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Introduction

The retina is a transparent neural tissue laying at the back of the eye. It transforms the
received visual signal into spike trains and sends them to the brain through the optic
nerve. All the visual information coming from the external world is processed by the
retina, which has the role of translating the image into a code of spikes that the brain
can understand.

On one side of the retina, the photoreceptors transduce incoming light signals into
electrical currents. This electrical activity is then processed by bipolar cells before being
sent to ganglion cells, which send their output spike trains to the brain. Additionally,
horizontal and amacrine cells spread the electrical signal laterally across the retina.

Research over the last decade has shown that the retinal circuit is more than a simple
camera, and performs many complex computations on the visual scene [Masland, 2012].
Different types of ganglion cells encode for different features of the visual scene. For
example, ON ganglion cells respond to an increment of light, while OFF ganglion cells
to a decrement. Each ganglion cell responds to a visual stimulus presented in a specific
region of the space, called its receptive field. A complex spatial feature encoded by
ganglion cells is spatial contrast (i.e. local changes in light): ganglion cells distinguish
the polarity of a stimulus placed in the center or in the surround of its receptive field.
Furthermore, ganglion cells can encode for spatiotemporal features, like visual motion,
i.e. they distinguish visual objects moving in a specific direction and not in the opposite
one.

The two most external layers of the retina are easily accessible using common optical
and electrophysiological techniques. Photoreceptors can be activated by a visual stimulus
focused over them and ganglion cells can be recorded using multi electrodes arrays or
functional imaging without damaging the retinal structure. However, understanding the
computations done by internal layers, from just the visual stimuli and recorded ganglion
cell activity is challenging. This is an important omission, because recent works have
shown that bipolar cells, in the intermediate layers, are a key component of these complex
computations [Euler et al., 2014, Gollisch and Meister, 2010].

Internal layers are hard to access directly using standard physiological techniques,
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vi Introduction

especially without damaging the surrounding retinal network. Few studies [Asari and
Meister, 2012, 2014]) have been able to record intracellularly from one bipolar cell in an
intact preparation of the retina while recording at the same time retinal ganglion cells,
and thus it is unclear how the activity of bipolar cells is transferred to ganglion cells.

In this work, we focus on a specific type of bipolar cells: rod bipolar cells. Rod
bipolar cells are involved in the primary rod pathway: one of the circuits that in dim light
conditions transfers the signal received from rods to ganglion cells. However, although
these cells were previously thought to be active only during night vision, recent works
have demonstrated that they are active also in daylight [Franke et al., 2017, Szikra et al.,
2014].

We study the role that rod bipolar cells play in the computation of complex features by
ganglion cells, such as motion and spatial contrast. For this, we focus on two populations
of ganglion cells, one of which encodes visual motion (OFF Direction Selective ganglion
cells) and the other which has a specific centre-surround organisation (OFF alpha ganglion
cells, which have an OFF center ON surround organisation of the receptive field).

We present a new method to dissect the retinal circuit, which combines a selective op-
tical activation of rod bipolar cells with an efficient recording of the ganglion cell layer. In
order to manipulate rod bipolar cell activity, we express an optogenetic actuator specifi-
cally in these cells. The technique used for recording ganglion cells depends on the specific
ganglion cell population analyzed. For OFF direction selective ganglion cells we use cal-
cium imaging, which allows for a better sampling of all the ganglion cell types, but is
temporally less precise than electrophysiological techniques. Conversely, to record OFF
alpha ganglion cells, we use a matrix of electrodes, which is able to efficiently sample only
some types of ganglion cells, but reports the spiking activity extremely precisely. Using a
two-photon computer generated holography technique, we are able to stimulate sequence
of different rod bipolar cells, as well as multiple bipolar cells at the same time, in a highly
precisely way, while recording ganglion cells activity.

Thanks to these techniques, we are able to selectively investigate a specific type of
bipolar cells and demonstrate that they are involved in the generation of characteristics
visual responses of specific types of ganglion cells, like direction selectivity and surround
organisation. We found that G2 OFF direction selective ganglion cells receive an asym-
metric input from rod bipolar cells, biased towards the preferred side. Furthermore,
we found that rod bipolar cells activate distant responses in OFF alpha ganglion cells,
probably because they are involved in the ON surround computation.

These results show that the role of these type of cells is not completely understood
and that it is necessary to specifically dissect neural circuits to understand their function.
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This Thesis is organized as follows:

Part I I begin with an introduction to the morphology and functions of the retina,
a thin neural network organized in layers of different types of cells that play different roles.

Part II I introduce the specific type of bipolar cells studied. I reviewed all the cir-
cuits where they are known to be involved and their function under different light regimes.

Part III I study the role of rod bipolar cells in the circuit generating direction
selectivity in OFF direction selective ganglion cells. I describe in details the technology
we implemented from scratch to study this circuit.

Part IV I describe the SpyKING CIRCUS software, implemented to solve the prob-
lem of spike sorting when using multi electrodes arrays. I described how we validated our
software by generating ground truth data.

Part V I study how rod bipolar cells are involved in the generation of the surround
structure of OFF alpha ganglion cells. I also describe the optical setup we developed to
optically manipulate bipolar cell activity while electrophisiologically recording ganglion
cells.

Part VI I conclude with a general discussion on the limitations of this study and
set out directions for future work.
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I – Retina structure

I.1 Introduction

When light enters the eye through the pupil, the lens and the cornea focus it on the most
external layer of the retina (Fig. I.1A). The retina is a ∼200 um thick neural tissue laying
at the back of the eye. It is the most external part of the central nervous system. It is in
charge of converting the visual scene into a set of spikes and sending them to the brain
through the optic nerve. Any visual information to the brain comes from the retina.

The retina is composed of more than 60 different types of neurons arranged in a
layered structure. It is an ideal system to study sensory coding from multiple points of
view. It has a relatively simple organization, with almost no feedback from the brain, and
the precise function of encoding visual information. It is possible to enucleate the retina

Figure I.1 – Anatomy of the eye and of the retina. A. Picture of the human eye. The retina lays at the
back of the eye. Light entering from the pupil is focused on the retina by the lens. B. Schematic of the
cellular organisation. OS/IS: outer and inner segments of photoreceptors (blue), ONL: outer nuclear layer,
OPL: outer plexiform layer, INL: inner nuclear layer (bipolar cells in green, horizontal cells in orange and
amacrine cells in pink), IPL: inner plexiform layer, GCL: ganglion cell (red) layer C. Vertical section of
the mouse retina. Courtesy of Didier Hodzic. Color code and acronyms as in B.

1



2 Chapter I. Retina structure

from the eye and flat mount it, keeping intact its activity for many hours. It’s the only
neural network that can be flattened on a matrix of electrodes to record the population
of its output layer: the retinal ganglion cells (RGCs), whose axons eventually form the
optic nerve. It is a perfect system to be investigated with common microscopy techniques
because it is transparent [Chen, 1993] and, except for the photoreceptor (PR) layer, it
doesn’t scatter light. Finally, its layered organization makes it simple to target specific cell
types for intracellular recordings. Despite all of these approaches to studying its circuits,
how the retina processes visual information and the underlying neural mechanisms are
still a matter of active investigation.

Here the focus will be on the mouse retina (except when explicitly specified), because
it is the model used in this work, but much work has also been done in other animals.

I.2 A complex layered structure

The retina contains six classes of cells, organized in layers alternating between cell bodies
and synaptic layers (Fig. I.1B). The retina is oriented in the eye with the photoreceptors
facing towards the brain. The light needs to travel through the entire tissue before
hitting the photoreceptors, the main photosensitive cells of the retina. Photoreceptors are
located in the outer nuclear layer and transform light into graded electrical signals. These
signals are then modulated by the horizontal cells (HCs) and transferred to bipolar cells
(BCs) in the inner nuclear layer (INL). Complex nonlinear computations are performed
in the IPL, where information from bipolar cells is transferred to ganglion cells, while
being modulated by amacrine cells (ACs). Ganglion cell axons bundle to form the optic
nerve, which sends the information received to the brain through spike trains. There are
many different types of ganglion cells and the axons of individual cell types innervate
selectively specific brain areas dedicated to different functions (i.e. orienting attention,
regulating circadian rhythms, controlling eye movements) as well as generating visual
perception [Dhande et al., 2015]. Each type of ganglion cell receives input from a unique
combination of parallel interneuron pathways which allows each type to encode different
components of the same visual stimulus [Roska and Werblin, 2001, Baden et al., 2016].
These unique responses represent the fundamental building blocks for the early stages of
visual processing in the brain.

The retina functions over a wide range of light intensities, spanning roughly ten orders
of magnitude. This ability originates from the cells at the beginning of the circuit where
there is a difference in sensitivity between the different types of photoreceptors, each
being sensitive to a specific range of light intensities. Furthermore, changing the light
level activates a variety of circuits downstream that interact with each other in different
ways, depending on the level of adaptation.
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There are commonly three light ranges defined in the literature: scotopic, mesopic (or
near scotopic or low photopic) and photopic. In the scotopic regime, the retina is exposed
to very dim light levels (≤ 103R*rod-1sec-1) and only rods are active. In the photopic
regime, the retina is exposed to bright light (≥ 104R*rod-1sec-1) and just cones should
be activated, even if recent works have challenged this notion [Tikidji-Hamburyan et al.,
2017, Szikra et al., 2014]. Between scotopic and photopic there is the mesopic regime,
i.e. when rods are not completely inactivated and cones are already sensitive [Tikidji-
Hamburyan et al., 2017, Green, 1971].

Before talking about each different class of neurons present in the retina it is worth
mentioning that in each of the following classes, cells can be divided into ON or OFF types
depending on if they respond to a light increment or decrement respectively. Furthermore,
each cell responds to a stimulation of a specific spatial area of the retina, i.e. the receptive
field (RF). The receptive field of a cell is defined as the area on the retina from which an
excitatory response can be elicited in the same cell by visual stimulation [Hartline, 1940],
basically it is the portion of the visual scene that the cell can see.

I.3 Photoreceptors

In the vertebrate retina, there are two types of photoreceptors: rods and cones. Although
they are more numerous (∼20 times more in mice), rods are believed to have appeared
later in the evolution of the retina [Lamb, 2009]. One piece of evidence for this is that
rods don’t feed their signal into ganglion cells directly but the cells in charge of rod signal
transmission feed into the cone pathway (see below).

Photoreceptors hyperpolarize in response to light. They release glutamate in darkness
and neurotransmitter release is reduced when they are exposed to light. They encode
for different light levels [Green, 1971]. Rods are more sensitive than cones and tend
to be slower (∼200 ms integration time for rod signal, while ∼100 ms integration time
for cone signal). They can encode the absorption of a single photon [Baylor, 1996] so
they are active during night vision. Cones on the other hand are not sensitive enough
to detect single photons, so they are mainly active during daylight. Apart from the
pure scotopic (completely dark adapted retina) and the pure photopic (completely light
adapted retina) regime, there are some intermediate lighting conditions in which both
types of photoreceptors are active.

At low light levels, color vision is not possible: there is only one type of rod with a
single spectral sensitivity. At higher light levels, cones are active and each cone contains
one or two (in the mouse, three in humans, but there is no co-expression on the same
cone) photopigments (opsin + chromophore) with different spectral sensitivities (Fig. I.2):
genuine S cones (S=short wavelength, ∼360 nm) and co-expressing cones with both S and
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Figure I.2 – A. Gradient of cone opsin coexpression across the mouse retina. M opsin is primarily
expressed in the dorsal/temporal retina, while the S opsin in the ventral/nasal retina. There is a gradient
of relative M/S opsin expression between these two areas. Source: [Demb and Singer, 2015] B. Absorption
spectrum for genuinely M-cones (green), S-cones (blue) and Rods (red).

M opsins (M=middle, ∼500 nm) [Nikonov et al., 2006, Wang et al., 2011]. Co-expression
occurs in a gradient across the retina (Fig. I.2): the M/S ratio is highest in the cones of
the dorsal retina and becomes almost purely S in the ventral retina [Baden et al., 2013].

Rods and cones connect to each other via gap junctions which averages noise out,
[Demb and Singer, 2015] and they synapse with bipolar cells in the OPL.

I.4 Horizontal cells

Horizontal cells are GABAergic neurons with their cell bodies located in the inner nuclear
layer and their processes extending in the OPL. They provide lateral interaction in this
layer, modulating the signal from photoreceptors and generating a classic linear surround
[Thoreson and Mangel, 2012].

There are two types of horizontal cells in mammals: axon-bearing and axon-less. In
mice, there is just the axon-bearing type. The axons of HCs contact only rods and the
dendrites only cones. They are coupled with each other through gap-junctions so they
can cover a larger area [Weiler et al., 2000]. They sum light responses across a broad
region and subtract it from the local signal generating an antagonistic center surround
receptive field organization in rods at low light levels and in cones at bright light levels
[Thoreson and Mangel, 2012]. In the classical picture of this circuit, the synaptic contacts
of HCs were thought to act independently, each performing a local feedback inhibition
separately. Recent works have challenged this picture [Szikra et al., 2014](see below).
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Figure I.3 – Top: morphology of 13 types of cone bipolar cells and one type of rod bipolar cell. Bottom:
Functional differences between types. Bipolar cells can be grouped into ON and OFF depending on the
stratification of their axon terminals and on their light responses. Some bipolar cells can relay low light
signals from rods. Bipolar cells can be chromatic or achromatic depending on the cone type they contact
(contacts denoted by blue and green bars; dim bars indicate probable but not yet experimentally confirmed
contacts). Finally, bipolar cells with axon terminals in the IPL’s central bulk respond more transiently
(sometimes also generating spikes) than those closer to the IPL borders. Source:[Euler et al., 2014]

I.5 Bipolar cells

Bipolar cells are in charge of the vertical transmission of the signal from photoreceptors
to the IPL. They are named for their morphology, specifically for their two protrusions,
one towards the photoreceptors and the other in the opposite direction [Tartuferi, 1887].
Their morphology reflects their function: linking the outermost layer of cells with the
innermost one.

In mammals, the IPL is divided into 5 different strata: the first two are called the
OFF-sublamina (outer), while the last three are the ON-sublamina. This is because cells
with processes stratifying in the first two outer layers are hyperpolarizing at light onset
and depolarizing at light offset (Fig. I.3).

There are more than 13 types of bipolar cells identified by different methods in the
mouse retina (molecular signaling [Shekhar et al., 2016], morphology [Tsukamoto and
Omi, 2017], light responses [Franke et al., 2017, Euler et al., 2014]). Most bipolar cells
receive their signal mainly from cones (cone bipolar cells, CBCs), except for one type
which is specific to rods: the rod bipolar cell (RBC). In recent works, it has been argued
that there are two different types of rod bipolar cells, but this is an open debate and there
are no final conclusions [Tsukamoto and Omi, 2017, Pang et al., 2004, 2010]. Different
types can be distinguished based on their morphology, mainly on the stratification level
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of their axon terminals (Fig. I.3), but also on the basis of their responses to a visual
stimulation. This is summarized for 13 types of bipolar cells in (Fig. I.3).

The signal from the photoreceptors spreads in different parallel channels each shaping
it in a different way and selecting different features of it. Processing of the signal can take
place at the level of the dendritic input or at the axon terminal.

The mechanisms shaping the bipolar signal at the input level depend on: (i) the specific
type of glutamate receptor expressed (depolarizing-ON bipolar cells express metabotropic
glutamate receptors, while hyperpolarizing-OFF BCs combine ionotropic glutamate re-
ceptors), which defines the polarity of the cell; (ii) how these receptors are distributed
over the dendritic field, which partially defines the kinetics of the response for the off cells
[Borghuis et al., 2014, Lindstrom et al., 2014]; (ii) the cone-contact morphology, which
contributes to the shaping of the temporal profile of bipolar cell input and its chromatic
tuning.

Then the bipolar signal travels the passive axon which acts as a low pass filter, i.e.
fast voltage transients are attenuated as a function of axon length and diameter [Euler
et al., 2014, Demb and Singer, 2015].

At the axon terminal, each bipolar cell type expresses specific combinations of voltage-
gated channels, which endow them with unique voltage responses to synaptic input [Demb
and Singer, 2015]. Furthermore, glutamate release from axon terminals is strongly shaped
by pre-synaptic inhibition from amacrine cells.

Finally, synaptic release of vesicles from the vesicle pool occurs via a ribbon synapse.
The depletion of vesicles from the pool is not linear and replenishing of the reservoir
requires time (∼1.5 s)[Ke et al., 2014]. The presynaptic active zone can be depleted rapidly
of readily releasable vesicles. As a consequence, in response to sustained presynaptic
depolarization, the release from the axon terminals of bipolar cells can be transient [Singer,
2006]. Furthermore, glutamate release is further shaped by the recent history of the cell’s
activity. This process in turn also shapes the output signal of bipolar cells and is one of
the key mechanisms for adaptation [Ke et al., 2014].

I.6 Amacrine cells

Amacrine cells are very hard to characterize. They can be divided into more than 50
morphological types [MacNeil and Masland, 1998]. They usually have no axon, although
some have more than one. Broadly, they can be divided into narrow-field and wide-field
types based on the diameters of their dendritic trees [Zhang and McCall, 2012]. Narrow-
field amacrine cells are commonly glycinergic and they signal only locally, except for the
case of strong coupling between neighbors (see AII in the following chapter), and they
seem to fine tune local glutamate input. Wide-field amacrine cells are commonly GABA-
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ergic and they have dendritic arbors extending even millimeters across the retina. They
mediate long range synaptic interactions and shape the behaviors of inhibitory surrounds
significantly [Zaghloul et al., 2007, Baccus et al., 2008]. They seem to play a role in
surround generation in ganglion cells complementary to the horizontal cells [Zaghloul
et al., 2007]: in the IPL, ACs excited by BCs inhibit the same BCs axon terminals and
the dendrites of ACs and RGCs to create a center excitation and a surround inhibition
of the receptive field.

Unlike bipolar and ganglion cells, amacrine cell dendrites do not all stratify in precisely
defined sublayers of the IPL, and some cells even connect to all layers. Their role is
complex as they receive input from bipolar cells and other amacrine cells, and they provide
feedback to bipolar cells and connect to ganglion cells. Furthermore, subunits of the same
cell can have different functions, and be almost uncoupled electrically [Masland, 2012].
This is the case of starburst amacrine cells, which can be divided into sectors sensitive to
motion in different directions. These cells are believed to be responsible for the direction
selectivity of some ganglion cells (see below). Another example is the A17, which has
multiple feedback inhibitory subunits (see below).

Even if much of their role is not well understood, the role of amacrine cells is crucial.
Masland in a review of 2012 [Masland, 2012] highlighted three main characteristics of
amacrine cell action:

1. They create contextual effects for the responses of the retinal ganglion cells (for
example the center surround antagonism)

2. Many amacrine cells perform some variety of vertical integration, communicating
among several layers of the IPL (for example cross-over inhibition)

3. Most of the functions of amacrine cells are narrowly task specific (for example SAC
or A17)

I.7 Retinal ganglion cells

Retinal ganglion cells are the only link between the retina and the brain. Their cell bodies
are in the ganglion cell layer, their spine-free dendrites arborize in the IPL and their axons
form the bundle of the optic nerve, which projects to the brain. They receive synapses
on their dendrites, conduct action potentials and release glutamate from their terminals.

Apart from these shared characteristics, there are many different types of ganglion
cells, how many precisely is a matter of open discussion [Sanes and Masland, 2015]. Each
RGC type tiles the retinal surface and extracts a specific feature of the visual scene to
transfer it to the brain through one parallel channel. A neuronal type is a group of neu-
rons that carries out a task different from the tasks of other neurons. Since it is not
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always possible to record this functional information there are other indicators that have
been used: morphology [Helmstaedter et al., 2013], similar gene expression [Siegert et al.,
2009], regular spacing (cells of the same type avoid each other while ignoring cells of
other types), uniform physiological properties [Baden et al., 2016]. This last criterion is
the most difficult to fulfill, mainly because of the limitations in the experimental tech-
niques employed. Optical imaging methods have provided the most complete functional
characterization of ganglion cells types, identifying at least 32 functional types on the
basis of their responses to visual stimuli and basic anatomical criteria. In (Fig. I.4) all
these 32 types are described.

The easiest classification of cell types is between ON and OFF ganglion cells. ON
ganglion cells respond to a light increment of the visual stimulus, while OFF cells emit
spikes when there is a light decrement. ON and OFF ganglion cell dendrites are found in
different strata of the IPL. To complicate the classification, ON and OFF ganglion cells can
change their polarity depending on the mean light level of the stimulation, i.e. depending
on the adaptation state of the retina, a ganglion cell can change its response to full field
contrast [Tikidji-Hamburyan et al., 2015]. Furthermore, depending on the adaptation to a
background, the receptive field of some ganglion cells can change its dimensions (usually,
it increases under dim light conditions) [Pearson and Kerschensteiner, 2015].

Different ganglion cell types also project to different areas of the brain, and [Marter-
steck et al., 2017] found up to 50 retinorecipient regions in the mouse brain. The main
relay to primary cortex is the lateral geniculate nucleus in the thalamus. Ganglion cells,
especially direction sensitive and intrinsically photosensitive RGCs, also connect to re-
gions of the superior colliculus, pretectum and hypothalamus involved in pupillary light
reflex, optokinetic reflex, and modulation of circadian rhythms. Finally, connections have
also been found to the amygdala and the pallidum [Martersteck et al., 2017].

I.7.1 Direction selective ganglion cells

The direction selective ganglion cells (DSGCs) were first discovered by Barlow and Hill
in the rabbit [Barlow and Hill, 1963, Barlow et al., 1964]. These types of ganglion cells
strongly respond to visual stimuli moving across their receptive field in a particular pre-
ferred direction, but they have little or no response when the stimulus is moving in the
opposite (null) direction (Fig. I.5A,B).

There are different types of DSGCs depending on the polarity of their response. Flash-
ing a spot of light in the center of the RF of different DSGCs uncover different types of
DSGCs: ON-DSGCs, responding on the light onset; OFF-DSGCs responding to the light
offset and ON-OFF DSGCs responding to both. The most extensively studied type of
DSGCs is the ON-OFF DSGCs [Vaney et al., 2012].
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Figure I.4 – Physiological characterization of 32 ganglion cells types. A. classification and names of the
types. B.Mean response of the cells in each cluster to the different stimuli. C. From left to right: region
of interest (soma) area, receptive field (RF) diameter, direction-selectivity index (DSi) and orientation -
selectivity index (OSi). Source:[Baden et al., 2016]
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Figure I.5 – Direction Selective Ganglion Cells. A. Cartoon of a direction selective ganglion cell. The
ganglion cell is responding to an object moving in the preferred direction, from the preferred towards the
null side. B. Polar plot for an ON(red)-OFF(blue) direction selective ganglion cell, representing the peak
spike rates evoked by a 400 µm spot moved in eight directions over the RF. Spike rate histograms are
placed around the polar plot in the corresponding direction. Source: [Trenholm et al., 2011].C. Schematic
of two direction selective ganglion cells, with opposite preferred directions. Only the connections in the
ON sublamina are shown for simplicity. The circuit and the elements providing direction selectivity are
depicted. Each DSGC dendrite receives inputs from different BCs and SACs (shown by yellow boxes)
and, together with the dendritic spike mechanism in the DSGC dendrite, this provides the microcircuit
that generates direction selectivity in subunits of the DSGC’s receptive field. D. Whole mounted retina
expressing GFP under the JAMB promoter. Arrowhead marks RGCs axons. E. Responses of a J-RGC
to a small spot moving in 8 directions. Polar plot displays the average responses. Source for D and
E:[Kim et al., 2008].F.,G.,H. Characterization of G2 DS OFF RGCs. Calcium responses to different
visual stimuli, tiling of the space and morphology. Source: [Baden et al., 2016]
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a) ON-OFF direction selective ganglion cells

The receptive field of ON-OFF DSGCs spans ∼3deg of the visual space, but the responses
to an object moving in it span ∼2.5 deg of the visual scene. The presynaptic circuitry
mediating direction selectivity is composed by multiple subunits, each of them direction
selective too, and replicated at small intervals in the receptive field (Fig. I.5C). ON-OFF
DSGCs respond to a wide range of image velocities and they have a RF organized with
an excitatory center and an inhibitory surround.

In the mouse there are 4 physiological subtypes each responding preferentially to
movement in one of the four cardinal ocular directions in the visual field. These subtypes
are then providing 4 independent maps of the direction of image motion [Sabbah et al.,
2017].

Morphologically, ON-OFF DSGCs have dendrites bi-stratifying in the ON and OFF
sublamina, with many short terminals dendrites distributed through the dendritic field
(∼150-200 µm).

Even if it has been recently demonstrated [Pei et al., 2015] that there are multiple
synaptic mechanisms acting in a concerted way to ensure robust direction selectivity, the
building blocks of motion integration for ON-OFF DSGCs are the bipolar cells and the
starbust amacrine cells (SACs). SACs are large field neurons with widely overlapping
dendritic fields, which receive direct excitatory inputs from BCs. There are two mirrors
types with dendrites extending either in the ON sublamina or OFF sublamina. They
have radially symmetric morphology with varicosities in the distal part of their dendritic
field [Vaney et al., 2012]. They receive input synapses from BCs all over their dendritic
field, but they make output synapses to RGCs only at the distal varicosities.

SACs are both excitatory and inhibitory neurons, but in the DS circuitry they have
mainly an inhibitory function, releasing GABA and underlying the null-direction inhi-
bition. The centrifugal segregation of input and output (with output in the distal part
of the dendritic field) dendrites could be the basis of a spatial asymmetry generating in
turn direction selectivity in the output ganglion cells [Vaney and Young, 1988]. DSGCs
receive inhibitory input from SACs located on its null side, but not on the preferred side
[Fried et al., 2002]. This asymmetric inhibitory input from SAC to DSGCs was demon-
strated in four different studies, where authors recorded currents elicited in DSGCs while
stimulating SACs on different sides of the DSGC [Fried et al., 2002, Lee et al., 2010]. In
[Wei et al., 2011], Wei and collaborators have shown that this asymmetry is developed at
the end of the second post-natal week. Other evidence of a structural asymmetry in the
connectivity of ON-OFF DSGCs have been shown thanks to connectomic tools [Briggman
et al., 2011, Denk and Horstmann, 2004, Briggman and Euler, 2011].

As a consequence of this synaptic connectivity, the inhibitory receptive field of the DS-
GCs is wider than their dendritic field and is offset toward the null side. The mechanisms
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shaping the direction selectivity are: (i) a spatio temporal relationship between excita-
tory and inhibitory inputs (motion in the null direction elicit first a long lasting inhibition
which overlaps with the subsequent excitation); (ii) a direction selectivity in the excita-
tory and inhibitory inputs (DSGCs receive stronger inhibitory currents for motion in the
null direction). The direction selectivity is then a phenomenon raising pre-synaptically
and the main players are the SACs (Fig. I.5C). In [Euler et al., 2002], Euler and colleagues
measured calcium transient in distal varicosities of SAC during visual stimulation. They
obtained larger responses during centrifugal image motion (from soma to dendrites), show-
ing that the preferred direction of a DSGC is opposite to the preferred direction of the
SAC dendrites providing its inhibitory input.

