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 Abstract 

Among emerging carbon materials, graphene has rapidly become an ideal candidate 

for nano-electronics. In this context, different methods have been proposed to transform its 

electric properties and remove the Dirac degeneracy point, leading to application to nano-

transistors. In this thesis we apply a semi-analytical compact model to study two kinds of 

graphene-based nanotransistors: nanoribbon graphene transistor and nanomesh transistor. A 

tight-binding model is used to determine analytical expressions for the energy bands of a 

graphene nanoribbon. Comparisons are shown with ab-initio approaches and with 

measurements done on larger-scale transistors of the same kind. 

In the context of flexible electronics, mechanical stresses on circuits and subsequent 

geometric deformations of graphene-based components is an important issue. We investigate 

these effects on the conduction properties of nanoribbon transistors (both in ballistic and 

partially ballistic regimes). By assuming the presence of small deformations, a spectral 

scaling and a spectral shift due to the presence of a deformation can be taken into account 

analytically. This model leads to define in closed form effective quantities (masses, densities 

of states) used to numerically calculate potentials and currents in the nano-device. Numerical 

results are shown both in a ballistic and partially-ballistic regime, with and without the 

presence of Schottky contacts. The proposed results in Chapter 2 illustrate in a very simple 

way how the deformation of graphene nanoribbon influences the I-V characteristics of 

transistor. 

Another solution to realize graphene nanotransistor is the etching of nanoholes in a 

graphene sheet (thus realizing a nanomesh). If graphene nanomesh is properly shaped, the 

On/Off current ratio of transistor is expected to be enhanced. In Chapter 3, the semi-analytic 

method is used to evaluate the performance of nanomesh transistor with nanoribbon ones. The 

results are again compared with an ab-initio method. I-V characteristics of graphene 

nanomesh transistor are presented and compared with experimental results. The proposed 

results show how graphene nanomesh size influences the I-V characteristics of transistor. 
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Given the simplicity and the reduced computation time of the approach, these results 

can lead to perform parametric analyses, optimizations and characterization of graphene nano-

transistor when applied in larger-scale circuits. 
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Chapter 1. Introduction 

In this chapter, we give some introductory notions about the interests of graphene, its 

application in electronics, and the modelling tools to predict its electronic behaviour in nano-

transistors. Namely, the tight binding model is introduced and discussed, leading to compute 

the conduction bands of graphene and its properties. A brief review of modelling methods for 

transistors is also given, together with their fields of application. A semi-analytic method for 

carbon-based nanotransistors is then described with some details, being the approach chosen 

for the study of the devices analysed in the following chapters. 

1.1 Research background 

Materials can be classified into three categories with respect to their electronic 

properties, according to the shape of energy band around the Fermi level (i.e., the 

approximate energy level of charged carriers). Conductive materials (such as copper, iron, 

etc.) enable the conduction of electric currents since an energy level is present around the 

Fermi level. This band offers the carriers free degrees of states to create a current flow. 

Insulator materials (such as ceramics, plastics, etc.) do not allow electric current to flow, since 

the Fermi level falls in an energy gap and no close available energy bands allows the 

conduction of current. Finally, semiconductor materials (such as Germanium, Silicium, etc.) 

can conduct current if some external energy is provided to carriers in order to overcome the 

small energy gap around the zero-Kelvin Fermi level. Figure 1.1 shows different band gaps in 

metals, isolators and semiconductors. Semiconductor materials were discovered in the 19th 

century; however it did not arouse researcher attention at that time. Due to the development of 

radar technology in World War II and electronics, semiconductor materials played a 

fundamental role in technology advancements and stimulated a considerable amount of 

research activities. 

Semiconductor materials are in fact of crucial importance for today’s electronic 

technology as the development of integrated circuit is based on it. Figure 1.2 shows some 

important steps of the development of semiconductor devices going from the discovery of 

semiconductor properties to the invention of transistor and the development of modern 

electronic circuits.  Vacuum tubes were once the basic components of electronic devices for 
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signal amplifications and mixing. However, their large volume and fragility would hinder the 

development of miniaturized and embedded circuits.  In this context, the emergence of 

semiconductor transistors was the greatest breakthrough leading to electronic devices of 

smaller size, lower cost, reduced power-consumption and heat dissipation. The appearance of 

the first transistor in 1947 at Bell Labs marked the beginning of the electronic era [1]. In 1958, 

integrated circuits were invented by Jack Kilby, when it became possible to place many 

transistors on the same chip. In 1965 Gordon Moore, one of Intel’s founders, observed that 

that the number of components in an integrated circuit is doubled every 18-24 months while 

the overall price of the circuit being constant [2]. This was later acknowledged as the well-

known Moore's Law, describing the evolution of the electronic technology of the rest of the 

century. 

 

Figure 1.1: Bandgap of different kind materials. 

Following Moore’s Law, the miniaturization of transistors proceeded at a steady pace 

in the last decades. Nowadays limitations of bulk MOSFET are arising to short-channel 

effects that slow down the miniaturization of devices. Effects such as the saturation velocity 

of charges and the lowering of threshold voltage limit the performance of devices at nano-

scale. In this framework, carbon-based nano-transistors have recently attracted a lot of 

attentions due to their tiny sizes and remarkable electronic properties [3]-[5]. In [3], P. 

Avouris et al. studied the performance of carbon nanotubes (CNTs) transistors. The electronic 

characteristics of CNTs transistors (gate length 260 nm) are compared with two silicon 

devices, proving that CNTs transistors can have superior on-off current ratios and better 

transconductance than silicon transistors. In [4], R. Martel et al. also presented some 

experimental data of nanoscale carbon-based transistors. Different electronic characteristics of 
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carbon-based transistors are compared with 25 nm Si FETs and 100 nm Si FETs respectively, 

the improved performance of carbon-based transistors demonstrated that they may be 

competitive with Si FETs [4]. Moreover, even if great progresses have been achieved for the 

realization of Si-based devices, their gate length and gate insulator thickness cannot be 

continuously scaled.  The unique electronic properties of carbon based material offer the 

possibility to overcome these limitation and achieve further device miniaturization. 

 

Figure 1.2: Events during the development of semiconductor devices. 

The design of novel electronic devices for diverse applications, such as biomedical, 

security or leisure, must face several challenges, notably in terms of flexibility, 

biocompatibility, and low power consumption. In this framework, thanks to the electric 

properties of graphene, graphene-based transistors are currently regarded as an attractive 

solution of these issues. 

There are already several cases of graphene implementation in industry engineering 

(see Figure 1.3). Graphene can be used e.g. as the coating material of touch screens for 

telephones and computers [6]. If we apply graphene in our computers, the new material will 

make them much fast [7]. Graphene-based patch can also be used for monitoring possibly 

treats diabetes [8]. It can maintain healthy blood glucose levels in people through measuring 

the sugar in sweat and delivering necessary diabetes drugs through the skin.  
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Furthermore, electronic properties of graphene are not the only advantages of this 

material. Due to mechanical robustness and flexibility, carbon-based transistors are natural 

candidates for different electronics (see Figure 1.3 and Figure 1.4).  

 

 

Figure 1.3: Properties of graphene and its potential applications. 

 

 

Figure 1.4: (a) Graphene-treated nanowires could replace current touchscreen technology  

                     (b) A graphene patch that monitors and possibly treats diabetes [9][10]. 

 

（a） （b） 
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1.2 Electronic properties of a graphene sheet 

Graphene is a two-dimensional material consisting of hexagonal carbon atoms 

arranged in honeycomb lattice (see Figure 1.5) [11]-[12]. More specifically, it is an allotrope 

of carbon in the structure with a molecule bond length of 0.142 nm. Since mechanical 

exfoliation of monolayer graphene was first reported in 2004 by Andre Geim and Konstantin 

Novoselov [13], interest in this material has increased dramatically. Compared with other 

materials, graphene has many excellent properties, which are shown in Table 1.1. 

       

Figure 1.5: Shape and characteristics of graphene [14]. 

Table 1.1: List of typical graphene properties. 

Graphene Property Numerical Value Comparison with other 

material 

Tensile Strength ~130 GPa [15] steel ~550 MPa [17]  

Young’s Modulus ~1 TPa [15] Bronze  ~ 96–120 GPa [18] 

Thermal Conductivity ~5000 Wm
-1

K
-1 

[16] 

Diamond: ~ 1000 Wm
-1

K
-1 

[19] 

 Copper: ~ 401 Wm
-1

K
-1 

[19] 

Electron mobility excess of cm
2
/(V·s) [11] 

Si ~ 1400 cm
2
/ (V·s) [20] 

 

The graphene primitive cell is shown in Figure 1.6, where each blue point is a carbon 

atom, and green lines join adjacent atoms. In order to develop an analytical expression for the 
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energy band structure of graphene the time-independent Schrödinger’s equation should be 

solved, 

              , ,H r E r k k k                                          (1.1)       

where 𝜓 is the electron wavefunction, H is the Hamiltonian operator which operates on the 

wavefunction and the energy E is its eigenvalue. k=kx x+ky y is the wavefunction momentum, 

also called reciprocal vector. Models for the computation of energy bands of graphene 

structures can be based on first-principle or on tight binding approaches. In both cases we aim 

at solving the Schrödinger equation. 

 

Figure 1.6: Schematic illustration of a graphene cell. 

First principle models aim at solving the Schrödinger equation by using only physical 

fundamental constants and the atomic composition of the material as input. They allow the 

computation of several quantities of interest in solid-state physics and chemistry, namely the 

electron density, energy levels, and nuclei positions, leading in our case to a precise 

characterization of electric features of nano-devices. Due to the extreme complexity of the 

calculation (large number of unknowns, of variables of wave functions, non-linear nature of 

the problem and iterative solutions required, etc.) many ab-initio approaches exists, depending 

on the specific assumptions used to simplify the problem under study. Among the best known 

is the Hartree–Fock (HF) method and its variations. It uses the so-called Born-Oppenheimer 

approximation, consisting in a two-step solution of the time-independent Schrödinger 
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equation separately for the electronic coordinates (with an “electronic” Hamiltonian) and for 

the nuclei coordinates (by including the nuclear kinetic energy). The unknown wave function 

is expressed as a sum of basis functions (“atomic orbitals”), chosen to approximate a 

complete basis in order to represent at the best the wave function. The Hartree-Fock ab-initio 

method is certainly among the most accurate and flexible modeling for a vast class of atomic 

structures. It allows getting accurate results at high energies, in the presence of irregular 

shapes, defects, loss of symmetry. However, due to the complexity of the problem and the 

number of different particle interactions, ab-initio calculation time becomes long as the size 

of the domain increases and prevents the simulation and the optimization of large devices. 

Thanks to the symmetry of the graphene lattice, nano-electronic applications presented in this 

thesis can be often modeled, at least partially, with simplified methods leading to fairly 

accurate results.  

­ Tight binding model 

Tight binding theory can overcome limitations of ab-initio simulations and even give 

analytic closed-form results, which can help us gain a physical insight about the device 

operation. It leads to the electronic structure of the material under study, by solving also in 

this case the time-independent Schrödinger’s equation for the energy dispersion band 

structure.  

The tight binding model is a method of calculating the electronic band structure by 

using a set of approximate wave functions which are based on superposition of isolated 

atomic wave functions. This model is different from nearly-free electron model. For nearly-

free electron model, interactions between electrons are ignored and assume the electrons in 

the crystal only have weak Coulomb attraction from respective nucleus [12]. On the contrary, 

in tight binding model we assume that the atom has a strong binding effect on electrons. 

Electrons near the atom are mainly affected by the potential field due to the atom, while the 

effect of other atoms is regarded as a small perturbation.   

In order to obtain simple closed-form results, leading to a fast analysis tool, in this 

thesis we choose to use a tight binding model for solving the electronic structure of deformed 

graphene. Furthermore, the method can be used also to calculate the modification of energy 

bands due to small deformations of the graphene lattice. In the following the main results 



 

14 

 

obtained with the tight binding approach are summarized. More details and calculations about 

the effect of deformations will be presented in Chapter 2.  

A tight binding model can be considered to solve (1.1), consisting in retaining only a finite 

number of mutual interactions among atoms in the Hamiltonian H [12]. If only the closest 

atoms interact, a so-called nearest-neighbor approach is obtained. In this case, the spectral 

Hamiltonian becomes:  

      31 2 jj jH V e e e
      

k Rk R k R
k                                    (1.2)                                                     

with the tight-binding hopping parameter V=2.7 eV, experimentally determined, describes the 

energy related to an electron exchange between adjacent sites. V is also referred to as the 

nearest neighbor overlap energy, the hopping or transfer energy, or the carbon–carbon 

interaction energy [12]. Of course the symmetry of the lattice grants that the value of V is the 

same for all the possible exchanges with each of the three nearest neighbors. 

In the nearest-neighbor approach, graphene energy bands can be computed from 

equation (1.2), [12]. 

       3 31 2 1 2j jj j j j2 2 e e e e e eE V
           

R RR R R Rk kk k k k
k                       (1.3) 

The hexagonal symmetry of the lattice makes it simple to express the vectors R1, R2, 

and R3 as a function of the inter-atomic distance a = 2.46 Å (see Figure 1.6).   

1

2

3

,0
3

,
22 3

,
22 3

a

a a

a a

 
  
 

 
   
 

 
  
 

R

R

R

                                                     (1.4) 

A simple replacement of (1.4) in (1.3) leads to the final expression: 

  23
, 1 4cos cos 4cos

2 2 2
x y x y y

a a a
E k k V k k k

     
              

                  (1.5) 
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Figure 1.7 shows the bi-dimensional Brillouin diagram obtained with the nearest-

neighbor tight-binding approach (1.5). The upper half dispersion is the conduction band and 

the lower half dispersion is the valence band. The K points, also called Dirac points, are the 

point in the kxky spectral plane where the conduction band and valence bands touch each 

others exhibiting a locally linear behavior. Figure 1.8 shows the typical Dirac cone at the 

points K, where a locally linear dispersion is found. In Figure 1.8, the Dirac cone shows 

clearly that an infinite graphene sheet exhibits no band gap.  

Figure 1.9 shows the comparison of an ab-initio and a nearest neighbor tight-binding 

(NNTB) model for graphene energy dispersion. The ab-initio model is of course more 

accurate than NNTB method. From Figure 1.9, we can observe subtle differences for higher 

energies. However, behavior of electrons around Dirac points is the most relevant to study 

transport properties in nano-transistors. Since ab-initio model and NNTB model show good 

agreement at low energies, tight binding method are currently used for these applications 

mainly due to the reduced computation time and ease of implementation, even if not being as 

accurate as ab-initio models. 

 

Figure 1.7: The nearest-neighbor tight-binding band structure of graphene. 
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Figure 1.8:  The linear energy dispersion of graphene at the K-point. 

 

 

Figure 1.9: Comparison of ab-initio and NNTB model for energy dispersions calculation [12]. 

1.3 Energy bands of graphene nanoribbons 

Graphene nanoribbons are narrow rectangles made from graphene sheets. Two main 

types of graphene nanoribbons can be considered, the armchair GNRs (aGNRs) and zigzag 

GNRs (zGNRs). The difference among them is that aGNRs has an armchair cross-section at 

its edges, while zGNRs has a zigzag cross-section at its edges [12]. An aGNR can be obtained 

by cutting a graphene sheet along a given direction (see Figure 1.10). Since the resulting strip 

lacks the translational symmetry along one direction (its width), no simple closed forms can 

be obtained for its energy bands as in the infinite-graphene case. However, if an ideal 

Dirichlet condition is enforced on the wavefunction at the opposite boundaries along the 
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width w = (𝑁 − 1)𝑎/2  of aGNR, where N is the number of tightly bound atoms in the 

direction of the ribbon width (y  in Figure 1.10), 

 

Figure 1.10: Armchair graphene nanoribbon. 

