, 157]. The small animal presents a complete structure, composed
of brain, muscles, eyes, glands, heart, lungs, liver, stomach, spleen, pancreas,
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kidneys, testes, bladder, skeleton, and skin. A 2-mm radius spherical tumor
was added in the brain as the region of interest (ROI) to analyze in the image
quality study. In Fig. 3.15 a transaxial view of the Digimouse central slice and
in Table 3.2 the simulated uptake distribution of the mouse.

The radiopharmaceutical employed in this simulation is [44Sc]Sc-J591,
labeled with Sc-44, and it is an anti-prostate-specific membrane antigen mon-
oclonal antibody, whose biological uptake is known from Carter [2] and
Holland [3]’s studies. One of the advantages of using [44Sc]Sc-J591 is that the
molecule is also used for positron range studies since it is easily associated
also to F-18.

The total activity simulated in the phantom was around 22 kBq and data
acquisition time was 20 minutes. Due to the more detailed GATE-voxelized
structure of the Digimouse phantom, longer computation time was needed
and only one acquisition was simulated.

3.5 Image reconstruction software

3.5.1 Pseudo-TOF system matrix

Before getting into the details on the software implementation of 3-g image
reconstruction, let us introduce the SM for pseudo-TOF. SM elements are often
computed event-by-event, despite it being computationally intensive due to
the matrix size. They depend on the physics and on the system, and they are
characteristics of each detector and each data acquisition, thus they need to
be computed for each event.

In TOF-PET the SM gives the probability pi,j,b that the annihilation of a
positron emitted in the j-th voxel is detected in the i-th LOR’s bin and in the
time bin b, with i 2 [1, · · · , M] (I number of possible LORs), j 2 [1, · · · , J]
(J number of voxels), and b 2 [1, · · · , B] (B number of possible time bins on
the LOR). In the TOF case, the SM elements make use of a Gaussian function
to weight the LOR length component, whose FWHM depends on the time
resolution.

In the pseudo-TOF context, we deal with position and distance instead
of time resolution, thus b cannot be considered the number of possible time
bins. We translate it in the number of possible pseudo-time bins, each of
them representing a different LCI position on the LOR i. Consequently, the
coefficient pi,j,b becomes the probability that an annihilation that occurred in
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the j-th voxel was detected on the i-th LOR and that the third gamma was
emitted from the pseudo-time bin b on the LOR. In absence of scattering and
attenuation, this probability depends on the detector sensitivity, on the spatial
and energy resolution, and on the Sc-44 positron range. To calculate the SM
elements in pseudo-TOF, we can follow the same TOF method and use the
pseudo-TOF resolution instead.

3.5.2 Pseudo-TOF algorithm in CASToR

All the images we reconstructed in this work are obtained through the LM-
MLEM reconstruction algorithm in CASToR v2.3 [158], both for pseudo-TOF
and non-TOF events, which we refer to as 3-g and 2-g respectively.

As for all the iterative optimization algorithms as MLEM, the reconstruc-
tion in CASToR is based on a projector handling both back and forward
projection and there is an optimizer and a convolver, in case any kind of
convolution is required (e.g. for positron range correction).

For each iteration, there are several steps to follow: first, the software calls
the projector to compute one row of the SM. Then the optimizer, composed of
both the objective function and the iterative optimization, performs the data
update in several operations. It starts applying a forward projection on the
image estimate, then it adds all the provided estimation of the background,
and in the end it computes the correction term in the data space, in order to
back-project them and obtain a correction image for the considered SM row.

In CASToR the computation of the system matrix elements follows the
Siddon projector [159, 160] and the so called ray-tracer method, for which the
probability depends on the portion of LOR crossing each voxel. The standard
optimizer used for two-gamma events is from Shepp and Vardi [18]; while for
the LM-MLEM TOF algorithm we refer to Filipovic [161].

The pseudo-TOF LM-MLEM algorithm can be expressed as:

l
(k+1)
j =

l
(k)
j

Âi,b pi,j,b
Â

i

pi,j,b

Âj0 pi,j0,bl
(k)
j0

. (3.14)

where i refers to the LOR bin and b to the pseudo-time bin corresponding
to the considered event; l

(k)
j is the image value in the voxel j for the k-th

estimation. We denote as pseudo-time bin the time bin corresponding to the
LCI-position equivalent in ps.
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3.5.3 XEMIS2 geometry in CASToR

The first information required by CASToR to start the image reconstruction
process is the detector geometry. Normally, through the use of a tool provided
with the package, we are able to directly transfer the GATE geometry into a
CASToR geometry file. The software needs the number of modules, sectors
and crystal elements to rebuild the coincidences and identify them with its
own notation (CASToR-ID), in order to recognize the events in its system of
reference.

This functioning cannot be applied in a monolithic detector case, due to
the absence of detector elements. In this case, we need to produce a geometry
file in which the detector is discretized in smaller elements, with dimensions
comparable to the spatial resolution of the system to not lose information
(Fig. 3.16).

In our case, we chose to discretize with 1-mm3 virtual elements, which
brought us to a total of more than 23 millions elements due to the large size of
the XEMIS2 active volume, that was not acceptable in terms of computational
time to process.

  

discretization

8 monolithic 
ctrystals

32 virtual 
crystals

FIGURE 3.16: Virtual elements discretization of a monolithic
detector: from 8 detector blocks to 32 virtual elements.

The solution to this matter was the discretization of only a thin layer of
the active zone around the FOV, as shown in Fig. 3.17 (b). We considered a
0.5-mm-deep layer of elements all along the FOV cylinder for a total amount of
421920 virtual elements: 480 elements for each axial plane and 879 transaxial
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(a)

(b) (c)

FIGURE 3.17: (a) Discretization of the XEMIS2 considering the
total active volume, we obtain 234337008 virtual elements, a
number too high to be treated by any software in a reasonable

amount of time.
(b) Discretization of the XEMIS2 considering only the first layer
around the FOV. In (c) we show how the events are registered:
the LOR length considered in CASToR is the length between the
two red elements, whose element ID is used during reconstruc-

tion to get the event LOR position.

elements. In this instance, the total virtual elements’ number is perfectly
reasonable.

To identify the couple of elements involved in the event, we added an
intermediate step between data acquisition and image reconstruction, in
which we transfer the coordinates of the detected interactions on coordinates
that lay on the discretized part of the detector. We intersect the event LOR
with the FOV cylinder and once the couple of virtual elements are pointed
out by the intersection (red elements in Fig. 3.17 (c)), we pass their ID over to
CASToR to store it and subsequently use it during reconstruction. Another
information needed for each event is the LOR length and the LCI position to
be translated in time-units (ps).
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Sensitivity image

When reconstructing in CASToR, the sensitivity image can be given as an
input image file before launching the reconstruction or, if the file is missing, it
is computed by the software before starting the iterations. CASToR computes
the sensitivity map running a loop over all possible LORs, considering all the
couples of elements in the detector geometry. In this way the sensitivity image
depends only on the geometrical characteristics of the detector, attenuation
and normalization are not taken into account.