A recent study [Kim et al., 2014] suggested a mechanism for the direction selectivity
of SACs. A SAC receives inputs from sustained BCs near the soma and inputs from
transient BCs near the dendritic tips. When motion proceeds outward from the center
toward the tip, the transient and sustained bipolar inputs would maximally depolarize
the release sites at the tips.

SACs in each sublamina receive GABAergic lateral inhibition from neighboring SACs.
The role of this lateral inhibition of SACs in the computation of stimulus direction is
still a matter of discussion. In a recent work [Chen et al., 2016], authors manipulated
specifically SACs perturbing GABA-ergic inhibition into SACs. They selectively removed
reciprocal SAC-SAC inhibition and they also blocked the total GABAergic inhibition onto
SACs. Combining these manipulations with pharmacology, they found that different sets
of inhibitory mechanisms for integration of visual motion are activated for stimuli with
different contrasts and backgrounds.

Finally, intrinsic properties of the DSGCs amplify direction selectivity, most notably
the generation of dendritic action potentials in response to local excitation [Oesch et al.,
2005, Sivyer and Williams, 2013]. Additionally, electrical coupling within one class of
DSGCs amplifies the direction selectivity within the network and generates responses in
different neurons with constant lag times [Trenholm et al., 2013].

b) ON direction selective ganglion cells

ON-DSGCs have a much larger receptive field than ON-OFF DSGCs and only respond to
slow image motion. They have an excitatory center, but only a weak inhibitory surround.
They are responding to global image motion probably resulting from self-movements of
the animal.

There are 3 physiological subtypes, each responding to motion in one of the following
directions aligned with the vestibular axis: anterior, superior with a posterior component
and inferior with a posterior component [Oyster and Barlow, 1967]. In rabbit there are
transient and sustained ON-DS further subdivided in the three physiological subtypes.
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They stratify only in the ON-sublamina and they have a symmetric dendritic field respect
to their soma [Vaney et al., 2012].

The mechanism underlying direction selectivity in ON DSGCs is also based on an
asymmetric organization of inhibitory input to the ganglion cell [Yonehara et al., 2011].

c) OFF direction selective ganglion cells

The first discovered type of purely OFF-DSGCs was characterized in the mouse retina,
where this type of RGC transgenically expresses GFP under the functional adhesion
molecule B promoter (JAMB) [Kim et al., 2008]. They are named J-RGCs. They respond
strongly to the end of a bright stimulus moving in their RF (Fig. I.5E) and they give OFF
responses to small spot flashed in the center of the RF.
Morphologically, J-RGCs have asymmetric dendritic field, offset roughly in their preferred
direction (Fig. I.5D). The dendritic fields of these types of cells are all extending in the
same direction, i.e. toward the ventral retina. They are then strongly activated by stimuli
moving in the same direction than their dendritic field, i.e. ventrally. Their dendrites
branch in the OFF-sublamina, distal from the OFF SACs. The mechanisms behind their
direction selectivity is not based on the action of SACs, but can be mainly explained by
the morphology and substructure of their dendritic field. They have an OFF region close
to the soma and an ON region located ventrally over the terminal dendrites.

There is another type of OFF-RGCs physiologically identified recently by Baden and
colleagues [Baden et al., 2016]: the G2-type OFF DS ganglion cells (Fig. I.5F,G,H). These
cells stratify in the OFF sublamina and have a dendritic field symmetric with respect to
the soma position. As shown in (Fig. I.5F), they respond mainly to the ending edge of
a bar moving outside their receptive field as well as to the offset of a full field. Some of
the cells composing the cluster in (Fig. I.5F) have little to no responses to the full field
stimulus, which might be caused by a surround inhibition.

I.8 Microcircuits for night vision

The retina responds to around ten different ranges of light intensities. Depending on its
adaptation state, different circuits processing the visual information are activated and
interact with each other. In scotopic conditions, only rods are activated since cones are
not sensitive enough to respond to dim light levels. In this regime there are three pathways
to convey the signal from rods to ganglion cells:

• In the primary pathway for rod vision (Fig. I.6A), rods transfer their signal to rod
bipolar cells through a sign inverting metabotropic glutamate receptor 6 (mGluR6).
RBCs relay the received signal via sign-conserving glutamatergic synapses to AII
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Figure I.6 – Rod Pathways. A. Primary rod pathway. B. Secondary Rod Pathway. C. Tertiary rod
pathway

amacrine cells and the RBC synapse is meanwhile strongly modulated by GABAer-
gic feedback from the A17 amacrine cell. AII ACs, stratifying in both ON and
OFF strata, split the signal to ON cone bipolar cells through gap junctions and to
OFF cone bipolar cells through sign-inverting glycinergic synapses. Cone bipolar
cells transfer the received signal to the ganglion cell layer following the regular cone
circuitry. This circuit has been extensively studied [Bloomfield and Dacheux, 2001].

• The secondary pathway for transmission of the scotopic signal (Fig. I.6B) relies on
gap junctions between photoreceptors. Rod signals are transmitted directly to cones
via gap-junctions, then to ON-OFF center bipolar cells and in turn to ganglion cells
with corresponding polarity [Tsukamoto et al., 2001].

• The tertiary rod pathway (Fig. I.6C) implies direct connections between rods and
a specific type of OFF bipolar cells, through an ionotropic sign-conserving AMPA
glutamate receptor [Hack et al., 1999]
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The common characteristic between all of these pathways is that the late-evolving
rods are integrated into a circuitry that had already been developed to serve the cones.

All three pathways have been demonstrated with morphological reconstruction through
electron microscopy [Tsukamoto et al., 2001].Why three different pathways are necessary
to convey information from rods to RGCs is not completely understood. In a study
[Trexler et al., 2005], authors showed that the primary and the secondary pathways op-
erates at similar intensity, down to 0, 5R*rod-1sec-1 and that ON cone bipolar cells take
input always from both pathways. In contrast, another study [Volgyi, 2004] showed that
it is possible to distinguish different ganglion cells types, which receives input mainly from
a single rod pathway. Authors related separate populations of ganglion cells with different
thresholds and different intensity response functions. Ganglion cells of dark adapted reti-
nas were divided into multiple groups with discrete operating ranges: three for ON cells
and four for OFF cells. The low-sensitive cells had responses above the cone threshold.
In contrast, high-intermediate and low-intermediate sensitivity ganglion cells operated
mainly in the scotopic regime. Blocking the transmission rod-RBCs (with LAP4) elim-
inated high sensitivity responses of OFF RGCs and disrupting the AII-ON CBSs gap
junctions (using SNAP) abolished the same responses in ON ganglion cells. These data
indicate that high sensitivity RGCs receive the rod signals mainly through the primary
rod pathway. In contrast, intermediate sensitivity ganglion cells (ON and OFF) were
unaffected by SNAP or LAP-4. This suggests that they are not activated by the pri-
mary rod pathway. Furthermore, the same cells were not responsive in the Cx36 KO
retina [Deans et al., 2002], which is present in the gap junctions between rods and cones.
Intermediate-sensitivity cells are then mainly activated by the secondary rod pathway.
Finally, they identified a fourth group: the low-intermediate-sensitivity OFF ganglion
cells. These cells were unaffected by LAP-4 and they were still present in the Cx36 KO
mouse retina, demonstrating that they must receive rod signals via the remaining tertiary
rod pathway.
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II – Rod bipolar cells

II.1 Introduction

Rod bipolar cells are the neurons that link rods to the other cells in the primary rod
pathway. As shown in (Fig. II.1 Center) they have elongated cell bodies, which are
located in the upper part of the inner nuclear layer. Their dendrites extend in the OPL
and their axons (the longest bipolar cell axon) extend through the IPL without making
any synaptic contact, until layer 5, where their terminals synapse with AII and A17
amacrine cells. Rod bipolar cell responses are ON-sustained. They are present and very
similar in all types of mammals, and it’s possible to selectively label them using CaBP5
and PKCalpha antibodies [Euler et al., 2014].

In the following, all the input and output elements that characterize the function of
the rod bipolar cell will be discussed.

II.2 Synaptic connectivity in the OPL: input to rod bipolar cell

II.2.1 Anatomy

Rod bipolar cell bodies are situated in the inner nuclear layer, in the nearest position
to the OPL (Fig. II.1 Center). Their short dendrites form a dense tuft extending to the
synaptic terminal of rods, in the OPL (Fig. II.1 A). The presynaptic ribbon is in front of
the invaginating axons of horizontal cells (yellow) and the dendrites of rod bipolar cells
(blue). RBCs express on their dendrites the metabotropic glutamate receptor mGluR6
[Wässle, 2004, Bloomfield and Dacheux, 2001]. In a recent study [Behrens et al., 2016],
Behrens and colleagues provided anatomical evidence that RBCs receive input from cones,
demonstrating that rod and cone pathways are interconnected in both directions. This
result was further validated by another work [Pang et al., 2018], where is also shown that
these synaptic sites express mGluR6 as well, so they are likely active.

17
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Figure II.1 – Center: Cartoon of a Rod Bipolar cell. A. Left: Two rod bipolar dendrites (B) invagi-
nating a rod synaptic terminal and extending close to the synaptic ribbon (arrowhead) that is flanked by
horizontal cell processes (H). Image reconstructed from electron micrographs of serial sections (wild-type
mouse). Source:[Tsukamoto et al., 2001]. Right: A rod spherule, the synaptic terminal of rods. HC:
Yellow; RBC: blue; OFF CBC (purple). Source: [Wässle, 2004]. B. Left: Ribbon synapse (arrowhead)
from rod bipolar axon (B) to AII amacrine cell. Source:[Tsukamoto et al., 2001]. Right: Post-Synaptic
partners of a RBCs and ribbon synapse from its axon to AII and A17 ACs. Source:[Grimes et al., 2015].
C. Signal transmission at the axon terminal of a RBC: RBC makes a reciprocal synapse with A17 AC and
an excitatory glutamatergic synapse with AII AC. D. Cartoon of the inhibitory inputs to RBC terminal
and of the circuit responsible for rod bipolar cell sensitization by the dopamine/GABA-dependent mech-
anism. RBCs receive inhibitory input from glycinergic (left)(through glycine receptors) and GABAergic
(right) (through GABAA and GABAC receptors) ACs. A primary wide field AC provides sustained GABA
release onto the RBC axon. A secondary AC can suppress this GABA release, releasing in turn GABA
onto GABAARs in the primary AC. Dopamine (acting through the D1 receptor onto the secondary AC)
can suppress this serial inhibition. Blocking dopamine release reduces RBC sensitivity. Source:[Eggers
and Lukasiewicz, 2011, Travis et al., 2018]. E. Top: in the dark adapted retina, RBCs receive significant
inhibition, likely from A17 ACs, and little inhibition from cone-activated pathways (inhibition from ON
CBCs activating a chain of GABAergic ACs). Bottom: under a background saturating rods, inhibition
from the cone pathway was suppressed by inhibitory connections between GABAergic ACs, resulting in
little inhibition to rod BCs.Source:[Eggers et al., 2013]
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II.2.2 Function

Rod bipolar cells are hyperpolarized in the dark, in response to glutamate release from
rods. The light evoked decrease in glutamate release triggers a depolarizing ON sustained
response in rod bipolar cells via the sign inverting mGluR6. The rod-rod bipolar cell signal
transfer is not linear [Field and Rieke, 2002] and it is modulated by the inhibitory action
of horizontal cells [Thoreson and Mangel, 2012]. In the classical picture of the interaction
between photoreceptors and horizontal cells, this circuit results in an antagonistic center
surround RF for rods and cones depending on the light level.

II.2.3 Activity in photopic range

Besides the anatomical demonstration that cones contact also directly rod bipolar cells,
two recent studies demonstrated that rods can be activated in daylight and that they can
transfer their signal to rod bipolar cells [Szikra et al., 2014], and to the brain [Tikidji-
Hamburyan et al., 2017].

In the paper of Szikra et al [Szikra et al., 2014], authors recorded the activity of
rods in whole mount retinas during stimulation with discs of different diameters on a
background which varied over a range from 0.26 to 10 700 R*sec-1. In (Fig. II.2 A) it is
shown that rods hyperpolarize with increasing amplitude for increasing spot size, at low
backgrounds. Conversely, at high light levels and for the biggest spots, rods depolarize
with a similar amplitude . This depolarization is mediated by cone-driven horizontal cell
activity in the high light intensity regime. Furthermore, they showed, recording from
RBCs at different background intensities, that rod depolarization propagates to the inner
retina (Fig. II.2 B,C). At low light levels RBCs responded with a sustained depolarizing
response, but at high light levels RBCs displayed hyperpolarizing responses (Fig. II.2
C). This hyperpolarizing response disappeared under application of LAP4, which blocks
glutamatergic input to RBCs. The hyperpolarizing response then cannot directly come
from inhibition from HCs. In bright light conditions, rods relay cone-driven, horizontal
cell–mediated surround inhibition to the inner retina.

Further evidence of the activity of rods in bright light adaptation is given by Tikidji-
Hamburyan and co-workers [Tikidji-Hamburyan et al., 2017]. They characterized the
rod driven visual responses in the mouse over a wide range of light levels from scotopic
to high photopic regimes (Fig. II.2 D,E). (Fig. II.2 E) shows the responses from ex-vivo
electroretinography (ERG) recordings to 50 ms flashes given at different contrasts and over
the wide range of backgrounds tested. In the lower light level < 103R*rod–1s–1, responses
were detectable for all contrasts. At backgrounds in the range of 104to106R*rod–1s–1,
responses to lower contrast were not detectable, consistent with expected incremental rod
saturation [Naarendorp et al., 2010, Adelson, 1982], but stimuli with the strongest contrast
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Figure II.2 – A.Light responses to contrast increments from rods recorded in wholemount retina. The
stimulus contrast was kept constant throughout different background intensities. Successive rows are
∼1 log unit apart in intensity. Gray bars indicate the timing of the light stimulation. B. GFP-labeled
rod bipolar cells in wholemount retina. A rod bipolar cell is patched and filled with Alexa 594C. C.
Voltage responses in a rod bipolar cell to an 800−µm-diameter, positive-contrast spot at two different
light levels.Source: [Szikra et al., 2014] D. Stimulus used for ex vivo ERG recordings Right: absolute
stimulus intensities at different light levels. E. For one representative retina. Running average of the
ERG response. Neighboring data points are shifted by one stimulus. The color-coded disks indicate the
level of significance of the response relative to the background activity. Source: [Tikidji-Hamburyan et al.,
2017]
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always elicited rod responses. During exposure to > 104R*rod–1s–1, these responses
even gained amplitude over time (Fig. II.2 E), indicating that rods were becoming more
responsive. Using further recordings from multi electrode array (MEA) and in vivo LGN
responses from cone deficient mice, they demonstrated that rods can drive visual responses
to moderate contrast stimuli at all physiologically relevant irradiances, if exposed to high
backgrounds for enough time. In this work, authors didn’t study if there is one particular
rod pathway that is active in a specific light regime. No recording from RBCs are then
shown.

II.3 Synaptic connectivity in the ILP: output from rod bipolar
cells

II.3.1 Anatomy

RBC axon traverses the IPL without branching until layer 5 (Fig. II.1 Center). RBC axon
terminals are nearer to the ganglion cell layer compared to terminals of other bipolar cell
types. The globular synaptic terminal with ribbon synapses (∼50) contacts a dyad of two
synaptic processes, belonging to two types of amacrine cells: the A17 and the AII (96 %
of the cases)(Fig. II.1 B)[Tsukamoto et al., 2001]. Both of these amacrine cells express
ionotropic glutamate receptors, so the sign of the signal is conserved from RBCs to ACs.
The A17 makes reciprocal synapses with the RBC while the AII, never making reciprocal
synapses with the RBCs (Fig. II.1 C), is connected via gap junctions to neighboring
AIIs [Bloomfield and Dacheux, 2001]. RBC send most of their synaptic output to one
“preferred” AII amacrine cell.

There is expression of GABAA, GABAC and glycinergic receptors in RBC axon ter-
minals, allowing inhibition to shape the final output of glutamate release. RBC terminals
receive inhibition from the A17, from another wide-field amacrine cell, which act mainly
through GABAc receptor, and by a glycinergic amacrine cell [Eggers and Lukasiewicz,
2006, 2011].

II.3.2 Function: responses to light stimuli

Rod bipolar cells receive a graded signal from photoreceptors and transduce it in a modula-
tion of glutamate release. At the axon terminal, the output is mainly shaped by different
types of voltage-gated calcium and potassium channels, and by ionotropic GABA and
glycine receptors.

Euler and Masland [Euler and Masland, 2000] characterized the light evoked output
of rod bipolar cells in retina slices from adult rats. These responses were very similar to
those observed in the mouse retina [Pang et al., 2004]. The resting potential of a RBC
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Figure II.3 – A.Light-Induced voltage responses of a rod bipolar cell, measured in perforated patch
clamp. Stimuli range from 0(bottom trace) to 43.5 cd/m2(top).B.Voltage responses of the same cell to
light stimuli of different durations at the same intensity (12.6 cd/m2). C. Light-Induced current responses
of a rod bipolar cell to a 20 ms light stimulus (19.7 cd/m2). An outward current is present at the reversal
potential for a non specific cation current (gray trace, a), while an inward current is measured at the
chloride reversal potential (gray trace, b). Source:[Euler and Masland, 2000]

in dark adapted conditions is ∼-43mV. (Fig. II.3 A) shows the voltage responses of a
RBC to 50ms light stimuli of different intensities. The typical response is composed of
first a strong depolarization at light onset and a subsequent smaller hyperpolarization
after light off-set. The amplitude of the depolarization increases with light intensity and
saturates at high light intensities (∼4-26 mV maximal amplitude recorded). The sustained
depolarization depends on the duration of the stimulation: longer stimulation corresponds
to longer depolarization and hyperpolarization phase (Fig. II.3 B). The time over which a
depolarized RBC reaches its maximum amplitude is more or less constant between all the
tested light levels, while the time at which the depolarization reaches its maximum slope
changes significantly and raises with light intensity. In the same work, authors showed
that intact bipolar cells are more sensitive than the axon-less, suggesting that the axon
plays a crucial role in defining the dynamic range of these cells (see below).

In figure (Fig. II.3 C) current responses to a light stimulation for different holding
potentials are shown. At negative holding potentials, there is a strong inward current
at first and a weak outward current rebound right after. This polarity of the currents is
reversed at positive holding potentials. At the reversal potential of cations (Ecation) an
outward chloride current is observed, while at the reversal potential of chloride (ECl-) a
nonspecific cation current is recorded. These two currents are combined in the responses
when the cell is held at an intermediate potential.

To conclude, comparing the intact and axotomized currents, authors showed that the
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light induced chloride current reflects inhibitory input from GABAergic amacrine cells
and that this is employed to widen the dynamic range of the cell (see below).

II.3.3 Function: receptive field organization

In rabbit, RBCs display an on-center receptive field of ∼100 µm [Bloomfield and Xin,
2000]. This receptive field is measured using narrow, displaced slits of light as shown in
(Fig. II.4 A,B,C). Intracellular recordings of responses to stimuli in the surround failed to
trigger an inhibitory response, so RBCs in the dark-adapted rabbit retina do not display
a classic antagonistic center-surround organization.

A recent paper of Franke, Berens et al [Franke et al., 2017] showed, in whole mount
mouse retinas, the receptive field for all the identified types of BCs (Fig. II.4 D). They
measured the glutamate release of different bipolar cells in the IPL using GluSnFr indi-
cator. In (Fig. II.4 D), the center-surround receptive field for all the BCs is shown. They
recorded a classical ON center- OFF surround organization for the mouse rod bipolar
cells. This discrepancy in the two results can come from the difference in the two species,
but more likely from the difference in the recording methods and the stimuli used. The
glutamate release measured at the output of the RBC can be the summation of an exci-
tatory component directly coming from the RBC itself and a modulation of the output
coming from inhibitory interneurons.

II.3.4 Function: feedback inhibition and extension of the operational range

There are three factors interacting to determine how the inhibition shapes the output of
different bipolar cell types:

1. The inhibitory receptors present and their biophysical properties

2. The amacrine cells that mediate this inhibition and their properties (for example
GABA vs glycine)

3. The network behind these amacrine cells, which is influencing their inhibitory re-
lease.

Rod bipolar cells receive inhibitory inputs at the axon terminal through different
circuits, based on the following amacrine cells:

• A17 AC, which makes reciprocal inhibitory synapses through GABA receptors

• Other GABA-ergic amacrine cells connected to other AC by serial inhibitory inputs

• Glycine-ergic amacrine cells
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Figure II.4 – Rod Bipolar Cell Receptive Field. A. In rabbit, responses of a RBC to a spot and an
annulus of light (spot diameter = 75 µm, outer diameter = 350 µm). Maximum light intensity (log 0.0)
= 2.37 mW/cm2. Stimulus intensity = log -5.5. B. Responses to the same bright spot centered (top) and
displaced of 100 µm (bottom). C. Responses to a rectangular slit of light (50 µm width and 6 mm length)
moved in discrete steps (number on the side report the distance of the slit from the center position in 0
mm) across the retinal surface. Source: [Bloomfield and Xin, 2000]. D. BC Center (C) and Surround (S)
receptive field. Maps were calculated on the responses of each BC type (mean over all the BCs of the same
type) to ring noise stimulation (see [Franke et al., 2017]). The surround component was recovered clipping
the center of the noise ring stimulus. This surround was then subtracted to the center+surround map
obtained from the complete stimulus to calculate the center component. Each line and color represent a
different type of bipolar cells. CR = rod bipolar cells. Source:[Franke et al., 2017]

a) A17 inhibitory circuit

The A17 amacrine cell is a wide-field GABA-ergic amacrine cell. Its soma is placed in
the inner nuclear layer near the IPL (Fig. II.5 A)[Grimes et al., 2010]. It has many long
neurites extending from the cell body to the deepest part of the IPL, where axon terminals
of RBCs are placed. Its neurites show varicose structures (arrows in Fig. II.5 A,B,C). A
single varicosity receives excitatory, glutamatergic input from a RBC ribbon synapse and
makes a GABAergic feedback synapse onto the same RBC terminal (Fig. II.1C). Usually
there is only one ribbon synapse per varicosity, while each varicosity makes two reciprocal
synapses onto the same RBC terminal. Different varicosities are separated by thin and
asynaptic neurites. On a single A17 there are ∼500 varicosities (Fig. II.5 B,C).

Given the broad dimensions of its dendritic tree, the function classically attributed
to this cell is to mediate long-range center surround inhibition, functionally connecting
many RGC synapses [Völgyi et al., 2002]. Recently, morphological analysis of A17 neurites
and synaptic varicosities with fluorescence and serial electron microscopy (EM), and two
photon calcium imaging of synaptic activity in neurites demonstrated that neighboring
varicosities can act nearly independently.
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Figure II.5 – A17 Amacrine Cell. A. 3D projection of a 2p fluorescence stack of an A17, superposed
upon a DIC (differential interference contrast) image of the retinal slice. Scale bar= 50µm. Black arrows
= synaptic feedback varicosities.Source:[Grimes et al., 2010]. B. Fluorescence image of an A17 and its
many long thin neurites superposed to the image of the RBC axon terminals marked in red. Each contact
(panel C) forms small appositions between each varicosity and terminal pair. D: schematic diagram of
reciprocal inhibitory synapse. Source:[Grimes et al., 2015]

Inhibition from the A17 shapes the signal transfer from RBCs to AII amacrine cells. In
the synapse between A17 and RBC the receptors, channels and release sites are arranged
to create different signaling compartments that form two inhibitory feedback synapses:
one mainly expressing rapidly activating GABAA receptors and the other the more slowly
activating GABAC receptors [Grimes et al., 2015].

The role of feedback inhibition from A17 amacrine cells is to improve the signal to noise
ratio of RBC-AII transmission near visual threshold and improve the visual sensitivity at
night [Grimes et al., 2015].

Neighboring A17s receive input from many synapses of the same RBC. Measuring
the signal transmitted from RBC to the same A17, it is possible to measure the cross-
synaptic synchrony, i.e. correlations in transmitter release across output synapses of a
same neuron. These measurements show that the synchronization between RBC synapses
is nearly perfect in dark adapted retinas and minimizes intrinsic synaptic noise allowing
RBCs to better transfer the signal to downstream neurons. At higher light levels the
cross-synaptic synchrony is reduced, raising the noise in the rod bipolar output [Grimes
et al., 2014].

b) Wide-field and narrow-field amacrine cells inhibitory circuits

RBC axon terminals express three inhibitory receptors: GABA-ergic (GABAA and GABAC)
and glycinergic receptors. Each of these receptors brings a different contribution to light
evoked inhibition in RBCs. The most effective in reducing RBC output is the GABAC
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receptor.
Measuring the light evoked inhibitory post synaptic currents (L-IPSC) in RBCs dark

adapted and [Eggers and Lukasiewicz, 2006] clamped at 0mV (which is the reversal po-
tential for light evoked excitatory currents L-EPSC), the response of the RBC to a light
pulse shows the summation of all the light evoked inhibitory input (Fig. II.6 A).

There are two distinct components: a first component (∼50ms) made of discrete
and fast IPSCs and a slowly rising and decaying component over the next ∼300ms. By
blocking all three receptors the inhibitory currents vanish, i.e. all the inhibition at the
BC axon terminal is coming from these three receptors.

It is possible to pharmacologically isolate the specific contribution of each receptor to
the L-IPSC, as shown in (Fig. II.6 B,C,D). In this way, it is clear that GABAA and glycine
receptors are mediating the fast, initial discrete events of the L-IPSCS, that are limiting
the peak of glutamate release from the RBC. On the other hand, GABAC receptors
mediate the large slow rising and decaying component of the L-IPSCs, which primarily
limits prolonged glutamate release from RBCs (Fig. II.6 E,F)[Eggers and Lukasiewicz,
2011]. Biophysical receptor properties and prolonged GABA and glycine release from
ACs control the time course of light-evoked RBCs inhibition.

GABA and glycine signals to RBCs are mediated by two morphologically distinct
groups of amacrine cells, each with a distinct functional role (Fig. II.1 D): GABA-ergic
amacrine cells are wide field and carry signals laterally across the IPL; glycinergic AC
are narrow-field and carry signals vertically across the different layers of the IPL. GABA-
ergic and glycinergic amacrine cells modulate the release of glutamate onto AII and A17
amacrine cells, as explained above.

GABAC receptor is the most effective in inhibit the RBC. Wide field amacrine cells
that release GABA at the GABACR synapse on RBC axons are regulated by GABAAR
serial inhibition from other wide field ACs [Eggers and Lukasiewicz, 2006, Euler and
Masland, 2000, Eggers and Lukasiewicz, 2011]). As shown in (Fig. II.1 D), the secondary
inhibitory wide field amacrine cell is regulated by dopamine [Herrmann et al., 2011] and
its inhibitory influence on the primary wide field amacrine cell modulates its inhibitory
GABA release onto RBCs [Travis et al., 2018]. The sustained GABA release is not coming
from A17 because chemical inactivation of A17 does not affect sensitivity of rod bipolar
cells in dark-adapted mice [Travis et al., 2018].

