
HAL Id: tel-03125117
https://theses.hal.science/tel-03125117

Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mean-field methods and algorithmic perspectives for
high-dimensional machine learning

Benjamin Aubin

To cite this version:
Benjamin Aubin. Mean-field methods and algorithmic perspectives for high-dimensional machine
learning. Disordered Systems and Neural Networks [cond-mat.dis-nn]. Université Paris-Saclay, 2020.
English. �NNT : 2020UPASP083�. �tel-03125117�

https://theses.hal.science/tel-03125117
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N

N
T:

2
0

2
0

U
PA

S
P
0

8
3

Mean-field methods and algo-
rithmic perspectives for high-
dimensional machine learning

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 564
École Doctorale Physique en Île-de-France (EDPIF)

Spécialité de doctorat: Physique
Unité de recherche: Université Paris-Saclay, CNRS, CEA

Institut de physique théorique
91191, Gif-sur-Yvette, France.

Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue en visioconférence totale, le
16/12/2020, par

Benjamin AUBIN

Composition du jury:

Romain COUILLET Président

Professeur, Centrale-Supélec

Université Paris-Saclay

Sundeep RANGAN Rapporteur & Examinateur

Professeur, directeur associé

NYU Wireless

David SAAD Rapporteur & Examinateur

Professeur

Aston University

Marc MEZARD Examinateur

Directeur de recherche CNRS

École Normale Supérieure

Alberto ROSSO Examinateur

Directeur de recherche CNRS

Université Paris-Saclay

Lenka ZDEBOROVA Directrice de thèse

Directrice de recherche CNRS

EPFL

Florent KRZAKALA Invité

Professeur

EPFL





MEAN-F I ELD METHODS AND
ALGORI THMIC PERSPECT I VES FOR

HIGH-D IMENS IONAL MACHINE
LEARNING

BEN JAMIN AUB IN

Institut de Physique Théorique
CEA & Université Paris-Saclay

December 16, 2020





The constructionist hypothesis breaks down when confronted with the twin
di�culties of scale and complexity. The behavior of large and complex

aggregates of elementary particules, it turns out, is not to be understood in
terms of a simple extrapolation of the properties of a few particles. Instead,

at each level of complexity entirely new properties appear, and the
understanding of the new behaviors requires research which I think is as

fundamental in its nature as any other.

More is di�erent— P. W. Anderson (1972)
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FOREWORD

At a time when the use of data has reached an unprecedented level, the access
to large datasets precipitated their intense use to train machine learning
models. The corresponding algorithms essentially aim to detect and make
use of structured informations within excessively large datasets. Speci�cally,
after many twists and turns, the celebrated, now ubiquitous, deep-learning
models, based on arti�cial neural networks architectures, brought important
numerical progresses in this direction. Overtaking other existing models
from the mid-2000s, they became, in just a few years, indispensable in many
industrial applications such as image classi�cation, speech recognition, text
mining, (LeCun et al., 2015) or time series prediction, object detection for
face recognition, natural language processing, medical diagnosis, etc.

However, understanding most of the practical gradient-based algorithms
used to train these oversized and complex networks, which contain up to
millions of parameters, remains empirical and challenging to analyze theoreti-
cally. The main issue arising with deep and wide neural network architectures
lies essentially in the succession of numerous layers through non-linear
operations that make the space of optimization very high-dimensional and
complex. Handling and visualizing this large collection of parameters is the
central mathematical di�culty in most of state-of-the-art machine learning
models and algorithms. This lack of theoretical understanding raises many
questions about their e�ciency and potential risks in many areas. As a re-
sult, establishing theoretical foundations on simple models and providing
numerical prescriptions on which to base and explain empirical observations
have become one of the fundamental challenges of the research community.

In this manuscript, we investigate these burning questions, arising in ma-
chine learning, through the lens of statistical physics of disordered systems.
This singular transversal approach to computer science problems has a long
and rich history (Engel et al., 2001; Mézard et al., 2009; Grassberger et al.,
2012; Zdeborová et al., 2016a; Advani et al., 2017), that we revisit in the
high-dimensional regime by focusing especially on modern algorithmic con-
siderations and rigorous justi�cations. Speci�cally in the context of oversized
neural networks, for which the number of parameters explodes, exact analyt-
ical solutions are unknown most of the time and numerical computations are
ruled out. Techniques from statistical physics have been precisely designed to
infer the macroscopic behavior of such a large collection of particles from the
microscopic description of their elementary interactions. They o�er a suitable
set of approximations, called mean-�elds methods, that are simple enough
to be computationally tractable and rich enough to capture and reproduce
interesting features of the system. Moreover, in this thermodynamic limit,
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physicists experienced that macroscopic behaviors are typically described
correctly by a set of a few order parameters.

Applied to machine learning theory, which precisely lacks such techniques,
we believe that statistical physics insights may contribute in identifying the
set of relevant observables that control the large-scale properties of the sys-
tem, and provide a powerful framework to analyze such complex arti�cial
neural networks. Unfortunately, even though very powerful and believed to
lead to the correct result in many situations, these techniques were derived
historically without rigorous foundations. Therefore, this work is part of the
current momentum of the mathematical physics community that focuses on
proving former results obtained heuristically in the 90’s. Additionally, while
these former statistical analysis were not discussing computational perspec-
tives, we revisit this approach by focusing on the potential algorithmic phase
transitions.

At the heart of this work, we strongly capitalize on a probabilistic Bayesian
reasoning, which contrasts with the traditional optimization approach. More-
over, we make an intense use of the deep connection between the replica
method and approximate message passing algorithms to elicit the phase di-
agrams of simple theoretical models, which reveal nonetheless interesting
features. By revisiting the teacher-student paradigm, that allows to create
synthetic, but tractable, tasks, we focus our attention on emphasizing the
potential gaps between statistical and computational thresholds.

We illustrate the e�ciency of these mean-�eld methods on various poorly
understood machine learning models. We essentially focus on synthetic tasks
and data generated in the teacher-student paradigm, and we contribute to
their understanding by describing their rich phase diagrams. First, we start
by presenting the Bayes-optimal analysis of committee machines that reveals
the existence of large computational-to-statistical gaps. Next, in a worst-
case analysis, we bring to light a strong connection between the Rademacher
generalization bound from statistical learning theory, and the storage capacity
and ground state energies from the statistical physics literature, which allows
us to explicitly compute the Rademacher complexity of perceptrons. We
�nally complete the picture by analyzing the intensively used empirical risk
minimization of generalized linear models and we compare it to the previous
Bayes-optimal and worst-case analysis. In another research direction, we
de�ne a general procedure to combine elementary models already analyzed
to build up more complex and structured architectures. In this way, we
develop a framework that overcomes in particular the standard separable
prior assumption and makes possible to analyze estimation models, such
as low-rank matrix estimation, phase retrieval or compressed sensing, with
deep generative priors based on random weights.
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ORGANIZAT ION OF THE MANUSCR IPT

As my work of Ph.D lies at the crossroads of machine learning and statistical
physics of disordered systems, in Part I I take the opportunity to pedagogi-
cally present the basic, yet essential, theoretical concepts to follow the rest
of the manuscript. In Chap. 1, I propose a high-level overview of the �eld
of machine learning with a focus on its tortuous history, basic concepts
and current challenges. Chap. 2 covers the basic tools of statistical physics
that are relevant to understand the original approach we employ to tackle
machine learning problems. These two �rst chapters are devoted to readers
unfamiliar with one or the other background and can be skipped by experts.
In Chap. 3, we provide a selection of important historical references to un-
derstand how these two �elds are intertwined for over thirty years. It is
also the occasion to review a selection of the current research axes of the
statistical physics approach in arti�cial neural networks. Finally, we intro-
duce the crucial Bayesian probabilistic framework and its crucial connection
with statistical physics. This constitutes the cornerstone of our approach
which allows us to analyze simultaneously statistical inference and random
constraint satisfaction problems. In Chap. 4, we propose a methodological
review of selected fundamental mean-�eld inference methods, originally
motivated in the spin glass literature (Mézard et al., 1987), that are mainly
used in the second part of the dissertation. Speci�cally, we remind the details
of the derivations of the replica method and message passing algorithms
on the class of generalized linear models, as a core example throughout this
manuscript. Moreover, by highlighting their complementarities, we attempt
to clarify how the methods are related and allow to reveal rich statistical and
algorithmic phase transitions.

The Part II of this manuscript is devoted to cover the works I have con-
tributed as a Ph.D student from October 2017 to December 2020, at Institut
de Physique Théorique in CEA-Saclay under the supervision of Lenka Zde-
borová and Florent Krzakala. The contents of the articles have already been
published in a series of works which can be found online in their original
format. They have been revised in order to standardize the notations of this
manuscript. In particular, for the sake of clarity and conciseness, some of the
lengthy proofs and calculations to which I have not directly contributed are
not reported in this manuscript and can be found in the original publications
listed in Sec. 3.

CONTRIBUT IONS

Part II, which brings together my main contributions, is separated in two
sub-parts corresponding to parallel axes of research. In order to best re�ect
my work, I will detail my personal contributions to the various co-signed
articles in which I participated.
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In Part II. A, we discuss the complementary analysis of the Bayes-optimal
and worst-case scenarios and empirical risk minimization of simple feed-
forward neural networks with separable prior distributions. In Chap. 5, we
�rst present the Bayes-optimal approach on committee machines, that pro-
vides an information theoretical lower-bound perspective. Next, we describe
the analysis of the storage capacity problem in Chap. 6 and related ground
state energies, within a generic random constraint satisfaction problem frame-
work. In Chap. 7, we show that these quantities turn out to be closely related
to the worst-case Rademacher complexity generalization error upper bound.
Finally in Chap. 8, we investigate the practical case with the analysis of empir-
ical risk minimization which is performed in practice with gradient-descent
algorithms.

1. ‘The committee machine: Computational to statistical gaps in learning a
two-layers neural network’. Aubin, Maillard, Barbier, Krzakala, Macris,
and Zdeborová (2018b)
Presented in Chap. 5.

Summary: Heuristic tools from statistical physics have been used
in the past to locate the phase transitions and compute the optimal
learning and generalization errors in the teacher-student scenario in
multi-layer neural networks. In this contribution, we provide a rigor-
ous justi�cation of these approaches for a two-layers neural network
model called the committee machine, under a technical assumption.
We also introduce a version of the approximate message passing (AMP)
algorithm for the committee machine, that allows to perform optimal
learning in polynomial time for a large set of parameters. We �nd that
there are regimes in which a low generalization error is information-
theoretically achievable while the AMP algorithm fails to deliver it;
strongly suggesting that no e�cient algorithm exists for those cases,
and unveiling a large computational gap.
Personal contributions: I have developed and implemented the AMP
algorithm and its state evolution to depict the corresponding phase
diagrams.

2. ‘Storage capacity in symmetric binary perceptrons’. Aubin, Perkins, and
Zdeborová (2019b)
Presented in Chap. 6.

Summary: We study the problem of determining the capacity of the
binary perceptron for two variants of the problem where the corre-
sponding constraint is symmetric. We call these variants the rectangle-
binary-perceptron (RPB) and the u−function-binary-perceptron (UBP).
We show that, unlike for the usual step-function-binary-perceptron,
the critical capacity in these symmetric cases is given by the annealed
computation in a large region of parameter space, for all rectangular
constraints and for narrow enough u−function constraints, K < K∗.
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We prove this result, under two natural assumptions, using the �rst
and second moment methods. We further use the second moment
method to conjecture that solutions of the symmetric binary percep-
trons are organized in a so-called frozen-1RSB structure, without using
the replica method. We then use the replica method to estimate the ca-
pacity threshold for the UBP case when the u−function is wide K > K∗.
We conclude that full-step-replica-symmetry breaking would have to
be evaluated in order to obtain the exact capacity in this case.
Personal contributions: I have analyzed the RSB Ansätze of the
replica free entropy to study the Gardner capacity and the con�gura-
tion space geometry. I also contributed to the �rst and second moments
proofs.

3. ‘Rademacher complexity and spin glasses: A link between the replica and
statistical theories of learning’. Abbara, Aubin, Krzakala, and Zdeborová
(2020)
Presented in Chap. 7.

Summary: Statistical learning theory provides bounds of the gener-
alization gap, using in particular the Vapnik-Chervonenkis dimension
and the Rademacher complexity. An alternative approach, mainly stud-
ied in the statistical physics literature, is the study of generalization
in simple synthetic-data models. Here we discuss the connections be-
tween these approaches and focus on the link between the Rademacher
complexity in statistical learning and the theories of generalization
for typical-case synthetic models from statistical physics, involving
quantities known as Gardner capacity and ground state energy. We
show that in these models the Rademacher complexity is closely re-
lated to the ground state energy computed by replica theories. Using
this connection, one may reinterpret many results of the literature
as rigorous Rademacher bounds in a variety of models in the high-
dimensional statistics limit. Somewhat surprisingly, we also show that
statistical learning theory provides predictions for the behavior of the
ground-state energies in some full replica symmetry breaking models.
Personal contributions: I derived and evaluated the ground state
energies and draw the connection with the Rademacher complexity.

4. ‘Generalization error in high-dimensional perceptrons: Approaching Bayes
error with convex optimization’. Aubin, Krzakala, Lu, and Zdeborová
(2020c)
Presented in Chap. 8.

Summary: We consider a commonly studied supervised classi�cation
of a synthetic dataset whose labels are generated by feeding a one-layer
neural network with random iid inputs. We study the generalization
performances of standard classi�ers in the high-dimensional regime
where α = n/d is kept �nite in the limit of a high dimension d and
number of samples n. Our contribution is three-fold: First, we prove a
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formula for the generalization error achieved by `2−regularized classi-
�ers that minimize a convex loss. This formula was �rst obtained by
the heuristic replica method of statistical physics. Secondly, focusing
on commonly used loss functions and optimizing the `2 regularization
strength, we observe that while ridge regression performance is poor,
logistic and hinge regression are surprisingly able to approach the
Bayes-optimal generalization error extremely closely. As α → ∞ they
lead to Bayes-optimal rates, a fact that does not follow from predic-
tions of margin-based generalization error bounds. Third, we design
an optimal loss and regularizer that provably leads to Bayes-optimal
generalization error.
Personal contributions: I conducted the theoretical analysis and the
numerical evaluations. I also contributed to the proofs based on the
Gordon min-max theorem.

In Part II. B, we present a line of research conducted in parallel that inves-
tigates di�erent kinds of prior informations for estimation problems, such
as the spiked matrix model presented in Chap. 9 or compressed sensing and
phase retrieval detailed in Chap. 10. Speci�cally, we compare the statistical-to-
algorithmic gaps for sparse separable priors and structured deep generative
priors with random weights.

5. ‘The spiked matrix model with generative priors’. Aubin, Loureiro, Mail-
lard, Krzakala, and Zdeborová (2019d)
Presented in Chap. 9.

Summary: Using a low-dimensional parametrization of signals is
a generic and powerful way to enhance performance in signal pro-
cessing and statistical inference. A very popular and widely explored
type of dimensionality reduction is sparsity; another type is generative
modeling of signal distributions. Generative models based on neural
networks, such as GANs or variational auto-encoders, are particularly
performant and are gaining on applicability. In this paper we study
spiked matrix models, where a low-rank matrix is observed through a
noisy channel. This problem with sparse structure of the spikes has
attracted broad attention in the past literature. Here, we replace the
sparsity assumption by generative modelling, and investigate the con-
sequences on statistical and algorithmic properties. We analyze the
Bayes-optimal performance under speci�c generative models for the
spike. In contrast with the sparsity assumption, we do not observe
regions of parameters where statistical performance is superior to the
best known algorithmic performance. We show that in the analyzed
cases the approximate message passing algorithm is able to reach opti-
mal performance. We also design enhanced spectral algorithms and
analyze their performance and thresholds using random matrix theory,
which was performed by collaborators, showing their superiority to the
classical principal component analysis. We complement our theoretical
results by illustrating the performance of the spectral algorithms when
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the spikes come from real datasets.
Personal contributions: I co-developed the plug-in framework to
combine the replica free entropies and the AMP algorithms of sub-
models, in close collaboration with B. Loureiro. I also co-developed the
LAMP spectral method and conducted the numerical implementations.

6. ‘Exact asymptotics for phase retrieval and compressed sensing with ran-
dom generative priors’. Aubin, Loureiro, Baker, Krzakala, and Zdeborová
(2020a)
Presented in Chap. 10.

Summary: We consider the problem of compressed sensing and of
(real-valued) phase retrieval with random measurement matrix. We
derive sharp asymptotics for the information-theoretically optimal
performance and for the best known polynomial algorithm for an
ensemble of generative priors consisting of fully connected deep neu-
ral networks with random weight matrices and arbitrary activations.
We compare the performance to sparse separable priors and conclude
that in all cases analyzed generative priors have a smaller statistical-
to-algorithmic gap than sparse priors, giving theoretical support to
previous experimental observations that generative priors might be
advantageous in terms of algorithmic performance. In particular, while
sparsity does not allow to perform compressive phase retrieval e�-
ciently close to its information-theoretic limit, it is found that under the
random generative prior compressed phase retrieval becomes tractable.
Personal contributions: I conducted the numerical analysis and eval-
uation of the phase transitions.

Finally, I have contributed to an additional work, not covered in this disser-
tation, that introduces a modular python implementation of compositional
inference on tree-structured inference models. However, in line with previ-
ous works, in Sec. 10.3 we present simple applications of the algorithm to
estimation problems with generative priors trained on real datasets.

7. ‘TRAMP: Compositional Inference with TRee Approximate Message Pass-
ing’. Baker, Aubin, Krzakala, and Zdeborová (2020)

Summary: We introduce tramp, standing for TRee Approximate Mes-
sage Passing, a python package for compositional inference in high-
dimensional tree-structured models. The package provides an unify-
ing framework to study several approximate message passing algo-
rithms previously derived for a variety of machine learning tasks such
as generalized linear models, inference in multi-layer networks, ma-
trix factorization, and reconstruction using non-separable penalties.
For some models, the asymptotic performance of the algorithm can
be theoretically predicted by the state evolution, and the measure-
ments entropy estimated by the free entropy formalism. The imple-
mentation is modular by design: each module, which implements a
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factor, can be composed at will with other modules to solve complex
inference tasks. The user only needs to declare the factor graph of
the model: the inference algorithm, state evolution and entropy esti-
mation are fully automated. The source code is publicly available at
https://github.com/sphinxteam/tramp and the documentation is acces-
sible at https:// sphinxteam.github.io/ tramp.docs.
Personal contributions: I contributed to implement some parts of
the source code and developed entirely the online documentation. I
mainly investigated the reconstruction performances of the package
for generative priors with weights trained with di�erent GAN and VAE
architectures.

https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp
https://sphinxteam.github.io/tramp.docs
https://sphinxteam.github.io/tramp.docs






AVANT -PROPOS

À une époque où l’utilisation des données a atteint un niveau sans précé-
dent, l’accès à ce grand nombre de données a précipité leur utilisation in-
tensive a�n d’entrainer des modèles d’apprentissage automatique. Les algo-
rithmes correspondants visent essentiellement à détecter et à utiliser des
informations structurées au sein d’ensembles de données extrêmement volu-
mineux. Plus précisément, après de nombreux rebondissements, les modèles
d’apprentissage profond, basés sur des architectures de réseaux de neurones
arti�ciels, ont apporté d’importants progrès numériques dans cette direction
et sont désormais omniprésents. Leurs performances dépassant de loin celles
des autres modèles existants, ils sont devenus à partir du milieu des années
2000, et en quelques années à peine, indispensables dans de nombreuses
applications industrielles telles que la classi�cation d’images, la reconnais-
sance vocale, l’analyse de texte (LeCun et al., 2015) ou la prédiction de séries
temporelles, la détection d’objets et la reconnaissance faciale, le traitement du
langage naturel, le diagnostic médical, la robotique, etc. Cependant, la com-
préhension de la plupart des algorithmes, basés sur la descente de gradient
d’une fonction de coût, utilisés en pratique pour entraîner des réseaux surdi-
mensionnés et complexes, qui contiennent jusqu’à des millions de paramètres,
reste essentiellement empirique et di�cile à analyser en théorie. Le prin-
cipal problème qui se pose avec les architectures de réseaux de neurones
profonds réside essentiellement dans la succession de nombreuses couches
constituées d’opérations non-linéaires qui rendent l’espace d’optimisation
très complexe et de haute dimension. L’analyse et la visualisation de cette
vaste collection de paramètres constituent la principale di�culté mathéma-
tique dans la plupart des modèles et algorithmes d’apprentissage automatique
de pointe. Ce manque de compréhension théorique soulève de nombreuses
questions sur leur e�cacité et les risques potentiels dans de nombreux do-
maines d’application. En conséquence, établir des fondements théoriques sur
des modèles simples et fournir des prescriptions numériques sur lesquelles
fonder et expliquer les observations empiriques sont devenus l’un des dé�s
fondamentaux de la communauté scienti�que.

Dans ce manuscrit, nous étudions ces questions d’envergure, soulevées
par la récente utilisation intensive de l’apprentissage automatique, à travers
le prisme de la physique statistique des systèmes désordonnés. Transverse et
singulière, cette approche des problèmes d’informatique par la physique a une
longue et riche histoire (Engel et al., 1993; Mézard et al., 2009; Grassberger
et al., 2012; Zdeborová et al., 2016b; Advani et al., 2017), que nous revisitons
dans le régime de haute dimension, en nous concentrant essentiellement
sur des considérations algorithmiques modernes confortées par des preuves
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rigoureuses. Spéci�quement, dans le contexte de réseaux de neurones surdi-
mensionnés, pour lesquels le nombre de paramètres explose, les solutions
analytiques exactes sont la plupart du temps inconnues et les simulations
numériques, quant à elles, très coûteuses. La plupart des techniques issues
de la physique statistique ont été précisément conçues pour déduire le com-
portement macroscopique d’une aussi grande collection de particules à partir
de la description microscopique de leurs interactions élémentaires. Ainsi,
elles forment un ensemble d’approximations de choix, appelées méthodes à
champ moyen, qui sont su�samment simples pour être calculables et su�-
isamment riches pour décrire et reproduire les caractéristiques intéressantes
du système. De plus, dans cette limite thermodynamique, les physiciens ont
constaté que les comportements macroscopiques sont typiquement décrits
correctement par seulement quelques paramètres d’ordre. Appliquées à la
théorie de l’apprentissage automatique, qui manque cruellement de telles
techniques, nous pensons que les connaissances et techniques de la physique
statistique peuvent contribuer à identi�er cet ensemble d’observables perti-
nentes qui contrôlent les propriétés à grande échelle du système et fournissent
un cadre puissant pour analyser ces réseaux de neurones arti�ciels complexes.
Malheureusement, même si elles sont très puissantes et supposées conduire
à des résultat corrects dans de nombreuses situations, ces techniques ont
été utilisées historiquement sans fondement rigoureux. Par conséquent, ce
travail fait partie de la dynamique actuelle de la communauté de physique-
mathématique à démonter d’anciens résultats obtenus de manière heuristique
dans les années 90. De plus, alors que ces analyses statistiques antérieures
ne discutaient pas des considérations algorithmiques, nous revisitons cette
approche en nous concentrant principalement sur ces potentielles transitions
de phase algorithmiques.

Au coeur de ce travail, nous capitalisons fortement sur un raisonnement
probabiliste Bayésien, qui contraste avec l’approche d’optimisation tradi-
tionnelle. De plus, nous utilisons intensément la connexion profonde entre
la méthode des répliques et les algorithmes de passage de messages pour
obtenir les diagrammes de phase de modèles théoriques simpli�és, qui révè-
lent néanmoins des caractéristiques intéressantes. En revisitant le paradigme
enseignant-élève, qui permet de créer des tâches synthétiques et analysables
théoriquement, nous concentrons notre attention sur la mise en évidence
des écarts potentiels entre les seuils statistiques et algorithmiques. Nous
illustrons l’e�cacité de ces méthodes à champ moyen sur divers modèles
d’apprentissage automatique qui restent mal compris. Nous nous intéres-
sons essentiellement à des tâches synthétiques avec des données générées
dans le paradigme enseignant-élève, et nous contribuons à leur compréhen-
sion en décrivant leurs riches diagrammes de phases. Tout d’abord, nous
commençons par présenter l’analyse Bayes-optimale dans des machines à
comité qui révèle l’existence de grandes lacunes algorithmiques par rap-
ports aux seuils statistiques. Ensuite, dans une analyse pessimiste du pire
scénario possible, nous mettons en évidence un lien fort entre la complexité
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de Rademacher, qui fournit une borne supérieure de l’erreur de généralisation
et est liée à la théorie de l’apprentissage statistique, et la capacité de stockage
et l’énergie de l’état fondamental abordés dans la littérature de physique
statistique. Cela nous permet en particulier de calculer explicitement la com-
plexité de Rademacher dans le cas des perceptrons. Nous complétons en�n
le tableau en analysant la minimisation du risque empirique dans le cas des
modèles linéaires généralisés, qui est intensivement utilisée en pratique, et
nous la comparons aux précédentes analyses Bayes-optimales et du pire
scénario. Dans une autre direction de recherche, nous dé�nissons une procé-
dure générale pour combiner des modèles élémentaires déjà analysés, a�n de
construire des architectures plus complexes et structurées. De cette manière,
nous développons un cadre qui surmonte en particulier l’hypothèse standard
de séparabilité et permet d’analyser des modèles d’estimation, tels que la
factorisation matricielle avec un faible rang, la récupération de phase ou la
détection compressée, avec des informations à priori fournies par des réseaux
génératifs profonds avec des poids aléatoires.

ORGANI SAT ION DU MANUSCR I T

Comme mon travail de doctorat se situe au croisement de l’apprentissage
automatique et de la physique statistique des systèmes désordonnés, je pro�te
de l’occasion pour présenter pédagogiquement dans la Partie I les concepts
théoriques de base, mais essentiels pour suivre le reste du manuscrit. Dans
le Chap. 1, je propose une vue d’ensemble du domaine de l’apprentissage
automatique en mettant l’accent sur son histoire tortueuse, ses concepts de
base et ses dé�s actuels. Le Chap. 2 couvre les outils de base de la physique
statistique qui sont pertinents pour comprendre l’approche originale que
nous employons pour résoudre les problèmes d’apprentissage automatique.
Ces deux premiers chapitres sont consacrés aux lecteurs qui ne connaissent
pas l’un des deux domaines et peuvent être donc ignorés par les experts. Dans
le Chap. 3, nous proposons une sélection de références historiques impor-
tantes pour comprendre comment ces deux domaines sont liés depuis plus de
trente ans. C’est aussi l’occasion de passer en revue une sélection des axes de
recherche actuels auxquels s’intéresse la communauté de physique statistique
des réseaux de neurones arti�ciels. En�n, nous introduisons le cadre proba-
biliste Bayésien et son lien crucial avec la physique statistique. Ceci constitue
la pierre angulaire de notre approche qui nous permet d’analyser simultané-
ment les problèmes d’inférence statistique et de satisfaction de contraintes
aléatoires. Dans le Chap. 4, nous proposons une revue méthodologique de
certaines méthodes fondamentales d’inférence à champ moyen, motivées à
l’origine dans la littérature des verres de spin (Mézard et al., 1987), qui sont
principalement utilisées dans la seconde partie de la thèse. Plus précisément,
nous rappelons en détails la méthode des répliques et les algorithmes de pas-
sage de messages que nous présentons et illustrons sur la classe des modèles
linéaires généralisés, qui sert d’exemple de base tout au long de ce manuscrit.
De plus, en mettant en évidence leurs complémentarités, nous tentons de clar-
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i�er comment les méthodes sont étroitement liées et permettent de révéler
de riches transitions de phase statistiques et algorithmiques.

La partie II de ce manuscrit est consacrée à couvrir les travaux auxquels j’ai
contribué en tant que doctorant d’Octobre 2017 à Décembre 2020, à l’Institut
de Physique Théorique du CEA-Saclay sous la direction de Lenka Zdeborová
et Florent Krzakala. Le contenu des articles a déjà été publié dans une série
d’ouvrages qui peuvent être trouvés en ligne dans leur format original. Ils ont
été révisés a�n d’uniformiser les notations de ce manuscrit. En particulier,
dans un souci de clarté, certaines des longues preuves et calculs auxquels je
n’ai pas directement contribués ne sont pas rapportés dans ce manuscrit et
peuvent être trouvés dans les publications originales.

CONTRIBUT IONS

La partie II, qui rassemble mes principales contributions, est séparée en deux
sous-parties correspondant à des axes de recherche menés en parallèle. Dans
la partie II. A, nous discutons de l’analyse complémentaire des scénarios
Bayes-optimal, du pire cas, et de la minimisation du risque empirique dans le
cadre de réseaux de neurones simples avec des distributions à priori sépara-
bles. Dans le Chap. 5, nous présentons tout d’abord l’approche Bayes-optimale
sur les machines à comité, qui fournit une analyse des bornes inférieures
d’un point de vue de la théorie de l’information. Ensuite, dans le Chap. 6 nous
décrivons l’analyse du problème de la capacité de stockage et des énergies
de l’état fondamental associées, dans le cadre générique des problèmes de
satisfaction de contraintes aléatoires. Dans le Chap. 7, nous montrons que
ces quantités s’avèrent être étroitement liées à la complexité de Rademacher,
connue pour être une borne supérieure de l’erreur de généralisation. Dans
le Chap. 8, nous étudions le cas le plus utilisé en pratique avec l’analyse de
la minimisation du risque empirique qui est souvent réalisée grâce à des
algorithmes de descente de gradient.

1. ‘The committee machine: Computational to statistical gaps in learning a
two-layers neural network’. Aubin, Maillard, Barbier, Krzakala, Macris,
and Zdeborová (2018)
Presenté dans le Chap. 5.

Résumé: Des outils heuristiques issus de la physique statistique ont
été utilisés dans le passé pour localiser les transitions de phase et
calculer les erreurs d’apprentissage et de généralisation optimales de
réseaux de neurones multicouches dans le scénario enseignant-élève.
Dans cette contribution nous fournissons, sous une hypothèse tech-
nique, une justi�cation rigoureuse de ces approches pour un modèle
de réseau de neurones à deux couches, appelé machine à comité. Nous
introduisons également une version de l’algorithme de passage de
messages approximatifs (AMP) pour la machine à comité, qui permet
d’e�ectuer un apprentissage optimal en temps polynomial pour une
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grande région de paramètres. Nous constatons cependant qu’il ex-
iste des régimes dans lesquels une faible erreur de généralisation est
théoriquement réalisable alors que l’algorithme AMP ne parvient pas à
l’atteindre; suggérant fortement qu’aucun algorithme e�cace n’existe
dans cette région, ce qui met en évidence un grand écart entre seuils
statistique et algorithmique.
Contributions personnelles : J’ai développé et implémenté l’algorithme
AMP et son évolution d’état a�n de représenter et analyser les dia-
grammes de phase correspondants.

2. ‘Storage capacity in symmetric binary perceptrons’. Aubin, Perkins, and
Zdeborová (2019a)
Presenté dans le Chap. 6.

Résumé: Nous étudions le problème du calcul de la capacité de stock-
age du perceptron binaire pour deux variantes du problème, dans
lesquelles la contrainte correspondante est symétrique. Nous appelons
ces variantes le perceptron binaire rectangulaire (RPB) et le perceptron
binaire u (UBP). Nous montrons que, contrairement au perceptron bi-
naire habituel avec une fonction marche, la capacité de stockage dans
ces alternatives symétriques est donnée par le calcul recuit dans une
grande région d’espace de paramètres, i. e. pour toutes les contraintes
rectangulaires et pour des contraintes de fonction u assez étroites pour
K < K∗. Nous prouvons ce résultat, sous deux hypothèses naturelles,
en utilisant la méthode des premier et second moments. Nous util-
isons en outre la méthode du second moment pour conjecturer que les
solutions des perceptrons binaires symétriques sont organisées dans
une con�guration gelée dite 1RSB, et ce sans utiliser la méthode des
répliques. Nous utilisons ensuite cette méthode des répliques pour
estimer la capacité de stockage dans le cas UBP lorsque la fonction u−
est large avec K > K∗. Finalement, nous concluons que dans ce cas la
rupture totale de la symétrie des répliques devrait être évaluée pour
obtenir la capacité exacte.
Contributions personnelles : J’ai analysé l’entropie des modèles
sous di�érents Ansätze pour étudier la capacité de stockage de Gardner
et la géométrie de l’espace de con�guration. J’ai également contribué
aux preuves en utilisant la méthode des premier et second moments.

3. ‘Rademacher complexity and spin glasses: A link between the replica and
statistical theories of learning’. Abbara, Aubin, Krzakala, and Zdeborová
(2020)
Presenté dans le Chap. 7.

Résumé: La théorie de l’apprentissage statistique fournit des bornes
sur l’erreur de généralisation en utilisant en particulier la dimension de
Vapnik-Chervonenkis et la complexité de Rademacher. Une approche al-
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ternative, principalement étudiée dans la littérature de physique statis-
tique, est l’étude de la généralisation dans des modèles de données syn-
thétiques simples. Nous discutons donc des liens entre ces approches et
nous nous concentrons sur le lien entre la complexité de Rademacher
en apprentissage statistique et la théorie de la généralisation pour des
modèles synthétiques dans le cas typique étudié en physique statis-
tique. Cela implique notamment des quantités connues sous le nom
de capacité de stockage de Gardner et de l’énergie de l’état fondamen-
tal du modèle. Nous montrons que dans ces modèles, la complexité
de Rademacher est étroitement liée à l’énergie de l’état fondamental
calculée par la méthode des répliques. En utilisant cette connexion,
on peut dès lors réinterpréter de nombreux résultats de la littérature
comme des bornes de Rademacher rigoureuses dans une variété de
modèles et dans le régime de haute dimension. De manière assez sur-
prenante, nous montrons également que la théorie de l’apprentissage
statistique fournit des prédictions sur le comportement des énergies
de l’état fondamental dans certains modèles présentant une rupture
totale de la symétrie des répliques.
Contributions personnelles : J’ai calculé et évalué les énergies de
l’état fondamental et établi leur lien avec la complexité de Rademacher.

4. ‘Generalization error in high-dimensional perceptrons: Approaching Bayes
error with convex optimization’. Aubin, Krzakala, Lu, and Zdeborová
(2020b)
Presenté dans le Chap. 8.

Résumé: Nous considérons une tâche de classi�cation supervisée d’un
ensemble de données synthétiques dont les étiquettes sont générées
en alimentant un réseau de neurone à une couche avec des entrées
iid aléatoires. Nous étudions les performances de généralisation de
classi�cateurs standards dans le régime de haute dimension dans lequel
α = n/d est maintenu �ni dans la limite d’une dimension d et d’un
nombre d’échantillons n in�nis. Notre contribution est triple : Première-
ment, nous prouvons une formule donnant l’erreur de généralisation
obtenue par des classi�cateurs qui minimisent une fonction de coût
convexe avec un terme de régularisation `2. Cette formule a été obtenue
initialement et de façon heuristique par la méthode des répliques de
la physique statistique. Deuxièmement, en nous concentrant sur des
fonctions de coût couramment utilisées et en optimisant l’amplitude de
la régularisation `2, nous observons que même si les performances de
la régression Ridge sont médiocres, en outre les régressions logistique
et Hinge sont étonnamment capables d’approcher de très près l’erreur
de généralisation Bayes-optimale. Dans le régime où α → ∞, ces ré-
gressions conduisent à des taux de généralisation Bayes-optimaux,
ce qui, cependant, ne découle pas des prédictions asymptotiques de
l’erreur de généralisation basées sur les marges. Troisièmement, nous
concevons une fonction de coût et un terme de régularisation optimaux
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qui conduisent de manière asymptotique et rigoureuse à l’erreur de
généralisation Bayes-optimale.
Contributions personnelles : J’ai réalisé l’analyse théorique et les
évaluations numériques. J’ai également contribué aux preuves basées
sur le théorème de Gordon.

Dans la partie II. B , nous présentons une ligne de recherche menée en
parallèle qui étudie plusieurs types d’informations à priori pour di�érents
problèmes d’estimation, comme le modèle de factorisation de matrice présenté
dans le Chap. 9 ou la détection compressée et la récupération de phase, détail-
lées dans le Chap. 10. Plus précisément, nous comparons les écarts statistiques
et algorithmiques entre d’une part des informations à priori séparables et
parcimonieuses, et d’autre part des informations à priori produites par des
modèles génératifs profonds et structurés avec des poids aléatoires.

5. ‘The spiked matrix model with generative priors’. Aubin, Loureiro, Mail-
lard, Krzakala, and Zdeborová (2019b)
Presenté dans le Chap. 9.

Résumé: L’utilisation d’une paramétrisation de faible dimension des
signaux est un moyen générique et puissant pour améliorer les per-
formances de traitement du signal et d’inférence statistique. Un type
de réduction de dimension très populaire et largement exploré est la
parcimonie; une autre méthode plus récente est la modélisation généra-
tive de la distribution de signaux. Les modèles génératifs basés sur des
réseaux de neurones, tels que les GAN ou les auto-encodeurs variation-
nels (VAE), sont particulièrement performants et gagnent notamment
en applicabilité. Dans cette contribution, nous étudions les modèles
matriciels à pics, où une matrice de faible rang est observée à travers
un canal potentiellement bruité. L’étude de ce problème avec une struc-
ture parcimonieuse a attiré une large attention dans la littérature. Ici,
nous remplaçons l’hypothèse de parcimonie par un modèle génératif,
et nous étudions les conséquences sur les propriétés statistiques et
algorithmiques. Nous analysons les performances Bayes-optimales
sous l’hypothèse spéci�que de modèles génératifs pour les pics. En
contraste avec l’hypothèse de parcimonie, nous n’observons pas de ré-
gions de paramètres où les performances statistiques sont supérieures
aux performances algorithmiques du meilleur algorithme connu. Nous
montrons que dans les cas analysés, l’algorithme de passage de mes-
sages est capable d’atteindre ces performances optimales. Nous con-
cevons également de nouveaux algorithmes spectraux et analysons
leurs performances et leurs seuils statistiques en utilisant la théorie
des matrices aléatoires, qui a été réalisée par mes collaborateurs. Nous
montrons leur supériorité par rapport à l’analyse classique de la com-
posante principale (PCA). Nous complétons nos résultats théoriques
avec l’illustration des performances des algorithmes spectraux dans le
cas où les pics sont générés par des données réelles.
Contributions personnelles : En étroite collaboration avec B. Loureiro,
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j’ai co-développé le cadre théorique pour combiner les entropies des
répliques et les algorithmes de passage de messages AMP de sous-
modèles. J’ai également co-développé la méthode spectrale LAMP et
réalisé les implémentations numériques.

6. ‘Exact asymptotics for phase retrieval and compressed sensing with ran-
dom generative priors’. Aubin, Loureiro, Baker, Krzakala, and Zdeborová
(2020a)
Presenté dans le Chap. 10.

Résumé: Nous considérons le problème de détection compressée et de
récupération de phase (à valeurs réelles) pour une matrice de mesure
aléatoire. Nous calculons précisément le comportement asymptotique
des performances optimales, au sens de la théorie de l’information, et
celles du meilleur algorithme polynomial connu, dans le cas d’informations
à priori génératives provenant de réseaux de neurones profonds entière-
ment connectés par des matrices de poids aléatoires et des activations
arbitraires. Nous comparons ces performances à celles obtenues pour
des informations à priori séparables parcimonieuses et nous concluons
que dans tous les cas analysés les informations à priori génératives
présentent un écart statistique-algorithmique bien plus petit que pour
des à priori parcimonieux, ce qui con�rme théoriquement les observa-
tions expérimentales antérieures selon lesquelles les à priori génératifs
pourraient être bien plus avantageux en terme de performances al-
gorithmiques. En particulier, alors que la parcimonie ne permet pas
d’e�ectuer e�cacement une récupération de phase compressive proche
de sa limite théorique, nous constatons qu’en utilisant un à priori
génératif aléatoire, la récupération de phase devient possible.
Contributions personnelles : J’ai réalisé l’analyse numérique et
l’évaluation des transitions de phase.

En�n, j’ai contribué à un travail supplémentaire, qui n’est pas présenté
dans ce manuscrit, qui introduit une implémentation modulaire en python
de l’inférence compositionnelle de modèles graphiques, structurés en arbres.
Cependant, dans la lignée des travaux précédents, nous présentons dans la
Sec. 10.3 des applications simples de l’algorithme à des problèmes d’estimation
avec des à priori génératifs entraînés sur des données réelles.

7. ‘TRAMP: Compositional Inference with TRee Approximate Message Pass-
ing’. Baker, Aubin, Krzakala, and Zdeborová (2020)

Résumé: Nous introduisons tramp, pour TRee Approximate Mes-
sage Passing, un code python pour l’inférence compositionnelle dans
des modèles structurés en arbre et en grande dimension. Le logiciel
uni�e et fournit un cadre pour étudier plusieurs algorithmes de pas-
sage de messages approximatifs et qui s’appliquent à une variété de
tâches d’apprentissage automatique, telles que les modèles linéaires
généralisés, l’inférence dans les réseaux multicouches, la factorisation
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matricielle et la reconstruction à l’aide de pénalités non séparables.
Pour certains modèles, la performance asymptotique de l’algorithme
peut être théoriquement prédite par l’évolution d’état et un formal-
isme d’entropies libres. L’implémentation est modulaire par construc-
tion: chaque module, qui implémente un facteur du modèle graphique,
peut être composé à volonté avec d’autres modules pour résoudre des
tâches d’inférence complexes. L’utilisateur n’a qu’à déclarer le modèle
graphique: l’algorithme d’inférence, l’évolution d’état et l’estimation de
l’entropie sont entièrement automatisés. Le code source est accessible
au public à https://github.com/sphinxteam/tramp et la documentation
est accessible à https:// sphinxteam.github.io/ tramp.docs.
Contributions personnelles: J’ai contribué à implémenter certaines
parties du code source et développé entièrement la documentation en
ligne. J’ai principalement étudié les performances de reconstruction
du package pour des à priori génératifs avec des poids entraîné avec
di�érentes architectures GAN et VAE sur des données réelles.

https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp
https://sphinxteam.github.io/tramp.docs
https://sphinxteam.github.io/tramp.docs
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AN IN TRODUCT ION AT
THE CROSSROADS OF

MACHINE LEARNING AND
STAT I ST ICAL PHYS ICS





1
A SHORT IN TRODUCT ION
TO MACHINE LEARNING

Current Machine Learning (ML) techniques vastly rely on Deep Neural Net-
works (DNN) and pioneered unprecedented advances in various �elds of
Arti�cial Intelligence (AI). Despite how recently it gained popularity, Deep
Learning (DL) in fact has a long story starting in the 40’s. The �eld of AI was
known under di�erent names along its history depending on the most in�uen-
tial research directions and perspectives. Even though the recent progresses
might seem very promising, many theoretical challenges on the theoretical
foundations of the current DNN-based methods remain unanswered. In this
�rst chapter, we start by describing a few breakthroughs in AI and ML in
Sec. 1.1 to provide some context for the recent developments of the �eld. In
Sec. 1.2, we provide a short and comprehensive review of modern machine
learning basics, so that the unfamiliar reader may correctly follow the rest
of the manuscript. The aim is not to provide a fully thorough description,
but a qualitative introduction; the interested reader may �nd more furnished
details in reference books such as (Murphy, 2012; Mohri et al., 2012; Shalev-
Shwartz et al., 2014; Goodfellow et al., 2016). Finally in Sec. 1.3, in order to
fully grasp the scope and the motivations of this work, we take advantage of
the opportunity to review the current challenges and fundamental questions
which remain unanswered and that statistical physics may contribute to
solve.

1.1 A BRIEF H I STOR ICAL REV IEW OF
ART IF IC IAL IN TELL IGENCE

We present a short selection of some key steps in the development of AI,
from the early Arti�cial Neural Networks (ANN) of the 1950’s to the modern
DNN used since 2010’s. For a more detailed historical overview please refer
to (Ganascia, 1993; Hutchins, 2001; Schmidhuber, 2015; Lazard et al., 2016;
Goodfellow et al., 2016; Sejnowski, 2018; Skansi, 2018).

1.1.1 the first artificial intelligent
machines: 1940-1980

Symbolists vs Connectionists AI is a wide �eld whose goal is to design
intelligent programs. Inside this �eld, two main intellectual currents emerged.
On one hand rule or knowledge-based symbolists whose pioneers are for

4



1.1 a brief historical review of artificial intelligence 5

instance J. McCarthy, M. L Minsky or J. Von Neumann, and in the other hand
learning-based connectionists. While symbolists aim to simulate intelligence
through a succession of prede�ned rules, connectionists investigate instead
the possibility that a computer may learn a solution directly from examples
and handle complex edge-cases by itself. In other words, symbolism refers
to feature engineering and connectionism to feature learning. Jumping ahead
to modern AI, machine learning refers to a connectionist kind of AI. Notice
that in early stages of AI, symbolism and connectionism were two di�erent
approaches that many researchers tried to bring together, see (Dreyfus et al.,
1984), while nowadays these two approaches have become quite orthogonal.

Modern AI started with the emergence of computers and the Turing test
invented in 1950 by A. Turing (Turing, 2009) to determine whether a com-
puter may “think” like a human. During this same period, the �rst ANN was
developed, initially designed to model the biological learning of the human
brain.

The beginning of neural networks: 1940-1960 A signi�cant advance
in ANN came with the work of W. McCulloch and W. Pitts (1943) (McCulloch
et al., 1943) who created the �rst simpli�ed mathematical model of the human
brain, an interconnected circuit of binary units, called formal neurons, and
demonstrated that it was equivalent to a universal Turing machine. A few A neural-network is a

simple supervised
model with learnable
parameters w in
which the output y is
a linear/non-linear
transformation of an
input vector x:
y = ϕ
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years later, D. Hebb (1949) (Hebb, 1962) reinforced the concept of neurons
and pointed out that neural pathways are strengthened each time they are
used, introducing for the �rst time the concept of plasticity. Later on in 1955,
A. Samuel invented a computer program able to play checkers, combining
connectionist and symbolist approaches with a tree search on weights learned
with temporal-di�erence adjusted according to the number of errors. Such
early experiments, together with the �rst machine translation results, lead to
the Dartmouth conference in 1956 where important �gures of the �eld such as
J.McCarthy, M.Minsky and C.Shannon declared the birth of AI and provided
a boost to both AI and ANN. Finally, the �rst battle horse of the connectionist
empire was introduced in the 1960’s by psychologist F. Rosenblatt (1958)
(Rosenblatt, 1958) : the perceptron, an improved version of the McCulloch
and Pitts units. Though very simple, such machines are the basic units of
what we call today deep-learning. The main innovation was to try to simulate
the behaviour of biological neurons. In this perspective Rosenblatt added
continuously adjustable valued connections, called today weights w, to enable
plasticity of the unit. The weights are then trained in a supervised manner
minimizing the number of mistakes with respect to the desired output y for
a particular input pattern x. More signi�cantly, he gave the �rst convergence
proof of the perceptron algorithm, stating that after training the perceptron
would perfectly memorize the training set. Later, B. Widrow and M. Ho�
(Widrow et al., 1960) developed the �rst ANN to be applied in a real-world
problem : (M)ADALINE for (Multiple) ADAptive LINear Elements, for echo
suppression on phone lines.
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The�rstAIwinter: the quiet decade 1965-1976 The quiet decade refers
to W. J Hutchins (Hutchins, 2001) formulation about the fact that discoveries
and progresses in machine translation stalled. At the end of the 1960’s there
was no more hope in machine learning translation and research fundings
in this direction were deeply cut. In 1965 AI was soon compared to alchemy
(Dreyfus, 1965) because the early successes held only on very simple tasks
and led only to disenchantment in complex tasks.

Thus in the 1970’s the future of the connectionist AI turned dark. The
godfathers of AI themselves, M. Minksy and S. Papert (Minsky et al., 1969),
showed that perceptrons, which are stuck in the realm of linear models, are
limited to very simple tasks and moreover are hard to train. They proposed
a harsh critique of perceptrons by proving that they could only be trained
to solve linear separable problems and fail to learn non-linearly separable
rules such as the XOR function, such that y = 1 for x ∈ {(0,1), (1,0)} and
y = 0 for x∈ {(0,0), (1,1)}. In addition they stated a number of fundamental
problems with the neural network research program and they argued that
despite being an interesting subject to study, perceptrons were a sterile
direction of research. This was the �rst big hit to connectionism. This lead a
few years later to the Lighthill report in 1973 (Lighthill, 1973) which came to
the conclusion that the early promises of AI, especially in machine translation,
were overstated and fundings were accordingly drastically reduced. Study of
neural networks thus fell into a quick decline in the late 1960’s due to Minsky
and Papert’s campaign and AI research fundings were turned towards other
AI projects such as Bobrow’s STUDENT program (Bobrow, 1964), Evan’s
Analogy program (Evans, 1964) and the Quillian’s semantic memory program
Teachable Language Comprehender (Quillian, 1969). Note that in spite of
their harsh criticism, M. Minksy and S. Papert continued contributing to
neural network research. Yet these events put an end to the �rst phase of
connectionist research, see (Hecht-Nielsen, 1989).

1.1.2 from expert systems to machine
learning: 1980-2007

During the 1970’s, most of AI research focused on the symbolist approach. But
ANN oriented research continued with a series of works (Kohonen et al., 1977;
Grossberg, 1976) and a deeply philosophical study by Anderson (Anderson,
1972) on the nature of complex systems1. Again unful�lled claims led to a
slowdown in funding in AI and ANN research until early 1980’s.

The realm of expert systems In the early 1980’s, large conferences insti-
gated a rapid increase in interest from industries and governments, showing
a renewed interest and hope in AI and expert systems. In particular, the focus
was shifted towards commercial products with applications in �nancial pre-
diction, geological exploration, medical diagnosis or microelectronic circuit

1 This work was largely in�uential and is the cornerstone of modern statistical physics.
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design. Instead of being based on neural networks, this AI era was the climax
of the symbolist AI approach, during which it was believed that the best
approach to perform AI was top-down with handcrafted knowledge-based
systems with huge expertise. But as the hype increased, the �eld started
fearing another winter and a corresponding dry up in funding if AI was to
disappoint expectancies.

The second AI winter This fear became true. In the following years, the
claims of what AI was capable of had to face reality. Expert systems were at the
heart of the AI revolution and faced many issues. In particular J. McCarthy
strongly criticized them as lacking common sense and knowledge about
their limitations. Indeed predictions in medicine based on these systems
would have killed many patients and many tasks such as vision or speech
recognition were still too complicated for engineers to design handcrafted
rules that contain all potential edge cases. To conclude, the success of expert
systems at that time was very limited and failed to reach the broader goal at
which these initial AI successes seemed to lead. Therefore mid-1990’s, again
the activity and publications in AI research largely dropped and conferences
did not attract that much anymore, leading naturally to another a decrease
of fundings.

Machine learning developing in the shadow Fortunately, research
continued in the shadow during the second AI winter and surprisingly sig-
ni�cant advances were made. After a decade of interruption, connectionist
research was back on stage as a signi�cant driving force. In 1982, J. Hop�eld
(Hop�eld, 1982) proposed an analysis of the collective behaviors of physical
neural networks. In 1986, G. Hinton demonstrated that energy-based neural
network could be trained e�ciently by back-propagation (Rumelhart et al.,
1986b). This simple algorithm is still the dominant approach for training deep
learning model nowadays. It also provides interesting distribution represen- The back-propagation

technique is based on
a simple chain rule
computation:
∂wϕ(w ·x) = ϕ ′(w ·
x)×∂w(w ·x) =
ϕ ′(w ·x) ·x

tations (McClelland et al., 1986; Hinton et al., 1986), stating that inputs can
be represented by many features. This lead to the emergence of a second
wave of neural network oriented research. AI started evolving towards a
new approach, the so-called ML, based on feature learning, with the �rst
access to datasets. Connectionist advances held strong with Y. LeCun who
successfully trained a convolutional ANN to recognize handwritten zip code
digits using back-propagation (LeCun et al., 1989). In 1997, Long Short-Term
Memory (LSTM) recurrent neural networks were developed to model long
sequences such as text (Hochreiter et al., 1997). In 1998, a gradient-based
learning method was applied to document recognition (LeCun et al., 1998).
In parallel, kernel methods and Support Vector Machines (SVM) (Cortes et
al., 1995; Burges, 1998; Scholkopf et al., 1999) were developed and quickly
displayed impressive performances in mainstream tasks. They rapidly took
over the ML community and delayed the ANN climax until 2007. During the
early 2000s, the volume of available data was already strongly increasing
as well as the range of data sources and types. This marks the beginning of
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the onslaught of big data, but still ANN are not yet democratized because of
practical reasons.

1.1.3 the realm of deep learning:
2007-today

Big data age and GPUs Fifty years after the introduction of the percep-
tron, ANN �nally stroke back with a third wave. They were mostly inactive
due to practical issues: the computational power was until then insu�cient to
train large DNN and there was not enough data available to train them. Early
2009 the open-source ImageNet database (Deng et al., 2009) was released and
set the cat among the pigeons. The dataset contained over 14 million labeled
images and solved the �rst technical issue. It was followed by CIFAR-10
(Krizhevsky et al., 2010). With this �rst essential ingredient, the ML, and soon
DL, revolution was on its way.

Thus ML drastically changed with the con�rmation that big data helps
and started driving the �eld. Since then gathering data became easier and
easier with social and professional networks, and data became a valuable
resource. To give an example, there was 5 exa-bytes (1018 bytes) created
data per year in 2002 against 10 zeta-bytes (1021 bytes) in 2019, a factor of
2000 increased ! However the revolution was mainly made possible thanks to
another major technological novelty. Computers started becoming faster and
faster at processing data with Central Processing Units (CPU) and in parallel
another type of processing units called Graphics Processing Units (GPU) was
developed in the late 1990’s. While a CPU contains a few large cores, a GPU2

contains thousands of cores which are particularly suited to perform small
tasks in parallel. Therefore GPU are particularly suited to the training of ANN
that contain millions of parameters and require millions of simultaneous
operations.

Neural networks gaining in popularity As a result ANN started com-
peting with SVM provided better performances even though they were slower.
But very interestingly, the performances of ANN continued improving with
the number of training data, so that entering the age of the big data made
it suitable for the climax of the DL and large neural networks. This third DL is the �eld of ML

based on deep and
wide ANN

architectures.

ANN-oriented research wave started with the breakthrough of (Hinton et al.,
2006) that showed that deep belief networks could be trained e�ciently using
a greedy layer-wise pertaining strategy. G. Hinton had also the idea to mimic
the human brain by increasing the network capacity and therefore increasing
the number of layers (Bengio et al., 2007). Minsky and Papert (Minsky et al.,
1969) already knew that multiple layers would be able to solve the percep-
tron limitations. But at that time there was no practical algorithm to train
such large networks. Thus it took 17 years for back-propagation to become

2 GPU are originally used for computer graphics, image and video processing and gaming.
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popularized (Rumelhart et al., 1986b). And GPU power increased by a factor
1000 over ten years, it allowed to �nally train large neural networks.

By 2011, the speed of GPU has increased to enable training of large
Convolutional Neural Networks (CNN) for vision recognition, and marks
the beginning of the DL age. The revolution of DL came from the fact that
large neural networks were able to be trained with the use of GPU, whose
initial graphical goal had been diverted to linear parallel computing, and the
access to large datasets with the emergence of internet. With the increasing
computational power, DNN (LeCun et al., 2015) such as AlexNet started rising
in international pattern recognition competitions. They outperformed the
classical feature engineering approach, and the community started believing
that the next revolution would be carried by supervised DL. In particular deep
CNN succeeded the ImageNet challenge in 2012 (Krizhevsky et al., 2012) and
the year after the challenge was strikingly dominated by neural networks
methods. The power of DL methods compared to symbolist approaches lies
in the fact that connectionist were simply asking a computer to minimize an
energy-based model to learn automatically the features that symbolists were
trying to design by hand.

Explosion ofDeepLearning DL became very popular in particular thanks
to its wide practical successes, even though the early beginning started in
the 1950’s. However even though ANN were inspired by biological models,
the connection between DL and neuroscience is becoming increasingly nar-
row. Indeed the lack of understanding of the human brain does not drive DL
anymore. And the hope of understanding the human brain from shedding
light on the learning processes in ANN is still present but weaker and weaker
as DL started becoming a standalone discipline. Therefore DL went beyond
its biological inspiration and appeals instead to a more general principle of
learning hierarchical representations.

Among DL successes, we may cite machine learning translation also called
Natural Language Processing (NLP) in which great progresses were been made
in recent years. The Google translation engine (Wu et al., 2016) based on
LSTM, which are a special case of Recurrent Neural Network (RNN), Sequence
to Sequence models and Transformers (Vaswani et al., 2017) out-performed
state of the art machine learning translation. In computer vision, progresses
have been made in many applications such as lip reading (Chung et al., 2017),
visual reasoning (Santoro et al., 2017) or face recognition (Taigman et al.,
2014; Parkhi et al., 2015). In Generative Adversarial Network (GAN) (Good-
fellow et al., 2014), which allow to generate fake images, it is now possible
to synthetize them directly from text sentences (Reed et al., 2016) or even
to transform images with Image-to-image generation (Isola et al., 2017) or
image processing (Ulyanov et al., 2018). Works on adversarial attacks (Madry
et al., 2017; Zhu et al., 2017a) opened a new research direction to build ML
models more robust to changes in data distribution. In reinforcement learning
(Sutton et al., 2000), after the victory of the DeepBlue computer program
against chess champion Kasparov in 1996 (Campbell et al., 2002), it has been
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generalized to more complicated games such as Atari (Mnih et al., 2013) and
more recently Alpha Go beat the world champion Sedol at Go in 2016 (Silver
et al., 2016). Of course this list is not exhaustive and many �elds are currently
moving to DL methods used in various applications. Among the most recent,
we may cite self-driving cars and healthcare.

This concludes the non-exhaustive historical overview of ML and DL. As
illustrated, DL applies to various domains with complex network architec-
tures and led to considerable successes in AI. Yet despite their wide range of
application, high-performances and popularity, many theoretical questions
about the e�ciency of DL models and algorithms remain unanswered. To fully
grasp these burning challenges, in the next section we propose a technical
introduction to the ML basics.

1.2 MACHINE LEARNING BAS ICS

As explained in the last section, the great successes of ML — whether in
the supervised, unsupervised or reinforcement learning setting — rely on DL
and DNN. This section is devoted to accustom the unfamiliar reader to the
essential and basic concepts in ML and ANN so that he/she may apprehend
correctly the rest of the manuscript and the connection with the statistical
physics approach introduced in Sec. 3.2.

For a more detailed introduction to ML, let us mention a few classical
references (Bishop, 2006; Murphy, 2012; Shalev-Shwartz et al., 2014) and a
more recent and comprehensive reference on DL (Goodfellow et al., 2016)
which can be completed by perspectives from di�erent �elds (Carleo et al.,
2019; Mehta et al., 2019).

1.2.1 the machine learning workflow

One of the main reasons why ML �ew the nest in the recent years lies in
the ubiquity of internet, which allows to collect large amount of data that “Data is the new oil”

Clive Humbynaturally became an essential resource. In this context ML refers essentially
to a branch of applied statistics that makes use of a large amount of data
to estimate complex functions. In other words, a ML "algorithm" is nothing
but a computer program able to solve a given task from such a set of data as
formulated by (Mitchell, 1997; Goodfellow et al., 2016): “A computer program
is said to learn from experience E with respect to some class of tasks T

and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E .” This formulation can be schematically
represented by a ML work�ow in Fig. 1 and we brie�y detail each of its
elements in the next sections. In more details, a ML program aims to solve a
certain task T , see Sec. 1.2.2 for a variety of examples, based on observation
of a dataset D within a certain experience E . ML is commonly divided in
three main kinds of experiences E quali�ed of supervised, unsupervised and



1.2 machine learning basics 11

Task T
Experience E

Dataset D

Model M Algorithm A

Performances P

Figure 1: A typical machine learning work�ow considers a given task T to be solved
from the experience E of a dataset D. The task is eventually solved by a
model M trained with an algorithm A , which accuracy is measured by
the performance measure P .

reinforcement learning whose frameworks are brie�y presented in Sec. 1.2.3.
To characterize the underlying rule of the task T , one proposes a probabilistic
model M , very often quali�ed of parametric as assumed to depend on a set of
parameters θθθ , see Sec. 1.2.4. We review the most common kind of models M

in Sec. 1.2.9 and discuss the main di�culties encountered when choosing a
model class in Sec. 1.2.6-1.2.7. In classical statistics we distinguish two central
approaches to estimate the parameters θθθ of the model M : frequentist and
Bayesian estimators, introduced in Sec. 1.2.8. Finally the parameters θθθ of this
estimator can be computed with an algorithm A using the collected dataset
D. We recall the most common algorithms such as gradient-descent algorithm
or sampling methods in Sec. 1.2.10. Finally, the accuracy of the predicted
model M is measured by a performance measure P , whose variants are
presented in Sec. 1.2.5, and the model is adjusted accordingly.

1.2.2 various machine learning tasks

The task T denotes the ultimate goal for which the ML algorithm is designed.
For a general task, the ML program aims to recover a hidden underlying “You can have data

without information,
but you cannot have
information without
data.” Napoléon
Bonaparte

structure in a dataset D containing n observations. Each observation, also
called example, represents a collection of features, that the program must
exploit, either directly if features are meaningful or after processing them to
obtain a better features representation, to solve the task T . Depending on
the kind of task T and experience E , each observation may be either a vector
x, a tensor X or an input-output pairs (y,x). There exists a wide range of
speci�c tasks and we will not present an exhaustive list. Instead, we focus on
a series of simple tasks considered later in the contribution part Part II such
as regression, classi�cation and inverse problems, even though current ML
enables to handle tasks with increasing di�culty that a human being would
not be able to tackle.
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1.2.2.a regression and classification

The simplest and most common tasks in ML are classi�cation and regression.
In these tasks, the goal is to predict a function f : X 7→Y that maps a given
input vector x ∈X to a numerical value y ∈Y. The only di�erence between
classi�cation and regression is the output space Y. In the case of regression,
the space Y is continuous, while for classi�cation Y is discrete and �nite
so that each output value in Y is called a class. Regression can be applied
to various applications such as time series prediction in biology, �nance,
price prediction, but also to predict the total energy of a molecule. For the
sake of the illustration, let us recall the one-dimensional linear regression
toy example illustrated in Fig. 2 (Left) . Observing the input-output pairs
{xµ ,yµ}n

µ=1 (green dots), the simplest ML task consists in �nding the best
linear �t whether data is linear or not (orange line). While a human is able
to easily �nd a solution to this one-dimensional task, regression becomes
harder and harder with increasing problem dimension d while ML algorithms
can handle this easily.

The trendiest example of classi�cation is certainly the image recognition
task, where one needs to classify pictures of handwritten digits from a dataset
such as the MNIST dataset (LeCun et al., 2010), or classify pictures of cat
and dogs from CIFAR-10 (Krizhevsky et al., 2010), as illustrated in Fig. 2
(Right) . Similar tasks consist in recognizing objects from the ImageNet
(Deng et al., 2009) or Fashion-MNIST (Xiao et al., 2017) datasets. Object
recognition is particularly well accomplished with CNN particularly suited to
treat images and that allow for instance face recognition, self-driving cars or
robots captors, tumor detection, and many other classi�cation tasks.

x

y

Figure 2: (Left) Illustration of one-dimensional linear regression with d = 1 and
n = 30. (Right) Images of digits from MNIST and images of a cat and a
dog from CIFAR10 to be classi�ed by a machine learning algorithm.

1.2.2.b inverse problems

In the �eld of communications and information theory, we are very often
interested in a wide class of inverse problems where one receives a corrupted
signal y generated from a target signal x, that we aim to reconstruct, through
a noisy channel ϕout. Observing the output of the channel y = ϕout(x), the
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goal of the ML program is to reconstruct the input x signal or equivalently to
predict the conditional probability P (x|y). Applications vary according on
the form of the noisy channel ϕout and the signal dimensions.

Denoising and inpainting The simplest case is when an additive noise
has been added to the signal x, equivalent to a channel ϕout(x) = x+ ξξξ . The
goal of the denoising task is therefore to �lter the noise to reconstruct x. Note
this denoising task may be extended to multiplicative noise.

The channel may as well corrupt a few entries of the input vector. The
computer program must retrieve the missing entries of the input. For instance,
the channel may modify an input image x= (x1,x2, · · · ,xd−1,xd) by removing
some pixels x1,xd−1 resulting in an observation y = (0,x2, · · · ,0,xd). The task
to recover the corrupted pixels is known as an inpainting. Both tasks are
illustrated in Fig. 3.

x∗ y x̂ x∗ y x̂

Figure 3: A ground truth image x? is corrupted and results in an observation y for
(Left) a denoising task and (Right) an inpainting task, from (Baker et
al., 2020). The goal is to reconstruct the ground truth signal x? from the
observation of y. As an illustration, x̂ may be the output of a machine
learning reconstruction.

Compressed sensing and phase retrieval In many applications, the
channel involves a multiplication by a known rectangular matrix A which
applies a linear transformation to the initial signal. This is the case of com-
pressed sensing (Donoho, 2006) with ϕout(x) = Ax. We may add and extra
di�culty on top of that by adding a non-linearity such as an absolute value
ϕout(x) = ‖Ax‖. Depending if the matrix and the vector belong to R or C,
it refers to real or complex phase retrieval. The phase retrieval task is rele-
vant to many real-life settings in which a detector is only able to capture
the amplitude of the signal, for instance in electron microscopy, astronomy,
crystallography, optics, etc.

Low-rankmatrix factorization Another classical task considered in this
work is low-rank matrix factorization, used in practice for recommendation
systems. The channel is the simple matrix multiplication of rank-k matrices
according to Y = UV+ ξξξ , with U ∈ Rn×k and V ∈ Rk×d . Observing the
matrix product Y that contains a table of users and movies preferences, the
aim is to infer separately the latent vectors coding for the users U and the
movie preferences V.
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1.2.2.c many others

With recent progresses in ML, practical tasks handled in industry are becom-
ing more and more complex than the simple tasks presented above such as
the transcription of unstructured representation of some data into discrete
textual form such as optical character recognition or speech recognition. The
latter are used by large technological companies to process images, videos or
audio recordings, or annotate or describe input data. Another useful applica-
tion is machine translation in which the algorithm must translate sentences
from a language to another and is referred to NLP (Collobert et al., 2011).
These �elds have been the subject of many important advances especially
because of the recent use of DL models (Sutskever et al., 2014; Graves et al.,
2013). Let us brie�y mention that trying to solve many tasks at the same
time is known as multi-task learning (Caruana, 1997). While learning a given
task and trying to apply it to another task, possibly similar enough, refers to
transfer learning or domain adaptation (Pan et al., 2010).

1.2.3 supervised, unsupervised and
reinforced experiences

ML is typically divided in three kinds of paradigms or experiences E : super-
vised, unsupervised and reinforcement learning. Let us present the di�erent
frameworks, even though we will focus on the simplest supervised learning
case in most of the manuscript. In all these di�erent frameworks, the expe-
rience E consists in observing a dataset D made of n samples, also called
examples or observations, each being a collection of features that the algorithm
must process, denoted in full generality by a vector of size d, x = {xi}d

i=1.

1.2.3.a supervised learning

The particularity of supervised learning algorithms lies in the fact that each
sample in the dataset is made of a pair of an input features vector x and a label
or target value y, so that the dataset D = X×Y contains a collection of input-
output pairs {xµ ,yµ}n

µ=1 and where each input xµ ∈Rdx and yµ ∈Rdy . In
most of the cases under investigation, we consider scalar outputs, i. e. dy = 1
and we use the shorthand dx = d. In this case, as each sample has the same
dimension, we may introduce a design matrix X∈Rn×d that contains features
in columns and di�erent samples in rows. We assume that the examples are
independent and identically distributed (i.i.d) drawn from the joint distribution
P(x,y). Finally, to �x ideas, the input-outputs pairs may represent coordinates
(x,y) in linear regression as illustrated in Fig. 2 or (image of a digit, class
of the digit) in an image recognition task. Having access to the true labels
y associated to an input matrix X, the algorithm must simply estimate a
mapping function

f :





X 7→Y

x 7→ y
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that connects inputs to outputs. Equivalently, this can be understood as
estimating the probability distribution P(y|x). However, we will see later in
Sec. 1.2.6 that a good function f shall not interpolate and memorize every
point in the dataset in order to be robust and predict correctly new data-points.
More formally, the goal of supervised learning is to predict future outputs y
from observations of unseen inputs vector x, called the generalization problem.
To �x ideas, in the case of a classi�cation task, we provide examples of
images cat and dogs with distinct labels y =±1, and the supervised learning
algorithm shall separate the feature space according to the labels as illustrated
in Fig. 4.

y = +1

y = −1

x1

x 2

Supervised
learning

y = +1

y = −1

x1

x 2
Figure 4: Illustration of a classi�cation supervised dataset. It contains two clouds of

points with di�erent labels y = ±1 and the algorithm must learn a rule to
separate cat images (y = +1) from images of dogs (y = −1).

This setting is called supervised learning in the sense that the labels have
been provided by a teacher who shows a few examples to an algorithm that
aims to understand correctly the underlying rule from them to generalize
correctly on unseen cases. Unfortunately this ML setting is very expensive
as in a way or another a human intelligence shall assign the labels y to the
corresponding input vectors x. Even though the collection process of data to
create ML datasets was incredibly facilitated with the usage of the internet
and social networks, yet this re�ects the lack of intelligence of supervised
algorithms. This remains a strong limitation and is the main reason why the
community already opened the door to the unsupervised learning framework.

1.2.3.b unsupervised learning

In contrast with supervised learning, unsupervised learning involves a collec-
tion of a random vectors {xµ}n

µ=1 and consists in learning interesting quan-
tities related to the probability distribution P(x) by observing this dataset.
While in supervised learning the algorithm observes both label y and input
x and estimates the conditional distribution P(y|x), in this more involved
setting there is no teacher to help the algorithm learning a rule: an unsuper-
vised ML algorithm must make sense of the unstructured data and extract
structure from data by itself. Again for the sake of clarity, this situation is
analogous to a baby who still does not understand human language and is
able anyway to classify cats and dogs when he/she meets them, even though
he/she does not literally know what a dog or a cat means.
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As a summary, the speci�city of unsupervised learning is that it expe-
riences only features vector without supervision labels: it aims to extract
useful informations from a distribution that do not require human labor to
annotate examples. The core di�culty is to �nd a simple and compressed
representation which conserves however as much as information as possible
of the distribution P(x). Finding such dimensionality reduction is fundamental
in ML as it provides a powerful and meaningful representation to make sense
and process the data. It can be reduced to three approaches: attempting to
compress the information in lower-dimensional representation by selecting
only a reduced number of the initial features, or embedding the dataset into
a higher-dimensional sparse representation whose entries contains mostly
zeros to extract new features from the original ones, or �nally �nding an
independent representation to attempt to disentangle underlying features of
the data distribution.

For the sake of conciseness we present the simplest examples: clustering,
Principal Component Analysis (PCA) and density estimation and we refer
the interested reader to (Goodfellow et al., 2016) for more details and other
applications.

Clustering The clustering approach consists in learning the structure
of the dataset by trying to separate the dataset in meaningful unlabelled
subgroups whose features are close to each other. This method is in particular
used for medical imaging, image segmentation, social network analysis,
search result grouping, etc. In the absence of labels, the main di�culty is
to �nd a simple representation of the data to appreciate its structure. After
being processed, the dataset is split in di�erent clusters corresponding to
classes de�ned by the algorithm itself. The battle horse to perform clustering,
illustrated in Fig. 5, is the k-means algorithm that divides the dataset into k-
clusters, where k is an hyper-parameter that shall be tuned carefully. However,
the clustering task is inherently ill-posed as there is no single criterion to
obtain a good clustering. As a consequence, separating the dataset may be
done in several distinct ways and leads to di�erent clusterings. See (Kaufman
et al., 2009) for more details on clustering techniques.

x1

x 2

Unsupervised
learning

x1

x 2

Figure 5: Illustration of an unsupervised clustering task: the algorithm observes a
large cloud of points without labels. The k-means algorithm should decide
by itself that this large cloud is made of three distinct clusters and assign
them di�erent classes.
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Dimensionality reduction and PCA In order to compress data in a
meaningful way, we would like to �nd a basis in which the data can be
represented in lower dimensionality than the original input, with statisti-
cally independent components. This kind of dimensionality reduction can
be performed for instance with the so-called PCA method. In the manner
of the eigenvalues decomposition of a symmetric positive matrix, PCA is
a generalization to any rectangular matrix X ∈ Rn×d . The idea of PCA is
to identify patterns in data by linear transformations such as rotating and
projecting the matrix in a lower-dimensional subspace whose basis has or-
thogonal directions, called the principal components. Therefore, it builds new
independent features that are linear combinations of the initial features. In
other words it �nds the directions of maximum variance in high-dimensional
data and projects it in a lower-dimensional sub-space to keep the maximum
of essential data in a smaller space. First, the data matrix may be centered
by removing its potential mean X← X−E [X], and the principal compo-
nents are computed as the eigenvectors of the symmetric covariance matrix
XᵀX. Indeed, the Singular Value Decomposition (SVD) of the data matrix
yields X = UΣV, with rotationally invariant matrices U ∈Rn×k,V ∈Rk×d ,
UᵀU = I = VVᵀ. The diagonal matrix Σ contains k singular values {Σi}k

i=1,
such that the covariance matrix decomposes as XᵀX = VΣ2Vᵀ. Rotating the
data X with the rotation matrix V, the covariance matrix becomes diagonal,
so that in this basis the components are mutually uncorrelated as illustrated
in Fig. 6. More details on PCA may be found in (Jolli�e, 1986; Goodfellow
et al., 2016).

x1

x 2

Figure 6: Illustration of Principal Component Analysis of a cloud of random Gaus-
sian matrix X ∈Rn×d for d = 2, n = 500. The orange and green vectors
represent the principal components of the observed dataset.

Density estimation and generative modeling Most unsupervised ML
adopts a probabilistic approach known as density estimation. It consists
in approaching the true probability density p(x), from which the dataset
X = {xµ}n

µ=1 has been drawn, by an approximate density p̂. This density may
be parametrized according to its hypothesis class as discussed in Sec. 1.2.4.
We consider therefore a set of parametric densities Kθθθ =

{
pθθθ (X) ,θθθ ∈Rdθ

}

such that the set of dθ estimated parameters θ̂θθ are learned. The correspond-
ing approximate density p

θ̂θθ
captures the ground truth distribution and can
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be used therefore to generate new samples of the distribution, hence the
terminology generative modeling. The training of such density estimation
method is performed by maximizing the log-likelihood of the observed dataset
D, or equivalently the Kullback-Leibler divergence from the approximate
distribution Pθθθ to the empirical distribution PD(x) = 1

n ∑
n
µ=1 δ (x−xµ)

θ̂θθ = max
θθθ

n

∑
µ=1

logPθθθ (xµ)⇔ θ̂θθ = min
θθθ

KL (PD|Pθθθ ) . (1)

However, expressing and computing in practice the log-likelihood in high-
dimensions is very complex and often intractable. Sampling the density
in high-dimensions, with for instance a Monte-Carlo (MC) method, is very
costly and becomes slower and slower with the problem dimension. To
circumvent these high-dimensional di�culties, new DNN-based models called
deep generative models have been recently introduced.

Deep generative models Instead of maximizing the above likelihood (1),
alternative strategies based on DNN came to light in the recent years such as
GAN and Variational Auto-Encoder (VAE), that became very popular thanks to
the amazing improvements they brought to the density estimation �eld. Indeed
relying on a large amount of data and DNN, they have shown an incredible
expressivity and ability to approximate complex densities to produce highly
realistic images, texts or even sounds. These techniques may be used either to
generate new contents or to use as a complex and structured prior-knowledge
to solve inverse problems, see Sec. 1.2.2.b. The core idea of both VAE or GAN
relies on an architecture made of an encoder that compresses the data in a
low-dimensional representation, and of a decoder that tries to decompresses
it. Such systems are trained to minimize the di�erence between the encoded
and decoded signals in an unsupervised manner. This situation is typically
referred to an information bottleneck (Tishby et al., 2000) because the encoder
must learn an e�cient compression of the data into this lower-dimensional
space.

Both VAE and GAN make use of DNN to parametrize the encoder and the
decoder, called the discriminator and the generator in GAN language. Indeed
high-capacity DNN are of considerable interest in this task in the sense their
wide expressivity allows to approximate any complex density. Also their
architecture modularity allows to easily reduce the dimension of the data in
a low-dimension latent space. And �nally, they have the strong advantage
they can be trained and optimized very e�ciently using back-propagation
algorithm, as speci�cally presented in Sec. 1.2.10.a.

• Variational Auto-Encoders

VAE have been introduced in (Kingma et al., 2013; Rezende et al., 2014) and
are a regularized version of the classical Auto-Encoders (Vincent et al., 2010).
These generative models are nowadays commonly used to approximate a
probability distribution P(x) from a dataset, in the perspective to generate
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new samples from it. The distribution can be reformulated as the marginal-
ization over some latent variables z as follows

P(x) =
∫

p(x|z)p(z)dz . (2)

The idea is thus to infer the latent distribution p(z) using the conditional
density p(z|x), which is however also unknown. Therefore, to use it we
should instead approximate this density by using a variational principle.
Even though we would have access to an approximation p̂(z|x), we still
need to perform the multidimensional integral (2) that is often intractable
analytically and hard to evaluate numerically. To make this problem tractable,
VAE are essentially made up of an encoder qφφφ (z|x) parametrized by some
parameters φφφ that compresses the input data x in a latent representation
z. Yet its particularity lies in the fact that the encoder is regularized during
the training in order to ensure that the latent space has good properties, that
allows to generate appropriate new samples. As illustrated in Fig. 7, the
encoder is followed by a decoder pθθθ (x|z) parametrized by some parameters
θθθ that tries to maximize the likelihood with the input data.

x

Input

qφφφ (z|x)

Encoder

z

Latent space

pθθθ (x|z)

Decoder

x̂

Output

Figure 7: Illustration of a VAE: An encoder qφφφ maps the input data into a latent space.
The decoder pθθθ tries to decode the latent distribution by maximizing the
likelihood between the decoded representation x̂ and the original input x.

The VAE objective can be simply derived as a variational approximation
qφφφ (z|x) of the intractable posterior distribution p(z|x), see Sec. 4.2 for more
details on variational approximations. The Kullback-Leibler (KL) divergence
de�ned in Sec. 4.2.1.b yields

KL
(
qφφφ (z|x) ‖ p(z|x)

)
= Ez∼qφφφ (z|x)

[
logqφφφ (z|x)− logp(z|x)

]

= Ez∼qφφφ (z|x)
[
logqφφφ (z|x)− logpθθθ (x|z)− logp(z)

]
+ logp(x)

⇒ logp(x)−KL
(
qφφφ (z|x) ‖ pθθθ (z|x)

)

= Ez∼qφφφ (z|x)
[
logpθθθ (x|z)−KL

(
qφφφ (z|x) ‖ p(z)

)]
,

so that the VAE objective L (φφφ ,θθθ ;x) is given by maximizing the variational
likelihood lower bound

L (φφφ ,θθθ ;x) = Ez∼qφφφ (z|x)
[
logpθθθ (x|z)−KL

(
qφφφ (z|x) ‖ p(z)

)]

≤ logp(x) .

The �rst term logpθθθ (x|z) represents the reconstruction process of the de-
coder that should minimize the di�erence between the decoded signal x̂
and the initial input data x density, or equivalently maximize the likelihood
Ez∼qφφφ (z|x) logpθθθ (x|z). The second term KL

(
qφφφ (z|x)|p(z)

)
should be mini-
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mized so that the encoder density closely approaches the latent distribution
p(z). In practice this latent distribution is �xed and very often chosen to be
Gaussian normal Nz(µ(x),Σ(x)) so that the encoder is trained to return only
the two �rst moments of the Gaussian parametrization. The latent variable
is therefore sampled and this key step is called the reparameterization trick.
This trick looks like a regularization procedure of the latent space, so that VAE
can be simply thought as regularized and probabilistic versions of classical
Auto-Encoders. Moreover, it makes the computation of the KL divergence
explicitly tractable and the optimization possible with for instance classical
gradient-descent algorithms. More details may be found in (Doersch, 2016;
Kingma et al., 2019). Notice that the decoder pθθθ is very often taken as a
DNN which is very expressive but also costly to train. Once trained in this
variational and unsupervised fashion, splitting the encoder from the decoder,
the later pθθθ (x|z) allows to generate new samples x∼ pθθθ (x|z) of impressive
realism, starting from a simple Gaussian noise.

• Generative Adversarial Networks

Another kind of common deep generative models are GAN that have en-
joyed tremendous success since their introduction (Goodfellow et al., 2014).
The idea of GAN is similar to VAE in the sense it exploits a random latent rep-
resentation. Its conceptual idea is enlightening by its simplicity and allowed
to take a leap forward for generative modeling and density estimation. Again
the idea is to compare an approximation of the dataset distribution with
the true distribution, which is unknown. The brilliant idea of GAN consists
in replacing this direct comparison by two indirect ones called generation
and discrimination. The GAN architecture, represented in Fig. 8, is therefore
made up of a parametric discriminator dφφφ that takes samples of some true
and fake generated data and tries to classify them as well as possible. On
the other hand, a generator gθθθ is trained to generate fake samples to fool
the discriminator. Therefore, generator and discriminator have adversarial

z

Latent space

gθθθ (x|z)

Generator

x

Fake samples

D x

Real samples dφφφ (x)

Discriminator

y

Classi�cation
output

Figure 8: Illustration of a GAN: A discriminator dφφφ tries to classify real and fake
samples generated from a generator gθθθ that tries to fool the discriminator.

missions. The goal of the generator gθθθ is to fool the discriminator dφφφ , so
the generator computes the probability of samples of belonging to the real
dataset D rather than being fake. It is trained to maximize the classi�cation
error between real and fake samples. In contrast, the goal of the discriminator
is to detect fake generated data, so that it is trained to minimize the �nal
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classi�cation error. Therefore, during the training process, the generator
promotes the increase of the classi�cation error whereas the discriminator
tries to decrease it. This competition can be thought as a mini-max problem
and is translated by the GAN adversarial objective

L (x) = min
φφφ

max
θθθ

E logdφφφ (x)+ log
(
1−dφφφ (gθθθ (z))

)
.

In practice and as already stressed for VAE, both generator gθθθ and discrimi-
nator dφφφ are commonly chosen as DNN for their wide expressivity and also
because they can be easily jointly trained. GAN are currently used for a va-
riety of tasks such as high quality image or video generation, even though
these techniques are not �awless as they can su�er from mode collapse issues
and raises questions about their ability to really learn the target distribution
(Arora et al., 2018a).

1.2.3.c reinforcement learning

Reinforcement Learning (RL) is the last and more recent class of ML experi-
ences E . The main speci�city of RL is that it interacts with an environment
so that there is a feedback loop between the learning system and its actions.
Qualitatively an agent interacts with the environment so that it dynamically

Agent

Environment

Action atState st+1 Reward rt+1

Figure 9: Illustration of reinforcement learning.

learns and decides what actions to take. In more details, the agent takes some
actions at at time t that lead to a new state of the agent in the environment
st+1 and a corresponding reward rt+1 whose value depends on the impact of
the action on the environment. It is simply illustrated in Fig. 9. Training such
setting to obtain a performant policy π(a,s) = P(at = a|st = s) is largely
beyond the scope of this manuscript. Please refer to (Sutton et al., 1998; Sutton
et al., 2000; Mnih et al., 2013) for additional technical details.

In the rest of this manuscript, we will principally focus on the simple
supervised learning type of experience, and only in Part II we will consider
some generative priors generated by deep-generative models such as GAN
and VAE, with random weights or trained on real data.
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1.2.4 statistical modeling

For concreteness, let us summarize the ML work�ow in Fig. 1: we have in
hand a task T that we want to solve, for example the classi�cation of images,
within an experience E , say supervised such that we have access to a dataset
D = {X,y} of input images and corresponding labels. The next step consists
in modeling mathematically the underlying rule observed through the dataset
and is referred to as statistical modeling. Statistical modeling and learning
from data is the subject of a wide literature and is developed for instance in
(Cherkassky et al., 2007).

Ground truth assumption and dataset In practice this dataset D has
been collected without any speci�cation on how samples were generated. Yet
in the perspective of developing an analysis, it is of practical and theoretical
interest to assume that some oracle or teacher knows the generative process of
the dataset, even though most of the time it is not available in real industrial
applications. In particular, it has the advantage to allow for measuring the
model reconstruction performances as explained in Sec. 1.2.5. But of course,
for fairness the generative process should be hidden from the algorithm
A during the learning process, and we introduce it only for a theoretical
purpose.

In more details, we assume that there exists either a ground truth function
f ? or equivalently a joint probability P?(y,x) = P?(y|x)P?(x) accounting for
the information contained in the data. The dataset D = {(x1,y1) , ..., (xn,yn)}
is composed of i.i.d samples such that ∀µ ∈ JnK,yµ = f ? (xµ) or equivalently
yµ ∼ P?(.|xµ). In the case where the generative process is explicitly known
and accessible, the ground truth density p?(y|x), which can be can be simply
designed by hand in simple theoretical models, is used to generate conve-
niently new synthetic datasets. To conclude, as we have a direct access to the
ground truth solution, this setup is very close of the teacher-student scenario
in planted spin-glass models discussed in more details in Sec. 3.2.4, and pro-
motes our statistical physics approach.

Under this assumption, ML aims ultimately to select a model M that esti-
mates correctly the underlying data distribution P?(y|x).

1.2.4.a hypothesis class

To make the estimation problem of the target function f ?, or equivalently
the target distribution P?(y|x), tractable we shall consider models M in an
appropriate hypothesis class H. This is the realm of statistical modeling that
consists in restricting the whole solution space to a smaller set of hypothesis
functions H = { f : X 7→Y}, from the input space X to the target space Y.
This shall be performed carefully such that the hypothesis class H is rich
enough to be contained in the target class H?, to which f ? belongs. In this
way a function f ∈H may approximate correctly the target function f ? ∈H?.
As an illustration to capture the data-points in Fig. 2, we may consider the
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set of simple linear models parametrized by some weights {w,w0} ∈Rd+1:
Hlinear = { fw : X⊆Rd 7→Y : fw(x) = w ·x+w0 with w ∈Rd}.

As a remark, notice that �nding a good statistical model is at the crossroad
of two �elds of research: the classical approximation theory and the modern
machine learning. Their discriminating di�erence lies mainly in the input
space dimensionality and the features that are engineered in the �rst and
learned from data in the second.

1.2.4.b parametric estimation

Just as the above linear models class example, we often consider parametric
estimation by restricting statistical models to parametric hypothesis space
Hθθθ that depend on a collection of parameters θθθ ∈Rnθ . Estimating the model The dimension nθ of

the parameter θθθ is
not speci�ed as it
strongly depends on
the model.

fθθθ is therefore reduced to computing the parameters θθθ . In general, it denotes
the set of parameters of the statistical model that could represent either a
scalar, a vector or a set of matrices. In particular, in the neural networks
language, the parameters are called instead weights and will be denoted W
in the following to represent rectangular matrices. As a remark, there exists
also non-parametric estimation methods such as nearest neighbors regression
or decision trees. Being beyond the scope of this work, we do not cover non-
parametric estimation in this manuscript. Refer to (Tsybakov, 2008; James
et al., 2013) for an introduction.

1.2.5 measuring the performance

Once the model M corresponding to an hypothesis class H has been selected
we must introduce a set of tools to measure its validity. In a synthetic dataset
setting, in which the ground truth is available, the reconstruction performance
of the parametric model can be directly measured by the Mean Squared
Error (MSE) between parameters θθθ of the model fθθθ and θθθ

? the ones of the
target function f ? = fθθθ

? . Otherwise, we need to introduce other statistical
tests to measure the model performances.

1.2.5.a reconstruction measure: the mean sqared
error

Whenever the ground truth parameters θθθ
? are available, the performance of

the parametric model θθθ (D), estimated on the dataset D, can be measured
by a direct comparison. The reconstruction performance of the estimator
is commonly quanti�ed by the MSE between the parameters θθθ

? and θθθ (D)

averaged over all potential dataset and ground truth parameters:

MSE(θθθ ) = Eθθθ
?,D
[
‖θθθ ?−θθθ (D)‖2

2
]

. (3)

This is valid only if the parameters θθθ
? and θθθ have the same dimensions, that

is if the target models and statistical models belong to the same hypothesis
class H = H?. In our theoretical analysis of the simple models, we will make
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use of this reconstruction measure. However, in practice the MSE is rarely
used because the ground truth parameters θθθ

? are not directly available.

1.2.5.b objective, risks and errors

As an alternative to this reconstruction measure, which is well suited only in
the synthetic setting, most ML tasks are instead formulated as the minimiza-
tion of a risk function, also called objective or error function. This objective
depends on a criterion or loss function ` : X×Y 7→R, whose choice speci�-
cally depends on the task T and experience E . The validity of the statistical
model fθθθ ∈H is thus appreciated from the value of the risk function: achiev-
ing a low risk value advocates for a good statistical model.

Population risk and generalization error The learning objective is
commonly chosen as the population risk R de�ned as

R ( fθθθ ;`) = E(x,y)∼P(x,y) [` (y, fθθθ (x))] . (4)

This is also called the generalization error in the ML community and it will be
equivalently denoted egen ( fθθθ ;`). The loss function ` measures pointwise the
error between the target value y and the prediction of the model, fθθθ (x). The
population risk is simply its average over all possible examples drawn from
the joint distribution P(x,y). Achieving a low population risk de�nes a strong
criterion of validity of the model and allows for model selection. In fact, the
optimal model parameters θ̂θθ would be selected by directly minimizing the
population risk θ̂θθ = argminθθθ R ( fθθθ ;`). Unfortunately, the population risk
and the corresponding minimization program are intractable as the average
over the high-dimensional joint distribution P(x,y) is very often complex
or unknown. Nonetheless, in this theoretical manuscript, we will be able to
compute the generalization error in particular cases with synthetic datasets
coming from simple joint distributions P(x,y).

Empirical risk, training error and training set In general, we do not
have knowledge of the generative process and the distribution P(x,y). Instead,
we only have access to a �nite training set of n examples Dtrain = Xtrain×
Ytrain. Even if it is very large, n� 1, this discrete dataset cannot account
for the whole continuous and in�nite joint distribution P(x,y). As a result
the intractable population average E(x,y)∼P(x,y) is replaced by an empirical
average over the training set. And consequently the intractable population
risk is replaced by the empirical risk, also called the training error etrain, that
serves as a proxy of the population risk:

R̂ ( fθθθ ;`,Dtrain) =
1
n

n

∑
µ=1

` (yµ , fθθθ (xµ)) . (5)

The population risk gives indications along the training of the model validity.
For instance, this criterion gives a practical procedure for many ML algorithms,
such as Empirical Risk Minimization (ERM), that minimize the empirical
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risk θ̂θθ = argminθθθ R̂ (θθθ ;`,Dtrain), but only as a proxy of the population risk
R (θθθ ;`). However, minimizing the empirical risk does not guarantee at all
a good generalization performance of the estimator on unseen data. Indeed,
in high-dimensions the empirical and true underlying distributions can be
very di�erent, and thus minimizing the population and the empirical risks
do not lead to similar results. Addressing this issue and trying to control
their di�erence |R(θθθ )− R̂(θθθ ;`,Dtrain)| is at the heart of modern ML and
statistical learning theory, as illustrated in Sec. 1.2.7.

Test set and error The purpose of ML is essentially to robustly predict
the outcomes of unseen data. Thus, it would make little sense to check the
validity of the model on data that have been seen and used to estimate the
same model. Therefore, we must allocate a part of the dataset for testing
its validity, so that the dataset D = Dtrain×Dtest is split in a training set
Dtrain that contains observations the algorithm A may use to estimate the
model parameters θθθ (Dtrain), and a testing set Dtest on which the validity of
the model is assessed . Indeed, as suggested in many works such as (Zhang
et al., 2016), recent ML models can perfectly minimize the empirical risk,
meaning that the training error is zero and the model has perfectly memorize
the training set Dtrain. As a consequence, reaching zero training error does
not ensure the validity of the model, that should be attested instead on the
separated test set Dtest. The error measured on this set is called the test error

etest ( fθθθ ;`,Dtest) = R̂ ( fθθθ ;`,Dtest) ,

and serves as a �nite-size surrogate for the ideal but intractable population
risk R ( fθθθ ;`) and generalization error.