In our case, due to the fact that we modified the XEMIS2 geometry dis-
cretizating the detector, and we removed the concept of depth, we provided
one of our own. We obtained it simulating a homogeneous water cylinder
filled with Sc-44, as large as the FOV. The hours-long simulation brought us to
collect millions of events. We then reconstructed the events through an MLEM
sensitivity optimizer algorithm and used the first iteration output image as
our sensitivity map.

In this case, since the cylinder was filled with water and scattering was
allowed in the phantom, we can consider that the scattering and attenuation
effects in water are included in the image.
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Chapter 4

Results

Summary

In this chapter we present the results obtained in this work regarding
image reconstruction with XEMIS2. First, we introduce the figures of merit
employed in the image analysis and we then show the results for the two
simulated phantoms. We compare 3-g images to images obtained through
conventional PET reconstruction for both phantoms in XEMIS2. We show
the reconstructed images, ROIs’s plot profiles, CNR, SNR and recovery
coefficient (RC) trends, and we briefly discuss the obtained results.
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4.1 Introduction

In this chapter we discuss the results obtained for image reconstruction with
the XEMIS2. We hold a comparison between 2-g and 3-g reconstructed images
in order to assess the benefits of the pseudo-TOF technique over conventional
PET reconstruction.
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4.2 Figures of merit

The image quality metrics studied in this work mainly relate to signal and
contrast measurements (SNR, CNR and RC). In the following we use label with
b and s subscript to indicate variables related respectively to the background
and to the ROI. Due to the low statistics-induced noise in the images, a
Gaussian smoothing filter (s = 1) was applied on all the reconstructed images
before computing the metrics.

4.2.1 NEMA-like phantom analysis

In the NEMA phantom analysis parameters were computed throughout all
the iterations for every noise replicate and the variance was calculated as
follows:

s2
c =

1
|Rc| Â

j2Rc

✓
1
L

L

Ầ
=1
(x`j � µc

j )
2
◆

, (4.1)

where:

µc =
1

30|Rc|
L

Ầ
=1

x`c. (4.2)

c 2 {b, s} is the label for the background cylinder and for the hot spot, and
x`c is the reconstructed activity from the `th simulation; a total of L = 30
repetitions were performed. The variance was used to study the trend of the
image quality parameters with respect to the general noise.

The first studied parameter is the SNR, determined as the difference of
activity between the sphere and the background, divided by the standard
deviation in the cylinder sb:

SNR =
µs � µb

sb
, (4.3)

where the variables were calculated following equations (4.1) and (4.2).
For the contrast analysis we computed CNR and RC: the first as the ab-

solute difference between the mean value in the sphere and in the cylinder,
divided by the sum of the two standard deviations:

CNR =
|µs � µb|q

s2
b + s2

s

, (4.4)
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while the RC was defined as the fraction of the difference between the mean
value in the sphere and in the cylinder for the reconstructed images over the
same quantity related to the ground truth (GT) image:

RC =
µs � µb

µGT
s � µGT

b
. (4.5)

To obtain a GT image for each repetition, we mapped back to an image all
the annihilation positions from the GATE simulation.

4.2.2 Digimouse phantom analysis

For the Digimouse phantom simulation, we worked only on one data acquisi-
tion, thus the figures of merit differ from the previous analysis.

We consider the added sphere in the brain as the volume of interest (VOI),
with µs and ss being respectively the mean value and the standard deviation
in the hot spot. In this case the computation of the respective background
variables is more complex due to the non-homogeneous background. We
delineated 4 spheres positioned in the low-activity part of the phantom that
we can consider uniform, as shown in Fig 4.1. We computed SNR and CNR as
for the NEMA-like phantom, where the background variables are averaged
on the 4 spherical volumes. The formulas become:

SNRdigimouse =
µs � µb

sb
, (4.6)

CNRdigimouse =
|µs � µb|q

s2
b + s2

s

. (4.7)

where:

µb =
1
M

M

Â
i=1

µi, (4.8)

and

sb =
1
M

M

Â
i=1

si. (4.9)

in which M = 4 are the four background spheres in the Digimouse.
For implementation reasons, the simulation of a GATE voxelized phantom

did not allow direct information about the local interactions in the mouse, and
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we did not reconstruct a GT image starting from the annihilation positions.
As a consequence, no RC study was carried out in this case.

FIGURE 4.1: Transaxial section of the Digimouse phantom mask
to show the VOI (red sphere) and the 4 background (green,

purple, blue and yellow).

4.3 NEMA-like phantom results

In this section we show results related to the NEMA-like phantom obtained
through 3-g and 2-g MLEM reconstruction. For the pseudo-TOF reconstruc-
tion, we used two different pseudo-TOF approaches: in one reconstruction
we used a fixed Gaussian standard deviation of 70 ps, which is the value
corresponding to the average uncertainty on the LCI calculation. In the sec-
ond approach the resolution was event-based, hence variable, computed for
each event as the time-equivalent of the difference between the LCI and the
annihilation point projection on the LOR, as shown in Fig. 3.12.

The reason for showing results with the average pseudo-time resolution
and with the variable resolution is to study the potential benefits of the
proposed approach in favorable and less favorable scenarios of reconstructed
cone accuracy.

Fig. 4.2 shows the axial view of the phantom central slice on the last
iteration for the three reconstruction methods: (a) 2-g, (b) 70-ps pseudo-TOF
and (c) pseudo-TOF variant resolution reconstruction, and the relative plot
profiles along the yellow line in (d) and (e) vs (f).

Fig. 4.3 shows the same view of Fig. 4.2 after applying a Gaussian filter of
scale s = 1 to reduce noise induced by low statistics.

The metrics in Fig. 4.4 were calculated following the equations in sec-
tion 4.2, normalizing the values inside the cylinder. We show the SNR, CNR
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.2: Transversal view of the central slice of the NEMA-
like phantom at the 30th iteration and plot profiles along the
yellow line crossing two spheres. We show results for (a, d)
conventional 2-g reconstruction, (b, e) proposed pseudo-TOF
approach with a Gaussian standard deviation of 70 ps and (c, f)

with an event-by-event variant pseudo-TOF resolution.

and RC for each of the five spheres. The SNR and CNR are expressed as a
function of the iteration number, while the RC is presented as a function of
the variance.