This chain of inhibitory inputs is the basis of the regulation of light sensitivity within
the dim light channel of vision. RBCs use GABAC receptors to extend their sensitivity
and to expand their operating range. GABACRs carry a Cl- current, which hyperpolar-
izes RBCs further than the conventional mechanism involving a K+ current. Then the
GABAergic input, regulated by dopamine, causes two effects, both sensitizing rod-driven
vision:
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Figure II.6 – A. two examples of L-IPSCs from the same rod bipolar, representing the sum of all rod
bipolar cell inhibition, which represent the sum of all rod bipolar cell inhibition. Light stimulus (grey
line): 1 sec full field, λ = 565 nm. The intensity of the unattenuated light was 1, 85 × 105 photons µm
-2 s -1 and was used at -2 log units. B. isolated glycine receptor-mediated L-IPSCs. Pharmacology used:
bicuculline and TPMPA. C. isolated GABAA receptor-mediated L-IPSCs. Pharmacology used: strych-
nine and TPMPA. D. isolated GABAC receptor-mediated L-IPSCs. Pharmacology used: bicuculline.
Source: [Eggers and Lukasiewicz, 2006]. E. GABAA and glycine receptor control the peak of glutamate
release from RBC. F. GABAC limits the sustained glutamate release from RBCs. Source: [Eggers and
Lukasiewicz, 2011]
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Figure II.7 – Synaptic axon terminal of bipolar cells. There are three synaptic vesicle pools at the
ribbon synapse: RRP, rapidly releasable pool; IP, intermediate pool; RP, reserve pool. RGC = retinal
ganglion cell. Source:[Euler et al., 2014]

• a tonic GABA input hyperpolarizes RBCs and attracts cations, which enter the cell
during the depolarizing light response, making these depolarizing responses larger

• a subsequent sustained Cl- current imposes a slight inhibition to the depolarizing
light response, broadening the dynamic range of RBCs

These mechanisms are extending the operating range of the RBCs [Herrmann et al., 2011].
Light evoked and spontaneous inhibition to RBC output is reduced by a rod-saturating

light background (Fig. II.1 E). This occurs by two mechanisms: a reduction in the A17
AC rod pathway-mediated inhibition and an increased activity between GABAergic ACs,
limiting RBCs inhibition [Eggers et al., 2013]. The A17 is itself activated by the RBCs,
then adapting the retina to a rod saturating background is reducing the transmission
from RBC to A17. Furthermore, under low photopic regimes the GABA-ergic AC chain
is inhibited by input from cone bipolar cells. This is in turn reducing the inhibition of
GABAercig ACs to RBC axon [Eggers et al., 2013].

II.3.5 Function: primary site of adaptation

Under dim light conditions the primary site of adaptation is the synapse between rod
bipolar cells and AII amacrine cells. At this synapse, the depolarization of the RBC leads
to a calcium influx which triggers neurotransmitter release. Glutamate release through
the ribbon complex has different properties at different time scales. On a ribbon synapse,
there are three distinct synaptic vesicle pools [Euler et al., 2014](Fig. II.7): first, the
rapidly releasable pool (RRP) contains few vesicles ready for immediate and ultrafast
glutamate release (<10 ms); second, the intermediate pool (IP) is larger and consists of
vesicles tethered to the ribbon but not yet ready for release (depletion in ∼100 ms); third,
the reserve pool (RP) collects many thousands of freely diffusible vesicles, replenishing
the adapted ribbon over time.
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Adaptation of the retinal circuit can be distinguished between background light adap-
tation, i.e. adaptation to the mean light level of the visual scene, and by contrast adap-
tation, i.e. adaptation to the temporal variance of the light stimulus. The RBC-AII
synapse contributes to both types of adaptation. This synapse has been studied with
paired whole cell recordings of both RBC and AII in a mouse retinal slice preparation
[Jarsky et al., 2011]. Quasi-white noise voltage commands modulate the membrane po-
tential of RBCs and evokes EPSCs in AII. Depolarization of the membrane potential of
RBC mimics changes in the background luminance, while increasing its variance mimics
changes in background contrast. Adaptation to the mean potential results from both
Ca2+ channel inactivation and vesicle depletion, whereas adaptation to variance results
only from vesicle depletion [Jarsky et al., 2011].

The RBC-AII synapse has been further studied by Ke and coworkers [Ke et al., 2014],
who demonstrated that the light range in which the synapse is active exceeds the scotopic
regime. In the classical picture of rod signaling circuits, the primary rod pathway is
active under scotopic conditions to detect single photons, while at visual threshold the
secondary rod pathway takes the lead on transferring rod signals to RGCs. These two
circuits can also work in parallel and Ke and coworkers demonstrate that the primary
pathway remains active also at backgrounds > 250 R* rod-1 s-1 with the specific function
of encoding Michelson contrast, while its ability to encode transient events is significantly
reduced. This is because during exposition to a background the RRP of the RBC is
depleted and the RBC cannot respond to a further increment of light. If the stimulus
(e.g. a bright disc) is preceded by a negative contrast stimulus (for example the same disc
but black) for at least 1.4 sec, which suppress vesicle release, the synapse has the time
to recover and some vesicles are available to respond to a subsequent increase of light
level. The RBC pathway encodes Michelson contrast at backgrounds well above those at
which its ability to encode transient changes in intensity (Weber contrast) is substantially
diminished [Ke et al., 2014].

II.4 Synaptic partners of rod bipolar cells

Rod bipolar cells make excitatory dyad synapses with two post-synaptic amacrine cells:
A17, which makes reciprocal synapses with the RBC (see above) and AII (Fig. II.1 C),
which is a narrow-field bistratified amacrine cell and is the most common amacrine cell
in the retina [Demb and Singer, 2012].

The AII amacrine cell has a characteristic morphology: cell soma located near the
inner half of the INL, thick globular dendrites (width < 30 mum)(Fig. II.8A)[Tsukamoto
and Omi, 2013]. The AII is coupled with sign-converting electrical gap-junctions to other
AII and to the axon terminal of ON cone bipolar cells. It makes also sign-inverting



30 Chapter II. Rod bipolar cells

Figure II.8 – AII amacrine cell. A. Morphology of an AII AC from a 3D reconstruction of a series of
electron micrographs. Source:[Euler et al., 2014]. B. Light-evoked voltage responses of an AII cell in dark
adapted rabbit retina. Stimulus is a 75 µm spot of light centered on the cell (Intensity = log -5.5 of max
intensity 2.37mW/cm2). C. Same cell than in B, but the stumulus is translated of about 100 µm. D.
Light-evoked voltage reponses of an AII in dark adapted conditions to a slight of light (50 µm wide and
6 mm long) moving in discrete steps across the retinal surface. Source [Bloomfield and Xin, 2000]

inhibitory chemical synapses onto the terminals of some OFF cone bipolar cells and onto
the dendrites of some OFF RGCs. The AII is the element of the rod bipolar circuit which
distributes the signal into the parallel channels of the cone bipolar cell pathways.

II.4.1 AII responses to light stimulation and receptive field organization in
different light regimes

In dark adapted conditions, the AII depolarizes at light onset, i.e. during the RBC
depolarization, as expected from the excitatory nature of the synapse between the RBC
and the AII. In rabbit, the response of the AII to a 75 µm diameter spot in the center of
its receptive field consists of a transient response at light onset, a sustained depolarization
and an oscillating hyperpolarization at light offset (Fig. II.8B). Furthermore, a stimulation



II.4 Synaptic partners of rod bipolar cells 31

out of the RF produces a hyperpolarizing response of the AII, highlighting a stereotypic
ON-center/OFF-surround receptive field organization (Fig. II.8C,D). In dark adapted
conditions the dimension of the center ON-receptive field is ∼60-80 µm (2/3 times its
dendritic field) and the OFF-surround receptive field measures ∼100-130 µm.

If the retina is adapted to a background through the low photopic regime [Bloomfield
and Dacheux, 2001], the response waveform remains quite similar, but the dimension of
the RF increases: the ON center measures ∼400 µm and the OFF surround component is
still present. Further light adaptation results in a decrease of the dimension of the RF to
an extent similar to the one under scotopic conditions. In the photopic regime, the light
evoked responses in the AII are still depolarizing the cell, but the RF is showing just an
ON center and no more an OFF surround [Bloomfield and Dacheux, 2001].

The change in dimension of the RF and the high sensitivity of the AII in dark adapted
conditions is anatomically justified by the presence of gap junctions between AIIs (homo-
meric protein complexes composed of connexin (Cx) 36 [Deans et al., 2002]. Under sco-
topic conditions, this coupling enables AIIs to be depolarized by rod bipolar cells that are
not directly presynaptic. The gap junctions between AIIs can be demonstrated with the
diffusion of Neurobiotin, a tracer molecule that injected in a single AII is able to spread to
neighboring AIIs, demonstrating citoplasmatic coupling [Bloomfield and Dacheux, 2001].
It has been shown [Bloomfield et al., 1997] that the light mediated modulation of RF
size varies directly with light-mediated modulation of tracer coupling. Light affects AII-
AII coupling by modulating the release of dopamine from dopaminergic amacrine cells
[Witkovsky, 2004].

The role of these gap-junctions between AIIs under each light regime is still a matter
of debate. Under scotopic conditions it is thought that the AII network acts as a noise-
reducing mechanism, amplifying selectively light evoked RBC outputs that diverge to
multiple coupled AIIs [Smith and Vardi, 1995]. Experiments proved that the coupling
within the AII network improves AII sensitivity [Dunn et al., 2006], but there is still no
experimental evidence for active amplification of correlated light evoked signals by AIIs
[Demb and Singer, 2012]. In photopic conditions, the reduced coupling between AIIs plays
the role of limiting the lateral spread of neural signals in the inner retina and improves
the spatial resolution of the other cells [Demb and Singer, 2012]. In the same light regime
(where rods should be saturated), AIIs are also directly activated by the gap junction with
ON cone bipolar cells, reversed in respect to the signal flow under scotopic conditions.
In this circuit, light-activated cones depolarize ON BCs, as well as the AIIs connected
through gap-junctions Pang et al. [2007], Münch et al. [2009]. Furthermore, the inhibition
to OFF RGCs persists also under bright light, through the connection between AII, OFF
cone BCs and OFF RGCs.
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II.4.2 Connection to cone bipolar cells and to OFF ganglion cells

The AII amacrine cell is connected to ON cone bipolar cells through gap junctions and to
OFF cone bipolar cells and OFF ganglion cells through sign-inverting chemical synapses.
In a recent paper [Tsukamoto and Omi, 2017] all the bipolar cell types were reconstructed
from SSTEM (serial section transmission electron microscopy) and the synapses between
bipolar cells and AIIs were investigated. They then assessed the connections strengths
of AII to all the types of cone bipolar cells. As shown in (Fig. II.9) seven types of ON
cone bipolar cells receive direct input from gap junctions with AIIs, but both number and
junctional area among different cell types is uneven. The area of gap junctions in AII
amacrine cells is greatest with T6 bipolar cells (∼46%), moderate with types 7 (∼29%)
and 5a (∼20%), smallest with types 5c, 5d, 8, and 9 (∼1–2%), and non-existent with type
5b. Type 5b has gap junctions with type 5a, so it may communicate with AIIs through
them. For the AII-OFF connections, ∼95% of the total connection strength was correlated
to 3 types of OFF bipolar cells: T2, T3b and T1a and there were no connections between
AIIs and type 1b off cone bipolar cells. This last type doesn’t make any gap junctions
with other OFF cone bipolar cells, thus it is the only type completely isolated from AII
input [Tsukamoto and Omi, 2017].

AII are also directly connected to ganglion cells, though we don’t know to which
specific types since there isn’t an easy way to distinguish them. For example, the transient
OFF alpha ganglion cells receive direct input from AII since the modulation of inhibitory
glycinergic synapses drives primarily their firing [Beaudoin et al., 2008, Manookin et al.,
2008, Murphy and Rieke, 2006]). Furthermore paired-cell recordings demonstrated a
synapse between AIIs and OFF Alpha cells in the mouse [Murphy and Rieke, 2008].

To conclude, AII amacrine cells are directly or indirectly connected (with different
synaptic weights) to all the ON cone bipolar cells, while only one type of OFF bipolar
cells does not receive its output. Furthermore, they are directly synapsing to some OFF
ganglion cells. The rod signal is spread to all the cone bipolar cell channels by the AII,
connecting the RBCs with more or less all the ganglion cells. There is no easy way today
to test where the RBC is eliciting a response in a specific type of ganglion cell and to
what extent.

II.5 Convergence and divergence of the rod pathway through rod
bipolar cells

The retina is able to generate spikes in a ganglion cell after the absorption of a single
photon because the signaling in the primary rod pathway is extremely sensitive and
reliable [Field et al., 2005, Hecht, 1942, Barlow et al., 1971, Sakitt, 1972]. Sensitivity is
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Figure II.9 – A. Schematic of the signal transfer through the primary rod pathway to all types
of cone bipolar cells. B. Gap junctions between different types of ON bipolar cells (ON-BCs), note
that type T5b is not directly connected to AII. C. Gap junctions between different types of OFF-BCs.
Source:(Tsukamoto2017)

the ability to detect single photon events and reliability is the capability to distinguish
this signal from the noise intrinsically generated by the retinal network.

Reliability comes from the convergence of a thousand rod outputs to a single ganglion
cell: 20 to 100 rods synapse on the same RBC, which pools all these inputs; AIIs in turn
pool 10-20 rod bipolar cell inputs [Tsukamoto et al., 2001].

On the other hand, sensitivity comes from its intrinsic divergence [Tsukamoto and
Omi, 2013] to multiple neurons: one rod makes ribbon contacts with two RBCs, each
RBC makes 53 ribbon synapses directed to ∼7 AII (even if ∼60 % of the contact are
usually directed to only one preferred AII); AII are coupled to each other through gap
junctions and connect to cone bipolar cells. In a morphological study based on SSTEM
[Tsukamoto and Omi, 2017], AII makes ∼80 output chemical synapses of which ∼60 are
with OFF cone bipolar cells and ∼20 with RGCs and amacrine cells. Likewise, there are
∼50 gap junctions with an AII: ∼35 with ON cone bipolar cells and ∼15 with neighboring
AII amacrine cells. Divergence generates multiple copies of the same rod signal, which is
transferred to one ganglion cell by cone bipolar cells synapses [Sterling et al., 1988].

Intrinsic noise is added to the signal detected by rods as early as in the phototrans-
duction of each single photoreceptor. To distinguish single photon detection from this
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noise, there is a non linearity in the synapse between rods and RBCs that thresholds
this signal [Field and Rieke, 2002]. After passing through a rod bipolar cell, the signal
diverges to other cells, each one being another possible source of noise. Later steps of
retinal processing should then also filter out this noise [Cafaro and Rieke, 2010]. How-
ever, rejecting noise can also remove part of the signal carrying necessary information.
Recently [Ala-Laurila and Rieke, 2014] it has been shown that different ganglion cells
types of the primate retina differ in noise level and retention of single photon responses.
The signal reaching ON parasol ganglion cells is filtered by a non linear processing step
at the synapse with ON cone bipolar cells, while OFF parasol ganglion cells do not have
this non-linearity. This means that the retina transfers to the brain both retinal out-
puts: one nearly noise-free but thresholded and another one noisy, but containing all the
information about single photon absorption.



III – Asymmetry in a direction
selective circuit revealed by all
optical functional connectomics

The retina is a complex layered tissue that works over a wide range of background light
intensities. Ganglion cells are the output neurons of all the complex computations done
by its internal layers and different types of ganglion cells extract different features. In dark
adapted light conditions, signal from rods is conveyed in ganglion cells through different
pathways, one of them is the primary rod pathway. Here, rod bipolar cells feed the signal
received from rods into AII amacrine cells, which in turn inject it into cone bipolar cells.
It has recently demonstrated that rod bipolar cells are active not only under scotopic
conditions, but also under different light regimes [Franke et al., 2017, Szikra et al., 2014].

In this chapter, we present the all-optical method we implemented to specifically
manipulate the rod bipolar cells activity. The system combines a highly precise two
photon stimulation technique to activate rod bipolar cells with a two photon microscope
to perform functional imaging in the ganglion cells layer. We simultaneously stimulated
rod bipolar cells expressing an optogenetic actuator, while recording fluorescence activity
in ganglion cells.

We applied this system to investigate if rod bipolar cells are involved in the integration
of visual motion in direction selective ganglion cells. We focused on G2 OFF direction
selective ganglion cells and we found that they receive an asymmetric input from rod
bipolar cells.

35
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III.1 Introduction

A major goal in neuroscience is to elucidate the circuits that embody the computations
performed by sensory neurons. A striking feature of sensory processing is the ability of
neurons to perform the same computation in different contexts. For example, V1 neurons
can keep the same orientation tuning curve over different contrasts [Sclar and Freeman,
1982]. In the retina, direction selective ganglion cells respond selectively to a motion
direction in different contexts: over different backgrounds [Chen et al., 2016], in different
natural scenes [Im and Fried, 2016], and over a broad range of luminances [Vaney et al.,
2001]. A major challenge is to understand how this feat is achieved, despite the fact
that different contexts will activate different circuits. For example, changing the average
luminance from dim to bright light will change the dominants circuits that will convey
visual information in the retina [Tikidji-Hamburyan et al., 2015, Wässle, 2004].

To understand how the same computation can be performed by different circuits
depending on the context, we must therefore dissect the contributions of each circuit
to this computation. In the ON-OFF DS circuit of the retina, during daylight, cone
photoreceptors activate cone bipolar cells, which in turn activate ganglion cells, the retinal
output, but they also activate starburst amacrine cells [Kim et al., 2014], which provide a
direction selective inhibitory input to DS ganglion cells [Wei et al., 2011, Fried et al., 2002,
Vaney et al., 2012]. This input is a major component responsible for generating direction
selectivity in ON-OFF DS ganglion cells [Vaney et al., 2012]. This asymmetric circuit is
crucial for direction selectivity. However, in mesopic or scotopic light levels, other circuits
are active, and their contribution to the direction selective circuits is unclear. At dim light
levels, rod photoreceptors transmit their signal through three pathways. One is through
gap junctions that connect them to cones, which can then feed the direction selective
circuit (Fig. III.5 B) [DeVries and Baylor, 1995]. Another is through synapses to specific
types of cone bipolar cells (Fig. III.5 C). Finally, rod bipolar cells receive the rod output
and send it to cone bipolar cells through AII amacrine cells (Fig. III.5 A), and these cone
bipolar cells can feed the direction selective circuit.

It is unclear if the rod bipolar cell pathway has by itself an asymmetric contribution to
direction selective ganglion cells, that is preserved through the different synaptic relays,
or if it provides an unspecific, symmetric signal. This cannot be determined simply with
visual stimulation since rod stimulation will activate not only rod bipolar cells, but also
the other pathways that will also reach DS ganglion cells [DeVries and Baylor, 1995].

Some pathways in the direction selective circuit involve a minimal number of synaptic
connections and therefore have been within reach of current connectomic methods, e.g.
the pathway going through cone bipolar -> starburst -> direction selective ganglion cells
[Kim et al., 2014, Denk et al., 2012, Kornfeld and Denk, 2018, Briggman et al., 2011].
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However, this task becomes daunting for the rod bipolar cell pathway. To dissect their
influence on the direction selective circuit, one would need to fully reconstruct the synapses
involved in all the different steps: rod bipolar cells -> AII amacrine -> cone bipolar cells
-> starburst amacrine cells -> ganglion cells (Fig. III.5 A). Since there is convergence and
divergence at each of these steps [Tsukamoto et al., 2001, Tsukamoto and Omi, 2013],
this becomes very challenging, not only because of the very large number of synapses to
be reconstructed, but also because each of these synapses will have a different weight,
making the net effect of rod bipolar cell activation on ganglion cell difficult to predict.

An attractive method to solve this issue, complementary to connectomics methods,
would be to stimulate individual rod bipolar cells and measure the impact of this stimu-
lation on ganglion cells, integrating all the possible synaptic paths with their respective
weights, to understand the contribution of the rod bipolar cell pathway to the direction
selective circuit.

Here we designed a general all optical method to stimulate individual neurons (or
group of them) in three dimensions and simultaneously perform calcium imaging in a
different plane to measure the impact of this stimulation. We applied this strategy to
stimulate selectively rod bipolar cells while imaging population of ganglion cells. We
found that a specific population of OFF DS cells integrated the rod bipolar cell output
in an asymmetric manner, biased towards the preferred side. This suggests a putative
circuit to explain their direction selectivity. Our method could be applied to study and
characterize any multi-layered circuit.

III.2 Results

III.2.1 All optical system

The optical setup includes three main illumination paths: a path for two-photon (2P)
temporally focused stimulation via Computer-Generated Holography (CGH), a 2P scan-
ning galvo-based imaging path and a DMD-based visual stimulation path (Fig. III.1 A).
Holographic illumination was provided by a fiber amplifier laser source, emitting at 1030
nm and operating at 500 kHz repetition rate (Satsuma HP, Amplitude Systemes, France)
enabling efficient optogenetic activation of opsins under 2P regime [Chaigneau et al., 2016,
Ronzitti et al., 2017]. Calcium imaging was provided by raster scanning a 920-nm beam
delivered by a Ti:Sapphire oscillator (Chamaleon Vision II, Coherent Ltd., USA). Simul-
taneous spatiotemporally-controlled full-field or moving-bars visual stimuli were sent to
the sample using a DMD illuminated with visible light (420nm). The optical system
enabled decoupling the imaging and photostimulation planes by multiplexed temporally
focused light shaping (MTF-LS) photostimulation [Accanto et al., 2017], allowing an all-
optical interrogation of multilayer neural circuits like the retina. MTF-LS is based on a
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Figure III.1 – Experimental setup and optical characterization of the system. A. The optical system
combined a multi-light-path architecture including 2P scan-based, epifluorescence widefield (WF) and in-
frared (IR) imaging (not shown); a holographic-based 3D multiplexing temporally focused photoactivation
apparatus for cell activation (TF-CGH Photostimulation) and a DMD-based spatiotemporally-controlled
visual stimulation system. B. Axial shift of a 10-µm-diameter temporally focused holographic spot. (Left)
x-z orthogonal maximum fluorescence intensity projection of the spot for different axial displacements.
(Right) Corresponding x-y 2P fluorescence intensity cross-section. Scale bar, 10 µm. C. Axial profile
of the fluorescence intensity of spots shown in B. Solid lines indicate Lorentzian fit. D. 2D map of the
Full Width Half Maximum of the axial profiles of the fluorescence intensity given by a matrix of spots
(30 µm inter-spots distance) displayed 70 µm below the focal plane (each pixel represents one spot). E.
Normalized illumination intensity of a matrix of spots displayed 70 µm below the focal plane (each pixel
represents a spot).
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two-step process (see [Accanto et al., 2017] for a detailed description): a first beam-shaper
unit (here a static phase-mask) spatially modulates the phase of the incoming illumina-
tion beam to produce a holographic 2D shape (here a circular 10 µm diameter spot).
The generated intensity pattern is successively focused on a grating to enable temporal
focusing (TF), which provides enhanced axial confinement of the illumination pattern
at the sample. A further phase modulation provided by a reconfigurable spatial light
modulator (SLM) allows dynamically multiplexing the 2D shape laterally and/or axially
in the sample volume (Fig. III.1 A). Here, we demonstrated that the illumination spot
could be displaced axially in a range comparable to the distance between retinal ganglion
cells (RGC) and rod bipolar cells (RBC) (i.e., 60µm-80µm), while maintaining an axial
confinement of the illumination spot below 10µm (Full Width Half Maximum (FWHM)
of the axial intensity distribution) (Fig. III.1B,C). We observed nearly uniform FWHMs
by positioning 10 µm diameter holographic spots in a field of view (FOV) of 200x200µm2

at 70µm below the focal plane (FWHM 8.9±0.75µm, mean+std) (Fig. III.1D, Fig. III.6).
The illumination intensity variability was around ±12% (std of intensities) across the FOV
(Fig. III.1E, Fig. III.6). This indicates that the system can provide nearly homogenous
photostimulation of opsin-expressing cells spanning few hundreds of micrometers across
the RBC layer, while maintaining the imaging focus on the RGC layer.

III.2.2 A precise and physiological two-photon stimulation

To determine the functional/physiological resolution of our system we patched rod bipolar
cells expressing the opsin CoChR, while stimulating them with MTF-CGH.

We injected an AAV in the vitreous of the mouse eye, and expressed CoChR fused with
the GFP protein under the control of a promoter specific to rod bipolar cells described
previously [Lu et al., 2016](Fig. III.2 A, see also Methods).

Patching rod bipolar cells in a whole mount configuration by going through the gan-
glion cell layer with the pipette is challenging. Instead, we removed the photoreceptor
layer and turned upside down the retina to access the rod bipolar cells directly (Fig. III.2
B,C, Methods), thereby avoiding going through the ganglion cell layer. This should yield
the same results as stimulating from the ganglion cell side since the retina is a relatively
transparent tissue (except for the photoreceptor layer [Chen, 1993]). Moreover, it has
been previously demonstrated that the shape of a 2P temporally focused holographic
spot is not altered even when passing through 500 µm of highly scattering tissue, like in
brain slices [Papagiakoumou et al., 2013].

We patched fluorescent rod bipolar cells under 2P guidance (Fig. III.2 D). We filled the
recorded cell with Alexa594 and checked that its morphology was the one of a rod bipolar
cell. We first measured the amount of voltage depolarization that could be induced by our
stimulation. Voltage-clamp recordings of light-targeted bipolar cells showed photocurrents
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Figure III.2 – 2P holographic stimulation enables physiological responses in rod bipolar cells with
high spatial selectivity. A. Retinal slice showing the expression of CoChR-GFP in rod bipolar cells.
Green: GFP. Blue: DAPI. Scalebar 10 µm. B.,C. Schematic of the experiment. We first removed the
photoreceptor layer by cutting the retina with a vibratome (see Methods), and then patched single rod
bipolar cells expressing CoChR-GFP. We stimulated the cell with a 10-µm diameter holographic spot,
which we successively moved laterally and axially to estimate the photostimulation selectivity. Power
was set to have a depolarization of the bipolar cell in its physiological range. D. two photon image of a
patched rod bipolar cell taken during one representative experiment. Green: CoChR-GFP-expressing cells.
Red: ALEXA594 dye, inside the pipette and filling the recorded cell. E. Peak photocurrent versus light
intensity, normalized to the maximum for each recorded cell. Each symbol corresponds to a different cell.
Red line: Saturation curve. Inset: Representative light-evoked photocurrents. Different traces correspond
to different illumination intensities (from 0.02 mW/µm2(light red) to 0.08 mW/µm2 (dark red) with 0.02
mW/µm2 steps). Vertical scale bar: 10 pA. Horizontal scale bar: 100 ms. Red horizontal bar indicates
the photostimulation time (500 ms) F. Peak voltage depolarization in response to different stimulations,
versus light intensity. Each symbol and dashed curve correspond to one cell. Inset: Representative light-
evoked depolarizations. Different traces correspond to different illumination intensities (traces color code
as in E). Vertical scale bar: 3 mV. Horizontal scale bar: 100 ms. G. Peak photocurrent as a function of
lateral displacement, normalized to the maximum for each recorded cell. Each symbol corresponds to a
different cell. Red curve: Gaussian fit. H. Same as G for axial displacements. Red curve: Lorentzian fit.
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of tens of pA under moderate illumination doses (32±19 pA; I=0.08 mW/µm2, n=9)
(cffigIII.2 E, Fig. III.7A). Photocurrent amplitudes grew by increasing irradiance, reaching
saturation state at around 0.14 mW/µm2 (Fig. III.2, Fig. III.7A) and following a curve
in agreement with previous studies on CoChR conducted in culture cells [Shemesh et al.,
2017]. In current-clamp, light-evoked depolarizations ranging from 10 mV to 27 mV were
obtained upon illumination intensities between 0.07 and 0.12 mW/µm2 in most of the
cells (n=8) (Fig. III.2, Fig. III.7B). Higher depolarizations (V=37 mV; I=0.07 mW/µm2,
n=1) were measured in one cell, which exhibited particularly high photocurrents (445 pA;
I=0.08 mW/µm2, n=1) (Fig. III.2F, Fig. III.8). Depolarization variability was likely due
to differences in expression of opsin and of intrinsic voltage-gated ion channels. Previous
studies have shown that visual stimulation could lead to a depolarization between 4 mV
and 26 mV (15±7 mV mean±std) [Euler and Masland, 2000]. The range of power we used
thus yielded realistic activations, comparable to the ones that could be due to a visual
stimulation.