ψ y ψ y w 0
2 2

a a   
        

   
                                  (1.6) 

simple conditions can be derived on the ky wavenumber for aGNR: 

      ,a π yw k                                                (1.7) 

 y,

απ απ 2απ

1a 1 a
a a

2

k
Nw N

   
 



                                 (1.8) 

where α = 1,…, N.  

Once the discretized values of ky,α  are replaced in the energy (1.5), the sub-band 

structure of the nanoribbon is obtained: 

  23
V 1 4cos 4

2

x
x

ak
E k A A                               (1.9) 

where  

π
cos  

1

1, ,

A
N

N







 
  

 

 
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1.4 Review of modeling methods for nano-transistors 

The electronic and mechanical properties of graphene are the reason of the interest in 

graphene-based devices. The behaviors are of course related to the energy bands graphene-

base structures, but also to other factors like deformation features, temperature of the 

environment, geometric and physical parameters of the device. Unfortunately, accuracy issues 

of current models for transistors are already arising in connection to the progressive reduction 

of the scale of MOSFET devices. This complexity motivates the research of numerical models 

efficient and at the same time accurate. Different models are briefly reviewed here, and more 

details will be given about the model selected to study the transistors in the following chapters. 

The drift-diffusion model is the most common semi-classical models of micron-scale 

semiconductor devices [21][22].  The current flowing through the device is the sum of a drift 

term and a diffusion term both for electrons and holes. The success of the drift diffusion 

model is due to its efficiency, simplicity, and flexibility on different kind of meshes for 

arbitrary geometries. However, this model does not take into account quantum effects arising 

in nano-scale devices, such as hot carriers and band discretization due to spatial-confinement 

effects [23]. Different modifications have been proposed in order to introduce suitable 

corrections to these limitations. 

Monte Carlo algorithms are the most reliable and established approaches, extensively 

used to simulate devices under semi-classical regimes. They are based on the simulation of a 

large number of sample cases (particles motion through the device) whose trajectory is 

computed with semi-classic approximations. Scattering phenomena intervals of free-flight 

(time intervals between scattering events) are computed with suitable statistics [24]. The 

scattering effects and velocity spectra are also studied for nano-scaled MOSFET (which 

channel lengths are 15nm and 25nm) by using Monte Carlo simulation in [25]. Recent works 

have shown how to successfully include quantum effects due to thin films (by means of sub-

band quantization corrections) and short-channels effects (by including quantum non-local 

effects in the charge density evolution) [26].  

Hydrodynamic models are derived by applying the moment technique to the 

Boltzmann transport equation. The propagations of electrons and holes in a semiconductor 
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device is here simulated as the flow of a charged compressible fluid [27][28]. This allows for 

considering the effect of hot carriers, which is missing in the drift-diffusion model, and leads 

to accurate results for devices of size larger than 0.05 m. Also in this case, quantum 

corrections to the evolution of the charge distribution have been proposed to treat smaller 

devices [29]. This approach is much faster than Monte Carlo ones, but can fail at very small 

scale, where Monte Carlo is still reliable. Thoma [28] proposed a generalized hydrodynamic 

model, where formulas depending on temperature only are applied. 

In order to reduce the computation time and obtain simplified models to be used in 

circuit design and optimization, the intensive research on graphene field-effect transistors 

(GFET) stimulated within the past decades several models for better understanding 

characteristics of these devices and to reduce the computation time of rigorous approaches. 

1.4.1 Carrier transport model in GFET 

In [30], an analytical model for GFET is presented (see Figure 1.11).  In this structure, 

the substrate is highly conducting and serving as the back gate, while the top gate controls the 

current. Thermionic transport is described for this kind of GEFT. Potential distribution in the 

channel and thermionic current are calculated accordingly by using this analytical model.  

 

Figure 1.11: Schematic view of GFET structure studied by V. Ryzhii, M. Ryzhii, and T. 

Otsuji [30]. 

In [31] first principle approach is used to study the behavior of GFET, thus obtaining 

thermal, electrostatics, and electrodynamic quantities, channel current and transfer 

characteristics. Based on the physical model in [31], a small-signal model was proposed in 

[32]. This small-signal model is also based on first principle and the carrier transport in the 
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channel is studied by drift-diffusion model. S. Thiele and F. Schwierz proposed a simple 

model for calculating DC behavior of GFET [33]. Modeling results like transfer 

characteristics and output characteristics are successfully compared with experimental data. 

In [34] the carrier transport is studied with a drift-diffusion perspective, for both 

single-layer and multiple-layer graphene. In [35] the non-equilibrium Green’s function 

(NEGF) technique is used to solve the Dirac equation for GFET, and the carrier transport of 

double-gate GFET is investigated. 

1.4.2 Analytical models for GFET 

In the last decade, some analytical models for GFET have also been proposed. The 

authors of [36] describe the design of top gate GFET [36] (as Figure 1.12 shows). In their 

research, the channel material is zero-bandgap graphene. Although the utilization of zero-

bandgap graphene limits the on-off current ratio, the results showed the possibility of 

applying graphene for radio frequency circuit.  

 

Figure 1.12: Top gate GFET structure studied by I. Meric [36]. 

The carrier concentration n is at first computed, and the quantum capacitance is 

calculated as: 
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  2C / /q Fn e  ħ                                             (1.10) 

where 𝜈𝐹 is the Fermi velocity. The current in the channel can then be derived as: 

     
0

L

d drift

W
I en x v x d x

L
                                          (1.11) 

where W is the channel width, L is the channel width, 𝑣drift(𝑥) is the carrier drift velocity. 

The carrier drift velocity can be calculated by using a velocity saturation model: 

 
1 /

drift

sat

µE
v x

µE v



                                                (1.12) 

where 𝑣𝑠𝑎𝑡is the saturation velocity of the carriers. A considerable amount of later research is 

based on [36]. In [37] the gapless graphene is also used as channel material. Compared with 

[36], stable saturation is obtained. 

Quantum capacitance, channel charge, I-V characteristics, the small signal parameter 

and cut-off frequency are all calculated in this model. These results are also validated with 

experimental data from long-channel GFETs (channel length larger than 1 μm).  

A new compact model [38] is proposed based on the quasi-analytical model in [37] 

and verified by using measurements from the literature. The authors of [39] proposed a 

compact model suitable for short-channel GFETs (the channel length is 240 nm) and based on 

the concept of “virtual source”. This GFET virtual source model allows to study the carrier 

transport in GFETs and is also described in H. Wang’s model [39]. The derived I–V 

characteristics are compared with experiment data showing a good agreement. 

In [40] and [41], a GFET model is presented for radio frequency applications, based 

on drift-diffusion theory with saturation velocity effects. Drain current, charge, and 

capacitance of GFET are there discussed. In [42], a semi-empirical model is shown for single 

layer zero-bandgap graphene. The current can be calculated by using carrier density, the 

carrier velocity, the channel length and the channel width. The carrier density is modeled by 

semi-empirical charge-voltage relation and carrier drift velocity is obtained by a velocity 
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saturation model. Compared with physical models, this semi-empirical model gives accurate 

drain and source contact resistances and can provide acceptable accuracy with considerably 

reduced time.  

In [43], models for both monolayer graphene and bilayer graphene based on the results 

in [36][37] are presented. In [44] a compact model for GFET in the quantum capacitance limit 

based on the drift-diffusion model [44]. The results of [36] were also used in [45] and [46] to 

achieve a scalable compact model based on quasi-analytical physics, where the charge 

distribution computation is improved by considering the specific graphene density of states. 

This approach has inspired a number of following papers such as [47]. In [48], a circuit-level 

model for GFET is proposed which channel being either a multilayer graphene involving an 

arbitrary number of layers. The multilayer geometry is described with the introduction of a 

novel interlayer capacitance leading to an accurate calculation of the channel surface potential 

and the channel resistance. In [49] an ambipolar-virtual-source model for nanoscale GFET is 

presented, including two separate virtual sources for electrons based on drift-diffusion 

equation. 

These models are mainly focused on the use of graphene in FET and they are suitable 

for analogue and radio frequency circuit without considering band gap. However, the lack of 

bandgap limits the on-off current ratio. Different methods to tune the band gap of graphene 

for FET have been proposed for practical application. The most appealing approaches, 

compatible with the realization of fully planar nanotransistors, is the cutting of graphene 

sheets into thin nanoribbons and the fabrication of nanomeshes by removing atoms along a 

periodic pattern. Graphene nanoribbon exhibits a band gap directly related to their width, and 

equivalently to the number of atoms along their transverse (and shorter) dimension. The 

bandgap of nanomesh is also related with its geometric features, namely the shape and 

distributions of the holes. 

 

1.5 Modelling methods used in this thesis 

In this section, we will introduce the two methods used in this Thesis to model the 

nano-transistors described later. In relation to the size of the transistors chosen, we aim at 
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analyzing the electronic characteristics of both ballistic and quasi-ballistic GFET. This means 

that the length of the device is smaller than the mean free path of graphene, so that charges 

move through the channel without experiencing any scattering (ballistic regime) or 

encountering a limited amount of scattering (partially ballistic regime). 

The objective of the model is the computation of the current under different voltage 

excitations. However, the current in can only be computed once the potential distribution 

along the channel (x) is known (x being a linear coordinate along the channel). This potential 

is a quantity varying along the channel in the case of quasi-ballistic transistor, or a constant 

along the channel in the case of ballistic transistor. In order to determine the potential, the 

charge distribution along the channel should be computed with two different approaches at 

different scales, and a multiscale coupling between them is performed. We have then a macro-

model and a micro-model. In order to obtain a coherent description of charge density, an 

equality is enforced between the charges computed with both models: this gives an equation 

leading to the numerical determination of the channel potential (x). This is described in 

Figure 1.13. 

 

Figure 1.13: Diagram used in both models to compute source-drain current.  

More specifically, the macro-model computes the charge distribution in the channel 

through an electrostatic analysis of the device. Its mathematical formulation is done through 

Poisson equation, but for canonical geometries as those studied here, analytic simplified 
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expressions for the capacitances between contacts can be used in order to avoid a full 

numerical solution of the Poisson equation. 

In fact, a macroscopic expression for the charge, expressed through equivalent 

capacitances Cg, Cs and Cd can be written straighfowardly as: 

   FB,

, ,

        macro c i i i c

i g s d

Q x C V V x                              (1.13) 

where Vg, Vs, Vd are the voltage of gate, source and drain, respectively, and VFB,i are the 

relevant flatband voltages. 

The g ate capacitance per unit area can be calculated as [50]: 
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                                      (1.14) 

where t is the thickness of the substrate (SiO2 in the following chapters) 𝜀𝑟  is its relative 

permittivity, and 𝜀0 is the permittivity of vacuum. Note that this expression is quite different 

from the simple capacitance of a large parallel plate system, since fringing-field corrections 

are relevant at this length scale. 

The micro-model computes the charge in the channel by means of a quantum approach, 

and its mathematical formulation is done by means of the Schrödinger equation. This micro-

scale problem is formulated in two different ways. A rigorous but time-consuming ab-initio 

approach is chosen in order to obtain results to be used as a reference. However, in order to 

have a faster method useful for the parametric analysis and optimization of electronic devices, 

we use also a semi-analytic approach whose results will be compared with the ab-initio ones. 

1.5.1 Micromodel: the Non-equilibrium Green’s function 

A very accurate ab-initio method often used for the study of physical properties of 

materials and more specifically the behavior of nano-transistors is the Non-equilibrium 

Green’s function (NEFG). The NEGF approach is a dynamical formulation based on the 

solution of Schrödinger equation, solving for the energy bands of materials by describing the 
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interaction among atoms through proper atomic orbitals for the coupling between carbon 

atoms, and between the source/drain and the graphene [51]. Despite its accuracy and 

flexibility, this method is time consuming if compared with the analytic method described in 

the following paragraph 1.5.2. For this reason, the NEFG
1
 method will be used in this Thesis 

to obtain reference results with the aim of validating the analytic method proposed later. 

The NEFG method performs the numerical solution of Schrödinger equation in the 

Laplace domain, thus keeping a full information on the dynamic properties of the device. An 

extensive treatment of NEGF can be found in [51][52]; here we give a few definitions 

necessary to formulate our problem. 

The current of graphene nanoribbon-based FET can be calculated by the following 

equation [53]: 

 

        
2 ** *

S S c D D c S D

q
I trace G G f f dE       

  
       (1.15) 

 

where 𝚺𝑆 and 𝚺𝐷 are operators describing the interactions with S and D contacts, respectively, 

f
S
 and  f

D
 are Fermi distribution at the S and D contacts, respectively,  cG  is the Green’s 

function, 𝜙𝑐 is the channel potential to be determined with the multiscale approach described 

above. 

Every atom in the lattice can be indexed by a couple of integers, and the interaction 

between sites by the indices mn, ij. To apply (1.15) to a graphene channel, the equation of 

motion must be enforced for the Green’s function: 

 

        †

, ,, , ,r

t mn ij mn ij mn iji G t t t t i t t c H c                    (1.16) 

 

and the operator H in (1.16) describing the electronic interactions is: 

 

                                                 

1
 The method has been developed by Dr. Fernando ZANELLA, at the time PHD student at the Universidad 

Federal do Paranà, Brasil, during two visits at Sorbonne in 2016 and 2017. 
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where q is the electron charge and  is the reduced Plank’s constant. The first term in (1.17) 

is the kinetic energy of each electron, whit me being the free electron mass. The second term 

is the Coulomb potential between an electron and a carbon nucleus, with Zc the effective 

atomic number and ε0 the vacuum permittivity; ri−Rj is the distance between an electron and a 

nucleus, and a0  is the maximum radius of a carbon atom, significant when i = j. The last term 

is the localized channel potential that must be found by coupling the quantum-mechanics 

equations with the electrostatic problem (Poisson equation). The Green’s function can be 

obtained by solving the Schrödinger equation in Laplace domain: 

 

  
1

c

S D

G
E j H


   

                                     (1.18) 

where E is the energy, and  is an infinitesimal number necessary to guarantee convergence. 

To find the matrix form of 𝑯 we project (1.17) in a 𝜋 orbital basis for the channel given by 

 

    
5

, cos r

i j r e 
 


                                 (1.19) 

 

where  = 2.18 is a constant enforcing orthonormality. For the contacts, we consider a 

coupling between a carbon atom and gold atom.  

We should notice this method is very accurate, but also time consuming and not suitable for 

fast analyses of circuits composed of several devices or optimization of devices with respect 

to several parameters. The method requires computational is related in the first place to the 

great number of interactions among orbitals considered.  
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1.5.2 Micromodel: the Semi-analytic multiscale approach 

Therefore, in this thesis, we choose to apply ballistic transport model and partially 

ballistic transport model for analyzing the electronic characteristics of GFET. This means that 

the length of the device is smaller than the mean free path of graphene, so that charges move 

through the channel without experiencing any scattering (ballistic regime) or encountering a 

limited amount of scattering (partially ballistic regime). 