Hyper-parameters and validation test In addition, as illustrated in
Sec. 1.2.10, most of current ML algorithms depend on some hyper-parameters.
These latter are settings that we can use to control the algorithm and must be
�xed in some way. However, the hyper-parameters cannot be learned during
the algorithm learning procedure, because it would constantly select high-
capacity models that easily �t the training set. To circumvent this di�culty,
this is often done by introducing a third set, called a validation set, that the
algorithm does not observe during the training phase and that is used to se-
lect good hyper-parameters. Therefore, the dataset D = Dtrain×Dval×Dtest

is �nally decomposed in train/validation/test sets allocated approximately
to 70/10/20% of the total size. In the case of small datasets, where the
statistical signi�cance drastically decreases, an alternative approach, called
cross-validation, is often used. It consists in a leave-on-out strategy of repeat-
ing and averaging the training and testing operations on randomized sets.
See for instance (Goodfellow et al., 2014) for an extended discussion.
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1.2.5.c choosing a loss function

The loss function ` is strongly task-dependent, and we review the classical
choices of loss functions used in the literature and in this work. In general, in
order to minimize the empirical risk (5), with gradient-based algorithms, we
should prefer smooth loss functions such that the gradients exist, are easy to
compute and not too small. The simplest loss is the squared loss `l2(y, ŷ) =
(y− ŷ)2 particularly suited for real-valued regression tasks, as well as the
absolute loss `l1(y, ŷ) = |y− ŷ|. For classi�cation, where output values are
discrete, and very often ±1, we often use either the hinge loss `hinge(y, ŷ) =
max (0,1− yŷ), the logistic loss `logistic(y, ŷ) = log(1+ exp(−yŷ)), the binary
cross entropy loss `bce(y, ŷ) =−y log ŷ− (1− y) log(1− ŷ) or the hard error-
counting loss `hard(y, ŷ) = 1 [y 6= ŷ], even though it is not di�erentiable.

1.2.6 model complexity, limitations and
overfitting

The ultimate goal of ML is to predict the output of unseen data of the model
fθθθ trained from the observation of a training set Dtrain. To do so, most of ML
algorithms A minimize the empirical risk so that many ML problems may be
reformulated as an optimization problem. Yet the main di�erence between
ML and standard optimization �elds is that we require instead the algorithm
to not �nd any minima, but a minima that generalizes correctly on unseen
data. In other words, we require that the generalization error (or simply its
�nite-size estimation, the test error) remains low, as well as the training error
optimized during the training. This is called the generalization problem.

1.2.6.a under/over fitting

As the test set is drawn before any learning process, the expected test error
etest will be therefore greater or equal than the training error etrain. Though, in
practice a ML algorithm minimizes the training error as a proxy for minimizing
the ultimate generalization error, so that we require the generalization gap
between the test and training errors etest−etrain to be as small as possible. The
trade-o� between this two conditions may lead to key and burning challenges
in the ML community: under�tting and over�tting. In one hand under�tting
refers to a model with large training error and therefore a large test error,
while over�tting occurs when the generalization gap is too large.

1.2.6.b model capacity

Under�tting and over�tting phenomena are closely related to the choice of
the hypothesis space H and in particular its capacity. The capacity of a model
refers to its ability to �t a wide range of functions. For example linear models
cannot �t non-linearly separable data, while high-degree polynomials can. In
general, low capacity models may struggle to �t the dataset, while in contrast
high-capacity models can easily memorize (and not learn!) the dataset, so
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that they will completely over�t at test time. These limiting situations are
illustrated in Fig. 10 (Left) and (Right). A good statistical model should strike
a balance between high-capacity and small test error: the model capacity
should be large enough to solve complex tasks resulting in a low training
error, but small enough to not perfectly �t the training set and fail in the
test set with high test error as illustrated in Fig. 10 (Center) . Therefore the
capacity of the model should be adapted to the task T di�culty and the size
of the dataset D.

x

y

x

y

x

y

Figure 10: Model complexity illustration on a regression task. Input-output example
pairs (x,y) of the training set are shown with black points. (Left) A
linear model cannot �t the training set and leads to a high training error.
(Center) An intermediate complexity model yields a good estimator with
low training error and low test error. (Right) A large complexity model
interpolates the training points and achieves almost zero training error.
But it completely over�ts the training set and does not generalize correctly,
resulting in a high test error.

Typically the generalization gap behavior between the test and training
errors is summarized with the U-shaped curve in Fig. 11. It can be understood
from theOccam’s razor principle that states that among competing hypotheses
that explain a set of observations equally well, we should prefer the hypothesis
with the smallest capacity to avoid over�tting. Hence by choosing a statistical
model, we shall keep in mind that as soon they have small training error,
small capacity functions are more likely to generalize correctly.

1.2.6.c the bias-variance trade- off

The illustration in Fig. 10 raises the question of how to properly choose the
hypothesis class H to not be threaten by over�tting. This is formalized by
the evolution of the generalization gap with the model complexity described
in Fig. 11. In fact, this non-monotonic behavior is traditionally understood
from the bias-variance decomposition. Indeed, bias and variance measure
two di�erent sources of errors of a given estimator θθθ , as illustrated by the
decomposition of the MSE reconstruction error:

MSE(θθθ ) = E
[
(θθθ ?−θθθ )2

]
= E

[
(θθθ ?−E[θθθ ]+E[θθθ ]−θθθ )2

]

= E
[
(θθθ ?−E[θθθ ])2

]
+E

[
(E[θθθ ]−θθθ )2

]

+ 2E [θθθ ?−E[θθθ ]]E [E[θθθ ]−θθθ ]

= Eθθθ
? [θθθ ?−E[θθθ ]]2 +E

[
(E[θθθ ]−θθθ )2

]
≡ Bias [θθθ ]2 +Var [θθθ ] ,



1.2 machine learning basics 28
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Figure 11: Illustration of the training and test errors as the function of the model
capacity. For small capacity models both the training and test errors are
high and fall in the under�tting regime. As the capacity grows, the training
error eventually decreases to zero, while the test error reaches a minimum
at optimal capacity, before growing again and fall in the over�tting regime.
The generalization gap is the di�erence between the test and training
errors etest− etrain

where the bias of the estimator is the expected deviation from the ground
truth value Bias [θθθ ] ≡Eθθθ

? [θθθ ?−E[θθθ ]] and and the variance is the deviation
from the expected estimator value Var(θθθ ) = E

[
(E[θθθ ]−θθθ )2

]
. As the model

capacity increases, the prediction accuracy increases so that the bias term de-
creases whereas the variance term increases. Summing these two terms leads
to a U-shaped curve similar to the one in Fig. 11 and this decomposition is
traditionally used to explain under�tting and over�tting behaviors illustrated
in Fig. 10. However, we will describe later that this traditional argument fails
explaining the behavior of DNN as suggested in (Zhang et al., 2016).

1.2.6.d regularization

As suggested by the above analysis, in order to control the generalization gap,
we should act on the model capacity. However in practice, we may prefer to
use a �xed model with high-capacity to be able to �t various datasets. Thus
in order to avoid over�tting of this high-capacity model, we shall reduce the
e�ective capacity of the hypothesis class H. This can be done by promoting or
biasing the training algorithm towards particular solutions. In other words,
this means that all potential functions fθθθ in the hypothesis class H are
eligible, but a few of them are more likely and have a highest preference. This
is commonly done by adding a regularization term to the empirical risk (5):

R̂ ( fθθθ ;`,Dtrain)← R̂ ( fθθθ ;`,Dtrain)+λ Ω(θθθ ) . (6)

λ is called the regularization strength and we can choose di�erent forms for
the regularization term such as the classical `p-norm Ω(θθθ ) = ‖θθθ‖p, which
promotes sparse or small-weights solutions for p = 1,2. Yet depending on
the task T and how one wants to restrict the hypothesis class, more complex
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reguralization terms can be designed. Minimizing the regularized empirical
risk (6) results in a trade-o� between �tting the training set and satisfying
the regularization constraint, e. g. keeping small parameters θθθ in the case
of a `2 regularization. This avoids the high-capacity model to fully release
its expressivity and over�t the training set. To summarize, regularization
refers to any modi�cation made to the learning problem in order to reduce
its generalization gap and is essentially at the heart of ML practical challenged.

Since most practical algorithms minimize the (regularized or not) empirical
risk, from a theoretical point of view, it would be of great interest to have
some uniform convergence guarantees that the algorithm simultaneously
minimizes the population risk. Bounding the generalization gap is a burning
challenge widely studied in the statistical learning community and brie�y
reviewed in the next section.

1.2.7 generalization error bounds

The population risk being out of reach, we are reduced to use the empir-
ical risk as a surrogate. Unfortunately, in high dimensions changing the
population average by the empirical average may have strong and damag-
ing consequences. First of all, minimizing the empirical risk R̂ eq. (5) is
not at all guaranteed to provide the same result than minimizing the true
ideal population risk R eq. (4). This would be correct if we would have a
uniform convergence theorem that would assert that the generalization gap
‖R− R̂‖ decreases quickly with the input dimension d and the number of
samples n. This question is part of the realm of statistical learning theory,
pioneered in (Vapnik et al., 2015; Blumer et al., 1989; Vapnik et al., 1994),
and the Probably Approximately Correct (PAC) framework, introduced in
(Valiant, 1984), nicely reviewed in (Mohri et al., 2012; Murphy, 2012). Statis-
tical learning theory provides various tools to quantify the model capacity
such as the Vapnik-Chervonenkis (VC) dimension dvc or the Rademacher
complexity Rn. Measuring the model capacity allows therefore to bound
more �nely the generalization gap, i. e. the discrepancy between training
error and generalization error.

The goal of the next results is to introduce the main quantities that allow
to bound the generalization gap. First results have been obtained in the case
of classi�cation in (Vapnik, 2013). The �rst simple result is that any target
function f ? is learnable using a �nite hypothesis set H as soon as f ? ∈H.
This result is proven with Hoe�ding’s inequality (Hoe�ding, 1994) and the
union bound argument that states ∀δ > 0 with probability 1−δ ,

∀ f ∈H,‖R( f )− R̂( f ,D)‖ ≤
√

ln(|H|)+ ln(2/δ )

2n
.

The underlying union bound argument is responsible for the presence of the
cardinality of the hypothesis class |H| on the right-hand side. Unfortunately,
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the generalization gap bound becomes vacuous in the case of interest for an
in�nite class |H|= ∞. This issue is circumvented with the use of �ner and
tighter bounds such as the VC dimension (Vapnik, 2013) for classi�cation and
more recent distribution-dependent Rademacher complexity (Bartlett et al.,
2002).

1.2.7.a vc dimension

The idea of the VC dimension, which is restricted to classi�cation tasks, is to
count only hypotheses that provide di�erent labelings of the dataset. This
can be formalized with the notion of dichotomies that is exactly the number
of ways of classifying di�erently the points of the dataset D. To obtain a
measure of the richness of the hypothesis class H, we introduce the growth
function ∆H(n) which is the maximum number of dichotomies in which the
n points of the dataset can be classi�ed using hypotheses f ∈H:

∆H(n) = max
{x1,..,xn}⊆X

|{( f (x1), ..,h(xn)) : f ∈H}| ≤ 2n ,

It �nally leads to a re�nement of the generalization gap bound, called the VC
inequality, that states that with probability 1−δ ,

∀ f ∈H,‖R( f )− R̂( f ,D)‖ ≤
√

8
n

ln(4∆H(2n)/δ ) .

To conclude with this generalization bound, we shall compute the growth
function ∆H(n), that is unfortunately often intractable. Instead we introduce
an alternative measure of the hypothesis class complexity: the VC dimension
dvc which is a combinatorial quantity much easier to compute. It is de�ned
as the size of the largest set that can be fully shattered A set of n points is

said to be shattered
by a hypothesis set H

when H realizes all
possible dichotomies:
∆H(n) = 2n.

dvc ≡max{n : ∆H(n) = 2n} .

From Sauer’s lemma (Sauer, 1972; Shelah, 1972), we can show that as soon
the VC dimension is �nite the growth function veri�es ∆H(n) ≤ ∑

dvc
i=0 (

n
i) ≤

Θ
(
(ne/dvc)

dvc
)

so that log∆H(n) = Θ(logn). Thus, the above generaliza-
tion bound vanishes with an in�nite number of samples. Finally, we obtain
the fundamental theorem of statistical learning which states that as soon the
VC dimension of hypothesis class H is �nite, the target function class H? is
PAC learnable. See (Mohri et al., 2012) for an extended derivation.

1.2.7.b rademacher complexity

The PAC framework is too restrictive in the sense that it requires the strongest
worst-case bound working for any dataset D. To relax this strong hypothesis,
a more recent generalization bound has been introduced: the Rademacher
complexity (Bartlett et al., 2002), which explicitly depends on the data dis-
tribution. The Rademacher complexity captures the richness of the family
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H of functions by measuring the degree to which a hypothesis class can �t
random noise. The empirical Rademacher complexity R̂D(H) is de�ned by

R̂D(H) = Eσσσ

[
sup
f∈H

1
n

n

∑
µ=1

σµ f (xµ))

]
= Eσσσ

[
1
n

sup
f∈H

σσσ · f (X)

]
,

where σσσ = {±1}n is a uniform Rademacher random variable with probability
1
2 . The main classical result states that the empirical Rademacher complexity
provides a uniform convergence bound. Informally, for any δ > 0, with
probability 1−δ

sup
f∈H

‖R( f )− R̂( f ,D)‖ ≤ 2R̂D(H)+Θ

(√
ln(2/δ )

n

)
. (7)

Notice that using the Massart’s lemma (Massart, 2000) both the growth
function and the Rademacher bound may be reconciled as it follows

R̂D(H) ≤
√

2ln∆H(n)
n

≤Θ

(√
dvc

n

)
,

so does the VC dimension. To better understand the notion of Rademacher
complexity, it is fruitful to notice that it simply measures, on average, the
correlation between the prediction of the estimator f and random labels
σσσ , which are uncorrelated from the inputs examples X. To conclude this
section, let us mention that the mathematical and statistical learning commu-
nity largely focussed on such uniform convergence generalization bounds.
However, we will discuss that this kind of worst-case scenario bounds are be-
lieved to be over-pessimistic and fail, therefore, to capture the generalization
behavior of practical model classes such as DNN.

1.2.8 statistical estimation

Once we have chosen a parametric model fθθθ ∈H within an certain hypoth-
esis class, or equivalently a parametric family of probability distributions
Pθθθ (x), we shall discuss how to estimate in statistics, or equivalently learn in
ML, the model parameter θθθ . Statistical estimation of the parameters is divided
in two ways of thinking: frequentist versus Bayesian. These approaches un-
dergo long con�icts and the literature is full of debates among statisticians to
build proper estimators (Aldrich et al., 2008). In this section, we simply review “Ignorance is

preferable to error
and he is less remote
from the truth who
believes nothing than
he who believes what
is wrong. Thomas
Je�erson (1781)”

the two approaches and the most common estimators used in the applications
Part II. We standardly denote θ̂θθ the output of the di�erent estimators.

1.2.8.a freqentist approach

The frequentist approach assumes that making use of any a priori distribu-
tion would be misleading. In order to not bias the estimation in the wrong
way, frequentists prefer to make no assumption on the a priori probability
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distributions. The central object of study is the likelihood and follows the
work of (Fisher, 1925).

Likelihood Let us consider a set of observations X =
{

xµ

}n
µ=1 drawn

i.i.d from an underlying data distribution P(x) and a family of distributions
parametrized by θθθ , Pθθθ (x) ≡ P (x|θθθ ) that models it. We de�ne the likelihood
function L or respectively the log-likelihood L according to the data X by

L (θθθ |X) : θθθ 7→ P (X = X|θθθ ) , L (θθθ |X) : θθθ 7→ logP (X = X|θθθ ) (8)

that both measure the probability of obtaining observations X for a given
value of the model parameters θθθ . This likelihood function does not assume
any prior knowledge on the parameter space and is considered by frequentists
to contain all relevant information for statistical inference.

Maximum Likelihood Estimation Based on the log-likelihood L (θθθ |X),
the simplest and most common estimator consists in maximizing the prob-
ability of observing the data X. The Maximum Likelihood Estimator (MLE)
estimator θ̂θθ mle is de�ned as

θ̂θθ mle (X) ≡ argmaxθθθ {L (θθθ |X)}= argminθθθ {−L (θθθ |X)} , (9)

that can be, equivalently, simply written as a minimization problem. The MLE
can be interpreted as a way of matching the empirical distribution of the data
and the model distribution:

θ̂θθ mle (X) ≡ argmaxθθθ {L (θθθ |X)}= argmaxθθθ

{
1
n

n

∑
µ=1

logP (xµ |θθθ )
}

= argmaxθθθ {Ex∼P̂ logP (x |θθθ )}

with the empirical data distribution P̂(x) = 1
n ∑

n
µ=1 δ (x−xµ). Indeed the KL

divergence serves as a distance within probability densities (see Sec. 4.2.1.b)
for more details) and is simply the cross-entropy between the empirical
distribution and the model distribution

KL
(
P̂|Pθθθ

)
= Ex∼P̂ log P̂(x)−Ex∼P̂ logP (x|θθθ ) .

As the �rst term does not depend on the model, the MLE can be thought as
minimizing the discrepancy between the empirical data and model distri-
bution, with ideal objective to match the true data-generating distribution
P(x).

Conditional likelihood In a supervised learning perspective, where
models are trained end-to-end, the dataset is in fact made of inputs and
outputs D = {X,y} and the likelihood shall be replaced by the conditional
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likelihood L (θθθ |D) = θθθ 7→ logP (y|θθθ ,X). The corresponding maximum like-
lihood estimator readily generalizes to

θ̂θθ mle (D) ≡ argmaxθθθ {L (θθθ |D)}
= argmaxθθθ

{
E(x,y)∼P̂(x,y) logP (y|θθθ ,x)

}
,

and is a central estimator in most supervised learning settings. It turns out
in particular that under the assumption that the ground truth P?(x,y) lies
within the probability density family Kθθθ =

{
Pθθθ (y|θθθ ,x) ,θθθ ∈Rdθ

}
, the MLE

estimator becomes optimal in the asymptotic in�nite number of samples n→
∞. As it converges the fastest towards the true parameters θθθ

?, the estimator
is quali�ed of consistent and also e�cient as moreover its generalization error
decreases in this limit. Indeed, the Cramer-Rao bound states that any unbiased
estimator has a variance bounded by the inverse of the Fisher information:

Var(θ̂θθ ) ≥
(

E
[
(∂θθθ logP(y|θθθ ,x))2

])−1
,

and this lower bound is attained by the MLE in the large number of sample
regime n → ∞. This means that in this regime of large number of data,
maximimzing the likelihood should be preferred to any other statistical
estimator. Unfortunately when the number of data is limited, the MLE is not
optimal and leads to over�tting that can be avoided by adding a regularization
term. In fact in this regime, more prior-knowledge information is required to
perform optimal reconstruction, which can be achieved with the Bayesian
approach presented in the next section.

1.2.8.b bayesian approach

In contrast with the frequentist approach, which relies on a worst-case analy-
sis, Bayesian statistics makes use of prior information or knowledge beliefs and
relies on a typical case analysis. The Bayesian approach considers all possibles
values of the estimators to make a prediction and it follows essentially Bayes
(Bayes, 1763) and Laplace works.

While the frequentist perspective assumes that the ground truth parameter
θθθ
? is unknown but �xed, the Bayesian approach uses probabilities to re�ect

prior knowledges, so that θθθ
? is considered as an uncertain random variable

with prior distribution P(θθθ ?). Also while MLE makes predictions using a
point-wise estimate, the Bayesian approach makes a predictions using the
full distribution over θθθ . Therefore, observing a supervised learning dataset
D = {X,y}, we can make use of the observations of the data to model the
probability of the parameter θθθ essentially by means of the Bayes formula

P (θθθ |y;X) =
P (y|θθθ ;X)P (θθθ )

P (y;X)
(10)
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where P (y|θθθ ;X) denotes the conditional likelihood, P (y;X) the evidence,
denoted later in the manuscript Z (y;X) also called the partition function, Notice that taking a

Gaussian prior
P(θθθ ) = Nθθθ (0,1) is
equivalent to add a `2
regularization term
− logP(θθθ ) = 1

2‖θθθ‖2
2

to the log-likelihood.

and �nally P (θθθ |y;X) is called the a posteriori or posterior distribution. With
this prior informations, which model the external world, Bayesian methods
generalize typically much better when the training set is small and does not
contain enough information. However, we can already notice that computing
the average over the posterior P (y;X) =

∫
Rd dθθθ p (θθθ |y;X) will strongly

su�er in the high-dimensional regime, where d,n→ ∞, and is in fact very
often intractable.

How to choose the prior? Bayesian methods make deep use of the prior
information P(θθθ ) which is unknown in general. The prior information is Information theory

provides a
constructive criterion
for setting up
probability
distributions on the
basis of partial
knowledge, and leads
to a type of statistical
inference which is
called the maximum
entropy estimate. It is
least biased estimate
possible on the given
information; i.e., it is
maximally
noncommittal with
regard to missing
information. ET.
Jaynes, 1957

useful in the sense it shifts the probability density towards more probable
regions of parameters. In particular, it might be used to promote models that
are simpler or more smooth, and can be already understood as a regularization
factor. As frequentists blame Bayesian to bias estimation by injecting prior
information that may be wrong, we should decide how to select correctly
the prior information P (θθθ ). This question was addressed and answered in
(Jaynes, 1957; Jaynes, 2003) who advocated that in order to bias as few as
possible the estimation, we should select priors according to the maximum
entropy principle presented in more details in Sec. 4.2.2.b. In practice we often
start with a Gaussian distribution, which is known to maximize the entropy
under certain constraints, with wide variance to re�ect the high degree of
uncertainty in θθθ and then decrease it along the training.

In practice computing the full posterior distribution in high-dimensions is
often intractable. For simplicity it is therefore of practical interest to reduce
the problem to simple point-wise estimates such as the mean and the maxi-
mum of the posterior distribution P (θθθ |y;X) corresponding to the so-called
Minimum Mean Squared Error (MMSE) and Maximum A Posteriori (MAP)
estimators.

MinimumMean Squared Error The MMSE estimator is simply de�ned
as the mean of the posterior distribution

θ̂θθ mmse = EP(θθθ |y;X) [θθθ ] , (11)

and will be of central interest in the rest of the manuscript. Indeed, ideally we
hope to minimize the reconstruction error with the ground truth parameter
θθθ
?, i. e. the Squared Error (SE)

SE
(

θθθ
?, θ̂θθ
)
=

1
d
‖θθθ − θ̂θθ‖2

2 . (12)
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However, as very often the ground truth parameter θθθ
? is not accessible, we

would simply require to minimize the error in average, i. e. the MSE de�ned
by

MSE
(

θ̂θθ

)
=

1
d

∫

Rd
dθθθ p (θθθ |y;X)‖θθθ − θ̂θθ‖2

2 . (13)

Taking the derivative with respect to θθθ directly yields the de�nition of
the MMSE estimator θ̂θθ mmse that therefore has the nice property to minimize
the MSE reconstruction error. This estimator is very powerful but unfortu-
nately very rarely tractable in practice as it requires to average over the
high-dimensional posterior distribution P (θθθ |y;X). An approach to compute
this estimator would be to make use of Markov-Chain Monte-Carlo (MCMC)
algorithms to sample the posterior distribution. But in high-dimensions, sam-
pling methods are very ine�cient and require a huge number of samples.
As a spoiler, a main part of this work is concerned with computing this
high-dimensional object with heuristic methods from statistical physics.

Maximum A Posteriori The other simple point-wise estimate is taking
the maximum of the posterior distribution and not the mean as for the MMSE.
The MAP estimator is naturally de�ned as

θ̂θθ map ≡ argmaxθθθ logP (θθθ |y;X)

= argminθθθ {− logP (y|θθθ ,X)− logP (θθθ )}

and can be turned into a minimization problem such as in ERM. Under this
formulation, we notice easily that MAP Bayesian estimation with P(θθθ ) a
priori information is strictly equivalent to MLE estimation in the presence of
a regularizer − logP(θθθ ) and has the advantage to provide a way to design
complicated yet interpretable regularization terms. In comparison with the
MLE, it has the advantage to leverage prior information not contained in the
training data at the price to increase the bias.

1.2.9 classical models

In this section, we brie�y present the main models and architectures mostly
used in modern supervised ML, ranging from linear models to deep neural
networks.

1.2.9.a generalized linear models

The simplest and wildest class of models used in many ML applications is
linear models. To perform classi�cation or regression linear models are very
popular because of their simplicity. However, to produce discrete outputs
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for instance, one often considers a wider hypothesis class known as the
Generalized Linear Model (GLM) hypothesis class

Hglm =



 fw :





Rd 7→R

x 7→ ϕout (wᵀx+w0) ,
(w,w0) ∈Rd+1





It contains a�ne functions parametrized by a vector w ∈ Rd applied as a
scalar product with the features x, and a bias or intercept w0. In addition,
ϕout represents a deterministic or stochastic element-wise activation func-
tion, potentially non-linear, added on top of the linear operation. In other
words, GLM are simple models based on a linear weighted sum of the features
components shifted by a bias w0. The parameter w = {wi}d

i=1 can be thought
as the weights associated at each sample features xµ = {xiµ}d

i=1. This a�ne
operation is called a formal neuron. Even though very simple, it is the ele-
mentary brick at the origin of more complex modern feed-forward DNN. The
decision boundary of linear models is essentially a high-dimensional hyper-
plane that splits linearly the input space. For classi�cation tasks, considering
a sign output function ϕout(z) = sign(z−K) or an Heaviside step function
ϕout(z) = Θ(K− z) refers to the historical perceptrons with a stability thresh-
old K. In particular, we will illustrate our statistical physics approach on this
simple model class notably in Sec. 4.1.5, 4.3.4, 4.4.1 and 4.4.3.

Linear regression: pseudo inverse, ridge & lasso Consider we want
to predict the output y ∈R of input vector x ∈Rd , we �rst consider a linear
predictor that outputs ŷ = wᵀx+w0. Taking the MSE as our performance
measure, we would like to minimize the generalization error on the test set
Dtest

MSEtest(ŵ) = E(y,x)∼Dtest (y− ŷ(ŵ))2 .

As as a surrogate, we minimize instead the empirical risk on the training set
Dtrain. The goal is therefore to �nd an hyperplane that minimizes the sum
of the squared errors between the observations y and predictions ŷ. In this
simple case, we can derive an explicit expression of the parameters ŵ that
minimize the MSE on the training set. Taking the gradient of the empirical
risk to 0, we easily obtain the pseudo-inverse estimator, also called the normal
equations:

∇w‖ytrain−Xtrainŵ‖2
2 = 0⇒ ŵpseudo = (Xᵀ

trainXtrain)
−1 Xᵀ

trainy

However, in practical applications of linear regression, the number of features
d is often very large, and even larger than the number of samples d, so that
in this case the problem has an in�nite number of solutions.

To obtain a �nite number of solutions, we often try to reduce it by se-
lecting an appropriate set of features that describe correctly the underlying
distribution. A feature selection method consists in projecting the data in a
basis where the data are sparse, see (Hastie et al., 2015) for a comprehen-
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sive discussion. Nonetheless, the modern feature selection approach is to use
regularization that slowly pushes the e�ects of irrelevant features towards
zero while keeping only interesting features, see Sec. 1.2.6.d. Regularized
regression coincides equivalently to penalized models or shrinkage meth-
ods. Minimizing the regularized empirical risk (6), that can be thought as the
trade-o� between minimizing the squared error and having small coe�cients,
constrains the initial hypothesis class H to particular solutions with small
magnitude and �uctuations of the parameters.

In the case of linear regression with the squared loss, three main cases
are widely considered: LASSO (Tibshirani, 1996) with Ω(θθθ ) = ‖θθθ‖1, ridge
regression (Hoerl et al., 1970) with Ω(θθθ ) = ‖θθθ‖2

2 and a combination of them
called elastic net (Zou et al., 2005).

Binary classi�cation: perceptron & logistic For a binary classi�cation
task such as represented in Fig. 12 (Left) , the decision boundary can be
estimated by a linear hyperplane such that on each side of the decision
boundary the labels are positive or negative. This setup is known as the
classical perceptron y = sign (w ·x+w0). To train this model and estimate
the parameters {w,w0}, the original perceptron algorithm (Rosenblatt, 1958)
and many variant rules have been proposed. The perceptron model has been
the subject of a rich statistical physics literature, see (Engel et al., 1993) for a
comprehensive review, and it will be discussed in Sec. 3. Modern ML tasks
are very often formulated as minimization problems of the empirical risk
(5). Keeping our generalized linear model hypothesis class, we still have the
choice of the loss function `. In the case of binary classi�cation, let us mention
the widely used logistic regression with `logistic(y, ŷ) = log(1+ exp(−yŷ)),
which is equivalent to the binary cross entropy loss `bce(y, ŷ) = −y log ŷ−
(1− y) log(1− ŷ) with a sigmoid activation ŷ = σ(w ·x+w0).

Support VectorMachines and hinge loss In the case where the training
examples are linearly-separable, the perceptron’s solution is ill-de�ned as there
exists an in�nite number of hyperplanes that classify correctly the training
set. To select a robust solution, the idea of the in�uential SVM is to select the
perceptron with the widest margin (Boser et al., 1992; Vapnik, 2013). In the
context of a binary classi�cation task, in order to generalize as well as possible
to variations of the dataset we should select the hyperplane that maximizes
the distance to the nearest examples in the two classes, as illustrated in
Fig. 12 (Left) . In more details, for (w,w0) ∈Rd+1, we require that on the
margins y = sign (w ·x+w0)⇔ 1 = y (w ·x+w0), so that the distance of
the decision boundary to the margins x± is w ·x± = 1∓w0 and the width
of the margin equals γ = 2

‖w‖2
. As a consequence, to maximize the margin γ

we may equivalently minimize a `2 reguralization term 1
2‖w‖2

2. To be more
precise, the primal form reads

Minimize 1
2
‖w‖2

2, under the constraints yµ (w ·xµ +w0) ≥ 1.
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The Karush-Kuhn Tucker conditions on the associated dual formulation lead
to a well-de�ned and unique solution and �nally reduces the hypothesis
class. Indeed while the VC dimension of the GLM hypothesis class Hglm is
d+1, for the SVM the margin constraint γ shrinks it to dvc = min

(
2R2

γ
,d
)
+1

that can be be much smaller than d + 1, with R the radius of the smallest
sphere comprising the training samples. Moreover, the primal problem may
be formulated in a practical regularized version

ŵ = argminw

n

∑
µ=1
|1− yµ fw(xµ)|+

λ

2
‖w‖2

2 ,

by minimizing the hinge loss `hinge(y, ŷ) = max (0,1− yŷ) which is another
common choice to perform binary classi�cation.

+1

−1
x1

x 2

+1

−1

x1

x 2

+1

−1

x1x2

x 3
Figure 12: Illustration of a classi�cation task for (Left) a linearly separable dataset

that can be classi�ed with a large margin SVM, (Center) and a non-
linearly separable dataset that a generalized linear model cannot �t.
(Right) Projection of the non-linearly separable dataset into a higher
dimensional space (x1,x2) 7→ (x1,x2,x3).

Limitations Linear models such as linear regression or binary classi�-
cation with perceptrons or SVM illustrated in Fig. 4 are very simple from a
practical viewpoint. Unfortunately the low-capacity hypothesis class Hglm is
extremely limited to simple tasks and dataset and cannot �t correctly more
complex tasks. In particular, the XOR function or a more complex donut-like
set of points such as in Fig. 12 (Center) . However, linear models do not
allow to classify non-linearly separable points.

Kernel methods To circumvent this issue, the very elegant idea of kernels
methods is to change the representation of the input features X = {xµ}n

µ=1
by projecting them in a higher-dimensional latent space, in which data be-
come evenetually linearly separable. For more details on kernel methods,
see (Williams et al., 1996; Scholkopf et al., 1999). Kernel methods rely on the
kernel trick (Aizerman, 1964) based on the Mercer’s theorem. It follows from
the observation that the dot product between the parameters w and a feature
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vector x can be written as a linear decomposition with some coe�cients
{θµ}n

µ=1 so that

w ·x+w0 = θ0 +
n

∑
µ=1

θµxᵀxµ .

Having this trick in mind, it has been extended to more complex kernels
k : X×X 7→R, where xᵀxµ is replaced by a dot product in a high-dimensional
space k (x,xµ) = φ (x)ᵀ φ (xµ). By projecting the features in a new, possibly
higher dimensional, space through the mapping φ , we eventually transform
the dataset in a linearly separable representation. Indeed, the main interest
of kernel methods is that the new estimator parametrized by θθθ

fθθθ (x) = θ0 +
n

∑
µ=1

θik (x,xµ)

is non-linear with respect to the examples xµ , yet it is linear in the new
features φ (xµ). In other words, a kernel method is simply a linear model
on pre-processing data in the space φ (X). By considering φ �xed, we only
need to optimize over θθθ , similarly to linear regression except that the model
is now non-linear and more expressive. In particular, SVM may be used in
parallel of the kernel trick and are called kernel-SVM in this context. We
need to construct the n× n Gramm matrix kµ ,ν = k (xµ ,xν) from the dot
product of {φ (xµ)}n

µ=1. This operation is computationally ine�cient as
Θ(n2) and certainly hopeless for training sets containing millions of examples.
In practice the kernel k is not computed but commonly taken among simple
tractable forms such as the Gaussian, also called Radial Basis Function (RBF)
kernel k(a,b) = N (a−b,σ2I), or even polynomial, Laplace, or sigmoid
kernels. Recently, kernel methods started experience a decline in popularity
with the advent of DL and DNN and especially when for the �rst time a neural
network outperformed a Gaussian kernel SVM on MNIST (Hinton et al., 2006).

1.2.9.b deep feed-forward neural networks

In the recent years, the wide class of DNN models entered the scene (LeCun et
al., 2015). Just as the wings of plane are inspired by the wings of birds or many
other biomimetics systems, DNN have been inspired by the brain mechanism
to simulate AI. Yet the corresponding DL branch of research became far apart of
the initial neuroscience �eld. ANN and DNN are henceforth a class of models
made of a cascade connection of simple elementary bricks based on the
perceptron, as illustrated in Fig. 13. Connecting several formal neurons into
complex networks de�ne a richer hypothesis class with higher capacity. For
instance a feed-forward DNN of depth L is made of L hidden layers {h(l)}L

l=1.
Each hidden layer h(l) = {h(l)i }nl

i=1 of width nl is composed of nl hidden units.
This high-expressivity model is parametrized by a set of weights matrices and
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x1µ

x2µ

x3µ

xnµ

W(L−2) W(L−1) W(L)

Input layer xµ

Hidden
layer h(L−2)

Hidden
layer h(L−1) Output yµ

Figure 13: Representation of a deep feed-forward neural network with depth L. Each
arrow represents a learnable scalar value and each hidden unit h(l)i is the
result of a formal neuron operation.

bias vectors θθθ =
{

W(l),b(l),∀l ∈ JLK
}

. The architecture can be expressed
mathematically as the following input to output mapping X 7→ y:

y = σ
(L)
(

W(L)
σ
(L−1)

(
· · ·σ (1)

(
W(1)X+b(1)

)
+ · · ·

)
+b(L)

)
.

A given layer h(l+1) is the result of a linear product of a matrix of weights
W(l) with the result of the previous layer h(l) and adding a potential bias b(l).
This is followed by a non-linear operation continuous activation function σ

acting component-wise: h(l+1) = σ (l)
(

Wh(l)+b(l)
)

with h(L+1) ≡ y and
h(0) ≡ x. The corresponding very expressive hypothesis class H is largely
modular through the architecture of the network, as we can easily tune the
depth, width, and activation choice, and it is one of the reasons for its success.
Especially the universal approximation theorem (Cybenko, 1989; Hornik, 1991)
showed that a two-layer neural network with L = 2 can approximate any
smooth function. Yet, state-of-the-art DNN used nowadays are not limited to
two layers and we observe an explosion of the numbers of layers to apply
to various and more complex tasks. To illustrate, famous networks such
as AlexNET contains 100 layers (Krizhevsky et al., 2012) so does a typical
ResNET (He et al., 2016). Finally, to avoid the vanishing gradient problem
during the training, typically with a gradient-descent based algorithm, it
is preferable to choose smooth activations functions with non-vanishing
gradients such as the popular Recit�ed Linear Unit (ReLU) σ(x) = max(0,x)
or, to a lesser extent, the hyperbolic tangent σ(x) = tanh(x).

To conclude, the main advantages of DNN with respect to kernel meth-
ods are their expressivity and scalability to be trained on larger and larger
datasets.

A wide zoology of networks Nevertheless DNN are not restricted to
feed-forward neural networks which are particularly suited to regression and



1.2 machine learning basics 41

classi�cation. Depending on the task T and the kind of data, we observed
emergence of various kind of networks. Notably, CNN are originally inspired
from the biology and the visual cortex. By replacing the matrix product by
a convolution product, they are particularly suited to processing arrays of
numbers such as images in vision and pattern recognition (LeCun et al., 1998;
LeCun et al., 1999; Krizhevsky et al., 2012). In contrast with the classical
knowledge-based methods where �lters to process images are smartly de-
signed by hand, the power of CNN lies on the fact that these �lters are directly
learned from data. In the context of speech recognition and NLP, to take into
account the global meaning of the sentences and correlations between words,
recurrent networks (Rumelhart et al., 1986a) such as LSTM are quite popular
since their high connectivity allows to simulate memory.

1.2.10 practical algorithms

To conclude the global overview of the ML machinery, it remains to address
algorithmic questions to perform statistical estimation of the model parame-
ters θθθ . In this manuscript, we essentially focus on two classes of algorithms
depending if the ML estimator is formulated as an optimization or an averag-
ing problem. In one hand, many problems are formulated as minimizing an
objective function or maximizing the likelihood with the data distribution,
that can be handled by gradient-based algorithms. In the other hand, estima-
tors based on the average over certain high-dimensional distributions require
either to sample or approximate it. Notice that there exists other techniques
such as constrained optimization with Frank–Wolfe algorithms, that we will
not discuss in this manuscript.

1.2.10.a gradient-based algorithms

Most of ML algorithms involve the minimization of a certain smooth and
di�erentiable objective function with respect to the model parameters θθθ .
The most popular objective function is the negative log-likelihood with re-
spect to the training set Dtrain, namely the empirical risk R̂ (θθθ ;Dtrain) =

−E(x,y)∼P̂(x,y) logP (y|θθθ ,x) so that common estimators such as MLE and MAP
can be formulated as

θ̂θθ = argminθθθ R̂ (θθθ ;Dtrain)+λ Ω(θθθ ) , (14)

where the additional term λ Ω(θθθ ) may be added for regularization, see
Sec. 1.2.6.d. The common strategy to train such parametric estimators is to
consider simple �rst-order gradient-based algorithms (Cauchy, 1847) widely
popularized with practical applications in (LeCun et al., 1998). Starting with
some initial model parameters drawn randomly θθθ

0 ∼ P(θθθ 0), the underlying
idea of a majority of training algorithms consists in performing a gradient-
descent on the empirical risk. Following the gradient-descent, the algorithm
will certainly end up in a local minima, and eventually in a global one with
good generalization properties. Recall this is the main di�erence between
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ML and optimization: while the later allows any global minima, the �rst re-
quires at least a local minima that predicts correctly unseen data, in other
words: that generalizes. This simple strategy is commonly known as Gradient-
Descent (GD) de�ned by an update rule that computes in which way the
weights θθθ should be altered so that the proxy objective R̂ function can reach
a minima:

θθθ
t+1 = θθθ

t − γ
t
∇θθθ R̂ (θθθ ;Dtrain) = θθθ

t − γ t

n

n

∑
µ=1

∇θθθ ` (yµ , fθθθ
t (xµ)) ,

(15)

where the hyper-parameter γ t , called the learning rate, controls the size of
each decreasing gradient step and is usually �xed by performing line search
on a validation set. Notice that this idea may be generalized to second-order
methods such as the Newton’s method that makes use of the second derivative.
However, they are very rarely used in practical applications since computing
the Hessian matrix, remains ine�cient and costly to compute for a large
amount of high-dimensional data. GD parameters update rule (15) has the
advantage to be easy to implement and to understand, and its trajectory can
be analyzed rigorously as soon the objective function is convex. Indeed in
convex optimization (Boyd et al., 2004), most of algorithms have convergence
guarantees by making strong the assumption that the Hessian of the objective
function is always positive semi-de�nite to ensure there is no saddle points
and local minima.

Convergence In most practical DL applications, data distribution P(x,y) is
very complex and the high-dimensional model may contain millions of param-
eters. The corresponding optimization problem (14) is very often non-convex In the presence of

local minima (red),
GD is not guaranteed
to converge to the
global minima
(green), as it depends
on the initialization
point.

θθθ

R̂

and thus GD algorithm lacks convergence guarantees. In other words, the
optimization problem is not guaranteed to converge even to a local minima in
a �nite time, despite this fact, in practice it often delivers quickly parameters
with low values of the objective and good generalization properties.

Variants and tricks Even though the GD algorithm is easy to understand
and implement, it has the disadvantage to be possibly trapped in local minima
and to be computationally ine�cient on large datasets, since the full gradient
has to be computed. Many variants of this simple gradient algorithms, such
as Stochastic Gradient-Descent (SGD), have been introduced (Robbins, 1951),
where the sum over the gradient of the full training set is replaced by the
gradient over a single training example at a time. Thus stochastic refers to the
randomness in the examples selection at each time step. Very interestingly,
it turned out empirically that this variant was able to �nd other regions of
parameters than simple GD, with low test error and therefore good general-
ization properties. Hence even though convergence is not guaranteed, these
algorithms are strongly used in practice as moreover it solves the computa-
tional issue of storing in memory the gradient of the full dataset. In between,
mini-batch GD is a good compromise and computes the gradient over small
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batches, of size n′ with 1� n′� n, drawn uniformly from the training set
and thus provides a more accurate estimate of the full gradient with some
randomness. In the case where the dataset is redundant, this mini-batch
version has also the advantage to converge faster than GD, since it does not
require to explore the whole dataset to capture the underlying distribution.
In particular, the size n′ of the batch becomes another hyper-parameter we
should tune on the validation set. In practice the mini-batch size is typically
around hundred while the full batch contains millions of examples. Thus full-
batch GD corresponds to the classical GD while 1-mini-batch GD refers to SGD.
In particular, these algorithms are widely used because even for in�nitely
large training set n� 1, the complexity of mini-batch GD remains Θ(1).

As convergence is still not guaranteed, other tricks have been developed
to help and accelerate �nding minima and avoid oscillations such as adding
momentum (Sutskever et al., 2013) and Nesterov accelerated gradient. See
(Goodfellow et al., 2016) for a detailed review. Also as �xing the learning rate
may be tricky, new optimization variants with smart update learning-rate
rules came to light, such as Adagrad (Duchi et al., 2011), AdaDelta (Zeiler,
2012) or Adam (Kingma et al., 2014). To conclude, many tricks and techniques
on how training e�ciently DNN are comprehensively described in (Bottou,
2010). In particular, we may brie�y mention that the initialization scheme
P(θθθ 0) seems to play a signi�cant role as well as the batch normalization
(Io�e et al., 2015), since these tricks suggest to serve as an inductive bias and
reduce adequately the e�ective hypothesis class of DNN.

Back-propagation In contrast with kernel methods which training suf-
fers datasets of large size, DNN became very popular because of their scalabil-
ity made possible thanks to a simple and robust training algorithm. The main
di�culty in training a gradient-based algorithm according to the update (15)
lies in computing the gradient of this loss with respect to the parameters θθθ .
This has been made possible by the crucial observation that the gradient of
the objective (4) with respect to the parameter θθθ can be computed by the
chain rule using simple algorithmic di�erentiation (Griewank, 1992). DNN
can be trained e�ciently, namely in linear time with the size of the network,
by applying a simple chain-rule derivative, known as the back-propagation
algorithm (Rumelhart et al., 1986b).

In more details, by matrix multiplication, adding biases and applying non-
linearities across the di�erent layers, the forward-propagation of the input
xµ gives access to the predicted output ŷt

µ of the model and the loss l(yµ , ŷt
µ)

at time t . To �x ideas, consider a two-layer neural network, without bias, of
the form

zt
1 = W(1)

t xµ , zt
2 = W(2)

t σ
(1) (zt

1) , ŷt
µ = σ

(2) (zt
2)

with parameters at time t , θθθ
t = {W(2)

t ,W(1)
t }. Computing the gradients of

the empirical risk (5) with respect to the parameters W(2), W(1), for the
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squared loss `(y, ŷ) = 1
2 (y− ŷ)2 is simply performed as a succession of linear

operations

∂W(2)`(yµ , ŷt
µ) = −(yµ − ŷt

µ) ·∂z2σ
(2)(zt

2) ·σ (1)(zt
1) ,

∂W(1)`(yµ , ŷt
µ) = −(yµ − ŷt

µ) ·∂z2σ
(2)(zt

2) ·W
(2)
t ∂z1σ

(1)(zt
1) ·xµ ,

which intermediate results are stored in a computational graph for numerical
e�ciency. Back-propagating the derivatives over the whole DNN up to the
input layer gives access to all the parameter updates (15) at time t . Linear in
the size of the network and the number of data, it allows to scale the training
procedure to very large networks.

To conclude this section, performing GD at each time step, we often monitor
the training error etrain until convergence. Then we compute the validation er-
ror at the end of the training to tune hyper-parameters such as γ , n′. Once the
model and hyper-parameters are properly selected, we can �nally compute
the error on the test set as a surrogate of the generalization performances,
see Sec. 1.2.5.b.

1.2.10.b sampling and approximating

As discussed in Sec. 1.2.8, Bayesian estimators such as the MMSE may be formu-
lated instead as an average over the posterior distribution θ̂θθ = EP(θθθ |y;X) [θθθ ].
The average can be done explicitly only in cases where the posterior distri-
bution P (θθθ |y;X) is explicit and tractable. Unfortunately, in high-dimensions
computing it is very often intractable and we shall investigate alternative
strategies such as sampling or approximations. Approximating high-dimensional
joint probability distribution such as P (θθθ |y;X) is the goal of the mean �eld
methods presented later on in Sec. 4.2. Alternatively, among sampling meth-
ods, we shall brie�y mention Gibbs sampling performed with classical MC
methods or more performant MCMC variants using notably importance sam-
pling. Their simple idea relies on the Central Limit Theorem (CLT) that insures
that the integral over the posterior can be approximated as

θ̂θθ =
∫

Rd
dθθθ p (θθθ |y;X) ' 1

nmc

nmc

∑
µ=1

θθθ µ where θθθ µ ∼ P (θθθ |y;X)

This kind of sampling methods is reviewed in details in (Andrieu et al., 2003;
Allison et al., 2013; Craiu et al., 2014) and will not be at the heart of this
manuscript, especially because they su�er slow convergence rate in very
large dimensions and require acceleration and variance reduction to sample
only useful regions of the high-dimensional probability distribution.
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1.3 CHALLENGES AND OPEN
QUEST IONS IN DEEP LEARNING

DL was designed to overcome the insu�ciency of traditional ML to learn
complex high-dimensional functions or probability distributions. It impres-
sively brought unprecedented empirical progresses (LeCun et al., 2015) into
various ML applications such as in image, text and speech processing. These
recent successes were made possible thanks to the availability of much larger
datasets and greater computational resources. Yet, as it relies essentially on
ingenious engineering tricks, it brought as well many unanswered fundamen-
tal questions that still remain open. Strikingly, the early questions raised in
(Breiman, 1995) are still of actuality. Because of this lack of theoretical foun-
dations and guarantees, current practical DL is potentially sub-optimal in the
sense the current brut force approach takes advantage of the computational
e�ciency of oversized DNN trained on large dataset.

1.3.1 curse of dimensionality and
optimization

The empirical loss minimization problem (14) becomes extremely di�cult.
With the explosion of the features size, this modern optimization problem
lies in a high-dimensional space and was shown to be NP-complete (Blum
et al., 1992). Indeed, as the problem dimensions increase, the number of
con�gurations — i. e. the number of possible combinations of the di�erent
parameters — is exponential and therefore much larger than the number of
training examples in the training set. The curse of dimensionality, faced by
many computer science tasks in high-dimensions, refers to the statistical
challenge to provide accurate predictions on large regions of parameters
potentially not explored during the training.

On the other hand, our geometric intuition of this high-dimensional space
seems to hit a paradox and trivially concludes that a gradient-based algorithm
will naturally fall and remain stuck in one of the many existing local minima,
if no additional help is given. In most of the practical cases, this task is doable
for a large, but �nite number of samples. Yet this remains very ine�cient
since a human baby that would recognize images of dog and cat with a
few pictures whereas current state-of-the-art ML models require millions of
images. Moreover, while convergence of gradient-based is guaranteed for
quasi-convex loss functions, understanding why GD algorithms do not hit
poor generalization local minima remains a burning open question. Indeed,
even though minimizing highly-non convex losses is NP-hard, gradient-based
algorithms such as GD, SGD or many other variants (Ruder, 2016) strikingly
converge to regions of parameters with low generalization error and do not
systematically lead to over�tting. Moreover even though many tricks are pre-
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scribed to help gradient-based algorithms to converge (Bottou, 2010; Bottou,
2012), building theoretical prescriptions is an active line of ML research.

1.3.2 generalization problem

Classical statistical generalization bounds such as the VC dimensions or the
Rademacher complexity are in theory used to justify the learning ability of
some ML models. However, nowadays DNN contain millions of parameters
and are so large that these classical worst-case statistical bounds became
over-pessimistic and fail to predict DNN neural networks behavior. Indeed,
as the number of parameters is larger than the number of examples PAC
generalization bounds (Vapnik, 2013; Bartlett et al., 2002) predict they should
largely over�t and therefore cannot explain their good generalization be-
havior observed in practice. Moreover, recent works showed that such tra-
ditional PAC bounds do not hold in DL, and should be re�ned. In particular
the experimental work of (Zhang et al., 2016) showed that DNN were able
to simultaneously learn complex rules as well as �tting random labels. Ad-
ditionally, the traditional bias-variance trade-o� to explain generalization
performances is therefore obsolete and it is of actuality to understand why
heavily parametrized high-capacity neural networks do not over�t the data
(Neyshabur et al., 2017; Arora et al., 2018b). In fact empirical observations
suggest that the optimization procedure induce a bias that reduces the ef-
fective dimension of neural networks, that can be captured by only a few
order parameters. Highlighting them analytically is of course an intense line
of research in the statistical learning community.

1.3.3 expressive power, universality and
architecture

Modern ML relying essentially on the ANN and DNN provide a powerful hy-
pothesis class H with large representation ability as stated by the strong
universal approximation theorem (Cybenko, 1989; Hornik, 1991). However,
this result for a two-layer shallow network is not constructive as it does not
prescribe the width, i. e. the number of hidden units, or the sample complexity
α = n

d , with n the number of training examples d the input dimension, to
correctly approximate a given target function f ?, neither the estimator or
training algorithm A to obtain model parameters θθθ with good generalization
properties. Also, increasing the depth was known for a long time (Minsky
et al., 1969) as a solution to overcome simple perceptron limitations, the intu-
ition that depth provides a natural hierarchal framework to learn di�erent
scales and representations across layers was recently advocated (Bengio et al.,
2013) as well as the analogy with physics renormalization group (Mehta
et al., 2014). Such intuition as well as theoretical principles on how to choose
model-parameters such as the loss, activations, number of layers, sample
complexity or hyper-parameters are fragile and the current understanding
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remains mainly empirical. On the unsupervised learning counterpart, even
though VAE and GAN showed their impressive ability to produce realistic
images, measuring the performance of the generative models by knowing in
particular if they provide correct approximations of the true data distribution
is an important ongoing line of research (Arora et al., 2018a). Mostly based
on DNN, they naturally inherit of the theoretical challenges concerning their
architecture, computational cost and training procedure in the supervised
setting.

1.3.4 opening towards statistical physics

To conclude, the successes of DL rely essentially on both the type of structured
data and substantial biases of gradient-based algorithms, that allow to reduce
the hypothesis class and select an estimator with good generalization abilities.
As presented in the next sections, statistical physics has a long history with
the theory of ML and we believe that powerful statistical physics tools have
a role to play in disentangling the joint roles of the data structure, training
algorithm and the network architecture. Moreover, since the classical, overly
pessimistic, worst-case analysis fails to capture high-dimensional generaliza-
tion behavior of DNN, the typical analysis handled by statistical mechanics
seems to be a fruitfully alternative approach. Indeed, as usual in physics,
by dealing with simple architectures and synthetic data, statistical physics
tries to highlight universal properties that will potentially hold in general
and moreover for a practical usage. In this perspective, we will consider the
simplest theoretical case of supervised learning with feed-forward shallow
networks. This much simpli�ed set-up for deep learning with a few hidden-
layer, without convolutions, pooling, batch-normalization, etc., is already
complex to understand and is believed to already capture some of the core
di�culties. However, so far the simplicity of the models under consideration
by the statistical physics community is still far away of being realistic to
provide direct and practical guidances of the size, architecture, optimization
procedure or sample complexity.

In the perspective of handling theoretically simple ML models within this
statistical physics framework, we present a general introduction to it in
Chap. 2 and see how it may help building theoretical foundations of DL in
Chap. 3.







2
AN OVERV IEW OF
STAT I ST ICAL PHYS ICS
AND PHASE TRANS I T IONS

In this chapter, we introduce the basic tools and concepts of statistical physics
that we will use all along this manuscript. In particular, we advocate that
statistical physics is a very powerful framework to describe phase transitions
appearing in systems composed of a large number of interacting particles. In
Chap. 2.1, we introduce the unfamiliar reader to the fundamental concepts
of statistical mechanics. Chap. 2.2 and Chap. 2.3 are respectively devoted
to describe the set of mathematical tools of statistical mechanics applied to
ordered and disordered systems.

2.1 WHY STAT I ST ICAL PHYS ICS
MAT TERS ?

This manuscript aims to analyze simple machine learning models presented
in Sec. 1.2 through the singular lens of statistical physics. Even though at the
�rst glance it appears unnatural, in this section we advocate that statistical
physics is a generic framework that applies to various �elds outside of pure
physics such as computer science or mathematical problems.

Statistical physics is a branch of physics introduced in the 19th century
by Maxwell, Boltzmann and Gibbs, whose objective is to understand the
collective behavior that emerges from a system built of many particles in
interaction. Very powerfully, statistical physics directly applies to various
�elds, starting with phenomenon observed in everyday life. For instance,
without it we could not understand the description of the phase transition
between solids, liquids and gas, or the di�erence of behaviors between metals
and insulators, nor even we could not understand supraconductivity, or
fermionic and bosons quantum systems (Balian et al., 1986; Georges et al.,
2004). But its application range is much wider and goes beyond natural
�elds. In particular, statistical physics has been successfully applied to social
sciences with the Schelling’s model (Gauvin et al., 2009), information theory
with error correcting codes (Mézard et al., 2009), percolation, combinatorial
optimization problem (Krzakała et al., 2007), avalanches in �nancial and
economy modelization (Mantegna et al., 2000; Bouchaud et al., 2003; Voit,
2013), as well as simple machine learning models such as perceptrons (Opper
et al., 1991b; Engel et al., 1993), and many other systems. For a more detailed
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introduction to statistical physics, please refer to (Diu et al., 1989; Sethna
et al., 2006; Kardar, 2007; Ma, 2018).

2.1.1 from microscopic to macroscopic
scales

While historically physics strategy focused on describing macroscopic sys-
tems by ignoring the precise microscopic details, statistical mechanics is a
reductionist and statistical description that deduces the macroscopic proper-
ties of a system from the microscopic interactions and laws which govern
the behavior of its elementary constituents at smaller scales. At the heart of
statistical mechanics, the transition from microscopic to macroscopic scales
does not o�er a completely new description of the nature, but instead adapt
existing tools to describe the macroscopic behavior of systems composed
of an extensive number of particles. For instance the atmospheric pressure
results from collisions between microscopic molecules and statistical me-
chanics provides a microscopic justi�cation of the laws of thermodynamics
that govern macroscopic quantities such as the pressure, temperature and
volume.

2.1.2 lagrangian mechanics versus
probabilities

For the sake of illustration, let us consider a simple glass of water that contains
typically 1023 molecules of water. The large number of particles and degrees
of freedom makes the corresponding con�guration space so large that track-
ing over time the positions and speeds of each molecule, which undergoes
potentially a huge number of events and interactions, is intractable in practice
because of memory usage and precision. Thus the classical Lagrangian me-
chanics cannot be applied directly to properly describe the behavior of such
a simple yet large system. Instead of describing in full details the microscopic
states of the system at a given time, statistical mechanics takes advantage
of a probabilistic approach to only quantify the probability of observing the
system in a given microscopic con�guration during its evolution.

2.1.3 interactions and collective
behavior

The emergence of unexpected spectacular collective behaviors arises in fact
from the interaction of a very large number d of particles, that cannot be
imagined from the microscopic laws o just a few particles. As an illustration
increasing the pressure of our glass of water, at a certain critical threshold it
will undergo a solidi�cation phase transition and becomes solid. This common
phenomena cannot be explained theoretically without invoking a sudden
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change in microscopic interactions between molecules. These observations are
well summarized by the famous formulation from P. W. Anderson (Anderson,
1972) “More is di�erent”, that stresses the idea that macroscopic behavior
cannot be fully described as the sum of non-interacting agents. In other words,
the whole system cannot be thought as the simple sum of its components, and
interactions play a fundamental role in the macroscopic behavior. Statistical
physics aims to analyze the behavior of such macroscopic system and predict
the arising critical phase transition, such as the classical liquid-gas-solid,
para-ferromagnetic or metal-insulator phase transitions. Other spectacular
collective behaviors can be observed beyond classical physics systems such
as in �nance, economy and social sciences in which strongly interacting
agents may lead to collective phenomena and rare events such as crashes,
reactions of panic and stampedes.

2.1.4 thermodynamic limit and
concentration

As in analytical mechanics, analyzing a very large number d of particles is
often intractable. Statistical mechanics makes use of this large size system
to describe it in the theoretical in�nite size limit, the so-called thermody-
namic limit d→ ∞. This thermodynamic limit is a favorable and powerful
tool as the behavior of the system becomes asymptotically and surprisingly
deterministic! Indeed if we assume that particles are i.i.d, the CLT ensures that
the equilibrium probability distribution of the system concentrates around
its most probable value with �uctuations that decrease with the size of the
system in Θ(d−1/2). Finally even though in practice particles are very often
not i.i.d the behavior of real systems will still be typically given by the ther-
modynamic limit with some �nite-size �uctuations, so that describing the
behavior in the thermodynamic limit plays a role of the utmost importance
in statistical mechanics.

2.2 DESCR IB ING THE SYSTEM
BEHAVIOR

Throughout the manuscript, we consider a set of d interacting particles
denoted by a vector σσσ = (σi)d

i=1 ∈ χd which lies in the con�guration space χd .
∀i∈ JdK,σi belongs to an alphabet χ that represents the degrees of freedom of
each spin, and it can be discrete (e. g. χd = {±1}d) or continuous (e. g. χd =

Rd). The vector σσσ may represent di�erent physical systems such as particles,
magnetic spins, pixels, model parameters, etc., depending on the scope of
application among image processing, information theory, computer science,
physics, biology, error correcting codes or ML. As physicists we will generally
call σσσ a vector of spins for historical reasons and its values a con�guration
that refers to a given realization. For the purpose of the illustration, we may
imagine d magnetic moments, also called spins, that can precess around a
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σ1 σ2 σ3 σ4 σ5

Figure 14: System of magnetic moments that can interact with their neighbors.

vertical axis so that its extremity evolves on a sphere S2 ⊆R3 and interact
with the neighboring spins by magnetic interactions. Each spin con�guration
σi ∈ χ = S2 represents the precession degrees of freedom, as illustrated in
Fig. 14.

2.2.1 graphical models and free entropy

2.2.1.a joint probability distribution

As stressed in the introduction Sec. 2.1, the probabilistic description of the
system is inevitable to analyze collective behaviors of systems with many
particles. The behavior of the interacting Random Variable (RV) σσσ ∈ χd is
therefore modelled by a Joint Probability Distribution (JPD)

Pd (σσσ) ≡ Pd (σ1, · · · ,σd) , (16)

that may hardly be tractable in large dimensions. The ultimate goal is to com-
pute the marginals distributions P(σi) =

∫
χd−1

dσσσ\iPd (σσσ), i. e. the behavior
of a single spin variable, by integration over the con�gurations of the other
d−1 spins, denoted σσσ\i. Analyzing the JPD (16) is a complex task at the heart
of this manuscript. Yet very often computationally hard, the computation
of the marginals rely in most of the cases on mean-�eld approximations
presented in details in Sec. 4. However, in the simplest case of non-interacting
spins, the JPD is degenerated and trivially given by the product of the marginal
probabilities Pd (σσσ) ≡∏

d
i=1 P (σi). Even though the latter factorized decom-

position is very useful for approximations, see Sec. 4.2.3.a, the existence of
such non-interacting systems is idealist and essentially pedagogical. There-
fore the study of non-interacting variables is instructive but very limited in
practice. Indeed, interesting and more realistic behaviors mostly appear with
the existence of complex interactions between the particles encoded in the
JPD.

2.2.1.b graphical models

However, representing such complex interacting system is di�cult, espe-
cially in the high-dimensional regime d→∞, called the thermodynamic limit.
Indeed in this limit, the main di�culty lies in describing all the interactions
between each spin σi,∀i ∈ JdK. Therefore, we need a practical way of repre-
senting the joint distribution Pd(σσσ) eq. (16). To this extent, we introduce
graphical models that give a very generic, intuitive and powerful way to think
of probabilistic models for �nite or in�nite size systems. Indeed, interacting
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spins can be represented conveniently by a graph G (V,E), either directed or
undirected, composed of The graph G (V,E)

contains 6 vertices
h, i, j,k, l,m ∈ V and
7 edges (i j), (ik),
(il), (im), ( jl), (km),
(hm) ∈ E.

j

i k

l m

h

• a set of nodes V, also called vertices, that represent the spin con�gura-
tion σσσ = {σσσ i}d

i=1, so that |V|= d ,

• a set of edges E that connects the nodes with |E| = n. The edges
represent the statistical dependencies, i. e. the interactions, between
the random variables σσσ . Directed graphs refers to directed interactions
of the form (i→ j), while undirected graphs deal with undirected pairs
of vertices (i j).

We distinguish directed graphical models called Directed Acyclic Graphs (DAG)
from undirected graphical models known as Markov Random Field (MRF).
We will mainly focus on the latter ones in the following and especially in
Sec. 2.2.1.c. To describe more formally the geometry of undirected graphs, we
often introduce the adjacency matrix A of size d×n with binary entries such
that ai j = 1 [(i j) ∈ E]. It is in particular useful to compute the connection
degree, i. e. the size of set of neighbors of a node i, denoted ∂i

|∂i|= ∑
j

ai j = ∑
j
1 [(i j) ∈ E] .

For the sake of the illustration, in the case of independent RV, the JPD factorizes
and the set of edges of the corresponding graph G reduces to an empty set
E = /0, so that ∀i ∈ V, |∂i|= 0.

This simple graphical formulation gives a convenient and geometrical
representation to encode the conditional dependencies of a large number of
interacting variables σσσ . Interestingly, it will naturally lead to the design of
powerful dynamical equations such as the cavity method and belief propaga-
tion discussed in Sec. 4. Notice that even though graphical models may be
used for �nite size systems, their crucial power lies in their ability to represent
as well high-dimensional probability distributions. The interested reader may
�nd a comprehensive introduction with more details about graphical models
in (Yedidia et al., 2001a; MacKay et al., 2003; Jordan et al., 2004; Wainwright
et al., 2008; Koller et al., 2009)

2.2.1.c general markov random fields

On non-regular graphs G with arbitrary connectivity, counting and describ-
ing properly the graph G (V,E) associated with the JPD might be tricky.
Fortunately, it is often the case that the RV present a certain structure and
independence properties. For this reason, we introduce the notion of clique,
de�ned as a subset C⊆ V of fully connected nodes. Indeed the Hammersley
and Cli�ord theorem (Hammersley et al., 1971) insures that if the global
independency Markov property

∀ V1,V2,V3 ⊂ V, P (σσσV1∪V2 |σσσV3) = P (σσσV1 |σσσV3)P (σσσV2 |σσσV3) ,
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is veri�ed, the JPD may be decomposed as a general compact MRF

Pd (σσσ) =
1

Zd
∏
c∈C

Ψc (σσσ c) =
1

Zd

d

∏
i=1

φi (σi)∏
(i j)

Ψi j (σi,σ j) ∏
(i jk)

· · · ,

(17)

where we introduced some potential functions corresponding to cliques with
di�erent sizes {Ψc}c∈C , see (Yedidia et al., 2001a; Jordan et al., 2004). Parti-
tioning over the sizes reveals successive contributions of many-body interac-
tions. For instance, {φi}i represent the one-spin interactions and {Ψi j}i6= j

the two-spin interactions, etc.

2.2.1.d factor graph representation

The general MRF formulation (17) remains quite cumbersome as the size of
the cliques may be very large and involve a large number of spins. Therefore,
to obtain a more compact representation of the JPD Pd that highlights the
conditional dependencies between RV, it is helpful to replace them with n
factors or constraints {Ψµ(σσσ∂µ

) : µ ∈ JnK} that are already factorized, where
∂µ denotes the subset of neighboring nodes of the factor µ . The JPD can For clarity, local �elds

or equivalently
one-body interaction
are described by leaf
factors and drawn in
yellow

φi σi

and many-body
interactions are
represented with
green constraint
factors

σi σ j

σk

Ψµ

therefore be written in full generality as the product over all possible factors

Pd (σσσ) =
1

Zd

d

∏
i=1

φi (σi)
n

∏
µ=1

Ψµ

(
σσσ∂µ

)
, (18)

where Zd = ∑σσσ ∏
d
i=1 φi (σi)∏

n
µ=1 Ψµ(σσσ∂µ

) represents a normalizing con-
stant. The above factorization ends up with a simple bipartite factor graph
representation G = (V,F,E) of the JPD composed of variable nodes σ ∈V rep-
resented by circles and factor nodes φ ,Ψ ∈ F represented with squares, con-
nected with edges E, as illustrated in Fig. 15. In particular, each non-negative
factor Ψµ is connected to neighboring variables σσσ∂µ

= {σ : σ ∈ ∂µ}.
The factor graph formalism provides a powerful and very convenient

representation of the JPD that gained a lot of interest in various �elds such
as constraint satisfaction and combinatorial optimization, error-correcting
codes, bioinformatics, language and speech processing, image processing and
spatial statistics. See a review of a wide range of applications in (Wainwright
et al., 2008; Koller et al., 2009).

2.2.1.e connection with physics: hamiltonian and the
gibbs measure

The connection between physics and the factor graph formalism can be
made explicit if we exponentiate the above formulation (18) to introduce the
fundamental Hamiltonian energy Hd that measures the interaction energies
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of the local �elds logφi (σi) applied point-wise on each spin σi,∀i ∈ JdK and
the n constraints logΨµ

(
σσσ∂µ

)
that the spin con�guration σσσ shall satisfy

Hd (σσσ) = −
d

∑
i=1

logφi (σi)−
n

∑
µ=1

logΨµ

(
σσσ∂µ

)
. (19)

The Hamiltonian of the system describes the microscopic interactions be-
tween spin variables σσσ = {σi}d

i=1 so that the corresponding energy Hd (σσσ)
measures the probability of each con�guration σσσ according to the Gibbs
distribution, also called the Boltzmann distribution

Pd(σσσ ;β ) ≡ e−βHd(σσσ)

Zd(β )
, (20)

where we introduced a parameter β , called the inverse temperature, that
allows to explore all energy levels above the ground state energy. The in-
verse temperature will be taken to β = 1 in the most considered cases unless
mentioned otherwise. In this case, the Gibbs distribution (20) is equivalent
to the JPD formulation in (18). The Gibbs distribution is the central equilib-
rium measure in statistical physics and its exponential form can be justi�ed
by the maximum entropy principle detailed in Sec. 4.2.2.b. Notice that by
construction, the most probable con�guration is the one that achieves the
smallest Hamiltonian energy (19). It is called the ground state con�gura-
tion and is associated to a ground state energy. Moreover, notice that we
introduced the normalizing constant at inverse temperature β of the random
measure dPd , called the partition function. Indeed imposing the normalization∫

χd
dPd(σσσ ;β ) = 1, the partition function is naturally given by the sum over

all the possible con�gurations weighted by their Gibbs weights probability
e−βHd(σσσ):

Zd (β ) ≡
∫

χd

dσσσ e−βHd(σσσ) . (21)

The partition function is a crucial quantity in statistical mechanics as it
contains the important informations on the equilibrium distribution of all
possible spin con�gurations of the system. Indeed Zd (β ) is known to be the
moment generating function, because successive derivatives give access to the
moments of the Gibbs measure. The Gibbs average over the Gibbs measure
(20) is traditionaly denoted 〈.〉β , and we may also use the notation Eσσσ∼Pd .

2.2.1.f the free entropy as a cumulant generating
function

Because the JPD Pd of the spin σσσ becomes exponentially peaked in regions
of most probable con�gurations that dominate the whole distribution, we
are only interested in its large deviation behavior. Thus, taking the logarithm
of the partition function refers and de�nes the free entropy in information
theory and statistical physics.
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Free entropy and energy We de�ne respectively the free entropy Φd and We may choose as
well the free energy
as historically in
statistical physics.
Notice that the
literature is
sometimes confusing
and clumsy on the
naming of these
quantities.

free energy ϕd of a system of size d at inverse temperature β by:

Φd(β ) ≡
1
d

logZd(β ) , ϕd(β ) ≡−
1

dβ
logZd(β ) . (22)

In order to avoid confusion with sign conventions and temperature pre-
factors, we mainly consider the free entropy as our central object of study.
As stressed in the introduction Sec. 2.1, in the thermodynamic limit d→ ∞

the free entropy of many systems concentrate around an asymptotic and
deterministic value given (when it exists) by

Φ(β ) ≡ lim
d→∞

Φd(β ) , ϕ(β ) ≡ lim
d→∞

ϕd(β ) . (23)

As the �nite size behavior generally �uctuates around these asymptotic
quantities, their computation is of crucial interest to understand the collective
behavior of the system. In particular their study reveals potential phase
transitions, as illustrated in the analysis of phase transitions in Sec. 2.2.2 and
the presentation of simple examples in Sec. 2.2.3.

Large deviation principle The large deviation theory deals with the
exponential decay of the JPD of random systems. In this paragraph, we provide
justi�cations of the fact that computing the free entropy Φ in the study
of equilibrium properties of systems with many-particles in interaction is
equivalent to a large deviation theory. See (Oono, 1989; Varadhan, 2008;
Touchette, 2008) for an extended review. Let σσσ ∈ χd , we say that the JPD
Pd (σσσ) satis�es a large deviation principle with rate S if

− logPd (σσσ) = dS + o (d)⇒− lim
d→∞

1
d

logPd (σσσ) ≡S ,

which is equivalent to say that the dominant behavior of Pd is decaying ex-
ponentially with the size of the system and is controlled by the rate function
S , called the entropy in physics. Indeed, the Gartner-Ellis theorem (Gärtner,
1977; Ellis et al., 1984) draws an explicit connection between the large devia-
tion principle, the entropy and free entropy. Assuming the latter exists and
is di�erentiable for any temperature β ∈R,

Φ(β ) = lim
d→∞

1
d

log
∫

χd

exp (−dβHd(σσσ))dσσσ ,

it states that the JPD veri�es a large deviation principle

lim
d→∞

−1
d

logPd (Hd(σσσ) = E ) = S (E ) ,

where the rate function is given by the entropy S (E ) = maxβ (Φ(β )+βE )
obtained by a Legendre transform detailed in Sec. 2.2.2.b. Back to statistical
physics, proving the existence of a thermodynamic limit of the free entropy
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Φ(β ) in (23) is therefore equivalent to prove a large deviation principle of
the Gibbs measure.

Cumulant generative function Finally, similarly to the partition func-
tion (21), the free entropy has the advantage to encode for all the useful
informations of the system. It can be seen as a cumulant generative function.
Namely successive cumulants of the Gibbs distribution can be obtained by
taking higher order derivatives. In particular, the free entropy gives access to
important quantities such as the magnetization, the corresponding average
energy or the ground state energy associated to ground state con�guration.
For the sake of illustration, we assume that the local one-body interaction
simply reads, as very often in physics, ∀i ∈ JdK, logφi(σi) = hiσi, where
h = {hi}d

i=1 is called the external �eld.

• Magnetization
The magnetization md at zero external �eld h = 0 is de�ned as the averaged
value of the spin con�guration over the Gibbs distribution. It is simply ob-
tained by taking the derivative of the free energy (22) with respect to the
vanishing external �eld h→ 0

md ≡
〈

1
d

d

∑
i=1

σi

〉

β

=
1

dZd(β )

∫

χd

(
d

∑
i=1

σi

)
e−βHd(σσσ)dσσσ (24)

= − lim
h→0

∂hϕd(β ) .

• Average energy and variance
The average energy at zero external �eld h = 0 is simply the Gibbs average
of the Hamiltonian energy given by

e(β ) ≡
〈

Hd(σσσ)

d

〉

β

= − lim
h→0

∂β Φd(β ) , (25)

while the second cumulant, the variance, is naturally given by the second
derivative of the free entropy Φd

1
d

(
〈Hd(σσσ)2〉β −〈Hd(σσσ)〉2

β

)
= lim

h→0
∂

2
β 2 Φd (β ) . (26)

• Ground state energy
The ground state energy egs,d is the minimum energy that can be reached by at
least one con�guration σσσ . It can be computed by taking the zero-temperature
limit β → ∞ of the Gibbs random measure

egs,d ≡ min
σσσ∈χd

{
Hd(σσσ)

d

}
= lim

β→∞

〈
Hd(σσσ)

d

〉

β

. (27)
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2.2.1.g illustration of simple graphical models

For the sake of clari�cation, in this section we brie�y present some simple
and common models and their graphical representation such as the k-SAT
problem, general tree factor graphs and regular pairwise MRF.

K-SAT problem The k-SAT problem is a Constraints Satisfaction Prob-
lem (CSP) at the interface between information theory and error correcting
codes. It is speci�ed by d boolean variables σσσ ∈ χd = {0,1}d that must verify
simultaneously the AND logical operator of n constraints with k-body inter-
actions, also called clauses, that depend on a subset of k boolean variables.
Random CSP are a variant in which the clauses are drawn from a random en-
semble. As generally in CSP, such as the graph-coloring problem, the traveling
salesman problem and many others, the problem can be easily described by
a factor graph eq. (18) (Dechter et al., 1988). Namely for the k-SAT problem,
each factor denotes a hard constraint represented by the indicator function
logΨµ = 1

(
σσσ∂ µ

)
so that the Hamiltonian energy counts the number of

satis�ed clauses

Hd(σσσ) = −
n

∑
µ=1

1
(
σσσ∂ µ

)
. (28)

The ground state con�guration is reached if the n clauses are veri�ed such
that the Hamiltonian energy Hd is minimal. As an illustration we give the
JPD of a k-SAT problem realization at zero temperature for k = 3, d = 4 and
n = 3

Pd (σσσ) ∝ 1(σ̄1∨ σ̄2∨ σ̄4)︸ ︷︷ ︸
Ψ1(σσσ∂1)

1(σ2∨σ3∨σ4)︸ ︷︷ ︸
Ψ2(σσσ∂2)

1(σ1∨σ2∨σ3)︸ ︷︷ ︸
Ψ3(σσσ∂3)

, (29)

where ∨ denotes the OR operator and σ̄ the negation of a boolean variable.
The corresponding factor graph is represented in Fig. 15 (Left).

Ψ1 Ψ2 Ψ3

σ1 σ2 σ3 σ4 σ1 σ2

σ4

σ6

σ5

σ3

Ψ1

Ψ2

φ1 φ2

φ4 φ6

φ5

φ3

Figure 15: Factor graph representations: the red circles represent the spin variables,
the green squares represent the factors that account for statistical depen-
dencies between the variables and the yellow squares represent the single
variable factors. (Left) A 3-SAT problem in (29). (Right) A tree factor
graph in (30).

Notably one important challenge in CSP is to compute the maximum con-
straints density that can satisfy the spin variables σσσ , called the SAT-threshold
αc = nc/d. The SAT-threshold αc can be computed from the analysis of the
JPD or the free entropy Φd in (22), by probing the existence of at least one
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con�guration with strictly positive probability in the thermodynamic limit.
See (Mézard et al., 2009) and Sec. 3.2.3 for more details.

Tree factor graphs Tree-like factor graphs are a class of graphical model
with the advantageous property of not presenting any loops, meaning that
interactions are local and involve only the nearest neighboring spins. Tree
factor graphs play an important practical and theoretical role because the full
graph can be scanned with linear time complexity Θ (d) and inference can
be performed exactly. As an illustration, we give an example of a tree-like
JPD represented in Fig. 15 (Right),

Pd(σσσ) =
1

Zd

6

∏
i=1

φi(σσσ i)Ψ1(σ1,σ2,σ3,σ4)Ψ2(σ4,σ5,σ6) . (30)

Pairwise Markov random �elds Among general MRF models, a large
class of common models focuses on regular factor graphs with at most pair-
wise interactions known as pairwise Markov random �elds. Therefore, we
consider the JPD in eq. (18) by absorbing all potentials Ψµ with strictly more
than two-body interactions, such that the JPD simply reads

Pd(σσσ) =
1

Zd

d

∏
i=1

φi(σi)∏
(i j)

Ψi j(σi,σ j) , (31)

where we have introduced pairwise symmetric potentials Ψi j = Ψ ji = Ψµ

by re-indexing all interacting pairs µ = (i j) = ( ji), with µ ∈ JnK. The corre-
sponding Hamiltonian (19) simpli�es to

Hd (σσσ) = −
d

∑
i=1

logφi(σi)−
n

∑
(i j)

logΨi j(σi,σ j) . (32)

A large part of the statistical physics literature focuses on such theoretical
pairwise MRF on regular lattices, called alternatively Ising-like models. For
the sake of illustration, we consider such a system of magnetic spins, illus-
trated in Fig. 14, immersed in an uniform external magnetic �eld h and local
neighboring interactions. This system can be represented by a spin model
σσσ ∈ χd associated to a graph G (V,E) with pairwise exchange interactions
described by a matrix J ∈Rd×d and local external �elds h ∈Rd , so that

logΨi j(σi,σ j) = Ji jσiσ j , logφi(σi) = hσi .

The corresponding factor graph is represented in Fig. 16. Notice that the
energy term − logΨi j(σi,σ j) = −Ji jσiσ j is a convention that insures that
for ferromagnetic interactions Ji j > 0, the energy term decreases the total
Hamiltonian energy if the spins σi and σ j are aligned. The one-body interac-
tion term − logφi(σi) = −hσi represents the interaction of each spin with a
uniform external �eld h that tends to align all the spins in its direction. The
coupling constants Ji j represent the strength of the pairwise interaction be-
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tween the spin σi and σ j. In particular the interactions may be positive Ji j > 0
or negative Ji j < 0 and the corresponding models are respectively quali�ed
of ferromagnetic and antiferromagnetic. The many variants of this general

σ j

σi

Ji j

h j

hi

Figure 16: Factor graph of an Ising-like model on a regular lattice.

model depend mainly on the geometry and connectivity of the interactions
E, the distribution P(J) of the interaction matrix J and the con�guration
space χd , that lead to a profusion of theoretical models. We brie�y recall the
di�erent well-know pairwise MRF models with continuous or discrete variables
and pairwise interactions such as the Ising, Potts, XY, Heisenberg and Θ(N)

models.

• Discrete models: Ising and Potts
Discrete models such as the Potts (Wu, 1982) model assumes that each spin
lies in a discrete alphabet χ = Zq with q characters. For instance, it has
been notably considered for hyper-graph coloring problems, where each
alphabet value represent a color, so that positive interaction happen only if
interacting spins have the same color Ψi j(σi,σ j) = Ji jδ (σi,σ j). In particular,
the model reduces to the classical Ising model with two colors for q = 2 with
χd = {±1}d .

• Continuous models: continuous Ising, Heisenberg, XY, Θ(N)

The Θ(N) model (Stanley, 1968; Gennes, 1972; Gaspari et al., 1986) considers
instead d continuous variable in N dimensions so that the interaction term
depends on the scalar product between vectorial spins Ψi j(σσσ i,σσσ j) = Ji jσσσ i ·
σσσ j. For N = 1, we recover the continuous Ising model (σ ∈R). The cases
N = 2 and N = 3 correspond respectively to the XY model (σσσ ∈R2) and the
Heisenberg model (σσσ ∈R3).

2.2.2 phase transitions typology

One of the most spectacular consequences of interactions among particles is
the emergence of collective behaviors that would not have been observed
in the presence of only a few particles. Indeed in nature, many physical
compounds exist under di�erent forms, also called phases or states. As you
change the macroscopic variables of a large system, called order parameters,
sometimes the system will abruptly change and move to another phase. As
these phase transitions a�ect dramatically the macroscopic behavior and
properties of the system, they shall correspond to singularities in the free
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energy. Therefore, studying the free energy, that explicitly describes the
interplay between energy and entropy contributions, is crucial to detect
phase transitions.

2.2.2.a a first phase transition: the solid-liqid-gas
phase transitions

For the sake of clari�cation, let us consider the simplest example observable
in everyday life: the phase transitions of water. Consider a solid ice cube at
low temperature T and constant pressure P. Increasing the temperature (or

TTfus Tvap

P

Solid

Gas

Liquid

Figure 17: Phase diagram (T ,P) of water. Increasing the temperature T at constant
pressure P, the ice will melts at Tfus and vaporizes at Tvap.

decreasing the pressure), we may observe the ice transforming in the liquid
water at Tfus = 0◦C before vaporizing in the water vapor at Tvap = 100◦C. The
successive transformations are represented in the phase diagram in Fig. 17 and
the di�erent states are delimited by some solid lines which represent where
the phase transitions occur. Notice that during the phase transitions, the
system is still composed of the same number of particles of water. The only
di�erence is the trade-o� between the energetic and entropic contributions
in the free energy that are modi�ed so that the system adapts to the most
stable collective con�guration with the lowest free energy. We could mention
as well the ferromagnetic–paramagnetic phase transition of a metal, that will
be discussed with the Ising and Currie-Weiss models in Sec. 2.2.3.b . The
analysis of this kind of phase transition in physical systems is particularly
suited to statistical physics, whose phenomenology is general and applies
to other �elds such as information theory, optimization, computer science,
biology, social sciences, economy, etc.

2.2.2.b energy-entropy decomposition: legendre
transform

We stressed that the Gibbs measure often veri�es a large deviation principle
and is peaked in the most probable regions. However, we did not discuss
which or how many con�gurations contribute to this dominant equilibrium
con�gurations. Indeed counting the number of con�gurations at a certain
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energy level that participates to the partition sum and the free entropy Φd

is very instructive to introduce the energy-entropy decomposition. Let us
denote Ω the number of con�gurations or equivalently the volume of phase
space that achieve a given energy E .

Legendre transform The partitioning sum Zd (β ) in (21) can be parti-
tioned instead over con�gurations with a particular level of energy E ≡
1
d Hd(σσσ). Introducing Ω(E ) =

∫
R dσσσ δ (E −Hd(σσσ)) the number of such

con�gurations, it is linked to the entropy density S (E )≡ 1
d logΩ(E ). With

this decomposition, the partition function writes

Zd (β ) ≡ exp (dΦd(β )) ≡
∫

χd

e−βHd(σσσ)dσσσ

=
∫

R
e−βdE Ω (E )dE ≡

∫

R
ed(S (E )−βE )dE

so that using a Laplace method (Wong, 1989) in the thermodynamic limit
d→ ∞, we obtain

Φ (β ) = max
E

(S (E )−βE ) = S (E ?)−βE ? (33)

where the equilibrium energy E ? veri�es ∂E S |E=E ? = β . This last formula-
tion shows that the free entropy Φ(β ) is the Legendre transformation (Zia
et al., 2009) of the entropy S (E ). Notice that the free entropy Φ(β ) is a func-
tion of the inverse temperature β , which plays the role of a control parameter,
while the entropy S (E ) is a function of the response parameter the energy
E . Indeed the main advantage of the Legendre transformation is to exchange
the role of the variables associated with control and response.

Inverse Legendre transform Similarly, with the de�nitions of Zd and
Ω, we can introduce the inverse Laplace transform that leads to the inverse
Legendre transform

Ω(E ) ≡ edS (E ) =
∫

R
Zd(β )eβdE dβ =

∫

R
exp (d (Φd(β )+βE ))dβ ,

and using again a Laplace method in the thermodynamic limit d→ ∞, we
obtain that the entropy S (E ) is the Legendre transform of the free entropy
Φ(β ):

S (E ) = max
β

Φ(β )+βE ⇔S (E ) = Φ(β ?)+β
?E , (34)

where the critical temperature β ? is such that the slope of the free entropy
veri�es ∂β Φ|β=β ? = −E .
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Free entropy decomposition and collective behaviours The Legen-
dre transform (33) reveals that the free energy, or respectively the free entropy,
decomposes in two contributions: the energy E ? and the entropy S (E ?):

ϕ(β ) = E ?− 1
β

S (E ?) .

This decomposition is crucial to understand the emergence of collective
behaviors in large systems. Indeed without the entropic term, the free energy
would simply be given by the energetic term E ? that measures the cost of
a typical con�guration. It will not change when the inverse temperature β

or any other control parameter is modi�ed. The appearance of macroscopic
collective behavior happens therefore as soon as the number of equilibrium
con�gurations Ω? scales exponentially with the size of the system so that
the entropic term S (E ?) becomes comparable to the energetic term E ?.
The inverse temperature is a free parameter that plays the role of a tension
between the energy and the entropy, and controls the trade-o� between being
in a disordered phase with a high entropy or in an ordered phase with a low
energy.

Phase transition: �rst and second order More generally, the free en-
tropy (or the free energy) is the central object of study to analyze the behavior
of large systems because very interestingly it captures the behavior of the dif-
ferent phases according to some carefully chosen order parameters, denoted q.
Indeed, non trivial behaviors and singularities in the free entropy reveal the
phase transitions, which are very often abrupt and happen at precise values
of the order parameters. When it is possible, the free energy of the large size
interacting system is computed and mapped to an extremization problem
over a set of order parameters:

ϕ (β ) = extrq {Ψ(q,β )} , (35)

where we introduced a variational free energy Ψ(q,β ) that depends on the
inverse temperature β and the order parameters q. The equilibrium behav-
ior of the system can be analyzed by solving this simple optimization problem.

Interestingly, depending on the shape of the variational free energy Ψ(q),
we can observe multiple local and global minima that lead to di�erent kind
of phase transitions. In general, as well as in this manuscript, phase transi-
tions can be classi�ed into two main classes: discontinuous �rst order and
continuous second order transitions. This has been formalized by the Landau
theory reviewed in (Toledano et al., 1987). It allows to describe the phase
transition phenomenology with a simple formalism by assuming the varia-
tional free energy may be written as a polynomial in a scalar order parameter
q: Ψ(q,{αi}i) = ∑{αi}αiqi. Depending on how the shape of the variational
free entropy evolves with the control parameter, we may observe continuous
or discontinuous phase transitions of the stable phase, which is the one with
the lowest free energy. A second order phase transition happens when the
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order parameter of the most stable phase evolves continuously. In contrast, a
�rst order transition is observed when a local minima becomes at some point
the global minima, so that the order parameter jumps from one phase to the
other. For instance, it is the case of the liquid-solid phase transition. First and
second order phase transitions are illustrated in Fig. 18. Interestingly with the

q

Ψ
(q

,β
)

q

Ψ
(q

,β
)

Figure 18: (Left) First order phase transition for Ψ(q) = βq2/2− q3 + q4/4. For
β � 1, the free energy has a single minimum q = 0 (yellow). At β = βsp,
a second local minimum with higher free energy appears (red) and the
most stable phase remains in q = 0. At β = β ?, there exists two global
minima (violet). For β > β ?, the order parameter jumps from 0 to q > 0
(blue). (Right) Second order phase transition for Ψ(q) = βq2/2+ q4/4.
For β � 1, the free energy has a single minimum (yellow) in q = 0. At
β = β ?, this minimum becomes unstable and two global minima appear
continuously (red) and becomes more and more stable (violet-blue).

Landau approach, distinct systems can be gathered in the same universality
class, characterized by the same non-zero coe�cients in their variational
free energy, such that their phase transition description is identical. Indeed,
the critical exponents, that describe the behavior of the order and control
parameters close to the phase transitions, are believed to be universal and
can be computed with renormalization group (Wilson, 1983) technics.

Metastable phases and ergodicity breaking The variational free en-
ergy landscape can be complex with the presence of various local minimum.
As a consequence, initializing the system in a con�guration close to such a
locally stable state, if the system is not perturbed, it will remain in this phase.
However large �uctuations can destroy this local stability and in this case
the system should adapt and move to another phase that corresponds to the
global minima of the free energy. This kind of locally stable minima is called a
metastable state, i. e. a state that remains stable if the system is not perturbed
too much. Such systems undergo a harmful ergodicity breaking of the phase
space, which means that the ensemble average and the time average are no
longer equal and breaks the fundamental hypothesis of statistical mechanics.
Indeed, by initializing the system in any metastable state, the system should
visit all other possible states, eventually after an in�nite time. Yet, on �nite
time scales, we could only observe the system in this state even though it
is not the global minima of the free energy. After a �nite amount of time,
since the JPD remains unchanged, we could conclude that the system reached
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equilibrium. But in the case of non-ergodic systems, such as structural glasses,
they remain stuck in a small portion of the con�guration space and do not
reach the globally stable equilibrium con�guration.

To conclude this introduction, we illustrate and apply these notions of
metastability with the analysis of the para/ferro-magnetic phase transition
on the celebrated Ising model.

2.2.3 a classical example of lattice model

2.2.3.a the ising model

To describe ferromagnetism observed in metals, the battle-horse model of
standard statistical physics is certainly the Ising model. Indeed, it is the sim-
plest regular pairwise MRF, that describes the collective behavior of magnetic
spins σσσ ∈ χd = {±1}d . In general an Ising-like model is de�ned on a graph
G (V,E), so that spins lie on the vertices of the graph V and interacts with
neighbors, de�ned by the edges E, through exchange interactions J ∈Rd×d

and a potential external �eld h = h · 1 ∈ Rd , whose Hamiltonian is given
in (32). As already stressed, there exists many variants to the Ising model
depending on the geometry of the structure of the adjacency matrix. We
focus on the simple Ising model de�ned on a N-dimensional regular lattice il-
lustrated in Fig. 16, such that each spin has 2N interacting nearest-neighbors.
It is formalized by the following Hamiltonian

Hd(σσσ ;J,h) = −1
2 ∑
〈i j〉

Ji jσiσ j−h∑
i

σi , (36)

where 〈i j〉 denotes all possible pairs of neighboring spins on the regular lattice
V. Solving the Ising model at �nite dimensions for N = 1 is a simple exercise
and easy to solve with the transfer matrix technic. Unfortunately the model
does not show any phase transition as the lower critical dimension of the Ising
model is N− = 1, under which there does not exist any collective behavior
and ordered phase. For N = 1, the �uctuations are so large that they kill
the potential ordered phase. The up-down symmetry is therefore preserved
in a disordered paramagnetic phase with zero macroscopic magnetization
md = 0. Nonetheless, above this lower critical dimension the model exhibits a
spontaneous symmetry breaking though and an interesting phase transition.
Indeed, for N = 2, the more cumbersome Ising model has been solved exactly
in (Onsager, 1944), while the much harder case N = 3 still witnesses important
research works. In the other hand, above the upper critical dimension N+ = 4,
it turns out that the mean-�eld approximation N→ ∞ of the Ising model is
exact, see (Kardar, 2007) for more details.