We also measured the response to a holographic spot displayed at different locations
around the bipolar cell soma (Fig. III.2G,H), keeping the illumination intensity in the
physiological range. We found that the current response due to optogenetic activation
quickly decreased when the spot moved away from the soma (Fig. III.2G). A 50% drop
of photocurrents were obtained by moving the spot 6µm laterally aside from the center
of the cell (Fig. III.2G). A residual 10% of photocurrent was recorded when the spot
was 10 µm apart (corresponding to the lateral size of the illumination spot). Axially,
photocurrents exhibited a decay of 50% at around 14 µm from the focal plane, with
photocurrents residuals below 10% for axial shifts superior to 30 µm (Fig. III.2H). Overall,
the photoactivation spatial selectivity could then be estimated as 12 µm and 28 µm,
corresponding to the lateral and axial FWHM of the photocurrents spatial distribution.

III.2.3 Manipulation of rod bipolar cells elicit reliable responses in ganglion
cells

We then imaged the activity in the ganglion cell layer to record the impact of optogenetic
stimulation of rod bipolar cells. For this we injected both an AAV to express CoChR in rod
bipolar cells, and another to express GCaMP6s specifically in ganglion cells (see Methods).
We imaged the ganglion cell layer with 2P laser scanning imaging, while stimulating with
multiple spots in the rod bipolar cells layer, on average 70 microns deeper.

2P stimulation or imaging can trigger spurious stimulation of photoreceptors [Euler
et al., 2009, Palczewska et al., 2014]. To ensure the calcium responses we observed in the
ganglion cell layer were due to the holographic stimulation of rod bipolar cells, and not
to photoreceptor activation, we blocked the transmission from photoreceptors to bipolar
cells by putting LAP4 and ACET, blocking respectively the transmission to ON and
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Figure III.3 – Patterned optogenetic stimulation of rod bipolar cells evokes selective activation of gan-
glion cells. A. Control experiment. GCaMP6s is expressed selectively in ganglion cells, and GFP in rod
bipolar cells. top right: whole mount view of ganglion cells expressing GCaMP6s. Bottom right: whole
mount view of rod bipolar cells expressing GFP. B. Calcium response of a ganglion cell to a patterned
holographic stimulation of rod bipolar cells (500 ms, 0.1<I<0.3 mW/µm2, indicated by the red line in the
figure), under control conditions (top) and after bath application of LAP4 (20 µM) and ACET (1 µM) to
block photoreceptor transmission to bipolar cells (bottom). Scale bars: vertical DF/F 20%; horizontal 1
sec. C. same as B with visual stimulation with a flash of light (10 sec, P ∼1,5 10-3 mW/µm2 indicated
by the blue region). Scale bars: vertical ∆F/F 50%; horizontal 5 sec. D. All optical characterization
of the retinal network, after LAP4 + ACET application. GCaMP6s is expressed in ganglion cells and
CoChR-GFP in rod bipolar cells. Each column corresponds to a different pattern of stimulation in the rod
bipolar cell layer (red spots drawn in the top row). Each line corresponds to the response of a different
ganglion cell (ROI indicated in green on the left column, on top of the ganglion cell layer image). Red line
indicates the timing of the holographic stimulation (500 ms, 0.06<I<0.1 mW/µm2); Scale bars: 10 µm.
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OFF bipolar cells (see Methods)[Borghuis et al., 2014]. In control retinas where GFP was
expressed in bipolar cells (Fig. III.3A), we observed responses to holographic stimulation
that were due to photoreceptor stimulation (in 23/123 cells, 2 retinas), and all of them
were abolished by adding the pharmacological cocktail to the bath (Fig. III.3B). Similarly,
responses to visual stimulation like flashes of light (in 44/84 cells, 2 retinas) were also
always abolished (Fig. III.3C).

In the following we thus recorded holographic response in the presence of this pharma-
cological cocktail, and we always checked that it was effective at blocking photoreceptor
stimulation by testing that responses to visual stimulations (which are too dim to evoke
optogenetic responses, see methods) were fully abolished. The calcium responses shown
in the subsequent experiments were thus evoked by the holographic stimulation and not
by photoreceptor stimulation.

We then measured calcium responses to holographic stimulation of CoChR-expressing
rod bipolar cells. Stimulation with one holographic spot rarely evoked any visible calcium
response. However, stimulation with multiple spots evoked reliable responses. Calcium
responses were selective to the stimulation pattern: different calcium responses patterns
in response to different bipolar cell stimulation patterns are shown in Fig. III.3D. As
expected, the ganglion cells closest to the stimulation pattern were the most likely to
respond (Fig. III.3D). Overall, the probability of responses decreased with distance.

III.2.4 The cellular receptive field of OFF direction selective ganglion cells is
asymmetric

We next aimed at understanding how different types of ganglion cells integrate the stimu-
lation of rod bipolar cells. Specifically, we focused on direction selective cells and asked if
there was any direction bias in the way these cells integrate rod bipolar cell information,
which could correlate with their direction preference.

We first performed calcium imaging while stimulating photoreceptors with a full-field
stimulation [Baden et al., 2016] and with bars moving in different directions to determine
the tuning and polarity of the responses of the imaged ganglion cells (Fig. III.4A). We then
blocked the photoreceptor-bipolar transmission as previously described and stimulated
rod bipolar cells with multiple patterns (Fig. III.4 B,C). Among the direction selective
cells, we isolated the same OFF DS type previously found by Euler and colleagues (OFF
DS G2 type in the classification of Baden et al [Baden et al., 2016]; see Fig. III.9 – note that
these cells are different from the JAM-B cells described in [Kim et al., 2008]. For this type
of cell, we found that a bipolar stimulation pattern on the null side (Fig. III.5D) of the cell
would not evoke any response (Fig. III.4 C), while a similar pattern in a different direction
evoked strong responses (Fig. III.4 B), even if both patterns were approximately at the
same distance from the ganglion cell. This suggests that there could be an asymmetric
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Figure III.4 – OFF Direction Selective (DS) ganglion cells integrate rod bipolar cell output in an
asymmetric manner. A. example of an OFF DS ganglion cell (G2 type). Top left: field of view in the
ganglion cell layer, with GCaMP6s expressed in ganglion cells. Green spot: ROI of one OFF DS cell.
Right: calcium response of the same OFF DS cell to white bars moving in different directions. The blue
rectangle indicates when the white bar is on the ganglion cell. Bottom left: polar plot showing the peak
response of the same cell for each motion direction. Blue arrow: preferred direction (see Methods). B. Top:
whole mount view of rod bipolar cells expressing CoChR, in the same retina as A. Red spots: holographic
stimulation pattern. Green spot: corresponding location of the ROI of the OFF DS ganglion cell shown
in A, with preferred direction shown with blue arrow. Bottom: calcium response of this ganglion cell
to this holographic pattern. C. same as B for the same cell but a different pattern, located on the null
side. D. schematic of the model fitted to the data. Each stimulation pattern is first rotated to align
all the preferred directions of all OFF DS cells to the right. The model filters the stimulation pattern
and the result goes through a sigmoid to predict the probability of response to each pattern. E. Filter
estimated from the population of OFF DS (G2) ganglion cells recorded. Scale bar: 50 µm. F. Prediction
performance of the model (blue, R2 - mean and s.e.m.) against the preferred angle of the filter (0: null
side; 180: preferred side). Red: Prediction performance under the hypothesis of a symmetric filter (see
text, mean ± std).
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integration of rod bipolar cell stimulation in this ganglion cell.
To quantify this across the entire population of OFF DS cells, we measured the “cel-

lular receptive field” of the cells of this type. We fitted a simple Linear-Nonlinear (LN)
model [Chichilnisky, 2001] to the data, where linear filter is convolved with the stimula-
tion pattern, and the result goes through a non-linearity to predict if there was a response
or not (Fig. III.4 D). Note that this is equivalent to perform a logistic regression to relate
the patterns and the ganglion cell responses. The shape of the linear filter tells us if there
is an asymmetry in the integration of the rod bipolar cell activity.

To fit this model, we first pooled together all the cells of this same OFF DS type, after
realigning their position and direction preference (Fig. III.4 D). We fitted our model to
these realigned data. This model has a significantly better prediction performance (R2 =
0.2) compared to a null model (R2 =0.00).

The resulting filter was clearly asymmetric, biased against the preferred direction
(Fig. III.4 E). We estimated its preferred angle to be 210 degrees (see Methods).

To test if this asymmetry was significant, we rotated the filter and predicted again the
responses to the stimulation patterns. Performance was 0 for a filter oriented towards the
null side (Fig. III.4 F). It was larger for no rotation, but similar for a filter directed towards
the preferred side. In order to exclude the hypothesis that the filter was symmetric, and
that these effects where due to our finite dataset, we randomly rotated each pattern before
learning the model (see Methods). The performance of the obtained shuffled models
(Fig. III.4F) was significantly smaller than our inferred model (p<10-4). This shows that
the cellular receptive field of these OFF DS ganglion cells is truly asymmetric, directed
towards the preferred side.

III.3 Discussion

We have designed a novel all-optical method to simultaneously stimulate in 3 dimensions
individual neurons with single cell precision, and image the impact of the stimulation
on the network. We applied this technique in the retina and showed that the G2 OFF
DS cells integrate rod bipolar cell input in an asymmetric manner, with a bias for the
preferred side.

III.3.1 Comparison to previous techniques

Three-dimensional independent control of RBCs activity and RGCs read-out has been en-
abled by a CGH-based multiplexing strategy, where photostimulation and imaging planes
were fully decoupled. Specifically, a set of multiple beamlets encoded for temporally-
focused holographic patterns are directed nearly 70 µm below the focal plane to selectively
target predefined pools of cells in the bipolar cell layer, while an in-focus imaging beam
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is scanned to record calcium activity across the RGC plane. To this date, this represents
the first biological application where 3D holographic temporally focused illumination was
used in an all-optical realization for multiplane stimulation.

Alternative strategies have been realized with 3D-CGH in zebrafish using small holo-
graphic spots (6-µm diameter) without TF [dal Maschio et al., 2017], or in mammals
by using TF low-NA Gaussian beams [Mardinly et al., 2018] or spiral-scanning trajec-
tories across targeted cells [Yang et al., 2018]. CGH-only configurations are limited to
small-size targets [dal Maschio et al., 2017], as radially enlarging the illumination pat-
tern quickly deteriorates the axial confinement of the excitation [Bègue et al., 2013]. On
the contrary, TF enables light-shaping flexibility as axial intensity confinement is main-
tained independently on the lateral pattern extension. Moreover, TF illumination allows
to better preserve light patterns propagating through tissues since it is more resilient to
scattering than non-TF light [Papagiakoumou et al., 2013, Bègue et al., 2013]. The use
of diffraction-limited spots rapidly steered over targeted cells does not suffer axial con-
finement limitations. However, as activation occurs through a serial integration process,
it exhibits intrinsic temporal limitations, which restrict the range of usable opsins to slow
kinetics actuators and shift the photostimulation timing control to longer time scales com-
pared to scan-less approaches [Yang et al., 2018, Packer et al., 2012, Prakash et al., 2012,
Rickgauer et al., 2014]. Scan-less photoactivation by TF low-NA Gaussian spots retrieve
high temporal characteristics without suffering axial confinement limitations, permitting
neuronal optical control comparable to TF holographic photostimulation. The difference
between Gaussian and holographic spots lie mainly in their lateral intensity distribution:
while CGH enables top-hat edges, Gaussian intensity gradually decreases in a bell-like
shape. Thus, while Gaussian photostimulation may suffer of radial broadening if illumi-
nation power is increased to saturating the photostimulation process, holographic abrupt
edges are less sensitive to saturation effects.

For more demanding applications in terms of flexibility of light-shaping the optical
system shown here can be alternatively configured using a SLM in place of the static
phase mask. That increases the optical degree of flexibility allowing to dynamically tailor
the illumination to match different targeted shapes in 3D. Here, we used the simpler and
more compact optical design with a transmissive static phase mask, since in the present
optogenetic experiments we had to activate somata of the same size. Thus, a unique
predefined illumination shape is sufficient. The present study focused on a well-defined
layered structure where rod bipolar and ganglion cells lie on distinct quasi monocell
layers extending few microns and separated of about 70 µm. For systems where cells
are randomly located across greater axial extensions, volume imaging can be enabled by
integrating the optical system with multiplane imaging strategies based on divergence
control [Yang et al., 2018] or multiplexing of the imaging beam.
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Our results could not have easily been obtained with standard physiological record-
ings. Previous studies have estimated the projective field of bipolar cells onto ganglion
cells using a combination of intracellular recording for the bipolar cell, and multi-electrode
array for ganglion cells [Baccus and Meister, 2002, Asari and Meister, 2012, 2014]. How-
ever, the yield of these experiments remains low, and it is not possible to target a single
type of bipolar cells. More importantly, this method does not allow stimulating more
than one or two bipolar cells simultaneously, while we stimulated from 3 to 10 bipolar
cells.

Our all-optical method allowed unbiased recordings from all ganglion cell types, and
we could then identify the OFF DS ganglion cells among the hundreds of cells recorded.
MEA recordings do not record equally well from all cell types in the mouse retina. Tar-
geted patch recordings would require a genetic strategy to label specifically the G2 OFF
DS ganglion cells studied here, and no such strategy exists so far. Our all-optical method
allows high throughput stimulation of many rod bipolar cells, and imaging of many gan-
glion cells, which allows estimating the cellular receptive field for any detected type of
ganglion cell.

III.3.2 State dependence of the results

Rod bipolar cells are thought as one of the main carriers of the rod signal, but also
receive inputs from cones [Behrens et al., 2016, Pang et al., 2018], and can be active over
a broad range of light level, from scotopic to mesopic [Ke et al., 2014, Szikra et al., 2014,
Chen et al., 2014, Pang et al., 2010]. Since the retinal circuits are strongly modulated
by the light level, their contribution to the direction selective circuit may depend on
the exact adaptation state of the retina. In our experiments, light was maintained at
low photopic levels during visual stimulation. For the holographic stimulation we had
to block the photoreceptor input to bipolar cell, and this could have changed the exact
adaptation state of the retina. Blocking the transmission to ON bipolar cells with LAP4
has the effect of hyperpolarizing these cells, although we used low concentrations which
should minimize this effect, while still being effective. ACET blocks the transmission
to the OFF bipolar cells, but does not seem to change the average depolarization level
of these cells [Borghuis et al., 2014]. If it has any effect on the adaptation state of
the retina, our pharmacological cocktail may thus have been equivalent to a slight shift
towards a scotopic light level, where rod bipolar cells are a major pathway to convey
light signals. This may change the coupling between AII amacrine cells, and therefore
the spatial extent of functional connections between rod bipolar cells and ganglion cells.
However, this should not affect the asymmetry we found in this functional connectivity.
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III.3.3 Possible circuits

While the circuit has been mostly understood for other types of DS cells, little is known
about how these OFF DS cells compute direction. Based on our knowledge of the un-
derlying circuit for other DS types, this asymmetry suggests a possible circuit and might
exclude others.

A common circuit for DS cells is based on asymmetric inhibition. DS cells receive more
input from inhibitory amacrine cells located on the null side. This inhibition suppresses
the responses to a bar moving from the null side (Fig. III.5D). As a consequence, stimu-
lating rod bipolar cells on the preferred side should evoke a stronger response than on the
null side, where the resulting inhibition will cancel excitation. The cellular receptive field
should thus be biased for the preferred side (Fig. III.5D). This circuit is the one at work
for ON-OFF DS cells, where asymmetric inhibition is provided by the starbust amacrine
cells [Wei et al., 2011, Fried et al., 2002, Briggman et al., 2011]. It has been shown that
a flashed bar will evoke slight stronger responses on the preferred side than on the null
side, where inhibition will at least partially cancel excitation [Fried et al., 2002].

Another circuit present in other DS types is based on an asymmetric dendritic field,
oriented towards the null side. Here, simply because of the morphology of the dendritic
field, the cellular receptive should be biased towards the null side (Fig. III.5E). This is
the case of the JAM-B positive ganglion cells, another type of OFF DS cells [Kim et al.,
2008], where the rod receptive field is biased towards the null side. A similar mechanism
might be at work in some ON-OFF DS ganglion cells with asymmetric dendritic fields
[Trenholm et al., 2011].

In the case of the OFF DS G2 cells, where the circuit underlying Direction Selectivity
is unknown, the bias we found for the preferred side suggests a possible circuit where
an inhibitory amacrine cell would inhibit these OFF DS specifically from the null side,
similar to the symmetric ON-OFF DS cells described above. This putative circuit remains
to be tested with a more efficient targeting of these cells to allow systematic intracellular
recordings.

Surprisingly we did not find a similar bias for ON-OFF direction selective cells. Our
hypothesis is that this is because our pool of ON-OFF DS cells reflects several circuits
with possibly different bias, that we could not separate: for example, symmetric dendritic
fields with bias towards the preferred side, and asymmetric dendritic fields with bias
towards the null side.

III.3.4 Conclusion

We have developed a strategy to characterize optically how information is transferred from
one type and one layer of cells to the next. The same tools could be applied to study other
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multi-layered circuits, for example how information is transmitted from layer 4 to layer
2/3 of the cortex [Wertz et al., 2015, Yang et al., 2016]. Understanding this information
transfer is a promising avenue to decompose complex neural circuits and understand the
neural basis of the computations they perform.

III.4 Methods

III.4.1 Animals

All experiments were done in accordance with the National Institutes of Health Guide for
Care and Use of Laboratory Animals. The protocol was approved by the Local Animal
Ethics Committee of Paris 5 (CEEA 34) and conducted in accordance with Directive
2010/63/EU of the European Parliament. All mice used in this study were C57Bl6J mice
(wild type) from Janvier Laboratories (Le Genest Saint Isle, France).

III.4.2 AAV production and injections

Recombinant AAVs were produced by the plasmid cotransfection method [Choi et al.,
2007] and the resulting lysates were purified via iodixanol gradient ultracentrifugation
as previously described. Briefly, 40% iodixanol fraction was concentrated and buffer
exchanged using Amicon Ultra-15 Centrifugal Filter Units (Millipore, Molsheim, France).
Vector stocks were then tittered for DNase-resistant vector genomes by real-time PCR
relative to a standard [Choi et al., 2007].

For injection, animals were anesthetized with Isofluorane (Isoflurin 250 ml, Vetpharma
Animal Health) inhalation and pupils were dilated. A 33-gauge needle was inserted into
the eye to deliver the vector into the vitreous. 2 µl of vector solution was injected per
eye, containing 1 µl of the vector delivering GCaMP6s (containing ∼1010 vg) and 1 µl
of the vector delivering either CoChR (containing ∼1010 vg) or GFP (containing ∼1010

vg). For all experiments we used GCaMP6s [Chen et al., 2013] under the SNCG promoter
[Chaffiol et al., 2017] to specifically target ganglion cells and we used AAV2 as viral vector.
To express CoChR [Klapoetke et al., 2014, Shemesh et al., 2017], we used a recently
published promoter [Lu et al., 2016], which has been proved to allow specific expression
of optogenetic proteins in rod bipolar cells. To deliver it across the retinal layers we used
7m8 a genetic variant of AAV2 [Dalkara et al., 2013]. Finally we used GFP only under
the grm6 promoter [Macé et al., 2015] delivered with AAV2-7m8 to target bipolar cells in
the control experiments. The injections were performed in 4-5 weeks old mice.
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III.4.3 Tissue preparation

For all experiments, we used female mice 4-8 weeks after the injection. Animals were dark
adapted for at least 1h, then anesthetized with isofluorane (Isoflurin 250 ml , Vetpharma
Animal Health) and killed by cervical dislocation. The eyes were enucleated and placed
in AMES medium (Sigma-Aldrich, St Louis, MO; A1420), bubbled with 95% O2 and
5 % CO2 at room temperature. The eyes were dissected under dim red light (>645
nm) and the isolated retinas were flat mounted with ganglion cells up and transferred
to the recording chamber in the microscope. The retina was continuously perfused with
bubbled Ames medium at a rate of 5-7 mL/min during experiments and temperature was
maintained around 34 degrees.

III.4.4 Experiment description and pharmacology

At the beginning of the experiments the flat mounted retina was placed under the mi-
croscope and left to rest for ∼30 min in the dark. The first step of the experiment was
to perform the visual stimulations (see below) to determine which cells were direction
selective. Then, to block the photoreceptors [Borghuis et al., 2014], we added to bub-
bled AMES medium the KAR selective agonist ACET (1µM, catalog no 2728, Tocris
bioscience) and the metabotropic glutamate receptor agonist L-AP4 (20 µM, catalog no
0103, Tocris Bioscience). The retina was left to rest in the dark for ∼ 30-45 min. Before
starting to stimulate the rod bipolar cells expressing CoChR, we tested that the photore-
ceptor transmission to bipolar cells was effectively blocked by doing visual stimulations
on a central FOV of 100x100 µm2. The highest intensity of light used to stimulate pho-
toreceptors was 1.53 x 10-3 mW/mm2. As shown in [Shemesh et al., 2017](Supplementary
Figure 4) this power is negligible compared to the one necessary to induce any activa-
tion of the opsin, which has small responses for ∼2 mW/mm2. If no ganglion cell was
responding to the visual stimulation, we proceeded with the holographic stimulation.

III.4.5 Single cell electrophysiology

a) Tissue preparation

4 to 5 weeks old mice were injected with 1 or 1.5 µl volume of AAV2-7m8 carrying CoChR
(∼ 1010 vg) under a promoter specific for rod bipolar cells [Lu et al., 2016]. 4 to 10 weeks
after the injection, the animals were anesthetized with isoflurane and killed by cervical
dislocation. Eyeballs were enucleated and dissected under white light. To have a better
access to the bipolar cells with the patch pipette, we removed the photoreceptor layer
using a vibratome (Leica VT1200S slicer). This procedure was previously described in
details [Clérin et al., 2014]. Briefly, the dissected retina was transferred in the vibratome
tank filled with bubbled Ames. The retina was placed photoreceptors down on a gelatin
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block in the center of the tank and the solution was removed to permit the sealing of the
flat-mounted retina. Once the retina was sealed, the tank was filled with bubbling Ames
again and the vibratome’s blade was lowered until the RGCs level. A slice of ∼80-90 µm
was cut and transferred to the recording chamber under the microscope with ganglion
cells down. Bipolar cells were thus on the upper side without the photoreceptors on top
of them, which made them more accessible to patch recordings (Fig. III.2 B,C).

b) Patch-clamp recordings

Bipolar cells layer was imaged with a 2P imaging system to select the region with cells
expressing the opsin. Bipolar cells were visualized with an IR illumination, a water-
immersion 40x objective (40x W APO NIR; Nikon), and an IR CCD (see “Optical sys-
tem”) while approaching the cell with the patch pipette. Light was turned off soon after
the whole-cell configuration was established. Patch-clamp electrodes were pulled from
borosilicate glass capillaries (1.5mm outer diameter, 0.86mm internal diameter; Harvard
apparatus) with a horizontal micropipette puller (P1000, Sutter Instruments). Pipettes
were filled with the following solution (mM): 130 K-gluconate, 7 KCl, 4 MgATP, 0.3 mM
Na-GTP, 10 Na-phosphocreatine, and 10 mM HEPES (pH adjusted to 7.28 with KOH;
osmolarity 280 mOsm). Pipette resistance in the bath was 4.5-6 MΩ. An Ag/AgCl pel-
let was used as reference electrode in the recording chamber. Patched cells were loaded
with Alexa 594 (Invitrogen) added to the pipette solution to reconstruct the morphol-
ogy at the end of each experiment. Data were acquired with a MultiClamp 700B am-
plifier (Molecular Devices), a National Instrument board, and the Neuromatic software
(www.neuromatic.thinkrandom.com) running on IgorPro interface (Wavemetrics). Volt-
age and current clamp recordings were low-pass filtered at 6-10 kHz and sampled at
20-50 kHz. Cells were clamped at -40 mV. The cell resting membrane potential (Vm)
was measured soon after achieving the whole-cell configuration (Vm=42±10 mV, from 24
cells). Series resistance (Rs) was determined and compensated from 70 to 80% with the
MultiClamp software during acquisition (Rs=18±7 MΩ, from 24 cells). Cell membrane
capacitance (Cm) was 3.8±0.8 pF (from 24 cells). Voltage values shown are not corrected
for the liquid junction potential (estimated value: 15 mV).

To determine the axial and lateral resolution of the system we stimulated the cell with
a holographic spot and moved it in steps of 2.5 µum laterally or 5 µm axially to estimate
the photostimulation selectivity. We determined the peak photocurrent for increasing 2P
light intensities and we normalized photocurrents to the maximum value for each recorded
cell. Photocurrent saturation curve in Fig. III.2E was given by empirically fit data with
(1-e(-x2/k)) with k equals to 0.005.
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III.4.6 Optical system

The optical system was built around a commercial upright microscope (SliceScope; Scien-
tifica) and combined a multi-light-path imaging architecture, a 3D multiplexing tem-
porally focused holographic-based photoactivation apparatus and a spatiotemporally-
controlled visual stimulation system.

The imaging system has been already described in [Ronzitti et al., 2017]. Briefly, it
includes three different imaging pathways: a 2P raster scanning, a 1P wide-field epifluo-
rescence, and a wide-field infrared (IR) illumination imaging. 2P imaging was provided
by a femtosecond pulsed beam (Coherent Chameleon Vision II, pulse width 140 fs, tuning
range 680–1080 nm), relayed on a pair of XY galvanometric mirrors (3 mm aperture,
6215H series; Cambridge Technology), imaged at the back aperture of the microscope
objective (40x W APO NIR; Nikon) through an afocal telescope. Galvanometric mirrors
were driven by two servo drivers (MicroMax series 671; Cambridge Technology) controlled
via a digital/analog converter board (PCI-6110; National Instrument) through ScanImage
software [Pologruto et al., 2003]. Emitted fluorescence was collected by two photomulti-
plier tubes (PMT) GaAsP (H10770-40 SEL; Hamamatsu #H10770-40 SEL) coupled to
the objective back aperture via a fiber-coupled detection scheme [Ronzitti et al., 2017].
2P imaging laser power was tuned by combining an electrically controlled liquid crystal
variable phase retarder (Meadowlark Optics #LRC-200-IR1) and a polarizer cube (Mead-
owlark Optics #BB-050-IR1). For image acquisition, we used ScanImage synchronized
with the visual stimulation or CGH-excitation with a custom-made software running
in MATLAB. For visual stimulation acquisitions, we divided a 200x200 µm2 FOV in 4
100x100 µm2 smaller FOV and we took 64x64 pixel image sequences at 7.8 frames per
sec (Imaging power (P) < 7 mW after the objective for all recordings). For image ac-
quisitions during optogenetic stimulation, we recorded a 200x200 µm2 FOV in a 128x128
pixel image sequences at 5.92 frames per sec (P ranging from 9 mW to 15 mW). For high
resolution morphology scans, we took 512x512 pixel images.