An appealing model for nano-scale transistor in ballistic regimes (which can be easily 

extended to the semi-ballistic [54][55]) has been proposed in [51][56], based on the analytic 

calculation of energy bands and the density of states of nanoribbons. The current flowing in 

the transistor can be calculated by using a Landauer–Büttiker approach [51]: 
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                       (1.20) 

where Ts and Td are the transmission coefficient of charges through Schottky barrier at the 

source and drain contacts, respectively, and become equal to one in the case of Ohmic 

contact. Their computation is detailed in next paragraph 1.6. The factor T* is given by 

*
s d s dT T T T T    

In equation (1.20), i =e, h stays for electrons and holes, and the Fermi-Dirac 

distribution f is integrated: 

 
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               
h e

α,s d α,s d
                                                 (1.23) 

𝜇𝑠 and 𝜇𝑑 are the Fermi levels of source and drain respectively, E is the  kinetic energy (to be 

integrated in (1.20)) and 𝜙𝑐(𝑥) is the surface potential, i.e., the potential along the channel. 
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As said above, its dependency on x, a coordinate along the channel lengh, cannot be neglected 

in the case of partially ballistic conduction. 𝑘b  is the Boltzmann’s constant and T is the 

temperature. The total current is given by: 

𝐼 = 𝐼𝑒 − 𝐼ℎ                                                     (1.24) 

However, before computing (1.20) and (1.24), the surface potential 𝜙𝑐  must be 

determined first. The surface potential 𝜙𝑐  can be determined by imposing a consistency 

relation between the mobile charges in the channel 𝑄𝑚𝑖𝑐𝑟𝑜(𝜙𝑐), computed with a quantum-

mechanical approach , and 𝑄𝑚𝑎𝑐𝑟𝑜(𝜙𝑐), computed  through a macroscopic electrostatic model. 

𝑄𝑚𝑖𝑐𝑟𝑜(𝜙𝑐) can be expressed as an integral of the Fermi-Dirac distributions over all 

the energy bands:  
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𝑄𝑚𝑖𝑐𝑟𝑜(𝜙𝑐) = 𝑄𝑚𝑖𝑐𝑟𝑜
ℎ (𝜙𝑐) − 𝑄𝑚𝑖𝑐𝑟𝑜

𝑒 (𝜙𝑐)                                  (1.26) 

where the sum over  is a sum over the different energy bands (only the lower bands are 

usually significant in this computation). D(E) is the density of states of the ath energy band 

as a function of the kinetic energy E. 

1.6 Approximated quantities describing nanoribbon energy-bands 

As shown in (1.25), the possibility to describe in an analytic form the energy bands of 

the channel material (graphene-based material in this case) is crucial to obtain a simple 

expression for D(E) and easily calculate the relevant integrals. This is possible, as described 

in the near-neighbor tight-binding approach in Sec. 1.3. Starting from the analytic expressions 

for the energy bands we can perform first-order approximations in the cos function for small 

kx

2
23 1 3

cos 1
2 2 4

x
x

ak a
k  , we can write 
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with the following definition of an effective mass 
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If a second approximation is done on the square-root function 
2 2 2 2
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we obtain a parabolic expression: 
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The definition of Mα allows different definitions of the density of states Dα in the 

presence of deformation, according to the approximation chosen for the energy. Starting from 

the first-order approximation, we obtain  
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while, starting from the second-order approximation, we obtain 
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                          (1.30) 

While (1.25) is a less accurate approximation, it allows to compute in close-form the 

integral in the case of ohmic contacts, and for this reason it is used in [56]. It will be show in 

next chapter that, in the presence of mechanic deformation, the parabolic expression is not 

always suitable for the deformed energy bands. The higher-order approximation will be there 

preferred and the integral (1.25) will be performed numerically. 
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The importance of the definition of an effective mass is also related to the possibility 

to achieve a closed-form calculation for the transmittivity T(E) of a charge through a Schottky 

contact at the source-graphene and drain-graphene interfaces and the electronic densities of 

charges in the channel. The final formulas can be used in the following for the relevant 

computation of charges and currents [56]. WKB approximation (named after physicists 

Wentzel, Kramers, and Brillouin and developed as a general method of approximating 

solutions to linear, second-order differential equations) can be used to obtain closed-form 

transmission coefficients valid under deformation. The transmission coefficient calculated 

through WKB approximation [56] reads: 
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where λ describes the potential distribution along the channel and depends on the device 

geometry, and 𝐴s is the height of Schottky barrier at the source (the same equation holds for 

the barrier at the drain). Let now 𝑒−𝑧 𝜆⁄ = 𝑡, 
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After (1.26) is computed, the surface potential 𝜙𝑐  can be determined by enforcing the 

equality between the micro-model and the macro-model in Section 1.5: 
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 𝑄𝑚𝑖𝑐𝑟𝑜(𝜙𝑐) = 𝑄𝑚𝑎𝑐𝑟𝑜(𝜙𝑐)                                           (1.35) 

resulting in a nonlinear equation to be solved numerically.  

Practically, the numerical solution of (1.35) ( )   ( ) ( ) 0c micro c macro cf Q Q      for the 

variable c  is performed by applying the bisection method [57], described in Figure 1.14. 

One start looking for the solution in an arbitrary interval [ 1_c initial , 2 _   c initial ] (in our case, we 

set 1_ 2Vc initial   and 2 _ 2V  c initial  ). We employ the continuity of the function ( )cf   on the 

interval 1 2,[ ]c c  and we check if 1( )cf   and 2( )cf   have opposite signs. If

1_ 2 _( ) ( ) 0c initial c initialf f   , no sign change is present in the interval 1 2,[ ]c c   (the presence 

of one zero at the most is assumed in the interval), and the initial interval is extended. 

Otherwise, one zero of f is present in the interval 1 2,[ ]c c  . The interval is divided in two and 

the procedure is repeated in each of the sub-intervals, until when the zero is found with a 

sufficient accuracy. 

 

Figure 1.14: Illustration of the bisection method. 

1.7 Research Objectives 

1.7.1 Graphene nanoribbon based transistors 

The electronic performance of graphene nanoribbon-based transistors is related with 

their geometric shape and working environment. In fact, strain operating on the flexible 
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substrate, and its subsequent deformation, could have a non-negligible impact on transistor 

performances (see Figure 1.15). Another interesting scenario where mechanical deformations 

could play a role is the use of transistors as bio-sensors [58]. The deformation of a graphene 

sheet would be related to the presence of a molecule to detect. For these reasons, we want to 

evaluate how the performance of graphene nanoribbon-based transistors will change when 

strains are applied on them. 

  

Figure 1.15: (a) deformed graphene nanoribbon, (b) sectional view of a double-gate aGNR 

FET. 

The effect of mechanical deformations on electrical properties of nano-transistors 

should be taken into account though their impact on the conducting properties of graphene. 

This can be done of course by means of ab-initio calculation, which are quite computational 

expensive. However, thanks to the lattice symmetries of graphene and the assumption of 

small deformations, closed-form results for the impact of deformation on the full energy 

bands of graphene can be derived. In fact, previous work has already been performed to show 

the effect of deformations on energetic properties of graphene sheets and nanoribbons [59]-

[61], with both ab-initio formulations and other models. In [62] the electronic structure of 

graphene and graphene nanoribbons under strain is studied by using first-principles 

approaches and tight binding theory. In [63], a field-effect transistor (FET) under strains is 

studied with first-principle approaches. 

However, engineering applications to practical circuits require a simple model, whose 

parameters can be directly related to relevant geometric quantities. For this reason, we aim at 

employing the semi-analytical approach [56] described in Section 1.4.2 to study the electronic 

characteristics of FET. The effect of mechanical strain on graphene-based nanotransistors has 

not been previously taken into account in this approach in the literature. For this purpose, in 

Chapter 2 we consider nanoribbon transistors under deformation: we rigorously take into 

（a） （b） 
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account the effect of the deformation on the energy bands of the graphene and on the 

electrostatic analysis of the complete device. This leads to a complete characterization of the 

device in terms of its current-voltage characteristics. If the deformation is assumed small, as is 

expected in nanodevices for flexible electronics, due to the small dimensions of the transistor 

with respect to the local curvature radius of the deformed substrate, its effect will be seen to 

result both in a spectral scaling of energy bands and a Dirac-point shift. Both effects are 

derived on the basis of ab-initio simulations and are subsequently considered in our method. 

This approach is capable to describe both ballistic and partially-ballistic conduction regimes.  

1.7.2 Graphene nanomesh based transistors 

Creating regular holes in the graphene sheet (the so-called nanomesh graphene) may 

be another choice to tune the bandgap [64]. The structure of graphene nanomesh is shown in 

Figure 1.16 and the characteristics of nanomesh devices were first discussed in [64]. The 

advantage of graphene nanomesh in FET is having a high ON/OFF current ratio and a 

saturated current at high drain voltage. 

 

Figure 1.16: Structure of graphene nanomesh [65][66]. 
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Electronic properties of graphene nanomesh have already been studied. In [67] the 

electronic properties of graphene nanomesh are computed by using first principle calculations, 

leading to the conclusion that zig-zag edged graphene nanomesh can be either semiconductors 

or semimetals according to their structure. In [68], the electronic, magnetic, and mechanical 

properties of graphene are studied by using a supercell method. The creation of a band gap 

due to quantum confinement in graphene nanomesh is discussed in [69], where a relationship 

between energy gap and hole arrangement is also given. Based on these previous studies of 

graphene nanomesh, in [70] the fabrication of graphene nanomesh whith ribbon width less 

than 10 nm is achieved (see Figure 1.17). The fabricated graphene nanomesh samples are 

used in FET and the relationship between the On/Off current ratio and ribbon-width is 

obtained, showing that the On/Off current ratio increases when the ribbon width is reduced. 

 

Figure 1.17: Schematic illustration of graphene nanomesh ribbon width [70]. 

In Chapter 3, computation and measurement of the I-V characteristics of the graphene 

nanomesh transistors (see Figure 1.18) will be presented. We employ a semi-analytical 

compact approach based on the energy gap calculated with the ab-initio method. We compare 

the qualitative behavior of simulated devices with independent measurements performed on 

fabricated devices. We investigate the influence of mesh shape and of geometrical parameters 

on the conduction properties of the devices. 
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Figure 1.18: Nanomesh graphene transistor [70].  
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 Chapter 2. Dispersion Relations under Deformation and 

Schottky Field-Effect Transistor 

In this chapter, a tight-binding model is used to describe the effect related to 

mechanical deformations of graphene nanoribbons on the performance of nano-transistors. 

We accordingly define modified effective masses and density of states which are necessary to 

be used in the description of graphene FET. Once electronic properties of graphene 

nanoribbons under strain are determined, the currents of the field effect transistor can be 

calculated.  

Numerical results are presented in this Chapter for currents and potentials in a 

nanotransistor which channel is an aGNR strip with different widths, both in ballistic and in 

partially-ballistic regime. Both Ohmic contacts and Schottky barriers can be considered. 

2.1 Energy bands of a deformed graphene nanoribbon 

Equation (1.9) gives the energy bands of an aGNR in the absence of any geometrical 

deformation. In the presence of a relative deformation d, the values of the geometrical vectors 

R1, R2, and R3 describing the relative position of atoms will change accordingly into 𝑹′𝟏,𝑹′𝟐 

and 𝑹′𝟑 (the deformation is shown in Figure 2.1). Their values can be easily computed, thus 

leading to a modified equation for 𝐸𝛼
𝑑 , the th energy band under deformation. The kx 

dependence is then replaced in (1.9) into (1+d) kx. On the one hand, regarding the ky 

dependence, the width w in (1.7)-(1.8) is deformed into 𝑤 , = 𝑤(1 − 𝜈𝑔𝑑), where 𝜈𝑔 is the 

Poisson’s ratio of the graphene, usually taken approximately equal to 0.145 [71]. The 

discretized values for ky are scaled accordingly as  𝑘𝑦,𝛼
𝑑 = 𝑘𝑦,𝛼/(1 − 𝜈𝑔d) . The different 

values of the mutual distances among atoms modify also the relevant hopping parameter. 

More specifically, different hopping parameters are now expected depending on the 

considered couple of atoms, due to the loss of hexagonal symmetry. If we do not consider any 

variation of hopping parameter in the tight-binding Hamitonian at this step, the argument of 

the cosines in the Aα would then be unchanged due to the multiplication between 𝑘𝑦,𝛼
𝑑  and the 
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modified transverse dimension 𝑎(1 − 𝜈𝑔𝑑)/2. In fact, by enforcing a hard condition on the 

electronic wavefunction  

           ψ 1 ψ 1 0
2 2

g g

a a
y d y d w 

    
          

    
                             (2.1) 

we obtain the quantization condition 

             d
1 d π,g w a ky                                                     (2.2) 

 

 

Figure 2.1: Deformation of Brillouin zone with the effect of strain (a) geometric effect of 

strain on graphene cell, (b) deformation of the Brillouin zone. 

So that  

   
2απd

, 1 1 g

k
y N a d 


 

                                                   (2.3) 

The A factor in (1.9) becomes then: 
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 

 
   

   
    

    
 (2.4)                                                   

where the effect of deformation has no impact. The final energy bands of the nanoribbon 

deformed along the x dimension is then: 

（a） （b） 
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       
2

d d d d3a
1 4cos 1 cos 1 4 cos 1

2 2 2
x g y g y

a a
E V d k d k d k  

      
            

     
k    (2.5)                  

In (2.5), for convenience, 𝑘𝑥
d will be abbreviated as k in the following: 

   d 23a
V 1 4cos 1 4

2

k
E k d A A  

 
     

 
                          (2.6) 

The band model (2.6) can be used together with a first-order correction  δ𝐸𝛼
′  , which is 

based on a perturbative approach [72] taking into account a different interaction among the 

atoms at the edges, being at a different chemical potential with respect to the central ones, by 

slightly varying their mutual hopping integrals: 

                    
 ' 2 a 10.12V π

δ sin cos
N 1 N 1 3

d k
E k

   
    

    
                                 (2.7) 

The edge-corrected energy dispersion is then: 

              'δc dE k E k E k                                                  (2.8) 

 

Figure 2.2: Comparison of the subbands of an aGNR with N=12 lines between tight-binding 

calculation with and without edge correction. (a) No deformation (b) Relative deformation 

d=0.1 (c) Relative deformation d=-0.1. 

The discussion presented for energy dispersion is summarized in Figure 2.2, with and 

without edge correction (2.7) for different values of the relative deformation d. The solid 

black line represents the numerical result without edge correction and the dashed red line 

represents the result with edge correction. 

（a） 

 

（b） （c） 
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Figure 2.3: Comparison of the lowest subbands of an aGNR with 12 dimer lines with different 

deformations as explained in the legend. 

An important limitation of (2.8) should be stressed: no energy-gap variation can be 

detected with this approach, as can be done with the first-principle formulations that will 

present next. This depends on the fact that the hopping integrals describing the interaction 

between two adjacent atoms have been kept constant even in the presence of a deformation. 

Therefore, we cannot see any change for energy gap in our simulation results as Figure 2.3 

shows. In order to obtain more accurate results, the variation of hopping integrals under 

deformation should be taken into account, due to the presence of different distances among 

nearest-neighbor atoms [73]. When a symmetric strain is present, the Hamiltonian can be 

calculated with (1.2). If the strain applied is uniaxial, the hopping parameter depends on the 

bond lengths. In this case V1, V2, and V3 are no longer equal and the Fermi point will deviate 

as Figure 2.1 shows. 

The tight binding Hamiltonian is: 

𝐻(𝒌) = 𝑉1𝑒−𝑗𝒌∙𝑹𝟏 + 𝑉2𝑒−𝑗𝒌∙𝑹𝟐 + 𝑉3𝑒−𝑗𝒌∙𝑹𝟑                           (2.9) 

In case of small deformations, a perturbation method can be performed on the 

Hamiltonian around the Fermi point. In order to do this, we need an analytic expression for 

the variation of the hopping parameters  V1, V2, and V3 with the respect to the deformation. A 

relation was proposed in [74][75] of the kind: 
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 
2

0i iV V R R                                                  (2.10) 

where 0R is the bond length between adjacent carbon atoms in the absence of strain, while iR  

is the new bond length in the presence of strain. 

