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Introduction

At the beginning of human society, humans lived in small and nomadic
groups and extracted what they needed to survive from nature. Around 10
000 years ago in Near Est, �rst cereal cultivation and animal domestica-
tion were introduced; these changes in the way that humans live coincide
with the beginning of the Neolithic period1. Humans understood that the
aggregation in a community can help them to solve practical problems and
increment their possibilities to survive. They were motivated by individ-
ual needs to accommodate their requirements and made individual choices.
The behaviour of people is impacted by what they have around them, and
they develop di�erent forms of aggregation. Actually, technical innovations
and the agricultural revolution led to sedentism and the emergence of �rst
settlements which tended to have a small population, often only a few fam-
ilies. Gradually, the size of these communities incremented, some of them
were fused in a bigger one and a variety of human communities of various
sizes formed. The results of the human organization are that they modify
land: cities are the quintessence of these changes [203].

Cities are the place for the association and the interaction of humans to
ensure the individual satisfaction of needs. Cities are characterized by over-
lapping relations between numerous abstract or physical urban actors, which
generate elaborate spatio-temporal dynamics, often irreversible, discontinu-
ous, and unpredictable. Considering a city under this perspective means to
suppose that a city could be considered as a system of interacting and het-
erogeneous elements. A city can be compared with many other systems and
as we will observe in this work, there are some characteristics in common
between urban systems and other kinds of natural and arti�cial systems.

Cities have been the subject of many studies in a large number of �elds,
several approaches have been used and many questions have been answered.
We choose here to focus on a fundamental aspect of cities, the study of
essential processes that are behind the formation, the evolution, and the
maintaining of them. To give a contribution to this aspect of cities, we
tackle the problem through the complexity theory point of view and we
assume that cities might be considered as complex systems.

Morphogenesis (from the Greek "morphê", shape, and "genesis", creation,
literally, "beginning of the shape") is the biological process that causes an

1Agriculture started to develop in di�erent regions at di�erent times, hence there is
not a single date for the beginning of the Neolithic period. Anyway, early artefacts that
prove the socio-technological revolution are founded in Near Est.
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organism to develop its shape2. In a system, elements aggregate in di�erent
ways, organize themselves, cluster, stimulate or reduce the formation of new
elements: to put it in a verb, they form. Several mechanisms control the
formation of a system and they are summarized in a process that allows its
formation over time. Morphogenesis is the ensemble of dynamics underly-
ing the development process by which the system acquires the shape and
functions of its parts. Hence, to understand the functioning of a system,
it is crucial to study the functional role of the form and understand if the
form is the cause or the e�ect (often both) of the organization.

Understanding a shape (its morphology) often demands that we understand
the process of its formation (its morphogenesis). The �rst step towards un-
derstanding is to make the reality intelligible, considering the object to
study encoded in a rigorous formalism. For instance, the form of a real
object that is approximatively a circular ring can be encoded in a mathe-
matical formalism (a circle). As such, the object can be described by the
identi�cation of a centre and a diameter. An equation and a subspace of
the Cartesian plane correspond to the object. In this way, we obtain a fac-
tual knowledge (also known as declarative knowledge) of the real object and
the achievement of it consists in a representation of information, that can
be classi�ed, summarized, and interpreted. Declarative knowledge involves
knowing-that something is; in this way, we capture information about the
object (for instance its central symmetry). However, in this manner, we
obtain some information which is fundamental to understand the object,
but it is not enough to understand its form: in other words, we capture its
main characteristics but we have probably not enough information about
the process of formation. We also need the know-how about the object, the
way that it forms, to obtain a procedural knowledge of it. The study of
morphogenesis means to understand the characteristics of the object and
investigate the creation and the evolving processes. Modelling the object
and simulating the evolution in time, integrating both kinds of knowledge,
are a way to study morphogenesis.

Motivations

Since early human settlements, urbanization3 has described a process that
has continuously increased, with brusque variations as for instance the quick
growth since the middle of 19th century until nowadays. In the last two
centuries, a drastic population increment characterizes human society and
it is expected to increase by 2 billion persons in the next 30 years [287].
According to the 2018 Revision of World Urbanization Prospects [288], more
than half of the population lives in urban areas and it is expected that the
proportion will reach the 68% by 2050. Today there are 23 megacities (with
a population of more than 10 million) and the number is estimated to be 43
in 2030. The sizes of cities have a large consequence on nature and resources
because they consume 60% of the world's energy and for their functioning,

2www.en.wikipedia.org, visited on 20/08/2020.
3Urbanization is the process that describes the tendency of people to aggregate in

urban areas. It is measured by the fraction of individuals living in urban areas.
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they produce around 80% of the Earth's greenhouse gases [128]4. Urban
sprawl is a form of urban growth that happens through an unsustainable
urbanization. It contributes to climate change mainly in terms of the loss of
uncontaminated lands and increment of tra�c-related emissions [156], which
damages people's health and natural environment. Due to the behaviour of
humans, land surface, �ora, fauna, atmosphere, and oceans are irreversibly
altered. The neologism Anthropocene, popularized in 2000 by the Nobel
Prize-winning Paul J. Crutzen and Eugene F. Stoermer [89], proposed for
the �rst time in 2008 as a formal geological epoch, highlights that we are
now living in a time when the Earth is hopelessly shaped by humankind.
The United Nations has designed that a way to ensure a future for new
generations is the sustainable urbanization and to take better account of
overpopulation and climate issues.

Billions of natural and human events compose the morphogenetic process of
cities and the way that they are combined often produces the emergence of
new and unpredictable dynamics. Understanding how the city was formed
(and will evolve) and the e�ect of political decisions can have to the urban
growth are important to ensure sustainable development of human settle-
ments. As such, realistic models of urban growth have high relevance for
urban planning, energy management, and transportation investments. The
de�nition of adequate frameworks able to capture the heterogeneity of as-
pects that play into the formation of urban areas is crucial to understand
the urban growth and make realistic forecasting, useful to help political
decision-makers to de�ne a sustainable strategy.

Contribution

We start with a basic consideration: a city is a large number of abstract or
physical components, located in a portion of the land, often related in an
elaborate manner. Individuals, economic and policy actors, promoters, etc.
produce continuous internal evolution and modi�cation of their components,
their quantity, their behaviours, and their adaptation to changes. They
make decisions autonomously and they often tend to maximize their gain
and minimize their e�orts. They can be in�uenced by exogenous aspects
and often they are not conscious that they constitute a whole (the city),
because often they are not motivated by global objectives. Some of these
elements tend to cluster, producing an overlapping of spatio-temporal pat-
terns. Segregation phenomena (the tendency of individuals to form groups),
the specialization of sub-areas in productive and economic areas, gradients
of population density are basic examples of spatial patterns.

From a physical point of view, dynamics can be explained by forces; the
latter can be internal (a part of the city is acting on other parts) and ex-
ternal (exogenous aspects are acting to a part of the city). The �rst ones
spontaneously form when elements of the city organize themselves and the
second ones exist because a city is not isolated (nature constrains the evolu-
tion of the city, the exchanges with other cities). These forces traversed the
city, ensuring the maintaining, the functioning, and the individuality of the

4It is possible that these scenarios will be a�ected by the Covid-19 pandemic.
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city. They constrain the creation of a city, indicating the direction and sub-
areas where the city grows: forces, therefore, steer the creation of physical
objects over the land, becoming a fundamental mechanism of urban mor-
phogenesis. As a trace over the land, these forces produce many changes
in nature. Buildings, streets (and in general transportation and infrastruc-
ture networks), modi�cations of orography, rivers, and lakes, etc. are the
physical results of forces inside the urban system. These new physical ele-
ments (the urban fabric) also contribute to the internal dynamics and the
organization of the components of the urban system. Among these physical
elements, we will focus on street networks because they represent a major
organizational component of the urban systems. Streets are the backbone
of the city, the structural support of human activities, the physical witness
of the evolution of the urban area. Understanding street network evolution
may reveal important information about the functioning of cities and their
growth.

Street networks, and by extension urban fabric, retro-act to the constituent
elements that had produced them, driving new and evolving organizations.
The characteristics of the streets may motivate people to use the infras-
tructure. The density of buildings may in�uence the attractiveness of a
neighbourhood and that has an e�ect on economic or policy actors on their
choices. Political decisions incentivise (or not) some kind of plans which
may increase the sprawl. These are basic observations that motivate us to
consider urban fabric as the result of internal and contrasting forces that
are produced by many heterogeneous elements also in�uenced by their own
results.

Turing [285] suggested that some patterns we observe in life arise from a
biochemical dynamic of elements named morphogens. The cells would be
in�uenced by these morphogens and under this in�uence would di�erentiate
and structure themselves. The patterns that we see as the pigmentation in
animals are the re�ection of clusters and inhomogeneities of the underlin-
ing biochemical organization. Morphogens interact and move, gradients of
concentration form, and impact the way that cells structure. An evident
analogy can be observed between this vision and our thoughts about cities:
a substrate of morphogens (population, economical actors, etc.) evolves and
the organization that they (eventually) �nd, leads to the creation of new
physical elements (urban fabric); here we focus on one of them, the street
network and its morphogenesis.

These basic observations allow us to suppose that cities respect principles of
complexity theory. In many systems such as urban systems, spatial aspects
(as the distance between entities, the relative position inside the system, the
way that they are spatially arranged, etc.) of elements a�ect the manner
that they interact with others. Moreover, a system like a city is also open
because it needs to exchange with the outside to ensure its identity and
its functioning. Elements are immersed in a spatial environment, which
represents a source of energy, matter, and information for the system. These
exchanges and these external aspects a�ect the system locally, meaning that
elements are conditioned in a region of space. For example, the spatial
environment of an urban system contains information about the orography
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of the territory, natural or arti�cial constraints, in�uences of other urban
systems. The spatial environment contains organizational factors of the
system.

To simulate the pattern formation, we consider two kinds of morphogens
(activators and inhibitors). They are spatially located, they reach, self-
produce and move. Three key ingredients are required for the formation of
patterns: the positive feedback of the activator (the autocatalysis), which
results in a self-production of the activators, the negative feedback of the
inhibitors, which suppresses the growth of the activators and the di�erent
moving speeds of morphogens. In two dimensional Euclidean space the
system exhibits (under some particular circumstances) a wealthy variety of
unpredictable patterns, including stable spots, moving spots, self-replication
spots, waves, mazes, chaotic patterns, etc. The evolution of the concentra-
tion of morphogens in space over time can be simulated by the coupling of
two stabilizing dynamics: the reaction (which describes the microscopic in-
teractions, productions, degradations of those elements in a region) and the
di�usion (which describes the motion of morphogens from regions of high
concentration to regions of low concentration). As time passes, concentra-
tions are at equilibrium or develop complicate and unpredictable structures
through breaking, splitting, elongating, propagating, etc.

When a spatio-temporal pattern (stable or not) forms, elements �nd a dy-
namic equilibrium: contrasting forces reduce the tendency of morphogens
to disperse, and they cluster in a region. A dynamic vector �eld is a rep-
resentation of these forces. It is the trait d'union between the morphogens
and the network, representing the causal relations between internal dynam-
ics and emerging forms. Finally, the network retro-acts to its constitutive
components. The feedback is a mechanism that may incentivise the creation
or inhibit the form. It is the crucial aspect that breaks the direct causality
between the actions to the responses of the system, leading to the complex
behaviour of the system, unexpected trajectories and emerging properties.

Formally, the framework that we are going to expose is based on these
dynamics, as schematically described in �g. 1:
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� Morphogens interactions

A layer inspired by the cellular automata theory will simulate the
microscopic interactions and the movement of morphogens at a high
level of abstraction. The evolution of the concentration of morphogens
is inspired by the Gray-Scott system of di�erential equations.

� Emerging properties drive the form

A dynamic vector �eld, computed from the morphogens' layer, con-
straints a spatial network (graph theory gives valid support to encode
it).

� A feedback mechanism controls the form

The network became a source of events, it a�ects the morphogens.
Positive or negative feedbacks locally increase or reduce the organiza-
tion of morphogens, favouring or inhibiting the morphogenesis.

The whole system is immersed in a spatial environment. To model that, the
framework contains an environment layer, a set of values associated with a
regular grid.

Objectives

The models and the framework that we are going to expose in this work are
based on basic principles of complex theories and they aim to simulate the
morphogenesis of a speci�c class of spatial complex systems that appears
under the form of a network. This thesis attempts to tackle the modelling
problems of the morphogenesis of complex networks by considering that the
network is spatialized and located in an environment which constraints it
and it is constrained by the network. The constraints are forces. We are
aware that to reach this goal we need to try to evaluate our results. This is
based on measuring the sensibility of the model to initial parameters and
the evaluation of trajectories. As far as possible, under these aspects, we
want to reveal the e�ect of each basic mechanism.

Besides these preliminary internal evaluations, we tackle the challenge of
an external evaluation, comparing our results to real case studies. This is
a �rst attempt which must be discussed with experts of the domain. We
focus on urban systems, we observe some characteristic properties, and we
analyse the street network of France department cities via measures from
graph theory and fractal theory. Finally, we propose an application in a
real context, in order to simulate some scenarios and evaluate the e�ect of
initial parameters sets to a real urban system.

Many systems have common properties with urban systems, hence we can
investigate their formation keeping main traits in common. Motivated by
the aim to be as general as possible and led by parsimonious principles,
through this work, our focus is on common dynamics among di�erent com-
plex systems. We will describe essential mechanisms that seem to be in
common with other complex systems and we will de�ne in what way an ur-
ban system is di�erent. With our approach, we want to capture at once es-
sential morphogenic processes and analyse and validate our results. Finally,
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this approach allows us to integrate speci�c and more sophisticated mech-
anisms (related to the application) and geo-referenced information about
urban systems.

Outline

Due to the multidisciplinary aspect of our approach, it is hard to de�ne a
straight path to expose the main aspects of our work. Our choice is not
a linear document. The work is decomposed in some bricks, linked to a
few other bricks. Each of them can contain a state of the art and our
contribution; each chapter can contain more than one brick. The outline is
schematically represented on �g. 2.

We start with chapter 1, where we expose general principles of system the-
ory, in which circumstances some systems could be considered complex and
why it is important to have a focus on spatial aspects to understand how
they form. In chapter 2, we observe that the result of the organization of
systems can be represented as a network; here we expose why graph theory
is a useful tool to bring out their properties and simulates the evolution
of the form. In chapter 3, we study cities under the complex system per-
spective, and we propose some methodological methods to simulate and
measure street networks. Chapter 4 is dedicated to the study of street net-
works and why graph measure, centrality theory, and fractal theory can
outline the organizations of these systems. To this end, we analyse French
department cities and we compare their properties to six theoretical graphs.
In chapter 5, the reader �nds a chemical approach to investigate and simu-
late morphogenesis: fundamental traits of the reaction-di�usion theory are
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exposed and, inspired by Cellular Automaton theory, we present a way to
simulate and analyse emerging patterns. Chapter 6 addresses the problem
of modelling spatial systems: here we present two approaches and we make
some considerations about the strategy to conceptualize a general frame-
work. These ideas are integrated into the framework described in chapter 7:
here we summarize the main characteristics and give the way that one could
implement it. Chapter 8 shows the potentiality of our approach, proposing
how to simulate the morphogenesis of a spatial system. We investigate the
sensibility of the framework to initial parameters, the e�ect of dynamics to
the results and we compare in a �rst approach our results to French depart-
ment cities. Chapter 9 is devoted to an urban application: here we propose
how to integrate real aspects from reality in our framework and the capacity
of it to simulate di�erent scenarios. We end this study (chapter conclusion)
summarizing new knowledge that this work has produced, discussing what
seems to be interesting, and giving di�erent perspectives.
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10 Chapter 1. Morphogenesis of complex systems

"Everything is related to everything else, but near things
are more related than distant things."

Waldo Rudolph Tobler [283]

This chapter introduces the context of this work, exposing the notion of
system (section 1.1) and under which conditions a system shows a complex
behaviour. It then summarizes reasons why spatial aspects are crucial in
some systems (section 1.2), in what manner these aspects a�ect the way
that elements interact and how they organize themselves. The chapter end
exposing in which way complex system forms itself (section 1.3).

1.1 Systems

Complex system
↓

Spatial complex system

Many natural and arti�cial phenomena are due to distinct and interacting
elements (hereafter also called parts or entities). These elements can be
atoms, people, natural or arti�cial objects, galaxies, etc. In these cases,
we refer to chemical systems, social systems, biological systems, systems of
galaxies, etc.

"A system can be de�ned as a set of elements standing in
interrelations. Interrelation means that elements p, stand
in relations R, so that the behaviour of an element p in R
is di�erent from its behaviour in another relation R′. If
the behaviours in R and R′ are not di�erent, there is no
interaction, and the elements behave independently with
respect to the relations R and R′."

Ludwig von Bertalan�y [42]

The concept of a system is already present in the work of Sadi Carnot [68]
when he laid the foundations of thermodynamics, but the idea to study
elements and their interactions as a system was explored in the 1940s in bi-
ology (by Ludwig von Bertalan�y [42]), in information theory (by Norbert
Wiener [299] and Claude Shannon [264]), and in psychology (by William
Ross Ashby [14]). System theory is a way to study an object in terms of the
relationships and interdependencies among its parts. From these seminal
works, the principles of system theory have been de�ned and thanks to an
intense epistemological work [72, 200, 247] (see [214] and references therein)
the notion of complexity was integrated. System theory is also an interdis-
ciplinary approach, which would give a global framework for explaining
phenomena in a wide range of �elds of knowledge.

Di�erent de�nitions of system exist and no one is globally agreed upon; it
seemed interesting the von Bertalan�y's point of view, because he focus on
the fact that a system is a set of elements in relation/interaction. Elements
exchange, interact and behave in accordance to a subset of the system. In-
teraction is a kind of action that occurs as two or more objects have an e�ect
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upon one another1, establishing a relation in a given time period. Studying
how parts interact is the fundamental key to understand the behaviour of
the system because, under some conditions, parts organize themselves and
the system displays properties, regularities, forms and order. Elements of a
system may have similar behaviour and similar properties or not in a given
time period: in these cases, the system is composed of di�erent kinds of
elements, with di�erent characteristics or behaviours, hence a di�erent way
to a�ect other elements. For instance, a colony of ants is a biological system
where some individuals have social role, size and behaviour di�erent from
others [245]. In such a system we have a specialization: one queen, some re-
productive males and many workers. In some �sh shoaling, at a given time,
a limited number of individuals is in possession of particular information:
they can lead the migration of a large number of individuals [242]. Rather
than oppose, di�erent kinds of individuals combine themselves to produce
a collective behaviour [271].

Many systems co-exist at the same time: if we consider a system, we distin-
guish it and its environment. This last represent "l'ensemble des éléments
n'appartenant pas au système dont l'état est susceptible d'a�ecter (ou d'être
a�ecté par) le système"2(Le Moigne [175]). Many biological, natural or
physic systems exchange information, energy, and matter with the environ-
ment. For living systems, it is a condition to stay alive (for instance an
embryo which absorbs matter from its amniotic liquid). In a narrow sense,
it is also di�cult to conceive a system that never has exchanges with the
environment in which it is de�ned; in other words, a system is rarely iso-
lated3. Open system refers to a system that interacts with its environment,
whereas closed systems do not. A closed system is considered to be isolated,
in which no exchanges are required to ensure its existence. In the following,
we refer to systems which exchange energy, matter or informations with
their environments.

1.1.1 From systems to complex systems

There exist some systems where their characteristics cannot be predicted
only by the characteristics and behaviour of their elements. Moreover, a
focus on the interactions is not enough to understand how these character-
istics emerge. In other words, the characteristics of the system cannot be
reduced to the juxtaposition of the characteristics of each element and their
interactions considered in isolation. In many cases, to understand a system
we must consider it as a whole.

A complex4 system is characterized by some properties:

1www.en.wikipedia.org/wiki/Interaction, visited on 24/07/2020.
2"The set of elements which are not contained in the system. The state of these

elements could impact (or could be impacted) by the system."
3No experience has been reported of an ideally isolated system. The only example

known (supposed) is the universe which is considered for the moment as an isolated
system. This remains a postulated to be demonstrated.

4The term complex is ubiquitous in many research �elds and di�erent meanings in
di�erent contexts. For instance, in information theory, the complexity of description
[164](the minimal amount of computational resources needed to describe a given ob-
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� The high cardinality of the set of (possibly heterogeneous) elements
and the consistent number of interactions between them.

� Local relations/interactions that make the system decentralized (there
is no global control or global information).

� A continuous �ow of energy, information, or matter from the environ-
ment contributes to the functioning of the system and its organization.
The stop of the �ow may produce the disintegration of the system.

� The emergence of some macroscopic properties, which are not char-
acteristic of elements but of the system.

� Emergent properties feed back to elements.

� The system is in a state and it tries to maintain its state. Depending
on the disturbances, it can leave its state to join another. The state
is generally close to a critical point.

� Elements could eventually evolve too, changing their behaviour or
their characteristics. That contributes to the adaptability of the sys-
tems.

Some authors propose other properties. De Rosnay [247] enlarge the com-
plex system notion by a theological aspect: "un système est un ensem-
ble d'éléments en interaction dynamique organisés en fonction d'un but"5.
Maturana and Varela [195] emphasize the need for the formation of a mem-
brane, that de�nes an outside and an inside where the system produces
itself6. Per Bak [17] claims that systems are in a critical state, which can
suddenly evolve and fall inside new states.

The coexistence of these properties contributes to the emergence of unex-
pected properties, forms, organizations, behaviours, degrees of adaptation,
etc. The amount of information associated with the global features of the
system is greater than the sum of the information associated with each of
the constituents7. The approaches based on complex systemic help to pick
up phenomena by avoiding simpli�cations which reduce and decompose the
knowledge in a set of dissociated elements, hiding the connection between
them [202]. Following this, the study of physical phenomena has undergone
a deep transformation that can be considered as a paradigm shift8. To bet-
ter understand the notion of complexity we can observe in what a complex
system is di�erent from other kinds of systems.

ject). In computer science, computational complexity measures how many operations
are needed to perform some computational task. In this dissertation, we refer to the
complexity of systems.

5A system is a set of interacting elements organized to achieve a goal.
6The formation of a membrane does not mean that the system becomes close. It still

exchanges with the environment through the membrane.
7Aristotle.
8Kuhn [167] says "By paradigms we mean the whole body of the universally recognized

scienti�c accomplishments, which have, for some time, provided a model of the set of
problems and solutions that are acceptable to those who work within a given research
�eld". A paradigm shift indicates a fundamental change in the approach to study a
phenomenon (in the concepts and in experimental practices).
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A complex system does not mean a complicated system. A complicated
system refers merely to systems made up of many interrelated parts. These
relations can be not easy to study, but each of them can be studied and
explained without considering the whole system [200]. An aeroplane is a
complicated system. It is composed of a large number of components and a
large number of these parts need to control a single aspect of an aeroplane.
However, the whole aeroplane is the simple assembly of its parts.

It is not easy to make distinction between chaos and complexity. Chaotic
systems are deterministic system where trajectories over the time diverge
substantially. Chaos models consider few (digital) variables and study their
evolution; from this, some characteristics behaviours are deduced. There-
fore chaos does not deal with an environment and it is concerned with the
dynamics of few parameters values while complex systems concern in the
same time the structure and the dynamic of systems and the interactions
which compose them, including their environment. Roughly, chaotic models
investigate closed systems rather than complex system models investigate
open systems. Nevertheless di�erent elements of interactions between the
system and the environment can be sometimes included in chaos models.

Complexity is not the opposite of simplicity: in many cases, behind non-
evident and organized events there are simple mechanisms of interactions.
In a complex system, elements may interact in a simple way, but they yield
to dynamics that are di�cult to understand.

Organizations and structures

The notion of the system refers to the whole, the functioning of all elements.
The notion of interaction refers to the connection between elements. The
notion of the organization refers to the way that elements are related to the
whole, the way that the collection of elements becomes a system.

"L'organisation est la propriété d'un système capable à la
fois de maintenir et de se maintenir, et de relier et de se
relier, et de produire et de se produire"9

Edgar Morin [201]

The organization is the result of interactions between entities that generate
and maintain order inside the system. It binds elements in relationships,
ensures the autonomy of the system, reinforces the condition of existence of
the system, making an island of order in disorder. Morin [200] has argued
that a more accurate and inclusive term is self-eco-re-organization:

� self : points to the capability of the system to self-regulate, it ad-
justs its properties and maintains an organizational persistence (the
endogenous character of the system). Self-organization implies a high

9Organization is the attribute of a system that is at once capable of maintenance and
self-maintenance, of interconnecting di�erent elements as well as holding itself together
and of producing and producing itself.
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degree of decentralization of the system: there is no global control
and the system autonomously adapts itself if some conditions change.
Single elements neither need explicit organizational prescription nor
have access to general information on the organizational design ruling
the system. The self-organization can be considered as the opposite
of a hierarchically designed organization.

� eco: points to the necessity of exchanges with the environment (the
transformation of the system due to the impact of exogenous aspects).
We cannot conceive the autonomy of the system without considering
the environment in which the system exists. The system needs a de-
pendency on the external to ensure its independence. An intense de-
pendency of the system to its environment is observed in such systems
named dissipative [122], where the formation of some organizations in
the system is ensured by the consumption/dispersion of energy or
matter. The state of the system is maintained by these exchanges
which allow it to form in particular organized structures. The disor-
der is evacuated outside the system and the energy, the matter, and
the information are consumed [232].

� re: indicates the ongoing dynamic, the regenerative nature of the
organization (the continuous transformation of the system). The most
popular example comes from nature: a living system is composed of
billions of cells which form the organism. During its life, the system
renews constantly its cells and the organism evolves.

The organization expresses at the same time the action (to organize) and
the result (an organization). Organization and system are connected, one
does not have sense without the other10. The essence of the organization
of its parts is the structure of the system, which ensures the identity of
the system. If the organization of a system changes, it loses its identity, it
disintegrates.

The structure is "the actual components [elements] plus the actual relations
that take place between them while realizing it as a particular composite
unity [system] characterized by a particular organization" (Maturana [196]).
"Une structure qui ne serait plus entendu comme un invariant et moins en-
core comme une loi expliquant le comportement du système"11 (Le Moigne
[176]). The structure is the manner in which the system is actually made
by elements: therefore the system exists only if the identity of the system
is ensured by the organization. The three actions (maintain-interconnect-
produce), which coexist and are interdependent, de�ne the three main fea-
tures of the organization (eco-self-re). These latter are related, and their
coexistence begets the system. The structure of a system is more static
than its organization: it evolves in the time but some aspects, typical of the
corresponding system, not change. The structure of a system can change

10"L'organisation, la chose organisée, le produit de cette organisation et l'organisant
sont inséparables" (the organization and its result, the organized system, are indivisible,
Poul Valéry [289])

11"The organization is either not considered as invariant or general law of the system."
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without it losing its identity if the organization is ensured; if the organiza-
tion of a system is not conserved through its structural changes, the system
disintegrates. The conservation of the organization is the fundamental con-
dition to ensure the existence of the system over time.

To characterize these concepts we point out the relations between organiza-
tions, structure, and time. Two events in relations (the cause and the e�ect,
the interaction, and the emergence) can be considered classi�ed in relation
to time. If the e�ect and the cause are located in same time scale12, the
e�ect is synchronic to the cause; otherwise, it is diachronic. The �rst one is
often related to the organization and how elements behave and interact with
each other and with the environment. The second one can be considered as
a relation that has an e�ect on the structural changes of the system. Let us
show an example of from urban context. Traditionally, a city is composed
of many individuals that move, interact, exchange with nature, and try to
accommodate their personal needs. These actions can be considered on the
same time scale and they are the basis of the organization of the city. In a
long time period, these actions are having an e�ect on structural aspects of
the city too. The manner that people behave a�ects physical elements of the
city, which conditions the accessibility of sub-areas, the formation of new
lifestyles, the requirement of residential areas, the specializations of neigh-
bours, and the segregation of communities. These changes are diachronic
to the causes, produce structural changes13 on the system. Roughly, syn-
chronic e�ects entail how elements are related and diachronic e�ects entail
how systems form.

1.1.2 Feedback

Roughly, feedback is a circular process of in�uence where outputs have an
e�ect on inputs. This mechanism plays a major role in the functioning of
a complex system. Systemic loops can act in di�erent ways, depending on
the nature of the feedback:

� Positive feedback

It is a catalysis function that increases some properties, creating a
cascade of change in a direction. It ampli�es the deviations from the
stable state, the system is self-powered. In broad outline, A produces
more of B which in turn produces more of A. Positive feedback tends
to lead to instability and produces growth, oscillation, or chaotic be-
haviours. Positive feedback can reinforce an initial change in a system
(due to the environment or a bifurcation) in the same direction as the
initial deviation. A good example of positive feedback is blood clot-
ting. Once a vessel is damaged, platelets start to cling to the injured
site and release chemical substances that attract more platelets. The
mechanism continues until a clot is formed.

12Time scale cannot be detached from the observer.
13Which also a�ects the way that people behave (the e�ects feed back to the organi-

zation).
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� Negative feedback

It is a stabilizing function which decreases some properties. While
positive feedbacks increase the phenomena, negative feedbacks limit
it, providing opposite reactions to the actions. Negative feedback
tends to boost equilibrium and reduces the e�ects of perturbations.
With negative feedback, the system tends to a stable state, because
the internal mechanism that produces instabilities is inhibited by the
feedback. Mammalian regulation of blood pressure is an example.
When the pressure increases, signals are sent from the blood vessels
to the brain, which in turn sends signals to the heart and the heart
rate slows up. Similarly, when the pressure drops, the brain sends
signals to the heart and the heart rate speeds up. The mechanism
ensures constant pressure in the vascular system. It actives when the
pressure is out of the optimal range.

Positive and negative feedbacks must not be considered as "good" or "bad"
e�ects. They should be considered as mechanisms which incentivize or in-
hibit processes. These mechanisms are a necessary condition for a complex
behaviour but not su�cient14. Positive feedbacks can work in the opposite
direction of negative ones, regulating together the system, and leading to
new organizations. Large scale structures can diachronically emerge from
small-scale synchronic interactions. These structures then in�uence the
behaviour of elements via cross-scale feedbacks. Elements create their en-
vironment and then they are in turn in�uenced by it. In urban context,
culture, religion and social norms, created by humans, in turn in�uence
humans. These emerging properties retro-acts to societies and cities. The
dynamic is a cross-scale feedback.

1.1.3 Adaptability

In many cases a system shows characteristic of adaptability. Adaptability
refers to the ability of systems to maintain their organization when some-
thing changes. Thus, the adaptability of the system is its capacity to main-
tain its global behaviour under an exogenous (for instance, the presence of
disturbances from the environment) or internal (for instance, sudden evo-
lution of the behaviour of some elements) change. In particular, a complex
adaptative system is one whose collective behaviour exhibits adaptation and
elements learn as they interact [144].

Disturbances can even make the system more robust, by shifting its trajec-
tories into a new attraction basin. In that sense, a system is intrinsically
adaptive: it maintains its basic organization in spite of continuous changes
in its environment [145]. The adaptability is a property of many biological
[160] and arti�cial [193] systems. Two concepts come from this capacity.

14For instance, the �y-ball governor is a component of many mechanical systems. it
controls the speed of an engine. Two balls are attached to a frame and as their rotational
speed increases, they swing outward and close the inlet valve for steam. That causes
the engine to slow down. When the rotational speed decreases, they open the inlet valve
of steam. This negative feedback mechanism does not produce self-organization, it just
controls the speed of rotation of an engine.
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The �rst is the robustness, that indicate the capacity of the system to ac-
complish its task and work after the failure of some elements. The second
is named the resilience of the system, de�ned as the capacity to conserve
its functions after some changes. For example, a bird �ock is robust be-
cause even if some of them die during migration, it is yet able to go to its
destination. The same system is resilient, if it disperses at �rst time and
reassembles after it is attacked by a falcon.

1.1.4 Emergences

There exist a relation between micro-dynamics (interactions) and macro-
outcomes (emergence). An emergence (from Latin emergo, to arise) is a
novel think of the system: compared to features of each part of the system,
an emergence gives a novel and not trivial15 information about the system
[200]. An emergent system property arises from interactions between ele-
ments of the system; elements do not themselves display this new system
property and the property cannot merely be deduced by examining elements
and their behaviours [247].

De�ne the term emergence is not so simple because it is a term used in
di�erent ways both in science and philosophy.

De�nition 1:

Emergence
Let:

� A be a set of interacting entities whose behaviours are de�ned
by a theory or a model T ,

� B be a global phenomenon linked to all or a subset of the entities.

If the phenomenon cannot be described by T or composition of T and
requires another theory or model T ′, then there is emergence.

There are di�erent conceptions of what counts as emergent depending on
how novelty is understood in the manner that it is related to the function-
ing of the system [41]. Chalmers [73] drew the distinction between weak
and strong emergence. This distinction can be incorporated into the dis-
tinction between epistemological and ontological emergence proposed by
O'Connor and Wong [213]. Both kinds of emergence are important because
they contribute to the understanding of the system. The weak (epistemic)
emergence only exists in the eyes of the outside observer. It is related to
his observation, the theory, or the model, and it consists simply of changing
the level of the observer's gaze from the parts to the whole. Meanwhile, the
strong (ontological) emergence undergoes the observer's perception. The
global phenomenon feeds back on the components of the assembly or the
observed subset. Chalmers says to us that strong emergence has radical
consequences, a�ecting the whole system and the behaviour of elements.
The global phenomenon feeds back on the components of the assembly or
the observed subset.

15A piece of not trivial information is one that cannot be derived with di�erent axioms
(de�ned a priori).
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Summary 1:

Complex systems
In a complex system, a large number of lower ordered elements orga-
nizes and displays a high degree of order. A complex system cannot
be divided by simply examining its parts because the elements' col-
lective behavior is not a juxtaposition of their individual behaviours.
While the organization is seen as a dynamic capacity of the system
to exist and evolve, and the structure is seen as the diachronic result
of these dynamics, the emergence can be understood as a global fea-
ture of a system arising from local interactions between elements and
this last with the environment. We do not take emergence as a given
unexplainable property of the system, but we take them as something
which arises from the system, deserves an explanation and gives an
explanation about the system.

How common properties emerge from a mass of interactions between het-
erogeneous elements poses di�erent problems: how can we understand how
those elements in�uence others? How many elements contribute to the def-
inition o characteristics of each element? To try to answer these questions
an attempt in our context to spatial aspects may be useful.

1.2 Spatial systems

Complex system
↓

Spatial complex system
↓ ↓

morphogenesis urban systems

Studying a phenomenon implies building a representation of a part of the
world that is important for our understanding. Studying a system means
collecting and encoding in formalism all important information about ele-
ments, relations, and the environment. The selection of this information
and the correct consideration of them is crucial to improve our knowledge.
Spatial information is often useful to characterize systems.

Euclidean space of dimension d is a space in which postulates and axioms of
Euclidean geometry apply. Let be R the set of real numbers, the Cartesian
product Rd, d = 1, 2, 316 de�nes the point as the tuple X = (x1, . . . , xd) of
d coordinates. In 2 dimensional Euclidean space, the distance dist(X1, X2)
between two tuples of coordinates X1 and X2 is given by the distance for-
mula based on the Pythagorean theorem. Here we focus on Euclidean space
and hereafter the word space always refers to it.

Spatial aspects are ubiquitous in many human and natural phenomena and
they are a pillar into geographic studies whose aim explains reality, taking
into account the spatial arrangement of objects, phenomena, individuals,
etc. [133]. In archaeology, they are helpful to understand the historical evo-
lution of human settlements: introducing the spatial analysis, researchers
improve knowledge not only considering the properties of artefacts but also
investigating their spatial arrangements [6]. In sociology, human behaviour
was typically observed disregarding spatial aspects. However, the Chicago
ecological [138] school proposes to overcome this lack, investigating human
behaviour from a spatial perspective. Human relationships are often af-
fected by spatial constraints and they are a function of distance: the near-

16Hilbert space generalizes the Euclidean space. It extends principle of Euclidean space
for an in�nite number of dimensions.
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ness incentives the formation of social relations and reinforces human rela-
tionships [178]. In economical studies, location theory is based on the idea
that economic actors (for example, retail activities) are arranged in space
following some optimal-distribution laws, in accordance with the metric dis-
tance. The ice-cream seller problem (formally de�ned in the game theory
by the Hotelling model [148]) shows the importance of the distance be-
tween these actors to understand why they choose their location. Indeed,
in anisotropic space, two antagonist entities prefer to stay close in order
to maximize their economic basins. Spatial aspects in�uence trade in eco-
nomic [150], structures in many transportation systems (streets, cargo ship
systems and grid networks) [23] and spread in contagious diseases [206].
Proximity in�uences electrical activity in human brain [62] and resistance
to external forces in granular materials [216] . Consider space and spatial
information (like the relative position of elements and their metric distance)
are therefore crucial to understand several systems.

1.2.1 Spatial elements

Spatial systems are so named because the position of elements a�ects their
likelihood of interacting. Basically, the relations between a system and
Euclidean space is de�ned through characteristics of elements.

De�nition 2:

spatial element
Each element within a spatial system are associated with a tuple of
coordinates X ∈ Rd; in this manner, the element is spatially located.
The location of the element may vary over time.

A spatial con�guration is de�ned by a space, in our case Euclidean space, a
set of spatial objects with their positions and their relationships at a given
time. The way that a spatial system exchanges with its environment may
be also related to spatial aspects. It is de�ned by a vector space of real num-
bers, with a scalar product. That makes possible to measure distances and
angles. That means information, matter, and energy are locally exchanged
with the system in a limited region of space. The same external aspects can
be related to space or not: for instance, the temperature of the environment
of a living system may be constant or in gradient. The temperature a�ects
locally the system.

1.2.2 Spatial interactions

A spatial interaction is an action between at least two spatial elements of
a system su�ciently close to interact. Spatial interactions depend on the
relative location and/or the arrangement of them. Interactions are various
in the manner and in time: competition for limited space, segregation, the
propensity to aggregate etc.

The neighbourhood of an element p is the set of elements N(p) which inter-
act with it. In a spatial system, a simple kind of neighbourhood is based on
distance: N(p) = {q : dist(p, q) < δ}. Elements interact only with elements
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Figure 1.1
Spatial interactions. A bird
�ock (left) and a �sh school
(right). Source: publicly
available on the web.

in its neighbourhood and the interaction depends on geometric aspects (i.e.
the distance and the visibility).

The evolution of a �ock bird is a basic example that helps us to explain those
interactions. A �ock bird model concerning decentralized the movement of
individuals [243]. In this model, the collective behaviour of the system is
the result of three simple spatial rules that regulate the movement of each
element:

� Separation: to prevent any collisions, individuals move away from
other elements.

� Alignment: individuals align their direction to the global direction
of their neighbours.

� Cohesion: individuals move toward of the barycentre of its neigh-
bourhood.

Similar rules can also explain the collective behaviour of �sh schools [271].
This example illustrates that the spatial con�guration (distance between
elements and arrangement of neighbourhood of each element) of the system
a�ects the behaviour of individuals within the system. An emergent global
movement of the whole system emerges (�g. 1.1).

1.2.3 Organizations in spatial complex systems

Extensive properties increase with the size of their supporting elements,
while intensive properties are independent of the size. For instance, in
an urban system, the rent (intensive property) of household (elements) is
spatially located and in a region of space, we observe the average rent
(extensive property) that could de�ne a spatial pattern (spatial emergence).

In a spatial system, the order appears under di�erent kinds of organiza-
tion; one of them is the tendency of elements to dynamically arranges with
su�cient regularity, forming spatial patterns. At a speci�c moment, such
repeated properties may refer to shape, orientation, connectedness, density,
or distribution. Regular geometries, gradients of concentrations, symme-
tries, etc. are tangible evidence that the system is spatially organized.
These regularities can also refer to properties of entities: the formation of
di�erent areas in which these properties are located is one of the reasons
why a system is able to ensure its persistence. We think for example of the
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specialization of a living system such as an organ. Patterns appear during
the formation of bacteria veil, snow�akes, and animal coats (�g. 1.2).

Many system are composed of elements that have approximately similar
behaviour and characteristic. However, it appears that those elements do
not have the same importance into the system: some of them are more
important than others, and the elements are organized in a hierarchical
manner17. Hierarchy is not an intrinsic characteristic of the elements, but a
result, an emerging property. Hence the hierarchical organization is a spon-
taneous manner of elements to organize themselves. Leaf systems (where
the midrib of leaves connects to veins which in turn are connected to smaller
veins and so on, �g. 1.3, left) and street networks (where we can observe an

17In this work, the term hierarchy has taken on a generalized meaning, divorced from
its original meaning of a vertical authority structure

Figure 1.2
Spatial patterns in nature.
Colonies of bacteria (top,
source: [35]), the skin of
the clown�sh amphiprion
percula (middle left) and the
panthera onca (middle right,
source: publicly available
on the web) and snow�akes
photographed by Wilson A.
Bentley (bottom, source:
www.snow�akebentley.com)
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Figure 1.3
Hierarchical and scale-free or-
ganization. Hierarchical or-
ganization of venation of
a dicotyledon Gloeospermum
leaf, arranged in a network-
like way (left, source [49])
and scale-invariance organi-
zation of the broccolo ro-
manesco (right, source: pub-
licly available on the web).

inequality of elements to capture main transportation �ow, see chapters 3
and 4) are examples. This inequality is also important in the functioning
of the system because characterizes the way that it evolves and the manner
that it responds to external disturbance (e.g. in a city, issues on the funda-
mental transportations axis produces more e�ects on the transport that in
less important streets).

In a system, the scale-invariance organization describes situations where the
essential structure, properties and/or dynamics remain unchanged (i.e. in-
variant) when considering the system at di�erent scale18. This means that
a property holds regardless of the scale; this also explains why power law
appears in this circumstance19. In a spatial system, the scale-invariance
organization can manifest in di�erent ways; one of them is the manner that
the system �lls space. The scale invariance often results in self-similarity
(anisotropy scale invariance) and self-a�nity (scale invariance with domi-
nant directions) of their parts or a subpart of the system. We will detailed
these aspects in the next (section 4.4.1). Self-similar properties manifest
themselves as a morphogenetic mechanism of some spatial systems (e.g.
the broccolo romanesco, �g. 1.3, right): repetitive and scaled structures
naturally appear as these systems grow.

Summary 2:

spatial complex system
Spatial complex systems refer to complex system where spatial aspects
are crucial into the de�nition of relations/interactions between its con-
stitutive elements and the exchanges with its environment. The way
that elements organize themselves can be observed via the formation
of spatial patterns, the repetitive of same properties at di�erent scales
and the di�erent importance that a part of the system has compared
to the rest of the system.

18The scale is a set of numbers, amounts, words, etc., used to measure or compare
levels of something; the set could refer to temporal, topological, spatial measurements.

19We must point out that in real situations, the invariance hardly covers all scales. We
will discuss that in section 4.4.
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1.3 Complex systems morphogenesis

"Si la question de la priorité de l'÷uf sur la poule ou de la
poule sur l'÷uf vous embarrasse, c'est que vous supposez
que les animaux ont été originairement ce qu'ils sont à
présent"20

Denis Diderot

spatial complex system
↓

morphogenesis
↓

modelling
morphogenesis

Historically, the �rst declination of the term form de�nes it as the geometry
of contour of a physical object, located in space, like a silhouette observable
from an external point of view. The form is "the shape or appearance of
something"21 and it is related to the observer. Under this point of view,
there is an intrinsic dichotomy between how the object appears and how
the object functioning. The separation between shape and content cannot
allow investigating how the object forms. This de�nition is not helpful to
investigate the morphogenesis, the combination of processes that provides
the formation of the object.

The work of D'Arcy Thompson can be considered as an early tentative
to overcome this dichotomy. In On Growth and Form [91], collecting and
comparing a great amount of vegetal, animal, and immaterial shapes, he
suggests that bio-mathematical principles de�ne shapes in nature (�g. 1.4).
Analogies between animals, common features of plants, recurrent geometries
in rocks may be expressed in a rigorous geometrical way. He found the
notion of species in a geometrical manner, suggesting that some structural
aspects are invariant during the evolution of forms. Thompson pointed out
(in biology, but he also suggested in nonliving world) that the form is not a
static thing but arises from growth: "Everything is what it is because it got
that way".

An important contribution was given by the Gestalt22 school [162]. it pro-
vided a new de�nition of form, de�ning it as the physical result of internal
relationships between parts of the object. Applied to system theory, the
form is the combination of the shape and the organization. Hence, morpho-
genetic processes (�g. 1.5) are not a simple collection of mechanisms that

20"You are embarrassed about the chicken or the egg dilemma because you suppose that
animals are always the same."

21Source: online Cambridge Dictionary (www.dictionary.cambridge.org), visited on
10/07/2020.

22The German term gestalt means form.

Figure 1.4
Morphogenesis according to
D'arcy. Deforming the initial
form of a Scaroid �sh (left)
we can obtain a Pomacanthus
(right). Source [91]
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Figure 1.5
Schematic illustration of the
cell condensation process
shows the growth of a
cartilage. Cells aggregate
initially into a central focus
(left). Development of
the cartilaginous elements
restrict cell recruitment
to the distal end of the
condensation (centre). When
conditions are appropriate
the aggregation undergoes a
Y-bifurcation (right). Source
[266].

de�ne the shape of the system, they are the constitutive dynamics that
ensure the being of the system.

The notion of form resumes fundamental aspects of a system. Studying
how a system form means studying how constitutive elements are related,
how they organize themselves, exploring how internal mechanisms led to
the formation of its structural proprieties and the shape.

1.3.1 Forms and feedback

As said before, feedbacks are crucial to the functioning of systems and it
cannot be disregarded during its formation. The basic distinction between
positive and negative feedback acts into the morphogenetic process. Posi-
tive feedback destabilizing the system, applying an e�ect within the system.
When the e�ect concerns the size of the system, positive feedbacks foster the
growth. Conversely, negative feedback stabilizes the system, reducing an ef-
fect with the system. The system tends to stabilizing its size or destroying
its form. Both processes coexist in a complex system and the dominance
of one of them produces the formation or the stabilization/disintegration
of structured forms. When the system is dominated by positive feedbacks,
we have morphogenesis, literally the creation of the system's current form.
Otherwise, the negative feedbacks are more relevant than positive ones and
we have morphostasis, literally the maintain of the system's current form.
The coexistence of these antagonist mechanisms produces hierarchies, spe-
cializes a part of the system, structures, and heterogeneities, characterizing
the form of the system. In chapter 5 we will expose how the formation of
patterns in a reaction-di�usion system is a good example of these contrast-
ing processes.

When we consider the time, e�ects can be synchronic or diachronic. For
the �rst one, we are interested in a given moment of time and the e�ect
of the process on the self-organization and the form. For the second, we
analyse the evolution through time. Depending on the scale, the e�ects are
not instantaneous, but over a period of time. Urban sprawl is an example
of a diachronic e�ect. New lifestyles and the massive increment of private
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mobility requests have produced since the 50s the formation of sparse and
discontinuous suburbs. To connect these areas, streets are built and cities
become more and more adapt to the car mobility that pedestrian and public
mobility. These forms of urbanization retro-acts, incrementing the tendency
of people to prefer private transport. At the individual level, the process is
synchronic.

1.3.2 Forms and equilibriums

The essence of the notion of equilibrium is twofold. First, the concept of
equilibrium is relative because it depends on the time and on the scale
of observation. A system could appear stable at a macro-scale (liquid in
a glass) and unstable at the micro-scale (molecules of the liquid are in
agitation). The body of a child does not change in a day but at the end of
20 years, the body is that of an adult. Second, depending on the system
considered, di�erent kinds of equilibrium could co-exist (i.e. we have a
chemical equilibrium, a physical equilibrium, a hydro-thermic equilibrium).
A system can reach more than one kind of equilibrium. For instance, a cell
in a hypertonic solution could be in a quiescent state and exchanges matter
with the environment via an osmosis process.