1P widefield imaging was provided by a LED source (Thorlabs #M470L2). 1P emitted
fluorescence was collected through a tube lens (f= 200 mm), on a charge-coupled device
(CCD) camera (Hamamatsu Orca-05G) after passing through a dichroic mirror (Semrock
#FF510-Di02) and a visible bandwidth filter (Semrock FF01-609/181). 1P- and 2P-
emitted fluorescence was separated through a movable dichroic mirror (70x50mm custom
size; Semrock #FF705-Di01) and an upstream dichroic mirror (Chroma #ZT670rdc-
xxrxt).

IR illumination was provided by a custom-made external IR stalk lamp fitted near
the microscope. IR light reflected by the sample was collected with an IR CCD (DAGE-
MIT IR-1000).

2P optogenetic photoactivation was performed by generating 10 µm diameter circular
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spots pinpointing opsin-tagged cells in the sample via a 3D multiplexed spatially con-
trolled phase modulation of the illumination beam wavefront thoroughly detailed in [Ac-
canto et al., 2017]. Specifically, a femtosecond pulsed beam delivered by a diode pumped,
fiber amplifier system (Satsuma HP, Amplitude Systemes; pulse width 250 fs, tunable
repetition rate 500–2000 kHz, gated from single shot up to 2000 kHz with an exter-
nal modulator, maximum pulse energy 20 µJ, maximum average power 10 W, wavelength
λ=1030 nm) operated at 500 kHz, was widened through an expanding telescope and trans-
mitted through a custom-designed 5x5 mm2 8-grey-levels static phase-mask calculated via
Gerbergh and Saxton algorithm and fabricated by etching of fused silica (Double Helix
Optics, LLC). The image of the pattern was projected on a blazed reflective diffraction
grating for temporal focusing. The beam was then collimated to impinge the sensitive area
of a reconfigurable liquid crystal on silicon spatial light modulator (SLM) (LCOS-SLM,
X13138-07,Hamamatsu Photonics) placed in the Fourier plane of the diffraction grating.
A beam stop was placed to physically block the SLM’s not modulated zero order. The
SLM plane was imaged on the back focal plane of the objective lens and addressed with
a phase modulation calculated with a custom-designed software (Wavefront-Designer IV)
to produce a set of diffraction-limited spots able to multiplex the circular spot in 3D at
the sample plane and light-target opsin-expressing cells in the bipolar cells layer. For all
experiments in Fig. III.3 and Fig. III.4, we used photostimulation intensities ranging from
0,06 mW/µm2 to 0,1 mW/µm2.

Visual stimulation was performed by spatiotemporally-controlled full-field or moving-
bars visual stimuli generated through a digital micromirror device (DMD)-based ampli-
tude modulation. A 420nm LED beam (Thorlabs #M420L2) was filtered by a bandwidth
excitation filter (Semrock FF01-420/10), conveniently attenuated with density filters and
collimated to illuminate the sensitive area of a DMD (Vialux GmbH). The DMD plane was
conjugated to the sample plane by a telescope through the rear port of the microscope.
Visual stimuli were generated by a Matlab custom-designed software and synchronized
with the 2P raster scan retrace. The LED intensity was calibrated to range (as photoiso-
merization rate, 103 P∗ sec-1 cone-1) from 0.3-2 and 1-5 to 39-43 and 120-130 for S and M
opsins respectively. For all experiments, the retina was kept at constant intensity level for
30 seconds from the laser scanning start to the beginning of the visual stimuli. We used
two types of visual stimuli: 1- full field “chirp” stimulus [Baden et al., 2016] consisting of
a bright step of 10 seconds and two sinusoidal intensity modulations, one with increasing
frequency and one with increasing contrast; 2- 0.3 x 4 mm bright bar moving at 1 mm s-1

in eight directions on a dark background.
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III.4.7 Data analysis

Data analysis was performed using MATLAB. Region of interest (ROIs), corresponding
to somata in the RGC layer, were identified semi-automatically using a custom software
based on a high resolution image of the ganglion cell layer and on a projection of all the
images acquired for each stimulation. Electrophysiological recordings were analysed with
IgorPro (Wavemetrics) and OriginPro (OriginLab).

a) Pre-processing

The Ca2+ traces for each ROI were extracted as (F - F0) /F0, where F is the mean
fluorescence trace over the ROI, and F0 is the average fluorescence over the 5 seconds
preceding the visual input. For each bar direction, we computed the median response rd(t)
across repetitions (three to six repetitions). Each median response was then normalized
such that maxd(maxt (|rd(t)|) ) = 1, for d from 1 to 8 directions and t running over the
entire trace.

b) Response quality index

To measure how well a cell responded to a stimulus, we computed the signal-to-noise
ratio as in [Baden et al., 2016]: QI = vart(meanr(C))/meanr(vart(C)). Here C is the
response matrix from time samples (T) by stimulus repetitions (R). Each row in C is the
concatenation of the responses to all the 8 directions and each column is one repetition.
meanx and varx are respectively the mean and the variance on the x dimension. QI is
a global measure of the consistency of the responses to the moving bars. We set the QI
threshold to 0.2, meaning that each trace with QI below this value was discarded and not
considered for further analysis.

c) Direction and orientation selectivity

To extract time course and directional tuning of the Calcium response to the moving
bar stimulus, we performed an analysis similar to the one described in [Baden et al.,
2016]. Briefly, we first performed a singular value decomposition (SVD) on the response
matrix composed of the average response to each direction. This procedure decomposes
the response into a temporal component and a direction dependent component or tuning
curve. To measure direction selectivity (DS), we then projected the tuning curve V(θ) on
a complex exponential ϕk = exp(iαk), where αk is the direction in the kth condition: K
= ϕT V:1. We computed a DS index as the resulting vector length DSi = |K|. We labeled
as direction selective each cell whose DSi value exceeded a given threshold (DST = 0.7).
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III.4.8 Logistic regression

To fit our model, we first binned each stimulation pattern by dividing the space around
each ganglion in 15 different radii from 0 to 150 µm, and in 12 different angles of equal size.
Each stimulation pattern it was thus transformed into a vector Si, which our model used
to predict the probability of response pi: pi = g(F • Si + α), where F is the model filter, g
the sigmoid function, and α a constant. This is the model used for logistic regression, and
this model is also analog to a LN model [Chichilnisky, 2001] with a sigmoid as non-linear
function and no temporal integration.

We learned the parameters F and alpha with a leave one out strategy, where all but one
stimulation patterns are used as a training set and the remaining one is used for testing,
and we iterate over all stimulation patterns. We then maximized log-likelihood with a
L1 penalty for sparseness of the parameters, and a L2 smoothness constraint between
neighbouring values of the filter. The weights of these two cost functions was chosen such
that the log-likelihood of the testing set was maximal. The performance of the model
was evaluated using the R2 introduced by Tjur for logistic regressions [Tjur, 2009]: R2 =
<pi>resp - <pi>no-resp. Statistical error on R2 have been computed as error of the mean.
In order to compute the preferred direction of the inferred filter, we first averaged it over
the radial coordinate and then applied the same projection strategy used before for the
estimation of the cell preferred direction.

To test the hypothesis of an isotropic filter, we learned the model parameters with the
same strategy, except that we rotated each stimulation with a random angle before learn-
ing. We repeated this random rotation many times to estimate the mean and standard
deviation of the performance in this isotropic hypothesis.

III.5 Supplementary material
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Figure III.5 – Different circuits to generate direction selectivity give different predictions for the cellular
receptive field. A. Primary rod pathway in the mammalian retina: rods transfer their signal to rod bipolar
cells (RBCs, yellow) through a sign inverting metabotropic glutamate receptor 6 (mGluR6). RBCs relay
the received signal via sign-conserving glutamatergic synapses to AII amacrine cells (AII). AII ACs,
stratifying in both ON and OFF strata, split the signal to ON cone bipolar cells (ON CBCs) through gap
junctions and to OFF cone bipolar cells (OFF CBCs, orange) through sign-inverting glycinergic synapses.
CBCs transfer the received signal to the ganglion cell layer (ON and OFF RGCs, green) following the
regular cone circuitry. B. Secondary rod pathway: Rod signals are transmitted directly to cones via gap-
junctions, then to ON-OFF cone bipolar cells and in turn to ganglion cells with corresponding polarity. C.
Tertiary rod pathway: Rods are directly connected to a specific type of OFF CBCs through an ionotropic
sign-conserving AMPA glutamate receptor. D. First hypothesis: direction selectivity is due to asymmetric
inhibition. OFF DS ganglion cells receive symmetric inputs from OFF bipolar cells, responsible for
the excitatory receptive field. They also receive asymmetric inhibitory inputs from an amacrine cell,
specifically from the null side. This input will cancel the excitation when the bar moving from the null
side (null direction), but not when moving from the preferred side (preferred direction). This spatially
shifted inhibition will also generate a cellular receptive field shifted towards the preferred side. Insets:
Schematic description of the circuit at the OFF-CBC synapse with the OFF-DS RGC responsible for the
generation of the direction selectivity on the two sides. On the null side there are synaptic contacts between
inhibitory amacrine cells (IAC) and the OFF DS RGC, but not on the preferred side (see inset). E. Second
hypothesis: direction selectivity is due to an asymmetric dendritic field. OFF bipolar cells innervate only
the null side. This and the non-linear dendritic integration generate a preference for centrifugal (soma
to dendrites) motion. In this case, the excitatory receptive field is spatially shifted towards the null side,
and so is the cellular receptive field.
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A B C

Figure III.6 – The optical system gives homogeneous photostimulation across the field of view. A. Set
of holographic spots simultaneously displayed 70 µm below the focal plane across the field of view. B.
Normalized intensity of the different spots displayed in A. C. Axial FWHM of fluorescent intensity profile
induced on a Rhodamine-6G layer by a set of holographic spots disposed as in A. Red solid line and light
red band in B and C correspond to mean and standard deviation, respectively.

A B

Figure III.7 – 2P holographic photostimulation enables physiological responses in rod bipolar cells.
Representative of light-evoked currents. A. and membrane depolarizations. B. induced on a CoChR-
expressing rod bipolar cell under 2P holographic illumination at different powers. Red horizontal bars
indicate the illumination period (500 ms for powers from 0.02 mW/µm2 to 0.08 mW/µm2; 100 ms for
powers from 0.10 mW/µm2 to 0.14 mW/µm2). Vertical scale bar 10 pA in A and 3 mV in B, respectively.
Horizontal scale bar 100 ms.
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Figure III.8 – 2P holographic stimulation induces photocurrents of tens of pA. Peak of the light-evoked
current induced by photostimulating CoChR-expressing rod bipolar cell under 2P holographic illumination
at different powers. Different symbols indicate different cells.
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Figure III.9 – We selected our subset of OFF DS cells on the basis of their response to the moving bar:
they had large OFF responses and no or little ON responses to the moving bar (A.,C.). We also displayed
a full field stimulus similar to the one used in [Baden et al., 2016] and observed responses similar to the
ones observed for the G2 type (B.,D.): a response to the OFF flash and to the chirp stimulus. Note that,
similar to [Baden et al., 2016], we observed that some cells had little to no responses to this full field
stimulus, which might be caused by a strong surround inhibition. Heatmaps illustrate single responses
(max = 1). In panel A,B all the cells of the cluster are shown. In panel C,D only the cells responding
also to the holographic stimulation are shown.



IV – A spike sorting toolbox for up
to thousands of electrodes validated
with ground truth recordings in vitro

and in vivo

Large ensembles of cells in the ganglion cell layer can be recorded using a multi electrode
array. Flat multi electrodes array record directly the spikes of cells pressed against them,
leaving intact the retinal structure. Compared to other techniques, this allows measuring
the spiking activity of large populations of neurons with a high temporal precision.

The major issue with this technique is the spike sorting. One electrode records si-
multaneously the activity of many cells nearby and one cell send its signal to multiple
electrodes. It is thus necessary to disentangle the extracellular signal and reconstruct the
spike train emitted by each cell.

We present here SpyKING CIRCUS, a software developed in collaboration with Pierre
Yger to solve the spike sorting problem. We used this software to sort spikes in all the
experiments described in this Thesis. A major challenge is to ensure that the spike sort-
ing process is correct, with as few errors as possible. Here, to validate the results of
SpyKING CIRCUS, we produced a dataset of ground truth data. We loose-patched one
of the ganglion cells that was simultaneously recorded by the MEA. Ground truth data
are rare and we made it available to be used as a validation of other spike sorting methods.

61



62 Chapter IV. SpyKING CIRCUS

This work was done in collaboration with Pierre Yger, who entirely developed the soft-
ware. I produced the ground truth data, prepared the animals and run all the experiments.

This article was previously published as:

Yger P.†, Spampinato G.L.B.†, Esposito E.†, Lefebvre B., Deny S., Gardella C., Stim-
berg M., Jetter F. Guenther Z., Picaud S., Duebel J., Marre O.(2018) A spike sorting
toolbox for up to thousands of electrodes validated with ground truth recordings in vitro
and in vivo. eLife 2018;7:e34518.

and the dataset has been published as:

Spampinato G.L.B; Esposito E.; Yger P.; Duebel J.; Picaud S.; Marre O.(2018).
Ground truth recordings for validation of spike sorting algorithms. DOI: 10.5281/zen-
odo.1205232.

†: these authors contributed equally.



IV.1 Introduction 63

IV.1 Introduction

As local circuits represent information using large populations of neurons throughout the
brain [Buzsáki, 2010], technologies to record hundreds or thousands of them are therefore
essential. One of the most powerful and widespread techniques for neuronal population
recording is extracellular electrophysiology. Recently, newly developed microelectrode
arrays (MEA) have allowed recording of local voltage from hundreds to thousands of
extracellular sites separated only by tens of microns [Berdondini et al., 2005, Fiscella
et al., 2012, Lambacher et al., 2004], giving indirect access to large neural ensembles with
a high spatial resolution. Thanks to this resolution, the spikes from a single neuron will be
detected on several electrodes and produce extracellular waveforms with a characteristic
spatio-temporal profile across the recording sites. However, this high resolution comes
at a cost: each electrode receives the activity from many neurons. To access the spiking
activity of individual neurons, one needs to separate the waveform produced by each
neuron and identify when it appears in the recording. This process, called spike sorting,
has received a lot of attention for recordings with a small number of electrodes (typically,
a few tens of electrodes). However, for large-scale and dense recordings, it is still unclear
how to extract the spike contributions from extracellular recordings. In particular, for
thousands of electrodes, this problem is still largely unresolved.

Classical spike sorting algorithms cannot process this new type of data for several
reasons. First, many algorithms do not take into account that the spikes of a single
neuron will evoke a voltage deflection on many electrodes. Second, most algorithms do
not scale up to hundreds or thousands of electrodes in vitro and in vivo, because their
computation time would increase exponentially with the number of electrodes [Rossant
et al., 2016].

A few algorithms have been designed to process large-scale recordings [Marre et al.,
2012, Pillow et al., 2013, Pachitariu et al., 2016, Leibig et al., 2016, Hilgen et al., 2017,
Chung et al., 2017, Jun et al., 2017], but they have not been tested on real “ground truth”
data.

In ground truth data, one neuron is cherry picked from among all the neurons recorded
using an extracellular array using another technique, and simultaneousy recorded. Un-
fortunately, such data are rare. Dual loose patch and extracellular recordings have been
performed for culture of neurons or in cortical slices [Anastassiou et al., 2015, Franke
et al., 2015a]. However, in this condition, only one or two neurons emit spikes, and this
simplifies drastically the spike sorting problem. Ground truth data recorded in vivo are
scarce [Henze et al., 2000, Neto et al., 2016] and in many cases the patch-recorded neuron
is relatively far from the extracellular electrodes.

As a result, most algorithms have been tested in simulated cases where an artificial
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template is added at random times to an actual recording. However, it is not clear if this
simulated data reproduce the conditions of actual recordings. In particular, waveforms
triggered by a given neuron can vary in amplitude and shape, and most simulations do not
reproduce this feature of biological data. Also, spike trains of different cells are usually
correlated, and these correlations can make extracellular spikes that do overlap.

Here we present a novel toolbox for spike sorting in vitro and in vivo, validated on
ground truth recordings. Our sorting algorithm is based on a combination of density-based
clustering and template matching. To validate our method, we performed experiments
where a large-scale extracellular recording was performed while one of the neurons was
recorded with a patch electrode. We showed that the performance of our algorithm was
always close to an optimal classifier, both in vitro and in vivo. We demonstrate that our
sorting algorithm could process recordings from up to thousands of electrodes with similar
accuracy. To handle data from thousands of electrodes, we developed a tool automating
the step that is usually left to manual curation.

Our method is a fast and accurate solution for spike sorting for up to thousands of
electrodes, and we provide it as a freely available software that can be run on multiple
platforms and several computers in parallel. Our ground truth data are also publicly
available and will be a useful resource to benchmark future improvements in spike sorting
methods.

IV.2 Results

IV.2.1 Spike sorting algorithm

We developed an algorithm (called SpyKING CIRCUS) with two main steps: a clustering
followed by a template matching step (see Methods for details). First, spikes are detected
as threshold crossings (Fig. IV.1A) and the algorithm isolated the extracellular waveforms
for a number of randomly chosen spike times. In the following text, we will refer to the
extracellular waveforms associated with a given spike time as snippets.

We divided the snippets into groups, depending on their physical positions: for every
electrode we grouped together all the spikes having their maximum peak on this electrode.
Thanks to this division, the ensemble of spikes was divided into as many groups as there
were electrodes. The group associated with electrode k contains all the snippets with
a maximum peak on electrode k. It was possible that, even among the spikes peaking
on the same electrode, there could be several neurons. We thus performed a clustering
separately on each group, in order to separate the different neurons present in a single
group.

For each group, the snippets were first masked: we assumed that a single cell can only
influence the electrodes in its vicinity, and only kept the signal on electrodes close enough
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Figure IV.1 – Main steps of the spike sorting algorithm A. Five randomly chosen electrodes, each of
them with its own detection threshold (dash dotted line). Detected spikes, as threshold crossings, are
indicated with red markers B. Example of a spike in the raw data. Red: electrodes that can be affected
by the spike, i.e. the ones close enough to the electrode where the voltage peak is the highest; gray:
other electrodes that should not be affected. C. Example of two clusters (red and blue) with associated
templates. Green points show possible combinations of two overlapping spikes from the two cells for
various time delays. D. Graphical illustration of the template matching for in vitro data (see Methods).
Every line is a electrode. Grey: real data. Red: sum of the templates added by the template matching
algorithm; top to bottom: successive steps of the template matching algorithm. E. Final result of the
template matching. Same legend as D. F. Examples of the fitted amplitudes for the first component of
a given template as a function of time. Each dot correspond to a spike time at which this particular
template was fitted to the data. Dashed dotted lines represent the amplitude thresholds (see methods).
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to the peak (Fig. IV.1B, see Methods). Due to to this reduction, the memory needed
for each clustering did no scale with the total number of electrodes. The snippets were
then projected into a lower dimensional feature space using Principal Component Analysis
(PCA) (usually 5 dimensions, see Methods), as is classically done in many spike sorting
algorithms [Rossant et al., 2016, Einevoll et al., 2012]. Note that the simple division in
groups before clustering allowed us to parallelize the clustering step, making it scalable
for even thousands of electrodes. Even if a spike is detected on several electrodes, it is
only assigned to the electrode where the voltage peak is the largest: if a spike has its
largest peak on electrode 1, but is also detected on electrode 2, it will only be assigned
to electrode 1 (seeFig. IV.1 - Fig. IV.5).

For each group, we performed a density-based clustering inspired by [Rodriguez and
Laio, 2014] (see Methods). The idea of this algorithm is that the centroid of a cluster in
the feature space should have many neighbors, i.e. a high density of points in their neigh-
borhood. The centroid should also be the point where this density is a local maximum:
there should not be a point nearby with a higher density. To formalize this intuition, for
each point we measured the average distance of the 100 closest points ρ (intuitively, this
is inversely proportional to the local density of points), and the distance δ to the closest
point of higher density (i.e. with a lower ρ). Centroids should have a low ρ and a high
δ. We hypothesized that there was a maximum of ten clusters in each group (i.e. at
most ten different cells peaking on the same electrode) and took the ten points with the
largest δ/ ρ ratio as the centroids. Each remaining point was then assigned iteratively to
the nearest point with highest density, until they were all assigned to the centroids (see
methods for details - note that all the numbers mentioned here are parameters that are
tunable in our toolbox).

Thanks to this method we could find many clusters, corresponding to putative neurons.
In many spike sorting methods, it is assumed that finding clusters is enough to solve the
spike sorting problem [Chung et al., 2017]. However, this neglects the specific issue
of overlapping spikes (see Fig. IV.1C). When two nearby cells spike synchronously, the
extracellular waveforms evoked by each cell will superimpose (Fig. IV.1C, see also Pillow
et al. [2013]). This superimposition of two signals coming from two different cells will
distort the feature estimation. As a result, these spikes will appear as points very far away
from the cluster associated to each cell. An example of this phenomena is illustrated in
Fig. IV.1C. Blue and red points correspond to the spikes associated to two different cells.
In green, we show the spikes of one cell when the waveform of another one was added
at different delays. For short delays, the presence of this additional waveform strongly
distort the feature estimation. As a result, the corresponding point is far from the initial
cluster, and will be missed by the clustering. To overcome this issue, we performed a
template matching as the next step of our algorithm.
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For this we first extracted a template from each cluster. This template is a simplified
description of the cluster and is composed of two waveforms. The first one is the average
extracellular waveform evoked by the putative cell (Fig. IV.1C, left and red waveforms).
The second is the direction of largest variance that is orthogonal to this average wave-
form (see Methods). We assumed that each waveform triggered by this cell is a linear
combination of these two components. Thanks to these two components, the waveform
of the spikes attributed to one cell could vary both in amplitude and in shape.

At the end of this step, we should have extracted an ensemble of templates (i.e. pairs
of waveforms) that correspond to putative cells. Note that we only used the clusters to
extract the templates. Our algorithm is thus tolerant to some errors in the clustering. For
example, it can tolerate errors in the delineation of the cluster border. The clustering task
here is therefore less demanding than in classical spike sorting algorithms where finding
the correct cluster borders is essential to minimize the final error rate. By focusing on
only getting the cluster centroids, we should thus have made the clustering task easier,
but all the the spikes corresponding to one neuron have yet to be found. We therefore
used a template matching algorithm to find all the instances where each cell has emitted
a spike.

In this step we assumed that the templates of different cells spiking together sum
linearly and used a greedy iterative approach inspired by the projection pursuit algorithm
to match the templates to the raw data (Fig. IV.1D, see Methods). Within a piece of raw
data, we looked for the template whose first component had the highest similarity to the
raw signal (here similarity is defined as the scalar product between the first component of
the template and the raw data) and matched its amplitude to the signal. If this amplitude
falls between pre-determined thresholds (see methods), we matched and subtracted the
two components to the raw signal. These predetermined thresholds reflect the prior that
the amplitude of the first component should be around 1, which corresponds to the average
waveform evoked by the cell. We then re-iterated this matching process until no more
spike could be matched (Fig. IV.1D, E) (see Methods). We found many examples where
allowing amplitude variation was a desirable feature (see Fig. IV.1F).

After this template matching step, the algorithm outputs putative cells, described
by the templates, and associated spike trains, i.e. spike times where the template was
matched to the data.

IV.2.2 Performance on ground truth data

To test our algorithm, we performed dual recordings (Fig. IV.2A, B) using both a mul-
tielectrode array to record many cells (see schematic on Fig. IV.2A), and simultaneous
loose patch to record the spikes of one of the cell (Fig. IV.2B). For this cell we know
what should be the output of the spike sorting. In vitro, we recorded 18 neurons from 14
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retinas with a 252 electrode MEA where the spacing between electrodes was 30 µm (see
Methods). We also generated datasets where we removed the signals of some electrodes,
such that the density of the remaining electrodes was either 42 or 60 µm (by removing
half or 3 quarters of the electrodes, respectively).

We then ran the spike sorting algorithm only on the extracellular data, and estimated
the error rate (as the mean of false positives and false negatives, see methods) for the cell
recorded in loose patch, where we know where the spikes occurred. The performance of
the algorithm is not only limited by imperfections of the algorithm, but also by several
factors related to the ground truth data themselves. In particular, some of the cells
recorded with loose patch can evoke only a small spike on the extracellular electrode, for
example if they are far from the nearest electrode or if their soma is small [Buzsáki, 2004].
If a spike of the patch-recorded cell triggers a large voltage deflection, this cell should be
easy to detect. However, if the triggered voltage deflection is barely detectable, even the
best sorting algorithm will not perform well. Looking at Fig. IV.2C, for in vitro data (see
Methods), we found that there was a correlation between the error rate of our algorithm
and the size of the extracellular waveform evoked by the spikes of the patch-recorded cell:
the higher the waveform, the lower the error rate.

We then asked if our algorithm is close to the “best” possible performance, i.e. the
only errors are due to intrinsic limitations in the ground truth data (e.g. small waveform
size).

There is no method to exactly estimate this best possible performance. However, a
proxy can be found by training a nonlinear classifier on the ground truth data [Harris et al.,
2000, Rossant et al., 2016]. We trained a nonlinear classifier on the extracellular waveforms
triggered by the spikes of the recorded cell, similar to [Harris et al., 2000, Rossant et al.,
2016] (referred to as the Best Ellipsoidal Error Rate (BEER), see Methods). This classifier
“knows” where the true spikes are and simply quantifies how well they can be separated
from the other spikes based on the extracellular recording. Note that, strictly speaking,
this BEER estimate is not a lower bound of the error rate. It assumes that spikes can
be all found inside a region of the feature space delineated by ellipsoidal boundaries. As
we have explained above, spikes that overlap with spikes from another cell will probably
be missed and this ellipsoidal assumption is also likely to be wrong in case of bursting
neurons or electrode-tissue drifts. However, we used the BEER estimate because it has
been used in several papers describing spike sorting methods [Harris et al., 2000, Rossant
et al., 2016] and has been established as a commonly accepted benchmark. In addition,
because we used rather stationary recordings (few minutes long, see Methods), we did
not see strong electrode-tissue drifts.

We estimated the error made by the classifier and found that the performance of our
algorithm almost always was in the same order of magnitude as the performance of this
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classifier, (Fig. IV.2D, left; r = 0.89, p < 10−5) over a broad range of spike sizes. For
37 neurons with large waveform sizes (above −50µV) the average error of the classifier
is 2.7 % and the one for our algorithm is 4.8% (see Fig. IV.2E). For 22 neurons with
lower spike size (below −50µV), the average error of the classifier is 11.1% and the one
for our algorithm is 15.2%. This suggests that our algorithm reached an almost optimal
performance on this in vitro data.