In that case, a simplified model has been already proposed in [74] under the 

assumption that small deformations ( 1d ) are present and the effect of the variation of the 

hopping parameters can be regarded as an effective shift of the Dirac points of the graphene 

sheet [74]. This leads to an analytic expression for the energy band, and avoid the need to 

numerically compute the hopping parameters themselves. 

More specifically, the shift of the Fermi point is described as a shift in the A 

coefficients of the th energy bands. The energy band under deformation becomes 

     
23a

1 4cos 1 4
2

d d dk
E k V d A A  

 
     

 
                     (2.11) 

where 

𝐴𝑑𝛼 = cos (
π𝛼

N + 1
− ∆𝑘𝑦

′ )   𝛼 = 1, … , 𝑁 

 t

3
S 1

2
gyk d     

(  defines the energy band), 3 cca a  and cca is the atomic distance between two 

adjacent atoms, V =  2.7 eV is the tight-binding hopping energy with no deformation. St is a 

constant reflecting the change of hopping parameter with respect to the bond lengths [74]: 

t

d
S

2 d

a V

V a
     (2.12) 

If we use the relation (2.10) to calculate the tight binding Hamiltonian in presence of 

strain, the value of St equals to 1. However, later ab-initio simulations show that a better 

choice in nano-ribbon is tS 1.29  [74]. This value will be used in the following results. 

1, , N 
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Two important features of (2.11) should be stressed. First, the presence of the factor d 

multiplying the wavenumber k derives from the spatial deformation, defining a reciprocal 

scaling in the spectral domain. However, as said before this geometrical effect does not 

account for a variation of the energy gap, which is a fundamental parameter for the evaluation 

of the transistor properties. The second feature is the presence of the ∆𝑘𝑦
′  shift in the term A . 

As anticipated, this shift is the equivalent effect of the linear variation of hopping integrals. In 

the small-deformation hypothesis, its value is linearly varying with d, and correctly defines a 

modulation of the band-gap at k = 0 [74]. This shift can be visualized as a shift of Fermi 

points: a graphical explanation can be seen in Figure 2.1(b), where Fermi points are the 

corners of the hexagonal Brillouin cell. 

Figure 2.4 (a)-(c) show energy bands for different values of the relative deformation d. 

As can be observed, different deformation values can lead to different energy variations if we 

consider the change of hopping parameter. In Figure 2.5, the lowest sub-bands with different 

aGNR deformation are selected and compared among them. This choice is motivated by the 

fact that the lowest bands are the most important to describe conduction phenomena in FET 

devices. 

 

Figure 2.4: Comparison of the subbands of an aGNR with 12 lines between tight-binding 

calculation without edge corrections. (a) No deformation, (b) Relative deformation d = 0.1, 

(c) Relative deformation d = -0.1. 

In Figure 2.5, we have observed that different deformation values can lead to different 

energy variations. In fact, as previously explained, a uniaxial strain has a non-negligible 

impact on the energy gap. For the further purpose of investigating the transistor performances, 

we have calculated the energy gap with different deformations (-0.1 ≤ d ≤ 0.1). The energy 

（a） （b） （c） 
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gap variation with respect to the relative deformation is shown in Figure 2.6. The results 

confirm that the energy gap oscillates following a zigzag pattern.  

 

Figure 2.5: Comparison of the lowest subbands of an aGNR with 12 dimer lines with different 

deformations as explained in the legend. 

 

Figure 2.6: The calculated energy gap of aGNR with uniaxial strain d, N=12. 

Figure 2.6 is in perfect agreement with similar results obtained in [74], where a good 

agreement between the analytic approximation and first-principle calculations prove the 

accuracy of the model. 

Under the linear approximation, the deviation of Fermi points is determined by: 
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 S 1t g

F

CC

d
k

a


                                                            (2.13) 

where d is the uniaxial strain. 

 

Figure 2.7:  Schematic illustrations of the strain effect on aGNR bandgap. 

The band gap is here defined as  d

gap 2 0E E  (the energy gap between the valence 

and the electronic bands). The variation of the energy bands with d can be graphically 

interpreted as the variation of the intersections between the discretized ky lines and the Dirac 

cone which translates as d varies (Figure 2.7 and [74]). The variations of the bands lead of 

course to a variation of Egap, which can be also calculated by recurring to the dispersion 

relation of the deformed graphene near the Fermi points. By assuming a locally linear 

dispersion close to the Fermi point: 

      d 3
0

2
C FC kE Va                                               (2.14) 

and then 
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Figure 2.8:  Schematic parallel k-lines for electronic states in aGNR 

Figure 2.8 describes the shift of the Dirac point ‘K’ between neighboring ky-lines, 

defined by the ky discretization of the nanoribbon. If a strain is present the Dirac point is 

translated along the ky axis according to (2.13), so that when the Dirac point arrives at the 

middle of these ky-lines (position 2), the energy gap reaches the maximum. When the Dirac 

point coincides with a ky-line (position 1 and position 3), the energy gap is decreased to 0. The 

solid red curve and solid black curve in Figure 2.7(a) are two neighboring energy dispersion 

lines. When the Dirac point moves from the K point to the K’ point, these two energy 

dispersion lines will change accordingly as Figure 2.7(b) shows. 

 

     

2π 1 2π 2π

3 N 1 3 N 1 3 N 1
y

CC CC CC

k
a a a

 
   

  
                        (2.16) 

The variation of deformation required to go from a maximum to a minimum of the 

energy gap (i.e., the interval between two neighboring turning points) is here named ∆𝑑 (see 

Figure 2.6), and can be interpreted as the deformation required for the Dirac point to move 

from position 1 to position 2. Therefore ∆𝑑 is determined by imposing a consistency relation 

between expression (2.13) and (2.16). 

2

y

Fk
k




                                                             (2.17) 
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From (2.13), if the Dirac point move from position 1 to position 2, 

         
 S 1
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d

k
a
C

g
 

                                                  (2.18) 

The value of ∆𝑑 is then 
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 
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                                          (2.19) 

The maximum energy gap of aGNR can also be determined by the linear relationship, 

              
max
gap

3Vπ

1
E

N



                                                  (2.20) 

The values of ∆d and 𝐸gap
max by using N=12 are consistent with what we obtained in 

Figure 2.6. The linear dispersion relation around fermi point verifies the accuracy with respect 

to our modeling. 

2.2 Effective mass and density of states 

The previous model allows for the definition of the effective mass and the density of 

states, required to compute analytically the density of charge carriers in FETs. These 

parameters are introduced in Section 1.6 by recurring to approximations for small values of k 

[56], and should be modified to take into account the deformation of energy bands. Based on 

the discussion in previous section this is very simple, since a simple scaling together with a 

modification of the energy gap value need to be performed. 

In nano-transistors modeling, we are concerned about the laying sub-bands which are 

related with the relevant transport phenomena. A simple parabolic approximation by 

developing both the cosines and the square root in (2.11) for small k leads to the definition of 

the effective mass 𝑀𝛼
d of the deformed nanoribbon: 

          
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If only the cosines is approximated in (2.11), we obtain a simplified expression for the 

energy which keeps the square root, and which is more accurate on a large interval and for 

smaller values of the energy gaps: 
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                                       (2.23) 

The formulas (2.21)-(2.23) extends similar results obtained in [56] for the non-

deformed nanoribbon energy bands. 

By means of the expressions (2.22) and (2.23), the density of states (DOS) in the 

presence of deformation can also be defined. DOS describes the density of mobile electrons 

or holes present in the solid at a given temperature [12]. This quantity is necessary to compute 

the charge densities and currents in the FET in the semi-analytic model. The definition of Mα 

also allows different definitions of the density of states Dα in the presence of deformation, 

according to the approximation chosen for the energy. Starting from the first-order 

approximation we obtain  
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                                      (2.24) 

while, starting from the second-order approximation, we obtain 
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                          (2.25) 

The definition of the density of states is useful in order to compute electron density 

carrier by using Fermi-Dirac distributions functions.  

The relations discussed in this subsection are summarized in Figure 2.9. In Figure 

2.9(a), the tight-binding energy dispersion (2.5) together with its effective-mass (EM) 

approximation and the more accurate I-EM approximation are shown in the absence of any 
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deformation in the picture on the left. The corresponding densities of states for each 

approximation are shown in the figure on the right. The same results are shown in Figure 2.9 

(b) and (c) for a deformation d = 0.1 and d = −0.1, respectively. All the numerical results are 

computed for an aGNR with N = 12. It can be observed that the density of states changes 

accordingly to the different deformation values. In Figure 2.9, the variation of the energy 

dispersion edge  d 0E with different d is very visible. The results of energy dispersion also 

verify the accuracy of energy gap in Figure 2.6. 

 

 

Figure 2.9: Energy dispersion curves and corresponding density of states of the lowest 

conduction subband of an aGNR with N = 12. (a) No deformation, (b) d = 0.1, (c) d = −0.1. 

All these results extend the analysis done in [56] for non-deformed nanoribbon. It is 

easy to verify that the final formulas have the same form of the non-deformed expressions, 

apart from a change in the values of the energy gaps of each band  d 0E , the spectral scaling, 

and the replacement of the discretization factor A  with the deformed discretization factor dA  

responsible for the translation of the K point. Some care is however necessary when these 

formulas are used in equation (1.25) in order to compute the total charges on the microscropic 

scale. Since deformations can modify the energy gaps  d 0E  , we require the formulation to 

be uniformly valid as  d 0E  becomes arbitrarily small. In this limit (see Figure 2.7) the 

energy band becomes locally a straight line, having a locally constant density of states. This 

（a） （b） （c） 
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linear expression is recovered in (2.23) if we put  d 0 0E  , but not in (2.21). The 

approximation I-EM must then be used in our analysis. 

Furthermore, in [56], a closed-form of the integrals in (1.25) valid with ohmic contacts 

(the T coefficients being unitary) is proposed in the assumption of a nondegenerate situation 

(  0 3E kT   ). This allows for replacing the Fermi-Dirac distribution with a Maxwell-

Boltzmann distribution [76]. The following result is obtained: 
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This integral expression and the final closed-form result in term of the first-order 

Kelvin function K1 is not valid if  d 0 0E  . Of course, this follows from the fact that the 

degenerate assumption is not verified. This is also clear by looking at the fact that the function 

K1 diverges for small arguments.  In our approach, we compute then numerically these 

integrals even in the case of ohmic contacts. Note also that a close-form expression for the 

integral can be obtain if  d 0 0E   (closing of the energy gap): 
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2.3. Deformations in Schottky Field-Effect Transistor 

Once the electronic properties of graphene nanoribbons under strain are determined, 

such as effective mass and density of states, the currents of the FET shown in Figure 2.10 can 

be calculated.  
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Figure 2.10: Sketch of strain on FET. 

Equation (1.31) gives simple expressions for the transmissivity coefficients Ts and Td. 

These parameters are used to calculate the current by using (1.20).We should notice that all 

the quantities in (1.20) are now computed in the presence of the same relative deformation d. 

Any deformation along the source-drain direction will cause a deformation along the 

vertical direction too, expressed through the Poisson coefficient 𝜈𝑆𝑖𝑂2 (usually taken as 0.17) 

of the SiO2 dielectric [77], and a deformation along the nanoribbon width, expressed through 

the Poisson coefficient of the graphene nanoribbon g , usually taken approximately equal to 

0.145 [71]. Such modifications of the oxide thickness 𝑡′𝑆𝑖𝑂2 and of the nanoribbon width 𝑤′ 

will change the gate capacitance. The same formula equation (1.14) is used with different 

geometric parameters 

𝐶𝑔
𝑑(𝑡′

𝑆𝑖𝑂2, 𝑤′) = 𝐶𝑔[𝑡𝑆𝑖𝑂2(1 − 𝜈𝑆𝑖𝑂2𝑑), 𝑤(1 − 𝜈𝑔𝑑)]                            (2.28) 

2.4 Study of deformation effects on carbon-based transistors with Semi-

Analytic and Ab-Initio Models 

In this section we want to study the accuracy of the semi-analytic multiscale method 

discussed in Section 1.4.2 before using it to study the effects of longitudinal deformations of 

FET devices. To do so, the same physical device has been simulated with a different model. 

To compute the drain/source current in the presence of strain as a function of the voltages at 

the contacts, we have proposed an alternative method based on an ab-initio approach, jointly 

with the Federal University of Paraná (Brazil). 
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The method has been briefly described in Sect 1.5. We add here that, when a strain is 

applied, we use the elastic energy potential based on Hook’s law, which is a Taylor expansion 

around the minimum of the energy bounding two atoms. This expansion, ignoring higher 

orders terms, has a parabolic form, where second derivative is known as the spring constant K. 

K is found by considering the Poisson ratio and the graphene Young’s module Y by [78] 

 
1

.
3 1 2

Y
K



 
  

 
 (2.29) 

The Young’s module is based on experimental data [79]. Also, the positions used in 

the Hamiltonian operator are modified, thus defining a “geometrically deformed” 

Hamiltonian. 

We plot in Figure 2.11 the band diagram for the nanoribbon, where dashed lines show 

the analytical approach used in our compact model, while solid lines come from the ab-initio 

technique considering second nearest neighbors. 

Despite the differences in the highest sub-bands, with no practical impact for transport 

analyses, we can see a very good match between the models. This result guarantees that the 

orbitals chosen for the ab-initio procedure are capturing the correct physical effects, and that 

the near-neighbor approximation used in the semi-analytic approach is sufficiently accurate. 
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Figure 2.11: Band diagram of aGNR without deformation. Ab-initio procedure (solid lines), 

analytic equation (dashed lines). 

In Figure 2.12(a) the drain-source current Ids is calculated by keeping a constant gate 

potential Vg = 0.75 V and changing the drain-source potential. In Figure 2.12(b) a constant 

gate potential Vds = 0.5 V is kept and the drain-source potential varies. In both figures, dashed 

lines come from the semi-analytic procedure, while solid lines from the ab-initio technique. 

By varying the parameter 𝑑 the difference between the models is very small, meaning that the 

semi-analytic model correct captures the variation of the current with a significantly reduced 

computational complexity. 
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(a) 

 

 

(b) 
 

Figure 2.12: (a) Current Ids vs. drain-source voltage Vds. Vg = 0.75 V. (b) Current Ids vs. 

drain-source voltage Vgs. Vds = 0. 5 V. Semi-analytic (dashed lines) and ab-initio results (solid 

lines). No deformation (blue lines), d = 0.0658 (green lines), d = 0.08 (red lines), d = 0.0348 

(yellow lines). 

Interestingly, the green case (d = 0.0658) has the same energy gap for the blue case (d 

= 0), but even so we can capture some differences in their current levels. This difference 

comes from the Schottky barrier present at the contacts in both models. This means that, even 

in the presence of the same energy gap, the semi-analytic model is able to capture the effects 

of a strain. 

We have to notice that in Figure 2.12 (b), for transfer characteristics, there are some 

discrepancies between the currents obtained with the ab-initio technique and the semi-analytic 
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method. This could depend on the different treatment of the consideration of edge effects, 

which are not present in the simplified method, and on different treatment of the boundary 

conditions at the contacts beween the methods (gold contacts have been simulated in the ab-

initio method, while ohmic contacts have been used in the analytic approach). 

The semi-analytic method is by far faster than the ab-initio one. On an Intel Core i5-

6300HQ @ 2.3GHzx4 and 8GiB of memory, the former requires around 1 minute of 

computation, while the latter takes more than 2 hours to compute 72 values of currents in the 

curves of Figure 2.12. 