Claim that a system is in equilibrium is a delicate task. For our purposes,
we make a basic distinction:

� At equilibrium

Stable and resilient forms. For this kind of system at least one kind
of equilibrium, at a �xed time-space scale is reached. Often, the form
is di�cult to perturb because a feedbacks lead the system to a mor-
phostasis.

� Out of equilibrium23

Those forms have not yet reached equilibrium and are still evolv-
ing. Once equilibrium is reached, elements can still be renewed or
exchanged [86].

� Far from equilibrium

Local equilibria are in a critical state, the system suddenly evolves
and falls (by bifurcation) in a new state [17, 171, 293].

1.3.3 Forms and forces

As we said above, a system exchanges with the environment: a �ow of en-
ergy goes into the system, the system consuming inputs, forming organized
forms. Internal forces are activated by these dynamics; these forces lead the
forms.

The Rayleigh�Bénard convection [36] is an example (�g. 1.6). We have a
thin layer of liquid24. At the beginning, the top and the bottom plane have

23also named not yet at equilibrium.
24The height of the layer is small compared to the surface.
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Figure 1.6
The Rayleigh-Bérnard exper-
iment. The schematic repre-
sentation of atoms' �ow (left)
and the spontaneous forma-
tion of hexagonal patterns
in silicone oil (right, source:
[166]).

Figure 1.7
The Chladni's experiment
and some representative pat-
terns. Source: publicly avail-
able on the web.

the same temperature, the system tends toward the thermal equilibrium.
The layer is exposed to a gradient of temperature: on one face the tem-
perature is higher than the other face. The cool liquid at the surface tries
to sink to the heated side and vice-versa. These two opposite movements
cannot take place at the same time in the same region, a form of self coordi-
nation spontaneously arise. As moved by a self-regulated vector �eld, �ows
of ascendant and descendent atoms move. Regular hexagonal cells appear
on both face of the layer and disappear when the gradient of temperature
expires.

The Chladni experiment [77] is another good example of forces that governs
morphogenesis. In 1787, he found that if an edge of a metal plate, covered by
�ne sand, is bowed with a violin bow, the powder gathers into geometrical
forms (�g. 1.7). The plate is crossed by a series of contractions, dilatations,
and oscillations which impact the position of grains as a vector �eld. The
formation of patterns depends on the vibration of the plate: the intensity
and the frequency of the vibrations govern the spatial organization of the
sand grains.

The last two examples show that the formation of forms can be governed
by the internal or exogenous forces. Elements of the system �nd a new
equilibrium (far from equilibrium for the �rst example, at equilibrium for
the second).



1.3. Complex systems morphogenesis 27

Figure 1.8
The Chladni's experiment
performed on the bottom of a
violin. Source: publicly avail-
able on the web.

Figure 1.9
The formation of ant gal-
leries. Source: [61]

1.3.4 Forms and environment

In some cases the environment represents a physical constraint for the for-
mation of the system: the location of obstacles impacts the ants trails [221],
the orography is a constraint for cities (section 3.2), the irregular charac-
teristics of the soil impact the branching of plant roots. Spatial constraints
a�ect the organizations of such systems; it is not the cause of the genesis of
forms but it is able to impact the residual form. Figure 1.8 depicts that re-
sulting forms from the Chladni experiment (see section 1.3.3) are impacted
by the geometry of the surface.

The environment can be modi�ed by the system. An ant nest is an intricate
piece of architecture with a maze of interconnected passages. During the
creation of galleries, there is no central control, the form emerges as a result
of local and decentralized interactions of ants. The authors in [61] disperse
200 Messor sancta ants around a sand disk and observe the formation of
several branched and converging galleries (�g. 1.9). The organization of
ants impacts the environment: as the negative of the organization of the
system, the environment evolves as an intricate series of galleries. A similar
process could be observed in urban systems, because people modify the land
and build cities. We detailed that in chapter 3.

Summary 3:

morphogenesis
To understand the form of a system we must investigate its morpho-
genetic mechanisms. Forms depend on the equilibrium state at which
the system is. It can be guided by internal and/or external forces
and tend to adapt to internal and/or external requirements. A system
and its environment are interwoven, therefore the morphogenesis of
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the system also depends on exogenous factors. Feedback mechanisms
increase and maintain the order and the tail of the system, incentivise
its constitution, lead the system to new organizations, or destroy the
system.
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"Confusing a model with reality would be like going to a
restaurant and eat the menu"

Arthur Bloch1

The previous chapter gives a general description of complex systems, the
role of spatial aspects in some of them, and how these last in�uence the
morphogenesis. Many complex systems are structured as networks. Com-
plex network research represent the intersection between complexity theory
and networks.

The chapter starts with an overview an overview of the systemic approach,
model and simulation (section 2.1). Then we point out that for a speci�c
class of networks (called spatial network), spatial aspects play a fundamen-
tal role into the de�nition of their properties and their behaviour. A focus
on these aspects is required to study their morphogenetic processes. To
this end, we introduce some notions from the graph theory, a pillar of dis-
crete mathematics (section 2.2). We show how to consider notions of space
and time in a graph, some speci�c characteristics of graphs embedded in a
plane. We end this chapter with a review of geometrical graph generators
and empirical observations in real spatial networks (section 2.3).

2.1 Models and simulations

morphogenesis
↓

models and simulations
↓ ↓ ↓

networks modelling chemical
urban systems morphogenesis

The di�culty to understand a lot of systems and the incapacity to decom-
pose the behaviours in their essential mechanisms had imposed an episte-
mological shift. The di�culty is not just in the formalization of the system.
It is also in the scienti�c approach: to encompass the complexity, we need
to shift from an approach that avoids the ambiguity, contradiction, and
inaccuracies to move forward integration of incertitude, chaos, and fuzzy.
From the analytic (that aim to completely control phenomena, measuring
all aspects and reduces it in a few fundamental parts) to the systemic ap-
proach (which is based on the incapacity to understand the system as the
sum of information). The systemic approach does not abandon fundamen-
tal principles of science; broking a part of Descartes' scienti�c method2, it
proposes that a system must be best understood in a whole contest, rather
than in isolation [173].

According to Morin [202], to understand the complexity we need to replace:

� the principle of reduction (that consists of knowing elements from
only the knowledge of their characteristics) by the distinction principle
(that conceives the relation between the whole and the elements).

� the principle of disjunction (that consists of isolating and separating
disciplines) by the conjunction principle (that overcome the hermetic
of cognitive �elds, integrating knowledge).

1As a joke, the author of Murphy's law named it as the Golomb's Law on mathematical
model.

2Components of a phenomenon can be analysed independently and the addition of
them is the whole phenomenon.
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� the deterministic principle by a principle that integrates the uncer-
tainly, the incapacity to all predict, and the di�culties to validate
cause-e�ect relations between micro-relations and macro-properties.

The systemic approach is "une manière d'entrer dans la complexité"3 (Don-
nadieu and Karsky [94]); It can be decomposed in three steps [247]:

� Investigating reality:
the observation and the description of main aspects of the system
(properties and dynamics).

� Modelling the system:
the operative encoding in a rigorous formalism of all information that
may be useful to answer our question.

� Simulating the evolution:
the study of the evolution of the model over time.

The result is a collection of information that may be useful to improve our
understanding of the studied system. To increase our understanding, we
should complete the study of the system as a "loop": observe reality, capture
its elements and main evolutive mechanisms, de�ne a model, simulate its
evolutions, compare results to reality, and modify if necessary the model
and so on.

2.1.1 Investigating reality

structural  aspect

how the system is composed

functional  aspect

what the system does

historical aspect

what the system becomes

Figure 2.1
The systemic triangulation.

The �rst step of the systemic approach can be decomposed; "la triangulation
systémique" (the systemic triangulation, �g. 2.1) [176] integrates:

1. The structural aspect:
it concerns ho the system is composed: its essential properties, the
network of interactions, the arrangement of elements, the con�gura-
tion of the system.

2. The functional aspect:
it is relative to what the system does and its role in the environment.

3. The dynamic aspect:
it concerns the evolutionary nature of the system, the processes of
formation and evolution of the system.

The systemic triangulation develops by combining these three aspects. More
exactly, "on se déplace d'un aspect à un autre au cours d'un processus en
hélice qui permet, à chaque passage, de gagner en approfondissement et en
compréhension, mais sans que jamais on puisse croire que l'on a épuisé
cette compréhension."4 (Donnadieu and Karsky [94]).

3"A way for us to understand complexity".
4"We move from one aspect to another during a spiral process that allows each passage,

to gain both in depth and in comprehension, but without ever letting one believe that one
has reached the end for this comprehension".
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2.1.2 Modelling the system

Scientist make and improve theories to understand many phenomena5. Of-
ten the way to construct theories is iterative: the object is studied from
di�erent points of view and the observer tries to answer some questions.
From this perspective, the key role of a model is to answer observer's6 ques-
tions about something.

"To an observer B, an object A∗ is a model of an object
A to the extent that B can use A∗ to answer questions
that interest him about A."

Marvin Minsky [198]

Arti�cial and natural phenomena can be investigated through scienti�c
models. The capacity of a model to improve our understanding depends
on its intelligibility. The capacity of a model to explicate (and make in-
telligible) an object does not be related to the the idea that it is able to
reproduce the phenomenon. When we study a complex system, a model may
reproduce a complex behaviour but maybe it is not intelligible, making the
model useless to understand the phenomenon.

It is impractical and might bear to no relevant details resume all aspect of
the studied system and we need to establish main aspects (a model repre-
sents in all cases a part of reality). The modeller choices the main aspects to
integrate into the model. The choice depends on which part of the system
he is interested in, trying to condense in a rigorous framework the essential-
ity of the studying phenomenon. A model is in all cases a simpli�cation, it
is perfectible; experiences and observations are fundamental to improve the
model and our capacity to model. A model is always a conceptualization of
the object, hence we cannot be sure that it is useful7.

In a positive vision, where we can concept models that are able to answer
all questions with a mathematical encoding, we can concepts explicative
models. In this way, we try to explicate properties of objects, validate
hypothesis, describe reality or develops technological devices8. A second
vision consist to concept a model to predict the future. In this way, models
are concept to describe the phenomenon. They are concept to make scenar-
ios and often they replay questions under the form "what if..". Changing
parameters of the model, we can explore trajectories and study causality
between initial con�gurations and �nal predictions.

Le Moigne [176] summarizes the actions that the modeller makes when he
concepts a model. Modelling is:

5Roughly, theorisation is the science that aims to describe a phenomena with expli-
cations and information, and relations between their state variables.

6"If there is no other, there will be no I. If there is no I, there will be none to make
distinctions" (Chuang-tsu).

7"All models are wrong, but some are useful" (Box [55])
8Under this vision, the model should validate hypothesis: "a simpli�ed version of

reality, built in order to demonstrate certain of the properties of reality" (Haggett [133])
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"Action d'élaboration et de construction intentionnelle,
par composition de symboles, de modèles susceptibles de
rendre intelligible un phénomène perçu complexe, et d'ampli�er
le raisonnement de l'acteur projetant une intervention délibérée
au sein du phénomène; raisonnement visant notamment
à anticiper les conséquences de ces projets d'actions pos-
sibles."9

Jean-Louis Le Moigne [176]

2.1.3 Simulating the morphogenesis

A complex system model can be made for di�erent goals: e.g. to investigate
the evolution of the system, to understand the internal mechanisms of the
system, to describe mechanisms of interactions as clear as possible, to study
the causality between events. A model may be useful to study the evolution
of the system, simulating scenarios. Simulation is a dynamic reproduction of
evolutive mechanisms of a system; a simulation requires a model. While the
model represents the system itself, the simulation represents the evolutive
processes of the system over time.

In order to consider the time, the framework which allows us to simulate
the evolution of the system should integrate aspects about the way that the
time moves forwards. We can consider the time in two manners: continuous
(we can observe the model at an in�nite number of moments) or discrete
(we observe the system over an ordered sequence of time steps).

The Vaucanson's duck.

A model is a representation of something. It does not contain all aspects
of the system, but rather only those that the modeler judge relevant. Our
purpose is to study the morphogenesis of complex systems; to simulate it,
we must avoid two traps:

� The problem of the analogy:
a model can carefully reproduce forms and dynamics, without con-
sidering real mechanisms of formation. In this case, the system is
structured by dynamics that do not respect reality. The shape may
be similar but not the construction (therefore the form too).

� The problem of the completeness:
A useful model may not integrate all information concerning the sys-
tem. The challenge is to capture the only fundamental aspects useful
to our task and to show that they are su�cient and necessary. The
model must integrate the main morphogenetic mechanisms.

To investigate the morphogenesis of complex systems and capture domi-
nants' morphogenetic processes, it is crucial to de�ne the well-adapted level
of abstraction. The model should on one hand consider features of the

9"The elaboration and the deliberate construction thorough symbols of intelligible mod-
els, that increase the degree of intelligibility of the modeller; to model means to go forward
e�ects of the possible initial conditions."
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system which lead the form, and on the other hand to not �ood it with
microscopic details.

2.1.4 Integrating the space

As mentioned above (section 1.2), spatial aspects play an important role
in the functioning of many systems. It is so self-evident that a model that
addresses these systems must integrate spatial information. In practice, we
need a rigorous formalism that allows us to encode the following informa-
tion:

� spatial localization:
to each element of the systems is assigned an attribute (a tuple X
of coordinates x1, . . . , xd) that allows us to localize the element in
Euclidean space Rd, d = 1, 2, 3.

� Spatial neighbours:
in general, elements of systems locally interact (with a limited number
of neighbours); in a spatial system, to identify the neighbourhood of
an element, we can refer to metric distance.

� spatial interactions:
the way that elements interact with each other depends on spatial
aspects. It may depend on the metric distance10 and/or spatial ar-
rangement of their neighbours.

In section 2.2 and in chapter 5 we will show that graphs and cellular au-
tomata, among di�erent useful formalisms, allows us to encode spatial in-
formation.

2.1.5 How to concept a spatial model

Nowadays, there exist many spatial models with di�erent characteristics and
objectives [255]. Due to mathematical, scienti�c, and computational con-
tributions, in the last years, the diversity of models increases [291]. Banos
and Sanders [19] propose a taxonomy of spatial models, crossing two (con-
tinuous) axes:

� The KISS-KIDS axis:
it corresponds to the degree of simplicity of the model. The extremes
correspond to the KISS (Keep It Simple, Stupid) approach [15], which
try to use simpler mechanisms to model reality, and the KIDS (Keep
It Descriptive, Stupid) approach [96], which try to de�ne the model
as descriptive as possible.

� The particular-stylised axis:
it corresponds to the degree of abstraction of the model. Stylised
models aim to reproduce more general mechanisms. They are less

10For instance, this is the case of gravitation models in geography, see section 3.1.
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Figure 2.2
The �horseshoe�: a template
to read and concept models in
geography. Source: [19].

related to the speci�c study cases. Otherwise, particular models inte-
grate many details of the study cases and require a large amount of
information. The model is less general and �ts a limited number of
sites.

The resulting template (�g. 2.2) is a way to categorize spatial models and
also a way to suppose that a model is "useful" (if it is over the horseshoe)
at the same time.

Figure 2.3
Integrating more spatial in-
formations.

Figure 2.4
Integrating more morpho-
genetic mechanisms.

The particular-stylised axis correspond to the choice of the modeller to
prefer "une organisation spatiale précise, observée en un lieu donné à un
moment donné, ou une organisation-type, simpli�ée, que l'on observe de
manière répétée dans le temps et/ou l'espace"11 (Banos and Sanders [19]).
The KISS-KIDS axis embodies the degree of abstraction of the model. The
modeller can integrate a large number of processes (that may produce a
model di�cult to handle but probably more realistic) or a few processes (to
tends to a model as minimal as possible) In this last case, the resulting model
is easier to handle and shows more direct relations between- parameters and
emergences, trajectories, and outputs.

There are two reasons to prefer the top-left quadrant [291]: the �rst one is
epistemological (we should be are able to understand what the model do,
avoiding the "black box" trap) and the second one is ontological (it is not
necessary to use parameters that do not contribute to the understanding
of the model. This is the principle of the parsimony12). A complicated
model is unintelligible, the simplest model which reproduces the system is
preferred and the top-left quadrant in �g. 2.2 may be a good starting point
for the future implementations.

A model with few mechanisms/parameters probably is easier to control and
we can understand the causal relations between inputs and outputs. More-

11A given spatial organization, observed at a given spatio-temporal con�guration, or a
stylized organization, observed over several spatio-temporal con�gurations.

12Also know as the Occam's razor, who states that "the simplest solution is most likely
the right one".
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over, due to its �exibility, a model concept in such a way can be implemented
it in a second step. To do that, we can follow two directions:

� through the vertical axis:
incrementing inputs and information, making the model more data-
driven (�g. 2.3).

� through the horizontal axis:
implementing processes, making the model more descriptive (�g. 2.4).

According to the template in �g. 2.2, to investigate morphogenesis of com-
plex systems, we should de�ne a general and initial framework placed in the
quadrant A; this initial model can be implemented, incrementing the level
of details of its evolutive mechanism (going forward a KIDS model) or in-
creasing the number of details from the speci�c study cases (going forward
a particular model).

Summary 4:

model and simulation
A model is always an approximation of reality. To investigate phe-
nomena we should observe it and capture fundamental aspects. To
not bear to no relevant details, our approach must be led by a parsi-
monious principle. With this principle, we can focus on computational
aspects of models, we have an understanding about its behaviour and
we can implement it at a latter time.

2.2 Networks

Networks represent a wide range of natural and arti�cial systems [46, 172,
209];models and simulations

↓
networks
↓

street network

they are composed by nodes in relations by links and catches the
system organization. Networks often hide the wishes to represent the system
with points and oriented or not oriented links connecting them. This easily
comprehensible graphic representation o�ers obvious facilities such as the
representation of a discrete universe but often masks its complexity. It is
necessary to study them not weakly but deeply.

2.2.1 Graph representation

While a network may be thought close to reality, a graph is a mathematical
representation of elements and their relationships. Graph theory is the
fundamental branch of mathematics that studies the theoretical aspects of
networks. In a graph (network), edges (links) connect vertices (nodes). The
graph formalism synthesizes essential information and quantitatively brings
out characteristics of networks.

The �rst application of graph theory to solve a practical problem from real-
ity was done by Euler (�g. 2.5). The city centre of Königsberg (now named
Kaliningrad, Russia) is located in the Pregel river whose crest includes an
island. In Euler's time, seven bridges across the river; a popular problem
in 1736 was to �nd a path that cross once the seven bridges of Königsberg
and came back to the starting point. The Euler's solution was to draw the
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Figure 2.5
The seven bridges of Königs-
berg problem. The map of
Königsberg, (left, source:
www.wikipedia.org); its
schematic representation
(centre); the corresponding
graph, where dots represent
sides and lines are the bridges
(right).

Figure 2.6
The evolution of a dynamic
graph.

elements that he had judged important to solve the problem as a graph:
he de�nes four vertices, which represent sides of the river, and seven edges,
which represent the connection between two distinct sides. Under this rep-
resentation, Euler disregards irrelevant information about the geometry of
the city and keeps only the connections between lands. Via the graph rep-
resentation, he observes that the solution of the problem depends on the
number of incident edges of each vertex, the degree. The possibility of a
path through the graph, traversing each edge exactly once, is that the graph
has zero or two vertices of odd degree. He demonstrates in a rigorous way
that there was not such a path in the graph obtained from the Königsberg
city13. The graph theory was born.

Graph theory has been applied by scientists to represent, analyse, and simu-
late a large number of systems. Several useful master-books had synthesized
main de�nitions [79, 93, 286].

De�nition 3:

graph
A graph G = (V,E) consists of two �nite sets:

� V = {v1, v2, .., vn}: the not empty vertex set V of the graph,
composed by vertices. The set size is denoted by |V | = n;

� E = {e1, e2, .., em}: the eventually empty edge set, de�ned by
the function E : V × V → E, that assigns relationships between
vertices. The set size is denoted by |E| = m;

In frame 1 we resume main aspects of a graph.
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Frame 1:

Graphs
The edge e = (v1, v2) ∈ E is a pair of vertices v1, v2 ∈ V (called
adjacent or neighbour vertices) and it is incident to vertices v1 and
v2. An undirected graph is one in which the edge set is composed of
unordered pairs of vertices (v1, v2) = (v2, v1); otherwise, the edge set
is composed of pairs of ordered vertices and the graph is directed.
The neighbourhood N(v) = {u : (v, u) ∈ E}, N(v) ⊂ V of the vertex
v consists of the set of vertices neighbour to v. The degree k of ver-
tex v, hence noted as k(v), is the number of edges incident on v or
equivalently, the size of the neighbourhood set k(v) = |N(v)| ∈ N.
If more than one edge connects the same pair of vertices, these edges
are denoted parallel and the graph is called multigraph. Otherwise the
graph is called single, there are no loops (an edge which joins a vertex
to itself) and no parallel edges.
A path between two vertices v1 and vn in a graph, noted as p(v1, vn),
is a �nite not empty ordered sequence of distinct vertices v1, v2, .., vn
such that, given i ∈ N∗, i < n : vi ∈ V and ei,i+1 = (vi, vi+1) ∈ E. If
v1 = vn the path is a cycle.
A weighted graph is a labelled graph (labels are assigned to vertices
or edges) all of whose are positive or zero real numbers. More speci�-
cally, a vertex-weighted graph has weights on its vertices and an edge-
weighted graph has weights on its edges. In edge-weighted graph,
a function L × E → R+ which maps a positive or zero real num-
bers in the tuple L = (l1, l2, .., lm) to each edges in E (we noted
as l(e) the real number assigned to the edge e), the length of the
path is len(v1, vn) =

∑n
i=1 li. The weighted shortest path distance

lenmin(v1, vn) is the path that minimize len(v1, vn); we noted as
len(G) ∈ R+ the sum of weights of edges.
The sub-graph G′ = (V ′, E′) of a graph G = (V,E) is a graph where
sets V ′ and E′ are a subset of V and E respectively. The partial graph
P = (V,E′) of the graph G = (V,E) is a graph where the set E′ is a
subset of E. A graph is called connected if there exist a path between
each pairs of vertices. Two vertices are also called connected if exist a
path which links them. Given a vertex v of a graph G, the set S(v)
contains all vertices connected to the vertex v. The sub-graph of G
induced by the set S(v) is called connected component of v.
A tree is a connected graph where exist exactly one path between two
distinct vertices. If we remove an edge, the graph became de-connected:
the resulting graph became a forest of at least two trees. If we add an
edge, we create a cycle and the graph is no longer a tree. A tree
of n vertices has n − 1 edges. The weighted minimum spanning tree
MST (G) is a the tree that minimize len(MST (G)). In other words,
the weighted MST (G) is the tree and a partial graph of G. Finally, a
vertex in a tree with degree 1 is called leaf.
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2.2.2 Dynamic graphs

The capacity to represent a system as a graph is often increased with time
aspects [69, 146]. Systems reorganize themselves in time. Due to interac-
tions between their entities, their properties evolve, the number of nodes
increases or decreases, and even the manner that they interact may vary.
To formalize temporal aspects of a network, we de�ne:

De�nition 4:

dynamic graph
A discrete dynamic graph [225]G(t) is de�ned by the triplet (T,G0,P):

� the initial sequence of discrete time steps T = 0, 1, 2, .., t.

� the starting graph G0 = (V0, E0).

� the process P : T ×G→ G, a function that de�nes Gt
P−→ Gt+1.

We note the static graph at time step t ∈ T as Gt = (Vt, Et) ⊆ G(t).
A dynamic graph14 is a sequence of static graphs, de�ned for each time
step. The process P de�nes the relation between two graphs, it modi�es
the vertex set and/or the edge set. Several aspects can de�ne the relation
between two graphs at two time steps. For instance, we note as P(V ) a
process that is de�ned by the vertex set. According to our terminology, in
a preferential attachment model [20], where the evolution of the graph is
governed by the degree k and a rate of growth r, the evolving process can
be noted as P(k, r).

In several real situations, we observe that complex systems grow, not just
evolve. For instance, an ant nest is composed of a set of galleries and the
number of elements increases (or stays stable) over time. Observing the
experiment in �g. 1.9, ants dig new galleries and existing ones never been
destroyed, are getting longer and bifurcate. As a sedimentary process, the
shape of the nest grows and the existing parts does not disappear. The
corresponding dynamic graph, that captures the morphogenesis of the nest,
is composed of increasing sets of elements. Formally, we de�ne:

De�nition 5:

growing graph
A growing graph is a dynamic graph where Vt ⊆ Vt+1 for each t ∈ T .

t

t0

1
2tTo de�ne a growing graph we do not consider the edge set. Keeping the

previous example about the morphogenesis of an ant nest, the starting point
of a new gallery might be the middle of an existing one. In a graph repre-
sentation, the oldest edge was removed and substituted by new edges, and
the new vertex has degree 3. Streets networks, vascular networks, leaf vein
networks, and crack networks often grow in this manner.

13Mathematically speaking, the graph is not Eulerian because there was not an Eulerian
path.

14Hereby, we indicate a dynamic graph as a discrete dynamic graph.
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Figure 2.7
The Watts and Strogatz
model. Let be a regular
graph dispose as a ring (left),
the Watts' procedure consists
randomly rewire each edge
of the regular graph with
probability p such that self-
connections and duplicate
edges are excluded. Source
[296].

2.2.3 Complex networks

Since the Euler solution, graph theory gives a useful way to solve many prob-
lems and to study many real phenomena. Few examples: the four colour
problem (�nd the minimum number of colours to map adjacent regions in
such a way neighbouring regions has di�erent colours), the cops and rob-
ber problem (one group of individuals attempts to track down members of
another group), the Euclidean Steiner problem (given a set of point in the
space, �nd how to connect points minimizing the sum of lines length), the
maximum �ow problem (�nd the maximum amount of �ow that a pipeline
would allow to �ow from a source to a sink). In addition to the development
of mathematical graph theory into a substantial body of knowledge, graphs
are now massively applied in social science. For instance, social studies
address problems of connectivity (how individuals are connected to others)
[33] and centrality (which individuals are best connected to others) [109].
Moreover, graphs formalism was helpful to study interactions in a group of
individuals [295].

Despite the evident contribution that graph theory was been able to give in
theoretical and applicative �elds, the real capacity of the graph formalism
to capture properties of interacting elements was not really observed. Most
networks are complex [46, 172, 209]: they are composed by a large amount
of nodes, which interacts in a not evident way. They dynamically organize
themselves, de�ning emerging properties which cannot be detected inves-
tigating each node via classical graph measures. Hence, in the last three
decades, we observe a substantial new movement of interest, with the focus
shifting away from the study of small, regular and theoretical graphs to
consideration of large, heterogeneous and dynamic real networks.

The growth of interest about researchers in network formalism was pro-
moted through to the apparition of a few fundamental papers and their
massive application to observe real-world systems. Watts and Strogatz
[296] observed that between regular (a graph where each vertex has the
same degree) [79] and random (in which connections are de�ned by some
random processes)[98] graphs, there is an intermediate type of graphs which
can represent a large number of complex networks. These networks show a
small-world behaviour15 (�g. 2.7). A relevant property regards the degree

15In simple terms, the small-world concept describes the fact that despite they are
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Figure 2.8
The Barabasi and Albert
model. A scale-free graph
of 1000 vertices (left) and
the probability distribution
of degree of a graph with
100000 vertices (right). The
Barabasi and Albert algo-
rithm [20] is composed by
two operations: the growth
(a number of vertices was
created at every time step)
and the preferential attach-
ment (the probability that
new nodes will be connected
to a node depends to the the
degree of this last).

of nodes: in many networks, the degree distribution P (k), de�ned as the
probability of a node v has degree k ∈ N, signi�cantly deviate from the con-
stant value of regular graph or the Poisson distribution of random graphs.
Several empirical results show that for many large networks the degree is
distributed as a power-law [20] and the scale-free characteristic impacts its
own growth [95] (�g. 2.8). In many cases, the degree distribution exhibits
a hierarchical tail. In many cases, the tail is even scale-free. Complex net-
works show no trivial topology: for this kind of network, topology is neither
fully random nor fully regular. They often show sub-structures, clusters,
and patterns. The representation as a graph of several systems is useful but
many classical measures and their analyses are not enough to capture how
they are organized.

Summary 5:

networks and graphs
The interest of many researchers shifted away from the analysis of
static and homogeneous graphs (and properties of their elements) to
the consideration of properties of dynamic and heterogeneous net-
works. The study of these systems as a network has produced new
results, which is the backbone of complex systems. However, a class of
networks are composed by elements embedded in space and the way
that they are in relation depends on spatial aspects. This is the case
of spatial networks.

2.3 Spatial networks

Many complex network applications focused on the characterization of topo-
logical and temporal aspects, while spatial aspects are marginally consid-
ered or neglected. For these studies, a network is the representation of
an abstract system, where the position of elements is not considered and
their interactions are not related to spatial aspects. Social networks [284],
transportation networks [117], cargo ship networks [158], neural networks
[62], biological networks [222], Internet [117], airline networks [131], crack

composed of a large number of elements, in most cases there exist a relatively small
number of short paths between any pairs of nodes.
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networks [51] are some representation of systems structured as a network
embedded on Euclidean space (�g. 2.9). For these networks, geometry is rel-
evant and topology does not contain all information needed to understand
their functioning [23]. In the following, we will develop some elements of
graph theory that will be useful to consider spatial dependencies in networks
and we will show some examples.

2.3.1 Geometric graphs

Geometric graph theory is a sub-�eld of graph theory, concerned graphs
embedded in Euclidean space.

De�nition 6:

geometric graph
A geometric graph G(x) = (V (x), E) is de�ned, in a d dimension
euclidean space Rd, by:

� the graph G = (V,E).

� the function X : X × V → Rd, d = 1, 2, 3 maps to each vertex
vi ∈ V a tuple of real numbers Xi = (x1, . . . , xd), xd ∈ R+.
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In the following we will consider d = 2. Let us show an example. A
broad representation of an airline network is a set of nodes (the airports)
connected by a set of links (the scheduled �y) [131]. The system can be
represented as a 2-dimensional geometric graph, where the vertices represent
airports and weighted edges between every pair of airports connected by a
scheduled �ight (�g. 2.9a). The weight of edges could be the cost of the
�y, the time of the �y, the travel distance, etc. (the information that gives
the attributes are or geometric or not). Under this representation, new
information can be captured. They complete topological information. A
graph representation without spatial information may be helpful to answer:
which are the well-connected airport? The spatial graph representation
integrates the possibility also to answer to question as: is the geographical
position an aspect that contributes to the connectivity of an airport? To
sum up, new information and new questions bring out by the integration of
spatial information, which in turn helps us to improve our understanding
of reality.

A geometric graph can also be dynamic: in this case we named as geometric
dynamic graph G(t, x) the triplet (T,G0(x),P).

Figure 2.9
Two geometric graph applica-
tions. The network of Delta
Air Lines (�g. 2.9a, source:
www.delta.com); the study of
the importance of cargo ship
trips with centrality measure
(�g. 2.9b, source: [158], see
section 4.3). (a) The Delta airline network. (b) Centrality in a cargo ship network.
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Figure 2.10
Three theoretic planar graph
applications. The city cen-
tre of Madrid (top, source
Google Earth); the venation
network of grape leaves (bot-
tom left, source: publicly
available on the internet); the
crack pattern in the glaze of a
ceramic plate (bottom right,
source [50])

(a) planar
graph

(b) plane and
planar graph

x

y

(c) geometric planar
graph

x

y

(d) geometric
straight-line plane

graph

Figure 2.11
Geometric straight-line plane
graph. A planar graph, the
corresponding plane graph, a
geometric graph and a ge-
ometric planar graph where
edges are drawn as straight-
line segment.

2.3.2 Geometric planar graphs

The geometric graph representation is a helpful tool to study many systems.
In a 2-dimensional space, under this representations, edges can overlap and
cross. However, in some real systems, we rarely observe that. Leaf net-
works, crack networks, street networks are examples of systems that seem
to be embedded in 2-dimensional space and where rarely edges intersect
(�g. 2.10).

We need a rigorous formalism to class and study these networks (�g. 2.11).
A graph is said planar if it can be drawn in the plane so that its edges inter-
sect only their end vertices (�g. 2.11a). Such a drawing of a planar graph
is called plane graph (�g. 2.11b) and it can be regarded as an isomorphism
of the planar graph. The study of planar graphs necessarily involves topo-
logical aspects. A plane graph is not necessary geometric, because vertices
are not embedded in the space: the fact that vertices are drawn is just a
representation and not a property of them. Geometrical plane graphs are
plane graphs embedded in 2-dimensional Euclidean space, and any pair of
edges meet only at their end vertices.
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In a geometric plane graph, the way that edges are drawn is not related
to spatial aspects: we can drawn edges in an in�nite way and they respect
the geometrical condition �g. 2.11c. Thus, the previous de�nitions are not
enough for our study. We de�ne as the straight-line graph the geometric
graph where the edges are drawn as a straight-line and the length of the
segment corresponds to the euclidean distance. Corollary to this de�nition
is the rectilinear crossing number rcr(G), de�ned as the minimum number
of crossing edges in a straight-line graph16.

Combining the rectilinear crossing number and the straight-line graph we
obtain a rigorous representation of several spatial systems (�g. 2.11d).

De�nition 7:

geometric straight-line
plane graph

The geometric straight-line plane graph G(x) = (V (x), E(x)) is the
straight-line graph embedded in 2-dimensional Euclidean space where
rcr(G) = 0.

Hereby, graphs that respect de�nition 7 are called planar graph and the
planarity condition of a graph means that the graph is a geometric straight-
line plane graph.

2.3.3 Geometrical planar graph generators

The simple question addressed here is: what we can say about P? This
section proposes six theoretic planar graph generators that are interesting
for the study of spatial systems in the sense that they provide basic graphs
to compare with spatial networks (�g. 2.12). They also provide initial in-
formation about the formalization of the morphogenic process P.

The lattice square graph is a grid graph embedded in 2-dimensional space. It
is planar by construction and edges can be drawn as a straight-line segment
(�g. 2.12a. Lattice graphs and regular graphs are similar because in the
lattice graph the degree of vertices is 4 for all vertices excepted boards of
the lattice.

An interesting class of planar graph generators can be deduced when n
vertices are randomly placed in the space and connected by some rules. It
exists di�erent manners to de�ne how vertices are connected. we propose
�ve simple methods that create planar graphs. All the methods starts with
a vertex set V (x) = {v1, v2, .., vn}.

� The deterministic planar random graph:
let δ ∈ R+ be a parameter. The procedure consists in randomly
selecting each pairs of vertices (vi, vj), i 6= j : dist(vi, vj) < δ, adding
an undirected straight-line edge e = (vi, vj) such that crossing edges
are excluded (�g. 2.12b).

16Estimating the rcr(G) is a di�cult problem [114] and it has several practical appli-
cations: for instance, the design of a grid power network where crossing pipelines can
cause potential failures. In this case, the problem consists to �nd the straight-line graph
that minimizes the rcr(G).
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(a) The grid graph (b) The deterministic graph

(c) The probabilistic graph (d) The Delaunay graph

(e) The Gabriel graph (f) The Euclidean tree

Figure 2.12
Six theoretic planar graphs.
Each graph is composed by
1000 vertices. Verities in
�gs. 2.12b to 2.12f are spa-
tially arranged as the same
manner.
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� The probabilistic planar random graph:
let p ∈ [0, 1] be a parameter. The procedure consists in randomly
selecting each pairs of vertices (vi, vj), i 6= j, adding an undirected
edge e = (vi, vj) such that crossing edges are excluded (�g. 2.12c).

� The Delaunay graph:
the Delaunay triangulation of a set of n vertices embedded in R2 is a
triangulation17 such that no vertices are inside the circumcircle18 of
each triangle. The Delaunay graph is the dual of the Voronoi tessella-
tion. A direct construction of the Delaunay graph is possible. Let vi,
vj and vk be three vertices in V . The procedure consists in adding the
edge (vi, vj) if no other vertices are inside the circumcircle (�g. 2.12d).

� The Gabriel graph:
let δ ∈ R+ be a geometric parameter. The procedure consists in
randomly selecting each pairs of vertices (vi, vj), i 6= j and add an
edge if the circle with the radius r = dist(vi, vj)/2 that passes by vi
and vj does not contains a vertex in V (x). The Gabriel graph is a
sub-graph of the Delaunay graph [194] (�g. 2.12e).

� The Euclidean spanning graph:
the simplest procedure to build it is to run the Kruskal's algorithm
[79] to the Delaunay graph (�g. 2.12f).

Here we have presented the procedures to build six geometric planar graphs.
In chapter 4 we will show main characteristics of these graphs.

2.3.4 Morphogenesis of spatial complex networks

In the following, we resume some processes behind the formation of spatial
networks and how they can be modelled in a dynamic geometric graph.

Local interactions and decentralization

In last decades, following the concept that the growth of spatial networks
is subject to certain optimization processes [117], various authors proposed
models that aim to minimize metrics [130], reproduce emergent characteris-
tics [27] or �nd compromise between antagonist properties [56]. Optimiza-
tion has been shown to be a driving force for the growth of urban systems.
For example, the geometrical optimization of global elements of street net-
works used in [84] reproduces a coherent and realistic growth of cities. Using
a global optimization process, interesting works are developed in order to
reproduce the evolution of some biological structures, as insect nests [290]
and also Mammalia bones [223].

Although global approaches are useful to model the evolution of spatial
networks, in many spatial systems, local interactions are predominant and
behind the organization of its elements. Thus, in a spatial network, the

17Triangulation is a division of a planar object into a set of triangles.
18The circumcircle of a triangle is the only circle which passing by all its vertices.
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Figure 2.13
The evolution of a fracture
pattern. From left to right,
�gures show the same surface
at four di�erent moments. In
each images, the black line is
the newly appeared fracture.
Source [52]

formation of stable structures is often a consequence of elementary local
interactions and depends on the con�guration of its neighbourhood [210,
270]. Rarely they are the result of central controls. They can be impacted
by external factors but their own structures are governed by internal mech-
anisms.

Planar graph generators with a focus on local interactions are proposed in
urban studies: Barthélemy et al. [25] describe a model of street networks
growth with local optimization of intersections. In the model proposed
by Rui et al. [251], a competition of nodes added step-by-step reproduce a
self-regulated street network growth. Despite ant paths look like a structure
that would require some kind of central coordination, a local biochemical
mechanism (the stigmergy) of positive or negative reinforcements of trails
govern the moving of insects [271]. This mechanism of spatial network for-
mation, observed in several ant species [222] and even in humans [139], does
not require an external control and a global information about system con-
�guration. Through a local-driven interaction approach, the network grows
spatially and temporally in a coherent way: for instance, the model pro-
posed in [1], generates a connected network that represents an abstraction
of street networks.

Coherency

We observe that the generation of disconnected sub-graphs is not in many
cases an appropriate representation of growth for many spatial network
applications. Each part of a vascular network, a street network, an ant
nest network, a venation leaves network is connected to the rest of the
network. The process of formation of fractures in the glaze of ceramics
is a sequence of adding lines or elongating existing lines [52]. During the
fracture formation, existing lines are not impacted and the structure grows
with the addition of new lines [221](�g. 2.13). The oldest fractures divide
space into subspaces which are recursively subdivided by new fractures. The
hierarchies in fracture patterns [51] are related to the sequence of cracks:
the principal lines decomposed the surface and the following fracture has an
impact on the existing fractures. This kind of structure can be detected not
only in fracture patterns but also in other network-like patterns, as street
networks and leaf networks [221] (�g. 2.10).

We can de�ne their growth as follow:
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De�nition 8:

coherent growth
A growing graph G(t) = (V (t), E(t)) grows in a coherent way if at
each time step, all vertices are connected. If the graph is composed
by two or more components, each of them must respects the previous
condition. Corollary: the number of components never increases over
time.

Mixing topological and geometrical aspects

Processes behind the morphogenesis of spatial networks do not disregard
topology aspects. They are mixed with geometric aspects. For instance,
in a street network, we observe that the number of incident streets in an
intersection rarely exceeds six. Spatial constraints restrict the appearance
of large degrees. They also imply the tendency of a limited number of hubs
and clusters. The topology of the corresponding street network is therefore
impacted by geometrical aspects. Xie et al. [304] proposed a model that
mixes topology an geometry. They show that di�erent kinds of planar
graphs modifying few geometric and topological parameters.

Networks and environment

Exogenous aspects can impact network formation. The evolution of human
infrastructures is tightly related to economical, social, and technical aspects
[116]. For instance, the spatial distribution of airports not only depends on
endogenous aspects (the distance between them, the required number of
scheduled �ights, etc.) but also some other external aspects (the network of
cities which overlaps the airline network, socio-economical requirements of
the community, etc.). Similarly, the spatial formation of the street network
is not only the results of some interaction rules of the elements which govern
the formation of the network; some external aspects, such as the orography
or the imposition of some policy or economic agents.

Many models integrate exogenous aspects. In an hybrid-model, authors
in [16, 199] propose to couple a cellular automaton layer (section 5.2) to a
growing spatial network in order to simulate the co-evolution between roads
and build-up. The model was generalized and applied in a real scenario as
a useful decision-maker tool by authors in [237]. Also authors in [275], [1]
and [261] simulate the urban growth integrate integrating di�erent aspetcs
in a multilayer model.

Summary 6:

networks
If we consider a system composed of entities, the interactions de�ne a
network. Networks capture the essentiality of their structural proper-
ties, relationships between elements, and evolutive processes. Among
them, there exists a class of networks (called spatial networks) where
elements are embedded in Euclidean space, edges also indicate a geo-
metrical relation and the structural properties depend on spatial as-
pects. Graph theory allows us to encode temporal and spatial aspects
in a rigorous formalism and we had observed that both have a crucial
role in their formation.
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"Se ti dico che la città a cui tende il mio viaggio è discon-
tinua nello spazio e nel tempo, ora più rada ora più densa,
tu non devi credere che si possa smettere di cercarla"1.

Italo Calvino

In previous chapters, we introduced essential notions of complex system the-
ory (chapter 1) and we observed that spatial information plays an important
role into the functioning of some systems. The elements of those systems,
immersed in an environment, are located in Euclidean space and interac-
tions are impacted by metric aspects. The network of interactions/relations
of those systems can be represented as a graph (chapter 2).

In this chapter, we will observe that cities present the aforementioned char-
acteristics and we will focus on an important part of them: the street net-
work. In section 3.1 we will show that under which circumstances a city can
be considered under the complexity perspective. Then we will introduce the
main principles behind street network morphogenesis (section 3.2) and our
proposal for modelling street networks (section 3.3).

3.1 Urban systems

spatial complex system
↓

urban system
↓

modelling urban
systems

Geographical studies are a wide �eld of knowledge that focuses on natural
and anthropological phenomena with a relevant account of space informa-
tion. One of the challenges of geography is to understand how human
society use and transform the earth to accommodate their requirements.
The way that people interact with the earth (and people interact with one
another) cannot be studied within only one classical category of studies.
These studies require the integration of di�erent approaches from di�erent
disciplines. Sociology, biology, the science of the earth, and technology,
therefore, contribute to the de�nition of the �eld of geography. A trait
d'union between them is the space and its e�ects on the relations between
elements. From classical paradigms of observations, in which the earth was
described in terms of nomenclatures, locations, and toponyms, geographi-
cal studies now consider the relations human/earth more complicated than
initially supposed.

The importance of early geographical studies was that they contributed to
solve di�erent human problems. For example, maps of earth were useful to
prepare wars, manage lands, control resources, plan colonial conquests or
optimize land use. Quantitative geography aims to integrate the descriptive
and regional approach of classic (and qualitative) geography, in order to
explain and model the earth and the impacts of humans on it [132]. The
increment of computing power and the introduction of some notions from
other sciences (e.g. self-organization, emergence, and complexity) [57, 92]
have contributed to this new way to study geography. An important e�ect
is observable in urban studies [31], a branch of geographical studies.

1"If I tell you that the city toward which my journey tends is discontinuous in space
and time, now scattered, now more condensed, you must not believe the search for it can
stop."
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The study of cities2 embodies the quintessence of the meeting between peo-
ple and earth3. Cities are the location where individuals interact and accom-
modate their requirements to live, producing socio-economical e�ects and
altering the environment. The city is the space of aggregation, dialogue, in-
tegration, and exchange for the majority of people. Geographers, urbanists,
architects, sociologists, anthropologists, focus on the e�ects of these phe-
nomena of aggregation, interaction, and transformation. Buildings, streets,
squares, public and private gardens, gathering places are among the physical
elements of these studies.

The quantitative study of cities begins with the assumption that the func-
tioning of cities and their main characteristics can be described using con-
cepts from classical physics (force, mass and energy). Christaller, in his cen-
tral places theory [78], describes the specializations of cities and their sub-
parts with postulates from economic equilibriums. Gravitational models are
used to study inter-urban migration [306] and socio-economic interactions
between cities or their neighbourhoods [7, 151]. Hierarchies, specializations,
equilibriums, and exchanges are described in their main traits via these ap-
proaches. However, these approaches often treat cities without an adequate
attention to temporal aspect. These approaches often considered cities like
predictable and explicable object, ignoring questions of uncertainty [111].
Rational and exhaustive approaches behind classical studies can drive to
an oversimpli�cation of the complexity of cities [300]. Complexity theory
provides a comprehensive framework to study urban dynamics, it can build
stronger connections between qualitative and quantitative urban disciplines
[230]. For this reasons we will study street network morphogenesis from a
complexity science perspective.

3.1.1 Cities as systems

The term complexity is polysemous and often viewed from the perspective
of a particular discipline (chapter 1). A general agreement can be �nd into
the principle that certain large systems are characterized by decentralized
interactions of their many constituent parts. Within a given environment,
parts of the system often are a�ect by exogenous aspects. They exchange
with the environment energy, matters and information. These dynamics
contribute to functioning of the system and its identity. The way that parts
are in relations, the e�ect of exogenous factors to the system and feedbacks
loops produce complex e�ects, and the emergence of unexpected properties.
These general principles can be observed in cities and complex system theory
has become a popular framework for investigating and describing cities.

Jacobs [152], described the self-organization of main North American cities,
focusing on their socio-functional aspects. She suggested that cities are
close to natural systems, where a plethora of functions and inputs play to
de�ne their organization (named the "urban organized complexity"). De-
spite this work is mainly descriptive and gives qualitative and stylized in-

2The word "city" is used throughout in the general acceptation of the urban area,
including its suburbs.

3"Cities are about connecting people" (Batty [32]).
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formation about urban dynamics, it represents an important step for the
study of cities under the perspective of complex system. Forrester [104]
postulated that �ows of matter and people between sub-parts of cities can
be considered as interactions inside an urban system. Systems of di�eren-
tial equations model the evolution of these exchanges and he suggest that
economical actors regulate those �ows. Decentralized approaches used in
segregations models suggest that complex patterns emerge from individual
choices [258]. In chapter 2 we have brie�y observed that complex networks
theory o�er an interesting perspective for better understanding cities. The
emblematic statement "cities as systems within systems of cities" of Berry
[40] embodies that a city is at the same time a set of interacting elements
and an element in interaction with other cities. These considerations are
quantitatively con�rmed by the Simpop models proposed by Sanders et
al. [254]: here the interactions between cities at a macro-scale (regional or
national) drive to the emergence of hierarchies and social, economical and
functional specializations.