We also used similar ground truth datasets recorded in vivo in rat cortex using dense
silicon probes with either 32 or 128 recording sites [Neto et al., 2016]. With the same
approach as for in vitro data, we also found that our algorithm achieved near optimal
performance (Fig. IV.2F, right; r = 0.92, p < 10−5), although there were only two
recordings where the spike size of the patch-recorded neuron was large enough to be
sorted with a good accuracy. For only 2 available neurons with low optimal error rate,
the average error of the classifier is 13.9% and the one for our algorithm is 14.8%. For
24 neurons with lower spike size, the average error of the classifier is 64.0% and the one
for our algorithm is 67.8%. Together, these results show that our algorithm can reach a
satisfying performance (i.e. comparing to the classifier error) over a broad range of spike
sizes, for both in vivo and in vitro recordings.

We also compared our performance to the Kilosort algorithm [Pachitariu et al., 2016]
and found similar performances (4.4% on average over all non-decimated neurons for
SpyKING CIRCUS against 4.2% for Kilosort). Because Kilosort used a GPU, it could
be run faster than our algorithm on a single machine: on a one hour recording with 252
electrodes, Kilosort can achieve a 4 times speedup on a standard desktop machine (see
Methods). But without using a GPU, Kilosort was only marginally faster (1.5 speedup),
and slower if we started using several cores of the machine. However, is it worth noticing
that the speedup of Kilosort comes at the cost of an increased usage of memory. Kilosort
used 32 GB of RAM for a maximal number of 500 neurons, while our algorithm had a
much lower memory footprint, because of design choices. We have therefore found a trade
off where execution speed is slightly slower, but much less memory is used. Thanks to
this, we could run our algorithm to process recordings with thousands of electrodes, while
Kilosort does not scale up to this number. In the next section we demonstrate that our
algorithm still works accurately at that scale.

IV.2.3 Scaling up to thousands of electrodes

A crucial condition to process recordings performed with thousands of electrodes is that
every step of the algorithm should be run in parallel over different CPUs. The clustering
step of our algorithm was run in parallel on different subsets of snippets as explained
above. The template matching step could be run independently on different blocks of
data, such that the computing time only scaled linearly with the data length. Each step
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Figure IV.2 – Performance of the algorithm on ground truth datasets A. Top: Schematic of the ex-
perimental protocol in vitro. A neuron close to the multielectrode array (MEA) recording is recorded in
loose patch. Bottom: Image of the patch electrode on top of a 252 electrodes MEA, recording a ganglion
cell. B. Top, pink box: loose patch recording showing the spikes of the recorded neuron. Bottom, green
box: Extra-cellular recordings next to the loose patched soma. Each line is a different electrode C. Error
rate of the algorithm as function of the largest peak amplitude of the ground-truth neuron, recorded
extracellularly in vitro. D. Comparison between the error rates produced by the algorithm on different
ground truth datasets and the error rates of nonlinear classifiers (Best Ellipsoidal Error Rate) trained to
detect the spikes for in vitro data. E. Comparison of average performance for all neurons detected by the
Optimal Classifier with an error less than 10% (n=37). F. Same as D. but for in vivo data [Neto et al.,
2016] (see Methods).
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of the spike sorting algorithm was therefore parallelized. The runtime of the full algorithm
decreased proportionally with the numbers of CPU cores available (Fig. IV.3A, grey area
indicates where the software is “real-time" or faster). As a result, the sorting algorithm
could process one hour of data recorded with 252 electrodes in one hour with 9 CPU cores
(spread over 3 computers) (Fig. IV.3A, B). It also scaled up linearly with the number of
electrodes (Fig. IV.3B), and with the number of templates (Fig. IV.3C). It was therefore
possible to run it on long recordings (≥ 30min) with more than 4000 electrodes, and the
runtime could be be divided by simply having more CPUs available.

To test the accuracy of our algorithm on 4225 electrodes, we generated hybrid ground
truth datasets where artificial spikes were added to real recordings performed on mouse
retina in vitro (see Methods). We ran the spike sorting algorithm on different datasets,
picked some templates and used them to create new artificial templates that we added at
random places to the real recordings (see Methods). This process, as shown in Fig. IV.3D
allowed us to generate “hybrid” datasets were we know the activity of a number of ar-
tificially injected neurons. We then ran our sorting algorithm on these datasets and
measured if the algorithm was able to find at which times the artificial spikes were added.
We counted a false negative error when an artificial spike was missed and a false posi-
tive error when the algorithm detected a spike when there was not any (see Methods).
Summing these two types of errors, the total error rate remained below 5% for all the
spikes whose size was significantly above spike detection threshold (normalized amplitude
corresponds to the spike size divided by the spike threshold). Error rates were similar for
recordings with 4255 electrodes in vitro, 128 electrodes in vivo or 252 electrodes in vitro.
Performance did not depend on the firing rate of the injected templates (Fig. IV.3E) and
only weakly on the normalized amplitude of the templates (Fig. IV.3F), as long as it was
above the spike threshold. The accuracy of the algorithm is therefore invariant to the size
of the recordings.

A crucial issue when recording thousands of densely packed electrodes is that more
and more spikes overlap with each other. If an algorithm misses overlapping spikes, then
the estimation of the amplitude of correlations between cells will be biased. To test if our
method was able to solve the problem of overlapping spikes and thus estimate correla-
tions properly, we generated hybrid datasets where we injected templates with a controlled
amount of overlapping spikes (see Methods). We then ran the sorting algorithm and com-
pared the injected spike trains and the spike trains recovered by SpyKING CIRCUS. We
then compared the correlation between both pairs. If some overlapping spikes were missed
by the algorithm, the correlation between the sorted spike trains should be lower than the
correlation between the injected spike trains. We found that our method was always able
to estimate the pairwise correlation between the spike trains with no underestimation
(Fig. IV.3G). Overlapping spikes were therefore correctly detected by our algorithm. The



72 Chapter IV. SpyKING CIRCUS

D

E F

Shu�ing
Scaling

Normalized 
amplitude

Original template Injected template

G
252 electrodes retina
4225 electrodes retina
128 electrodes cortex

A B C252 electrodes 27 CPU cores 30 electrodes, 9 CPU cores

So
rt

in
g 

Er
ro

r [
%

]

original 
data

Hybrid
data

Figure IV.3 – Scaling to thousands of electrodes. A. Execution time as function of the number of
processors for a 90 min dataset in vitro with 252 electrodes, expressed as a real-time ratio, i.e. the number
of hours necessary to process one hour of data. B. Execution time as function of the number of electrodes
for a 30 min dataset recorded in vitro with 4225 electrodes. C. Execution time as function of the number
of templates for a 10 min synthetic dataset with 30 electrodes. D. Creation of “hybrid" datasets: chosen
templates are injected elsewhere in the data as new templates. Dashed-dotted lines shows the detection
threshold on the main electrode for a given template, and normalized amplitude is expressed relative to
this threshold (see Methods). E. Mean error rate as function of the firing rate of injected templates,
in various datasets. Errors bars show standard error over 8 templates F. Error rate as function of the
normalized amplitude of injected templates, in various datasets. Errors bars show standard error over
9 different templates G. Injected and recovered cross-correlation value between pairs of neurons for 5
templates injected at 10 Hz, with a normalized amplitude of 2 (see Methods).
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ability of our template matching algorithm to resolve overlapping spikes thus allowed an
unbiased estimation of correlations between spike trains, even for thousands of electrodes.

These different tests, described above, show that SpyKING CIRCUS reached a similar
performance for 4225 electrodes than for hundreds electrodes, where our ground truth
recordings showed that performance was near optimal. Our algorithm is therefore also
able to sort accurately recordings from thousands of electrodes.

IV.2.4 Automated merging

As in most spike sorting algorithms, our algorithm may split one cell into several units.
After running the entire algorithm, it is therefore necessary to merge together the units
corresponding to the same cell. However, for hundreds or thousands of electrodes, going
through all the pairs of units and merging them by hand would take a substantial amount
of time. To overcome this problem, we designed a tool to merge automatically many units
at once so that the time spent on this task does not scale with the number of electrodes
and this allows us to automate this final step.

Units that likely belong to the same cell (and thus should be merged) have templates
that look alike and in addition, the combined cross-correlogram between the two cell’s
spike trains shows a clear dip near 0 ms, indicating that the merged spike trains do not
show any refractory period violation (Fig. IV.4A, blue example). In order to automate
this merging process, we formalized this intuition by estimating for each pair of units two
factors that reflect if they correspond to the same cell or not. For each pair of templates,
we estimated first the similarity between templates and second the dip in the center of
the cross-correlogram. This dip is measured as the difference between the geometrical
mean of the firing rate φ (i.e. the baseline of the cross-correlogram) and the value of the
cross-correlogram at delay 0 ms, 〈CC〉 (see Methods and right insets in Fig. IV.4A).

We plotted for each pair with high similarity the dip estimation against the geometrical
mean of their firing rates. If there is a strong dip in the cross-correlogram (quantified by
φ − 〈CC〉), the dip quantification and the geometrical mean, φ, should be almost equal,
and the corresponding pair should thus be close to the diagonal in the plot.

In one example, where we artificially split synthetic spike trains (Fig. IV.4A ; see
Methods), we could clearly isolate a cluster of pairs lying near this diagonal, corresponding
to the pairs that needed to be merged (Fig. IV.4A right panels). We have designed a GUI
such the user can automatically select this cluster and merge all the pairs at once. Thanks
to this, with a single manipulation by the user, all the pairs are merged.

We then tested this method on our in vitro ground truth data. In these recordings,
the cell recorded with loose patch might be split by the algorithm between different spike
trains. We can determine the units that correspond to the patch-recorded cell. For one
particular neuron taken from our database, we can visualize all the units that need to be
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merged together (blue points in Fig. IV.4B), and that should not be merged with units
corresponding to other cells (green pairs in Fig. IV.4B). For all the other cells, we do not
have access to a ground truth, and thus cannot decide if the pairs should be merged or
not (orange pairs in Fig. IV.4B).

To automate the merging process entirely, we defined two simple rules to merge two
units: first, their similarity should be above a threshold (similarity threshold, 0.8 in our
experiments). Second, the dip estimation for this pair should be close to the geometrical
mean of firing rates, i.e. their difference should be below a threshold (dip threshold).
In practice, the corresponding point in Fig. IV.4B should be above a line parallel to the
diagonal. We used these rules to perform a fully automatic merging of all units. We
then estimated the error rate for the ground truth cell, in the same way as the previous
section. We also estimated the lowest error rate possible error rate by merging the units
using the ground truth data for guidance (Best Merges, see Methods). We found that
the error rate obtained with our automated method was close to this best error rate
(Fig. IV.4C). We have therefore automated the process of merging spike trains while
keeping a low error rate. The performance did not vary much with the values of the two
parameters (similarity threshold and dip threshold), and we used the same parameters
for all the different datasets. This shows that the sorting can be fully automated while
limiting the error rate to a small value. We thus have a solution to fully automate the
sorting, including all the decisions that need to be taken during the manual curation step.
However, because we used cross-correlograms in order to help automate the merging
process, it is worth noticing that one can no longer use cross-correlograms as a validation
metric.

IV.3 Discussion

We have shown that our method, based on density-based clustering and template match-
ing, allows sorting spikes from large-scale extracellular recordings both in vitro and in vivo.
We tested the performance of our algorithm on “ground truth” datasets, where one neuron
is recorded both with extracellular recordings and with a patch electrode. We showed that
our performance was close to an optimal nonlinear classifier, trained using the true spike
trains. Our algorithm has also been tested on purely synthetic datasets [Hagen et al., 2015]
and similar results were obtained (data not shown). Note that tests were performed by
different groups on our algorithm and show its high performance on various datasets (see
http://spikesortingtest.com/ and http://phy.cortexlab.net/data/sortingComparison/). Our
algorithm is entirely parallelized and could therefore handle long datasets recorded with
thousands of electrodes. Our code has already been used by other groups [Denman et al.,
2017, Mena et al., 2017, Chung et al., 2017, Wilson et al., 2017] and is available as a com-
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Figure IV.4 – Automated merging A. Dip estimation (y-axis) compared to the geometrical mean of the
firing rate (x-axis) for all pairs of units and artificially generated and split spike trains (see Methods). Blue:
pairs of templates originating from the same neuron that have to be merged. Orange: pairs of templates
corresponding to different cells. Panels on the right: for two chosen pairs, one that needs to be merged (in
blue, top panel) and one should not be merged (orange, bottom panel) the full cross-correlogram and the
geometrical mean of the firing rate (dashed line). The average correlation is estimated in the temporal
window defined by the gray area. B. Same as A, for a ground truth dataset. Blue points: points that need
to be merged. Green points: pairs that should not be merged. Orange points: pairs where our ground
truth data does not allow us telling if the pair should be merged or not. The gray area corresponds to the
region where pairs are merged by the algorithm. Inset: zoom on one region of the graph. C. Average error
rate in the case where the decision of merging units was guided by the ground truth data (left) against
the automated strategy designed here (right).
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plete multi-platform, open source software for download (http://spyking-circus.rtfd.org)
with a complete documentation. Note that all the parameters mentioned in the descrip-
tion of the algorithm can be modified easily to work with different kinds of data. We
have made all the ground truth data available for download (see Source Code section in
Methods), so that improvements in our algorithm as well as alternative solutions could
be benchmarked easily in the future.

Classical approaches to the spike sorting problem involve extracting some features from
each detected spike [Hubel, 1957, Meister et al., 1994, Lewicki, 1994, Einevoll et al., 2012,
Quiroga et al., 2004, Hill et al., 2011, Pouzat et al., 2002, Litke et al., 2004, Chung et al.,
2017] and clustering the spikes in the feature space. In this approach, the spike sorting
problem is reduced to a clustering problem and this introduces several major problems.
First, to assign the spikes to the correct cell, the different cells must be separated in
the feature space. Finding the exact borders of each cell in the feature space is a hard
task that cannot be easily automated (but see [Chung et al., 2017]). Second, running a
clustering algorithm on data with thousands of electrodes is very challenging. Finally,
overlapping spikes will appear as strong deviations in the feature space and will therefore
be missed in this approach. These three issues preclude the use of this approach for large-
scale recordings with dense arrays of electrodes. In comparison, here we have parallelized
the clustering step efficiently, using a template matching approach, so that we only needed
to infer the centroid of each cluster and not their precise borders.

The template matching approach also allowed us to deconvolve overlapping spikes
in a fast, efficient and automated manner. Some template matching approaches have
been previously tested, mostly on in vitro data [Marre et al., 2012, Pillow et al., 2013,
Franke et al., 2015b], but were not validated on ground truth datasets like the ones we
acquired here. Also, they only had one waveform for each template, which did not allow
any variation in the shape of the spike, while we have designed our template matching
method to take into account not only variation in the amplitude of the spike waveform,
but also in shape. Finally, several solutions did not scale up to thousands of electrodes.
All GPU-based algorithms [Pachitariu et al., 2016, Lee et al., 2017, Jun et al., 2017] only
scale for a few hundreds channels, and face severe memory issues for larger probes.

Finally, a common issue when sorting spikes from hundreds or thousands of electrodes
is the time spent on manual curation of the data. Here we have designed a tool to
automate this step by merging units corresponding to the same cell all at once, based on
the cross-correlogram between cells and the similarity between their templates. Having
an objective criterion for merging spike trains not only speeds up the manual curation
time, it also makes the results less sensitive to human errors and variability in decisions.
In some cases, it might be necessary to take into account additional variables that are
specific to the experiment, but even then our tool will still significantly reduce the time
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spent on manual curation.
Our method is entirely parallel and can therefore be run in “real time” (i.e. one hour

of recording processed in one hour) with enough computer power. This paves the way
towards online spike sorting for large-scale recordings. Several applications, like brain
machine interfaces, or closed-loop experiments [Franke et al., 2012, Hamilton et al., 2015,
Benda et al., 2007], will require an accurate online spike sorting. This will require adapting
our method to process data “on the fly”, processing new data blocks when they become
available and adapting the shape of the templates over time.

IV.4 Methods

IV.4.1 Experimental recordings

In vitro recordings with 252 or 4225 electrodes Retinal tissue was obtained from
adult (8 weeks old) male Long-Evans rat (Rattus norvegicus) or mouse (mus musculus, 4-9
weeks old) and continuously perfused with Ames Solution (Sigma-Aldrich) and maintained
at 32 deg. Ganglion cell spikes were recorded extracellularly from a multielectrode array
with 252 electrodes spaced 30 or 60 µm apart (Multi-Channel Systems) or with 4225
electrodes arranged in a 2D grid and spaced by 16 µm [Zeck et al., 2011, Bertotti et al.,
2014] at a sampling rate of 20 kHz. Experiments were performed in accordance with
institutional animal care standards.

For the ground truth recordings, electrophysiological recordings were obtained from ex
vivo isolated retinae of rd1 mice (4/5 weeks old). The retinal tissue was placed in AMES
medium (Sigma-Aldrich, St Louis, MO; A1420) bubbled with 95% O2 and 5% CO2 at
room temperature, on a MEA (10 µm electrodes spaced by 30 µm; Multichannel Systems,
Reutlingen, Germany) with ganglion cells layer facing the electrodes. Borosilicate glass
electrodes (BF100-50, Sutter instruments) were filled with AMES with a final impedance
of 6-9 MΩ. Cells were imaged with a customized inverted DIC microscope (Olympus
BX 71) mounted with a high sensitivity CCD Camera (Hamamatsu ORCA -03G) and
recorded with an Axon Multiclamp 700B patch clamp amplifier set in current zero mode.
We used rd1 mice because going through the photoreceptor layer with the patch pipette
was easier than for a wild type mouse.

For the data shown in Fig. IV.1 and IV.3, we used a recording of 130 min. For the
data shown in Fig. IV.2A, 16 neurones were recorded over 14 intact retinas. Recording
durations all lasted 5min. The thresholds for the detection of juxta-cellular spikes were
manually adjusted for all the recordings [Spampinato et al., 2018].

In vivo recordings with 128 electrodes We use the freely available datasets provided
by [Neto et al., 2016]. Those are 32 or 128 dense silicon probes recordings (20 µm spacing)
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at 30 kHz performed in rat visual cortex, combined with juxta-cellular recordings. The
dataset gave us a total of 13 neurons for Fig. IV.2.C with recordings between 4 and 10
min each. Similarly to the in vitro case, the detection thresholds for the juxta-cellular
spikes were manually adjusted based on the data provided by [Neto et al., 2016] and on
spike-triggered waveforms. For the validation with “hybrid” dataset, shown in fig. IV.3,
we used the longest dataset recorded with 128 electrodes.

IV.4.2 Details of the algorithm

In the following, we consider that we have Nelec electrodes, acquired at a sampling rate
frate. Every electrode k is located at a physical position pk = (xk, yk) in a 2D space
(extension to 3D probes would be straightforward). The aims of our algorithm is to
decompose the signal s = {sk, k ∈ 1, . . . Nelec} as a linear sum of spatio-temporal kernels
or “templates” (see equation IV.4.2).

s(t) =
∑
ij

aijwj(t− ti) + bijvj(t− ti) + e(t)

where s(t) is the signal recorded over Nelec electrodes and over multiple time points.
wj(t− ti) and vj(t− ti) are the two components of the template associated to each cell.
They represent the waveform triggered on the electrodes by cell j. Times {ti} are the
putative spike times over all the electrodes. aij and bij are the amplitude factors for spike
time ti for the template j, and e(t) is the background noise. Note that at a given spike
time ti, it is likely that only a couple of cells fire a spike. Only these cells will therefore
have aij and bij different from zero. For all the other ones, these coefficients are zero
simply because the cell does not fire at this time.

The algorithm can be divided into two main steps, described below. After a prepro-
cessing stage, we first run a clustering algorithm to extract a dictionary of “templates"
from the recording. Second, we use these templates to decompose the signal with a
template-matching algorithm. We assume that a spike will only influence the extracellu-
lar signal over a time window of size Nt (typically 2 ms for in vivo and 5 ms for in vitro
data) and only electrodes whose distance to the soma is below rmax (typically 100 µm for
in vivo and 200µm for in vitro data). For every electrode k centered on pk, we define Gk

as the ensemble of nearby electrodes l such that ‖pk − pl‖2 ≤ rmax.

a) Pre-processing

Filtering In a preprocessing stage, all the signals were individually high-pass filtered
with a Butterworth filter of order three and a cutoff frequency of fcut = 100 Hz to remove
any low-frequency components of the signals. We then subtracted, for every electrode k,
the median such that ∀k med(sk) = 0.
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Spike detection Once signals have been filtered, we computed a spike threshold θk for
every electrode k: θk = λMAD(sk(t)), where MAD is the Median Absolute Deviation,
and λ is a free parameter. For all the datasets shown in this paper, we set λ = 6. We
detected the putative spike times ti as times where there was at least one electrode k
where sk(ti) was below the threshold −θk and a local minimum of the voltage sk(t).

Whitening To remove spurious spatial correlations between nearby recordings elec-
trodes, we performed a spatial whitening on the data. To do so, we searched for a
maximum of 20s of recordings where there were no spikes (i.e no threshold crossings). We
then computed the Covariance Matrix of the noise Cspatial and estimated its eigenvalues
{dm} and associated eigenvector matrix V. From the diagonal matrix D = diag( 1√

d+ε),
where ε = 10−18 is a regularization factor to ensure stability, we computed the whitening
matrix F = VDVT. In the following, each time blocks of data are loaded, they are
multiplied by F. After whitening, we recomputed the spike detection threshold θk of each
electrode k in the whitened space.

Basis estimation (PCA) Our first goal was to reduce the dimensionality of the tem-
poral waveforms. We collected up to Np spikes on each electrode. We thus obtained a
maximum of Np ×Nelec spikes and took the waveform only on the peaking electrode for
each of them. This is a collection of a large number of temporal waveforms and we then
aimed at finding the best basis to project them. In order to compensate for sampling rate
artifacts, we first upsampled all the collected single-electrode waveforms by bicubic spline
interpolation to 5 times the sampling rate frate, aligned on their local minima, and then
re-sampled at frate. We then performed a Principal Component Analysis (PCA) on these
centered and aligned waveforms and kept only the first NPCA principal components. In
all the calculations we used default values of Np = 10000 and NPCA = 5. These principal
components were used during the clustering step.

b) Clustering

The goal of the clustering step is to construct a dictionary of templates. As opposed to
former clustering approaches of spike sorting [Quiroga et al., 2004, Harris et al., 2000,
Kadir et al., 2014], because this clustering step is followed by a template matching, we
do not need to perform the clustering on all the spikes.

Masking We first randomly collected a subset of many spikes ti to perform the clus-
tering. To minimize redundancy between collected spikes, we prevented the algorithm to
have two spikes peaking on the same electrode separated by less than Nt/2.
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Pre-clustering of the spikes Trying to cluster all the spikes from all the electrodes at
once is very challenging, because they are numerous and live in a high dimensional space.
We used a divide and conquer approach to parallelize this problem [Marre et al., 2012,
Swindale and Spacek, 2014]. Each time a spike was detected at time ti , we searched
for the electrode k where the voltage s(ti) has the lowest value, i.e. such that k =
argmink sk(ti). For every electrode k we collected a maximum of Nspikes spikes (set to
10000 by default) peaking on this electrode. Each of these spikes is represented by a
spatio-temporal waveform of size Nt×Nk

neigh, where Nk
neigh is the number of electrodes in

the vicinity of electrode k, i.e. the number of elements in Gk. Note that, in the following
we did not assume that spikes are only detected on a single electrode. We used the
information available on all the neighboring electrodes.

We projected each temporal waveform on the PCA basis, estimated earlier, to reduce
the dimensionality to NPCA × Nk

neigh. During this projection, the same up-sampling
technique described in the Pre-processing was used. Each spike was then represented in a
space with NPCA ×N i

neigh dimensions. To reduce dimensionality even further before the
clustering stage, for every electrode k we performed a PCA on the collected spikes and
kept only the first NPCA2 principal components (in all the paper, NPCA2 = 5). Therefore,
we performed a clustering in parallel for every electrode on at max Nspikes described in a
space of NPCA2-dimension.

Clustering by search of local density peaks To perform the clustering we used a
modified version of the algorithm published in [Rodriguez and Laio, 2014]. We note the
spikes {1, .., l} associated with electrode k (and projected on the second PCA basis) as
vectors xk{1,..,l} in a NPCA2 dimensional space. For each of these vectors, we estimated ρkl
as the mean distance to the S nearest neighbors of xkl . Note that 1/ρkl can be considered
as a proxy for the density of points. S is chosen such that S = ε Nspikes, with ε = 0.01.
In our settings, since Nspikes = 10000 then S = 100. This density measure turned out to
be more robust than the one given in the original paper and rather insensitive to changes
in ε. To avoid a potentially inaccurate estimation of the ρkl values we collected iteratively
additional spikes to refine this estimate. Keeping in memory the spikes xkl , we searched
again in the data Nk

spikes different spikes and used them only to refine the estimation of
ρkl of our selected points xkl . This refinement gave more robust results for the clustering
and we performed 3 rounds of this new search. Then, for every point xkl , we computed δkl
as the minimal distance to any other point xkm,m 6=l such that ρkm ≤ ρkl . This corresponds
to the distance to the nearest point with a higher density. The intuition of the algorithm
is that the centroids should be points with a high density (i.e. low ρ) and far apart from
each others (high δ).
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Centroids and cluster definition To define the centroids we ranked the points as a
function of the ratios δ/ρ and we detected the best Nmax

clusters points as putative centroids.
By default Nmax

clusters = 10. Intuitively, this parameter corresponds to the maximal number
of cells that will peak on any given electrode. It can be seen as an upper bound of the
ratio between the number of cells and the number of electrodes. Clusters were formed
by assigning each point to one of the selected centroids following an iterative rule, going
from the points of lowest ρ to the points of highest ρ: each point was assigned to the
same cluster as the closest point with a lower ρ [Rodriguez and Laio, 2014]. Thanks to
this ordering we started by assigning the points of highest density to the nearest centroid,
and then assigned the next points to the nearest point with higher density, which has
been already assigned to a cluster. We created Nmax

clusters clusters. Once this is done, we
iteratively merged pairs of clusters that were too similar to each others.

Merging similar clusters We computed a normalized distance ζ between each pair
of clusters. The center αm of each cluster was defined as the median of all the points
composing this cluster. For each pair of cluster (m,n) we then projected all the points for
each of them onto the axis joining the two centroids αm−αn. We defined the dispersions
around the centroids αm as γm = MAD(xm · (αm − αn)), where · is the scalar product of
two vectors. The normalized distance is:

ζ(m,n) = ‖αm − αn‖√
γ2
m + γ2

n

We then iteratively merged all clusters (m,n) such that ζ(m,n) ≤ σsimilar. At the end
of the clustering every cluster with less than η N i

spikes was discarded. In all the manuscript
we used σsimilar = 3, Nmax

clusters = 10, and η = 0.005. We chose Nmax
clusters = 10 because we

never see more than 10 neurons peaking on the same electrode, and this approximately
corresponds to the ratio between density of observable cells and density of electrodes.

Template estimation At the end of the clustering phase, pooling the clusters obtained
from every electrode, we obtained a list of clusters. Each cluster m is defined by a list of
spike times tm{1,..,l}. During this phase we limited the number of spike times per template
to a maximal value of 500 to avoid memory saturation, because we had to keep in memory
these 500 snippets.