We also tested the computation time of our semi-analytic method for different cases in 

the same computer (Intel Core i7-4790CPU @ 3.6GHz and 16GB of memory). For ballistic 

regime, when N=9, each value of current in the curve for ballistic regime takes 0.453s; when 

N=12, each value of current in the curve for ballistic regime takes 0.731s; when N=15, each 

value of current in the curve for ballistic regime takes 0.746s. For 3 mean free path, when 

N=9, each value of current for partially ballistic regime takes 35.3 s; when N=12, each value 

of current for partially ballistic regime takes 21s; when N=15, each value of current for 

partially ballistic regime takes 73.6s. For 10 mean free path, when N=9, each value of current 

for partially ballistic regime takes 69.8 s; when N=12, each value of current for partially 

ballistic regime takes 139.8s; when N=15, each value of current for partially ballistic regime 

takes 932s. 

2.5. Semi-analytical multiscale coupled modeling 

Here we apply the semi-analytic method discussed in Section 1.4.2 and validated in 

previous section in order to study the effects of longitudinal deformations of the device on the 

current characteristics. 

Numerical results are presented for currents and potentials in a deformed 

nanotransistor whose channel is an aGNR strip with different widths, both in ballistic and in 

partially ballistic regimes. We show at first results obtained in the approximation of constant 

hopping parameters. As shown in the previous sections, this choice does not describe the 

variation of the energy gap. Later, the full model with energy-gap variation will be used. 

Values for d are selected corresponding to different energy gaps, according to the results in 
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Figure 2.6. This choice of d and the comparison with the first simplified model will confirm 

the dominant role of energy gap values to determine the transistor current and the related 

parameters.  

2.5.1 A short discussion on the tight binding model without variation of hopping 

parameters 

If the variation of the hopping parameter with the deformation is not considered, we 

can directly use (2.8) in our numerical modeling. As we said, no energy-gap variation with the 

deformation can be described. The non-deformed energy gap is then used to determine the 

effective mass and the density of states.  

Some results are presented here for comparison with the results of the following 

subsection, keeping the correct hopping parameter variation. We studied both models in the 

absence of Schottky contacts (Ohmic contacts) and in the presence of Schottky contacts (SB 

contacts).The transmissivity coefficients Ts and Td are used to calculate the current in (1.20). 

For numerical simulation with Schottky contacts, the transmission coefficients can be 

calculated through (1.31). For numerical simulation with Ohmic contacts, the transmission 

coefficients Ts and Td are set equal to 1. 

In Figure 2.13(a) and (b) we plot the currents Ids with the Ohmic contacts without any 

deformation. In Figure 2.13(a), Ids is varied by keeping a constant potential VDS = 0.5 V and 

changing the gate potential Vg. In Figure 2.13(b), Ids is varied by keeping a constant gate 

potential Vg = 0.75 V and changing the drain-source potential Vds.  

In Figure 2.13(c) and (d) we plot the currents Ids in the presence of Schottky contacts 

without any deformation. In Figure 2.13(c), Ids is varied by keeping a constant potential Vds = 

0.5 V and changing the gate potential Vg. In Figure 2.13(d), Ids is varied by keeping a constant 

gate potential Vg = 0.75 V and changing the drain-source potential Vds. 
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Figure 2.13: Source-drain current Ids with N = 12. (a) Ids vs.Vg, at Vds = 0.5 V with ohmic 

contacts. (b) Ids vs.Vds, at Vg = 0.75 V with ohmic contacts. (c) Ids vs.Vg, at Vds = 0:5 V with SB 

contacts. (d) Ids vs.Vds, at Vg = 0.75V with SB contacts. 

 

（a） （b） 

（d） （c） 
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Figure 2.14: Channel potential with N = 12. (a) 𝜙𝑐 vs. Vg, at Vds = 0.5 V with ohmic contacts. 

(b) 𝜙𝑐 vs.Vds, at Vg = 0.75 V with ohmic contacts. (c) 𝜙𝑐  vs. Vg, at Vds = 0.5 V with SB 

contacts. (d) 𝜙𝑐  vs.Vds,at Vg = 0.75 V with SB contacts. 

In Figure 2.14 we plot the variation of the channel potential 𝜙𝑐 in different contact 

configurations and voltage excitation. Since a purely ballistic transport is considered in these 

figures, the potential is constant along the channel, and its variation with the voltages Vg and 

Vds is shown. In Figure 2.14(a) and (b) Ohmic contacts are considered, and 𝜙𝑐 is computed 

when the gate potential Vg and the drain-source potential VDS is varied, respectively. The same 

results are shown in Figure 2.14(c) and (d) in the presence of Schottky contacts. Different 

values of the relative deformation d are shown in order to study the effect of d on the potential 

values. The variation is very small for the Shottky contacts, while it is slightly more evident in 

the case of Ohmic contacts.  

（a） （b） 

（d） （c） 
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𝜙𝑐 is strongly related with the computation of the charges stored inside the channel. In 

Figure 2.15 (a) and (b) we plot Q in the absence of Schottky contacts, and in Figure 2.15(c) 

and (d) the presence of Schottky contacts is considered. Consistently with the previous results 

of 𝜙𝑐 , a smaller variation with d is obtained for the Shottky contacts with respect to the 

Ohmic contacts.  

 

Figure 2.15: Macroscopic Charge Q with N = 12. (a) Q vs. Vg, at Vds = 0.5 V with ohmic 

contacts. (b) Q vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Q vs.Vg, at Vds = 0.5V with SB 

contacts. (d) Q vs.Vds,at Vg = 0.75 V with SB contacts. 

After the potential and the charges have been determined, the current Ids can be 

computed. In Figure 2.16(a) and (b) we plot the currents Ids for different strains with the 

Ohmic contacts. In Figure 2.16(a), Ids is varied by keeping a constant potential VDS = 0.5 V 

and changing the gate potential Vg. In Figure 2.16(b), Ids is varied by keeping a constant gate 

potential Vg = 0.75 V and changing the drain-source potential Vds.  In Figure 2.16 (c) and (d) 

we plot the currents Ids for different strains in the presence of Schottky contacts. In Figure 

（a） （b） 

（d） （c） 
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2.16 (c), Ids is varied by keeping a constant potential Vds = 0.5 V and changing the gate 

potential Vg. In Figure 2.16 (d), Ids is varied by keeping a constant gate potential Vg = 0.75 V 

and changing the drain-source potential Vds. 

 

Figure 2.16: Source-drain current Ids with N = 12. (a) Ids vs.Vg, at Vds = 0.5 V with ohmic 

contacts. (b) Ids vs.Vds, at Vg = 0.75 V with ohmic contacts. (c) Ids vs.Vg, at Vds = 0:5 V with SB 

contacts. (d) Ids vs.Vds, at Vg = 0.75V with SB contacts. 

Different ranges of relative deformation d are studied in order to discuss their effects 

on the computed current. Small values of d (d < 0.1) are associated with applications of this 

class of devices to flexible electronics. As it can be seen in these results, the geometrical 

deformation of the graphene lattice together with the variation of the capacitance (2.28) are 

responsible of a slight variation of the saturation currents either for Ohmic and Schottky 

contacts.  

（a） （b） 

（d） （c） 
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2.5.2 The full model of deformation: the Ballistic regime 

We show now the results obtained with the full method including deformations of 

energy bands and variations of the energy gaps of each sub-band. As expected, if compared 

with the results in the previous paragraph, energy gap considerably change both the effective 

mass and the density of states. These variations have a non-negligible impact on the 

computation of the density of charge and currents, much larger than the simple spectral 

scaling used in the previous section where the modification of the hopping parameters has 

been neglected. 

 

Figure 2.17: Channel potential with N = 12. (a) 𝜙𝑐  vs. Vg, at Vds = 0.5 V with ohmic contacts. 

(b) 𝜙𝑐 vs.Vds, at Vg = 0.75V with ohmic contacts. (c) 𝜙𝑐  vs.Vg, at Vds = 0.5V with SB contacts. 

(d) 𝜙𝑐 vs.Vds,at Vg = 0.75 V with SB contacts. Considered deformations: d=-0.063 (dashed 

light blue line), d=0 (solid dark blue line), d=0.0348 (yellow line), d=0.0658 (green line). 

（a） （b） 

（d） （c） 
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In this paragraph, we show results concerning transistors in ballistic regime. As 

explained in Section 1.4.2, the ballistic regime occurs when the length of the channel is 

shorter than the mean-free path and the charge carriers move without experiencing any 

scattering. In this hypothesis, the channel potential c is considered constant along the channel 

and equation (1.35) is a scalar equation solved once for each contact voltage configuration. 

In Figure 2.17 (a) and (b) we plot the surface potential 𝜙𝑐  in the absence of Schottky 

contacts with respect to Vg (Figure 2.17 (a)) and is changed with respect to Vds (Figure 

2.17(b)). The same results are shown in Figure 2.17 (c) and (d) respectively, in the presence 

of Schottky contacts. These potentials are computed by solving the multiscale equation (1.35) 

with the full effect of deformation on nanoribbon energy bands. The source-drain current Ids 

of a single ballistic-regime transistor is here computed using the Landauer–Büttiker approach, 

for different values of d. In Figure 2.18(a) and (b) we plot the currents Ids with ohmic contacts, 

as a function of Vg (Figure 2.18(a)) and as a function of Vds (Figure 2.18(b)). The expected 

typical behaviors of currents controlled by the gate voltage and a definite threshold Vg voltage 

are visible in the figures, and can be evaluated in a simple way with this approach. In the 

absence of deformation, the method agrees with results given in [56]. In Figure 2.18(c) and (d) 

we plot the currents Ids in the presence of Schottky contacts. In Figure 2.18(c), Ids is varied by 

keeping a constant potential Vds = 0.5 V and changing the gate potential Vg. In Figure 2.18(d), 

Ids is varied by keeping a constant gate potential Vg = 0.75 V and changing the drain-source 

potential Vds. 
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Figure 2.18: Source-drain current Ids. (a) Ids vs. Vg, at Vds = 0.5 V with ohmic contacts. (b) Ids 

vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Ids vs.Vg, at Vds = 0.5V with SB contacts. (d) Ids 

vs.Vds, at Vg = 0.75 V with SB contacts. Considered deformations: d = -0.063 (dashed light 

blue line), d = 0 (solid dark blue line), d = 0.0348 (yellow line), d = 0.0658 (green line). 

Deformations do lead to observable variation in the current. However, if the numerical 

value of the energy gap is sufficiently large, the entity of these variations is not such to 

jeopardize the transistor functioning. Otherwise, if the numerical value of energy gap is very 

small, the variations has serious effect on transistor functioning. When the deformation 

suppresses any gap, the channel behaves as a metal. Different mechanical deformations can 

result in a similar energy gap. For instance, the numerical values of energy gap when d = 0 

and d = 0.0658 are almost the same (see Figure 2.6).  It can be observed in this case that 

corresponding curves of source-drain current Ids are nearly overlapped. These results confirm 

（a） （b） 

（d） （c） 
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the importance of a correct modeling of the energy gap variation as the main factor 

determining the transistor performance.  

 

Figure 2.19: Source-drain current Ids, d = -0.063, ohmic contacts. (a) Ids vs. Vg, at Vds = 0.5 V.  

(b) Ids vs. Vg, at Vds = 0.4 V. (c) Ids vs. Vg, at Vds = 0.3 V. (d) Ids vs. Vg, at Vds = 0.2 V. 

In Figure 2.19 we plot the currents Ids with ohmic contacts when d = -0.063, with 

respect to Vg. This deformation suppresses energy gap for aGNR. In Figure 2.19(a), Ids is 

varied by keeping a constant potential Vds = 0.5 V and changing the gate potential Vg. For 

Figure 2.19(b), Figure 2.19(c) and Figure 2.19(d), Ids is varied by keeping a constant potential 

Vds = 0.4 V, Vds = 0.3 V, Vds = 0.2 V separately. From Figure 2.19, we see that, even if the 

deformation suppresses any gap, the current is not perfectly constant, but there are some small 

variations implying a on-off current ratio different from one, as observed in the literature. The 

ratio will change as expected as a function of Vds. 

 

 

（a） （b） 

（d） （c） 
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Figure 2.20: Relation of energy gap and number of atom in aGNR 

Figure 2.20 shows energy gaps for different values of atoms along the width of the 

nanoribbon. As is well known (and can be verified with (2.6)), different number of atoms 

along the aGNR width can lead to different energy gaps. When the number of atoms equals to 

3z+2 (where z is the positive integer), the energy gap becomes zero. The energy gap of aGNR 

is proportional to the number of atoms along the width direction. From the Figure 2.20, we 

can see for all values of z, 𝐸gap(3z) ≥ 𝐸gap(3z + 1) > 𝐸gap(3z + 2) ≈ 0.  

Different values of carbon atoms in the direction of the ribbon width have been 

investigated. In Figure 2.21 (a) and (b) we plot the currents Ids with the ohmic contacts for 

N=9 atoms. In Figure 2.21 (a), Ids is varied by keeping a constant potential VDS = 0.5 V and 

changing the gate potential Vg. In Figure 2.21 (b), Ids is varied by keeping a constant gate 

potential Vg = 0.75 V and changing the drain-source potential Vds. In Figure 2.21 (c) and (d) 

we plot the currents Ids in the presence of Schottky contacts. In Figure 2.21(c), Ids is varied by 

keeping a constant potential Vds = 0.5 V and changing the gate potential Vg. In Figure 2.21(d), 

Ids is varied by keeping a constant gate potential Vg = 0.75 V and changing the drain-source 

potential Vds. 
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Figure 2.21: Number of atom for aGNR N=9, source-drain current Ids. (a) Ids vs. Vg, at Vds = 

0.5 V with ohmic contacts. (b) Ids vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Ids vs.Vg, at 

Vds = 0.5V with SB contacts. (d) Ids vs.Vds, at Vg = 0.75 V with SB contacts. Considered 

deformations: d=-0.063 (light blue line), d=0 (dark blue line), d=0.0348 (yellow line), 

d=0.0658 (green line). 

In Figure 2.22(a) and (b) we plot the currents Ids with the ohmic contacts for N=15 

atoms, with respect to Vg (Figure 2.22(a)) and with respect to Vds (Figure 2.22(b)). In Figure 

2.22 (c) and (d) the same results are shown with Schottky contacts.   

（a） （b） 

（d） （c） 
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Figure 2.22: Number of atom for aGNR N=15, source-drain current Ids. (a) Ids vs. Vg, at Vds = 

0.5 V with ohmic contacts. (b) Ids vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Ids vs.Vg, at 

Vds = 0.5V with SB contacts. (d) Ids vs.Vds, at Vg = 0.75 V with SB contacts. Considered 

deformations: d=-0.063 (black line), d=0 (dark blue line), d=0.0348 (yellow line), d=0.0658 

(green line). 

In Figure 2.21 and Figure 2.22, the same deformation values as in the previous N=12 

case are chosen (d=-0.063, d=0.0348, d=0.0658). Again, different deformations also lead to 

observable variation in the current. We observe different effects on the current with respect to 

the previous N = 12 case, since the number of the atom of aGNR modifies the energy band 

variation as a function of d. This is visible in (2.19). While similar gaps are found for d = 0 

and d = 0.0658 in the N=12 case, the same does not happen when N changes. Energy gaps are 

not similar anymore (as shown in Figure 2.23 and Figure 2.24). Figure 2.21 and Figure 2.22 

again illustrate the importance of a correct modeling of the energy gap variation. 