Urban systems can be observed from economic, cultural, anthropological or
technical points of view. Cities cannot be wrapped up in only one taxonomic
description. Dynamics of this kind of system cannot be reduced to what a
single discipline has to o�er. In this heterogeneous and fragmented context,
complex system theory becomes useful, tying together di�erent �elds.

Cities are not a complicated system, where a large number of elements
can be decomposed, investigated and then recomposed to explicate the or-
ganization [236]. Cities are complex, because unexpected behaviours and
properties arise from a large number of interacting elements and relations
between overlapping sub-parts. Di�erent parts of urban systems are inter-
connected and, to understand them, we cannot investigate them indepen-
dently. Cities are not decomposable in simpler and simpler sub-parts, which
can be recomposed as a series of interconnected sets4 [4].

3.1.2 Levels of observation

Urban systems can be observed at di�erent levels of organization [233]. In
a simpli�ed schematization, the degree of aggregation also corresponds to
the scale of observation of the system.

� Basic elements

At a microscopic scale of observation, the basic elements correspond
to highly disaggregated elements such as individuals. At this level,
we can ask questions about human behaviour, e.g. evacuation in
emergency situation, the impact of daily trip to the congestion of
transportation axis...

� City as a whole

At an intermediate level of observation, elements of city can be consid-
ered aggregated. Socio-economical dynamics can be associated with
regions of space. At this level, we can study aggregated quantities as
population, pollution or economical factor distribution, for example.

4"A city is not a tree" (Alexander [4]).
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� System of cities

The maximal aggregated level corresponds to a system of urban sys-
tems [40]. In this context, we can study interactions and exchanges
between cities.

To give an appropriate de�nition of levels of aggregation is more delicate
because the separation between them is not always easy to determine. Espe-
cially an intermediate level (e.g. the de�nition of neighbourhoods in cities),
it is not easy to capture limits because each part could be considered as
an autonomous system. Despite the conceptual de�nition of three levels
of aggregation is more or less clear, it is often di�cult to apply in real
situations.

3.1.3 Urban forms

In section 1.3 we introduced the notion of morphogenesis, distinguishing
two words: form and shape. Urban studies also distinguish between these
words; in fact, we have a distinction between urban fabric (shape) and urban
form.

Urban fabric refers to the arrangements, geometry, and aesthetic features
of elements of cities. Several spatial features of elements are useful: geo-
metrical proportions, distance, visibility, textures of surfaces, colours, etc.
Four fundamental morphological elements compose urban fabric: building,
lots (also named plots or parcels), streets and public spaces (e.g. places and
gardens) [85]5. These elements constantly transform through time. Build-
ings are renovated, streets are prolonged and connected and parcels split
and merged. These elements have a shape and are in spatial relationships:
buildings are de�ned and are shaped by open space around them, streets are
used by people, and serve as transport media. Parcels de�nes the visibility
of buildings and their edges shape the streets. Urban forms can therefore be
investigated under a historical point of view because the physical properties
of urban fabric conserve traces of transformations and replacements [66].

Urban morphology refers to the study of the formation and the transforma-
tion of physical elements of the city, from its formative years to its subse-
quent transformations. To this end, urban morphologists integrate abstract
aspects of cities that are related to the formation of physical elements of
cities. The general agreement of urban morphologists is that cities can
be studied via the observation of the evolution in time of their physical
elements.

Despite the evident contribution of morphological studies to describe cities,
these approaches were often contested. These approaches cannot completely
explain internal mechanisms of urban morphogenesis. "L'objet forme ur-
baine ne peut pas être saisi que par une démarche transversale, pluridis-
ciplinaire"6 (Roncayolo [246]). The contribution of di�erent disciplines is
necessary to understand how cities evolve. "La forme urbaine est un concept

5We can combine those elements; for instance, a block is a set of adjacent parcels
surrounded by streets.

6"The study of the urban form should favour cross-disciplinary approaches."
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polymorphe et polysémique, témoignant de sa complexité"7 (Fusco [110]).
The morphogenesis of urban systems cannot be studied only considering
the historical evolution of its physical elements. The emancipation to the
exclusivity of the historical vision is necessary to integrate the complexity
of phenomena and the plurality of disciplines in the study of morphogenesis.
The signi�cation of history is important but it cannot be considered as a
method or a discipline [220]. The morphogenesis of urban systems should
be tackled by merging several points of view.

Due to the impossibility to de�ne in a unique way urban forms, there ex-
ist di�erent ways of formalization; in frame 2 we resume main approaches
(called registres de la forme urbaine) proposed by Lévy [181].

3.1.4 Urban organizations

In many spatial systems, we observe that some properties or quantities (e.g.
mass, density, intensity) do not scale linearly with geometrical measures
(e.g. length, area). For instance, the relationship between the number of
cities and their size is hierarchical: for a given area, there are many more
villages than bigger cities [212]. A hierarchical distribution appears between
some characteristics of cities and the population size: the relation between
population and many urban phenomena (e.g. number of crimes or tra�c) or
economical aspects (average income per habitant) is rarely linear [44]. The
building density of a city does not decrease proportionally/linearly from the
city centre to the periphery, but the rate is scale-invariant with the popula-
tion [179]. These characteristics are observed in statistical distributions of
some properties. They indicate that urban systems organize themselves in
hierarchical structures. We are interested in the di�erent levels of impor-
tance of elements of the system and their capacity to a�ect the behaviour
and the adaptability of the whole system. Sections 4.2.6 and 4.3 will detail
these aspects with a focus on street networks.

Due to the absence of a dominant scale of observation, in many spatial
systems, patterns repeat at di�erent scales; that means we cannot associate
these properties to a metric scale. This characteristic is observable in urban
systems too. For instance, we observe a scale-invariance organization of
building footprint [278, 281] and street networks [12, 272]. Cavailhes et al.
[71] have observed that urban fabric and economic dynamics are related
by scale-free laws. Section 4.4 will detail this aspect, focussing on street
networks.

Patterns are ubiquitous in spatial systems. With regard to urban systems,
Alexander [5] observes the existence of rules which articulating the inex-
tricable relationships between elements, their functions, and their role in
society. No individual part is complete of itself, so each part needs other
parts: a street is incomplete without a place, a place only makes sense in
the context of street networks.

Alexander [4] suggests two kinds of spatial organizations:

7"The concept of urban form is polymorph and polysemic, attesting to its complexity."
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Frame 2:

registers of urban form
The complexity of urban systems provides di�erent conceptualizations
of their forms, depending on the point of observation. According to
Lévy [181], urban forms could be observed as:

� layout form[185, 268]:
The study of forms via their plasticity (size, volume, shape) and
their perception (textures, colours, materials). This approach is
useful to study the culture and the folklore of the society, the
symbolism of urban elements, and the navigability of streets.

� social form[152, 246]:
The study of social, ethnological, and demographical aspects, ac-
tivity, and public functions of cities. The study of public space
as places, public buildings, and streets plays an important role.

� bioclimatic form [63]:
The study of the impact of natural aspect to the formation of
the urban fabric. This point of view has been carried out in
the last decades, on the environmental costs generated by urban
transformation processes, focusing attention on soil consumption
and the e�ects the urban sprawl on the quality of life.

� planning form [143, 174]:
The study of the urban form focusing on the degree of planning
(geometrical or organic plan, orthogonal, or radio-centric plan) in
relation with its centralities (mono-centric or poly-centric cities).

� tissue form [65, 70, 85]:
The study of the relations between physical elements of cities
in historical and evolutive perspective. Pioneer morphological
studies were carried out by the thee independent schools: Ital-
ian (Muratori, Caniggia, Rossi, Aynomino), French (Castex, De-
paule, Panerai) and English (Conzen). This classical point of
view is based on three fundamental principles (the geometry, the
scale of observation and the historical evolution). These studies
show that a relation between socio-economical events and urban
morphologies can be observed from a historical perspective.

� The organization of socio-technical functions (e.g. the spatial distri-
bution of humans and activities).

� The organization of urban fabric (e.g. the geometric relationship be-
tween streets and built-up).

The inequality of spatial distribution of social housing [239], the tendency
of commercial activity to locate in places where �ux of transportation is
relevant [229], the social segregation [184] are few examples of the �rst
type of spatial organizations. The urban sprawl [59] and the morphological
patterns of geometrical relations between elements of urban fabric [10] are
examples of the spatial organization of physical elements.
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3.1.5 Streets networks

The substantive street8 came from the Latin sternere which means pave:
paving a part of the space provides a distinction between the paved and the
uncontaminated part and also gives a function of the paved one.

Streets are the result of the human interactions. They are fundamental
for the formation of settlements and they are resilient to human changing.
Streets, de�ning relationships between settlements and land, connecting
area considered important by humans [5], impacting the lifestyle of people.
The straightness of streets is correlated with actual displacements of people
[142]. The accessibility of urban areas and human behaviours are in rela-
tionships with geometrical characteristics of the street network [118]. The
street network is the main transportation infrastructure, its geometry im-
pacts relation between people [185]. Indirectly, street con�guration has an
e�ect to the house price [302], the spatial arrangements of urban functions
[215] and the quality of life [253].

A street network is composed of several streets with di�erent levels of im-
portance. For instance, a hierarchy of streets can be observed according
to their speed limits: few major roads and a majority of capillary streets.
This hierarchy has also a physical e�ect on urban forms: streets with high
capacity are also wider and with more lanes than secondary ones. Even peo-
ple's behaviour is impacted by this hierarchy: assuming that a user wants
to reach his destination as quickly as possible, he prefers to move to ma-
jor streets, and stay on faster streets allowed as much as possible. Street
typologies are associated with the spatial scale of the area that they serve.
The properties of streets impact their individual choice which in turn has
an e�ect on properties of urban forms and on the organization of the urban
system. In other words, the streets and the other elements of urban fabrics
co-evolve.

If we consider the street network as streets connected by junctions, this
in itself does not constitute a complex system ore even a complex network.
Junctions have more or less similar degree of connectivity (between 3 and 4),
very much like random and regular networks. Conversely, street networks
are complex if we consider the process that had build them, the functions
that they host within the scope of functioning of the whole urban system
and the dynamics that they support.

Summary 7:

Urban systems
With regard to the scale of observations, an urban system is a col-
lection of heterogeneous elements. Some of them constitute the urban
fabric (buildings, parcels, streets and lots) and the result of interac-
tions/relations of people with nature. To understand how these ele-
ments are arranged and how they evolve in the time we must inves-

8The English vocabulary makes a distinction between roads and streets: the �rst
ones generally concern the most paved transportation way, which connect cities, and
the second ones are typically in cities, contoured by buildings. Due to the impossibility
to practically make an exact distinction in an evolutive context (sometimes a road may
become a street), some inconsistencies in the database, and the incapacity to discriminate
that in all situations, in the next we do not distinguish between these terms.
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tigate internal processes and all kinds of relations between them: in
other words, study the urban form. Streets are subject to the hierar-
chy principle: there are streets with more or less central importance.
These hierarchies structure the whole urban system.

3.2 Morphogenesis of urban systems

Urban morphogenesis is a dynamical process in which the organization of
urban elements and the formation of structures observed at a macroscopic
scale emerge as a result of microscopic interactions and cross-level feedbacks
(see section 1.3). The morphogenesis of urban systems concerns several
aspects and it is a hard task to resume all of them; the following sections
will provide a description of some speci�c morphogenetic processes that
concern urban systems. Here we focus on street networks.

3.2.1 Morphogenesis of European cities

The spontaneous formations of early settlements coincides with the begin-
nings of human socialization [203]. The primordial needs to survive, ex-
change informations and �nd resources was the �rst form of organization.
It occurred in the absence of a explicit design. In European cities9 [38],
the process of urbanization tends initially to occur along the percorso ma-

9While in European cities the public space is a fundamental space of relations and
the forms are the consequence of unconditioned mobility, in Islamic cities interactions
are conditioned by social segregation constraints for family groups and the space is par-
titioned to increase the isolation of family-controlled sub-areas. Consequently, urban
fabrics has di�erent patterns: in the former public space has a fully permeable structure,
while the latter have a highly hierarchical structure.

(a) matrix, implantation, and connection paths, buildings and parcels.

(b) paths, buildings and geomorphology.

Figure 3.1
Morphogenesis of European
cities. Source: [66].
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trice (the matrix path), a linear path linking important places10. These
paths also connect early settlements and sources of matter. The geometry
is strongly impacted by the orography and seeks to connect two places in
a way that reduce the length of the path. The urbanization process tends
initially to occur along a quasi linear path linking places. Matrix paths are
considered important by the community. Parcels which delimit the land
around buildings (often an house), in many cases with rectangular-shaped
footprint, with the shortest edge on the path, are disposed closely along the
matrix path. The frontage of parcels becomes discontinuously broke, nucle-
ating new paths, called percorso d'impianto (the implantation path), which
are generally perpendicular to matrix paths. This led to the development
of percorso di collegamento (the connection path) to connect implantation
paths, thus closing o� the block. The need for interactions between people
is therefore accommodated through gradual adjustments of the existing tis-
sue, responding not so much to issues of global coherence, but only current
and individual demands (�g. 3.1a).

The geomorphology of the site plays an important role during the ur-
ban morphogenesis, by imposing a speci�c pattern of connections between
places. The structuring role of environmental features is evident for geo-
graphical areas which do not allows the human implantation. In these cases
the environmental characteristics have an organizational in�uence, they act
as a physical barrier. Rivers and mountains constraint the development of
the settlement. In the case of settlements developing along hill crests, a
minimal resistance principle imposes the minimization of the energy cost of
mobility (�g. 3.1b).

3.2.2 Planned versus spontaneous cities

Planned cities are supposed that they were entirely built in a short span of
time: the main infrastructures of a city (or a suburb) are placed in the same
time, respecting a global vision of a planner. Planned street patterns seem
"optimal" regarding its topology and its geometry. For instance, the square
grid is optimal in the sense that it reduces the mean distance between two
points of the city and favorites a regular distribution of buildings [262].
Another example is the radial layout, used when the goal of the people is
not to go uniformly from a point to another but to reach a central point as
quickly as they can. Most of time it is not the case. Often cities adapt their
form and evolve following external actions or new internal requirements.
Local structures overlap existing structures and physical elements extend
spatially as much as the city growths in terms of population and economy.
Agents add sequentially streets to the current city's layout. Each addition
is locally optimal at a given time and for the agent that makes it. If a
city is spontaneous, it is the result of local non-concerted interactions that
trying to optimize and adapt in a short period of time the accessibility of a
suburb.

Forms in spontaneous cities are unanticipated. Urban forms are hetero-
geneous but ordered, self-similar, and often grow spontaneously. Planned

10Below, we use the terminology used by Caniggia in [66].
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cities are often an exception and they remain such (planned) for short pe-
riods of time. Hence, for the sake of universality, it is useful to consider
settlements that underwent non-designed development.

3.2.3 E�ects of self-organization in street network layout

Self-organized cities are based on the assumption that people are not moti-
vated by some global principles of spatial or community order when making
their individual choices. Their main purpose is to accommodate their actual
needs with the minimization of energy employed. In many cases there is no
reason why humans should take more e�ort than needed to reach an aim
[307].

An interesting e�ect of the self-regulated organization of people and the
spontaneous formation of urban fabric concerns the typology of street in-
tersections (�g. 3.2) [24]. The morphogenesis provides the formation of
a new street (implantation and connection paths) from an existing street
(matrix or implantation path): at a given time, a new street builds and
the intersection typically has a T form. These new streets are not de�ned
by global and centralized actions, but they are spontaneous and optimal
locally. Moreover, a consistent part of the paths was build to connect an
interesting area to the rest of the settlement: it results that a large num-
ber of these paths ends in a cul-de-sac. The resulting network of streets
is composed of a large number of T intersections and dead ends. In the
primal representation of the street network (see section 3.3.5), the graph is
composed of a large number of vertices with degree 3 and 1. The ville haute
of Le Havre is a good example (�g. 3.2, right).

In several planned cities, rather than developing via sedimentation of urban
elements over a long period of time, streets are laid out on a more or less
regular orthogonal grid11. Typically, for these urban forms, a large master
plan was de�ned: often we observe the main axis, parcels are reshaped
and a part of the built-up is destroyed or transformed. Although this kind
of urbanization is often a way to colonize new continents (the majority of
North American cities, but also in India and South America), it can also

11A regular grid is not the only "planned" urban con�guration: for instance, in the
growth of the suburb of North American cities, with the aim to reduce the accessibility,
tree-like and sinuous streets have been planned.

Figure 3.2
Urban forms in Le Havre.
The spontaneous formation
of the ville haute (right) ver-
sus the planning ville basse
(left).
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Figure 3.3
Sedimentation and rupture
during the urban morphogen-
esis.

Tsedimentation rupture

be observed in European cities (Barcelona, Turin, Nice, etc.). Practical
reasons motivate this kind of urbanization (accessibility, navigability, good
orientation to the wind, etc.). Examples of planned con�gurations can
be founded in di�erent periods: for instance, Siracusa in Ancient Greece,
Cuneo in the Roman Period, but also 18th centuries planning of Barcelona).
The result is that for planned areas we can observe that streets orthogonally
intersect, and the corresponding primal representation of the street network
contains many vertices with degree 4. We can observe that into the ville
basse of Le Havre (�g. 3.2, left).

3.2.4 Sedimentation and ruptures

Often the physicality and the functions of urban fabric elements (streets,
build-up, gardens, squares, etc.) do not vary for long periods of time.
Thanks to the persistence of these elements, we observe a sedimentary pro-
cess behind the formation of the tissue: existing physical elements conserve
previous size and evolve thanks to a process of juxtaposition. This idea is
present in the processo tipologico (typological process, the transformation of
basic type) of Caniggia [66], the burgage cycle (consolidation of the block)
of Cozen [85] and the distinction between elementi primari (primary ele-
ments, structures which never change) and elementi secondari (secondary
elements, residential area) of Rossi [248]. A similar process was described
also in leaf venation [49, 221] formation and in the sequence of cracks in
ceramic surfaces [52].

Although the evolution of urban forms is continuous most of time, brusque
ruptures also appear during the formation process (�g. 3.3). Ruptures
concern the sedimentation of physical elements, socio-technical function
changes and new human usage. At signi�cant historical moments, cities
changed in strong relationship with social, cultural or natural changes.
These events caused a discontinuity of the urban tissue, de�ning distinct
urban forms. The reconstruction of Le Havre city centre after the Second
World War, the Haussmann's renovation of Paris in the 19th century, the
re-organization of London after the Great Fire in 1666 are few examples of
ruptures in the process of sedimentation.

Summary 8:

Urban morphogenesis
The city favours the proximity and its formation is constrained by a
set of local forces resulting from social, economic, political, but also
topographical characteristics. This context generates and surrounds
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local interactions and it is a source of self-organization. We cannot
sum it up with an overall design intent. External factors may be an
organizational factor, de�ning and amplifying individual choices, but
they are not the reason why organizations emerge. System features
cannot be traced back to the choices or aims of a single parameter.
In general, cities evolve continuously via a sedimentary process or via
an imposition of a layout. Discontinuity moments appear during the
spatial formation of the urban fabric. The topology and the geometry
of streets are strongly impacted by these dynamics. Di�erent forms
appear as an overlapping of di�erent processes.

3.3 Modelling urban systems

urban systemic
systems approach
↓ ↓

modelling urban systems
↓

street network

The �rst step of modelling any urban system consists of identifying the
basic elements that give an appropriate representation of the phenomenon
that interests us [255]. The spatial dimension plays a fundamental role (sec-
tion 1.2) [235]: we should tackle the di�culty to locate physical elements
and take into account the e�ects of space in the interaction between ele-
ments. To do that, we need a �exible framework that allows us to represent
physical elements in Euclidean space, together with their geometry and all
other (unspatialized) associated data [37, 57]. Finally, we have to consider
the possibility that these objects can change over time.

Geographical Information System (GIS) can be useful for our purposes. It
is an information system specializing in the input, storage, manipulation,
analysis, and reporting of spatially related information [53]. The funda-
mental capability of GIS is the ability to relate spatial informations to
unspatialized informations (�g. 3.4). Di�erent kinds of non-spatial data
can be represented in di�erent forms. GIS provides a way to collect, select,
visualize, analyse, and share geographical data. Each element, identi�ed
by a unique identi�er (the ID), and graphically represented in a map, has
an associated set of features, stored in a database. For instance, the phys-
ical location and geometrical characteristics of a hospital are drawn in a
2-dimensional map and the entire element is related to the actual use of the
building: the number of patients, the number of surgeries per month, the
postcode address, etc. Among the wide range of possible applications, GIS
can be used to study cities.

3.3.1 Vector and raster representation

GIS integrates two representations (�g. 3.5) of elements in a map:

� The grid-based representation (raster)

A 2-dimensional array decomposes the space into a set of cells. Al-
though many shapes are possible (e.g. hexagons, triangles), the square
is the most commonly used. Cells are typically similar in size, local-
ized by a tuple of coordinates X = (x, y) and identi�ed by an ID. This
last maps the cell to a record in a database. A raster may contain
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Figure 3.4
Geographical Information
System (GIS). Source:
www.esri.com.

Figure 3.5
Raster (left) and vector
(right) representation.

di�erent kinds of information: the land usage of a rural area (descrip-
tive information), the average household income of a neighborhood
(quantitative information), the average elevation of the cell (the z
coordinate of the cell), etc.

� The line-based representation (vector)

Here space is considered as much as possible continuous, that gives
(in theory) an in�nite set of coordinates. A vector representation is
composed of three geometrical elements: the point, the straight line,
and the polyline. An ID is assigned to each element. Di�erences be-
tween these elements are about geometrical features that characterize
them. In a 2-dimensional space, a couple of coordinates X = (x, y)
for a point, two couples for the extremities of a straight line, a se-
quence of segments for the polyline (a closed polyline is a polygon).
For instance, we can indicate the position of a tree in a forest with a
point, a straight portion of a street with a line, a river with a polyline,
and the footprint of a school building with a polygon.
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3.3.2 Levels of aggregation and representation

Urban systems can be represented at di�erent levels of observation (sec-
tion 3.1.1); to each level corresponds a di�erent method of representation.
Elements that compose the urban system can have zero (points), one (lines),
two (surfaces) or three (solids) dimensions. Moreover, the dimension of the
element depends on the scale of observation and the same physical object
can be represented in di�erent ways.

Figure 3.6
The granularity of informa-
tions in a raster representa-
tion

For example, at high level of aggre-
gation a system of cities could be represented as set of points (eventually
connected by segments). At an intermediate level, a city can be repre-
sented as a set of polygons (the footprints of buildings, squares, etc.), points
(trees, light poles, etc.) and polylines (streets, rivers, etc.). At the lower
level, points can represent individuals. As we mentioned before, the choice
depends on the studied phenomenon. For instance, represent individuals
may be useful to investigate social phenomena and the e�ect of urban fab-
ric to the way that they interact while represents relations between cities
modelled as points may be useful to investigate economical relationships
between them. Moreover, technological limits can eventually have an e�ect
to our choices: for instance, in a raster representation, the cell size deter-
mines how coarse or �ne the information in the raster will be (�g. 3.6). In
several cases, the vectorial representation is more adapted (the next section
concerns the street network case).

3.3.3 Modelling street networks

networks modelling
urban systems

↓ ↓
street networks
↓ ↓

toward organization of
morphogenesis street network

Starting within the �elds of transport and infrastructure engineering [115,
134], street networks have commonly been treated as sets of more or less
homogeneous physical elements with a prevalent direction. These elements
connect locations and intersect at junctions. Streets could be integrated
into a GIS framework in a raster or a vectorial representation. Represent-
ing streets via raster implicates some problems because the size of cells
determines the quality of representation. In �g. 3.7, we capture an aerial
photo of the Saint François suburb (Le Havre) and we overlap a regular grid.
The image shows that the quality of the raster representation depends on
the size of cells, vector representation is scale-independent.

A raster representation is typically obtained by a satellite orthophoto; the
results could be impacted by overlapping elements: for instance, via raster
representation, we cannot identify underground streets and streets under
projected vegetation. Otherwise, vector representation is generally well
adapted to represent street networks. Moreover, the latter representation
implies an evident correspondence with graph theory. In order to apply
methods and analysis from graph theory, the street network must be repre-
sented as a graph. There are two ways to do that: the primal and the dual
representation [112].
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3.3.4 The dual representation

The dual approach represents the streets as an undirected graph, where
vertices are a portion of streets and edges are intersections between them
[227] (frame 3 and �g. 3.8).

Dual representation may seem a bit odd but provides several advantages
in analysing the topology of street networks [249]. Street networks in dual
representation show properties similar to many other unspatialized com-
plex networks [227]. Actually, often street networks, with signi�cant size
[67] and represented with the dual approach, present scale-free vertex degree
distribution and high values of the average clustering coe�cient12. More-
over, small-world proprieties have been observed [154] and, characteristics of
these networks had been analyzed with centrality indicators (see section 4.3)
[88].

Despite the contribution of these approaches to investigate structural prop-
erties of urban fabrics, several inconsistencies were been found [241]. For
us, the most important inconvenience is the absence of spatial aspects. The
dual representation of a street network is a graph without relations with
Euclidean space: vertices are not located and edges do not indicate geomet-
rical information. Moreover, the terminology may be misleading: the dual
representation should not be confounded with the dual of a graph13.

12Also known as the global clustering coe�cient, it represents the tendency of two
connected nodes to be both connected to a third node (in other words, nodes cluster
together) [83].

13A plane graph divides the 2-dimensional space into regions called faces. In the dual
graph, faces become vertices and adjacent faces become edges. (pas sure)

Figure 3.7
Representation of Saint
François neighbourhood,
Le Havre. The orthophoto
(left), the raster (top right)
and the vector (bottom
right) representation.

orthophoto

raster

vector
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Frame 3:

the dual representation
Many approaches to model street networks in dual representation have
been proposed, each of them o�ers insights into diverse aspects of the
urban system (�g. 3.8).

� The cognitive approach [90, 141, 142]
Observing the city from a pedestrian point of view, Space Syn-
tax theory proposes to decompose the accessible space of human
settlements as a series of straight lines. These last, representing
the longest visibility lines of walkers, de�ne the Space Syntax ax-
ial map. Each line is a vertex in the corresponding graph and if
two lines intersect, there is an edge between the corresponding
vertices.

� The odonym approach [154, 157]
Streets are grouped by their name. Vertices correspond to streets
with the same name.

� The geometric approach [84, 169, 227]
Streets are grouped by geometrical reasons. Two continuous seg-
ments of streets are two distinct vertices that are connected by an
edge if the segments form an angle bigger than a �xed threshold.

Figure 3.8
The dual representation.
Row 1 is a �ctive settlement,
row 2 the identi�cation
of vertices, and row 3 the
dual graph. Line (A) is
the cognitive approach, line
(B) the odonym approach,
and line (C) the geometric
approach. Source: [227].

3.3.5 The primal representation

The primal representation of a street network is a spatial graph G(x) where
edges are segments of streets and relevant points of streets are vertices.
These last are spatially embedded in two or three-dimensional Euclidean
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Figure 3.9
The building footprint (grey
regions) and the street net-
work (black lines and dots) of
Ragusa city-centre, Italy.

space and edges are eventually labelled by some features. These last can be
related to geometrical aspects14 (the length of the street, the width of the
street, etc.) or not (characteristics of the pavement, the number of walkers
per hour, etc.).

Topological and metrical aspects of graphs are fundamental to capture es-
sential characteristics of street networks. While some graphs show similar
topological features, they actually appear di�erent: the primal representa-
tion of the street network of Ragusa town (Italy) is an explicative example
(�g. 3.9). Comparing the West and the Est sub-area, we observe similar
topological features, because both sub-graphs have a large number of ver-
tices with four incident edges. However, comparing streets in the Est-West
direction, vertices in the West side are closer that vertices in the Est side:
this simple example shows the crucial role of metric features to characterize
street networks.

3.3.6 Some problems to construct the primal graph

Figure 3.10
The primal representation of
tra�c circles in Le Havre

Streets are often stored as polylines in a GIS; in order to assure an adequate
geometrical approximation, polylines are composed of a large number of
segments (�g. 3.10). A street can be seen as a chain of segments, and an edge
corresponds to each segment in the spatial graph. Hence, the corresponding
node set V of the spatial graph G(x) contains a large number of vertices
with degree 2. These last are artefacts, an element that only serves to
approximate the geometry of the street. Statistical information about the
spatial distribution of elements of the street network is strongly impacted
because this representation is not able to bring out main elements.

Several methods were proposed to reduce these e�ects; the goal is to con-
struct a graph that contains the most important information as the topology
and the geometry. A way to tackle these practical problems is to simplify

14Geometrical information that cannot be inferred from the graph.
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the spatial graph, merging close vertices: when the distance between two
vertices is less than a threshold, they are merged and incident edges of
both become incident to a new vertex. This approach is based on a simple
method. Some inconsistencies do not assure the adequate representation of
the streets. The arbitrary threshold is not adapted to a sparse edge length
distribution, typically observed in the streets network (see chapter 4); de-
pending on the threshold, two close but not intersecting streets could merge;
a loss of information results because the length of edges becomes less repre-
sentative of the actual length of streets; �nally, there is no guarantee that
the vertex degree distribution of the simpli�ed graph is not peaked in 2.

Figure 3.11
The Ramer -Douglas
-Peucker procedure.

A second approach is given by the Ramer�Douglas�Peucker algorithm [238]:
in its general form, it downsamples a polyline to a similar polyline with fewer
points (�g. 3.11). The procedure divides the polyline and removes points
far from the approximate polyline. A threshold (a �t criterium) de�nes the
maximum distance of the starting polyline to the approximating polyline.
Like the previous method, this one also requires an arbitrary parameter
and does not assure the preservation of geometrical features. The vertex
degree distribution could be perturbed by the presence of many vertices
with degree 2.

To resume, we have to de�ne a rigorous method to identify the main ele-
ments of street networks, disregarding elements only used to approximate
streets and guarantee its geometrical and topological features.

3.3.7 The street intersection network

In order to overcome these problems, our approach focuses on the most
important elements of a street network: intersections15 and dead ends 16.
Let G = (V,E) be a generic graph; a positive weight l(e) is associated to
each edge e. Let V (2) be the subset of vertices of degree 2, V (1) the set of
dead ends, and V (+) the set of intersections. The algorithm 1 removes all
vertices in V (2) and possibly transforms the initial graph in a multigraph
�g. 3.12. The algorithm replaces each vertex v of degree 2 and its incident
edges e1 and e2 by a new edge e3, connecting the two neighbours of v.
The weight of e3 is the sum of weights of e1 and e2. The procedure stops
when V (2) = ∅. The algorithm can be applied to graphs G(x) embedded
in Euclidean space: in this case, the weight of edges can be computed as
the Euclidean distance between the corresponding pair of vertices. The
corresponding graph remains spatially embedded and the sum of attributes
l(e) does not change.

When we apply the algorithm 1 to the primal representation of a street
network, we obtain a street intersection network. It can be de�ned as:

De�nition 9:

street intersection
network

The street intersection network, noted as SIN(G), is a geometric graph
where vertices, located in a plane, are the dead ends or the intersections

15An intersection is an at-grade junction where three or more segments of streets meet.
16Also called cul-de-sac, is the part of the street that is closed at one end.
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Figure 3.12
A graph before (left) and af-
ter (right) the application of
the algorithm 1. Black dots
are vertices with degree 2, red
dots are all other vertices and
segments indicate edges.

Figure 3.13
The street intersection net-
work of Le Havre city cen-
tre. Algorithm 1 transforms
the primal representation of
the street network (left) in a
graph without vertices with
degree 2 (right).

Algorithm 1: Building the street intersection network
input : G = (V,E) graph, edges have a generic attribute l
output: the graph G without vertices with degree 2
begin

while V (2) 6= ∅ do
v ← vertex in V (2)
e1 = (v, v1), e2 = (v, v2)← incident edges of v
e3 ← (v1, v2) /* add a new edge */

l(e3)← l(e1) + l(e2) /* set attribute to the new edge

*/

E ← E + e3 − {e1, e2}
V ← V − v

of streets and the edges are weighted by the length of the streets.

The algorithm removes all vertices need to approximate the geometry of
streets (�g. 3.13). The graph conserves the geometric properties of the
initial network. The shape of edges is lost, but we keep their lengths.

Summary 9:

modelling urban
systems

The raster and the vector representation are both useful to model
elements that compose urban systems. However, to model streets, the
vector representation shows many advantages: the most important one
is that allows us to represent them as a graph. The street intersection
network is a primal representation that conserves information about
both geometry and the topology of the street network.
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"I really don't trust statistics much. A man with his head
in a hot oven and his feet in a freezer has statistically an
average body temperature".

Charles Bukowski

Previous chapters exposed basic notions of complexity theory (chapter 1)
and the capacity of a systemic approach to model and simulate morphogen-
esis of spatial complex networks (chapter 2). The street networks are an
important component of urban systems and we propose to study them as
spatial graphs (chapter 3).

The chapter starts with an introduction of network analysis and the descrip-
tion of our dataset (section 4.1). We present here some measures, specially
adapted to the study of spatial complex networks and, more speci�cally, to
street networks. Selected measures came from graph theory (sections 4.2
and 4.3) and fractal theory (section 4.4). We apply them on a dataset com-
posed of the graph representation of street networks of French department
cities, the Le Havre metropolitan area (in the following called CODAH),
and six theoretic planar graphs (previously described in section 2.3.3).

4.1 Studying complex spatial networks

street networks
↓

street network
organization

↓ ↓
experiments urban

application

Graph measures are essential as a rigorous resource in many complex system
studies, including characterization, representation, classi�cation, and com-
parison. A large literature had been able to develop useful measures (see the
survey [83] and references therein), the average vertex degree, the diameter,
the clustering coe�cient, average shortest path length for example. These
measures are used to characterize evolving processes [211], the robustness
[82], the resilience to external events [3], �nd communities [105] and so on.
However, they cannot completely reveal properties of spatial graphs. For
example, cluster coe�cient and assortativity present limits when the vertex
degree distribution is in a short range (this is the case of street networks,
where degree is often between 1 and 6). These measure are mainly focussed
on topological aspects of graphs, without taking into account geometry and
location of elements. In other words, with those measures the spatialization
of the network is ignored [23].

Geographers were ones of the earlier researchers that seek to answer the
question of how to choose the most appropriate measures with special con-
sideration of space. From early applications in the 60s on spatial networks,
geographers proposed a number of indicators from graph theory to charac-
terize urban streets and highway networks [115, 134, 159]. However, these
earlier approaches do not consider the wealth of information contained in
spatial networks: the complex network concept was not yet integrated and
technological limits did not allow researchers to investigate heterogeneous
spatial networks as in present days [48].

To investigate street networks, we should consider spatial information, choos-
ing measures that integrate the notion of space. The �rst step is to build a
dataset that contains this kind of information.
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Figure 4.1
France departments cities.

4.1.1 Geographical informations

A geographical data is a piece of information about a spatialized object. It
is collected into a dataset. To build our geographical dataset, we de�ne for
each studied area a connected 2-dimensional space that aims to represent the
urban area. To do that, we use French administrative boundaries, selecting
the corresponding municipality administrative level. We are aware of the
imperfect representation of urban areas with administrative boundaries. In
fact, due to sub-urbanization, long-distance commuting, sprawl, the limits
of cities are often fuzzy1. Moreover, these problems are related to the level of
observation/representation that we choose to investigate the phenomena. In
last decades, researchers tackled the challenge to give a rigorous procedure
to de�ne urban boundaries, measuring demographics [11], analyzing urban
growth [187], using fractal measures [278], clustering measures on street
networks [192] and land use [179]. We are also aware of possible e�ects of
boundary de�nition in network measures [120, 244].

We prefer in this early evaluation of our models to give an unique and
empirical de�nition of urban area via administrative limits, in order to give
a global comparison of our results to reality. We do not exclude in future
works to go more deeply to improve our methodology in boundary limits
de�nition.

4.1.2 French department cities

Since 2016, France is composed of 18 regions and 101 departments (96 in Eu-
rope and 5 in the oversea area); we focus on the European cities (�g. 4.1).

1In most cases, it is di�cult to distinguish a city from a network of cities, like in large
conurbations or densely connected regions (e.g. the Ruhr area in Germany or the Emilia
axis in Italy).
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Figure 4.2
Le Havre metropolitan area.

The GIS database is open free2; we use the python library OSMnx 3 [47]
to collect them. Geographical information are in a ESRI shape�le for-
mat (.shp): the corresponding adjacency list was obtained with the python
package Networkx 4 and then converted in a .dgs format. Finally, the
corresponding street intersection network was created and analysed imple-
menting the Java library GraphStream5 [226].

4.1.3 The Le Havre metropolitan area (CODAH)

The CODAH6, centered on the city of Le Havre, is an administrative area
located in the estuary of the Seine river. It includes 17 cities and around
275 000 people. It extends in an area of 20 000 hectares. The length
of its street network is around 220 Kilometres (�g. 4.2). As regards urban
forms, the CODAH shows a large variety of case study: productive activities
(industries and commercial port), high urbanized areas and a constellation
of secondary settlements. We can �nd urban spontaneous (la ville haute)
and well planned (la ville basse) urban areas. The corresponding street
network was obtained from the platform OpenStreetMap.

2https://openstreetmap.org
3https://geo�boeing.com/2016/11/osmnx-python-street-networks
4https://networkx.github.io
5https://graphstream-project.org
6http://www.https://www.lehavreseinemetropole.fr
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4.1.4 Theoretic planar graph

Six geometric planar graphs were used to compare the urban dataset (French
cities and CODAH) to theoretic graphs. To this end, we applied the six
procedures exposed in section 2.3.3 to a set of vertices in euclidean space
R2 of 10×10 units. The grid graph is composed of a set |V | = 941 vertices.
The 1000 vertices of the other graphs are scattered over a plane in the same
random manner. The probabilistic graph is obtained with a probability of
p = 0.5 and the deterministic graph with a geometric threshold of δ = 0.5
units.

Summary 10:

the dataset
Our dataset is composed by 103 geometric planar graphs: 96 French de-
partment street networks, the CODAH street network and six theoretic
planar graphs. We remove vertices with degree 2 with the algorithm 1
(section 3.3.7) before to analyse them.

4.2 Global properties of spatial networks

In this section we get interested in topological and metrical measures able
to characterize street networks and discriminate them from classical planar
graphs (see frame 1 for the notation). In what follows, we consider as
the mathematical representation of a generic street intersection network a
geometric planar graph G(x). We assign the attributes l(e) ∈ R+ to the
edges of each graph; they indicate the length of streets.

4.2.1 Degree

The probability of �nding vertices with degree k ∈ N is P (k) = V (k)/|V |
(where V (k) is the number of vertices with degree k and |V | is the total
number of vertices). The distribution degree P (k) is usually an interesting
measure for many complex networks, such as it is observed in scale-free
networks [20]. Even in spatial networks, an ample �uctuation of P (k) can
be observed (for instance, in airline networks [21]); however, if spatial con-
straints are relevant (e.g. an insect galleries network), and even more if
vertices are embedded in a plane (e.g. a leaf network), the P (k) is not in
a broad range [221] and the distribution is peaked around 3 [60]. This is
the case for the street networks in its primal representation (section 3.3.5),
where the degree distribution of nodes have a fast decay and rarely exceeds
6 [60].

The �rst basic topological measure is the average vertex degree, de�ned as:

〈k〉 =
2 |E|
|V | (4.1)

The eq. (4.1) measures the mean of the number of streets that emanate
from each end-nodes or intersection. We expect to �nd 2 < 〈k〉 < 4, where
the lower value characterizes a tree 7 and the upper value a square grid.

7A tree of n vertices has n− 1 edges.
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4.2.2 Connectivity

Connectivity indicators are used to characterize transportation networks
[115, 134, 303]; the gamma index γ ∈ [0, 1] is a basic measure of connectivity
for a graph. It is expressed by the ratio between the number of edges |E|
and the maximum number of possible edges in the graph |E|max. For a
planar graph, it is de�ned as:

γ =
|E|

3(|V | − 2)
(4.2)

The values of the gamma index are in [0, 1] and a higher values indicates
graphs close to the complete graph.

4.2.3 Planning versus self-organized cities

The degree distribution P (k) of street intersection network often shows an
abundance of vertices with k = 1 and k = 3 in spontaneous8 areas than well
planned area, where P (k) is peaked around k = 4 (see section 3.2.3). For
these reasons in a recent paper [84], Courtat et al. proposed the topological
measure organic ratio org as:

org =
|V (1)|+ |V (3)|

|V | (4.3)

The organic ratio org ∈ [0, 1] discriminates planned street networks (org '
0) from self-organized ones (org ' 1).

4.2.4 Tree versus complete graph

The meshedness coe�cient mes ∈ [0, 1] [60, 67], also named α index, cor-
responds to the number of cycles present in the graph compared to the
maximum number of possible cycles.

mes =
|E| − |V |+ 1

2|V | − 5
(4.4)

The meshedness coe�cient is 0 if the graph is a tree and 1 if the graph is a
complete graph.

4.2.5 Size and cost

The sum of length of streets:

l(G) =
∑

e∈E
l(e) (4.5)

is not useful. We can have a look about the sum of lengths of edges nor-
malized by the the total number of edges:

〈l(G)〉 =
l(G)

|E| (4.6)

8Courtat et al. [84] used the term "organic".
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Average street length, in urban form analysis, is an useful tool to measure
size and density of block [262]. Comparing 〈l(G)〉 to the the length of the
corresponding minimum spanning tree:

cost =
l(G)

l(MST (G))
(4.7)

we obtain the cost9, a measure of accessibility and a basic information about
the robustness10 of the street network. From the accessibility point of view,
a tree is not an e�cient network.

4.2.6 Robustness

The study of the robustness of complex systems is an important �eld.
It reveals the adaptability of the system against failures or attacks (sec-
tion 1.1.3); many complex networks display an high degree of robustness
[3, 147]. Robustness was observed in animal organizations [61, 222], streets
[60] and infrastructures [54]. A street network has a high level of resistance
to failures: in most cases, in the corresponding graph representation, there
are several paths between two distinct vertices, hence it is di�cult to lose
the connectivity between them. In this �eld, we can �nd studies that aim
to correlate robustness and other indicators like the closeness [193] and the
e�ciency [60]. The analysis of robustness is important in many practical
problems: a high degree of robustness ensures the navigability of the street
network even in case of failures. In the urban context, failures are the inter-
ruption of a street due to natural cataclysms, planning, or maintenance of
infrastructures, and public events. Hence the study of adequate measures
of robustness is important for the study of urban systems, urban planners
and public administrators.

In a graph, the robustness can be measured by studying how it becomes
fragmented as an increasing number of vertices is removed. A measure
of fragmentation is the size of the vertex set of the giant component of
the graph. The vertex removal can take place randomly. The robustness
rob ∈ [0, 1] is conventionally measured [60, 61, 193] by the values of fraction
of vertices required for the giant graph to reach the value 0.5|V |. The value
of rob is usually an averaged value obtained for a consistent number of
experiments (100 experiments in our analysis).

4.2.7 Global properties of street networks

The goal of this section is to give advice about the values of the indicators
previously described. To this end, we analyse the street intersection network
of 96 French department cities, the CODAH and the six geometric planar
graphs. Table 4.1 is the statistical summary of street networks and table 4.2
shows values of indicators resumes theoretic planar graph. We can infer that

9The cost measure can also be computed in a topological way: a topological cost can
be de�ned as the ratio between the number of edges of G and the number of edges in the
corresponding MST (G).

10A tree is is not a robust graph. We discuss this point next.
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|V | 〈k〉 |E| l(G)(km) 〈l(G)〉 (m) γ org mes cost rob

min 1039 2.397 1354 12.426 3.713 0.4 0.698 0.083 0.657 0.15
max 42187 3.04 58498 350.847 15.194 0.507 0.948 0.171 0.849 0.29
range 41148 0.643 57144 338.421 11.481 0.107 0.25 0.088 0.192 0.14

median 5343 2.783 7560.5 49.706 7.166 0.464 0.855 0.141 0.747 0.22
mean 7603.667 2.781 10713.156 68.498 7.825 0.464 0.848 0.14 0.748 0.219

std.dev 7451.318 0.113 10682.791 61.856 2.361 0.019 0.051 0.015 0.036 0.026
coef.var 0.98 0.04 0.997 0.903 0.302 0.04 0.061 0.107 0.049 0.12

Table 4.1
Summary of characteristics of street intersection network of the 96 French department cities. Number of vertices |V |,
average vertex degree 〈k〉, number of edges |E|, total length of edges l(G), average edge length 〈l(G)〉, gamma index γ,
organic ratio org, meshedness coe�cient mes, cost cost and robustness rob.

graph 〈k〉 γ org mes cost rob

euclideanTree 1.998 0.334 0.470 0.000 1.000 0.06
probabilistic 2.640 0.441 0.400 0.122 0.682 0.33
deterministic 4.355 0.727 0.234 0.271 0.496 0.33
gabriel 3.876 0.647 0.313 0.243 0.520 0.36
grid 3.863 0.645 0.120 0.242 0.521 0.40
delaunay 5.940 0.992 0.017 0.332 0.332 0.46

Table 4.2
Characteristics of six geometric planar graphs. Average vertex degree 〈k〉, gamma index γ, organic ratio org, meshedness
coe�cient mes, cost cost and robustness rob.

the values of the vertex set and the edge set of street intersection networks
are in an ample range. The coe�cient of variation11 and the standard
deviation of |V | and |E| are high. The γ, org, mes, cost, and rob indicators
of cities do not display an ample range of values. Finally, few graphs show
values of average degree that exceed 3, low values of mes and high values
org; we can state that the street intersection networks have many tree-like
structures, many dead ends, and more vertices with 3 than vertices with
degree 4 or more. Values suggest that the majority of French cities have
not been planned, and they are the results of a spontaneous process of
formation. These characteristics are scarcely observable in basic geometric
planar graphs; actually, we observe a large dispersion of values.

Despite the probabilistic graph seems to have values of some indicators
close to street intersection networks (especially 〈k〉, γ, mes, cost, and rob),
the degree suggests that its structural properties are incompatible with
our geographical data set. The degree distribution is exponential for the
probabilistic graph (�g. 4.3), while it is peaked for CODAH. The probability
P (k) to �nd a vertex with degree k for theoretic planar graph is broader
than the CODAH, where we observe many vertices with degree around
6 and also a node with degree 26 (the probabilistic graph). Edge length
distributions (�g. 4.4) seem exponential.

Results allow us to suppose that behind the formation of French street

11In statistics, the coe�cient of variation is a measure of the dispersion of independent
variables; it is de�ned as σ∗ = σ/µ ∈ [0, 1], the ratio of the standard deviation to the
mean of a distribution. High values of σ∗ suggest values highly dispersed.
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(a) theoretic planar graphs (b) CODAH

Figure 4.3
The probability degree dis-
tribution of theoretic planar
graphs and the CODAH.

(a) theoretic planar graphs (b) CODAH

Figure 4.4
The cumulative edge length
distribution of theoretic pla-
nar graphs and the CODAH.

networks, there are some common processes; these processes are di�erent to
processes used to generate our basic geometrical planar graphs. Moreover,
the size of graphs does not impact the topological features of street networks,
thus similar properties can be detected in cities with di�erent sizes.

The scatter plot in �g. 4.5 compares the organic ratio and the meshedness
coe�cient of French department street network12 . While there are many
tree structures (low values of mes), there are also fewer planning structures
(low values of org). Results suggest that these measures are related but we
have not su�cient information to ensure a correlation.

In �g. 4.6 we plot the linear correlation between the total edge length and
the size of corresponding vertex set. Values �t the regression line with a
coe�cient of determination R2 = 0.89613 We also observe that the majority
of cities are in the �rst third of the plot: the size of the vertex set of three
cities exceeds average values (which also corresponds to red points in �g. 4.5)
and this is also correlated to the total length of edges.