Tables 4.1 and 4.2 show several quantitative results on the SNR and CNR,
in particular the percentage gain for pseudo-TOF with different resolutions
and with 70-ps resolution over conventional 2-g reconstruction. The values
refer to the 30th iteration and were calculated from the following equations:

%gain = 100 � SNRNOTOF ⇥ 100
SNRTOF

, (4.10)

%gain = 100 � CNRNOTOF ⇥ 100
CNRTOF

. (4.11)

4.4 Digimouse phantom results

First difference between the NEMA-like and the Digimouse study is that
in the second case images were obtained only through conventional 2-g
reconstruction and pseudo-TOF reconstruction with several resolution values
(70 ps, 100 ps, 150 ps, and 200 ps). Moreover, in this case events with and
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.3: Axial view of the NEMA phantom after Gaussian
filtering (s = 1 mm) using (a) classical PET reconstruction and
the proposed 3-g technique with (b) 70-ps and (c) variant stan-
dard deviation. Images are the results of the 30th iteration. In (d),
(e) and (f) the corresponding plot profiles along the yellow line.
The high contrast ring around the FOV in the first image on the
left is due to a CASToR misinterpretation of the activity value

on the FOV edge and it does not affect image reconstruction.

Radius SNR % gain SNR % gain
mm 70 ps variant resolution

2 40.9 43.5
4 33.7 32.9
8 30.1 28.4

10 29.2 28.0
12 28.7 27.6

TABLE 4.1: Percentage gain in SNR for pseudo-TOF over non-
TOF for all spheres, computed on the last iteration.

Radius CNR % gain CNR % gain
mm 70 ps variant resolution

2 43.1 46.0
4 34.1 33.3
8 30.1 28.4

10 29.3 28.0
12 28.8 27.6

TABLE 4.2: Percentage gain in CNR for pseudo-TOF over non-
TOF for all spheres, computed on the last iteration.
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FIGURE 4.4: Sphere-by-sphere metrics results, from top to bot-
tom the (1) 2-mm, (2) 4-mm, (3) 8-mm, (4) 10-mm, and (5) 12-mm
radius sphere with the respective values of SNR, CNR and RC.
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(a) (b) (c) (d) (e)

FIGURE 4.5: Reconstructed images of the Digimouse, from left
to right: 2-g reconstruction, pseudo-TOF with 200-ps, 150-ps,

100-ps, and 70-ps resolution.
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FIGURE 4.6: Metrics results of the Digimouse reconstruction

without LCI point were both used for image reconstruction, due to the low
amount of 3-g events in the acquisition.

The reconstructed images are shown in Fig. 4.5: we see the central slice of
the Dimouse on the 30th and last iteration for 2-g and for all the employed
pseudo-TOF resolution values. From left to right: 2-g reconstruction, pseudo-
TOF with a resolution of 200 ps, 150 ps, 100 ps and 70 ps. The metrics plots
are shown in Fig. 4.6 for SNR and CNR as a function of the iteration number.
We also computed the profile along the ROI in the Digimouse’s brain, which
can be seen in Fig. 4.7 for all the different reconstructions.
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FIGURE 4.7: Line profile plot of the mouse’s head’s hot spot for
all the different reconstructions on the last iteration.

4.5 Discussion

In the previous section 4.3 and 4.4 we presented the results for both phantoms
using 3-g and 2-g image reconstruction algorithms, that we are going to
discuss in this section.

We can observe the NEMA-like phantom images in Fig. 4.2, and we can no-
tice that the smaller ROI is not easily distinguishable in the 2-g reconstruction
(a), and due to this visible flaw in the image, we do not consider the results
regarding the first sphere to be particularly reliable. For all the other ROIs a
contrast improvement is visible in the 3-g cases, enhanced by the plot profiles
(e) and (f) vs (d), where the lower values indicate less reconstructed activity
in the hot spots. Looking at the reconstructed images after filtering (Fig. 4.3)
we can appreciate even more the contrast enhancement in the 3-g case (b) and
(c), quantitatively visible in the profiles (e) and (f) versus (d) 2-g.

One of the main amelioration brought by the XEMIS2 geometry can be
noticed observing the axial view of the NEMA phantom. All five spheres
appear perfectly round and in the exact position they are expected to be, with
no distortion. Despite the depth of the detector (12 cm), no DOI correction was
applied, since the XEMIS2 technology is able to detect the three-coordinate
position of interaction, which is the main advantage of our monolithic detector.

Another quantitative analysis of the amelioration brought by the technique
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proposed in this work, can be found in the metrics plots, Fig. 4.4. The im-
provement is visible in the SNR, CNR and RC higher values, and it is mostly
due to the technique’s ability to narrow the decay’s position on the LOR and
to focus on the right ROIs [162, 163]. While we know that for conventional
PET reconstruction the decay’s probability is uniform on the LOR. The higher
CNR and SNR, together with the fast convergence, are the main advantages of
the proposed pseudo-TOF algorithm. The acceleration in the convergence rate
can be seen observing the SNR, CNR and RC peak in the plots in Fig. 4.4. For
all five spheres, we reach the maximum value earlier in the 3-g reconstruction
case than in conventional image reconstruction.

In Tables 4.1 and 4.2 we present some values related to the SNR and
CNR percentage gain of 3-g over 2-g, both for variant and for 70-ps pseudo-
TOFresolution. The values related to the smallest sphere are surprisingly high,
while in a TOF-like reconstruction we do not expect to gain in SNR or CNR
for very little objects. It is most likely due to the fact that in the 2-g case the
sphere is confounded in the background, and again we do not consider these
result well grounded. For the other spheres, we can notice how the proposed
method shows an evident percentage gain, which spans between the 28% and
34% and that is dependent on the object’s size. The best values refer to the
70-ps resolution reconstruction, supporting the choice of the RMS value in the
distance distribution as pseudo-TOF resolution.

The results of the Digimouse phantom differ from those presented using
the previous studied objects. The Digimouse phantom presents a complex
internal geometry, made of small and detailed substructures, which are chal-
lenging to reconstruct in low count conditions. While the cylindrical NEMA
phantom is simulated as a superposition of simple GATE objects, the small
animal is defined voxel by voxel in GATE. Due to the Digimouse body and
organs’ dimensions, the voxel size was reduced to 0.8 mm3 to avoid the recon-
struction of artifacts in the images. Since the calculation of the pseudo-TOF
resolution requires a geometrical intersection between the Compton cone and
the LOR, the error on the LCI points is proportional to the distance between
the cone center and the line. Any uncertainty on the cone determination, for
example concerning the Compton angle miscalculation, is directly reported
on the LCI coordinates as an error increasing with the distance between the
LOR and the cone vertex. The Digimouse is a more complex phantom than
the NEMA, with 16 different materials and small organs, which increase the
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uncertainty in the LCI, due to Compton scattering in the phantom and to the
positron range, which is increased in low-density materials. Furthermore, the
lack of information about the interactions happening inside the Digimouse
phantom, due to GATE simulation output for voxelized phantoms, led us to
use pseudo-TOF resolution values that were not adapted to the simulated
object, since the study on the distance between the third-gamma emission
point and the LCI position on the LOR could not be carried out. Fig. 4.5 shows
results for all the reconstructions tested: the pseudo-TOF resolution values
chosen for the Digimouse reconstructions were taken from the NEMA phan-
tom study going from the average to the maximum distance. They spanned
from 70 ps (e) to 200 ps (b), which corresponds to a range from 22 to 60 mm
of uncertainty on the LOR, typical state of the art TOF values for preclinical
scanners.