（a） （b） 

（d） （c） 
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Figure 2.23: Energy gap of aGNR with respect to the uniaxial strain d, N=9 atoms along the 

width. 

 

Figure 2.24: Energy gap of aGNR with respect to the uniaxial strain d, N=15 atoms along the 

width. 

We have also calculated the energy gap when N=9 and N=15. Energy gap variation for 

9 atom aGNR with respect to different deformations (-0.1 ≤ d ≤ 0.1) is shown in Figure 2.23. 

The 15-atom case is shown in Figure 2.24. The zigzag oscillation pattern commented in 

Figure 2.6 is recovered.  

We now select the deformations of d = -0.819, d = 0, d = 0.0465, d = 0.0866 for N = 9; 

they are shown explicitly in Figure 2.23. In Figure 2.25(a) and (b) we keep Ohmic contacts 
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and in Figure 2.25 (c) and (d) we keep Schottky contacts. Again, similar current behaviors are 

recovered for similar gaps as expected.  

 

Figure 2.25: Number of atom for aGNR N=9, source-drain current Ids. (a) Ids vs. Vg, at Vds = 

0.5 V with ohmic contacts. (b) Ids vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Ids vs.Vg, at 

Vds = 0.5V with SB contacts. (d) Ids vs.Vds, at Vg = 0.75 V with SB contacts. Considered 

deformations: d=-0.0819 (black line), d=0 (blue line), d=0.0465 (yellow line), d=0.0866 

(green line) 

The same simulations have been performed for the case N=15, this time for the 

deformations of d=-0.0512, d=0, d=0.0278, d=0.053 (shown explicitly in Figure 2.26) In 

Figure 2.26 the currents Ids are computed, finding again similar currents for similar gap values.  

 

（a） （b） 

（d） （c） 
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Figure 2.26: Number of atom for aGNR N=15, source-drain current Ids. (a) Ids vs. Vg, at Vds = 

0.5 V with ohmic contacts. (b) Ids vs.Vds, at Vg = 0.75V with ohmic contacts. (c) Ids vs.Vg, at 

Vds = 0.5V with SB contacts. (d) Ids vs.Vds, at Vg = 0.75 V with SB contacts. Considered 

deformations: d=-0.0512 (black line), d=0 (blue line), d=0.0278 (yellow line), d=0.053 (green 

line) 

The results shown in Figure 2.25 and Figure 2.26 confirm the important impact of gap 

variation on the current level. They also show that the variations with respect to d are heavily 

dependent on the number N of atoms along the width of the aGNR. Furthermore, in all the 

cases we have verified that the transistor functioning are seriously affected if the energy gap is 

too small. 

2.5.3 Partially Ballistic regime  

In this paragraph, we show results concerning transistors in partially ballistic regime. 

In this hypothesis, the channel potential c varies along the channel. The transistor is then 

replaced with a cascade of N transistor, N being the number of mean-free paths contained in 

the channel [56][81][82]. The multiscale condition (1.35) is then replaced with a set of 

（a） （b） 

（d） （c） 
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multiscale conditions for each transistors, each condition involving a different sample of c, 

thus leading to the definition of a potential function of the position along the channel. 

As Figure 2.27 shows, partially ballistic transistors can be regarded as a chain of 

ballistic transistors. Based on Büttiker virtual probe approach [81][82], scattering in the 

channel can be considered as localized in several special points, spaced by a length defined as 

“mean free path” [56]. 

A transistor with partially transport regime is connected by Nchain virtual probes with n 

= 1,...,Nchain−1, where Nchain is number of ballistic transistors. For the boundaries, the 

electrochemical potential can be set as: 

S S

D

qV

qVD

  

  
                                                      (2.30) 

As a first step in the calculation of the current, we enforce in the middle points 

between different ballistic transistors, an  electrochemical potential is set as a linear variation 

between VS and VD:. In the case VS=0: 

D chainq Vn Nn                                                 (2.31) 

With n = 1,…, Nchain - 1. In the nth ballistic channel, n  and 1n-  can be regarded as 

potential of the source and drain by using bisection method and numerical solution of (1.35) 

for 𝜙𝑐(𝑥) can be obtained for every ballistic transistor in Figure 2.27. After we have the value 

of  𝜙𝑐(𝑥), then the current for each ballistic transistor can be calculated by using Landauer–

Büttiker approach which shown in equation (1.20). 

The current of In in any ballistic transistor is computed and we calculate the average of 

current of all the ballistic transistors: 

 
chain1 2 3 chain... NI I I I I N                                   (2.32) 

A non-linerar system is then solved by enforcing that the same current flows through 

all the ballistic transistors. This leads to the determination of both the potential samples along 

the channel and the drain-source current. 
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In this paragraph, we study a partially ballistic regime with Ohmic contacts for a 

transistor whose length is three times the mean free path of electrons in the graphene. This 

choice of length allows observing the effects of a spatial variation of the potential along the 

channel. Due to the nanometric nature of graphene-based devices, a length of three mean-free 

paths (corresponding to around 1.5 m [83]) is a reasonable example of partially ballistic 

nanotransistor. The surface potential 𝜙𝑐  assumes one value on each of them. These variations 

are shown in Figure 2.28 for VDS = Vg = 0.5 V. In Figure 2.29(a) and (b) we plot the Ids for 

partially ballistic transistors with ohmic contacts, channel length of 3 mean free paths. Ids is 

shown as a function of the relevant voltages. In Figure 2.29(a), Ids is varied by keeping a 

constant potential VDS and changing the gate potential Vg. In Figure 2.29(b), Ids is varied by 

keeping a constant gate potential Vg and changing the drain-source potential Vds. In the 

absence of deformation, the method also agrees with results in [56]. 

 

Figure 2.27: Partially ballistic transistor can be regarded as chain of N ballistic 

transistors. 
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Figure 2.28: Potential 𝜙𝑐   in a partially ballistic transistor with ohmic contacts, for different 

deformation. Vds = Vg = 0.5 V, channel length of 3 mean free paths. Considered deformations: 

d=-0.063 (dashed light blue line), d=0 (solid dark blue line), d=0.0348 (yellow line), 

d=0.0658 (green line). 

 

 

Figure 2.29: Ids for partially ballistic transistors with ohmic contacts, N=12, channel length of 

3 mean free paths. (a) Ids vs.Vg, at Vds = 0.5 V. (b) Ids vs.Vds, at Vg = 0.75V. Considered 

deformations: d=-0.063 (dashed light blue line), d=0 (solid dark blue line), d=0.0348 (yellow 

line), d=0.0658 (green line). 

Also in this case another nanoribbon with a different width has been studied. In Figure 

2.30, the atoms along the aGNR width are 15. In Figure 2.30(a) and (b) we plot the Ids for a 

channel length of 3 mean free  paths, while in Figure 2.31 a channel length of 10 mean free 

（a） （b） 
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paths is chosen. 

 

Figure 2.30: Ids for partially ballistic transistors with ohmic contacts, N=15, channel length of 

3 mean free paths. (a) Ids vs.Vg, at Vds = 0.5 V. (b) Ids vs.Vds, at Vg = 0.75V. Considered 

deformations: d=-0.0512 (black line), d=0 (dark blue line), d=0.0278 (yellow line), d=0.053 

(green line).  

 

Figure 2.31: Ids for partially ballistic transistors with ohmic contacts, N=15, channel length of 

10 mean free paths. (a) Ids vs.Vg, at Vds = 0.5 V. (b) Ids vs.Vds, at Vg = 0.75V. Considered 

deformations: d=-0.0512 (black line), d=0 (dark blue line), d=0.0278 (yellow line), d=0.053 

(green line). 

In both cases we observe that the same deformation has quite different effects on the 

performance of the nanotransistor according to the width of its ribbon. Again, some 

deformations can lead to small energy gaps, limiting the transistor performance.  

（a） （b） 

（a） （b） 
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2.5.4 On/Off current ratio and differential conductance with different deformations 

In Figure 2.32, we plot the On/Off current ratio for both ballistic and partially ballistic 

transistors with different deformations, whose atom number along the aGNR width direction 

is N=12. Figure 2.32(a) shows the On/Off current ratio for ballistic transistors. We can see 

that in the presence of a deformation of few percentage points, the On/Off current ratios can 

be modulated in a visible way and it can even achieve 45*10  when d=0.034. We can deduce 

that the variation of current in ballistic FET could be used to detect deformations in nano-

sensors. 

Figure 2.32(b) shows On/Off current ratio for partially ballistic transistors which 

channel length is 3 mean free paths and Figure 2.32(c) shows On/Off current ratio for 

partially ballistic transistors which channel length is 10 mean free paths. As expected [56] the 

ratios are slightly larger in this latter transport regime with respect to the ballistic case. Also 

in this case, the On/Off current ratios are sensibly modified around the point d = 0 for small 

deformations. From (2.19) we can state that larger widths of the nanoribbon present energy 

gaps that are more sensitive to deformations: as the width increases (the number of atoms N in 

(2.19)), it takes a smaller deformation to reach the point of zero gap. This means that the 

deterioration of the current ratio will occur with smaller deformation with respect to narrower 

nanoribbons. 
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Figure 2.32: (a) On/Off current ratio of ballistic transistor for N=12 with different 

deformations. (b) On/Off current ratio for partially ballistic transistors with ohmic contacts, 

N=12, channel length of 3 mean free paths. (c) On/Off current ratio for partially ballistic 

transistors with ohmic contacts, N=12, channel length of 10 mean free paths. 

 

 

（a） 

（b） （c） 
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Figure 2.33: Differential conductance of  aGNR FET with Ohmic contacts, N=12. (a) For 

ballistic transistor. (b) For partially ballistic transistors, channel length of 3 mean free paths. 

(c) For partially ballistic transistors, channel length of 10 mean free paths. 

An accurate analysis of deformation effects on the output characteristics can also lead 

to the computation of the differential conductance gm = ∂Ids/∂Vds. In Figure 2.33(a), we 

compare gm of three ballistic transistors for different deformations d=0, d=0.0348, d=0.0658. 

The differential conductance is varying slighly as long as d varies of a few percentage points. 

The linear region before saturation is also accordingnly modulated. The differential 

conductance for d=-0.063 becomes a flat straight line since the energy gap decreases to 0. For 

this reason the case is not explicitely shown here. 

 In Figure 2.33(b) and Figure 2.33(c), we compare the differential conductance of 

partially ballistic transistor for the same deformations. Similarly to Figure 2.33(a), the 

（a） 

（b） （c） 



 

76 

 

differential conductance changes again with d in a similar qualitative way as in the ballistic 

case.  

2.5.5 Shift of transfer characteristics with different SB height 

 

Figure 2.34: Transfer characteristics of aGNR FET with different oxide thicknesses tox, 

VDS=0.5 V. Deformations simulated: d=-0.02, -0.01, 0, 0.01, 0.02. FET without SB (SB = 0) 

and with SBs of 0.25Eg and 0.5Eg are shown. Arrows reprensent the shift of transfer 

characteristics curves. 

In Figure 2.34, we show also the transfer characteristics of aGNR FET with different 

oxide thickness tox. Different deformations d=-0.02, -0.01, 0, 0.01, 0.02 are selected. In Figure 

2.34(a) and (b), we keep SB height equals to 0 (ohmic contacts); in Figure 2.34(c) and (d), the 

SB height equals to 0.25Egap; in Figure 2.34(e) and (f), the SB height equals to 0.5Egap.  

From Figure 2.34, the Ioff point and the shape of transfer characteristics are influenced 

by relative SB height. If SB height equals to 0 or 0.5Egap, the minimum OFF current point will 

shift vertically under the effect of a deformation, while if SB height equals to 0.25Egap, the 

minimum off current point will move sideways. 

aGNR is one kind of electron–hole symmetrical materials. If the SB height equals to 

0.5Egap, the electron hole symmetry is kept even under deformation, therefore the lowest point 

（a） 

（b） 

（c） 

（d） 

（e） 

（f） 
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of transfer characteristics (OFF state of current) moves vertically. If the SB height equals to 

0.25Egap, the electron hole symmetry is broken, and the Ioff moves sideways. 
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Chapter 3. Application of Nanomesh in Field-Effect 

Transistor 

In this chapter, the multiscale semi-analytic compact model presented in the previous 

Chapters is applied to graphene nanomesh transistors. As stated in Chapter 1 (Section 1.6), a 

bandgap can be induced in graphene-based structures with a variety of techniques. Here we 

study the effect of the inclusion of a nanomesh graphene in nano-transistors. The first part of 

the Chapter is focused on methods to estimate the energy gap of nanomesh, by means of 

analytical approximations or ab-initio approaches. These results are then used in the 

modelling of an entire FET, and the FET performance is compared with those of a nanoribbon 

FET having a similar size. 

3.1 Graphene nanomesh and its electronic properties 

Bandgap in graphene-based structures can be obtained by different methods. In 

Chapter 2, we have used graphene nanoribbons for this aim. Graphene nanoribbons with 

widths around 2-3 nm can open a band gap large enough for room temperature transistor 

operation, but processing graphene sheets less than 5 nm is still quite challenging. Namely, 

current manufacturing methods can lead to imperfect structures. However, another effective 

technique to tune bandgap is by creating an ordered array of holes with specific shape, size 

and density in the graphene plane [64]. The resulting structure is named graphene nanomesh. 

Fig 3.1 shows an example of circular hole graphene nanomesh [84].  

As illustrated in Fig. 3.1(b), [84] mainly focuses on circular hole on graphene 

nanomesh. Holes of shape approximately circular are created on graphene and arranged in a 

periodic hexagonal lattice; the length of one side of the hexagonal unit-cell is L, and the 

radius of the hole is R.  

In [84], Pedersen started from ab-initio simulations to find an approximate relation for 

the band gaps of circular-shaped GNH: 
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where Nhole is the number of atoms removed in the holes and Ntotal is the total number of atoms 

present in the sheet before removing the hole. 

Figure 3.1: Schematic illustration of Graphene Nanomesh (a) Shape of nanomesh (b) Unit cell 

of nanomesh, side length L, hole radius R (c) several examples with different L and R [84].  

The KGNM constant is found by means of a fitting method, leading  to 25 eV GNMK  . 

After Pedersen, many interesting researches are proposed to study the electronic 

characteristics of graphene nanomesh [85]-[88]. In [85], H. Jippo et al. studied the full 

electronic structure and transport properties of graphene nanomesh lattices. Their results 

confirmed that graphene nanomesh can control the band gap and has the potential to be used 

as channel material in transistor. In [86], Y. Yan et al. investigated the thermoelectric 

properties of graphene nanomesh of 1D graphene antidot arrays with zigzag edges by using 

the nonequilibrium Green’s function method. Their numerical results indicate that graphene 

（a） 

（b） 

（c） 
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nanomesh may be promising for thermoelectric applications. In [87], V. H. Nguyen et al. 

investigated the transport characteristics of graphene nanomesh-based devices. Nguyen’s 

research shows that graphene nanomesh offers various possibilities for a controllable energy 

bandgap by changing the nano-hole size [88]. In [88], Nguyen also considered the application 

of graphene nanomesh for electronic devices.  

 

Figure 3.2:  Schematic illustration of Graphene Nanomesh (a) Graphene nanomesh with 

triangular holes (b) Graphene nanomesh with rhombic holes [89]. 

The scaling rule (3.1) only works well for the circular shape holes. In [89], Liu et al. 

studied how the energy gap of graphene nanomesh is related with the shape of the hole (either 

armchair or zigzag edges). The following scaling rule for the bandgap is there proposed [89]: 

 
2gap  hole

GNM

cell

l
E

L
                                             (3.2) 

where holel is the side length of the hole, cellL is the side length of the unit cell as Figure 3.2 

shows. 