Figure 4.7 reports the robustness of street networks and the six theoretic
planar graphs. As we expected, the lower values of robustness are observed

12We do not plot points of theoretic planar graphs because they are too far.
13In statistics, the coe�cient of determination R2 ∈ [0, 1] is a measure that indicates

how well the data �t the regression line. High values of R2 suggest a good approximation.
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Figure 4.5
Organic ratio org versus
meshedness coe�cient mes.

Figure 4.6
Number of vertices |V | ver-
sus the total length edge
l(G). Box plots represent the
medians, interquartiles (the
25th and the 75th percentile)
and potential outlier ( values
more than the 1.5 of the 75th

or less than the 1.5 of the 5th

percentile) of |N | (horizontal
axes) and l(G) (vertical axes)
of French department cities.

in the euclidean tree graph: each removed vertex represents an important
failure because it de-compose the graph in at least two components. All
other theoretic planar graph are more robust than real street networks (see
the values of rob and the shape of the distribution). Figure 4.8a plots the
average (red line) of 100 experiments (black lines) and the range of values of
rob. Finally we observe some relations between rob, org and mes indicators
of French cities (�g. 4.8b). Robustness decreases if cities are like trees (low
values of mes) and increase if graphs contain many vertices with k 6= 1, 3
(low values of org).



4.3. Hierarchies and centrality 79

Figure 4.7
Robustness of French depart-
ment cities and six basic
graphs.

(a) 100 runs and mean. (b) org, mes and rob.

Figure 4.8
Robustness of CODAH and
French department cities. in
�g. 4.8a, the average robust-
ness curve; in �g. 4.8b, the re-
lation between rob, org and
mes indicators.

Summary 11:

global properties of
spatial networks

Graph theory proposes indicators useful to characterize geometric pla-
nar graphs. French department and the CODAH street networks show
similar global properties. These last are incompatible with theoretic
planar graphs.

4.3 Hierarchies and centrality

Social groups can be seen as networks of interactions [295]. Bavelas [33]
observed that a central location in a social group corresponds to a certain
degree of freedom and power of the individuals. The importance of an
individual in a system depends on how it is related to the rest of the network:
some individuals are more central than others [108].

Centrality theory allows us to identify relative relationships between ele-
ments in a graph, building a scale of importance [109]. Centrality analysis
was largely used in the last decades to characterize networks and centrality
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measures seek to quantify the importance of vertices14 in relation to others.
Centrality is used not only in social network analysis, but also to study the
web [217], the interactions between proteins [153] and in infrastructures.
In this last �eld, centrality theory was introduced by Space Syntax [142]
(section 3.3.3) and it becomes an important tool to study primal [228] and
dual [227] representation of street networks. Centrality theory was applied
to study spatial organization of urban areas [87, 112] (�g. 4.9), to charac-
terize spatial distribution of retails [215], and to measure the rate of the
urban growth [24, 257, 270]. Centrality indicators seem to be correlated to
transportation informations [113, 170] and robustness [193].

Many centralities characterize the importance of a node or a link in a net-
work. The degree and the closeness centrality measure how elements are
"near (close) to others", the betweenness centrality measures the tendency
of an element to be "between others", the Eigenvector, the Katz and the
Page rank centrality measure the in�uence of a node by a score.

14Similar measures are also applied to characterize edges.

Figure 4.9
Centrality measures, applied
to the street network of
Nice (France) , quantita-
tively discriminate tree-like
and planned urban forms.
Source [112].
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(a) theoretic planar graphs (b) CODAH

Figure 4.10
The cumulative distribution
of the betweenness centrality
of 6 theoretic planar graphs
(�g. 4.10a) and the CODAH
(�g. 4.10b).

4.3.1 The betweenness centrality

The betweenness centrality evaluates the centrality of a vertex (or an edge)
considering the number of shortest path that pass through. High values of
betweenness centrality for a vertex, as well as indicating the property of
it to be crossed by an high number of shortest paths, is also an indicator
of network robustness. Networks with many vertices with high values of
betweenness centrality are less robust and more susceptible to become in-
e�cient in case of failures of part of them [147]. In general, betweenness
centrality scale with the degree, but in spatial networks, due the absence of
hubs and the compactness the degree distribution, they are not equivalent.
The betweenness centrality captures important aspects of the structure of
the networks, bringing out the the hierarchy of importance of elements.

The betweenness centrality is computed comparing the shortest paths which
traversed the vertex and to all shortest paths in the connected graph [22].
Formally, the betweenness centrality of a vertex v is de�ned as:

CB(v) =
∑

s 6=t6=v

σ(s, t|v)

σ(s, t)
(4.8)

where σ(s, t|v) is the number of shortest paths going from s to t through
v and σ(s, t) is the number of topological shortest paths going from s to
t. At least one shortest path might exist for a pair of vertices s and t.
Equation (4.8) can be normalized as :

CNB (v) =
2

(|V | − 1)(|V | − 2)
CB(v) (4.9)

where |V | is the number of vertices of the corresponding component of v.
The normalization guaranties CNB (v) ∈ [0, 1]. The betweenness of an end
point is zero and we expect to �nd 1 in star networks, high values in tree
graphs and in general in graphs with a broad degree distribution.

4.3.2 The statistical distribution of betweenness centrality

The study of the function which �ts independent observations is a funda-
mental topics in many statistic researchers [80]. In a scale free network, the
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Figure 4.11
The cumulative distribu-
tion of the normalized
betweenness centrality of
six theoretic planar graphs
(�g. 4.11a) and the CODAH
graph (�g. 4.11b). (a) theoretic planar graphs (b) CODAH

Figure 4.12
Spatial distribution of the
normalized betweenness cen-
trality of the CODAH. Red
dots correspond to vertices
with CN

B > max(CN
B )/10.

betweenness centrality probability distribution, as its corresponding degree
distribution, obeys a power-law: P (C) ∼ C−β [21, 22, 123], where the ex-
ponent β ∈]2,∞[. In street networks, despite authors in [170] proposed that
the betweenness centrality distribution is power-law like, researchers �nd an
agreement that betweenness centrality exhibits an exponential behaviour:
P (C) ∼ e−C/β [87, 228].

These studies had showed that the �tted equation of betweenness central-
ity distribution depends to the essential characteristics of urban form. The
statistical distribution and is related to the degree of planning [24]: the
distribution of betweenness centrality in self-organized cities is broader
that planned cities [228] (see also the third row of �g. 4.9). These ob-
servations seem corroborated in [87], where authors proposed to �t be-
tweenness centrality distribution of planned cities with a Gaussian func-
tion P (C) ∼ e−C

2/2σ2
and self-organized cities with exponential function

P (C) ∼ e−C/β . Moreover, authors in [251] validate their street network
model generator observing that the betweenness centrality distributions �ts
an exponential curves.

Figure 4.10 reports the cumulative distributions of CB of our six theoretic
planar graph and the CODAH. Only the distribution of the probabilistic
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graph �ts an exponential distribution, resembling the shape of the distribu-
tion of CODAH. The �tting equation con�rms the general result previously
mentioned; actually, the distribution is single scale and �ts the exponen-
tial equation P (C) ∼ e−C/0.0144. The normalized distributions of theoretic
planar graph and CODAH are reported in �g. 4.11. Here we focus our atten-
tion on the range of expected values of betweenness centrality: our results
suggest that only three theoretic planar graphs (Gabriel, deterministic and
Delaunay) can be compared to the CODAH graph. However, we cannot
�nd an appropriate �tting equation for CODAH: we suggest that it is due
to the heterogeneity of topological characteristic of corresponding graph.

4.3.3 The spatial distribution of betweenness centrality

Figure 4.12 depicts the spatial distribution of the betweenness centrality
of the CODAH. We observe the tendency of shortest paths to traverse few
central nodes, de�ning main �ow axes (in Le Havre city centre) and crucial
nodes between suburbs (Montivilliers and Octeville-sur-Mer) to the north
border of Le Havre. The intersections of Le Havre city centre are high
connected (where we �nd a majority of four-way intersections) and this
area shows lower values of betweenness centrality. It indicates that the main
transportation axes do not traverse this area. The betweenness centrality
nicely captures the main mobility axes, discriminating them to secondary
routes.

As shown in �g. 4.13, the spatial distributions of the normalized betweenness
centrality of the six theoretic planar graphs exhibit di�erent trends and it
depends on the structural properties of these graphs. The regularity of the
grid graph also impacts the betweenness centrality, identifying a progressive
increment of values from the boards to the centroid of the graph. In the
probabilistic graph, vertices with high connectivity capture the majority of
shortest paths. A similar e�ect can be observed in the tree graph: the e�ect
is also due to a large number of leaves (where CB(v) = 0). The Gabriel
graph is a sub-graph of the Delaunay graph, the vertices with high values
of CNB does therefore not correspond.

Summary 12:

hierarchical
organization

Measure from centrality theory are widely applied to study street net-
works. The study of betweenness centrality is a way to investigate
hierarchies of elements in spatial complex networks. We can inves-
tigate hierarchies observing the statistical and spatial distribution of
values computed for each vertices of the graph. Values computed for
three theoretic planar graph are similar to ones computed for CODAH.
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Figure 4.13
The spatial distribution of
the normalized betweenness
centrality of theoretic planar
graphs.

(a) Grid graph (b) The deterministic graph

(c) The probabilistic graph (d) The Delaunay graph

(e) The Gabriel graph (f) The Euclidean tree
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4.4 Scale invariance and fractal theory

"People live at di�erent scales."

Pierre Frankhauser

Many systems show similar properties at di�erent scale of observation (sec-
tion 1.2.3). These properties are therefore independent to the classical idea
of dimension. When the scale of observation is a metric measure15, a phys-
ical object that shows a scale-invariant shape is called geometric fractal16.

More precisely, a fractal (from the Latin fractus, broken) is a rough or frag-
mented geometric shape that can be subdivided into parts, each of them is
a reduced/size copy of the whole [100]. A fractal is composed of repeating
spatial patterns and/or the elements are arranged in such a way the ap-
pearance of the system does not change at di�erent scales of observation.
These properties are not proportional and cannot be detected via classi-
cal geometrical metrics such as length, area, or density. Fractal analysis
is the tool that investigates these characteristics; the measurement of the
coastal lines and its generalization in cartography was an early example of
its application [188]. The masterpieces The Fractal Geometry of Nature of
Mandelbrot [189] structured the fractal theory and collect a large number
of natural example.

In general mathematical terms, if we use P to describe the property of any
systems which vary with the scale of observation S, a scale-invariant system
can be described by a power law: P ≈ SD. P may correspond to a measure
of concentration, and the scale S may correspond to a linear distance. The
exponent D quanti�es how much the scale-free e�ect is evident in the rela-
tion. It escapes to natural numbers and became a positive decimal number.

4.4.1 Growing fractals

There exists several kinds of processes that allow the creation of a fractal
object17. A growing fractal is a mathematical object that is created by
recursive processes. Growing fractals are produced by some rigorous and
deterministic rules [224], applied to their own outputs.

Growing fractals can be classi�ed with regard to the dominant direction of
the growth [101] (�g. 4.14). When no dominant directions dominate the
recursive process, the growing fractal is self-similar and the shape is ap-
proximately isotropy (�g. 4.14a). Otherwise, self-a�ne fractals (�g. 4.14b)
are the result of anisotropic transformations by which their images are in-
variant. The di�erent dimension measures do not necessarily coincide.

Strictly speaking, all real objects cannot be considered as (mathematical)
fractals. Indeed, a fractal must exhibit scale-invariant properties over an

15There are many di�erent scales than can be used in fractal analysis (e.g. a temporal
scale), but we will focus here on geometric scale.

16In the next, the term fractal will refer to geometric fractal.
17For instance, fractal generative processes are strange attractors, L-systems, random

stochastic fractals.
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Figure 4.14
Three steps of three grow-
ing geometrical graphs.
Their grow is self-similar
(�g. 4.14a), self-a�ne
(�g. 4.14b) and multi-fractal
(�g. 4.14c).

(a) self-similarity

(b) self-a�nity

(c) multi-fractality

in�nity of scales. Even in his pioneer works, Mandelbrot [190] suggests
that in nature, most of fractal objects do not display this precision. The
rate of growth may vary during the formation. A mono-fractal object is
characterized by one rate of growth. In the case of the rate are not constant,
the evolutive process generates a multi-fractal [292] (�g. 4.14c).

4.4.2 The Hausdor�-Besicovitch fractal dimension

In addition to show the possibility to investigate scale-invariance organi-
zation of systems via fractal analysis, Mandelbrot also systematizes and
organizes the concept of space-independent theoretical objects introduced
by Hausdor� [137] and Besicovitch [43]. Mathematically speaking, the
Hausdor�-Besicovitch dimension of a fractal strictly exceeds its topological
dimension Dt

18; de�ning a non-integer value. The relationships between the

18A point has topological dimension Dt = 0, a line has Dt = 1, a surface has Dt = 2.
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(a) Decomposition of a square.

(b) The Koch curve. (c) The Sierpinski gasket.

Figure 4.15
Three generative fractal pro-
cess.

number of elements N of an object and the scale factor S, raised to the di-
mensionD is N = SD, and the estimated value of the Hausdor�-Besicovitch
dimension is:

D =
logN

logS
(4.10)

Let us explain a few examples (�g. 4.15). In �g. 4.15a the initial pattern is
composed of N = 1 square; after the �rst iteration, the square is reduced
by a factor of S = 3 and the pattern becomes composed of N = 5 squares.
The same process could be applied to each square for an in�nite number of
steps. According to eq. (4.10), 3D = 5, thus D = log 5/ log 3 = 1.465.

If a recursive process magni�es a segment by a factor S = 3, erasing the
middle third section of each segment and replacing it by two other segments
of equal length, we obtain the Koch's curve [161] (�g. 4.15b). According to
eq. (4.10), 3D = 4, thus D = log 4/ log 3 = 1.262.

The Sierpinski gasket [267] (�g. 4.15c) is constructed from an equilateral
triangle. At each step, each triangle is subdivided in four triangles and
and it is removed the central triangle. The gasket has fractal Hausdor�-
Besicovitch dimension D = log 3/ log 2 = 1.585.

The fractal dimension of an object is greater than its topological dimension
Dt but less than the euclidean dimension De of the embedding space in
which the object exists (�g. 4.16a). Dt and De are the lower and the upper
limits of D: for instance, in 2-dimensional space (De = 2), the fractal
dimension of a point set is limited in 0 < D ≤ 2 and, for a set of lines,
1 < D ≤ 2 (�g. 4.16b).
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Figure 4.16
Lower and the upper lim-
its of fractal dimension. In
�g. 4.16a, euclidean d (ab-
scissa) and topological dt
(ordinate) dimension. In
�g. 4.16b, �ve fractal objects:
the Cantor set (a), the logis-
tic equation (b), the Pythago-
ras tree (c), the DLA tree (d),
the Menger sponge (e).

0

0
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1 2 3

D t

D e

(a) Euclidean and topological dimension.

(b) Examples of fractals.

4.4.3 The capacity dimension

An operative limit of the Hausdor�-Besicovitch dimension D is the con-
tinuity range of scales where it is de�ned. If this requirement is relaxed,
euclidean R2 space becomes discrete; this last could be considered as a
grid-square lattice, and squares as a set of regular boxes. The Hausdor�-
Besicovitch dimension becomes the capacity dimension D0 (also called box-
counting dimension) and D = D0 for self-similar and mono-fractal object
[99]. It is de�ned as:

D0 = lim
r→0

logN(r)

log r
(4.11)
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(a) Boxes over the image. (b) Stylized D0 estimation

Figure 4.17
Estimating the capacity
dimension with the box-
counting algorithm. Boxes
overlaps the image of the
cathedral of Milan and a
log-log plot suggests the
estimate of the dimension.

where N(r) is the minimum number of non-empty boxes of size r to cover
the object (�g. 4.17a). In the event that a linear relationship between the
logarithm of N(r) and the logarithm of r exists, measures at corresponding
size �t the equation N(r) ≈ r−D0 ; in a log/log plot, D0 is the slope of the
�t line (�g. 4.17b).

The box-counting algorithm can be applied for all geometric objects. The
capacity dimension D0 of a geometric graph G(x) is given by the relation
between the minimum number of boxes to include vertices and the size of
the box [269]. The measure disregards the number of vertices contained
in the boxes, thus the box-counting algorithm does not provide adequate
information about the spatial distribution of vertices. Finally, the capacity
estimation disregards the local di�erences of its properties: two geometric
graphs could have the same capacity dimension while their con�gurations
look like di�erent.

4.4.4 The multi-fractal analysis

Distinguishing scale-free properties in a spatial system is not so easier as
geometric mathematical objects. The Hausdor�-Besicovitch estimation and
its direct derivation, the box-counting algorithm, are useful tools to investi-
gate the self-similarity of idealized (mathematical) objects, but they present
some lack for the estimation of self-a�nity and multi-fractality. The capac-
ity estimation ignores spatial relations between elements. It does not take
into account the spatial properties of the system as the density and the
distance between elements.

The Renyi fractal dimension estimation [140] can help us to improve our
understanding because it consider the density of properties. Let r be a
size region in d dimensional euclidean space, P (r) is a probability density
function. This latter can be described in a spectrum of moments [135]. The
generalized fractal dimension Dq of order q ∈ R is de�ned as:

Dq =
1

q − 1
lim
r→0

log
∑

iN(r)Pi(r)
q

log r
, q 6= 1 (4.12)

Equation (4.12) is not de�ned for q = 1 but it was heuristically shown
the existence of the limit from q → 1 [140]. For an uniform fractal, P (r)
is constant and Dq does not varies with q (Dq = D = D0). Otherwise,
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eq. (4.12) suggests that Dq decreases when q increases. The multi-fractal
estimation also respects the upper (euclidean) and the lower (topological)
limits of the Hausdor�-Besicovitch dimension (Dt < Dq < De).

The capacity dimension estimation is a speci�c case of multi-fractal anal-
ysis. According to eq. (4.12) we can infer the capacity dimension D0, the
information dimension D1 and the correlation dimension D2. To obtain D0,
we consider the number of not-empty boxes, for D1 the density of elements
in a region (box), and for D2 the euclidean distance between elements. In
the following, we describe three popular algorithms used to compute fractal
dimensions D0, D1, D2 of a set of points embedded in 2-dimensional space.
These approaches can also be extended to investigate the spatial distribu-
tion of vertices of a geometric graph G(x), thus the graph representation of
a street intersection network.

The information dimension

When q = 1, eq. (4.12) becomes the information dimension:

D1 = lim
r→0

S(r)

log r
(4.13)

where S(r) =
∑

i Pi logPi is the Shannon's entropy [263] of the number of
vertices Pi contained in a box of size r. In information theory, the Shannon
entropy is a classical diversity index, and it gives a measure of the degree of
unevenness of a distribution and quanti�es the uncertainty about a random
property of the system. The eq. (4.13) measures the probability to �nd the
same concentration of elements of vertices at di�erent scales.

The correlation dimension

When q = 2, eq. (4.12) becomes the correlation dimension:

D2 = lim
r→0

C(r)

log r
(4.14)

where:
C(r) =

∑

i

P 2
i (4.15)

is the correlation sum, the probability Pi to �nd two vertices connected
within the box i [168]. It can be applied in a continuous media. In a discrete
media (a set of vertices in the space), we can use the the Grassberger-
Procaccia algorithm [126]. The eq. (4.15) becomes:

C(r) =

∑
i

∑
j Θ(r − dist(Xi, Xj))

1

2
N(N − 1)

(4.16)

where:

Θ(r − dist(Xi, Xj)) =

{
1 if dist(Xi, Xj) ≤ r
0 if dist(Xi, Xj) > r

(4.17)
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is the Heaviside step function and dist(Xi, Xj) is the euclidean distance
between a pair of vertices located at X = (Xi, Xj). The correlation dimen-
sion gives a more accurate description of the graph than previous dimensions
because it also considers euclidean distances between vertices.

4.4.5 Fractals in urban studies

Geographers and urban researchers are attracted by fractal theory [125,
277]. Fractal theory were applied to investigate three main aspects of cities:

� Spatial distribution of properties and characteristics:
in this vein, fractal analysis is an useful tool to study population
distribution [8] and land-use patterns [182].

� Urban fabrics:
classical (geometric) measures allow us to study the contours, the
arrangement, and the geometry [252] of elements that composed urban
fabric (section 3.1.3). With fractal measures, the urban fabric can be
also studied without a dominant scale of observation but in a spectrum
of scale [106, 107]. Fractal analysis was applied to characterize limits
of urban areas [28] [278], to describe the building footprint [64] and
the geometry of streets [272, 279], and to evaluate spatial relations
between green space and building covering [107].

� Urban growth:
for instance, fractal measure are used to study cities at di�erent mo-
ments [74, 204] and to evaluate the ecological impact of urban growth
[276].

Multi-fractal approach in urban studies

Multi-fractal analysis has found numerous applications such as the study
of �nancial market [155], the recognition of image patterns [76], and even
in music [186] or cognitive researches [191]. Since pioneer applications of
fractal analysis in urban studies [29, 107], it is well recognize that also
street network can be investigated with a large spectrum of measures [75].
It is applied to investigate the historical evolution of the London street
intersection network [204] and Beijing urban fabric [74].

During the formation of urban forms, more than one single process of gen-
eration coexists: fractals appear discontinuously, urban elements cover the
space in an anisotropic way and spatial distribution of elements hardly
changes linearly. A single fractal indicator may not be always su�ciently to
describe the scale invariance of an urban system. The generalization of frac-
tal concepts through the introduction of a spectrum of measures allows us
to power the classical fractal analysis. With this approach, we can compare
cities with fractal that growth with di�erent rates [8].
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Algorithm 2: Estimate fractal dimension of street intersection
network
input : the street intersection network
output: kind of fractality
begin

D0 ← compute the capacity dimension
if measures �t linear regression then

D1 ← compute the information dimension
D2 ← compute the correlation dimension
if D0 ≈ D1 ≈ D2 then

the network is global mono-fractal
else

the network is global multi-fractal

else
the network could be fractal only locally (or not)

Local and global fractal dimension in urban studies

A fractal is a mathematical object that cannot �nd complete correspondence
in reality. What we can expect from a multi-fractal analysis of urban forms?
In geographical studies, the fractal measure is not expected to be constant
[124]. In urban studies, measures of fractal dimension vary in space [39].
As for all real fractals, also for cities, the same scale-invariant properties
appear over a limited range of scales [265]. Fractal dimension estimates of
the whole study area a subareas of it are often di�erent [280]. Moreover,
we can observe di�erent scale invariances in a given range: the values of
fractal dimension D are not constant over the range and they exhibit local
variation [277].

For these reasons, de�ning under which conditions (and about what prop-
erties) a city will be expected as a fractal is still a pending question [234].
We can consider that some properties of urban systems are scale-invariant
over a large scale, while others may be that in a few scales. Consider a
large spectrum is reasonable in the study of urban fabric [28], especially
when we investigate the street intersection network [204] in a multi-fractal
perspective [74].

In order to de�ne a general approach (algorithm 2) to investigate the scale
invariance organization of street intersection networks, we need to answer
if it shows global fractal behaviour. To this end, the box-counting analysis
is enough to detect the kind of fractality of the urban system: the �rst step
is to compute the capacity dimension D0 via the box-counting method and
to observe the statistical distribution. In the case where data �t a linear
equation and 1 < D0 < 219, the network can be treated as a global fractal.
The information dimension D1 and the correlation dimension D2 can be
computed. At this step, we can judge whether or not the network can be
treated as a multi-fractal. If D0 ≈ D1 ≈ D2 the network is mono-fractal,
otherwise we can study the network as a multi-fractal object.

19To evaluate that we estimate the coe�cient of determination R2
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Multi-fractal analysis of street intersection network

In this section, the analysis of scale-invariance organization of street inter-
section network is mainly based on a few emblematic French department
cities (�g. 4.21) and the CODAH.

Sub-areas of CODAH appear di�erent (�gs. 4.21c and 4.22). Here we focus
on the whole urban area, the rebuilt area (�g. 4.22b) and the Montivilliers
town (�g. 4.22b). The capacity dimension D0 estimation (�g. 4.18) suggests
that only the whole street intersection network present a scale-free distri-
bution. This is con�rmed by the �tness of the regression line of capacity
dimension distribution (see the coe�cient of determination R2).

Distributions of capacity dimension estimation of cities of Tarbes (�g. 4.21b)
and Marseille (�g. 4.21a) appear di�erent (�g. 4.19a). Only the distribution
of Marseille �ts the regression line with a reasonable approximation. This
allows us to suppose that the street intersection network of Tarbes does not
have global fractal properties. For cities with a low value of R2, the informa-
tion and the correlation dimension are not studied. In the case where data
�t the regression line, the fractal property of the street intersection network
can be considered global. In �g. 4.19b we compare the capacity dimension
of CODAH (�g. 4.21c) and Paris (�g. 4.21d). Both distribution �ts a linear
equation (R2 > 0.99) with a di�erent slope (D0). Both cities can be consid-
ered global fractals. To evaluate if they are also multi-fractal, we compute
the information and the correlation dimensions. On one hand, the D0 of
Paris (�g. 4.21d) is signi�cantly di�erent to D1 and D2; these measures sug-
gest that the street intersection network of Paris is multi-fractal. On the
other hand, results of CODAH (�g. 4.21c) suggest that the corresponding
street intersection network should be investigated as mono-fractal.

The existence of a global fractal behaviour does not mean that we cannot
have local variations. Despite values of capacity estimation of CODAH �t

Figure 4.18
The capacity dimension D0

of the CODAH and two sub-
areas (the rebuilt area of Le
Havre and Montivilliers).The
logarithm of the number of
not-empty boxes N(r) versus
the the logarithm of the nor-
malized size r.
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Figure 4.19
The capacity dimension D0

of Tarbes, Marseille, CODAH
and Paris. The logarithm
of the number of not-empty
boxes N(r) versus the loga-
rithm of the normalized size
r. (a) D0 of Tarbes and Marseille. (b) D0 of CODAH and Paris.

Figure 4.20
The information D1 Stras-
bourg and Paris and the ca-
pacity dimension D2 of Paris
and Lille. The entropy of not-
empty boxes S(r) versus the
logarithm of the normalized
size r. The logarithm of the
correlation sum C(r) versus
the logarithm of the length r. (a) D1 of Paris and Strasbourg. (b) D2 of Lille and Paris.

the regression line, they also shows local variations. More precisely, when
we study the capacity dimension of CODAH, it seems that values �ts two
lines. That con�rms the remarks of Tannier and Pumain [277] about the
regression lines. The study of multi-fractality of CODAH at a local scale
may reveal interesting and more detailed results. We are aware of limits of
the proposed measure. We do not exclude to improve our methods in future
works, de�ning procedures that detects adequate scales, local variations, or
di�erent �tting lines. Our goal is to present applicable measures to real
cases and to our simulations and to compare results.

As stated above, the drawback of the capacity estimation is that it is a
purely geometric notion and that is not sensitive to the density of ele-
ments. The information dimension D1 (�g. 4.20a) of Strasbourg (�g. 4.21e)
and Paris (�g. 4.21d) present a distribution of vertices more uniform over
the city. Otherwise, Strasbourg presents sub-urban areas less dense than
others: this e�ect is captured by the low value of D1. The �g. 4.20b de-
picts the correlation dimension D2 distribution of Lille (�g. 4.21f) and Paris
(�g. 4.21d). The lower value obtained for Lille indicates a sparse distribution
of vertices; otherwise, Paris presents a more compact and ordered structure.

Summary 13:

scale-invariance
organization

The fractal theory provides a structured approach to characterize the
spatial arrangement of vertices of street networks. Real objects (as
street networks) can be fractal local or global, mono or multi fractal.
Di�erent estimations allow us to study street intersection network over
a range of scales of observation.
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(a) Marseille
D0 = 1.710, D1 = 1.704, D2 = 1.664

(b) Tarbes
D0 = 1.496

(c) CODAH
D0 = 1.635, D1 = 1.634, D2 = 1.633

(d) Paris
D0 = 1.796, D1 = 1.743, D2 = 1.727

(e) Strasbourg
D0 = 1.628, D1 = 1.607, D2 = 1.605

(f) Lille
D0 = 1.680, D1 = 1.626, D2 = 1.578

Figure 4.21
Six emblematic street inter-
section network and the cor-
responding fractal dimension.

(a) The rebuild area. (b) The town of Montivilliers.
Figure 4.22
Two sub-areas of CODAH.
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"My life seemed to be a series of events and accidents.
Yet when I look back, I see a pattern".

Benoît B. Mandelbrot

In chapter 1 we observed that, in some circumstances, from the the de-
centralized behaviour of elements of a system at the microscopic level of
observation arises unexpected properties. Those properties does not char-
acterize the element, they are the results of their organization. At a high
level of observation, we can observe the formation of patterns.

In this chapter we will focus on the pattern formation and on methods
to simulate it. We start with the basic notions of physical chemistry and
the reaction-di�usion theory (section 5.1). We will describe basic dynamics
and we will concentrate our attention on Gray-Scott di�erential equation
system. In section 5.2, inspired by cellular automata, we will formalize a
way to simulate the formation of spatial patterns in a discrete media.

5.1 Morphogenesis and physical chemistry

systemic approach
↓

chemical morphogenesis
↓

toward morphogenesis

In chemistry a solution is a mixture of at least two substances (also named
compounds). The concentration s of a substance S in a solution is the
relative quantity of it in a unit of volume. It ranges in [0, 1].

We can �nd similarities with spatial systems. The spatial concentration of
an element is the ratio of the abundance of elements with similar properties
to the quantity of all elements in a region of space. The notion of spatial
concentration is distinguished from the spatial distribution because the �rst
is a relative measure and the second an absolute measure.

5.1.1 Dynamic equilibriums

The chemical equilibrium is the condition in which concentrations' com-
pounds in a solution do not change in a de�ned time period. Internal
physical (e.g. forces and exchanges) and chemical (e.g. reaction and auto-
catalysis) balance each other so there are no change. Some global properties
can appear in a chemical system without the properties of the reactants, the
product of the reaction, the nature of interaction have changed. The change
is the spatial distribution of the interactions. Thus, say that a solution is in
a dynamic equilibrium does not mean that there are not evolutive processes
inside the solution. It means that concentrations do not change in a �xed
period of time.

The formation and the transformation of compounds often involve a chemi-
cal reaction. During these processes, one or more compounds (the reactants)
are converted to one or more compounds (the products).

In a majority of chemical systems, we cannot observe spatial patterns. The
second law of thermodynamics a�rms that, in a closed system, the order
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Figure 5.1
The Belousov-Zhabotinsky
reaction. Source [305]

progressively decreases and disappears1. The di�usion reduces the order of
molecules, and gradients of concentration go to a homogeneous concentra-
tion. The initial order of two separated and not reactive compounds, due
to the di�usion, disappears.

The clock reaction2 is a chemical process that spontaneously exhibits tem-
poral periodicity. It illustrates that homogeneous concentrations of at least
two compounds can generate instabilities [231]. During the chemical pro-
cess, the concentrations of compounds oscillate in the solution and the sys-
tem is not at the chemical equilibrium. Belousov [34], while he was studying
the Krebs' cycle3, noted a periodic change of concentrations in a homoge-
neous solution. Twenty years later, Zhabotinsky observed that in these
kinds of reactions, the formation of oscillations is not only temporal but
also spatial. Figures 5.1 and 5.2 depict the Belousov-Zhabotinsky reaction,
the propagation of a spatial organization in a clock reaction with a series of
sixteen photos4. The propagation of the concentrations in the form of bans
or waves is due to the di�erent speeds of the reaction. After the reaction
depleted the material, the gradients of concentration disappear due to the
di�usion of them and space disorganization takes place. As Glansdor� and
Prigogine [122] a�rmed, the Belousov-Zhabotinsky reaction is an example
of a dissipative process. Organizations appear while energy and matter
dissipates. Organizations disappear after the matter is exhausted.

Belousov and Zhabotinsky suggested that the di�erent speeds of reacts are
the key to understand the formation of gradients of concentration. To un-
derstand the di�usion phenomena of a compound in a solution we should
consider it at two di�erent scales of observation. At the microscopic scale,
compounds are unstable and move in the solution in a not predictable man-
ner. The chemical and the physical properties of compounds contribute

1It implies that the total quantity of useful energy is constantly decreasing.
2Also named periodic or oscillator reaction.
3The Krebs' cycle is a series of chemical reactions used by all aerobic organisms to

release stored energy.
4In �g. 5.1 we select �rst eight photos.
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to the speed of the movement, which in turn de�nes the position of com-
pounds. At the macroscopic scale, the �ow of moving compounds tends to

Figure 5.2
The bands formation in a
Belousov-Zhabotinsky reac-
tion. Source: [97].

increase the order. The di�erent speeds of reacts, the catalytic mechanisms,
and the concentration di�erences generate organizations.

5.1.2 The reaction-di�usion theory

The reaction-di�usion theory aims to explain the pattern formation in na-
ture by the coupling of two physico-chemical processes. The study of the
autocatalysis [183], the oscillation of reactions [34], the propagation of dom-
inant genes [103, 163], and the embryos' formation [240] mark the beginning
of the theory (see [129] and the references therein). These studies are sup-
ported by models (see section 5.1.3).

A contribution in this �eld was done by Alan Mathison Turing [285]. He
wanted to answer a simple question: how life might develop from a stable
and homogeneous mass of cells? He wanted to understand, at least at a
simpli�ed and abstract level, how a mass of identical cells, symmetrically
arranged, could break the symmetry, di�erentiate themselves, generating
the wealth of natural forms. His idea is that a locally asymptotically stable
equilibrium can be destabilized by adding di�usion, and it is the combina-
tion of reaction and di�usion that creates shapes, results of heterogeneous
concentrations. He suggested that in a living system, some elements are able
to drive the form; he named these elements morphogens5. The neologism
indicates an element form-producer, that contributes to the formation and
the maintaining of the system. In a system, there exists di�erent type of
elements and some of them may be the source of formation and the growth
of a living system. These morphogens not only move and interact with each
other but also self regulate their own production. The second fundamen-
tal idea of Turing was indeed to couple the di�usion with an autocatalytic
reaction.

According to Turing, the laws of physical chemistry are su�cient to ex-
plain many aspects of morphogenesis. The reaction-di�usion theory may
apply to the study of biological phenomena [13, 136, 205]. From early
applications of reaction-di�usion theory, the authors has compared math-
ematical models to biological patterns [206, 207]. In [177] authors show
that the formation of bans of calcium in a cytosol solution can be stylized
by a reaction-di�usion mechanism. Tabony and Job [273, 274] had investi-
gated (in vitro) the self-organization of microtubules, suggesting that those
biochemical systems are dissipative and governed by reactive and di�usive
mechanisms. Microtubules spontaneously form in an initial homogeneous
media [121].

A consensual and global explication of pattern formation in biology with
reaction-di�usion models is not yet accepted and the goal of this work is
not to contribute in this �eld. Anyway, as regards our studies, this theory
respects the basic principles of complexity and reaction-di�usion models

5Today in biology, a morphogen is a gene that encodes a protein or lipid whose function
is to produce a concentration gradient of a speci�c molecule. This concentration's role is
to give position information and induce another cell to di�erentiate.



5.1. Morphogenesis and physical chemistry 101

simulate the morphogenesis.

5.1.3 The Turing model

autocatalysis A

diffusion of B

inhibition of B

activation of A

equilibrium

space

c
o

n
c
e
n

tr
a
ti

o
n

1

2

3

4

5

Figure 5.3
The stylized representation
of the pattern formation in
an activator-inhibitor sys-
tem.

Reaction-di�usion models (also named Turing's models) simulate the the
spatio-temporal evolution of two or more kind of morphogens. They are
based on a reaction-di�usion mechanism. These models provide a way of
creating patterns where no patterns were initially present. The concentra-
tions of two kind of morphogens A and B change at each position x in a
continuous time t. These evolutions are expressed by di�erential equation
system6: 




∂a

∂t
= Da∇2a+ F (a, b)

∂b

∂t
= Db∇2b+G(a, b)

(5.1)

where Da, Db are di�usion rates, ∇ is the Laplacian operator (see sec-
tion 5.1.5), a = a(x, t) and b = b(x, t) are the concentration of two chemical
substances, functions of position x and time t, F (a, b) and G(a, b) are the
reaction functions. Turing [285], pointed out that these functions integrate
two processes: the autocatalytic production and the degradation of concen-
tration. In his paper [285], he proposed and given a mathematical resolution
of a linear formalization of functions F (a, b) and G(a, b):





∂a

∂t
= Da∇2a+ f1a+ f2b+ f3

∂b

∂t
= Db∇2b+ g1a+ g2b+ g3

(5.2)

where the production and degradation are linearly controlled by their own
concentrations. For easy reading, eq. (5.2) may be re-written in matrix
notation:

∂

∂t

(
a
b

)
=

(
Da 0
0 Db

)(
∇2a
∇2b

)
+

(
f1 f2
g1 g2

)(
a
b

)
= D

(
∇2a
∇2b

)
+J

(
a
b

)
(5.3)

where, constants f3 and g3 could be omitted. The study of stability shows
that there exists a solution if conditions:

{
tr(J) = f1 + g2 < 0

det(J) = f1g2 − f2g1 > 0
(5.4)

are respected. To do that the signs should be:

(
+ +
− −

) or (
+ −
+ −

)

Observing the signs, we can infer that a necessary condition to have in-
stability is that there is some kind of antagonism between the production

6A dynamical system is a model in which a function, or a system of functions, describes
the time dependence of particles in space. He must not be confused with the de�nition
of systems used in this dissertation.
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and the degradation of morphogens. For interested readers, they can �nd a
complete presentation of stability analysis in [206].

A solution of the eq. (5.2) was proposed by authors in [165]: they re-
ports that the system produces six di�erent propagations of concentration
(�g. 5.4), but only the last two present organizations ( cases V and VI in
�g. 5.5). The case V reproduces the oscillation of waves, which propagate
from an initial area where compounds are not in equilibrium.

Waves shape in spiral patterns and the mathematical model reproduces a
phenomenon similar to the empirical observations of Zhabotinsky in [305].
Case VI represents the situation in which Turning patterns appear. The do-
main of parameters is called the pattern formation space (or Turing space).

The reaction at the same time increases the concentration a of the com-
pound A and decreases the concentration b of the compound B (�g. 5.3).
Thanks to a located perturbation, where a in a located area is greater than b,
the auto-catalytic reaction increments the speed of the reaction, generating
the production of a and increment the delta between a and b in the located
area. The di�erent speeds of the di�usion of the two compounds contribute
to the oscillation of the reaction: B, which di�uses faster than A, b > a
around the initial perturbation7. The production of A and B decreases,
the reaction becomes less important and the system going to an apparent
equilibrium. However, around the initial perpetuated point, concentrations
a and b are di�erent, providing new auto-catalytic reactions. The system
lost its initial homogeneous state, new reactions destabilize the equilibrium
and the di�usion allows the formation of dynamic patterns. The symmetry
is break and the homogeneity is lost: the model, in a stylized and simpli�ed
way, answers the Turing's question.

Figure 5.4
Six interesting cases de-
scribed by Turing. Source:
[165].

Figure 5.5
The cases V and VI of a
reaction-di�usion. Source:
[165].
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Frame 4:

Reaction-di�usion
models

The most popular reaction functions used in reaction-di�usion models:

The Schnakenberg model [259] :



F (a, b) = f1 − f2 + f3

a2

b

G(a, b) = g1 − g2
a2

b
(5.5)

The Sel'kov model [260]:
{
F (a, b) = 1− abf1
G(a, b) = g1b(ab

f1−1 − 1)

(5.6)
The Gierer-Meinhardt model
[119]:



F (a, b) = f1

a2

b
− f2a+ f3

G(a, b) = f1a
2 − g1b+ g2

(5.7)

The Lengyel-Epstein model [180]:





F (a, b) = f1 − a−
4ab

1 + a2

G(a, b) = g1

(
a− ab

1 + a2

)

(5.8)
The Murray-Thomas model [205]:

{
F (a, b) = f1 − f2a−H(a, b)

G(a, b) = g3 − g4b−H(a, b)

(5.9)
where

H(a, b) = (h1ab)/(h2+h3a+h4a
2)

(5.10)

5.1.4 The reaction

activator

A

inhibitor

B

diffusion

activation

autocatalysis

degradation

inhibition

degradation

diffusion

D a

D  > b D a

Figure 5.6
Stylized representation of an
activator-inhibitor system.

Functions F (a, b) and G(a, b) in eq. (5.1) characterize the kinetics of chem-
ical reaction. In the Turing formalization, they are linear. In frame 4 we
report the most popular reaction functions. The initial Turing concept in-
spired therefore many other formalizations of these ideas. An example is
the Schnakenberg model [259] and the Sel'kov model [260], where the auto-
catalytic production is quadratic and the reduction is independent of the
concentration of compounds. Another �eld of models are called activator-
inhibitor models (�g. 5.6): the basic idea of the kinetic in these models is
that the compound A catalyzes its own production but also the produc-
tion of B. At the same time, B inhibits the production of A. B di�uses
faster than A. The Gray-Scott [127] model (see eq. (5.14) in section 5.1.7),
the Gierer-Meinhardt [119], the Murray-Thomas [205] model and Lengyel-
Epstein [180] model are examples of this kind of kinetics.

5.1.5 The Laplacian operator

The classical approach8 of di�usion is based on the principle of conservation
of mass: the Fick's laws [102]. It a�rms that the �ow J of a compound C9

is proportional to the gradient of the concentration c of the compound. In

7We obtain the same if B di�uses slower than A.
8This approach of di�usion is only applicable to a dilute media, where the concentra-

tion is not constant.
9Here we refer to di�usion in physical chemistry, but the �ow could be an exchange

of material, information, energy, individuals, etc.
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one dimension:

J ∝ − ∂c
∂x
⇒ J = D

∂c

∂x
(5.11)

c

x

t
0

t >
1

t
0

t >
2

t
1

Figure 5.7
The stylized representation
of concentration in the time.

where c = c(x, t) is a function of time and space and D is the di�usion
coe�cient or di�usivity of the compound c; the minus sign indicates that
the �ux is from a high to a low concentration (�g. 5.7). If the conservation
of matter is ensured10 and the rate D is constant11, the eq. (5.11) becomes
the classical di�usion equation:

∂c

∂t
= −∂J

∂x
= D

∂2c

∂x2
(5.12)

For two or more dimensions, assuming that c is continuous and derivable,
applying the divergence theorem the last equation becomes:

∂c

∂t
= D∇2c (5.13)

where ∇2 is a Laplacian operator, which indicates the di�usion of matter in
more that one direction. Modelling the Laplacian operator is a fundamental
task in a reaction-di�usion model and each di�erent way has an impact into
resulting patterns.

5.1.6 The di�usion drives the instability

Turing pointed out that the di�erent di�usion rates (Da and Db) are crucial
to have spatial patterns. If we do not have di�usion (Da = Db = 0) in
eq. (5.1), the concentrations a and b tend to a linearly stable uniform steady
state. Otherwise, in presence of di�usion, the formation of patterns is driven
by the ratio d = Da/Db 6= 1. For this reason, the study of the dynamic
of the system are often studied on observing the behaviour of the system
in relation to the rate of di�usion. A reaction-di�usion system exhibits a
Turing instability (to underline the role of the di�usion, it is also named
di�usion-driven instability) if the homogeneous steady state is stable to
small perturbations in the absence of di�usion but unstable to small spatial
perturbations when di�usion is present.

5.1.7 The Gray-Scott model

The Turing concept opens a new �eld of experiments and several variants
of the Turing model was proposed. Among these proposition, we focus on
the Gray-Scott model. Essentially, the reaction of two morphogens A,B
consists of 3 mechanisms (�g. 5.8):

� A+ 2B → 3B
a morphogen A reacts with two morphogens B and A transforms into
a morphogen B.

10The rate of change of the amount of material in a region is equal to the rate of �ow
across the boundary.

11For the sake of simplicity, we focus on situations where D is not space and time
dependent; however, we are aware of an arising of modelling situations where D can vary
in the space and in time.
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Figure 5.8
Schematic representation of
Gray-Scott model. The reac-
tion of three morphogens and
the di�erent rate of di�usion
in the Gray-Scott model.

� ∅ f−→ A
f−→ ∅

morphogens A are added or removed with the "feed" rate f .

� B
f+k−−→ ∅

the concentration of morphogens B decays with a rate (f + k), where
k is the a "kill" rate; the sum is larger than the one controlling the
decay of A.

After rescaling and including a di�usion rate, the evolution in a continuous
media may be written as:

{
∂a
∂t = Da∇2a− ab2 + f(1− a)
∂b
∂t = Db∇2b+ ab2 − (f + k)b

(5.14)

where Da, Db are di�usion rates, ∇2 the Laplacian operator, a ∈ [0, 1], b ∈
[0, 1] concentrations of morphogens A and B, f and k are the feed and the
kill rate.

Summary 14:

The reaction-di�usion
theory

A reaction di�usion model is composed by two distinct mechanisms,
which are coupled together. These last are modelled by systems of dif-
ferential equations and, depending to the parameter set and the initial
conditions, the model could show (or not) some patterns. We consider
a reaction-di�usion system as the representation of some mechanisms
of interactions that are represented by reaction equations and are re-
lated to real phenomena. The di�usion simulates the movement of
these elements. Remarks: (1) the production and the degradation of
morphogens are necessary but not su�ciency conditions to have the
pattern formation; (2) morphogens must move with di�erent speeds.

5.2 Simulating the chemical morphogenesis

Dynamic reaction-di�usion systems are currently modelled by di�erential
equations which can allow us to determine the global (macroscopic) be-
haviour, by integrating them. We work with this representation in a con-
tinuous spatio-temporal space. To model interactions and displacements,
we need to locate temporal and computable data. We need a determinis-
tic rewrite of the dynamic system. It should evolve over discrete time and
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Figure 5.9
The Schelling's model [258].
A 2 dimensional array is ini-
tialized with 10% of cells
black (empty cells) and the
remaining cells red or green
cells (two ethnic groups,
�g. 5.9a). The transition
function consists to simul-
taneously exchange red and
green cells to the black one.
Simulation stops if the neigh-
bourhood of each red and
green cells contains at least
one (�g. 5.9b), two (�g. 5.9c)
or three (�g. 5.9d) cells like
it.

(a) t = 0 (b) 25% preference

(c) 50% preference (d) 75% preference

Figure 5.10
The Wolfram classi�cation.
Source [301].

discrete space. Cellular automata allow simulation of discretized physical
systems and are therefore a possible choice12.

A cellular automata is de�ned by:

� The dimension d:
it is the integer which de�nes the dimension space Nd in which the
automaton operates. Elements of the space are called cells.

� The state set S:
it is the �nite space which de�nes the di�erent states that a cell can
take.

� The neighbourhood N :
it is the set of cells assigned to each cell. There are several de�nitions
of neighbourhood (see frame 5 and �g. 5.11).

� The transition function F :
let T be a discrete time series, the function F is the set of rules

12Finite di�erences is another possible choice.
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Frame 5:

The neighbourhood
The neighbourhood of a cell can be de�ned in di�erent ways. Fig-
ure 5.11 shows two most frequently used neighbourhoods in two di-
mensional space. Let n = (i0, j0) be a cell, the Von Neumann neigh-
bourhood (�g. 5.11a) is:

N r
vn(n) = {(i, j) : |i− i0|+ |j − j0| ≤ r} (5.15)

and the Moore neighbourhood (�g. 5.11b) is:

N r
m(n) = {(i, j) : |i− i0| ≤ r, |j − j0| ≤ r} (5.16)

where r ∈ N is the radius and i, j ∈ N are the positions of the cell.