In order to gain image quality on small animal’s dimensions, we ought
to work with very precise resolution. The 22-mm resolution on the LOR
calculated for the NEMA phantom represents a sufficiently high value to
show improvement over conventional PET reconstruction for a larger object.
Lowering the resolution leads to an approximation of the 2-g case, which can
be seen in the Digimouse 3-g image reconstruction with 200-ps of pseudo-TOF
resolution, comparing Fig. 4.5 (a) and (b).

We did not observe the same improvement as for the NEMA-like analysis
in the Digimouse study, neither visually nor quantitatively in the figures of
merit 4.6. A higher statistics is needed for such a small and detailed phantom.
As we fully complied with the regular amount of activity injected in a small
animal as such [157], the only way to increment the statistics was to include
the 2-g events, that did not allow to evaluate the enhancement brought by the
3-g technique. In the Digimouse case we faced a prohibitive low 3-g statistics
that required to include the 2-g events reconstructed following conventional
2-g MLEM. Contrarily, the NEMA case allowed for the reconstruction using
only 3-g events that enhanced the 3-g reconstructed volumetric images both
visually and quantitatively.
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Chapter 5

Positron range correction

Summary

In Chapter 1 we already discussed the positron range problem and in
Chapter 2 we presented the possible corrections or reduction of the phe-
nomenon in PET imaging. We first introduce the state-of-the-art tech-
niques to apply the correction in PET imaging, then we show the im-
plementation of variant and invariant kernel convolution in CASToR
framework. We get into the details of positron range correction applied to
a NEMA phantom, that we reconstruct using a conventional 2-g MLEM
algorithm and also the proposed 3-g method with Sc-44 as b+ and g

emitter. At the end of the chapter we present the results, starting with
the figures of merit employed in the image analysis and going through
the comparison between 2-g and 3-g reconstruction with and without
correction, for both variant and invariant kernel convolution.
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5.1 Introduction

There are several factors degrading image resolution in PET imaging: some
are due to the detector’s characteristics (sensitivity, scanner geometry, spatial
and energy resolution), some depend on the physical interactions involved
(positron range [164], Compton scattering, photon attenuation). For most
of these effects correction methods have been studied in PET reconstruction,
some of which are very successful (e.g. for attenuation calculation or for
random coincidence).

In the positron range case, the modelization is often simplified: we consider
a homogeneous medium or in most of cases, if the radio-pharmaceutical
presents a submillimetric positron range, the correction is not even applied,
as for F-18 imaging.

Reconstructing without correcting for the positron range means obtaining
the positron annihilation distribution and not directly the positron emission
distribution, which corresponds to the radio-pharmaceutical uptake in the
body. As already introduced in Chapter 1, the positron range increases with
the positron initial kinetic energy and decreases with the material density,
thus it is an important effect in the case of energetic positrons in soft tissue. In
Table 5.1 some common radionuclides with the corresponding estimation of
positron range.

Isotope Half-life Emean Emax Rmean in Rmax in Ref.
[h] [keV] [keV] water [mm] water [mm]

18F <2 250 635 0.5 2.3 [165]
64Cu 12.7 216 653 0.6 2.9 [166]
89Zr 78.4 403 902 1.3 4.2 [167]
45Ti 3.08 442 1040 1.5 5.2 [168]
44Sc 3.97 632 1474 2.4 6.9 [37, 169]
86Y 14.7 640 3141 2.5 11.1 [170]

TABLE 5.1: Some positron range properties of common radioiso-
topes used in PET imaging.
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5.2 Positron range estimation

The positron range estimation is the basis for the effect’s correction. Two
different approaches can be followed: an analytical modelization in which the
range and other parameters are obtained through a Monte Carlo simulation,
and a more experimental way based on actual measurements.

In particular positron range estimation’s experiments were conducted
starting in 1975 by Phelps [41], Cho [171], Derenzo (1986) [172] and Levin
(1999) [38], while the interest in PET imaging was growing.

On this occasion, the words range and path length were defined: the range
as the penetration depth and the path as the integral of the reciprocal of the
stopping power, an approximation of the range.

In fact, since the positron undergoes several elastic and inelastic interac-
tions while propagating in the medium, its path appears larger than its range,
and due to this difference a correct estimation of the range was needed.

Early experiments were not completely successful since the resolution of
the detector employed in the measurements was comparable to the positron
range [173]. Derenzo experiments in 1979 [174] were centered on the mea-
surement of the positron range in polyurethane foam and in aluminum. The
idea is to remove the blurring caused by this effect through a deconvolution.
The main problem with this approach is the loss of information in the decon-
volution and the need for scaling the range to a water-equivalent material
other than foam, since the range does not exclusively depend on the material
density.

Later Palmer and Brownell [175] evaluated the positron range through
an empirical formula based on b+ energy spectra analysis. Studies on the
reduction of positron range in presence of a magnetic field were carried on as
well, with few results showing a slightly longer positron range in the direction
of the field [176, 177, 178].

Due to the difficulties in correctly estimating the positron range analytically
and empirically, there are more recent studies based on Monte Carlo simula-
tions as for Harrison et al (1999) [179], Sanchez-Crespo (2004) [180], Champion
et al (2006) [181], Alessio et al (2008) [182] and Lehnert et al (2011) [183]. The
simulation of the positron range can be carried out using different frame-
works and software: GATE [184] with its option empenelope allows accurate
positron interactions, as well as PeneloPET [185] based on PENELOPE [186]
and Geant4.
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The simulation of a positron interacting in the matter is not a trivial prob-
lem: in fact, as we can see in Fig. 5.1, in the cross-section calculation we need to
sum several types of interaction whose importance is energy-dependent [187,
188]. Scattering for a positron is considered as ionization if the energy loss is
below 0.255 MeV, while it is referred to as Bhabha scattering (electron-positron
diffusion) when the energy loss is higher.