As a pedagogical illustration, we present this latter mean-�eld approxima-
tion of the Ising model, called in this context the Curie-Weiss model, which
is much easier to solve analytically.
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2.2.3.b the curie-weiss model

The Curie-Weiss model (Curie, 1895) is the mean-�eld approximation of
the Ising model with fully-connected interactions in the limit of a high-
dimensional lattice. As very often, mean-�eld or fully connected approxima-
tion have the advantage to make the model much easier to solve analytically.
See Sec. 4.2 for a di�erent approach to mean-�eld approximations. In contrast
with the Ising model, the interactions of the mean-�eld Curie-Weiss model
are fully-connected and long-range such that each spin is connected to all
other spins σσσ ∈ χd = {±1}d including itself, with a weak homogeneous
coupling constant Ji j =

J
2d scaling with the total number of spins to ensure

the existence of the thermodynamic limit. Each spin can also interact with
a homogeneous external �eld h so that the Hamiltonian of the Curie-Weiss
model trades the summation over neighboring pairs with all possible long
range pairs, such that it reduces to The factor graph of

the Curie-Weiss
model is completely
symmetric as every
spin is connected to
every others. For
clarity we do not
draw the interaction
factors J/(2d)
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hσ2

h
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Hd(σσσ ;J,h) = − J
2d

d

∑
i, j=1

σiσ j−h
d

∑
i=1

σi . (37)

Because of this absence of geometric structure the JPD at inverse temperature
β is simply given by

Pd(σσσ ;β ,J,h) =
1

Z (β ,J,h)

d

∏
i, j

e
βJ
2d σiσ j ∏

i
eβhσi

and is represented by a fully-connected symmetric factor graph. Let us intro-
duce a simple order parameter: the magnetization in eq. (24). De�ned as the
macroscopic averaged magnetic moment md ≡ 1

d ∑i Eσσσ∼Pd σi, it takes 2d + 1
possible values md ∈Md = {−1+ k

d ,k ∈ J0 : 2dK}. At high temperatures,
each spin is free to �ip upside down and is not a�ected by the interactions
with its neighbors. As a consequence, by symmetry the magnetization is, in
average, basically zero md = 0 and the system lies in the paramagnetic phase.
The speci�city of a ferromagnet is that below a certain critical temperature
the in�uence of neighbors increase such that a spontaneous magnetization
md 6= 0 appears in the absence of any external magnetic �eld h→ 0. This
transition is the so-called paramagnetic-ferromagnetic transition. To describe
quantitatively this para-ferro phase transition, let us derive the free entropy
Φd(β ,J,h) = 1

d logZd(β ,J,h) with two di�erent methods: a direct combina-
torial one that makes use of the �nite set Md of possible values taken by the
magnetization, which is speci�c to this case, and the general Fourier method
that we intensively use in the rest of the manuscript.
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By �rst introducing the order parameter with a Dirac-delta integral 1 =∫
Md

dmdδ
(
md− 1

d ∑
d
i=1 σi

)
the partition function can be expressed as

Zd(β ,J,h) =
∫

χd

dσσσ

∫

Md

dmdδ

(
md−

1
d

d

∑
i=1

σi

)
(38)

× exp


βJ

2d

(
d

∑
i=1

σi

)2

+βh
d

∑
i=1

σi




Combinatorial method The partition function can be directly computed
by a combinatorial argument. Indeed, �xing the total magnetization md and
denoting d+, d− the number of positive and negative spins, we therefore
have d ·md = d+ + d− and d = d+− d−, so that d+ = d(1+md)

2 and d− =

d−n+ = d(1−md)
2 . De�ning Ωd(md) =

∫
χd

dσσσδ
(
md− 1

d ∑
d
i=1 σi

)
the number

of con�gurations that give the same magnetization md , it is simply given by
the number of possibility to choose d+ positive spins:

Ωd(md) =

(
d

d(1+md)
2

)
=

d!(
d 1−md

2

)
!
(

d 1+md
2

)
!
' edHbinary

(
1+md

2

)
.

Up to negligible terms, that do not scale exponentially with the system size,
it can be expressed as a function of the Shanon binary entropy Hbinary(x) =
−x log(x)− (1− x) log(1− x), see Sec. 4.2.1.a, by using the Stirling approx-
imation of d! ∼

√
2πd (d/e)d , in the large size limit d → ∞. Finally, the

partition function can be transformed as

Zd(β ,J,h) =
∫

Md

dmdΩd(md)exp
(

d
(

βJ
2

m2
d +βhmd

))

'
∫

Md

dmd exp
(

d
(

Hbinary

(
1+md

2

)
+

βJ
2

m2
d +βhmd

))

≡
∫

Md

dmd exp (dΨ (md ;β ,J,h)) ,

where we introduced the free entropy potential

Ψ (m;β ,J,h) = Hbinary

(
1+m

2

)
+

βJ
2

m2 +βhm . (39)

Notice that this mean-�eld approximation can also be obtained from a more
elegant variational principle based on the Gibbs inequality presented in
Sec. 4.2. In the thermodynamic limit d→ ∞, since the integral is dominated
by its maximum, the partition function can be evaluated with a Laplace
method, also called a saddle point method (Wong, 1989), so that the free
entropy yields

Φ(β ,J,h) = lim
d→∞

1
d

logZd (β ,J,h) = max
m∈[−1;1]

Ψ(m;β ,J,h) (40)
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where we used the fact that Md −→
d→∞

[−1;1]. For a pedagogical purpose, we
present as well the equivalent computation of the mean-�eld free entropy
with the Fourier transform method that can be generalized

Fourier transform method The general method consists in introducing
the Fourier representation of the Dirac-delta distribution according to

δ (x) =
1

2πi

∫

iR
dx̂ex̂x ,

in (38) so that

Zd(β ,J,h) ∝

∫

Md

dmd

∫

iR
dm̂ed(m̂md+

βJ
2 m2

d+βhmd)
∫

χd

dσσσe−m̂∑
d
i=1 σi

∝

∫

Md

dmd

∫

iR
dm̂ed(m̂md+

βJ
2 m2

d+βhmd) (2cosh m̂)d ,

where we omitted the negligible pre-factors in the thermodynamic limit. The Cauchy theorem
states that the
integral of a
holomorphic function
f : Γ 7→ C on a
simply connected Γ
open subset is null∫

Γ f (z)dz = 0

Deforming the integration contour with the Cauchy theorem, the free entropy
can be formulated as a saddle point and evaluated by

Φ ≡ lim
d→∞

1
d

logZd(β ,J,h) = extrm,m̂Ψ̃(m, m̂;β ,J,h) ,

with m = limd→∞ md ∈ [−1;1] and Ψ̃(m, m̂;β ,J,h) ≡ m̂m+ βJ
2 m2 + βhm+

logcosh m̂. Taking the saddle point condition over m̂ and using the fact
that Hbinary

(1+m
2

)
= −matanh(m) + logcoshatanh(m), we �nally recover

the same free entropy potential (39)

Ψ̃(m, m̂?;β ,J,h) =
βJ
2

m2 +βhm−matanh(m)+ logcoshatanh(m)

=
βJ
2

m2 +βhm+Hbinary

(
1+m

2

)
= Ψ(m;β ,J,h) .

Paramagnetic-ferromagnetic phase transition To conclude, the com-
putation of the free entropy of d → ∞ interacting spins reduces to a one-
dimensional optimization problem over the magnetization order parameter.
This extremization (40) can therefore be analyzed easily to �nally describe
the phase transition occurring in the Currie-Weiss model, which is nothing
but the mean-�eld approximation of the Ising model. Taking the extremiza-
tion over m ∈ [−1;1], ∂mΨ(m) = 0, we obtain that the maximum veri�es
m = tanh (β (Jm+ h)), it can be solved numerically as illustrated in Fig. 19.
In the limit of a vanishing external �eld h = 0+, �xing the coupling constant
to J = 1, we can explore the free entropy behavior as a function of the in-
verse temperature control parameter β . For high temperature, i. e. β → 0,
the global maxima of the variational free entropy is given by a paramagnetic
phase with m = 0. At the critical inverse temperature β = 1, we observe the
continuous apparition of two global maxima with m 6= 0 that correspond to
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Figure 19: Variational free entropy Ψ(m;β ,J = 1,h = 0) of the Curie-Weiss model.
Above the critical temperature β < β ? = 1 (yellow-red), the global max-
ima of the potential is achieved for m = 0 that corresponds to a paramag-
netic phase and no ordered phase exists. For smaller temperature β > β ?

there exists an ordered phase with strictly positive or strictly negative
magnetization that corresponds to ferromagnetic phases (pink-blue).

ferromagnetic phases with either a majority of spins up m > 0 or down m < 0,
while the paramagnetic local maxima m = 0 becomes a metastable state.

2.3 EXTENS ION TO DI SORDERED
SYSTEMS AND SP IN GLASSES

In the previous section, we focused on systems and models quali�ed as or-
dered in the sense that all parameters such as the exchange coupling J and
the external �eld h are deterministic. However in nature, no material is per-
fectly homogeneous and deterministic. They usually present some sources of
randomness like interstitial impurities or random external/local environment.
For instance, consider a real magnetic material: the description that the local
magnetic moments interact in a simple homogeneous way, as illustrated in
the Ising and Curie-Weiss models in Sec. 2.2.3.a, is over-idealistic. In reality
there exists some impurities that modify the interactions and make their
behavior more complex. In more details, a small fraction of a transition metal
may be diluted into a noble metal, to obtain an alloy with magnetic moment
randomly localized: this is called a spin glass (Mézard et al., 1987). Such a
system belongs to the large class of disordered systems in which some source
of randomness emerges in the spin interactions. Statistical physics started
to study this new class of models in the 60-70’s and was the source of a rich
literature since then. Indeed, incorporating randomness in the classical statis-
tical physics tools, presented in Sec. 2.2, allowed to democratize the approach
to various �elds and to highlight the existence of new interesting phenom-
ena and phase transitions. In particular, under a weak disorder assumption,
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the description of the ordered phase transitions and critical phenomenon
presented in Sec. 2.2.2 may be either conserved or smoothed so that �rst oder
become second order phase transitions. However, in the presence of a strong
disorder it strongly a�ects and changes the nature of the phase transitions
especially at low temperature where we observe the appearance of a singular
glassy phase with many local metastable states.

In this section we discuss several kinds of disorder and models that account
for it, and we focus the discussion on spin glasses that are more relevant
according to the rest of the manuscript. We present a brief overview of the
wide literature of spin glasses mainly based on (Mézard et al., 1987; Castellani
et al., 2005; De Dominicis et al., 2006) to illustrate the basic ideas required to
understand the rest of the manuscript. The discssion can be extended with
more speci�c and in�uent contributions (Franz et al., 1997; Bouchaud et al.,
1998; Biroli et al., 2001; Cugliandolo, 2002; Franz et al., 2011; Berthier et al.,
2011).

2.3.1 qenched and annealed disorder

There exists two main types of disordered systems: the ones with explicit
disorder in the Hamiltonian of the model, and the ones such that the disorder
is self-generated. The latter class can be simply illustrated with structural
glasses in which many interacting particles are moving so that each particle
feels a local random disordered environment. However, in this manuscript, we
consider only systems with explicit disorder and we refer the reader to (Kirk-
patrick et al., 1987a; Mézard et al., 2000; Lubchenko et al., 2007; Charbonneau
et al., 2014) for more details on amorphous solids and structural glasses.

We therefore consider systems of spins σσσ with explicit disorder in the
Hamiltonian (19), for example through the in�uence of random parameters
such as the coupling constant or the external �eld (J,h), that we call for
historical reasons impurities. We assume that the latter impurities are some
RV that evolve at a typical time scale τq, while the system of spins σσσ evolve a
time scale τ . Depending on how these time scales compare, we shall distin-
guish quenched and annealed disorders. Annealed disorder refers to systems
such that τq ' τ . In other words, the random impurities (J,h) and the spins
variables σσσ evolve and �uctuate on a similar time scale (Palmer, 1982). There-
fore, they play the same role and should be considered on an equal footing. As
a consequence, in the presence of an annealed disorder, the impurities are in
thermal equilibrium and can simply be included in the statistical description
of the system. In contrast, quenched disorder refers to systems such that
τq� τ : the impurities are static and remain �xed while the spin variables σσσ

�uctuate. Each realization of the quenched disorder thus corresponds to a
new experiment with new sampled parameters. Therefore distinguishing the
slow-evolving quenched impurities J from the thermal spins σσσ time scales
is crucial. In particular, the equilibrium properties and the corresponding
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thermodynamics cannot be computed in the same way than for systems with
annealed disorder. In order to take into account the random impurities and
not compute properties of the system which depend on a single realization
of the randomness, we would like to average over the randomness. However,
the speci�c disorder time scale makes the average over the Gibbs random
measure harder. The di�erent time scales and the e�ect of the randomness
in the Hamiltonian require therefore speci�c analytical treatments that we
describe and develop in Chap. 4. Notice, nonetheless, that in some speci�c
cases, quenched disordered systems behave as annealed systems and are
easier to tackle analytically.

Even though other disordered systems such as Random Field Ising Model
(RFIM) (Belanger et al., 1991; Mézard et al., 1992) have been considered in the
literature (Imbrie, 1984; Belanger et al., 1991), in the rest of the manuscript
we mainly focus the discussion on spin glasses with quenched disorder.

2.3.2 spin glasses with qenched disorder

Spin glasses refer historically to metallic alloys in which during the chemi-
cal preparation of the sample magnetic impurities substitute to the original
atoms in randomly selected positions (Binder et al., 1986; Fischer et al., 1993;
Mézard et al., 1987). In order to theoretically understand the properties of
these materials, various models have been proposed based on a spin model
with a quenched disorder through the random exchange interaction J drawn
from a distribution P(J). Unlike the simple RFIM case where the randomness
only a�ects the one-body interaction term logφi, the disordered interactions
J dramatically a�ect the two-body interactions and the thermodynamics of
mean-�eld models spin glasses.

In this manuscript, we consider essentially models that can be formulated as
spin glass models with quenched disorder. More precisely, we consider a system
of d spins with σσσ ∈ χd with an Hamiltonian Hd (σσσ ;J,h) that explicitly
depends on the quenched RV, e. g. the coupling constant J completely speci�ed
by its probability distribution dP(J) = p(J)dJ, and a �xed external �eld
h ∈Rd . For the sake of illustration, let us introduce the Ising-like spin glass
model, historically considered in (Toulouse et al., 1987), which became the
battle horse of the spin glass literature. Consider a graphical model G (V,E)
with spins at the vertices V and pairwise interactions between spins on edges
E:

Hd(σσσ ;J,h) = −1
2 ∑
(i j)∈E

Ji jσiσ j−∑
i∈V

hiσi ,

associated to the Gibbs thermal average and the partition sum

Zd (β ,J,h) =
∫

χd

dσσσ e−βHd(σσσ ;J,h) .
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Unlike the case of the Ising ferromagnet 2.2.3.a (respectively anti-ferromagnet)
with ∀(i j) ∈ E,Ji j > 0 (respectively Ji j < 0), in spin glass models, the ex-
change interaction matrix is random so that Ji j associated to the edge (i j) has
a random sign and can be either positive or negative. The local interaction is
called ferromagnetic (respectively anti-ferromagnet) if Ji j > 0 (respectively
Ji j < 0). The coupling being random, in average, the model is called ferro-
magnetic (respectively anti-ferromagnetic) if there exists a bias such that
EJJi j > 0 (respectively EJJi j < 0). For conciseness, we leave aside the exter-
nal �eld in the following.

2.3.3 frustration

Understanding spin glasses is more involved that classical ferromagnetic
models. Indeed, the quenched disorder may be the source of frustration be-
tween the spins of the system, so that �nding an optimal con�guration
becomes harder and takes much longer time. In particular, the randomness
of the coupling interactions J signs breaks down the spatial homogeneity
and creates heterogeneity, called frustration. This collective behavior appears
when the best possible spins con�guration cannot satisfy all the local local
two-body constraints and minimize all interactions terms in the Hamiltonian,
as illustrated in Fig. 20. As a serious consequence, many distinct con�gura-
tions may achieve the same energy level, so that one expects the existence of
many local minima in the free energy landscape leading to a glassy behavior.
Such frustrated systems show non-trivial properties richer than systems

σ1 σ2 σ3

σ4 σ5

Figure 20: Illustration of frustrated spins on a regular "plaquette": frustration ap-
pears when a spin undergoes a positive (green) and a negative (orange)
interaction at the same time. Spins σ2,σ5 are frustrated as the coupling
constant is positive but the corresponding spins are anti-aligned.

without disorder considered in Sec. 2.2 and the quenched random disorder
dramatically a�ects their thermodynamic behavior.

2.3.4 averaging and self-averaging

As discussed in the previous section, the quenched disorder J plays a singular
role with respect to the thermal �uctuations of the spins σσσ . Since it evolves
at a much slower time scale τq� τ , for a given experiment the quenched
disorder is considered as static. It means that at each experiment we draw a
new realization of the disorder J, from the distribution P(J), that is considered
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to be �xed all along the spin dynamics. As a consequence the free entropy
explicitly depends on the realization of the disorder

Φd (β ,J) ≡ 1
d

logZd (β ,J) , ϕd(β ,J) ≡− 1
dβ

logZd(β ,J) . (41)

However, we do not want the description of the system to depend on the
realization of the disorder J. Instead, and speci�cally to quenched systems,
we introduce the averaged free entropy and free energy by adding the quenched
average over the disorder, denoted denote EJ, on top of (41), and crucially
after the Gibbs thermal average contained in the partition sum

Φd(β ) ≡EJΦd (β ,J) , ϕd(β ) ≡EJϕd(β ,J) . (42)

Averaging over all possible disorder realizations refers to the so-called typical
scenario. This is to oppose to the worst case scenario, that deals with the worst
possible disorder instance to obtain a strong upper-bound of the system
description. In the perspective of averaging over many experiments, we
restrict ourselves to the typical case that suits much better our purpose, so that
all quantities shall be averaged over the disorder. However, it is important to
remark that for the moment there is no reason why the averaged free entropy
would correctly describe the system for a single realization of the disorder.

Self-averaging In fact the most remarkable property of spin glasses is
that some extensive observables become self-averaging in the thermodynamic
limit, meaning that they are correctly described by their averaged behavior.
In other words, we say that a RV Xd ∈Rd is self-averaging if it concentrates
around its mean, namely if

∀ε > 0, lim
d→∞

P (‖Xd−E [Xd ]‖> ε) = 0. (43)

Very importantly the free entropy is such a self-averaging quantity. Thus at
�xed disorder realization J, Φd (β ,J) in (41) concentrates in the thermody-
namic limit around a deterministic free entropy given by the average over the
disorder Φ (β ) in (42). Therefore, in the thermodynamic limit d→ ∞ such
observables have the same value for each realization of the disorder J and
this legitimates the fact of considering the typical scenario. In other words,
the free entropy description no longer depends on the speci�c realization of
the disorder and the sample �uctuations are vanishing in the large system
size limit, so that its typical value coincides with the deterministic average
value. As a �nal remark, notice that in general observables that involve the
sum of an in�nite number of particles are expected to self-average. On the
contrary, non-self averaging quantities, such as correlation functions, can
�uctuate signi�cantly and computing them remains a harsh di�culty.

Finally, the self-averageness of the free entropy Φ can be described for
both short and long range systems as explained in the following.
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Short-range argument For short-range interactions mode, we recall a
simple argument based on the CLT that shows that the free entropy is self-
averaging (Mézard et al., 1987; Thouless et al., 1977; Orlandini et al., 2002).
In the case the interactions are short-range, we can split the whole system
of total volume V = Ld , where L is the typical size of the system, in N
macroscopic sub-systems of volume v = ld with V = Nv and N =

(L
l

)d

de�ned in such way that they weakly interact with each other. If we assume
that the interactions have a typical range λ � l, the free entropy decomposes
in bulk and surface contributions

Φd (β ,J) =
1
d

logZd (β ,J) =
1
d

log∑
σσσ

e−βHbulk(σσσ ;J)−βHsurface(σσσ ;J)

' 1
d

log∑
σσσ

e−βHbulk(σσσ ;J)+
1
d

log∑
σσσ

e−βHsurface(σσσ ;J)

= Φbulk (β ,J)+Φsurface (β ,J) 'Φbulk (β ,J)

'
N

∑
k=1

log∑
σσσ k

e−βHbulk(σσσ k;J) ,

where we �rst assumed that interactions between the bulk and the surface
are negligible, and the last equality generally holds if the surface interaction
is negligible with respect to the N blocks of the bulk contribution. In the
thermodynamic limit as l� L, N→∞ and the CLT applies, the free entropy is
therefore the sum of independent variables and becomes a Gaussian variable
centered around its average Φd (β )≡EJΦd (β ,J) with �uctuations of order

EJ

[
Φd (β ,J)2

]
−Φd (β )

2

Φd (β )
= Θ

(
d−1/2

)
−→
d→∞

0.

Long-range systems Yet this simple general argument does not apply to
long-range interactions. Anyway the self-averaging property is in fact very
often assumed and may be proven in some long-range interactions model
such as the Sherrington-Kirkpatrick (SK) model (Guerra et al., 2002a; Guerra
et al., 2002b) or in more recent works for various models (Barbier et al., 2016;
Barbier et al., 2018a; Barbier et al., 2019b; Barbier et al., 2019a).

2.3.5 annealed averages

The quenched nature of the disorder imposes to average the free entropy itself
and not the partition function. Taking the quenched disorder average of the
log-partition function in (42) is the main challenge and is unfortunately rarely
analytically tractable. In order to circumvent this di�culty, the cumbersome
replica method presented in Sec. 4.1 is a very powerful tool that we use
intensively in many applications of this manuscript. Another option to avoid
computing this average is to exchange instead the order of the expectation
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and the logarithm. This refers to the annealed average that leads to the much
simpler computation of the annealed free-entropy de�ned by

Φa
d (β ) ≡

1
dβ

logEJZd (β ,J) . (44)

As discussed in Sec. 2.3.1, this simpli�cation is justi�ed only for systems
with annealed disorder so that the spins and the disorder �uctuate with the
same time scales τ ∼ τq and appear on the same footing. Consequently, in
this case it is necessary to take the thermal Gibbs average Eσσσ and disorder
average EJ simultaneously before taking the logarithm, which keeps only
the large deviation behavior of the system. Even though this simpli�cation is Jensen inequality

states that for a
convex function f ,
the secant line of a
convex function lies
above the graph of
the function

justi�ed for annealed disorder, in the presence of a quenched disorder this
abusive annealed simpli�cation for quenched disorder provides in fact an
approximation of the cumbersome quenched average. More precisely, because
of the concavity of the logarithm and using the Jensen inequality, we observe
that the annealed free entropy is an upper bound of the quenched free entropy

Φd (β ) ≡
1
d

EJ logZd (β ,J) ≤ 1
d

logEJZd (β ,J) ≡Φa
d (β ) .

Finally in the cases where the quenched average is intractable, we can still
hope that the simpler annealed average provides a good approximation.

2.3.6 on the spin glass phase

The thermodynamic behavior of spin glass systems are drastically a�ected by
the appearance of the quenched disorder in the Hamiltonian that is respon-
sible for the emergence of a new collective behavior: the spin glass phase.
Remarkably, as a consequence of the frustration many local constraints may
not be satis�ed at the same time and thus there eventually exists many distinct
ground state con�gurations with the same, strictly positive, energy level. As
a result, in contrary with the classical Ising model in Sec. 2.2.3.a where only
two phases with positive or negative macroscopic magnetizations emerged,
in the spin glass phase we observe a highly non-trivial ergodicity breaking
of the con�guration space such that the Gibbs distribution exhibits many
metastable states. In other words, the system is stuck in some sub-regions of
the con�guration space χd and can take exponential time (in the size of the
system d) to explore the whole con�guration space.

To illustrate the remarkable properties observed in experimental spin
glasses, we recall the seminal Edwards-Anderson (EA) model (Edwards et al.,
1975) that tries to capture the main features of the spin glass phase.

The Edwards-Anderson model Since the interactions in metal alloys
are short-range, in order to replace the randomness induced by the impurities
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positions, it was proposed to consider an Hamiltonian de�ned on a regular
graph G (V,E) with nearest-neighbor interactions:

Hd (σσσ ;J,h) = − ∑
<i j>∈E

Ji jσiσ j−∑
i∈V

hiσi . (45)

The exchange couplings can be chosen either Gaussian P(Ji j) = NJi j

(
0, J0

d

)

or binary P(Ji j) =
1
2 (δ (Ji j− J0/d)+ δ (Ji j + J0/d)) such that EJJi j = 0 and

EJJ2
i j =

J0
d , for some J0 > 0. Let us introduce the averaged total magnetization

md and the celebrated EA order parameter speci�cally designed to reveal the
spin glass phase:

md =
1
d

d

∑
i=1

EJ,σσσ [σi] , qea =
1
d

d

∑
i=1

EJ,σσσ [σi]
2 ,

where the average are �rst taken with respect to the Gibbs distribution before
taking the average with respect to the disorder J. The particularity of the
EA model is to present no ferromagnetic nor anti-ferromagnetic phase. In
fact, as expected at high-temperature β → 0, we observe a paramagnetic
phase with a global magnetization m = 0 and qea = 0. At the critical glass
transition β ≥ βg the system enters the so-called spin glass phase characterized
by zero global magnetization m = 0 but a non-zero EA order parameter
qea 6= 0. In other words, even though there is no global ordering of the
system as the global magnetization stays zero in average, each individual
spin dynamics is still frozen in a preferred orientation. Indeed, the time
auto-correlation function is non-zero and given by the EA order parameter
C(t) = 1

d ∑
d
i=1 Eσσσ σi(t)σi(0)−→

t→∞
qea 6= 0. This means that the system at time t

σσσ(t) is strongly correlated to the initial con�guration of the system σσσ(t = 0).
In other words, the system has a strong memory of the initial preparation of
the system. This aging phenomenon (Sompolinsky et al., 1982), measured by
the new EA order parameter, has been experimentally observed, for instance,
by measuring the magnetic susceptibility with di�erent system initialization
(Vincent, 2007).

2.3.7 spin glass models and computer
science

After the EA model breakthrough, various disordered models came up to light
and boosted the spin glass literature. Let us mention the celebrated SK model
(Sherrington et al., 1975), whose dynamics have been studied in (Cugliandolo
et al., 1994) and rigorously proven in (Talagrand, 1998; Panchenko, 2013),
the p-spin for p ≥ 3 interactions with binary or continuous variables for
structural glass theory (Gardner, 1985; Kirkpatrick et al., 1987c; Kirkpatrick
et al., 1987b; Crisanti et al., 1995; Crisanti et al., 1992). We shall mention as
well the Random Energy Model (Derrida, 1981; Mézard et al., 2009), which is
one of the simplest toy model that exhibits a glassy phase; the KPZ equation
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(Kardar et al., 1986) that describe the behavior of particles in a rough random
landscape whose theory has been recently con�rmed numerically by precise
simulations (Hartman, 1982); or the Stochastic Block Model (Decelle et al.,
2011) for community detection on random graphs.

This kind of glassy dynamics is believed to be present in many systems
such as in computer science problems that we will be interested in the main
contributions of this manuscript. Notably, combinatorial optimization and
random constraints satisfaction problems gained in importance with espe-
cially error correcting code such as LDPC in noisy communication channels
(Shannon, 1948; MacKay et al., 1996), the minimum spanning tree, Eulerian
circuits, Hamiltonian cycles, the Travelling salesman problem or partitioning
problems (Mézard et al., 2009). These random optimization problems such as
random k-satis�ability problems (Ricci-Tersenghi et al., 2001; Mézard et al.,
2002; Mézard et al., 2005) or graph coloring (Jensen et al., 2011; Mulet et al.,
2002; Zdeborová et al., 2007) can be formulated as generic CSP whose Gibbs
distribution was studied in details in (Krzakała et al., 2007). Similarly to a
physical system being frozen in a sub-region of the con�guration space, a
similar ergodicity breaking might dramatically impact the algorithmic per-
formances of sampling and optimization algorithms in computer science
problems. Indeed it is believed that the existence of exponential metastable
states may drastically harm the computational performances and explain the
computational hardness in random problems such as CSP (Mézard et al., 2009;
Zdeborová et al., 2016a) and other optimization problems (Moore et al., 2011).

In the recent years, due to the accession of machine learning and neural
networks, we observed a renewed interest of statistical physics in these
computer science problems. Interestingly, very often they can be formulated
as spin glass models and treated with the corresponding set of powerful tools.
In the next section, we propose a brief historical review of the exchange of
ideas between statistical physics and computer science.





3
STAT I ST ICAL PHYS ICS
AND MACHINE LEARNING
BACK TOGETHER

Analyzing machine learning problems with statistical physics tools may
be unusual to most of the computer science community. Yet, there exists a
rich literature with in�uential connections between these two �elds, that
we brie�y review in this chapter. On one hand, statistical physics aims to
understand collective behaviors of matter and phase transitions as illustrated
in Chap. 2. However, its powerful formalism readily applies to various �elds
such as statistical inference, whose goal is to detect and recover a hidden signal
from observations. In particular, the high-dimensional statistical regime in
which the number of data and parameters diverge �ts perfectly the underly-
ing fundamental large-size hypothesis of the statistical physics framework.
Thus, approaching high-dimensional inference and other machine learning
problems with statistical physics has a long tradition and an intimate connec-
tion which is widely depicted in the literature of statistical physics of machine
learning (Nishimori, 2001; MacKay et al., 2003; Mézard et al., 2009; Grass-
berger et al., 2012; Zdeborová et al., 2016a; Advani et al., 2016b; Zdeborová,
2017; Biehl et al., 2019; Zdeborová, 2020).

In this section, we �rst recall the main interactions between these two �elds
by presenting a short historical overview in Sec. 3.1. Then we focus on the
main contributions that in�uenced the current statistical physics approach
in Sec. 3.1.2, before presenting our global approach in Sec. 3.2 that we deeply
use in the main contributions Part II. In particular, we depict how mean-�eld
methods such as the replica method or message passing algorithms, presented
in details in Sec. 4.1-4.3, became central to analyze the phase transitions of
inference problems and can lead to the design of new algorithms. All along
this work, we try to especially highlight and compare the algorithmic phase
transitions to optimal statistical thresholds in light of glassiness behaviors
and computational hardness.

3.1 A COMMON HISTORY OF MACHINE
LEARNING AND STAT I ST ICAL
PHYS ICS

The intimate connection between machine learning and statistical physics
basically started in the 80’s and was recently renewed with the democra-
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tization and accession of ANN. After the recent successes of DL in many
applications, the scienti�c communities from various �elds try to address
many of the theoretical challenges raised by their empirical successes. In
particular, statistical physics experienced a renewed interest in ANN research
with in particular the emergence of rigorous justi�cations of former heuristic
statistical physics methods. The goal of this short section is to brie�y recount
the main in�uential works of the statistical physics approach on open ML
questions as well as the intricate story between physics and neural networks.

3.1.1 from spin glass theory to rigorous
machine learning

The connection of Information Theory (IT) with physics dates probably back
to the end of the 1900’s early 2000’s with Maxwell, Boltzmann, Szilard that
study the entropy in thermodynamical systems. It opened a breach for IT
whose Shannon became the pioneer followed later on in the 60’s by the
Gibbs-Bogoluibov-Feynman variational principle that became a central tool
in approximate statistical inference, as detailed in Sec. 4.2.

3.1.1.a emergence of the spin glass community

Later on, during the second AI winter, the physicists Hop�eld (Hop�eld,
1982) revived the ANN-oriented research by proposing the celebrated eponym
Hop�eld model to explain associative memory as a variant of the Ising model
with pairwise interactions generated from a set of n patterns {ξξξ µ}n

µ=1 such
that Ji j =

1
n ∑

n
µ=1 ξiµξ jµ . This energy based model crystallized particularly

the interest of physicists and is certainly responsible of the emergence of an
entire branch of the statistical physics dedicated to ML models. By taking ad-
vantage of the heuristic tools of the spin glass community, mainly developed
with the previous EA and SK models (Edwards et al., 1975; Sherrington et al.,
1975; Thouless et al., 1977), such that the Thouless-Anderson-Palmer (TAP)
approach, the Hop�eld model is analyzed heuristically (Amit et al., 1985b;
Amit et al., 1987) and opened the door to more complex ANN models. The
same heuristic mean-�eld methods are then used to analyze ANN and started
being popularized in (Amit et al., 1985a). For instance Boltzmann machines,
which are nothing more than a stochastic version of the SK spin glass model,
have been brought to light in the computer science community (Ackley et al.,
1985), making the connection of statistical physics and machine learning
even closer. In parallel, computer scientists developed the PAC theory to ana-
lyze the generalization property of neural networks (Valiant, 1984), which
turns out to be completely orthogonal to the physicist approach used to
analyze the Hop�eld model. Hence, even though the physics community
deeply contributed in the early analysis of ANN models, the computer science
community largely ignored the corresponding approach based on heuristic
techniques.
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In the late 90’s, E. Gardner introduced the replica method to analyze the
maximum storage capacity (Gardner, 1987; Gardner, 1988) that is known to be
closely related to the VC dimension mostly considered in the ML community.
These very in�uential works introduced a powerful technic used to com-
pute the typical con�gurations space volumes in order to count how many
networks achieve a certain level of error. Many heuristic papers followed
(Derrida et al., 1987; Gardner et al., 1988; Krauth et al., 1989) and readily
apply the Gardner approach to supervised learning with randomly-quenched
disorder for which the random labels are not correlated with the inputs. In
parallel, the training method of SVM (Boser et al., 1992) was inspired by a
physics intuition (Krauth et al., 1987). During the same years, a deeply in�u-
ential review (Mézard et al., 1987) gathered the main mean-�eld treatments
from the fruitful research on spin glasses whose publication accelerated and
democratized their use.

3.1.1.b from random labels to learning a rule

After having widely studied the storage capacity problem with random
quenched disorder and random labels, the research shifts towards the sta-
tistical inference of a hidden signal, that a supervised model shall recover
from observations. The idea that the training set contains a hidden planted
con�guration, representing a crystal con�guration in the physicist language,
also called a rule, refers to the so-called Teacher-Student (T-S) scenario. Both
these random and structured settings were in fact already introduced in the
seminal work (Gardner et al., 1989). The replica method and the TAP approach
started being applied to more general inference problems such as this T-S for
the simplest ANN, the perceptron. The �rst learning curves and physics-like
phase transitions (Györgyi, 1990) are derived and exhibit interesting physics:
�rst and second order phase transitions with the existence of metastable
states are observed (Sompolinsky et al., 1990; Opper et al., 1990; Hansel et al.,
1990; Opper et al., 1996a) keeping the interest of physicists at the highest
level. This simple model architecture is then pushed forward with a second
untrained layer: the committee machine (Schwarze et al., 1992; Schwarze, 1993;
Schwarze et al., 1993). In another direction, the usage of gradient-descent-like
algorithms is studied in an online setting (Saad et al., 1995b), where a single
example, from an unrealistic in�nite reservoir of examples, is observed at
each time step.

Unfortunately, physics contributions had almost no impact in the ML com-
munity that largely frustrated the physics community. Even though the
approach was very elegant for the physicist oriented mind, it was not taken
fully seriously mainly because of its lack of rigor. Moreover with the decline
of AI attraction, in the late 90’s the physics research globally stopped in this
direction.
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3.1.1.c a renewed interest of physicists and rigorous
justifications

With the recent �ourishing numerical successes of ML and DL, the theoretical
research activity around these disciplines grew up again in the recent years.
Especially because traditional ML theory, based on data-independent PAC
generalization bounds (Vapnik et al., 1994), predicted that models such as
DNN with a number of parameters similar to a number of data should over�t.
Thus it failed explaining the empirical and striking generalization problem
of DNN that does not experienced over�tting. Therefore, statistical physics
community stroke back and started to work in this direction as they believe
that their singular typical case approach, yet on unreasonable simple models,
may contribute to understand this challenge and answer fundamental ML
questions. In order to �nally bring impact of the physicists heuristic methods
to the ML community, the mathematical-physics research started to prove
rigorously results previously derived in the spin glass literature with the
so-called replica method, see Sec. 4.1. This stage starts with a �rst rigorous
tentative (Haussler et al., 1996) where they rigorously showed the existence
of phase transitions in the learning curve behavior. The analogy between spin
glasses of dynamical systems and machine learning seem very interesting
but again failed to fully break through. Finally, with the works of (Guerra
et al., 2002b; Talagrand, 2003; Panchenko, 2013), which rigorously proved
heuristic results of the 80’s in the context of the SK model, IT started slowly
to consider the statistical mechanics approach. This renewed approach of
statistical mechanics techniques are currently gaining in popularity as well
in ML because of their recent rigorous justi�cations for instance in the case of
the GLM (Barbier et al., 2016; Reeves et al., 2016b) and the committee machine
(Aubin et al., 2018b), whose models have been both studied heuristically in
the 90’s, or deeper architectures (Gabrié et al., 2017).

3.1.1.d algorithms and computational complexity

The in�uence of statistical physics is even more obvious in combinatorial
optimization and CSP. Indeed, early 2000 many graphical model algorithms
such as Belief Propagation (BP) (Pearl, 1982; Yedidia et al., 2001b; Yedidia et al.,
2001a) are popularized. These algorithms derived in di�erent �elds under
di�erent names such as the Viterbi algorithm, Pearl’s BP, Gallager codes,
Kalman �lter, transfer-matrix approach (Yedidia et al., 2001a) are closely
related to the physics cavity method (Mézard et al., 2009). The simpli�cation of
the BP equations under a set of assumptions, see Sec. 4.4, leads to Approximate
Message Passing (AMP) algorithms, introduced in the context of Compressed
Sensing (CS) in (Donoho, 2006; Maleki, 2011) and popularized in (Montanari,
2012; Rangan, 2011). These physics-inspired algorithms are applied to various
CSP whose general Gibbs measure description was studied in (Krzakała et al.,
2007). Very importantly, this renewed line of ANN research made a clear
connection with the algorithmic computational complexity (Moore et al.,
2011) that was never considered in the early statistical physics literature.
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3.1.2 recent and current line of research

Statistical physics is currently pursuing actively this line of research and
attempting to answer fundamental questions raised by the increasing use of
DNN. We present below a short and, inevitably, biased selection of important
research directions from a physicist point of view.

3.1.2.a from amp to the analysis of gd algorithms

In many models the BP algorithm and variants such as AMP are of theoretical
interest since they have been shown and believed to achieve the optimal
statistical performances in large regions of parameters. Easily derived and
implemented for �nite sizes, their performances are nonetheless not guaran-
teed. But powerfully, the statistical physics approach turns out very useful as
it allows to derive and prove the high-dimensional asymptotic performances
of the corresponding AMP algorithms, called in this context the state evo-
lution. While this requires in principle to compute a high-dimensional JPD,
the physics mean-�eld methods reduce it to a simple optimization problem
over a small set of order parameters. Yet the prevalence of gradient-based
algorithms in DL recently shifted the current research towards understanding
GD dynamics. Indeed, dynamics of GD is believed to be very important as
it induces a bias that reduces the wide hypothesis class along training by
di�usion and is responsible for good generalization. Even though the analysis
of GD dynamics has been performed for linear models in (Baldi et al., 1991;
Baldi et al., 1995; Dunmur et al., 1993; Krogh et al., 1992; Advani et al., 2017),
generalizing it to non-linear models remain challenging. Yet, �rst steps in this
direction have been recently performed. Following the early works of (Saad
et al., 1995a), the dynamics of online SGD was studied in more details and
generalized to more complex architectures (Goldt et al., 2019a). In the other
hand, following the dynamical approach studied in the early works (Cuglian-
dolo et al., 1993; Ben Arous et al., 2006) in the context of the p-spin model, it
was recently extended to the perceptron (Agoritsas et al., 2018), the spiked
matrix model (Mannelli et al., 2020) and a Gaussian mixture classi�cation
task (Mignacco et al., 2020a). Generalizing this dynamical approach to more
complex architectures and data structures is certainly a fruitful direction of
research.

3.1.2.b the role of data: from iid to a manifold

Another essential ingredient in understanding DL performances is de�nitely
the essential role of data. Most theoretical statistics works commonly assume
that data come from a i.i.d factorized probability distribution, without ex-
plicitly modelling the training dataset. As a consequence, these approaches
lack capturing the deep correlations of real datasets and their fundamental
impact on the training of DNN. A �rst step to overtake this i.i.d limitation was
performed in (Kabashima, 2008) by generalizing it to rotationally invariant
inputs in perceptrons and later on to the weights in DNN (Gabrié et al., 2018).
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Moreover, the original T-S scenario fed with i.i.d samples is also gradually chal-
lenged as the dynamics of DNN on real-life tasks such as MNIST classi�cation
do not reveal the same dynamics than for a T-S synthetic dataset. To capture
this particular learning dynamics on MNIST, (Goldt et al., 2019b) introduced
the Hidden manifold model to represent the input data by a low-dimensional
structure, that was studied later on in (Gerace et al., 2020) in the context of
random features. This rich data modelling idea is another promising step to
take into account the importance of real-data distributions in the learning
dynamics.

3.1.2.c from a few hidden units to deep/wide layers

Multi-layer and over-parametrization Finally, the last ingredient re-
sponsible for the DNN success is certainly the wide and deep architectures
of networks that form a large hypothesis class with a great expressivity.
While early rigorous works in statistical physics focused on simple single-
layer perceptron (Barbier et al., 2016), the current trend consists in analyzing
models with increasing sizes, starting with a simple two-layers extension
(Aubin et al., 2018b). In parallel, another mean-�eld scaling limit was recently
proposed, where the number of hidden units K is much larger than the input
size d = o(K). In a recent line of research, (Jacot et al., 2018; Du et al., 2018;
Allen-Zhu et al., 2019; Arora et al., 2019; Lee et al., 2019) observed that with
a scaling of the weights as Θ(K−1/2), the dynamics enters a lazy regime
governed by the Neural Tangent Kernel (NTK). As a consequence, it remains
stuck close to the initialization and can be therefore trivially analysed. In con-
trast, in the same in�nitely wide limit, but under a di�erent scaling Θ(K−1),
(Chizat et al., 2018; Mei et al., 2018; Rotsko� et al., 2018) observed another,
yet more interesting, feature learning regime in which the NTK really learns.
Closely related, random features was the subject of various works notably to
understand the learning curve behavior and double descent generalization
phenomena (Belkin et al., 2019a; Mei et al., 2019; d’Ascoli et al., 2020). It
was also studied with Random Matrix Theory (RMT) applied to single-layer
random neural networks by analyzing the Gram matrix of the hidden units
(Louart et al., 2018; Couillet et al., 2011). In another direction, in order to
evaluate the information bottleneck theory in DNN (Tishby et al., 2015) sug-
gested a connection with representation compression whereas (Gabrié et al.,
2018) developed a rigorous scalable formula for mutual information between
layers of multi-layer neural networks. Finally, another approach (Mehta et al.,
2014) consists in applying ideas of the physics renormalization group to DNN
whose idea is to learn hierarchal representations across layers.

Beyond separable priors Recently, we observed a practical and intense
use of deep neural-network-based generative priors for estimation problems
(Bora et al., 2017; Tramel et al., 2016b). Whereas in classical statistics, we often
assume that the hidden ground truth signal is drawn from a separable prior,
this overly simple hypothesis may be replaced by a generative prior to model
a more complex, non-separable JPD of the signal. Therefore the practical use
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of generative priors angled research towards understanding them in simple
estimation problems such as compressed sensing, phase retrieval of spike
matrix models (Aubin et al., 2019e; Aubin et al., 2020b) and to design multi-
layer approximate message passing algorithms (Manoel et al., 2017; Fletcher
et al., 2018).

3.2 STAT I ST ICAL INFERENCE AND CSP
AS A STAT I ST ICAL PHYS ICS
PROBLEM

In this section, we present the general approach used in the main contribu-
tions of this manuscript to analyze various models. Among them, we will
consider two large classes of problems already mentioned: Statistical Infer-
ence (SI) and CSP. Both kind of problems can be formulated as a statistical
physics model, and classical tools of disordered systems, presented in Sec. 4,
readily apply in certain scaling limits. The connection between statistical
physics, SI and CSP is not relatively new and has in fact a long history as
sketched in Sec. 3.1. Especially, in�uential and seminal works (Shannon, 1948;
Jaynes, 1957) brought to light the link between IT, Bayesian inference, thermo-
dynamics and statistical physics. The connection was more recently renewed
during the second AI winter (Grassberger et al., 2012) and was celebrated
during a recent summer school Statistical Physics and Machine Learning back
together. All along this manuscript, we stress and make an intense use of
the deep connection between Bayesian inference and spin glass techniques
(Mézard et al., 1987) that were early applied to error correcting codes (Sourlas,
1989), perceptrons (Seung et al., 1992; Watkin et al., 1993) and sparse random
graphs (Mézard et al., 2001; Mézard et al., 2003). See (Nishimori, 2001; Mézard
et al., 2009) for an extended review. Moreover, as early heuristic works were
not focussing on algorithmic considerations, in this manuscript we will put
the accent on rigorous results and algorithmic thresholds. Before closing this
chapter and presenting in details the mean-�eld methods, we provide a high-
level perspective of the general approach of this work. The same approach
will be used on di�erent problems and it is therefore useful to summarize it
once for all. Finally we present the generic phase diagram descriptions of
CSP and SI models.

3.2.1 bayesian inference in the
high-dimensional regime

3.2.1.a high dimensional regime

Classical statistics traditionally considers models with a �nite number of
parameters d. Yet, the recent progresses of DNN drove the usage of modern
ML models with increasing number of parameters. Additionally with the
widely increasing availability of data, the classical statistical regime must be
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rethought. In contrast with classical statistics, the sizes of the dataset n and
the number of parameter d are assumed to very large and even in�nite. These
limits are particularly suitable to the statistical physics approach that requires
the thermodynamic limit d→ ∞ to proceed. Therefore, we mostly consider
that both the number of parameters d→∞ as well as the number of observed
data n→ ∞. To be able to tackle analytically these ill-de�ned behaviors we
assume that they both go to in�nity with a �xed and �nite ratio α ≡ n

d = Θ(1).
This simplifying assumption is however not arbitrary and re�ects quite
correctly the practical dimensions. For instance the MNIST (LeCun et al.,
2010) dataset contains 60000 images and can be learned correctly by a two-
layers network with biases with d = (784+1)×32+(32+1)×10 = 25450
parameters, so that the ratio α is indeed of order one.

3.2.1.b statistical inference

Let us consider a set of interacting variables σσσ de�ned on a graph G (V,E).
The overall goal in CSP and SI problems is to compute the marginal dis-
tributions Pd(σi) =

∫
χd−1

dσσσ\iPd(σσσ) accessible from the knowledge of the
JPD Pd(σσσ). However in the high-dimensional regime this JPD is a high-
dimensional object that is very often not tractable analytically. That is where
statistical physics comes into play. Indeed, statistical physics with its long-
history provides a suitable and powerful set of tools, see Sec. 2, to analyze
and characterize the corresponding high-dimensional JPD Pd(σσσ). Moreover
its extension to disordered systems and spin glasses, see Sec. 2.3, makes it
singular and a very powerful approach to analyze a JPD of the form P(σσσ |y)
in presence of a quenched disorder y, such as the randomness in the observed
data. In the perspective that we will apply these tools to supervised ML appli-
cations, let us draw the correspondence between physics spin models and SI.
While in physics spin models, the randomness steps in through the exchange
interactions J that follow a particular distribution P(J), see Sec. 2.3.1, in
most of ML applications, the randomness intervenes in the distribution of the
input data X and the corresponding labels y in a supervised setting. Thus,
the spin con�guration σσσ will naturally denote the value of the parameters
of the ML model. More details on the connection between statistical physics
and Bayesian-inference can be found in (Engel et al., 1993; Nishimori, 2001;
Mézard et al., 2009; Grassberger et al., 2012; Zdeborová et al., 2016a; Advani
et al., 2016b).

3.2.1.c bayesian inference as a statistical physics
model

In order to compute the JPD, we use a particularly suitable Bayesian approach
based on the Bayes-formula decomposition, see Sec. 1.2.8.b,

Pd (σσσ |y) =
P (y|σσσ)P (σσσ)

P (y)
=

1
P (y)

n

∏
µ=1

P
(

yµ |σσσ∂µ

) d

∏
i=1

P(σi) , (46)
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where we used the fact that, in many examples, the joint channel and prior
distributions P (y|σσσ) and P (σσσ) respectively factorize over the n observations
and d input dimensions. This decomposition is very interesting in the sense
it explicitly shows the distributions used to model the observations: the prior
distribution P (σσσ) describes the prior knowledge we have on the variables σσσ ,
e. g. discrete binary, Laplace, Gaussian, etc. whereas the distribution P (y|σσσ)
models how the observations are related to the variables, for instance through
a noisy Gaussian channel, a linear matrix multiplication, etc. To properly
cast this problem into a statistical physics formalism, we shall introduce the
Hamiltonian

Hd (σσσ ;y) ≡−
n

∑
µ=1

logP
(

yµ |σσσ∂µ

)
−

d

∑
i=1

logP(σi) (47)

so that the JPD in eq. (46) can be formulated as a Gibbs distribution

Pd (σσσ |y) =
e−βHd(σσσ ;y)

Zd(y)
, with Zd(y) ≡

∫

χd

dσσσ p (y|σσσ)p (σσσ) , (48)

as soon as the inverse temperature is set to β = 1. Yet, the temperature
parameter may be freely chosen depending on the statistical estimator that
we will consider. For instance to obtain the MAP behavior, we should take the
zero temperature limit β → ∞. Moreover, in a physics language, logP(σi) is
exactly analogous to the local external �eld interaction hiσi in spin systems,
while the term logP(yµ |σσσ∂µ

) represents the interaction term between |∂µ |
variables. In particular, this analogy allows to compute easily the marginal
probability P(σi) =

∫
χd−1

dσσσ\iP(σσσ) as a simple local magnetization. Written
under this general formulation with generic prior distributions, it has the deep
advantage to encompass a large class of models: Ising, SK, p-spin models, GLM,
committee machine,... with a various choice of prior distributions ranging
from discrete to continuous variables.

3.2.1.d free entropy and replica computation

As stressed in Sec. 2.2.1.f, the averaged free entropy Φd = 1
d Ey logZd(y)

being e�ectively the cumulant generative function of many useful quantities
is therefore a central object in statistical physics. In the high-dimensional
regime, d→ ∞,n→ ∞,α = Θ(1), we focus instead in the asymptotic aver-
aged free entropy Φ = limd→∞ Φd that can be computed with the replica
method that plays a crucial role in this work and detailed in Sec. 4.1. To
quickly summarize, while computing the high-dimensional JPD is often in-
tractable, the replica method allows to reduce the high-dimensional inference
problem to a simple optimization problem of a free entropy potential Ψ over
a set of a few order parameters, e. g. q, q̂,

Φ = extrq,q̂{Ψ(q, q̂)} . (49)
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The free entropy behavior allows to detect statistical thresholds and exhibit
potential information theoretical phase transitions. Indeed, these order param-
eters q, q̂, called overlaps, have a deep interpretation as they directly provide
knowledge on the solution space: either the correlation with the ground truth
solution in the case of SI, or the typical distance between solutions in the
context of CSP.

3.2.1.e towards rigor

Yet, the replica method, that we use intensively, is unfortunately not a rigorous
method in the mathematical sense: a few important steps are not justi�ed
and may even seem absurd. But it turns out that in many cases the result was
either proven or believed to be correct. As stressed in the historical part in
Sec. 3.1, progresses and results in statistical physics have very often not been
taken seriously in the mathematics and computer science community because
of this lack of rigor. That is one of the reasons why researchers at the interface
between mathematics and physics recently undertook to rigorously prove
these results, which may have been obtained 20-30 years earlier by physicists.
Even though proving the heuristic results does not provide new essential
understanding of the system behavior, it nonetheless has the profound bene�t
to bring greater impact and visibility outside of physics. To give a �avor, most
of the proofs of this manuscript will be based on Guerra-interpolation (Guerra
et al., 2002a; Guerra, 2003; Talagrand, 2006a) that require fundamentally to
previously derive the heuristic replica result. Other proofs are simply based
on moment bounds (Friedgut, 1999; Achlioptas et al., 2002; Brémaud, 2017)
and Gordon’s Convex Gaussian Min-max Theorem (CGMT) (Gordon, 1985).

3.2.2 algorithmic perspectives

The free entropy computation gives access to the information theoretical
phase transitions of the system, also called the statistical thresholds. However,
for practical purposes, we are interested in algorithms that are able to reach
these theoretical performances. Another interesting feature of statistical
physics approach is that, very often, computations can be turned in very
powerful polynomial algorithms, whose behaviors show new phase transi-
tions. Among them, in this dissertation we will focus on message passing
algorithms which have a long history with physics. On top of that, they have
the advantageous property of being proven optimal in many applications
(Maleki, 2011; Donoho et al., 2013b; Barbier et al., 2016) or believed so. To
derive such algorithms, the �rst step is to represent the high-dimensional
JPD with a factor graph, as illustrated in Fig. 21. From this factor graph, we
may apply the cavity method (Mézard et al., 2001; Mézard et al., 1987) or
equivalently the BP equations, which can be simpli�ed in an AMP algorithm
under a Gaussian assumption in the thermodynamic regime. Notice that for
more complex models, a more general approach was developed known as
survey propagation (Braunstein et al., 2005). This set of iterative equations
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Ψµ Ψν

σi σ j σk
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Figure 21: Factor graph representation of (Left) the joint probability distribution
Pd(σσσ |y) eq. (46), (Right) the linear system eq. (50).

of the form ∀i ∈ JdK, σ̂
t+1
i = fi(σ̂σσ

t) can be iterated and gives an estimate
of the marginal probabilities. In addition of being very often optimal, AMP
algorithms have the exceptional particularity that in certain situations their
average in�nite behavior, called state evolution, is exactly characterize by the
replica free entropy potential, that allows to compare their performances to
the information theoretical statistical thresholds. Notably, if we de�ne for
instance the self-overlap parameter

qt = lim
d→∞

1
d

Ey [σσσ
t ·σσσ t ] ,

at convergence and under certain conditions, the performance measures such
as the generalization error or the MSE are characterised by the asymptotic
overlap qt=∞, which is, strikingly, equivalently the solution of the replica Polynomial refers to

the space complexity,
meaning that at each
time iteration, the
algorithm requires a
polynomial (in the
size of system)
number of operations.

free entropy extremization problem in eq. (49). In particular, this means that
at each iteration AMP follows the gradient of the replica free entropy, until
convergence to a maxima. However, whereas the information theoretical
performances are characterized by the global maxima of the replica free
entropy, since AMP iterations start with non-informative initializations, the
algorithm may converge to some local maximum and achieve sub-optimal
performances. This key observation reveals in particular the existence of hard
algorithmic regions as soon as the free entropy potential presents metastable
states. To conclude, we already see that the replica free entropy and the AMP
algorithm are two sides of the same coin, and this observation will follow in
extended discussions in all the considered applications.

Hereafter, we present the two types of problems we will mainly describe
in the application part of this manuscript: CSP and SI, which are very similar
but do not show the same phase transitions typology because the quenched
disorder is, crucially, not of the same nature. In fact historically physics was
�rst interested in CSP (Mézard et al., 1986a; Mézard et al., 1986b; Gardner et al.,
1988; Krauth et al., 1989; Mézard et al., 2002; Krzakała et al., 2007; Zdeborová
et al., 2007) before recently shifting towards phase transitions in SI (Decelle
et al., 2011; Krzakala et al., 2012b; Lesieur et al., 2017a; Barbier et al., 2019b).
Even though the phase transitions are slightly di�erent, the above general
Bayesian approach readily apply to their analysis.
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3.2.3 random constraint satisfaction
problems

Let us introduce general combinatorial optimization problems, generally
called CSP (Apt, 2003; Mézard et al., 2009; Tsang, 2014). This is a general
de�nition that applies to various problems such as the k-SAT, sphere packing,
Eulerian and Hamiltonian paths, travelling salesman, the q-coloring and the
vertex-covering problems and many others. A CSP is speci�ed by d variables
σσσ = {σi}d

i=1 ∈ χd , where χd denotes an alphabet, that must satisfy a set of n
constraints {Ψµ(σσσ∂µ

)}n
µ=1 within a given collection. We say that a constraint

is satis�ed by the variables (resp. non-satis�ed ) if Ψµ(σσσ∂µ
) = 1 (resp. 0).

The problem is satis�able (SAT) if there exist at least one con�guration
that satis�es all the constraints, and UNSAT otherwise. As a generalization,
random Constraints Satisfaction Problem (rCSP) are a particular case when
the constraints are drawn randomly among the collection (Franco et al.,
1983). The randomness may be based either on the graph geometry by a
random connectivity or any other random source in the constraints for fully
connected variables. Such models can be seen as spin glass models with
random quenched disorder as the constraints are completely random. In order
to maximize the number of satis�ed constraints, we introduce an Hamiltonian
de�ned as the number of violated constraints, that measures the energy of a
con�guration σσσ

Hd(σσσ) ≡
n

∑
µ=1

(
1−Ψµ

(
σσσ∂µ

))
,

and the Gibbs distribution at �nite temperature 1/β , that represents the level
of exigence we require on the satis�ability of the constraints,

Pd (σσσ) =
1

Zd(β )
e−βHd(σσσ) −→

β→∞

1
Zd

n

∏
µ=1

Ψµ

(
σσσ∂µ

)
,

converges to a product of indicator functions at zero temperature β → ∞.
We introduce the rescaled number of constraints by the number of variables
of the problem α = n

d . To �x ideas, let us provide a simple example: solving
an a�ne system. The interested reader may �nd various other examples in
the literature starting with the reference book (Mézard et al., 2009).

A toy example: a�ne system of equations Consider you have a set of
n linear equations, represented by the matrix A ∈Rn×d and a vector b ∈Rn

with real coe�cients, depending on d variables x ∈Rd

Ax−b = 0 ⇔
n

∏
µ=1

Ψµ (x) = 1. (50)

This linear system can be rewritten as a fully-connected CSP involving the
product of constraints {Ψµ}n

µ=1 with Ψµ(x) = 1 [aµ ·x−bµ ], where aµ rep-



3.2 statistical inference and csp as a statistical physics problem 92

resents the µ-th row vector of the matrix A. The problem may be represented
by a factor graph illustrated in Fig. 21 (Right). For a random or deterministic
matrix A, we would like to know when the linear system has at least one
solution. We shall remember that if the number of constraints is smaller
than the number of variables n < d, the linear system is undetermined and
there exists many degenerated solutions. While if n > d the system is over-
constrained and there does not exist any solution, so that there exists an
intermediate critical value αsat = 1 such that solutions no longer exist, called
the SAT-UNSAT phase transition.

On phase transitions of rCSP As illustrated with the above simple ex-
ample, we understand intuitively that CSP and rCSP may undergo phase tran-
sitions as the constraints density α varies. In particular above a large number
of constraints, if the system is heavily over-constrained it is intuitive that
no con�guration can be solution. In contrast, if the system is largely under-
constrained, there will eventually exist many solutions. The SAT-UNSAT
phase transition appears at the constraint density above which no solution
exists. For instance in the case of the linear system, the SAT-UNSAT threshold
is simply given by n = d⇔ αsat = 1. Yet, the phase diagram of rCSP is not lim-
ited to this SAT-UNSAT phase transition and reveals a richer description. We
invite the reader to read more about it in (Krzakała et al., 2007; Mézard et al.,
2009) where the whole phase transition phenomenology of rCSP is described
with the cavity formalism. In more details, for a small constraint density
α � 1, we expect that many solutions exist in a large connected sub-region
of parameters. As the density of constraints increases, a �rst remarkable
clustering phase transition, also known as the dynamical phase transition in
the context of structural glasses (Parisi et al., 2010; Charbonneau et al., 2017),
is encountered at αclust and is characterized by the decomposition of the
large set of solutions in an exponential number of disconnected sets, called
clusters. Further increasing the density α , we observe that this exponential
number of clusters reduces to a sub-exponential number of clusters at the
condensation phase transition αcond. If the alphabet χd is discrete, the system
may as well undergo another phase transition: a rigidity or freezing phase
transition (Semerjian, 2008) at αfreez such that each cluster shrinks and con-
tains only a �nite number of solutions. Finally, above a certain constraint
density αsat, the problem becomes UNSAT, meaning that no con�guration
can satisfy all the hard constraints simultaneously such that at least one
constraint is violated and the ground state energy is strictly positive. The
description of the di�erent phase transitions by increasing α is illustrated
in Fig. 22, that can be completed by quantitative de�nitions (Krzakała et al.,
2007; Gabrié et al., 2017).
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αclust αcond αfreez αsat

Figure 22: Illustration of the solution con�guration space of a random CSP crossing
clustering, condensation, freezing and SAT-UNSAT phase transitions as a
function of the constraint density α , inspired from (Krzakała et al., 2007).

3.2.4 statistical inference and
supervised learning

SI denotes the process of extracting useful informations and properties of an
underlying high-dimensional joint probability distribution Pd(σσσ) from the
observations of data. With the large amount of data nowadays available, sta-
tistical inference apply to many applications from computer science with ML,
DL, signal processing and IT, to natural sciences with medicine, neuroscience,
biology, social sciences or economy, etc. SI can be thought as the action of
extracting informations from a large set of data or in other words recovering
a hidden signal from a set of observations. The literature about IT and SI is
very rich and more details can be found in (Barber, 2012; MacKay et al., 2003).

Ground truth representation The main di�erence between SI and CSP,
depicted in the previous section, is that we assume there always exists a We may imagine

that the data
projected in a
particular space,
potentially in higher
dimensions, contains
two principal
components
representing the
images of cats and
dogs

θθθ
?
cθθθ

?
d

hidden solution to the problem, called the ground truth θθθ
? or planted solution,

that we aim to recover. De facto, the SAT-UNSAT transition does not exist in
inference problems and we expect the phase transition phenomenology to
be di�erent, yet even richer. The existence of the ground truth θθθ

? is ensured
in many applications such as noisy communication channels, compressed
sensing, phase retrieval, matrix factorization, and many others. In the case of
supervised learning of real datasets, the ground truth is not explicit but we
shall still assume it exists for our theoretical purposes. Indeed, even though
the generative process of the data is hidden, we shall assume that the collected
dataset contains a common hidden representation. For instance in a dataset
containing images of cats and dogs, it seems natural to assume there exists
some ground truth representations, yet unaccessible, θθθ

?
c ,θθθ ?

d that commonly
characterize the images of cats and dogs.

The teacher-student scenario and the planted ensemble In practice,
the ground truth representation θθθ

? is not available for a direct comparison.
Yet, for theoretical purposes, in order to measure the reconstruction perfor-
mances of the hidden signal and depict the corresponding phase transitions,
we naturally need to have access to the ground truth representation. To
circumvent this di�culty, it gems from this idea the notion of hidden rule
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based on a signal θθθ
? that a teacher uses to generate a training set Xtrain

(Patarnello et al., 1987; Gardner et al., 1989; Tishby et al., 1989; Sompolinsky
et al., 1990; Seung et al., 1992; Watkin et al., 1993; Györgyi, 2001). This is
called the T-S scenario: student aims to recover the hidden rule for the obser-
vations in the corresponding synthetic training set Xtrain generated by the
teacher. Statistical inference and statistical physics show a narrow connection
through the lens of this T-S and the planted spin glass ensemble. Indeed, in
this context inferring the ground truth vector in statistical inference is simi-
lar to recovering a crystal con�guration in planted spin glasses. One of the
main advantage of this setting is that the Bayesian approach easily suits this
framework and gives an optimal strategy that can be furthermore analyzed
by statistical physics tools in the high-dimensional regime. Even though the
T-S scenario and the randomly-quenched disorder in rCSP can be analyzed in
a similar Bayesian approach, we shall keep in mind their striking di�erence
that lead to very di�erent phase diagrams typology. In particular, in the
case of randomly-quenched disorder in rCSP, the observations correspond
to independent random constraints, whereas in the case of the T-S scenario,
the observations are not independent as they all depend on the ground truth
hidden representation.

Statistical inference and estimators Let us de�ne general inference
problems we will focus on. One considers a d−dimensional hidden ground
truth variable θθθ

? = {θ ?
i }d

i=1 ∈ χd , drawn from a probability distribution Pθθθ
? .

The goal of SI is to infer it from n observations {X,y} ∈ Xtrain generated
according to a generative process

y = ϕ
?
out (X,θθθ ?) ⇔ y∼ P?

out (.) , (51)

where ϕ?
out represents a deterministic or stochastic function equivalently

associated to a distribution P?
out. Again, we introduce the parameter α as

the ratio of the number of observations over the dimension of the problem,
namely here α = n

d . Inferring the above statistical model from observations
{X,y} can be tackled in several ways and consists in building an estimator
θ̂θθ that approaches the ground truth planted solution θθθ

?. For instance we
often use in this case the MSE `(θθθ ?, θ̂θθ ) = ‖θθθ ?− θ̂θθ‖2

2, to measure the distance
between the estimator θ̂θθ and the hidden parameter θθθ

?. Our Bayesian frame-
work (46) is particularly suited to the analysis of two common estimators
based on the high-dimensional, often intractable, posterior distribution (48).
In one hand, the MMSE estimator for β = 1, consists in computing the mean
of the of the posterior P (θθθ |X,y) according to

θ̂θθ mmse = EP(θθθ |X,y) [θθθ ] ,

which is well-known to minimize the MSE reconstruction error. In the other
hand the MAP estimator consists in computing the maximum of the posterior



3.2 statistical inference and csp as a statistical physics problem 95

distribution, that can be performed in the limit β = ∞. It can be formulated
as a minimization problem according to

θ̂θθ map = argmaxθθθ P (θθθ |X,y) = argminθθθ

[
n

∑
µ=1

` (θθθ ;yµ ,xµ)+ r (θθθ )

]
,

where the loss is simply mapped to ` (θθθ ;y,X) = − logP (y|θθθ ,X) and the
regularizer r (θθθ ) = − logP (θθθ ), so that ERM can be analyzed in this frame-
work. Thus both the study of MAP and MSE estimations can be casted in this
general Bayesian approach and are simply reduced to the analysis of the
posterior. Moreover, while the MMSE estimator is exactly the one performed
by classical AMP algorithms, the MAP estimator can be thought as the ground
state of the physical system and is closely related to ERM estimation per-
formed by practical GD whose asymptotic behavior can be analyzed within
this framework.

Bayes-optimal estimation and theNishimori conditions In the ideal-
istic case where the student knows all the correct prior distributions Pθθθ = Pθθθ

? ,
Pout (y|θθθ ;X) = Pout? (y|θθθ ?;X), this scenario is called the Bayes-optimal set-
ting. In the context of MSE reconstruction loss, performing the MMSE estima-
tion in the Bayes-optimal case, yet unrealistic in practice, will be an important
theoretical optimal baseline all along this manuscript. In this very speci�c
and idealistic Bayes-optimal case, SI turns out to deeply simplify thanks to
the Nishimori conditions (Opper et al., 1991a; Iba, 1999; Nishimori, 2001),
presented in Appendix. A.3, and that will be intensely used in the following.
These Nishimori conditions simply state that in average there is no statistical
di�erence between the ground truth con�guration and a con�guration sam-
pled uniformly at random from the posterior distribution, so that overlaps
between the ground truth and the estimator is essentially the self-overlap of
the estimator. As a consequence, under the Bayes-optimal assumption, the
free entropy turns out to be exactly given by the replica symmetric ansatz.
However, these powerful identities do not hold in the practical mismatched
setting where the correct ground truth prior distributions are hidden during
estimation.

Information theoretical phase transitions For the moment, without
any algorithmic consideration, assuming we have access to exponential time
and resources, we can already depict various phase transitions in the above SI
problem, based on information theoretical predictions. They can be formalized
from a quantitative analysis of the free entropy potential, but for conciseness
we propose to only describe qualitatively the di�erent phase transitions of
the optimal estimator:

• With very few observations α � 1, any algorithm is unlikely to in-
fer correctly the hidden signal θθθ

?. The estimator cannot extract any
information correlated with the ground truth solution and the loss
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reaches its maximal value ρ : `(θ̂θθ ,θθθ ?) = ρ . This region is called the
undetectable phase for α < αweak.

• From a certain number of samples αweak, the estimator can partially
reconstruct the signal such that the loss decreases but does not reach is
minimal value 0 < `(θ̂θθ ,θθθ ?)< ρ , that corresponds to the weak-recovery
phase αweak ≤ α < αIT.

• Above a critical observations density αIT, it becomes theoretically
possible to perfectly reconstruct the signal such that the loss `(θ̂θθ ,θθθ ?) =

0. This regime is called the easy phase for α ≥ αIT.

Algorithmic phase transitions and computational e�ciency With
the recent success of ML applications, while statistics was often not con-
cerned with algorithmic performances, the increasing number of parameters
in the models raises the question of the computational e�ciency. Hence, for
practical purposes, we are interested in knowing if a particular algorithm
can achieve the above information theoretical performances. Optimality of
most algorithms is far to be theoretically guaranteed. Yet, in the case of
MMSE estimation, the AMP algorithms under consideration are proven (or be-
lieved) to achieve information theoretical performances. However, very often,
there exists some regions of parameters in which the optimal algorithmic
reconstruction is not possible, while, theoretically, it is should be the case.
Therefore, the easy phase shall be revised under this algorithmic perspective
with �nite resources. This region is called a hard phase that slots into the
weak recovery phase and the easy phase: αIT < α < αalg. It is related to the
notions of computational complexity and notably to the distinctions between
P, NP, and NP-complete classes. A more accurate discussion may be found
in (Monasson et al., 1999; Percus et al., 2006; Arora et al., 2009; Moore et al.,
2011). As a conclusion, the schematic phase diagram of SI is represented in

Undetectable Weak recovery Hard Easy

ααweak αIT αalg

Figure 23: Illustration of the phase transitions happening in inference problems.

Fig. 23. In the next sections, we will provide more details on these phase
transitions and especially stress they have a clear and deep interpretation in
the physics formalism.

In the next chapter, we �nally introduce the mean-�eld methods to analyze
quantitatively the free entropy potential and depict quantitatively the phase
diagrams of simple CSP and SI models.





4
FROM MEAN-F I ELD
METHODS TO
ALGORI THMS

In this chapter, we propose a short review of the main mean-�eld methods
used to study analytically spin glass models along this manuscript. Namely
we start by presenting the replica method in Sec. 4.1, which is at the heart
of this dissertation since it provides a powerful technique to compute the
averaged quenched free entropy. It naturally gives access to the free entropy
potential from which phase diagrams can be directly described. Next in
Sec. 4.2, we discuss variational principles to derive various general mean-
�eld methods. Finally, we present in Sec. 4.3 the BP equations that are a set
of iterative equations, closely related to the cavity method (Mézard et al.,
1987), and leading to a perfect inference algorithm on tree-like graphs. Under
a Gaussian projection, the set of BP equations can be simpli�ed to the AMP
algorithm, highlighted in Sec. 4.4. The literature is quite extensive on the
subject and the interested reader may �nd more details in (Mézard et al.,
1987; Mézard et al., 2009; Zdeborová et al., 2016a; Advani et al., 2017; Gabrié,
2020).

4.1 THE REPL ICA METHOD : A
POWERF UL HEURI ST IC
MEAN-F I ELD METHOD

This section is devoted to present the powerful replica method introduced
in (Kac, 1968; Edwards et al., 1975) and reviewed in (Mézard et al., 1987;
De Dominicis et al., 2006; Parisi et al., 2020). This method allows to tackle the
logarithmic di�culty in the computation of the average over the quenched
disorder J in the free entropy (42)

Φd (β ,J) ≡ 1
d

EJ logZd (β ,J) . (52)

The method fundamentally relies on the so-called replica trick, which is a
simple mathematical identity, that carries nonetheless profound physical
consequences.

98
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4.1.1 replica trick

The replica trick is a simple identity that allows to exchange the expectation
over the disorder and the logarithm, in exchange of computing the r ∈N

moments of the partition function Z r
d according to

EJ [logZd ] = lim
r→0

∂ logEJ [Z r
d ]

∂ r
. (53)

Proof. Suppose r ∈R close to zero, then

Z r
d = er logZd = 1+ r logZd + o(r) ⇒ logZd = lim

r→0

Z r
d −1
r

.

By exchanging the limit r→ 0 and the expectation, and assuming that r ∈N,
we obtain

EJ [logZd ] = EJ

[
lim
r→0

Z r
d −1
r

]
= lim

r→0
∂r log (EJ [Z

r
d ]) .

As a result, the replica trick reduces the quenched average of the logarithm
to the average of the moments of the partition function Z r

d , that are more
tractable. Moreover, as soon as r ∈N, the moment Z r

d represents in fact the
product of r identical partition functions, namely the partition function of a
system containing r non-interacting copies, called replicas, of the original
system

Z r
d (β ,J) =

r

∏
a=1

Z a
d (β ,J) =

r

∏
a=1

∫

χd

dσσσ
a e−βHd(σσσ

a;J) , (54)

where a ∈ JrK denotes the replica indices. However, under the disorder aver-
age, the initial r non-interacting replicas are transformed in a highly non-
trivial interacting particles problem charaterized by a matrix order parameter
Q ∈Rr×r

EJZ
r

d (β ,J) =
∫

Rr×r
dQ eΦ(r)(Q) , (55)

where Φ(r) denotes the replica potential. This simple mathematical trick has
profound consequences as non-trivial properties can emerge from the inter-
actions between these coupled replicas. Additionally, notice that the average
of the replicated partition function has substituted the initial exponentially
large summation Eσσσ by an analytical formula involving a new order param-
eter. In return, the di�culty is from now on to analyze the complex structure
of the order parameter Q. In particular, the initial invariance of the replicas
can be conserved in certain situations. This solution is called the Replica
Symmetry (RS) Ansatz, in contrast to Replica Symmetry Breaking (RSB) An-
sätze in which the mean-�eld solution breaks the initial invariance of the
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replicas permutation. As soon as the symmetry is broken, choosing the cor-
rect structure for the matrix Q in the replica space is highly non-trivial. As
a conclusion, the replica trick and the average of the replicated partition
function substituted the complex analysis of interacting disordered models
to �nding the values of a matrix order parameter of �nite size. In general,
they can be found as the solution of a closed set of non-linear equations that
require only a polynomial number of operations.

4.1.2 pure states and overlap
distribution

Analyzing the overlap matrix distribution becomes essential to understand
the behavior of this new interacting problem. In this end, we introduce the
probability distribution averaged over the quenched disorder J

P(q) = EJ

∫

χd

dσσσ e−βHd(σσσ ,J)
∫

χd

dσσσ
′ e−βHd(σσσ

′,J) δ
(
q− 1

d σσσ ·σσσ ′
)

Zd(β )2 .

that two con�gurations σσσ ,σσσ ′ have a mutual overlap q at equilibrium. The
overlap distribution P(q) reveals important knowledges about the thermody-
namics of the model and especially the distance between typical equilibrium
con�gurations. In particular, the Gibbs measure at equilibrium is carried by a
few pure states (Mézard et al., 1987) that respectively describe distinct ergodic
connected components of the con�guration space. Indeed, denoting α these
pure states, the Gibbs average can be decomposed as

〈· · · 〉β = ∑
α

Zα(β )

Z (β )︸ ︷︷ ︸
wα (β )

∫
dσσσα · · ·

e¯βHd(σσσ ,J)

Zα(β )︸ ︷︷ ︸
〈··· 〉α

= ∑
α

wα(β )〈· · · 〉α ,

with wα(β ) the thermodynamic weight of the state α that contributes to the
non-trivial structure of overlap distribution P(q). In the presence of di�erent Overlap distribution

for a single
paramagnetic pure
state and two
ferromagnetic states

q0

q−m2 m2

pure states α ,β , we de�ne the overlap between them qαβ = 1
d ∑

d
i=1〈σi〉α〈σi〉β

so that the averaged overlap distribution reads P(q) =∑α ,β wαwβ δ
(
q−qαβ

)

because of the clustering property 〈σiσ j〉α = 〈σi〉α〈σ j〉α . As an illustration, in
the Curie-Weiss model presented in Sec. 2.2.3.b, we observed that below the
critical inverse temperature β ? = 1 there exists a single pure paramagnetic
state q = 0, such that the distribution contains a single ergodic component
P(q) = δ (q). Above the critical temperature, we observed the emergence
of two ferromagnetic states q = −m2 and q = m2 with m > 0, such that
the distribution splits into two connected components P(q) = 1

2 δ (q−m2)+
1
2 δ (q+m2).
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4.1.3 replica ansatz

In general, the full replica computation boils down to a Lagrangian similar to
(55) expressed in terms of a symmetric matrix order parameter Q. The compu-
tation for unconstrained symmetric matrices is unfortunately intractable, and
(Parisi, 1983) proposed an iterative scheme to approximate the corresponding
overlap distribution P(q). We present the RS and RSB simple Ansätze that
turn out to be stable in various models.

4.1.3.a replica symmetric

The simplest RS Ansatz is particular as it assumes that the initial permutation
invariance of the �ctive replicas is conserved so that the overlap between two
arbitrary replicas is identical and �xed to q0 =

1
d σσσ (a) ·σσσ (b), ∀(a,b) ∈ JrK2.

The overlap distribution is therefore given by P(rs)(q) = δ (q−q0) such that
the overlap matrix Q(rs) = (Q− q0)Ir + q0Jr ∈Rr×r, illustrated in Fig. 24,
where Q = 1

d‖σσσ‖2
2 denotes the self-overlap. This Ansatz turned out to be

Q

Q

Q

Q

q0

q0

r
x0 = 1

Figure 24: Illustration of the replica symmetric overlap matrix Q(rs).

stable in many situations such as on the Nishimori line in the context of
the SK model (Nishimori, 1980; Nishimori, 1981; Georges et al., 1985) or in
the Bayes-optimal setting in SI, where the Nishimori conditions detailed in
Appendix. A.3 allow to rigorously prove the validity of the RS Ansatz.

4.1.3.b ansatz stability: de almeida-thouless
transition

Otherwise, the correctness of a given Ansatz can be highlighted by estimating
its stability (Almeida et al., 1978; Thouless et al., 1977). For instance, in the
case of the RS Ansatz, its stability is evaluated by expanding the replica
potential Φ(r)(Q) in eq. (55) around the RS �xed point

Φ(r)(Q) = Φ(r)(Q(rs))− 1
2 ∑

a<b,c<d
δQabM ab,cd

δQcd . (56)

By studying the �uctuations and eigenvalues of the Hessian matrix M ab,cd =

− ∂ 2Φ(r)

∂Qab∂Qcd |Q=Q(rs) , we can detect the so-called de Almeida Thouless (dAT)
transition that occurs when the RS Ansatz becomes unstable, i. e. when the �rst
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negative eigenvalue appears, called in this context the replicon eigenvalue.
Notice that the technique is not limited to this latter Ansatz and can be
applied to more complex ones.

4.1.3.c replica symmetry breaking and ergodicity
breaking

In case the RS Ansatz is unstable and leads sometimes to unphysical results
such as negative entropies (Gardner et al., 1988), more complex Ansätze
should be investigated above the dAT line. Constructing such an Ansatz is
not easy as it should respect physical constraints such as the positivity of
the entropy and the overlap distribution P(Q), and it should be stable with
respect to Gaussian �uctuations. The �rst step forward was introduced in
(Blandin, 1978; Blandin et al., 1980) where the idea of breaking the replicas
symmetry into blocks emerged and it was further developed in (Sommers,
1978; Sommers, 1979; C. et al., 1979; Bray et al., 1980). Yet the permutation
symmetry may be broken in many ways such that �nding the correct Ansatz
was the main focus of most theoretical research works in the spin glass
literature (Sherrington et al., 1975; Derrida, 1981; Gardner et al., 1988; Crisanti
et al., 1992). Finally, the general solution was delivered by Parisi in a series
of works (Parisi, 1979; Parisi, 1980b; Parisi, 1980a; Parisi, 1983), in which
he proposed a general scheme, which respect all the physical constraints,
for progressively breaking the replica symmetry, called RSB, that eventually
leads to the correct solution This scheme predicts that the stable Ansatz
should perform a in�nite and continuous hierarchy of symmetry breaking,
the so-called Full Replica Symmetry Breaking (FRSB) Ansatz. However, very
often the One-step Replica Symmetry Breaking (1RSB),Two-steps Replica
Symmetry Breaking (2RSB) Ansätze give very accurate approximations that
avoid to solve numerically the cumbersome FRSB equations. In the context
of the SK model (Sherrington et al., 1975), this FRSB Ansatz turned out to be
exact and was rigorously proven later on in (Guerra, 2003; Talagrand, 2006b).

RSB Parisi’s scheme For the sake of illustration, let us illustrate the
Parisi’s scheme for breaking the replicas symmetry. The overlap matrices
and distributions in the 1RSB and 2RSB Ansätze can be written as follows

Q(1rsb) = (Q−q1) Ir +(q1−q0) I r
x0
⊗Jx0 + q0Jr

P(1rsb)(q) −→
r→0

(1− x0)δ (q−q1)+ x0δ (q−q0)

and

Q(2rsb) = (Q−q2) Ir +(q2−q1) I r
x1
⊗Jx1

+(q1−q0) I r
x0
⊗Jx0 + q0Jr

P(2rsb)(q) −→
r→0

(1− x1)δ (q−q2)+ (x1− x0)δ (q−q1)+ x0δ (q−q0)
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and the corresponding overlap matrices are depicted in Fig. 25. Therefore,
the RSB leads to consider that replicas play di�erent roles and are clustered
in di�erent states with di�erent inner and outer correlations, respectively
q1 and q0 in the context of the 1RSB Ansatz with q1 > q0. In contrast the
RS Ansatz, in the context of the RSB the ergodicity is broken in a nontrivial
way and the phase space is organized into a hierarchical structure of pure
states. In particular, given the multiplicity of ergodic components in the RSB
Ansatz, that mainly appear at low temperature, the thermodynamic averages
performed with the Gibbs measure are not equivalent to the average inside
one state but it rather takes into account the presence of all the states. The
overlap matrix Q is therefore hierarchically constant by blocks for a �nite
number k of RSB steps. Nonetheless, the Parisi scheme can be repeated for an
in�nite number of steps k = ∞, reaching a continuous limit and the so-called
FRSB solution scheme as illustrated in Fig. 26. As an illustration, by iterating
the Parisi’s scheme, the 2RSB Ansatz can be obtained by simply imposing a
similar fractal structure within the smallest blocks of the 1RSB Ansatz.
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Figure 25: Illustration of the Parisi scheme: the 2-step RSB Ansatz Q(2rsb) is obtained
by repeating the hierarchal structure inside the red block of the 1-step
RSB Ansatz Q(1rsb) (Left).
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Figure 26: Illustration of the Parisi iterative scheme of the overlap distribution
which re�ects the multiplicity of ergodic components in RSB solutions.
(Left) Evolution of the distribution of overlaps from a constant by parts to
a continuous function q(x) for an in�nite number of RSB steps. (Right) Il-
lustration of the hierarchical structure of the overlaps.
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4.1.4 complexity and metastable states

The replica method and the hierarchical of the FRSB scheme naturally reveal
the ergodicity breaking and the existence of metastable states in spin glasses.
A metastable state represents a region of con�guration space separated from
the rest of the space by a free energy barrier that diverge with the size of the
system. Therefore, to escape this locally attracting valley, we shall go across
higher free energy barriers. Equivalently, from the dynamic point of view, a
metastable state is a region where the system will remain con�ned for �nite
times and could escape it only in a time scaling with the size of the system.
The analysis of the p-spin model in particular (Thouless et al., 1977; Rieger,
1992; Crisanti et al., 1992) revealed that this spin glass model had a very
large number of metastable states, i. e. locally stable solution with free energy
higher than the ground state free energy. Moreover, this number of states NΦ

turned out to scale exponentially with the size d of the system. As a result, to
take into account the multiplicity of the metastable states, we de�ne a new
entropy measure, called the complexity or the con�gurational entropy in the
glass community, de�ned as the logarithm of Ω(Φ) the number of states at a
given free entropy, i. e. Σ(Φ) = 1

d logΩ(Φ). The existence of such metastable
states has potentially harmful consequences on dynamic systems such as
structural glasses or optimization algorithms since they could eventually get
stuck in metastable local minimum for an exponential time.

Complexity computation In order to quantify the existence of metastable
states, (Monasson et al., 1995b) proposed a general method, comprehensively
reviewed in (Zamponi, 2010), to compute the complexity Σ(Φ) as a function
of the free entropy of the states. The idea consists in considering m real repli-
cas of the original system that are coupled by a small interacting term that
will push all copies in the same pure state. The total replicated free entropy
of the m replicas can be well approximated by the sum of the contributions
over all the states

Zm ≡ edΦm(m,β ) = ∑
α

exp (dmΦα) =
∫

dΦ ∑
α

δ (Φ−Φα)edmΦ

=
∫

dΦΩ(Φ)edmΦ =
∫

dΦ exp (d (mΦ+Σ (Φ))) .

In the thermodynamic limit d→∞, a Laplace method (Wong, 1989) allows to
write the replicated free entropy as the Legendre transform of the complexity:

Φm(m,β ) = max
Φ
{mΦ+Σ(Φ)}= mΦ?(β )+Σ (Φ?) , (57)

where the equilibrium free entropy Φ? can be computed as

Φ?(β ) =
dΦm(m,β )

dm
and Σ (m,β ) = Φm(m,β )−mΦ?(β ) .
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Varying the Legendre parameter m at �xed temperature β , we can reconstruct
the full complexity function Σ(m,β ) from the knowledge of the replicated
partition function, which turns out to be closely related to the 1RSB free
entropy Φm(m,β ) = mΦ(1rsb)(β ).

4.1.5 application - replica computation of
the glm

In this section, we �nally illustrate how the replica method developed in the
context of the spin glass theory can be readily applied to simple supervised
ML models such as the GLM, de�ned in Sec. 1.2.9.a.

The generalized linear estimation problem consists to �t n observations
Xtrain = {X,y} with a linear parametric model with weights w ∈Rd accord-
ing to

y = ϕout

(
1√
d

Xw
)

.

In other words, we try to �t the observation y ∈ Rn, which can be either
discrete labels or continuous outputs, with a linear transformation of the
input data matrix X ∈Rn×d , up to a component-wise non-linear activation
function ϕout? : R 7→R which can be deterministic or stochastic. Moreover,
we assume that the matrix of data inputs X ∈Rn×d is drawn i.i.d with density
pX. Speci�cally we will consider them to be Gaussian with zero mean and
unit variance, namely ∀µ ∈ JnK, xµ ∼Nx (0,Id).

On the data generative process As stressed in Chap. 3.2, di�erent set-
tings have been considered in the physics literature on how the ground
truth observations y relate to the inputs X. In particular (Gardner et al.,
1989) in their in�uential paper introduced the two main generative processes
constantly studied in the subsequent literature:

• The random labels setting: the labels y are uncorrelated from the input
data X. Namely,

∀µ ∈ JnK, yµ ∼ Py(.) and xµ ∼ Px(.) with yµ ⊥ xµ . (58)

This setting has been studied in particular for perceptrons in (Gardner
et al., 1988; Krauth et al., 1989) in the context of rCSP, see Sec. 3.2.3.
Indeed the randomly quenched disorder over the input X and y are not
correlated such that trying to �t this dataset can be equivalently seen
as trying to satisfy random constraints.

• The teacher-student scenario or equivalently the planted spin glass
model: the labels y are generated from a synthetic model designed by
a teacher, from which, in the context of SI, the student aims to recover
the teacher’s parameters. Here we consider the ground truth as a linear



4.1 the replica method: a powerful heuristic mean-field method 106

model with weights w? according to the channel y = ϕout?
(

1√
d

Xw?
)

or equivalently

y∼ Py(y|X) =
∫

Rn
dz? pout? (y|z?) (59)

×
∫

Rd
dw? pw?(w?)δ

(
z− 1√

d
Xw?

)
,

with generic teacher densities pw? ,pout? . This T-S scenario perfectly �ts
in a supervised learning setting mentioned in Sec. 3.2.4. In this section,
we assume that the student must infer the rule designed by the teacher,
where both teacher and student belong to the same hypothesis class.

The full computation in the case of random labels, used in particular in
Chap. 6-7, detailed in Appendix. B.2 is very similar and even simpler. In the T-S
setting, the replica computation in the GLM for i.i.d data has been performed in
many works such as (Schülke, 2016) and has been generalized to rotationally
invariant matrices in (Kabashima, 2008). For the sake of illustration, in this
section we show only the main steps of the replica computation for the
GLM and we leave the cumbersome details in Appendix. B.1.1, presented
in the context of the more general committee machines hypothesis class.
Committee machines, that we investigate in Chap. 5, use instead K GLM
estimators simultaneously, so that its parameters is a matrix W ∈Rd×K , to
�t the training set according to

y = ϕout

(
1√
d

XW
)
= ϕout

({
1√
d

Xwk

}K

k=1

)
,

where ϕout : RK 7→R. As a consequence, the classical GLM, we present in this
section, is a particular case of committee machines for K = 1. Nonetheless,
GLM are a wide class of linear models with various applications such as

• Compressed sensing: ϕout?(y|z) = z+
√

∆ξ ,

• Phase retrieval: ϕout?(y|z) = |z|+
√

∆ξ ,

• Perceptron: ϕout?(y|z) = sign(z)+
√

∆ξ ,

where ξ ∼N (0,1) represents a potential Gaussian noise scaled by a variance
∆ ≥ 0. Moreover the ground truth vector w? can be drawn according to
common prior distributions such as

• Gaussian weights: Pw?(w?) = Nw? (0,ρw?Id) ,

• Spherical weights: Pw?(w?) = δ
(
‖w?‖2

2−d
)

,

• Binary weights: Pw?(w?) = ∏
d
i=1

1
2 (δ (w

?
i −1)+ (δ (w?

i + 1) .
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On statistical estimation As stressed in Sec. 1.2.8.b, MMSE and MAP esti-
mations boil down to the analysis of the joint distribution Pd (y,X) involved
in the high-dimensional posterior JPD according to the Bayes formula

Pd (w|y,X) =
P (y|w,X)P (w)

Pd (y,X)
=

Pout (y|w,X)Pw (w)

Zd ({y,X}) . (60)

To explicitly connect with the spin glass approach, the distribution Pd (y,X) =

Zd ({y,X}) is also called the partition function and we de�ne the correspond-
ing Hamiltonian, for separable prior distributions Pout,Pw as

Hd (w,{y,X}) = − logPout (y|w,X)− logPw (w) ,

= −
n

∑
µ=1

logPout (yµ |w,xµ)−
d

∑
i=1

Pw (wi) .

The spin variables denote the linear model weights w ∈ Rd that interact
through the quenched dataset {y,X}, which plays the role of the exchange
interaction. However, here the interactions are not pairwise, but instead fully
connected, meaning that each variable wi is connected to {w j} j∈∂ i\i through
the factors Pout (yµ |w,xµ). The corresponding factor graph is represented in

wi

Pout (yµ |w,xµ)

Pw(wi)

Figure 27: Factor graph representing the GLM class. The variables wi are fully con-
nected through the factor Pout (yµ |w,xµ ) that represent the constraint
imposed by the µ-th example in the dataset. Each variable is connected
to a one-body interaction with a separable prior distribution Pw(wi).

Fig. 27 and the partition function at temperature β is de�ned by

Zd ({y,X};β ) ≡ Pd (y,X) =
∫

Rd
dw e−βHd(w,{y,X}) (61)

=
∫

Rd
dw eβ (logpout(y|w,X)+logpw(w)) =

∫

Rd
dw pout (y|w,X)pw (w) ,

and can be mapped to Bayesian estimation for β = 1. In the considered
modern high-dimensional regime with d→∞, n→∞ with α = n/d = Θ(1),
we are interested to compute the free entropy Φ averaged over the input data
X and teacher weights w? or equivalently over the output labels y, de�ned as

Φ(α) ≡ lim
d→∞

1
d

Ey,X [logZd (y,X)] . (62)

The replica method described in Sec. 4.1 allows to compute the above av-
erage over the dataset {X,y}, that plays the role of the planted quenched
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disorder in usual spin glasses. The details of the computation can be found
in Appendix. B.1.1 for committee machines in the case of a synthetic dataset
Py (y|X) in (59), whereas the similar computation for random labels (58) is
derived in Appendix. B.2.

Replica computation We present here the replica computation of the
averaged free entropy Φ(α) in eq. (62) for general student prior and channel
distributions Pw and Pout. The average in eq. (62) is intractable in general,
and the computation relies on the so called replica trick, see Sec. 4.1.1, that
consists in applying the identity

Ey,X

[
lim
d→∞

1
d

logZd (y,X)

]
= lim

r→0

[
lim
d→∞

1
d

∂ logEy,X [Zd (y,X)r]

∂ r

]
.