(a) The Von Neumann neighbourhood. (b) The Moore neighbourhood.

Figure 5.11
The Von Neumann and the
Moore neighbourhood of a
cell in 2-dimensional space.
Red indicates the core cell,
dark gray and light grey indi-
cates the neighbourhoods of
r = 1 and r = 2 respectively.

that de�ne the transition from the con�guration at time step t to the
con�guration at time step t+ 1.

Cellular automata were originally introduced by Von Neumann and Ulam
in 1940s as a representation of biological systems [208]. The capacity of
cellular automata is that they are able to produce in an intuitive framework
a variety of complex situations with simple transition rules. The wealthy
of possible con�gurations of the 2-dimensional cellular automata "game of
life" of Conway and the intricate patterns generate by the 256 transition
rules (for a 1-dimension array) by Wolfram [301] are a simple example of
the capacity of cellular automata to simulate behaviours of complex systems
(frame 6).

If we associate to each cell a coordinate in a Euclidean space Rd, d = 2, 3, a
cellular automata becomes a mathematical idealization of a spatial system.
The application of a cellular automata, declined as a regular lattice mapped
to geographical information, in geography may provide a better understand-
ing of human and natural phenomena [37]. Applications in geography of
cellular automata are: the study of urban land-use dynamics [298], urban
development [30] and social segregation [258]. The Schelling's model [258]
is probably the most known application of cellular automata in the study
of spatial segregation of ethnic groups. A regular grid, three states (green,
red, and black), and a simple "what-if" rule (prefer cells in your state). The
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Frame 6:

The Wolfram
classi�cation of cellular

automaton

The classi�cation of behaviour of cellular automaton is still a pending
question. However, the classical proposition of Wolfram [301] is an
useful Ariadne's thread in many cases (�g. 5.10). In a one-dimensional
array of cells with two possible states (black or white), the Wolfram
classi�cation identi�es four behaviours. Ilachinski [149] summarizes the
di�erent states described by Wolfram as follow:

� Class 1:
nearly all initial patterns evolve quickly into a stable, homoge-
neous state. Any randomness in the initial pattern disappears.

� Class 2:
nearly all initial patterns evolve into stable or oscillating struc-
tures. Some of the randomness in the initial pattern may �lter
out, but some remain. Local changes in the initial pattern tend
to remain local.

� Class 3:
nearly all initial patterns evolve in a pseudo-random or chaotic
manner. Any stable structures that appear are quickly destroyed
by the surrounding noise. Local changes to the initial pattern
tend to spread inde�nitely.

� Class 4:
nearly all initial patterns evolve into structures that interact in
complex and interesting ways, with the formation of local struc-
tures that are able to survive for long periods of time.

simulation shows that behind the spatial formation of discriminatory pat-
terns there are intuitive and local processes of iteration (�g. 5.9). Despite
it does not take into account socio-economic factors or discriminative pro-
cesses, it is one more powered social segregation model [18]. The Shelling's
model suggests that a city (space) may be highly segregated (patterns) if
people (cells) prefer to stay among people (neighbourhood) similar (state)
to them.

5.2.1 The morphogen layer

A compound is a speci�c kind of chemical element; several kinds of elements
are present in a chemical solution and they are arranged in the space. The
concentration of a compound is the number of elements in the unity of
space. Therefore, we have two di�erent levels of observation (�g. 5.12): (1)
a lower level, which corresponds a lower level of aggregation, each element
(of di�erent compounds) are arranged in the Euclidean space; (2) the upper
level, which corresponds to a greater level of aggregation, the Euclidean
space is observed as a series of cells, which overlaps a set of elements. We
can therefore deduce a concentration of each kind of compound in each cell.
Inspired by cellular automata theory and the Gray-Scott model, we formally
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de�ne the morphogen layer in 2-dimensional space13 as follows:

De�nition 10:

morphogen layer
A morphogen layer Lm(t) is de�ned by:

� The space L:

it is a subspace of Nd, where the dimension space is d = 2. Cells
are noted as (n1, n2).

� The state set S:
to each cell is assigned the couple of states (a, b) a ∈ [0, 1],
b ∈ [0, 1], a + b = 1, which represents the concentration of mor-
phogens A and B at each time step t.

� The neighbourhood N :
to each cell is assigned the Moore neighbourhood N r

m, where
r = 1 is the radius of di�usion.

� The transition function F :
Inspired by eq. (5.14), the state of a cell (a, b) at time step t+ 1
is de�ned by:




a(x, y, t+ 1) = a(x, y, t) +Da∇2a− a(x, y, t)b(x, y, t)2

+f(1− a(x, y, t))

b(x, y, t+ 1) = b(x, y, t) +Db∇2b+ a(x, y, t)b(x, y, t)2

−(f + k)b(x, y, t)
(5.17)

where Da and Db are the di�usion parameters, ∇2 the Laplacian
operator and k and f are the feed and kill parameters. The
Laplacian operator can be re-written as:

∇2m = D
r∑

i,j=−r
m(x+ i+ r, y + j + r, t)ki,j (5.18)

where m = a or m = b, and the ki,j is an element of the bisym-
metric matrix K = (2r + 1× 2r + 1):

K =




ki−r,j−r ki−r,j−r+1 . . . ki−r,j . . . ki−r,j+r
ki−r+1,j−r ki−r+1,j−r+1 . . . ki−r+1,j . . . ki−r+1,j+r

...
...

. . .
...

...
ki,j−r ki,j−r+1 . . . −1 . . . ki,j+r
...

...
...

. . .
...

ki−r,j+r ki−r+1,j+r . . . ki+r,j . . . ki+r,j+r




(5.19)

To ensure the equilibrium of mass (section 5.1.5),
∑r

i,j=−r ai+r,j+r = 0.

13The de�nition 10 can be easily adapted for cellular automata in three or more di-
mensions.
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Figure 5.12
The spatial distribution of
morphogens A,B in the Eu-
clidean space R2 and the as-
sociated representation as a
concentration state a, b in N2.

a = 1.0

b = 0.0

a = 0.9

b = 0.1

a = 0.0

b = 1.0

² ²

The following sections will explore the behaviour of the morphogen layer.
They will focus on the e�ect of di�usive parameters, the kernel of di�usion
the kill and the feed parameter. The simulations will compared with studies
that had explored the behaviour of a system of di�erential equations. Our
goal is to validate our approach and describe the behaviour of the Gray-
Scott in a discrete media.

5.2.2 E�ects of di�usion

The di�usion rate plays a crucial role to the evolution of concentrations
of morphogens: it depends to the value of di�usion parameters Da, Db the
ratio d = Da/Db 6= 1 and the kernel matrix K.

In order to evaluate the e�ect of the kernel into the pattern formation, we
make a few basic experiments. Depending on values ki,j , and the radius r,
a matrix can cause a wide range of e�ects to the di�usion rate. For r = 1,
the corresponding kernel K is a matrix 3× 3. We named the Moore kernel
with radius r = 1 the matrix:




0.125 0.125 0.125
0.125 −1 0.125
0.125 0.125 0.125


 (5.20)

and the Von Neumann kernel with radius r=1 the matrix:



0 0.25 0
0.25 −1 0.25

0 0.25 0


 (5.21)

In order to approximate derivatives of the Laplacian operator, we smooth
edges: 


0.05 0.20 0.05
0.20 −1 0.20
0.05 0.20 0.05


 (5.22)

or we consider a radius r = 2 with a progressive smooth:




0 0 c 0 0
0 b a b 0
c a −1 a c
0 b a b 0
0 0 c 0 0




(5.23)

Figure 5.13 depicts e�ects of di�erent kernel. The same initial con�guration
is perturbed in the middle; each row shows the evolution of the system as
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Concentration b

0 0.25 0.50 0.75 1.0

Figure 5.13
The e�ects of di�erent ker-
nels in a Gray-Scott model.
|L| = 256 × 256, T =
(0, 2500), Da = 0.1, Db =
0.2, f = 0.014, k = 0.045.
At t = 0, the state S =
(a, b) = (1.0, 0.0) is assigned
to each cell, excepts for the
cell in the middle of space
where b = 1.0. Each row re-
ports the evolution of the sys-
tem at the time steps t =
k ∗ 500 : k ∈ (1 − 5) of
5 kernels: a. eq. (5.21), b.
eq. (5.20), c. eq. (5.22), d.
eq. (5.23) (r = 2, a = 0.17
, b = c = 0.04), e. eq. (5.23)
(r = 2, a = 0.20,b = 0.04,
c = 0.01).

the propagation of a wave. We observe that the kernel in eq. (5.22) approx-
imates a central symmetric. It seems that it approximates the propagation
of a wave in an anisotropic space (�g. 5.13c).

Heat-maps in �g. 5.14 reports 100 × 100 simulations of the same initial
morphogen layer. Simulations were stopped when the concentrations be-
come stable. Red areas correspond to simulations where after 20000 steps
they did not reach the equilibrium. Only simulations with a low value of
the ratio d = Da/Db show the formation of patterns; moreover, we observe
in all heat-map a bifurcation curve that separates simulations where pat-
terns appear to which where the initial gradient of concentration falls into
a homogeneous state.

Finally, �g. 5.15 reports the e�ect of the values of the di�usion parameters
into the model. Despite the two simulations was computed for the same
initial con�guration and the ratio d is the same for both cases, they produce
two di�erent patterns. It seems that the size of spots is a function to
absolute values of Da and Db.

5.2.3 E�ects of feed and kill parameters

Simulations of the Gray-Scott model can lead to very di�erent patterns us-
ing slightly di�erent parameters. Compared to the majority of reaction-
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Figure 5.14
The E�ect of ratio
d = Da/Db in a Gray-
Scott model. |L| = 128×128.
At t = 0, the state
S = (a, b) = (1.0, 0.0) is
assigned to each cell, excepts
for 100 cells, randomly
selected, perturbed with
b = 1.0.

time steps t

0 100 1000         20000

D
b

Da

(a) (f, k) = (0.055, 0.062)

Da

(b) (f, k) = (0.039, 0.058)

Da

(c) (f, k) = (0.029, 0.057)

Figure 5.15
The e�ects of di�erent val-
ues of di�usion parameters in
a Gray-Scott model. |L| =
256 × 256, T = (0 − 2500).
At t = 0, the state S =
(a, b) = (1.0, 0.0) is assigned
to each cell, excepts for 100
cells, randomly selected, per-
turbed with b = 1.0.

Concentration b

0 0.25 0.50 0.75 1.0

(a) Da = 0.2, Db = 0.1 (b) Da = 1.0, Db = 0.5

di�usion models, where production and degradation of morphogens are
modelled by linear equations, the Gray-Scott model, due to the quadratic
autocatalytic reaction and parameters f and k, leads to much more com-
plicated dynamics. The Turing space is commonly de�ned for feed and the
kill parameters.

The morphogen layer in one-dimensional space

The morphogen layer can easily adapted in a one dimension space. It su�ces
to set di�erent values of f and k and perturb the initial state of cells (a, b =
1.0, 0.0) with a pulse (b = 1.0) to obtain a wealthy set of patterns (�g. 5.16).
These patterns display several visual analogies with the patterns obtained
by Wolfram with his cellular automata models (�g. 5.10).

The stability analysis

The study of the behaviour of the Gray-Scott model can be also done for
a domain of dimensional 2. Here we report some results in the continuous
domain and then the correspondences in the discrete domain. For more
details in continuous media see [2, 197, 207, 297].
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Concentration b
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Figure 5.16
Six space-time plots of a
Gray-Scott model. |L| =
256, Da = 0.1, Db = 0.2.
At t = 0, the state S =
(a, b) = (1.0, 0.0) is assigned
to each cell, excepts for 10
cells, randomly selected, per-
turbed with b = 1.0.

(a) The phase diagram.
(b) The twelve patterns.

Figure 5.17
The Pearson classi�cation.
Section 5.2.3 depicts the
(f, k) phase diagram. Latin
letter R and B denote the
red and the blue steady state,
Greek letters some patterns
reports on the right panel.
Colours varying from red
(a ≈ 1) to blue (a < 0.2);
yellow is in the middle. Sec-
tion 5.2.3 depicts twelve em-
blematic patterns. Source:
[218].

The stability analysis for Gray-Scott system shows three main solutions of
eq. (5.14). Neglecting for a moment the di�usion, the homogeneous steady
state solution, referred as the red state (section 5.2.3), where (ar, br) =
(1.0, 0.0) is always linearly stable for positive values of parameters (f, k)).
Under the condition that α = 1−4(f+k)2 > 0, we also have two additional
homogeneous steady states solutions. The blue state :

(ab, bb) =

(
1−√α

2
,
f(1 +

√
α)

2(f + k)

)
(5.24)

and the intermediate state:

(ai, bi) =

(
1 +
√
α

2
,
f(1−√α)

2(f + k)

)
(5.25)

The latter couple indicates the Turing space. The blue state is a homoge-
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Figure 5.18
The Turing space in the
Gray-Scott model for two ra-
tio d = Da/Db. Source:
[197]. (a) d = 2. (b) d = 6.

Figure 5.19
Heat map of last step of sim-
ulation (in �g. 5.19a, colours
are in logarithmic scale) and
the average concentration a
(�g. 5.19a). 90 × 90 simula-
tions performed on a space of
size |L| = 256 × 256, Da =
0.1, Db = 0.2. At t = 0, the
state S = (a, b) = (1.0, 0.0) is
assigned to each cell, excepts
for the cell in the middle of
space where b = 1.0.

Figure 5.19a: time step t

0 100 1000         20000

Figure 5.19b: conc. b

0 0.25 0.50 0.75 1.0

f

(a) The max step.
k

(b) The average a.

neous state where no gradients of concentrations appear, but the concentra-
tions (a, b) varying as a function of f and k. Otherwise, the red state is the
state where the concentration is (ar, br) = (1.0, 0.0) for all values of that
not respect the condition α > 0. The stability analysis shows that, if the
conditions α > 0, f > 0, k > 0 are respected, the intermediate state is not
at equilibrium while the blue state is at equilibrium. In a (f, k) phase dia-
gram (�g. 5.17), the blue and the intermediate states appear as two regions
separated by the saddle-node curve:

f(k) =
1− 8k ±

√
1− 16k

8
(5.26)

On the saddle-node bifurcation curve we observe the equilibrium point in
(fe, ke) = (0.0625, 0.0625): for this couple and for all possible spatial con-
�guration of morphogens, no perturbations is able to spark the stable state.

Now, taking into account the di�usion, the study of stability con�rms the
existence of three states and it gives more information about the changing
of state from the blue to the intermediate state. With the di�usion, the
intermediate state corresponds to the Turing space in which it is possible
to observe the formation of patterns. The Turing space, in a Gray-Scott
is identi�ed in a (f, k) phase diagram as the region in vicinity of the curve
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Figure 5.20
Heat map of Shannon entropy
computed for the statistical
distribution of a. 90×90 sim-
ulations performed on a space
of size |L| = 256× 256, Da =
0.1, Db = 0.2. At t = 0, the
state S = (a, b) = (1.0, 0.0) is
assigned to each cell, excepts
for the cell in the middle of
space where b = 1.0.

described by the eq. (5.26). It is identi�ed by the equation:

[d(f + k)− (b20 + f)]2 − 4d(f + k)(b20 − f) = 0 (5.27)

where d = Da/Db is the di�usive ratio and b0 is the initial concentration of
B. The (f, k) phase diagram (�g. 5.18) con�rms the importance of the ratio
d as a component involved in the stability. If the di�usion ratio d increases,
the upper limit moves to the lower limits, the Turing space reduces and the
blue state increases its importance.

Pattern classi�cation

In the proximity of bifurcation, a wealth variety of patterns may appear.
These can be observed by setting the initial state of the system to the red
state and adding a �nite perturbation of (a, b) = (0.5, 0.25). Pearson [218]
produces a systematic classi�cation of patterns that arising in a Gray-Scott;
he describes 12 types di�erent patterns [218].

Figure 5.19 plots basic indicators computed at the end of each simulation.
More precisely, �g. 5.19a plots the heat map of the number of steps before
that the morphogen layer reaches a stable state and �g. 5.19b the average
concentration of A at the �nal step. If the Gray-Scott morphogen layer does
not become stable, we stop the simulation at the step tmax = 20000. As we
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expected, we observe the red, the blue, and the intermediate state. The re-
sult �nds correspondence with the stability analysis reported for continuous
media. In the blue state region, from the perturbing zone, the propagation
is wave-like; here the simulations stop before tmax because the state of cells
does not vary and the gradient of concentration disappears. In the red
state region, after few steps, the perturbation suddenly vanishes. The in-
termediate area seems to be divided in two macro areas: for f . 0.030,
the morphogen layer is far from the equilibrium (section 1.3.2), chaotic and
unstable patterns appears. For values f & 0.030, morphogen layer reaches
a stable state at di�erent time step; this e�ect indicate that the system is
out of equilibrium. Di�erent types of patterns appear at the end of the
simulations: i.e. spots, worms, and waves.

The formation of patterns in a morphogen layer can be observed from a
statistical point of view. Lato sensu, a pattern can be interpreted as an
heterogeneous statistical distribution of morphogens. Hence, statistical in-
dicators of diversity are useful to capture the behaviour of the system. To
this end, we compute the Shannon entropy [263] of the statistical concen-
tration a as:

H(a) =
∑

c∈L
a(c) log2 a(c) (5.28)

and we plot results in a heat-map in �g. 5.20. Due to the impossibility
to observe gradients of concentration at the �nal step, red and blue states
show lower values of H(a). The intermediate state brings out because the
formation of patterns (stable or unstable) produces heterogeneous values in
a broad range.

Summary 15:

The Gray-Scott model
The Gray-Scott model is a reaction-di�usion model that was widely
studied in the last 40 years. A cellular automata formalism has been
used to simulate it in a discrete media. We had found several corre-
spondences between results from these two approaches.
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"Le hasard, toujours indispensable, n'est jamais seul et
n'explique pas tout. Il faut qu'il y ait la rencontre entre
l'aléa et une potentialité organisatrice"1

Edgar Morin [202]

In chapter 2 we observed that many complex systems (chapter 1) are struc-
tured as networks and we focused on such of them that spatial aspects
a�ect their properties and the way that they form. Graph theory provides
a useful tool to formalize these systems: we can model them, measure their
properties (chapter 4), and simulate their formation.

The goal of this chapter is to simulate spatial network formations. To this
end, we will describe two models, based on two approaches (section 6.1).
The �rst one (section 6.2) is largely inspired by geometric planar graph
generators and the second one introduces the complexity (section 6.3). Re-
sulting graphs have several traits in common. The chapter ends with a
discussion about these models (section 6.4). These observations will be the
basis for the framework exposed in chapter 7.

6.1 Modelling spatial networks

chemical street
morphogenesis network

↓ ↓
toward morphogenesis

↓
framework

When you look at the skeleton of a leaf, you discover a complex hierar-
chical pattern; it shows regularities and structures. Space and time are
imprinted/written in the structure. The spatialization of elements reveals
keys of genesis of these structures. The leaf blades are located in space and
they are not directed by a central command.

In unplanned cities, new streets are make to connect the existing network
to a sub part of the land. When a street connects, an intersection of at least
three branches forms. The street ends with a cul-de-sac or intersecting an
existing elements of the network. After a while, the end-point may become
the origin of a new bracing or an elongation of the street. The processes
behind these events are often decentralized and they are constrained by
spatial aspects. The result is a sedimentation and addition of new elements
to the existing network. The growth is coherent because at each moment
new elements are connected to the rest of the network.

Figure 6.1
Seeds, vectors and the net-
work.

A few ants move and build a nest, the end part of plant roots dig the ground
and bifurcate, cracks and unplanned streets are the results of branching and
elongations. While some elements of the system operatively make a network,
some others move, interact, bring goods etc. These elements are spatially
constrained and they constitute a system.

These basic observations inspired our thinks. We suppose that there exists
some moving elements of the system that are leaded by internal and ex-
ternal forces and that builds a spatial network. Their movement and their
interactions are completely decentralized. We named them seeds (�g. 6.1).

1"The change is necessary but it is not able to all explain. We need to mix it with the
organization".
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6.1.1 Seeds, vectors and dynamics

The path that a seed makes in a continuous spacetime environment can be
represented with a line. This representation can be discretized in a discrete
media: in a sequence of time steps, the elements is located in a point of
the space and the trip that it has made is a straight line. We suppose that
the movement of seeds are due to external or internal reasons. To model
these actions, we suppose that a displacement vector relates the position of
the seed at two time steps. The branching and the end-points observed in
reality can be considered as the creation and the death of these elements.

Formally we de�ne:

De�nition 11:

Seed
A seed s(t) is a virtual vertex that move in euclidean space R2 and
builds a growing planar graph G(x, t) in a discrete time series T =
1, 2, 3... At time step t, only one vertex v ∈ Vt is associated to the
seed.

The relation between positions of the seed at time t and at t+ 1 is de�ned
by a displacement vector ~v. It is noted as ~v(s) = (i, θ), where i ∈ R+ is the
magnitude and θ ∈ [0, 2π] is the direction of the vector. The set of seeds
at time step t is noted as St. A process P(S) governs the formation of the

graph G(x, t) in such a way Gt
P(S)−−−→ Gt+1. It is the result of three kinds of

events:

� The movement of seeds:

it is formally de�ned by a displacement vector ~v(s).

� The death and the creation of seeds:

at each time step, the size of the seeds set S changes because new seeds
born (over existing vertices) or existing seeds die. The creation of new
seeds produces the branching and the death provides the formations
of end-vertices or intersections. The graph grows in a coherent way,
because new seeds born over an existing vertices (section 2.3.4).

� Building the graph:

the movements of the seeds are bounded by the geometry of the graph.
During the displacement of a seed, it might become close to existing
vertices or edges, or its path might intersect an existing edge. The
handling of these situations ensures the planarity of the geometric
graph. In the next we will detailed two methods.

The results is a dynamic graph embedded in R2 (de�nition 4, page 39,
de�nition 6, page 42), which respect the planarity condition (de�nition 7,
page 44) and that grows in a coherent way (de�nition 5, page 39).

6.1.2 Approaches

We want to formalize the following dynamics: an evolving set of seeds,
moved by displacement vectors, builds a geometric planar graph. To this
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end we follow two approaches. The �rst approach (section 6.2) is a basic
model. We construct a geometric planar graph and we �x geometric rules
(angle and length). These rules are noisy by a random process in order
to create heterogeneity in the appearance of the growing graph. It is a
random planar graph without structure. The graph genesis is isolated (in
the meaning of isolated system). The second model (section 6.3) introduces
complexity. The genesis of the graph is open, because the construction of
the graph is in�uenced by reaction di�usion.

6.2 The geometric planar graph generator

In many spatial networks, we observe that the elongation tends to respect
the straight direction and the branching appears with regularity and appar-
ently not in accordance with a deterministic reason. The basic idea of this
�rst model is that the formation of a graph is led by biased randomness.

We assume that:

� the future position of the seed depends on the actual position and the
previous position,

� the displacement vector is biased by a probability in such a way the
seed moves approximatively in a straight line,

� the creation and death of seeds respect a probability,

� when the seed intersects the existing graph, it dies and a new connec-
tion is created.

6.2.1 The movement of seeds

A random walk is a mathematical formalism where a stochastic process
(biased or not) allows to explore space (topological or Euclidean) using a
set of particles. Introduced by Pearson by an iconic question in 19052 [219],
and for the �rst time applied in botany [58], random walk was widely used
to model many phenomena in biology [81], chemistry [9] in social networks
analysis [256] and urban studies [45].

If a particle explores a topological space (a lattice or a graph) in discrete
time steps, a stochastic process provides the probability to move from a
cell (or a vertex) to one of its neighbours. In euclidean space, the walk of
the particle is a sequence of locations. These positions can be represented
as vertices of a geometric graph embedded in the space and the path of
particles as edges. In this sense, random walk provides a formalism to
simulate the formation of a path graph3.

2"A man starts from a point O and walks 1 yards in a straight line; he then turns
through any angle whatever and walks another 1 yards in a second straight line. He
repeats this process n times. I require the probability that after these n stretches he is at
a distance between r and r + Sr from his starting point, O".

3A path graph on n vertices is a tree where V = {v1, v2, .., vn} is the vertex set and
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} is the edge set.
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Figure 6.3
Interactions between seeds
and the graph in the geomet-
ric planar graph generator.

The movement of a seed is inspired by the walk of a particle in euclidean
space. The process is Markovian4, hence the position of a seed s at time
t + 1 depends on the position of the seed s at time t. The vector at time
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Figure 6.2
The vector associated to a
seed in the geometric planar
graph generator.

step t de�nes the position at time step t + 1 and it is a function of the
actual position and the position of the seed at time step t − 1. Moreover,
we suppose that the magnitude and the direction are a�ected by a random
in�uence:

~vt(s) :

{
it = α dist(Xt−1, Xt)

θt = β + θt−1
(6.1)

where α ∈ R+ and β ∈ [−π,+π] are two free parameters (�g. 6.2). If α and
β change at each time step in a random way, and if we connect the vertex
created at t with the vertex created at t − 1, the seed builds a path graph
of t vertices and t− 1 edges.

6.2.2 Creation and death of seeds

A Bernoulli trial (or binomial trial) is a random experiments with two pos-
sible outcomes: 0 or 1. The experiment can be eventually biased by a a
parameter p ∈ [0, 1] and used to de�ne an action in a simulation:

if random(0, 1) < p then do something (6.2)

A Bernoulli trial can be used to obtain a pseudo-random binomial output
biased by a probability. It can simulate aspects in a system that are not
completely predictable. Here it is used to control the formation and the
degradation of seeds. More precisely, we have two kinds of events that
impact the seed set S. For each vertex v ∈ Vt, we add a new seed with a
probability pc ∈ [0, 1] and we remove each existing seed with a probability
pd ∈ [0, 1].

6.2.3 Building the graph

At time step t the seed s located in Xt overlaps the vertex v and, according
to the vector ~vt(s), its potential position is Xt+1. Before moving in Xt+1,
we check if the potential line XtXt+1 intersects an existing edge e ∈ Et. If
not, we move the seed at new position Xt+1, we create a new vertex v in
Xt+1 and a new edge between this latter and the vertex in Xt. Otherwise,
we remove the seed, we add a new vertex vx at the intersection Xx between

4Roughly, in a sequence of events, the probability of each event depends only on the
state reached in the previous event.
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Algorithm 3: A step in the geometric planar graph generator
input : S(t) = {s1, ..., sn}, seed set at time step t

G(x, t) the geometric planar graph at t
output: S(t) and G(x, t) at t+ 1
begin

foreach vertex v ∈ V do /* add new seeds */

if random(0, 1) < pc then
s← new seed at v
S ← S + s

foreach seed s ∈ S do

if random(0, 1) < pd then /* remove seeds */
S ← S − s

else

~v ← vector to apply at seed s /* see eq. 6.1 */

Xt ← position of seed s
vt ← corresponding vertex of seed s
Xt+1 ← Xt + ~v /* compute future postion of s */

if line XtXt+1 does not intesect edge e ∈ E then
move the seed to s(Xt)
V ← V + v(Xt+1)
E ← E + (vt, v(Xt+1))

else
Xx ← coordinate of intersection
V ← V + v(Xx) /* create new vertex at Xx */

E ← E + {(vx, v1), (vx, v2), (vx, vt)} − (v1, v2)
S ← S − s

the line XtXt+1 and the edge (v1, v2), we remove the edge (v1, v2) and we
add three new edges: (vx, v1), (vx, v2) and (vx, vt). The result is a growing
geometric graph (�g. 6.3); it grows coherently and it respects at each time
step the planarity condition.

6.2.4 Simulation and results

The simulation starts with a star graph of 5 vertices5 in the middle of space;
a seed is assigned to each leaf (see algorithm 3). In accordance to eq. (6.1),
values assigned to each seed are randomly chosen in a range α ∈ [0.9, 1.1]
and β ∈ [−0.05π,+0.05π].

Figure 6.4 depicts the graph of 16 simulations at time step t = 200, where
probabilities pd = k × 0.0033, pc = k × 0.033, k = {0, 1, 2, 3}. The model
is able to reproduce di�erent types of growth with a few parameters and
di�erent graphs appear with di�erent values of pd and pc. As we expected,
for high values of pd, the graph grows very slowly because seeds readily
disappear after few steps. Otherwise, for high values of pc, many seeds
(proportionally to the size of the graph) born. The resulting graph �lls

5The model needs at least a vertex to start; no seeds are required.
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Figure 6.4
Simulations of the geomet-
ric planar graph generator at
time step t = 200 for various
constant values of pc and pd.
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Figure 6.5
Heat maps at time step t =
200 of the number of average
degree (�g. 6.5a) and fractal
dimension D0 (�g. 6.5b) .

rapidly the space.

We investigate resulting graphs with metrics exposed in chapter 4. Before
to analyse them, we remove vertices with degree 2 (see algorithm 1), in
order to capture main properties of graphs. Starting from the same initial
con�guration, we run 100×100 simulations. Probability pd varies between 0
and 0.1 and probability pc varies between 0 and 0.01. Di�erent behaviour of
the model are observed during the simulation. Trajectories depends to the
parameters pc and pd. For high values of pc, the average degree (�g. 6.5a)
is ranging around 3, which corresponds to what is observed in many street
networks (section 4.2.7). However, the study of fractal dimension (�g. 6.5b)
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Figure 6.6
The evolution of the number
of vertices, calculated for 16
graphs depicted in �g. 6.4.

|V
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t

Figure 6.7
Three graphs generated with
the geometric planar graph
generator. The same ini-
tial parameter set and vary-
ing the parameter beta (pc =
0.001, pd = 0.005, β = 0
(left), β = 0.05π (centre),
β = 0.1π (right)).

suggests that a global scale-invariance organization organization cannot be
observed for these graphs.

The e�ect of pc on the growth rate is con�rmed by the evolution of graphs
over the time. The rate of growth of the vertex set |V | (�g. 6.6) suggests
that, while for lower values of pc the graph grows linearly with the time, for
high values of pc the growth rate seems to �t an exponential curve. Finally,
the parameter β a�ects the growth of graph (�g. 6.7): for high values of β,
it is more probable that a seed turns around and, intersecting its own path
and dies.

Summary 16:

The geometric planar
graph generator

The chance and geometrical rules control the movement, the creation
and the death of a set of seeds. A geometric graph is the results of
their trips. The trips of the seeds and their interactions with the graph
de�ne the shape of a growing geometric graph. The growth is always
coherent. The topology of resulting graphs seems to be similar to street
networks but no structures and no invariance of scale are observed: the
graph �lls the space homogeneously.
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6.3 The reaction-di�usion planar graph generator

Turing [285] suggested that behind the formation and the specialization of
cells in an living system there exists a set of spatially located interacting
elements (section 5.1.2). Due to their crucial role into the morphogenesis
of the system he calls them morphogens. A basic reaction-di�usion system
considers two kinds of morphogens: an activator, which produces a positive
feedback, self reinforcing its own production, and an inhibitor, which moves
slowly and suppresses the growth of the other one. The coupling of these
competing mechanisms arises an emergent phenomenon: the formation of
a wealthy of spatio-temporal patterns (e.g. spots, strips, waves, chaotic
patterns).

Morphogens group together and a gradient of concentration appears. As
noted in section 1.1.4, emergences can roughly be de�ned as new prop-
erties of the system resulting from local and decentralized interactions of
elements. As Chalmers [73] suggests, emergences can be classi�ed in weak
(a new property related to the understanding of the observer) and strong
(a new property that has also a role into the functioning of the system).
Our proposition is: those emerging patterns have an important role in the
functioning of the system, leading the morphogenesis of spatial networks.

In a reaction di�usion model, no particular concentrations can exist without
others close concentrations. All group of morphogens contrasts with another
group of morphogens. No individual group is complete of itself, so each
group needs other groups. At the periphery of groups, forces (attractive
or repulsive) allow similar kinds of morphogens to stay gathered, ensuring
the emergence of sub-areas with the same concentration of morphogens.
These forces guide the formation of spatial networks. The causal relation
between the morphogenetic substrate and the emerging network is ensured
by internal forces.

These basic dynamics can be transposed in a model. They are also similar
to dynamics inside the geometric planar graph generator: forces move seeds
and build the graph. The main di�erence is about the way that vectors are
de�ned: here the gradient of concentration of morphogen becomes a set of
attractive or repulsive forces. We complete the model with the following
assumptions:

� the future position of the seed depends on the current position and
the concentration of morphogens,

� the vector �eld is computed with the concentration of morphogen B,

� geometry and the topology of the graph and the concentration of
morphogen B control the death and the generation of seeds.

6.3.1 A multilayer model

We model these dynamics with a multilayer model, composed of three in-
terdependent layers:
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Figure 6.8
The three interdependent lay-
ers of the reaction-di�usion
planar graph generator: the
morphogen layer L(t) (bot-
tom), dynamic vector �eld
~L(t, b) (centre) and the grow-
ing geometric graph G(x, t)
(top).

� a morphogen layer L(t) models the reaction-di�usion of morphogens
A and B,

� a dynamic vector �eld ~L(t) for the morphogen B, which controls the
position of a set of seeds S(t),

� a growing geometric graph G(x, t) [282] (�g. 6.8).

6.3.2 The reaction di�usion

We brie�y recall the reaction-di�usion dynamic. In the �rst layer, two
morphogens A and B interact and di�use in Euclidean space. At the mi-
croscopic scale, A catalyses its own production and also the production of
B. At the same time, B inhibits the production of A. B di�uses faster than
A. In a region of space, the concentrations of A and B are noted a and
b respectively. At the macroscopic scale, the evolution of interactions and
the di�usion of morphogens can yield patterns of concentration. A way to
model the evolution of the morphogen A and B is to de�ne a morphogen
layer Lm(t) (de�nition 10, page 109) where the cell state (a, b), a, b ∈ [0, 1]
represents the concentration of morphogens and the evolution of concentra-
tions follows the Gray-Scott transition state (section 5.1.7).

6.3.3 The movement of seeds

Accordingly to our assumptions, in a discrete representation, we compute
a dynamic vector �eld ~L(t) for the morphogen B. We consider the con-
centration b of the cell in X ∈ Z2 as a mass and we suppose that a force
of attraction (or repulsion) exists between each cell6. The Newton's law
describes the force ~F between two masses m1 and m2 as:

~F = G
m1m2

r2
(6.3)

6As the same, the concentration could be considered as an electric charge. In this
case, we obtain an electrical �eld.
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Figure 6.9
Interactions between seeds
and the graph in the reaction-
di�usion planar graph gener-
ator.

where G = 6.674 10−11m3kg−1s−2 is the gravitational constant and r the
euclidean distance between masses. According to eq. (6.3), at each cell on
layer L is associated the vector:

~b(X) =
∑

Y ∈L

b(X)b(Y )

dist(X,Y )2
X̂Y (6.4)

where X and Y are cells in the morphogen layer Lm(t), dist(X,Y ) is the
euclidean distance between centres of cells located in X and Y , X̂Y is the
relative unit vector.

The second layer is completed by an evolving set of moving seeds. During
the simulation, the vector �eld is applied to the moving seeds which follow
the evolution of the gradient of morphogen concentration. We apply the
sum of four nearest vectors to each seed. The moving seeds build the last
layer of the model, the geometric planar graph.

6.3.4 Spatial interactions and generations of seeds

The dynamic vector �eld a�ects the positions of moving seeds, which gen-
erates the graph. However, the morphogenesis of the graph is not only
governed by the reaction-di�usion mechanism. During the simulation, the
graph grows and its con�guration impacts its own morphogenesis.

At each seed corresponds a unique vertex in the growing graph. At each time
step, we apply the corresponding vector ~r to each moving seed and calculate
its future position Xf as Xt moved by ~r. In this way we take into account
the evolution of morphogen concentration near the seeds. Concerning the
seed movement, several cases can occur; given u a node at position Xt and
v a future node at position Xf :

Figure 6.10
The seed creation in the
reaction-di�usion planar
graph generator.

� if the potential edge between u and v crosses another edge, we do not
create node v, we connect u to the nearest node, and remove the seed,

� otherwise we create node v and the edges between u and v.

� If there are no other nodes in a radius dist(Xt, Xf ) around v we
keep the seed,

� otherwise we connect v with all other nodes in radius dist(Xt, Xf )
and we remove the seed. (�g. 6.9)

Seeds are not only removed, but also created during the simulation. We
create a seed at a node u of degree two if the corresponding vector ~r is almost
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Figure 6.11
Simulations of �ve growing
graphs and relative pattern,
with α = 1.0◦. Each row
shows the corresponding pat-
tern at �nal time step t =
1500 (last column) and the
corresponding growing graph
every 300 time steps.

perpendicular to the line passing between the two neighbours of u (�g. 6.10).
The parameter α is the maximal allowed deviation from the right angle. The
aim of the last mechanism is to consider the evolution during the simulation
of the reaction-di�usion layer, in order to handle the generation of new
seeds. The vector �eld evolves during the simulation and the corresponding
nearest vector of the vertex in the growing graph changes magnitude and
direction: each vertex in the graph can be a potential source of seeds as
result of combination of the vector �eld and the network geometry.

Thanks to this methodology we obtain graphs which grow coherently, em-
bedded in two-dimensional space and where edges do not cross one another.
The simulation starts with the creation of the three layers and ends when
the moving seed set becomes empty or after a prede�ned number of steps.
At each time step, we update the reaction-di�usion layer and compute the
corresponding vector �eld. The graph evolves thanks to the addition of
new seeds and the movement of seeds, respecting local rules of interaction.
Algorithm 4 summarizes the simulation.

6.3.5 Simulation and results

The reaction di�usion layer consists of a lattice of 50 × 50 unit cells. The
start concentration of morphogens is the homogeneous state a = 1.0 and
b = 0.0, with a small localized perturbing pulse (b = 1.0), a given number
of moving seeds and associated nodes in the middle of the space. Di�usion
parameters are Da = 0.1, Db = 0.2, feed and kill parameter set (f, k) is
chosen in order to obtain some classical patterns: p1 (0.055 , 0.062), p2
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Figure 6.12
The degree distribution of
�ve growing graphs calcu-
lated for all patterns and
for three values of α =
[0.1◦, 0.5◦, 1.0◦].

Figure 6.13
The evolution of number of
moving seeds, calculated for
all patterns and for three val-
ues of α = [0.1◦, 0.5◦, 1.0◦].

Figure 6.14
The evolution of the average
degree calculated for all pat-
terns and for all values of α =
[0.1◦, 0.2◦, ...1.0◦].

Figure 6.15
The evolution of gamma in-
dex computed for all patterns
and for three values of α =
[0.1◦, 0.5◦, 1.0◦].



130 Chapter 6. Toward the morphogenesis of complex networks

Algorithm 4: A step in the reaction-di�usion planar graph gen-
erator.
input : L(t) the morphogen layer at time step t

~L(t) the dynamic vector �eld computed for B at t
S(t), seed set at t
G(x, t) the geometric planar graph at t

output: L(t), ~L(t), S(t) and G(x, t) at t+ 1
begin

update the reaction-di�usion layer L(t) /* See section 5.1.7

*/

update the vector �eld ~L(t) /* See section 6.3.3 */

foreach vertex v ∈ V (x) with degree 2 do /* add seeds */
~r ← sum of nearest vectors
~m← vector between the two neighbours of v
β ← angle between ~r and ~m
if |β%2π| ≤ π/2± α then

s← a new seed at v
S ← S + s

foreach s ∈ S do
v ← vertex where the seed s is located
Xs ← current position of seed s
~r ← the sum of nearest vectors
Xf ← Xs moved by ~r /* future position of seed s */

if line XsXf intersects edge segments then
u← nearest vertex from s
E ← E + (u, v) /* Add edge */

S ← S − s /* Remove seed */

else
u← new vertex at Xf

V ← V + u
E ← E + (u, v) /* Connect the vertex to the

previous one */

Move seed s to Xf

N ← set of vertices within a distance dist(Xt, Xf ) from
Xf

if N 6= ∅ then
foreach vertex v(xt) ∈ N do /* Connect vertex to

nearest vertices */

if line XtXf does not intersect edge e ∈ E then
E ← E + (v(xt), v)

S ← S − s

(0.039, 0.058), p3 (0.029, 0.057), p4 (0.014, 0.054), p5 (0.025, 0.060) [2]. At
the centre of each cell in the reaction di�usion layer we compute the vector~b
following the eq. (6.4). For each seed, the corresponding vector ~r is the sum
of the four nearest vectors. For each pattern p, we varied the free parameter
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Figure 6.16
Mitosis of pattern p5. Snap-
shots (from step t = 300 to
t = 800, computed each 100
steps)of the three layers (the
�rst three rows) and the cor-
responding evolution of γ in-
dex (the fourth row).

α = [0.1◦, 0.2◦, ...1.0◦] and we obtained �fty growing networks7.

In this section, we study some properties of all growing graphs generated
by the model with few typical topological metrics largely applied in spatial
graph analysis [60] (chapter 4). Our interest focuses on three aspects: in-
vestigating patterns e�ects on growing networks, evaluating the evolution
of graph topology and studying the impact of the α parameter.

In �g. 6.11 we show growing networks every 300 steps, corresponding to
di�erent reaction-di�usion patterns with the relative concentration of mor-
phogen B at step t = 1500; each growing graph is obtained with α = 1.0◦.
We observe that growing networks strongly depend on related reaction-
di�usion patterns. See section 4.2 for more informations about measures
used below.

In most planar graph applications, the degree of the vertices is comprised
between 1 and 7 section 4.2. In our case study, degree distribution follows
a fast decay from k = 2 to k = 6, typically observed in street, leaf and ant
gallery networks (�g. 6.12). In addition, the high probability to generate a
new seed, suggested by the frequency P (2), is not actually correlated to real
generation of new seeds. During the simulation, only few vectors related to
vertices with k = 2 permits to generate a new seed. Figure 6.13 depicts the
evolution of the number of seeds for three values of α = [0.1◦, 0.5◦, 1.0◦].

In �g. 6.14 we show the evolution of the average degree 〈k〉 = 2|E|/|V | for
all patterns for all values of the parameter α. As expected, the parameter
α and the pattern play crucial role on the evolution of the average degree

7Videos of 3 layers are computed for α = 1.0◦ until step t = 2500, saved every 25th
iterations; playback is 3 frames per second.
Pattern p1: https://youtu.be/2izGpD2XU0w
Pattern p2: https://youtu.be/IwG3oSewSpI
Pattern p3: https://youtu.be/ceQVYPadENY
Pattern p4: https://youtu.be/LMn6vv9dy7Q
Pattern p5: https://youtu.be/vMiAC5rZpzs
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〈k〉. The parameter α impacts the connectivity and a sudden variation is
detected at the same time step for each graph. Results suggest that the
evolution of morphogens concentration governs the growth of the network
and the parameter α ampli�es graph average degree.

In order to characterize the evolution of graph density, we calculate the
gamma index γ. In �g. 6.15 we observe ample �uctuations during the simu-
lation. Like for the average degree 〈k〉 evolution, we observe non monotonic
curves for all patterns, as a consequence of an unstable process. Due to sud-
den changes of morphogen concentration b, graphs grows discontinuously.
For instance, the mitosis process (observed in pattern p5) increases the num-
ber of unstable spots (�g. 6.16). In the reaction di�usion layer, this process
causes the creation of new seeds (�g. 6.10). The network suddenly grows and
the γ index shows the rise of the graph density. This clearly demonstrates
that growing network mechanisms proposed in this model consider at all
times the evolution of morphogens concentration and the spatial properties
of the network.

Summary 17:

The reaction-di�usion
planar graph generator

A reaction-di�usion system, applied to a regular grid, governs a dy-
namic vector �eld, which impacts a set of moving seeds: the result is
a growing geometric graph embedded in R2. Topology and geometry
of the graph, and the concentration of morphogens fully control the
growth of the graph.

6.4 Toward the morphogenesis

In this chapter, we have exposed 2 models able to generate graphs embed-
ded in two-dimensional euclidean space. These models are based on the
same dynamics (seeds, moved by displacement vectors, generate a geomet-
ric graph) but underlying processes are based on di�erent approaches. The
�rst model can be considered as a model in the �eld of classical geometric
graph generators while the second one introduces the complexity.

Both models are controlled by a few parameters. The geometric planar
graph generator integrates four parameters, that represent the range in
which a random event might occur: parameters α and β biased the vec-
tors and parameters pc and pd biased the creation and the death of seeds.
Varying the probability to create or remove seeds, di�erent growths are ob-
served and we had studied the sensibility of the model. A combination of
these parameters (observed in a pc−pd diagram, �g. 6.5) seems to generate
interesting graphs, which shows characteristics similar to street networks
studied in chapter 4. In the reaction-di�usion planar graph generator, the
network growth is governed by the parameter α (concerning the generation
of new seeds) and reaction-di�usion parameters (Da, Db, f, k). Some com-
binations of these parameters (the Turing space, see section 5.1.3) produce
the formation of some characteristic patterns and we had observed that
each of them generates graphs structured in di�erent manners. This model
generates interesting graphs too; moreover, compared to the �rst model,
graphs �ll the space less homogeneously, forming structures. These latter
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depend on reaction-di�usion layer. These characteristics are close to those
observed in street networks.

Steps of simulation are similar (see algorithms 3 and 4). We �rstly create
new seeds, with the binomial trial (geometric planar graph generator), or
comparing the graph geometry to the vector �eld (reaction-di�usion planar
graph generator). Then, we compute the future positions and we handle
the intersection between the path of the seed and edges (geometric planar
graph generator) or closer vertices (reaction-di�usion planar graph genera-
tor). The main di�erence is about the mechanism that led to the death of
seeds. We do not consider this possibility in the reaction-di�usion planar
graph generator because it does not have an impact on the graph formation:
if a seed does not be moved by a vector, the topology and the geometry of
the graph do not change.

Simple local rules ensure the connectedness of the graph over time. We
had de�ned two methods that handle interactions between the seeds and
the graph elements (only edges in the �rst model, edges and vertices in the
second one); we had observed that both respect the planarity condition and
the growth is coherent.

These preliminary results leave several open questions that require further
investigation. One of them is about the de�nition of di�erent levels of ab-
straction. For instance, in urban studies, they may represent the sprawl of a
single city at an urban area level or the densi�cation of connections between
cites at a regional level. Our approaches integrate few essential physical dy-
namics and permit to investigate elementary mechanisms of spatial graph
generation.

We had also observed inconsistencies and lacks. These early results will be
completed in the next chapter by other morphogenetic mechanisms, in order
to take into account the feedback of the graph to the internal morphogenetic
constituents. In a complex system, the network plays a crucial role in the
spatial evolution of forces acting on its development, it feeds back and it
a�ects its own growth. Moreover, both models do not integrate exogenous
e�ects on the functioning of the system; for the sake of simplicity, we pre-
ferred to not consider exogenous e�ects. The growth of the system is closed
in the �rst model and open in the second one (in this last graphs grow only
under the in�uence of the reaction-di�usion). The reaction-di�usion planar
graph generator is design as multilayer model; it can be easily completed
by other layers and we will see that one of them may represent the e�ect of
a exogenous dynamics to the evolution of the system. The framework pro-
posed in the next chapter aims to overtake these limits, keeping peculiarity
of both models.
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"Essentially, all models are wrong, but some are useful"

George E. P. Box

In the previous chapters, we observed that a spatial complex system is
a system composed of a large number of spatial elements. Those elements
locally interact and they behave constrained by an environment. This latter
surrounds the system and exchanges with him (chapter 1). The result is that
spatial elements self-organize, the system becomes a whole, new properties
emerge and feed back to the systems, controlling, creating, and maintaining
the evolving forms. Our focus is on some speci�c spatial complex systems
which integrate elements organized as a spatial network (chapter 2).