One of the difficulties in simulating positron interactions is due to the
amount of computation time needed to take into account every step. A
positron tends to undergo scattering until it loses all its energy and is able
to annihilate and the energy loss process is long and composed of very little
steps. For each of them, we have a different energy loss, due to its energy
dependence, thus a thick sampling would be needed to simulate a close
approximation of the real interactions.

FIGURE 5.1: Fractional energy loss for positron and electrons in
lead as a function of the particle energy [189].
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5.3 Positron range correction

In this section, we take a look at the different approaches to deal with the
positron range correction. There exist two main techniques to minimize the
effect: the first is to reduce the particle range, while the second is to correct it
working either on the projections, either on the reconstructed image, either on
the estimated image iteration per iteration.

5.3.1 Positron range reduction

Positron are charged particle, subdued to the Lorentz force in presence of a
magnetic field:

F = qE + qv ⇥ B. (5.1)

where F is the Lorentz force experienced by the particle, q the particle charge,
v the particle velocity, E the electric field and B the magnetic field.

This force is applied perpendicularly to the magnetic field vector B and to
the velocity vector v and it reaches its maximal intensity when the positron
travels orthogonally to the magnetic field.

Several studies were carried out on the subject [176, 190, 191, 192, 193],
showing that the particle range is enlarged and its direction changes to follow
the Lorentz force as expected. Nevertheless, the magnetic field needs to
be high to have a visible effect (> 3 T), which carries concerns on the cost,
considering also that ferromagnetic materials cannot be employed in the
construction of this type of PET system. In addition, the positron is affected
only in one of the three directions, the one perpendicular to the magnetic field,
ergo its range is reduced only in one of the three axis.

5.3.2 Positron range correction pre-, post- and during recon-

struction

In order to apply positron range correction in distinct reconstruction steps
(pre-, post- and during), we need to deal with different data types.

In the pre-reconstruction correction case, data acquisition ought to be in
sinogram mode so that we can work on denoising the projections [172, 194].

Haber and Derenzo in 1990 [123], proposed a technique for which a Fourier
deconvolution was applied on the projections to remove range blurring for
68Ga and 82Rb acquisitions. Since the point spread function (PSF) used in the
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deconvolution was calculated in a homogeneous mean (water) and considered
uniform in the FOV, the whole process was valid only for uniform phantoms.
Another disadvantage of this technique is that the deconvolution was applied
by taking the Fourier transform of the positron range function and dividing it
into the transform of the data: the division in the frequence space increases
the noise level damaging the overall image quality.

A similar technique can be applied to the reconstructed image which cor-
responds to the annihilation distribution, when not corrected for the positron
range. We can think of deconvolving the distribution with a voxel-dependent
PSF in order to obtain a blurred positron emission map. This technique is
not often of use due to the level of noise that we reach in the image after
convolution.

The main currently used approach is positron range correction during the
reconstruction process. This consists of estimating and adding the positron
range effect in the system matrix, which is composed as a product of matri-
ces [195, 196], as we have already introduced in Section 2.6.3. In this way the
positron range matrix can be used only during the projection operation and
not the back-projection, reducing the computational time and the number of
iterations needed for convergence [197]. In this case we talk about unmatched
projector. To correct for the positron range effect we apply a convolution
with a voxel-dependent kernel all along the FOV. In fact, as we have already
seen, the positron range depends on the material density and on the positron
energy. The kernels need to be studied ad hoc based on the phantom and
on the employed radioisotope, which brings us to the main problem of this
correction method, the memory storage. To simplify calculations and to avoid
a huge matrix’s memory allocation, it is often suggested to use an invariant
and isotropic kernel [198] that is computed in an homogeneous phantom,
often made of water. This might result in an over or under correction of the
images if the positron emission happened in a non-water equivalent tissue (e.g.
lungs [39] or bone). The best results are achieved when the imaged objects
do not present high heterogeneity and the tumors are not on the boundary
between different materials.

Several studies for positron range correction based on variant kernel con-
volution on anatomical MRI and CT images were also conducted [199, 200,
178, 182, 201]. Other techniques were studied for heterogeneous objects [202,
40]; Bai in 2005 [82] proposed the truncation of the PSF to reduce artifacts
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due to the boundary effect. Results showed that at matched noise levels this
positron range model gives better contrast, nevertheless the best trade-off
between noise and resolution is achieved without truncation.

The approach of Alessio and MacDonald in 2008 [182] consisted of esti-
mating variant kernels for all materials in a homogeneous mean and build a
voxel-dependent kernel during reconstruction, interpolating the previously
estimated kernels.

Monte Carlo simulations are the alternative to analytical models, although
they highly extend the reconstruction time to propagate the positron interac-
tions iteration per iteration on forward and back-projection.

FIGURE 5.2: Reconstructed images using different positron
range correction, b indicates the noise level [203].

Several alternatives were proposed, especially on unmatched projectors
to reduce computation: Fu in 2008 [204, 203] studied a positron range model
based on Geant4, incorporated in a factorized system matrix based on residual
correction every 5 image updates. The attenuation characteristics of the object
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were obtained from a CT scan and the on-the-fly Monte Carlo simulation was
incorporated in the forward projector. In Fig. 5.2 we show the study’s results:
the first row from the top presents the noiseless-data results, the second row
refers to noisy data and the third row shows noisy-filtered data. This method
is worth mentioning due to Fu’s technique being one order of magnitude
faster than the conventional Monte Carlo model and reaching good image
quality after correction.

Another more recent Monte Carlo study for positron range was proposed
by Autret in 2015 [124], exploiting GPUs for faster simulation.

Nowadays the increasing use of neural networks in PET imaging could
lead to a positron range modelization and correction based on deep learning,
since intensive PET scattering and attenuation correction studies have been
carried out in the past few years [205, 206, 207].

5.4 Proposed correction

For the XEMIS2 project the interest in positron range correction concerns the
use of Sc-44 as 3-g radioisotope, whose positron range is not negligible as
seen in Table 1.1 in Chapter 1.

In this section we discuss the two implemented approaches in CASToR to
correct for the effect: first through an invariant kernel approach and second
through a material-based variant kernel. The materials map was obtained
from the GATE phantom’s file.

5.4.1 Simulation and phantoms

The phantom chosen for this study is composed of a 12-cm-long cylinder
with 3.5-cm radius positioned in the center of the FOV, within which we find
five hot spheres, see Fig. 5.3 and Table 5.2. The materials were chosen to be
water, lung and bone, to explore three mediums of very different densities
(1.00 g/cm3 water, 0.26 g/cm3 lung and 1.42 g/cm3 bone) [39, 208].