The parameter GNM
  is obtained by fitting method and its value depends on the shape 

and edge type of graphene nanomesh hole. In Table 3.1 we report some values obtained in [89] 

for different geometries. 

 

 

 

 

（a） （b） 
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Table 3.1 Value of GNM  [89]. 

GNM (eV) gapE  

Length of the hole 3n-2 3n-1 3n 

Armchair triangular 

graphene nanomesh 

6.99 14.42 23.97 

Armchair rhombus 

graphene nanomesh 

14.63 24.59 6.78 

Zigzag triangular 

graphene nanomesh 

 12.39  

Zigzag rhombus 

graphene nanomesh 

 6.72  

 

From the scaling rule (3.2) and the numerical values in Table 3.1, we can calculate the 

band gaps for different types of graphene nanomesh. The results are shown in Figure 3.3-

Figure 3.4. In Figure 3.3, we show band gaps for different shapes and edge-type of graphene 

nanomesh with respect to the graphene nanomesh unit-cell side length. In this figure we keep 

the side length of the hole constant with 17 carbon atoms for each side. As expected, the 

energy gap always decreases as the unit cell length L increases. In fact, this corresponds to a 

decrease of the hole density, so that the zero gap of a graphene sheet is approached. 
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Figure 3.3: Energy gap of different shape graphene nanomesh, in unit cell, side length of the 

hole=17 carbon atom. 

In Figure 3.4, band gaps for armchair rhombus nanomesh and armchair triangular 

nanomesh are plotted vs. the length of the unit-cell, for two different hole sizes (14 and 20, 

respectively).  

  

Figure 3.4: (a) Energy gap of different shape graphene nanomesh, in unit cell, side length of 

the hole=14 carbon atom. (b) Energy gap of different shape graphene nanomesh, in unit cell, 

side length of the hole=20 carbon atom. 

 

（a） （b） 
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Once we have a method to evaluate the energy gap of a nanomesh, we can study 

charge transport in nanomesh transistors. 

3.2 Compact model validation with ab-initio method  

As discussed in Chapter 2, graphene nano-transistors can be realized by means of 

armchair nanoribbons whose width is less than 2 or 3 nm, assuring the presence of an energy 

gap. However, the control of width and edge shape is still a difficult task for current 

fabrication procedures. A new field effect transistor which uses nanomesh as channel is 

proposed in [64]. The on-off current ratio of graphene nanomesh transistor can be enhanced 

by up to 10 times if compared pristine graphene transistor, thus obtaining results comparable 

with GNRs. 

Once the electronic properties of graphene nanomesh are determined, such as the 

energy gap discussed previously, the currents of the FET shown in Figure 3.5 can be 

calculated by using the compact model described in Chapter 1 and used in Chapter 2.  

 

Figure 3.5: Nanomesh graphene transistor 

Our graphene nanomesh channel structure is shown in Figure 3.6. The shape of the 

graphene namomesh channel is a square whose side length is Wgnm of the square is 9 nm. 9 

evenly distributed squared holes are arranged in a rectangular array, and the side length (lr-hole) 

of each hole is 2 nm, and the edge shape of the hole is of armchair type. The distance between 

each hole (dr-hole) is 1 nm. 

By knowing the geometric structure of nanomesh, the energy gap can be calculated by 

using (3.2) and the parameter GNM in Table 3.1. In this first case, the hole is of rhombic 
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shape and GNM can be determined as 24.59 eV. The resulting energy gap is then about 0.67 

eV. In order to obtain an independent validation of this approximate formula, we have 

compared Egap with the result given by an ab-initio formulation [90]. For ab-initio formulation, 

the energy gap for this structure is about 0.66 eV (see Figure 3.7), in good agreement with the 

approximate value. 

 

Figure 3.6: The shape of Graphene Nanomesh in transistor. 

 

Figure 3.7: Transmission versus energy for a sample of 9 nm x 9 nm, from Fernando Zanella, 

Federal University of Paraná (UFPR). 

As verified in the previous Chapter, the energy gap of the channel is the most 

important parameter determining the result of our calculation. In this Chapter, the energy gap 
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is chosen by using the closed-form expression (3.2) However, the energy gap obtained refers 

only to the lower energy band of the channel. Unfortunately, no analytic approximations are 

available for higher energy bands of nanomesh graphene. In order to keep the formulation as 

simple as possible, we will consider therefore only the fundamental band. Its shape is 

assumed as a parabolic curve (see Figure 3.8(b)) as in, and as confirmed by ab-initio 

simulations shown in literature [89]. Since here we do not deal with deformations, non-null 

values of energy gaps will be only considered, and the limit of small gaps discussed in 

Section 2.2 is not relevant. However, a last comment should be given regarding the shape of 

the energy band. Since no analytic expressions for the effective mass of the nanomesh are 

available in the literature to the best of our knowledge, the nano-mesh energy gap will be used 

in the analytic expressions of the density of state already derived for 1-D nanoribbon. The 

influence of the effective mass has been studied with a parametric analysis by varying this 

parameter in a range of values of the same order of magnitude of the nanoribbons of Chapter 

2. As expected, the mass variation has a weak influence on the current if compared to the 

stronger influence due to the variation of the energy gap obtained with the removal of atoms. 

Since in this chapter we are especially interested in the comparison between on/off current 

ratios in nanoribbon and nanomesh, the same effective mass will be retained for the two 

devices. However, further work is planned in order to improve the description of the density 

of state and of the higher energy band on the basis of ab-initio simulations. 

Finally, we assume that the width of the nanomesh is small enough to grant a one-

dimensional conduction in the direction source-drain. This lead to the use of the same model 

used in Chapter 2 for nanoribbon graphene. The microelectronic model of graphene 

nanomesh transistor is in fact be expressed by the formula (1.25) where the sum over all the 

energy bands is suppressed and ohmic contacts have been considered for simplicity: 

 
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and the currents can be calculated as in (1.20), where again only one band is retained: 
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.  

 

Figure 3.8: (a) Energy dispersion of graphene nanoribbon. (b) Illustration of energy dispersion 

of graphene nanomesh. 

The capacitance of the gate for nanomesh transistor can be calculated as explained in Chapter 

1. Once this value is computed, the capacitance of the source and drain can be calculated with 

the commonly used rule [56]: 

0.005s d gC C C                                                   (3.5) 

In Figure 3.9 we plot the currents Ids vs. the drain-source potential Vds when by 

keeping a constant gate potential Vg = 0.75 V. The following simulations have been 

performed by assuming Ohmic contacts in order to limit the number of results and the 

parameters under study. However, the method can be easily used to study Schottky barriers as 

shown in Chapter 2. 

In order to validate the analysis, we have compared this current with the results given 

by the ab-initio formulation as Figure 3.9 shows. It can be seen that the comparison shows a 

very good agreement for low values of Vd. For higher values of Vd the compact model slightly 

underestimates the current.  

In Figure 3.10(a), we plot the currents Ids for nanomesh transistor vs. Vg, by keeping a 

constant potential VDS = 0.5 V The simulation result shows an on-off current ratio close to 28 

by choosing an on state for VDS = 0.5 V.  

（a） （b） 
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In Figure 3.10(b) we plot the variation of the channel potential 𝜙𝑐  with different 

voltage excitation. Ohmic contacts are considered, and 𝜙𝑐  is computed when the gate 

potential Vg is varied. 

 

Figure 3.9: Source-drain current Ids. Ids vs.Vds, at Vg = 0.75V. Ids vs.Vg, at Vg = 0.75 V. 

Different Models: Compact model (blue line), Ab-intio model (red line).  

  

Figure 3.10: (a) Source-drain current Ids. Ids vs.Vg, at Vds = 0.5 V (b) 𝜙𝑐 vs. Vg, at Vds = 0.5 V. 

Figure 3.11 is a plot of the current vs. gate voltage characteristics of the same device at 

different drain source voltages. The on-off current ratio are also changed for different drain-

source voltages in the interval 0 – 1 V.  

（a） （b） 
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Figure 3.11: Source-drain current Ids. Ids vs.Vg, with different Vds 

In Figure 3.12 we plot the variation of the channel potential 𝜙𝑐 in different voltage 

excitation. In Figure 3.12 Ohmic contacts are considered, and 𝜙𝑐 is computed when the gate 

potential Vg is varied. The drain-source current Vds keep as a constant for every curve, the 

value of Vds are selected as 0.3V,  0.4V, 0.5V,  0.6V, 0.7V respectively. 

 

Figure 3.12: 𝜙𝑐 vs. Vg, for different Vds. 

3.3  Graphene nanomesh transistor and its I-V characteristics 

In order to investigate the impact of I-V characteristics of nanomesh-based transistors, 

we test different shapes of nanomesh, namely rhombic and triangular shapes with different 

geometric parameters. 
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Table 3.2 Structures for different armchair rhombus graphene nanomesh samples used in FET. 

24.59
GNM
   in all these cases. 

Armchair rhombus graphene nanomesh 

Nanomesh Sample Side length of 

the hole 

(lr-hole) 

(unit: nm) 

Distance 

between each 

hole (dr-hole)  

(unit: nm) 

Energy gap  

(unit: eV) 

No.1 2 1 0.67 

No.2 2 2 0.3616 

No.3 2 3 0.2370 

No.4 2 4 0.1672 

No.5 2 5 0.1243 

 

In Table 3.2 five nanomesh samples are considered, having holes of rhombic shape 

with armchair edges. Each sample has a squared hole of size lr-hole = 2 nm. According to the 

sample, different squared unit-cells have been chosen, so that the distance between holes (dr-

hole) ranges from 1 nm to 5 nm. The value of GNM depends on the shape and edge type of the 

hole, so that it is always the same for all these samples: it can be determined as 24.59 eV from 

Table 3.1, leading to energy gaps ranging from 0.67 eV to 0.1243 eV according to the 

dimension of the unit cell. Figure 3.13 is a plot of the current vs. gate voltage characteristics 

of Nanomesh sample No. 2 - No. 5 at different drain-source voltages. 
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Figure 3.13: Source-drain current Ids vs.Vg, with different Vds for the nanomesh samples in 

Table 3.2. (a) Sample no. 2, (b) Sample no. 3, (c) Sample no. 4, (d) Sample no. 5. 

We can see that the Ion/Ioff ratios of different nanomesh transistors are strongly 

dependent on the lattice dimensions, i.e. on the mutual distance between holes. As the 

distance becomes large, (Figure 3.13(c) and (d)), the hole density is too small to obtain an 

effective energy gap, and the Ion/Ioff deteriorates fast.  

 

（a） （b） 

（c） （d） 
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Figure 3.14: Triangular graphene nanomesh in transistor 

We analyze now the same nanomesh lattice but we change the shape of each hole. 

Nanomesh samples No. 6 - No. 7, described in Table 3.3 are both triangular of armchair-type. 

The mutual distance between holes (dt-hole) is varied from 6 nm to 7 nm in the two samples. 

From Table 3.1, the value of GNM
 is 23.97, leading to the energy gaps of 0.4027 eV and 

0.2993 eV respectively. Figure 3.15(a) and (b) show the current vs. gate voltage 

characteristics of these two samples for different drain-source voltages.  

Table 3.3 Stuctures of armchair triangular graphene nanomesh samples used in FET 

Armchair triangular graphene nanomesh 

Nanomesh Sample Side length of the 

hole (lt-hole) 

(unit: nm) 

Distance 

between 

each hole 

(dt-hole) 

(unit: nm) 

Fitting 

Parameter 

GNM
  

Energy gap  

(unit: eV) 

No.6 5 6 23.97  0.4027 

No.7 5 7 23.97 0.2993 
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Figure 3.15: Armchair triangular graphene nanomesh FET: Source-drain current Ids vs.Vg, 

with different Vds. (a) Sample No. 6. (b) Sample No. 7. 

Table 3.4 Structures of Zigzag triangular graphene nanomesh samples used in FET 

Zigzag triangular graphene nanomesh 

Nanomesh Sample Side length of 

the hole (lt-hole) 

(unit: nm) 

Distance 

between 

each hole 

(dt-hole) 

(unit: nm) 

Fitting 

Parameter 

GNM
  

Energy gap  

(unit: eV) 

No.8 2 3 12.39 0.337 

No.9 2 4 12.39 0.1822 

 

In Table 3.4, we analyze two nanomesh samples having holes with a zigzag edge, 

again of triangular shape. Again, distance between holes (dt-hole) is varied, the two values 3 nm 

and 4 nm being chosen. The value of GNM corresponding to this geometry is 12.39, leading to 

the energy gaps of 0.337 eV and 0.1822 eV. Notice that with triangular holes zigzag edges 

lead to a GNM smaller than the armchair type. In order to obtain energy gaps comparable to 

those of Figure 3.3, a denser lattice has been chosen in Table 3.4. Figure 3.16 show also in 

this case the current vs. the gate voltage of these transistors, confirming the importance of 

both the geometrical features of the lattice and of the edge properties of each hole on the 

Ion/Ioff ratio. 

（a） （b） 
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Figure 3.16: Zigzag triangular graphene nanomesh : Source-drain current Ids. Ids vs.Vg, with 

different Vds. (a) Sample No. 8. (b) Sample No. 9. 

All previous results show the importance of keeping a dense mesh in order to grant a 

satisfactory on/off current ratio. As the holes get further the nanomesh approaches fast the 

behavior of a graphene sheet and the current ratio is degraded. This is described by the factor 

 
2

hole

cell

l

L
 in (3.2), giving low energy gaps if Lcell becomes large even if lhole grows 

proportionally. Furthermore, even if the nanomesh lattice is fixed, the shape of each hole can 

limit the performance of the FET, according to the different values of the GNM factor in (3.2). 

3.4 Numerical and experimental study of graphene nanomesh transistor  

In the previous paragraphs, we have used available approximations for energy gaps of 

nanomesh graphene to analyze the characteristics of GFETs. The numerical results have been 

successfully tested with an ab-initio approach. In this last paragraph, we address a partial 

verification with experimental results performed at the L2E laboratory in cooperation with 

Prof. D. Brunel and Ph.D student J. Njeim.  

Graphene monolayer has been successfully grown on top of a copper layer using 

chemical vapor deposition [91]. Raman spectroscopy has been used on every step of the 

fabrication in order to confirm the presence of monolayers and to continuously control the 

presence of defects. 

The FET substrates are 285 nm thick SiO2 grown on the top of p-doped silicon. 

（a） （b） 
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Electron beam lithography techniques have been used to fabricate FETs with different 

dimensions [92]. Three different transistors are here considered, with three different channel 

sizes. The graphene channels were squares of 1 µm x 1 µm, of 2 µm x 2 µm. and of 3 µm x 3 

µm respectively. Electrical measurements have been performed by using a semiconductor 

analyzer at room temperature.  

 

Figure 3.17: Source-drain current ID in the experimental results at L2E, Sorbonne University. 

(a) transistor No. 1, 1 m transistor. (b) transistor No. 2, 2 m transistor. (c) transistor No. 3, 

3 m transistor. 

For the first transistor (for clarity of description, we will call it transistor No. 1), a 1 

µm x 1 µm square channels was designed by using reactive ion etching [92]. In Figure 3.17(a), 

ID is varied by keeping a constant potential and changing the gate potential Vg. The black 

curve represents a reference of the same size as Transistor No. 1, but whose channel is 

rectangular graphene sample without any holes on it. The nanomesh is a matrix made of holes 

of size 100 nm x 100 nm having mutual distance of 100 nm. This correspond to the geometry 

in Figure 3.6, with physical parameters Wgnm = 1 µm, lr-hole = 100 nm, Lr-cell = 200 nm, dr-hole = 

100nm. As expected, the experiment confirms that the nanomesh-based transistor shows 

improved on-off current ratio if compared with the reference graphene transistor. 