We computed the first component from the raw data as the point-wise median of all
the waveforms belonging to the cluster: wm(t) = medl s(tml + t). Note that wm is only
different from zero on the electrodes close to its peak (see fig. IV.1C). This information
is used internally by the algorithm to save templates as sparse structures. We set to 0 all
the electrodes k where ‖wk

m(t)‖ < θk, where θk is the detection threshold on electrode k.
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This allowed us to remove electrodes without discriminant information and to increase
the sparsity of the templates.

We then computed the projection of all snippets in the space orthogonal to the first
component: ∀l, ql = s(tml ) − βlwm, with βl = s(tml ).wm

‖wm‖ . The q are the projections of
the waveforms in a space orthogonal to wm. We estimated the second component of the
template vm(t) as the direction of largest variance in this orthogonal space (i.e. the first
principal component of ql).

From the first components wm, we also computed its minimal and maximal amplitudes
a

min/max
m . If ŵm is the normalized template, such that ŵm = wm/‖wm‖, we computed

amin
h = medl s(tml ).ŵm − 5MADl(s(tml ).ŵm)

amax
h = medl s(tml ).ŵm + 5MADl(s(tml ).ŵm)

Those boundaries are used during the template matching step (see below). The factor 5
allows most of the points to have their amplitude between the two limits.

Removing redundant templates To remove redundant templates that may be present
in the dictionary because of the divide and conquer approach (for example a neuron be-
tween two electrodes would give rise to two very similar templates on two electrodes), we
computed for all pairs of templates in the dictionary CCmax(m,n) = maxt CC(wm,wn),
where CC stands for normalized cross-correlation. If CCmax(m,n) ≥ ccsimilar, we con-
sidered these templates to be equivalent and they were merged. In all the following, we
used ccsimilar = 0.975. Note that we computed the cross-correlations between normalized
templates such that two templates that have the same shape but different amplitudes
are merged. Similarly, we searched if any template wp could be explained as a linear
combination of two templates in the dictionary. If we could find wm and wn such that
CC(wp,wm + wn) ≥ ccsimilar, wp was considered to be a mixture of two cells and was
removed from the dictionary.

c) Template matching

At the end of this “template-finding” phase we have found a dictionary of templates (w,
v). We now need to reconstruct the signal s by finding the amplitudes coefficients aij and
bij described in Equation IV.4.2. Because at a given spike time ti it is likely that only a
couple of cells will fire a spike, most aij and bij in this equation are equal to 0. For the
other ones most aij values are around 1 because a spike usually appears on electrodes with
an amplitude close to the average first component w. In this template matching step, all
the other parameters have been determined by template extraction and spike detection,
so the purpose is only to find the values of these amplitudes. Note that the spike times
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ti were detected using the method described above and include all the threshold crossing
voltages that are local minima. Each true spike can be detected over several electrodes
at slightly different times such that there are many more ti than actual spikes. With this
approach we found that there was no need to shift templates before matching them to
the raw data.

To match the templates to the data we used an iterative greedy approach to estimate
the aij for each ti, which bears some similarity to the matching pursuit algorithm [Mallat
and Zhang, 1993]. The fitting was performed in blocks of putative spike times, {ti},
that were successively loaded in memory. The size of one block was typically one second,
which includes a lot of spike times, and is much larger than a single snippet. The snippets
were thus not fitted independently from each other. The successive blocks were always
overlapping by two times the size of a snippet and we discarded the results obtained on
the borders to avoid any error of the template matching that would be due to a spike split
between two blocks. Such an approach allowed us to easily split the workload linearly
among several processors.

Each block of raw data s was loaded and template-matching was performed according
to the following steps:

1. Estimate the normalized scalar products s(t) · wj(t − ti) for each template j and
putative spike time ti, for all the i and j in the block of raw data.

2. Choose the (i, j) pair with the highest scalar product, excluding the pairs (i, j)
which have already been tried and the ti’s already explored (see below).

3. Set aij equal to the amplitude value that best fits the raw data: aij = s(t).wj(t−ti)
‖wj(t−ti)‖ .

4. Check if the aij amplitude value is between amin
j and amax

j .

5. If yes, accept this value, subtract the scaled template from the raw data: s(t) ←
s(t)− aijwj(t− ti). Then set bij equal to the amplitude value that best fits the raw
data with vj , and subtract it too. Then return to step 1 to re-estimate the scalar
products on the residual.

6. Otherwise increase by one ni, which counts the number of times any template has
been rejected for spike time ti.

a If ni reaches nfailures = 3, label this ti as “explored”. If all ti have been explored,
quit the loop.

b Otherwise return to step 1 and iterate.

The parameters of the algorithm were the amplitude thresholds amin
j and amax

j , com-
puted as described in the section Template Estimation.
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IV.4.3 Automated merging

For the template similarity, we computed, for every pair of templatesm and n, CCmax(m,n) =
maxt CC(wm,wn) (where CC is the normalized cross-correlation between the two tem-
plates - see above for the definition). To quantify the dip in the cross-correlogram, we
binned the spike trains obtained for templates m and n with 2 ms bin size, and estimated
the cross correlogram rm,n(τ) between unit m and unit n, defined as 〈σm(t) σn(t+ τ)〉t.
σm(t) is the number of spikes of unit m in time bin t. We then estimated the dip as the
difference between the value of the cross-correlogram at time 0 ms and the geometrical
mean of the firing rates, i.e. φ(m,n) = 〈σm(t)〉t〈σn(t)〉t. This geometrical mean would
be the value of the cross-correlogram if the two spike trains were independent. The dip
is therefore estimated as

〈σm(t)〉t〈σn(t)〉t − 〈σm(t) σn(t+ τ)〉t

We plotted the values of the estimated dip, the template similarity and the geometrical
mean of the firing rates for each pair in a Graphical User Interface (GUI). The user can
quickly define at once a whole set of pairs that need to be merged. After merging a
subset of the pairs, quantities CCmax and φ are re-computed, until the user decides to
stop merging (see Fig. IV.4).

If the two spike trains from templates m and n correspond to the same cell, there
should be no refractory spike trains. The cross-correlogram value should be close to 0
and the dip estimation should therefore be close to the geometrical mean of the firing
rates. To formalize this intuition and fully automate the merging, we decided to merge
all the pairs (m,n) such that:

CCmax(m,n) > ccmerge and 〈σm(t) σn(t+ τ)〉t ≤ φmerge

with ccmerge = 0.8 and φmerge = 0.1. This corresponds to merging all the highly similar
pairs above a line parallel to the diagonal (see fig. IV.4A,B, gray area). With these two
parameters we could automate the merging process.

IV.4.4 Simulated ground truth tests

In order to assess the performance of the algorithm we injected new templates in real
datasets (see Fig. IV.3D). To do so, we ran the algorithm on a given dataset and obtain a
list of putative templates w

j∈
{

1,...N
}. Then, we randomly selected some of those templates

wj and shuffled the list of their electrodes before injecting them elsewhere in the datasets
at controlled firing rates [Harris et al., 2000, Rossant et al., 2016, Kadir et al., 2014, Segev
et al., 2004, Marre et al., 2012, Chung et al., 2017]. This enabled us to properly quantify
the performance of the algorithm. In order not to bias the clustering, when a template
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wj was selected and shuffled as a new template wk centered on a new electrode k, we
ensured that the injected template was not too similar to one that would already be in the
data: ∀h ∈

{
1, . . . N

}
,maxt CC(wh,wk) ≤ 0.8. Before being injected, wk was normalized

such that mint wk = αk θk. αk is the relative amplitude, expressed as function of θk,
the detection threshold on the electrode where the template is peaking. If αk ≤ 1 the
template is smaller than spike threshold, and its spikes should not be detected; if αk ≥ 1
the spikes should be detected. In fig. IV.3G, we injected the artificial templates into the
data such that they were all firing at 10 Hz, but with a controlled correlation coefficient
c that could be varied (using a Multiple Interaction Process [Kuhn et al., 2003]). This
parameter c allowed us to quantify the percentage of pairwise correlations recovered by
the algorithm for overlapping spatio-temporal templates.

IV.4.5 Performance estimation

Estimation of false positives and false negatives To quantify the performance
of the algorithm we matched the spikes recovered by the algorithm to the real ground-
truth spikes (either synthetic or obtained with juxta-cellular recordings). A spike was
considered to be a match if it had a corresponding spike in the ground truth at less than
2 ms. Spikes in the ground-truth datasets that had no matches in the spike sorting results
in a 2 ms window were labeled as “false negatives", while those that are not present while
the algorithm detected a spike were “false positives". The false negative rate was defined
as the number of false negatives divided by the number of spikes in the ground truth
recording. The false positive rate was defined as the number of false positives divided
by the number of spikes in the spike train extracted by the algorithm. In the paper, the
error is defined as mean of the false negative and the false positive rates (see Fig. IV.2,
IV.3). Note that to take into account the fact that a ground-truth neuron could be split
into several templates at the end of the algorithm, we always compared the ground-truth
cells with the combination of templates that minimized the error.

Theoretical estimate To quantify the performance of the software with real ground-
truth recordings (see Fig. IV.2) we computed the Best Ellipsoidal Error Rate (BEER), as
described in [Harris et al., 2000]. This BEER estimate gave an upper bound on the per-
formance of any clustering-based spike sorting method using elliptical cluster boundaries.
After thresholding and feature extraction, snippets were labeled according to whether or
not they contained a true spike. Half of this labeled data set was then used to train
a perceptron whose decision rule is a linear combination of all pairwise products of the
features of each snippet. If xi is the i-th snippet, projected in the feature space, then the
optimized function f(x) is:

f(x) = xTAx + bTx + c
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We trained this function f by varying A, b and c with the objective that f(x) should
be +1 for the ground truth spikes, and -1 otherwise. These parameters were optimized
by a stochastic gradient descent with a regularization constraint. The resulting classifier
was then used to predict the occurrence of spikes in the snippets in the remaining half
of the labeled data. Only the snippets where f(x) > 0 were predicted as true spikes.
This prediction provided an estimate of the false negative and false positive rates for the
BEER estimate. The mean between the two was considered to be the BEER error rate,
or “Optimal Classifier Error”.

Decimation of the electrodes In order to increase the number of data points for the
comparison between our sorting algorithm and the nonlinear classifiers defined by the
BEER metric (see Fig. IV.2), we ran the analysis several times on the same neurons, but
removing some electrodes, to create recordings at a lower electrode density. We divided
by a factor 2 or 4 the number of electrodes in the 252 in vitro Multielectrode Array or
the 128 in vivo silicon probe.

IV.4.6 Hardware specifications

The comparison between Kilosort [Pachitariu et al., 2016] and SpyKING CIRCUS was
performed on a desktop machine with 32 Gb RAM and 8 cores (proc Intel R© Xeon(R)
CPU E5-1630 v3 @ 3.70GHz). The GPU used was a NVIDIA Quadro K4200 with 4 Gb
of dedicated memory.

IV.4.7 Implementation and Source Code

SpyKING CIRCUS is a pure Python package, based on the python wrapper for the
Message Passing Interface (MPI) library [Dalcin et al., 2011] to allow parallelization over
distributed computers, and is available with its full documentation at http://spyking-
circus.rtfd.org. Results can easily be exported to the kwik or phy format [Rossant and
Harris, 2013]. All the datasets used in this manuscript will also be available on-line, for
testing and comparison with other algorithms [Spampinato et al., 2018].
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Variable Explanation Default value
Generic notations

Nelec Number of electrodes
pk Physical position of electrode k [µm]
Gk Ensemble of nearby electrodes for electrode k [µm]
Nk

neigh Cardinal of Gk

θk Spike detection threshold for electrode k [µV]
s(t) Raw data [µV]
wj(t) First component of the template for neuron j [µV]
vj(t) Second component of the template for neuron j [µV]
frate Sampling frequency of the signal [Hz]

Preprocessing of the data
fcut Cutoff frequency for butterworth filtering 100 Hz
Nt Temporal width for the templates 5 ms
rmax Spatial radius for the templates 250 µm
λ Gain for threshold detection for channel k (θk) 6
Np Number of waveforms collected per electrode 10000
NPCA Number PCA features kept to describe a waveform 5

Clustering and template estimation
xk

1,..l l spikes peaking on electrode k and projected after PCA
ρk

l Density around xk
l

δk
l Minimal distance from xk

l to spikes with higher densities
Nspikes Number of spikes collected per electrode for clustering 10000
NPCA2 Number of PCA features kept to describe a spike 5
S Number of neighbors for density estimation 100
N clusters

max Maximal number of clusters per electrode 10
ζ Normalized distance between pairs of clusters
σsimilar Threshold for merging clusters on the same electrode 3
αm Centroid of the cluster m
γm Dispersion around the centroid αm

η Minimal size of a cluster (in percent of Nspikes) 0.005
[amin, amax] Amplitudes allowed during fitting for a given template

Dictionary cleaning
CCmax(m,n) Max over time for the Cross-correlation between wm and wn

ccsimilar Threshold above which templates are considered as similar 0.975
Template matching

aij Product between s(t) and wj (normalized) at time ti
bij Same as aij but for the second component vj

nfailures Number of fitting attempts for a given spike time 3
Automated merging

ccmerge Similarity threshold to consider neurons as a putative pair 0.8
rm,n(t) Cross correlogram between spikes of unit m and n
φ(m,n) Geometrical mean of the firing rates for units m and n [Hz2]
φmerge Maximal value for the dip in the cross correlogram at time 0 0.1 [Hz2]

Table IV.1 – Table of all the variables and notations found in the algorithm.
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IV.5 Extended Methods

IV.5.1 Experiment description

For all experiments we used female rd1 mice 4/5 weeks old. Animals were anesthetized
and killed by cervical dislocation. The eyes were enucleated and placed in AMES medium
(Sigma-Aldrich, St Louis, MO; A1420), bubbled with 95% O2 and 5 % CO2 at room
temperature. A piece of the isolated retina was sticked to the MEA electrodes using the
following procedure. A solution of poly-D-lysine was prepared at a concentration of 100
µg/ml in water. A drop of the PDL solution was placed at the center of the MEA, right
on top of the electrodes and let sit here for 30-60 minutes at room temperature. Using
a syringe, the PDL solution drop was carefully removed, never touching with the needle
the bottom of the MEA. We washed 3 times with water, always putting just a drop of
water on top of the electrodes and removing it with a syringe. The MEA was let to dry
(∼ 5 min), making sure that the sticked surface remained perfectly clean. After this,
the MEA chamber was filled with AMES and the isolated piece of retina moved into it
using a transfer pipette. The retina piece was centered over the electrodes with ganglion
cells facing down using tweezers, holding only the side of the retina to avoid damaging
the tissue. Once on top of the electrodes, all the sides of the retina were gently pressed
against the MEA glass all around the electrodes. The part of the tissue right on top of
the electrodes was never touched by tweezers. Sometimes, we carefully removed most of
the AMES to ensure the contact retina-electrodes. The MEA with the retina sticked on
the electrodes and fill with Ames, was put inside the pre-amplifier. For all the rest of the
experiment, the retina was continuously perfused with bubbled Ames medium at 34 deg
at a rate of 1-2 ml/minute. We covered the 4 ground electrodes on the MEA used with
scotch and used as reference the patch electrode pellet (Fig. IV.6).

The retina was left to rest for around 30 min. As shown in figure (Fig. IV.6), we
implemented two working modes: patch mode and MEA mode. First we localized the
activity of the ganglion cells in MEA mode. At the same time, we visualized ganglion
cells using a customized inverted DIC microscope (Olympus BX 71) mounted with a high
sensitivity CCD Camera (Hamamatsu ORCA -03G). We switched to patch-mode and
approached the ganglion cell layer with the electrode passing through the photoreceptors
(see methods for details on the patch protocol used). Once a ganglion cell was loose-
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Peak voltage on Electrode 1 Peak voltage on Electrode 2
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Figure IV.5 – Schematic of the parallel clustering of the spikes, in a toy example with two electrodes
A. Pre-clustering step. The different snippets are sorted according to the electrode where they peak.
This divides a set of snippets in Nelec groups. Each of these groups is then processed independently.
B. Each group of snippets is projected in a low-dimension space, where clustering is performed using a
density-based approach (see text and Methods). C. A template is extracted from each cluster and used
for the template matching step.
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Figure IV.6 – Experiment Configuration. A. Cartoon of the two working modes. We implemented two
recording configurations and we could switch from one to the other depending if we wanted to have less
electrical noise on the MEA recordings or on the patch recording. In Patch mode, the patch reference was
connected with the reference pellet, placed in the recording chamber of the MEA. This configuration was
minimizing the noise in the patch recorded trace. In MEA mode, the MEA reference (we used as reference
the screw placed on the part of the pre-amplifier used to fix the MEA in place) was connected on the
reference pellet. The 4 references placed ont the MEA were isolated, thus the ground of the electrodes
becomes the pellet inside the MEA chamber. In this configuration the noise on the electrodes recordings
was minimized. B. cartoon of the electrical connections in the switch for the patch mode. C. cartoon of
the electrical connections in the switch for the MEA mode.

patched, we switched again in MEA mode and recorded simultaneously the loose patch
and the MEA traces. We kept the cell only if the spikes recorded with the patch electrode
were detectable over the noise.



V – Rod bipolar cell contribution to
ganglion cell surround

OFF alpha ganglion cells respond to the offset of a visual stimulation. They have an
antagonist center surround organisation with an OFF center and an ON surround. Rod
bipolar cells form a circuit with AII amacrine cells to transfer the signal to ganglion cells,
through AII connected to other AII and to cones bipolar cells. The signal can thus be
spread laterally.

We asked if rod bipolar cells are involved in the generation of the ON surround of
OFF alpha ganglion cells. We present here a system combining a high resolution stim-
ulation technique with a multi electrode array. Using this combination of optical and
electrophysiological tools we manipulated the activity of rod bipolar cells while recording
ganglion cells. We isolated OFF alpha ganglion cells and we studied how this type of
ganglion cells integrate the input from rod bipolar cells under different light conditions.

In this part, we show some evidence suggesting that rod bipolar cells may be involved
in the generation of the ON surround in OFF alpha ganglion cells.

This work was done in close collaboration with the team of Jens Duebel and Deniz
Dalkara at the Vision Institute. I developed the optical system with the help of Elric
Esposito. I prepared the animal models, run all the experiments. I analyzed the data
with the help of Francesco Trapani.
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V.1 Introduction

Most sensory neurons are sensitive to the context in which a stimulus is presented by
integrating information in the neighborhood of their receptive field (RF) center, in the
surround. Surround modulation is an ubiquitous feature of sensory tuning, but the mech-
anisms underlying it are poorly understood.

In the retina, ganglion cells have an antagonistic surround, i.e. respond to stimuli in
their surround when they have an opposite polarity to the one preferred in the center.
The circuits underlying surround modulation are not completely understood. It is unclear
if this surround is mostly inherited from the surround of bipolar cells, or if it is generated
at the inner plexiform layer through interactions between amacrine, bipolar and ganglion
cell.

Some studies point for a major contribution of horizontal cells [Werblin, 1972, Mangel,
1991, McMahon et al., 2004, Davenport et al., 2008, Kamermans and Spekreijse, 1999],
others for a major role of amacrine cells. In the latter case, many studies advocate
for a dominant role of GABAergic amacrine cells [Flores-Herr et al., 2001, Ichinose and
Lukasiewicz, 2005, Lukasiewicz, 2004], although evidence for a role of glycinergic cell
exists [Jensen, 1991, Cook et al., 1998, Cook and McReynolds, 1998].

Recently Joesch and Meister [Joesch and Meister, 2016] showed that a rod pathway
is the major component of the surround for some ganglion cell types. In their case it
seems that this pathway was mostly composed of a feedback inhibition from rods to cones
through horizontal cells.

Since rod bipolar cells are active over a broad range of light levels, the circuit they
form with AII amacrine cells might also participate in surround modulation. To test this
hypothesis, we need to isolate the contribution of the rod bipolar cell to ganglion cell
responses. Stimulating rod does not allow this since it would also activate circuits, like
the rod-cone pathway. Besides, rod bipolar cells receive inputs not only from rods, but
also from cones [Behrens et al., 2016, Pang et al., 2018]. Visual stimulation of rods is thus
not a proper way to test the role of rod bipolar cells.

Here we designed a combination of tools to selectively stimulate rod bipolar cells while
recording the spiking activity of large ensembles of ganglion cells. Thanks to this new
tool we present some evidence suggesting that rod bipolar cells could be a significant
contributor to the ON surround of OFF alpha ganglion cells.
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V.2 Results

V.2.1 Selective manipulation of retinal layers

To understand and manipulate the retinal circuit we built an optical system combining
four different techniques: (i) a micro-electrode array (MEA), to record spikes from gan-
glion cells, was placed on the stage of an inverted microscope; (ii) a Digital Micromirror
Device (DMD) was used to pattern 1p light, displaying visual stimuli that were then
focused on the photoreceptor layer; (iii) a 2 photon microscope, imaging through the ar-
ray (we worked with transparent MEAs), was built to precisely localize fluorescent cells;
(iv) computer generated holography was implemented to shape 2p light and selectively
activate cells expressing an optogenetic actuator. (Fig. V.6A)(See Methods).

Digital holography allows the intensity profile of a gaussian beam to be shaped. We
generated holographic spots of 10 µm diameter matching roughly the shape of the targeted
cells, i.e. rod bipolar cells. The axial resolution of the holographic spot was ∼22 µm
(measured as full width half maximum,FWHM). In the configuration used the holographic
spots were focused on the retina through the MEA transparent glass. The glass caused
the axial resolution to worsen to ∼26 µm (FWHM), while the lateral confinement was
conserved to ∼10 µm (See Methods and (Fig. V.6C,D).

To test the spatial confinement of a holographic spot with physiological tools, we
patched HEK cells expressing ReachR fused with GFP. Cells were grown on a glass slice
that was placed on top of the electrodes (see Methods). After patching a cell, a 2p
spot was displaced all over the cell in x-y directions. We demonstrated that there were
activations of the HEK cell only when the spot was on top of it (Fig. V.6E).

We managed to get spots of nearly uniform intensity in an area of ∼100x100 µm2 in
the center of the field of view. This indicates that the system can provide a nearly homo-
geneous photostimulation of opsin in an area of around 100x100 µm2 at the focal plane.
In the following all the cells stimulated were inside this homogeneous area (Fig. V.6B).

V.2.2 OFF alpha ganglion cells can be isolated with MEA recordings and
visual stimulations

We first recorded large ensembles of ganglion cells from mouse retina using a multielec-
trode array [Marre et al., 2012, Yger et al., 2018], while stimulating the photoreceptors.
We grouped ganglion cells in different types on the basis of their responses to the follow-
ing stimuli: (i) a binary dense noise to estimate the spatial receptive field center and the
corresponding temporal profile; (ii) a full field chirp stimulus similar to the one used by
Baden and colleagues [Baden et al., 2016] to characterize polarity, kinetics and the pref-
erence for temporal frequencies and contrasts; (iii) a moving bar to distinguish direction
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and orientation selective cells. (see Methods).
We focused on two types of ganglion cells (Fig. V.1). In the first type (Fig. I.1A,C,E),

responses to a full field flash were transient, and there were only responses to a light
decrease, not to a light increase (Fig. V.1A). These cells were not direction selective, and
responded when a bright bar was moving out of the RF center in all directions (data not
shown) . For these reasons, the first studied type corresponds most likely to OFF alpha
transient cells (likely 8b in Baden et al. [2016]).

In the second group (Fig. V.1B,D,F), responses to a full field flash were more sustained.
Cells responded to a light decrease and were inhibited during light increase. They were not
direction selective and responded in general to a bright bar moving out of their receptive
field center, even if there were some ON responses (data not shown). For this reason,
this second type corresponds most likely to OFF alpha sustained cells (likely 5a b or c in
Baden et al. [2016]).

To determine the receptive field organization of these cells, we stimulated photore-
ceptors with a set of white and black discs of different diameters all over the MEA (see
Methods). Discs inside and outside the RF center activated ganglion cells. For an OFF
alpha transient cell (Fig. V.1E), OFF discs on top of the RF center evoked a strong tran-
sient response, while OFF discs out of RF center did not evoke any response. Conversely,
ON discs in the surround elicited strong transient responses (Fig. V.1E). For the other
group analyzed (OFF alpha sustained ganglion cells), the receptive field showed a similar
OFF center ON surround organization, but responses also showed a sustained component
(Fig. V.1F).

V.2.3 Selective stimulation of rod bipolar cells

We then asked if rod bipolar cells could contribute to this ON surround.
To be able to manipulate the activity of rod bipolar cells with holography, we expressed

an optogenetic actuator selectively in rod bipolar cell. We used AAV injected intravitreally
in the mouse eye and expressed CoChR fused with GFP under the control of a promoter
selective for RBCs, previously described [Lu et al., 2016](Fig. V.2A).

We stimulated rod bipolar cells using a maximum power of 0.09 mW/µm2 (see Meth-
ods). We previously demonstrated (Part III) that this range of power yields realistic
activations of rod bipolar cells, comparable to the ones that could be due to a visual
stimulation [Euler and Masland, 2000].

The use of 2P light to activate opsin expressing cells caused spurious activation of
photoreceptors [Euler et al., 2009, Palczewska et al., 2014]. To remove this signal, we
blocked the transmission from photoreceptors to rod bipolar cells using the metabotropic
glutamate receptor agonist I-(+)-2-amino-4-phosphonobutyric acid LAP4 (5 µM). This
drug is exclusively blocking the signal transmission between photoreceptors and ON-
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Figure V.1 – OFF Alpha ganglion cells physiological characterization.A.C.E. results for OFF alpha
transient ganglion cells. B.D.F. results for OFF sustained ganglion cells. A.B. Rasters of all the cells of
the same type responding to a full field flicker. Each line corresponds to a repeat of the stimulus, and each
cell is indicated by a different color. The black curve on top indicates the light intensity of the flicker over
time. Scalebar = 1 sec. C.D. spatial receptive field centers of all the recorded ganglion cell (represented
as grey ellipses, one per each cell). Ellipses highlighted in red correspond to the cells belonging to either
OFF alpha transient (C) or sustained (D) ganglion cells. The dashed line represents the contour of the
MEA (side length = 250 µm). Inset: temporal profiles of the receptive fiels of the same cells. E.F.
Center-Surround stimulation: left, cartoon of the stimulus. Discs of different dimensions and polarities
are shown either on top or outside the RF center of a cell. Scale bar = 50 µm. Right: raster plots of the
same cell. Green rectangles represent the stimulus duration. Cells of both types are responding to a dark
disc on top of their RF center and to a white disc outside their RF center. Temporal scale bar = 100 ms
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Figure V.2 – Selective stimulation of rod bipolar cells evokes reliable activations of ganglion cells.
A. Retinal slice showing the expression of CoChR-GFP in rod bipolar cells. Green: GFP. Blue: DAPI.
Scalebar 10 µm. B. RF centers are calculated from the checkerboard stimulus (contour of the 2D Gaussian
fit to the spatial profile of the RF) of photoreceptors(left panel). Bipolar cells are selected using the 1p and
2p (inset) fluorescence image (right panel). The distance between bipolar cells stimulated and ganglion
cells recorded is measured as the distance of the projections of the BCs in the plane of the ganglion cells
(center panel). C. Rod bipolar cells stimulation after LAP4 (5 µm) application. RBCs are expressing
CoChR-GFP. Each column corresponds to a different RBC stimulated (red spots drawn on top of the
fluorescence image of the RBCs layer). Each line corresponds to responses of a different ganglion cell
type: OFF alpha transient ganglion cells on top and OFF alpha sustained ganglion cells on bottom (Each
cell in the cluster is identified with a different color, which is the same for RF centers and rasters). Rasters
represents responses to the spot in the column of all the cells in the cluster. Red rectangles indicate the
holographic stimulation (500 ms,Pmax = 0.09 mW/µm2). Scale bars = 100 µm
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type bipolar cells. In control retinas, where no opsin were expressed in bipolar cells, we
observed responses from photoreceptors activation with 2p light that completely vanished
after application of LAP4 for 15 minutes. Furthermore, the onset of one photon flashes of
light were completely removed after application of LAP4 at the same concentration (see
Methods).