Data are simulated in GATE v6 using the Penelope model. The total
simulated activity is 20 kBq for a data acquisition time of 20 minutes, with a
factor 15 of contrast between the hot spots and the background.
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Sphere nb Position [mm] Radius [mm] Material Density [g/cm3]
1 (0.0, 17.5, 0.0) 2 water 1.00
2 (-8.8, 15.1, 0.0) 4 water 1.00
3 (-17.5, 0.0, 0.0) 8 water 1.00
4 (0.0, -17.5, 0.0) 10 lung 0.26
5 (17.2, 3.7, 0.0) 12 bone 1.42

TABLE 5.2: Description of the spheres in the cylindrical phantom:
reference number, position in mm considering the center of the

FOV as the origin, and radius size.

FIGURE 5.3: Axial view of the central slice of the phantom
showing the three spheres of 2, 4, and 8-mm radius made of
water and the two with a 10 and 12-mm radius made of lung

and bone.

5.4.2 Reconstruction and positron range correction estimation

The reconstruction was carried on in CASToR using a LM-MLEM algorithm
in which we implemented the positron range correction through convolution.
We show results obtained with conventional 2-g and 3-g reconstruction to
be able to compare the two approaches, with and without positron range
correction.

CASToR is designed as a flexible and generic software in which we can
easily develop an image convolution in any algorithm, at any point during
the program execution. In particular, for a stationary kernel, the convolution
is already implemented in the software, with multiple choices as of when
to apply it: on the image to be forward projected, on the back-projection’s
correction terms, on the reconstructed image as a post-processing step, or on
the current estimated image. Moreover, CASToR’s convolution operation is
fast since the image is saved in a padded buffer, in which zeros are added
along each dimension following the maximum kernel size on the current
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Material FWHM [mm] FOV position [mm]
Water 1.9 0, 0, 0
Bone 1.9 0, 0, -60
Lung 2.2 0, 0, 60

TABLE 5.3: Transaxial and axial FWHM values of the kernel
used to correct for Sc-44 positron range in water, bone and lung.

dimension.
In our implemented correction techniques with a variant kernel, we chose

to apply an isotropic convolution on the image to be forward projected at
each iteration. The developed algorithm accepts 4 different kernels, for the
4 materials in the phantom, and for each of them, we can specify the number
of Gaussian sigmas and the FWHM (axial and transaxial).

FIGURE 5.4: Transaxial view of the central slice of the PSF study
phantoms showing the three point-source spheres made of bone,

water and lung, from left to right.

The values of the kernels FWHM were calculated from a 20-minute simula-
tion of three point sources, one of each material, with 1000 Bq of initial activity
in each of them. In Fig. 5.4 we see the reconstructed objects, in Table 5.3 we
show the values chosen for the convolution and in Fig. 5.5,5.6 and 5.7 the
Gaussian fit of the PSFs.

In order to associate the right kernel to every voxel, the convolution algo-
rithm takes in input a labeled image with numbers from 0 to 3, each of them
corresponding to a different kernel to be used during convolution. In our case
the labeled image was directly obtained from the GATE phantom and based
on the simulated materials.
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FIGURE 5.5: PSF plot and Gaussian fit for the bone sphere in
(0, 0, -60).
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FIGURE 5.6: PSF plot and Gaussian fit for the water sphere in
(0, 0, 0).

5.5 Results

We begin this section showing the metrics used in the image analysis, then we
present the results for both invariant and variant kernel convolution.

5.5.1 Figures of Merit

The metrics employed in the positron range image analysis are the SNR and
the CNR, that were calculated as follows:

SNR =
µs � µb

sb
, (5.2)

CNR =
|µs � µb|q

s2
b + s2

s

. (5.3)

where the label b refers to the background and the label s to the hot spot.
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FIGURE 5.7: PSF plot and Gaussian fit for the lung sphere in
(0, 0, 60).

Results are plotted in function of the iteration number, considering each
sphere as a separate VOI and the rest of the cylinder as the background.

5.5.2 Invariant and variant kernel convolution

We reconstructed images via conventional PET reconstruction and via pseudo-
TOF reconstruction, using a 70-ps resolution. In both algorithms, we added the
positron range correction through variant and invariant kernel convolution.

For the invariant kernel case we convolved with a FWHM resulting from
the average of the values in Table 5.3, i.e. 2.0 mm. For the variant case, the
10-mm-radius sphere and the 12-mm-radius sphere were associated with the
corresponding values in Table 5.3 and the rest of the image was convolved
with a FWHM equal to 1.9 mm, considering that we are in presence of water
and air.

In Fig. 5.8 we present the transaxial central slice of the phantom for the six
different reconstructions on the 30-th iteration, after applying a smoothing
Gaussian filter: (a) 2-g and (b) 3-g with no positron range correction; (c)
2-g and (d) 3-g with a correction through variant or material-based kernel
convolution; (e) 2-g and (f) 3-g with a stationary kernel convolution correction.

In Fig. 5.9 we show the yellow line profiles: the line passes through the
two spheres with the bone (12-mm radius) and lung (10-mm radius) density.

The plots concerning the SNR and CNR values for the three water-dense
spheres are showed in Fig. 5.10 while in Fig. 5.11 we show the same results
for the other two spheres.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5.8: Transaxial view of the NEMA-like phantom, re-
constructed with four different techniques: (a) conventional 2-g
PET and (b) 3-g, with no positron range correction; (c) 2-g and
(d) 3-g reconstruction convolved with a variant kernel, (e) 2-g
and (f) 3-g reconstruction convolved with a stationary kernel.
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FIGURE 5.9: Plot profiles of the six different reconstructions
through the yellow line seen in Fig. 5.8.

5.6 Discussion

The results in this section are obtained applying the positron range correction
to the image before each iteration forward projection. We present images and
plots concerning 2-g and 3-g reconstruction with variant and invariant kernel
convolution. The variant kernel correction was based on a material study,
carried out through three PSFs’ simulation related to the three materials found
in the phantom.

A first effect of positron range correction can be seen in Fig. 5.8, where the
reconstructed images using conventional PET reconstruction (first column)
and our proposed 3-g approach (second column) are compared to the ones
obtained through the same image reconstruction techniques with the positron
range convolution correction.