(63)

This is interesting in the sense that it reduces the intractable average to the
computation of the moments of the averaged partition function, which are eas-
ier quantities to compute. Note that for r ∈N, Zd (y,X)r = ∏

r
a=1 Zd (y,X)

represents the partition function of r ∈Rd identical non-interacting copies
of the initial system, called replicas. Taking the quenched average over the
disorder will correlate the replicas, before taking the number of replicas r→ 0.
Therefore, we assume there exists an analytical continuation so that r ∈R

and the limit is well de�ned. Finally, notice we exchanged the order of the
limits r→ 0 and d→ ∞. These technicalities are crucial points but are not
rigorously justi�ed and we will ignore them in the rest of the computation.
Next, in order to decouple the contributions of the channel Pout and the prior
Pw, we introduce the variable z = 1√

d
Xw with a Dirac-delta integral

Zd ({y,X}) =
∫

Rn
dz pout (y|z)

∫

Rd
dw pw (w)δ

(
z− 1√

d
Xw
)

,

so that the replicated partition function in eq. (63) can be written as

Ey,X [Zd (y,X)r] = EX

∫

Rn
dy

r

∏
a=0

∫

Rn
dza pouta (y|za)

×
∫

Rd
dwa pwa (wa)δ

(
za− 1√

d
Xwa

)
,

(64)

with the decoupled channel pout (y|z) =∏
n
µ=1 pout (yµ |zµ) and prior pw (w) =

∏
d
i=1 pw (wi) densities. Interestingly the average over y is equivalent to the

one over the ground truth vector w? in the T-S scenario. Making use of the
analogous formulation in (59), the average can simply be considered as a
new replica w0 with index a = 0 leading to a total of r+ 1 replicas. In the
case of random labels (58), Py is independent of X and therefore the compu-
tation is similar with only r replicas and an additional average over Py, see
Appendix. B.2.
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Average over the iid input data X We suppose that inputs are drawn
from an i.i.d distribution, for example a Gaussian Px(x) = Nx (0,Id). More
precisely, for (i, j) ∈ JdK2, (µ ,ν) ∈ JnK2, EX [xµixν j] = δµνδi j. Hence za

µ =
1√
d ∑

d
i=1 xµiwa

i is the sum of i.i.d random variables. The CLT insures that in
the thermodynamic limit za

µ ∼ N
(
EX[za

µ ],EX[za
µzb

µ ]
)
, with the two �rst

moments given by:

EX[za
µ ] =

1√
d

d

∑
i=1

EX [xµi]wa
i = 0,

EX[za
µzb

µ ] =
1
d ∑

i j
EX [xµixµ j]wa

i wb
j =

1
d ∑

i j
δi jwa

i wb
j =

1
d

wa ·wb .

Note that averaging over the quenched disorder induces correlations be-
tween replicas, which were initially independent. In the following we in-
troduce the symmetric overlap matrix that measures the correlations be-
tween the replicated vector wa: Q({wa})≡

( 1
d wa ·wb

)
a,b=0..r. Let us de�ne

z̃µ ≡ (za
µ)a=0..r and w̃i ≡ (wa

i )a=0..r the replicated vectors. The vector z̃µ fol-
lows a multivariate Gaussian distribution z̃µ ∼ Pz̃(z̃;Q) = Nz̃(0r+1,Q) and
as the i.i.d prior and channel distributions factorize pw(w) = ∏

d
i=1 pw(wi) and

pout(y|z) = ∏
n
µ=1 pout(y(µ) | z(µ)), it follows

Ey,X [Zd (y,X)r]

= EX

∫

Rn
dy

r

∏
a=0

∫

Rn
dza pouta (y|za)

×
∫

Rd
dwa pwa (wa)δ

(
za− 1√

d
Xwa

)

=

[∫

R
dy
∫

Rr+1
dz̃ pout (y|z̃)pz̃(z̃;Q(w̃))

]n[∫

Rr+1
dw̃ pw̃ (w̃)

]d

,

where we introduced Pw̃ (w̃) = ∏
r
a=0 Pw (wa) the distribution of the repli-

cated vector of weights. To �nish decoupling the channels, we use the Fourier
representation of a Dirac-delta function of a variable x ∈R as a function of a
purely imaginary parameter x̂:

δ (x) =
1

2iπ

∫

iR
dx̂ e−x̂x .

Applying the above identity to the following change of variable

1 =
∫

Rr+1×r+1
dQ ∏

0≤a≤b≤r
δ

(
dQab−

d

∑
i=1

wa
i wb

i

)

∝

∫ ∫

Rr+1×r+1
dQdQ̂ exp

(
−dTr

(
QQ̂
))

e
1
2 ∑

d
i=1 w̃ᵀ

i Q̂w̃i+w̃ᵀ
i diag(Q̂)w̃i ,

that involves a new ad-hoc purely imaginary matrix parameter Q̂. Hence,
multiplying the replicated partition function by 1, it becomes an integral
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over the symmetric matrices Q ∈Rr+1×r+1 and Q̂ ∈Rr+1×r+1, that can be
evaluated using a Laplace method (Wong, 1989) in the d→ ∞ limit,

Ey,X [Zd (y,X)r] =
∫

Rr+1×r+1
dQ

∫

Rr+1×r+1
dQ̂edΦ(r)(Q,Q̂)

'
d→∞

exp
(

d ·extrQ,Q̂

{
Φ(r) (Q,Q̂

)})
,

(65)

where we omitted the sub-leading factors and de�ned the free entropy po-
tential

Φ(r)(Q,Q̂) = −Tr
(
QQ̂
)
+ logΨ(r)

w (Q̂)+α logΨ(r)
out(Q) ,

Ψ(r)
w (Q̂) =

∫

Rr+1
dw̃ pw̃(w̃)e

1
2 w̃ᵀQ̂w̃+ 1

2 w̃ᵀdiag(Q̂)w̃

Ψ(r)
out(Q) =

∫
dRy

∫

Rr+1
dz̃ pz̃(z̃;Q)pout(y|z̃) ,

(66)

and Pz̃(z̃;Q) = e−
1
2 z̃ᵀQ−1z̃/det (2πQ)1/2. Recall that the average over the

teacher vector has been merged as a new replica so that pout0 = pout? , pw0 =

pw? . Finally switching the two limits r→ 0 and d→ ∞, the quenched free
entropy Φ simpli�es to a saddle point equation

Φ(α) = extrQ,Q̂

{
lim
r→0

∂ Φ(r)(Q,Q̂)

∂ r

}
, (67)

over symmetric matrices Q ∈Rr+1×r+1 and Q̂ ∈Rr+1×r+1. In the following
we will assume a simple Ansatz for these matrices in order to �rst obtain an
analytic expression in r before taking the derivative with respect to r. Note
that the partition function of this fully connected model can be expressed as
a saddle point only because distributions Pout and Pw factorize so that a pre-
factor scaling with the system size dominates the exponential distribution.

Replica Symmetric free entropy Let’s compute the functional Φ(r)(Q,Q̂)

in eq. (67) in the simplest Ansatz: the RS Ansatz. This latter assumes that
all the replicas remain equivalent with a common overlap q = 1

d wa ·wb

for a 6= b, a norm Q = 1
d‖wa‖2

2, and an overlap with the ground truth
m = 1

d wa ·w?, leading to the following expressions of the replica symmetric
matrices Q(rs) ∈Rr+1×r+1 and Q̂(rs) ∈Rr+1×r+1:

Q(rs) =




Q? m · · · m

m Q q q
... q

. . . q

m q q Q




and Q̂(rs) =




−1
2 Q̂? m̂ · · · m̂

m̂ −1
2 Q̂ q̂ q̂

... q̂
. . . q̂

m̂ q̂ q̂ −1
2 Q̂




(68)

with Q? = 1
d‖w?‖2

2. The factor −1
2 is not necessary but useful to recover

commonly used formulations. The functional Φ(r)(Q,Q̂)can be computed
with this Ansatz: the �rst is a trace term, the second term Ψ(r)

w depends on
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the prior distributions Pw, Pw? and �nally the third term Ψ(r)
out depends on the

channel distributions Pout? , Pout.

Replica trick r→ 0 limit The last step of the computation is to take
properly the limit r→ 0. We obtain that

− lim
r→0

∂r Tr
(
QQ̂
)∣∣

rs = −mm̂+
1
2

QQ̂+
1
2

qq̂ . (69)

and

lim
r→0

∂r logΨ(r)
w (Q̂)

∣∣∣
rs
=

Eξ ,w?Zw?

(
m̂q̂−1/2

ξ , m̂2q̂−1
)

logZw

(
q̂1/2

ξ , Q̂+ q̂
)

,

lim
r→0

∂r logΨ(r)
out(Q)

∣∣∣
rs
= (70)

∫
dyEξ Zout?

(
mq−1/2

ξ ,Q?−m2q−1
)

logZout
(

q1/2
ξ ,Q−q

)
,

with denoising functions Zout? ,Zout,Zw? ,Zw de�ned in Appendix. A.4.

4.1.5.a summary

Gathering eq. (69, 70), we �nally obtain the RS free entropy Φrs.

Φrs(α) ≡ extrQ,Q̂,q,q̂,m,m̂

{
lim
r→0

∂rΦ(r)(Q(rs),Q̂(rs))

}

= extrQ,Q̂,q,q̂,m,m̂

{
−mm̂+

1
2

QQ̂+
1
2

qq̂ (71)

+Ψw
(
Q̂, m̂, q̂

)
+αΨout (Q,m,q;ρw?)

}
,

where ρw? = limd→∞ Ew?
1
d‖w?‖2

2 and the channel and prior integrals are
de�ned by

Ψw
(
Q̂, m̂, q̂

)
≡Eξ

[
Zw?

(
m̂q̂−1/2

ξ , m̂2q̂−1
)

logZw

(
q̂1/2

ξ , Q̂+ q̂
)]

,

Ψout (Q,m,q;ρw?) ≡Ey,ξ

[
Zout?

(
y,mq−1/2

ξ ,ρw?−mq−1m
)

(72)

× logZout
(

y,q1/2
ξ ,Q−q

)]
,

for generic Pout? ,Pout and Pw? ,Pw distributions and corresponding update
functions Zout? ,Zout,Zw? ,Zw are de�ned in Appendix. A.4. As a conclu-
sion, we notice remarkably that the behavior of the initial complex high-
dimensional inference problem is charaterized by an optimization problem
over only six scalar order parameters, and is therefore controlled by a set of
six �xed point equations. Finally, let us mention that MMSE estimation can
be performed in the Bayes-optimal setting for β = 1, while MAP estimation
requires to take properly β = ∞ as detailed later on in Chap. 8.
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Bayes-optimal free entropy In the Bayes-optimal setting, we perform
inference using the knowledge of the ground truth distributions so that the
student denoising functions are exactly the ones used to generate the dataset,
namely Pout = Pout? and Pw = Pw? so that Zout = Zout? , Zw = Zw? . The
Nishimori’s conditions in the Bayes-optimal case, derived in Appendix. A.3,
imply that Q = Q? ≡ ρw? , m = q≡ qb, Q̂ = Q̂? = 0, m̂ = q̂≡ q̂b. Therefore, in
the Bayes-optimal setting, the free entropy of the high-dimensional inference
problem eq. (71) simpli�es as an optimization problem over scalar overlaps
parameters qb, q̂b:

Φb
rs(α) = extrqb,q̂b

{
−1

2
qbq̂b +Ψb

w (q̂b)+αΨb
out (qb;ρw?)

}
, (73)

with free entropy terms Ψb
w and Ψb

out given by

Ψb
w (q̂b) = Eξ

[
Zw?

(
q̂1/2

b ξ , q̂b

)
logZw?

(
q̂1/2

b ξ , q̂b

)]
,

Ψb
out (qb;ρw?) = Ey,ξ

[
Zout?

(
y,q1/2

b ξ ,ρw?−qb

)

logZout?
(

y,q1/2
b ξ ,ρw?−qb

)]
.

Notice that the above Bayes-optimal replica symmetric free entropy for the
GLM class has been rigorously proven in (Barbier et al., 2019b). Taking the
derivatives with respect to qb, q̂b, we obtain the stationary conditions veri�ed
by the overlap parameters

qb = αEy,ξ Zout?
(

y,q1/2
b ξ ,ρw?−qb

)
fout?

(
y,q1/2

b ξ ,ρw?−qb

)2

q̂b = Eξ Zw?

(
q̂1/2

b ξ , q̂b

)
fw?

(
q̂1/2

b ξ , q̂b

)2
,

(74)

that will turn out to be strongly connected to the in�nite-size behavior of
the AMP algorithm, the so-called state evolution equations.

In this section, we have presented the heuristic replica method which pro-
vides a powerful technique to directly compute the free entropy, associated to
a complex JPD, and to describe the statistical thresholds of the corresponding
phase diagram. Next, we present other mean-�eld methods to perform approx-
imate inference of this same JPD. Interestingly, even though these techniques
do not directly yield the result like the replica method, however, they have
the profound advantage of leading to interesting algorithmic perspectives
and insights to complete the phase diagram.
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4.2 ON VARIAT IONAL MEAN-F I ELD
METHODS

Assume we consider a statistical model associated to a JPD Pd(σσσ ;β ) and an
Hamiltonian energy function Hd(σσσ). The main challenge is to compute its
marginal probabilities, moments or even more complex observable of the JPD.

Intractability of exact inference However, computing analytically the
posterior, with or without the replica method, is very rarely possible. In
general, even though the replica method provides a quick and strong tool to
calculate it in some particular cases, computing the marginal probabilities of
a high-dimensional JPD Pd(σσσ ;β ) according to P(σi) =

∫
χd−1

dσσσ\iPd(σσσ ;β ),
for some i ∈ JdK, remains a hard task. Indeed computing the corresponding
continuous or discrete sum requires very often a number of operations that
scales exponentially with the size of the system and becomes critical in the
high-dimensional regime that we consider d → ∞. Of course in the case
where the spins are restricted to one-body interactions and do not interact,
the JPD distribution factorizes and the sum over Rd reduces to a sum over R

and deeply simplify the computation. Yet, this kind of simpli�cation remains
very limited and, moreover,complex and interesting behaviors arise very
often only when interactions come on stage.

On Tree factor graphs Let us �rst draw attention on very simple factor
graphs and corresponding JPD. In the case where the factor graph under
consideration is a tree, as an illustration see for instance Fig. 15 (Right) ,
the computation of the JPD can be performed in linear time complexity, in
contrast with the exponential complexity mentioned above. Indeed using the
Markov property and conditional expectation (Pearl, 1982; Pearl, 1986), it is
possible to compute the whole JPD as a product of Θ(d) terms. Moreover,
this procedure may be turned into a dynamical algorithm called the sum-
product algorithm or BP equations that, as we just stressed, is exact on tree
factor graphs. The corresponding algorithm reaches the �xed point of a well
designed free energy approximation, the Bethe free energy, detailed in Sec. 4.3.
More interestingly, it can approximate correctly the target JPD on loopy factor
graphs as well, even though it is not guaranteed to converge.

Approximate variational methods On general factor graphs, we there-
fore have to resort to approximate inference, to circumvent this di�culty
and compute approximately and e�ciently the marginal probabilities P(σi).
Sampling methods relying on MCMC algorithms, see Sec. 1.2.10.b, are widely
used in practice. Yet, they are not very performant especially in the high-
dimensional inference regime of interest. To address this issue, instead trying
to sample a huge number of examples, other variational mean-�eld method
have been designed, in particular in physics, to compute a good approxima-
tion of the posterior distribution (Opper et al., 2001b).
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The design of such mean-�eld approximations requires, �rst, to recall
and introduce some useful IT quantities in Sec. 4.2.1, that naturally lead to
the Gibbs free energy and its variational formulation presented in Sec. 4.2.2.
Finally, in Sec. 4.2.3, we recall the naive mean-�eld approach and its exten-
sion to more complex approximations, such as the TAP approach. For an
extended introduction on variational mean-�eld methods, let us mention the
comprehensive review (Blei et al., 2017).

4.2.1 information theory qantities

In the perspective of comparing and constructing approximations of the
complex JPD associated to interacting systems, we introduce the classical
tools from IT to compare distribution families such as the Shanon entropy,
the KL divergence and the mutual information. More details can be found in
(MacKay et al., 2003; Koller et al., 2009).

4.2.1.a shanon entropy

Let X be a RV with probability distribution P and density p(s) ≡ dP/dx on
a set X, the Shannon entropy H(X) measures the quantity of information
carried by the RV X and is de�ned by

H(X) = −EX∼P [logP(x)] = −
∫

X
dx p(x) logp(x) . (75)

4.2.1.b the kullback-leibler divergence

Consider two probability distributions Q and P, with densities q, p on a set
X. The KL divergence is used to compare two arbitrary distributions P and
Q, de�ned as

DKL (Q ‖ P) = EX∼Q [logQ(x)− logP(x)]

=
∫

X
dx q(x) log

(
q(x)
p(x)

)
,

(76)

with densities p,q de�ned by dP ≡ p(x)dx, dQ ≡ q(x)dx. Because it is not
symmetric under the exchange of Q and P, DKL (Q ‖ P) 6= DKL (P ‖ Q) and
does not verify the triangle inequality, the KL divergence is not formally a
distance in the rigorous mathematical sense. However, it plays exactly the
role of a distance in the space of probability densities as it is always positive
as stated by the Gibb’s inequality:

Proposition 4.2.1 (From (Cover et al., 2012)). Consider two distributions P,Q
with densities p,q, then DKL (Q ‖ P) ≥ 0 and DKL (Q ‖ P) = 0⇔ Q = P.
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Recall that a function
f is concave if for
x1 ≤ x≤ x2 the point
(x, f (x)) is above the
line joining the points
(x1, f (x1)),
(x2, f (x2)).

x

f (x)

Proof. As the logarithm is concave, from the Jensen inequality we obtain

−DKL (Q ‖ P) =
∫

X
dx q(x) log

(
p(x)
q(x)

)
≤
∫

X
dx q(x)−p(x) = 0.

4.2.1.c the mutual information

Consider two random variables X and Y jointly distributed according to PX,Y,
the mutual information speci�cally measures the KL divergence from the
product PXPY to the joint distribution PX,Y:

I (X;Y) = DKL (PX,Y ‖ PXPY) =
∫

X2
dxdy p(x,y) log

(
p(x,y)

p(x)p(y))

)

= H (X)−H (X|Y) = H (Y)−H (Y|X) (77)
= H (X)+H (Y)−H (X,Y) ,

where the marginal densities write p(x) =
∫

X dy p(x,y) and p(y) =
∫

X dx p(x,y).

4.2.2 gibbs free energy and variational
principle

Let us consider a JPD that we aim to approximate, for instance Pd(σσσ ;β ) ≡
e−βHd(σσσ)/Zd(β ), associated to the Hamiltonian Hd(σσσ) for some spins σσσ ∈
χd . For any arbitrary probability distribution Q, we de�ne the Gibbs free en-
ergy as the trade-o� between the variational energy U[Q] ≡Eσσσ∼Q [Hd(σσσ)]
and the entropy of the distribution H[Q] according to

ϕ
gibbs
d [Q] ≡ U[Q]− 1

β
H[Q] , (78)

where β is a free inverse temperature parameter. In order to �nd a good mean-
�eld approximation, we introduce the Gibbs variational principle that states
that the Gibbs free energy is minimal when the mean-�eld approximation
equals the target JPD distribution Pd .

4.2.2.a gibbs variational principle

The Gibbs variational principle follows from the fact that for any arbitrary
distribution Q, the Gibbs free energy may be rewritten as

ϕ
gibbs
d [Q] = Eσσσ∼Q [Hd(σσσ)]

+
1
β

∫

χd

dσσσ q(σσσ)

(
log

q(σσσ)

p(σσσ)
+ q(σσσ) logp(σσσ)

)

=
1
β

DKL (Q||Pd)+ϕd(β ) ≥ ϕd(β ) , (79)
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where we �rst used the de�nition of the target free energy ϕd(β ) = − 1
β

log
Zd(β ) and the positivity of the KL divergence. The last inequality is known
as the Gibbs variational principle also called the Gibbs-Bogoliubov-Feynman
inequality. As a consequence the Gibbs free energy of any approximate dis-
tribution Q is larger than the true free energy ϕd(β ) associated to the Pd ,
namely ϕ

gibbs
d [Q] ≥ ϕd(β ). Moreover, the inequality is saturated if the ap-

proximation exactly equals the Gibbs distribution Q = Pd . This variational
principle allows to measure the correctness of a given approximation. How-
ever, this variational principle cannot be solved in full generality, and we
therefore need to restrict the set of possible probability distributions to a
practical set. Instead of choosing arbitrarily a potential set, we present in
the next section the maximum entropy principle which allows to restrict
approximations to simple distributions families.

4.2.2.b maximum entropy principle

To restrict the space of probability densities, �rst we consider only the ones
that verify the moments matching conditions of a set of moments {φk}k∈K,
such that Eσσσ∼Q[φk(σσσ)] = µk. In other words, in expectation the k-th mo- The maximum

entropy principle is
similar to the middle
age philosophical
principle known as
the Ockham Razor. It
has been slightly
modi�ed and
popularized by the
Shadoks from
Jacques Rouvel.

ments in the index set K of the approximated distribution Q should match
the true moments {µk}k∈K of the target distribution Pd . Yet, imposing the
moments matching constraints does not determine uniquely the distribution,
since in general it exists an in�nite number of solutions verifying them. The
maximum entropy principle, introduced by (Jaynes, 1957; Jaynes, 2003; Wain-
wright et al., 2008) and very close to the least action principle in analytical
mechanics, allows to prescribe good choices for the approximation Q of the JPD
Pd . Assume we have access to n observations {σσσ (1), · · · ,σσσ (n)} drawn from
the target Gibbs distribution, or any other distribution we try to approximate,
the maximum entropy principle simply states that the probability distribu-
tion which best represents the current state of knowledge is the one with the
largest entropy. In more details, imposing the normalization and the moments
matching, the least action principle can be formulated mathematically as a
Lagrangian problem over the distribution Q:

L [Q] = H[Q]− ∑
k∈K

λk

(∫

χd

dσσσ q(σσσ)φk(σσσ)−µk

)

−λ0

(∫

χd

dσσσ q(σσσ)−1
)

Minimizing the action, i. e. the Lagrangian L [Q], yields

0 =
∂L

∂Q
= logQ(σσσ)+ 1− ∑

k∈K

λkφk(σσσ)−λ0 .
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Imposing the normalization
∫

χd
dσσσ q(σσσ) = 1 we �nally recover the so-called

exponential family (Jordan et al., 1999)

Q(σσσ) =
1
Z

exp

(
− ∑

k∈K

λkφk(σσσ)

)
, (80)

where Z = e1−λ0 =
∫

χd
dσσσ e−∑k∈K λkφk(σσσ) with potential additional cut-o�s to

avoid the normalizing constant to diverge, especially for k = 1. To summarize,
the least biased distribution to consider to approximate the Gibbs distribution
are the ones belonging to the exponential family.

4.2.3 naive and tap mean-field
approximation

We present two simple approximations considered in the physics literature
(Opper et al., 2001b), starting with the naive mean-�eld approximation and
the TAP approach, which can be derived from the Gibbs variational principle.

4.2.3.a naive mean-field approximation

The naive mean-�eld approximation consists in a simple factorized density
approximation Qnaive(σσσ) = ∏

d
i=1 Qi(σi) of d independent spins. It has been

introduced in classical physics long time ago in the celebrated Curie-Weiss
model (Curie, 1895; Weiss, 1907) to study magnetic properties of materials.
Hundreds years later, the naive mean-�eld has been largely democratized
and used in various communities (Jordan et al., 1999; Jaakkola et al., 2000;
Wainwright et al., 2008). Computing its Gibbs free energy by injecting the
naive mean-�eld approximation in (78) yields

ϕ
gibbs
d [Qnaive] = Eσσσ∼Qnaive [Hd(σσσ)]+

1
β

d

∑
j=1

∫

χ

dσ j q j(σ j) log (q j(σ j))

=
1
β

∫

χ

dσi qi(σi) log (qi(σi))+
1
β

∑
j 6=i

∫

χ

dσ j q j(σ j) log (q j(σ j))

+
∫

χ

dσi qi(σi)

[∫

χ
∏
j 6=i

dσ j q j(σ j)Hd(σσσ)

]

︸ ︷︷ ︸
≡Eσσσ\i [Hd(σσσ)]

where we denote σσσ\i the vector formed by deleting the i-th component
of the spin con�guration σσσ and Eσσσ\i [Hd(σσσ)] the conditional expectation

of Hd(σσσ) when we �x σi. De�ning Q\i(σi) ≡ e
−βEσσσ\i [Hd (σσσ)]

Z\i(β )
with Z\i(β ) ≡
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∫
χ

dσi e−βEσσσ\i [Hd(σσσ)], the Gibbs free energy ϕ
gibbs
d [Qnaive] can be ingeniously

decomposed as

ϕ
gibbs
d [Qnaive] =

1
β

∑
j 6=i

∫
dσ j q j(σ j) log (q j(σ j))

+
1
β

∫
dσi qi(σi)

[
log (qi(σi))− log

(
e−β Eσσσ\i [Hd(σσσ)]

)]

=
1
β

∑
j 6=i

∫
dσ j q j(σ j) log (q j(σ j))

+
1
β

∫
dσi qi(σi)

[
log
(

qi(σi)

q\i(σi)

)
− log

(
Z\i(β )

)]

=
1
β

∑
j 6=i

∫
dσ j q j(σ j) log (q j(σ j))−

1
β

log
(
Z\i(β )

)

︸ ︷︷ ︸
ϕ\i

+
1
β

DKL
(
Qi||Q\i

)
,

where the �rst term ϕ\i is independent of the marginal density qi. There-
fore, minimizing the Gibbs free energy ϕ

gibbs
d [Qnaive], the Gibbs variational

principle (79) prescribes the marginal densities to

Qi(σi) ≡
1

Z\i(β )
e−βEσσσ\i [Hd(σσσ)] . (81)

Applied to the Curie-Weiss model, which is only the mean-�eld Ising model,
see Sec. 2.2.3.b, the naive mean-�eld approximation (81) allows in particular
to recover the well-known set of implicit equations veri�ed by the magneti-
zations

mi ≡EQi [σi] = tanh

(
β

(
hi +

d

∑
j=1

Ji jm j

))
. (82)

As a conclusion, the naive mean-�eld approximation has the advantage to
treat the surrounding interactions of each spin σi as an average interaction
of all the other spins, but at the cost of discarding, eventually, important
statistical correlations. In the case where interactions between spins are weak
enough, this naive mean-�eld approach might be exact, as for instance in
the case of the Curie-Weiss model they vanish in the thermodynamic limit
d→ ∞. Consequently, the naive mean-�eld approximation can only poorly
describe the behavior of �nite-size systems or strongly interacting systems
and it is more of pedagogical interest than of real practical utility.

4.2.3.b tap, plefka, georges-yedidia
high-temperature expansion

In fact, it turns out that the naive mean-�eld approximation can be recovered
from the truncation of more complex approximations (Opper et al., 2001b).
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Especially in the context of disordered systems with densely connected spin
glass, namely the SK model (Sherrington et al., 1975) with Gaussian random
Ji j ∼N (0,J0/d) couplings, the TAP equations (Thouless et al., 1977) provide
a more accurate approximation than the naive mean-�eld equations. Their
derivation is closely related to the cavity method (Mézard et al., 1987) or
equivalently the Bethe approximation presented in Sec. 4.3.1. Similarly to
the cavity method, the idea is to approximate the marginal probability Qi

by considering a reduced set of d−1 spins σσσ\i where the spin σi has been
removed. It is �nally possible to write a consistent set of non-linear equations
of the form

mt+1
i = tanh

(
β

(
h+

d

∑
j=1

Ji jmt
j

)
−β

2mt−1
i

d

∑
j=1

J2
i j(1− (mt

j)
2)

)
, (83)

called, without the time indices, the TAP equations. We immediately observe
that these equations are very similar, yet, more complex than the naive ones
in (82). They simply include a correction term to the e�ective local �eld,
known as the Onsager reaction term, to take into account the absence of the
spin variable σi, which was not present in the oversimpli�ed naive approxi-
mation. Indeed, later on, the corresponding TAP free energy has been derived
with the so-called Plefka expansion (Plefka, 1982). It turned out that it was
simply the second term of a high-temperature expansion proposed in a more
general setting (Georges et al., 1991). In the context of the SK model, keeping
only the �rst term leads therefore to the naive mean-�eld approximation,
whereas truncating at the second order, by incorporating the Onsager term,
turned out to be exact since other contributions are sub-leading and van-
ish in the thermodynamic limit. Moreover, the latter derivations insured
that the �xed points of the TAP equations are the stationary points of the
TAP free energy. However, �nding a stationary solution is often achieved by
turning them into an iterative procedure until convergence towards �xed
points. Unfortunately neither the TAP equations, the Plefka expansion nor
the Georges-Yedidia high-temperature expansion include the time indices
to iteratively solve them correctly and gives free rein to interpretation. By
simply and naturally assuming times t + 1 on the left hand side of (83) and t
on the other magnetizations on the right hand side led to convergence issues
of the TAP equations �rst observed in (Kabashima, 2003). It turns out that this
simple arbitrary prescription of the time indices was wrong and responsible
for the convergence issues. The time indices were corrected in (Bolthausen,
2014) that �nally leads to (83).

In the following, we present an alternative mean-�eld method based on
the BP equations, that provides by construction the correct time indices of
the iterative procedure and leads especially to performant algorithms.
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4.3 BEL IEF PROPAGAT ION AND THE
BETHE FREE ENERGY

In this dissertation, we make deeply use of message passing algorithms such
as AMP that can be simply derived from the more general set of BP iterative
equations. The BP equations have a long history and have started in physics
with the Bethe-Peierls approximation (Bethe, 1935; Peierls, 1936). Very in-
terestingly it can be seen as an extended version of the the TAP (Thouless
et al., 1977) and Plefka approach (Plefka, 1982), Georges-Yedidia expansions
(Georges et al., 1991) presented in the previous section. Moreover as inference
problems arose in many various �elds, local message passing algorithms have
been discovered simultaneously under di�erent names. The BP approach was
�rst introduced in information theory (Gallager, 1962) and in Bayesian infer-
ence (Pearl, 1982), whereas it was known under the name of cavity method
in statistical physics of disordered systems (Mézard et al., 1987; Mézard et al.,
2009). The di�erent approaches are reviewed in (Aji et al., 2000; Yedidia et al.,
2001a) that connects especially the BP to variational mean-�eld approach.

In this section, we review the main results of (Yedidia et al., 2001a; Yedidia
et al., 2002; Yedidia et al., 2005; Wainwright et al., 2008; Mézard et al., 2009)
starting by presenting in Sec. 4.3.1 the Bethe approximation and the Bethe
free energy. Theses latter naturally give rise to the set of BP iterative equations
presented in Sec. 4.3.3. Finally, in the perspective to derive the AMP algorithm
for the GLM class, we present the BP equations for this model class in Sec. 4.3.4.

4.3.1 the bethe approximation

The Bethe approximation plays a central role among approximations that take
into account interactions between spins. In particular, it allows to incorporate
correlations between the variables to describe more complex models. Consider
the JPD described by a factor graph G (V,F,E) represented in Fig. 28, the Bethe
approximation assumes that the JPD can be written as

Qbethe(σσσ) =
∏

n
µ=1 m̃µ(σσσ∂ µ

)

∏
d
i=1 mi(σi)|∂i|−1

, (84)

where mi(σi) denotes the marginals of the variable σi, and m̃µ the marginals
of the cliques σσσ∂ µ

around the factors µ . The Bethe approximation can be
easily derived on tree-like factor graphs, such as the one in Fig. 28, by simply
taking the product of the marginals of all the cliques m̃µ(σσσ∂ µ

) and dividing
by the variables marginals mi(σi) to remove the marginals already taken
into account. Therefore, the number of neighbouring factors of the variable
σi, |∂i|, is present in the denominator to avoid counting repetitions. Con-
sequently, the formulation (84) has the main advantage to be rigorously
exact on tree-like connected factor graphs with no loops, and to be strongly
connected to the BP algorithmic procedure (Kabashima et al., 1998) and the
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TAP equations. Moreover, this latter formulation can also be applied to more
general factor graphs, providing a powerful approximation but loosing in
return its exactness.

σi

Ψµ

φi

mi→µ(σi) m̃µ→i(σi)

Figure 28: Tree-like factor graph on which the Belief Propagation iterative equations
can be decomposed.

4.3.2 the bethe free energy

Plugging the Bethe approximation (84) in the Gibbs free energy at β =

1 (78) leads to the corresponding Bethe free energy (Yedidia et al., 2001a;
Mézard et al., 2009) which can be written as a functional over the marginals
{m̃µ}n

µ=1∪{mi}d
i=1

ϕ
bethe
d [{m̃µ}µ ,{mi}i] = Ubethe [{m̃µ}µ ,{mi}i] (85)

−Hbethe [{m̃µ}µ ,{mi}i] ,

where Ubethe, Hbethe denote the variational energy and entropy

Ubethe [{m̃µ}µ ,{mi}i] ≡∑
µ

∫
dσσσ∂µ

m̃µ(σσσ∂ µ
) logΨµ(σσσ∂µ

)

+∑
i

∫
dσimi(σσσ i) logφi(σi) ,

Hbethe [{m̃µ}µ ,{mi}i] ≡∑
µ

H [m̃µ ]+∑
i
(|∂i|−1)H [mi] ,

and H[p] the entropy of the probability density p de�ned in (75). Enforcing
the self-consistency marginalization and normalization constraints mi(σi) =∫

dσσσ∂µ\im̃µ(σσσ∂µ
),
∫

dσimi(σi) = 1 =
∫

dσσσ∂µ
m̃µ(σσσ∂µ

), with some Lagrange
multipliers (Yedidia et al., 2001a; Yedidia et al., 2005; Wainwright et al., 2008),
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the extremization of the Lagrangian leads to the following expressions of the
marginals estimate

m̃µ(σσσ∂µ
) ∝ Ψµ(σσσ∂µ

) ∏
i∈∂ µ

mi→µ(σi) , mi(σi) ∝ ∏
µ∈∂i

m̃µ→i(σi) ,

that involve approximate beliefs {mi→µ , m̃µ→i} over the variable σi if we
respectively cut the edge (iµ) ∈ E of the factor graph between the variable σi

and the factor Ψµ , as illustrated in Fig. 28. In the context of pairwise MRF, the
above conditions are crucial to understand the link between BP, introduced in
Sec. 4.3, and the Bethe approximation as stressed in (Kabashima et al., 1998;
Yedidia et al., 2001a). Indeed, since the BP marginal densities are obtained by
extremizing the Bethe free energy, the �xed point of the BP algorithm are by
construction the stationary points of the Bethe free energy. Finally, under the
Bethe approximation (84), the Bethe free energy can be written as a function
of the one and two-body interactions {φi,Ψµ} and the beliefs {mi→µ , m̃µ→i}:

ϕ
bethe
d = −∑

i∈V
logZi− ∑

µ∈F
logZµ + ∑

(iµ)∈E

logZiµ , (86)

with

Zi =
∫

dσiφi(σi) ∏
i∈∂µ

m̃µ→i(σi) , Ziµ =
∫

dσim̃µ→i(σi)mi→µ(σi) ,

Zµ = Ψµ(σσσ∂µ
)
∫

∏
i∈∂µ

dσi ∏
i∈∂µ

mi→µ(σi) .

4.3.3 belief propagation eqations

The BP algorithm is an inference algorithm that computes an approximation
of the marginal densities of a complex JPD. In particular, it makes use of the
fact that many JPD are locally factorizable to reduce the estimation of the full
complex problem into tractable sub-problems on each factor of the factor
graph. The set of BP iterative equations can be obtained directly from the
variational principle and the Bethe free energy as presented in the previous
section. Yet, for a more intuitive and practical perspective they can be directly
obtained from the factor graph as we detail in the following. Depending on
the problem under consideration, the BP approach can be expressed in two
variants: the sum-product or the max-sum equations. The sum-product ap-
proach estimates the marginal densities and directly leads to MMSE estimation.
In contrast, the max-sum approach is more suitable to MAP estimation and
the corresponding equations can be found in (Mézard et al., 2009; Advani
et al., 2016b).

4.3.3.a sum-product eqations

Let us present the sum-product version of the BP procedure for a general
MRF illustrated in Fig. 28. Importantly, we �rst attach two kinds of auxiliary
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functions {mi→µ , m̃µ→i} to the edges of the factor graph, called messages.
These messages are interpreted (Mézard et al., 2009; Yedidia et al., 2005) as
the estimates of the marginal Q(σi) if we remove the edges (iµ) = {i→
µ , µ → i}. In other words, mi→µ(σi) denotes the message from the variable
σi to the factor node Ψµ delivering the estimation of the marginal density
Q(σi) in the partial visited graph represented by the top part of the graph in
Fig. 28 and delimited by the dotted line. Similarly, m̃µ→i(σi) is the message
from the factor node Ψµ to the variable σi that transmits an estimation of
the marginal density Q(σi) in the bottom part of the graph, called the cavity
graph. Essentially, the BP algorithm consists in letting the variables and factors
communicate their beliefs to their neighbours based on the informations
captured from the nodes and factors already visited along the tree. Iterating
the procedure, we expect qualitatively that the beliefs converge to an average
value of their neighbouring beliefs. To formalize this procedure, the sum-

σi

Ψν1Ψν2

Ψµ

φi

mi→µ(σi)

m̃ν1→i(σi)m̃ν2→i(σi)

Ψµ

σk1

σk2 σk3

σi

m̃µ→i(σi)

mk1→µ (σk1 )

mk2→µ (σk2 ) mk3→µ (σk3 )

Figure 29: Local representation of the factor graph around the variable σi and the
factor Ψµ .

product equations (Gallager, 1962; Pearl, 1982; Wainwright et al., 2008; Mézard
et al., 2009) make use of the crucial tree-like assumption, originating from
the Bethe approximation, that guarantees that the incoming messages to
the variable σi are independent. Thereby, the messages are given by the
self-consistency rule for the messages mt+1

i→µ
and m̃t

µ→i, ∀i ∈ JdK, µ ∈ JnK
according to

mt+1
i→µ

(σi) =
1

Zi→µ

φi(σi) ∏
ν∈∂i\µ

m̃t
ν→i(σi)

m̃t
µ→i(σi) =

1
Zµ→i

∑
σσσ∂µ \i

Ψµ

(
σσσ∂µ\i

)
∏

k∈∂µ\i
mt

k→µ(σk) .
(87)

These update rules can be easily understood by looking at the local decom-
position of the factor graph Fig. 29. The message mi→µ in dashed orange is
built from the incoming messages of the neighbouring factors of the spin
σi if we remove the edge i→ µ ∈ E. Similarly the message m̃µ→ j in dashed
green is obtained by summing over all the possible values of the messages
coming from the neighbouring variables if we remove the edge µ → i ∈ E.
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4.3.3.b bp algorithm and properties

The BP algorithm is the procedure that consists in iterating the set of dy-
namical equations (87) over time. Eventually if it converges, it provides at
convergence an estimation of the Bethe free energy (86) and especially of
the marginal probabilities given by ∀i, Q(σi) ∝ φi(σi)∏µ∈∂i m̃µ→i(σi) where
∂i = {µ : (µi) ∈ E} represents all the neighbouring factors of the variable i.
However the messages independence is crucial for writing the BP equations
(87), such that the obtained marginal estimation and the Bethe free energy
are exact only in the case of DAG factor graphs for which there is no correla-
tion between the incoming messages. In other words, by construction the
convergence of BP to the �xed points of the Bethe free energy is guaranteed
only for tree-like factor graphs.

Loopy BP Nevertheless, the powerful BP algorithm can be used as an
approximation in more complex MRF that do not factorize as DAG and thus
contain some loops. The in�uence of loops in the graph can induce strong
correlations and harm the convergence of BP. Violating the messages indepen-
dence hypothesis breaks the convergence guarantees, but provides anyway
an approximate algorithmic procedure that, hoping for the best, may still
converge. Notice that there exists some cases for which the presence of loops
may not be that harmful. In particular, in the case of long enough loops and
if the correlations decrease fast enough with the Hamming distance, since
the factor graph remains locally tree-like, we expect the message indepen-
dence to still hold. In this context, under the name of loppy-BP, the algorithm
may sometimes succeed converging and provide good approximations of the
marginals, loosing in return convergence guarantees. As an alternative, since
the BP algorithm is not guaranteed to converge, we could instead directly �nd
the minimum of the Bethe free energy (Yuille, 2001), even though it is much
slower and the Bethe free energy does not provide anymore a variational
Gibbs free energy upper-bound.

State Evolution In addition of being a general procedure adaptable to any
MRF, the main interest of BP lies in the possibility to predict its asymptotic
performances. Indeed, in the thermodynamic limit d→ ∞, it is possible to
fully characterize the dynamics of the BP �xed point equations, known as the
State Evolution (SE) equations . They have been introduced in (Bayati et al.,
2011b) and their interest considerably increased with the regain of activity in
the high-dimensional regime. In the next section, we will show in the context
of the GLM class that the SE equations of AMP, which is nothing more than
a Gaussian simpli�cation of the BP algorithm, can be equivalently obtained
from the replica computation, which therefore provides an e�cient way for
obtaining the asymptotic behaviour of such message passing algorithms.
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4.3.4 application - bp eqations for the
glm

As a central illustration, we present the instructive and systematic derivation
of the relaxed Belief Propagation (rBP) equations starting with the BP equa-
tions, before deriving the corresponding AMP algorithm in the next section,
for the GLM class. The corresponding JPD can be written as

Pd (w|y,X) =
∏

n
µ=1 Pout(yµ |zµ)∏

d
i=1 Pw(wi)

Zd(y,X)
, (88)

already considered in Sec. 4.1.5, and where we assumed that the channel
and prior distributions factorize over factors Ψµ = Pout,µ and spin variables
φi = Pw,i. The posterior distribution can be naturally represented by the factor
graph Fig. 30. We de�ne the auxiliary variable zµ = 1√

d
wᵀxµ = Θ(1) which

ww j wi

ν µ Pout
(

yµ | 1√
d

wᵀx(µ)
)

Pw(wi)

m̃ν→ j(w j) mi→µ(wi)

Figure 30: Factor graph corresponding to the posterior distribution (88) associated
to the GLM hypothesis class. The variable wi send a message mi→µ (wi)
to the factor µ , and reciprocally it sends back a message m̃µ→i(wi) to the
variable based on the corresponding cavity graph.

is of order one thanks to the crucial rescaling pre-factor 1/
√

d. Indeed, even
though the factor graph is fully-connected and contains short loops, this
weak coupling insures that the messages remain slightly correlated and the
BP equations hold true. The details of the computations for the more general
committee machine hypothesis class can be found in Appendix. C.

BPequations for theGLM Let us consider a set of messages {mi→µ , m̃µ→i}
on the edges of the bipartite factor graph Fig. 30. These messages correspond
to the marginal probabilities of wi if we remove the edges (i→ µ) and (µ→ i).
The sum-product BP equations (87) are simply follow as

mt+1
i→µ

(wi) =
1

Zi→µ

pw(wi)
n

∏
ν 6=µ

m̃t
ν→i(wi) , (89)

m̃t
µ→i(wi) =

1
Zµ→i

∫ d

∏
j 6=i

dw j pout

(
yµ |

1√
d

d

∑
j=1

xµ jw j

)
mt

j→µ(w j) .

Towards relaxed-Belief Propagation equations The idea is to expand,
in the limit d→∞, the set of Θ(d2)messages {m̃µ→i}i,µ before plugging them
back in the messages {mi→µ}i,µ . Truncating the expansion and keeping only
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terms of order Θ (1/d), messages become Gaussian and therefore messages
can be parametrized only by the mean ŵt

i→µ
and the variance ĉt

i→µ
of the

marginal distribution estimate mt
i→µ

at time t:

ŵt
i→µ ≡

∫

R
dwi mt

i→µ(wi)wi ,

ĉt
j→µ ≡

∫

R
dwi mt

i→µ(wi)w2
i − (ŵt

i→µ)
2 .

(90)

Using a Fourier representation of Pout in m̃t
µ→i in (89) to decouple its fully-

connected argument, and expanding it in the large size limit d→∞, we obtain
that the set of BP equations �nally closes over Gaussian beliefs {mi→µ}i,µ

mt+1
i→µ

(wi) =
1

Zi→µ

pw(wi)
n

∏
ν 6=µ

√
At

ν→i
(2π)

e−
At

ν→i
2 (wi−(At

ν→i)
−1bt

ν→i)
2

, (91)

with natural parameters bt
µ→i and the precision At

µ→i de�ned as

bt
µ→i ≡

xµi√
d

fout(yµ ,ω t
iµ ,V t

iµ) , At
µ→i ≡−

x2
µi

d
∂ω fout(yµ ,ω t

iµ ,V t
iµ)

(92)

with the channel denoising functions fout,∂ω fout, de�ned in Appendix. A.4,
which depend on the mean and variance of the channel belief

ω
t
µ→i ≡

1√
d

d

∑
j 6=i

xµ jŵt
j→µ , V t

µ→i ≡
1
d

d

∑
j 6=i

x2
µ jĉ

t
j→µ . (93)

Finally the mean and variance (90) of the message mi→µ are updated by

ŵt+1
i→µ

= fw(γ
t
µ→i,Λ

t
µ→i) , ĉt+1

i→µ
= ∂γ fw(γ

t
µ→i,Λ

t
µ→i) , (94)

with the prior denoising functions fw,∂γ fw, de�ned in Appendix. A.4, where
the mean γ t

µ→i and variance Λt
µ→i of the prior belief are de�ned by

γ
t
µ→i =

n

∑
ν 6=µ

bt
ν→i , Λt

µ→i =
n

∑
ν 6=µ

At
ν→i . (95)

The set of equations (92, 93, 94, 95) form the set of Θ(d2) rBP equations,
which are simply the projection of the BP equations over any parametrized
family, namely the Gaussian family in the presented case.

4.4 APPROXIMATE MESSAGE PASS ING

AMP algorithms start to emerge (Boutros et al., 2002; Montanari et al., 2006)
and being popular when applied to dense models such as CS (Donoho et al.,
2009; Bayati et al., 2011b) and later to GLM with the Generalized Approximate
Message Passing (GAMP) algorithm (Rangan, 2011). These algorithms are
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closely related to the so-called TAP equations in the context of the spin glass
theory and the SK model (Thouless et al., 1977; Sherrington et al., 1975) as the
latter mean-�eld equations and TAP free energy can be recovered from the
Bethe free energy. However, AMP algorithms largely overtook these previous
mean-�eld methods presented in Sec. 4.2.3 as they naturally provide the
correct time indices to iterate the self-consistent set of �xed point equations.
In contrast, the TAP approach struggled to solve them as no explicit iteration
scheme is prescribed by the method. This connection with statistical me-
chanics was recently renewed with notably (Tanaka, 2002; Guo et al., 2005b;
Rangan et al., 2009; Krzakala et al., 2012b) and this manuscript falls within
this same approach by applying AMP to the theoretical understanding of
ANN. Moreover, being popularized to various applications, AMP algorithms
underwent various extensions such that BiGAMP for bilinear estimation
(Parker et al., 2014) or ML-AMP for multi-layer estimation (Manoel et al.,
2017). Informally the AMP algorithms can be seen as a Taylor expansion of the
loopy-BP approach (Mézard et al., 1987; Mézard et al., 2009; Wainwright et al.,
2008). The general procedure starts with the set of loopy-BP equations (87)
associated to the corresponding JPD and factor graph. After performing the
asymptotic expansion and parametrize the beliefs with Gaussians that allows
to track only two parameters, the mean and variance, per message, we �nally
end up with a set of Θ(d2) messages, the so-called set of rBP equations. Their
latter computational cost can be reduced with additional expansions around
the full messages to remove the target-node dependency at the cost of making
appear Onsager terms at time previous steps. Finally, in the large size limit
d→ ∞, keeping only the leading terms, the set of equations can be reduced
to a set of only Θ(d) messages. Notice that the discrepancy between the BP
algorithm and the obtained AMP algorithm are not quanti�ed rigorously as
anyway, for general factor graphs with loops, the loopy-BP provides only an
approximate estimation, so does AMP. However, the resulting AMP has the
strong advantage to be rigorously provable in a roundabout way, from the
so-called SE equations that can be obtained from the replica computation,
proven with a Guerra-like interpolation (Guerra, 2003).

For the sake of clarity, we present a pedagogical and instructive derivation
of the GAMP algorithm, following closely the one of (Zdeborová et al., 2016a).

4.4.1 application - amp for the glm

The rBP set of equations for the GLM (92, 93, 94, 95) contain Θ(d2) messages
of the form xi→µ . However it is worth observing that the messages depend
weakly on the target node µ , as the missing message in the sum vanishes in
the limit d→ ∞. This crucial observation allows to expand the previous rBP
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equations around the full messages by completing the sum that do not show
anymore the target-node dependence:

ω
t
µ ≡

d

∑
j=1

xµ j√
d

ŵt
j→µ , V t

µ ≡
d

∑
j=1

x2
µ j

d
ĉt

j→µ ,

γ
t
i ≡

n

∑
ν=1

bt
ν→i , Λt

i ≡
n

∑
ν=1

At
ν→i .

(96)

Performing the expansion of the rBP (92,93, 94, 95), the set can be reduced to
Θ(d) iterative equations, at the cost of introducing memory terms at previous
time steps, the Onsager terms. The lengthy, yet straightforward, computation
is shown for the committee machines hypothesis class in Appendix. C.3.
We �nally end up with the GAMP algorithm (Rangan, 2011) as a set of Θ(d)
messages presented in Algo. 1. The GAMP algorithm can be interpreted in a

Input: vector y ∈Rn and matrix X ∈Rn×d :
Initialize: ŵi, fout,µ ∈R and ĉi, ∂ω fout,µ ∈R for 1≤ i≤ d and 1≤ µ ≤ n
at t = 0.
repeat

Channel: Update the mean ωµ ∈R and variance Vµ ∈R+:

ω t
µ =

d
∑

i=1

xµi√
d

ŵt
i−V t

µ f t−1
out,µ , V t

µ =
d
∑

i=1

x2
µi
d ĉt

i

Update fout,µ ∈R and ∂ω fout,µ ∈R+:

f t
out,µ = fout(yµ ,ω t

µ ,V t
µ) , ∂ω f t

out,µ = ∂ω fout(yµ ,ω t
µ ,V t

µ)

Prior: Update the mean γi ∈R and variance Λi ∈R+:

γ t
i =

n
∑

µ=1

xµi√
d

f t
out,µ +Λt

iŵ
t
i , Λt

i = −
n
∑

µ=1

x2
µi
d ∂ω f t

out,µ

Update the estimated marginals ŵi ∈R and ĉi ∈R+:

ŵt+1
i = fw(γ t

i ,Λt
i) , ĉt+1

i = ∂γ fw(γ t
i ,Λt

i)

t = t + 1
until Convergence on ŵ, ĉ.
Output: ŵ and ĉ.

Algorithme 1 : Approximate Message Passing algorithm for Generalized
Linear Models.

series of iterative steps starting by the estimation of the mean ωωω and variance
V of the variable z= 1√

d
Xw. The estimate of z provides a potential output that

is compared to the true output vector y through the denoising functions fout,
∂ω fout. This comparison gives a feedback to update the mean γγγ and variance
Λ of the variable w which is updated to provide a new estimation with the
denoising functions fw and ∂γ fw. Moreover, AMP provides a general inference
algorithm valid on single instance of �nite size for generic prior and channel
distributions. As a consequence, it is valid in the Bayes-optimal case for MMSE



4.4 approximate message passing 129

estimation when Pout = Pout? and Pw = Pw? or the mismatched setting for
arbitrary distribution such as for MAP estimation and ERM. Finally looking
beyond the cumbersome appearances of Algo. 1, in contrast with most of state-
of-the-art gradient-based algorithms that su�er theoretical understanding,
AMP algorithms have the main advantage that their asymptotic behavior
and convergence performances can be rigorously tracked for large i.i.d input
matrices through their SE equations. At the heart of this manuscript, we
should stress that these SE equations connect surprisingly to the results
obtained by the replica computation.

4.4.2 state evolution eqations -
connection with replicas

One of the main interests of the AMP algorithm is certainly that we can analyze
its average behavior in the thermodynamic limit. Indeed, taking the average
over the quenched disorder and introducing proper order parameters, the
so-called overlaps, we can obtain an asymptotic closed set of equations, called
the SE equations. They characterize the performances of the AMP algorithm
(Donoho et al., 2009; Bayati et al., 2011b; Javanmard et al., 2013) in the large
size limit d→ ∞. The derivation usually starts with the set of rBP equations.
By assuming the fundamental message independence, using the CLT, and
de�ning a correctly chosen set of order parameters, the statistical analysis
ends up to the set of SE equations. Very importantly, under the strong i.i.d
assumption and in the Bayes-optimal case, these SE equations converge to the
stationary points of the RS replica free entropy. We illustrate the derivation
again on the GLM hypothesis class and draw the intimate connection with
the replica computation. The full computation for the committee hypothesis
class can be found in Appendix. C.4.

4.4.3 application - se for the glm

The derivation of the SE equations starts by de�ning a series of order param-
eters, called overlaps

mt ≡ lim
d→∞

Ew?,X

[
1
d

ŵ ·w?

]
, qt ≡ lim

d→∞

Ew?,X

[
1
d

ŵt · ŵt
]

,

ρw? ≡ lim
d→∞

Ew?

[
1
d

w? ·w?

]
, Σt ≡ lim

d→∞

Ew?,X

[
1
d

ĉt ·1
]

, (97)

that measure the correlations between the ground truth vector w? and the
estimator ŵt at time t of the AMP algorithm in Algo. 1. In a T-S scenario,
they allow to quantify properly the reconstruction performance of the AMP
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algorithm. For the purpose of the derivation, we need to de�ne other ad-hoc
overlaps which have less direct physical meaning

q̂t ≡ αEω ,z
[

fout(ϕout?(z),ω t ,Σt)2] ,

m̂t ≡ αEω ,z [∂z fout(ϕout?(z),ω t ,Σt)] ,

χ̂
t ≡ αEω ,z [−∂ω fout(ϕout?(z),ω t ,Σt)] .

(98)

Under the BP independent messages assumption and using the CLT, we obtain
in Appendix. C.4 the message statistics of the rBP messages. Computing the
average of the overlaps de�ned above and making use of the latter statistics,
we �nally obtain a set of six SE equations, that can be reduced using the
Nishimori conditions in the Bayes-optimal case (Opper et al., 1991a; Iba,
1999)

mt = qt , q̂t = m̂t = χ̂
t , Σt = ρw?−qt ,

to only two SE equations

qt+1 = Eξ

[
Zw?

(
(q̂t)1/2

ξ , q̂t
)

fw?

(
(q̂t)1/2

ξ , q̂t
)2
]

,

q̂t = α

∫

R
dy Eξ Zout?

(
y, (qt)1/2

ξ ,ρw?−qt
)2

(99)

× fout?
(

y, (qt)1/2
ξ ,ρw?−qt

)2
.

As a crucial conclusion, we �nally observe that the set of SE equations (99),
which characterize the asymptotic behavior of the AMP algorithm in the
Bayes-optimal setting, are connected to the ones obtained by the i.i.d replica
computation in (74). Indeed, similarly to the TAP approach, while the replica
result does not provide the time indices to solve the �xed point equation,
the SE (99) fully determine the dynamics of the AMP algorithm at any time
t . As as consequence, it turns out that, under a T-S scenario the SE of the
AMP algorithm follows exactly the gradient of the RS free entropy (321) in
the Bayes-optimal setting, that intrinsically grasp the importance of the
overlaps in the considered JPD. Importantly, the connection between AMP, the
replica formalism and the possibility to prove them rigorously with Guerra-
like interpolation breaks down in the mismatched setting. In this case, the
prediction of the replica method fails delivering the correct behavior of the
AMP algorithm under the simple RS assumption and reveal a more complex
RSB structure of the phase space. Yet, it is not the case for convex optimization
as shown in Chap. 8, where the RS turned out to hold rigorously correct even
in the mismatched MAP estimation setting.

4.4.4 beyond i.i.d matrices and amp

Even though the derivation of AMP in the case of the GLM does not assume
any hypothesis on the input matrix X, it has been observed that AMP may ex-
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perience divergences for non-i.i.d inputs, even for non-pathological matrices
(Rangan et al., 2019a). In practice, to circumvent this issue, we can try to im-
prove the stability by using mean removal, damping (Vila et al., 2015; Rangan
et al., 2019a), sequential updating or other tricks. These stability techniques
are partially successful but convergence may still fail and often needs speci�c
tuning. Moreover even the convergence of AMP is proven (Bayati et al., 2011b;
Bolthausen, 2014) only under particular restrictive conditions, such as the
i.i.d hypothesis. As a consequence it is not surprising that correlated statistics
can therefore breaks down the message independence assumption in AMP
and leads to divergences for more complex input matrices. To overcome
this fundamental limitation, many e�orts have been made to generalize the
mean-�eld approaches to more complex matrix statistics such as the high-
temperature expansion for orthogonal matrices (Parisi et al., 1995) or the
ADA-TAP approach for dense graphical models with generic weight statistics
(Opper et al., 2001a; Opper et al., 2001c). The corresponding approaches were
understood later as a particular case of the Expectation Propagation (EP)
approximate inference algorithm (Minka, 2001b; Minka, 2001a; Heskes et al.,
2005; Heskes et al., 2012). Similarly to BP with the Bethe free energy, the EP
procedure is associated to an approximate free energy called the Expectation
Consistency (EC) (Opper et al., 2005) and solution of the Gibbs variational
principle by enforcing the moments matching constraints. Analogously to
AMP with BP, the EP procedure was applied by projecting the messages to a
Gaussian parametrization leading to the Vector Approximate Message Pass-
ing (VAMP) algorithm (Rangan et al., 2019b). For the sake of clarity, the main
di�erence with AMP lies on the fact that the factor graph is vector valued,
meaning that a vector variable with a separable prior is represented by a
single variable and factor nodes, which insight comes from (Cakmak et al.,
2014). It reduces the global inference problems to sub-vectorial-problems
by imposing connecting Dirac-delta constraints. AMP and VAMP are conjec-
tured to be equivalent for i.i.d matrices, and asymptotically are proved to
be rigorously identical as the corresponding RS free energies are equivalent.
However, VAMP experienced less convergence issues than the classical AMP.
VAMP converges for orthogonally invariant matrices and is more stable and
robust to ill-conditioned matrices at the cost of computing matrix inversion
or SVD. Very importantly, similarly to AMP algorithms, the VAMP algorithm
asymptotic performances are remarkably characterized by a set of SE equa-
tions for orthogonally invariant matrices. The SE are again related to the
stationary point of the replica free energy computed for this matrix statistics
as observed in (Tulino et al., 2013) and shown rigorously in (Barbier et al.,
2018b) in linear estimation and (Gabrié et al., 2018; Reeves, 2017) in DNN.
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OUTL INE AND
MOTIVAT IONS

The mean-�eld methods originating from statistical physics presented in
Chap. 4 have been extensively used in the past to analyze the equilibrium
behavior of common estimators for simple model classes such as single-layer
neural networks. This statistical physics approach, seeking to understand
the typical behavior of such systems, focused essentially on a simple data
generative process: the teacher-student scenario glimpsed in Chap. 3.

In this part, we essentially revisit this setting in light of the modern chal-
lenge of algorithmic complexity, and second, we develop and extend rigorous
proofs of earlier heuristic analysis. With these contributions, we propose an
overview of the complementary approaches used in di�erent communities
to understand simple classes of feed-forward neural networks. Especially, in
the context of the classical perceptron and its multi-layer generalization, the
committee machine, we try to reconcile the Bayes-optimal setting, the wort-
case analysis and empirical risk minimization methods in a uni�ed statistical
physics framework.

Bayes-optimal analysis and computational complexity In Chap. 5,
we revisit the T-S scenario to a more sophisticated class of two-layers neural
networks, the committee machines. It naturally extends and encompasses
the classical GLM class (Barbier et al., 2016), which was restricted to linearly
separable data, to higher complexity models. We analyze the Bayes-optimal
setting, in the case where the dataset has been generated by a ground truth
teacher committee machine with weights W? ∈Rd×K and prior distributions
Pout? and Pw? . Under the Bayes-optimal hypothesis, the student seeks to �t
the dataset based on the exact model architecture and by having access to the
ground truth prior distributions Pout = Pout? and Pw = Pw? . This idealistic
setting provides nonetheless a crucial information theoretical lower-bound of
optimal statistical estimation. It naturally provides answers to the questions
of knowing under what conditions, and without any algorithmic consider-
ation, if it is possible to recover the structure in the data? And how many
examples are needed in that case? In the asymptotic regime where the size
of the input vector d and the number of training examples n diverge, using
Guerra interpolation we �rst provide a rigorous justi�cation that the RS free
entropy, initially derived with the heuristic replica method (Schwarze et al.,
1992; Schwarze et al., 1993), is exact for i.i.d input data X ∈Rn×d . Moreover
we provide expressions for the corresponding optimal generalization error
learning curves. Secondly, we develop an extension of the polynomial time
GAMP algorithm (Rangan, 2011) for the committee machine hypothesis class.
This algorithmic perspective allows us to answer the burning questions of
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computational complexity that focuses on knowing if the algorithm is e�cient
with respect to the information-theoretical baseline and how many examples
it requires to achieve it. By locating the phase transitions, we highlight hard
regions where the best algorithm fails delivering the optimal predictions.

To summarize, our approach capitalizes on the trade-o� between infor-
mation theoretical statistical inference and the computational e�ciency of
the conjectured best polynomial AMP algorithm for i.i.d data. By making an
intense use of the description of metastability, �rst and second order phase
transitions phenomenology, borrowed to statistical physics and depicted in
Chap. 2, we can study in details the phase statistical and algorithmic phase
transitions. Especially, we unveil the existence of large computational gaps,
even in the Bayes-optimal case, for small and extensive hidden-layer sizes K.

Worst case analysis: from the storage capacity and ground state ener-
gies to the VC dimension and the Rademacher complexity In prac-
tice, the previous Bayes-optimal approach is harshly criticized for its lack of
fairness: the analysis requires a strong prior knowledge with the access to
the prior distributions involved in the ground truth generative process. An
alternative approach from the statistical learning theory literature consists
instead in evaluating the worst-case performances of statistical inference, by
quantifying generalization error upper-bounds. This is classically done with
the VC dimension and the Rademacher complexity (Vapnik et al., 1994; Bartlett
et al., 2002). Alternatively, the physics approach deeply focused on the Gard-
ner capacity (Gardner et al., 1988; Krauth et al., 1989; Engel et al., 1993) that
provides essentially a lower-bound of its twin from statistical learning theory,
the VC dimension. The Gardner storage capacity is essentially the maximum
number of examples that a model, namely the perceptron, is able to memorize.
Indeed, under a randomly quenched disorder, input vectors x and output
labels y are uncorrelated. Therefore, in a rCSP language the storage capacity
is equivalently the maximum number of random input-output constraints
the model parameters w can satisfy simultaneously. As a consequence, above
this critical SAT-UNSAT threshold, the perceptron can no longer satisfy all
the random constraints without making a prediction error.

In Chap. 6, we present the Gardner-like computation of the storage capac-
ity for the binary perceptron with various activation functions. We show that,
unlike for the usual step-function-binary-perceptron (Gardner et al., 1988),
the critical capacity in simple symmetric variants is rigorously given by the
annealed computation. Moreover by studying the structure of the con�gu-
ration space, we unveil a frozen 1-step Replica Symmetry Breaking (f1RSB)
structure using simple �rst and second moment methods.

By de�nition, above the SAT-UNSAT threshold the best con�guration of
the model parameters cannot satisfy all the random constraints and inevitably
makes classi�cation errors. Counting this minimal number of mistakes for a
given constraint density is equivalent of computing the ground state energy
of the system: below the storage capacity the energy vanishes whereas it be-
comes strictly positive above it. This rCSP approach can be naturally extended
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above the SAT-UNSAT transition to compute the corresponding ground state
energies within the same framework.

In Chap. 7, we reveal the deep connection between the Rademacher worst-
case generalization bound, which measures if a function can �t random noise,
and the ground state energies from statistical physics. Finally, while statis-
tical learning theory computes the generalization bounds up to asymptotic
scalings, we are able to explicitly compute the Rademacher complexity for
the spherical and binary perceptrons.

Empirical risk minimization in Generalized Linear Models for syn-
thetic i.i.d data The two previous approaches provide the optimal and
worst-case predictions that de�ne the operating range of any statistical
estimator. As a consequence, it turns out that practical machine learning esti-
mators and algorithms are not described correctly neither by the pessimistic
worst case analysis nor the idealistic Bayes-optimal.

In Chap. 8, we present how to analyze rigorously the behavior of practical
ERM for regularized linear models, such as ridge, logistic or hinge regression.
We focus on a common supervised classi�cation task of a synthetic dataset,
whose labels are generated by feeding a one-layer neural network with
random i.i.d inputs. In this convex optimization task, the replica computation,
under the RS ansatz, turns out to be correct and matches exactly the results
of the Gordon convex Gaussian min-max theorem. After observing that,
unlike ridge regression, logistic and hinge regressions surprisingly approach
closely the Bayes-optimal generalization error, we design an optimal loss
and regularizer that provably lead to Bayes-optimal generalization error
performances.

As a conclusion, we summarize and reconcile the di�erent approaches in a
global picture. We conclude that, unlike the generalization error bounds, the
Bayes-optimal analysis, even though its requires strong prior knowledges,
captures the good scaling behaviors of the practical algorithms.





5
THE COMMI T TEE
MACHINE :
COMPUTAT IONAL TO
STAT I ST ICAL GAPS IN
LEARNING A TWO-LAYERS
NEURAL NETWORK

While the traditional approach to learning and generalization follows the VC
(Vapnik, 1998) and Rademacher (Bartlett et al., 2002) worst-case type bounds,
there has been a considerable body of theoretical work on calculating the
generalization ability of neural networks for data arising from a probabilistic
model within the framework of statistical mechanics (Seung et al., 1992;
Watkin et al., 1993; Monasson et al., 1995a; Monasson et al., 1995b; Engel
et al., 2001). In the wake of the need to understand the e�ectiveness of neural
networks and also the limitations of the classical approaches (Zhang et al.,
2016), it is of interest to revisit the results that have emerged thanks to the
physics perspective. This direction is currently experiencing a strong revival,
see e.g. (Chaudhari et al., 2017; Martin et al., 2017; Barbier et al., 2019b;
Baity-Jest et al., 2018).

Of particular interest is the so-called T-S approach, where labels are gen-
erated by feeding i.i.d random samples to a neural network architecture
(the teacher) and are then presented to another neural network (the stu-
dent) that is trained using these data. Early studies computed the informa-
tion theoretic limitations of the supervised learning abilities of the teacher
weights by a student who is given n independent d-dimensional examples
with α≡n/d=Θ(1) and d→∞ (Seung et al., 1992; Watkin et al., 1993; Engel
et al., 2001). These works relied on non-rigorous heuristic approaches, such
as the replica and cavity methods (Mézard et al., 1987; Mézard et al., 2009).
Additionally no provably e�cient algorithm was provided to achieve the
predicted learning abilities, and it was thus di�cult to test those predictions,
or to assess the computational di�culty.

Recent developments in statistical estimation and information theory —in
particular of AMP (Donoho et al., 2009; Rangan, 2011; Bayati et al., 2011b;
Javanmard et al., 2013), and a rigorous proof of the replica formula for the
optimal generalization error (Barbier et al., 2019b)— allowed to settle these
two missing points for single-layer neural networks (i.e. without any hidden
variables). In the present chapter, we leverage on these works, and provide rig-
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orous asymptotic predictions and corresponding message passing algorithm
for a class of two-layers networks.

5.1 MAIN CONTRIBUT IONS AND
RELATED WORKS

While our results hold for a rather large class of non-linear activation func-
tions, we illustrate our �ndings on a case considered most commonly in the
early literature: the committee machine. This is possibly the simplest version
of a two-layers neural network where all the weights in the second layer are
�xed to unity, and we illustrate it in Fig. 31. Denoting ∀µ ∈ JnK, yµ the label
associated with a d-dimensional sample xµ , and w?

il the weight connecting
the i-th coordinate of the input to the k-th node of the hidden layer, it is
de�ned by:

yµ = sign
[

K

∑
k=1

sign
(

d

∑
i=1

xµiw?
ik

)]
= sign

[
K

∑
k=1

sign
(
xᵀµW?

)
]

, (100)

where W? ∈ Rd×K . We concentrate here on the T-S scenario: The teacher
generates i.i.d data samples with i.i.d standard Gaussian coordinates xµi ∼
N (0,1), then she/he generates the associated labels yµ using a committee
machine as in (100), with i.i.d weights w?

il unknown to the student. In the
proof though, we will consider the more general case of a distribution for the
weights of the form ∏

n
i=1 Pw({w?

il}K
k=1), but in practice we consider the fully

separable case. The student is then given the n input-output pairs (xµ ,yµ)n
µ=1

and knows the distribution Pw used to generate w?
il . The goal of the student

is to learn the weights w?
il from the available examples (xµ ,yµ)n

µ=1 in order
to reach the smallest possible generalization error, i. e. to be able to predict
the label the teacher would generate for a new sample not present in the
training set.

There have been several studies of this model within the non-rigorous
statistical physics approach in the limit where α ≡ n/d = Θ(1), K = Θ(1)
and d → ∞ (Schwarze, 1993; Schwarze et al., 1992; Schwarze et al., 1993;
Mato et al., 1992; Monasson et al., 1995b; Engel et al., 2001). A particularly
interesting result in the T-S setting is the specialization of hidden neurons (see
sec. 12.6 of (Engel et al., 2001), or (Saad et al., 1995b) in the context of online
learning): For α < αspec, where αspec is a certain critical value of the sample
complexity, the permutational symmetry between hidden neurons remains
conserved even after an optimal learning, and the learned weights of each
of the hidden neurons are identical. For α > αspec, however, this symmetry
gets broken as each of the hidden units correlates strongly with one of the
hidden units of the teacher. Another remarkable result is the calculation of
the optimal generalization error as a function of α .

Our �rst contribution consists in a proof of the replica formula conjectured
in the statistical physics literature, using the adaptive interpolation method
of (Barbier et al., 2018a; Barbier et al., 2019b), that allows to put several
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of these results on a rigorous basis. However, this proof uses a technical
unproven assumption. Our second contribution is the design of an AMP-type
of algorithm that is able to achieve the optimal generalization error in the
above limit of large dimensions for a wide range of parameters. The study of
AMP —that is widely believed to be optimal between all polynomial algorithms
in the above setting (Donoho et al., 2013a; Zdeborová et al., 2016a; Deshpande
et al., 2015; Bandeira et al., 2018)— unveils, in the case of the committee
machine with a large number of hidden neurons K→ ∞ with K = o(d), the
existence a large hard phase in which learning is information-theoretically
possible, leading to a good generalization error decaying asymptotically
as 1.25K/α (in the α = Θ(K) regime), but where AMP fails and provides
only a poor generalization that does not go to zero when increasing α . This
strongly suggests that no e�cient algorithm exists in this hard region and
therefore there is a computational gap in learning such neural networks.
In other problems where a hard phase was identi�ed its study boosted the
development of algorithms that are able to match the predicted thresholds
and we anticipate this will translate to the present model.

We also want to comment on a related line of work that studies the loss-
function landscape of neural networks. While a range of works show under
various assumptions that spurious local minima are absent in neural networks,
others show under di�erent conditions that they do exist, see e.g. (Safran
et al., 2018). The regime of parameters that is hard for AMP must have spu-
rious local minima, but the converse is not true in general. It might be that
there are spurious local minima, yet the AMP approach succeeds. Moreover,
in all previously studied models in the Bayes-optimal setting the generaliza-
tion error obtained with the AMP is the best known and other approaches,
e. g. noisy gradient-based, spectral algorithms or semide�nite programming,
are not better in generalizing even in cases where the student models are
over-parametrized. Of course in order to be in the Bayes-optimal setting one
needs to know the model used by the teacher which is not the case in practice.

5.2 TECHNICAL RESULTS

5.2.1 a general model

While in the illustration of our results we shall focus on the model (100), all our
formulas are valid for a broader class of models: Given n input samples X =

{xµi}n,d
µ ,i=1, we denote W? = {w?

ik}k=1..K
i=1..d the teacher-weight connecting for

all (i,k) ∈ JdK×JKK, the i-th input, i. e. the visible unit, to the k-th node of the
hidden layer, represented in Fig. 31. For a generic function ϕout : RK×R→R

one can formally write the output as

yµ =ϕout
({ 1√

d

d

∑
i=1

xµiw?
ik

}K

k=1
,aµ

)
or yµ ∼ Pout

(
·
∣∣∣
{ 1√

d

d

∑
i=1

xµiw?
ik

}K

k=1

)
,
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(xµ)n
µ=1

samples

W? ∈ Rd×K

yµ

w(2) ∈ RK
f (1)

f (1)

f (2)

d features

K hidden
units

output

Figure 31: Illustration of the committee machine: it is one of the simplest models
belonging to the considered model class (101), and on which we focus to
illustrate our results. It is a two-layers neural network with sign activation
functions f (1), f (2) = sign and weights w(2) �xed to unity. It is represented
for K = 2.

(101)

where (aµ)n
µ=1 are i.i.d real valued random variables with known distribution

Pa, that form the probabilistic part of the model, generally accounting for
noise. For deterministic models the second argument is simply absent and the
distribution Pout is a Dirac mass. We can view alternatively (101) as a channel
where the transition kernel Pout is directly related to ϕout. As discussed above,
we focus on the T-S scenario where the teacher generates Gaussian i.i.d data
xµi∼N (0,1), and i.i.d weights w?

ik∼ Pw. The student then learns W? ∈Rd×K

from the data (xµ ,yµ)n
µ=1 by computing marginal means of the posterior

probability distribution (104).
Di�erent scenarii �t into this general framework. Among those, the com-

mittee machine is obtained when choosing ϕout(h) = sign(∑K
k=1 sign(hk))

while another model considered previously is given by the parity machine,
when ϕout(h) = ∏

K
k=1 sign(hk), see e.g. (Engel et al., 2001) and Sec. 5.3.2 for

the numerical results in the case K = 2. A number of layers beyond two has
also been considered, see (Mato et al., 1992). Other activation functions can
be used, and many more problems can be described, e.g. compressed pooling
(El Alaoui et al., 2016; El Alaoui et al., 2017) or multi-vector compressed
sensing (Zhu et al., 2017b).

5.2.2 two auxiliary inference problems

Denote SK the �nite dimensional vector space of K×K matrices, S +
K the

convex set of semi-de�nite positive K×K matrices, S ++
K for positive de�nite

K×K matrices, and ∀N ∈ S +
K we set S +

K (N) ≡ {M ∈ S +
K s.t. N−M ∈

S +
K }. Note that S +

K (N) is convex and compact. Exceptionally in this section,
parameters denoted with lowercase letters such as q, q̂,ρρρ? represent matrices
of size K×K. Stating our results requires introducing two simpler auxiliary
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K-dimensional estimation problems:

• The �rst one consists in retrieving a K-dimensional input vector w∼ Pw

from the output of a Gaussian vector channel with K-dimensional observa-
tions

y0 = q̂1/2w+ z0 ,

z0 ∼N (0,IK) and the channel gain matrix q̂ ∈S +
K ⊆RK×K . The posterior

distribution on w = (wk)
K
k=1 ∈RK is

P(w|y0) =
1

Zw
Pw(w) exp

(
yᵀ0 q̂1/2w− 1

2
wᵀq̂w

)
, (102)

and the associated free entropy (or minus free energy) is given by the expecta-
tion over y0 of the log-partition function Ψw(q̂) ≡E logZw and involves K
dimensional integrals.

•The second problem considers K-dimensional i.i.d vectors v,u?∼N (0,IK)

where v is considered to be known and one has to retrieve u? from a scalar
observation obtained as

ỹ0 ∼ Pout( · |q1/2v+(ρρρ?−q)1/2u?)

where the second moment matrix ρρρ? ≡E[wwᵀ] ∈S +
K , where w ∈RK ∼ Pw,

and the so-called overlap matrix q is in S+K (ρρρ
?). The associated posterior is

P(u|ỹ0,v) =
1

Zout

e−
1
2 uᵀu

(2π)K/2 Pout
(
ỹ0|q1/2v+(ρρρ?−q)1/2u

)
, (103)

and the free entropy reads this time Ψout(q;ρρρ?)≡E lnZout, with the expec-
tation over ỹ0 and v, and also involves K dimensional integrals.

5.2.3 the free entropy

The central object of study leading to the optimal learning and generalization
errors in the present setting is the posterior distribution of the weights:

P({wk}K
k=1 | {x,yµ}n

µ) =
1

Zd

d

∏
i=1

Pw({wik}K
k=1) (104)

×
n

∏
µ=1

Pout
(

yµ

∣∣∣
{ 1√

d

d

∑
i=1

xµiwik

}K

k=1

)
,

where the normalization factor is nothing else than a partition function, i. e. the
integral of the numerator over {wik}d,K

i,l=1. The symbol E will generally denote
an expectation over all random variables in the ensuing expression (here
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{X,y}). Subscripts will be used only when we take partial expectations or if
there is an ambiguity. The expected free entropy is by de�nition

Φd ≡
1
d

E lnZd . (105)

The replica formula gives an explicit (conjectural) expression of Φd in the
high-dimensional limit d,n→ ∞ with α = n/d �xed. We show in Appendix.
B.1.1 how the heuristic replica method (Mézard et al., 1987; Mézard et al.,
2009) yields the formula. This computation was �rst performed, to the best
of our knowledge, by (Schwarze, 1993) in the case of the committee machine.
Our �rst contribution is a rigorous proof of the corresponding free entropy
formula using an interpolation method (Guerra, 2003; Talagrand, 2003; Barbier
et al., 2018a), under a technical assumption, see Sec. 5.3 of (Aubin et al., 2018b).

In order to formulate our results, we add an arbitrarily small Gaussian
regularization noise zµ

√
∆ to the �rst expression of the model (101), where

∆ > 0, zµ ∼N (0,1), which thus becomes

yµ = ϕout

({ 1√
d

d

∑
i=1

xµiw?
ik

}K

k=1
,aµ

)
+ zµ

√
∆ , (106)

so that the channel kernel is for u ∈RK ,

Pout(y|u) =
1√
2π∆

∫

R
dPa(a)e−

1
2∆ (y−ϕout(u,a))2

. (107)

Let us de�ne the RS potential as

Φ(rs)(q, q̂;ρρρ
?) ≡−1

2
Tr (q̂q)+Ψw(q̂)+αΨout(q;ρρρ

?) , (108)

where α ≡ n/d, and Ψout(q;ρρρ?) and Ψw(q̂) are the free entropies of the two
simpler K-dimensional estimation problems (102) and (103). Notice that the
expression is obtained from the replica computation in (321).

All along this chapter, we assume the following hypotheses for our rigorous
statements:

1. The prior Pw has bounded support in RK .

2. The activation ϕout : RK ×R→ R is a bounded C 2 function with
bounded �rst and second derivatives with respect to its �rst argument,
in RK-space.

3. For all µ ∈ JnK and i ∈ JdK we have i.i.d xµi ∼N (0,1).

We �nally rely on a technical hypothesis, stated as Assumption 1 in Sec. 5.3
of (Aubin et al., 2018b).
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Theorem 5.2.1 (Replica formula). Suppose 1, 2 and 3, and Assumption 1. Then
for the model (106) with kernel (107) the limit of the free entropy is:

Φrs ≡ lim
d→∞

Φd ≡ lim
d→∞

1
d

E logZd = sup
q̂∈S +

K

inf
q∈S +

K (ρ)

Φ(rs)(q, q̂;ρρρ
?) .

(109)

This theorem extends the recent progress for generalized linear models of
(Barbier et al., 2019b), which includes the case K = 1 of the present contribu-
tion, to the phenomenologically richer case of two-layers problems such as
the committee machine. The proof sketch based on an adaptive interpolation
method recently developed in (Barbier et al., 2018a) is outlined in Sec. 5 of
(Aubin et al., 2018b) and the details can be found in the corresponding Sec. A.

Remark 5.2.2 (Relaxing the hypotheses). Note that, following similar approx-
imation arguments as in (Barbier et al., 2019b), the hypothesis 1 can be relaxed
to the existence of the second moment of the prior; thus covering the Gaussian
case, 2 can be dropped and thus include model (100) and its sign(·) activation
and 3 extended to data matrices X with i.i.d entries of zero mean, unit variance
and �nite third moment. Moreover, the case ∆ = 0 can be considered when the
outputs are discrete, as in the committee machine (100), see (Barbier et al., 2019b).
The channel kernel becomes in this case Pout(y|u) =

∫
dPa(a)1 [y−ϕout(u,a)]

and the replica formula is the limit ∆→ 0 of the one provided in Theorem 5.2.1.
In general this regularizing noise is needed for the free entropy limit to exist.

5.2.4 learning the teacher weights and
optimal generalization error

A classical result in Bayesian estimation is that the estimator Ŵ that min-
imizes the mean-square error with the ground-truth W? is given by the
expected mean of the posterior distribution. Denoting q? the extremizer in
the replica formula (109), we expect from the replica method that in the limit
d → ∞, n/d = α , and with high probability, ŴᵀW?/d → q?. We refer to
proposition 5.3 and to the proof in Sec. A of (Aubin et al., 2018b) for the
precise statement, that remains rigorously valid only in the presence of an
additional (possibly in�nitesimal) side-information. This condition is similar
to the small magnetic �eld used to select a given Gibbs state in the Ising
model in statistical physics. From the overlap matrix q?, one can compute the
Bayes-optimal generalization error when the student tries to classify a new,
yet unseen, sample xnew ∈ R1×d . The estimator of the new label ŷnew that
minimizes the mean-square error with the true label is given by computing
the posterior mean of ϕout(xnewW) (xnew is a row vector). Given the new
sample, the optimal generalization error is then

1
2

EX,W?

[(
Ew|X,y

[
ϕout(xnewW)

]
−ϕout(xnewW?)

)2
]
−−−→
d→∞

εg(q?),

(110)
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where W is distributed according to the posterior measure (104). Note that
this Bayes-optimal computation di�ers from the so-called Gibbs estimator by
a factor 2. Indeed, one can naturally de�ne the Gibbs generalization error as:

ε
gibbs
g ≡ 1

2
EW?,X

〈
[ϕout (xW)−ϕout (xW?)]2

〉
, (111)

and de�ne the Bayes-optimal generalization error as:

ε
bayes
g ≡ 1

2
EW?,X

[(
〈ϕout (xW)|ϕout (xW)〉−ϕout (xW?)

)2]. (112)

Using the Nishimori identity A.3.1, one obtains:

ε
bayes
g =

1
2

EX,W?

[
ϕout (xW?)2

]
+

1
2

EX,W?

[
〈ϕout (xW)|ϕout (xW)〉2

]

−EX,W? 〈ϕout (xW?)ϕout (xW)|ϕout (xW?)ϕout (xW)〉 ,

=
1
2

EX,W?

[
ϕout (xW?)2

]

− 1
2

EX,W? 〈ϕout (xW?)ϕout (xW)|ϕout (xW?)ϕout (xW)〉 .

Using again the Nishimori identity one can write:

ε
gibbs
g = EX,W?

[
ϕout (xW?)2

]

−EX,W? 〈ϕout (xW?)ϕout (xW)|ϕout (xW?)ϕout (xW)〉 ,

which shows that ε
gibbs
g = 2ε

bayes
g . Note �nally that since the distribution

of X is rotationally invariant, the quantity EX [ϕout (xW?)ϕout (xW)] only
depends on the overlap q≡WᵀW?. As the overlap is shown to concentrate
under the Gibbs measure, and as we expect that the value it concentrates on is
the optimum q? of the replica formula (such fact is proven, e. g. , for random
linear estimation problems in (Barbier et al., 2017)), the generalization error
can itself be evaluated as a function of q?. Examples where it is done include
(Opper et al., 1996a; Seung et al., 1992; Schwarze, 1993; Barbier et al., 2019b).

In particular, when the data X is drawn from the standard Gaussian distri-
bution on Rn×d , and is thus rotationally invariant, it follows that this error
only depends on WᵀW?/d, which converges to q?. Then a direct algebraic
computation gives a lengthy but explicit formula for εg(q?) presented below.

5.2.4.a the generalization error at K = 2

From the de�nition of the generalization error, one can directly give an
explicit expression of this error in the K = 2 case. Recall our committee-
symmetric assumption on the overlap matrix, which here reads

q =

(
qd +

qa
2

qa
2

qa
2 qd +

qa
2

)
.
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For concision, we denote here sign(x) = σ (x). One obtains from (112):

1
2
− 2ε

bayes,K=2
g

≡ E

∫
Dx σ

(
σ

(
1√
d

x · w?
1

)
+ σ

(
1√
d

x · w?
2

))

× σ

(
σ

(
1√
d

x · w1

)
+ σ

(
1√
d

x · w2

))

= E
1

(2π )4

∫

R4
dxσ (σ (x1 ) + σ (x2 )) σ (σ (x3 ) + σ (x4 ))

×
∫

R4
d x̂ e i x̂ᵀx

∫
Dx e−

i√
d

x̂ᵀW̃ᵀx (113)

= E
1

(2π )4

∫

R4
dx σ (σ (x1 ) + σ (x2 )) σ (σ (x3 ) + σ (x4 ))

×
∫

R4
d x̂ e i x̂ᵀx e−

1
2 x̂ᵀΣ x̂

=
∫

R4
dx σ (σ (x1 ) + σ (x2 )) σ (σ (x3 ) + σ (x4 ))Nx (0 , Σ)

where W̃ = (w?
1,w?

2,w1,w2) ∈ Rd×K with Σ = 1
d EW̃ᵀW̃ −→

d→∞

[
I2 q
q I2

]
. This

expression can be reformulated also as

1
2
−2ε

bayes,K=2
g =

∫

R4
Dxσ [σ(x1)+σ(x2)]

×σ

{
σ

[
(

qa

2
+ qd)x1 +

qa

2
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√
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a

2
−qaqd−q2

d

]

+σ


qa

2
x1 +(

qa

2
+ qd)x2− x3

qa(qd +
qa
2 )√

1− q2
a

2 −qaqd−q2
d

+x4

√√√√(1−q2
d)(1− (qa + qd)2)

1− q2
a

2 −qaqd−q2
d





 . (114)

Note that one could possibly simplify this expression by using an appropriate
orthogonal transformation on x. These integrals were then computed using
MC methods to obtain the generalization error in the left and middle plots of
Fig. 32.

5.2.4.b the generalization error at large K

Recall the de�nition of the generalization error in (112), one can compute it
using (111) after a tedious, yet straightforward, calculation:

ε
bayes
g =

1
2

ε
gibbs
g =

1
π

arccos
[

2
π
(qa + arcsin qd )

]
+ Θ(K−1 ) .

(115)
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This expression is the one used in the computation of the generalization error
in the left panel of Fig. 33.

5.2.5 approximate message passing and its
state evolution

Our next result is based on an adaptation of a popular algorithm to solve
random instances of generalized linear models, the AMP algorithm (Donoho
et al., 2009; Rangan, 2011), for the case of the committee machine and models
described by (101). The AMP algorithm can be obtained as a Taylor expansion
of loopy belief-propagation, see Appendix. C for the derivation, and also
originates in earlier statistical physics works (Thouless et al., 1977; Mézard,
1989; Opper et al., 1996b; Kabashima, 2008; Baldassi et al., 2007; Zdeborová
et al., 2016a). It is conjectured to perform the best among all polynomial
algorithms in the framework of these models. It thus gives us a tool to
evaluate both the intrinsic algorithmic hardness of the learning and the
performance of existing algorithms with respect to the optimal one in this
model.

Input: vector y ∈Rn and matrix X ∈Rn×d :
Initialize: ŵi, fout,µ ∈RK and Ĉi, V̂i, ∂ωωω fout,µ ∈RK×K for 1≤ i≤ d and
1≤ µ ≤ n at t = 0.
repeat

Channel: Update the mean ωµ ∈RK and variance Vµ ∈RK×K :

Vt
µ =

d
∑

i=1

x2
µ j
d Ĉt

i

ωωω t
µ =

d
∑

i=1

xµi√
d

ŵt
i−Vt

µ ft−1
out,µ ,

Update fout,µ and ∂ωωω fout,µ :

ft
out,µ = fout

(
yµ ,ωωω t

µ ,Vt
µ

)
, ∂ωωω ft

out,µ = ∂ωωω fout
(
yµ ,ωωω t

µ ,Vt
µ

)

Prior: Update the mean γγγ i ∈RK and variance Λi ∈RK×K :

Λt
i = −

n
∑

µ=1

x2
µi
d ∂ωωω ft

out,µ

γγγ t
i =

n
∑

µ=1

xµi√
d

ft
out,µ +Λt

iŵt
i ,

Update the estimated marginals ŵi ∈R and ĉi ∈R+:

ŵt+1
i = fw (γγγ t

i ,Λ
t
i) , Ĉt+1

i = ∂γγγ fw (γγγ t
i ,Λ

t
i)

t← t + 1
until Convergence on ŵi, Ĉi.
Output: {ŵ}d

i=1 and {Ĉi}d
i=1.

Algorithme 2 : Approximate Message Passing for the committee machine.
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The AMP algorithm is summarized by its pseudo-code in Algo. 2, where
the update functions fout, ∂ωωω fout, fw and ∂γγγ fw are related, again, to the two
auxiliary problems (102) and (103) and de�ned in Appendix. A.4. The func-
tions fw(γγγ ,Λ) and ∂γγγ fw(γγγ ,Λ) are respectively the mean and variance un-
der the posterior distribution (102) when q̂→ Λ and y→ Λ−1/2γγγ , while
fout(yµ ,ωωωµ ,Vµ) is given by the product of V−1/2

µ and the mean of u under
the posterior (103) using ỹ0→ yµ , ρρρ?−q→ Vµ and q1/2v→ ωωωµ .

After convergence, Ŵ estimates the weights of the teacher-neural network.
The label of a sample xnew not seen in the training set is estimated by the
AMP algorithm as

yt
new =

∫

R
dy
∫

RK
dz y Pout(y|z)Nz(ωωω

t
new,Vt

new) , (116)

where ωωω t
new = ∑

d
i=1 xnew,iŵt

i is the mean of the normally distributed variable
z ∈RK , and Vt

new = ρρρ?−qt
amp is the K×K covariance matrix (see below for

the de�nition of qt
amp). We provide a demonstration code of the algorithm on

GitHub (Aubin et al., 2018a).
AMP is particularly interesting because its performance can be tracked

rigorously, again in the asymptotic limit when d→∞, via a procedure known
as SE, which is a rigorous version of the cavity method in physics (Mézard
et al., 2009), see (Javanmard et al., 2013). SE tracks the value of the overlap
between the hidden ground truth W∗ and the AMP estimate Ŵt , de�ned as
qt

amp ≡ limd→∞(Ŵt)ᵀW?/d, via the iteration of the following equations:

qt+1
amp = 2∇Ψw(q̂t

amp) , q̂t+1
amp = 2α∇Ψout(qt

amp;ρρρ
?) . (117)

See sec. G of (Aubin et al., 2018b) for more details and note that the �xed
points of these equations correspond surprisingly to the critical points of the
replica free entropy (109). Let us comment further on the convergence of the
algorithm. In the large d limit, and if the integrals are performed without
errors, then the algorithm is guaranteed to converge. This is a consequence
of the SE combined with the Bayes-optimal setting. In practice, of course,
d is �nite and integrals are approximated. In that case convergence is not
guaranteed, but is robustly achieved in all the cases presented in this paper.
We also expect, by experience with the single layer case, that if the input-
data matrix is not random, which is beyond our assumptions, then we will
encounter convergence issues, which could be �xed by moving to some
variant of the algorithm such as VAMP (Rangan et al., 2019b).

https://github.com/benjaminaubin/TheCommitteeMachine
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Figure 32: Generalization error and order parameter for a committee machine with
two hidden neurons (K = 2) with (Left) Gaussian weights, (Right) bi-
nary/Rademacher weights. These are shown as a function of the ratio
α = n/d between the number of samples n and the dimensionality d.
Lines are obtained from the state evolution (SE) equations (dominating
solution is shown in full line), data-points from the AMP algorithm aver-
aged over 10 instances of the problem of size d = 104. q00 and q01 denote
diagonal and o�-diagonal overlaps of the matrices q? and qamp, and their
values are given by the labels on the far-right of the �gure.