For the second transistor (we will call it here transistor No. 2), a 2 µm x 2 µm square 

channel is used. In Figure 3.17(b), IDS is varied by keeping a constant potential and changing 

the gate potential Vg. The black curve shows the characteristic of a transistor without any 

holes in the graphene channel. The red curve is a transistor with a nanomesh channel. This 

nanomesh is composed with holes of size 150 nm × 150 nm at mutual distance of 150 nm. As 

in Figure 3.6, these dimensions are: Wgnm=2 µm, lr-hole = 150 nm, Lr-cell = 300 nm, dr-hole = 150 

nm. 

（a） （b） （c） 
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For the third transistor (we will call it transistor No. 3), a 3 µm x 3 µm square channel 

is used. In Figure 3.17(c), IDS is varied by keeping a constant potential and changing the gate 

potential Vg. Again a comparison is shown between a nanoribbon transistor (black curve) and 

a nanomesh transistor (red curve).The black curve represents I-V characteristics of transistor 

No. 3 whose channel is a rectangular-shaped graphene without any holes on it, the dimension 

of the channel is 3 µm x 3 µm. The red curve represents I-V characteristics of transistor No. 3 

whose channel is a graphene nanomesh. The nanomesh is composed of 200 nm x 200 nm 

squared holes at mutual distance of 150 nm, corresponding to the following parameters in 

Figure 3.6: Wgnm = 3 µm, lr-hole = 200 nm, Lr-cell = 350 nm, dr-hole =150 nm. 

In Figure 3.17(b) and Figure 3.17(c), nanomesh transistors do not shown an 

improvement of the on-off current ratio if compared with reference graphene transistors. The 

different electric behavior among these transistors depends on the dimensions on the holes, on 

the sizes of the mesh lattice, and possibly on the shape and edge type of each hole, which 

could not be controlled during the process. 

We want to verify if we can observe similar behaviors by simulating nanomesh 

transistors with different geometrical parameters. However, our simulations will be performed 

on different transistors of nano-scale size. This is due to the fact that the approximate 

expressions for the nanomesh gaps are obtained for nanometric meshes and lattice periods, so 

that we keep this range of parameters in order to apply those formulas.  

The dimensions of the unit cell of our scaled nanomesh samples are lhole = 1 nm, Lcell = 

2nm (case No. 1), lhole = 1.5 nm, Lcell=3nm (case No. 2), lhole = 2 nm, Lcell = 3.5nm (case No. 

3). In all these cases, both triangular-shape and square-shaped holes have been studied. lhole is 

the length of one side of each hole, while Lcell is the length of one side of the unit cell of the 

nanomesh. We compare each nanomesh FET with a nano-ribbon FET of width W. W has been 

chosen so that it corresponds to approximately five unit cells of the corresponding nanomesh 

sample along the transverse direction. This is done in order to compare two devices of 

comparable widths. While the widths of the nano-mesh samples are not uniquely defined in 

the method, the energy gap used to model the nano-mesh would require a large array of cells. 

We have then considered five cells along the width as a minimal threshold to use the analytic 

energy gaps. 
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Figure 3.18: Transfer characteristics of scaled nanomesh FET with different 

geometrical configuration. (a) Triangular holes, lt-hole = 1 nm, Lt-cell = 2 nm. (b) Triangular 

holes, lt-hole = 1.5 nm, Lt-cell = 3 nm. (c) Triangular holes, lt-hole = 2 nm, Lt-cell = 3.5 nm. (d) 

Square holes, lr-hole = 1 nm≈9 carbon atom, Lr-cell = 2 nm. (e) Square shape holes, lr-hole = 1.5 

nm≈13 carbon atom, Lr-cell = 3 nm. (f) Square holes, lr-hole = 2 nm≈17 carbon atom, Lr-

cell = 3.5 nm. 

In Figure 3.18(a) (b) (c), we show I-V characteristics of graphene nanomesh FET with 

triangular holes. In Figure 3.18(d) (e) (f), we show I-V characteristics of graphene nanomesh 

FET with square holes. From Figure 3.18, we can find the scaled nanomesh transistor No.1 

shows improved on-off current ratio with triangular holes. However, if the hole shape is a 

square, the scaled nanomesh transistor No.1 does not shown a significant improvement if 

compared with the reference nanoribbon transistors. The reason for this phenomenon is the 

different fitting parameter in Table 3.1 according to the number of removed atoms along the 

side of a hole. 

（a） （b） （c） 

（d） （e） （f） 
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Due to the sensitivity of these parameters according to the size of each hole, we 

perform another analysis by slightly modifying the size of each hole with respect to the Figure 

3.18(d)-(f) in order to get the same parameter for the three cases. In Figure 3.19(a), we 

consider square holes of 10 carbon atoms instead of 9 in the FET of Figure 3.18(d) (see 

Figure 3.19(a)); we keep the same hole as in Figure 3.18(e) (see Figure 3.19(b)); we consider 

square hole of 16 atoms instead of 17 in the FET of Figure 3.18(f) (see Figure 3.19(c)). These 

three nanomesh samples have now the same fitting parameter, and the difference among the 

energy gaps depend only on the sizes of the holes and the lattice period. Energy gaps of 

0.5062eV, 0.3043eV, 0.2783eV are obtained for the three different transistors, respectively. 

Also in this case, the numerical results in Figure 3.19 confirm that the very different impact 

on the on/off current ratio can be obtained by playing with the geometric features of the 

nanomesh channel. 

 

Figure 3.19: Transfer characteristics of nanomesh FET with different geometrical 

configurations and square-shaped holes. (a)  lr-hole = 1.1 nm≈10 carbon atom, Lr-hole = 2 nm. 

(b) lr-hole = 1.5 nm≈13 carbon atom, Lr-hole = 3 nm. (c) lr-hole = 1.84 nm≈16 carbon atom, Lr-

hole = 3.5 nm. 

 

（a） （b） （c） 
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Figure 3.20: Comparison of transfer characteristics of nanomesh FET and different 

geometrical nanoribbon FET. (a) Nanomesh: lr-hole = 1.1 nm≈10 carbon atom, Lr-hole = 2 nm; 

nanoribbon: length 6 nm. (b) Nanomesh: lr-hole = 1.5 nm≈13 carbon atom, Lr-hole = 3 nm; 

nanoribbon: length 9 nm.  (c) Nanomesh: lr-hole = 1.84 nm≈16 carbon atom, Lr-hole = 3.5 nm; 

nanoribbon: length 9nm.   

In Figure 3.20, we change the width of the reference nanoribbon to approximately 

three nanomesh unit cells. From these comparisons, we can see that even in this case, the 

on/off current ratios of graphene nanomesh FET are larger than graphene nanoribbon FET. In 

Figure 3.20, I-V characteristics of graphene nanomesh FET are compared with I-V 

characteristics of graphene nanoribbon FET for different design parameter values. 

 

 

 

 

（a） （b） （c） 
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Conclusions and Perspectives  

In this thesis we have studied two cases of carbon-based nano-transistor in ballistic 

and partially-ballistic transport regimes, by applying a semi-analytical method involving a 

multiscale analysis of the device. The charge carriers are computed both by means of a 

suitable integration over the energy bands of the carbon-based channel, and by means of an 

electrostatic approach. In the geometry considered here, the Poisson equation does not need to 

be solved numerically since closed-form expressions for the contact capacitances are available. 

Mechanical deformations on graphene nanoribbon-based FETs have been investigated 

thanks to a simple method to determine the effect of small deformations on electric properties 

of nanoribbons. The same information on geometrical deformation is retained in the 

electrostatic analysis, where the capacitance of contacts is modified accordingly. These kinds 

of deformation phenomena may occurs in flexible electronics, where components can be 

submitted to different strains. In this context, small but not negligible deformations will occur; 

we found that if the relative deformation is small, the current variations are not strong enough 

to jeopardize the good functioning of the devices in terms of on/off current ratio. However, if 

larger deformation occurs, the energy gap created by cutting the nanoribbon can disappear 

and the FET current ratio can be degraded. As is well known, the smaller is the width of the 

nanoribbon, the more effective is the gap opening. This means that a larger on/off current 

ratio is obtained. Results show that, since small-width nanoribbon have a gap more resistant 

to deformation (i.e., a larger deformation is required to obtain a zero gap), their current ratio is 

also more robust to deformation. A validation with an ab-initio approach proved the 

correctness of the method, which can lead to a very fast modeling of deformed both ballistic 

and partially ballistic conduction regimes. Experimental results involving the fabrication of 

graphene on flexible substrates and the measurement of deformed transistors have been 

carried out during a visit at Chang Gung University, Taiwan. Namely, measurements on 

transistors with different deformations do show a variation of the current level. However, due 

to the relative large size of the transistor measured, to a on/off current ratio not very high, and 

to the possible presence of non-ideal behavior (e.g. contact deformation and partial breaking) 

the effects due to quantum confinement emerged in the model cannot be directly observed in 

the experiments. 
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As a second case of carbon-based nanotransistor, the effect of different geometrical 

configurations of graphene nanomesh transistors has been studied with the compact model. A 

ballistic regime has been considered for this study; the energy gap of the nanomesh channel 

has been estimated thanks to closed-form expressions proposed in the literature, resulting 

from a fitting of ab-initio simulations. Again, our FET model shows good agreement with a 

more complex model based on an ab-initio method. Our numerical results for nano-scale 

transistors in ballistic regime confirm that nanomesh can significantly improve the on-off 

current ratio of the transistor. However, the variability of the energy gap of the nanomesh 

with respect to different geometric parameters should warn about possible limitations of this 

technique. The size of the hole, the distance between adjacent holes, the shape of the hole, and 

the kind of edge of each hole (zigzag or armchair) are all parameters which affect the on-off 

current ratio in a non-negligible way. The cases of triangular and rhombic holes have been 

analyzed in detail. Also in this case, experimental results have been shown on micro-scale 

transistors. They confirm that for micro-scale transistor on-off current ratio is dependent on 

the different geometric parameters (the distance and the size of the hole, since the shape and 

edge type could not be controlled) and that the current ratio improvement can be achieved or 

not, according to the dimensions chosen. 

The results presented lead to further work necessary to study more complex structures 

and increase the accuracy of the model. The response of nano-ribbon FET to deformation 

could lead to the design of nanosensors sensitive to deformation on the basis of their current 

ratio. Ab-initio simulations should be performed to assess the impact of more complex 

deformations such as those due to nanoparticles placed on the FET, which would not define a 

simple longitudinal strain. 

The study of nanomesh FET will require further work to assess how the behavior 

observed scale with dimensions. Finally, ab-initio results could help us to characterize 

deformations in nanomesh and to evaluate the response of this kind of transistors to 

mechanical strains. This analysis could be of interest in flexible electronics and for 

application to nanosensors. 
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Annex: Experiments on graphene transistors at Chang Gung University 

In this annex we briefly describe some research activities conducted during a research 

stay at CGU (Chang Gung University, Taiwan) in summer 2017. At CGU, several projects 

involve the use of graphene. Among other activities, the participation to the fabrication and 

measurement of graphene nano-transistor are briefly described here. This activities were 

meant to complete the analysis of the impact of deformation on graphene-based transistors 

from an experimental point of view. It should be pointed out that, due to the facilities 

available at Chang Gung University, the size of the transistors fabricated and measured is not 

of the order of the nanoribbon FET simulated in the previous part of this chapter. The results 

of this section will then be compared only qualitatively to those previously obtained. 

A.1 Chemical Vapor Deposition (CVD) method to produce graphene and graphene 

transfer technology 

 

Figure A.1: 1100°C Tube Furnace in CGU. 

In CGU, the research work was cooperated with a Ph.D student, Mamina SAHOO. In 

this project, we wanted to study the effect of deformation on graphene in nano-transistors. 

Graphene was fabricated by using Chemical Vapor Deposition (CVD) method.  

Firstly, copper film was cut into a suitable shape and then it was rolled in a cylinder. 

The cylinder copper film was inserted into the furnace tube (as Figure A.1 shows). The 
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graphene growth temperature was set to 1000°C. Mixed gas (methane and hydrogen) was 

introduced into the tube for 20 minutes and the graphene was extracted once the tube to 

cooled down to the room temperature.  

Graphene transfer was based on poly methyl methacrylate (PMMA) method. The 

transfer media we choose to use is PMMA, which has a strong interaction with graphene. The 

PMMA coating graphene-Copper film substrate then can be immerged into diluted FeCl3 

solution. Copper foil will be etched and PMMA graphene will be separated. Then PMMA 

graphene was immerged into deionized water in order to remove residues. After this process, 

we could get clean PMMA graphene and transfer it to the substrate. Lastly, the PMMA can be 

removed by acetone at 90 °C. 

A.2 Deformation of pristine graphene based transistor in CGU 

Figure A.2 shows the structure of GFET tested in CGU. In Figure A.2 naturally 

formed AlxOx acts as a dielectric layer. The source and drain are made of Nichel and the gate 

of Aluminum. 

 

Figure A.2: GFET with naturally formed AlxOx as dielectrics on flexible substrate. 

We have used rectangular graphene as the channel material in transistor, which 

dimension is 30*50 µm. Then measurements are conducted in order to check possible transfer 

characteristics variation occurring for different deformations. As shown in Figure A.3, we 

paste the same transistor on different metallic cylinders. These metallic cylinders have 

different diameters 6 mm, 8 mm, 10 mm. For each measurement, the transistor will suffer 

different strain. 
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Figure A.3: GFET on transparent PET substrate which paste on metallic cylinder. 

 

We have fixed the metallic cylinder on the platform and kept a constant potential VDS 

to obtain the transfer characteristics. During this process, B1500A Semiconductor Device 

Parameter Analyzer was used in the CGU semiconducting lab (see Figure A.4). 

 

 

Figure A.4: B1500A Semiconductor Device Parameter Analyzer. 

In Figure A.5, we plot the I-V characteristics. In Figure A.5 (a), the transistor is fixed 

on the flat platform, In Figure A.5 (b), the transistor is pasted on the metallic cylinder with 

diameter 10 mm, In Figure A.5(c), a metallic cylinder with diameter 8 mm is used. In Figure 

A.5 (d), a metallic cylinder with diameter 6 mm is used. In all cases, Ids is varied by keeping a 

constant potential VDS = 2 V and changing the gate potential Vg.  
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Figure A.5: I-V Characteristics for same transistor pasted on different metallic cylinder (blue 

curve, represents Id vs.Vg): (a) normal and flat platform (b) transistor pasted on metallic 

cylinder which diameter is 10 mm (c) transistor pasted on metallic cylinder which diameter is 

8 mm (d) transistor pasted on metallic cylinder which diameter is 6 mm. 

In order to compare the I-V characteristics under different situations, we plot these 

transfer characteristics in Figure A.6. In Figure A.6, we can see the observable variation in the 

current due to different deformations.  

It has to be stated that a direct comparison with the simulated transistors of the 

previous sections is not possible. The size of the transistors fabricated and measured is much 

larger than the size of the nano-ribbon considered for simulation. Furthermore, we could not 

enforce a specific edge type of the graphene sample (aGNR in our simulations). Finally, 

different non-ideal effects could happen during the measurements (such as defects and 

contacts imperfections related to the deformation). 

（a） （b） 

（d） （c） 
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Figure A.6: Source-drain current Ids. Ids vs. Vg, at Vds = 2 V with ohmic contacts.  

 

（V） 
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