Apart from the contrast improvement due to the use of 3-g instead of classi-
cal PET reconstruction, the general contrast of all the five spheres is improved
in the corrected images, especially for 3-g in (d) and (f), respectively variant
and invariant kernel convolution. The improvement is properly quantified in
the plot in Fig. 5.9, where we show the profile along the yellow lines for all the
six reconstructions. Between the profiles of the 2-g reconstructions and the
ones related to the 3-g we have a gap of 20% on the grayscale, while there is
no remarkable difference between convolved images and not corrected ones
for the same image reconstruction technique.
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FIGURE 5.10: SNR and CNR plots of the three smallest spheres,
water-made: in numerical order sphere of 2-mm, 4-mm and
8-mm radius. With "conv" we refer to variant kernel convolu-
tion, while "stat conv" refers to the invariant kernel convolution

correction.
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FIGURE 5.11: SNR and CNR plots of the two biggest spheres:
sphere number 4, 10-mm radius with lung density and sphere
number 5, 12-mm radius with bone density. With "conv" we
refer to variant kernel convolution, while "stat conv" refers to

the invariant kernel convolution correction.
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To have a deeper image analysis we can look at the plots in Fig. 5.10 and
5.11 where we find the results related to SNR and CNR. We decided to show
the results for the water sphere in the first figure 5.10 and for the sphere
composed of different materials (lung and bone) in the second figure 5.11. The
values are shown in function of the iteration number to follow the convergence
behavior, which is faster in the 3-g case due to the TOF-like characteristics
of our proposed method. The peak values are higher for the pseudo-TOF
technique and we reach convergence already around the 20-th iteration.

A proper comparison cannot be carried on between two methods so differ-
ent from each other, since a very important feature in image reconstruction
is the convergence rate. Indeed, the noise in the image increases with the
iteration number, as well as the time needed to obtain results. Those two
characteristics are of the highest importance in a medical context and cannot
be ignored.

In the shown results we see that the SNR and CNR peak values are much
higher for the 3-g technique than for the conventional 2-g reconstruction,
nevertheless, the values at the 30-th iteration tend to keep up only for not-
corrected 3-g images, due to the blurring introduced by the convolution.

In this particular case, the best way to acknowledge an improvement once
the correction is applied lies in the visual results in Fig. 5.8.
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Conclusion and perspectives

The work presented in this thesis focused on the development of a novel
reconstruction technique for 3-g imaging, which was evaluated on the XEMIS2
imaging system geometry. The XEMIS2 study is the preclinical part of the
more general XEMIS project, which already developed a first prototype, the
XEMIS1. The characterization of the XEMIS1 Compton camera gave the
experimental demonstration of the feasibility of 3-g imaging, we find the
previous studies in LXe Gallego-Manzano [4], Oger [5], and Grignon [6].

In this work we use the third-gamma interactions in LXe to determine a
Compton cone, whose point of intersection with the LOR, obtained from the
coincidence photons, allows to narrow the localization of the LOR section
involved in the combined annihilation + emission event. The event is then
reconstructed using a pseudo-TOF MLEM algorithm where the line-cone
intersection is taken as the center of a Gaussian PDF used in the reconstruction,
in a similar fashion as in TOF-PET, whence the denomination of the proposed
method as pseudo-TOF. A main advantage associated with the proposed
approach is to allow for seamless embedding of the third gamma information
through existing reconstruction frameworks with TOF capability, such as
CASToR. Doing so, we leverage state of the art reconstruction techniques,
which is an important step towards feasibility in a real clinical setting.

We showed a simulation-based study of a realistic 20-minute data acquisi-
tion with 20 kBq of initial radioactivity in the XEMIS2 detector. We simulated a
NEMA-like and Digimouse phantom and showed image quality improvement
for objects of various densities and dimensions. In Chapter 3 we presented the
LCI coordinate calculation, on which we base the 3-g image reconstruction
method. In particular in section 3.3.1 and 3.3.2, we discussed the mandatory
detector characteristics in terms of spatial, energy and angular resolution to
reduce the uncertainty on the LCI point.

The computation of the LCI coordinates is a crucial step towards the
application of the proposed approach in a real clinical context. For this,
one must be able to determine with sufficient accuracy the localization of
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three clusters of interaction in LXe : the two clusters corresponding to the
annihilation photons and the one corresponding to the third gamma.

The main challenges related to the detection of three gamma events in
real data concern the clustering of the LOR and 3-g groups, as well as the
determination of the Compton angle and of the first two points of interactions
for the prompt gamma used to determine the cone.

For the first issue, several clustering methods have been studied through
GATE simulation. An initial approach for XEMIS2 proposed by N. Beaupère
(Subatech, 2017) consists in accepting only events with at least 4 interactions,
one for each coincidence photon and two for the third gamma to build the
Compton cone. The division in three groups is based on a distance-study to
determine a distance threshold. Through a long realistic GATE simulation he
studied the distribution of distances between interactions belonging to the
same photon or to different photons, and established that these cases follow
two distributions partly overlapping (Fig. 5.12). The distance of Dcut = 74 mm
is taken as the distance-cut to determine if the interaction belongs or not to
the same group. The distinction between the third-gamma group and the
511-keV-photons groups is based on the group released energy amount: since
the prompt gamma is more energetic (1.157 keV) the group with more than
511-keV energy is the one used to compute the Compton cone.

FIGURE 5.12: Distance study to determine the Dcut to use in the
interactions clustering.

During the course of this thesis we also explored a second unsupervised
clustering strategy based on k-means, which achieved similar accuracy to
Beaupère’s study.
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The clustering step is followed by the determination of the Compton cone,
whose complexity is guided by combinatorics. In real scenarios, the only
information that we have access to is related to the position and to the energy
loss, with their respective uncertainties. If a photon interacts N times in the
LXe, N � 1 interactions are due to Compton scattering and one is photoelectric.
There are, therefore, N! possible combinations of interactions to consider while
looking for the optimal path. The selected sequence of interactions is chosen
using a c2 test on the difference between the geometrical angle and the one
obtained through Compton kinematics.

The main issues with this method are the low number of events registered
as 3-g due to the many sources of error in the LCI computation process, and
the long computational time associated with the determination of the right
path-sequence for each event. A novel approach to improve the determination
of the LCI coordinate using machine learning methods is exposed in the next
section.

3-g detection using Neural Networks

Several works have proposed to use neural networks for the determination of
the interaction point in monolithic detectors [209, 210, 211, 212, 213]and some
studies have also focused on establishing Compton kinematics using machine
learning methods [214, 215]. These techniques are mainly based on 511-keV
photons scattering as they were proposed for PET but can nevertheless be
considered in the present context of 3-g imaging.

Recent studies carried on in our group have demonstrated that an ensem-
ble of deep multi-layer neural networks trained on extensive Monte Carlo
simulations is able to robustly predict the interaction point in monolithic
detectors even in the presence of imperfect geometries [209].

We suggest to leverage the predictive power of similar neural network
architectures to better determine the LCI point in future XEMIS2 experiments.
The LCI determination could be divided into two sub-problems related to:

1. The clustering of the three groups of interaction corresponding to a 3-g
event.

2. The reconstruction of the Compton cone from the third gamma group.
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These two problems can be tackled using different feed-forward multi-
layer perceptrons (MLPs) architectures.