5.3 FROM TWO TO MORE HIDDEN
NEURONS AND THE
SPEC IAL IZAT ION PHASE
TRANS I T ION

5.3.1 two neurons committee machine
K = 2

Let us now discuss how the above results can be used to study the optimal
learning in the simplest non-trivial case of a two-layers neural network with
two hidden neurons, that is when model (100) is simply

yµ = sign
[
sign

( d

∑
i=1

xµiw?
i1

)
+ sign

( d

∑
i=1

xµiw?
i2

)]
,

and is represented in Fig. 31, with the convention that sign(0) = 0. We
remind that the input-data matrix X has i.i.d N (0,1) entries, and the teacher-
weights W? used to generate the labels y are taken i.i.d from Pw. In Fig. 32 we
plot the optimal generalization error as a function of the sample complexity
α = n/d. In the left panel the weights are Gaussian (for both the teacher
and the student), while in the right panel they are binary/Rademacher. The
full line is obtained from the �xed point of the SE of the AMP algorithm
(117), corresponding to the extremizer of the replica free entropy (109). The
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Figure 33: (Left) Bayes optimal and AMP generalization errors and (Right) diagonal
and o�-diagonal overlaps q00, q01 for a committee machine with a large
number of hidden neurons K and Gaussian weights, as a function of the
rescaled parameter α̃ = α/K. Solutions corresponding to global and local
minima of the replica free entropy are respectively represented with full
and dashed lines. The dotted line marks the spinodal at α̃G

spinodal ' 7.17,
i. e. the apparition of a local minimum in the replica free entropy, associ-
ated to a solution with specialized hidden units. The dotted-dashed line
shows the �rst order specialization transition at α̃G

spec ' 7.65, at which the
specialized �xed point becomes the global minimum. For α̃ < α̃G

spec, AMP
reaches the Bayes optimal generalization error and overlaps, correspond-
ing to a non-specialized solution (red area). However, for α̃ > α̃G

spec, the
AMP algorithm does not follow the optimal specialized solution (green
area) and is stuck in the non-specialized solution plateau, represented
with dashed lines. Hence it unveils a large computational gap (yellow
area).

points are results of the AMP algorithm run till convergence averaged over
10 instances of size d = 104. In this case and with random initial conditions
the AMP algorithm did converge in all our trials. As expected we observe
excellent agreement between the SE and AMP.

In both left and right panels of Fig. 32 we observe the so-called specialization
phase transition. Indeed (117) has two types of �xed points: a non-specialized
�xed point where every matrix element of the K×K order parameter q is the
same (so that both hidden neurons learn the same function) and a specialized
�xed point where the diagonal elements of the order parameter are di�erent
from the non-diagonal ones. We checked for other types of �xed points for
K = 2 (one where the two diagonal elements are not the same), but have not
found any. In terms of weight-learning, this means for the non-specialized
�xed point that the estimators for both w1 and w2, with Ŵ = (w1,w2) are
the same, whereas in the specialized �xed point the estimators of the weights
corresponding to the two hidden neurons are di�erent, and that the network
“�gured out” that the data are better described by a model that is not linearly
separable. The specialized �xed point is associated with lower error than the
non-specialized one (as one can see in Fig. 32). The existence of this phase
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transition was discussed in statistical physics literature on the committee
machine, see e.g. (Schwarze et al., 1992; Saad et al., 1995b).

For Gaussian weights (Fig. 32 left), the specialization phase transition arises
continuously at αG

spec(K = 2) ' 2.04. This means that for α < αG
spec(K = 2)

the number of samples is too small, and the student-neural network is not
able to learn that two di�erent teacher-vectors w?

1 and w?
2 were used to

generate the observed labels. For α > αG
spec(K = 2), however, it is able to

distinguish the two di�erent weight-vectors and the generalization error
decreases fast to low values (see Fig. 32). For completeness we remind that
in the case of K = 1 corresponding to single-layer neural network no such
specialization transition exists. We show in sec. E of (Aubin et al., 2018b) that
it is absent also in multi-layer neural networks as long as the activations
remain linear. The non-linearity of the activation function is therefore an
essential ingredient in order to observe a specialization phase transition.

The right part of Fig. 32 depicts the �xed point reached by the state evolu-
tion of AMP for the case of binary weights. We observe two phase transitions
in the performance of AMP in this case: (a) the specialization phase tran-
sition at αB

spec(K = 2) ' 1.58, and for slightly larger sample complexity a
transition towards perfect generalization (beyond which the generalization
error is asymptotically zero) at αB

perf(K = 2) ' 1.99. The binary case with
K = 2 di�ers from the Gaussian one in the fact that perfect generalization
is achievable at �nite α . While the specialization transition is continuous
here, the error has a discontinuity at the transition of perfect generalization.
This discontinuity is associated with the 1st order phase transition, in the
physics nomenclature, leading to a gap between algorithmic (AMP in our case)
performance and information-theoretically optimal performance reachable
by exponential algorithms. To quantify the optimal performance we need
to evaluate the global extremum of the replica free entropy (not the local
one reached by the state evolution). In doing so that we get that information
theoretically there is a single discontinuous phase transition towards perfect
generalization at αB

IT(K = 2) ' 1.54.
While the information-theoretic and specialization phase transitions were

identi�ed in the physics literature on the committee machine (Schwarze et al.,
1992; Schwarze et al., 1993; Seung et al., 1992; Watkin et al., 1993), the gap
between the information-theoretic performance and the performance of AMP
—that is conjectured to be optimal among polynomial algorithms— was not
yet discussed in the context of this model. Indeed, even its understanding
in simpler models than those discussed here, such as the single layer case,
is more recent (Donoho et al., 2009; Zdeborová et al., 2016a; Donoho et al.,
2013a).

5.3.2 two neurons parity machine K = 2

Although we mainly focused on the committee machine, another classical two-
layers neural network is the parity machine (Engel et al., 2001) and our proof
applies to this case as well. While learning is known to be computationally
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Figure 34: Similar plot as in Fig. 32 but for the parity machine with two hidden
neurons. Value of the order parameter and the optimal generalization
error for a parity machine with two hidden neurons with (Left) Gaussian
weights and (Right) binary/Rademacher weights. SE and AMP overlaps
are respectively represented in full line and points.

hard for general K, the case K = 2 is special, and in fact can be reformulated
as a committee machine, where the sign activation function has been replaced
by f2(z) = 1(z 6= 0)−1(z = 0):

yµ = sign
[ K

∏
k=1

sign
( d

∑
i=1

xµiw?
ik

)]
= f2

[ K

∑
k=1

sign
( d

∑
i=1

xµiw?
ik

)]
. (118)

We have repeated our analysis for the K = 2 parity machine and the phase
diagram is summarized in Fig. 34 where we show the generalization error and
the elements of the overlap matrix for Gaussian (Left) and binary weights
(Right), with the results of the AMP algorithm (points). Below the special-
ization phase transition α < αspec, the symmetry of the output imposes
the non-specialized �xed point q00 = q01 = 0 to be the only solution, with
αG

spec(K = 2)' 2.48 and αB
spec(K = 2)' 2.49. Above the specialization tran-

sition αspec, the overlap becomes specialized with a non-trivial diagonal term.
Additionally, in the binary case, an information theoretical transition towards
a perfect learning occurs at αB

IT(K = 2) ' 2.00, meaning that the perfect
generalization �xed point (q00 = 1,q01 = 0) becomes the global optimizer of
the free entropy. It leads to a �rst order phase transition of the AMP algorithm
which retrieves the perfect generalization phase only at αB

perf(K = 2)' 3.03.
This is similar to what happens in single layer neural networks for the sym-
metric door activation function, see (Barbier et al., 2019b). Again, these results
for the parity machine emphasize a gap between information-theoretical and
computational performance.
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5.3.3 more is different K → ∞

It becomes more di�cult to study the replica formula for larger values of
K as it involves (at least) K-dimensional integrals. Quite interestingly, it is
possible to work out the solution of the replica formula in the large K limit
(thus taken after the large d limit, so that K/d vanishes). It is indeed natural
to look for solutions of the replica formula, as suggested in (Schwarze, 1993),
of the form q = qdIK +(qa/K)1K1ᵀK , with the unit vector 1K = (1)K

l=1. Since
both q and ρρρ? are assumed to be positive, this scaling implies that 0≤ qd ≤ 1
and 0 ≤ qa + qd ≤ 1, as it should, see sec. D of (Aubin et al., 2018b). We
also detail in this same section the corresponding large K expansion of the
free entropy for the teacher-student scenario with Gaussian weights. Only
the information-theoretically reachable generalization error was computed
(Schwarze, 1993), thus we concentrated on the analysis of performance of AMP
by tracking the SE equations. In doing so, we unveil a large computational
gap.

In the right panel of Fig. 33 we show the �xed point values of the two
overlaps q00 = qd + qa/K and q01 = qa/K and the resulting generalization
error, plotted in the left panel. As discussed in (Schwarze, 1993) it can be
written in a closed form as εg = arccos [2 (qa + arcsinqd)/π ]/π , represented
in the left panel of Fig. 33. The specialization transition arises for α = Θ(K)

so we de�ne α̃ ≡α/K. The specialization is now a �rst order phase transition,
meaning that the specialization �xed point �rst appears at α̃G

spinodal ' 7.17
but the free entropy global extremizer remains the one of the non-specialized
�xed point until α̃G

spec' 7.65. This has interesting implications for the optimal
generalization error that gets towards a plateau of value εplateau' 0.28 for α̃ <

α̃G
spec and then jumps discontinuously down to reach a decay aymptotically

as 1.25/α̃ . See left panel of Fig. 33.
AMP is conjectured to be optimal among all polynomial algorithms (in the

considered limit) and thus analyzing its SE sheds light on possible computational-
to-statistical gaps that come hand in hand with �rst order phase transitions.
In the regime of α = Θ(K) for large K the non-specialized �xed point is al-
ways stable implying that AMP will not be able to give a lower generalization
error than εplateau. Analyzing the replica formula for large K in more details,
see sec. D of (Aubin et al., 2018b), we concluded that AMP will not reach the
optimal generalization for any α < Θ(K2). This implies a rather sizable gap
between the performance that can be reached information-theoretically and
the one reachable tractably (see yellow area in Fig. 33). Such large computa-
tional gaps have been previously identi�ed in a range of inference problems
—most famously in the planted clique problem (Deshpande et al., 2015)— but
the committee machine is the �rst model of a multi-layer neural network
with realistic non-linearities (the parity machine is another example but use
a very peculiar non-linearity) that presents such large gap.
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CONCLUS ION

In this chapter, we revisited a model for two-layer neural network known as
the committee machine in the T-S scenario that allows for explicit evaluation
of Bayes-optimal learning errors. This model has been solved in early statis-
tical physics literature using the non-rigorous replica method. We built on
recent progress in proving the replica formulas rigorous in the Bayes-optimal
setting and extend these proof to the case of the committee machine.

One of our contributions is the design of an AMP-type algorithm that is able
to achieve the Bayes-optimal learning error in the limit of large dimensions
for a range of parameters out of the so-called hard phase. The hard phase
is associated with �rst order phase transitions appearing in the solution of
the model. In the case of the committee machine with a large number of
hidden neurons we identify a large hard phase in which learning is possible
information-theoretically but not e�ciently. In other problems where such a
hard phase was identi�ed, its study boosted the development of algorithms
that are able to match the predicted threshold. We anticipate this will also
be the same for the present model. We should, however, note that for larger
K > 2 the present AMP algorithm includes higher-dimensional integrals that
hamper the speed of the algorithm. Our current strategy to tackle this is to
combine the large-K expansion and use it in the algorithm. Detailed account
of the corresponding results are left for future work.

We studied the Bayes-optimal setting where the student-network is the
same as the teacher-network, for which the replica method can be readily
applied. The method still applies when the number of hidden units in the
student and teacher are di�erent, while our proof does not generalize easily
to this case. It is an interesting subject for future work to see how the hard
phase evolves under over-parametrization and what is the interplay between
the simplicity of the loss-landscape and the achievable generalization error.
We conjecture that in the present model over-parametrization will not im-
prove the generalization error achieved by AMP in the Bayes-optimal case.

Even though we focused on a two-layers neural network, the analysis and
algorithm can be readily extended to a multi-layer setting, see (Mato et al.,
1992), as long as the number of layers as well as the number of hidden neurons
in each layer is held constant, and as long as one learns only weights of the
�rst layer, for which the proof already applies. The numerical evaluation of
the phase diagram would be more challenging than the cases presented in
this paper as multiple integrals would appear in the corresponding formulas.
In future works, we also plan to analyze the case where the weights of the
second and subsequent layers (including the biases of the activation functions)
are also learned. This could be done for instance with a combination of
Expectation Maximization and AMP along the lines of (Krzakala et al., 2012b;
Kamilov et al., 2012) where this is done for the simpler single layer case.

Concerning extensions of the present work, an important open case is the
one where the number of samples per dimension α = Θ(1) and also the
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size of the hidden layer per dimension K/d = Θ(1) as d→ ∞, while in this
paper we treated the case K = Θ(1) and d→ ∞. This other scaling where
K/d = Θ(1) is challenging even for the non-rigorous replica method.







6
STORAGE CAPACI T Y IN
SYMMETRIC B INARY
PERCEPTRONS

In this chapter, we revisit the problem of computing the capacity of the binary
perceptron (Gardner et al., 1988; Krauth et al., 1989) for storing random
patterns. This problem lies at the core of early statistical physics studies
of neural networks and their learning and generalization properties, for
reviews see e. g. (Watkin et al., 1993; Seung et al., 1992; Engel et al., 2001;
Nishimori, 2001). While the perceptron problem is motivated by studies of
simple arti�cial neural networks as discussed in detail in the above literature,
in this paper we view it as a rCSP where the vector of binary weights w ∈
{±1}d (a solution) must satisfy n step constraints of the type

d

∑
i=1

xµiwi ≥ K , (119)

where µ ∈ JnK, K ∈R is the threshold, the random variables xµi are i.i.d Gaus-
sian variables with zero mean and variance 1/d, and the rows of the matrix
X ∈Rn×d are called patterns. We de�ne an indicator function associated to
the perceptron with a step constraint as ϕs(z) = 1 [z≥ K].

We say that a given vector w is a solution of the perceptron instance
if all n constraints given by eq. (119) are satis�ed. The storage capacity is
then de�ned similarly to the satis�ability threshold in random constraint
satisfaction problems: we denote the constraint density as α ≡ n/d and
de�ne the storage capacity αc(K) as the in�mum of densities α such that
in the limit d → ∞, with high probability over the choice of the matrix X
there are no solutions. It is natural to conjecture that the converse also holds,
i. e. the storage capacity αc(K) equals the supremum of α such that in the
limit d→ ∞ solutions exist with high probability. In this case we would say
the storage capacity is a sharp threshold according to the de�nition:

∃ε > 0 / ∀α > αc + ε , lim
n,d→∞

P [@w / ∀µ ∈ JnK, ϕ (xµ ·w)] = 1. (120)

Gardner and Derrida in their paper (Gardner et al., 1988) assume the storage
capacity αc(K) is a sharp threshold and they apply the replica calculation
to compute it, but reach a result inconsistent with a simple upper bound
obtained by the �rst moment method. Mézard and Krauth (Krauth et al., 1989)
found a way to obtain a consistent prediction from the replica calculation
and concluded that the storage capacity αs

c(K) for the step binary perceptron

161
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(SBP), i.e. associated to the constraint ϕs, is given by the largest α for which
the following quantity, the entropy in physics, is positive:

Φ(rs)
s (α ,K) = extrq0,q̂0

{
1
2
(q0−1) q̂0 +

∫
Dξ log

[
2cosh

(√
q̂0ξ

)]

+α

∫
Dξ log

[∫
∞

K−ξ
√q0√

1−q0

Dz

]}
, (121)

where Dξ = e−ξ 2/2√
2π

dξ is a normal Gaussian measure, and extr means that
the expression is evaluated where the derivatives on the curl-bracket, with
respect to q0 ≥ 0 and q̂0 ≥ 0, are zero.

Several decades of subsequent research in the statistical physics of disor-
dered systems are consistent with the conjectured Mézard-Krauth formula
for the storage capacity of the binary perceptron. Despite the simplicity of
the above conjecture and decades of impressive progress in the mathematics
of spin glasses and related problems, (see e.g. (Talagrand, 2006b; Talagrand,
2003; Mézard et al., 2009; Achlioptas et al., 2011; Panchenko, 2014; Ding
et al., 2015) and many others), the storage capacity of the binary perceptron
remains an open mathematical problem. In fact, even the very existence of
a sharp threshold, i. e. the fact that in the limit d→ ∞ the probability that
patterns can be stored drops sharply from one to zero at the capacity, is an
open problem. Up to very recently only widely non-matching upper bounds
and lower bounds for the storage capacity of the binary perceptron were
available (Kim et al., 1998; Stojnic, 2013b). As the present work was being
�nalized Ding and Sun (Ding et al., 2019) proved in a remarkable paper a
lower bound on the capacity that matches the Krauth and Mezard conjecture
(note that much like Theorem 6.1.4 below, the main theorem in (Ding et al.,
2019) depends on a numerical hypothesis). A matching upper bound remains
an open challenge in mathematical physics and probability theory.

In this chapter, we introduce two simple symmetric variants of the binary
perceptron problem. Let zµ(w) =∑

d
i=1 xµiwi = xµ ·w. For a threshold K ∈R+,

we consider two di�erent types of symmetric constraints:

• The rectangle binary perceptron (RBP) requires |zµ | ≤ K,∀µ ∈ JnK. Its
associated indicator function is ϕr(z) = 1 [|z| ≤ K].

• The u-function binary perceptron (UBP) requires |zµ | ≥ K,∀µ ∈ JnK.
Its associated indicator function is ϕu(z) = 1 [|z| ≥ K].

These constraints are symmetric in the sense that if w is a solution then
−w is a solution as well. Our motivation behind these symmetric variants
of the perceptron is that this symmetry simpli�es greatly the mathematical
treatment of the problem, while keeping the relevant physical properties
intact. Thus, results that remain open questions for the canonical perceptron
can be established rigorously for these symmetric versions. Symmetric per-
ceptron models are also directly related to the problem of determining the
discrepancy of a random matrix or set system (Bansal et al., 2019), a problem
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of interest in combinatorics.

Our main result, presented in Sec. 6.1, is a proof, subject to a numerical
hypothesis, of a formula for the storage capacity, de�ned in the same way as
for the step-function binary perceptron above. In particular, we show that in
these symmetric variants the �rst moment upper bound, corresponding to
the annealed capacity in physics, on the storage capacity is tight (except for
K > K∗ ' 0.817 for the UBP case). We prove this statement using the second
moment method. We note that the existing physics literature on perceptron-
like problem contains other cases of models where the �rst moment upper
bound on the storage capacity was observed to be tight, in particular the
parity machine (Opper, 1995), and the reversed-wedge binary perceptron
(Bex et al., 1995; Hosaka et al., 2002). Those works, however, rely on the
comparison of the �rst moment bound on the capacity with the result of the
replica method, rather than providing a rigorous justi�cation. To formally
state our main result, let z∼N (0,1), and for K ∈R+ let pr,K = P[|z| ≤ K]

and pu,K = P[|z| ≥ K].

• The storage capacity for the rectangle binary perceptron is:

α
r
c(K) =

− log(2)
log(pr,K)

∀K ∈R+ . (122)

• The storage capacity for the u−function binary perceptron is:

α
u
c (K) =

− log(2)
log(pu,K)

for 0 < K < K∗ ' 0.817 . (123)

The constant K∗ ' 0.817 stems from the properties of the second moment
entropy eq. (129). In the physics terms it is de�ned as the point of intersection
between the annealed capacity αu

a (K) and the local stability of the RS solution
αu

AT(K) eq. (137). That is, K∗ is the solution of the following implicit equation:

π p2
u,K exp

(
K2) log(pu,K) = −2 log(2) K2 . (124)

The two symmetric variants of the perceptron problem considered here
share many of the intriguing geometric properties of the original step-
function binary perceptron problem. Most signi�cant is the conjectured
f1RSB (Krauth et al., 1989) nature of the space of solutions that splits into well
separated clusters of vanishing entropy at any α > 0. Remarkably, this f1RSB
property can be deduced from the form of the second moment entropy as we
explain in section 6.2. Our justi�cation of the f1RSB property does not rely on
the replica method and is hence of independent interest.

For the UBP and K > K∗, the second-moment proof technique fails, and
this failure marks tightly the onset of the replica symmetry breaking region.
In that region, we evaluate the 1RSB approximation for the storage capacity,
but conclude that FRSB would be needed to obtain the exact result. While the



6.1 proof of correctness of the annealed capacity 164

Binary perceptron Constraint Constraint function Range of K Storage capacity
Step-function z≥ K ϕs(z) = 1 [z≥ K] ∀K ∈R RS eq. (121)

Rectangle |z| ≤ K ϕr(z) = 1 [|z| ≤ K] ∀K ∈R+ Annealed eq. (122)
U-function |z| ≥ K ϕu(z) = 1 [|z| ≥ K] 0 < K < K∗ = 0.817 Annealed eq. (123)
U-function |z| ≥ K ϕu(z) = 1 [|z| ≥ K] ∀K > K∗ = 0.817 FRSB ?

Table 1: This table summarizes results for storage capacity in binary perceptrons
with di�erent types of constraints. The result for canonical step-function is
from (Krauth et al., 1989). The results for the rectangle and u-function are
obtained in this paper.

FRSB equations can be written along the lines of (Franz et al., 2017), they are
more involved than the ones for the Sherrington-Kirkpatrick model (Parisi,
1979; Parisi, 1980c; Parisi, 1980d), and solving them numerically or getting
additional insight from them is a challenging task left for future work. We
present the replica analysis in section 6.3. Table 1 contains the summary of
our main results along with the predictions for the step-function perceptron.

Finally let us comment on the simpler and more commonly considered
case of spherical perceptron where the binary constraint on the vector w
is replaced by the spherical constraint ‖w‖2

2 = ∑
d
i=1 w2

i = d. For K = 0 the
spherical perceptron reduces to the famous problem of intersection of half-
spaces with capacity αc = 2 as solved by Wendell (Wendel, 1962) and Cover
(Cover, 1965). For K > 0 the Gardner-Derrida solution (Gardner et al., 1988)
is correct as proven in (Shcherbina et al., 2003; Stojnic, 2013a). For K < 0
the situation is more challenging and FRSB is needed to compute the storage
capacity; for recent progress in physics see (Franz et al., 2016; Franz et al.,
2017), while mathematical considerations about this case were presented in
(Stojnic, 2013c).

6.1 PROOF OF CORRECTNESS OF THE
ANNEALED CAPACI T Y

To precisely state the main results, we introduce some de�nitions. Let X(d,n)
be the random n×d pattern matrix. De�ne the partition functions

Zr(X) = ∑
w∈{±1}d

n

∏
µ=1

ϕ
r(zµ(w))

Zu(X) = ∑
w∈{±1}d

n

∏
µ=1

ϕ
u(zµ(w)) ,

(125)

which count respectively the number of solutions for the rectangle and
u−function constraints. Let E r(d,n) and E u(d,n) be the events that Zr(X)≥
1 and Zu(X) ≥ 1, we formally de�ne the storage capacity as follows.

De�nition 6.1.1. The storage capacity αr
c(K) is

α
r
c(K) = inf

{
α : lim

d→∞

P[E r(d,bαdc)] = 0
}

,
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and likewise for αu
c (K).

It is believed that there is a sharp threshold for the existence of solutions.

Conjecture 6.1.2. The storage capacity is a sharp threshold:

α
r
c(K) = sup

{
α : lim

d→∞

P[E r(d,bαdc)] = 1
}

,

and likewise for αu
c (K).

The corresponding conjecture for the random k-SAT model is the cele-
brated satis�ability threshold conjecture proved for k large by Ding, Sly, and
Sun (Ding et al., 2015). Next, couple two standard Gaussians z1,zβ by letting z
and z′ be independent standard Gaussians and setting z1 =

√
β z+

√
1−β z′

and zβ =
√

β z−
√

1−β z′. Let

qr,K(β ) ≡P[|z1| ≤ K∧|zβ | ≤ K] = qK(β ) ,

qu,K(β ) ≡P[|z1| ≥ K∧|zβ | ≥ K] = 1−2pr,K + qK(β ) ,
(126)

with qK(β ) the probability that two standard Gaussians with correlation
2β −1 are both at most K in absolute value, explicitly given by

qK(β ) =
1

2π

∫ K

−K
dy
∫ K+(1−2β )y

2
√

β (1−β )

−K+(1−2β )y
2
√

β (1−β )

dx exp
(
−x2 + y2

2

)
.

Note that qt,K(1) = pt,K and qt,K(1/2) = p2
t,K for t ∈ {r,u}. We now in-

troduce the functions that dictate the e�ectiveness of the second moment
bound. Let

Fr,K,α(β ) = H(β )+α logqr,K(β ) ,

Fu,K,α(β ) = H(β )+α logqu,K(β )
(127)

where H(β ) = −β logβ − (1−β ) log(1−β ) is the Shannon entropy func-
tion. We state a numerical hypothesis in terms of the derivatives of these two
functions.

Hypothesis 6.1.3. For all choices of K > 0 and α > 0 so that F ′′r,K,α(1/2)< 0,
there is exactly one β ∈ (1/2,1) so that F ′r,K,α(β ) = 0. The same holds for
Fu,K,α .

Our main theorem is a proof, under Hypothesis 6.1.3, that the storage
capacity is given by the annealed computation.

Theorem 6.1.4. Under the assumption of Hypothesis 6.1.3, the following hold.

1. For all K > 0, we have αr
c(K) = − log(2)/ log(pr,K).

2. For all K ∈ (0,K∗), we have αu
c (K) = − log(2)/ log(pu,K).

Under our de�nition of αr
c(K) and αu

c (K), we must prove two statements
to show that αr

c(K) =− log(2)/ log(pr,K) (and similarly for αu
c (K)). We use



6.1 proof of correctness of the annealed capacity 166

the �rst moment method to show that for α >− log(2)/ log(pr,K),
limd→∞ P[E r(d,n)] = 0; then we use the second moment method to show
that for α < − log(2)/ log(pr,K), liminfd→∞ P[E r(d,n)] > 0 (a result anal-
ogous to what Ding and Sun prove for the more challenging step binary
perceptron (Ding et al., 2019)). Conjecture 6.1.2 asserts the stronger state-
ment that for α <− log(2)/ log(pr,K), limd→∞ P[E r(d,n)] = 1.

6.1.1 first moment upper bound

Proposition 6.1.5 (First moment upper bound).

1. If α > αr
a(K) = − log(2)

log(pr,K)
, then with high probability there is no satisfy-

ing assignment to the binary perceptron with the rectangle activation
function.

2. If α > αu
a (K) = − log(2)

log(pu,K)
, then with high probability there is no satisfy-

ing assignment to the binary perceptron with the u-function activation
function.

Proof. We give the proof for the rectangle function as the proof for the u-
function is identical. Let ε = α −αr

a(K) > 0. Let 1d denote the vector of
dimension d with all 1 entries.

P[E r(d,αd)] ≤E [Zr (X(d,αd))] = 2d E

[
αd

∏
µ=1

1
[∣∣zµ(1)

∣∣≤ K
]
]

= 2d pαd
r,K = exp(d(log(2)+α log(pr,K)))

= exp(dε log(pr,K))→ 0 as d→ ∞ .

6.1.2 second moment lower bound

Proposition 6.1.6 (Second moment lower bound).

1. If α <
− log(2)
log(pr,K)

, then liminfd→∞ P[E r(d,αd)] > 0.

2. If K < K∗ and α <
− log(2)
log(pu,K)

, then liminfd→∞ P[E u(d,αd)] > 0.

To prove Proposition 6.1.6 we will apply the second-moment method
in a similar fashion to Achlioptas and Moore (Achlioptas et al., 2002) who
determined the satis�ability threshold of random k-SAT to within a factor 2 by
considering not-all-equal satisfying assignments (not-all-equal satis�ability
(NAE-SAT) constraints are symmetric in the same way the rectangle and
u-function constraints are symmetric). Recall the Paley-Zygmund inequality.

Lemma 6.1.7. Let X be a non-negative random variable. Then

P[X > 0] ≥ E[X]2

E[X2]
.
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We will also use the following application of Laplace’s method from
Achlioptas and Moore (Achlioptas et al., 2002).

Lemma 6.1.8. Let g(β ) be a real analytic function on [0,1] and let

G(β ) =
g(β )

β β (1−β )1−β
.

If G(1/2) > G(β ) for all β 6= 1/2 and G′′(1/2) < 0, then there exists con-
stants c1,c2 so that for all su�ciently large d

c1G(1/2)d ≤
d

∑
l=0

(
d
l

)
g(l/d)d ≤ c2G(1/2)d .

6.1.2.a rectangle binary perceptron

We calculate

E[Zr(X)2] = ∑
w1,w2∈{±1}d

P[w1,w2 satisfying]

= 2d
∑

w∈{±1}d

P[1,w satisfying] = 2d
d

∑
l=0

(
d
l

)
qr,K(l/d)αd

= exp (d(log(2)+Fr,K,α(β ))) .

where we recall qr,K from eq. (126). De�ne

Gr,K,α(β ) ≡ exp(Fr,K,α(β )) =
qr,K(β )α

β β (1−β )1−β
. (128)

If we can show that Gr,K,α(1/2)>Gr,K,α(β ) for all β 6= 1/2 and G′′r,K,α(1/2)
< 0, then by Lemma 6.1.8, we have

E[Zr(X)2] ≤ c2 4d qr,K(1/2)αd = c2 4d p2αd
r,K .

Then since Zr(X) is integer valued, we have

P[Zr(X) ≥ 1] ≥ E[Zr(X)]2

E[Zr(X)2]
=

(2d pαd
r,K)

2

E[Zr(X)2]
≥

(2d pαd
r,K)

2

c24d p2αd
r,K

=
1
c2

> 0.

It remains to show that when α <
− log(2)
log(pr,K)

, then Gr,K,α(1/2)> Gr,K,α(β ) for
all β 6= 1/2 and G′′r,K,α(1/2)< 0. By eq. (128) and the fact that G′r,K,α(1/2) =
0, it is enough to show the same for Fr,K,α . Certainly one necessary condition
is that Fr,K,α(1/2)> Fr,K,α(1). This reduces to the condition 2p2α

r,K > pα
r,K or

α <
− log(2)
log(pr,K)

which is exactly the condition of Proposition 6.1.6. Next consider
F ′′r,K,α(1/2). A straightforward calculation shows that

F ′′r,K,α(1/2) = 4

(
−1+

2
π

αK2e−K2

p2
r,K

)
.
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In particular, F ′′r,K,α(1/2) < 0 if and only if α < π

2
p2

r,K
K2 exp(−K2)

. But another
calculation also shows that

− log(2)
log(pr,K)

<
π

2
p2

r,K

K2e−K2

for all K > 0 and so the condition of Proposition 6.1.6 implies that F ′′r,K,α(1/2)<
0. Moreover, since Fr,K,α(β ) is symmetric around β = 1/2 and it has a local
maximum at β = 1/2, Hypothesis 6.1.3 implies that the global maximum
of Fr,K,α(β ) occurs at either 1/2 or 1, and since Fr,K,α(1/2)> Fr,K,α(1), we
have that Fr,K,α(1/2) > Fr,K,α(β ) for all β 6= 1/2, completing the proof of
Proposition 6.1.6 for the rectangle binary perceptron.

6.1.2.b u-function binary perceptron

The proof for the u-function is similar. We can calculate

E [Zu (X)2 ] = 2d
d

∑
l=0

(
d
l

)
qu ,K ( l /d )α d

= exp (d ( log(2) + Fu ,K ,α (β ))) ,

where we recall qu ,K from eq. (126). Using Lemma 6.1.8 and Hypothesis 6.1.3
again, it su�ces to show that for 0 < K < K ∗ and α <

− log(2)
log( pu ,K )

we have
Fu ,K ,α (1/2) > Fu ,K ,α (1) and F ′′u ,K ,α (1/2) < 0. The �rst follows imme-
diately from the fact that α <

− log(2)
log( pu ,K )

. For the second, we have

F ′′u ,K ,α (1/2) = 4

(
−1 +

2
π

α K 2 e−K 2

p2
u ,K

)

and so F ′′u ,K ,α (1/2) < 0 if and only if α < π

2
p2

u ,K

K 2 e−K 2 . Unlike with the rect-
angle function it is not true that

− log(2)
log( pu ,K )

<
π

2
p2

u ,K

K 2 e−K 2 (129)

for all K : the left and right sides of the inequality cross at K = K ∗ , which im-
plicitly de�nes K ∗ . Thus for K < K ∗ and α < − log(2)

log( pu ,K )
we have F ′′u ,K ,α (1/2)

< 0, which completes the proof of Proposition 6.1.6 for the u-function binary
perceptron.

6.1.2.c illustration

As an illustration, we plot the second moment entropy density limd→∞
1
d log

E[Z 2
t ] = log(2)+Ft,K,α for t ∈ {r,u} at K = 1 > K∗ in Fig. 35. For the rect-

angle function (Left), the second moment is tight: the maximum is reached
for β = 1/2 for all α smaller than the �rst moment αr

a (dashed pink). Exactly
the same happens for the u−function with K < K∗. However for K > K∗, the
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Figure 35: Second moment entropy densities. (Left) the rectangle binary perceptron
for α ≤ αr

a = 1.816 (dashed pink), β = 1
2 is the global maximizer. For

α ≥ αr
a , β = 0 and β = 1 are the maximizers. (Right) the u-function

binary perceptron for α ≤ α∗ = 0.430, β = 1
2 is the maximizer while

for α∗ ≤ α ≤ αu
a = 0.604 (dashed yellow), the maximizer is non-trivial

β 6= 0.

second moment method fails (Right): β = 1/2 becomes a minimum and the
maximum is obtained for non trivial values β 6= 1/2 for constraint density
smaller than the �rst moment αu

a (dashed yellow).

6.2 FROZEN - 1RSB STRUCTURE OF
SOLUT IONS IN B INARY
PERCEPTRONS

One of the most striking properties of the canonical step-function perceptron
is the predicted f1RSB (Krauth et al., 1989) nature of the space of solutions.
This means that the dominant, i. e. with measure tending to one, part of
the space of solutions splits into well separated clusters each of which has
vanishing entropy density at any α > 0. This f1RSB scenario and quantitative
properties of the solution space were studied in detail recently (H. Huang,
2013; Huang et al., 2014). Following up on conjectures that such a frozen
structure of solutions implies computational hardness in diluted constraint
satisfaction problems (Zdeborová et al., 2008a), it was argued that �nding a
satisfying assignment in the binary perceptron should also be algorithmically
hard since its solution space is dominated by clusters of vanishing entropy
density (Huang et al., 2014). Yet this conjecture contradicted empirical results
of (Braunstein et al., 2006). This paradox was resolved in (Baldassi et al., 2015)
where the authors identi�ed that there are subdominant parts (i. e. parts of
measure converging to zero as the system size diverges) of the solution space
that form extended clusters with large local entropy and all the algorithms
that work well always �nd a solution belonging to one of those large-local-
entropy clusters. These sub-dominant clusters are not frozen and somewhat
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strangely are not captured in the canonical 1RSB calculation (Baldassi et al.,
2015). It was argued that existence of these large-local-entropy clusters bears
more general consequences on the dynamics of learning algorithms in neural
networks, see e.g. (Baldassi et al., 2016).

While f1RSB structure has also been identi�ed in CSP on sparse graphs
(Zdeborová et al., 2008b; Zdeborová et al., 2011), we want to note that its
nature in the binary perceptron is of a rather di�erent nature. In sparse
systems a simple argument using expansion properties of the underlying
graph and properties of the constraints show that each cluster with high
probability contains only one solution. In the perceptron model, which has a
fully connected bipartite interaction graph, this argument from sparse models
does not apply.

In the present work, we deduce from the second moment calculation of
the previous section that the space of solutions in the symmetric binary
perceptrons is also of the f1RSB type and this property moreover extends
to any �nite temperature (with energy being de�ned as the number of un-
satis�ed constraints). This is di�erent from the locked CSP of (Zdeborová
et al., 2008a; Zdeborová et al., 2011) living on diluted hyper-graphs, where
the solution-clusters have extensive entropy at any non-zero temperature.
Another di�erence is that whereas in the locked CSP the size of each cluster
is one with high probability, in the binary perceptron there are still many
solutions in the clusters, it is only their entropy density, i. e. the logarithm of
their number per variable, that vanishes as d→ ∞. Investigation of the large
local entropy clusters and their implications for learning in the symmetric
perceptrons is also of great interest, but left for future work. Clearly since
mathematically the symmetric perceptrons are simpler than the step-function
one, they should also be the proper playground to deepen our understand-
ing of the large local entropy clusters and their relation to learning and
generalization.

We present the f1RSB scenario as a conjecture and then below indicate how
the second moment calculation gives evidence for this conjecture. Given an
instance X and a solution w, let Γ(w, d̃) denote the set of solutions w′ with
Hamming distance at most d̃ from w.

Conjecture 6.2.1. For every K > 0 and every α ∈ (0,αr
c(K)) there exists a

Hamming distance d̃min > 0 so that with high probability over the choice of the
random instance X from the RBP, the following property holds: for almost every
solution w,

1
d

log |Γ(w, d̃min)| −→
d→∞

0

The same holds for the UBP for all K ≤ K∗.
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6.2.1 the link between the
second-moment entropy and size of
clusters

In this section we use t ∈ {r,u} and note that the form of the second moment
entropy density 1

d logE[Z 2
t ] has very direct implications on the structure of

solutions in the corresponding models. As we de�ned it above, the second
moment entropy is the normalized logarithm of the expected number of pairs
of solutions of overlap β .

For problems such as the symmetric binary perceptrons where the quenched
and annealed entropies are equal in leading order, there is a striking relation
between the planted and the random ensemble of the model (Achlioptas
et al., 2008; Krzakala et al., 2009). The random ensemble is the problem we
have considered so far, while the planted ensemble is de�ned by starting
with a con�guration of the weights (a solution) and then including only
constraints that are satis�ed by this planted con�guration. As long as the
quenched and annealed entropies of the random ensemble are equal in lead-
ing order the planted and random ensembles should be contiguous, meaning
that high-probability properties that hold in one ensemble also hold in the
other. Moreover the planted con�guration in the planted ensemble has all the
properties of a con�guration sampled uniformly at random in the random en-
semble. These properties follow on the heuristic level from the cavity method
reasoning (Krzakala et al., 2009). They were established fully rigorously in
a range of models, see e.g. (Achlioptas et al., 2008; Mossel et al., 2015; Coja-
Oghlan et al., 2018). In the present case of symmetric binary perceptrons
we have not yet managed to prove contiguity between the random and the
planted ensemble, and so we leave a rigorous mathematical result for future
work. (In fact the missing ingredient is a version of Friedgut’s sharp threshold
result (Friedgut, 1999) suitable for perceptrons; such a result combined with
Theorem 6.1.4 would also prove Conjecture 6.1.2). We hence rely on the above
heuristic argument and assume it holds in what follows.

Given a planted solution w and a con�guration wβ that agrees with w on
βd coordinates, the probability that wβ is a solution in the planted model is
(qt,K(β )/pt,K)n, and thus the expected number of solutions Zβ at Hamming
distance βd from the planted solution in the planted ensemble is

E[Zβ ] =

(
d

βd

)
(qt,K(β )/pt,K)

n ,

and its entropy density is

ωt(β ) ≡ lim
d→∞

1
d

logE[Zβ ] = Ft,K,α(β )−α log pt,K for t ∈ {r,u} .

(130)

Recalling that contiguity implies that the planted solution has the properties of
a uniformly chosen solution in the random ensemble then this entropy gives
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us direct access to properties of the solution space in the random ensemble
at equilibrium. Most notably we notice (see derivation in section 6.2.2 below)
that the derivative of ωt(β ) at β = 1 is +∞ thus implying that ∀ε > 0 with
high probability there are no solutions at overlap β ∈ [d̃min(α ,K), (1− ε)].
In turn, this means that the dominant (measure converging to one as d→ ∞)
part of the solution space splits into clusters each of which has vanishing
entropy density (i.e. logarithm of the number of solutions in the cluster
divided by d goes to zero as d→ ∞). The missing ingredient in a full proof
of Conjecture 6.2.1 is a proof of the contiguity statement.

6.2.2 form of the 2nd moment entropy
implying frozen-1rsb

0.5 0.6 0.7 0.8 0.9 1.0
β

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ω
r(

β
)

at
(K

,α
)

=
(1

,1
.8

0)

dmin(α,K)

0.5 0.6 0.7 0.8 0.9 1.0
β

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

ω
k
−

N
A

E
(β

)
at

(k
,α

)
=

(7
,4

0)

Figure 36: (Left) Density of the annealed entropy of solutions at overlap β from
a random solution in the rectangle binary perceptron at K = 1, α =
1.80≤ αr

c (K = 1). We see there are no solution in an interval of overlaps
(1− d̃min,1−ε). This curve is obtained from the second moment entropy
and contiguity between the random and planted ensembles. It implies
the frozen-1RSB nature of the space of solutions. The same holds for
the u−function. (Right) To compare we plot the density of the annealed
entropy of solutions at overlap β from a random solution in the k-NAE
SAT model (Achlioptas et al., 2002) at k = 7, α = 40. We see the density
is positive in a large region close to β = 1, showing the absence of frozen-
1RSB structure in this problem.

In Fig. 36 (Left), we plot ωr(β ) for the rectangle binary perceptron, at K =

1, α = 1.80≤ αr
c(K = 1). Thanks to the contiguity between the planted and

random ensembles that holds as long as the second moment entropy density
is twice the �rst moment entropy density, this curve represents also the
annealed entropy of solutions at overlap β with a random reference solution.
We see notably that there is an interval of distances in which no solutions are
present. Analytically we can see from the properties of the functions Ft,K,α(β )

and log pt,K that Ft,K,α(1) = α log pt,K and the derivative of Ft,K,α(β )→ ∞.
This is in contrast with, for instance, the satis�ability problems studied in
(Achlioptas et al., 2002), where the function corresponding to Ft,K,α(β ) would
have a negative derivative in β = 1, see Fig. 36 (Right). There could still be an
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interval of forbidden distance, but the bump in entropy for β ≈ 1 corresponds
to the size of the clusters to which typical solutions belong and those would
be extensive.

6.2.2.a frozen 1rsb in rectangle binary perceptron

In the rectangle binary perceptron, the random and planted ensembles are
conjectured to be contiguous for all K > 0 and α ∈ (0,αr

c(K)). Using eq. (127),
the �rst derivative of ωr(β ), eq. (130), is given by

∂ωr

∂β
=

∂Fr,K,α

∂β
= log

(
1−β

β

)

+
α

qr,K,T (β )

1

π
√

β (1−β )

(
e−

K2
2(1−β )

(
e
(2β−1)K2

2(1−β )β −1
))
−−−→
β→1

+∞ ,

where the computation is detailed in Sec. E of (Aubin et al., 2019c). It diverges
for all K ∈ R+, α > 0 in the limit β → 1, that implies vanishing entropy
density of clusters to which typical solutions belong.

6.2.2.b frozen 1rsb in the u-function binary
perceptron

In the u-function binary perceptron, the random and planted ensembles
are conjectured to be contiguous for all 0 < K ≤ K ∗ and α ∈ (0, α u

c (K )).
Using eq. (127), the �rst derivative of ωu (β ) eq. (130), is given by

∂ ωu

∂ β
=

∂ Fu ,K ,α

∂ β
= log

(
1− β

β

)

+
α

qu ,K ,T (β )

1

π
√

β (1− β )

(
e−

K 2
2(1−β )

(
e

(2β−1)K 2

2(1−β )β − 1
))
−→
β→1

+∞ ,

thus reaching the same conclusion on presence of f1RSB.

In Sec. E of (Aubin et al., 2019c), we extend the second moment calculation
to �nite temperature (for both the rectangle and u−function case). This
means that we de�ne the energy of a con�guration E (w) as the number of
constraints that are violated by this con�gurations. Then the corresponding
partition function is de�ned Z (T ) = ∑w e−E (w)/T . There is a one-to-
one mapping between the temperature T and energy density e = E /d ,
consequently the corresponding �nite-temperature second moment entropy
density counts the number of pairs of solutions at overlap β and energy
density e. In Sec. E of (Aubin et al., 2019c), we apply the same argument
as here connecting the random and planted ensemble, and deduce that the
�nite-temperature solution space of the models is of also of the f1RSB type
for any T < ∞.
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6.2.3 frozen-1rsb as derived from the
replica analysis

1− qrs

1− q1

1− q0

1− q0

Figure 37: Illustration of the con�guration space for the di�erent phases (Left) RS:
solutions are concentrated in a single cluster of typical size 1− qrs.
(Center) 1RSB: solutions form clusters of size 1−q1 at a distance 1−q0
from each other. (Right) f1RSB: clusters are point-like (1−q1 ' 0) at a
distance 1−q0 = 1−qrs from each other.

We stress that we derived the f1RSB nature of the space of solutions without
the use of replicas. For completeness we summarize here how this translates
to the properties of the one-step-replica-symmetry breaking solution. This is
the way this phenomena was originally discovered and described in (Martin
et al., 2004; H. Huang, 2013). For readers not familiar with the replica method
this section should be read after reading section 6.3. In general, three kinds
of �xed points of the 1RSB equations are possible:

• The replica symmetric RS solution q0 = q1 = qrs < 1 ,

• The frozen-1RSB solution f1RSB (q0,q1) = (qrs,1) ,

• The 1RSB solution (q0,q1) with q1 6= 1 .

The f1RSB is characterized by an inner-cluster overlap q1 = 1 and an inter-
cluster overlap q0 = qrs, which means that clusters have vanishing entropy
density and remain far from each other. Mathematically RS and f1RSB solutions
are equivalent in the sense that these solutions have the same free entropy
Φ(1rsb){q0 = qrs,q1 = qrs} = Φ(1rsb){q0 = qrs,q1 = 1}, and the complexity
of the f1RSB solution equals the RS entropy Σ(Φ = 0) = Φ(rs) eq. (145, 134).
However, RS and f1RSB do not share the same con�guration space. The RS
phase is associated to a single cluster of solution with typical size 1− qrs,
while the f1RSB con�guration space is composed of many point-like solutions
of size q1 ' 1 and at distance 1−q0 = 1−qrs of each other, see Fig. 37. From
this point of view f1RSB is the correct description of the phase space.

6.3 REPL ICA CALCULAT ION OF THE
STORAGE CAPACI T Y

In this section we provide the replica free entropies leading to the expression
of the storage capacity in the step-function binary perceptron (121). We
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show that in the symmetric binary perceptrons the annealed calculation
is reproduced by the replica symmetric result. For the u−function binary
perceptron we show that K∗ coincides with the onset of replica symmetry
breaking and we evaluate the 1RSB capacity for K > K∗. The details of the
computation is presented in Appendix. B.2 for the constraint function at zero
temperature

C (z) ≡
n

∏
µ=1

ϕ(zµ) with zµ = xµ ·w , (131)

and Py(y) = δ (y−1) if we use the Gauge transformation x→ yx, y→ 1 by
symmetry of the labels and the data. The replica computation of the quenched
average of the partition functions (125) Ey,X[log(Zd(X))]

Zd(y,X) =
∫

R
dy Py(y)

∫

Rd
dw Pw(w)

∫
dz C (z)δ (z−Xw) ,

and boils down to a free entropy formulation

Φ(α) = extrQ,Q̂

{
lim
r→0

∂ Φ(r)(Q,Q̂,α)

∂ r

}
, (132)

as a function of symmetric overlap matrices Q ∈Rr×r and Q̃ ∈Rr×r in the
limit r→ 0:

Φ(r) (Q,Q̂,α
)
≡−1

2
Tr
(
QQ̂
)
+ logΨ(r)

w (Q̂)+α logΨ(r)
out(Q) ,

Ψ(r)
w (Q̂) =

∫

Rr
dPw(w̃)e

1
2 w̃ᵀQ̂w̃ ,

Ψ(r)
out(Q) =

∫

Rr
dPz(z̃,Q)C (z̃).

(133)

To obtain a tractable expression of the free entropy, in the following we
perform the so-called RS and 1RSB ansatz.

6.3.1 rs calculation and stability

6.3.1.a rs entropy

The simplest ansatz is to assume that the overlap matrix Q is RS, which means
that all replicas play the same role: the correlation between two arbitrary,
but di�erent, replicas is denoted q0, and therefore the RS ansatz reads:

∀(a,b) ∈ JrK2,
1
d
(wa ·wb) =





q0 if a 6= b ,

Q = 1 if a = b .

It enforces the matrix Q̃ to present the same symmetry, respectively with
parameters q̂0 and Q̂= 1. Using this Ansatz and the r→ 0 limit, the RS entropy
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can be expressed as a set of saddle point equations over scalar parameters q0

and q̂0, evaluated at the saddle point, see Appendix. B.2.4,

Φ(rs)(α) = extr
q0,q̂0

{
1
2
(q0q̂0−1)+Ψ(rs)

w (q̂0)+αΨ(rs)
out (q0)

}
, (134)

with

Ψ(rs)
w (q̂0) ≡Eξ0 log gw

0 (ξ0, q̂0) , Ψ(rs)
out (q0) ≡Eξ0 log f z

0(ξ0,q0) ,
(135)

gw
i (ξ0, q̂0) ≡Ew

[
wi exp

(
(1− q̂0)

2
w2 + ξ0

√
q̂0w
)]

,

f z
i (ξ0,q0) ≡Ez

[
zi

ϕ(
√

q0ξ0 +
√

1−q0z)
]

,
(136)

for i ∈N and where ξ0,z ∼N (0,1), w ∼ Pw(.). In the binary perceptron
case, the function Pw is de�ned as Pw(w) = [δ (w−1)+δ (w+1)] (note that
this is not a probability distribution because of the normalization), and recall
ϕ(z) is the indicator function, checking that a constraint on the argument is
satis�ed (e.g in the step case, ϕs(z) = 1 if z > K).

While in the step binary perceptron (SBP) the �xed point solution (q0, q̂0)

is non-trivial, the symmetry of the activation function in the RBP and UBP
cases enforces the con�guration space to be symmetric and the �xed point
(q0, q̂0) = (0,0) to exist. If this symmetric �xed point is stable and has
the lowest free energy, the RS free entropy matches the annealed entropy
Φa

t (α) = log(2)+α log(pt,K) = limd→∞
1
d logEX[Zt(X)] from section 6.1.1

and Appendix. B.2.2 with t ∈ {r,u}.

Rectangle Solving numerically the corresponding saddle point equations
leads to the single symmetric �xed point (q0, q̂0) = (0,0). Hence the RS
entropy saturates the �rst moment bound:

Φ(rs)
r (α) = log(2)+α log (pr,K) = Φa

r (α) ,

and the RS capacity equals the annealed capacity eq. (6.1.1):

α
r
rs(K) = α

r
a(K) =

− log(2)
log (pr,K)

.

U-function

• For K ≤ K∗, only the symmetric �xed point (q0, q̂0) = (0,0) exists,
which leads again to the annealed free entropy:

Φ(rs)
u (α) = log(2)+α log (pu,K) = Φa

u(α) ,



6.3 replica calculation of the storage capacity 177

and annealed capacity eq. (6.1.1):

α
u
rs(K) = α

u
a (K) =

− log(2)
log (pu,K)

.

• For K > K∗, the RS entropy does not match the annealed entropy
because the �xed point (q0, q̂0) 6= (0,0) corresponds to a lower free
energy than the symmetric �xed point (0,0). The symmetric �xed
point becomes unstable for K > K∗, where K∗ is remarkably given by
the same value as in the independent section 6.1.2.b. Hence it naturally
veri�es eq. (124) even though its de�nition derives from the stability
of the RS solution, that we study in the next section.

6.3.1.b rs stability

The local stability of the RS solution can be studied using dAT method (Almeida
et al., 1978), based on the positivity of the Hessian of−Φ(r)(Q,Q̃). The replica
symmetric dAT-line αat is given by the solution of the following implicit
equation, derived in Appendix. B.2.5:

1
α

=
1

(1−q0(α))2 Eξ0

[(
f z
0( f z

0− f z
2)+ ( f z

1)
2
)2

( f z
0)

4 (ξ0,q0(α))

]

×Eξ0

[(
gw

0 gw
2 − (gw

1 )
2
)2

(gw
0 )

4 (ξ0, q̂0(α))

]
.

As illustrated above, for the rectangle and u−function, the symmetry of the
weights Pw and the constraint ϕ imposes the existence of the symmetric �xed
point (q0, q̂0) = (0,0). This simpli�es the previous condition and becomes
equivalent to the linear stability condition of the symmetric �xed point
(q0, q̂0) = (0,0), see Appendix. B.2.5,

1
αat

=

(
f̃ z
2− f̃ z

0

f̃ z
0

)2( g̃w
2

g̃w
0

)2

,

where for i ∈N

g̃w
i = Ew∼Pw

[
wi exp

(
w2/2

)]
, f̃ z

i = Ez∼N (0,1)
[
zi

ϕ(z)
]

.

We plot the annealed capacity, the RS capacity and the dAT-line for the step,
rectangle and u-function binary perceptrons as functions of K in Fig. 38, 39,
40.

Step binary perceptron We note that for the step binary perceptron the
RS solution is always stable towards 1RSB, even for negative threshold K < 0.
This is interesting in the view of recent work on the spherical perceptron
with negative threshold where the replica symmetry breaks for all K < 0,
and FRSB is needed to evaluate the storage capacity (Franz et al., 2017).
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Rectangle As the RS capacity αr
rs is always below the dAT-line αr

at, the RS
solution is always locally stable.

U-function There is a crossing between the values of the RS capacity
αu

rs and the dAT-line αu
at, which de�nes implicitly the value K∗ ' 0.817, and

matches the equality in eq. (129):
− log (2)

log (pu,K∗)
=

π

2
(pu,K∗)

2

exp (−(K∗)2) (K∗)2 . (137)

For K ≤ K∗, the RS solution is locally stable, while for K > K∗ the RS solution
becomes unstable, and a symmetry breaking solution appears.
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Figure 38: Step binary perceptron (SBP): the RS capacity αs
rs (black) does not match

the annealed capacity αs
a (blue) and is always below the dAT-line αs

at
(orange). The dAT-line is closest to the annealed capacity for Kmin ' 3.62
where the di�erence αs

at−αs
a' 0.0012. For K = 0, we retrieve well known

results (Krauth et al., 1989): αr
rs ' 0.833, αr

at ' 1.015 and αr
a = 1. The left

and right hand sides, and the inset, represent the same data on di�erent
scales. The satis�able (SAT) phase is represented by the beige shaded area
and is located below the RS capacity, while the unsatis�able (UNSAT)
starts at the capacity (black line) and extends for a larger number of
constraints.

6.3.2 1rsb calculation and stability

6.3.2.a 1rsb entropy

In the previous section we concluded that the replica symmetric solution
is unstable in the u−function binary perceptron for K > K∗, we analyze
therefore the �rst-step of replica symmetry breaking 1RSB Ansatz in this
section. This ansatz and calculations is due to seminal works of G. Parisi
and is classic in the �eld of disordered systems and well presented in the
literature (Mézard et al., 1987; Parisi, 1979; Parisi, 1980c; Parisi, 1980d), we
thus mainly give the key formulas and defer the details into Appendix. B.2.6.
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Figure 39: Rectangle binary perceptron (RBP): the RS capacity αr
rs (black) matches

the annealed bound αr
a (blue), and the RS solution is locally stable for all

K: αr
rs < αr

at. The dAT-line (orange) is closest to the annealed capacity
for Kmin ' 1.24 where the di�erence αs

at−αs
a ' 0.15. The left and right

hand sides, and the inset, represent the same data on di�erent scales. The
satis�able (SAT) phase is represented by the beige shaded area and is
located below the RS capacity, while the unsatis�able (UNSAT) starts at
the capacity (black line) and extends for a larger number of constraints.
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Figure 40: U−function binary perceptron (UBP): the RS capacity Â§black) matches
the annealed bound (blue) for K < K∗. At K = K∗, the RS capacity crosses
the dAT-line (orange). For K > K∗, the RS solution is unstable and the RS
capacity deviates from the annealed capacity. The left and right hand sides,
and the inset, represent the same data on di�erent scales. The satis�able
(SAT) phase is represented by the beige shaded area and is located below
the RS capacity, while the unsatis�able (UNSAT) starts at the capacity
(black line) and extends for a larger number of constraints.

The 1RSB Ansatz assumes that the space of con�gurations splits into states.
Consequently replicas are not symmetric anymore and instead r replicas are
organized in r

m groups containing m replicas each:

∀(a,b)∈ JrK2,
1
d
(wa ·wb) =





q1 if a,b belong to the same state,

q0 if a,b do not belong to the same state,

Q = 1 if a = b .
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(138)

Following (Monasson et al., 1995a), the replicated partition function Zm

associated to m replicas falling in the same state is expressed as a sum over
all possible states ψ weighted by their corresponding free entropy Φ:

Zm = ∑
{ψ}

exp(dmΦ(ψ)) = ∑
{Φ}

NΦ exp(dmΦ) (139)

= ∑
{Φ}

exp(dΣ(Φ))exp(dmΦ) ∼
∫

dΦexp(d(mΦ+Σ(Φ)))

where we introduced the number of states at a given free entropy Φ: NΦ ≡
exp(dΣ(Φ)) and the complexity Σ(Φ), also called the con�gurational en-
tropy. Using the saddle point method in the d→ ∞ limit, the 1RSB replicated
free entropy Φ(1rsb)

m is written as a function of the Parisi parameter m, the
free entropy Φ and the complexity Σ(Φ):

Φ(1rsb)
m (m,α) ≡ lim

d→∞

1
d

EX [log(Zm(X))] = mΦ+Σ(Φ) . (140)

Injecting the 1RSB ansatz eq. (138), the 1RSB replicated free entropy Φ(1rsb)
m =

mΦ(1rsb) is written as a saddle point equation over q = (q0,q1) and q̃ =

(q̂0, q̂1), see Appendix. B.2.6:

Φ(1rsb)
m (m,α) = m ·extr

q,q̂

{
1
2
(
q1q̂1−QQ̂

)
+

m
2
(q0q̂0−q1q̂1)

+Ψ̃(1rsb)
w (q̂,m)+αΨ̃(1rsb)

out (q,m)
}

, (141)

with

Ψ̃(1rsb)
w (q̂,m) ≡ 1

m
Eξ0 log

(
Eξ1 (g

w
0 )

m) ,

Ψ̃(1rsb)
out (q,m) ≡ 1

m
Eξ0 log

(
Eξ1 ( f z

0)
m) ,

(142)

and

gw
i (ξξξ ,q) = Ew

[
wi exp

(
(1− q̂1)

2
w2 +

(√
q̂0ξ0 +

√
q̂1− q̂0ξ1

)
w
)]

,

f z
i (ξξξ ,q) = Ez∼N (0,1)

[
zi

ϕ

(√
1−q1z+

√
q0ξ0 +

√
q1−q0ξ1

)]
,

(143)



6.3 replica calculation of the storage capacity 181

for ξξξ = (ξ0,ξ1) and for i ∈N. Taking the derivative of Φ(1rsb)
m with respect

to m, the 1RSB free entropy Φ(1rsb) and complexity Σ can be expressed as:

Φ(1rsb)(α) =
∂ Φ(1rsb)

m (m,α)

∂m
(144)

= extr
q,q̃,m

{
1
2
(q1q̂1−1)+m (q0q̂0−q1q̂1)

+Ψ(1rsb)
w (q̃,m)+αΨ(1rsb)

out (q,m)
}

,

Σ(Φ(1rsb)) = Φ(1rsb)
m −mΦ(1rsb) (145)

= extr
q,q̃,m

{
m2

2
(q1q̂1−q0q̂0)+m

(
Ψ̃(1rsb)

w −Ψ(1rsb)
w

)
(q̃,m)

+mα

(
Ψ̃(1rsb)

out −Ψ(1rsb)
out

)
(q,m)

}
,

with

Ψ(1rsb)
w (q̃,m) = ∂m

(
mΨ̃(1rsb)

w

)
= Eξ0

[
Eξ1 [log (gw

0 (ξξξ ,q))gw
0 (ξξξ ,q)m]

Eξ1 [g
w
0 (ξξξ ,q)m]

]
,

Ψ(1rsb)
out (q,m) = ∂m

(
mΨ̃(1rsb)

out

)
= Eξ0

[
Eξ1 [log ( f z

0(ξξξ ,q)) f z
0(ξξξ ,q)m]

Eξ1 [ f z
0(ξξξ ,q)m]

]
.

6.3.2.b 1rsb results for ubp

From now on, we only consider the u−function binary perceptron, whose RS
solution is unstable for K > K∗. To describe the equilibrium of the system in
the SAT phase, we need to �nd the value of the Parisi parameter at equilibrium
meq. The complexity Σ(Φ) is the entropy of clusters having internal entropy
Φ. In order to capture clusters that carry almost all con�gurations, we need
to maximize the total entropy Φtot = Σ(Φ)+Φ under the constraint that the
free entropy and complexity are both positive Φ ≥ 0 and Σ(Φ) ≥ 0. Hence
from eq. (140), the equilibrium Parisi parameter meq veri�es

Φeq = argmax
Φ≥0,Σ≥0

{Φ+Σ(Φ)} and meq = −
dΣ
dΦ

∣∣∣∣
Φeq

. (146)

As a side remark, we note that in the Parisi’s replica theory the more com-
monly known condition for meq is obtained by extremizing the (rescaled)
replicated free entropy Φ(1rsb)

m (m,α)/m which leads using (140) to the con-
dition −Σ(Φeq)

m2 = 0. This extrema is in fact a minima as Σ(Φ) is concave and
m =− dΣ

dΦ . This is, however, only valid when meq < 1, and is moreover highly
counter-intuitive as physical systems maximize entropy whereas here one
minimizes it. We hence prefer to use the formulation of eq. (146) which we
�nd physically better justi�ed. Using the expressions eq. (145) and varying
the Parisi parameter m ∈ [0;1], we obtain the curve of the complexity Σ(Φ)

as shown in Fig. 41. At m = 1, the complexity is negative. Decreasing m, the
complexity increases and becomes positive at the value meq. Besides for small
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Figure 41: Complexity Σ(Φ) as a function of the free entropy Φ for the u−function
binary perceptron at K = 1.5 > K∗. Complexity reaches Σ = 0 (black dot)
at meq. For K = 1.5 and α = 0.33 (Left) the free-entropy corresponding
to meq is positive Φeq > 0, whereas for α = 0.34, (Right) the free entropy
at meq is negative Φeq < 0 and therefore there is no part of the curve
where both complexity and free entropy are positive: thus this value of α

is beyond the 1RSB storage capacity, and the capacity is in the interval
[0.33;0.34].

values of m, an unphysical (convex) branch appears, as commonly observed
in other systems solved by the replica method.

We note that as α increases both the equilibrium complexity and free
entropy decrease. In CSP such as k-SAT or random graph coloring the mecha-
nism in which the satis�ability threshold appears is that the maximum of
the complexity becomes negative. In the present UBP problem it is actually
both the free entropy and the complexity that vanish together, as illustrated
in Fig. 41.

Computing the equilibrium value meq(α), we have access to the corre-
sponding equilibrium overlaps q∗0 and q∗1, that we may compare with the RS
solution qrs. All these are depicted in Fig. 42. The function meq(α) shows a
non monotonic behaviour as it has been previously observed, e.g. in the SK
model as a function of temperature (Mézard et al., 1987). We also compute
the 1RSB entropy that veri�es Φ(1rsb)

u ≤Φ(rs)
u and which vanishes at the 1RSB

capacity αu
1rsb as depicted in Fig. 43 (Left). We note that the above inequality

is as predicted by Parisi’s replica theory (Mézard et al., 1987), taking into
account that we are working at strictly zero energy, where the entropy be-
comes minus the free energy. The 1RSB solution provides a small correction
to the RS result for storage capacity, as illustrated in Fig. 43 (Right), where
we plotted the di�erence between the annealed upper bound and the capacity
for the RS and 1RSB solutions: αu

a −αu
rs and αu

a −αu
1rsb.

6.3.2.c 1rsb stability

In the previous section we evaluated the 1RSB storage capacity of the u−function
binary perceptron for K > K∗. In this section we will argue that this cannot
be an exact solution to the problem. We could investigate the stability of 1RSB
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Figure 42: Equilibrium values of the overlap q∗0 6= qrs, q∗1 and the Parisi parameter
meq for the UBP at K = 1.5. For K < K∗, the RS solution is stable and the
only �xed point is q∗0 = q∗1 = qrs = 0.
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Figure 43: (Left) Comparison of the RS (blue) and 1RSB (orange) entropy for the UBP
at K = 1.5. For α < αat ' 0.118, RS and 1RSB entropies are equalled. For
α >αat, 1RSB entropy deviates slightly of the RS entropy before vanishing
respectively at αu

1rsb ' 0.337 and αu
rs ' 0.334. The inset represents the

same data on a di�erent scale. (Right) Di�erence between the annealed
upper bound and the 1RSB capacity αu

a−αu
1rsb (orange) and the RS capacity

αu
a −αu

rs (blue). Below K∗ the RS solution is stable: RS and 1RSB entropies
match exactly. Above K∗, the RS solution is unstable: the 1RSB entropy
deviates slightly from the RS solution.

towards further levels of replica symmetry breaking along the same lines we
did for the RS solution. However, in the present case we do not need to do
that to see that the obtained solution cannot be correct. The explanations lies
in the breaking of the up-down symmetry in the problem. This symmetry
must either be broken explicitly as in the ferromagnet, where the system
would acquire an overall magnetization, but we have not observed any trace
of this in the present problem. Or this up-down symmetry must be conserved
in the �nal correct solution. The conservation of the up-down symmetry is
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manifested in the value q0 = 0 in the replica symmetric phase. The fact that
in the 1RSB solution evaluated above we do not observe q0 = 0, but instead
q0 > 0 is a sign of the fact that we are evaluating a wrong solution. The only
possible way to obtain an exact solution we foresee is to evaluate the full-step
replica symmetry breaking with a continuity of overlaps q(x), the smallest
one of them should be 0 in order to restore the up-down symmetry. We let
the evaluation of the FRSB for future work.

Finally let us note that the 1RSB solution obtained in the previous section
can be interpreted as frozen-2RSB. In 2RSB we would have 3 kinds of overlaps,
q0, q1 and q2. In frozen 2RSB we would have q2 = 1, q1 = q1rsb

1 , q0 = q1rsb
0 .

CONCLUS ION

In this chapter we analyzed a class of symmetric binary perceptron problems
that are simple variants of the canonical step-function binary perceptron. The
step-function binary perceptron has thus far eluded a rigorous establishment
of the conjectured storage capacity, eq. (121). This prediction is expected to be
exact because of the f1RSB nature of the problem (Krauth et al., 1989). At the
same time the work of (Baldassi et al., 2015) sheds light on the fact that the
structure of the space of solutions is not fully described by the f1RSB picture,
and that rare dense and unfrozen regions exist and in fact are amenable to
dynamical procedures searching for solutions. It remains to be understood
how is it possible that the 1RSB calculation does not capture these dense
unfrozen regions of solutions (Baldassi et al., 2015). They do not dominate
the equilibrium, but the RSB calculation is expected to describe rare events
via their large deviations, which in this case it does not.

We focus on two cases of the binary perceptron with symmetric constraints,
the rectangle binary perceptron and the u−function binary perceptron. We
prove (up to a numerical assumption) using the second moment method that
the storage capacity agrees in those cases with the annealed upper bound,
except for the u−function binary perceptron for K >K∗ eq. (124). We analyze
the 1RSB solution in that case and indeed obtain a lower prediction for the
storage capacity. However, we do not expect the 1RSB to provide the exact
solution because it does not respect the up-down symmetry of the problem.
Though the precise nature of the satis�able phase for the u−function binary
perceptron for K > K∗ remains illusive, we can conjecture it is FRSB (Parisi,
1979; Parisi, 1980c; Parisi, 1980d). Establishing this rigorously would provide
much deeper understanding and remains a challenging subject for future
work.







7
RADEMACHER
COMPLEX I T Y AND SP IN
GLASSES : A L INK
BETWEEN THE REPL ICA
AND STAT I ST ICAL
THEORIES OF LEARNING

ERM is the workhorse of most of modern supervised machine learning suc-
cesses. Consider for instance a data-set {yµ ,xµ}n

µ=1 of n examples xµ ∈Rd

assumed to be drawn from a distribution Px(.), with labels yµ ∈ {−1,+1}
used for a binary classi�cation task. We consider an estimator fw(.) that
belongs to a hypothesis class F , for instance a neural network or a linear
function, with respective weights or parameters w. The latter are typically
computed by minimizing the empirical risk

Rn
empirical( fw) =

1
n

n

∑
µ=1

L (yµ , fw (xµ))

over w, where L denotes a loss function, e.g. the mean-squared-loss L (a,b) =
(a−b)2. The main theoretical issue of statistical learning theory concerns
the performance of the estimator fw(.) obtained by such a minimization on
yet unseen data, namely the generalization problem. In fact, what we really
hope to minimize is the population risk, de�ned as

Rpopulation( fw) = Ey,x [L (y, fw(x))] .

Since we are optimizing the empirical risk instead, the di�erence between the
two might be arbitrarily large. Bounding this di�erence between empirical and
population risks is therefore a major problem of statistical learning theories.

In a large part of the literature, statistical learning analysis, see e.g. (Bartlett
et al., 2002; Vapnik, 2013; Shalev-Shwartz et al., 2014) relies on the VC anal-
ysis and on the so-called Rademacher complexity. The latter is a measure
of the complexity of F , the hypothesis class spanned by fw(.), to bound
Rpopulation−Rn

empirical, the generalization gap. A gem within the literature is
the Uniform Convergence result which states the following: if the Rademacher
complexity or the VC dimension is �nite, then for a large enough number of
samples the generalization gap will vanish uniformly over all possible values

187
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of parameters w. Informally, uniform convergence tells us that with high
probability, for any weights value w, the generalization gap satis�es

Rpopulation( fw)−Rn
empirical( fw) = Θ

(√
dvc(F )

n

)
, (147)

where dvc(F ) denotes the VC dimension of the hypothesis class F . Tighter
bounds can be obtained using the Rademacher complexity. These bounds,
although useful, do not seem to fully explain the success of current deep-
learning architectures (Zhang et al., 2016).

Over the last four decades, a di�erent vision of generalization — based on
the analysis of typical case problems with synthetic data created from simple
generative models — was developed to a large extent in the statistical physics
literature, see e.g. (Seung et al., 1992; Watkin et al., 1993; Opper, 1995; Engel
et al., 2001) for a review. The link with the VC dimension was discussed in
many of these works, notably via its connection with its twin from statistical
physics, the Gardner capacity (Gardner et al., 1988). In particular, one can
show that the VC capacity is always larger than half of the Gardner one (Engel
et al., 2001). We shall review this discussion later on in this paper. However, to
the best of our knowledge the Rademacher complexity was absent from these
considerations. This omission is unfortunate: not only does the Rademacher
complexity give tighter bounds than the VC dimension, it also intrinsically
connects with a quantity that physicists are familiar with and have been
computing from the very beginning of their studies, namely the average
ground-state energy.

The goal of the present chapter is to bridge this gap and unveil the deep
link between ground-state energy and Rademacher complexity, and how this
connection is valuable to both parties. The chapter is organized as follows:
After giving proper de�nitions of common generalization bounds in sec. 7.1,
we detail calculations of Rademacher complexities for simple function classes
in sec. 7.2. These sections serve as an introduction to the readers not familiar
with these notions. The subsequent sections 7.3 and 7.4 provide the original
content of this work.

Here we summarize the main contributions of this work:

• We point out the one-to-one connections between the Rademacher
complexity in statistical learning, and the ground-state energies and
Gardner capacity from statistical physics.

• We show how the heuristic replica method from statistical physics can
be used to compute the Rademacher complexity in the high-dimensional
statistics limit and reinterpret classical results of the statistical physics
literature as Rademacher bounds in the case of perceptron and com-
mittee machines models with i.i.d data.

• We contrast these results with the generalization in the teacher-student
scenario, illustrating the worst-case nature of the Rademacher bound
that fails to capture the typical-case behavior.
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• We �nally show en passant, that learning theory also bears conse-
quences for the spin glass physics and the related replica symmetry
breaking scheme by showing it implies strong constraint on the ground-
state energy of some spin glass models.

7.1 A PR IMER ON RADEMACHER
COMPLEX I T Y

The bound of the generalization gap involving the VC dimension is speci�c
to binary classi�cation, and does not depend on the data distribution. While
this is a strong property, the Rademacher approach does depend on data
distribution and allows for tighter bounds. Moreover, it generalizes to multi-
class classi�cation and regression problems. We recall the de�nition of the
Rademacher complexity:

De�nition 7.1.1. Let fw be any function in the hypothesis class F , and let
εεε ∈ {±1}n be drawn uniformly at random. The empirical Rademacher com-
plexity is de�ned as

R̂n (F ,X) ≡Eεεε

[
sup

fw∈F

1
n

n

∑
µ=1

εµ fw (xµ)

]
, (148)

and depends on the sample examplesX= {x1, . . .xn}∈Rd×n. TheRademacher
complexity is de�ned as the population average

Rn (F ) ≡EX
[
R̂n (F ,X)

]
. (149)

In this chapter, we focus on binary classi�cation and consider the cor-
responding loss function L (a,b) = 1 [a 6= b] that counts the number of
misclassi�ed samples. We will be therefore interested in a hypothesis class
F =

{
fw : Rd −→ {±1}

}
. De�ning the training εn

train(.) and generalization
errors εgen(.) for any function fw ∈F by

ε
n
train( fw) ≡

1
n

n

∑
µ=1

1 [yµ 6= fw (xµ)] ,

εgen( fw) ≡Ey,x [1 [y 6= fw (x)]] ,

(150)

the Rademacher complexity provides a generalization error bound as ex-
pressed by the following theorem, and many of its variants, see e.g. (Bartlett
et al., 2002; Vapnik, 2013; Shalev-Shwartz et al., 2014; Mohri et al., 2012):

Theorem 7.1.2. Uniform convergence bound - Binary classi�cation
Fix a distribution Px and let δ > 0. Let X = {x1, . . .xn} ∈Rd×n be drawn i.i.d

from Px. Then with probability at least 1−δ (over the draw of X),

∀ fw ∈F ,εgen( fw)− ε
n
train( fw) ≤Rn(F )+

√
log(1/δ )

n
. (151)
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Thus, the Rademacher complexity is a uniform bound of the generalization
gap. In the high-dimensional limit when both n and d goes to in�nity that we
will consider in the remaining of the paper, we shall see that we can discard
the δ−dependent term and that only the �rst term will remains �nite. Note
that this theorem can be used to recover the classical result (147). Indeed
it can be shown (Massart, 2000; Ledoux et al., 2013; Dudley, 1967) that the
Rademacher complexity can be bounded by the VC dimension so that for
some constant value C,

Rn(F ) ≤C

√
dvc(F )

n
. (152)

We remind the reader that the VC dimension is the size of the set that can
be fully shattered by the hypothesis class F . Informally, if n > dvc then for
all set of n data points, there exists an assignment of labels that cannot be
fully �tted by the function class (Vapnik, 2013).

Proof. Applying Massart’s lemma (Massart, 2000) for FX = { f (x1), .., f (xn)}
⊂Rn with f : Rd −→ {±1}. Hence supx∈FX

‖x‖2 =
√

n and it follows

Rn (F ) ≡EX
[
R̂n (F ,X)

]
≤EX

[
sup

x∈FX

‖x‖2

√
2log |FX|

n

]

≤EX

[√
2logmax{x1,..xn} |FX|

n

]

=

√
2logΠF (n)

n
≤Θ

(√
dvc(F )

n

)
,

where ΠF (n) ≡max{x1,..xn}{ f (x1), .., f (xn)} ≤ 2n is the growth function of
the hypothesis class F . The last inequality comes from the fact that the VC
dimension of the hypothesis class F is de�ned as the maximum sample size
dataset that can be shattered dvc(F ) = maxn{n : ΠF (n) = 2n}.

7.2 SYN THET IC MODELS IN THE HIGH
DIMENS IONAL STAT I ST ICS L IM I T

In this section, we consider data generated by a simple generative model.
We suppose that each vector of input data points X = {x1, · · · ,xn} ∈Rd×n

has been generated i.i.d from a factorized, e.g. Gaussian, distribution, that
is ∀µ ∈ JnK,Px (xµ) = ∏

d
i=1 Px(xiµ). In the following, we will focus on this

simple data distribution, but sec. 7.4.5 presents a generalization to rotationally
invariant data matrices X with arbitrary spectrum. The main interest of such
settings is to use the analysis of typical case problems with synthetic data
created from simple generative models as means of getting additional insight
on real world applications where data are not worst case (Seung et al., 1992;
Watkin et al., 1993; Opper, 1995; Engel et al., 2001; Zdeborová et al., 2016a).
In particular, we shall be interested in the high-dimensional statistics limit
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when n,d −→∞, with α = n
d = Θ(1). In the following, the aim is to compute

exactly, rather than merely bounding, and asymptotically the Rademacher
complexity for such problems.

7.2.1 linear model

As the simplest example, we �rst tackle the computation of the Rademacher
complexity for a simple function class containing all linear models with
weights w ∈Rd ,

Flinear =



 fw :





Rd −→R

x−→ 1√
d

wᵀx
,w ∈Rd / ‖w‖2 = Γ

√
d



 .

(153)

From eq. (149), computing the empirical Rademacher complexity amounts
to �nding the vector w? that maximizes the scalar product between y (that
replaces the variable εεε) and Xᵀw. It is thus su�cient to take w? = Xy

‖Xy‖2
‖w‖2

and the empirical Rademacher complexity (149) thus reads

Rn (Flinear) = Ey,X

[
sup

f∈Flinear

1
n

n

∑
µ=1

yµ f (xµ)

]
(154)

= Ey,X

[
1
n

yᵀ
(

1√
d

Xᵀw?

)]
= Ey,X

[
1
n

yᵀ
(

1√
d

Xᵀ Xy
‖Xy‖2

‖w‖2

)]

= Ey,X

[
1
n

1√
d
‖Xy‖2‖w‖2

]
.

X having i.i.d entries, we can apply the CLT, which enforces ∀i ∈ JdK, (Xy)i =

∑
n
µ=1 xiµyµ ∼N (0,n) hence Ey,X‖Xy‖2 =

√
dn. Assuming that weights are

restricted to lie on the sphere of radius Γ in Rd , we set ‖w‖2 = Γ
√

d and
�nally obtain

Rn (Flinear) =
Γ√
α

, (155)

where recall α = n
d . The above result for the simple linear function hypoth-

esis class allows to grasp the meaning of the Rademacher complexity: At
�xed input dimension d, it decreases with the number of samples as α−1/2,
closing the generalization gap in the in�nite α limit. Illustrating the bias-
variance trade-o�, we also see that increasing the radius of the weights
expands the function complexity (and might help for �tting the data-set), but
unfortunately leads to a looser generalization bound.

Note also that the fact that the Rademacher complexity is Θ(α−1/2) shows
that it remains �nite in the high-dimensional statistics limit. In this case, we
see indeed that we can disregard the term

√
log(1/δ )/n that goes to zero

as n→∞ in eq. (151).
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7.2.2 perceptron model

The scaling of Rademacher complexity inverse as
√

α in the high-dimensional
statistics limit is actually not restricted to the linear model but appears to be
a universal property, at least at large enough α . To see this we now focus
on a di�erent hypothesis class: the perceptron, denoted Fsign. This class
contains linear classi�ers which output binary variables, and will �t much
better labels in the binary classi�cation task. The class writes

Fsign =



 fw :





Rd −→ {±1}
x−→ sign

(
1√
d

wᵀx
) ,w ∈Rd



 . (156)

Let us consider a sample i.i.d matrix X ∈Rd×m with xµ ∼N (0,Id).

Theorem 7.2.1. For the perceptron model class eq. (156) with random i.i.d.
input data in the high-dimensional limit, Rn (Fsign) = Θ

(
1√
α

)
.

Proof. In a nutshell, the proof uses the fact that the Rademacher complexity
is upper-bounded by the VC dimension divided by α1/2, and lower-bounded
by one particular example of its function class, when the weights are chosen
according to Hebb’s rule, which also gives a behavior scaling as α−1/2.
Upper bound

For a linear classi�er with binary outputs such as the perceptron, the VC
dimension is easy to compute and dvc = d. Hence we know from Massart
theorem’s (Massart, 2000) that

Rn(Fsign) ≤Θ

(√
dvc(Fsign)

n

)
= Θ

(√
d
n

)
= Θ

(
α
−1/2

)
.

Lower bound
Let us consider the following estimator, known as the Hebb’s rule (Hebb,

1962): w? =
1√
d

n

∑
ν=1

yνxν . Hence for a given sample xµ the above estimator

outputs

fw? (xµ) = sign
(

1√
d

w?ᵀxµ

)
= sign

((
1
d

n

∑
ν=1

yνxν

)ᵀ

xµ

)
.
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Injecting its expression in the de�nition the Rademacher complexity eq. (149)
one obtains:

Rn(Fsign) ≡Ey,X

[
sup

w

1
n

n

∑
µ=1

yµ fw (xµ)

]

≥Ey,X

[
1
n

n

∑
µ=1

yµ fw? (xµ)

]

= Ey,X

[
1
n

n

∑
µ=1

sign
(

yµ

1
d

(
n

∑
ν=1

yνxν

)ᵀ

xµ

)]

= Ey,X

[
1
n

n

∑
µ=1

sign
(

1+
1
d

n

∑
ν 6=µ

yµyνxᵀνxµ

)]
.

As xµ ∼N (0,Id) and the labels are drawn uniformly yµ ∼U (±1), zµ ≡
yµxµ ∼N (0,Id). Hence let us de�ne the Gaussian random variable

θµ ≡
1
d

n

∑
ν 6=µ

yµyνxᵀνxµ =
1
d

n

∑
ν 6=µ

zᵀνzµ ,

and compute its two �rst moments

E [θµ ] = Ez

[
1
d

n

∑
ν 6=µ

zᵀνzµ

]
= Ez

[
1
d

n

∑
ν 6=µ

d

∑
i=1

ziνziµ

]
= 0,

E
[
θ

2
µ

]
= E


 1

d2

(
n

∑
ν 6=µ

zᵀνzµ

)2

=

(n−1)
d

−→
n→∞

α .

Hence because of the CLT, in the high-dimensional limit θµ ∼N (0,α),

Rn(Fsign) ≥Eθθθ

[
1
n

n

∑
µ=1

sign (1+θµ)

]
= Eθ [sign (1+θ )]

= P [θ ≥−1]−P [θ ≤−1] = 2P [θ ≥−1]−1.

Finally, noting that

P [θ ≥−1] =
∫

∞

− 1√
α

Dθ =
1
2

erfc
(
− 1√

2α

)
'

α→∞

1
2
− 1√

2πα
,

we obtain a lower bound for the Rademacher complexity

Rn (Fsign) ≥
√

2
π

1√
α

= Θ
(

1√
α

)
.

Heuristically, this result generalizes as well to a two-layer neural network
with K hidden neurons. Indeed, the two-layer function class contains, as a par-



7.3 the statistical physics approach 194

ticular case, the single layer one, so the lower bounds goes through. The upper
bound is however harder to control rigorously. Since neural networks have a
�nite VC dimension, the Rademacher complexity is again lower-bounded by
Θ(1/

√
n); However, we do not know of any theorem that would ensure that

the VC dimension is bounded by Θ(d) (Bartlett et al., 2003). Nevertheless,
anticipating on the statistical physics approach, we indeed expect from the
concentration (self-averaging) properties of the ground-state energy (Tala-
grand, 2003) in the high-dimensional limit that it will yield a Rademacher
complexity that is a function of α = n/d only at �xed K. From this argument,
we expect that the Θ

(
1√
α

)
dependence of the Rademacher complexity to be

very generic in the high-dimensional limit.

7.3 THE STAT I ST ICAL PHYS ICS
APPROACH

7.3.1 average case problems: statistical
physics of learning

As anticipated in the previous chapter, the approach inspired by statistical
physics to understand neural networks considers a set of data points coming
from known distributions. Again, for the purpose of this presentation we
focus on a simple example, where x∼ Px(.) with Px(x) =Nx(0,Id). Sec. 7.4.5
is devoted to a generalization to random input data corresponding to random
matrices with arbitrary singular value density.

Consider a function class, for instance we can again use the perceptron one
Fsign: { fw : x→ sign

(
1√
d

wᵀx
)
}; a typical question in the literature was to

compute how many misclassi�ed examples can be obtained for a given rule
used to generate the labels (Engel et al., 2001). Given n samples {yµ ,xµ}n

µ=1,
in order to count the number of wrongly classi�ed training samples, we
de�ne the Hamiltonian, or energy function (Mézard et al., 1986):

Hd ({y,X},w) ≡
n

∑
µ=1

1 [yµ 6= fw (xµ)]

=
1
2

(
n−

n

∑
µ=1

yµ fw (xµ)

)
.

(157)

A classical problem in statistical physics is to compute the random capacity
also called Gardner capacity αc (Gardner et al., 1989) studied in Chap. 6: given
n examples {xµ}n

µ=1 and labels {yµ}n
µ=1 randomly chosen between ±1, it

consists in �nding how many samples nc can be correctly classi�ed.
It turns out there exists a deep connection between the Gardner capacity

and the VC dimension, as their common aim is to measure the maximum
number of points nc such that there exists a function in the hypothesis class
being able to �t the data set. In particular, using Sauer’s lemma (Sauer, 1972) in
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the large size limit n,d−→∞, keeping αc =
nc
d = Θ(1) and αvc =

dvc
d = Θ(1),

it is possible to show that the Gardner capacity αc provides a lower-bound
of the VC dimension (Engel et al., 2001):

αc ≤ 2αvc . (158)

To illustrate this inequality, let us consider again the perceptron classi�er
hypothesis class Fsign for which the above inequality is saturated. In fact,
the VC dimension is in this case (linear classi�cation with binary outputs)
simply dvc = d. Hence on one hand αvc = 1, on the other hand the Gardner
capacity amounts to αc = 2 (Cover, 1965; Gardner et al., 1989).

It is fair to say that a large part of the statistical physics literature focused
mainly on the Gardner capacity, in particular in a series of works in the 90’s
(Gardner et al., 1989; Krauth et al., 1989) that led to more recent rigorous
works (Talagrand, 2003; Talagrand, 2006b; Ding et al., 2019; Aubin et al.,
2019c).

7.3.2 the rademacher complexity and the
ground state energy

As we shall see now, computing the Rademacher complexity for random
input data can be directly reduced to a more natural object in the physics
literature: the ground state energy. De�ning the Gibbs measure at inverse
temperature β , that weighs con�gurations with their respective cost, as

〈. . .〉β ≡
∫

Rd dw . . . e−βHd({y,X},w)

∫
Rd dw e−βHd({y,X},w)

, (159)

we observe that averaging the Hamiltonian in eq. (157) over {y,X} and the
Gibbs measure for any function fw ∈F provides

Ey,X

〈
Hd ({y,X},w)

d

〉

β

=
α

2


1−Ey,X

〈
1
n

n

∑
µ=1

yµ fw (xµ)

〉

β


 ,

(160)

where α = n
d = Θ(1). Taking the zero temperature limit, i. e. β → ∞, in the

above equation, we �nally obtain the ground state energy egs, a quantity
commonly used in physics. Interestingly, we recognize the de�nition of the
Rademacher complexity Rn(F )

egs ≡ lim
β→∞

lim
d→∞

Ey,X

〈
Hd ({y,X},w)

d

〉

β

=
α

2

[
1−Ey,X sup

fw∈F

1
n

n

∑
µ=1

yµ fw (xµ)

]

=
α

2
[1−Rn (F )] ,

(161)
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where random labels y play the role of the Rademacher variable εεε in (149).
The above equation shows a simple correspondence between the ground state
energy on the perceptron model with randomly quenched disorder and the
Rademacher complexity of the corresponding hypothesis class, and shall bring
insights from both the machine learning and statistical physics communities.
Consequently, as we shall see, this connection means that the Rademacher
complexity can be computed, rather than bounded, for many models using
the replica method from statistical physics. As far as we are aware, this basic
connection between the ground state energy and Rademacher complexity
was not previously stated in literature.

7.3.3 an intuitive understanding on the
rademacher bounds on
generalization

At this point, the Rademacher complexity becomes a more familiar object to
the physics-minded reader. However, could we understand more intuitively
why the Rademacher complexity, or equivalently the ground state energy,
is involved in the generalization gap bound? Let us present an intuitive
hand-waving explanation. Consider the fraction of mistakes performed by a
classi�er fw on unknown samples, namely the generalization error εgen( fw),
and on the training set the training error εn

train( fw). The worst case scenario
that could occur is trying to �t while there exists no underlying rule, meaning
that labels are purely random uncorrelated from input. The estimator will
purely over�t and its generalization error will remain constant to 1/2 in any
case. This leads to the following heuristic generalization bound:

εgen( fw)− ε
n
train( fw) ≤ ε

random labels
gen ( fw)− ε

random labels,n
train ( fw)

=
1
2
− ε

random labels,n
train ( fw) =

1
2

(
1−2ε

random labels,n
train ( fw)

)

=
1
2
R̂n (F ) .

(162)

Note that this heuristic reasoning does not give the exact Rademacher gen-
eralization bound. In fact, the actual stronger and uniform over all possible
w∈Rd bound does not have a factor 1/2, and surely cannot be fully captured
by the simple above argument. Nevertheless, this argument re�ects the crux
of the Rademacher bound: it provides a very pessimistic bound by assuming
the worst possible scenario: i. e. �tting data and trying to make predictions
while the labels are random. Of course, in real data problems the rule is not
random; it is then no surprise that the Rademacher bound is not tight (Zhang
et al., 2016). Indeed, real problems labels are not randomly correlated with
the inputs.
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7.4 CONSEQUENCES AND BOUNDS FOR
S IMPLE MODELS

In this section, we illustrate our previous arguments and the connection
between the spin glass approach and the Rademacher complexity still for the
case of Gaussian i.i.d input data matrix X in the high-dimensional limit when
n,d→ ∞.

7.4.1 ground state energies of the
perceptron

For a number of samples smaller than the Gardner capacity αc, also called
the SAT-UNSAT threshold, it is by de�nition possible to �t all random labels
y. Accordingly, the number of misclassi�ed examples is zero and the ground
state energy egs = 0. This means that the Rademacher complexity is asymp-
totically equal to 1 for α < αc. However above the Gardner capacity α > αc,
the estimator fw cannot perfectly �t the random labels and will misclassify
some of them, equivalently egs > 0. From the arguments given in sec. 7.2, we
thus expect

Rn (F ) = 1 for α < αc ,

Rn (F ) ≈Θ
(√

αc

α

)
for α � αc .

(163)

This relation is already non-trivial, as it yields a link between the Gardner
capacity and the Rademacher complexity. Using the replica method from
spin glass analysis, and the mapping with ground state energies (161), we
shall now see how one can go beyond these simple arguments, and compute
the actual precise asymptotic value of the Rademacher complexity.