In this chapter, we present our main contribution: a framework that sim-
ulates the morphogenesis of spatial complex systems. Our contribution is
inspired by models and observations in chapters 5 and 6. We will extend
them by the formalization of the environment of the system and a cross-
layer feedback mechanism. We will expose the main principles and how
they can be implemented. Experiments and applications with a detailed
formalization of these principles will take place in chapters 8 and 9. The
reader will �nd a general description of the framework (section 7.1) and the
formalization of its components (section 7.2), and a discussion about the
system dynamics (section 7.3).

7.1 General framework description

toward morphogenesis
↓

framework
↓

experiments

The framework simulates, at an high level of abstraction, the evolution of
two kinds of elements. They are called morphogens, because, when they
organizes themselves, they controls the morphogenesis of a spatial network.
Those elements react each other and di�use in the space. Their in�uences
to the network are modelled with a dynamic vector �eld. The formation of
the network feeds back to the morphogens. The whole system is immersed
in an environment.

7.1.1 Organization of morphogens

Usually, spatial complex systems are composed by heterogeneous elements.
Under particular circumstances, some of these elements, due to their decen-
tralized interactions, group together. A gradient of concentration (pattern)
forms, and it impacts the form of the system, in�uencing the formation
of overlying structures. Following Turing's idea, these elements are called
morphogens, because they a�ect the form of the whole system. Morphogens
move in the space and interact. Considering morphogens at a high level of
abstraction, we may observe in particular conditions (the Turing space) the
formation of spatio-temporal patterns. The evolution of their concentration
can be described by two essential mechanisms: reaction and di�usion. In
the proposed framework, those dynamics are modelled with a morphogen
layer Lm(t) (de�nition 10, page 109).
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A system can be rarely considered isolated: if we focus on a system, its
environment is all that can in�uence it (section 1.1). Moreover, due to
the crucial role that spatial aspects play on the functioning of the system,
e�ects from the environment are in many cases spatially located too. That
means exchanges appear in a speci�c region of the space; they locally change
their properties and locally contribute to the functioning of the system
(section 1.3.4). We will model those in�uences with an environment layer
Le (de�nition 12, page 138).

7.1.2 Gradients govern the network formation

The evolution of the network is controlled by the gradient of the concentra-
tion of morphogens. The observable patterns are not only a new property
of the system, but they are also important for the functioning of the system
(section 1.1.4). These patterns control the form of emerging structures: in
our case, a spatial network. To do that, we suppose that the positions of
elements, called seeds (de�nition 11, page 119), are controlled by the con-
centration of morphogens. The environment can contribute to the de�nition
of the position of seeds. We model them with a dynamic vector �eld ~L(t)
and an evolving set of seeds S(t).

Seeds move in space and their displacements create the network. Moreover,
during the simulation, the cardinality of the seeds set evolves: the con-
centration of morphogens does not only control the positions of the seeds
but also their creation and their destruction. The environment can also
impact seeds' behaviour: as a constraint, an inhibitor, or a stimulus to the
network formation. The environment contributes to the creation, the degra-
dation, and the displacement of seeds. Finally, due to the impossibility to
completely determine the e�ect of morphogens and the environment to the
network, we introduce a random component in the movement, the creation,
and the death of seeds.

7.1.3 The feedback mechanism

Finally, we close the loop with a cross-level feedback (section 1.1.2): the
morphogenesis of the networks in�uences elements which controlled its growth,
the morphogens. The creation of elements of the network is an event that
locally impacts the behaviour of morphogens. In this work, we will explore
di�erent impacts: we will locally modify the di�usivity, the concentration
and the rate of creation and death of morphogens. In this way, we are
able to simulate positive and negative feedbacks. Finally, we assume that
the creation of a node may produce two kinds of feedback, synchronic or
diachronic. In the �rst case, the node directly modi�es the concentration
of the morphogens in the region around it, and in the second one, the node
modi�es some characteristics of the environment. Operatively, we locally
modify the concentrations a and b of the cell in the morphogen layer Lm(t)
or the state Se of the cell in the environment layer Le.
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Figure 7.1
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7.2 Components of the framework

The framework (�g. 7.1) is composed of:

� the space R2 and N2,

� the environment layer Le(t), which models local e�ects of exogenous
aspects to the system,

� the morphogen layer Lm(t), which models the evolution of concentra-
tion of morphogens,

� the dynamic vector �eld ~L(t), which models the e�ect in the emerging
gradient of morphogen concentration to the position of an evolving set
of seeds S(t),

� and the geometric graph G(x, t).

7.2.1 Space R2 and N2, and time T

The layers of the framework are spatially and temporally linked: Euclidean
space R2 and a regular square grid N2 allow the location of morphogens,
cells, seeds, vectors, vertices, and edges, and the evolution of dynamic layers
is computed for a sequence of time steps T = 0, 1, 2, . . . , t. The sequence of
time steps T is the same associated to all components of the model, so that
the network and the layers evolve synchronously.

7.2.2 The environment layer Le(t)

An environment surrounds the system and represents all aspects that might
a�ect its evolution. It is modelled with the following layer:

De�nition 12:

the environment layer
The environment layer Le(t) of the framework is de�ned by:

� Le(t) is a subspace of N2. Element of space are noted as ce and
they are mapped to a couple of coordinates in R2.

� To each cell is assigned a state set Se = (e1, e2, . . . , Da, Db, f, k)
of real values.
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Values (e1, e2, . . . ) indicate the contribution of the environment to the
organization of the seeds and (Da, Db, f, k) are parameters used into
the associated morphogen layer Lm(t). The environment layer can
evolve over time under the e�ect of external factors and feedbacks
from the geometric graph.

7.2.3 The morphogen layer Lm(t)

The morphogen layer Lm(t) is de�ned in section 5.2.1. It is a regular square
lattice, where the state of cells synchronously evolve with a transition func-
tion inspired by the Gray-Scott model (section 5.1.7). The state of a cell
Sm = (a, b) represents the concentrations of morphogens A and B.

7.2.4 The vector �eld ~L(t)

The dynamic vector �eld ~L(t) controls the displacement of the seeds. It is
composed by a set of vectors. Each vector is assigned to a cell of the space N2

and it is computed from the concentration of the morphogen B1. The vector
�eld could be combined with a second vector �eld computed considering a
property e ∈ Se of the environment. We will show in section 8.1.4 that a
second vector �eld can integrate some exogenous aspects. In chapter 9 we
will integrate in the framework the orography of an urban system).

Convolution

In our work, convolution consists to compute the vector �eld ~Lm(t) from
the morphogen layer Lm(t) at the time step t (�g. 7.2). We are inspired
by convolution in image processing. In the framework, the convolution is
a function that maps a vector to each cell: Lm(t) × K × N → ~Lm(t),
where Lm(t) is the morphogen layer at time step t, K is a kernel, N is the
neighbourhood associated to each cell, and ~Lm(t) is the resulting vector
�eld. The kernel is a 3 × 3 bisymmetric matrix of real values in [0, 1]).
The dynamic vector �eld is computed at each time step of the simulation.

1Choosing B is arbitrary, because in each cell a+ b = 1. If we chose A, the magnitude
of vectors does not change but the direction is inverted.

kernel vectorinput  

Figure 7.2
The convolution. A vector is
computed for each cell (red).
The direction and the magni-
tude of the vector is a func-
tion of the concentration b
of the cells, the concentration
of its neighbours (grey), and
a kernel matrix. The meth-
ods could be applied in 3-
dimensional space.
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The vector ~b = (bx, by) associated to the cell c = (x, y) computed for the
concentration b may be written as:

~b :





bx =
r∑

i,j=−r
(i)(b(x, y)− ki,j b(x+ i, y + j))

by =
r∑

i,j=−r
(j)(b(x, y)− ki,j b(x+ i, y + j))

(7.1)

where ki,j are the elements of the matrix K. In our model, the convolution
kernel and the di�usion kernel (eq. (5.22)) are identical. As we noted for
the di�usion, the eq. (5.22), ensures a good approximation of continuous
spatial e�ects into a discrete space. The vector ~b(t) obtained by eq. (7.1) is
added to a random vector ~r(t) at time step t to de�ne the displacement of
the seed (see section 7.3.2).

7.2.5 The spatial complex network G(t, x)

A set S(t) (eventually empty) of seeds (de�nition 11, page 119) evolves and
builds the network. The seeds are moved by the vector �eld ~L(t) and during
the simulation new seeds could be added or removed (see section 7.3.4). The
results of the displacement of seeds is represented by a growing planar graph
(de�nition 7, page 44, de�nition 5, page 39), which grows in a coherent way
(de�nition 8, page 48)

7.3 System dynamics

The con�guration of the framework at each time step depends on the con-
�guration of the framework at the previous step. Each component of the
model updates synchronously. Algorithm 5 describes a step of the simula-
tion. In the next section we will detail it.

7.3.1 Reaction-di�usion mechanism

The displacement of morphogens and their interactions, at a lower level
of observation, is simulated at a high level with a reaction-di�usion system
(section 5.2). The Gray-Scott mechanism simulates the evolution of concen-
trations a and b during the time. Parameters (Da, Db, f, k) used to compute
the concentrations are embedded in the state set De of the corresponding
cell in the environment layer Le(t).

7.3.2 Building the network

When a spatial patterns emerges in Lm(t), it a�ects the behaviour of seeds.
A seed s ∈ S is associated to a coordinate Xt ∈ R2 and a vertex vt ∈ V at
time step t. A displacement vector ~v(s) moves the seed to the new position
Xt+1 A new vertex vt+1 is created at the new position of the seed at Xt+1.
An edge, drawn as a straight line, is created to connect vertices vt and vt+1.
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Algorithm 5: A step in the framework.

input : space R2 and N2

Le(t) the environment layer at time step t
Lm(t) the morphogens layer at t
~L(t) the vector �eld at t
S(t) the seed set at t
G(x, t) the geometric planar graph at t

output: Le(t), Lm(t), ~L(t), S(t) and G(x, t) at t+ 1
begin

test and eventually create new seeds
update Lm(t) and ~L
foreach seed s ∈ S do

if s is not removed then
compute potential displacement of s
if no intersections then

move s and add an edge and a vertex to G(x, t)
compute feedback

else
handle intersections and remove s

At each time step, we compute the new position of the seed as the sum of the
vector ~b and a random vector ~r. The methods are described in section 6.2.1.
The magnitude and the direction of the random vector ~r depends on the
previous position and the direction of the movement of the seed at the
previous step. The displacement of the seed is similar to the displacement
in the previous step but diverges by a random quantity (eq. (6.1)). The
introduction of randomness makes it possible to reproduce what we may
observe in real networks: a straight direction with �uctuations.

r 

v 
be  

Figure 7.3
The sum of vectors.

Once the random vector and vector �eld are computed, we sum them up.
Our methodology allows us to sum a third vector ~e, which represents an
exogenous factor that a�ects the movement of the seed and it is spatially
represented by the value e ∈ Se (�g. 7.3).

7.3.3 Handling intersections

Among the aspects that a�ect the seeds, the characteristics of the graph
play an important role: during its trip, a seed interacts with vertices and
edges around it. In chapter 6 we exposed two methods to handle cases where
seeds are close to vertices or when their trips cross an edge. We summarize
them.

� Handling only intersections (see the geometric planar graph gen-
erator, section 6.2):
when the seed crosses an existing edge, it is removed, a new vertex
is added in the point of intersection and it is connected to the seed
vertex.
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� Handling also the neighbourhood (see the reaction-di�usion pla-
nar graph generator, section 6.3):
here we consider vertices and edges close to the seed. When an el-
ement of the graph is detected by the seed, it is removed and its
corresponding vertex is connected to close elements.

Both methods respect the idea that interactions appear between close ele-
ments, preserve the coherence of the network, and ensure the planarity of
the graph. However, the two methods produce graphs with di�erences in
topology and in geometry. Through the �rst method, the topology of the
network is not strongly impacted, because interactions just create vertices
with degree 3. The paths of the seeds are respected. The second method
has an e�ect on the vertex degree distribution, because, due to the spatial
arrangement of vertices, many of them can be connected to the seed vertex.
To conclude, both methods respect our assumptions and one can choose in
accordance with the actual case study.

7.3.4 Creation and death of seeds

During the simulation, seeds can be removed or added (over an existing
vertex). This eventuality is biased by a binomial trial. We start with the
method used for the geometric planar graph generator (section 6.2.2). In
this model, at each time step and for each existing seed, if a random value
in the range [0, 1] is less than a �xed threshold in the range [0, 1], we remove
the seed. As the same, we test all existing vertices and we eventually add a
new seed. Although this method contributes to the creation of graphs with
di�erent characteristics (�g. 6.4), it also shows some limits. In the simula-
tions we do not observe relevant structures. Graphs �ll R2 homogeneously
and vertices are not arranged in a scale-free way. This method does not not
consider exogenous aspects of the network.

A way to combine the topology of the graph with the concentration of
morphogens to generate a new seed was exposed in the reaction-di�usion
planar graph generator (section 6.3.4): a new seed was added considering the
degree of vertices, the geometry of edges, and the vector �eld. Exogenous
aspects of the systems are not considered and the creation and the death
of seeds only depend on deterministic aspects.

We are aware of these limits and we combine in the framework the advan-
tages of methods used in the two models in chapter 6. We combine the
topological and geometric aspects of the graph, the characteristics of the
environment, the concentration of morphogens, and uncertainty.

In the framework, for each existing vertex, we add a seed if:

random(0, 1) < pc function(V (x), Se, Sm) (7.2)

and, we remove existing seed if:

random(0, 1) < pd pd function(Se, Sm) (7.3)

We do not consider the characteristics of the network when seeds are re-
moved because this aspect is considered during the interactions between
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these latter and the existing graph (see section 7.3.3). Many di�erent
implementations of these functions are possible. We based the following
implementation on previous observations (section 2.3.4). Spatial complex
networks often form as a combination of the topological, geometric and ex-
ogenous aspects. In this work, we experiment with the following case. Let
ρ be the concentration of a morphogen in the cell which contains a vertex
v. The degree of v is noted k(v). We create a new seed if over the vertex
if:

random(0, 1) <
pcρ

k(v)
(7.4)

and we remove an existing seed if:

random(0, 1) < pd(1− ρ) (7.5)

where pc, pd ∈ [0, 1] are two parameters. In this way, the same concentration
ρ controls at the same time the creation and the death of seeds in the cell.
Moreover, the creation of a seed is inversely proportional to the degree of
the associated vertex. That take into account the scarcely probability to
have high values of degree. In the next chapter we will study the impact of
the choice between concentration a or b to drive the life-cycle of the seeds.

7.3.5 The feedback

The feedback mechanisms are very present in many real systems and ubiq-
uitous in complex systems, especially in living systems (section 1.1.2). Ba-
sically, some chains of interactions loop on themselves. Each element of the
loop acts on itself positively or negatively. This is a circular causality, in
which the elements of the loop are both cause and e�ect.

Feedback does not only controls the functioning of the system, it may be
an important morphogenetic process (section 1.3.1). In many systems, at
the same time, di�erent feedback mechanisms co-exist. Some of them sup-
port the growth of the system (positive feedbacks) while others limit the
growth (negative feedbacks). When positive feedbacks dominate negative
feedbacks, we have morphogenesis, otherwise we have morphostasis. The
overlapping of these processes characterizes the system, de�ning complex
hierarchical patterns, emerging properties and structures. Finally, the feed-
back can act synchronically (the e�ect of the cause are in a the same period
of time) or diachronically (the e�ect and the cause are not in the same
period of time).

Feedback e�ects are present in the proposed framework. They are at the
level of the morphogens, where the autocatalysis of the morphogens A and
the inhibition of B can be seen as positive and negative feedbacks. We
also integrate a cross-level feedback. The basic idea is that the pattern
formation at the morphogen layer governs the form of the network, which
in turn feeds back to the morphogen layer. The framework allows us to
consider several aspects of the network as a source of feedback. They can
be implemented to explore di�erent aspects of a system. In this work, we
are interested on the morphogenesis of the network; we therefore prefer to
focus on generative events. There exist many possible events that can be
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considered. We will focus only on the creation of a node, which probably
represents the more intuitive and representative event among them.

The e�ect of the event is considered "local": it locally a�ects morphogens
(in other words, the event acts to the morphogens in the vicinity of it). The
behaviour of morphogens synchronically changes, the concentration of them
evolves and they (eventually) �nd a new manner to organize themselves. Ac-
cording to the basic characteristics of the Gray-Scott model (section 5.1.7),
the event may locally produce a change into one of the following aspects:

� The di�usivity of the morphogens (parameters Da and Db).

� The rate of creation and death of morphogens (parameters f and k).

� The density of morphogens in a region (concentrations a and b).

The following implementations are based on observations about the pattern
formation in a discrete Gray-Scott model ( sections 5.2.2 and 5.2.3). Oper-
atively, the feedback can be implemented with the two following methods:

� In the �rst method, we suppose that the feedback happens through the
environment layer Le. We recall that to each cell ce(X) ∈ Le located
in X is assigned the state set Se = (Da, Db, f, k) and during the
simulation, the morphogen layer Lm(t) updates the state Sm = (a, b)
of the cell cm(X) according to the state Se. When a new node is
created, we change one or more values in the corresponding cell. The
changes in the network produce a diachronic e�ect on the organization
of the morphogens: morphogens are not directly impacted by the
change but they will �nd a new con�guration.

� In the second method, we suppose that the creation of a new node
a�ects directly the concentration of morphogens in the corresponding
cell. Hence, when it happens, we locally change the concentration of
a or b. The event and the e�ect are synchronic.

In chapter 8, we will detail our methods and we will present early results
(with and without feedbacks). We will also discuss how the feedback im-
pacts the morphogenesis in our framework.

Summary 18:

The framework
In this chapter we presented a general framework that simulates the
morphogenesis of a spatial network. The system is driven by three
dominant dynamics: reaction-di�usion mechanism, emergence of a dy-
namic network and cross-layer feedbacks. Many questions, such as
parameter values or implementation choices, are left open. We will
discuss them in the following chapter.
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"We can only see a short distance ahead, but we can see
plenty there that needs to be done"

Alan Turing

The proposed framework (chapter 7), inspired by complex systems prin-
ciples (chapter 1), aims to simulate the morphogenesis of complex spatial
networks (chapter 2). It is a multilayer model: the �rst layer is inspired
by cellular automata theory and the Gray-Scott model and it simulates the
pattern formation through a reaction-di�usion mechanism (chapter 5). Un-
expected patterns constraint the form of a spatial network (chapter 2) with
a dynamic vector �eld in the second layer. The network (the third layer)
feeds back to morphogens. The fourth layer completes the model, it aims
to simulate exogenous aspects that can locally impact the morphogenesis.
The proposed framework can be found applications in di�erent �elds; here
our main focus is on the morphogenesis of street networks (chapter 3).

Firstly, we will test the sensibility of the framework to parameters and the
e�ect of basic dynamics without the feedback of the graph to the mor-
phogens (section 8.1). Then, we will expose the crucial role that cross-layer
feedbacks have in the morphogenetic processes (section 8.2). We will com-
pare our networks to theoretic planar graph and French department street
networks. To quantitatively characterize them, we will use measures de-
scribed in chapter 5. We discuss our results in section 8.3.

8.1 Experiments without feedbacks

street network
organization framework

↓ ↓
experiments

↓
urban application

We choice to investigate the proposed framework with an incremental ap-
proach: in order to answer few basic questions about its behaviour, we
start by studying a basic initial con�guration which do not integrate the
cross-layer feedback. In this way we can investigate e�ects of a few initial
parameter settings to resulting graphs. We are beginning our evaluation,
making four experiments; each of them would evaluate:

� no.fb.1 :
the growth rate of graph with di�erent rates of creation and death
of seeds. To do that, we study the sensibility of the framework in a
(pc, pd) diagram.

� no.fb.2 :
the relations between the characteristics of the graphs and the Turing
space (f and k parameters).

� no.fb.3 :
the characteristics of graphs when the growth is driven by the mor-
phogens A or the morphogens B.

� no.fb.4 :
the e�ect of di�erent kinds of vector �elds to the graph. We will
combine vectors computed from the concentration ~b, random vectors
(~r) and vectors from a the state e of the environment layer Le (~e).
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experiment
initial con�guration a

to evaluate
f, k pc, pd ρ ~L

no.fb.1 static RD b pc, pd ∈ [0, 1] b ~b the impact of pc and pd

no.fb.2
(1) in Turing spacec (1) 3 couples e

b ~b the impact of f and k
(2) 3 couplesd (2) (0.001, 0.003)

no.fb.3 (0.030, 0.062) (0.01, 0.03) a or b ~a or ~b the e�ect of ρ

no.fb.4 no RD (0.003, 0.001) b ~b+ ~e the e�ect of a 2nd vector �eld
a |N2| = 28× 28, concentration cells are homogeneous (a, b = 1.0, 0.0) with a perturbation (b = 1.0), Da = 1.0, Db = 0.5,
tmax = 3000.

b Experiments are computed with 2 static con�gurations of Lm: the patterns solitons and holes after 4000 steps are obtain
with a perturbation in the middle (b = 1.0) and with parameters (f, k) = (0.030, 0.062) and (f, k) = (0.039, 0.058).

c parameters f, k used in the simulation allows the formation of patterns (they are in the Turing space, section 5.1.3).
Operatively, we selects the couples that were the Shannon entropy at the �nal step is H(a) > 5 (�g. 5.20).

d with a perturbation b = 1, 0, the parameters allows the formation of holes (f, k) = (0.039, 0.058), moving spots
(f, k) = (0.014, 0.054) and solitons (f, k) = (0.030, 0.062) respectively.

e (pc, pd) = {(0.055, 0.005), (0.035, 0.010), (0.065, 0.025)}.

Table 8.1
Experiments without the feedback.
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Figure 8.1
The stylized representation
of states of Gray-Scott
model.
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Figure 8.2
The stylized representation
of patterns in the f − k dia-
gram.

To this end, we perform our simulations using the following experimental
setting:

Space and time The framework is de�ned in N2 with 28×28 cells and the
size of a cell is 1 unit. All simulations stop after 3000 steps of simulation.

The Morphogens' layer Lm(t) Every cell is assigned with two states
a, b ∈ [0, 1], and the evolution in a discrete time series is de�ned by a Gray-
Scott mechanism. As has been said in section 5.2.3, in an f, k diagram we
can identify some zones that produce a speci�c dynamic (�g. 8.1). We noted
that there exists the blue zone and the red zone, where no patterns can be
observed. Between these zones, we have the Turing space. Two other zones
exist, an unstable area where patterns evolve in time (dynamic far from
equilibrium) and a stable area where morphogens �nd an equilibrium (dy-
namic out of equilibrium). Moreover there exists a point, named equilibrium
(f, k) = (0.0625, 0.0625) where no kind of perturbation is able to activate
the formation of a pattern (dynamic at equilibrium). Figure 8.3 depicts the
evolution of four pattern formations, named holes (f, k) = (0.039, 0.058),
mazes (f, k) = (0.029, 0.057), moving spots (f, k) = (0.014, 0.054) and soli-
tons (f, k) = (0.030, 0.062) (�g. 8.2). Di�usivity is the same in all simula-
tion, (Da, Db) = (1.0, 0.5).

The environment layer Le In the following experiments we consider a
environment layer (static) Le and we set to each cell a state Se = (f, k,Da, Db)
in order to obtain patterns in �g. 8.3. Only for the experiment no.fb.4 (sec-
tion 8.1.4), we add discrete values e1 ∈ [0, 1] to investigate the e�ect of a
second vector �eld to the evolving graph.
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Figure 8.3
The evolution of 4 patterns
in a Gray-Scott model:
holes (f, k) = (0.039, 0.058),
mazes (f, k) = (0.029, 0.057)
moving spots (f, k) =
(0.014, 0.054) and solitons
(f, k) = (0.030, 0.062). Each
simulation is initialized
with an homogenous state
(a, b) = (1.0, 0.0) perturbed
in the middle of space
(b = 1.0).

Concentration b

0 0.25 0.50 0.75 1.0

t = 600 t = 1200 t = 1800 t = 2400 t = 3000

Figure 8.4
Experiment no.fb.1 . Con�g-
uration at time step t = 4000
of two homogeneous states
perturbed in the middle with
two di�erent patterns (holes
and solitons).

Concentration b

0 0.25 0.50 0.75 1.0

(a) holes (b) solitons

Vector �eld ~L We assign to every cells a vector ~b, obtained with the
concentration of morphogens B and computed with the convolution method
(section 7.2.4).

Intersections We only consider the case where the displacement of the
seed intersects an existing edge (section 7.3.3). We handle this situation
with the methodology exposed in section 6.2: if the trip of a seed intersects
an existing edge, we remove the seed, we add a new vertex at the inter-
section, and we connect the vertex where the seed born to the new vertex.
The growth of resulting networks are coherent during the simulation, and
the planarity condition is respected.

Creation and death of seeds We use in ρ = b in eqs. (7.4) and (7.5)
for experiments no.fb.1 , no.fb.2 and no.fb.4 . In experiment no.fb.3 , ρ = a.
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Figure 8.5
Experiment no.fb.1 . Simu-
lations with the holes static
con�guration for various con-
stant values of pc and pd.

Graph analysis In order to capture some essential properties of graphs,
we apply the algorithm 1 before analysing them.

In table 8.1 we summarize the experimental settings of the proposed exper-
iments.

8.1.1 Experiment no.fb.1 : graphs and Turing space

The goal of this �rst experiment is twofold: to evaluate if a static con�g-
uration of morphogens in�uences the formation of structures in the graph
and to evaluate if parameters pc and pd impact the rate of growth of the
graph. We build two emblematic patterns (holes and solitons, �g. 8.4, rows
1 and 4 in �g. 8.3). To make the �rst pattern, we perturb the middle of
space of an homogeneous state (a, b) = (1.0, 0.0) with a pulse (b = 1.0). To
make the second one, we perturb the 10% of the homogeneous state with a
pulse. We capture the pattern at the time step t = 4000. At this moment,
we initialize the simulations with a star graph of 5 vertices in the middle
of space and we stop them after 3000 steps. Figures 8.5 and 8.6 depict
the graphs obtained for 16 couples of parameters pc and pd. We observe
the important role of these parameters to the formation of the graph: as
we observed for graphs obtained with the geometric planar graph generator
(section 6.2, �g. 6.4), high values of pc cause a rapid growth, mitigated by
pd. The static concentration layers cause a new e�ect: a spatial correlation
between regions where b is high and region with a high number of vertices.
The lower values of pc, combined with the e�ect of the vector �eld, minimize
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Figure 8.6
Experiment no.fb.1 . Simula-
tions with the solitons static
con�guration for various con-
stant values of pc and pd.
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the possibility of seeds to go through regions with a high concentration of
B. These results suggest that the coupling between the graph and a layer
of concentrations allows us to go beyond the main limits of the geometric
planar graph generator (absence of structures and regularity in the rate of
growth).

8.1.2 Experiment no.fb.2 : e�ect of parameters f and k

The experiment reported in �g. 8.7 consists to evaluate the e�ects of dif-
ferent evolving patterns (and incidentally the parameters pc and pd) to the
evolution of the graph. To this end, we perturb an homogeneous concentra-
tion (a, b) = (1.0, 0.0) of morphogens with a pulse (b = 1.0) in the middle of
space. The initial graph is a star graph of 5 vertices and it is located over
the initial perturbation. As we observed in section 5.2.3, the Gray-Scott
dynamic can generate stable or unstable patterns only for some initial con-
�gurations of parameters f and k (the Turing space, section 5.1.3); the
Shannon entropy is an indicator able to detect these the Turing space in a
f, k diagram (�g. 5.20) because high values of it suggests that concentra-
tion are heterogeneous. In those experiments, we had previously selected all
couples of f, k which had produced values of Shannon entropy higher than
5 in the experiment reported in �g. 5.20. We simulate the evolution of the
system for those couple f, k and we observe the behaviour for three cou-
ple of growth rates, (pc, pd) = {(0.055, 0.005), (0.035, 0.010), (0.065, 0.025)}.
Figure 8.7 reports the size of the vertex set, the number of seeds, the fractal
dimension, and the average degree of the graph at step 3000. We observe
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Figure 8.7
Experiment no.fb.2 . Study-
ing the graphs in the Tur-
ing space. The experiments
also provide an evaluation of
e�ects of parameters pc and
pd).
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Figure 8.8
Experiment no.fb.2 . Three
simulations, for each of them,
straight path graph are at
�rst created, de�ning pri-
mordial elements and then
the graph grows in accor-
dance with parameters of
simulations (t = 300, pc =
0.001, pd = 0.003).

Concentration b

0 0.25 0.50 0.75 1.0

(a) holes (b) moving spots (c) solitons

Figure 8.9
Experiment no.fb.2 . The cu-
mulative length edge distri-
bution (left) and the cumula-
tive distribution of between-
ness centrality of 3 patterns
(right).

that the formation of the graph is impacted by the kind of dynamic of the
reaction-di�usion layer. For lower values of f (f . 0.03), the layer produces
far from equilibrium patterns1 (section 1.3.2): the graph grows discontin-
uously and the number of seeds is less than simulations with high values
of f . When patterns are far from equilibrium, small graphs generate, the
average degree is less than 2.5 and vertices are not arranged in a scale-free
way. For high values of f , the patterns are not yet at equilibrium2 and the
resulting graphs are composed of more vertices. Values (pc, pd) reduce or
increase these e�ects, but they do not govern those dynamics.

A study of few characteristic patterns All previous experiments have
been made with an initial star graph and only one perturbation in the
morphogen layer. Here we want to assess the behaviour of the framework
when the the initial graph is not a star graph. In this experiment, three
simulations (where parameters f and k should make holes, mazes or solitons
patterns) are initialized with two path graphs which cross in the middle
of space; 10% of initial vertices perturbs the homogeneous state (a, b) =
(1.0, 0.0) with a pulse b = 1.0. Figure 8.8 shows that the graph coupled

1e.g., chaotic patterns and moving spots.
2e.g. solitons, mazes and holes
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Concentration b

0 0.25 0.50 0.75 1.0

(a) reaction di�usion (b) driven by A (c) driven by B

Figure 8.10
Experiment no.fb.3 . The
same pattern formation
(solitons) produce di�erent
graph in accordance to the
morphogen that driven the
growth (t = 3000, pc =
0.01, pd = 0.01).

(a) no vector �eld (b) convolution (c) minimizing the slope

Figure 8.11
Experiment no.fb.4 , e�ect of
an elliptic paraboloid. Seeds
are created and removed with
the same random method
(pc = 0.0003, pd = 0.001, see
section 6.2.2).

with the solitons dynamic grows slower than the graph coupled with holes
dynamic: at the end of the simulation, it is composed of fewer elements.
As we have observed before, the creation of new seeds is strongly impacted
by the concentration of b and in solitons morphogens B cluster in many
small spots. Moreover, each spot is stable, when it appears it does not
move: hence the trip of a seed rarely passes through a spot. Although the
growth rate of the graphs is di�erent for these patterns, we observe di�erent
aspects in common (table 8.2 and �g. 8.9). Moreover, compared these last
with results in section 4.2, we observe that the main characteristics of these
graphs are close to the French department street intersection network. We
suppose that at least in the situation represented by this experiment, the
framework builds graphs that might be compared with real street networks.

8.1.3 Experiment no.fb.3 : growth driven by morphogens A
or B

In previous experiments, we studied the growth of the graphs where the rate
of the growth is driven by the concentration b. For those experiments, the

pattern |V | |E| 〈k〉 γ org mes cost

solitons 650 877 2.698 0.451 0.975 0.13 0.772
mazes 2075 2887 2.783 0.464 0.961 0.141 0.777
holes 4073 5676 2.787 0.465 0.959 0.141 0.775

Table 8.2
Experiment no.fb.2 . Characteristics of three graphs obtained with 3 emblematic patterns (holes, mazes and solitons,
�g. 8.3). Number of vertices |V |, number of edges |E|, average degree 〈k〉, gamma index γ, organic ratio org, meshedness
coe�cient mes and cost cost.
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probability that a seed was added is high when the corresponding vertex
is located in a region with many morphogens B. In experiment no.fb.3 we
compare graphs driven by a and b. Figure 8.10a shows the con�guration of
an homogeneous concentration perturbed in the middle of the space after
3000 steps; �g. 8.10b and �g. 8.10c show the con�guration of 2 graphs at
the �nal step. Both simulations are de�ned by the same parameter set;
the only di�erence is about which morphogen drives the creation ad the
degradation of seeds. In the �rst case, a seed was added when it is close
to many morphogens B and removed when it is close to many morphogens
A (ρ = b in eqs. (7.4) and (7.5)); in the second case, ρ = a. In the latter
case, we observe an uncontrolled growth of the graph and it is also di�cult
to �nd a correlation between the evolution of the morphogen layer and the
graph. Otherwise, when the creation of seeds is driven by the concentration
b, the graph grows slowly and respects the evolution of the vector �eld.

8.1.4 Experiment no.fb.4 : combining vector �elds

The methods used to model the e�ect of a gradient of concentration to
the graph is based on the assumption that the seeds are repulsed by a
high concentration of morphogens (experiment no.fb.3 suggests to prefer
the morphogens B). However, in some applications, the movement of the
seeds cannot be only driven by repulsion or attractive forces. An example
is exposed in section 3.2.1, where we report the impact of the orography
during the street formation. The formation of a new street is driven by a
principle of minimization of e�ort. The creation of the street follows the
minimal slope as a way to minimize the e�ort of people during their moving
or to minimize the cost of civil engineering work.

According to these observations, we propose to simulate this e�ect with a
vector to apply to the seed that follows the minimal slope of the gradient
(�g. 8.11). We discretize the equation of an elliptic paraboloid (z = x2/a+
y2/b) in a environment layer (de�nition 12, page 138) and we add the value
e1 = z to the state of each cell in the Le. We locate the vertex of the
paraboloid in the middle of space and we initialize the simulation with a
star graph of 5 vertices. The method to add and remove seeds is the same;
it is used in the geometric planar graph generator (see section 6.2.2). In
section 8.1, the movement of seeds is controlled by the displacing vector by
~v(s) = ~r. In section 8.1 the displacement vector for each seed is ~v(s) = ~r+~e.
In section 8.1, the vector ~e is computed with the convolution method and in
section 8.1 the vector follows the minimal slope. This basic comparison is an
important test to evaluate a way to integrate the e�ect of orography on the
growth of an urban system (chapter 9). It also suggests that the framework
can be easily integrated by a di�erent vector �eld, allowing applications in
many contexts.

8.1.5 Experiments without feedback: discussion

The goal of previous experiments is to give early information about the
e�ects of the parameter sets to the behaviour of the proposal framework.
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This last allows many implementations and many parameters driven the
results to di�erent trajectories. We choose to separate our evaluation in
di�erent experiments and we investigate the framework before integrating
cross-level feedbacks. This approach is incremental and experiments gave
fundamental information for the next step of implementation.

We observed that the growth rate is controlled by parameters pc and pd, and
the coupling with a layer of morphogens ensures the formation of structures.
The experiment no.fb.1 shows that even in a static con�guration of mor-
phogens the growth rate is controlled by parameters pc, pd and clusters of
vertices form over cells with high density of morphogens (�gs. 8.5 and 8.6).

When we consider the morphogens' layer as a dynamic layer (experiment
no.fb.2 ), the resulting graphs are related to the patterns in the morphogen
layer. To study that, we plot in f, k diagrams main characteristics of
graphs. We observe a correlation between the pattern formation and re-
sulting graphs (�g. 8.7). The e�ect of parameters f and k to resulting
graphs shows a correlation between the kind of dynamics inside the mor-
phogens' layer and the networks. When we select some speci�c patterns
(�g. 8.8), we observe that our networks and street networks are similar
(table 8.2 and �g. 8.9, see section 4.2 and table 4.1).

Experiment no.fb.3 shows that it is easy to de�ne which morphogen should
drive the graph. The growth rate of the graphs and the pattern formation
are correlated when we choice the morphogens B (�g. 8.10).

Experiment no.fb.4 shows that we can integrate di�erent vector �elds into
the framework. Each vector �eld can be dynamic or static, and di�erent
e�ects on the movement of the seeds can be design (�g. 8.11).

Summary 19:

Basic experiments
Basic principles of complexity are integrated into the framework to
study the formation of a spatial network. Elements are not led by
centralized control, a continuous �ow traverses the system (parameter
f and k), external aspects can be integrated, all graphs respect the
planarity condition and they grow in a coherent way. Resulting graphs
seem to have properties similar to street networks. Once that, we have
this background of informations, we can integrate the feedback of the
network to the substrate layers.

8.2 Experiments including feedbacks

In previous chapters, we have reported that in many complex systems forms
can be seen as the result of antagonist feedbacks. Especially in living sys-
tems, forms are the result of the balance between positive and negative
feedbacks. Roughly speaking, the �rst ones tend to increment the size of
the system while the second ones tend to stabilize or destroy the system.
We have morphogenesis when positive feedbacks are dominant, otherwise
we have morphostasis (sections 1.1.2 and 1.3.1).

In the next experiments, we will integrate cross-level feedbacks in our sim-
ulations. Our methods are based on characteristics of Gray-Scott models
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exp
f, k a init. con�g. b feedback

equi. mazes mov.sp. sol. Da, Db f, k a, b Da, Db f, k

pos.fk - x x x 1.0, 0.5 0.04,0.08 c - - a couple (f, k)
pos.di� x x - x 1.0, 0.5 a couple (f, k) - 1, 0.5 -
pos.morp x x - x 1.0, 1.0 a couple (f, k) 1, 1 - -
neg.fk - x x x 1.0, 0.5 a couple (f, k) - - 0.04, 0.08 c

neg.di� - x x x 1.0, 0.5 a couple (f, k) - 1, 1 -
neg.morp - - - - 1.0, 0.5 a couple (f, k) 0, 0 - -
no.fb - x x x 1.0, 0.5 a couple (f, k) - - -
a we test four couples of (f, k): equilibrium (f, k) = (0.0625, 0.0625), mazes (f, k) = (0.029, 0.057), moving spots

(f, k) = (0.014, 0.054), solitons (f, k) = (0.030, 0.062). However, we observe interesting structures in three cases.
b |N| = 29 × 29, concentration cells are homogeneous (a, b = 1.0, 0.0), each simulations stop after 5000 steps, (pc, pd) =

(0.01, 0.02) and morphogenesis is driven by B (ρ = b).
c the red state (section 5.2.3).

Table 8.3
Experiments with feedback.

and can be applied with or without the environment layer Le. As for previ-
ous experiments, the way that we conceptualize our experiments is always
incremental. In order to understand each process, we prefer to integrate
into following experiments one feedback mechanism at a time.

Following sections will complete the section 7.3.5. Here we propose six
methods. Each experiment (table 8.3) is computed for four couples (f, k).
Each of them should make in a classical con�guration solitons, equilibrium3,
moving spots and mazes patterns. The triggered event is the creation of
a new node and it will locally a�ect parameters (f, k), di�usivity (Da, Db)
or the concentration b. Our table of experiments is composed of 24 sim-
ulations with feedbacks and 4 experiments without feedbacks. We make
latter experiments in order to compare di�erent situations and quantita-
tively measure feedback e�ects. Among those simulation, we select 15 with
feedback (the only ones where we observe the formation of interesting struc-
tures, see next sections) and 3 without feedback. Each simulation are com-
puted in a space N2 of 29 × 29 cells; they stop after 5000 steps, parameters
(pc, pd) = (0.01, 0.02) and morphogenesis is driven by B. For the sake of
visibility, �gs. 8.12 to 8.16 depict the con�guration after 3000 steps in a N2

of 28 × 28 cells.

In sections bellow, we describe our simulations (how we have obtained
our graphs) and we propose a visual descriptions of results (sections 8.2.1
and 8.2.2). Then we quantitatively measure the characteristics of the graphs
and we compare resulting networks to French department street networks
(section 8.2.3). Finally, we discuss our results (section 8.3).

3When (f, k) = (0.0625, 0.0625), no perturbations are able to spark the spatial distri-
bution of morphogens (section 5.2.3).
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Concentration b

0 0.25 0.50 0.75 1.0

(a) mazes (b) moving spots (c) solitons
Figure 8.12
Experiment fb.pos.fk .

8.2.1 Positive feedbacks

Among morphogenetic mechanisms that regulate a system, there exist posi-
tive feedbacks: they are processes that stimulates the growth of the system.
In our context, the creation of a node favours the capacity of morphogens
to self-organize, creating a better con�guration of the world or injecting
morphogens. To well appreciate this mechanism, we suppose that in the
con�guration of the morphogen layer cannot allow the formation of pat-
tern. This sterile con�guration can be obtained in di�erent manners. We
cannot have patterns if the rates of di�usion are Da = Db, if the parameters
(f, k) are out of the Turing space or it the concentrations are homogeneous
(a, b) = (1.0, 0.0) (no gradients and no perturbations).

The creation of a new node locally changes something. In the next three
experiments, the creation of a new node imply the change of the parame-
ters f and k (experiment fb.pos.fk), the di�usivity Da and Db (experiment
fb.pos.di� ) or the concentration b (experiment fb.pos.morp). Simulations
bellow were initialized in a homogenous state (a, b) = (1.0, 0.0), with a star
graph of �ve vertices and a perturbation (b = 1.0) in the middle of space.

Experiment fb.pos.fk : incentivise the growth changing f and k

We assign the state Se = (Da, Db, f, k) = (1.0, 0.5, 0.04, 0.08) to each cell
ce in the spatial environment Le. This con�guration corresponds to the
red state, no perturbations are able to disrupt the homogeneous state. We
start the simulation. If a new node is created, we modify the state of the
corresponding cell ce in order to allow the formation of patterns. To do
that, f and k are in the Turing space. From this change to the end of the
simulation the cell is in a situation that allows the catalysis of B. Clearly,
to have a pattern more than a cell should be in this con�guration. After
a while, in the cell and in its neighbourhood, a cluster of morphogens B



158 Chapter 8. Experiments

Figure 8.13
Experiment fb.pos.di� .

Concentration b

0 0.25 0.50 0.75 1.0

(a) equilibrium (b) mazes (c) solitons

spontaneously clusters, gradients of concentrations generates vectors, new
seeds born (due to the high concentration b), and the network grows. Seeds
explore space, new nodes born and we observe in the morphogen layer new
patterns, never seen in a classical con�guration.

We report 3 cases: each of them may produce the formation of mazes,
moving spots or solitons (�g. 8.12). Due to the rapidity of propagation of
morphogens B, in the mazes experiment (�g. 8.12a) we observe that mor-
phogens B follow and push seeds. The high concentrations of b along the
trip of seeds facilitate the formation of new branching. The continuity of
morphogens cannot be observed also in moving spot experiment (�g. 8.12b)
Here, clusters of morphogens split in several spots. Due to their instabilities,
morphogens B stay close for a while and they form di�erent clusters. The
network is sparse and less compact. The soliton experiment is the slower
one, the graph is composed by few elements and morphogens tend to sepa-
rate in spots (�g. 8.12c). We also test the equilibrium pattern: here, due to
its high stability, even the feedback is not able to stimulate the formation
of a graph.

Experiment fb.pos.di� : incentivise the growth changing the dif-

fusivity

In this experiments (�g. 8.13), we assign to each cell ce ∈ Le the same
rate of di�usivity: Da = Db = 1.0. As we have observed in chapter 5,
a di�erent speed of morphogens is a necessary condition to have patterns.
In this con�guration, no perturbations are able to spark the homogeneous
state and all inhomogeneous spatial distribution of morphogens go toward
the homogenous state in a few steps. In the following experiments, the
creation of a new node locally changes the di�usivity of morphogens; when
new nodes born, we set Db = 0.5 in the corresponding cell ce ∈ Le. In this
situation, morphogens group together. New patterns diachronically appear
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Concentration b

0 0.25 0.50 0.75 1.0

(a) equilibrium (b) mazes (c) solitons
Figure 8.14
Experiment fb.pos.morp.

and the growth of the network stimulates its own growth.

Figure 8.13 reports three simulations. Even into the equilibrium experiment
the stability is broken (�g. 8.13a). In this situation, the graph grows a bit
and the number of morphogens B increase. In the mazes experiment, we
observe a high degree of instability: regions that have previously reached a
high concentration b suddenly evolve (�g. 8.13b). In solitons experiment,
spots appear over the cell that was activate by the graph; spots are unstable
(�g. 8.13c). Finally, due to the high instability of patterns, no organizations
are observed in the moving spot simulation.

Experiment fb.pos.morp: incentivise the growth injecting mor-

phogens B

This experiment (�g. 8.14) is a bit di�erent from previous ones because the
creation of a new node does not produce a changing into the state of the
corresponding cell of the environment; it directly modi�es the concentration
of morphogens B. When a new vertex is created, we set the concentration
b = 1 in the corresponding cell in Lm. The trigged event and the e�ect
on the morphogen layer are synchronic and direct. The feedback and the
autocatalysis of B go toward the same "direction", producing an explosive
growth of the system.

Here we report three simulations (�g. 8.14). In equilibrium experiment
(�g. 8.14a) the formation of the network produces the entering of an impor-
tant quantity of B. The equilibrium experiment makes the graph with the
largest vertex set of our simulations. In mazes experiment (�g. 8.14b), when
a seed passes through stable concentrations, these last become unstable and
morphogens re-organize themselves. In soliton experiment (�g. 8.14c) we
observe that morphogens do not organize themselves in the classical way. No
stable and regular spots form. No relevant di�erences between the simula-
tions with the feedback to simulations without are observed in moving spot
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Figure 8.15
Experiment fb.neg.fk .

Concentration b
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(a) mazes (b) moving spots (c) solitons

experiment. We do not observe substantial di�erences with experiments
without when we add this kind of feedback in moving spot experiment.

8.2.2 Negative feedbacks

In many complex systems, negative feedbacks stabilize structures by coun-
teracting the e�ects of positive feedback. We propose three experiments
based on feedbacks mechanisms that reduce/inhibit the growth of the net-
work. Compared to the positive feedback experiments, we inverse our initial
con�gurations and our actions. More precisely, while in positive feedback
experiments the initial con�guration is in a sterile condition, in negative
feedback experiment the initial con�guration is a classical con�guration.
While for the �rst experiments the feedback stimulating the growth meth-
ods, in the second ones the feedbacks discourage the growth.

We propose three negative feedback mechanisms: the creation of a new node
locally modi�es parameters (f, k), the di�usivity (Da, Db) or the concentra-
tion b. Simulations start with a star network of 5 nodes and a perturbation
b = 1.0 in the middle of the space. The morphogen layer starts in a homo-
geneous state (a, b) = 1.0, 0.0); the di�usion rates are (Da, Db) = (1.0, 0.5).
Parameters f and k allow the formation of emblematic patterns (equilib-
rium, mazes, moving spots or solitons, �g. 8.3) in a classical condition.

Experiment fb.neg.fk : reduce the growth changing f and k

When a new vertex is created, parameters f and k of the corresponding
cells ce ∈ Le are set in the red state, (f, k) = (0.04, 0.08). The con�guration
is out of the Turing space. While the network grows, more and more cells
become in this sterile condition; during the simulation, the networks become
more and more constrained by sterile areas. Morphogens B seem to bypass
the graph. Like a physical limit, a barrier de�nes a changing of behaviour



8.2. Experiments including feedbacks 161

Concentration b

0 0.25 0.50 0.75 1.0

(a) mazes (b) moving spots (c) solitons
Figure 8.16
Experiment fb.neg.di� .

of morphogens: on one side no organizations can form, and on the other
side, morphogens create patterns according to the initial f, k parameter set.