For the clustering we can consider a 4-class MLP classifier taking as inputs
the positions and energies of each interaction within an event and predicting
as output the classification in four groups: two annihilation groups, one
third-gamma group and one group corresponding to spurious interactions.

For the prediction of the Compton cone, two strategies may be adopted:

• Similarly to the clustering case, a MLP classifier can be trained to identify
the first and second interaction within the third gamma group, followed
by conventional Compton kinematics as described in this thesis.

• Alternatively, a regressor MLP could be directly trained to predict the
LCI using the third gamma without explicit Compton kinematics. The
criterion would be the minimization of the distance to the annihilation
point through e.g. least squares.

While both classification and regression strategies can be considered, clas-
sification MLPs seem more appealing as they could directly serve as a replace-
ment for the current clustering approach. The impact of such a procedure
could be evaluated straightforwardly using the same reconstruction method
developed in this thesis. In the near future, we will therefore study the poten-
tial improvements achieved by this strategy on image reconstruction quality.

Contributions

In this manuscript we presented a new image reconstruction technique for
3-g imaging, that we called pseudo-TOF.

This thesis’ work consisted in:
- the implementation of the proposed technique within an existing image
reconstruction framework (CASToR);
- a GATE simulation study using Sc-44 and XEMIS2 geometry using two phan-
toms: a NEMA-like and a more realistic Digimouse;
- a quantitative analysis with respect to the pseudo-TOF resolution as recon-
struction parameter;
- the implementation of positron range correction through variant and invari-
ant kernel convolution in CASToR;
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- a qualitative and quantitative analysis comparing conventional and pseudo-
TOF reconstruction;
- realization of the first reconstructed images for XEMIS2, through conven-
tional and 3-g reconstruction.
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Titre : titre (en français) Reconstruction d’image pour l’imagerie TEP à trois photons 

Mots clés : trois-gammas, cone Compton, reconstruction d’image 

Résumé :  Dans cette thèse nous présentons l’imagerie trois gammas, où le système 
d’acquisition repose sur un émetteur bêta+ et gamma. La justification de l’imagerie 3-gamma 
est que les informations du détection du troisième gamma peuvent aider à fournir une 
meilleure localisation du point d’annihilation, permettant ainsi une meilleure qualité d’image 
et moins de dose délivrée au patient. Nous vous présentons le systéme 3-gamma XEMIS2, 
développé à Subatech, Nantes, qui est un détecteur basé sur Liquid Xenon, adapté à l’imagerie 
3-gamma grâce à son stopping power, ses caractéristiques de scintillation et sa géométrie 
continue. Le principe de la reconstruction d’image 3-gamma est basé sur l’intersection d’une 
LOR, obtenue à partir des photons de coïncidence, avec un cône Compton, déterminé par le 
troisième gamma. L’idée est de trouver l’intersection du cône et de la LOR et de l’utiliser pour 
localiser la position d’annihilation la plus probable sur la ligne, comme pour la différence en 
temps d’arrivé en TOF-PET. Nous présentons une étude de simulation GATE de deux phantoms 
(NEMA et Digimouse) pour évaluer les améliorations de la reconstruction d’image 3-gamma 
par rapport à la TEP conventionnelle, et nous étudions aussi la correction du range du positon, 
qui est important pour notre émetteur Sc44. 
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Abstract:  In this thesis we present three-gamma imaging, where the acquisition system relies on 
a beta+ and gamma emitter. The rationale of 3-gamma imaging is that the third gamma detection 
information may help to provide better localization of the annihilation point, thus enabling higher 
image quality and fewer dose delivered to the patient. We present the 3-gamma system, the 
XEMIS2, developed at Subatech, Nantes, that is a LiquidXenon detector suitable for 3-gamma 
imaging due to its stopping power, its scintillation characteristics and its continuous geometry.  The 
principle of 3-gamma image reconstruction is based on the intersection of a LOR, obtained from 
the coincidence photons, with a Compton cone, determined by the third gamma. The idea is to find 
the LOR\cone intersection and use it to locate the most probable annihilation position on the line, 
as for the time difference in TOF-PET. We present a complete GATE simulation study of two 
phantoms (similar-NEMA and Digimouse), to assess the improvements of 3-gamma image 
reconstruction over conventional PET and we study the positron range correction, which is 
important for our beta+gamma emitter, Sc44. 

Reconstruction d’image pour l’imagerie TEP à trois photons

Image Reconstruction for Three-gamma PET Imaging


	Declaration of Authorship
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Resumé
	Introduction
	General principles of nuclear imaging
	Introduction
	Physical principles
	Radioactive decay
	Mathematics of radioactive decay

	Charged particle's energy loss
	Positron range
	Photon interactions with matter
	Photon attenuation

	PET imaging
	Detection
	Scintillation in LXe
	Photodetectors

	Coincidences
	Sensitivity and Depth Of Interaction
	Time of Flight PET


	Image Reconstruction
	Introduction
	Data acquisition
	Deadtime

	Analytic Image Reconstruction
	2D analytic image reconstruction
	Back-projection
	3D analytic image reconstruction
	Back-projection

	Model-based Image Reconstruction
	Iterative algorithms

	System modelization and corrections
	System matrix
	Detector geometry
	Attenuation and normalization
	Positron range

	Scattering and random coincidences

	3-bold0mu mumu 2005/06/28 ver: 1.3 subfig package Image Reconstruction
	Introduction
	The XEMIS2 project
	Scanner geometry
	Radio-isotope
	Detection

	Proposed 3-bold0mu mumu 2005/06/28 ver: 1.3 subfig package image reconstruction technique
	LOR/cone intersection
	Requirements for 3-bold0mu mumu 2005/06/28 ver: 1.3 subfig package imaging
	Energy resolution
	Spatial resolution
	Angular resolution

	Pseudo-TOF image reconstruction

	Simulation
	Phantoms

	Image reconstruction software
	Pseudo-TOF system matrix
	Pseudo-TOF algorithm in CASToR
	XEMIS2 geometry in CASToR
	Sensitivity image



	Results
	Introduction
	Figures of merit
	NEMA-like phantom analysis
	Digimouse phantom analysis

	NEMA-like phantom results
	Digimouse phantom results
	Discussion

	Positron range correction
	Introduction
	Positron range estimation
	Positron range correction
	Positron range reduction
	Positron range correction pre-, post- and during reconstruction

	Proposed correction
	Simulation and phantoms
	Reconstruction and positron range correction estimation

	Results
	Figures of Merit
	Invariant and variant kernel convolution

	Discussion

	Conclusion and perspectives
	Bibliography
	Publications and Oral Communications