7.4.2 computing the ground-state energy
with the replica method

Knowing that statistical physics literature focused mainly on the Gardner ca-
pacity, the connection between the ground-state energy and the Rademacher
complexity suggests that it would be worth looking at these old results in
a new light. In fact, the replica method allows for an exact computation of
the Rademacher complexity for random input data in the large size limit.
In the following, we handle computations by focusing on a simple general-
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ization of the linear functions hypothesis class. Fix any activation function
ϕ : R−→ {±1}, we de�ne the following hypothesis class

Fϕ ≡



 fw :





Rd −→ {±1}
x−→ ϕ

(
1√
d

wᵀx
) ,w ∈Rd



 . (164)

Starting with the posterior distribution

P(w|y,X) =
P(y|w,X)P(w)

P(y,X)
=

e−βHd({y,X},w)Pw (w)

Zd({y,X},α ,β )
, (165)

we introduced the partition function associated to the Hamiltonian eq. (157)
at inverse temperature β

Zd({y,X},α ,β ) =
∫

Rd
dPw (w) e−βHd({y,X},w) . (166)

In the large size limit d → ∞, the posterior distribution becomes highly
peaked in particular regions of parameters. In physics we are interested in
these dominant regions and focus on the free energy at inverse temperature
β de�ned as

ϕy,X({y,X},α ,β ) ≡− lim
d→∞

1
dβ

logZd({y,X},α ,β ) . (167)

The free energy is closely related to the free entropy that can be equivalently
considered according to ϕy,X = −Φy,X. However, as we are interested in
computing quantities in the typical case, we want to average over all potential
training sets {y,X} and compute instead the averaged free energy

ϕ(α ,β ) ≡Ey,X [ϕy,X ({y,X},α ,β )] . (168)

Computing directly this average rigorously is di�cult, hence we will carry
out the computation using the so-called replica method, starting by writing
the replica trick

− 1
dβ

Ey,X [logZd ] = −
1

dβ
lim
r→0

∂ logEy,X [Zd({y,X},α ,β )r]

∂ r
, (169)

which replaces the expectation of logZd by the moments of Zd , which are
easier to compute. Taking the limit d→ ∞, and assuming that we can revert
it with the limit r→ 0, we �nally obtain

ϕ(α ,β ) = lim
r→0

[
lim
d→∞

− 1
dβ

∂ logEy,X [Zd({y,X},α ,β )r]

∂ r

]
. (170)

We give some details on the replica computation in the context of the
GLM with randomly quenched disorder in Appendix. B.2, and we also refer
the reader to the relevant literature in physics (Mézard et al., 1986; Hertz
et al., 1993; Engel et al., 2001; Mézard et al., 2009; Zdeborová et al., 2016a)
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and in mathematics (Talagrand, 2003; Talagrand, 2006b; Bolthausen et al.,
2007; Panchenko et al., 2004; Panchenko et al., 2018). Notice that in this
randomly quenched setting where the labels are uncorrelated from the input
vector, the replica computation is exactly the same than the one used for the
storage capacity problem in Chap. 6. The computation of the free energy by
the replica method is done by deriving a hierarchy of approximate ansatz,
named RS, 1RSB, 2RSB . . .While in some problems the RS or the 1RSB ansatz
is su�cient, in others only the in�nite step solution FRSB gives the exact
ansatz (Mézard, 1989; Talagrand, 2003; Talagrand, 2006b), although the 1RSB
approach is usually an accurate approximation.

Computing the ground state energy consists in taking the zero temper-
ature limit β → ∞ above the capacity α > αc in the replica free energy
ϕ(α ,β ) = e(α ,β )−β−1s(α ,β ); where e,s denote respectively the densities
of the energy and entropy contributions. The simplest form of the replica
computation is known as RS and the next simplest is 1RSB which plugged in
eq. (170) leads to expressions (Majer et al., 1993; Erichsen et al., 1993; Whyte
et al., 1996)

ϕ
(rs)
iid (α ,β ) = − 1

β
extr
q0,q̂0

{
1
2
(q0q̂0−1)+Ψ(rs)

w (q̂0)+αΨ(rs)
out (q0,β )

}
,

ϕ
(1rsb)
iid (α ,β ) = − 1

β
extr

q0,q1,q̂0,q̂1,x

{
1
2
(q1q̂1−1)+

x
2
(q0q̂0−q1q̂1) (171)

+Ψ(1rsb)
w (q̂0, q̂1,x)+αΨ(1rsb)

out (q0,q1,β ,x)
}

,

with auxiliary functions

Ψ(rs)
w (q̂0) ≡Eξ0 logEw

[
exp
(
(1− q̂0)

2
w2 + ξ0

√
q̂0w
)]

,

Ψ(rs)
out (q0,β ) ≡EyEξ0 logEz

[
C
(

y
∣∣√1−q0z+

√
q0ξ0,β

)]
,

Ψ(1rsb)
w (q̂0, q̂1,x) ≡ 1

x
Eξ0 log (

Eξ1Ew

[
exp
(
(1− q̂1)

2
w2 +

(√
q̂0ξ0 +

√
q̂1− q̂0ξ1

)
w
)]x)

,

Ψ(1rsb)
out (q0,q1,β ,x) ≡ 1

x
EyEξ0 log (

Eξ1Ez

[
C (y

∣∣√q0ξ0 +
√

q1−q0ξ1 +
√

1−q1z,β )
]x)

.

(172)

We introduced a temperature-dependent constraint function C (y|z) =
exp(−βV (y|z)) where the generic cost function V reads in our case V (y|z) =
1 [y 6= ϕ(z)] and y∼ Py(.) the distribution of the random labels. Above ex-
pressions are valid for any generic weight distribution Pw(.) and non-linearity
ϕ . The detailed computation is left in Appendix. B.2, in particular eq. (345)
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Figure 44: Explicit Rademacher complexity for the spherical perceptron (αc = 2).
(Left) For α < αc the problem is satis�able so the number of error is
zero and the Rademacher complexity is constant to unity. For α > αc,
the problem becomes unsatis�able and egs > 0. (Right) In the case of the
spherical perceptron, RS (dashed green) and 1RSB (red) ansatz provide
really di�erent results that scale respectively with α−1/3 and α−1/2 (scal-
ing are represented with colored dashed lines). Performing 2RSB ansatz
(dashed orange) does not change the scaling and di�erence with respect
to 1RSB is visually imperceptible. The black dotted-dashed curve is the
generalization error in the teacher-student scenario (Barbier et al., 2019b).
Note the large gap between the worst case Rademacher bound and the
actual teacher-student generalization error.

and eq. (362). Then the general method to �nd the ground state energy it to
take the zero temperature limit β → ∞

egs,iid (α) ≡ lim
β→∞

ϕiid (α ,β ) , (173)

while handling carefully the scaling of the optimized order parameters in
this limit.

7.4.2.a spherical perceptron

The most commonly studied model (Gardner et al., 1988; Gardner et al., 1989;
Gardner et al., 1988) with continuous weights is the spherical model with
w ∈Rd such that ‖w‖2

2 = d. The spherical constraint allows to have a well-
de�ned model which excludes diverging or vanishing weights. In this case,
the Gardner capacity is rigorously known to be equal to αc = 2 (Cover, 1965).

We computed both the RS and 1RSB free energies (Majer et al., 1993; Erichsen
et al., 1993; Whyte et al., 1996), see also Appendix. B.2.7. Taking the zero
temperature limits β → ∞,q0→ 1 and q1→ 1,x→ 0 in the 1RSB case, while
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keeping χ ≡ β (1−q0) and Ω0 ≡ βx
χ

�nite leads to the following expressions
of the ground states energies:

e(rs)rs,iid = extrχ

{
− 1

2χ
+αEy,ξ0 min

z

[
V (y|z)+ (z−ξ0)

2

2χ

]}
(174)

e(1rsb)
rs,iid = extrχ ,Ω0,q0

{
1

2Ω0χ
log (1+Ω0(1−q0))

+
q0

2χ (1+Ω0(1−q0))
(175)

+
α

χΩ0
Eξ0 logEξ1e−Ω0χ minz

[
V (y|z)+ 1

2χ (z−√q0ξ0−
√

1−q0ξ1)
2]}

,

where the cost function V (y|z) = 1 [y 6= ϕ(z)]. The details of the deriva-
tion via the replica methods are given in Appendix B.2.7. The results for
Rademacher variable y with ϕ(z) = sign(z) are depicted in Fig. 44.

Interestingly, the bounds on the Rademacher complexity also imply con-
sequences for the ground state energy. Indeed the Rademacher complexity
scales as α−1/2 for large values of α — namely there exists a constant C such
that Rn (F ) ≈

α→∞

C√
α

— therefore the ground state energy behaves for large
α as

egs(α) =
α

2
(1−Rn (F )) −→

α→∞

α

2

(
1− C√

α

)
. (176)

We �rst notice that the replica symmetric RS solution complexity fails to
deliver the correct scaling as sketched in Fig. 44, so the scaling in eq. (176)
must not be entirely trivial. On the other hand, the 1RSB solution we used,
which is expected to be numerically very close to the harder to evaluate FRSB
one, seems to yield the correct scaling, see Fig. 44. It is rather striking that
the statistical learning connection allows to predict, through eq. (176), the
scaling of the energy in the large α regime, that is only satis�ed with replica
symmetry breaking ansatz. This yields an open question for replica theory:
in practice, can one compute exactly the value of the constant C? Given the
FRSB solution is notoriously hard to evaluate, this might be an issue worth
investigating in mathematical physics.

7.4.2.b binary perceptron

Another common choice for the weights distribution is the binary prior
Pw(w) = δ (w−1)+ δ (w+ 1) studied e.g. in (Krauth et al., 1989). In this
case, the Gardner capacity is predicted to be αc ≈ 0.83 . . ., a prediction which,
remarkably, is still not entirely rigorously proven, but see (Ding et al., 2019;
Aubin et al., 2019c). To see this, we use eq. (171). In the binary perceptron,
the landscape of the model is said to be f1RSB, i. e. clustered in point-like
dominant solutions as discussed in Chap. 6, and the RS and 1RSB free energies
are the same, even though their entropies are di�erent ϕ(α ,β ) = e(α ,β )−
β−1s(α ,β ). In this case computing the ground state can be tackled via �nding
the e�ective temperature β ? such that the s(α ,β ?) = 0, that can be plugged
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Figure 45: Explicit Rademacher complexity for (Left) the binary perceptron (αc =
0.83 . . .). The replica solution (orange) leads again (Right) to a α−1/2 scal-
ing (dashed orange) of the Rademacher complexity at large α . The dotted-
dashed black curve is the generalization error in the teacher-student
scenario. Note the gap between the worst case bound (Rademacher) and
the teacher-student generalization error.

back to �nd the ground state energy egs(α) = ϕ(α ,β ?). Again, we note that
even though the 1RSB ansatz is unstable and should be replaced by a more
complex (and ultimately FRSB) solution, it already gives the good scaling
Rn(F )∼ α−1/2, and satis�es the scaling eq. (176) for large α , as in the case
of the spherical model, see Fig. 45.

7.4.3 teacher-student scenario versus
worst case rademacher

The Rademacher bounds are really interesting as they depend only on the
data distribution, and are valid for any rule used to generate the labels, no
matter how complicated. In this sense, it is a worst-case scenario on the
rule that prescribes labels to data. A di�erent approach, again pioneered in
statistical physics (Gardner et al., 1989), is to focus on the behavior for a given
rule, called the teacher rule. Given the Rademacher bounds tackle the worst
case with respect to that rule, it is interesting to consider the generalization
error one actually gets for the best case, i.e. �tting the labels according to the
same teacher rule.. This is the so-called T-S approach. In the wake of the need
to understand the e�ectiveness of neural networks, and the limitations of the
classical approaches, it is of interest to revisit the results that have emerged
thanks to the physics perspective.

We shall thus assume that the actual labels are given by the rule

y = sign
(

1√
d

w?ᵀx
)

, (177)
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with w?, the teacher weights that can be taken as Rademacher±1 variables, or
Gaussian ones. Now that labels are generated by feeding i.i.d random samples
to a neural network architecture (the teacher) and are then presented to
another neural network (the student) that is trained using this data, it is
interesting to compare the worst case Rademacher bound with the actual
generalization error of this student on such synthetic data.

We now consider the error of a typical solution w from the posterior
distribution (this is often called the Gibbs rule) for the student. Given the
rule is outputting ±1 variables, this yields

ε
gibbs
gen = 1−Ex,w? [〈 fw?(x)× fw(x)〉] = 1−q? (178)

where q? = Ex,w? [〈 fw?(x)× fw(x)〉]. Computing q? can be done within the
statistical mechanics approach (Seung et al., 1992; Watkin et al., 1993; Opper,
1995; Engel et al., 2001) and can be rigorously done as well (Barbier et al.,
2019b). Notice that this error is equal to the Bayes-optimal error for the
quadratic loss, see as well (Barbier et al., 2019b).

The two optimistic (teacher-student) and pessimistic (Rademacher) errors
can be seen in Fig. 44 for spherical and in Fig. 45 for binary weights. In this
case, since a perfect �t is always possible, the training error is zero and the
Rademacher complexity is itself the bound on the generalization error. These
two �gures show how di�erent the worst and teacher-student case can be
in practice, and demonstrate that one should perhaps not be surprised by
the fact that the empirical Rademacher complexity does not always give the
correct answer (Zhang et al., 2016), as after all it deals only with worst case
scenarios.

7.4.4 committee machine with gaussian
weights

Given the large gap between the Rademacher bound and the teacher-student
setting, we can ask whether we can �nd a case where the Rademacher bound
is void in the sense that the Rademacher complexity is 1 yet generalization is
good for the teacher-student setting? This can be done by moving to two-
layer networks. Consider a simple version of this function class, namely
the committee machine (Engel et al., 2001). It is a two-layer network where
the second layer has been �xed, such that only weights of the �rst layer
W = {w1, · · · ,wK} ∈ Rd×K are learnt. The function class for a committee
machine with K hidden units, already considered in Chap. 5, is de�ned by

Fcom ≡



 fW :





Rd −→ {−1,1}
x−→ sign

(
∑

K
k=1 sign

(
1√
d

wᵀ
k x
)) ,W ∈Rd×K



 .

(179)
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Instead of computing the Rademacher complexity with the replica method, it
is su�cient for the purpose of this section to understand its rough behavior.
As discussed in sec. 7.4.1, this requires knowing the Gardner capacity. A
generic bound by (Mitchison et al., 1989) states that it is upper bounded by
Θ(K log(K)). Additionally, the Gardner capacity has been computed by the
replica method in (Monasson et al., 1995b; Urbanczik, 1997; Xiong et al., 1998)
who obtained that αc = Θ(K

√
log(K)). We thus expect that

Rn (Fcom) = 1 for α < Θ
(

K
√

log(K)

)
,

Rn (Fcom) ≈Θ

(√
K
√

logK
α

)
for α �Θ

(
K
√

logK
)

.
(180)

To compare with the teacher-student case, when the labels are produced
by a teacher committee machine as

y = sign
(

K

∑
k=1

sign
(

1√
d

w?ᵀ
k x
))

, (181)

the error of the Gibbs algorithm reads

ε
gibbs
gen = 1−Ex,w? [〈 fw?(x)× fw(x)〉] = 1−q? (182)

where, again q? = Ex,w? [〈 fw?(x)× fw(x)〉], has been computed in a series of
papers in statistical physics (Hertz et al., 1993; Schwarze, 1993), and using the
Guerra interpolation method in Chap. 5 and (Aubin et al., 2018b). Interestingly,
in this case, one can get an error that decays as 1/α as soon as α �Θ(K).
One thus observes a huge gap between the Rademacher bound that scales

as Rn (Fcom) = Θ
(√

K
√

log(K)/α

)
and the actual generalization error

εgen = Θ(K/α) for large sample size. This large gap further illustrates the
considerable di�erence in behavior one can get between the worst case and
teacher-student case analysis, see Fig. 46.

7.4.5 extension to rotationally invariant
matrices

The previous free entropy and ground state energy computation for i.i.d data
matrix X can be generalized to Rotationally Invariant (RI) random matrices
X = USV with rotation matrices U ∈O (d), V ∈O (n) independently sam-
pled from the Haar measure, and S ∈ Rd×n a diagonal matrix of singular
values. Computation for this kind of matrices can be handled again using the
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Figure 46: Illustration of the scaling of the Rademacher complexity (blue) for the
fully connected committee machine, drawn together with the exact gen-
eralization error in the teacher-student scenario (dotted-dashed black),
scaling as α−1 at large α . Notice the large gap between the worst case
bound (Rademacher) and the teacher-student result.

replica method (Kabashima, 2008; Barbier et al., 2018b; Gabrié et al., 2018)
and leads to RS and 1RSB free energies

ϕ
(rs)
RI (α ,β ) = − 1

β
extrχw,χu,qw,qu

{
A

(rs)
0 (χw, χu,qw,qu)

+A
(rs)

w (χw,qw)+αA
(rs)

u (χu,qu,β )
}

,

ϕ
(1rsb)
RI (α ,β ) = − 1

β
extrχw,χu,vw,vu,qw,qu,x {

+A
(1rsb)

0 (χw, χu,vw,vu,qw,qu,x)

+A
(1rsb)

w (χw,vw,qw,x)+αA
(1rsb)

u (χu,vu,qu,x,β )
}

,

(183)

where each term is properly de�ned in Appendix B.2 of (Abbara et al., 2020).
Note that taking X a random Gaussian i.i.d matrix, the eigenvalue density
ρ(λ ) follows the Marchenko-Pastur distribution and (183) matches free
energies eq. (171), and ground states energies eq. (174) in the spherical case.
The ground state energy (and therefore the Rademacher complexity) can be
again computed as in the i.i.d case, taking the zero temperature limit β → ∞

egs,RI(α) = lim
β→∞

ϕRI(α ,β ) , (184)

keeping in particular β χw and ω = xβ �nite in the limits β →∞,x→ 0, χw→
0.
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CONCLUS ION

In this chapter, we discussed the deep connection between the Rademacher
complexity and some of the classical quantities studied in the statistical
physics literature on neural networks, namely the Gardner capacity, the
ground state energy of the random perceptron model Chap. 6, and the gener-
alization error in the T-S model discussed in Chap. 5. We believe it is rather
interesting to draw the link with approaches inspired by statistical physics,
and compare its �ndings with the worst-case results. In the wake of the need
to understand the e�ectiveness of neural networks and also the limitations of
the classical approaches, it is of interest to revisit the results that have emerged
thanks to the physics perspective. This direction is currently experiencing a
strong revival, see e.g. (Chaudhari et al., 2017; Martin et al., 2017; Advani et al.,
2017; Baity-Jest et al., 2018). The connection discussed in the paper opens the
way to a uni�ed presentation of these often contrasted approaches, and we
hope this paper will help bridging the gap between researchers in traditional
statistics and in statistical physics. There are many possible follow-ups, the
more natural one being the computation of Rademacher complexities from
statistical physics methods for more complicated and realistic models of data,
starting for instance with correlated matrices discussed in Sec. 7.4.5.







8
GENERAL IZAT ION ERROR
IN HIGH-D IMENS IONAL
PERCEPTRONS :
APPROACHING BAYES
ERROR WI TH CONVEX
OPT IMIZAT ION

High-dimensional statistics, where the ratio α = n/d is kept �nite while the
dimensionality d and the number of samples n grow, often display interesting
non-intuitive features. Asymptotic generalization performances for such
problems in the so-called T-S setting, with synthetic data, have been the
subject of intense investigations spanning many decades (Seung et al., 1992;
Watkin et al., 1993; Engel et al., 2001; Bayati et al., 2011a; El Karoui et al., 2013;
Donoho et al., 2016). To understand the e�ectiveness of modern machine
learning techniques, and also the limitations of the classical statistical learning
approaches (Zhang et al., 2016; Belkin et al., 2019a), it is of interest to revisit
this line of research. Indeed, this direction is currently the subject to a renewal
of interests, as testi�ed by some very recent, yet already rather in�uential
papers (Candès et al., 2020; Barbier et al., 2019b; Hastie et al., 2019; Belkin
et al., 2019b; Mei et al., 2019). The present work subscribes to this line of work
and studies high-dimensional classi�cation within one of the simplest models
considered in statistics and machine learning: convex linear estimation with
data generated by a teacher perceptron (Gardner et al., 1989). We will focus on
the generalization abilities in this problem, and compare the performances
of Bayes-optimal estimation to the more standard ERM. We then compare the
results with the prediction of standard generalization bounds that illustrate
in particular their limitation even in this simple, yet non-trivial, setting.

Synthetic datamodel — We consider a supervised machine learning task,
whose dataset is generated by a single layer neural network, often named a
teacher (Seung et al., 1992; Watkin et al., 1993; Engel et al., 2001), that belongs
to the GLM class. Therefore we assume the n samples are drawn according to

y = ϕ
?
out

(
1√
d

Xw?

)
⇔ y∼ P?

out (.) , (185)

where w? ∈Rd denotes the ground truth vector drawn from a probability dis-
tribution Pw? with second moment ρw? ≡ limd→∞

1
d E
[
‖w?‖2

2
]

and ϕ?
out repre-

209
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sents a deterministic or stochastic activation function equivalently associated
to a distribution P?

out. The input data matrix X= (xµ)
n
µ=1 ∈Rn×d contains i.i.d

Gaussian vectors, i. e. ∀µ ∈ JnK, xµ ∼N (0,Id). Even though the framework
we use and the theorems and results we derived are valid for a rather generic
channel in eq. (185) —including regression problems— we will mainly focus
the presentation on the commonly considered perceptron case: a binary classi-
�cation task with data given by a sign activation function ϕ?

out (z) = sign (z),
with a Gaussian weight distribution Pw?(w?) =Nw? (0,ρw?Id). The±1 labels
are thus generated as

y = sign
(

1√
d

Xw?

)
, with w? ∼Nw? (0,ρw?Id) . (186)

Empirical Risk Minimization — The workhorse of machine learning
is ERM, where one minimizes a loss function in the corresponding high-
dimensional parameter space Rd . To avoid over�tting of the training set
one often adds a regularization term r(w). ERM then corresponds to estimat-
ing ŵerm = argminw [L (w;y,X)] where the regularized training loss L is
de�ned by, using the notation zµ (w,xµ) ≡ 1√

d
xᵀµw,

L (w;y,X) =
n

∑
µ=1

l (yµ ,zµ (w,xµ))+ r (w) . (187)

The goal of the present chapter is to discuss the generalization performance of
these estimators for the classi�cation task (186) in the high-dimensional limit.
We focus our analysis on commonly used loss functions l, namely the square
lsquare(y,z) = 1

2 (y− z)2, logistic llogistic(y,z) = log(1+ exp(−yz)) and hinge
losses lhinge(y,z) = max (0,1− yz). We will mainly illustrate our results for
the `2 regularization r (w) = λ‖w‖2

2/2, where we introduced a regularization
strength hyper-parameter λ . The same analysis can be performed for any
other convex-separable regularization.

Related works — The above learning problem has been extensively stud-
ied in the statistical physics community using the heuristic replica method
(Gardner et al., 1989; Seung et al., 1992; Watkin et al., 1993; Opper et al., 1996a;
Engel et al., 2001). Due to the interest in high-dimensional statistics, they
have experienced a resurgence in popularity in recent years. In particular,
rigorous works on related problems are much more recent. The authors of
(Barbier et al., 2019b) established rigorously the replica-theory predictions
for the Bayes-optimal generalization error. Here we focus on standard ERM
estimation and compare it to the results obtained in (Barbier et al., 2019b).
Authors of (Thrampoulidis et al., 2018) analyzed rigorously M-estimators for
the regression case where data are generated by a linear-activation teacher.
Here we analyze classi�cation with a more general and non-linear teacher,
focusing in particular on the sign-teacher. The case of max-margin loss was
studied in (Montanari et al., 2019) with a technically closely related proof,
but with a focus on the over-parametrized regime, thus not addressing the
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questions that we focus on. A range of unregularized losses was also ana-
lyzed for a sigmoid teacher (that is very similar to a sign-teacher) again in
the context of the double-descent behavior in (Deng et al., 2019; Kini et al.,
2020). Here we focus instead on the regularized case as it drastically improves
generalization performances of the ERM and that allows us to compare with
the Bayes-optimal estimation as well as to standard generalization bounds.
Our proof, as in the above mentioned works and (Mignacco et al., 2020b), is
based on Gordon’s minimax formalism, including in particular the e�ect of
the regularization.

Main contributions — Our �rst main contribution is to provide rigor-
ously, in Sec. 8.1, the classi�cation generalization performances of empirical
risk minimization with the loss given by (187) in the high-dimensional limit,
for any convex loss and an `2 regularization. Note that the proof is easily
extended to any convex separable regularization. Additionally, we provide
a proof of the equivalence between the results of our paper and the ones
initially obtained by the replica method, which is of additional interest given
the wide range of application of these heuristics statistical-physics technics
in machine learning and computer science (Mézard et al., 2009; Zdeborová,
2020). In particular, the replica predictions in (Opper et al., 1990; Opper et
al., 1991b; Opper et al., 1996a) follow from our results. Another approach
that originated in physics are the so-called TAP equations (Mézard, 1989;
Kabashima, 2003; Kabashima et al., 2004) that lead to the AMP algorithm
for solving linear and generalized linear problems with Gaussian matrices
(Donoho et al., 2009; Rangan, 2011). This algorithm can be analyzed with the
so-called SE method (Bayati et al., 2011b), and it is widely believed, and in
fact proven for linear problems (Bayati et al., 2011a; Gerbelot et al., 2020) that
the �xed-point of the SE gives the optimal error in high-dimensional convex
optimization problems. The SE equations are in fact equivalent to the one
given by the replica theory and therefore our results vindicate this approach
as well. We also demonstrate numerically that these asymptotic results are
very accurate even for moderate system sizes, and they have been performed
with the scikit-learn library (Pedregosa et al., 2011).

Secondly, and more importantly, we provide in Sec. 8.2 a detailed analy-
sis of the generalization error for standard losses such as square, hinge (or
equivalently support vector machine) and logistic, as a function of the regular-
ization strength λ and the number of samples per dimension α . We observe,
in particular, that while the ridge regression never closely approaches the
Bayes-optimal performance, the logistic regression with optimized `2 regu-
larization gets extremely close to optimal. And so does, to a lesser extent, the
hinge regression and the max-margin estimator to which the unregularized
logistic and hinge converge (Rosset et al., 2004). It is quite remarkable that
these canonical losses are able to approach the error of the Bayes-optimal
estimator for which, in principle, the marginals of a high-dimensional prob-
ability distribution need to be evaluated. Notably, all the later losses give
—for a good choice of the regularization strength λ— generalization errors
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scaling as Θ
(
α−1

)
for large α , just as the Bayes-optimal generalization er-

ror (Barbier et al., 2019b). This is found to be at variance with the prediction of
Rademacher and max-margin-based bounds that predict instead a Θ

(
α−1/2

)

rate (Vapnik, 2006; Shalev-Shwartz et al., 2014), which therefore appear to be
vacuous in the high-dimensional regime.

Third, in Sec. 8.3, we design a custom, non-convex, loss and regularizer that
provably gives a plug-in estimator that e�ciently achieves Bayes-optimal
performances, including the optimal Θ

(
α−1

)
rate for the generalization

error. Our construction is related to the one discussed in (Gribonval, 2011;
Gribonval et al., 2013; Advani et al., 2016a), but is not restricted to convex
losses.

8.1 MAIN TECHNICAL RESULTS

In the formulas that arise for this statistical estimation problem, the cor-
relations between the estimator ŵ and the ground truth vector w? play a
fundamental role and we thus de�ne two scalar overlap parameters to mea-
sure the statistical reconstruction:

m≡ 1
d

Ey,X [ŵᵀw?] , q≡ 1
d

Ey,X [‖ŵ‖2]
2 . (188)

In particular, the generalization error of the estimator ŵ(α) ∈Rd , obtained
by performing ERM on the training loss L in eq. (187) with n = αd samples,

eerm
g (α) ≡Ey,x1 [y 6= ŷ (ŵ(α);x)] , (189)

where ŷ (ŵ(α);x) denotes the predicted label, has both at �nite size d and
in the asymptotic limit an explicit expression depending only on the above
overlaps m and q:

Proposition 8.1.1 (Generalization error of classi�cation). In our synthetic
binary classi�cation task, the generalization error of ERM (or equivalently the
test error) is given by

eermg (α) =
1
π
acos (

√
η) , (190)

with

η ≡ m2

ρd q
, ρd ≡

1
d

E
[
‖w?‖2

2
]

.

Proof. The proof is a simple computation based on Gaussian integration. The
generalization error eg is the prediction error of the estimator ŵ on new
samples {y,X}, where X is a Gaussian matrix with i.i.d entries and y are ±1
labels generated according to eq. (185) y = ϕout? (z) with z = 1√

d
Xw?. As the

model �tted by ERM may not lead to binary outputs, we add a non-linearity
ϕ : R 7→ {±1} (for example a sign or a soft-sign) on top of it to ensure
to obtain binary outputs ŷ± 1 according to ŷ = ϕout (ẑ) with ẑ = 1√

d
Xŵ.
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The classi�cation generalization error is given by the probability that the
predicted labels ŷ and the true labels y do not match. To compute it, �rst note
that the vectors (z, ẑ) averaged over all possible ground truth vectors w? (or
equivalently labels y) and input matrix X follow in the large size limit a joint
Gaussian distribution with zero mean and covariance matrix

σσσ =
1
d

Ew?,X

[
‖w?‖2

2 w?ᵀŵ
w?ᵀŵ ‖ŵ‖2

2

]
≡
[

ρd σw?ŵ
σw?ŵ σŵ

]
. (191)

The asymptotic generalization error depends only on the covariance matrix
σσσ and as the samples are i.i.d it reads

eg(α) = 1 [y 6= ŷ (ŵ(α);x)] = 1−P[y = ŷ (ŵ(α);x)]

= 1−2
∫

(R+)2
dx Nx (0,σσσ) (192)

= 1−
(

1
2
+

1
π

atan

(√
σ2

w?ŵ

ρdσŵ−σ2
w?ŵ

))
=

1
π

acos (η) ,

where we used the fact that atan(x) = 1
2

(
π− acos

(
x2−1
1+x2

))
, 1

2 acos
(
2x2−1

)
=

acos(x) and de�ned η = σw?ŵ√
ρdσŵ

. For the ERM estimator, the parameters σŵ =
1
d Ew?,X‖ŵ‖2

2 = q and σw?ŵ = 1
d Ew?,X (ŵ)ᵀ w? = m, such that the generaliza-

tion error for classi�cation is given by (192) with η ≡ m2

ρdq .

To obtain the generalization performances of ERM, it remains to obtain the
asymptotic values of m, q (and thus of η), in the limit d→ ∞. For any τ > 0,
let us �rst recall the de�nitions of the Moreau-Yosida regularization Mτ and
the proximal operator Pτ of a convex loss function (y,z) 7→ `(y · z):

Mτ(z) = min
x

{
`(x)+

(x− z)2

2τ

}
,

Pτ(z) = argminx

{
`(x)+

(x− z)2

2τ

}
.

(193)

With the `2 regularization, the asymptotic overlaps are characterized by a
set of �xed point equations and follow from the Gordon’s Convex Gaussian
Min-max Theorem (CGMT) states in the next theorems.

Theorem 8.1.2 (Gordon’s min-max �xed point - Regression/Classi�cation
with `2 regularization). As n,d → ∞ with n/d = α = Θ(1), the overlap
parameters m,q concentrate to

m −→
d→∞

√
ρw?ν

∗ , q −→
d→∞

(ν∗)2 +(δ ∗)2
ρd −→

d→∞

ρw? . (194)

For regression the parameters ν∗,δ ∗ are the solutions of

(ν∗,δ ∗) = argmin
ν ,δ≥0

sup
τ>0

{
λ (ν2 + δ 2)

2
− δ 2

2τ
(195)

+αEg,sMτ [l(ϕout?(
√

ρw?s), .)](νs+ δg)} ,



8.1 main technical results 214

while for classi�cation, ν∗,δ ∗ are the solutions of

(ν∗,δ ∗) = argmin
ν ,δ≥0

sup
τ>0

{
λ (ν2 + δ 2)

2
− δ 2

2τ
(196)

+αEg,sMτ [δg+νsϕout?(
√

ρw?s)]} .

Here, g,s are two i.i.d standard Gaussian normal random variables. The solutions
(ν∗,δ ∗) of (196) for classi�cation can be reformulated as a set of �xed point
equations

ν
∗ =

α

λτ∗+α
Eg,s[s×ϕout?(

√
ρw?s)

×Pτ∗(δ
∗g+ν

∗sϕout?(
√

ρw?s))] ,

δ
∗ =

α

λτ∗+α−1
Eg,s[g×Pτ∗(δ

∗g+ν
∗sϕout?(

√
ρw?s))] ,

(δ ∗)2 = αEg,s[((δ
∗g+ν

∗sϕout?(
√

ρw?s)) (197)

−Pτ∗(δ
∗g+ν

∗sϕout?(
√

ρw?s)))2] .

Proof. Since the teacher weight vector w? is independent of the input data
matrix X, we can assume without loss of generality that w? =

√
d ρde1

where e1 is the �rst natural basis vector of Rd , and ρd = ‖w?‖2
2/d. As d→

∞, ρd → ρw? . Accordingly, it will be convenient to split the data matrix
into two parts X = [s,B], where s ∈ Rn×1 and B ∈ Rn×(d−1) are two sub-
matrices of i.i.d standard normal entries. The weight vector w can also be
written as w = [

√
dν ,vᵀ]ᵀ, where ν ∈R denotes the projection of w onto

the direction spanned by the teacher weight vector w?, and v ∈Rd−1 is the
projection of w onto the complement subspace. These representations serve
to simplify the notations in our subsequent derivations. For example, we can
now write the output as yµ = ϕout?(

√
ρdsµ) where sµ is the µ-th entry of

the Gaussian vector s. Let Φd denote the cost of the ERM according to the
loss (187), normalized by d. Using our new representations introduced above,
we have

Φd = min
ν ,v

1
d

n

∑
µ=1

l
(

yµ ,νsµ +
1√
d

bᵀ
µv
)
+

λ (dν2 + ‖v‖2)

2d
, (198)

where bᵀ
µ denotes the i-th row of B. Since the loss function l(yµ ,z) is convex

with respect to z, we can rewrite it as l(yµ ,z) = supq{qz− l∗(yµ ,q)}, where
l∗(yµ ,q) = supz{qz− l(yµ ,z)} is its convex conjugate. Substituting l into
(198), we obtain

Φd = min
ν ,v

sup
q

{
νqᵀs

d
+

1
d3/2 qᵀBv

−1
d

n

∑
µ=1

l∗(yµ ,qµ)+
λ

(
dν2 + ‖v‖2

)

2d



 .
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Now consider a new optimization problem

Φ̃d = min
ν ,v

sup
q

{
νqᵀs

d
+
‖q‖√

d
hᵀv
d

+
‖v‖√

d
gᵀq
d

−1
d

n

∑
µ=1

l∗(yµ ,qµ)+
λ

(
dν2 + ‖v‖2

)

2d



 ,

where h ∼ N (0,Id−1) and g ∼ N (0,In) are two independent standard
normal vectors. It follows from Gordon’s minimax comparison inequality,
see e. g. (Gordon, 1985; Thrampoulidis et al., 2015), that

P(|Φd− c| ≥ ε) ≤ 2P
(∣∣Φ̃d− c

∣∣≥ ε
)

, (199)

for any constants c and ε > 0. This implies that Φ̃d serves as a surrogate of Φd .
Speci�cally, if Φ̃d concentrates around some deterministic limit c as d→ ∞,
so does Φd . In what follows, we proceed to solve the surrogate problem for
Φ̃d . First, let δ = ‖v‖/

√
d. It is easy to see that Φ̃d can be simpli�ed as

Φ̃d = min
ν ,δ≥0

sup
q

{
qᵀ(νs+ δg)

d
−δ
‖q‖√

d

‖h‖√
d

−1
d

n

∑
µ=1

l∗(yµ ,qµ)+
λ (ν2 + δ 2)

2

}

(a)
= min

ν ,δ≥0
sup
τ>0

sup
q

{
−τ‖q‖2

2d
− δ 2‖h‖2

2τd
+

qᵀ(νs+ δg)
d

−1
d

n

∑
µ=1

l∗(yµ ,qµ)+
λ (ν2 + δ 2)

2

}

= min
ν ,δ≥0

sup
τ>0

{
λ (ν2 + δ 2)

2
− δ 2‖h‖2

2τd

−α

n
inf
q

[
τ‖q‖2

2
−qᵀ(νs+ δg)+

n

∑
µ=1

l∗(yµ ,qµ)

]}

(b)
= min

ν ,δ≥0
sup
τ>0

{
λ (ν2 + δ 2)

2
− δ 2‖h‖2

2τd

−α

n

n

∑
µ=1

Mτ [l(yµ , .)](νsµ + δgµ)

}
.

In (a), we have introduced an auxiliary variable τ to rewrite −δ
‖q‖√

d
‖h‖√

d
as

−δ
‖q‖√

d

‖h‖√
d
= sup

τ>0

{
−τ‖q‖2

2d
− δ 2‖h‖2

2τd

}
,
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and to get (b), we use the identity

inf
q

{
τ

2
q2−qz+ `∗(q)

}
= − inf

x

{
(z− x)2

2τ
+ `(x)

}
,

that holds for any z and for any convex function `(x) and its conjugate
`∗(q). As d→ ∞, standard concentration arguments give us ‖h‖

2

d → 1 and
1
n ∑

n
µ=1 Mτ [l(yµ , .)](νsµ +δgµ)→Eg,sMτ [l(y, .)](νs+δg) uniformly over

τ ,ν and δ . Using (199), we can conclude that the normalized cost of the ERM
Φd converges to the optimal value of the deterministic optimization problem
in (195). Finally, since λ > 0, one can show that the cost function of (195)
has a unique global minima at ν∗ and δ ∗. It follows that the empirical values
of (ν ,δ ) also converge to their corresponding deterministic limits (ν∗,δ ∗).

To obtain the result for classi�cation, we note that

Mτ [l(y, .)](z) = min
x

{
l(y;x)+

(x− z)2

2τ

}
= min

x

{
`(yx)+

(x− z)2

2τ

}

= min
x

{
`(x)+

(x− yz)2

2τ

}
= Mτ(yz),

where to reach the last equality we have used the fact that y ∈ {±1}. Sub-
stituting this special form into (195) and recalling yµ = ϕout?(

√
ρdsµ), we

obtain the result. Finally, to obtain the �xed point equations, we simply take
the partial derivatives of the cost function with respect to ν ,δ ,τ , and use the
following well-known calculus rules for the Moreau-Yosida regularization
(Hiriart-Urruty et al., 1993):

∂Mτ(z)
∂ z

=
z−Pτ(z)

τ
,

∂Mτ(z)
∂τ

= −(z−Pτ(z))2

2τ2 .

Interestingly, this set of �xed point equations (197) can be �nally mapped
to the ones obtained by the heuristic replica method from statistical physics,
whose heuristic derivation is shown in SM. III.3 of (Aubin et al., 2020c), as
well as the SE of the AMP (Kabashima, 2003; Rangan, 2011; Zdeborová et al.,
2016a). Thus their validity for this convex estimation problem is rigorously
established by the following theorem:
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Corollary 8.1.3 (Equivalence Gordon-replicas). As n,d → ∞ with n/d =

α = Θ(1), the overlap parameters m,q concentrate to the �xed point of the
following set of equations:

m = αΣρw?×Ey,ξ [Zout? (y,
√

ρw?ηξ ,ρw? (1−η))

× fout? (y,
√

ρw?ηξ ,ρw? (1−η))× fout
(

y,q1/2
ξ ,Σ

)]

q = m2/ρw? +αΣ2×Ey,ξ [Zout? (y,
√

ρw?ηξ ,ρw? (1−η)) (200)

× fout
(

y,q1/2
ξ ,Σ

)2
]

Σ =
(
λ −α×Ey,ξ [Zout? (y,

√
ρw?ηξ ,ρw? (1−η))

×∂ω fout
(

y,q1/2
ξ ,Σ

)])−1

with η ≡ m2

ρw?q and where ξ ,z denote two i.i.d standard normal random variables,
and Ey the continuous or discrete sum over all possible values y according to
Pout? . The corresponding functions Zout? , fout? and fout, ∂ω fout are de�ned in
Appendix. A.4.1.a-A.4.1.b.

For clarity, the proof is left in SM. III.3 of (Aubin et al., 2020c). Moreover,
an equivalent set of six equations for the whole GLM class (classi�cation and
regression) with any separable and convex regularizer di�erent than `2 are
shown in Appendix. B.1.2.a and in SM. III.2 of (Aubin et al., 2020c).

Bayes optimal baseline — Finally, we shall compare the ERM perfor-
mances to the Bayes-optimal generalization error. Being the information-
theoretically best possible estimator, we will use it as a reference baseline for
comparison. The expression of the Bayes-optimal generalization was derived
in (Opper et al., 1991b) and proven in (Barbier et al., 2019b) and we recall
here the result:

Theorem 8.1.4 (Bayes asymptotic performance, from (Barbier et al., 2019b)).
For the model (185) with Pw?(w?) = Nw? (0,ρdId), such that ρd −→

d→∞

ρw? , the

Bayes-optimal generalization error is quanti�ed by two scalar parameters qb

and q̂b that verify asymptotically the set of �xed point equations

qb =
q̂b

1+ q̂b
, (201)

q̂b = αEy,ξ

[
Zout?

(
y,q1/2

b ξ ,ρw?−qb

)
· fout?

(
y,q1/2

b ξ ,ρw?−qb

)2
]

,

and is expressed by

ebayesg (α) =
1
π
acos (

√
ηb) with ηb =

qb

ρw?
. (202)

Proof. The Bayes estimator ŵ is the average over the posterior distribution,
denoted 〈.〉, knowing the teacher prior Pw? and channel Pout? distributions so
that ŵ = 〈w〉. Hence we obtain m = q = qb and the parameters limd→∞ σŵ =
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limd→∞
1
d Ew?,X‖〈w〉‖2

2 ≡ qb and limd→∞ σw?ŵ = limd→∞
1
d Ew?,X〈w〉ᵀw? ≡

mb. Using the Nishimori identity, see Appendix. A.3, the generalization error
(190) simpli�es in the Bayes-optimal setting to (192) with ηb =

qb
ρw?

.

8.2 GENERAL IZAT ION ERRORS

We now move to the core of the contribution and analyze the set of �xed
point equations (197), or equivalently (200), leading to the generalization
performances given by (190), for common classi�ers on our synthetic bi-
nary classi�cation task. As already stressed, even though the results are
valid for a wide range of regularizers, we focus on estimators based on ERM
with `2 regularization r(w) = λ‖w‖2

2/2, and with square loss (ridge regres-
sion) lsquare(y,z) = 1

2 (y− z)2, logistic loss (logistic regression) llogistic(y,z) =
log(1+ exp(−yz)) or hinge loss (SVM) lhinge(y,z) = max (0,1− yz). In partic-
ular, we study the in�uence of the hyper-parameter λ on the generalization
performances and the di�erent large α behavior generalization rates in the
high-dimensional regime, and compare with the Bayes results. We show the
solutions of the set of �xed point equations eqs. (200) in Figs. 47a, 47b, 47c
respectively for ridge, hinge and logistic `2 regressions. Ridge regression is
a special case, for which its quadratic loss allows to derive and fully solve
the equations, see SM. V.3 of (Aubin et al., 2020c). However in general the
set of equations has no analytical closed form and needs therefore to be
solved numerically. It is in particular the case for logistic and hinge, whose
Moreau-Yosida regularization is, however, analytical.

First, to highlight the accuracy of the theoretical predictions, we compare
in Figs. 47a-47b-47c the ERM asymptotic (d→ ∞) generalization error with
the performances of numerical simulations (d = 103, averaged over ns = 20
samples) of ERM of the training loss eq. (187). Presented for a wide range
of number of samples α and of regularization strength λ , we observe a
perfect match between theoretical predictions and numerical simulations so
that the error bars are barely visible and have been therefore removed. This
shows that the asymptotic predictions are valid even with very moderate
sizes. As an information theoretical baseline, we also show the Bayes-optimal
performances (black) given by the solution of eq. (201).

8.2.1 ridge estimation

As we might expect the square loss gives the worst performances. For low val-
ues of the generalization, it leads to an interpolation-peak at α = 1. The limit
of vanishing regularization λ → 0 leads to the least-norm or pseudo-inverse
estimator ŵpseudo = (XᵀX)−1 Xᵀy. The corresponding generalization error
presents the largest interpolation-peak and achieves a maximal generalization
error eg = 0.5. These are well known observations, discussed as early as in
(Opper et al., 1996a; Opper et al., 1990), that are object of a renewal of interest
under the name double descent, following a recent series of papers (Hastie
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et al., 2019; Geiger et al., 2019; Geiger et al., 2020; Belkin et al., 2019a; Mitra,
2019; Mei et al., 2019; Gerace et al., 2020; d’Ascoli et al., 2020). This double
descent behavior for the pseudo-inverse is shown in Fig. 47a with a yellow
line. On the contrary, larger regularization strengths do not su�er this peak
at α = 1, but their generalization error performance is signi�cantly worse
than the Bayes-optimal baseline for larger values of α . Indeed, as we might
expect, for a large number of samples, a large regularization biases wrongly
the training. However, even with optimized regularizations, performances of
the ridge estimator remains far away from the Bayes-optimal performance.

8.2.2 hinge and logistic estimation

Both these losses, which are the classical ones used in classi�cation prob-
lems, improve drastically the generalization error. First of all, let us notice
that they do not display a double-descent behavior. This is due to the fact
that our results are illustrated in the noiseless case and that our synthetic
dataset is always linearly separable. Optimizing the regularization, our results
in Fig. 47a-47b-47c show both hinge and logistic ERM-based classi�cation
approach very closely the Bayes error. To o�set these results, note that per-
formances of logistic regression on non-linearly separable data are however
very poor, as illustrated by our analysis of a rectangle door teacher, see SM. V.6
of (Aubin et al., 2020c).

8.2.3 max-margin estimation

As discussed in (Rosset et al., 2004), both the logistic and hinge estimator
converge, for vanishing regularization λ → 0, to the max-margin solution.
Taking the λ → 0 limit in our equations, we thus obtain the max-margin
estimator performances. While this is not what gives the best generalization
error (as can be seen in Fig.47c the logistic with an optimized λ has a lower
error), the max-margin estimator gives very good results, and gets very close
to the Bayes-error.

8.2.4 optimal regularization

De�ning the regularization value that optimizes the generalization as

λ
opt (α) = argminλ eerm

g (α ,λ ) , (203)

we show in Figs. 47a-47b-47c that both optimal values λ opt (α) (dashed-
dotted orange) for logistic and hinge regression decrease to 0 as α grows
and more data are given. Somehow surprisingly, we observe in particular
that the generalization performances of logistic regression with optimal
regularization are extremely close to the Bayes performances. The di�erence
with the optimized logistic generalization error is barely visible by eye, so
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(a) Ridge regression: square loss with `2 regularization. Interpolation-peak, at α = 1,
is maximal for the pseudo-inverse estimator λ = 0 (yellow line) that reaches
eg = 0.5.
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(b) Hinge regression: hinge loss with `2 regularization. For clarity the rescaled value
of λ opt/10 (dotted-dashed orange) is shown as well as its generalization error
eopt

g (dotted orange) that is slightly below and almost indistinguishable of the
max-margin performances (dashed black).

that we explicitly plotted the di�erence, which is roughly of order 10−5. Ridge
regression Fig. 47a shows a singular behavior: there exists an optimal value
(purple) which is moreover independent of α achieved for λ opt' 0.5708. This
value was �rst found numerically and con�rmed afterwards semi-analytically
in SM. V.3 in (Aubin et al., 2020c).

8.2.5 generalization rates at large α

Finally, we turn to the very instructive behavior at large values of α when
a large amount of data is available. First, we notice that the Bayes-optimal
generalization error, whose large α analysis is performed in SM. V.1 of
(Aubin et al., 2020c), decreases as ebayes

g ∼
α→∞

0.4417α−1. Compared to this
optimal value, ridge regression gives poor performances in this regime. For
any value of the regularization λ — and in particular for both the pseudo-
inverse case at λ = 0 and the optimal estimator λ opt — its generalization
performances decrease much slower than the Bayes rate, and goes only as
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(c) Logistic regression: logistic loss with `2 regularization - The value of λ opt (dotted-
dashed orange) is shown as well as its generalization error eopt
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Visually indistinguishable from the Bayes-optimal line, their di�erence eopt

g −
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Figure 47: Asymptotic generalization error for `2 regularization (d→∞) as a function
of α for di�erent regularizations strengths λ , compared to numerical
simulation (points) of ridge regression for d = 103 and averaged over
ns = 20 samples. Numerics has been performed with the default methods
Ridge, LinearSVC, LogisticRegression of scikit-learn package (Pedregosa
et al., 2011). Bayes optimal performances are shown with a black line
and goes as Θ

(
α−1

)
, while the Rademacher complexity (dashed green)

decrease as Θ
(
α−1/2

)
. Both hinge and logistic converge to max-margin

estimator (limit λ = 0) which is shown in dashed black and deceases as
Θ(α−1), while Ridge decreases as Θ(α−1/2).
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eridge
g ∼

α→∞
0.2405α−1/2, see SM. V.3 of (Aubin et al., 2020c) for the derivation.

Hinge and logistic regressions present a radically di�erent, and more favor-
able, behavior. Fig. 47b-47c show that keeping λ �nite when α goes to ∞,
does not yield the Bayes-optimal rates. However the max-margin solution
(that corresponds to the λ → 0 limit of these estimators) gives extremely
good performances elogistic,hinge

g ∼
λ→0

emax-margin
g ∼

α→∞
0.500α−1 see derivation

in SM. V.4 of (Aubin et al., 2020c). This is the same rate as the Bayes one, only
that the constant is slightly higher.

8.2.6 comparison with vc and rademacher
statistical bounds

Given the fact that both the max-margin estimator and the optimized logistic
achieve optimal generalization rates going as Θ

(
α−1

)
, it is of interest to

compare those rates to the prediction of statistical learning theory bounds.
Statistical learning analysis (see e.g. (Vapnik, 2006; Bartlett et al., 1998; Shalev-
Shwartz et al., 2014)) relies to a large extent on the VC dimension analysis
and on the so-called Rademacher complexity. The uniform convergence result
states that if the Rademacher complexity or the VC dimension dvc is �nite,
then for a large enough number of samples the generalization gap will vanish
uniformly over all possible values of parameters. Informally, uniform con-
vergence tells us that with high probability, for any value of the weights w,
the generalization gap satis�es Rpopulation(w)−Rn

empirical(w) = Θ
(√

dvc/n
)

where dvc = d− 1 for our GLM hypothesis class. Therefore, given that the
empirical risk can go to zero (since our data are separable), this provides a
generalization error upper-bound eg≤Θ(α−1/2). This is much worse that
what we observe in practice, where we reach the Bayes rate eg = Θ(α−1).
Tighter bounds can be obtained using the Rademacher complexity, and this
was studied recently, using the aforementioned replica method (Abbara et al.,
2020) for the very same problem as presented in Chap. 7. We reproduced their
results and plotted the Rademacher complexity generalization bound in Fig.47
(dashed-green) that decreases as Θ

(
α−1/2

)
for the binary classi�cation task

eq. (186).
One may wonder if this could be somehow improved. Another statistical-

physics heuristic computation, however, suggests that, unfortunately, uni-
form bound are plagued to a slow rate Θ

(
α−1/2

)
. Indeed, the authors of

(Engel et al., 1993) showed with a replica method-style computation that there
exists some set of weights, in the binary classi�cation task. (186), that lead to
Θ
(
α−1/2

)
rates: the uniform bound is thus tight. The gap observed between

the uniform bound and the almost Bayes-optimal results observed in practice
in this case is therefore not a paradox, but an illustration that the price to
pay for uniform convergence is the inability to describe the optimal rates
one can sometimes get in practice. Therefore, we believe, that the fact this
phenomena can be observed in a such simple problem sheds an interesting
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light on the current debate in understanding generalization in deep learning
(Zhang et al., 2016).

Remarking our synthetic dataset is linearly separable, we may try to take
this fact into consideration to improve the generalization rate. In particular,
it can be done using the max-margin based generalization error for separable
data:

Theorem 8.2.1 (Hard-margin generalization bound (Vapnik, 2006; Bartlett
et al., 1998; Shalev-Shwartz et al., 2014)). Given a set S = {x1, · · · ,xn} such
that ∀µ ∈ JnK,‖xµ‖ ≤ r. Let ŵ the hard-margin SVM estimator on S drawn with
distribution D. With probability 1−δ , the generalization error is bounded by

eg(α) ≤
α→∞

(
4r‖ŵ‖+

√
log (4/δ ) log2 ‖ŵ‖

)
/
√

n . (204)

In our case one has r2 ' 1
d Ex‖x‖2

2 =
1
d ∑

d
i=1 E x2

i −→d→∞

1. On the other hand,

in the large size limit, the norm of the estimator ‖ŵ‖2/
√

d −→
d→∞

√
q, that

yields eg(α)≤ 4
√

q
α

. We now need to plug the values of the norm q obtained
by our max-margin solution to �nally obtain the results. Unfortunately, this
bound turns out to be even worse than the previous one. Indeed the norm of
the hard margin estimator q is found to grow with α in the solution of the
�xed point equation, and therefore the margin decay rather fast, rendering
the bound vacuous. For small values of α , one �nds that q∼α that provides a
vacuous constant generalization bound eg ≤Θ (1), while for large α , q∼ α2

that yields an even worse bound eg ≤Θ (
√

α). Clearly, max-margin based
bounds do not perform well in this high-dimensional example.

8.3 REACHING BAYES OPT IMAL I T Y

Given the fact that logistic and hinge losses reach values extremely close to
Bayes optimal generalization performances, one may wonder if by somehow
slightly altering these losses one could actually reach the Bayesian values
with a plug-in estimator obtained by ERM. This is what we achieve in this
section, by constructing a non-convex optimization problem with a specially
tuned loss and regularization, whose solution yields Bayes-optimal generaliza-
tion. Recent insights have shown that indeed one can sometime re-interpret
Bayesian estimation as an optimization program in inverse problems (Gribon-
val, 2011; Gribonval et al., 2013; Gribonval et al., 2018; Gribonval et al., 2019).
In particular, (Advani et al., 2016a) showed explicitly, on the basis of the non-
rigorous replica method of statistical mechanics, that some Bayes-optimal
reconstruction problems could be turned into convex M-estimation.

Matching ERM and Bayes-optimal generalization errors eqs. (190)-(202)
with overlaps respectively solutions of eq. (200)-(201) and assuming that
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Zw? (γ ,Λ) and Zout? (y,ω ,V ), de�ned in Appendix. A.4.1.a, are log-concave
in γ and ω , we de�ne the optimal loss and regularizer lopt, ropt:

lopt (y,z) = −min
ω

(
(z−ω)2

2(ρw?−qb)
+ logZout? (y,ω ,ρw?−qb)

)
,

ropt (w) = −min
γ

(
1
2

q̂bw2− γw+ logZw? (γ , q̂b)

)
,

(205)

with (qb, q̂b) solution of eq. (201). Following these considerations, we provide
the following theorem:

Theorem 8.3.1. The result of empirical risk minimization eq. (187) with lopt

and ropt in eq. (205), leads to Bayes optimal generalization error in the high-
dimensional regime.

Proof. The derivation is largely inspired by (Opper et al., 1991b; Kinouchi
et al., 1996; Gribonval, 2011; Bean et al., 2013; Advani et al., 2016a; Advani
et al., 2016b; Donoho et al., 2016; Gribonval et al., 2013; Gribonval et al.,
2018; Gribonval et al., 2019). First we note that the so called Bayes-optimal
AMP algorithm (Rangan, 2011), presented in Algo. 2 in Chap. 5, for K = 1 in
the context of the GLM, is provably convergent. With Bayes-optimal update
functions f bayes

out (y,ω ,V ) = ∂ω log (Zout?) and f bayes
w (γ ,Λ) = ∂γ log (Zw?),

it indeed reaches Bayes-optimal performances, see (Barbier et al., 2019b).
Instead performing Bayes-optimal (MMSE) estimation, we can simply use the
AMP algorithm and change the denoising functions to perform ERM (MAP)
estimation with

f erm,l
out (y,ω ,V ) = −∂ωMV [l(y, .)](ω) ,

f erm,r
w (γ ,Λ) = Λ−1

γ−Λ−1
∂Λ−1γMΛ−1 [r(.)] (Λ−1

γ) ,

detailed in Appendix. A.4.2. The corresponding GAMP algorithms achieve
potentially di�erent �xed points and performances. As GAMP provably con-
verges to the optimal generalization error with Bayes-optimal updates, it
is su�cient to enforce that at each time step t the Bayes-optimal and ERM
denoising functions are equal f bayes = f erm, to insure that GAMP algorithm
for ERM estimation matches the same performances. Enforcing the constraint
f bayes
out (y,ω ,V ) = f erm,l

out (y,ω ,V ) yields

∂ω log (Zout?) (y,ω ,V ) = −∂ωMV
[
lopt (y, .)

]
(ω) .

Integrating, leaving aside the constant that will not in�uence the �nal result,
and taking the Moreau-Yosida regularization on both sides, we obtain:

MV [logZout? (y, .,V )] (ω) = MV
[
−MV

[
lopt (y, .)

]
(ω)

]
= −lopt (y,ω) ,
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where we invert the Moreau-Yosida regularization in the last equality that is
valid as long as Zout?(y,ω ,V ) is assumed to be log-concave in ω , see (Advani
et al., 2016a) for a derivation. We �nally obtain the optimal loss lopt

lopt (y,z) = −MV [log (Zout?) (y, .,V )] (z)

= −min
ω

(
(z−ω)2

2V
+ logZout? (y,ω ,V )

)
.

(206)

Introducing a rescaled prior denoising distribution

Q̃w?(w;γ ,Λ) ≡ 1
Z̃w?(γ ,Λ)

Pw?(w)e−
1
2 Λ(w−Λ−1γ)

2

,

log
(
Z̃w?(γ ,Λ)

)
= log (Zw?(γ ,Λ))− 1

2
Λ−1

γ
2 ,

so that the the prior updates read

f bayes
w (γ ,Λ) = Λ−1

γ +Λ−1
∂Λ−1γ log

(
Z̃w?

)
,

f erm,r
w (γ ,Λ) = Λ−1

γ−Λ−1
∂Λ−1γMΛ−1 [r] (Λ−1

γ) .

Imposing the equivalence f bayes
w (γ ,Λ) = f erm,r

w (γ ,Λ) yields

∂Λ−1γ log
(
Z̃w?

)
= −∂Λ−1γMΛ−1

[
ropt] (Λ−1

γ) ,

and assuming that Zw(γ ,Λ) is log-concave in γ , we may invert the Moreau-
Yosida regularization, that leads to the expression for the optimal regularizer
ropt

ropt (Λ−1
γ
)
= −MΛ−1

[
log
(
Z̃w?

)(
.,Λ−1)] (w)

= −min
γ

(
1
2

Λw2− γw+ logZw? (γ ,Λ)

)
.

(207)

Finally, enforcing the equivalence between the AMP algorithm for the mini-
mization of the ERM and the Bayes-optimal AMP lead to the expressions for
the optimal loss lopt and regularizer ropt in (205). The last step is to charac-
terize the undetermined variances V and Λ involved in (206) and (207). To
achieve the Bayes-optimal performances, we therefore use the variances V
and Λ solutions of the Bayes-optimal GAMP algorithm. In the large size limit
d→ ∞, taking the expectation over the ground truth w? and the input data
X the parameters V and Λ concentrate and are given by the SE of the GAMP
algorithm (Barbier et al., 2019b)

lim
d→∞

Ew?,X [V ] = ρw?−qb , lim
d→∞

Ew?,X [Λ] = q̂b , (208)

where qb and q̂b are solutions of the Bayes-optimal set of �xed point equations
eq. (201). This shows that AMP applied to the ERM problem corresponding to
(205) both converge to its �xed point and reach Bayes-optimal performances.
The theorem �nally follows by noting, see (Montanari, 2012; Gerbelot et al.,
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2020), that the AMP �xed point corresponds to the extremization conditions
of the loss.
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Figure 48: Optimal loss lopt (y = 1,z) and regularizer ropt (w) for model eq. (186) as
a function of α . The logistic loss and the `2 regularizer are plotted in
dashed black for comparison.

The optimal loss and regularizer λ opt and ropt for the model (186) are
illustrated in Fig. 48. Notice in particular that even though the loss lopt is
not convex (but seems quasi-convex), numerical simulations of ERM (black
dots) presented in Fig. 49 show that ERM achieves indeed the Bayes-optimal
performances (black line) even at �nite dimension.
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Figure 49: Generalization error obtained by optimization of the optimal loss
lopt and ropt for the model (186), compared to `2 logistic regression
and Bayes-optimal performances. Numerics has been performed with
scipy.optimize.minimize with the L-BFGS-B solver for d = 103 and aver-
aged over ns = 10 instances. The error bars are barely visible.
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OUTL INE AND
MOTIVAT IONS

Another recent ongoing direction of research aims to extend the mean-�eld
methods to the combination of known and already analyzed elementary
models such as the GLM (Barbier et al., 2019b) or the low-rank matrix fac-
torization (Lesieur et al., 2017a). Combining the corresponding graphical
models leads naturally to the description of more complex JPD. However,
understanding how and when this plug-in of di�erent models is justi�ed is a
promising research direction. In particular, this approach was successfully
applied to the inference in multi-layer GLM estimation (Manoel et al., 2017),
for i.i.d weight matrices. It was later generalized to orthogonally invariant
weight matrices with the corresponding VAMP algorithm (Fletcher et al., 2018).

Within this general plug-in approach, we consider estimation problems of
the form y = Γ(x?) where the operator Γ represents di�erent noisy channels
such as linear inverse problems, spiked matrix estimation or phase retrieval.
The ground truth signal x? must be estimated from the noisy observations y
and the knowledge of the operator Γ. To perform this statistical reconstruc-
tion, in signal processing we often use a low-dimensional parametrization of
the signal x? with for instance a sparse dimensionality reduction technique.
Naturally, exploiting the structure of the signal drastically helps to achieve
better accuracy for larger signal-to-noise ratio. Recently, this sparsity struc-
ture has been challenged and successfully replaced by generative priors based
on neural networks, such as GAN or VAE, that demonstrated to be particularly
performant in various estimation applications.

In Chap. 9 and Chap. 10 we respectively investigate the low-rank matrix
factorization and the phase retrieval and compressed sensing estimation prob-
lems with a multi-layer feed-forward DNN generative prior with i.i.d random
weights. In this series of works, we investigate and provide a theory of estima-
tion with random generative priors. Especially, we derive sharp asymptotics
for the information-theoretically optimal performances and also for the algo-
rithmic performances of a structured polynomial AMP algorithm naturally
built from the AMP algorithms on the sub-models. In the analyzed cases, we
observed that generative priors have smaller statistical-to-algorithmic gaps
than sparse priors, giving theoretical support to previous experimental obser-
vations that generative priors might be advantageous in terms of algorithmic
performance compared to classical sparse separable priors.

Additionally, in the context of the low-rank matrix factorization, we also
take advantage of the structured model to design a new enhanced spectral
algorithm Linearized Approximate Message Passing (LAMP) based on the
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linearization of the AMP algorithm and that beats PCA on synthetic and real
data.

Finally, in this general plug-in approach, instead deriving and implementing
from scratch the corresponding structured AMP algorithms, we developed
the tramp python package, standing for TRee Approximate Message Passing.
The package provides an implementation of EP for modular compositional
inference in high-dimensional tree-structured models. We do not reprint
the corresponding paper (Baker et al., 2020) but the source code is publicly
available at https://github.com/sphinxteam/tramp. Nevertheless, similarly to
previous works (Tramel et al., 2016b; Bora et al., 2017; Fletcher et al., 2018),
in Sec. 10.3, we empirically explore the reconstruction of tramp on common
estimation tasks on real datasets by making use of VAE generative priors
learned on the MNIST dataset (LeCun et al., 2010).

https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp




9
THE SP IKED MATRIX
MATRIX MODEL WI TH
GENERAT I VE PR IORS

Exploiting structure for e�cient signal reconstruction is a central endeavor in
modern signal processing. Notable technological advances - such as JPEG and
MP3 compression for example - stem from the fact that images and sound
admit a sparse representation in wavelet and Fourier bases. In a seminal
work, Donoho, Candès and Tao have shown that underparametrized linear
systems can be inverted if the signal is assumed to be sparse. This result
opened the door for novel sub-Nyquist sampling strategies leveraged by
sparsity which are at the heart of CS (Donoho, 2006). But interest in sparse
representations reaches far beyond CS, and similar results have been derived
for other signal processing tasks, such as sparse coding and sparse PCA.
Despite the remarkable success of these results, they broadly assume the
latent sparse representation is given, thus relying on expert knowledge for
signal pre-processing.

Recent progress in deep learning has witnessed a surge of interest in
neural network-based generative models. Opposed to sparsity, generative
networks are trained to learn a latent representation of the structured signal.
The expressiveness of neural networks allied with the capacity to capture
hierarchical representations led to impressive results in signal modelling, the
most notable perhaps being GAN or VAE, which can be trained to generate
realistic images of human faces (Goodfellow et al., 2014). An important and
natural question to ask is whether signals from generative models enjoy
the same aforementioned interesting properties as sparse signals in recon-
struction tasks. Early results in regression-related problems suggest that the
latent structure in generative models can be leveraged to improve signal
reconstruction (Tramel et al., 2016b; Bora et al., 2017; Manoel et al., 2017;
Hand et al., 2018a; Fletcher et al., 2018; Hand et al., 2018b; Mixon et al., 2018),
indeed suggesting that (Villar, 2018):

Generative models are the new sparsity.

In this chapter we give a further step in this direction by analyzing a class of
random-neural generative priors in an unsupervised task: rank-one (a.k.a.
spiked) matrix factorization. Given a "data" matrix Y ∈Rn×p, the problem
consists in �nding two vectors, also called the spikes, u∈Rn and v∈Rp such
that Y can be factorized as Y = uvᵀ+

√
∆ξξξ , where ξξξ is an i.i.d noise matrix

of unit variance. This model is widely studied as a prototype for PCA, since
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for small noise (∆ < 1) and Gaussian spikes u,v, the optimal estimator is
given by the leading principal component of Y (Baik et al., 2005). Optimality
relies on the assumption of unstructured spikes, and no longer hold if one
of the spikes is sparse. In a similar spirit to CS, the investigation of sparse
spikes in this model resulted into bespoke algorithms widely studied under
the umbrella of sparse-PCA, e.g. (Jenatton et al., 2010).

An important conclusion of the aforementioned works is the existence
of an algorithmic gap for sparse signal reconstruction. In other words, even
if signal reconstruction is a priori possible, no polynomial-time algorithm
is known. For spiked-matrix factorization, this means that even though the
best known sparse-PCA algorithm perform better than vanilla PCA, it doesn’t
reach the optimal threshold set by the theoretical, and practically intractable,
Bayesian estimator. As we will show, this is in sharp contract to the class of
neural generative models we study, for which we provide a polynomial time
algorithm reaching the optimal theoretical performance, suggesting instead
that:

Generative models are better than sparsity.

Before moving to the bulk of the technical analysis, we give a detailed intro-
duction of the model and regime will study, followed by an account of our
main contributions.

9.1 MODEL AND STUDIED REG IME

We will focus on the following two widely studied models in the sparse-PCA
literature (Rangan et al., 2012; Deshpande et al., 2014a; Lesieur et al., 2015;
Barbier et al., 2016; Perry et al., 2016; Lelarge et al., 2019; Miolane, 2017):

Spiked Wigner model (vvᵀ) Consider an unknown vector, the spike,
v? ∈Rp drawn from a distribution Pv; we observe a matrix Y ∈Rp×p with a
symmetric noise term ξξξ ∈Rp×p and ∆ > 0:

Y =
1√
p

v?v?ᵀ+
√

∆ξξξ , (209)

where ξi j∼N (0,1) i.i.d. The aim is to recover the hidden spike v? from the
knowledge of Y, up to a global sign.

SpikedWishart (or spiked covariance) model (uvᵀ) Consider two un-
known vectors u? ∈Rn and v? ∈Rp drawn from distributions Pu and Pv and
let ξξξ ∈Rn×p with ξµi∼N (0,1) i.i.d and ∆ > 0, we observe

Y =
1√
p

u?v?ᵀ+
√

∆ξξξ , (210)

the goal is to �nd back the hidden spikes u? and v? from Y ∈Rn×p.
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The noisy high-dimensional limit that we consider in this work, also called
the thermodynamic limit, is p,n→∞ while β ≡n/p=Θ(1), and the noise
ξξξ has a variance ∆=Θ(1). The prior Pv is representing the spike v via a
k-dimensional parametrization with α≡ p/k=Θ(1). In the sparse case, k is
the number of non-zeros components of v?, while in generative models k is
the number of latent variables.

9.1.1 considered generative models

The simplest non-separable prior Pv that we consider is the Gaussian model
with a covariance matrix Σ, that is Pv(v) = Nv(0,Σ). This prior is not com-
pressive, yet it captures some structure and can be simply estimated from
data via the empirical covariance. We use this prior later to produce Fig. 55.

To exploit the practically observed power of generative models, it would be
desirable to consider models (e.g. GAN, VAE, restricted Boltzmann machines,
or others) trained on datasets of examples of possible spikes. Such training,
however, leads to correlations between the weights of the underlying neural
networks for which the theoretical part of the present work does not apply
readily. To keep tractability in a closed form, and subsequent theoretical
insights, we focus on multi-layer generative models where all the weight ma-
trices W(l), l = 1, . . . ,L, are �xed, layer-wise independent, i.i.d Gaussian with
zero mean and unit variance. Let v ∈Rp be the output of such a generative
model

v = ϕ
(L)
(

1√
kL

W(L) . . .ϕ (1)
(

1√
k

W(1)z
)

. . . .
)

, (211)

with z ∈ Rk a latent variable drawn from separable distribution Pz, with
ρz = EPz

[
z2
]
. ∀l ∈ JLK, ϕ (l) are the element-wise activation functions that

can be either deterministic or stochastic. It will be useful to de�ne the hidden
variables h(l) ∈ Rkl obtained from the output of layer l − 1. The hidden
variable h(l+1) ∈Rkl+1 is then given by

h(l+1) = ϕ
(l)
(

1√
kl

W(l)h(l)
)
⇔ h(l+1) ∼ P(l)

out

(
·
∣∣∣ 1√

kl
W(l)h(l)

)

with h(0) = z and h(L+1) = v. The densities P(l)
out over Rkl+1 parametrize the

input/output relationship at each layer of the generative network. Note that
since ϕ (l) act component-wise P(l)

out is a separable distribution, and factorize
in a product of identical kl+1 scalar distributions over R which, abusing
notation, we we will denote by P(l)

out. For instance, a deterministic layer l with
non-linearity ϕ (l) is fully characterized by the scalar density P(l)

out(x|z) =
δ (x−ϕ(z)).

In the setting considered in this work the ground-truth spike v? is gener-
ated using a ground-truth value of the latent variable z?. The spike is then
estimated from the knowledge of the data matrix Y, and the known form
of the spiked-matrix and of the generative model. In particular the matrices
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W(l) ∈Rkl+1×kl are known, as are the parameters β ,∆, Pz, Pu, Pv and ϕ (l).
Only the spikes v?, u? and the latent vector z? are unknown, and are to be
inferred.

For concreteness and simplicity, the generative model that will be analyzed
in most examples given in the present work is the single-layer case of (211)
with L = 1. We de�ne the total compression ratio α ≡ p/k. In what follows
we will illustrate our results for ϕ being linear, sign and ReLU functions.

9.1.2 summary of main contributions

First, we provide an information-theoretical analysis for the performance
of the optimal estimator for the spiked-matrix models (209) and (210). This
analysis is based on a rigorous expression for the mutual information between
the matrix Y and a general spike v? from a non-separable distribution Pv

in Rp, and holds in the afore de�ned thermodynamic limit. Evaluating this
expression on the generative priors discussed in Sec. 9.1.1, we obtain the
optimal statistical threshold ∆c below which the spike v? can be reconstructed.
On a second moment, we derive an AMP algorithm for the models (209) and
(210), and show that, for the all the generative architectures analysed, they
attain the same performance previously derived for the Bayesian optimal
estimator. Next, we propose a simple spectral method derived from our AMP
algorithm reaching the same statistical threshold ∆c. Finally, we show that
this same spectral method can be, in certain cases, rigorously derived from a
Random Matrix Theory.

Our main �ndings are in stark contrast to the known results for sparse-PCA,
and therefore it is useful to present them in this context. We draw two main
conclusions from the present work:
(i) No algorithmic gap with generative-model priors: Sharp and de-

tailed results are known in the thermodynamic limit (as de�ned above) when
the spike v? is sampled from a separable distribution Pv. A detailed account
of several examples can be found in (Lesieur et al., 2017a). The main �nd-
ing for sparse priors Pv is that when the sparsity ρ = k/p = 1/α is large
enough then there exist optimal algorithms (Deshpande et al., 2014a), while
for ρ small enough there is a striking gap between statistically optimal per-
formance and the one of best known algorithms (Lesieur et al., 2015). The
small-ρ expansion studied in (Lesieur et al., 2017a) is consistent with the
well-known results for exact recovery of the support of v? (Amini et al., 2009;
Berthet et al., 2013), which is one of the best-known cases in which gaps
between statistical and best-known algorithmic performance were described.

Our analysis of the spiked-matrix models with generative priors reveals
that in this case known algorithms are able to obtain (asymptotically) opti-
mal performance even when the dimension is greatly reduced, i.e. α � 1.
Analogous conclusion about the lack of algorithmic gaps was reached for the
problem of phase retrieval under a generative prior in (Hand et al., 2018b).
This result suggests that plausibly generative priors are better than sparsity
as they lead to algorithmically easier problems.
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(ii) Spectral algorithms reaching statistical threshold: Arguably the
most basic algorithm used to solve the spiked-matrix model is based on
the leading singular vectors of the matrix Y. We will refer to this as PCA.
Previous work on spiked-matrix models (Perry et al., 2016; Lesieur et al.,
2017a) established that in the thermodynamic limit and for separable priors of
zero mean PCA reaches the best performance of all known e�cient algorithms
in terms of the value of noise ∆ below which it is able to provide positive
correlation between its estimator and the ground-truth spike. While for sparse
priors positive correlation is statistically reachable even for larger values
of ∆ (Perry et al., 2016; Lesieur et al., 2017a), no e�cient algorithm beating
the PCA threshold is known. Notice that this result holds only for sparsity
ρ = Θ(1). A line of works shows that when sparsity k scales slower than
linearly with p, algorithms more performant than PCA exist (Amini et al.,
2009; Deshpande et al., 2014b).

In the case of generative priors we �nd in this contribution that other
spectral methods improve on the canonical PCA. We design a spectral method,
called LAMP, that under certain assumptions, e.g. zero mean of the spikes,
reach the statistically optimal threshold, meaning that for larger values of
noise variance no other (even exponential) algorithm is able to reach positive
correlation with the spike. Again this is a striking di�erence with the sparse
separable prior, making the generative priors algorithmically more attractive.
We demonstrate the performance of LAMP on the spiked-matrix model when
the spike is taken to be one of the fashion-MNIST images (Xiao et al., 2017)
showing considerable improvement over canonical PCA. Each of the following
sections is dedicated to one of the results above.

9.2 ANALYS I S OF INFORMATION
THEORET ICALLY OPT IMAL
EST IMAT ION

In this section, we derive a set of �xed point equations, known as SE equations,
that fully characterize the performance of the optimal estimator for the spike
v?. For the sake of concreteness, the results in this section are given for the
Wigner model, and can be fully generalized to the Wishart case presented in
Appendix. B.2 of (Aubin et al., 2019e).

9.2.1 rigorous mutual information

From an optimization perspective, the problem we want to solve is to �nd
the estimator v? that minimizes the MSE

mse(∆) = E||v̂−v?||22. (212)

Since the information about the generative model Pv of the spike is given,
we know that the estimator minimizing eq. (212) is given by the mean of
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the posterior distribution of the spike, i.e. v̂opt = EP(v?|Y)v, where P(v?|Y)

is written from Bayes rule as

P(v?|Y) =
Pv(v?)
P(Y) ∏

1≤i< j≤p

1√
2π∆

exp

(
− 1

2∆

(
yi j−

v?i v?j√
p

)2
)

. (213)

The expression above is written in full generality, and for the time being we
have not assumed anything about Pv. The naive approach of estimating v̂opt

from exact sampling of the posterior is intractable numerically, specially in
the large-dimensional limit p→ ∞ of interest. However, it is still possible
to track the performance of the optimal estimator without direct sampling
through the I-MMSE theorem connecting the MMSE to a derivative of the
mutual information between the signal and the data (Guo et al., 2005a).
Following this rationale, our �rst main result is a rigorous expression for the
mutual information between the ground-truth spike v? and the observation
Y, de�ned as I (Y;v?) = DKL(P(v?,Y)‖Pv?PY), valid in the thermodynamic
limit de�ned in Sec. 9.1.

Theorem 9.2.1 (Mutual information for the spiked Wigner model with struc-
tured spike). Informally, assume the spike v? come from a sequence (of growing
dimension p) of a generic structured prior Pv on Rp, then

lim
p→∞

ip ≡ lim
p→∞

I (Y;v?)
p

= inf
ρv≥qv≥0

irs(∆,qv), (214)

with irs(∆,qv) ≡
(ρv−qv)2

4∆
+ lim

p→∞

I
(
v;v+

√
∆
qv

ξξξ

)

p
(215)

and ξξξ being a Gaussian vector with zero mean, unit diagonal variance and
ρv = lim

p→∞
EPv [vᵀv]/p.

The proof for this theorem is left in Appendix. C of (Aubin et al., 2019e),
and instead we draw its consequences. Our theorem connects the asymp-
totic mutual information of the spiked model with generative prior Pv to
the mutual information between v taken from Pv and its noisy version,
I (v;v+

√
∆/qvξξξ ). As mentioned before, the mutual information is inti-

mately connected to the performance of the optimal estimator, and one can
prove in particular that for the spiked-matrix model (Alaoui et al., 2018) the
MMSE on the spike v? is asymptotically given by:

MMSEv = ρv−q?v , (216)

where q?v is the optimizer of the function irs (∆,qv). Computing this later mu-
tual information is itself a high-dimensional task, hard in full generality, but it
can be done for a range of non-trivial Pv. The simplest tractable case is when
the prior Pv is separable, then it yields back exactly the formula previously
known from (Krzakala et al., 2016; Barbier et al., 2016; Lelarge et al., 2019). It
can also be computed for the correlated Gaussian generative model, Pv(v) =
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Nv(0,Σ), for which I (v;v+
√

∆/qvξξξ ) = Tr{log (Ip + qvΣ/∆)}/2 is read-
ily known.

More interestingly, the mutual information associated to the multi-layer
generative prior with random weights from eq. (211), explicitly written as

Pv(v) =
∫ L

∏
l=1

kl

∏
νl=1

dh(l)νl P(l−1)
out

(
h(l)νl

∣∣∣ 1√
kl−1

kl−1

∑
νl−1=1

w(l−1)
νlνl−1hνl−1

)

×
p

∏
i=1

P(L)
out

(
vi

∣∣∣ 1√
kL

kL

∑
νL=1

w(L)
iνL

hL

)
,

(217)

can also be asymptotically computed. Indeed, the corresponding single-layer
formula for this mutual information has been derived and proven in (Barbier
et al., 2019b). For the multi-layer case the mutual information formula has
been derived in (Manoel et al., 2017; Reeves, 2017) and proven for the case of
two layers in (Gabrié et al., 2018). Theorem 9.2.1 together with the results
from (Barbier et al., 2019b; Manoel et al., 2017; Reeves, 2017; Gabrié et al.,
2018) yields the following formula for the spiked Wigner model (209) with
multi-layer generative prior (211):

irs(∆,qv) =
ρ2

v

4∆
+

1
4∆

q2
v

+
1
α

extr
{q̂l ,ql}l

[
1
2

L

∑
l=1

αl q̂lql−
L

∑
l=2

αlΨ
(l)
out (q̂l ,ql−1) (218)

−αΨ(L+1)
out

(qv

∆
,qL

)
−Ψz (q̂z)

]
.

where αl = kl/k (note that in particular α1 = 1) and the functions Ψz,Ψout
are de�ned by

Ψz(x) ≡Eξ

[
Zz

(
x1/2

ξ ,x
)

log
(
Zz

(
x1/2

ξ ,x
))]

, (219)

Ψ(l)
out(x,y) ≡Eξ ,η

[
Z

(l)
out

(
x1/2

ξ ,x,y1/2
η ,ρl− y

)

log
(
Z

(l)
out

(
x1/2

ξ ,x,y1/2
η ,ρl− y

))]
, (220)

with ξ ,η ∼N (0,1) i.i.d, ρl is the second moment of the hidden variable
hl and Zz, Z

(l)
out are the normalizations of the following denoising scalar

distributions:

Qz (z;γ ,Λ) ≡ Pz(z)
Zz(γ ,Λ)

e−
Λ
2 z2+γz ,

Q(l)
out (v,x;B,A,ω ,V ) ≡ P(l)

out(v|x)
Z

(l)
out (B,A,ω ,V )

e−
A
2 v2+Bv e−

(x−ω)2

2V√
2πV

.

(221)

Result (218) is remarkable in that it connects the asymptotic mutual informa-
tion of a high-dimensional model with a simple scalar formula that can be
easily evaluated. Moreover, it fully characterize the statistical performance of
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the optimal estimator, allowing us to readily identify the statistical thresholds
separating the region between possible and impossible inference of the spike.
We now draw the consequences of eq. (218) for the most common choices of
activation.

9.2.2 optimal performance and statistical
thresholds: phase diagrams

Taking the extremization over qv and (q̂l ,ql)1≤l≤L in eq. (218), we obtain the
following system of coupled �xed point equations:





qv = Λx
(qv

∆ ,qL
)

qL = Λx (q̂L,qL−1)
...

ql = Λx (q̂l ,ql−1)
...

qz = Λz (q̂z)

,





q̂L = α̃LΛout
(qv

∆ ,qL
)

q̂L−1 = α̃L−1Λout (q̂L,qL−1)
...

q̂l = α̃lΛout (q̂l+1,ql)
...

q̂z = α̃1Λout (q̂2,qz)

, (222)

where we have de�ned the update functions

Λx(x,y) ≡ 2∂xΨout(x,y) , Λout(x,y) ≡ 2∂yΨout(x,y) ,

Λz(x) ≡ 2∂xΨz(x) ,

and the layer-wise aspect ratios α̃l = kl+1/kl = αl+1/αl . As previously
discussed, the �xed point of these equations provide all the information
about the performance of the Bayes-optimal estimator through eq. (216).

An important �rst question that can be answered from eqs. (222) is when
does the Bayes-optimal estimator performs better than a random guess from
the prior distribution Pv. For instance, we intuitively expect that when the
prior is not biased towards a particular direction in Rp and for very high
noise ∆� 1 better-than-random estimation is not possible. In terms of �xed
points of eqs. (222), this situation corresponds to the existence of the non-
informative �xed point q?v = 0 (i.e. maximum MSEv = ρv, or zero overlap
with the spike). Evaluating the right-hand side of eqs. (222) at qv = 0, we can
see that q?v = 0 is a �xed point if

EPz [z] = 0 and E
Q(l),0

out
[v] = 0, (223)

where Q(l),0
out (v,x) ≡ Q(l)

out(v,x;0,0,0,ρl) from eq. (221). Note that for multi-
layer network with deterministic channels and ϕ (l) ≡ ϕ for all l, the second
condition is equivalent to ϕ being an odd function.

When the condition (223) holds, (qv,qL, q̂L, . . . , q̂z,qz) = (0,0,0, . . . ,0,0)
is a �xed point of eq. (222). The numerical stability of this �xed point is
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Figure 50: Spiked Wigner model: MMSEv on the spike as a function of noise to signal
ratio ∆/ρ2

v , and single-layer generative prior with compression ratio α

for (Left) linear ρv = 1, (Center) sign ρv = 1, and (Right) relu ρv = 1/2
activations. Dashed white lines mark the phase transitions ∆c, matched
by both the AMP and LAMP algorithms. Dotted white line marks the
phase transition of canonical PCA.

determined by whether it is an attractor of the dynamics, and therefore
determines a phase transition point ∆c, de�ned as the noise below which
the �xed point 0 ∈RL+1 becomes a repeller. The character of the �xed point
can be determined by a standard linear stability analysis of the �xed point
equations. The transition will then correspond to the value of ∆ for which
the largest eigenvalue of the Jacobian of the eqs. (222) at 0 becomes greater
than one. This Jacobian is given explicitly by

qv q̂L qL q̂L−1 qL−1 · · · q̂l+1 ql+1 q̂l ql · · · q̂z qz





1
∆ m(L)

vv 0 1
ρ2

L
m(L)

vx 0 0 · · · 0 0 0 0 · · · 0 0 qv

α̃L
∆ m(L)

vx 0 α̃L
ρ2

L
m(L)

xx 0 0 · · · 0 0 0 0 · · · 0 0 q̂L

0 m(L−1)
vv 0 0 1

ρ2
L−1

m(L−1)
vx · · · 0 0 0 0 · · · 0 0 qL

0 α̃L−1m(L−1)
vx 0 0 α̃L−1

ρ2
L−1

m(L−1)
xx · · · 0 0 0 0 · · · 0 0 q̂L−1

0 0 0 m(L−2)
vv 0 · · · 0 0 0 0 · · · 0 0 qL−1

0 0 0 α̃L−2m(L−2)
vx 0 · · · 0 0 0 0 · · · 0 0 q̂L−2

...
...

...
...

...
0 0 0 0 0 · · · m(l)

vv 0 0 1
ρ2

l
m(l)

vx · · · 0 0 ql+1

0 0 0 0 0 · · · α̃lm
(l)
vx 0 0 α̃l

ρ2
l
m(l)

xx · · · 0 0 q̂l

...
...

...
...

...
0 0 0 0 0 · · · 0 0 0 0 · · · mzz 0 qz

(224)

where we have de�ned the following shorthand for the second moments of
Q(l),0

out (v,x):

m(l)
vv =

(
E

Q(l),0
out

v2
)2

, m(l)
vx =

(
E

Q(l),0
out

vx
)2

,

m(l)
xx =

(
E

Q(l),0
out

x2−ρl

)2
, mzz =

(
EPzz

2)2
.

(225)

This result is given in full generality, and it is instructive to compute ∆c in
speci�c cases.

First, consider the case of a single-layer generative prior L = 1. Fix Pz(z) =
Nz(0,1) and P(1)

out(v|x) = δ (v−ϕ(x)), for ϕ ∈ {linear,sign,relu}. The �rst
two choices of non-linearities are odd, and therefore in these cases we expect
a transition as discussed above. It can be readily computed from the Jacobian
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Figure 51: Spiked Wigner model: MMSEv as a function of noise ∆ for L = 1 a
wide range of compression ratios α = 0,1,10,100,1000, for (Left) linear,
(Center) sign, and (Right) relu activations. Unique stable �xed point of
(222) is found for all these cases.
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Figure 52: Spiked Wigner model: MMSEv as a function of noise ∆ for L = 1,2,3
with constant compressive ratio α1 = α2 = α3 = 1, for (Left) linear,
(Center) sign, and (Right) relu activations. The second moments of the
variable v for L = 1,2,3 are for linear and sign activations ρ

(L)
v = 1, while

for relu ρ
(L)
v = 1/2L.

eq. (224) and yield ∆c = 1+α for linear activation and ∆c = 1+ 4
π2 α for

sign activation. In both cases, since α > 0, it is clear that knowledge of the
generative prior improve reconstruction in the sense that the spike can be
better reconstructed for larger amplitude of noise ∆. Moreover, the larger α

(i.e. the smaller the latent dimension with respect to the signal dimension),
the better the reconstruction.

Fig. 50 summarizes this discussion. We numerically solve the �xed point
eqs. (222) and plot the MMSE obtained from the �xed point in a heat map, for
the linear, sign and relu activations. The white dashed line marks the threshold
∆c obtained analytically from the Jacobian in eq. (224). The property that we
�nd the most striking is that in these three evaluated cases, for all values of
∆ and α that we analyzed, we always found that eq. (222) has a unique stable
�xed point. Thus we have not identi�ed, in the physics terminology, any
�rst order phase transition. Fig. 51 shows some examples of numerical MMSE
curves for three nonlinearities discussed and di�erent values of α . The �xed
point equations were solved iteratively from uncorrelated initial condition,
and from initial condition corresponding to the ground truth signal, and
found that both lead to the same �xed point. This observation generalizes
to deeper L > 1 generative priors. Consider Pz(z) = Nz(0,1) and layer-wise
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constant activation P(l)
out(v|x) = δ (v−ϕ(x)). For the previous odd activation

functions discussed, we �nd that

Linear activation: For ϕ(x) = x the leading eigenvalue of the Jacobian
becomes one at

∆c = 1+
L

∑
l=1

α

αl
. (226)

Note in particular that for L = 1 and in the limit α = 0 we recover
the phase transition ∆c = 1 known from the case with separable prior
(Lesieur et al., 2017a). For α > 0, we have ∆c > 1 meaning the spike
can be estimated more e�ciently when its structure is accounted for. In
particular, the deeper the generative network for the spike, the easier
estimation becomes.

Sign activation: For ϕ(x) = sign(x) the leading eigenvalue of the
Jacobian becomes one at

∆c = 1+
L

∑
l=1

(
4

π2

)l
α

αl
. (227)

For L = 1 and α = 0, Pv = Bern(1/2), and the transition ∆c = 1 agrees
with the one found for a separable prior distribution (Lesieur et al.,
2017a). As in the linear case, for α > 0, we can estimate the spike
for larger values of noise than in the separable case, and depth also
improves estimation.

Note that we also did not observe �rst order transitions for deeper networks,
at least in the �rst-to-come-in-mind cases that we have investigated, i.e.
deterministic deep networks with ϕ (l) ≡ ϕ ∈ {linear,sign,relu}. However,
we do not expect this behavior to be completely general neither. One can
engineer a situation, for instance with a very shifted relu on the last layer, and
a very large intermediate layer, so that the spike v becomes e�ectively sparse
with weakly correlated, almost independent, components, thus recovering
the classical algorithmic gap (Lesieur et al., 2017a).

So far we have only discussed the performance of the information theoretic
optimal estimator - averting the question of estimating the signal itself. In
the next section we close this gap by introducing an AMP algorithm for signal
reconstruction. Our algorithm has the advantaged that its performance can
tracked down exactly in the thermodynamic limit, and we will show that in
the cases we analyzed it exactly follows the same �xed point equations (222)
as the ones derived for optimal estimator.
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9.3 APPROXIMATE MESSAGE PASS ING
WI TH GENERAT I VE PR IORS

Naive sampling from the high-dimensional posterior distribution is exponen-
tially costly, ruling this approach out from an algorithmic perspective. One
should therefore appeal to algorithmically tractable approximations. AMP
algorithms have proven to be particularly useful for problems de�ned on
random graphs, and successful examples abound in the literature

In this section we derive and analyze an AMP algorithm tailored for spiked
estimation with generative priors. Next, we show that the MSE of our algo-
rithm can be tracked exactly in the thermodynamic limit, and that moreover
it coincides with the optimal performance discussed in Sec. 9.2 even for large
α . This result is particularly interesting when compared to the known per-
formance of message passing algorithms for sparse-PCA, for which AMP is
not able to reach optimal statistical performance in the small sparsity regime
(Lesieur et al., 2017b).

AMP algorithms for spiked matrix estimation with separable priors are
well known (Metzler et al., 2016; Manoel et al., 2017; Berthier et al., 2017).
Our derivation draw on previous works on extending AMP to non-separable
priors (Metzler et al., 2016; Manoel et al., 2017; Berthier et al., 2017) and we
�rst focus on the more general Wishart model (uvᵀ). After, we discuss how
to get the corresponding result for the Wigner model (vvᵀ) with a simple
change.

9.3.1 derivation of the approximate
message passing algorithm

AMP algorithms can be derived systematically for problems that can be writ-
ten in terms of an acyclic factor graph. The standard idea is to simplify the
corresponding BP equations in the limit of a large number of variables. To-
gether with a Gaussian Ansatz for the distribution of the BP messages, the
expansion of the BP yield a set of Θ

(
k2
)

simpli�ed equations known as rBP
equations. The last step to get the corresponding AMP algorithm is to remove
the target dependency of the messages that further reduces the number of
iterative equations to Θ (k).

Our derivation is closely related to the derivation of AMP for a series of
statistical inference problems with factorized priors, see for example (Lesieur
et al., 2017a) and references therein. In the interest of the reader, instead of
repeating the cumbersome steps described above, we rather describe how
two known and simple AMP algorithms for independent inference problems
can be combined into one for the corresponding structured problem. In
particular, this is illustrated for the spiked-matrix estimation with single-
layer generative model prior, which can be seen as the combination of a
rank-one matrix factorization problem (MF) (Lesieur et al., 2017a) with a GLM
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(Barbier et al., 2019b). Note that the multi-layer case follows by iterating this
procedure.

9.3.1.a combining factor graphs

Consider the factor graphs for the MF and the GLM problems with separable
priors, drawn in Fig. 53. The key idea is to replace the separable prior Pv for
the structured variable v in the MF model (in green) by a factorized connection
channel Pout (see de�nition (Barbier et al., 2019b)) linking the input v with
the output factors of the GLM (in red). The resulting factor graph for the
structured Wishart model is given in Fig. 53, with the same color code.