We focus on three simulation (�g. 8.15). The creation of barriers and en-
claves of morphogens are more pronounced into themoving spots (�g. 8.15b)
and mazes (�g. 8.15a) experiment, and less pronounced into soliton exper-
iment (�g. 8.15c): this situation is caused by the di�erence in the speeding
up of morphogens to �ll the space4. In solitons experiment, we observe a
continuous edge of morphogens between the network and the rest of space
(where morphogens tend to organize in a classical manner). In all simula-
tions, we observe the formation of homogeneous concentrations of B bor-
dered by the network: these sub-areas are stable, the graph and morphogens
seem to be in an equilibrium state. An equilibrium state is also observed
into the moving spots experiment. This behaviour is unexpected and it di-
verges to classical simulation with this couple: moving spots patterns are
far from equilibrium.

Experiment fb.neg.di� : reduce the growth changing the di�usiv-

ity

In this experiment (�g. 8.16), when a new node born, we set the di�usion
of the corresponding cell as Da = Db = 0.5. Around these cells, the graph
grows and no clusters form. Otherwise, in regions not reached by the graph,
a pattern formation is observed in accordance with the correspond dynamic
(mazes, moving spots and solitons). Comparing to the previous experiment,
morphogens are not able to identify a de�ned contour around the graph.

4Remark: the speeding of the morphogens is not only due to the di�usion rate but
also to the autocatalysis.
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Figure 8.17
Experiment fb.no.

Concentration b

0 0.25 0.50 0.75 1.0

(a) mazes (b) moving spots (c) solitons

Experiment fb.neg.morp: reduce the growth injecting morphogens

B

We test the case where the creation of a new nodes instantaneously modify
the concentration b into the corresponding cell. Due to the rapidity of
di�usion, when that happens, a consistent quantity of morphogens B moves
from cells around the modi�ed cell to it. The network is not able to perturb
the evolution of morphogens. Resulting graphs are roughly the same that
we can make without the feedback.

Experiment fb.no: a benchmark

The goal of previous experiments is to test the impact of di�erent feedback
mechanisms on the morphogenesis of spatial networks. So we judge crucial
compare those networks with network obtained without feedbacks. To this
end, we build three networks with the same initial con�gurations of previous
experiments (�g. 8.17). Each of them are driven by mazes (�g. 8.17a),
moving spots (�g. 8.17b) and solitons (�g. 8.17c) pattern formation. In
order to break the central symmetry, we perturb the middle of space with
values of concentrations b in a range (0.95− 1.0).

8.2.3 Experiments including feedbacks: results

Resulting networks are evaluated through indicators detailed in chapter 4.
In the next, networks described in previous section will be compared with
the French department streets networks.

The feedback has an impact on the rate of growth of networks: the negative
feedbacks stabilize the growth of the networks while the positive feedbacks
incentivise the growth. Figure 8.18 depicts that �rst networks grow faster
than second ones. Rates of growths are correlated with the kind of feedback.
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Figure 8.18
The evolution of feedback
simulations. Network ob-
tained with a positive feed-
back grow faster than net-
work with negative feedback.

Figure 8.19
Feedback simulations and
French department cities in a
mes− org scatter-plot.

Figure 8.20
Relation between the num-
ber of vertices |V | and the
normalized total length edge
l(G).
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experiment pattern |V | |E| 〈k〉 γ org mes cost

fb.pos.fk movingSpots 8162 11332 2.777 0.463 0.961 0.14 0.768
fb.pos.fk mazes 10778 15421 2.862 0.477 0.944 0.151 0.753
fb.pos.fk solitons 1872 2662 2.844 0.475 0.937 0.149 0.789

fb.pos.di� equilibrium 2792 4013 2.875 0.479 0.934 0.152 0.763
fb.pos.di� mazes 6046 8399 2.778 0.463 0.961 0.14 0.783
fb.pos.di� solitons 1453 1999 2.752 0.459 0.958 0.137 0.793

fb.pos.morp equilibrium 39404 57558 2.921 0.487 0.928 0.158 0.736
fb.pos.morp mazes 15284 22033 2.883 0.481 0.943 0.153 0.743
fb.pos.morp solitons 10863 15435 2.842 0.474 0.958 0.148 0.757

fb.neg.fk movingSpots 828 1128 2.725 0.455 0.986 0.134 0.803
fb.neg.fk mazes 1103 1486 2.694 0.45 0.975 0.129 0.814
fb.neg.fk solitons 1399 1877 2.683 0.448 0.986 0.128 0.807

fb.neg.di� movingSpots 2057 2819 2.741 0.457 0.98 0.135 0.795
fb.neg.di� mazes 657 873 2.658 0.444 0.977 0.125 0.811
fb.neg.di� solitons 2369 3215 2.714 0.453 0.978 0.132 0.797

fb.no movingSpots 242 307 2.537 0.426 0.983 0.108 0.877
fb.no mazes 6731 9477 2.816 0.469 0.953 0.145 0.766
fb.no solitons 1116 1543 2.765 0.462 0.943 0.139 0.804

Table 8.4
Characteristics of networks obtained with and without feedbacks. Number of vertices |V |, number of edges |E|, average
degree 〈k〉, the gamma index γ, organic ratio org, meshedness coe�cient mes and cost cost.

SIN(G) |V | 〈k〉 |E| l(G)(km) 〈l(G)〉 (m) γ org mes cost

Ajaccio 2383 2.585 3080 36.367 14.472 0.431 0.917 0.113 0.814
Grenoble 14242 3.04 21648 76.556 3.713 0.507 0.698 0.171 0.675
Lyon 16094 2.948 23725 126.674 5.659 0.491 0.754 0.161 0.694
Paris 38711 3.022 58498 345.916 6.135 0.504 0.721 0.169 0.657
Privas 1320 2.397 1582 12.426 9.229 0.4 0.941 0.083 0.848
Rouen 5840 2.948 8609 57.091 7.024 0.492 0.763 0.161 0.703
Troyes 5384 2.958 7962 40.503 5.628 0.493 0.738 0.162 0.706
Versailles 5656 2.967 8390 55.728 7.047 0.495 0.752 0.163 0.699

CODAH 15120 2.706 20456 156.923 7.671 0.451 0.853 0.130 0.774

Table 8.5
Characteristics of street intersection networks of 8 emblematic French department cities and the CODAH. Number of
vertices |V |, average degree 〈k〉, number of edges |E|, total length of edges l(G), average edge length 〈l(G)〉, the gamma
index γ, organic ratio org, meshedness coe�cient mes and cost cost.

Table 8.4 resumes main characteristics of our networks; values are close to
empirical values from French department street networks. Table 8.5 reports
a few emblematic examples. Di�erent initial con�gurations produce a num-
ber of networks with a di�erent size. These preliminaries results show that
our approach generates networks that have several global characteristics
close to street networks.

We observe in a org −mes plot (�g. 8.19) that values from our simulation
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(a) fb.no (b) fb.pos.di�

Figure 8.21
The degree distribution of
feedback simulations.

(a) fb.no (b) fb.pos.fk

Figure 8.22
The cumulative length edge
distribution of feedback sim-
ulations.

(a) fb.no (b) fb.pos.morp

Figure 8.23
The betweenness distribution
of feedback simulations.

and values from French department streets are located in the same region.
These elements con�rm the capacity of our approach to generating graphs
with global characteristics close to French cities. However, values of mes
are higher in our networks than in cities, hence the framework produces
networks with more tree structures than the real networks. That is due to
our completely decentralized approach: graphs are not planned hence the
number of vertices with degree 4 is less than real cities.

The normalized total length of edges and the number of vertices are plotted
with data measured over di�erent cities (�g. 8.20). We observe that the
linear relation between these basic values corresponds to what we have
previously observed (�g. 4.6).

We do not observe relevant di�erences between the vertex degree statistical
distribution (�g. 8.21) of graphs obtained without feedbacks (�g. 8.21a) to
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Figure 8.24
The capacity dimension D0

estimation of 18 experiments.

(a) fb.no (b) fb.pos.fk

(c) fb.pos.di� (d) fb.pos.morp

(e) fb.neg.fk (f) fb.neg.di�

Figure 8.25
The information (left) and
the correlation (right) estima-
tion of fb.pos.morp (a) fb.pos.morp (b) fb.pos.morp
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Figure 8.26
Robustness of feedback ex-
periments.

Figure 8.27
Robustness and meshedness
coe�cient of feedback exper-
iments and French depart-
ment cities

graphs obtained with feedback (�g. 8.21b). As the same, the edge length
distribution is similar in all simulation (�g. 8.22). All these distribution
seems similar to distributions of CODAH (section 4.2.7 and �g. 4.3b).

Di�erent emerging properties characterize spatial systems. One of them is
that a few elements are more important that the majority of others (sec-
tion 1.2.3). Street networks are strongly hierarchized (section 4.3): there
are a few nodes that capture the majority of shortest paths. This property is
observed in our graphs (�g. 8.23) and can be computed through the study of
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the betweenness centrality (section 4.3.1). In simulations without feedbacks
(�g. 8.23a), the betweenness centrality statistical distribution is less hier-
achized than distributions of graphs obtained with feedbacks (�g. 8.23b).
Distributions obtained with experiment fb.pos.morp (�g. 8.23b) are similar
to those obtained with the analysis of CODAH (�g. 4.11b).

The capacity dimensionD0 indicates that we cannot observe scale-invariance
organization (even locally) in networks without feedbacks (�g. 8.24, to study
scale-invariance organization we follow the algorithm 2, page 92). Values
hardly �t a linear regression (see low values of the coe�cient of determi-
nation R2) and values of D0 are low. A scale-invariance organization is
observed for graphs computed with feedbacks; this characteristic is more or
less evident in all simulations and it can be observed on a large scale. In-
formation and correlation dimensions con�rm that networks are self-similar
even when we consider the density in a region of vertices or their mutual
distance (�g. 8.25).

Finally, we study the robustness of the networks (section 4.2.6). We observe
that values of rob are in a compact range but the way that robustness
decreases are di�erent (�g. 8.26). Curves are similar for each simulation,
except for networks obtained without feedback. Figure 8.27 compares our
networks to French street networks: our networks show the same relation
between of meshedness coe�cient and robustness of French cities.

8.3 Discussion

We started our evaluation disregarding the feedback mechanism. In such
simulations, the rate of growth of the network is related to emerging patterns
into the morphogen layer. For patterns far from equilibrium (patterns which
reach an equilibrium after a while, section 1.3.2), networks grow slower than
networks drive by patterns out from equilibrium (patterns which never reach
an equilibrium): the high instability of the �rst kind of patterns reduces the
growth rate of the networks. The �rst pattern formation makes networks
with a lower value of the average degree and the fractal dimension than
networks obtained with the second dynamic. We also investigate the e�ect
of parameters pc and pd which control the rate of growth of the network via
the creation and the extinction of seeds. As we expected, the growth rate
seems to be correlated to parameters pc and pd. These preliminary results
suggest that our parameters a�ect the growth and each of them has a direct
(and trivial) e�ect. The global behaviour of the framework is predictable5.

As regards the feedbacks, we note new interesting behaviours. Positive feed-
backs incentivise the growth of the network while negative feedbacks reduce
it. Combining these mechanisms to patterns formation, we observe that the
growth does not correspond with what we had previously observed. Pat-
terns out of equilibrium (e.g. the moving spots pattern) generated graphs
denser and bigger than graphs obtained by patterns far from equilibrium.
The equilibrium pattern (where no perturbations can vary the actual con-

5By predictable, we mean that we can determine how the system is going to behave
qualitatively when we vary one of the parameters.
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�gurations) suddenly changes the con�guration, producing the graphs with
the bigger vertex set of our simulations. The feedback mechanism leads
morphogens to a new way to organize themselves; combined to the fact
that these changes are not homogeneous in the space, mixed patterns arise.

Comparing networks obtained by the same pattern formation, they have a
rate of growth di�erent: this con�rms that the growth is not only governed
by patterns but also by the feedback. The combination of those morpho-
genetic mechanisms produces a wealth of possibilities that must be deeply
investigated. Our results suggest that with the feedback mechanisms, the
framework simulates morphogenesis of systems with a complex behaviour.

In this work, we observed that spatial networks (and especially street net-
works) show some peculiarities: elements are arranged in a hierarchical
manner, the absence of a characteristic scale of observation, and the ten-
dency to stay connected in the case of a failure of a part of the network.
Graph and fractal theories help us to quantitatively measure those proper-
ties. We compared our networks to real networks. Global characteristics do
not vary too much: spatial aspects a�ect the structure, the topology, and
the geometry of graphs. The graphs obtained without feedback mechanisms
have characteristics close to those observed in the street networks. They
show distributions of degree and length of edges close to those observed on
cities, as well as the proportion of tree shapes and regular sub-parts. The
feedback plays a role in other aspects of the network. First of all, we observe
hierarchies more evident in these simulations: betweenness centrality indi-
cates that there are a few vertices more important than others. Moreover,
the formation of the network is more linked to the organization of mor-
phogens: the symmetry is never respected and the graph �lls the space in
an inhomogeneous manner. This behaviour is captured by a fractal analysis;
this analysis also brings out that the positive feedback produces networks
more self-similar than networks where negative feedback dominates. With-
out feedback, our networks do not show consistent hierarchical organizations
of elements of the network and a low degree of self-similarity.
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"Potrei dirti di quanti gradini sono le vie fatte a scale, di
che sesto gli archi dei porticati, di quali lamine di zinco
sono ricoperti i tetti; ma so già che sarebbe come non dirti
nulla. Non di questo é fatta la città, ma di relazioni tra le
misure del suo spazio e gli avvenimenti del suo passato."1

Italo Calvino

In chapter 1 we exposed the complexity system theory, the reasons by which
it is useful to study some real phenomena and basic notions. We observed
that many systems are structured as networks and can be represented as
geometric graphs (chapter 2). Cities can be studied as systems and streets
as spatial complex networks (chapter 3). The main characteristics of those
networks have been quantitatively measured (chapter 4). Inspired by chem-
istry, cellular automata theory, and reaction-di�usion theory, we have for-
malized in chapter 5 a way to simulate the evolution of concentration in
a discrete space of moving elements (called morphogens). In chapter 6 we
make two basic models that aim to simulate the network formation. Taking
into account those experiences, we formalized a general framework (chap-
ter 7) and we carried out experiments (chapter 8). We �nally have all the
ingredients to simulate the morphogenesis of street networks.

The goal of this chapter is to give an early and not exhaustive understanding
of an urban application of the proposed framework. To this end, we make
several oversimpli�cations that aim to capture some intuitive phenomena
observed in urban systems. Several questions remain open and would need
further investigation (chapter conclusion). In this chapter, we suggest some
directions, we explore the potentiality of our framework, and we discuss
preliminary results. In section 9.1 we describe elements that had motivated
our approaches, in section 9.2.1 we describe the details of the application
and we discuss our results. In section 9.3 we discuss future applications and
we make some basic observations about morphogens in urban systems.

9.1 General model description

street network
organization experiments

↓ ↓
urban application

↓
conclusion

Street networks are a structural component of urban systems by allowing
the movement of people and matter. They support human activities and
form complex spatial systems as cities. The form of street networks re�ects
the organization of the urban system and its enlargement could approximate
urban growth. The formation and the persistence of streets are therefore
the results of continuous interactions and/or movement of parts of the city.
Those dynamics might be constrained and in�uenced by exogenous factors.
Through this work, we have observed that some structural components
of an urban system govern the growth of the streets which in turn a�ect
their functioning. An oversimpli�cation is to consider the formation of the

1"I could tell you how many steps make up the streets rising like stairways, and the
degree of the arcades' curves, and what kind of zinc scales cover the roofs; but I already
know this would be the same as telling you nothing. The city does not consist of this, but
of relationships between the measurements of its space and the events of its past".
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street networks governed by a substrate of former-producer elements (mor-
phogens). The street network in�uence in turn the substrate, conditioning
the formation of complex structures.

It is di�cult to consider an urban system isolated: it exchanges, it is con-
strained and it is in�uenced by exogenous aspects (the nature, other urban
systems, socio-economical decisions). Those in�uences may append locally:
some features of the environment of the urban system can be considered spa-
tialized and they impacted the system in a region of space. If organizations
emerge, the environment can locally in�uence them.

Di�erent natural and arti�cial aspects may a�ect the street network forma-
tion. The orography of the land is one of them. For social, technological,
and economical reasons, streets are build accommodating the climbs, min-
imizing the e�orts and reducing the slope. Moreover, there exists some
areas of the surface of earth which represent for urban system a constraint.
Lakes, rivers, heavy climbs are three examples; it is highly unlikely that
in these areas settlements form. The spatial con�guration of the land be-
come an organizational factor for the streets, in�uencing its, form and its
functioning.

The environment also indicates areas that encourage, discourage, or even
prevent the growth of the city. This can be increased by the policy of the
administration to restrict the number of permission to build in a natural
area, or to �x with a low value the expected density of build-up. These
policies have an e�ect on the probability that an area becomes more or less
used by humans and covered by arti�cial objects.

9.2 The urban application

The following urban application is based on the proposed framework ex-
posed in chapter 7. Here we recall its main features. A reaction-di�usion
layer simulates the evolution of the two kind of morphogens. Under some
speci�c conditions, patterns form: the gradient of concentration of mor-
phogens controls the creation, the dead and the movement of a set of mov-
ing elements. These elements (called seeds) are moved by a dynamic vector
�eld (computed from the concentration of morphogens) and they build a
spatial complex network. This last feeds back to the morphogen layer: when
a new node born, some characteristics of the corresponding region of space
change. An environment surround the system. Feedbacks may locally mod-
ify its characteristics and it may locally impact the growth of the network.

In an urban context, morphogens represent two kind of interacting actors
(see section 9.2.1 for a few examples) which control the development of the
street network. We complete those dynamics with the following hypothesis:

� the formation of new streets encourage morphogen to cluster around
the street network,

� the administrative policy is to discourage the urban growth in natural
areas,
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Figure 9.1
The Fécamp study area.

Orography

� streets develop by minimizing the climb,

� the growth rate of the network is mitigated by the building density.

These assumptions are an oversimpli�cation of a possible real situation. We
do not exclude in future works to make di�erent assumptions in order to
evaluate di�erent scenarios.

9.2.1 The case study: the urban area of Fécamp

Fécamp is a town in the Seine-Maritime department (in the Normandy re-
gion, northern France) of around 20 000 inhabitants (in 2009). It is situated
in the valley of the Valmont river2. The study area is composed by the town
of Fécamp and its neighbouring municipalities. This area is an emblematic
example of di�erent urban forms heavily impacted by natural constraints
(�g. 9.1). Informations (spatially referenced) about the case study are ob-
tained from the BD TOPO 2019 of IGN3. The dataset includes geometries
of the urban fabric, the orography, and the land use.

9.2.2 Components

The framework is composed of:
2https://fr.wikipedia.org/wiki/Fécamp, visited on 20/08/2020.
3Institut national de l'information géographique et forestière, www.ign.fr
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Space R2 and N2, and time T . The space sizes are |N| = 29 × 29 and
|R| = 512× 512 units; simulations are carried for 3000 steps.

The environment layer Le(t). Each cell ce ∈ Le is associated to a state
Se = (d, g, h, s, o,Da, Db, f, k) (de�nition 12, page 138), where:

� d = [0, 1] is the density of buildings, computed as the percentage of
coverage foot-print of buildings.

� g = [0, 1] is the rate of coverage of vegetation.

� h = {0, 1} represents hydrological limits. We assign to each cell that
overcome a river or a lake the state h = 1.0, otherwise we assign
h = 0.0.

� s = {0, 1} indicate the administrative limits of the study area. The
state of cell that covers the study area is s = 0.0, otherwise s = 1.0.

� z = [0, 1] indicates the altitude of the region of the land. In order to
have to each cell a state in the same interval of morphogens layer, z
are normalized by the range of values. In this way, morphogens and
the orography contributions are comparable.

� Da, Db, f, k are parameters of the morphogen layer.

The morphogen layer Lm(t). Each cell cm ∈ Lm is assigned to the state
Sm = (a, b), a, b ∈ [0, 1] which represents the concentration of morphogens
A and B. The evolution of concentrations is de�ned by the Gray-Scott
transition function (de�nition 10, page 109).

The vector �eld ~L = ~Le(o) + ~Lm(b). The vector assigned to each cell is
the sum of two distinct vectors: the vector from the concentration b and the
z-coordinate. The �rst vector is obtained with the convolution procedure
(section 7.2.4) and the second one follow the direction of minimization of
climb (see the experiment no.fb.4 , section 8.1.4).

The evolving seed set S(t). We initialize all simulations with an empty
set S of seeds (de�nition 11, page 119).

The street network G(t, x). The initial geometric graph G(x, t) is the
primal representation (section 3.3.5) of the street network of Fécamp, where
vertices represent intersections, end-nodes (cul-de-sacs) or approximate the
geometry of the street. At the end of each simulation, we remove vertices
with degree 2 (algorithm 1, section 3.3.7).

9.2.3 Simulations, mechanisms and parameters

A step of simulation of the framework is reported in algorithm 5 (sec-
tion 7.3). Each simulation starts with the initialization of the layers and the
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pattern |V | |E| 〈k〉 γ org mes cost rob

Equilibrium 4888 6600 2.7 0.45 0.912 0.13 0.79 0.20
MovingSpots 11364 15195 2.674 0.446 0.94 0.126 0.803 0.16
Mazes 9688 13164 2.718 0.453 0.931 0.132 0.795 0.17
Solitons 5245 7092 2.704 0.451 0.914 0.13 0.792 0.19
Init 3243 4290 2.646 0.441 0.896 0.122 0.798 0.21

Table 9.1
Characteristics of the Fécamp street network (initial con�guration and after four simulations). Number of vertices |V |,
number of edges |E|, average degree 〈k〉, gamma index γ, organic ratio org, meshedness coe�cient mes, cost cost and
robustness rob.

encoding of geographical information of Fécamp into the framework. For
each cell ce ∈ Le over a node, we set parameters (f, k) ∈ Fe in such way
to allows the formation of a pattern (equilibrium (f, k) = (0.0625, 0.0625),
mazes (f, k) = (0.029, 0.057), moving spots (f, k) = (0.014, 0.054) and soli-
tons (f, k) = (0.030, 0.062), see �g. 8.3), otherwise we set cells in red state
(f, k) = (0.04, 0.08). We randomly perturb 10% of cells in Lm with a pulse
b = 1.0 and we start the simulation when Lm has reached the equilibrium
state.

At each time step, a new seed can be assigned to a vertex v if:

random(0, 1) < pc

(
b− g − d− h− s

k(v)

)
(9.1)

and each seed can be removed if:

random(0, 1) < pd ((1− b) + g + h+ s) (9.2)

where pc = 0.01, pd = 0.02 are two free parameters (section 7.3.4).

Finally, for each step of the simulation, we compute the cross-level feed-
back. We suppose that the formation of a new portion of streets produce a
positive and diachronic feedback, favouring the morphogens to group over
the corresponding cell. To do that, we use the methodology exposed in the
experiment fb.pos.fk (section 8.2.1). When a new node born, the values of
feed and kill rates of the cell below ce ∈ Le update. The cell leaves the red
state and parameters f and k are updated to allow the formation of one of
aforementioned patterns.

9.2.4 Results

As discussed in section 8.3), the framework builds networks with charac-
teristics similar to street networks. In this section, we devote our e�orts
towards studying whether our framework is also able to conserve the main
global characteristics of a real street network after some simulations. More-
over, we would study if the framework is able to make di�erent scenarios
from di�erent parameter settings. These last might indicate di�erent socio-
economical exogenous dynamics or policy decisions.

Table 9.1 reports global characteristics of four resulting networks. We ob-
serve that di�erent growth rates and the size of the vertices set increases
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(a) degree distribution. (b) edge length distribution.

Figure 9.2
Distribution of vertex degree
and length edge of Fécamp.
Each panel compare the ini-
tial con�guration and the
con�guration at the end of
simulation.

between 150% (equilibrium) and 350% (moving spots). Each new network
conserves the main characteristics of the initial network with few variations.
We observe the values of the average degree, gamma index, organic ratio,
the meshedness coe�cient increase, robustness decrease and cost does not
substantially vary.

The increment of the organic ratio is related to the evolution of the degree
distribution (�g. 9.2a). After simulations, the relative number of vertices
with degree 3 increases, and the relative number of vertices with k = 4
decreases. Our approach does not consider a central control (often behind
the formation of planning cities); global characteristics of resulting networks
are similar to what we have observed in real self-organized street networks.

The geometry of the network was impacted by the simulation: we observe
an increment of hierarchies on the edge length distribution (�g. 9.2b). The
same e�ect is observed in the distribution of the normalized betweenness
centrality (�g. 9.3a). We also note that the spatial distribution of more
important vertices varies in each simulation, denoting that the basic mor-
phogenetic process has an e�ect on shortest paths (�g. 9.3).

The study of the capacity dimension (�g. 9.4a) of the initial networks sug-
gests that the street network of the study area is locally fractal (a portion
of values �t the regression line). After each simulation, values that are not
close to the regression line (points computed for the bigger boxes) became
closer to the line. The graph obtained from the moving spots simulation
becomes fractal in a large range of scales.

While the self-similarity increases the robustness decreases (�g. 9.4b). This
e�ected is also correlated with properties measured by the other indicators:
the increment of the meshedness coe�cient suggests an increment of tree-
like structures. These last are generally less robust than graphs with a
homogeneous distribution of degree. Despite this variation, the robustness
is still in the range of values observed in French street networks (rob =
(0.15 − 0.29) in real street networks, �g. 4.7, rob = (0.16 − 0.20) in our
networks). Moreover, the betweenness centrality distribution indicates that
graphs after the simulation contain more important vertices than the initial
graphs. These vertices capture an increasing number of paths, suggesting
that the graph is more fragile in the case of dysfunctions.
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Figure 9.3
The e�ect of the growth to
the spatial distribution of
betweenness centrality (red
dots indicates values that ex-
ceeded 0.3max(CN

b )).

(a) BC distribution (b) init.

(c) equilibrium (d) mazes

(e) solitons (f) movingSpots

Figure 9.4
Capacity dimension and ro-
bustness of Fécamp. (a) the capacity dimension. (b) robustness.
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9.3 Morphogens and city components

Through this work, we had been driven by principles of generality. We had
preferred to identify basic dynamics behind di�erent complex networks and
try to simulate their morphogenesis. The objectives we had is to compare
our model with �eld data and see if it is able to integrate this informa-
tion. To go further, other parameters must be taken into account and the
processes must be considered in a more heterogeneous way.

At a microscopic scale, people live nearby the street network and use it to
navigate the city; at a macroscopic scale, the density population is related
to streets. An high correlation was found between vertex centrality (sec-
tion 4.3) and population density [250, 294]. The spatial relation between
the density of population and the street network is not in all situations
ensured; it is still unpredictable, rarely synchronic, and often a�ected by a
large amount of socio-economical and natural factors. For instances, models
proposed in [26, 251] simulate the simultaneous evolution of street networks
and density population. These basic observations allow us to suppose that
the morphogenesis of the street network and the evolution of population
density are related.

A simpli�cation is to consider, at a microscopic scale, humans as elements
of the system: they interact with each other, attempt to accommodate their
individual needs, and move. Moreover, we can suppose that the population
density is related to the evolution of urban fabric: in other words, we can
suppose that it exists a relation between the concentration of people in a
region of space and the existence of buildings and streets. In this �eld, pop-
ulation could be considered for the street network as a morphogen because
it a�ects the network growth.

In an urban area, people are not the only elements that contribute to the
functioning of the system. Economical factors or political actors coexists
with people, bias the behaviour of individuals, contributing to the function-
ing of the urban system. These aspects can be also related to space: e.g.
the prices and the attractiveness of some neighbourhoods, the policy of the
governments to incentivise the growth of a suburb. We can consider these
elements as morphogens. They interact with people and they are spatially
located. The reaction-di�usion theory might be a way to model the evo-
lution of an urban (socio-economic) actor (morphogen A) and population
(morphogen B).

On one hand, the population may generate positive feedback to its own den-
sity, and on the other hand, the street biases the spontaneous organization
of the people, de�ning the accessibility of an area. A well-connected suburb
is also accessible; this characteristic is also viewed as something that in-
creases the interest of people in the suburb. People choose to move in these
areas and the population density locally increases. Positive feedback of the
street network to the population density could be observed under some con-
ditions and in some circumstances. New streets are positive factors leading
to subsequent increases in population, while the additional population den-
sity is a factor in subsequently deploying streets. In this chapter, we have
discussed only the case of positive feedback. We are aware that there exist
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several cases where the street could be considered as a negative factor for the
growth of a suburbs (e.g., high-speed roads often reduces the attractiveness
of a suburbs, in�uencing the rent value, the quality of air, etc..). Further
investigations will focus on these mechanisms, exploring the morphogenesis
as the complex co-existence of positive and negative feedbacks.

To explore possibilities that our framework has in an urban context, future
studies shall focus on the understanding of which component of an urban
system can be considered as a morphogen. Here we suggest that the in-
teraction between the population and economical actors can have a crucial
role in the formation of street networks. We need deeper studies to validate
this hypothesis.

Summary 20:

An urban application
In order to make a practical example of the framework and validate
it in a real situations, we simulated the street network growth and
we compared our results to the initial con�guration of the cities. The
simulation of Fécamp street network growth suggests that the frame-
work is able to produce di�erent scenarios. The framework allows to
consider several characteristics of real case studies, like the build-up,
green areas and policies decisions. This application suggests that the
framework may be helpful both to investigate urban growth and to
support decisions of urban planners.



Conclusion

The problem addressed by this work concerns the morphogenesis of spatial
complex networks. Our contribution is to model such phenomenon, de�ning
a general framework that might �nd application in several real case stud-
ies. Our approach, dominated by a principle of parsimony, does not focus
on speci�c details of the study case. It is interested on computational as-
pects of morphogenesis. According to complex system theory, we designed
a framework based on three fundamental dynamics: the decentralized inter-
actions of a heterogeneous set of morphogens, the emergence of unexpected
properties that force the formation of a spatial network and the feedback
of this latter to the way that morphogens organize themselves. The dy-
namics that led morphogens are inspired by reaction-di�usion theory; the
evolution of concentration of morphogens have been simulated over a reg-
ular grid. Under certain conditions, concentrations patterns spontaneously
form. We transform these patterns in two actions: (1) the concentration
controls the growth rate of the network; (2) the gradient of concentration is
transformed in a dynamic vector �eld which constrains the spatial arrange-
ment of elements of the network. The evolving network feeds back to the
morphogens, stimulating or reducing their capacity to organize themselves.
We are interested in those open systems where the position and the distance
in�uence the way that elements interact. The system is surrounded by an
environment that locally sways it.

Lots of questions arise. Can we use the same explanatory approach to
understand why and how objects (physical or not) develop, construct and
transform? We do not try to answer the �rst question. We have not tackle
the problem from the point of view of researchers in applicative �elds (geog-
raphers). We approach the second question as computer scientists, with the
desire to describe computable processes for which we can study trajectories.
Our explanatory approach is based on causality, form and emergence. In
our work we tackle the problem of the level of abstraction, of the observer
and of emergence. Thus, when we only consider the morphogen layer, the
emergence of patterns is unpredictable but the dynamics are predictable:
the study of the pattern formation has exposed that a speci�c combination
of initial parameters produces a speci�c dynamic in the morphogen layer.
We started our evaluation disregarding the feedback of the network to the
morphogens. In these simulations, the global behaviour of the system seems
to be controlled by morphogens: the growth rate depends to the pattern
formation (a far from equilibrium dynamic makes graphs with less vertices
that an out of equilibrium dynamic) and it is biased by parameters pc and
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pd. The morphogenesis of the network is driven by pattern formation, sug-
gesting that there exists a causal relation between the dynamics inside the
morphogen layer and the morphogenesis of the spatial network.

When we add cross-level feedbacks, they lead our simulations to unexpected
and interesting behaviours. Combining the e�ect of the creation of the net-
work to the patterns formation, we observe that the growth does not cor-
respond with what we had previously observed: pattern formation in these
simulations do not drive alone the growth of the network. The morphogen-
esis becomes an elaborate combination between feedbacks and morphogens
dynamics. The causal relation between resulting forms (the network) and
the substrate causes (pattern formation) cannot be observed. We observe
unexpected, asymmetric and mixed patterns in the morphogens' layer and
the networks show properties closer to street networks that networks ob-
tained without feedbacks. Compared with experiments without feedbacks,
where parameters f and k dominate the growth, in these simulations the
morphogenesis is a complex overlapping of rate of growths, pattern forma-
tion and cross level feedbacks.

Real networks that we addressed in this work show some speci�c characteris-
tics; we had measured di�erent global properties: the elements are arranged
in a hierarchical manner, the absence of a characteristic scale of observa-
tion, and the capacity of the system to adapt to failures of part of it. Graph
and fractal theories help us to quantitatively measure these characteristics;
we compared our results to six theoretical geometrical graphs and French
department street networks. Measures proposed in this work are not able to
completely characterize street networks. They are mainly focused on global
characteristics, disregarding local variations. They identify dominant prop-
erties, allowing the de�nition of applicable measures, distinguishing our
networks to real networks and theoretic graphs. These measure are also
useful to characterize our simulations: we notice that indicators computed
on graphs obtained with the framework are close to indicators computed on
street networks of French department cities. Finally, the application of our
framework in a real case study (Fécamp town) shows that the changing of
a basic dynamics leads to di�erent increments of self-similarity, hierarchies
and di�erent decrements of robustness. Thanks to the integration of some
illustrative urban aspects (build-up, green areas, natural constraints and
policy decisions) the framework produces di�erent scenarios that may be
useful for urban planners.

In this work we investigated the growth of a city with a systemic approach
and we had made some assumptions which respect at same time real dynam-
ics and complex system principles. The global and general correspondences
between our networks and real street networks suggest that a city can be in-
vestigated under this point of view and essential mechanisms here modelled
can be behind the morphogenesis of cities. However, as we had previously
observed, these evidences cannot be completely ensured that our approach
is exhaustive: we need more deeper investigations because we judge cor-
relation between our results and our analysis a condition not su�cient to
state that. Our results still are reassuring, they structure our knowledge
and they set a basis for future studies.
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Perspectives

The perspectives of this work are various and both in theoretical and ap-
plicative �elds. They can be structured into three (connected) axes: (1)
the implementation of the framework with more sophisticated dynamics,
(2) the increase of the capacity to compare results with reality, (3) and the
study of di�erent real case study.

Many questions arise about our framework. This work suggests that the
form of a system is at the same time the result and the cause of the func-
tioning of the system and we would like to explore these processes under this
point of view. Feedbacks are crucial to ensure the form in many real context
and we suggest to deeper investigate this aspect through the proposal frame-
work. The morphogenesis may be the result of opposing feedbacks, which
stimulate and inhibit the evolution of forms at the same time: from antag-
onist mechanism arise unsuspected trajectories and morphogenesis might
come out from this dichotomy. It seems an interesting scienti�c challenge
to try to explore those dynamics.

The evolution of concentration of morphogens and the integration of the
spatial environment was obtained with a regular square grid. This method
has two important advantages: it is easy to implement and �nd an adequate
correlation with many geographical data set. However, this approach, due
to its intrinsic regularity, may not be an appropriate way to model elaborate
dynamics of complex systems. Decomposing the space in an irregular way
(e.g. with an Voronoi tessellation) or modelling morphogens with an agent-
based system could be interesting �elds to explore.

Other questions are about the network and what it would represent. In-
teresting perspectives open when we do not consider euclidean space as a
dominant aspect in the functioning of the system. Di�erent notions of "lo-
cal" and "distance" can be de�ned for unspatialized networks: in this way
the approach becomes more generalist and the framework might �nd ap-
plication in more contexts. Moreover, spatial networks considered in this
work, are also transportations systems, where links and nodes are traversed
by �ows of matters, energies, individuals, informations. It seems that the
consideration of this aspect may drive to new understandings about mor-
phogenesis. The geometric graph representation used in this work becomes
incomplete to integrate these aspects and we could explore the possibility
to integrate other notions from temporal networks to our formalism.

In this work we had brie�y tackle two aspects of a scienti�c method: the
observation (and the analysis) of reality and the critical evaluation of our
results. On the one side, we aim to improve the analysis of real study
cases, that will make a consistent background of informations about real
phenomena. To this end, we judge important to increment our capacity to
analyse street networks, with the investigation of improved approaches that
are able not only to discriminate street networks to basic geometric graph,
but also to deeper characterize each real situation. Our basic results suggest
that it is interesting investigate the robustness and the scale invariance of
networks. On the other side, we might investigate the behaviour space of
the framework, in order to give a more exhaustive advice about it sensibility
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to parameter set, a better exploration of trajectories, and eventually �nding
characteristic patterns. These explorations are necessary to be con�dent on
the approach and they represent an important step forward an in-depth
assessment. Genetic algorithms may be used to target one speci�c scenario
or dynamic. The calibration of the framework may be useful in a decision
making context, in order to help urban planners.

The study of urban growth requires to take into account a narrower coex-
istence of di�erent human and economical phenomena, and the simulation
of the co-evolution of di�erent urban components. Clearly this demands a
deep knowledge of urban dynamics. Our framework may be also applied to
investigate morphogenesis of other study cases (e.g. vascular networks, ant
nests and leaf venation networks). This will represent at once un interesting
challenge (about the data set construction and the application in a three
dimensional space) and an external validation of our approach.



Bibliography

[1] M. Achibet, S. Balev, A. Dutot, and D. Olivier, �A model of road
network and buildings extension co-evolution,� in Procedia Computer
Science, vol. 32, 2014, pp. 828�833.

[2] A. Adamatzky, �Generative complexity of gray�scott model,� Com-
munications in Nonlinear Science and Numerical Simulation, vol. 56,
pp. 457�466, 2018.

[3] R. Albert, H. Jeong, and A.-L. Barabasi, �Error and attack tolerance
of complex networks,� Nature, vol. 406, no. 6794, pp. 378�382, 2000.

[4] C. Alexander, �A city is not a tree,� Architectural Forum, vol. 122,
no. 1, pp. 58�62, 1965.

[5] ��, A Pattern Language: Towns, Buildings, Construction. New
York: Oxford University Press, 1977.

[6] K. M. S. Allen and E. B. W. Zubrow, Interpreting Space: GIS and
Archaeology. Applications of Geographic Information Systems, S. W.
Green, Ed. London ; New York: CRC Press, 1990.

[7] W. Alonso, Location and land use: toward a general theory of land
rent. Cambridge, Mass.: Harvard University Press, 1964.

[8] S. Appleby, �Multifractal characterization of the distribution pat-
tern of the human population,� Geographical Analysis, vol. 28, no. 2,
pp. 147�160, 1996.

[9] T. Aquino and M. Dentz, �Chemical continuous time random walks,�
Physical Review Letters, vol. 119, no. 23, p. 230 601, 2017.

[10] A. Araldi and G. Fusco, �From the street to the metropolitan region:
pedestrian perspective in urban fabric analysis - alessandro araldi,
giovanni fusco, 2019,� Environment and Planning B: Urban Analytics
and City Science, vol. 46, no. 7, pp. 1243�1263, 2019.

[11] E. Arcaute, E. Hatna, P. Ferguson, H. Youn, A. Johansson, and M.
Batty, �Constructing cities, deconstructing scaling laws,� Journal of
The Royal Society Interface, vol. 12, no. 102, p. 20 140 745, 2015.

[12] E. Arcaute, C. Molinero, E. Hatna, R. Murcio, C. Vargas-Ruiz, A. P.
Masucci, and M. Batty, �Cities and regions in britain through hi-
erarchical percolation,� Royal Society Open Science, vol. 3, no. 4,
p. 150 691, 2016.

[13] R. Asai, E. Taguchi, Y. Kume, M. Saito, and S. Kondo, �Zebra�sh
leopard gene as a component of the putative reaction-di�usion sys-
tem,� Mechanisms of Development, vol. 89, no. 1, pp. 87�92, 1999.

185



186 Bibliography

[14] W. R. Ashby, Introduction to Cybernetics. London: Chapman & Hall,
1956.

[15] R. Axelrod, The Complexity of Cooperation. Princeton: Princeton
University Press, 1997.

[16] D. Badariotti, A. Banos, and D. Moreno, �Conception d'un auto-
mate cellulaire non stationnaire à base de graphe pour modéliser la
structure spatiale urbaine : le modèle remus,� Cybergeo : Revue eu-
ropéenne de géographie / European journal of geography, p. 16, 2007.

[17] P. Bak, How Nature Works: the science of self-organized criticality.
Copernicus, 1996.

[18] A. Banos, �Network e�ects in schelling's model of segregation: new
evidences from agent-based simulation,� Environment and Planning
B: Planning and Design, vol. 39, no. 2, pp. 393�405, 2012.

[19] A. Banos and L. Sanders, �Modéliser et simuler les systèmes spati-
aux en géographie. modéliser et simuler�epistémologies et pratiques
des modèles et des simulations,� in Editions Matériologiques, 2013,
pp. 833�863.

[20] A.-L. Barabasi and R. Albert, �Emergence of scaling in random net-
works,� Science, vol. 286, no. 5439, pp. 509�512, 1999.

[21] A. Barrat, M. Barthelemy, and A. Vespignani, �The e�ects of spatial
constraints on the evolution of weighted complex networks,� Journal
of Statistical Mechanics: Theory and Experiment, vol. 2005, no. 5,
P05003, 2005.

[22] M. Barthelemy, �Betweenness centrality in large complex networks,�
The European Physical Journal B, vol. 38, no. 2, pp. 163�168, 2004.

[23] M. Barthelemy, �Spatial networks,� Physics Reports, vol. 499, no. 1,
pp. 1�101, 2011.

[24] M. Barthelemy, P. Bordin, H. Berestycki, and M. Gribaudi, �Self
organization versus top down planning in the evolution of a city,�
Scienti�c reports, vol. 3, 2013.

[25] M. Barthelemy and A. Flammini, �Modeling urban street patterns,�
Physical Review Letters, vol. 100, no. 13, p. 138 702, 2008.

[26] ��, �Co-evolution of density and topology in a simple model of city
formation,� Networks and Spatial Economics, vol. 9, no. 3, pp. 401�
425, 2009.

[27] M. Barthélemy and A. Flammini, �Optimal tra�c networks,� Journal
of Statistical Mechanics: Theory and Experiment, vol. 2006, no. 7,
p. L07002, 2006.

[28] M. Batty and P. A. Longley, Fractal Cities: A Geometry of Form
and Function. London: Academic Press, 1994.

[29] M. Batty, �Cities as fractals: simulating growth and form,� in Frac-
tals and Chaos, A. J. Crilly, R. A. Earnshow, and H. Jones, Eds.,
Springer New York, 1991, pp. 43�69.

[30] ��, �Cellular automata and urban form: a primer,� Journal of the
American Planning Association, vol. 63, no. 2, pp. 266�274, 1997.



Bibliography 187

[31] ��, Cities and Complexity: Understanding Cities With Cellular
Automata, Agent-Based Models, and Fractals. Cambridge, Mass.: Mit
Pr, 2007.

[32] ��, The New Science of Cities. Cambridge: The MIT Press, 2013.

[33] A. Bavelas, �Some problems of organizational change,� Journal of
Social Issues, vol. 4, no. 3, pp. 48�52, 1948.

[34] B. Belousov, �Periodicheski deistvuyushchaya reaktsia i ee mecha-
nism (a periodic reaction and its mechanism),� Sbornik Referatov po
Radiatsionni Meditsine, vol. 145147, 1958.

[35] E. Ben-Jacob and P. Garik, �The formation of patterns in non-
equilibrium growth,� Nature, vol. 343, no. 6258, p. 523, 1990.

[36] H. Bénard, �Les tourbillons cellulaires dans une nappe liquide propageant
de la chaleur par convection: en régime permanent,� Ph.D. disserta-
tion, Collège de France, 1901.

[37] I. Benenson and P. M. Torrens, �Geosimulation: object-based model-
ing of urban phenomena,� Computers, Environment and Urban Sys-
tems, Geosimulation, vol. 28, no. 1, pp. 1�8, 2004.

[38] L. Benevolo, La città nella storia d'Europa. Bari: Laterza, 1993.

[39] L. Benguigui, D. Czamanski, M. Marinov, and Y. Portugali, �When
and where is a city fractal?� Environment and Planning B: Planning
and Design, vol. 27, no. 4, pp. 507�519, 2000.

[40] B. J. L. Berry, �Cities as systems within systems of cities,� Papers
in Regional Science, vol. 13, no. 1, pp. 147�163, 1964.

[41] H. Bersini, Qu'est-ce que l'émergence? Paris: ELLIPSES, 2007.

[42] L. V. Bertalan�y, General System Theory: Foundations, Develop-
ment, Applications. New York: George Braziller Inc, 1968.

[43] A. S. Besicovitch, �On linear sets of points of fractional dimension,�
Mathematische Annalen, vol. 101, no. 1, pp. 161�193, 1929.

[44] L. M. A. Bettencourt, �The origins of scaling in cities,� Science (New
York, N.Y.), vol. 340, no. 6139, pp. 1438�1441, 2013.

[45] P. Blanchard and D. Volchenkov, Mathematical Analysis of Urban
Spatial Networks. Springer Complexity, 2009.

[46] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang,
�Complex networks: structure and dynamics,� Physics Reports, vol. 424,
no. 4, pp. 175�308, 2006.

[47] G. Boeing, �OSMnx: new methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks,� Computers, Envi-
ronment and Urban Systems, vol. 65, pp. 126�139, 2017.

[48] ��, �Measuring the complexity of urban form and design,� Urban
design International, vol. 23, no. 4, pp. 281�292, 2018.

[49] S. Bohn, B. Andreotti, S. Douady, J. Munzinger, and Y. Couder,
�Constitutive property of the local organization of leaf venation net-
works,� Physical Review E, vol. 65, no. 6, p. 061 914, 2002.



188 Bibliography

[50] S. Bohn, S. Douady, and Y. Couder, �Four sided domains in hier-
archical space dividing patterns,� Physical Review Letters, vol. 94,
no. 5, p. 054 503, 2005.

[51] S. Bohn, L. Pauchard, and Y. Couder, �Hierarchical crack pattern as
formed by successive domain divisions.,� Physical Review E, vol. 71,
no. 4, p. 046 214, 2005.

[52] S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-Bedia, and Y. Couder,
�Hierarchical crack pattern as formed by successive domain divi-
sions. II. from disordered to deterministic behavior,� Physical Re-
view. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 71,
no. 4, p. 046 215, 2005.

[53] P. Bordin, SIG concepts, outils et données. Paris: Hermès Sciences �
Lavoisier, 2002.

[54] A. Bottinelli, M. Gherardi, and M. Barthelemy, �E�ciency and shrink-
ing in evolving networks,� Journal of The Royal Society Interface,
vol. 16, no. 154, p. 20 190 101, 2019.

[55] G. E. P. Box, �Science and statistics,� Journal of the American Sta-
tistical Association, vol. 71, no. 356, pp. 791�799, 1976.

[56] M. Brede, �Coordinated and uncoordinated optimization of networks,�
Physical Review E, vol. 81, no. 6, p. 066 104, 2010.

[57] A. Bretagnolle, É. Daudé, and D. Pumain, �From theory to mod-
elling: urban systems as complex systems,� Cybergeo : European
Journal of Geography, 2006.

[58] R. Brown, A Brief Account of Microscopical Observations: Made in
the Months of June, July, and August, 1827, on the Particles Con-
tained in the Pollen of Plants and on the General Existence of Active
Molecules in Organic and Inorganic Bodies. Not published, 1828.