Pu(uµ)uµ P
(

yµi| 1√
p uµvi

)
vi Pv(vi) Pout

(
v?i | 1√

k
wᵀ

i z
)

zl Pz(zl)

Pu(uµ)uµ P
(

yµi| 1√
p uµvi

)
vi Pout

(
vi| 1√

k
wᵀ

i z
)

zl Pz(zl)

Figure 53: Factor graphs corresponding to a (upper left) low-rank matrix factoriza-
tion model with separable priors Pu,Pv on u,v , (uper right) a generalized
linear model with observations v? and prior Pz on z, and �nally to (bot-
tom) a low-rank matrix factorization layer (green) with a GLM prior (red)
where the separable prior Pv(vi) is replaced by correlated factor Pout(vi|.).

9.3.1.b combining amp algorithms

As for the factor graphs, we start by recalling the AMP update equations in
the Bayes-optimal case for the two problems in question with separable priors.

AMP equations for the Wishart MF layer (variables v and u) Con-
sider the low-rank matrix factorization model Y = 1√

pu
?v?ᵀ+

√
∆ξξξ with

separable priors Pu and Pv for the variables u and v, illustrated in Fig. 53 (up-
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per left). The corresponding Bayes-optimal AMP equations, given in (Lesieur
et al., 2017a), read:





ût+1 = fu(bt
u,At

u) ,

Ĉt+1
u = ∂bfu(bt

u,At
u) ,

v̂t+1 = fv(bt
v,At

v) ,

Ĉt+1
v = ∂bfv(bt

v,At
v) ,

and





bt
v = 1

∆
Yᵀ√

p û
t − 1

∆
1ᵀnĈt

u
p v̂t−1 ,

At
v = 1

∆
‖ût‖2

2
p Ip ,

bt
u = 1

∆
Y√

p v̂
t − 1

∆
1ᵀpĈt

v
p ût−1 ,

At
u = 1

∆
‖v̂t‖2

2
p In ,

(228)

where the update functions fu and fv are respectively the means of the
distributions Qu and Qv, de�ned similarly to eq. (221) as

Qu(u;b,A) ≡ Pu(u)
Zu(b,A)

e−
1
2 Au2+bu , Qv(v;b,A) ≡ Pv(v)

Zv(b,A)
e−

1
2 Av2+bv .

(229)

AMP equations for the GLM layer (variable z) On the other hand, the
Bayes-optimal AMP equations for the GLM model v? = ϕ

(
1√
k
Wz?

)
with

z?l ∼iid Pz, given in (Barbier et al., 2019b) and illustrated in Fig. 53 read





ẑt+1 = fz(γγγ t ,Λt) ,

Ĉt+1
z = ∂γγγ fz(γγγ t ,Λt) ,

gt = fout (v?,ωωω t ,Vt) ,

and





γγγ t = 1√
k
Wᵀgt +Λt ẑt ,

Λt = 1
k (W

2)ᵀ(gt)2Ik ,

ωωω t = 1√
k
Wẑt −Vtgt−1 ,

Vt = 1
k (W

2)Ĉt
zIp ,

(230)

where the operation (·)2 is taken component-wise. fz is the mean of Qz

de�ned in eq. (221) and fout is the mean of V−1(x−ω) with respect to

Qout (x;v?,ω ,V ) =
Pout (v?|x)

Zout(v?,ω ,V )

e−
1
2V−1(x−ω)2

√
2πV

(231)

Module composition In principle, composing the AMP equations for the
inference problems above is non-trivial and requires a full-blown derivation
from the BP equations on the composed factor graph in Fig. 53. Surprisingly,
the upshot of this cumbersome computation is rather simple: the AMP equa-
tions for the composed model are equivalent to coupling the MF eqs. (228)
and the GLM eqs. (230) by replacing Qv(v;b,A) and Qout(x;v?,ω ,V ) with the
following joint distribution:

Qout(v,x;b,A,ω ,V ) ≡ Pout (v|x)
Zout(b,A,ω ,v)

e−
1
2 Av2+bv e−

1
2V−1(x−ω)2

√
2πV

. (232)

The associated update functions fv, fout are thus replaced by the means of v
and V−1(x−ω) with respect to this new joint distribution Qout. Replacing
the separable distributions Qu and Qout by the joint distribution eq. (232)
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and corresponding update functions as described above in eq. (228)-(230), we
obtain the AMP algorithm for structured model. Additionally, we note that the
AMP equations above are also valid for arbitrary weight matrix W ∈Rp×k. In
the case of interest where wil ∼

iid
N (0,1), using E

[
w2

il

]
= 1 we can further

simplify that leads to the following algorithm Algo. 3.
The AMP algorithm for the Wigner model is very similar and can be readily

obtained by imposing at each time step
(
ût , Ĉt

u
)
=
(
v̂t , Ĉt

v
)

and removing
the redundant equations in Algo. 3.

Input: vector Y ∈ bRn×p and matrix W ∈ bRp×k:
Initialize to zero: (g, û, v̂,bv,Av,bu,Au)t=0

Initialize with: ût=1 = N (0,σσσ2), v̂t=1 = N (0,σσσ2), ẑt=1 = N (0,σσσ2),
Ĉt=1

u = In, Ĉt=1
v = Ip, Ĉt=1

z = Ik.
repeat
Spiked layer:
bt

u =
1
∆

Y√
p v̂

t − 1
∆

1ᵀpĈt
v

p Inût−1 and At
u =

1
∆
‖v̂t‖2

2
p In

bt
v =

1
∆

Yᵀ√
p û

t − 1
∆

1ᵀnĈt
u

p Ipv̂t−1 and At
v =

1
∆
‖ût‖2

2
p Ip

Generative layer:
Vt = 1

k

(
1ᵀk Ĉt

z
)

Ip and ωωω t = 1√
k
Wẑt −Vtgt−1 and

gt = fout (bt
v,At

v,ωωω t ,Vt)
Λt = 1

k‖gt‖2
2Ik and γγγ t = 1√

k
Wᵀgt +Λt ẑt

Update of the estimated marginals:
ût+1 = fu(bt

u,At
u) and Ĉt+1

u = ∂bfu(bt
u,At

u)
v̂t+1 = fv(bt

v,At
v,ωωω t ,Vt) and Ĉt+1

v = ∂bfv(bt
v,At

v,ωωω t ,Vt)
ẑt+1 = fz(γγγ t ,Λt) and Ĉt+1

z = ∂γγγ fz(γγγ t ,Λt)
t = t + 1

until Convergence
Output: û, v̂, ẑ

Algorithme 3 : Bayes-optimal AMP algorithm for the spiked Wishart model
with single-layer generative prior.

9.3.2 state evolution eqations

Perhaps the most important virtue of AMP-type algorithms is that their asymp-
totic performance can be tracked exactly via a set of scalar equations called
state evolution. The order parameters involved are the average overlap be-
tween the estimated signals and the ground truth, and are closely related to
the mean square error obtained by the algorithm. This fact has been proven
for a range of models including the spiked matrix models with separable
priors in (Javanmard et al., 2013), and with non-separable priors in (Berthier
et al., 2017). Adapting the steps of these works, we now derive the state
evolution equations for our structured model. As before, we focus on the
derivation for the general Wishart model uvᵀ, from which the Bayes-optimal
SE equations for the symmetric vvᵀ can be readily obtained.
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9.3.2.a relaxed-belief propagation eqations

Note that the standard derivation starts from the rBP equations, which are
roughly equivalent to AMP updates up to the Onsager terms containing
messages with delayed time indices (·)t−1. We brie�y recall them below where
we introduced the parameters s jµ ≡ y jµ

∆ and r jµ ≡− 1
∆ +s2

jµ , ∀ j ∈ JnKµ ∈ JpK.

Variable u

ût+1
j→ jµ = fu

(
bu,t

j→ jµ ,Au,t
j→ jµ

)
, Ĉu,t+1

j→ jµ = ∂b fu

(
bu,t

j→ jµ ,Au,t
j→ jµ

)
,

bu,t
j→ jµ =

1√
p

p

∑
ν 6=µ

s jν v̂t
ν→ jν ,

au,t
j→ jµ =

1
p

p

∑
ν 6=µ

s2
jν(v̂

t
ν→ jν)

2− r jν(Ĉ
v,t
ν→ jν +(v̂t

ν→ jν)
2) ,

Variable v

v̂t+1
µ→ jµ = fv(b

v,t
µ→ jµ ,Av,t

µ→ jµ ,ω t
µ ,V t

µ) ,

Ĉv,t+1
µ→ jµ = ∂b fv(b

v,t
µ→ jµ ,Av,t

µ→ jµ ,ω t
µ ,V t

µ) ,

bv,t
µ→ jµ =

1√
p

n

∑
l 6= j

slµ ût
l→lµ ,

Av,t
µ→ jµ =

1
p

n

∑
l 6= j

s2
lµ(û

t
l→lµ)

2− rlµ(Ĉ
u,t
l→lµ +(ût

l→lµ)
2) ,

ω
t
µ =

1√
k

k

∑
i=1

wµiẑt
i→µ , V t

µ =
1
k

k

∑
i=1

w2
µiĈ

z,t
i→µ

,

(233)

Variable z

ẑt+1
i→µ

= fz
(
γ

t
i→µ ,Λt

i→µ

)
, Ĉz,t+1

i→µ
= ∂γ fz

(
γ

t
i→µ ,Λt

i→µ

)
,

γ
t
i→µ =

p

∑
ν 6=µ

bz,t
ν→i , Λt

i→µ =
p

∑
ν 6=µ

Az,t
ν→i ,

bz,t
ν→i =

wν i√
k

fout(bv,t
ν ,Av,t

ν ,ω t
ν→i,V

t
ν→i) ,

Az,t
ν→i = −

w2
ν i

k
∂ω fout(bv,t

ν ,Av,t
ν ,ω t

ν→i,V
t
ν→i) ,

bv,t
ν =

1√
p

n

∑
j=1

s jν ût
j→ jν ,

Av,t
ν =

1
p

n

∑
j=1

s2
jν(û

t
j→ jν)

2− r jν(Ĉ
u,t
j→ jν +(ût

j→ jν)
2) ,

ω
t
ν→i =

1√
k

k

∑
l 6=i

wν l ẑt
l→ν , V t

ν→i =
1
k

k

∑
l 6=i

w2
ν lĈ

z,t
l→ν

.

(234)
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We take this as our starting point and refer the curious reader to (Lesieur
et al., 2017a) for more details. The �rst step is to de�ne the overlap parameters
that measure the reconstruction of our inference problem:

qt
u ≡Eu? lim

n→∞

(ût)ᵀût

n
= Eu? lim

n→∞

(ût)ᵀu?

n
≡ mt

u , (235)

qt
v ≡Ev? lim

p→∞

(v̂t)ᵀv̂t

p
= Ev? lim

p→∞

(v̂t)ᵀv?

p
≡ mt

v , (236)

qt
z ≡Ez? lim

k→∞

(ẑt)ᵀẑt

k
= Ez? lim

k→∞

(ẑt)ᵀz?

k
≡ mt

z ,

where we used the Nishimori identity see (Lesieur et al., 2017a) or Ap-
pendix. A.3 to obtain the equality between order parameters qt

x = mt
x for

x ∈ {v,u,z}.

9.3.2.b average distributions

Next, to see how these order parameters come into play, we compute the
distribution of the rBP messages in eqs. (233-234), taking the average over the
random variables W, ξξξ , the planted solutions v?,u?,z? and taking the limit
p→ ∞. Note that using the BP independence assumption over the messages
and keeping only dominant terms in the 1/p expansion, the dependency in
the target node disappears and yields:

• Average over bu,Au

E [bt
u] =

1√
p∆

E [Yv̂t ] =
1√
p∆

E

[(
u?(v?)ᵀ√

p
+
√

∆ξξξ

)
v̂t
]

−→
p→∞

qt
v

∆
u? ,

E [bt
u(b

t
u)

ᵀ] =
1

p∆2 E [Yv̂t(v̂t)ᵀYᵀ] =
1
∆

1
p

E [ξ v̂t(v̂t)ᵀξ
ᵀ]+ o (1/p)

−→
p→∞

qt
v

∆
In , (237)

E [At
u] = E

[
1
∆
‖v̂t‖2

2
p

In

]
−→
p→∞

qt
v

∆
In .

• Average over bv,Av

E [bt
v] −→p→∞

β
qt

u

∆
v? , E [bt

v(b
t
v)

ᵀ] −→
p→∞

β
qt

u

∆
Ip , E [At

v] −→p→∞
β

qt
u

∆
Ip .

(238)

• Average over ωωω ,V

E [ωωω t ] = 0p , E [ωωω t(ωωω t)ᵀ] = E

[
1
k

Wẑt(ẑt)ᵀWᵀ
]
−→
n→∞

qt
zIp ,

E [Vt ] −→
k→∞

(ρz−qt
z)Ip .

(239)
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Wrapping the above equations together, we obtained the distributions of
means and variances bu,Au, bv,Av and ωωω ,V:

bu ∼
qt

v

∆
u?+

√
qt

v

∆
ξξξ u , At

u ∼
qt

v

∆
In ,

bv ∼ β
qt

u

∆
v?+

√
β

qt
u

∆
ξξξ v , At

v ∼ β
qt

u

∆
Ip ,

ωωω ∼
√

qt
zηηη , V∼ (ρz−qt

z)Ip ,

(240)

with ξξξ u ∼N (0n,In) ,ξξξ v ∼N (0p,Ip) ,ηηη ∼N (0p,Ip).

9.3.2.c state evolution eqations in the wishart
model

With the averaged limiting distributions of all the messages, we can now
compute the state evolution of the overlaps. Using the de�nition of the
overlaps eq. (235) and distributions in eq. (240), we obtain:

Variable u

qt+1
u = Eu? lim

n→∞

1
n

fu(bt
u,At

u)
ᵀfu(bt

u,At
u)

= Eu?,ξ


 fu

(
qt

v

∆
u?+

√
qt

v

∆
ξ ,

qt
v

∆

)2

 (241)

where u? ∼ Pu, ξ ∼N (0,1).

Variable v

qt+1
v = Ev? lim

p→∞

1
p

fv(bt
v,bvt ,ωωω t ,Vt)ᵀ fv(bt

v,bvt ,ωωω t ,Vt)

= Ev?,ξ ,η


 fv

(
βqt

u

∆
v?+

√
βqt

u

∆
ξ ,β

qt
u

∆
,
√

qt
zη ,ρz−qt

z

)2

 (242)

where v? ∼ Pv, ξ ∼N (0,1).

Variable ẑ and z Even if the hat overlap does not have as much physical
meaning as the standard overlaps that quantify the reconstruction perfor-
mances, we de�ne it as

q̂t
z ≡ αEv?,ξ ,η


 fout

(
βqt

u

∆
v?+

√
βqt

u

∆
ξ ,β

qt
u

∆
√

qt
zη ,ρz−qt

z

)2

 ,

(243)
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with v? ∼ Pv, ξ ,η ∼N (0,1). Averages of the messages of the variable z are
explicitly expressed as a function of the hat overlaps introduced just above:

E [γγγ t ] −→
k→∞

q̂t
zz

?, E [γγγ t(γγγ t)ᵀ] −→
k→∞

q̂t
zIk and E [Λt ] −→

k→∞

q̂t
zIk . (244)

At the leading order, we obtain

γγγ
t ∼ q̂t

zz
?+
√

q̂t
zξξξ , Λt ∼ q̂t

zIk with ξξξ ∼N (0k,Ik) (245)

and �nally

qt+1
z ≡Ez? lim

k→∞

1
k

fz(γγγ
t ,Λt)ᵀfz(γγγ

t ,Λt)

= Ez?,ξ

[
fz

(
q̂t

zz
?+
√

q̂t
zξ , q̂t

z

)2
]

. (246)

As a conclusion, equations (241- 243, 246) constitute the closed set of SE
equations of the Bayes-optimal AMP algorithm for the Wishart model.

9.3.2.d state evolution eqations in the wigner model

Finally, similarly to the derivation of the AMP algorithm, the SE equations
for the Wigner model (vvᵀ) are obtained as a particular case of the above
by simply restricting qt

u = qt
v and β = 1. In the end, performing a change of

variable, this leaves us with only three coupled equations:

qt+1
z = Eξ

[
Zz× f 2

z

(√
q̂t

zξ , q̂t
z

)]
= 2∂q̂z Ψz (q̂t

z) ,

q̂t
z = αEξ ,η

[
Zout× f 2

out

(√
qt

v

∆
ξ ,

qt
v

∆
,
√

qt
zη ,ρz−qt

z

)]

= 2α∂qz Ψout

(
qt

v

∆
,qt

z

)
, (247)

qt+1
v = Eξ ,η

[
Zout× f 2

v

(√
qt

v

∆
ξ ,

qt
v

∆
,
√

qt
zη ,ρz−qt

z

)]

= 2∂qv Ψout

(
qt

v

∆
,qt

z

)
,

with initialization qt=0
v = ε , qt=0

z = ε and a small ε > 0. We notice immedi-
ately that (247) are the same equations as the �xed point equations related
to the Bayes-optimal estimation (222) with speci�c time-indices and initial-
ization, but crucially the same �xed points. Thus the analysis of �xed points
in Sec. 9.2.2 applies straightforwardly here. In particular, since in all cases
analyzed we found the stable �xed point of (222) to be unique, we conclude
that our AMP algorithm reaches asymptotically optimal performance in these
cases.

We can further check this result by numerically comparing the runs of
AMP on �nite size instances with the state evolution curves already presented
in Fig. 51, also giving an idea of the amplitude of the �nite size e�ects. This
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Figure 54: Comparison between PCA, LAMP and AMP for (left) the linear, (center)
and sign activations, at compression ratio α = 2. Lines correspond to
the theoretical asymptotic performance of PCA (red line), LAMP (green
line) and AMP (blue line). Dots correspond to simulations of PCA (red
squares), LAMP (green crosses) for k = 104 and AMP (blue points) for k =
5.103, σ2 = 1. Notice that the spectral estimators have been rescaled by
a factor (q?v,AMP)

1/2 to fairly compare AMP with PCA and LAMP. (Right)
Illustration of the spectral phase transition in the matrix Γvv

p eq. (257) at
α = 2 with an informative leading eigenvector with eigenvalue equal to 1
out of the bulk for ∆≤ 1+α . We show the bulk spectral density µ(α ,∆).
The inset shows the two leading eigenvalues.

experiment is illustrated in Fig. 54, together with a curve for PCA and for
LAMP, a spectral method we derive from AMP in the next section. A code for
reproducing this experiment is provided in GitHub repository (Aubin et al.,
2019a).

9.4 LAMP : A SPECTRAL ALGORI THM
FOR GENERAT I VE PR IORS

Spectral algorithms are the most popular and simplest methods for solving
the spiked matrix estimation problem. For instance, canonical PCA estimates
the spike from the leading eigenvector of the matrix Y. A classical result from
Baik, Ben Arous and Péché (BBP) (Baik et al., 2005) shows that this eigenvector
is correlated with the signal if and only if the signal-to-noise ratio ρ2

v /∆ > 1.
For sparse separable priors with ρ2

v = Θ(1), ∆PCA = ρ2
v is also the threshold

for AMP and it is conjectured that no polynomial algorithm can improve
upon it (Lesieur et al., 2017a). In the previous section we have shown that
our structured AMP algorithm has a consistently better performance than
PCA, and in particular achieve the optimal threshold for better-than-random
recovery. This is not a surprise, since di�erent from AMP, vanilla PCA doesn’t
take into account the information available from the prior.

Despite all its virtues, AMP is unarguably a convoluted algorithm. It would
be desirable to have a simpler spectral algorithm taking into account the
structured nature of the prior. In this section we design a spectral algorithm,
hereafter named LAMP, matching the AMP recovery threshold. Our derivation
follows the strategy pioneered in (Krzakala et al., 2013), consisting on the
linearization of the AMP equations around the non-informative �xed point.

https://github.com/sphinxteam/StructuredPrior_demo
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In this section, the discussion is framed on the Wigner model, the Wishart
case being a straightforward generalization.

In order for the qv = 0 expansion to be well-de�ned, we �rst need to insure
that this is indeed a �xed point. Indeed, this condition was already discussed
in Sec. 9.2 for the �xed point equations for the Bayes-optimal estimator. Not
surprisingly, the same conditions can be obtained independently from the
AMP equations by analyzing when v̂ = 0 is a �xed point, and are repeated
below for convenience.

(v̂, ẑ) = (0,0) if C ≡
{

EQ0
out
[v] = 0 and EPv [z] = 0

}
. (248)

That these conditions agree exactly to the ones in eq. (223) is just a rephrasing
of the fact that the AMP SE equations in eqs. (247) have the same �xed points
as the Bayes-optimal estimator.

9.4.1 linearizing the amp eqations

To lighten notations, we denote with |? quantities that are evaluated at
(bv,Av,ωωω ,V,γγγ ,Λ) = (0,0,0,ρzIp,0,0), and we linearize the AMP equations
in Algo. (3) around the uninformative �xed point

(v̂, Ĉv) = (0,ρvIp), (ẑ, Ĉz) = (0,ρzIk), (bv,Av) = (0,0),
(γγγ ,Λ) = (0,0), (ωωω ,V,g) = (0,ρzIp,0) .

(249)

In a scalar formulation, this yields

δ v̂t+1
i = ∂b fv|?δbv,t

i + ∂A fv|?δAv,t
i + ∂ω fv|?δω

t
i + ∂V fv|?δV t

i ,

δ ĉv,t+1
i = ∂

2
b,b fv|?δbv,t

i + ∂
2
A,b fv|?δAv,t

i + ∂
2
ω ,b fv|?δω

t
i + ∂

2
V ,b fv|?δV t

i ,

δ ẑt+1
l = ∂γ fz|?δγ

t
l + ∂Λ fz|?δ Λt

l ,

δ ĉz,t+1
i = ∂

2
γ ,γ fz|?δγ

t
l + ∂

2
Λ,γ fz|?δ Λt

l ,

δgt
i = ∂b fout|?δbv,t

i + ∂A fout|?δAv,t
i + ∂ω fout|?δω

t
i + ∂V fout|?δV t

i ,
(250)

with

δbv,t
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1
∆

p

∑
j=1

y ji√
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1√
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wilδ ẑt
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1√
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Wilδgt
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t
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l , δ Λt
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2
k
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∑
i=1

gt
i|?δgt

i = 0.

(251)
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These equations can be simpli�ed and closed over three vectors v̂ ∈ Rp,
ẑ ∈ Rk and ωωω ∈ Rp, where we used the existence condition C that leads
to ∂ω fout|? = ∂V fout|? = 0. Finally, inserting eq. (251) in (250), rewriting the
partial derivatives of fv, fz and fout at the �xed point |? as moments of the
distributions Pz and Qout and simplifying the expression using the condition
C , we �nally obtain

δ v̂t+1 =
1
∆

ρv

(
Y√

p
δ v̂t −ρvIpδ v̂t−1

)
+ρ

−1
z EQ0

out
[vx]Ipδωωω

t

+
EQ0

out
[vx2]EPz

[
z3
]

2ρ3
z

1p1ᵀk
k

δ ẑt , (252)

δ ẑt+1 =
1
∆

EQ0
out
[vx]

Wᵀ

√
k

[
Y√

p
δ v̂t −ρvIpδ v̂t−1

]
, (253)

δωωω
t+1 =

1
∆

(
EQ0

out
[vx]

WWᵀ

k

[
Y√

p
δ v̂t −ρvIpδ v̂t−1

])

−EQ0
out
[vx]

[
Y√

p
δ v̂t−1−ρvIpδ v̂t−2

]
. (254)

Inserting eq. (253)-(254) in (252) and dropping heuristically the time indices,
we �nally obtain the closed linear equation v̂= Γvv

p v̂, where the LAMP operator
Γvv

p is given by

Γvv
p =

1
∆

(
(a−b)Ip + b

WWᵀ

k
+ c

1p1ᵀk
k

Wᵀ

√
k

)
×
(

Y√
p
−aIp

)
, (255)

where the parameters are simply the moments of distributions Pz and Q0
out

a≡EQ0
out
[v2] = ρv , b≡ ρ

−1
z EQ0

out
[vx]2 ,

c≡ 1
2

ρ
−3
z EPz

[
z3]EQ0

out
[vx2]EQ0

out
[vx] .

(256)

Note that in most of the cases we studied, the parameter c, taking into
account the skewness of the variable z, is zero, simplifying considerably the
structured matrix. Moreover, for the speci�c examples already discussed in
Sec. 9.2, the LAMP operator Γvv

p is very simple. For instance, for Gaussian z
and Pout(v|x) = δ (v− sign(x)), we have (a,b,c) = (1,2/π ,0). Instead, for
linear activation we get (a,b,c) = (1,1,0). Note that in this last case, the
LAMP operator can be written as

Γvv
p =

1
∆

Kp

[
Y√

p
− Ip

]
with Kp =

WWᵀ

k
= Σ ≈ 1

n ∑
α

vα(vα)ᵀ ,

(257)

or, in other words, Kp is the covariance matrix of the structured spike v. The
same observation holds for the sign activation function. Interestingly, the
covariance matrix Σ can be empirically estimated directly from samples of
spikes, without the knowledge of the generative model (ϕ ,W) itself, suggest-
ing a simple practical implementation of LAMP. Therefore we �nally use a
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more generic de�nition for LAMP as expressed in Algo. 4. From this perspec-

Input: Observed matrix Y ∈Rp×p, prior Pv on v ∈Rp

Take the leading eigenvector v̂ ∈Rp of
Γvv

p ≡Kp

[
Y√

p − Ip

]
with Kp = EPv [vvᵀ] .

Algorithme 4 : LAMP spectral algorithm for the Wigner model.

tive, LAMP in Algo. 4 can be interpreted as a PCA that takes into account the
structure of the prior by incorporating the non-trivial correlations through
Kp into the spectral estimation. In particular taking Pv(v) = Nv (0,Ip), we
obtain Γvv

p = 1
∆

[
Y√

p − Ip

]
and recognize the PCA operator that has been

shifted. Analogously to the state evolution for AMP, the asymptotic perfor-
mance of both PCA and LAMP can be evaluated in a closed-form for the spiked
Wigner model with single-layer generative prior with linear activation. The
corresponding expressions are derived in the next section and plotted in
Fig. 54 for the three considered algorithms.

9.4.2 state evolution for lamp and pca in
the linear case

As we have already mentioned in Sec. 9.3.2, one of the greatest virtues of AMP
is being able to track its asymptotic performance through a set of simple scalar
state evolution equations. Interestingly, we can also derive state evolution
equations for the LAMP algorithm in the linear case. This allows a direct
comparison between the performance of LAMP and the performance of PCA.

For the noiseless linear channel Pout(v|x) = δ (v− x), the set of eqs. (252-
254) are already linear. Hence the LAMP spectral method �ows directly from
the AMP Algo. 3. As a consequence, this means that the state evolution equa-
tions associated to the spectral method are simply dictated by the set of AMP
SE equations eq. (247).

However, it is worth stressing that as the LAMP returns a normalized
estimator, the LAMP MSE is not given by the AMP mean squared error. We now
compute the overlaps and mean squared error performed by this spectral
algorithm.

Recall that mv and qv are the parameters de�ned in eq. (235), respectively
measuring the overlaps between the ground truth v? and the estimator v̂, and
the norm of the estimator. In the general case, the MMSE eq. (216) becomes:

MMSEv = ρv +Ev? lim
p→∞

1
p
‖v̂‖2

2−2Ev? lim
p→∞

1
p

v̂ᵀv? = ρv + qv−2mv ,

However the LAMP spectral method computes the normalized leading
eigenvector of the structured matrix Γvv

p . Hence the norm of the LAMP esti-
mator is ‖v̂‖2

LAMP = qv,LAMP = 1, while the Bayes-optimal AMP estimator is
not normalized with ‖v̂‖2

AMP = q?v,AMP = m?
v,AMP 6= 1, solutions of eq. (247).
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As the non-normalized LAMP estimator follows AMP state evolutions in the
linear case, the overlap with the ground truth is thus given by:

mv,LAMP ≡Ev? lim
p→∞

1
p

v̂ᵀLAMPv? = Ev? lim
p→∞

1
p

(
v̂AMP
‖v̂‖AMP

)ᵀ

v?

=
m?

v,AMP(
q?v,AMP

)1/2 =
(
m?

v,AMP
)1/2 .

Finally the mean squared error performed by the LAMP method is easily
obtained from the optimal overlap reached by the AMP algorithm and yields

MSEv,LAMP = ρv + 1−2
(
q?v,AMP

)1/2 .

The respective result for PCA can be obtained from the observation that
for the linear case, the α = 0 LAMP operator reduces exactly to the matrix Y.
In other words, in this case LAMP reduces to PCA. In terms of the prior, this is
clear since α = 0 is equivalent to a separable Gaussian prior, for which the
spectral algorithm derived from AMP is exactly given by PCA (Lesieur et al.,
2017a). Therefore we can simply state that the mean squared error performed
by PCA is computed using the optimal overlap reached by AMP at α = 0:

MSEv,PCA = ρv + 1−2
(
q?v,AMP|α=0

)1/2 .

In order to fairly compare PCA, LAMP and AMP in Fig. 54, instead of showing
the MSE corresponding to the normalized PCA and LAMP estimators, we rescale
these spectral estimators by the optimal normalisation

(
q?v,AMP

)1/2 (obtained
from AMP for instance) so that the renormalized MSE are given by

MSEv,LAMP = ρv−m?
v,LAMP , MSEv,PCA = ρv−m?

v,PCA .

Therefore in the linear case we simply obtain that LAMP is strictly equivalent
to AMP, while PCA is sub-optimal:

MSEv,LAMP = ρv−q?v,AMP , MSEv,PCA = ρv−q?v,AMP|α=0 .

Fig. 54 shows good agreement between the state evolution for LAMP and PCA
with linear activation (solid lines) and the respective �nite instance numerical
simulations (points).

9.4.3 a random matrix perspective on the
recovery threshold

Remarkably, the performance of the spectral method based on matrix (257)
can be investigated independently of AMP using random matrix theory. An
analysis of the random matrix (257) shows that a spectral phase transition for
generative prior with linear activation appears at ∆c = 1+α (as for AMP).
This transition is analogous to the well-known BBP transition (Baik et al.,
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2005), but for a non-GOE random matrix (257). For the spiked Wigner models
with linear generative prior we prove two detailed theorems describing the
behavior of the supremum of the bulk spectral density, the transition of the
largest eigenvalue and the correlation of the corresponding eigenvector. The
theorems counterparts for the linear Wishart model are very similar, and are
presented in appendix. We assume in the following that ρv = 1 to simplify
the analysis (without any loss of generality). Recall that we have

Γvv
p ≡

[
1
k

WWᵀ
] [

1√
∆p

ξξξ +
1
∆

vvᵀ

p
− 1

∆
Ip

]
. (258)

Here ξξξ /
√

p is a matrix from the Gaussian Orthogonal Ensemble, i.e. ξξξ is a
real symmetric matrix with entries drawn independently from a Gaussian
distribution with zero mean and variance Eξ 2

i j = (1+ δi j).

Theorem 9.4.1 (Bulk of the spectral density, spiked Wigner, linear activa-
tion). For any α ,∆ > 0, as p→ +∞, the spectral measure of Γvv

p converges
almost surely and in the weak sense to a well-de�ned and compactly supported
probability measure µ(α ,∆), and we denote supp µ its support. We separate
two cases:

(i) If ∆ ≤ 1
4 , then supp µ ⊆R−.

(ii) Assume now ∆ > 1
4 and denote z1(∆)≡−∆−1 +2∆−1/2 > 0. Let ρ∆ be

the probability measure on R with density

ρ∆(dt) =

√
∆

2π

√
4−∆

(
t +

1
∆

)2

1

{∣∣∣∣t +
1
∆

∣∣∣∣≤
2√
∆

}
dt. (259)

Note that the supremum of the support of ρ∆ is z1(∆). The following
equation admits a unique solution for s ∈ (−z1(∆)−1,0):

α

∫
ρ∆(dt)

(
st

1+ st

)2

= 1. (260)

We denote this solution as sedge(α ,∆) (or simply sedge). The supremum
of the support of µ(α ,∆) is denoted λmax(α ,∆) (or simply λmax). It is
given by:

λmax =





− 1
sedge

+α

∫
ρ∆(dt)

t
1+ sedget

if α ≤ 1,

max
(

0,− 1
sedge

+α

∫
ρ∆(dt)

t
1+ sedget

)
if α > 1.

(261)

As a function of ∆, λmax has a unique global maximum, reached exactly at the
point ∆ = ∆c(α) = 1+α . Moreover, λmax(α ,∆c(α)) = 1.
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Theorem 9.4.2 (Transition of the largest eigenvalue and eigenvector, spiked
Wigner, linear activation). Let α > 0. We denote λ1 ≥ λ2 the �rst and second
eigenvalues of Γvv

p .

• If ∆ ≥ ∆c(α), then as p→ ∞ we have a.s. λ1→λmax and λ2→λmax.

• If ∆ ≤ ∆c(α), then as p→ ∞ we have a.s. λ1→1 and λ2→λmax.

Further, denoting ṽ a normalized (‖ṽ‖2
2 = p ) eigenvector of Γvv

p with eigenvalue
λ1, then |ṽᵀv?|2/p2→ε(∆) a.s., where ε(∆) = 0 for all ∆≥ ∆c(α), ε(∆)> 0
for all ∆ < ∆c(α) and lim∆→0 ε(∆) = 1.

Thm. 9.4.1 and Thm. 9.4.2 are illustrated in Fig. 54. The proof gives the value
of ε(∆), which turns out to lead to the same MSE as in Fig. 54 in the linear
case. The proofs of theorems 9.4.1 and 9.4.2 are left in (Aubin et al., 2019e),
along with the precise arguments used to derive the eigenvalue density, the
transition of λ1 and the computation of ε(∆). These arguments are solely
based on random matrix theory. The method of proof of Theorem 9.4.2 is very
much inspired by (Benaych-Georges et al., 2011), and allows us to compute
numerically the squared correlation ε(∆). Note that while all the calculations
are justi�ed, re�nements would be needed in order to be completely rigorous.
These re�nements would follow exactly some proofs of (Silverstein et al.,
1995) and (Benaych-Georges et al., 2011), so we will refer to them when
necessary. A Mathematica demonstration notebook is provided in the GitHub
repository (Aubin et al., 2019a).

In the non-linear case the random matrix analysis is harder to perform. In
the matrix Γvv

p , the Wishart matrix WWᵀ/k is replaced by aI+ bWWᵀ with
a,b≥ 0. It is thus not possible to relate the spectrum of Γvv

p to the one of a
symmetric matrix of the type WZWᵀ with W a gaussian i.i.d matrix. Some
techniques from free probability could make the computation nevertheless
possible, but we leave this analysis for future work.

9.4.4 applying lamp to real data

As we have already remarked, the LAMP operator in eq. (257) only depend
on the generative prior through its covariance. An interesting exercise is
to apply LAMP for real data by simply using the empirical covariance for n
samples of the spikes, vα , α = 1, . . . ,n.

For illustration, we perform the following experiment: the spikes v? are
drawn from the standard Fashion-MNIST dataset (Xiao et al., 2017), and are
used to generate the spiked matrix Y according to eq. (209). We then apply
our LAMP algorithm to reconstruct the spikes, repeating this experiment for
di�erent values of noise ∆. In Fig. 55 we compare the reconstruction by LAMP
with standard PCA over Y. In principle, we have no theoretical guarantees
about the performance of LAMP, since the Fashion-MNIST images are not
drawn from the generative class studied above. Nevertheless, it is striking to
observe that LAMP outperforms PCA.

https://github.com/sphinxteam/StructuredPrior_demo
https://github.com/sphinxteam/StructuredPrior_demo
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Figure 55: Illustration of canonical PCA (top line) and the LAMP (bottom line) spec-
tral methods (257) on the spiked Wigner model. The covariance Σ is
estimated empirically from the FashionMNIST database (Xiao et al., 2017).
The estimation of the spike is shown for two images from FashionMNIST,
with (from left to right), noise variance ∆ = 0.01,0.1,1,2,10.

A demonstration notebook illustrating this experiment is provided in the
GitHub repository (Aubin et al., 2019a).

https://github.com/sphinxteam/StructuredPrior_demo




10
EXACT ASYMPTOT ICS FOR
PHASE RETR IEVAL AND
COMPRESSED SENS ING
WI TH RANDOM
GENERAT I VE PR IORS

Over the past decade the study of compressed sensing has lead to signi�cant
developments in the �eld of signal processing, with novel sub-Nyquist sam-
pling strategies and a veritable explosion of work in sparse representation.
A central observation is that sparsity allows one to measure the signal with
fewer observations than its dimension (Donoho, 2006; Candes et al., 2006).
The success of neural networks in the recent years suggests another powerful
and generic way of representing signals with multi-layer generative priors,
such as those used in generative adversarial networks GAN (Goodfellow et
al., 2014) and VAE. It is therefore natural to replace sparsity by generative
neural network models in compressed sensing and other inverse problems, a
strategy that was successfully explored in a number of papers, e.g. (Tramel
et al., 2016a; Tramel et al., 2016b; Bora et al., 2017; Manoel et al., 2017; Hand
et al., 2018a; Fletcher et al., 2018; Hand et al., 2018b; Mixon et al., 2018; Aubin
et al., 2019e). While this direction of research seems to have many promising
applications, a systematic theory of what can be e�ciently achieved still falls
short of the one developed over the past decade for sparse signal processing.
Our aim is therefore to dialogue with the broad program of studying how
generative models can help solving inverse problems using the toolbox of
statistical physics. In this chapter, we build on a line of work allowing for
theoretical analysis in the case the measurement and the weight matrices of
the prior are random (Manoel et al., 2017; Reeves, 2017; Fletcher et al., 2018;
Gabrié et al., 2018; Aubin et al., 2019e) similarly to Chap. 9.

We employ tools originally developed in the context of statistical physics to
derive precise asymptotics for the information-theoretically optimal thresh-
olds for signal recovery and for the performance of the best known polyno-
mial algorithm in two such inverse problems: (real-valued) phase retrieval
and compressed sensing. These two problems of interest can be framed as a
generalized linear estimation. Given a set of observations y ∈Rn generated
from a �xed (but unknown) signal x? ∈Rd as

y = ϕ (Ax?) , (262)

260
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the goal is to reconstruct x? from the knowledge of y, ϕ and A∈Rn×d . CS and
Phase Retrieval (PR) are particular instances of this problem, corresponding
to ϕ(x) = x and ϕ(x) = |x| respectively. Two key questions in these inverse
problems are a) how many observations n are required for theoretically
reconstructing the signal x?, and b) how this can be done in practice - i. e. .
to �nd an e�cient algorithm for reconstruction. Signal structure plays an
important role in the answer to both these questions, and have been the
subject of intense investigation in the literature. A typical situation is to
consider signals admitting a low-dimensional representation, such as sparse
signals, for which k−d of the d components of x∗ are exactly zero, see e.g.
(Candes et al., 2015; Netrapalli et al., 2013).

In this work, we consider instead structured signals drawn from a gen-
erative model x? = G(z), where z ∈Rk is a low-dimensional latent repre-
sentation of x?. In particular, we will focus in generative multi-layer neural
networks, and in order to provide a sharp asymptotic theory, we will re-
strict the analysis to an ensamble of random networks with known random
weights:

x? = G (z) = σ
(L)
(

W(L)
σ
(L−1)

(
W(L−1) · · ·σ (1)

(
W(1)z

)
· · ·
))

, (263)

where σ (l) : R→R, 1≤ l ≤ L are component-wise non-linearities. As afore-
mentioned, we take A ∈ Rn×d and W(l) ∈ Rkl×kl−1 to have i.i.d Gaussian
entries with zero means and variances 1/d and 1/kl−1 respectively, and
focus on the high-dimensional regime de�ned by taking n,d,kl → ∞ while
keeping the measurement rate α = n/d and the layer-wise aspect ratios
βl = kl+1/kl constant. We stress that in this regime the depth L is of order
one when compared to the width of the generative network, which scales
with the input dimension d. With this observation in mind, we adopt the
standard terminology in machine learning of denoting networks with L > 1
as deep. To provide a comparison with previous results for sparse signals, it
is useful to de�ne the total compression factor ρ = k/d. We note, however,
that the comparison between generative and sparse priors herein is not based
on a quantitative comparison between the reconstruction estimation errors.
Indeed, since data is generated di�erently in both cases, such a comparison
would make little sense. Instead, we compare qualitative properties of the
phase diagrams, taking as a surrogate for algorithmic hardness the size of the
statistical-to-algorithmic gap in these two di�erent reconstruction problems.
Our results hold for latent variables drawn from an arbitrary separable distri-
bution z∼ Pz, and for arbitrary activations σ (l), although for concreteness we
present results for z∼N (0,Ik) and σ (l) ∈ {linear,ReLU}, as it is commonly
the case in practice with GAN or VAE.

Previous results on sparsity: Sparsity is probably the most widely stud-
ied type of signal structure in linear estimation and phase retrieval. It is thus
instructive to recall the main results for sparse signal reconstruction in these
inverse problems in the high-dimensional regime with random measure-
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ment matrices studied in this manuscript. Optimal statistical and algorithmic
thresholds have been established non-rigorously using the replica-method in
a series of works (Wu et al., 2012; Krzakala et al., 2012b; Reeves et al., 2012;
Zdeborová et al., 2016a). Later the information theoretic results, as well as
the corresponding MMSE, has been rigorously proven in (Barbier et al., 2016;
Reeves et al., 2016a; Barbier et al., 2019b). So far, the best known polynomial
time algorithm in this context is the AMP algorithm, the new avatar of the
mean-�eld approach pioneered in statistical mechanics (Mézard et al., 1987),
that has been introduced in (Donoho et al., 2009; Rangan, 2011; Krzakala
et al., 2012a; Schniter et al., 2014; Metzler et al., 2017) for these problems,
and can be rigorously analyzed (Bayati et al., 2011b). For both (noiseless)
compressed sensing and phase retrieval, the information theoretic limit for a
perfect signal recovery is given by α > αIT = ρs, with ρs being the fraction
of non-zero components of the signal x?.

The ability of AMP to exactly reconstruct the signal, however, is di�er-
ent. A non-trivial line α

sparse
alg (ρs) > αIT appears below which AMP fails. No

polynomial algorithm achieving better performance for these problems is
known. Strikingly, as discussed in (Barbier et al., 2019b), the behaviour of
the sparse linear estimation and phase retrieval is drastically di�erent: while
α

sparse
alg (ρs) is going to zero as ρs → 0 for sparse linear estimation hence

allowing for compressed sensing, it is not the case for the phase retrieval,
for which α

sparse
alg → 1/2 as ρs→ 0. As a consequence, no e�cient approach

to real-valued compressed phase retrieval with small but order one ρs in the
high-dimensional limit is known.

Summary of results: In this work, we replace the sparse prior by the
multi-layer generative model introduced in eq. (263). Our main contribution
is specifying the interplay between the number of measurements needed
for exact reconstruction of the signal, parametrized by α , and its latent
dimension k. Of particular interest is the comparison between a sparse and
separable signal (having a fraction ρs of non-zero components) and the
structured generative model above, parametrized by ρ = k/d. While the
number of unknown latent variables is the same in both cases if ρ = ρs, the
upshot is that generative models o�er algorithmic advantages over sparsity.
More precisely:

1. We analyze the MMSE of the optimal Bayesian estimator for the com-
pressed sensing and phase retrieval problems with generative priors
of arbitrary depth, choice of activation and prior distribution for the
latent variable. We derive su�cient conditions for the existence of an
undetectable phase in which better-than-random estimation of x? is
impossible, and characterize in full generality the threshold αc beyond
which partial signal recovery becomes statistically possible.

2. Fixing our attention on the natural choices of activations σ ∈ {linear,
ReLU}, we establish the threshold αIT above which perfect signal re-
construction is theoretically possible. This threshold can be intuitively
understood with a simple counting argument.
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3. We analyze the performance of the associated AMP algorithm (Ma-
noel et al., 2017), conjectured to be the best known polynomial time
algorithm in this setting. This allows us to establish the algorithmic
threshold αalg below which no known algorithm is able to perfectly
reconstruct x?.

As expected, the thresholds {αc,αIT,αalg} are functions of the compression
factor ρ , the number of layers L, the aspect ratios {βl}L

l=1 and the activation
functions. In particular, for a �xed architecture we �nd that the algorithmic
gap ∆alg = αalg−αIT is drastically reduced with the depth L of the generative
model, beating the algorithmic hindrance identi�ed in (Barbier et al., 2019b)
for compressive phase retrieval with sparse encoding.

10.1 INFORMATION THEORET ICAL
ANALYS I S

10.1.1 performance of the bayes-optimal
estimator

In our analysis we assume that the model generating the observations y∈Rn

is known. Therefore, the optimal estimator minimizing the mean-squared-
error in our setting is given by the Bayesian estimator

x̂opt = argmin
x̂
||x̂−x?||22 = EP(x|y) [x] . (264)

The posterior distribution of the signal given the observations is in general
given by:

P(x|y) = 1
Zd(y)

Px(x)
n

∏
µ=1

δ

(
yµ −ϕ

(
d

∑
j=1

aµ

j x j

))
, (265)

where the normalization Zd(y) is known as the partition function, and ϕ is
the nonlinearity de�ning the estimation problem, e.g. ϕ(x) = |x| for phase
retrieval and ϕ(x) = x for linear estimation. We note that the presented
approach generalizes straightforwardly to account for the presence of noise,
but we focus in this work on the analysis of the noiseless case. For the
generative model in eq. (263), the prior distribution Px reads

Px(x) =
∫

Rk
dz Pz(z)

L

∏
l=1

∫

Rkl
dh(l) P(l)

out

(
h(l+1)

∣∣∣W(l)h(l)
)

, (266)

where for notational convenience we denoted x≡ h(L+1), z≡ h(1) and de�ned
the likelihoods P(l)

out parametrising the output distribution of each layer given
its input. As before, this Bayesian treatment also accounts for stochastic
activation functions, even though we focus here on deterministic ones.
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Although exact sampling from the posterior is intractable in the high-
dimensional regime, it is still possible to track the behavior of the minimum-
mean-squared-error estimator as a function of the model parameters. Our
main results are based on the line of works comparing, on one hand, the
information-theoretically best possible reconstruction, analyzing the ideal
Bayesian inference decoder, regardless of the computation cost, and on the
other, the best reconstruction using the most e�cient known polynomial
algorithm - the approximate message passing.

Our analysis builds upon the statistical physics inspired multi-layer for-
malism introduced in (Manoel et al., 2017), who showed using the cavity
and replica methods that the minimum mean-squared-error achieved by the
Bayes-optimal estimator de�ned in eq. (264) can be written, in the limit of
n,d→ ∞ and α = n/d = Θ(1) for a generic prior distribution Px as

mmse(α) = lim
d→∞

1
d

E||x̂opt−x?||22 = ρx−q?x (267)

where ρx is the second moment of Px and the scalar parameter q?x ∈ [0,ρx] is
the solution of the following free energy extremisation problem

Φ = − lim
d→∞

1
d

Ey logZd(y) = extr
qx,q̂x

{
1
2

q̂xqx−αΨy (qx)−Ψx(q̂x)

}
,

(268)

with the so-called potentials (Ψy,Ψx) given by

Ψy(t) = Eξ

[∫

R
dy Zy

(
y;
√

tξ , t
)

logZy
(
y;
√

tξ , t
)]

,

Ψx(r) = lim
d→∞

1
d

Eξ

[
Zx(
√

rξ ,r) logZx(
√

rξ ,r)
]

,
(269)

where ξ ∼N (0,1) and Zy, Zx are the normalizations of the auxiliary dis-
tributions

Qy (x;y,ω ,V ) =
1

Zy(y;ω ,V )

e−
1

2V (x−ω)2

√
2πV

δ (y−ϕ(x)) , (270)

Qx (x;b,A) =
Px(x)

Zx(b,A)
e−

A
2 x2

j+bx j .

Note that this expression is valid for arbitrary distribution Px, as long as the
limit in Ψx is well-de�ned. In particular, it reduces to the known result in
(Krzakala et al., 2012b; Barbier et al., 2019b) when Px factorizes. In principle,
for correlated Px such as in the generative model of eq. (266) computing Ψx is
itself a hard problem. However, we can see eq. (266) as a chain of generalized
linear models. In the limit where kl → ∞ with ρ = k/d = Θ(1), L = Θ(1)
and βl = kl+1/kl = Θ(1) we can apply the observation above iteratively,



10.1 information theoretical analysis 265

layer-wise, up to the input layer for which Pz factorizes - and is easy to
compute. This yields (Manoel et al., 2017)

Φ = extr
qx,q̂x,{ql ,q̂l}

{
−1

2
q̂xqx−

ρ

2

L

∑
l=1

βlql q̂l +αΨy (qx)

+ρ

L

∑
l=2

βlΨ
(l)
out (q̂l ,ql−1)+Ψ(L+1)

out (q̂x,qL)+ρΨz (q̂z)

}
, (271)

where we have introduced the additional potentials (Ψout,Ψz)

Ψ(l)
out(r,s) = Eξ ,η

[
Z

(l)
out (
√

rξ ,r,
√

sξ ,ρl−1− s)

logZ
(l)

out (
√

rξ ,r,
√

sξ ,ρl−1− s)
]

,

Ψz(t) = Eξ

[
Zz(
√

tξ , t) logZz(
√

tξ , t)
]

,

(272)

de�ned in terms of the following auxiliary distributions

Q(l)
out(x,z;b,A,ω ,V ) =

e−
A
2 x2+bx

Zout(b,A,ω ,V )

e−
1

2V (z−ω)2

√
2πV

P(l)
out(x|z) ,

Qz (z;b,A) =
e−

A
2 z2+bz

Zz(b,A)
Pz(z) ,

(273)

and with ρl the second moment of the hidden variable h(l).
These predictions, that have also been derived with di�erent heuristics

in (Reeves, 2017), were rigorously proven for two-layers in (Gabrié et al.,
2018), while deeper architectures requires additional assumptions on the
concentration of the free energies to be under a rigorous control. Eq. (271)
thus reduces the asymptotics of the high-dimensional estimation problem
to a low-dimensional extremisation problem over the 2(L + 1) variables
(qx, q̂x,{ql , q̂l}L

l=1), allowing for a mathematically sound and rigorous in-
vestigation. These parameters are also known as the overlaps, since they
parametrize the overlap between the Bayes-optimal estimator and ground-
truth signal at each layer. Solving eq. (268) provides two important statistical
thresholds: the weak recovery threshold αc above which better-than-random
(i.e. mmse < ρx) reconstruction becomes theoretically possible and the per-
fect reconstruction threshold, above which perfect signal recovery (i.e. when
mmse = 0) becomes possible.

Interestingly, the free energy eq. (271) also provides information about the
algorithmic hardness of the problem. The above extremisation problem is
closely related the state evolution of the AMP algorithm for this problem, as
derived in (Manoel et al., 2017), and generalized in (Fletcher et al., 2018). It is
conjectured to provide the best polynomial time algorithm for the estimation
of x? in our considered setting. Speci�cally, the algorithm reaches a mean-
squared error that corresponds to the local extremiser reached by gradient
descent in the function (271) starting with uninformative initial conditions.
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While so far we summarized results that follow from previous works,
these results were up to our knowledge not systematically evaluated and
analyzed for the linear estimation and phase retrieval with generative priors.
This analysis and its consequences is the object of the rest of this work and
constitutes the original contributions of this work.

10.1.2 weak recovery threshold

Solutions for the extremisation in eq. (271) can be found by solving the �xed
point equations, obtained by taking the gradient of eq. (271) with respect of
the parameters (qx, q̂x,{ql , q̂l}L

l=1):




q̂x = αΛy (qx)

q̂L = βLΛout (q̂x,qL)

q̂L−1 = βL−1Λout (q̂L,qL−1)
...

q̂l = βlΛout (q̂l+1,ql)
...

q̂z = β1Λout (q̂2,qz)

,





qx = Λx (q̂x,qL)

qL = Λx (q̂L,qL−1)
...

ql = Λx (q̂l ,ql−1)
...

qz = Λz (q̂z)

, (274)

where Λy(t) = 2 ∂tΨy(t), Λz(t) = 2 ∂tΨz(t), Λx(t) = 2 ∂rΨout(r,s), Λout(t)
= 2 ∂sΨout(r,s). The weak recovery threshold αc is de�ned as the value
above which one can estimate x? better than a random draw from the prior
Px. In terms of the MMSE it is de�ned as

αc = argmax
α≥0

{mmse(α) = ρx}. (275)

From eq. (267), it is clear that an uninformative solution mmse = ρx of
eq. (271) corresponds to a �xed point qx = 0. For both the phase retrieval
and linear estimation, evaluating the right-hand side of eqs. (274) at qx = 0
we can see that q̂?x = 0 is a �xed point if σ is an odd function and if

EPz [z] = 0, and E
Q(l),0

out
[x] = 0, (276)

where Q(l),0
out (x,z) = Q(l)

out(x,z;0,0,0,ρl−1). These conditions re�ect the intu-
ition that if the prior Pz or the likelihoods P(l)

out are biased towards certain
values, this knowledge helps the statistician estimating better than a random
guess. If these conditions are satis�ed, then αc can be obtained as the point
for which the �xed point qx = 0 becomes unstable. The stability condition
is determined by the eigenvalues of the Jacobian of eqs. (274) around the
�xed point (q?x , q̂?x ,{q?l , q̂?l }L

l=1) = 0. More precisely, the �xed point becomes
unstable as soon as one eigenvalue of the Jacobian is bigger than one. Ex-
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panding the update functions around the �xed point and using the conditions
in eq. (276),

Λy(t) =
t�1

1
ρ2

x

∫
dy Zy(y;0,ρx)

(
EQ0

y
[ρx− x2]

)2
t +Θ

(
t3/2
)

,

Λ(l)
x (r,s) =

r,s�1

(
E

Q(l),0
out

[x2]
)2

r+
1

ρ2
l−1

(
E

Q(l),0
out

[xz]
)2

s+Θ
(

r3/2,s3/2
)

,

(277)

Λ(l)
out(r,s) =

r,s�1

(
E

Q(l),0
out

[xz]
)2

r+
1

ρ2
l−1

(
E

Q(l),0
out

[z2]−ρl−1

)2
s

+Θ
(

r3/2,s3/2
)

,

Λz(t) =
t�1

(
EPz [z

2]
)2

t +Θ
(

t3/2
)

.

For a generative prior with depth L, the Jacobian is a cumbersome sparse (L+
1)× (L+ 1) matrix, with all the entries given by the six partial derivatives
above. For the sake of conciseness we only write it here for L = 1:




0
(

EQ0
out

[
x2
])2

1
ρ2

z

(
EQ0

out
[xz]
)2

0

α

ρ2
x

∫
dy Z 0

y

(
EQ0

y

[
ρx− x2

])2
0 0 0

0 0 0
(
EPz

[
z2
])2

0 β

(
EQ0

out
[xz]
)2

β

ρ2
z

(
EQ0

out

[
z2
]
−ρz

)2
0




.

(278)

Note that this holds for any choice of P(l)
out and latent space distribution Pz,

as long as conditions eq. (276) hold. For the phase retrieval with a linear
generative model for instance P(l)(x|z) = δ (x− z), we �nd αc =

1
2

1
1+ρ−1 . For

a linear network of depth L this generalizes to

αc =
1
2

(
1+

L

∑
l=1

l−1

∏
k=0

βL−k

)−1

. (279)

The linear estimation problem has exactly the same threshold, but without
the global 1/2 factor. Since ρ ,βl ≥ 0, it is clear that αc is decreasing in the
depth L of the network. This analytical formula is veri�ed by numerically
solving eqs. (274), see Figs. 58 and 59. For other choices of activation satisfying
condition (276) (e.g. the sign function), we always �nd that depth helps in
the weak recovery of the signal.
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10.1.3 perfect recovery threshold

We now turn our attention to the perfect recovery threshold, above which
perfect signal reconstruction becomes statistically possible. Formally, it can
be de�ned as

αIT = argmin
α≥0

{mmse(α) = 0}, (280)

and corresponds to the global minimum of the free energy in eq. (271). Nu-
merically, the perfect recovery threshold is found by solving the �xed point
equations (274) from an informed initialization qx ≈ ρx, corresponding to
mmse≈ 0 according to eq. (267). The resulting �xed point is then checked
to be a minimizer of the free energy eq. (271). Di�erent from αc, it cannot
be computed analytically for an arbitrary architecture. However, for the
compressed sensing and phase retrieval problems with σ ∈ {linear,ReLU}
generative priors, αIT can be analytically computed by generalizing a simple
argument based on the invertibility of the linear system of equations at each
layer, originally used in the usual compressive sensing (Candes et al., 2006;
Tao, 2009).

First, consider the linear estimation problem with a deep linear generative
prior, i.e. y = Ax? ∈ Rn with x? = W(L) . . .W(1)z ∈ Rd and A,{W(l)}L

l=1
i.i.d Gaussian matrices, that are full rank with high probability. For n > d,
the system y = Ax? is overdetermined as there are more equations than
unknowns. Hence the information theoretical threshold has to verify αIT =
nIT
d ≤ 1. For L= 0 (i.e. x? is Gaussian i.i.d), we have exactly α

(0)
IT = 1 as the prior

does not give any additional information for solving the linear system. For
L≥ 1 though, at each level l ∈ JLK, we need to solve successively h(l) ∈Rkl

in the linear system y = AW(L) · · ·W(l)h(l). Again as AW(L) · · ·W(l) ∈Rn×kl ,
if n > kl the system is over-constrained. Hence the information theoretical

threshold for this equation is such that ∀l ∈ JLK,n(l)IT ≤ kl⇔ α
(l)
IT ≤

l
∏

k=1

1
βL−k+1

.

And note that ρ ≡
L
∏

k=1

1
βL−k+1

. Hence, the information theoretical threshold is

obtained by taking the smallest of the above values α
(l)
IT :

αIT = min
l∈[0:L]

α
(l)
IT = min


1,

{
l

∏
k=1

1
βL−k+1

}L−1

l=1

,ρ


 . (281)

This result generalizes to the real-valued phase retrieval problem. First,
we note that by the data processing inequality taking y = |Ax?| cannot
increase the information about x?, and therefore the transition in phase
retrieval cannot be better than for compressed sensing. Secondly, an ine�cient
algorithm exists that achieve the same performance as compressed sensing
for the real valued phase retrieval: one just needs to try all the possible
2n assignments for the sign, and then solve the corresponding compressed
sensing problem. This strategy that will work as soon as the compressed
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sensing problem is solvable. Eq. (281) is thus valid for the real phase retrieval
problem as well.

One can �nally generalize this analysis for a non-linear generative prior
with ReLU activation at each layer, i.e. x? = relu

(
W(L)relu

(
· · ·W(1)z

)
· · ·
)

.
Noting that on average x has half of zero entries and half of i.i.d Gaussian
entries, the system can be reorganized and simpli�ed y = Ãx̃, with x̃ ∈Rd/2

the extracted vector of x with on average d/2 strictly positive entries and the
corresponding reduced matrix Ã ∈Rn×d/2, is over-constrained for n > d/2
and hence the information theoretical threshold veri�es αIT =

nIT
d ≤ 1

2 . Noting
that this observation remains valid for generative layers, we will have on
average at each layer an input vector h(l) with half of zero entries and half
of Gaussian distributed entries - except at the very �rst layer for which the
input z ∈Rk is dense. Repeating the above arguments yields the following
perfect recovery threshold

αIT = min


1

2
,

{
1
2

l

∏
k=1

1
βL−k+1

}L−1

l=1

,ρ


 . (282)

for both the linear estimation and phase retrieval problems. Both these results
are consistent with the solution of the saddle-point eqs. (274) with a informed
initialisation, see Figs. 59-61.

10.1.4 algorithmic threshold

The discussion so far focused on the statistical limitations for signal recovery,
regardless of the cost of the reconstruction procedure. In practice, however,
one is concerned with the algorithmic costs for reconstruction. In the high-
dimensional regime we are interested, where the number of observations
scale with the number of parameters in the model, only (low)-polynomial time
algorithms are manageable in practice. Remarkably, the formula in eq. (271)
also provides useful information about the algorithmic hindrances for the
inverse problems under consideration. Indeed, with a corresponding choice
of iteration schedule and initialization, the �xed point equations eq. (271) are
identical to the state evolution describing the asymptotic performance of an
associated AMP algorithm (Manoel et al., 2017; Fletcher et al., 2018). Moreover,
the AMP aforementioned is the best known polynomial time algorithm for
the estimation problem under consideration, and it is conjectured to be the
optimal polynomial algorithm in this setting.

The AMP state evolution corresponds to initializing the overlap parameters
(qx,ql)≈ 0 and updating, at each time step t the hat variables q̂t

x = αΛy(qt
x)

before the overlaps qt+1
x = Λx(q̂t

x,qt
L), etc. In Fig. 56 we illustrate this equiva-

lence by comparing the MSE obtained by iterating eqs. (274) with the averaged
MSE obtained by actually running the AMP algorithm from (Manoel et al.,
2017) for a speci�c architecture and implemented with the tramp python
package (Baker et al., 2020). In particular even though the AMP state evolution
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is not yet rigorously proven, we see a strong agreement of our analytical
results with AMP simulations.

Note that, by construction, the performance of the Bayes-optimal estimator
corresponds to the global minimum of the scalar potential in eq. (271). If
this potential is convex, eqs. (274) will converge to the global minimum,
and the asymptotic performance of the associated AMP algorithm will be
optimal. However, if the potential has also a local minimum, initializing
the �xed point equations will converge to the di�erent minima depending
on the initialization. In this case, the MSE associated to the AMP algorithm
(corresponding to the local minimum) di�ers from the Bayes-optimal one
(by construction the global minimum). In the later setting, we de�ne the
algorithmic threshold as the threshold above which AMP is able to perfectly
reconstruct the signal - or equivalently for which mmse = 0 when eqs. (274)
are iterated from qt=0

x = qt=0
l = ε � 1. Note that by de�nition αIT < αalg,

and we refer to ∆alg = αalg−αIT as the algorithmic gap. See Fig. 57 for an
illustration of the evolution of the free energy landscape for increasing α .

Studying the existence of an algorithmic gap for the linear estimation and
phase retrieval problems, and how it depends on the architecture and depth
of the generative prior, is the subject of the next section.
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Figure 56: Mean squared error obtained by running the AMP algorithm (dots) from
(Manoel et al., 2017) and implemented with the tramp package (Baker
et al., 2020), for d = 2.103 averaged on 10 samples, compared to the
MSE obtained from the state evolution eqs. (274) with uninformative
initialization qx = ql ≈ 0 (solid line) for the phase retrieval problem with
linear (Left) and relu (Right) generative prior networks. Di�erent curves
correspond to di�erent depths L, with �xed ρ = 2 and layer-wise aspect
ratios βl = 1. The dashed vertical line corresponds to αIT. To illustrate for
instance in the linear case (Left), (αL=0

c ,αL=1
c ,αL=2

c ) = (1/3,1/4,1/5),
αIT = 1 and (αL=0

alg ,αL=1
alg ,αL=2

alg ) = (1.056,1.026,1.011).

10.2 PHASE D IAGRAMS

In this section we summarize the previous discussions in plots in the (ρ ,α)-
plane, hereafter named phase diagrams. Phase diagrams quantify the quality
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of signal reconstruction for a �xed architecture (β1, . . . ,βL−1) 1 as a function
of the compression ρ . Moreover, it allows a direct visual comparison between
the phase diagram for a sparse Gaussian prior and the multi-layer generative
prior. For both the phase retrieval and compressed sensing problems we
distinguish the following regions of parameters limited by the thresholds of
Sec. 10.1:

• Undetectable region where the best achievable error is as bad as a
random guess from the prior as if no measurement y were available.
Corresponds to α < αc.

• Weak recovery region where the optimal reconstruction error is better
than the one of a random guess from the prior, but exact reconstruction
cannot be achieved. Corresponds to αc < α < αIT.

• Hard region where exact reconstruction can be achieved information-
theoretically, but no e�cient algorithm achieving it is known. Corre-
sponds to αIT < α < αalg

• The so-called easy region where the aforementioned AMP algorithm for
this problem achieves exact reconstruction of the signal. Corresponds
to α > αalg.

As already explained, we locate the corresponding phase transitions in the
following manner: for the weak recovery threshold αc, we notice that the
�xed point corresponding to an error as bad as a random guess corresponds
to the values of the order parameters qx,ql = 0. This is an extremiser of the
free energy (268) when the prior Pz has zero mean and the non-linearity ϕ is
an even function. This condition is satis�ed for both the linear estimation
and the phase retrieval problem with linear generative priors that leads to
zero-mean distributions on the components of the signal, but is not achieved
for a generative prior with ReLU activation, since it biases estimation. In case
this uninformative �xed point exists, we investigate its stability under the
state evolution of the AMP algorithm, thus de�ning the threshold αc. For
α < αc the �xed point is stable, implying the algorithm is not able to �nd an
estimator better than random guess. In contrast, for α >αc the AMP algorithm
provides an estimator better than random guess. For phase retrieval with
linear generative model in the setting of the present paper, this analysis
leads to the threshold derived in (279). If there exists a region where the
performance of the AMP algorithm and the information-theoretic one do not
agree we call it the hard region. The hard region is delimited by threshold
αIT and αalg.

The statistical and algorithmic thresholds de�ned above admit an alterna-
tive and instructive description in terms of free energy landscape, see Fig.
57. Consider a �xed ρ : for small α the free energy (271) has a single global
minimum with small overlap (high MSE) with the ground truth solution x?,
referred as the uninformative �xed point. At a value αsp, known as the �rst

1 Note that βL is �xed from the knowledge of (ρ ,β1, . . . ,βL−1).
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αsp αIT αalg

Weak recovery Hard Easy

Figure 57: Illustration of the free energy landscape as a function of the overlap
with the ground truth solution, when one increases α . For small α < αsp,
there exists a unique global minimum, whose overlap with the solution
is small (high MSE). At α = αsp, a local minimum (orange dot) with
higher overlap (small MSE) appears. By de�nition, the global minimum
corresponds to the MMSE of the problem, which is the MSE attained
by the Bayes-optimal estimator (green dot). For α < αIT the accessible
solution, i.e the global minimum (green dot) has a high MSE while a
better solution exists but has a higher free energy (weak recovery phase).
At α = αIT the two minima are global and have the same free energy.
Between αIT < α < αalg (hard phase), the local minimum with higher
MSE corresponds to the performance of the AMP estimator (red dot).
Above αalg only the small MSE minima survive and the AMP estimator is
able to achieve the Bayes-optimal performance (easy phase).

spinodal transition, a second local minimum appears with higher overlap
(smaller MSE) with the ground truth, referred as informative �xed point. The
later �xed point becomes a global minimum of the free energy at αIT > αsp,
while the uninformative �xed point becomes a local minimum. A second
spinodal transition occurs at αalg when the informed �xed point becomes
unstable. Numerically, the informed and uninformative �xed points can be
reached by iterating the saddle-point equations from di�erent initial condi-
tions. When the two are present, the informed �xed point can be reached by
iterating from qx ≈ ρx, which corresponds to a minimum overlap with the
ground truth x?, and the uninformative �xed point from qx ≈ 0, correspond-
ing to no initial overlap with the signal. In the noiseless linear estimation
and phase retrieval studied here we observe αIT = αsp.

10.2.1 single-layer generative prior

First, we consider the case where the signal is generated from a single-
layer generative prior, x? = σ(Wz) with z∼N (0,Ik). We analyze both the
compressed sensing and the phase retrieval problem, for σ ∈ {linear,ReLU}.
In this case the only free parameters of the model are (ρ ,α), and therefore
the phase diagram fully characterizes the recovery in these inverse problems.
The aim is to compare with the phase diagram of a sparse prior with density
ρs = ρ of nonzero components.

Fig. 58 depicts the compressed sensing problem with linear (Left) and ReLU
(Right) generative priors. We depict the phase transitions de�ned above. On
the left hand side we compare to the algorithmic phase transition known from
(Krzakala et al., 2012a) for sparse separable prior with fraction 1−ρ of zero
entries and ρ of Gaussian entries of zero mean presenting an algorithmically
hard phase for ρ < α < α

sparse
alg (ρ).
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In the case of compressed sensing with linear generative prior we do not
observe any hard phase and exact recovery is possible for α ≥min(ρ ,1) due
to invertibility (or the lack of there-of) of the matrix product AW. With ReLU
generative prior we have αIT = min(ρ ,1/2) and the hard phase exists and
has interesting properties: The ρ → ∞ limit corresponds to the separable
prior, and thus in this limit αalg(ρ → ∞) = α

sparse
alg (ρs = 1/2). Curiously we

observe αalg > αIT for all ρ ∈ (0,∞) except at ρ = 1/2. Moreover the size
of the hard phase is very small for ρ < 1/2 when compared to the one for
compressed sensing with separable priors, suggesting that exploring structure
in terms of generative models might be algorithmically advantageous over
sparsity.

Fig. 59 depicts the phase diagram for the phase retrieval problem with
linear (Left) and ReLU (Right) generative priors. The information-theoretic
transition is the same as the one for compressed sensing, while numerical
inspection shows that αPR

alg > αCS
alg for all ρ 6= 0,1/2,1. In the left hand side we

depict also the algorithmic transition corresponding to the sparse separable
prior with non-zero components being Gaussian of zero mean, α

sparse
alg (ρs),

as taken from (Barbier et al., 2019b). Crucially, in that case the algorithmic
transition to exact recovery does not fall bellow α = 1/2 even for very small
(yet �nite) ρs, thus e�ectively disabling the possibility to sense compressively.
In contrast, with both the linear and ReLU generative priors we observe
αalg(ρ → 0)→ 0. More speci�cally, the theory for the linear prior implies
that αalg/ρ(ρ → 0)→ α

sparse
alg (ρs = 1) ≈ 1.128 with the hard phase being

largely reduced. Again the hard phase disappears entirely for ρ = 1 for the
linear model and ρ = 1/2 for ReLU.
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Figure 58: Phase diagrams for the compressed sensing problem with (Left) linear
generative prior and (Right) ReLU generative prior, in the plane (ρ ,α).
The αIT (red line) represents the information theoretic transition for
perfect reconstruction and αalg (green line) the algorithmic transition
to perfect reconstruction. In the left part we depict for comparison the
algorithmic phase transition for sparse separable prior α

sparse
alg (dashed-

dotted green line). The inset in the right part depicts the di�erence ∆alg =
αalg−αIT. Colored areas correspond respectively to the weak recovery
(orange), hard (yellow) and easy (green) phases. The behavior of the free
energy landscape for increasing α and �xed ρ is illustrated in Fig. 57.
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Figure 59: The same as Fig. 58 for the phase retrieval problem with (Left) linear
generative prior and (Right) ReLU generative prior. A major result is that
while with sparse separable priors (green dashed-dotted line) compressed
phase retrieval is algorithmically hard for α < 1/2, with generative priors
compressed phase retrieval is tractable down to vanishing α (green line).
In the left part we depict additionally the weak recovery transition αc =
ρ/[2(1+ρ)] (dark red line). It splits the no-exact-recovery phase into the
undetectable (dark red) and the weak-recovery region (orange).

10.2.2 multi-layer generative prior

From the discussion above, we conclude that generative priors are algorith-
mically advantageous over sparse priors, allowing compressive sensing for
the phase retrieval problem. We now investigate how the role of depth of
the prior in this discussion. As before, we analyze both the linear estimation
and phase retrieval problems, �xing σ (l) ≡ σ ∈ {linear,ReLU} at every layer
1≤ l ≤ L. Di�erent from the L = 1 case discussed above, for L > 1 we have
other L−1 free parameters characterizing the layer-wise compression factors
(β1, . . . ,βL−1).

First, we �x βl and investigate the role played by depth. Fig. 60 depicts the
phase diagrams for compressed sensing (Left) and phase retrieval (Right) with
ReLU activation with varying depth, and a �xed architecture βl = 3 for
1 ≤ l ≤ L and note that all these curves share the same αIT = min(0.5,ρ).
It is clear that depth improves even more the small gap already observed
for a single-layer generative prior. The algorithmic advantage of multi-layer
generative priors in the phase retrieval problem has been previously observed
in a similar setting in (Hand et al., 2018b).

Next, we investigate the role played by the layer-wise compression factor
βl . Fig. 61 depicts the phase diagrams for the compressed sensing (Left) and
phase retrieval (Right) with ReLU activation for �xed depth L = 2, and vary-
ing β ≡ β1. According to the result in (281), we have αIT =min (1/2,ρ ,1/2β ).
It is interesting to note that there is a trade-o� between compression β < 2
and the algorithmic gap, in the following sense. For ρ < 0.5 �xed, αIT de-
creases with decreasing β � 1: compression helps perfect recovery. However,
the algorithmic gap ∆alg becomes wider for �xed ρ < 0.5 and decreasing
β � 1.

These observations also hold for a linear generative model. In Fig. 62
we have a closer look by plotting the algorithmic gap ∆alg ≡ αalg−αIT in
the phase retrieval problem. On the left, we �x L = 4 and plot the gap for
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increasing values of β ≡ βl , leading to increasing ∆alg. On the right, we �x
β = 2 and vary the depth, observing a monotonically decreasing ∆alg.
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Figure 60: Phase diagrams for the compressed sensing (Left) and phase retrieval
(Right) problems for di�erent depths of the prior, with ReLU activation
and �xed layer-wise compression βl = 3. Dashed lines represent the
algorithmic threshold αalg and solid lines the perfect recovery threshold
αIT. We note that the algorithmic gap ∆alg (shown in insets) decreases
with the network depth L.
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Figure 61: Phase diagrams for the compressed sensing (Left) and phase retrieval
(Right) problems with L = 2 and ReLU activation for di�erent values of
the layer-wise compression factor β1. Dashed lines represent the algorith-
mic threshold αalg and solid lines the perfect recovery threshold αIT. We
note that for a given ρ < 0.5, αIT is decreasing with β � 1. However, the
algorithmic gap ∆alg (shown in the inset) grows for decreasing β . Note
that for β1 ≥ 2 the hard phase is hardly visible at ρ = 0.5, even though it
disappears only in the large width limit, for both compressed sensing and
phase retrieval settings.
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Figure 62: Algorithmic gap ∆alg = αalg−αIT for small ρ and linear activation, as a
function of (Left) the compression β ≡ βl for �xed depth L = 4 and of
(Right) depth for a �xed compression β = 2.

CONCLUS ION AND PERSPECT I VES

In this chapter, we analyzed how generative priors from an ensemble of
random multi-layer neural networks impact signal reconstruction in the
high-dimensional limit of two important inverse problems: real-valued phase
retrieval and linear estimation. More speci�cally, we characterized the phase
diagrams describing the interplay between number of measurements needed
at a given signal compression ρ , for a range of shallow and multi-layer
architectures for the generative prior. We observed that although present, the
algorithmic gap signi�cantly decreases with depth in the studied architectures.
This is particularly striking when compared with sparse priors at ρ � 1,
for which the algorithmic gap is considerably wider. In practice, this means
generative models given by random multi-layer neural networks allow for
e�cient compressive sensing in these problems.

In this work we have only considered independent random weight matrices
for both the estimation layer and for the generative model. Ideally, one would
like to introduce correlations in a setting closer to reality to show that the
smaller computation-to-statistical gap also appears in real-life tasks. The
hurdle is that in those cases one does not know what is the theoretically
optimal performance nor what are the optimal polynomial algorithms, so
that one cannot evaluate the computation-to-statistical empirically in those
cases. Yet another tractable case is the study of random rotationally invariant
or unitary sensing matrices, as in (Kabashima, 2008; Fletcher et al., 2018;
Barbier et al., 2018b; Dudeja et al., 2019). In a di�erent direction, it would be
interesting to observe the phenomenology from this work in an experimental
setting, for instance using a generative model, such as GAN or VAE, trained on
a real dataset to improve the performance of AMP algorithms in a practical
task. This is the purpose of the next section.
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10.3 EST IMAT ION WI TH NON I . I . D
GENERAT I VE PR IORS

Instead reproducing the plug-in approach illustrated in the context of the
spiked matrix model with generative prior in Chap. 9 Sec. 9.3.1 to derive the
AMP algorithm for each structured model, we developed a python package
tramp, standing for TRee Approximate Message Passing, that automatically
build the corresponding AMP algorithm from the sub-models.

Moreover, the package provides an implementation of EP for modular
compositional inference in high-dimensional tree-structured models, which
is more robust than the classical AMP. In particular, while the classical AMP,
discussed in the previous section, is restricted to i.i.d weights, EP implemented
in tramp is able to handle non-i.i.d weights such as the ones obtained after
training of a GAN or VAE. More details on the implementation can be found
in (Baker et al., 2020) and the source code publicly available at https://github.
com/sphinxteam/tramp.

To illustrate the performances of EP on structured models with correlated
weights, we consider a signal x ∈Rd (with d = 784) drawn from the MNIST
data set (LeCun et al., 2010). We want to reconstruct the original image from
a corrupted observation y = ϕ(x) ∈Rd , where ϕ : Rd →Rd represents a
noisy channel. In the following the noisy channel represents either a Gaussian
additive channel or an inpainting channel, that erases some pixels of the input
image. In order to reconstruct correctly the MNIST image, we investigate
the possibility of using a generative prior such as a VAE along the lines of
(Bora et al., 2017; Fletcher et al., 2018). Note that information theoretical
and approximate message passing properties of reconstruction of a low
rank or GLM channel, using a dense feed-forward neural network generative
prior with i.i.d weights has been studied in particular in (Aubin et al., 2019e;
Aubin et al., 2020b). However, neither information theoretical or algorithmic
perspective was investigated to handle a trained generative prior with non-i.i.d
weights, such as the ones we consider in this section.
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Figure 63: Denoising/inpainting of a MNIST image with a VAE prior. The weights
W1,W2 and biases b1,b2 are learned beforehand on the MNIST data set
and �xed during the reconstruction.

Following (Fletcher et al., 2018), we use a structured prior coming from a
VAE trained itself on the MNIST data set beforehand. The VAE architecture is
summarized in Fig. 63 and the training procedure follows closely the canonical
one detailed in (Keras-VAE, 2020). We consider two common inference tasks:
denoising and inpainting, which are simpler than the one considered in the
previous section.

https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp
https://github.com/sphinxteam/tramp
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Denoising: In that case, the corrupted channel ϕden,∆ adds a Gaussian
noise and corresponds to the noisy component-wise channel

ϕden,∆(x) = x+ ξξξ with ξi ∼N (0,∆) .

Inpaiting: The corrupted channel erases a few pixels of the input image
and corresponds formally to

ϕinp,Iα
(x) = x−m(x) ,

where m represents a mask applied component-wise. Let α ∈ [0;1], Iα denotes
the set of erased indexes of size bαdc and the masks acts according to m(xi) =

1 [xi ∈ Iα ]. As an illustration, we consider two di�erent manner of generating
the erased interval Iα :

1. A central horizontal band of width bαdc: Iband
α = [bd

2 (1−α)c;bd
2 (1+

α)c]

2. bαdc indices drawn uniformly at random: Iuni
α ∼U ([1,d];bαdc)

Solving these inference tasks in tramp is straightforward: �rst declare the
structured model Fig. 63 and then run EP. A few MNIST samples x∗ ∈R784

in the test set, which were not used to train the VAE, compared to the noisy
observations y ∈R784 and tramp reconstructions x̂ are presented in Fig. 64.
It suggest that the EP implementation of tramp is able to use the trained VAE
prior information to either denoise very noisy observations or reconstruct
missing pixels of the MNIST images.

x∗ y x̂

x∗ y x̂

x∗ y x̂

x∗ y x̂

Figure 64: Illustration of the tramp prediction x̂ using a VAE prior from observation
y = ϕ(x∗) with x∗ a MNIST sample. (Left) Denoising ϕ = ϕden,∆ with
∆ = 4. (Right-upper) Band-inpainting ϕinp,Iband

α
with α = 0.3 (Right-

lower) Uniform-inpainting ϕinp,Iuni
α

with α = 0.5.

However, analyzing the SE of EP or VAMP for such complex prior distribution
encoded in the correlated weights of the VAE is still an ongoing line of research.
As a conclusion, this direction shall be pushed further to provide a more
accurate theoretical comparison between generative priors and separable
sparse priors, and �nally conclude on their respective performances on real
data.
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A
DEF IN I T IONS AND
MATHEMATICAL
IDENT I T IE S

a.1 GAUSS IAN DI STR IBU T ION AND
MULT I VAR IATE CENTRAL L IM I T
THEOREM

Consider m ∈Rd and Σ ∈Rd×d a symmetric positive de�nite matrix. For
x ∈Rd , the Gaussian probability distribution is de�ned by

Nx (m,Σ) ≡ e−
(x−m)ᵀΣ−1(x−m)

2 /
√

det (2πΣ) . (283)

The Gaussian vector x has mean E [x] = m and variance Var(x) = Σ. The
Gaussian distribution is crucial as it turns out to be the �xed point distribution
of the sum of i.i.d random variables as stated by the CLT:

Proposition A.1.1 ( Multivariate Central Limit Theorem). Let {x1, · · · ,xn}
a sequence of i.i.d random vectors in Rd such that E [x] = m and covariance
matrix Σ. De�ning sn = 1

n ∑
n
µ=1 xµ , then as n approaches in�nity, the sum

converges in distribution to a Gaussian law:

√
n (sn−m)

d−−−→
n→∞

Nx (0,Σ) . (284)

a.2 HUBBARD- STRATONOVICH
TRANSFORMATION

The Hubbard-Stratonovich transformation is a simple Gaussian identity based
on the fact that:

PropositionA.2.1 (Hubbard-Stratonovich transformation). For ξξξ ∼N (0,Id)
and a symmetric positive de�nite matrix A ∈Rd×d , for all x ∈Rd

Eξξξ exp
(

ξξξ
ᵀA1/2x

)
= (2π)−d/2

∫

Rd
dξξξ e−

1
2 xᵀx+ξξξ

ᵀA1/2x = e
1
2 xᵀAx .

(285)
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a.3 NI SH IMORI IDENT I T Y

We recall the Nishimori identity from (Nishimori, 1980; Nishimori, 1981;
Nishimori, 2001; Zdeborová et al., 2016a; Lesieur et al., 2017a):

Proposition A.3.1 (Nishimori identity). Let (X,Y) a couple of random vari-
ables. Let {xµ}n

µ=1 n ≥ 1 samples drawn i.i.d from P(X|Y). Let us denote 〈.〉
the expectation over the posterior distribution P(X|Y) and E the expectation
with respect to (X,Y). For all continuous bounded function f :

E [〈 f (Y,x1, · · · ,xn−1,xn〉] = E [〈 f (Y,x1, · · · ,xn−1,X〉] .

Proof. This is a simple consequence of the Bayes formula. It is equivalent
to sample the couple (X,Y) according to its joint distribution P(X,Y) or to
sample �rst Y according to its marginal distribution P(Y) and then to sample
X conditionally to Y from its conditional distribution P(X|Y). Thus the
(n+ 1)-tuple (Y,x1, · · · ,xn−1,xn) is equal in law to (Y,x1, · · · ,xn−1,X).

a.4 DENOI S ING D I STR IBU T IONS ,
UPDATES AND FREE ENTROPY
TERMS

In this section, we introduce the K-dimensional probability distributions
involved in the replica free entropies and from which the AMP update equa-
tions are derived in the context of committee machines. The multivariate
formulation can be simplify to scalar expressions for K = 1 in the case of
GLM.

a.4.1 mmse estimation with committee
machines

Analyzing the joint distribution P (y,X) for MMSE estimation in the high-
dimensional regime boils down to introducing the denoising distributions
Qw,Qout on w∈RK and z∈RK and their respective normalizations Zw, Zout
in Sec. A.4.1.a. We de�ne as well the denoising functions fw,∂γγγ fw, fout,∂ωωω fout
in Sec. A.4.1.b, that play a central role in Bayesian inference. Note in particu-
lar that they correspond to the updates of the GAMP algorithm in (Rangan,
2011) that we recall in Algo. 5 for the committee machine hypothesis class.
They are simply de�ned as the derivatives of logZw and logZout. Finally
the free entropy can be expressed as a function of simple free entropy terms
Ψw,Ψout de�ned in Sec. A.4.1.c.

Consider y ∈R, γγγ ,ωωω ∈RK , Λ,V ∈S +
K , the ensemble of symmetric posi-

tive matrices of size K×K, and vectors to infer w,z ∈RK , with prior distri-
butions Pw, Pout.
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a.4.1.a denoising distributions

Qw(w;γγγ ,Λ) ≡ Pw(w)

Zw(γγγ ,Λ)
e−

1
2 wᵀΛw+γγγᵀw , (286)

Zw(γγγ ,Λ) ≡Ew∼Pw

[
e−

1
2 wᵀΛw+γγγᵀw

]
(287)

=
∫

RK
dw pw(w)e−

1
2 wᵀΛw+γγγᵀw ,

Qout(z;y,ωωω ,V) ≡ Pout (y|z)
Zout(y,ωωω ,V)

e−
1
2 (z−ωωω)ᵀV−1(z−ωωω)

√
det (2πV)

, (288)

Zout(y,ωωω ,V) ≡Ez∼N (0,IK)

[
Pout

(
y|V1/2z+ωωω

)]
(289)

=
∫

RK
dz pout (y|z)

e−
1
2 (z−ωωω)ᵀV−1(z−ωωω)

√
det (2πV)

.

a.4.1.b denoising updates

fw(γγγ ,Λ) ≡ ∂γγγ log (Zw(γγγ ,Λ)) = EQw [w] , (290)
∂γγγ fw(γγγ ,Λ) ≡EQw [wwᵀ]− fw(γγγ ,Λ)⊗2 , (291)

fout(y,ωωω ,V) ≡ ∂ωωω log (Zout(y,ωωω ,V)) = V−1EQout [z−ωωω ] , (292)

∂ωωω fout(y,ωωω ,V) ≡ ∂ fout(y,ωωω ,V)

∂ωωω
(293)

= V−1EQout

[
(z−ωωω)⊗2

]
V−1−V−1− fout(y,ωωω ,V)⊗2 .

a.4.1.c free entropy terms

For overlap matrices Q?,Q ∈RK×K , and second moments ρρρ?,ρρρ ∈RK×K ,

Ψw(Q?,Q) ≡Eξξξ

[
Zw

(
(Q?)1/2

ξξξ ,Q?
)

log
(
Zw

(
Q1/2

ξξξ ,Q
))]

,

(294)

Ψout(Q?,Q,ρρρ?,ρρρ) ≡Eξξξ

[
Zout

(
(Q?)1/2

ξξξ ,ρρρ?−Q?
)

× log
(
Zout

(
Q1/2

ξξξ ,ρρρ−Q
))]

(295)

a.4.2 map estimation with glm

Before de�ning similar denoising functions to analyze MAP estimation, we
�rst recall the de�nition of the Moreau-Yosida regularization in the scalar
case K = 1.
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a.4.2.a moreau-yosida regularization and proximal

Let Σ > 0, f (,z) a convex function in z∈R, the Moreau-Yosida regularization
MΣ and the proximal map PΣ are de�ned by

PΣ[ f (, .)](x) = argminz

[
f (,z)+

1
2Σ

(z− x)2
]

, (296)

MΣ[ f (, .)](x) = min
z

[
f (,z)+

1
2Σ

(z− x)2
]

, (297)

where (, .) denotes all the arguments of the function f .

a.4.2.b map denoising functions

The MAP denoising functions for any convex loss l(, .) and convex separable
regularizer r(.) can be written in terms of the Moreau-Yosida regularization
or the proximal map as follows

f map,r
w (γ ,Λ) ≡PΛ−1 [r(.)] (Λ−1

γ) (298)
= Λ−1

γ−Λ−1
∂Λ−1γMΛ−1 [r(.)] (Λ−1

γ) ,

f map,l
out (y,ω ,V ) ≡−∂ωMV [l(y, .)](ω) (299)

= V−1 (PV [l(y, .)](ω)−ω) .

The derivation and the applications are detailed in Appendix. I.3 of (Aubin
et al., 2020c).







B
REPL ICA COMPUTAT IONS

b.1 TEACHER - STUDENT - COMMI T TEE
MACHINE WI TH I . I . D DATA

In this section, we present the heuristic derivation of the replica formula of
Theorem 5.2.1 using the replica method, presented in Sec. 4.1, in the context
of of the committee machine. This computation is necessary to properly guess
the formula that we then prove using the adaptive interpolation method.
The reader interested in the replica approach to neural networks and the
committee machine is invited to look as well to some of the classical papers
(Gardner et al., 1988; Mézard, 1989; Schwarze et al., 1992; Schwarze et al.,
1993; Schwarze, 1993; Monasson et al., 1995a). In the teacher-student setting,
the committee machine estimation problem consists of trying to estimate a
teacher signal W? ∈Rd×K from a set of n input-output observations {X,y} ∈
Rn×d×Rn generated according to

y = ϕout

(
1√
d

XW?

)
= ϕout

({
1√
d

Xw?
k

}K

k=1

)
.

The student, within the same committee machine hypothesis class, with
parameters W∈Rd×K , tries to learn the teacher rule generated by the ground
truth weights W?. Committee machines are a simple vectorized generalization
of GLM, de�ned in Sec. 1.2.9.a, whose estimation is performed simultaneously
with K ≥ 1 GLM. Therefore, the replica computation is shown only in the
general committee machine case and �nal expressions for GLM will be derived
as a particular case for K = 1.

We will assume that the matrix of data inputs X ∈Rn×d is drawn i.i.d with
density px. We will consider them to be i.i.d Gaussian with zero mean and unit
variance: ∀µ ∈ JnK,xµ ∼Nx (0,Id). The function ϕout : RK 7→R represents
a deterministic, or stochastic function associated to a probability distribution
Pout, applied component-wise to each sample. Notice that the factor 1√

d
is

present to insure that the variance of the input data is normalized to the unit.

288
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b.1.1 replica calculation

b.1.1.a on statistical estimation

Both MMSE and MAP estimations boil down to the analysis of the posterior
distribution P (W|y,X) expressed by the Bayes rule

P (W|y,X) =
P (y|W,X)P (W)

P (y,X)
=

Pout (y|W,X)Pw (W)

Zd ({y,X}) . (300)

The joint distribution is also called the partition function P (y,X)≡Zd ({y,X}).
To connect with the statistical physics formalism, we introduce the corre-
sponding Hamiltonian, for separable distributions Pout,Pw along one dimen-
sion, by

Hd (W,{y,X}) = − logPout (y|W,X)− logPw (W) ,

= −
n

∑
µ=1

logPout (yµ |W,xµ)−
d

∑
i=1

Pw (wi) .

The spin variables classically denoted σσσ are replaced by the weights of the
model W ∈Rd×K and they interact through the random dataset {y,X} that
plays the role of the quenched exchange interactions J. However here, the
interactions are not pairwise, as it is often the case in the Ising-like models,
but instead fully connected, meaning that each variable wi ∈RK is connected
to every other spin {w j} j∈∂ j\i as represented in the factor graph in Fig. 65.
The partition function at inverse temperature β is therefore de�ned by

wi ∈RK

pout (yµ |W,xµ)

pw(wi)

Figure 65: Factor graph corresponding to the committee machines hypothesis class.
The vectorial variables to infer wi are fully connected through the
quenched disorder y∼ Pout?(.) and each variable follow a one-body in-
teraction with a separable prior distribution pw(wi).

Zd ({y,X};β ) ≡ P (y,X) =
∫

Rd×K
dW e−βHd(W,{y,X})

=
∫

Rd×K
dw eβ (logpout(y|W,X)+logPw(W))

=
∫

Rd×K
dw pout (y|W,X)pw (W) ,

(301)

and can be exactly mapped to Bayesian estimation for β = 1. In the context
of ERM, MAP estimation can be analyzed by taking the limit β →∞ as detailed
in Chap. 8. In the considered modern high-dimensional regime with d→ ∞,
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n→∞, α = n/d = Θ(1) and K = Θ(1), we are interested in computing the
free entropy Φ (42), averaged over the input data X and teacher weights W?,
or equivalently over the output labels y generated from it, de�ned as

Φ(α) ≡ lim
d→∞

1
d

Ey,X [logZd (y,X)] . (302)

The heuristic replica method described in Sec. 4.1 allows to compute the
above average over the random dataset {y,X}, that plays the role of the
quenched disorder in usual spin glasses. We show the computation for the
more involved committee machine model class and generalization of the GLM
class, only for i.i.d data. The cumbersome computation for non i.i.d data can
be performed as well and lead to more complex expressions and has been
performed in particular in (Kabashima, 2008) in the case of the GLM.

b.1.1.b replica computation

We present here the replica computation of the averaged free entropy Φ(α)

in eq. (302) for arbitrary student prior and channel distributions Pw,Pw? and
Pout,Pout? , so that the computation remains valid for both the Bayes-optimal
and mismatched settings. The average in eq. (302) is intractable in general,
and the computation relies on the so called replica trick, see Sec. 4.1.1, that
consists in applying the identity

Ey,X

[
lim
d→∞

1
d

logZd (y,X)

]
= lim

r→0

[
lim
d→∞

1
d

∂ logEy,X [Zd (y,X)r]

∂ r

]
.

(303)

The replica trick has been used in a series of previous works to compute the
free energy density of GLM for separable distributions (Krzakala et al., 2012b)
and has been rigorous proved in this case by (Barbier et al., 2019b). Eq. (303)
is interesting in the sense that it reduces the intractable average to the com-
putation of the moments of the averaged partition function, which are easier
quantities to compute. Note that for r ∈N, Zd (y,X)r = ∏

r
a=1 Zd (y,X) rep-

resents the partition function of r identical non-interacting copies of the
initial system, called replicas. Taking the quenched average over the disorder
will then correlate the replicas, before taking the number of replicas r→ 0.
Therefore, we assume there exists an analytical continuation so that r ∈R

and the limit is well de�ned. Finally, notice that we exchanged the order of
the limits r→ 0 and d→∞. These technicalities are crucial points but are not
rigorously justi�ed and we will ignore them in the rest of the computation.
First, in order to decouple the contributions of the channel Pout and the prior
Pw, we introduce the variable Z = 1√

d
XW and a Dirac-delta integral:

Zd (y,X) =
∫

Rn×K
dz pout (y|Z)

∫

Rd×K
dw pw (W)δ

(
Z− 1√

d
XW

)
.
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Thus the replicated partition function for an integer r ∈N in eq. (303) can
be written as

Ey,X [Zd (y,X)r]

= Ey,X

[
r

∏
a=1

∫

Rn
dZa pouta (y|Za)

×
∫

Rd×K
dWa pwa (Wa)δ

(
Za− 1√

d
XWa

)]

= EX

∫

Rn
dy
∫

Rn×K
dZ? pout? (y|Z?) (304)

×
∫

Rd×K
dW? pw? (W?)δ

(
Z?− 1√

d
XW?

)

×
[

r

∏
a=1

∫

Rn×K
dZa pouta (y|Za)

∫

Rd×K
dWa pwa (Wa)δ

(
Za− 1√

d
XWa

)]

=
∫

Rn
dy

r

∏
a=0

∫

Rn×K
dZa pouta (y|Za)

∫

Rd×K
dWa pwa (Wa)

×EX

r

∏
a=0

δ

(
Za− 1√

d
XWa

)

︸ ︷︷ ︸
(I)

.

Note that the average over y is equivalent to the one over the ground truth
vector W? in the case of a teacher-student, which can be conveniently grouped
with the other terms by just extending the replica indices and considering it
as a new replica W0 with index a = 0, leading to a total of r+ 1 replicas.

Average over the i.i.d input data X Remains to compute the average
over X in the term (I). We suppose that inputs are drawn from an i.i.d dis-
tribution, for example a Gaussian px(x) = Nx (0,Id). More precisely, for
(i, j) ∈ JdK2, (µ ,ν) ∈ JnK2, EX [xµixν j] = δµνδi j. By de�nition, the average
in (I) de�nes the probability density pza(Za) and as ∀k ∈ JKK,∀µ ∈ JnK,
za

µk =
1√
d ∑

d
i=1 xµiwa

ik is the sum of i.i.d random variables, the CLT insures
that in the thermodynamic limit d→ ∞, za

µk follows a Gaussian multivariate
distribution, with �rst moments given by:

EX[za
µk] =

1√
d

d

∑
i=1

EX [xµi]wa
ik = 0

EX[za
µkzb

νk′ ] =
1
d ∑

i j
EX [xµixµ j]wa

ikwb
jk′ =

1
d ∑

i j
δi jwa

ikwb
jk′δµν

≡ δµνQak
bk′ .

Notice that averaging over the quenched disorder introduced correlations be-
tween replicas, which were initially independent, described by the symmetric
overlap matrix {Qak

bk′}kk′ of size (r+ 1)K× (r+ 1)K. This matrix order pa-
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rameter measures the correlations between the replicated matrices {Wa}r
a=0

and is formally de�ned by

Q({Wa}r
a=0) ≡

(
1
d

d

∑
i=1

wa
ikwb

ik′

)a,b=0..r

k,k′=1..K

,

such that ∀(a,b) ∈ J0 : rK2, Qab ∈RK×K . Therefore, again by the CLT, in the
limit d→ ∞, the hidden variable Za ∈Rn×K converges in distribution to the
multivariate distribution

pza (Za|Q) = exp

[
−1

2

n

∑
µ=1

r

∑
a,b=0

K

∑
k,k′=1

za
µkzb

µk′(Q
−1)ab

kk′

]
/ (det (2πQ))

n
2 .

Inserting this back in the replicated partition function �nally writes

Ey,X [Zd (y,X)r] =
∫

Rn
dy

r

∏
a=0

∫

Rn×K
dZa pouta (y|Za)pza (Za|Q)

∫

Rd×K
dWa pwa (Wa)

Fourier representation Next we introduce the change of variable for
the new order parameter Qab with a Dirac-δ distribution and its Fourier
representation. For a variable x ∈R, the distribution δ (x) can be written as
an integral over a purely imaginary parameter x̂:

δ (x) =
1

2iπ

∫

iR
dx̂e−x̂x .

Applying the above identity to the change of variable, we obtain

1 =
∫

R(K×r+1)2
dQ ∏

0≤a≤b≤r,1≤k,k′≤K
δ

(
dQab

kk′−
d

∑
i=1

wa
ikwb

ik′

)

∝

∫ ∫

R(K×r+1)2
dQdQ̂ exp

(
−d

r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

d
2

r

∑
a6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

)

× exp

(
1
2

r

∑
a=0

K

∑
k,k′

Q̂aa
kk′w

a
kwa

k′+
1
2

r

∑
a6=b

K

∑
k,k′

Q̂ab
kk′w

a
kwb

k′

)
,

that involves a new ad-hoc purely imaginary matrix parameter Q̂∈ iR(K×(r+1))2 .
Finally, multiplying the replicated partition function by 1, using the Cauchy
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theorem and rotating the integration, it becomes an integral over the sym-
metric matrices Q ∈R(K×r+1)2 and Q̂ ∈R(K×r+1)2

Ey,X [Zd (y,X)r]

=
∫ ∫

R(K×r+1)2
dQdQ̂ exp

(
−d

r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

d
2

r

∑
a 6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

)

× exp

(
−1

2

r

∑
a=0

∑
k,k′

Q̂aa
kk′w

a
kwa
′k +

1
2 ∑

a6=b
∑
k,k′

Q̂ab
kk′w

a
kwb

k′

)

∫

Rn
dy

r

∏
a=0

∫

Rn×K
dZa pouta (y|Za)pza (Za|Q)

∫

Rd×K
dWa pwa (Wa)

=
∫ ∫

R(K×r+1)2
dQdQ̂ exp

(
−d

r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

d
2

r

∑
a 6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

)

× exp

(
−1

2

r

∑
a=0

K

∑
k,k′

Q̂aa
kk′w

a
kwa

k′+
1
2

r

∑
a6=b

K

∑
k,k′

Q̂ab
kk′w

a
kwb

k′

)

[∫

R
dy

r

∏
a=0

∫

RK
dza pouta (y|za)pza (za|Q)

]n[ r

∏
a=0

∫

RK
dwa pwa (wa)

]d

'
∫ ∫

R(K×r+1)2
dQdQ̂ edΦ(r)(Q,Q̂) ,

where in the last step, we used a Laplace method (Wong, 1989) and omitted
the sub-leading factors in the thermodynamic limit d→ ∞ to evaluate it as a
function of the free entropy potential de�ned by

Φ(r)(Q,Q̂) = −
r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

1
2

r

∑
a6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

+ logΨ(r)
w (Q̂)+α logΨ(r)

out(Q) ,

Ψ(r)
w (Q̂) =

r

∏
a=0

∫

RK
dwa pwa (wa)

× exp

(
r

∑
a=0

∑
kk′

Q̂aa
kk′w

a
kwa

k +
1
2 ∑

a6=b
∑
k,k′

Q̂ab
kk′w

a
kwb

k′

)
,

Ψ(r)
out(Q) =

r

∏
a=0

∫

R
dy
∫

RK
dza pouta (y|za)pza (za|Q) ,

(305)
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and where we decoupled the variable Za ∈Rn×K and Wa ∈Rd×K along the
rows

pouta (y|Za) =
n

∏
µ=1

pouta
(
yµ |za

µ

)
, with za

µ ∈RK ,

pza(Za|Q) =
n

∏
µ=1

p(za
µ |Q) ,

pwa (Wa) =
d

∏
i=1

pw (wa
i ) , with wa

i ∈RK ,

pza (za|Q) = exp

[
−1

2

r

∑
a,b=0

K

∑
k,k′=1

za
kzb

k′(Q
−1)ab

kk′

]
/ (det (2πQ))

1
2 .

Note that the averaged replicated partition function of this fully connected
model can be expressed as a saddle point equation only because distributions
Pout,Pout? and Pw,Pw? are separable so that a pre-factor scaling with the
system size d dominates the exponential distribution. Finally, switching the
two limits r→ 0 and d → ∞, the quenched free entropy Φ simpli�es as a
saddle point equation

Φ(α) = extrQ,Q̂

{
lim
r→0

∂ Φ(r)(Q,Q̂)

∂ r

}
, (306)

over symmetric matrices Q ∈R(K×r+1)2 and Q̂ ∈R(K×r+1)2 . To summarize,
we managed to get rid of the original high-dimensional integrals and replace
them by an optimization in the space of matrices, which, in this form, is
still intractable. We not only have to search in the space of (r+ 1)× (r+ 1)
matrices to �nd the extremiser of Φ(r), but we also need to compute the limit
r→ 0+. In the following we will assume a simple Ansatz for these matrices
in order to �rst obtain an analytic expression in r before taking the derivative
with respect to r.

b.1.1.c replica symmetric free entropy

Our goal is to express the functional Φ(r)(Q,Q̂) appearing in the free entropy
as an analytical function of r, in order to perform the replica trick.

Replica symmetric ansatz To do so, we will assume that the extremum
of Φ(r) is attained at a point in Q,Q̂ space such that a replica symmetry
property is veri�ed. More concretely, we assume:

∃Q ∈RK×K s.t ∀a ∈ J0 : rK ∀(k,k′) ∈ JKK2 Qaa
kk′ = Qkk′ ,

∃Q? ∈RK×K s.t ∀(k,k′) ∈ JKK2 Q00
kk′ = Q?

kk′ ,

∃q ∈RK×K s.t ∀(a < b) ∈ J0 : rK2 ∀(k,k′) ∈ JKK2 Qab
kk′ = qkk′ ,

∃m ∈RK×K s.t ∀a ∈ J0 : rK ∀(k,k′) ∈ JKK2 Q0a
kk′ = mkk′ ,

(307)
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and similarly for the ad-hoc parameter

∃Q̂ ∈RK×K s.t ∀a ∈ J0 : rK ∀(k,k′) ∈ JKK2 Q̂aa
kk′ = −

1
2

Q̂kk′ ,

∃Q̂? ∈RK×K s.t ∀(k,k′) ∈ JKK2 Q̂00
kk′ = Q̂?

kk′ ,

∃q̂ ∈RK×K s.t ∀(a < b) ∈ J0 : rK2 ∀(k,k′) ∈ JKK2 Q̂ab
kk′ = q̂kk′ ,

∃m̂ ∈RK×K s.t ∀a ∈ J0 : rK ∀(k,k′) ∈ JKK2 Q̂0a
kk′ = m̂kk′ .

(308)

The factor −1
2 is not necessary bu useful to recover commonly used formu-

lations. This Ansatz can be represented by symmetric RS matrices Q(rs) ∈
R(K×r+1)2 and Q̂(rs) ∈R(K×r+1)2

Q(rs) =




Q? m · · · m
m Q q ...
... q . . . q

m ... q Q


 and Q̂(rs) =




−1
2 Q̂? m̂ ... m̂
m̂ −1

2 Q̂ q̂ ...
... q̂ . . . q̂

m̂ ... q̂ −1
2 Q̂


 ,

(309)

where the overlap parameters may be reinterpreted as the scalar product
between the replicas

∀(a,b) ∈ JrK2, q =
1
d

WaᵀWb ,

the self-overlap of each replica

∀a ∈ JrK, Q =
1
d

WaᵀWa ,

the scalar product with the ground truth

∀a ∈ JrK, m =
1
d

W?ᵀWa ,

and the second moment of the ground truth distribution

Q? =
1
d

W?ᵀW? .

The above Ansatz simpli�es in the scalar GLM case with K = 1 to q = 1
d wa ·wb

for a 6= b, a norm Q= 1
d‖wa‖2

2, an overlap with the ground truth m= 1
d wa ·w?

and a second moment Q? = 1
d‖w?‖2

2.
Let’s compute separately the terms involved in the functional Φ(r)(Q,Q̂)

in (305) by applyting this Ansatz: the �rst is a trace term, the second term
Ψ(r)

w depends on the prior distributions Pw, Pw? and �nally the third term
Ψ(r)

out depends on the channel distributions Pout? , Pout.
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Trace term The trace term in (305) can be easily computed at the RS �xed
point and takes the following form

−
r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

1
2

r

∑
a6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

∣∣∣∣∣
rs

=
1
2

Tr
(
Q?Q̂?

)
+

1
2

rTr
(
QQ̂
)
− rTr (mm̂)− r(r−1)

2
Tr (qq̂) ,

and taking the derivative and the limit r→ 0 we obtain

lim
r→0

∂r

(
−

r

∑
a=0

K

∑
k,k′

Qaa
kk′Q̂

aa
kk′−

1
2

r

∑
a6=b

K

∑
k,k′

Qab
kk′Q̂

ab
kk′

)∣∣∣∣∣
rs

=
1
2

Tr
(
QQ̂
)
−Tr (mm̂)+

1
2

Tr (qq̂)

(310)

Prior integral Ψ(r)
w Evaluated at the RS �xed point the quadratic form

reads
r

∑
a=0

∑
kk′

Q̂aa
kk′w

a
kwa

k +
1
2 ∑

a6=b
∑
k,k′

Q̂ab
kk′w

a
kwb

k′

=
r

∑
a=1

w?ᵀm̂wa− 1
2

r

∑
a=1

waᵀQ̂wa + ∑
1≤a<b≤r

waᵀq̂wb

=
r

∑
a=1

w?ᵀm̂wa− 1
2

r

∑
a=1

waᵀ (Q̂+ q̂
)

wa +
1
2

(
r

∑
a=1

wa

)ᵀ

q̂

(
r

∑
a=1

wa

)
.

Using a Hubbard-Stratonovich transformation presented in Appendix. A.2,
the prior integral can be further simpli�ed

Ψ(r)
w (Q̂)

∣∣∣
rs
=
∫

R(r+1)×K
dWpw̃ (W)e∑

r
a=0 ∑

K
k,k′ Q̂

aa
kk′w

a
kwa

k+
1
2 ∑a 6=b ∑

K
k,k′ Q̂

ab
kk′w

a
kwb

k′

= Eξξξ ,w?∼Pw?

[
ew?ᵀQ̂?w?

Ew∼Pw

[
e(wᵀm̂w?− 1

2 wᵀ(Q̂+q̂)w+wᵀq̂1/2ξξξ)
]r]

.

(311)

Channel integral Ψ(r)
out Let us focus on the matrix Q(rs) involved in the

expression of Ψ(r)
out in (305). The elements of its inverse block matrix

(
Q(rs)

)−1
=




Q̃? m̃ · · · m̃
m̃ Q̃ q̃ · · ·
... q̃ . . . q̃

m̃ · · · q̃ Q̃


 (312)
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can be computed and given by

Q̃? =
(
Q?− rm(Q+(r−1)q)−1mᵀ)−1

m̃ = −
(
Q?− rm(Q+(r−1)q)−1mᵀ)−1 m(Q+(r−1)q)−1

Q̃ = (Q−q)−1− (Q+(r−1)q)−1q(Q−q)−1

+(Q+(r−1)q)−1mᵀ

×
(
Q?− rm(Q+(r−1)q)−1mᵀ)−1 m(Q+(r−1)q)−1

q̃ = Q̃− (Q−q)−1

and its determinant by

det
(

Q(rs)
)
= det (Q−q)r−1 det (Q+(r−1)q)

×det
(
Q?− rm(Q+(r−1)q)−1mᵀ) . (313)

Therefore the quadratic form in pza(za|Q(rs) reads

− 1
2 ∑

a,b
∑
k,k′

za
kzb

k′(Q
−1)ab

kk′

= −1
2

z?ᵀQ̃?z−
r

∑
a=1

z?ᵀm̃za

− 1
2

r

∑
a=1

zaᵀ (Q̃− q̃
)

za− 1
2

( r

∑
a

za
)ᵀ

q̃
( r

∑
a

za
)

,

and using another Gaussian transformation, see Appendix. A.2, we �nally
obtain

Ψ(r)
out(Q)

∣∣∣
rs
=
∫

dy
∫

R(r+1)×K
dZ pout (y|Z)p (Z|Q)

=
∫

dy
∫

R(r+1)×K
dZpout (y|Z)e−

1
2 ∑

r
a,b=0 ∑

K
k,k′=1 za

kzb
k′ (Q

−1)ab
kk′

/
(

det (2πQ)(rs)
) 1

2

=
∫

dy Eξξξ e−
1
2 log(det(2πQ(rs)))×

∫
dz? pout? (y|z?)e−

1
2 z?ᵀQ̃?z? (314)

×
[∫

dz pout (y|z)exp
(
−z?ᵀm̃z− 1

2
zᵀ
(
Q̃− q̃

)
z+ zᵀ(−q̃)1/2

ξξξ

)]r

,

with det
(

Q(rs)
)

given by (313).

b.1.1.d consistency conditions r → 0 : Θ(1) terms

It remains to take the limit r → 0+ of the expressions for Ψ (r)
w and Ψ (r)

out that
are now analytical in r. First, our assumptions must be consistent and thus we
need to check the consistency conditions in the limit r→ 0. Indeed, if Φ (r) is
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�nite we could obtain divergence taking the limit limr→0
1
r Φ (r) = ∞. There-

fore to avoid such divergence, we must at least impose that limr→0 Φ (r) = 0:

lim
r→0

Φ (r) (Q , Q̂) = −Tr
(

Q?Q̂?
)
+ log Ψ0

w (Q̂? ) + α log Ψ0
out(Q? )

with

Ψ0
w(Q̂

?) ≡Ew? exp
(
w?ᵀQ̂?w?

)
,

Ψ0
out(Q

?) ≡
∫

R
dy
∫

dz? pout? (y|z?)Nz? (0,Q?) = 1.

Taking the saddle point equations over Q? and Q̂?, imposing the consistency
condition limr→0 Φ(r)(Q,Q̂) = 0, we �nally obtain

Q̂? = 0 and Q? = Ew? [w?ᵀw?] . (315)

b.1.1.e replica trick r → 0 limit: Θ(r) terms

Imposing the conditions (315) avoids divergence in the replica trick, and we
can therefore proceed with the Θ(r) terms.

Prior integral Ψ (r)
w The limit r → 0 and the derivative of the logarithm

of the prior integral (311) can be trivially computed

lim
r→0

∂r log Ψ (r)
w (Q̂)

∣∣∣
rs

= Eξξξ ,w?

× log
[

Ew exp
([

w?ᵀm̂w− 1
2

wᵀ (Q̂ + q̂)w + ξξξ
ᵀ q̂1/2 w

])]
,

with ξξξ ∼ N (0 , IK ) and w? ∼ Pw? . To conclude, we can symmetrize and
decouple the teacher and student expectations Ew? , Ew . By performing the
change of variable ξξξ ← ξξξ + q̂−1/2 m̂w? , we �nally obtain

lim
r→0

∂r log Ψ (r)
w (Q̂)

∣∣∣
rs

= Eξξξ ,w? exp
(
− 1

2
w?ᵀm̂ᵀ q̂−1 m̂w? + ξξξ

ᵀ q̂−1/2 m̂w?

)
(316)

× log
[

Ew exp
([
− 1

2
wᵀ (Q̂ + q̂)w + ξξξ

ᵀ q̂1/2 w
])]

≡ Eξξξ ,w? Zw?

(
m̂q̂−1/2

ξξξ , m̂ᵀ q̂−1 m̂
)

log Zw

(
q̂1/2

ξξξ , Q̂ + q̂
)

,

with the corresponding denoising distribution Qw and functions Zw? , Zw

de�ned in Sec. A.4.1.a respectively with distributipn Pw? and Pw .
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Prior integral Ψ (r)
out The limit r → 0 and the derivative of the logarithm

of the channel integral (314) is more tricky. First, the limit of the determinant
simpli�es easily and yields

det
(

Q(rs)
)
−→
r→0

det (Q? )

and the matrix elements of
(

Q(rs)
)−1

in this limit become

Q̃? −→
r→0

(Q?)−1 ,

m̃−→
r→0
− (Q?)−1 m(Q−q)−1 ,

Q̃−→
r→0
−(Q−q)−1

(
q−m (Q?)−1 m

)
(Q−q)−1 ,

q̃−→
r→0

Q̃+(Q−q)−1 .

By taking properly the r→ 0 limit and performing the change of variable
z?←

(
Q?−mᵀq−1m

)1/2 z?+mq−1/2ξξξ , we �nally obtain

lim
r→0

∂r logΨ(r)
out(Q)

∣∣∣
rs

=
∫

R
dy Eξξξ

∫

RK
dz? pout? (y|z?)

× exp
(
−1

2

(
z?−mq−1/2

ξξξ

)ᵀ (
Q?−mᵀq−1q

)(
z?−mq−1/2

ξξξ

))

× log
[∫

RK
dz pout (y|z)e−

1
2 (z−q−1/2ξξξ)

ᵀ
(Q−q)(z−q−1/2ξξξ)

]
(317)

=
∫

R
dy Eξξξ Zout?

(
mq−1/2

ξξξ ,Q?−mq−1m
)

logZout
(

q1/2
ξξξ ,Q−q

)
,

where the denoising distribution Qout and functions Zout? ,Zout are de�ned
in Sec. A.4.1.a for the distributions Pout? , Pout.

b.1.1.f summary - mismatched case

In the mismatched case, where the teacher and the student have not the same
prior distributions, we �nally obtain the replica symmetric free entropy Φrs

for the committee machine hypothesis class:

Φrs(α) ≡Ey,X

[
lim
d→∞

1
d

log (Zd (y,X))

]

= extrQ,Q̂,q,q̂,m,m̂

{
−Tr (mm̂)+

1
2

Tr
(
QQ̂
)
+

1
2

Tr (qq̂) (318)

+Ψw
(
Q̂,m̂, q̂

)
+αΨout (Q,m,q;ρρρw?)

}
,
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where ρρρw? ≡ limd→∞ Q? = limd→∞ Ew?
1
d W?ᵀW? and the channel and prior

integrals are de�ned by

Ψw
(
Q̂,m̂, q̂

)
≡Eξξξ

[
Zw?

(
m̂q̂−1/2

ξξξ ,m̂q̂−1m̂
)

(319)

× logZw

(
q̂1/2

ξξξ ,Q̂+ q̂
)]

,

Ψout (Q,m,q;ρρρw?) ≡Ey,ξξξ

[
Zout?

(
y,mq−1/2

ξξξ ,ρρρw?−mᵀq−1m
)

× logZout
(

y,q1/2
ξξξ ,Q−q

)]
,

where again Zout? ,Zw? and Zout,Zw are de�ned in Sec. A.4.1.a and depend
respectively on channel and prior distributions of the teacher and student.

b.1.1.g summary - bayes optimal mmse estimation

For MMSE estimation in the Bayes-optimal setting, the student has access
to the ground truth distributions of the teacher Pout (y|Z) = Pout? (y|Z) and
Pw (W) = Pw?(W), and therefore Zout = Zout? , Zw = Zw? . In this idealistic
setting, the Nishimori conditions, recalled in Appendix. A.3, imply that

Q = Qw? , Q̂ = 0 , m = q≡ qb , m̂ = q̂≡ q̂b . (320)

Therefore the free entropy in eq. (319) simpli�es as an optimization problem
over the overlaps qb, q̂b ∈RK×K

Φb
rs(α) = extrqb,q̂b

{
−1

2
Tr (qbq̂b)+Ψb

w (q̂b)+αΨb
out (qb;ρρρw?)

}
,

(321)

with free entropy terms Ψb
w and Ψb

out given by

Ψb
w (q̂) = Eξ

[
Zw?

(
q̂1/2

ξξξ , q̂
)

logZw?

(
q̂1/2

ξξξ , q̂
)]

,

Ψb
out (q;ρρρw?) = Ey,ξξξ

[
Zout

(
y,q1/2

ξξξ ,ρρρw?−q
)

(322)

× logZout
(

y,q1/2
ξξξ ,ρρρw?−q

)]
.

Application to the GLM For the GLM hypothesis class, the same equa-
tions are valid if we take K = 1 for both the teacher and the student. As a
result, we recover the replica symmetric free entropy in the Bayes-optimal
setting rigorously proven in (Barbier et al., 2019b).

b.1.2 fixed point eqations

The overlaps parameters, such as m,q, play a crucial role since they mea-
sure the performances of the statistical estimation. Their behaviours are
respectively characterized by the extremization of the free entropy (318) in
the mismatched setting and (321) in the Bayes-optimal case. In this section,
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we give the expressions of the corresponding �xed point equations, whose
derivations can be found in (Aubin et al., 2020c) Appendix. IV.4-5 for K = 1
which can be extended to K ≥ 1.

b.1.2.a mismatched setting

Extremizing the free entropy eq. (318), we easily obtain the set of six �xed
point equations

Q̂ = −2α∂QΨout (Q,m,q;ρρρw?) , Q = −2∂Q̂Ψw
(
Q̂,m̂, q̂

)

q̂ = −2α∂qΨout (Q,m,q;ρρρw?) , q = −2∂q̂Ψw
(
Q̂,m̂, q̂

)
,

m̂ = α∂mΨout (Q,m,q;ρρρw?) , m = ∂m̂Ψw
(
Q̂,m̂, q̂

)
.

(323)

Interestingly, these equations can be reformulated as functions of Zout? ,
Zw? and the denoising functions fout? , fw? , fout, fw de�ned in (290)-(292) in
Sec. A.4.1.b. De�ning the natural variables Σ = Q−q and Σ̂ = Q̂+ q̂ they
can reformulated as

m̂ = αEy,ξξξ

[
Zout?× fout?

(
y,mq−1/2

ξξξ ,ρρρw?−mᵀq−1m
)

×fout
(

y,q1/2
ξξξ ,Σ

)ᵀ]
,

q̂ = αEy,ξξξ

[
Zout?

(
y,mq−1/2

ξξξ ,ρρρw?−mᵀq−1m
)

fout
(

y,q1/2
ξξξ ,Σ

)⊗2
]

,

Σ̂ = −αEy,ξξξ

[
Zout?

(
y,mq−1/2

ξξξ ,ρρρw?−mᵀq−1m
)

×∂ωωω fout
(

y,q1/2
ξξξ ,Σ

)]
,

m = Eξξξ

[
Zw?× fw?

(
m̂q̂−1/2

ξξξ ,m̂ᵀq̂−1m̂
)

fw

(
q̂1/2

ξξξ , Σ̂
)]

,

q = Eξξξ

[
Zw?

(
m̂q̂−1/2

ξξξ ,m̂ᵀq̂−1m̂
)

fw

(
q̂1/2

ξξξ , Σ̂
)2
]

,

Σ = Eξξξ

[
Zw?

(
m̂q̂−1/2

ξξξ ,m̂ᵀq̂−1m̂
)

∂γγγ fw

(
q̂1/2

ξξξ , Σ̂
)]

,

(324)

where we use the abusive notation Ey =
∫

R dy.

b.1.2.b bayes-optimal estimation

Extremizing the Bayes-optimal free entropy eq. (321), we easily obtain the set
of �xed point equations over the scalar parameters qb, q̂b. It can be deduced
from eq. (324) using the Nishimori conditions fw = fw? , fout = fout? , m =

q,Σ = ρρρw?−q,m̂ = q̂ and Σ̂ = q̂ that lead to

q̂b = αEy,ξξξ

[
Zout?

(
y,q1/2

b ξξξ ,ρρρw?−qb

)
fout?

(
y,q1/2

b ξξξ ,ρρρw?−qb

)⊗2
]

,

qb = Eξξξ

[
Zw?

(
q̂1/2

b ξξξ , q̂b

)
fw?

(
q̂1/2

b ξξξ , q̂b

)⊗2
]

. (325)
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b.2 RANDOM LABELS - GLM WI TH I . I . D
DATA

In this section, we present the replica computation of GLM corresponding to
the hypothesis class Fϕ in eq. (164). We focus on data {xᵀ1 , . . . ,xᵀn}= X ∈Rn×d ,
with α = n/d, drawn i.i.d from a distribution Px(x) = Nx(0,Id), and labels y
drawn randomly from Py(.). We consider for the moment a generic prior dis-
tribution w∼ Pw(.) that factorizes, and a component-wise activation function
ϕ(.). De�ning the linear transformation applied by the model zµ ≡ 1√

d
wᵀxµ ,

we introduce the corresponding cost function of a given sample (xµ ,yµ)
according to V (yµ |zµ) = 1 [yµ 6= ϕ(zµ)] which is 0 if the the estimator clas-
si�es the example correctly (i. e. when yµ = ϕ(zµ) ) and 1 otherwise. Finally
we de�ne the constraint function C at inverse temperature β

C (y|z,β ) ≡
n

∏
µ=1

e−βV (yµ |zµ ) = e−βHd({y,X},w) , (326)

which, denoting the output of the estimator fw (xµ) = ϕ (zµ), depends ex-
plicitly on the Hamiltonian

Hd ({y,X},w) ≡
n

∑
µ=1

1 [yµ 6= fw (xµ)] . (327)

Notice that at zero temperature the soft constraint function C converges
to a hard constraint function C (y|z,β ) −→

β→∞
∏

n
µ=11 [V (yµ |zµ) = 0], which

tolerates only con�gurations that satisfy simultaneously all the constraints.
In this context, the partition function simply reads

Zd({y,X},α ,β ) =
∫

Rd
dPw (w)C (y|z,β ) . (328)

In order to compute the quenched free entropy average, we use the replica
trick, see Sec. 4.1.1, and consider the partition function of r ∈N identical
copies of the initial system. Assuming there exists an analytical continuation
for r→ 0+ and we can revert limits, the averaged free entropy Φ(α ,β ) ≡
limd→∞

1
d Ey,X logZd({y,X},α ,β ) of the initial system becomes

Φ(α ,β ) = lim
r→0

[
lim
d→∞

1
d

∂ logEy,X [Zd({y,X},α ,β )r]

∂ r

]
, (329)

where the replicated partition function writes

Ey,X [Zd({y,X},α ,β )r] =
∫

Rn
dPy (y)

∫

Rn×d
dPx(X) Zd({y,X},α ,β )r

=
∫

Rn
dPy (y)

∫

Rn×d
dPx(X) (330)

×
r

∏
a=1

∫

Rd
dPw (wa)

n

∏
µ=1

∫
dza

µ C (yµ |za
µ ,β )δ

(
za

µ −
1√
d

waᵀxµ

)
.



B.2 random labels - glm with i.i.d data 303

b.2.1 average over iid inputs

As the data matrix is taken (Gaussian) i.i.d, for (i, j) ∈ JdK2, (µ ,ν) ∈ JnK2,
EX[xµixν j] = δµνδi j. Hence za

µ = 1√
d ∑

d
i=1 xµiwa

i is the sum of i.i.d random
variables. The CLT guarantees that in the large size limit d→ ∞, za

µ ∼
N
(
EX[za

µ ],EX[za
µzb

µ ]
)
, with the two �rst moments given by

EX[za
µ ] =

1√
d

d

∑
i=1

EX[xµi]wa
i = 0,

EX[za
µzb

ν ] =
1
d ∑

i j
EX[xµixν j]wa

i wb
j =

(
1
d

d

∑
i=1

wa
i wb

i

)
δµν .

(331)

In the following, we introduce the overlap matrix Q≡
( 1

d wa ·wb
)

a,b=1..r ∈
Rr×r and we de�ne the replicated vectors z̃µ ∈Rr≡ (za

µ)a=1..r, w̃i≡ (wa
i )a=1..r

∈Rr. From the above calculation z̃µ follows a multivariate Gaussian distribu-
tion z̃µ ∼ Pz(z̃,Q),Nz̃(0r,Q) and Pw(w̃i) = ∏

r
a=1 Pw(w̃a

i ). Introducing the
change of variable and the Fourier representation of the Dirac-δ distribution
that involves a new ad-hoc matrix order parameter Q̂ ∈Rr×r:

1 =
∫

Rr×r
dQ ∏

a≤b
δ

(
dQab−

d

∑
i=1

wa
i wb

i

)
(332)

∝

∫

Rr×r
dQ

∫

Rr×r
dQ̂ exp

(
−d

2
Tr
(
QQ̂
))

exp

(
1
2

d

∑
i=1

w̃ᵀ
i Q̂w̃i

)
,

the replicated partition function factorizes and becomes an integral over the
matrix order parameters Q and Q̂, that can be evaluated using a Laplace
method in the d→ ∞ limit,

Ey,X [Zd({y,X},α ,β )r] ∝

∫
dQ dQ̂ edΦ(r)(Q,Q̂,α ,β) (333)

'
d→∞

exp
(

d ·extrQ,Q̂

{
Φ(r) (Q,Q̂,α ,β

)})
,

where the replica potential is de�ned by

Φ(r) (Q,Q̂,α ,β
)
≡−1

2
Tr
(
QQ̂
)
+ logΨ(r)

w (Q̂)+α logΨ(r)
out(Q,β ) ,

Ψ(r)
w (Q̂) =

∫

Rr
dPw(w̃) e

1
2 w̃ᵀQ̂w̃ , (334)

Ψ(r)
out(Q,β ) =

∫
dPy (y)

∫

Rr
dPz(z̃,Q) C (y|z̃,β ).

Finally, using eq. (329) and switching the two limits r→ 0 and d→ ∞, the
quenched free entropy Φ simpli�es as an extremization problem

Φ(α ,β ) = extrQ,Q̂

{
lim
r→0

∂ Φ(r)(Q,Q̂,α ,β )
∂ r

}
, (335)
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over general symmetric matrices Q and Q̂. In the following we assume simple
Ansätze for these matrices that allow to obtain analytic expressions in r in
order to take the derivative and the limit r→ 0+.

b.2.2 annealed computation

We can use the replica calculation (334) to compute the annealed free entropy
Φa(α) = logEy,X [Zd({y,X},α)], see Sec. 2.3.5, by assuming there exists a
single replica with r = 1, Q = q and Q̂ = q̂ (Krauth et al., 1989).

Φa(α ,β ) = extr
q,q̂

{
−1

2
qq̂+ logΨa

w(q̂)+α logΨa
out(q,β )

}
, (336)

with

Ψa
w(q̂) ≡

∫

R
dPw(w) exp

(
1
2

q̂w2
)

,

Ψa
out(q,β ) ≡

∫

R
dPy

∫

R
dz

e−
z2
2q

√
2πq

C (y|z,β ) .

(337)

Finally, in the case of binary weights P(w) = (δ (w−1)+ δ (w+ 1)) we
obtain Ψa

w(q̂) = 2exp
(1

2 q̂
)
. Taking the derivative of (336) with respect to q̂

we obtain q = 1 so that the annealed free entropy writes

Φa(α ,β ) = log(2)+α log
(∫

R
dPy(y)

∫

R
Dz C (y|z,β )

)
. (338)

We can compute therefore the annealed capacity αa at zero temperature
β → ∞, such that the annealed entropy Φa(α ,β → ∞) vanishes:

αa =
− log(2)

log (
∫

R dPy(y)
∫

R Dz C (y|z)) . (339)

b.2.3 choosing an ansatz

Back to the quenched average computation in (335), optimizing over the space
of matrices is intractable. Therefore, one needs to assume simple Ansätze
about the matrices structure to push the computation further, see Sec. ??,
such as the so-called

• Replica Symmetry (RS) Ansatz: Q(rs) = (Q−q0)Ir + q0Jr

• 1-Step Replica Symmetry Breaking (1RSB) Ansatz: Q(1rsb) = (Q−q1)Ir+

(q1−q0)Ir/x0⊗Jx0 + q0Jr ,

• 2-Step Replica Symmetry Breaking (2RSB) Ansatz:

Q(2rsb) = (Q−q2) Ir+(q2−q1) Ir/x1⊗Jx1 +(q1−q0) Ir/x0⊗Jx0 +q0Jr
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where Ik is the identity matrix of size k, and Jk is the matrix of size k full
of ones. Plugging these Ansätze, taking the derivative and the r→ 0+ limit,
extremizing over the space of matrices boils down to much simpler optimiza-
tion problems over a few scalar order parameters, as illustrated in the next
sections.

b.2.4 rs free entropy for i.i.d data

Let us compute the free entropy potential Φ(r)(Q,Q̂,α ,β ) in (334) in the RS
Ansatz. The latter assumes that all replicas remain equivalent with a common
overlap q0 =

1
d ∑

d
i=1 wa

i wb
i for a 6= b and a norm Q = 1

d ∑
d
i=1 wa

i wa
i , leading to

the following expressions for matrices Q and Q̂ ∈Rr×r:

Q(rs) =




Q q0 · · · q0

q0 Q
. . . ...

... . . . . . . q0
q0 · · · q0 Q


 and Q̂(rs) =




Q̂ q̂0 · · · q̂0

q̂0 Q̂
. . . ...

... . . . . . . q̂0
q̂0 · · · q̂0 Q̂


. (340)

Let us compute separately the terms involved in the functional Φ(r)(Q,Q̂,α ,β )
eq. (334): the �rst is a trace term, the second a term Ψ(r)

w depends on the
prior distribution Pw and �nally the third Ψ(r)

out on the constraint C (y|z) in
(326).

Trace The trace term can be easily computed as

1
2

Tr
(
QQ̂
)∣∣∣∣

rs
=

1
2
(
rQQ̂+ r(r−1)q0q̂0

)
. (341)

Prior integral Evaluated at the RS �xed point, and using a Hubbard-
Stratonovich transformation, see A.2, the prior integral can be further sim-
pli�ed

Ψ(r)
w (Q̂)

∣∣∣
rs
=
∫

dPw(w̃) e
1
2 w̃ᵀQ̂(rs)w̃ =

∫
dPw(w̃) (342)

× exp

(
(Q̂− q̂0)

2

r

∑
a=1

(wa)2

)
exp


q̂0

(
r

∑
a=1

wa

)2



=
∫

Dξ0

[∫
dPw(w) exp

((
(Q̂− q̂0)

2
w2 + ξ0

√
q̂0w
))]r

.

Constraint integral Recall the vector z̃∼ Pz , N (0,Q) follows a Gaus-
sian distribution with zero mean and covariance matrix Q. In the RS Ansatz,
the covariance can be rewritten as a linear combination of the identity
Ir and Jr: Q|rs = (Q− q0)Ir + q0Jr, that allows to split the variable za =
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√
Q−q0ua +

√
q0ξ0 with ξ0 ∼N (0,1) and ∀a ∈ JrK, ua ∼N (0,1). The

constraint integral �nally reads

Ψ(r)
out(Q,β )

∣∣∣
rs
=
∫

dPy (y)
∫

Rr
dPz(z̃) C (y|z̃,β )

=
∫

dPy (y)
∫

dξ0

∫ r

∏
a=1

dua C
(

y|
√

Q−q0ua +
√

q0ξ0,β
)

(343)

=
∫

dPy (y)
∫

dξ0

[∫
dz C

(
y|
√

Q−q0z+
√

q0ξ0,β
)]r

.

Finally, putting pieces together, the functional Φ(r)(Q,Q̂,α ,β ) taken at the
RS �xed point has an explicit formula and dependency in r:

Φ(r)(Q,Q̂,α ,β )
∣∣∣
rs
'

r→0
−1

2
(
rQQ̂+ r(r−1)q0q̂0

)

+ r
∫

dξ0 log
(∫

dPw(w) exp
{(

(Q̂− q̂0)

2
w2 + ξ0

√
q̂0w
)})

(344)

+ rα

∫
dPy (y)

∫
dξ0 log

(∫
dz C

(
y|
√

Q−q0z+
√

q0ξ0,β
))

.

b.2.4.a summary of rs free entropy - general case

Taking the derivative with respect to r and the r→ 0+ limit, the RS free
entropy has a simple expression

Φ(rs)(α ,β ) = extr
q0,q̂0

{
−1

2
QQ̂+

1
2

q0q̂0 +Ψ(rs)
w (q̂0)+αΨ(rs)

out (q0,β )
}

,

Ψrs
w(q̂0) ≡Eξ0 logEw

[
exp
(
(Q̂− q̂0)

2
w2 + ξ0

√
q̂0w
)]

, (345)

Ψrs
out(q0,β ) ≡Ey Eξ0 logEz

[
C
(

y
∣∣√Q−q0z+

√
q0ξ0,β

)]
,

where ξ0,z∼N (0,1), w∼ Pw(.), y∼ Py(.) and Q = Q̂ = 1.

b.2.4.b summary of rs free entropy - spherical case

In the spherical (or equivalently in the Gaussian case with a correctly de�ned
variance) such that the weights verify ‖w̃‖2

2 = d, Ψ(r)
w (Q̂) in eq. (334) can be

directly integrated

Ψ(r)
w (Q̂) =

∫

‖w̃‖2
2=d

dw̃ exp
(

1
2

w̃ᵀQ̂w̃
)
= −1

2
logdet

(
2π(Ir + Q̂)

)
.

(346)
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Besides, taking the derivative of eq. (334) with respect to Q̂ we obtain Q−1 =

(Ir + Q̂). Injecting it, we can get rid of Q̂ and obtain

Φ(r) (Q,α ,β ) ≡ 1
2

logdet (2πQ)+α logΨ(r)
out(Q,β ) . (347)

Determinant The above determinant reads in the RS Ansatz

1
2

det (Q)

∣∣∣∣
rs
' r

2

(
log(1−q0)+

q0

1+(r−1)q0
+ . . .

)
, (348)

so that it leads to the RS free entropy

Φ(rs)(α ,β ) = extrq0

{
1

2(1−q0)
+

1
2

log(2π)+
1
2

log(1−q0)

+αΨrs
out(q0,β )} , (349)

with Ψrs
out de�ned in eq. (345).

b.2.5 rs stability

b.2.5.a de almeida thouless rs stability

The stability of a given saddle point Ansatz is related to the positivity the
Hessian of the functional −Φ(r). Following (Almeida et al., 1978; Gardner
et al., 1988; Engel et al., 2001), the stability analysis leads to computing the
�rst unstable eigenvalues of the Hessian, the so-called replicons eigenvalues.
In the context of the RS Ansatz λ A

3 and λ B
3 can be expressed as functions of

{gw
i , f z

i }2
i=0 de�ned in Chap. 6 - eq. (136):

λ
A
3 (q0) =

1
(Q−q0)2 Eξ0

[(
f z
0( f z

0− f z
2)+ ( f z

1)
2
)2

( f z
0)

4 (ξ0,q0)

]
,

λ
B
3 (q̂0) = Eξ0

[(
gw

0 gw
2 − (gw

1 )
2
)2

(gw
0 )

4 (ξ0, q̂0)

]
,

(350)

for ξ0 ∼N (0,1). The instability dAT-line is de�ned when the determinant
of the Hessian vanishes, i. e. when the �rst negative eigenvalues appear. This
translates as an implicit equation over α , where q0, q̂0 are solution of the
saddle point equations eq. (134) at α = αat:

1
αat

= λ
A
3 (q0(αat),β )×λ

B
3 (q̂0(αat)) . (351)

However for α < αat, (q0, q̂0) = (0,0) is the only solution. De�ning for
z∼N (0,1) and w∼ Pw

f̃ z
i ≡Ez

[
zi

ϕ(z)
]

, g̃w
i ≡Ew

[
wi exp

(
w2/2

)]
, (352)
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, this expression can be simpli�ed in the case where the prior distribution
Pw and the activation ϕ are symmetric. In fact the symmetry imposes f̃ z

1 = 0
and g̃w

1 = 0 and the condition simpli�es to

1
αat

=

(
f̃ z
2− f̃ z

0

f̃ z
0

)2( g̃w
2

g̃w
0

)2

. (353)

b.2.5.b existence and stability of the rs fixed point

We provide an alternative approach to get the instability condition of the
RS solution for symmetric prior Pw and activation ϕ . In this symmetric case,
the stability can be derived from the existence and stability of the symmetric
�xed point (q0, q̂0) = (0,0). Let us de�ne

F(q0) ≡ αEξ0

[
( f z

1)
2−2ξ0

√
q0 f z

0 f z
1 + q0ξ 2

0 ( f z
0)

2

(1−q0)2( f z
0)

2 (ξ0,q0)

]
,

G(q̂0) ≡Eξ0

[
gw

2 −ξ0q̂−1/2
0 gw

1
gw

0
(ξ0, q̂0)

]
.

(354)

In fact the saddle point equations at the RS �xed point eq. (345) can be written
using the functions F ,G, and can be reduced to a single �xed point equation
over q0





q0 = G(q̂0) ,

q̂0 = F(q0) ,
⇒ q0 = G◦F(q0) ≡ H(q0) . (355)

The RS stability of the �xed point (q0, q̂0) = (0,0) can be analyzed from
the above �xed point equation eq. (355). Computing F ,F ′,G,G′ in the limit
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(q0, q̂0)→ (0,0), expanding { f z
i ,gw

i }i as functions of { f̃ z
i , g̃w

i }i and �nally
using the symmetry conditions f̃ z

1 = 0 and g̃w
1 = 0, we �nally obtain

F(q0) =
q0→0

α

[(
f̃ z
1

f̃ z
0

)2

+ q0

(
( f̃ z

2− f̃ z
0)

2

( f̃ z
0)

2
+ 3

( f̃ z
1)

4

( f̃ z
0)

4

−4
( f̃ z

1)
2( f̃ z

2− f̃ z
0)

( f̃ z
0)

3

)
+Θ(q2

0)

]
∼αq0

(
f̃ z
2− f̃ z

0

f̃ z
0

)2

−→
q0→0

0,

∂q0F(q0) =
q0→0

α

[(
f̃ z
2− f̃ z

0

f̃ z
0

)2

+

(
f̃ z
1

f̃ z
0

)2(
3
( f̃ z

1)
2

( f̃ z
0)

2
−4

( f̃ z
2− f̃ z

0)

f̃ z
0

)

+Θ(q0)] −→
q0→0

α

(
f̃ z
2− f̃ z

0

f̃ z
0

)2

,

G(q̂0) =
q̂0→0

(
g̃w

1
g̃w

0

)2

+ q̂0

((
g̃w

2
g̃w

0

)2

+
g̃w

1
g̃w

0

(
3
(

g̃w
1

g̃w
0

)3

−4
g̃w

1 g̃w
2

(g̃w
0 )

2

))

+Θ(q̂3/2
0 ) −→

q̂0→0
0,

∂q̂0G(q̂0) =
q̂0→0

(
g̃w

2
g̃w

0

)2

+
g̃w

1
g̃w

0

(
3
(

g̃w
1

g̃w
0

)3

−4
g̃w

1 g̃w
2

(g̃w
0 )

2

)
+Θ(

√
q̂0)

−→
q̂0→0

(
g̃w

2
g̃w

0

)2

.

Finally, the existence and stability conditions of the �xed point (q0, q̂0) =

(0,0) translate as an explicit condition over α that implicitly de�nes αat





H(q0) = G◦F(q0) →
q0→0

0

∂H
∂q0

∣∣∣
q0=0

= ∂G
∂ q̂0
× ∂F

∂q0

∣∣∣
q0=0
≤ 1,

⇒α ≤
[(

f̃ z
2− f̃ z

0

f̃ z
0

)2( g̃w
2

g̃w
0

)2
]−1

≡αat .

(356)

b.2.6 1rsb free entropy for i.i.d data

The free entropy potential eq. (334) can also be evaluated at the simplest non
trivial �xed point: the one-step Replica Symmetry Breaking Ansatz (1RSB),
see Sec. ??. Instead of assuming that replicas are equivalent, it states that the
symmetry between the replicas is broken and that the replicas are clustered in
di�erent states, with inner-overlap q1 and outer-overlap q0. Translating this
analytically, the matrices can be expressed as function of the Parisi parameter
x0, which controls the size of the clusters:

Q(1rsb) = q0Jr +(q1−q0) I r
x0
⊗Jx0 +(Q−q1) Ir ,

Q̂(1rsb) = q̂0Jr +(q̂1− q̂0) I r
x0
⊗Jx0 +

(
Q̂− q̂1

)
Ir .

(357)
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Trace term Again, the trace term can be easily computed

1
2

Tr
(
QQ̂
)∣∣∣∣

1rsb
=

1
2
(
rQQ̂+ r(x0−1)q1q̂1 + r(r− x0)q0q̂0

)
. (358)

Prior integral To decouple the replicas with di�erent overlaps q0,q1, and
using Hubbard-Stratonovich transformations in Appendix. A.2, the prior
integral can be written

Ψ(r)
w (Q̂)

∣∣∣
1rsb

=
∫

Rr
dPw(w̃) exp

(
(Q̂− q̂1)

2

r

∑
a=1

(wa)2

+
(q̂1− q̂0)

2

r
x0

∑
k=1

kx0

∑
a,b=(k−1)x0+1

wawb +
q̂0

2

(
r

∑
a=1

wa

)2



=
∫

Dξ0

[∫
Dξ1 (359)

[∫
dPw(w) exp

(
(Q̂− q̂1)

2
w2 +

(√
q̂0ξ0 +

√
q̂1− q̂0ξ1

)
w
)]x0

] r
x0

,

with ξ0,ξ1 ∼N (0,1).

Constraint integral The replicated vector z̃ ∼ Pz(.) , Nz

(
0,Q(1rsb)

)

follows a Gaussian vector with zero mean and covariance matrix Q(1rsb)

that can be decomposed in a sum of normal Gaussian vectors ξ0 ∼N (0,1),
∀k ∈ J1; r

x0
K, ξk ∼N (0,1) and ∀a ∈ J(k−1)x+ 1;kxK, ua ∼N (0,1):

za =
√

q0ξ0 +
√

q1−q0ξk +
√

Q−q1ua .

Finally, the constraint integral reads

Ψ(r)
out(Q,β )

∣∣∣
1rsb

=
∫

dPy (y)
∫

Dξ0

∫ r
x0

∏
k=1

Dξk

×
∫ kx

∏
a=(k−1)x+1

Dua C
(

y|√q0ξ0 +
√

q1−q0ξk +
√

Q−q1ua,β
)

=
∫

dPy (y)
∫

Dξ0 (360)

×
[∫

Dξ1

[∫
Dz C

(
y|√q0ξ0 +

√
q1−q0ξ1 +

√
Q−q1z,β

)]x] r
x0

.
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b.2.6.a summary of the 1rsb free entropy - general
case

Gathering the previous computations eq. (358, 359, 360), the functional Φ(r)

evaluated at the 1RSB �xed point reads:

Φ(r)(Q,Q̂,α ,β )
∣∣∣
1rsb

'
r→0
−1

2
(
rQQ̂+ r(x0−1)q1q̂1 + r(r− x0)q0q̂0

)

+ rΨ(1rsb)
w (q̂)+ rαΨ(1rsb)

out (q,β )

with

Ψ(1rsb)
w (q̂,x0) ≡

1
x0

Eξ0

log

(
Eξ1Ew

[
exp
(
(Q̂− q̂1)

2
w2 +

(√
q̂0ξ0 +

√
q̂1− q̂0ξ1

)
w
)]x0

)
,

Ψ(1rsb)
out (q,x0,β ) ≡ 1

x0
EyEξ0 (361)

log
(

Eξ1Ez

[
C (y

∣∣√q0ξ0 +
√

q1−q0ξ1 +
√

Q−q1z,β )
]x

0

)
,

where q = (q0,q1), q̂ = (q̂0, q̂1), ξ0,ξ1,z ∼ N (0,1), w ∼ Pw(.), y ∼ Py(.)
and Q = Q̂ = 1. Finally taking the derivative with respect to r and the limit
r→ 0+, we obtain the 1RSB free entropy

Φ(1rsb)(α ,β ) = extr
q,q̂,x0

{
1
2
(
q1q̂1−QQ̂

)
+

x0

2
(q0q̂0−q1q̂1)

+Ψ(1rsb)
w (q̂,x0)+αΨ(1rsb)

out (q,x0,β )
}

. (362)

b.2.6.b summary of the 1rsb free entropy - spherical
case

In the 1RSB, the simpli�cation eq. (347) remains valid. Therefore, we can
simply compute the determinant in the 1RSB Ansatz.

Determinant

det (Q)|1rsb = (rq0 + x0(q1−q0)+ (1−q1))

× (1−q1)
r−r/x0× (x0(q1−q0)+ (1−q1))

r/x0−1 ,

so that

logdet (Q)|1rsb ' r
(

x0−1
x0

log(1−q1)+

1
x0

log (x0(q1−q0)+ (1−q1))+
q0

x0(q1−q0)+ (1−q1)

)
.
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Using the above expression for the determinant and the simpli�ed replica
potential in eq. (347) we obtain

Φ(1rsb)(α ,β ) = extrq0,q1,x

{
1
2

log(2π)+
x−1

2x
log(1−q1)+

+
1
2x

log (x(q1−q0)+ (1−q1))+
q0

2 (x(q1−q0)+ (1−q1))
(363)

+αΨ(1rsb)
out (q,β )

}
.

b.2.7 ground state energies

We focus on the particular case of the spherical perceptron with parameters
w ∈Rd lying on the sphere and verifying ‖w‖2

2 = d.

RS capacity In the case of the step-perceptron activation function ϕ(z) =
θ (z−κ) for κ ≥ 0, we can compute the capacity αc taking the extremization
over q0 in eq. (349):

q0 = −2α(1−q0)
2
∂q0 Ψ(rs)

out (q0) ' 2α(1−q0)
2
∫

κ

−∞

dt
(κ− t)2

(1−q0)2 .

(364)

At the critical capacity, we have q0→ 1, which leads to the expression

αc =

(∫
κ

−∞

dt(κ− t)2
)−1

. (365)

Notice that for κ = 0, this approach performed in (Gardner et al., 1988)
naturally leads to Cover’s result αc = 2 (Cover, 1965). Above this capacity
αc, the constraints cannot be satis�ed simultaneously and the ground state
energy is necessarily positive.

b.2.7.a rs ground state energy

To compute the ground state energy, we �rst need to take both limits q0→ 1
and β → ∞, keeping the product χ = β (Q− q0) �nite (Majer et al., 1993;
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Erichsen et al., 1993; Whyte et al., 1996). Recall eq. (345), we obtain using the
de�nition of C in (326)

Ψrs
out(q0,β ) ≡Ey Eξ0 logEz

[
C
(

y
∣∣√Q−q0z+

√
q0ξ0,β

)]

=
∫

dPy(y)
∫

Dξ0 log
(∫

dz Nz
(√

q0ξ0,Q−q0
)

e−βV (y|z)
)

'
(q0,β )→(1,∞)

−1
2

log(2π(Q−q0)) (366)

−β

∫
dPy(y)

∫
Dξ0 min

z

[
V (y|z)+ (z−ξ0)

2

2χ

]
.

Taking the limits q0→ 1, β →∞ in eq. (349), we obtain to the RS ground state
energy of the spherical perceptron

ers
gs = extrχ

{
− 1

2χ
+αEy,ξ0 min

z

[
V (y|z)+ (z−ξ0)

2

2χ

]}
(367)

Application to the step-perceptron For the step function V (y|z) =
θ (κ−z) with Py(y) = δ (y−1) and κ ≥ 0, it leads to the Gardner expression
(Gardner et al., 1988)

ers
gs = extrχ

{
− 1

2χ
+α

(∫
κ−√2χ

−∞

Dξ0 +
∫

κ

κ−√2χ

Dξ0
(ξ0−κ)2

2χ

)}

(368)

b.2.7.b 1rsb ground state energy

To compute the ground state energy in the 1RSB Ansatz, we take similarly
the limits q1→ 1, β → ∞ and x0→ 0, keeping the products χ ≡ β (Q−q1)

and ω0 ≡ x0β �nite (Whyte et al., 1996), with ∆q = 1−q0

Ψ(1rsb)
out (q,β ) ≡

1
x0

Ey Eξ0 log
(

Eξ1Ez

[
C (y

∣∣√q0ξ0 +
√

q1−q0ξ1 +
√

Q−q1z,β )
]x0
)

=
1
x0

∫
dPy(y)

∫
Dξ0 log

∫
Dξ1

(∫
dz Nz (

√
q0ξ0 +

√
q1−q0ξ1,1−q1)e−βV (y|z)

)x0

' 1
x0

∫
dPy(y)

∫
Dξ0 log

∫
Dξ1 e−x0β minz

[
V (y|z)+ 1

2β (1−q1)
(z−√q0ξ0−

√
q1−q0ξ1)

2]
.
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Finally, taking q1→ 1 with β → ∞ and x→ 0 in eq. (364), de�ning Ω0 ≡ ω0
χ

,
we obtain the 1RSB ground state energy

e(1rsb)
gs = extrχ ,Ω0,q0

{
1

2Ω0χ
log (1+Ω0∆q)+

q0

2χ (1+Ω0∆q)
(369)

+
α

χΩ0
Eξ0 logEξ1e

−Ω0χ minz

[
V (y|z)+ 1

2χ (z−√q0ξ0−
√

∆qξ1)
2
]}

.

b.2.7.c 2rsb ground state energy egs

Similarly taking q2 → 1 with β → ∞, we de�ne Ω0 ≡ x0 β

χ
, Ω1 ≡ x1 β

χ
and

we obtain similarly the 2RSB ground state energy of the spherical perceptron
(Whyte et al., 1996)

e(2rsb)
gs = extrχ ,Ω1 ,Ω0 ,q1 ,q0 ,

{
q0

2χ (1 + Ω1 (1− q1 ) + Ω0 (q1 − q0 )

+
1

2Ω1 χ
log(1 + Ω1 (1− q1 ))

+
1

2Ω0 χ
log

(
1 +

Ω0 (q1 − q0 )

1 + Ω1 (1− q1 )

)
+

α

χ Ω0
Eξ0 (370)

+ log Eξ1

[
Eξ2 exp

(
−Ω1 χ min

z
[V (y|z)

+
1

2χ

(
z−√q0 ξ0 −

√
q1 − q0 ξ1 −

√
1− q1 ξ2

)2
])]Ω0 /Ω1

}

and notice that taking q1 = q0 , x0 = x1 we recover the 1RSB expression.





C
AMP DER IVAT ION -
COMMI T TEE MACHINE

The AMP algorithm can be seen as Taylor expansion of the loopy BP approach
(Mézard et al., 1987; Mézard et al., 2009; Wainwright et al., 2008), similar to
the so-called TAP equation in spin glass theory (Thouless et al., 1977). While
the behavior of AMP can be rigorously studied (Bayati et al., 2011b; Javanmard
et al., 2013; Bayati et al., 2015), it is useful and instructive to see how the
derivation can be performed in the framework of BP and the cavity method, as
was pioneered in (Mézard, 1989) for the single layer problem. The derivation
uses the GAMP notations of (Rangan, 2011) and follows closely the one of
(Zdeborová et al., 2016a). The computation is presented for the committee
machine hypothesis class, which is the vectorized version of the GLM, with
K ≥ 1 vectorial parameters W = {wk}K

k=1 ∈Rd×K .

c.1 FACTOR GRAPH AND BP
EQUAT IONS

As a central illustration, we present the instructive derivation of the rBP equa-
tions starting with the BP equations in the context of committee machines,
already discussed in Appendix. B.1.1. We recall the JPD

Pd (W|y,X) =
Pout(y|Z)Pw(W)

Zd(y,X)
=

∏
n
µ=1 Pout(yµ |zµ)∏

d
i=1 Pw(wi)

Zd(y,X)
,

(371)

where we de�ned Z = 1√
d

XZ ∈Rn×K and we assume that the channel and
prior distributions factorize over factors Pout(yµ |zµ) and variables Pw(wi).

c.1.1 factor graph

The posterior distribution may be represented by the following bipartite factor
graph in Fig. 66. In the following, we attach a set ofmessages {mi→µ , m̃µ→i}µ=1..m

i=1..n
to the edges of this bipartite factor graph. These messages correspond to the
marginal probabilities of wi ∈RK if we remove the edges (i→ µ) or (µ→ i).
We de�ne the auxiliary variable zµ = 1√

d
xᵀµW ∈RK which is Θ(1) thanks

to the pre-factor rescaling 1/
√

d. This scaling is crucial as it allows the BP
equations to hold true even though the factor graph is not tree-like and is
instead fully connected with short loops.

316
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wi ∈RK

Pout
(

yµ | 1√
d

xᵀµW
)

Pw(wi)

m̃µ→i(wi) mi→µ(wi)

Figure 66: Factor graph representation of the joint distribution for committee ma-
chines.

c.1.2 bp eqations

The BP equations (also called the sum-product equations) for wi = (wik)k=1..K ∈
RK on the factor graph Fig. 66 can be formulated, see Sec. 4.3, as:

mt+1
i→µ

(wi) =
1

Zi→µ

Pw(wi)
n

∏
ν 6=µ

m̃t
ν→i(wi) (372)

m̃t
µ→i(wi) =

1
Zµ→i

∫

RK

d

∏
j 6=i

dw j Pout

(
yµ |

1√
d

d

∑
j=1

xµ jw j

)
mt

j→µ(w j) ,

c.2 RELAXED BP EQUAT IONS

The idea of the relaxed BP equations is to simply expand in the limit d→∞ the
set of Θ(d2) messages m̃ of the BP equations in (372) before plugging them
in m. Truncating the expansion and keeping only terms of order Θ (1/d),
messages become Gaussian. Hence messages are therefore parametrized
only by the mean ŵt

i→µ
and the covariance matrix Ĉt

i→µ
of the marginal

distribution at time t:

ŵt
i→µ ≡

∫

RK
dwi mt

i→µ(wi) wi

Ĉt
i→µ ≡

∫

RK
dwi mt

i→µ(wi) wiwᵀ
i − ŵt

i→µ(ŵ
t
i→µ)

ᵀ
(373)

To decouple the argument of Pout, we �rst by introducing its Fourier transform
P̂out according to

Pout

(
yµ |

1√
d

d

∑
j=1

xµ jw j

)
=

1
(2π)K/2

×
∫

RK
dξξξ exp

(
iξξξ ᵀ

(
1√
d

d

∑
j=1

xµ jw j

)
P̂out(yµ ,ξξξ )

)
.
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Injecting this representation in the BP equations, (372) becomes:

m̃t
µ→i(wi) =

1
(2π)K/2Zµ→i

∫

RK
dξξξ P̂out(yµ ,ξξξ ) exp

(
iξξξ ᵀ 1√

d
xµiwi

)

×
d

∏
j 6=i

∫

RK
dw j mt

j→µ(w j) exp
(

iξξξ ᵀ 1√
d

xµ jw j)

)

︸ ︷︷ ︸
≡I j

(374)

In the limit d→ ∞ the term I j can be easily expanded and expressed using ŵ
and Ĉ in (373):

I j =
∫

RK
dw j mt

j→µ(w j) exp
(

i
xµ j√

d
ξξξ
ᵀw j)

)

' exp

(
i
xµ j√

d
ξξξ
ᵀŵt

j→µ −
1
2

x2
µ j

d
ξξξ
ᵀĈt

j→µξξξ

)
.

Finally using the inverse Fourier transform:

m̃t
µ→i(wi) =

1
(2π)K/2Zµ→i

∫

RK
dzPout(yµ |z)

∫

RK
dξξξ e−iξξξ ᵀzeixµiξξξ

ᵀwi

×
d

∏
j 6=i

exp

(
i
xµ j√

d
ξξξ
ᵀŵt

j→µ −
1
2

x2
µ j

d
ξξξ
ᵀĈt

j→µξξξ

)

=
1

(2π)KZµ→i

∫

R
dz Pout(yµ |z)

∫

RK
dξξξ e−iξξξ ᵀzeixµiξξξ

ᵀwie
i

d
∑
j 6=i

xµ j√
d

ξξξ
ᵀŵt

j→µ

e
− 1

2

d
∑
j 6=i

x2
µ j
d ξξξ

ᵀĈt
j→µ

ξξξ

=
1

(2π)KZµ→i

∫

RK
dz Pout(yµ |z)

×
√√√√ (2π)K

det
(

V t
µ→i

) e−
1
2

(
z− xµi√

d
wi−ωωω t

µ→i

)ᵀ
(Vt

µ→i)
−1
(

z− xµi√
d

wi−ωωω t
µ→i

)

︸ ︷︷ ︸
≡Hµ→i

,

where we de�ned the mean and variance, depending on the node i:

ωωω
t
µ→i ≡

1√
d

d

∑
j 6=i

xµ jŵt
j→µ , Vt

µ→i ≡
1
d

d

∑
j 6=i

x2
µ jĈ

t
j→µ .

Again, in the limit d→ ∞, the term Hµ→i can be expanded as

Hµ→i ' e−
1
2 (z−ωωω t

µ→i)
ᵀ
(Vt

µ→i)
−1(z−ωωω t

µ→i)

×
(

1+
xµi√

d
wᵀ

i (V
t
µ→i)

−1(z−ωωω
t
µ→i)−

1
2

x2
µi

d
wᵀ

i (V
t
µ→i)

−1wi

+
1
2

x2
µi

d
wᵀ

i (V
t
µ→i)

−1(z−ωωω
t
µ→i)(z−ωωω

t
µ→i)

ᵀ(Vt
µ→i)

−1wi

)
.
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Putting all pieces together, the message m̃µ→i can be expressed using de�ni-
tions of fout and ∂ω fout in Appendix. A.4.1.b. We �nally obtain

m̃t
µ→i(wi) ∼

1
Zµ→i

{
1+

xµi√
d

wᵀ
i fout(yµ ,ωωω t

µ→i,V
t
µ→i)

+
1
2

x2
µi

d
wᵀ

i foutfᵀout(yµ ,ωωω t
µ→i,V

t
µ→i)wi

+
1
2

x2
µi

d
wᵀ

i ∂ωωω fout(yµ ,ωωω t
µ→i,V

t
µ→i)wi

}

=
1

Zµ→i

{
1+wᵀ

i bt
µ→i +

1
2

wᵀ
i bt

µ→i(b
t
µ→i)

ᵀ(wi)−
1
2

wᵀ
i At

µ→iwi

}

=

√√√√det
(

At
µ→i

)

(2π)K e−
1
2 (wᵀ

i −(At
µ→i)

−1bt
µ→i)

ᵀ
At

µ→i(wᵀ
i −(At

µ→i)
−1bt

µ→i)

with the following de�nitions of Aµ→i and bµ→i

bt
µ→i ≡

xµi√
d

fout(yµ ,ωωω t
µ→i,V

t
µ→i) ,

At
µ→i ≡−

x2
µi

d
∂ωωω fout(yµ ,ωωω t

µ→i,V
t
µ→i) .

The set of BP equations can �nally be closed over the Gaussian messages
{mi→µ}µ=1..n

i=1..d according to

mt+1
i→µ

(wi) =
1

Zi→µ

Pw(wi)
n

∏
ν 6=µ

√
det (At

ν→i)

(2π)K

× e−
1
2 (wi−(At

ν→i)
−1bt

ν→i)
ᵀ
At

ν→i(wi−(At
ν→i)

−1bt
ν→i).

In the end, computing the mean and variance of the product of Gaussians,
the messages are updated using fw and ∂γγγ fw, de�ned in Appendix. A.4.1.b,
according to

ŵt+1
i→µ

= fw(γγγ
t
µ→i,Λ

t
µ→i) , Ĉt+1

i→µ
= ∂γγγ fw(γγγ

t
µ→i,Λ

t
µ→i) ,

with

γγγ
t
µ→i =

n

∑
ν 6=µ

bt
ν→i , Λt

µ→i =
n

∑
ν 6=µ

At
ν→i .
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Summary of the rBP equations In the end, the rBP equations are simply
the following set of equations:

ŵt+1
i→µ

= fw(γγγ
t
µ→i,Λ

t
µ→i) , Ĉt+1

i→µ
= ∂γγγ fw(γγγ

t
µ→i,Λ

t
µ→i)

γγγ
t
µ→i =

n

∑
ν 6=µ

bt
ν→i , Λt

µ→i =
n

∑
ν 6=µ

At
ν→i

bt
µ→i =

xµi√
d

fout(yµ ,ωωω t
µ→i,V

t
µ→i) ,

At
µ→i = −

x2
µi

d
∂ωωω fout(yµ ,ωωω t

µ→i,V
t
µ→i)

ωωω
t
µ→i =

d

∑
j 6=i

xµ j√
d

ŵt
j→µ , Vt

µ→i =
d

∑
j 6=i

x2
µ j

d
Ĉt

j→µ .

(375)

c.3 AMP ALGORI THM

The rBP equations eq. (375) contains Θ(d2) messages. However all the mes-
sages depend weakly on the target node. The missing message is negligible
in the limit d→∞, that allows us to expand the rBP around the full messages:

ωωω
t
µ ≡

d

∑
j=1

xµ j√
d

ŵt
j→µ , Vt

µ ≡
d

∑
j=1

x2
µ j

d
Ĉt

j→µ

γγγ
t
i ≡

n

∑
µ=1

bt
µ→i , Λt

i ≡
n

∑
µ=1

At
µ→i .

(376)

By completing the sum, we naturally remove the target node dependence
and reduce the set of messages to Θ(d). Let us now perform the expansion
of the rBP messages.

Partial covariance fw: Λt
µ→i

Λt
µ→i =

n

∑
ν 6=µ

At
ν→i =

n

∑
ν=1

At
ν→i−At

µ→i

= Λt
i−At

µ→i = Λt
i +Θ

(
1
d

)
.

Partial mean fw: γγγ t
µ→i

γγγ
t
µ→i =

n

∑
ν 6=µ

bt
ν→i =

n

∑
ν=1

bt
ν→i−bt

µ→i = γγγ
t
i−bt

µ→i +Θ
(

1
d

)
.
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Mean ŵt+1
i→µ

update

ŵt+1
i→µ

= fw(γγγ
t
µ→i,Λ

t
µ→i) = fw

(
γγγ

t
i−bt

µ→i,Λ
t
i
)
+Θ

(
1
d

)

= fw (γγγ
t
i ,Λ

t
i)−∂γγγ fw (γγγ

t
i ,Λ

t
i)bt

µ→i +Θ
(

1
d

)

= ŵt+1
i − Ĉt+1

i bt
µ→i +Θ

(
1
d

)

= ŵt+1
i − xµi√

d
Ĉt+1

i fout(yµ ,ωωω t
µ ,Vt

µ)+Θ
(

1
d

)
.

where we de�ned the prior updates

ŵt+1
i ≡ fw (γγγ

t
i ,Λ

t
i) , Ĉt+1

i ≡ ∂γγγ fw (γγγ
t
i ,Λ

t
i) ,

and used the fact that bt
µ→i '

xµi√
d

Ĉt+1
i fout(yµ ,ωωω t

µ ,Vt
µ) by expanding the

equation over bt
µ→i in (375).

Covariance Ĉt+1
i→µ

update

Ĉt+1
i→µ

= ∂γγγ fw(γγγ
t
µ→i,Λ

t
µ→i)

' ∂γγγ fw(γγγ
t
i ,Λ

t
i)+Θ

(
1√
d

)
= Ĉt+1

i +Θ
(

1√
d

)
.

Channel update function fout(yµ ,ωωω t
µ→i,Vt

µ→i)

fout(yµ ,ωωω t
µ→i,V

t
µ→i) = fout

(
yµ ,ωωω t

µ −
xµi√

d
ŵt

i→µ ,Vt
µ −

x2
µi

d
Ĉt

i→l

)

= fout
(
yµ ,ωωω t

µ ,Vt
µ

)
− xµi√

d
∂ωωω fout

(
yµ ,ωωω t

µ ,Vt
µ

)
ŵt

i→µ︸ ︷︷ ︸
=ŵt

i+Θ
(

1√
d

)
+Θ

(
1
d

)

= fout
(
yµ ,ωωω t

µ ,Vt
µ

)
− xµi√

d
∂ωωω fout

(
yµ ,ωωω t

µ ,Vt
µ

)
ŵt

i +Θ
(

1
d

)
.

Covariance fout: Vt
µ

Vt
µ ≡

d

∑
j=1

x2
µ j

d
Ĉt

j→µ =
d

∑
j=1

x2
µ j

d
Ĉt

j→µ +Θ
(

1
d3/2

)
.
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Mean fout: ωωω t
µ

ωωω
t
µ =

d

∑
i=1

xµi√
d

ŵt
i→µ

=
d

∑
i=1

xµi√
d

(
ŵt

i− xµiĈt
ifout(yµ ,ωωω t−1

µ ,Vt−1
µ )+Θ

(
1
d

))

=
d

∑
i=1

xµi√
d

ŵt
i−

d

∑
i=1

x2
µi

d
Ĉt

ifout(yµ ,ωωω t−1
µ ,Vt−1

µ )+Θ
(

1
d3/2

)
.

Covariance fw: Λt
i

Λt
i ≡

n

∑
µ=1

At
µ→i =

n

∑
ν=1
−

x2
µi

d
∂ωωω fout(yµ ,ωωω t

µ→i,V
t
µ→i)

=
n

∑
µ=1
−

x2
µi

d
∂ωωω fout(yµ ,ωωω t

µ ,Vt
µ)+Θ

(
1

d3/2

)
.

Mean fw: γγγ t
i

γγγ
t
i =

n

∑
µ=1

bt
µ→i =

n

∑
µ=1

xµi√
d

fout(yµ ,ωωω t
µ→i,V

t
µ→i)

=
n

∑
µ=1

xµi√
d

fout(yµ ,ωωω t
µ ,Vt

µ)

−
x2

µi

d
∂ωωω fout(yµ ,ωωω t

µ ,Vt
µ)ŵ

t
i +Θ

(
1

d3/2

)
.

summary - amp algorithm

We �nally obtain the AMP algorithm as a reduced set of Θ(d) messages in
Algo. 5.

c.4 STATE EVOLUT ION EQUAT IONS OF
AMP

In this section we derive the behavior of the AMP algorithm in Algo. 5 in
the thermodynamic limit d→ ∞. This average asymptotic behavior can be
tracked with some overlap parameters at time t , mt , qt , Σt , that respectively
measure the correlation of the AMP estimator with the ground truth, the
norms of student and teacher weights, the estimator variance and the second
moment of the teacher network ρρρw? , de�ned by

mt ≡E lim
d→∞

1
d

ŴtᵀŴ? , qt ≡E lim
d→∞

1
d

ŴtᵀŴt ,

Σt ≡E lim
d→∞

1
d

d

∑
i=1

Ĉt
i , ρρρw? ≡E lim

d→∞

1
d

W?ᵀW? ,
(377)
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Input: vector y ∈Rn and matrix X ∈Rn×d :
Initialize: ŵi, fout,µ ∈RK and V̂i, ∂ωωω fout,µ ∈RK×K for 1≤ i≤ d and
1≤ µ ≤ n at t = 0.
repeat

Channel: Update the mean ωµ ∈RK and variance Vµ ∈RK×K :

Vt
µ =

d
∑

i=1

x2
µ j
d Ĉt

i

ωωω t
µ =

d
∑

i=1

xµi√
d

ŵt
i−Vt

µ ft−1
out,µ ,

Update fout,µ and ∂ωωω fout,µ :

ft
out,µ = fout

(
yµ ,ωωω t

µ ,Vt
µ

)
, ∂ωωω ft

out,µ = ∂ωωω fout
(
yµ ,ωωω t

µ ,Vt
µ

)

Prior: Update the mean γγγ i ∈RK and variance Λi ∈RK×K :

Λt
i =

n
∑

µ=1
− x2

µi
d ∂ωωω fout,µ

γγγ t
i =

n
∑

µ=1

xµi√
d

fout,µ +Λt
iŵt

i ,

Update the estimated marginals ŵi ∈R and Ĉi ∈R+:

ŵt+1
i = fw (γγγ t

i ,Λ
t
i) , Ĉt+1

i = ∂γγγ fw (γγγ t
i ,Λ

t
i)

t← t + 1
until Convergence on ŵi, Ĉi.
Output: {ŵi}d

i=1 and {Ĉi}d
i=1.

Algorithme 5 : Approximate Message Passing algorithm for committee
machines.
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where the expectation is over ground truth signals W? and input data X. The
aim is to derive the asymptotic behavior of these overlap parameters, called
SE. The idea is simply to compute the overlap distributions starting with the
set of rBP equations in (375).

c.4.1 messages distribution

In order to get the asymptotic behavior of the overlap parameters, we �rst
need to compute the distribution of Wt+1 and, as a result, of the mean γγγ t

µ→i
and covariance Λt

µ→i. Recalling that under the BP assumption incoming mes-
sages are independent, the messages ωωω t

µ→i and zµ are the sum of independent
variables and follow Gaussian distributions. However, these two variables
are correlated and we need to compute correctly the covariance matrix.

To compute it, we will make use of di�erent ingredients. First, we recall that
in the T-S scenario, the output has been generated by a teacher such that ∀µ ∈
JnK, yµ = ϕout?

(
1√
d

xᵀµW?
)

. By convenience, we de�ne zµ ≡ 1√
d

xᵀµW? =
1√
d ∑

d
i=1 xµiw?

i and zµ→i ≡ 1√
d ∑

d
j 6=i xµ jw?

j . Second, in the case the input data
are i.i.d Gaussian, we have EX[xµi] = 0 and EX[x2

µi] = 1.

Partial mean fout: ωωω t
µ→i Let’s compute the �rst two moments, using

expansions of the rBP equations (375):

E
[
ωωω

t
µ→i
]
=

1√
d

d

∑
j 6=i

EX [xµ j]E
[
ŵt

j→µ

]
= 0 ,

E
[
ωωω

t
µ→i
(
ωωω

t
µ→i
)ᵀ]

=
1
d

d

∑
j 6=i

EX
[
x2

µ j
]

E
[
ŵt

j→µ

(
ŵt

j→µ

)ᵀ]

=
1
d

d

∑
i=1

EX
[
x2

µ j
]

E [ŵt
i (ŵi)

ᵀ]+Θ
(

d−3/2
)
−→
d→∞

qt .

Hidden variable zµ Let us compute the �rst moments of the hidden
variable zµ :

E [zµ ] =
1√
d

d

∑
i=1

EX [xµi]EW? [w?
i ] = 0 ,

E
[
zµzᵀµ

]
=

1
d

d

∑
i=1

EX
[
x2

µi
]

EW? [w?
i (w

?
i )

ᵀ] −→
d→∞

ρρρw? .
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Correlation between zµ and ωωω t
µ→i The cross correlation is given by

E
[
ωωω

t
µ→iz

ᵀ
µ

]
=

1
d

d

∑
j 6=i,k=1

EX [xµ jxµk]EW?

[
ŵt

j→µ(w
?
k)

ᵀ]

=
1
d

d

∑
j 6=i

EW?

[
ŵt

j→µ(w
?
j)
ᵀ]= 1

d

d

∑
i

EW? [ŵt
i(w

?
i )

ᵀ]+Θ
(

d−3/2
)

−→
d→∞

mt .

Hence asymptotically the random vector (zµ , ωωω t
µ→i) follow a multivariate

Gaussian distribution with covariance matrix Qt =

[
ρρρw? mt

mt qt

]
∈R(2K)×(2K).

Partial variance fout: Vµ→i Vµ→i concentrates around its mean:

E
[
Vt

µ→i
]
=

1
d

d

∑
j 6=i

EX
[
x2

µ j
]

Ĉt
j→µ =

1
d

d

∑
i

Ĉt
i +Θ(d−3/2) −→

d→∞

Σt .

Ad-hoc overlaps Let us de�ne some other ad-hoc order parameters, that
will appear in the following:

q̂t ≡ αEωωω ,z
[
fout(ϕout?(z),ωωω ,Σt)⊗2] ,

m̂t ≡ αEωωω ,z [∂zfout(ϕout?(z),ωωω ,Σt)] ,

χ̂χχ
t ≡ αEωωω ,z [−∂ωωω fout(ϕout?(z),ωωω ,Σt)] .

(378)

Partialmean fw: γγγ t
µ→i Using the expression yν =ϕout?

(
zν→i +

1√
d

xν iw?
i

)

and expanding γγγ t
µ→i, we obtain

γγγ
t
µ→i =

n

∑
ν 6=µ

bt
ν→i =

n

∑
ν 6=µ

xν i√
d

fout (yν ,ωωω t
ν→i,V

t
ν→i)

=
1√
d

n

∑
ν 6=µ

xν ifout (ϕout? (zν→i) ,ωωω t
ν→i,V

t
ν→i)

+
1
d

n

∑
ν 6=µ

x2
ν i∂zfout (ϕout? (zν→i) ,ωωω t

ν→i,V
t
ν→i)w?

i .

Thus, taking the average

E
[
γγγ

t
µ→i

]
= 0+

1
d

n

∑
ν 6=µ

Ez,ωωω [∂zfout (ϕout? (zν→i) ,ωωω t
ν→i,V

t
ν→i)]w

?
i

−→
d→∞

m̂tw?
i ,

E
[
(γγγ t

µ→i)
⊗2
]
=

1
d

n

∑
ν 6=µ

Ez,ωωω

[
fout (ϕout? (zν→i) ,ωωω t

ν→i,V
t
ν→i)

⊗2
]

−→
d→∞

q̂t .
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Hence γγγ t
µ→i ∼ m̂tw?

i +(q̂t)1/2ξξξ with ξξξ ∼N (0,IK).

Partial covariance fw: Λt
µ→i

Λt
µ→i =

n

∑
ν 6=µ

At
ν→i = −

1
d

n

∑
ν 6=µ

x2
µi∂ωωω fout(yν ,ωωω t

ν→i,V
t
ν→i)

= −1
d

n

∑
ν 6=µ

x2
µi∂ωωω fout(ϕout?(zν→i),ωωω t

ν→i,V
t
ν→i)+Θ

(
d−3/2

)

and taking the average

E
[
Λt

µ→i
]
= −1

d

n

∑
ν 6=µ

Ez,ωωω [∂ωωω fout(ϕout?(zν→i),ωωω t
ν→i,V

t
ν→i)]

−→
d→∞

χ̂χχ
t ,

so that in the thermodynamic limit Λt
µ→i ∼ χ̂χχ

t .

c.4.2 summary of the se - mismatched
setting

Using the de�nition of the overlaps in (377) at time t + 1 and the message
distributions, we �nally obtain the set of SE equations of the AMP algorithm
in Algo. 5 in the mismatched setting:

mt+1 ≡E lim
d→∞

1
d

Ŵt+1ᵀŴ? = Ew?,ξξξ

[
fw

(
m̂tw?+(q̂t)1/2

ξξξ , χ̂χχ
t
)

w?ᵀ
]

,

qt+1 ≡E lim
d→∞

1
d

Ŵt+1ᵀŴt+1 = Ew?,ξξξ

[
fw

(
m̂tw?+(q̂t)1/2

ξξξ , χ̂χχ
t
)⊗2
]

,

Σt+1 ≡E lim
d→∞

1
d

d

∑
i=1

Ĉt+1
i = Ew?,ξξξ

[
∂γγγ fw

(
m̂tw?+(q̂t)1/2

ξξξ , χ̂χχ
t
)]

,

(379)

and

q̂t = α

∫

RK

∫

RK
dωωω dz N(z,ωωω) (02K ,Qt) fout(ϕout?(z),ωωω ,Σt)⊗2

m̂t = α

∫

RK

∫

RK
dωωω dz N(z,ωωω) (02K ,Qt))∂zfout(ϕout?(z),ωωω ,Σt) ,

χ̂χχ
t = −α

∫

RK

∫

RK
dωωω dz N(z,ωωω) (02K ,Qt)∂ωωω fout(ϕout?(z),ωωω ,Σt) .

(380)

with Qt =

[
ρρρw? mt

mt qt

]
∈R(2K)×(2K).
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c.4.3 summary of the se - bayes-optimal
setting

In the Bayes-optimal setting, the student Pw = Pw? and Pout = Pout? , so that
we have fw = fw? and fout = fout? . Moreover, the Nishimori conditions, recalled
in Appendix. A.3, imply that

mt = qt ≡ qt
b , q̂t = m̂t = χ̂χχ

t ≡ q̂t
b , Σt = ρρρw?−qt .

Therefore the set of SE equations simplify and reduce to

qt+1
b = Ew?,ξξξ

[
fw?

(
q̂t

bw?+(q̂t
b)

1/2
ξξξ , q̂t

b

)⊗2
]

(381)

q̂tb = α

∫

RK

∫

RK
dωωω dz N(z,ωωω) (02K ,Qt

b) fout?(ϕout?(z),ωωω ,ρρρw?−qt
b)
⊗2

with the simpli�ed covariance matrix Qt
b =

[
ρρρw? qt

b
qt

b qt
b

]
.

c.4.4 consistence with the replica
computation

Very surprisingly, the SE of the AMP algorithm can be obtained in a convoluted
and more rapid way. It turns out that in the Bayes-optimal setting, AMP
performs a gradient ascent on the RS free entropy in (321). Meaning that at
convergence, and under good initialization, the AMP overlaps are given by
the saddle point equations of the RS free entropy Φ(rs). To see this, we shall
start performing the change of variable ξξξ ← ξξξ +(q̂t

b)
1/2 w? in (381) so that

we directly obtain the �rst equation of (325) with the corresponding time
indices

qt+1
b = Ew?,ξξξ

[
Zw?

(
(q̂t

b)
1/2

ξξξ , q̂t
b

)
fw?

(
(q̂t

b)
1/2

ξξξ , q̂t
b

)⊗2
]

. (382)

Moreover in this setting, we notice that variables ωωω t
µ→i and zµ −ωωω t

µ→i be-
come independent since

E
[
ωωω

t
µ→i
(
zµ −ωωω

t
µ→i
)ᵀ] −→

d→∞

mt −qt = qt
b−qt

b = 0 ,

E
[
ωωω

t
µ→i(ωωω

t
µ→i)

ᵀ] −→
d→∞

qt
b ,

E
[(

zµ −ωωω
t
µ→i
)(

zµ −ωωω
t
µ→i
)ᵀ] −→

d→∞

ρρρw?−qt
b ,

so that the multivariate Gaussian distribution factorize to

N(z,ωωω) (0,Qt
b) = Nωωω (0K ,qt

b)Nz (ωωω ,ρρρw?−qt
b) .
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Using Pout?(y|z) = δ (y−ϕout?(z)) the second equation of (381) becomes

q̂t = α

∫

RK

∫

RK
dωωω dz N(z,ωωω) (02K ,Qt

b) fout?(ϕout?(z),ωωω ,ρρρw?−qt
b)
⊗2

= α

∫

R
dy
∫

RK
dωωω Nωωω (0K ,qt

b)

×
∫

RK
dz pout?(y|z)Nz (ωωω;ρρρw?−qt

b) fout?(y,ωωω ,ρρρw?−qt
b)
⊗2

= α

∫

R
dy
∫

RK
dξξξ Nξξξ (0;IK)

∫

RK
dz pout?(y|z)

×Nz

(
(qt

b)
1/2

ξξξ ;ρρρw?−qt
b

)
fout?(y, (qt

b)
1/2

ξξξ ,ρρρw?−qt
b)
⊗2

(Change of variable ξξξ ← (qt
b)
−1/2ωωω t )

= α

∫

R
dy Eξξξ Zout?

(
y, (qt

b)
1/2

ξξξ ,ρρρw?−qb

)

× fout?
(

y, (qt
b)

1/2
ξξξ ,ρρρw?−qt

b

)
,

which is exactly the second �xed point equation of the RS free entropy (381).
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Résumé: À une époque où l’utilisation des
données a atteint un niveau sans précédent,
l’apprentissage machine, et plus particulièrement
l’apprentissage profond basé sur des réseaux de
neurones artificiels, a été responsable de très
importants progrès pratiques. Leur utilisation est
désormais omniprésente dans de nombreux do-
maines d’application, de la classification d’images
à la reconnaissance vocale en passant par la
prédiction de séries temporelles et l’analyse de
texte. Pourtant, la compréhension de nombreux
algorithmes utilisés en pratique est principale-
ment empirique et leur comportement reste diffi-
cile à analyser. Ces lacunes théoriques soulèvent
de nombreuses questions sur leur efficacité et
leurs potentiels risques. Etablir des fondements
théoriques sur lesquels asseoir les observations
numériques est devenu l’un des défis majeurs
de la communauté scientifique. La principale dif-
ficulté qui se pose lors de l’analyse de la plupart
des algorithmes d’apprentissage automatique est
de traiter analytiquement et numériquement un
grand nombre de variables aléatoires en interac-
tion. Dans ce manuscrit, nous revisitons une ap-
proche basée sur les outils de la physique statis-

tique des systèmes désordonnés. Développés au
long d’une riche littérature, ils ont été précisé-
ment conçus pour décrire le comportement macro-
scopique d’un grand nombre de particules, à par-
tir de leurs interactions microscopiques. Au cœur
de ce travail, nous mettons fortement à profit le
lien profond entre la méthode des répliques et les
algorithmes de passage de messages pour met-
tre en lumière les diagrammes de phase de divers
modèles théoriques, en portant l’accent sur les po-
tentiels écarts entre seuils statistiques et algorith-
miques. Nous nous concentrons essentiellement
sur des tâches et données synthétiques générées
dans le paradigme enseignant-élève. En partic-
ulier, nous appliquons ces méthodes à champ
moyen à l’analyse Bayes-optimale des machines
à comité, à l’analyse des bornes de généralisa-
tion de Rademacher pour les perceptrons, et à la
minimisation du risque empirique dans le contexte
des modèles linéaires généralisés. Enfin, nous
développons un cadre pour analyser des modèles
d’estimation avec des informations à priori struc-
turées, produites par exemple par des réseaux de
neurones génératifs avec des poids aléatoires.

Title: Mean-field methods and algorithmic perspectives for high-dimensional machine learn-
ing
Keywords: Statistical physics, machine learning, neural networks, statistical estimation,
message-passing algorithms, replica method
Abstract: At a time when the use of data has
reached an unprecedented level, machine learn-
ing, and more specifically deep learning based on
artificial neural networks, has been responsible for
very important practical advances. Their use is
now ubiquitous in many fields of application, from
image classification, text mining to speech recog-
nition, including time series prediction and text
analysis. However, the understanding of many al-
gorithms used in practice is mainly empirical and
their behavior remains difficult to analyze. These
theoretical gaps raise many questions about their
effectiveness and potential risks. Establishing the-
oretical foundations on which to base numerical
observations has become one of the fundamental
challenges of the scientific community. The main
difficulty that arises in the analysis of most ma-
chine learning algorithms is to handle, analytically
and numerically, a large number of interacting ran-
dom variables. In this manuscript, we revisit an ap-
proach based on the tools of statistical physics of
disordered systems. Developed through a rich liter-

ature, they have been precisely designed to infer
the macroscopic behavior of a large number of par-
ticles from their microscopic interactions. At the
heart of this work, we strongly capitalize on the
deep connection between the replica method and
message passing algorithms in order to shed light
on the phase diagrams of various theoretical mod-
els, with an emphasis on the potential differences
between statistical and algorithmic thresholds. We
essentially focus on synthetic tasks and data gen-
erated in the teacher-student paradigm. In partic-
ular, we apply these mean-field methods to the
Bayes-optimal analysis of committee machines, to
the worst-case analysis of Rademacher generaliza-
tion bounds for perceptrons, and to empirical risk
minimization in the context of generalized linear
models. Finally, we develop a framework to an-
alyze estimation models with structured prior in-
formations, produced for instance by deep neural
networks based generative models with random
weights.
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