[59] R. Bruegmann, Sprawl: A Compact History. Chicago: University of
Chicago Press, 2005.

[60] J. Buhl, J. Gautrais, N. Reeves, R. V. Solé, S. Valverde, P. Kuntz,
and G. Theraulaz, �Topological patterns in street networks of self-
organized urban settlements,� The European Physical Journal B -
Condensed Matter and Complex Systems, vol. 49, no. 4, pp. 513�
522, 2006.

[61] J. Buhl, J. Gautrais, R. V. Solé, P. Kuntz, S. Valverde, J. L. Deneubourg,
and G. Theraulaz, �E�ciency and robustness in ant networks of gal-
leries,� The European Physical Journal B - Condensed Matter and
Complex Systems, vol. 42, no. 1, pp. 123�129, 2004.

[62] E. Bullmore and O. Sporns, �Complex brain networks: graph theo-
retical analysis of structural and functional systems,� Nature Reviews
Neuroscience, vol. 10, no. 3, pp. 186�198, 2009.

[63] R. W. Burchell, Sprawl costs : economic impacts of unchecked devel-
opment. Washington: Island Press Washington, 2005.

[64] M. Caglioni and G. Rabino, �Contribution to the fractal analysis of
cities: a study of the metropolitan area of milan,� Cybergeo : Euro-
pean Journal of Geography, 2004.



Bibliography 189

[65] G. Caniggia, Lettura di una citta' : Como. centro studi storia urban-
istica, 1963.

[66] G. Caniggia and G. L. Ma�ei, Lettura dell'edilizia di base. Firenze:
Alinea, 1979.

[67] A. Cardillo, S. Scellato, V. Latora, and S. Porta, �Structural prop-
erties of planar graphs of urban street patterns,� Physical Review E,
vol. 73, no. 6, 2006.

[68] S. Carnot, Ré�exions sur la puissance motrice du feu. Paris: Bache-
lier, 1824.

[69] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, �Time-
varying graphs and dynamic networks,� International Journal of
Parallel, Emergent and Distributed Systems, vol. 27, no. 5, pp. 387�
408, 2012.

[70] J. Castex, P. Céleste, and P. Panerai, Lecture d'une ville: Versailles.
Paris: Éditions du Moniteur, 1980.

[71] J. Cavailhes, P. Frankhauser, D. Peeters, and I. Thomas, �Where
alonso meets sierpinski: an urban economic model of a fractal metropoli-
tan area,� Environment and Planning A: Economy and Space, vol. 36,
no. 1471, 2004.

[72] D. J. Chalmers, The Conscious Mind: In Search of a Fundamental
Theory. New York: Oxford University Press, 1996.

[73] ��, �Strong and weak emergence,� in The Re-Emergence of Emer-
gence: The Emergentist Hypothesis From Science to Religion, P. Davies
and P. Clayton, Eds., Oxford University Press, 2006.

[74] Y. Chen and J. Wang, �Multifractal characterization of urban form
and growth: the case of beijing,� Environment and Planning B: Plan-
ning and Design, vol. 40, no. 5, pp. 884�904, 2013.

[75] Y. Chen, J. Wang, and J. Feng, �Understanding the fractal dimen-
sions of urban forms through spatial entropy,� Entropy, vol. 19,
no. 11, p. 600, 2017.

[76] Q. Cheng, �Multifractality and spatial statistics,� Computers & Geo-
sciences, vol. 25, no. 9, pp. 949�961, 1999.

[77] E. F. F. Chladni, Entdeckungen über die Theorie des Klanges. Leipzig:
Weidmanns Erben und Reich, 1787.

[78] W. Christaller,Die zentralen Orte in Süddeutschland: eine ökonomisch-
geographische Untersuchung über die Gesotzmässigkeit der Verbre-
itung und Entwicklung der Siedlungen mit städtischen Funktionen.
Jena: Gustav Fischer, 1933.

[79] J. Clark and D. A. Holton, A First Look at Graph Theory. World
Scienti�c, 1991.

[80] A. Clauset, C. Shalizi, and M. Newman, �Power-law distributions in
empirical data,� SIAM Review, vol. 51, no. 4, pp. 661�703, 2009.

[81] E. A. Codling, Plank, Michael J, and B. Simon, �Random walk mod-
els in biology,� Journal of The Royal Society Interface, vol. 5, no. 25,
pp. 813�834, 2008.



190 Bibliography

[82] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, �Resilience of
the internet to random breakdowns,� Physical Review Letters, vol. 85,
no. 21, pp. 4626�4628, 2000.

[83] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas,
�Characterization of complex networks: a survey of measurements,�
Advances in Physics, vol. 56, no. 1, pp. 167�242, 2007.

[84] T. Courtat, C. Gloaguen, and S. Douady, �Mathematics and mor-
phogenesis of cities: a geometrical approach,� Physical Review E,
vol. 83, no. 3, p. 036 106, 2011.

[85] M. P. Cozen, Thinking about Urban Form: Papers on Urban Mor-
phology, 1932-1998. Bern: Peter Lang, 2004.

[86] M. C. Cross and P. C. Hohenberg, �Pattern formation outside of
equilibrium,� Reviews of Modern Physics, vol. 65, no. 3, pp. 851�
1112, 1993.

[87] P. Crucitti, V. Latora, and S. Porta, �Centrality in networks of urban
streets,� Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 16, no. 1, p. 015 113, 2006.

[88] ��, �Centrality measures in spatial networks of urban streets,�
Physical Review E, vol. 73, no. 3, 2006.

[89] P. Crutzen and E. Stoermer, �The anthropocene,� Global Change
Newsletter, vol. 41, pp. 17�18, 2000.

[90] V. Cutini, La rivincita dello spazio urbano. Pisa: Pisa University
Press, 2010.

[91] T. D'arcy, On Growth and Form. Cambridge: Cambridge University
Press, 1917.

[92] A. Dauphiné and C.-P. Péguy, Les théories de la complexité chez les
géographes. Paris: Economica, 2003.

[93] R. Diestel, Graph Theory. New York: Springer-Verlag, 2010.

[94] G. Donnadieu and M. Karsky, La systémique, penser et agir dans la
complexité. Rueil-Malmaison: Editions Liaisons, 2002.

[95] S. N. Dorogovtsev and J. F. Mendes, �Evolution of networks,� Ad-
vances in physics, vol. 51, no. 4, pp. 1079�1187, 2002.

[96] B. Edmonds and S. Moss, �From KISS to KIDS � an `anti-simplistic'
modelling approach,� in Multi-Agent and Multi-Agent-Based Simu-
lation, ser. Lecture Notes in Computer Science, Springer Berlin Hei-
delberg, 2005, pp. 130�144.

[97] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chem-
ical Dynamics: Oscillations, Waves, Patterns, and Chaos, ser. Topics
in Physical Chemistry. Oxford, New York: Oxford University Press,
1998.

[98] P. Erdos and A. Renyi, �On random graphs,� Publ. Math. Debrecen,
vol. 6, pp. 290�297, 1959.

[99] J. D. Farmer, E. Ott, and J. A. Yorke, �The dimension of chaotic
attractors,� Physica D: Nonlinear Phenomena, vol. 7, no. 1, pp. 153�
180, 1983.



Bibliography 191

[100] J. Feder, Fractals. New York: Springer Science & Business Media,
1988.

[101] ��, �Self-similarity and self-a�nity,� in Fractals, ser. Physics of
Solids and Liquids, J. Feder, Ed., Boston, MA: Springer US, 1988,
pp. 184�192.

[102] A. Fick, �Ueber di�usion,� Annalen der Physik, vol. 170, no. 1,
pp. 59�86, 1855.

[103] R. A. Fisher, �The wave of advance of advantageous genes,� Annals
of Eugenics, vol. 7, no. 4, pp. 355�369, 1937.

[104] J. W. Forrester, Urban Dynamics. Cambridge: M.I.T. Press, 1969.

[105] S. Fortunato, �Community detection in graphs,� Physics Reports,
vol. 486, no. 3, pp. 75�174, 2010.

[106] P. Frankhauser, �Aspects fractals des structures urbaines,� L'Espace
géographique, vol. 19, no. 1, pp. 45�69, 1990.

[107] ��, La fractalité des structures urbaines. Paris: Economica, 1994.

[108] L. C. Freeman, �A set of measures of centrality based on between-
ness,� Sociometry, vol. 40, no. 1, pp. 35�41, 1977.

[109] ��, �Centrality in social networks' conceptual clari�cation,� Social
Networks, vol. 1, no. 79, pp. 215�239, 1979.

[110] G. Fusco, �City, complexity, uncertainy. knowledge challanges for
the geographer and the urban planner.,� Habilitation à diriger des
recherches, Université Côte d'Azur, Nice, 2018.

[111] G. Fusco, M. Caglioni, K. Emsellem, M. Merad, D. Moreno, and C.
Voiron-Canicio, �Questions of uncertainty in geography,� Environ-
ment and Planning A: Economy and Space, vol. 49, no. 10, pp. 2261�
2280, 2017.

[112] G. Fusco and M. Tirico, �Con�gurational approaches to urban form:
empirical test on the city of nice (france),� in Procedings of the 9th
INPUT International Conference on Innovation in Urban and Re-
gional Planning, Turin: SiTI, 2016, pp. 376�382.

[113] S. Gao, Y. Wang, Y. Gao, and Y. Liu, �Understanding urban tra�c-
�ow characteristics: a rethinking of betweenness centrality,� Environ-
ment and Planning B: Planning and Design, vol. 40, no. 1, pp. 135�
153, 2013.

[114] M. R. Garey and D. S. Johnson, �Crossing number is NP-complete,�
SIAM Journal on Algebraic Discrete Methods, vol. 4, no. 3, pp. 312�
316, 1983.

[115] W. L. Garrison, �Connectivity of the interstate highway system,�
Papers in Regional Science, vol. 6, no. 1, pp. 121�137, 1960.

[116] W. L. Garrison and D. M. Levinson, The Transportation Experience:
Policy, Planning, and Deployment. Oxford, New York: Oxford Uni-
versity Press, 2014.

[117] M. T. Gastner and M. E. J. Newman, �The spatial structure of net-
works,� The European Physical Journal B - Condensed Matter and
Complex Systems, vol. 49, no. 2, pp. 247�252, 2006.



192 Bibliography

[118] C. Genre-Grandpierre and J.-C. Foltête, �Morphologie urbaine et
mobilité en marche à pied,� Cybergeo : European Journal of Geogra-
phy, no. 248, 2003.

[119] A. Gierer and H. Meinhardt, �A theory of biological pattern forma-
tion,� Kybernetik, vol. 12, no. 1, pp. 30�39, 1972.

[120] J. Gil, �Street network analysis �edge e�ects�: examining the sensi-
tivity of centrality measures to boundary conditions,� Environment
and Planning B: Urban Analytics and City Science, vol. 44, no. 5,
pp. 819�836, 2017.

[121] N. Glade, J. Demongeot, and J. Tabony, �Numerical simulations of
microtubule self-organisation by reaction and di�usion,� Acta Bio-
theoretica, vol. 50, no. 4, pp. 239�268, 2002.

[122] P. Glansdor� and I. Prigogine, Thermodynamic Theory of Structure,
Stability and Fluctuations. London, New York: John Wiley & Sons
Ltd, 1971.

[123] K.-I. Goh, B. Kahng, and D. Kim, �Universal behavior of load dis-
tribution in scale-free networks,� Physical Review Letters, vol. 87,
no. 27, p. 278 701, 2001.

[124] M. F. Goodchild, �Fractals and the accuracy of geographical mea-
sures,� Journal of the International Association for Mathematical
Geology, vol. 12, no. 2, pp. 85�98, 1980.

[125] M. F. Goodchild and D. M. Mark, �The fractal nature of geographic
phenomena,� Annals of the Association of American Geographers,
vol. 77, no. 2, pp. 265�278, 1987.

[126] P. Grassberger and I. Procaccia, �Characterization of strange attrac-
tors,� Physical Review Letters, vol. 50, no. 5, pp. 346�349, 1983.

[127] P. Gray and S. K. Scott, �Autocatalytic reactions in the isothermal,
continuous stirred tank reactor: isolas and other forms of multista-
bility,� Chemical Engineering Science, vol. 38, no. 1, pp. 29�43, 1983.

[128] N. B. Grimm, S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu,
X. Bai, and J. M. Briggs, �Global change and the ecology of cities,�
Science (New York, N.Y.), vol. 319, no. 5864, pp. 756�760, 2008.

[129] P. Grindrod, Patterns and Waves: the Theory and Applications of
Reaction-di�usion Equations. Oxford: Oxford University Press, 1996.

[130] S. Guillier, V. Muñoz, J. Rogan, R. Zarama, and J. A. Valdivia,
�Optimization of spatial complex networks,� Physica A: Statistical
Mechanics and its Applications, vol. 467, pp. 465�473, 2017.

[131] R. Guimerá and L. a. N. Amaral, �Modeling the world-wide airport
network,� The European Physical Journal B, vol. 38, no. 2, pp. 381�
385, 2004.

[132] P. Haggett, Geography. A modern synthesis. New York: Harper &
Row, 1979.

[133] P. Haggett, Locational analysis in modern geography. London: Arnold,
1965.

[134] ��, Network analysis in geography. London: Edward Arnold, 1969.



Bibliography 193

[135] T. C. Halsey, M. H. Jensen, L. P. Kadano�, I. Procaccia, and B. I.
Shraiman, �Fractal measures and their singularities: the characteri-
zation of strange sets,� Physical Review A, vol. 33, no. 2, pp. 1141�
1151, 1986.

[136] L. G. Harrison, �Kinetic theory of living pattern,� Endeavour, vol. 18,
no. 4, pp. 130�136, 1994.

[137] F. Hausdor�, �Dimension und äuÿeres maÿ,� Mathematische An-
nalen, vol. 79, no. 1, pp. 157�179, 1918.

[138] A. H. Hawley, �Ecology and human ecology,� Social Forces, vol. 22,
no. 4, pp. 398�405, 1944.

[139] D. Helbing, J. Keltsch, and P. Molnár, �Modelling the evolution of
human trail systems,� Nature, vol. 388, no. 6637, pp. 47�50, 1997.

[140] H. G. E. Hentschel and I. Procaccia, �The in�nite number of gen-
eralized dimensions of fractals and strange attractors,� Physica D:
Nonlinear Phenomena, vol. 8, no. 3, pp. 435�444, 1983.

[141] B. Hillier, Space is the machine: A con�gurational theory of archi-
tecture. Cambridge: Cambridge University Press, 1996.

[142] B. Hillier and J. Hanson, The Social Logic of Space. Cambridge, New
York: Cambridge University Press, 1984.

[143] B. Hofmeister, �The study of urban form in germany,� Urban Mor-
phology, vol. 8, 2004.

[144] J. H. Holland, �Studying complex adaptive systems,� Journal of Sys-
tems Science and Complexity, vol. 19, no. 1, pp. 1�8, 2006.

[145] C. S. Holling, �Resilience and stability of ecological systems,� Annual
Review of Ecology and Systematics, vol. 4, no. 1, pp. 1�23, 1973.

[146] P. Holme, �Modern temporal network theory: a colloquium,� The
European Physical Journal B, vol. 88, no. 9, pp. 1�30, 2015.

[147] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, �Attack vulnerabil-
ity of complex networks,� Physical Review. E, Statistical, Nonlinear,
and Soft Matter Physics, vol. 65, no. 5, p. 056 109, 2002.

[148] H. Hotelling, �Stability in competition,� The Economic Journal, vol. 39,
no. 153, pp. 41�57, 1929.

[149] A. Ilachinski, Cellular Automata: a Discrete Universe. Singapore:
World Scienti�c Pub Co Inc, 2001.

[150] W. Isard, �Location theory and trade theory: short-run analysis,�
The Quarterly Journal of Economics, vol. 68, no. 2, pp. 305�320,
1954.

[151] ��, Location and Space-economy; a General Theory Relating to In-
dustrial Location, Market Areas, Land Use, Trade, and Urban Struc-
ture. MIT Press / Wiley, Cambridge, MA. Cambridge: MIT Press /
Wiley, 1956.

[152] J. Jacobs, The Death and Life of Great American Cities. New York:
Random House, 1961.



194 Bibliography

[153] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, �Lethal-
ity and centrality in protein networks,� Nature, vol. 411, no. 6833,
pp. 41�42, 2001.

[154] B. Jiang and C. Claramunt, �Topological analysis of urban street net-
works,� Environment and Planning B: Planning and Design, vol. 31,
no. 1, pp. 151�162, 2004.

[155] Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, and D. Sornette, �Multifrac-
tal analysis of �nancial markets: a review,� Reports on Progress in
Physics, vol. 82, no. 12, p. 125 901, 2019.

[156] M. P. Johnson, �Environmental impacts of urban sprawl: a survey
of the literature and proposed research agenda,� Environment and
Planning A: Economy and Space, vol. 33, no. 4, pp. 717�735, 2001.

[157] V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore, �Scale invari-
ance in road networks,� Physical Review E, vol. 73, no. 2, p. 026 130,
2006.

[158] P. Kaluza, A. Kölzsch, M. T. Gastner, and B. Blasius, �The com-
plex network of global cargo ship movements,� Journal of the Royal
Society Interface, vol. 7, no. 48, pp. 1093�1103, 2010.

[159] K. Kansky, �Structure of transportation networks,� Ph.D. disserta-
tion, University of Chicago, Chicago, 1963.

[160] H. Kitano, �Biological robustness,� Nature Reviews. Genetics, vol. 5,
no. 11, pp. 826�837, 2004.

[161] H. von Koch, Sur une courbe continue sans tangente obtenue par une
construction geometrique elementaire. Norstedt & soner, 1904.

[162] W. Kohler, Gestalt Psychology: An Introduction to New Concepts
in Modern Psychology. New York: Liveright Publishing Corporation,
1970.

[163] A. Kolmogorov, I. Petrovskii, and N. Piscunov, �A study of the equa-
tion of di�usion with increase in the quantity of matter, and its ap-
plication to a biological problem,� Byul. Moskovskogo Gos. Univ.,
vol. 1, no. 6, pp. 1�25, 1937.

[164] A. N. Kolmogorov, �Three approaches to the de�nition of the concept
'quantity of information,� Probl. Peredachi Inf, vol. 1, no. 1, pp. 3�
11, 1965.

[165] S. Kondo and T. Miura, �Reaction-di�usion model as a framework
for understanding biological pattern formation,� Science, vol. 329,
no. 5999, pp. 1616�1620, 2010.

[166] E. L. Koschmieder, �Bénard convection,� in Advances in Chemical
Physics, John Wiley & Sons, Ltd, 2007, pp. 177�212.

[167] T. S. Kuhn, The Structure of Scienti�c Revolutions. Chicago, IL:
Univ of Chicago Pr, 1962.

[168] L. Lacasa and J. Gómez-Gardeñes, �Correlation dimension of com-
plex networks,� Physical Review Letters, vol. 110, no. 16, p. 168 703,
2013.



Bibliography 195

[169] C. Lagesse, P. Bordin, and S. Douady, �A spatial multi-scale object
to analyze road networks,� Network Science, vol. 3, no. 1, pp. 156�
181, 2015.

[170] S. Lämmer, B. Gehlsen, and D. Helbing, �Scaling laws in the spatial
structure of urban road networks,� Physica A: Statistical Mechanics
and its Applications, vol. 363, no. 1, pp. 89�95, 2006.

[171] J. L. J. Laredo, F. Guinand, D. Olivier, and P. Bouvry, �Load bal-
ancing at the edge of chaos: how self-organized criticality can lead
to energy-e�cient computing,� IEEE Transactions On Parallel And
Distributed Systems, vol. 28, no. 2, pp. 517�529, 2017.

[172] V. Latora, V. Nicosia, and G. Russo, Complex Networks: Principles,
Methods and Applications. Cambridge: Cambridge University Press,
2017.

[173] R. B. Laughlin, A Di�erent Universe: Reinventing Physics from the
Bottom Down. New York, NY: Basic Books, 2006.

[174] P. Lavedan, Les villes françaises. Paris: Vincent et Fréal, 1960.

[175] J.-L. Le Moigne, Les systèmes de décision dans les organisations.
Paris: Presses Universitaires de France, 1974.

[176] ��, La modélisation des systèmes complexes. Paris: Dunod, 1990.

[177] J. Lechleiter, S. Girard, E. Peralta, and D. Clapham, �Spiral cal-
cium wave propagation and annihilation in xenopus laevis oocytes,�
Science, vol. 252, no. 5002, pp. 123�126, 1991.

[178] H. Lefebvre, The Production of Space. Malden: Wiley-Blackwell, 1991.

[179] R. Lemoy and G. Caruso, �Evidence for the homothetic scaling of
urban forms,� Environment and Planning B: Urban Analytics and
City Science, vol. 47, no. 5, pp. 870�888, 2018.

[180] I. Lengyel and I. R. Epstein, �A chemical approach to designing
turing patterns in reaction-di�usion systems.,� Proceedings of the
National Academy of Sciences, vol. 89, no. 9, pp. 3977�3979, 1992.

[181] A. Levy, �Formes urbaines et signi�cations : revisiter la morphologie
urbaine,� Espaces et societes, vol. no 122, no. 3, pp. 25�48, 2005.

[182] P. A. Longley and M. Batty, �On the fractal measurement of geo-
graphical boundaries,� Geographical Analysis, vol. 21, no. 1, pp. 47�
67, 1989.

[183] A. J. Lotka, �Contribution to the theory of periodic reactions,� The
Journal of Physical Chemistry, vol. 14, no. 3, pp. 271�274, 1910.

[184] R. Louf and M. Barthelemy, �Patterns of residential segregation,�
PLOS ONE, vol. 11, no. 6, e0157476, 2016.

[185] K. Lynch, The Image of the City. Cambridge, Mass.: Mit Pr, 1960.

[186] A. K. Maity, R. Pratihar, A. Mitra, S. Dey, V. Agrawal, S. Sanyal,
A. Banerjee, R. Sengupta, and D. Ghosh, �Multifractal detrended
�uctuation analysis of alpha and theta EEG rhythms with musical
stimuli,� Chaos, Solitons & Fractals, vol. 81, pp. 52�67, 2015.



196 Bibliography

[187] H. A. Makse, S. Havlin, and H. E. Stanley, �Modelling urban growth
patterns,� Nature, vol. 377, no. 6550, p. 608, 1995.

[188] B. Mandelbrot, �How long is the coast of britain? statistical self-
similarity and fractional dimension,� Science, vol. 156, no. 3775,
pp. 636�638, 1967.

[189] ��, The Fractal Geometry of Nature. San Francisco: W.H.Freeman
& Co Ltd, 1982.

[190] B. Mandelbrot and J. A. Wheeler, �The fractal geometry of nature,�
American Journal of Physics, vol. 51, no. 3, pp. 286�287, 1983.

[191] M. D. Martins, S. Laaha, E. M. Freiberger, S. Choi, and W. T.
Fitch, �How children perceive fractals: hierarchical self-similarity and
cognitive development,� Cognition, vol. 133, no. 1, pp. 10�24, 2014.

[192] A. P. Masucci, E. Arcaute, E. Hatna, K. Stanilov, and M. Batty, �On
the problem of boundaries and scaling for urban street networks,�
Journal of The Royal Society Interface, vol. 12, no. 111, p. 20 150 763,
2015.

[193] A. P. Masucci and C. Molinero, �Robustness and closeness centrality
for self-organized and planned cities,� The European Physical Journal
B, vol. 89, no. 2, p. 53, 2016.

[194] D. W. Matula and R. R. Sokal, �Properties of gabriel graphs relevant
to geographic variation research and the clustering of points in the
plane,� Geographical Analysis, vol. 12, no. 3, pp. 205�222, 1980.

[195] H. R. Maturana and F. J. Varela, Autopoiesis and Cognition: The
Realization of the Living, ser. Boston Studies in the Philosophy and
History of Science. Springer Netherlands, 1980.

[196] H. R. Maturana, �Ontology of observing : the biological foundations
of self-consciousness and of the physical domain of existence,� in
Donaldson R. E. Texts in cybernetic theory: An in-depth exploration
of the thought of Humberto Maturana, William T. Powers, and Ernst
von Glasersfeld. American Society for Cybernetics (ASC), 1988.

[197] W. Mazin, K. E. Rasmussen, E. Mosekilde, P. Borckmans, and G.
Dewel, �Pattern formation in the bistable gray-scott model,� Math-
ematics and Computers in Simulation, vol. 40, no. 3, pp. 371�396,
1996.

[198] M. Minsky, �Matter, mind and models,� in Proceedings of the inter-
national federation of information processing congress, vol. 1, 1965,
pp. 45�49.

[199] D. Moreno, D. Badariotti, and A. Banos, �Un automate cellulaire
pour expérimenter les e�ets de la proximité dans le processus d'étalement
urbain : le modèle raumulus,� Cybergeo : European Journal of Geog-
raphy, 2012.

[200] E. Morin, La Méthode 1: La nature de la nature. Paris: Le Seuil,
1977.

[201] ��, La Méthode 3: La Connaissance de la connaissance. Paris: Le
Seuil, 1986.



Bibliography 197

[202] ��, Introduction à la pensée complexe. Paris: Points, 2005.

[203] L. Mumford, The City in History. New York: Harcourt, Brace &
World, 1961.

[204] R. Murcio, A. P. Masucci, E. Arcaute, and M. Batty, �Multifractal to
monofractal evolution of the london street network,� Physical Review
E, vol. 92, no. 6, p. 062 130, 2015.

[205] J. D. Murray, �A pre-pattern formation mechanism for animal coat
markings,� Journal of Theoretical Biology, vol. 88, no. 1, pp. 161�
199, 1981.

[206] J. D. Murray, Mathematical Biology: I. An Introduction, ser. Inter-
disciplinary Applied Mathematics, Mathematical Biology. New York:
Springer-Verlag, 2002.

[207] ��, Mathematical Biology II - Spatial Models and Biomedical Ap-
plications. New York: Springer-Verlag, 2003.

[208] J. von Neumann, �The general and logical theory of automata,� in
Cerebral mechanisms in behavior; the Hixon Symposium, Oxford,
England: Wiley, 1951, pp. 1�41.

[209] M. E. J. Newman, �The structure and function of complex networks,�
SIAM Review, vol. 45, no. 2, pp. 167�256, 2003.

[210] C. Nicolaides, R. Juanes, and L. Cueto-Felgueroso, �Self-organization
of network dynamics into local quantized states,� Scienti�c Reports,
vol. 6, p. 21 360, 2016.

[211] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V.
Latora, �Graph metrics for temporal networks,� arXiv:1306.0493
[physics], pp. 15�40, 2013.

[212] S. Nordbeck, �Urban allometric growth,� Geogra�ska Annaler. Series
B, Human Geography, vol. 53, no. 1, pp. 54�67, 1971.

[213] T. O'Connor and H. Y. Wong, Emergent properties, in The Stan-
ford Encyclopedia of Philosophy, Metaphysics Research Lab, Stan-
ford University, 2002.

[214] D. Olivier, �Modélisation informatique de systèmes à base d'interactions
et détection d'organisations. modèles du vivant,� Habilitation à diriger
des recherches, Le Havre Normandy University, Le Havre, 2006.

[215] I. Omer and R. Goldblatt, �Spatial patterns of retail activity and
street network structure in new and traditional israeli cities,� Urban
Geography, vol. 37, no. 4, pp. 629�649, 2016.

[216] L. Papadopoulos, M. A. Porter, K. E. Daniels, and D. S. Bassett,
�Network analysis of particles and grains,� Journal of Complex Net-
works, vol. 6, no. 4, pp. 485�565, 2018.

[217] R. Pastor-Satorras and A. Vespignani, Evolution and structure of the
Internet. Cambridge: Cambridge University Press, 2004.

[218] J. E. Pearson, �Complex patterns in a simple system,� Science, vol. 261,
no. 5118, pp. 189�192, 1993.

[219] K. Pearson, �The problem of the random walk,� Nature, vol. 72,
no. 1865, p. 294, 1905.



198 Bibliography

[220] P. Pellegrino, Le sens de l'espace. La dynamique urbaine. Paris: An-
thropos, 2001.

[221] A. Perna, P. Kuntz, and S. Douady, �Characterization of spatial
network like patterns from junction geometry,� Physical Review E,
vol. 83, no. 6, p. 066 106, 2011.

[222] A. Perna and T. Latty, �Animal transportation networks,� Journal
of The Royal Society Interface, vol. 11, no. 100, p. 20 140 334, 2014.

[223] A. Perna, S. Valverde, J. Gautrais, C. Jost, R. Solé, P. Kuntz, and G.
Theraulaz, �Topological e�ciency in three-dimensional gallery net-
works of termite nests,� Physica A: Statistical Mechanics and its
Applications, vol. 387, no. 24, pp. 6235�6244, 2008.

[224] C. A. Pickover, Chaos and Fractals: A Computer Graphical Journey.
Elsevier, 1998.

[225] Y. Pigne, �Modélisation et traitement décentralisé des graphes dy-
namiques. application aux réseaux mobiles ad hoc,� Ph.D. disserta-
tion, Le Havre Normandy University, Le Havre, 2008.

[226] Y. Pigne, A. Dutot, F. Guinand, and D. Olivier, �GraphStream:
a tool for bridging the gap between complex systems and dynamic
graphs,� Emergent Properties in Natural and Arti�cial Complex Sys-
tems. Satellite Conference within the 4th European Conference on
Complex Systems, 2008.

[227] S. Porta, P. Crucitti, and V. Latora, �The network analysis of urban
streets: a dual approach,� Physica A: Statistical Mechanics and its
Applications, vol. 369, no. 2, pp. 853�866, 2006.

[228] ��, �The network analysis of urban streets: a primal approach,�
Environment and Planning B: Planning and Design, vol. 33, no. 5,
pp. 705�725, 2006.

[229] S. Porta, E. Strano, V. Iacoviello, R. Messora, V. Latora, A. Cardillo,
F. Wang, and S. Scellato, �Street centrality and densities of retail and
services in bologna, italy,� Environment and Planning B: Planning
and Design, vol. 36, no. 3, pp. 450�465, 2009.

[230] J. Portugali, �Complexity theory as a link between space and place,�
Environment and Planning A, vol. 38, no. 4, pp. 647�664, 2006.

[231] I. Prigogine and I. Stengers, La nouvelle alliance. Métamorphose de
la science. Paris: Gallimard, 1979.

[232] I. Prigogine, I. Stengers, and A. To�er, Order out of chaos: Man's
new dialogue with nature. Toronto, New York: Bantam New Age
Books, 1984.

[233] D. Pumain, �Alternative explanations of hierarchical di�erentiation
in urban systems,� inHierarchy in Natural and Social Sciences, ser. Metho-
dos Series, D. Pumain, Ed., Dordrecht: Springer Netherlands, 2006,
pp. 169�222.

[234] ��, (2018). �Fractals, urban fabrics and planning � a few clari�ca-
tions,� cybergeo conversation,



Bibliography 199

[235] D. Pumain and T. Saint-Julien, Analyse spatiale : les localisations
dans l'espace. Paris: Armand Colin, 1997.

[236] D. Pumain, L. Sanders, and T. Saint-Julien, Villes et auto-organisation.
Paris: Economica, 1989.

[237] J. Raimbault, A. Banos, and R. Doursat, �A hybrid network/grid
model of urban morphogenesis and optimization,� in the 4th ICCSA
International Conference on Complex Systems and Applications, 2014,
pp. 51�60.

[238] U. Ramer, �An iterative procedure for the polygonal approximation
of plane curves,� Computer Graphics and Image Processing, vol. 1,
no. 3, pp. 244�256, 1972.

[239] J. Randon-Furling, M. Olteanu, and A. Lucquiaud, �From urban seg-
regation to spatial structure detection,� Environment and Planning
B: Urban Analytics and City Science, vol. 47, no. 4, pp. 645�661,
2018.

[240] N. Rashevsky, �An approach to the mathematical biophysics of bi-
ological self-regulation and of cell polarity,� The bulletin of mathe-
matical biophysics, vol. 2, no. 1, pp. 15�25, 1940.

[241] C. Ratti, �Space syntax: some inconsistencies,� Environment and
Planning B: Planning and Design, vol. 31, no. 4, pp. 487�499, 2004.

[242] S. G. Reebs, �Can a minority of informed leaders determine the for-
aging movements of a �sh shoal?� Animal Behaviour, vol. 59, no. 2,
pp. 403�409, 2000.

[243] C. W. Reynolds, �Flocks, herds and schools: a distributed behavioral
model,� in in the 14th annual conference on Computer graphics and
interactive techniques, New York, NY, USA: Association for Com-
puting Machinery, 1987, pp. 25�34.

[244] A. Rheinwalt, N. Marwan, J. Kurths, P. Werner, and F.-W. Gersten-
garbe, �Boundary e�ects in network measures of spatially embedded
networks,� EPL (Europhysics Letters), vol. 100, no. 2, p. 28 002, 2012.

[245] S. K. Robson and J. F. A. Traniello, �Key individuals and the organ-
isation of labor in ants,� in Information Processing in Social Insects,
Basel: Birkhäuser, 1999, pp. 239�259.

[246] M. Roncayolo, Lectures de villes : Formes et temps. Marseille: Par-
enthèses, 2002.

[247] J. de Rosnay, The Macroscope. A new world scienti�c system. Paris:
Seuil, 1975.

[248] A. Rossi, L'architettura della città. Padova: Marsilio, 1966.

[249] M. Rosvall, A. Trusina, P. Minnhagen, and K. Sneppen, �Networks
and cities: an information perspective,� Physical Review Letters, vol. 94,
no. 2, 2005.

[250] Y. Rui and Y. Ban, �Exploring the relationship between street cen-
trality and land use in stockholm,� International Journal of Geo-
graphical Information Science, vol. 28, no. 7, pp. 1425�1438, 2014.



200 Bibliography

[251] Y. Rui, Y. Ban, J. Wang, and J. Haas, �Exploring the patterns and
evolution of self-organized urban street networks through modeling,�
The European Physical Journal B, vol. 86, no. 3, p. 74, 2013.

[252] N. A. Salingaros and B. J. West, �A universal rule for the distribution
of sizes,� Environment and Planning B: Planning and Design, vol. 26,
no. 6, pp. 909�923, 1999.

[253] N. Salingaros, Principles of Urban Structure. Delf: Techne, 2005.

[254] L. Sanders, D. Pumain, H. Mathian, F. GuÃ©rin-Pace, and S. Bura,
�SIMPOP: a multiagent system for the study of urbanism,� Environ-
ment and Planning B, vol. 24, no. 2, pp. 287�305, 1997.

[255] L. Sanders, �Introduction to models in spatial analysis,� in Models
in Spatial Analysis, London: ISTE, 2007.

[256] P. Sarkar and A. W. Moore, �Random walks in social networks and
their applications: a survey,� in Social Network Data Analytics, C. C.
Aggarwal, Ed., Boston, MA: Springer US, 2011, pp. 43�77.

[257] K. Al-Sayed and A. Turner, �Emergence and self-organization in ur-
ban structures,� in Proceedings the 15th AGILE International Con-
ference, Avignon, 2012.

[258] T. C. Schelling, �Models of segregation,� The American Economic
Review, vol. 59, no. 2, pp. 488�493, 1969.

[259] J. Schnakenberg, �Simple chemical reaction systems with limit cycle
behaviour,� Journal of Theoretical Biology, vol. 81, no. 3, pp. 389�
400, 1979.

[260] E. E. Sel'kov, �Self-oscillations in glycolysis. a simple kinetic model,�
European Journal of Biochemistry, vol. 4, no. 1, pp. 79�86, 1968.

[261] F. Semboloni, �The growth of an urban cluster into a dynamic self-
modifying spatial pattern,� Environment and Planning B: Planning
and Design, vol. 27, no. 4, pp. 549�564, 2000.

[262] A. Sevtsuk, R. Kalvo, and O. Ekmekci, �Pedestrian accessibility in
grid layouts: the role of block, parcel and street dimensions.,� Urban
Morphology, vol. 20, no. 2, pp. 89�106, 2016.

[263] C. E. Shannon, �A mathematical theory of communication,� Bell
System Technical Journal, vol. 27, no. 3, pp. 379�423, 1948.

[264] C. E. Shannon, �An algebra for theoretical genetics,� Ph.D. disser-
tation, Massachusetts Institute of Technology, 1940.

[265] G. Shen, �Fractal dimension and fractal growth of urbanized areas,�
International Journal of Geographical Information Science, vol. 16,
no. 5, pp. 419�437, 2002.

[266] N. H. Shubin and P. Alberch, �A morphogenetic approach to the
origin and basic organization of the tetrapod limb,� in Evolutionary
Biology: Volume 20, M. K. Hecht, B. Wallace, and G. T. Prance,
Eds., Boston, MA: Springer US, 1986, pp. 319�387.

[267] W. Sierpi«ski, �Sur une courbe cantorienne dont tout point est un
point de rami�cation,� p. 302, 1915.



Bibliography 201

[268] C. Sitte, L'arte di costruire le città. L'urbanistica secondo i suoi
fondamenti artistici. Milano: Jaca Book, 2016.

[269] C. Song, S. Havlin, and H. A. Makse, �Self-similarity of complex
networks,� Nature, vol. 433, no. 7024, p. 392, 2005.

[270] E. Strano, V. Nicosia, V. Latora, S. Porta, and M. Barthélemy, �El-
ementary processes governing the evolution of road networks,� Sci-
enti�c Reports, vol. 2, p. 296, 2012.

[271] D. J. T. Sumpter, Collective Animal Behavior. Princeton: Princeton
University Press, 2010.

[272] Z. Sun, J. Zheng, and H. Hu, �Fractal pattern in spatial structure of
urban road networks,� International Journal of Modern Physics B,
vol. 26, no. 30, p. 1 250 172, 2012.

[273] J. Tabony and D. Job, �Gravitational symmetry breaking in micro-
tubular dissipative structures.,� Proceedings of the National Academy
of Sciences of the United States of America, vol. 89, no. 15, pp. 6948�
6952, 1992.

[274] ��, �Spatial structures in microtubular solutions requiring a sus-
tained energy source,� Nature, vol. 346, no. 6283, pp. 448�451, 1990.

[275] P. Taillandier, A. Banos, A. Drogoul, B. Gaudou, N. Marilleau, and
Q. C. Truong, �Simulating urban growth with raster and vector mod-
els: a case study for the city of can tho, vietnam,� in International
Workshop on Agent Based Modelling of Urban Systems, Springer,
Cham, 2016, pp. 21�38.

[276] C. Tannier, M. Bourgeois, H. Houot, and J.-C. Foltête, �Impact of
urban developments on the functional connectivity of forested habi-
tats: a joint contribution of advanced urban models and landscape
graphs,� Land Use Policy, vol. 52, pp. 76�91, 2016.

[277] C. Tannier and D. Pumain, �Fractals in urban geography: a theoret-
ical outline and an empirical example,� Cybergeo : European Journal
of Geography, 2005.

[278] C. Tannier, I. Thomas, G. Vuidel, and P. Frankhauser, �A fractal
approach to identifying urban boundaries,� Geographical Analysis,
vol. 43, no. 2, pp. 211�227, 2011.

[279] S. Thibault, �The morphology and growth of urban technical net-
works: a fractal approach,� Flux, vol. 19, no. 1, pp. 17�30, 1995.

[280] I. Thomas, P. Frankhauser, and D. Badariotti, �Comparing the frac-
tality of european urban neighbourhoods: do national contexts mat-
ter?� Journal of Geographical Systems, vol. 14, no. 2, pp. 189�208,
2012.

[281] I. Thomas, P. Frankhauser, and C. Biernacki, �The morphology of
built-up landscapes in wallonia (belgium) : a classi�cation using frac-
tal indices,� Landscape and urban planning, vol. 84, no. 2, pp. 99�
115, 2008.



202 Bibliography

[282] M. Tirico, S. Balev, A. Dutot, and D. Olivier, �Morphogenesis of
complex networks: a reaction di�usion framework for spatial graphs,�
in Complex Networks and Their Applications VII, ser. Studies in
Computational Intelligence, Springer International Publishing, 2019,
pp. 769�781.

[283] W. R. Tobler, �A computer movie simulating urban growth in the de-
troit region,� Economic Geography, vol. 46, pp. 234�240, sup1 1970.

[284] M.-H. Tsou and J.-A. Yang, �Spatial social networks,� in Interna-
tional Encyclopedia of Geography, American Cancer Society, 2017,
pp. 1�9.

[285] A. M. Turing, �The chemical basis of morphogenesis,� Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences, vol. 237, no. 641, pp. 37�72, 1952.

[286] W. T. Tutte, Graph Theory. Cambridge University Press, 2001.

[287] United nations, revision of world urbanization prospects, 2018.

[288] United nations, world population prospects: highlights, 2019.

[289] P. Valéry, Cahiers. Paris: Gallimard, 1973.

[290] S. Valverde, B. Corominas-Murtra, A. Perna, P. Kuntz, G. Ther-
aulaz, and R. V. Solé, �Percolation in insect nest networks: evidence
for optimal wiring,� Physical Review E, vol. 79, no. 6, p. 066 106,
2009.

[291] F. Varenne, �Histoire de la modélisation : quelques jalons,� in Col-
loque Modélisation : succès et limites, CNRS & Académie des Tech-
nologies, Paris, 2016.

[292] T. Vicsek, Fractal Growth Phenomena. World Scienti�c Publishing
Company, 1989.

[293] M. M. Waldrop, Complexity: The Emerging Science at the Edge of
Order and Chaos. New York, NY: Simon & Schuster, 1993.

[294] F. Wang, A. Antipova, and S. Porta, �Street centrality and land use
intensity in baton rouge, louisiana,� Journal of Transport Geography,
vol. 19, no. 2, pp. 285�293, 2011.

[295] S. Wasserman and K. Faust, Social Network Analysis. Cambridge:
Cambridge University Press, 1994.

[296] D. J. Watts and S. H. Strogatz, �Collective dynamics of `small-world'
networks,� Nature, vol. 393, no. 6684, pp. 440�442, 1998.

[297] J. Wei and M. Winter, �Existence and stability of multiple-spot so-
lutions for the gray�scott model in r2,� Physica D: Nonlinear Phe-
nomena, vol. 176, no. 3, pp. 147�180, 2003.

[298] R. White, G. Engelen, and I. Uljee, �The use of constrained cellular
automata for high-resolution modelling of urban land-use dynamics,�
Environment and Planning B: Planning and Design, vol. 24, no. 3,
pp. 323�343, 1997.

[299] N. Wiener, Cybernetics Or Control and Communication in the Ani-
mal and the Machine. MIT Press, 1965.



Bibliography 203

[300] A. G. Wilson, Urban and regional models in geography and planning.
Chichester: John Wiley, 1974.

[301] S. Wolfram, A New Kind of Science. Champaign: Wolfram Media,
2002.

[302] Y. Xiao, C. Webster, and S. Orford, �Identifying house price e�ects of
changes in urban street con�guration: an empirical study in nanjing,
china,� Urban Studies, vol. 53, no. 1, pp. 112�131, 2016.

[303] F. Xie and D. Levinson, �Topological evolution of surface trans-
portation networks,� Computers, Environment and Urban Systems,
vol. 33, no. 3, pp. 211�223, 2009.

[304] Y.-B. Xie, T. Zhou, W.-J. Bai, G. Chen, W.-K. Xiao, and B.-H.
Wang, �Geographical networks evolving with an optimal policy,�
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,
vol. 75, no. 3, p. 036 106, 2007.

[305] A. N. Zaikin and A. M. Zhabotinsky, �Concentration wave propaga-
tion in two-dimensional liquid-phase self-oscillating system,� Nature,
vol. 225, no. 5232, pp. 535�537, 1970.

[306] G. K. Zipf, �The p1 p2/d hypothesis: on the intercity movement of
persons,� American Sociological Review, vol. 11, no. 6, pp. 677�686,
1946.

[307] ��, �The hypothesis of the `minimum equation' as a unifying social
principle: with attempted synthesis,� American Sociological Review,
vol. 12, no. 6, pp. 627�650, 1947.



 



Abstract

The characteristics, functions and morphogenesis processes of a large number of complex spatial networks are

in�uenced by the position and the geometry of their constituent elements. In this work, we address the com-

putational aspects of the morphogenesis of complex networks by proposing a general model, simulating their

formation. The networks are generated under the in�uence of constraints expressed through a vector �eld that is

determined using a reaction-di�usion system. We use a Gray-Scott model to produce a wide variety of dynamic

patterns. The resulting vector �eld controls the geometry and the growth rate of the constructed network that

feeds back the reaction-di�usion process. A study was carried out on the in�uence of the patterns and feedback

processes on the structure of the obtained networks using measures from graph theory and multi-fractality the-

ory. A process of validation and evaluation of the model's behaviour was carried out and applied by comparing

the networks obtained to largest French cities and the most relevant geometric planar graphs.

Keywords complex networks, complex systems, morphogenesis, spatial networks, reaction-di�usion systems,

urban growth models, graph generator, fractal theory.

Résumé

Les caractéristiques, les fonctionnements et les processus de morphogénèse d'un grand nombre de réseaux spatio-

complexes sont in�uencés par la position et la géométrie de leurs éléments constitutifs. Nous abordons, dans ce

travail, les aspects computationnels de la morphogénèse de réseaux complexes, en proposant un modèle général,

capable de simuler leur formation. Les réseaux sont générés sous l'in�uence de contraintes qui s'expriment

par l'intermédiaire d'un champ vectoriel qui est déterminé à l'aide d'un système de réaction-di�usion. Nous

utilisons un modèle de Gray-Scott produisant une grande variété de motifs dynamiques. Le champ vectoriel

obtenu contrôle la géométrie et le taux de croissance du réseau construit qui rétroagit sur le processus de

réaction-di�usion. Une étude a été réalisée sur l'in�uence des motifs et des processus de rétroaction sur la

structure des réseaux obtenus en s'appuyant sur des mesures de réseaux complexes et de multi-fractalités. Une

démarche de validation et d'évaluation du comportement du modèle a été e�ectuée et appliquée en comparant les

réseaux obtenus à ceux structurant les villes françaises les plus importantes en taille et les plus connues graphes

géométriques planaires.

Mots clés réseaux complexes, systèmes complexes, morphogénèse, réseaux spatiaux, systèmes de réaction-

di�usion, modèles de croissance urbain, générateur de graphes, théorie des fractales.

Riassunto

Le caratteristiche, il funzionamento e i processi di morfogenesi delle reti spaziali complesse sono in�uenzate dalla

posizione e dalla geometria dei suoi elementi costitutivi. Questo lavoro si concentra sugli aspetti computazionali

della morfogenesi di queste reti, proponendo un modello generale e �essibile capace di simulare la loro formazione.

La generazione delle reti é controllata attraverso un campo vettoriale dinamico intermediario, determinato da

un sistema di reazione-di�usione. Il modello di Gray-Scott é stato utilizzato per produrre un'ampia varietà di

motivi dinamici. Il campo vettoriale ottenuto controlla la geometria e il tasso di crescita della rete. Quest'ultima

a sua volta retroagisce sul processo di reazione-di�usione. Sono stati studiati gli e�etti dei motivi e dei pro-

cessi di retroazione sulle strutture emergenti utilizzando misure derivate dalla teoria dei gra� e dalla teoria dei

multi-frattali. Con l'obiettivo di validare e valutare il comportamento del modello, le reti ottenute sono state

confrontate con le più grandi città Francesi e con una serie di gra� planari.

Parole chiave reti complesse, sistemi complessi, morfogenesi, reti spaziali, sistemi di reazione di�usione,

modelli di crescita urbana, generatore di gra�, teoria dei frattali.