In the following, we recorded holographic responses always in presence of LAP4 and
we consider just the onset of the holographic stimulus. We checked that it was effective
by testing that responses to visual stimulations were fully suppressed. The ganglion
cells responses shown in the subsequent experiments were thus evoked by the holographic
stimulation and not by spurious photoreceptor activation.

We recorded responses of RGCs to the holographic stimulation of CoChR expressing
RBCs (Fig. V.2C). Stimulation with a single spot at different intensities and positions
evoked reliable responses. We recovered the receptive field center from the stimulation of
photoreceptors with the binary white noise (Fig. V.2B, left), and overlapped the receptive
field center with the position of the stimulated bipolar cells (Fig. V.2B,right) projected in
the ganglion cell plane (Fig. V.2B,center). We visualized in this way the position of the
RBCs with respect to the receptive field center of each ganglion cell (Fig. V.2B,center). We
noticed that in many cells responses were elicited by RBCs not only inside the receptive
field center but also outside.

V.2.4 Ganglion cells are activated by rod bipolar cells outside their receptive
field center

We looked at the probability of detecting a response to holographic stimulation against
the distance between the center of the RF and the projection of the holographic spot in
the RGCs plane (Fig. V.3). We found that for the two groups studied, responses were
very frequent at distances larger than the receptive field center. For the transient OFF
alpha, the probability of having a response was roughly constant with distance; for the
sustained OFF alpha, it even increased with distance.

One hypothesis is that this distant activation could be mediated by connections that
are only active at a specific light level. Rod bipolar cells transfer their signal to AII
amacrine cells that in turn send it through the cone circuitry down to ganglion cells.
AII amacrine cells have a receptive field which changes dimensions depending on the
adaptational state of the retina [Bloomfield and Dacheux, 2001, Demb and Singer, 2012].
One hypothesis then could be that connections between ganglion cells and rod bipolar
cells outside their receptive field center are active only in the light regimes in which AII
receptive field has its maximum extension (i.e. low photopic light conditions).

We asked if our result depends strongly on the background light level (Fig. V.3, each
color corresponds to a different light level). We repeated the stimulation procedure for 4



98 Chapter V. Rod bipolar cell contribution to ganglion cell surround

A B

C D

E F

um um

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NoBckg
Bckgr 1
Bckgr 2
Bckgr 3

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure V.3 – Probability of detecting a response to holographic stimulation against the distance be-
tween the center of the RF of each cell and the projection of each holographic spot in the ganglion cell
plane. Different colors correspond to different background light levels (see Methods). Grey dashed line:
normalized number of distances. Green line: Mean RF center radius for all the cells of a specific cluster.
A.C.E. OFF alpha transient ganglion cells, maximum number of distances = 53 (peak of the grey dashed
curve). B.D.F. OFF alpha sustained ganglion cells: maximum number of distances = 49. A,B: stimula-
tion intensity = 0.9 mW/µm2, which is the maximum power used. C.D. stimulation intensity = 75% of
maximum. E.F. stimulation intensity = 50% of maximum.
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different light levels, from the first dark background light level to a maximum intensity
of 5.72 x 104 P∗ rod-1 sec-1 with intermediate background light levels differing from each
other by 1 order of magnitude. Each time we changed the background light level the
retina was left to adapt for around 30 minutes.

We found that the shape of the probability curve was similar for the 4 background
light levels. Increasing the background light level globally reduced the probability of
having a response induced by RBC stimulation (although this could be due to the order
of presentation, see discussion), but the distant responses were still the most likely.

Distant activations were also robust to changes in the intensity of the holographic
spot. We stimulated the same set of cells using spot at 75 and 50 % of the maximum
intensity. We then calculated the same probability of detecting a response against the
distance between the center of the RF and the holographic spots, for all the power tested.
This is shown in (Fig. V.3). Panels C,D are calculated for spots with 75% of the maximum
intensity and panels E,F for spots of 50% of the maximum intensity. The shape of the
curve doesn’t change stimulating with spots of different intensities.

V.2.5 Rod bipolar cells may contribute to OFF alpha surround generation

Rod bipolar cells can thus activate distant OFF alpha ganglion cells. This result sug-
gests that the pathway of rod bipolar cell could contribute to the ON surround of these
cells.When a disc is presented in the surround, rod bipolar cell can be activated over a
broad range of light levels, and our result show that they can in turn activate distant
OFF alpha cells.

To support this hypothesis, we found that stimulating the photoreceptors with a ON
disc, at the location where RBCs elicited a response, also triggered an ON surround
response (Fig. V.4). Visual and holographic responses might thus be correlated in space,
although a more complete exploration would be needed.

We also noticed that for OFF alpha transient cells, responses to a white disc in the
surround were transient, and so were responses to the holographic stimulation of rod bipo-
lar cells (Fig. V.4A, right panels). Conversely, in OFF alpha sustained cells, responses
to a white disc in the surround were sustained, and so were responses to RBC holo-
graphic stimulation (Fig. V.4B, right panels). Since responses to visual and holographic
stimulation have the same transient/sustained nature, they might come from the same
circuit.

V.3 Discussion

Our results suggest that the rod bipolar cell pathway could mediate the ON surround
present in OFF alpha cells. However, it remains unclear if this pathway is the major
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Figure V.4 – ON disc stimulating photoreceptors at the location where RBCs elicited a response also
triggers an ON surround response in OFF alpha ganglion cells. A. OFF alpha transient ganglion cells.
B. OFF alpha sustained ganglion cells. Left panels: cartoon of the stimuli: an ON disc is projected on
photoreceptors over a background of 10% of the maximum intensity. Rod bipolar cells stimulated with
digital holography are represented as dark filled dots. BCs represented are the one eliciting a response in
the ganglion cell shown. Red ellipse represents the receptive field center of a ganglion cell belonging to
one type of OFF alpha ganglion cell. Dark dashed line represents the MEA (side length = 450 µm). Right
panels: rasters for the same ganglion cell. Responses to the ON disc (blue dots, top trace) and responses
to some rod bipolar cells (different colors corresponds to different spots, represented with the same color
code in the left panel) are shown. Colored rectangles correspond to stimulus duration. Scale bar = 100ms
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1 RGC activated

2 RGC activated

3 RGC activated

4 RGC activated

5 RGC activatedA B

Figure V.5 – Each rod bipolar cell elicits responses in multiple ganglion cells. A. OFF alpha transient
ganglion cells. B. OFF alpha sustained ganglion cells. Each cell of each type is represented as an
ellipses, cells that have been activated by at least one bipolar cell are represented in black, cells that never
responded to the holographic stimulation are represented in grey. Bipolar cells stimulated are shown are
filled dots. Each bipolar cells is colored depending on how many ganglion cells it activated at the same
time (see legend). Scale bar = 100ms

contributor to the surround, or if it shapes the response together with other circuits. To
answer this question accurately we would need to selectively suppress the rod bipolar cell
activity during the visual stimulation, and test if the ON surround responses disappear.
We have not been able to do this experiment so far, but we would like to do it in the
future.

Our results also show that rod bipolar cells transmit their information to ganglion
cells in a very redundant manner. Almost every stimulation triggered a response in many
ganglion cells of the same type (Fig. V.5). While this picture may not be surprising
since there is a considerable amount of divergence in the rod bipolar cell-AII-cone bipolar
cell connectivity, it stands in contrast to other results like the one found by Field and
colleagues [Field et al., 2010], where each cone only activates a few ganglion cells of the
same type, and ganglion cells of a single type seem to tile the visual space [Gauthier
et al., 2009]. A possible explanation for this might be that the RBC pathway may have
to transmit information at very low SNR. In that case, redundancy is a desirable feature
[Tkacik et al., 2010].

However, another possible explanation could be that our system, despite its high
spatial resolution, does not allow activation of single rod bipolar cells. Because of the
lower axial resolution, a spot centered on one rod bipolar cell might overlap with the
neurites of other rod bipolar cells nearby, and trigger spurious activation. This would



102 Chapter V. Rod bipolar cell contribution to ganglion cell surround

mean that stimulating a single spot activates several rod bipolar cells. However, the
activation remains localized within tenth of microns. This resolution does not question
our results about distant activation, which happens at a much larger spatial scale (up to
hundreds of microns). Single rod bipolar cell stimulation might be achieved in the future
with a sparser expression of the opsin.

Another caveat in our experiment is that we had to use LAP4 to block spurious
activation of photoreceptors. LAP4 changes the state of adaptation of the retina, and
may artificially drive it more towards scotopic light levels. However, we used a low
concentration that should mitigate this effect. We also show that our effect was robust to
the background light level, although we need more control with interleaved background
light levels to confirm these results.

Finally, the circuit that carries the rod bipolar cell signal down to distant OFF ganglion
cell remains to be understood. Since A17 acts locally [Grimes et al., 2010], the most likely
candidate to transmit the signal laterally is the AII amacrine cell, especially since they
communicate laterally through gap junctions. The transmission could then involve ON
cone bipolar cell, which are connected to AII with gap junctions, and can then activate
OFF ganglion cells with a cross-over excitation. However, it is worth noting that in many
cases, these cells did not show ON responses in the center, and may thus not receive
the output of ON cone bipolar cells. A possible explanation here is that, during center
stimulation, ON cone bipolar cells are inhibited by cross-over inhibition. Finally, an
alternative pathway could be a dis-inhibitory loop where AII would inhibit another type
of amacrine cell, that would inhibit either OFF cone bipolar cells or OFF ganglion cells
directly, similar to the one described in [Deny et al., 2017]. Direct interrogation of the
AII circuit, as well as pharmacological manipulation, would help understand the exact
circuit involved here.

V.4 Methods

V.4.1 Animals

All experiments were done in accordance with the National Institutes of Health Guide for
Care and Use of Laboratory Animals. The protocol was approved by the Local Animal
Ethics Committee of Paris 5 (CEEA 34) and conducted in accordance with Directive
2010/63/EU of the European Parliament. All mice used in this study were C57Bl6J mice
(wild type) from Janvier Laboratories (Le Genest Saint Isle, France).



V.4 Methods 103

V.4.2 AAV production and injections

Recombinant AAVs were produced by the plasmid cotransfection method Choi et al.
[2007] and the resulting lysates were purified via iodixanol gradient ultracentrifugation
as previously described. Briefly, 40% iodixanol fraction was concentrated and buffer
exchanged using Amicon Ultra-15 Centrifugal Filter Units (Millipore, Molsheim, France).
Vector stocks were then tittered for DNase-resistant vector genomes by real-time PCR
relative to a standard.

For injections, animals were anesthetized with Isofluorane (Isoflurin 250 ml , Vet-
pharma Animal Health) inhalation and pupils were dilated. A 33-gauge needle was in-
serted into the eye to deliver the vector into the vitreous. 2µl of vector solution was
injected per eye, delivering CoChR (containing ∼ 1010 vg). For all experiments, to ex-
press CoChR [Klapoetke et al., 2014, Shemesh et al., 2017], we used a recently published
promoter [Lu et al., 2016], which has been proved to allow specific expression of optoge-
netic proteins in rod bipolar cells. To deliver it across the retinal layers we used 7m8 a
genetic variant of AAV2 [Dalkara et al., 2013].
The injections were performed in 4-5 weeks old mice.

V.4.3 Setup description

The optical setup was built around a commercial inverted microscope (Olympus,IX71).
A 252-channel preamplifier (MultiChannel Systems) was placed on the stage of the mi-
croscope and a MEA was aligned on top of the objective. All the optical paths passed
through the inverted objective and the MEA. Four different optical paths were combined
with different goals:

• 1p wide field epifluorescence imaging. Imaging was obtained by collecting a 1P-
induced fluorescence signal on a CCD camera (ORCA - 03G, Hamamatsu). Illu-
mination was provided via a filtered light guide-coupled illumination system (U-
HGLGPS, Olympus) filtered.

• 2p raster scanning imaging. We built a standard two photon scanning microscope,
using as source a femtosecond pulsed laser beam (InSight DeepSee, Spectra-Physics)
at 920 nm relayed on a pair of galvanometric mirrors (Cambridge Technologies) and
imaged at the back aperture of the microscope objective (40x, NA 0.8 ,Olympus)
through a telescope. Emitted GFP fluorescence was collected by a photomultiplier
tube (Hamamatsu). For image acquisition we used ScanImage [Pologruto et al.,
2003]. We took 512x512 pixel images for high resolution morphology scans.

• for visual stimulations, we focused the filtered (530/50 nm) light of a lamp (X-Cite
Lumen Dynamics) on a digital micromirror device DMD (VIALUX LTD, 1024x768),
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which was generating the visual stimuli. Light from the DMD was projected through
the objective (10x, NA 0.25, Olympus) and focused at the photoreceptors level.

• 2p optogenetic activation was achieved using computer generated digital holography
thoroughly described in [Papagiakoumou et al., 2010]. Briefly, a femtosecond pulsed
beam (InSight DeepSee, Spectra-Physics, fixed laser line 1040 nm) was expanded
and focused on a spatial light modulator (SLM, LSH0700963, Hamamatsu). The
SLM plane was imaged on the back focal plane of the objective lens and addressed
with a phase modulation calculated with a custom-designed software (Wavefront-
Designer) to produce arbitrarily-defined intensity profile at the sample plane to
target opsin expressing bipolar cells. No temporal focusing was implemented.

V.4.4 Visual stimulation

Visual stimuli were generated using a DMD. The produced image was focused at the
photoreceptor plane passing through an objective (10x, NA 0.25, Olympus) aligned with
the center of the MEA.

Four types of light stimuli were used:

• Binary checkerboard noise: we projected a 38 x 51 matrix with 50 µm pixel-side
length. Each pixel displayed an independent random sequence at 30 Hz. This
stimulation was run for ∼1h30min for receptive field center mapping

• Moving Bars: we projected a bright bar on a dark background moving in 8 different
directions around 9 centers equally spaced over the entire matrix of electrodes. The
bar was 0.33x1mm and it was moving at 1 mm sec-1. Each bar was repeated 10
times. For the checkerboard and the moving bar stimuli light intensity ranged from
0 (black) to 464.3 P∗ rod-1 sec-1 (154.9 P∗ cone-1 sec-1 , for M-opsin).

• Full Field “chirp” stimulus similar to Baden et al [Baden et al., 2016]: this stimulus
consists in a first bright step of 1sec and two sinusoidal intensity modulation, one
with increasing frequency and one with increasing contrast. The intensity of the
light stimulus ranged from 46.4 to 464.3 P∗ rod-1 sec-1 (from 15.5 to 154.9 P∗ cone-1

sec-1 , for M-opsin). This stimulus was repeated 30 times.

• Discs: to recover the receptive field center and surround organization of the recorded
ganglion cells we presented discs of different diameters (100,300,600 mum) at evenly
spaced centers all over the MEA (100 mum discs were showed in 16 positions, 300
mum discs in 9 positions and 600 mum discs in 4 positions corresponding to the 4
corners of the MEA). A white disc was shown for 500 ms over a background of 10%
of the max intensity of the stimulation (318 P∗ rod-1 sec-1. 106 P∗ cone-1 sec-1).
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Figure V.6 – Setup description and characterization. A. Cartoon of the optical system. All the optical
paths are shown in different colors. F: filter, L: lens, D: dichroic mirror, L/2: half-wave plate; GM:
galvo mirrors. PC: polarizing cube. B. Image of 8 spots at the borders of the area we used for the
photostimulation. Laser intensity is roughly homogeneous inside this area. Laser intensity is directly
recorded here. C. lateral and axial profile of a 10 µm holographic spot. This is the image of the fluorescence
excited by a 10 µm spot on a rhodamine slice. D. Axial profile of the fluorescence excited by a 10µm
holographic spot. Magenta curve is the measure without the MEA, blue curve is the same measure through
the MEA glass. E. top, HEK cell patched. Red dots indicates the positions where the holographic spot
was moved around the patched HEK cell. Bottom: HEK intracellular current. Spot 5 (centered on the
cell) is the only one inducing a depolarization in the HEK cell.
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Then the polarity of the disc was switched (dark disc over the same background
than before) and maintained for 1.5 sec. Finally, the same bright disc was shown
again for 500ms and then the stimulus returned to background intensity for other
500 ms. The times for disc ON and OFF followed [Ke et al., 2014], where it is
argued that the synapse of the RBCs is encoding for Michelson contrast at mesopic
light intensities. Each couple bright-black disc was repeated 20 times.

The light powers were measured at the focal plane through the electrode matrix, with
the DMD used as a mirror. The maximum power used for visual stimuli was 2.78 x 10-7

mW/mm2. As shown in [Shemesh et al., 2017](Supplementary Figure 4) this power is
negligible compared to the one necessary to induce any activation of the opsin, which has
small responses for ∼2 mW/mm2.

V.4.5 Experiment description

For all experiments, we used female mice 4-8 weeks after the injection. Animals were
dark adapted for at least 1h, then killed to institutional animal care standards. The eyes
were enucleated and placed in AMES medium (Sigma-Aldrich, St Louis, MO; A1420),
bubbled with 95% O2and 5 % CO2 at room temperature. The eyes were dissected un-
der dim red light (>645 nm). A piece of the isolated retina was placed on a cellulose
membrane and transferred over the microscope on top of the MEA (MEA256 100/30
iR-ITO; Multi-Channel Systems, Reutlingen, Germany) with ganglion cells facing down
and without touching the electrodes. Using the 2p imaging system (to limit the dam-
age to the photoreceptors), an area expressing CoChR-GFP in the rod bipolar cells was
found and aligned with the MEA electrodes. Then the retina was gently pressed against
the MEA. The retina was continuously perfused with bubbled Ames medium at 34 deg
at a rate of 6-7 ml/minute during experiments. After a first resting period in the dark
for around 30 min, we performed all the visual stimuli previously described (see above).
We then blocked the photoreceptors adding to bubbled AMES medium the metabotropic
glutamate receptor agonist L-AP4 (5 µM, catalog no 0103, Tocris Bioscience, see below
for pharmacology optimisation). The retina was left to rest in the dark for ∼30-45 min.
Before starting to stimulate the rod bipolar cells expressing CoChR, we tested that the
photoreceptor transmission to ON bipolar cells was effectively blocked by projecting a full
field flicker. If no responses were detected during the ON step, we proceeded with the
holographic stimulation. We performed single spot stimulation of different bipolar cells
expressing CoChR-GFP. Spots were placed in a central area of around 100mumx100µm
where the power of the spots is homogeneous. Spots were presented for 500 ms,separated
by one second. Each spot was repeated at least 20 times and for three different powers
(0.09 mW/µm2, then 75% and 50% of this maximum power). This stimulation was re-
peated for 4 backgrounds, from dark to 5.72 x 104 P∗ rod-1 sec-1 (1.9 x 104 P∗ cones-1
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sec-1), incrementing of one order of magnitude for each background light intensity. Each
time the retina was exposed to a different background, it was left to adapt for around
30 minutes. The maximum power used as background light intensity was 0.05 x 10-3

mW/mm2. This power is also negligible compared to the one necessary to induce any
activation of the opsin.

V.4.6 Pharmacology optimization

We optimized the LAP4 concentration to block the photoreceptors performing a set of
experiments. We used WT mice of 4 to 8 weeks old. Retinas were dissected under
dim red light to preserve photoreceptors. The dissected retina was then placed on the
cellulose membrane and gently pressed against the MEA. After 30 minutes of resting in
the dark, we stimulated the retina with a full field flicker using white light and with sets
of holographic spots in different positions at maximum power focused in the BC layer
(∼70-80 µm from the electrodes). We then blocked the photoreceptors by adding 5µM
LAP4 to the bubbling AMES, waited 30 min and tested the same 1p and 2p stimuli.
This procedure was repeated for 4 different concentrations of LAP4(5 µM, 10 µM, 25 µM
and 50 µm). Each time a new concentration was tested, the retina was left to rest for 30
minutes. The response to the onset of the full field flicker was blocked at all concentrations
(4 retinas) for both 1p and 2p stimuli. In all experiments, the 5 µm concentration of LAP4
was used to minimize the hyperpolarization of the ON bipolar cells [Ala-Laurila et al.,
2011].

To avoid this hyperpolarization, we tried to add the selective group II metabotropic
glutamate receptor agonist LY341495 ((2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-
3-(xanth-9-yl) propanoic acid, catalog no 4062, Tocris Bioscience), to depolarize the ON
bipolar cells (as previously done in Ala-Laurila et al. [2011]). We performed similar exper-
iments as for LAP4. We tested the same concentrations of LAP4 adding also LY341495
and maintaining a ratio of 2:3. We first tried to add both drugs at the same time. This
was not always blocking the photoreceptors (2 over 3 retinas were still responding to
visual stimulation). Then we tried to first add LAP4 and after 15 minutes to add the
LY341495. The signal transmission between photoreceptors to bipolar cells was always
blocked (4 retinas).

To measure the influence of the pharmacology on the retina, we estimated the sponta-
neous activity and the firing rate of the cells during the offset of 1p and 2p stimuli (flicker
and holographic stimulation). We didn’t find any major change in the registered activity
adding just LAP4 or LAP4 and LY341495. We finally decided to use the lower concentra-
tion of LAP4 necessary to block the ON signal transmission to limit the hyperpolarization
at the minimum possible and to not add the LY341495.
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V.4.7 Power calculations

The range of photostimulation powers here used were estimated on the basis of powers
ranges previously adopted for photostimulation of opsin-expressing neurons holographi-
cally illuminated through a diode pumped, fiber amplifier system (Amplitude Systemes
Satsuma HP; pulse width 250 fs) operated at 500 kHz. Briefly, as the 2PE efficiency
is inversely related to the pulse repetition rate and pulse width [Diaspro and Sheppard,
2002], a nearly 8 scaling conversion factor was used to estimate the illumination intensities
required with the present laser. The maximum power used for holographic stimulation
was 0.09 mW/µm2.

V.4.8 Single cell electrophysiology

We used an Axon Multiclamp 700B amplifier for whole-cell patch-clamp recordings. Elec-
trodes were made from borosilicate glass (BF100-50-10, Sutter Instruments) and pulled
with a P-1000 micropipette puller (Sutter Instrument) to 5-7 MΩ. Pipettes were filled
with 115 mM K gluconate, 10 mM KCl, 1 mM MgCl2, 0.5 mM CaCl2, 1.5 mM EGTA, 10
mM HEPES, and 4 mM ATP-Na2 (pH 7.2). Cells were clamped at a potential of -60 mV
in Voltage-clamp mode to isolate excitatory currents. HEK cells were grown over a glass
slice and expressed ReachR-GFP. The glass slice was then stuck on the MEA using grease.
The MEA chamber was perfused with bubbled AMES at 34 deg at a rate of 1-2ml/min.

V.4.9 Data analysis

Raw voltage traces were digitized and stored for off-line analysis using a 252-channel
preamplifier (Multichannel Systems, Germany). The recordings were sorted using SpyK-
ING CIRCUS [Yger et al., 2018]. We extracted the activity of neurons over 2 experiments
with satisfying standard tests of stability and limited number of refractory period viola-
tions.

V.4.10 Clustering

The population of RGCs has been subdivided into functional types using an unsupervised
recursive clustering algorithm.

a) Feature extraction

First, for each of the N total RGCs, a vector of functional features f cell has been obtained
by concatenating:

• The PSTH to the full field chirp stimulus, normalized such that max(NormPSTHcell)
= 1)
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• The temporal profile of the STA

• The size ARF
cell of the receptive field center, intended as the area of the 2D Gaussian

fit to the spatial profile of the RF, scaled such that max(Arf
1,Arf

2,...,Arf
N)=1)

We then applied principal component analysis to reduce the number of features to a
vector of 10 significant elementsfPCAcell.

b) Clusterization step

We used the expectation-maximization algorithm to fit the features data of the popula-
tion FPCA = [fPCA1,fPCA2,...,fPCAN] with a Gaussian mixture distribution.

The number of clusters was established by maximizing the Bayesian Information Cri-
terion. For each cluster, the covariance matrix of the corresponding Gaussian mixture
component was constrained to be diagonal.

c) Recursive branching

We defined the measure divCluster to assess the level of heterogeneity inside a cluster:

divCluster = meantime(stdcell(NormPSTHCluster))

and subsequently designed a criterion to establish whether a cluster should or should
not be sub-clustered. Splitting criterion is true is divCluster > 0.025 & sizeCluster>5 and
is false otherwise.

Each cluster meeting this requirement was sub-clustered (feature extraction and clus-
terization steps were computed again on the subpopulation of RGCs belonging to the
cluster).

In this way we recursively split each cluster and subcluster, hence forming a cluster
tree, until no leaf cluster met the splitting requirement.

d) Pruning

Finally, we determined an admissibility criterion to select which clusters should be kept.
As we want our RGC classes to be functionally homogeneous, we defined the admissibility
of a cluster as true if divCluster < 0.15 & sizeCluster> 2 and false otherwise.

We recursively pruned the clusters tree by removing each leaf cluster not meeting the
admissibility criterion.

At the end of the branching and pruning procedures, the final leaf clusters were kept
as our final RGC functional types.
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VI – Discussion

Rod bipolar cells transmit visual signals from rods to ganglion cells, feeding them into the
cone circuitry. They are the central element in the primary rod pathway, the most relevant
circuit for night vision in mice [Bloomfield and Dacheux, 2001]. Until recently they were
thought to be active only under scotopic light conditions, but recent works (see below)
have demonstrated that they may function over a broad range of light backgrounds.

In this work we have started to elucidate the role of rod bipolar cells in the circuits
responsible for feature extraction in retinal ganglion cells. To this end we developed two
similar setups, each optimized for the circuit studied. We found that rod bipolar cells
send an asymmetric input to direction selective G2-type OFF ganglion cells. Furthermore,
we found that rod bipolar cells may be involved in the generation of the ON surround in
OFF alpha ganglion cells, since they activate ganglion cells far from their receptive field
centers.

This work demonstrates that the role of rod bipolar cell in the retina circuit is not yet
well understood and that they play a role in computations mostly studied under photopic
vision.

Rod bipolar cells are active over a broad range of light intensities

Recent works have challenged the notion that rod bipolar cells are active only during
night vision. First, some papers demonstrated that there are direct contacts between
cones and rod bipolar cells, which could thus be active photopic light conditions [Pang
et al., 2010, Behrens et al., 2016, Pang et al., 2018].

Franke et al [Franke et al., 2017] recorded the glutamate release from bipolar cells
axon terminals using two photon functional imaging. They recorded ON sustained depo-
larizations to full field stimuli and an ON center OFF surround structure of the RF. They
recorded reliable glutamate release from rod bipolar cells axons, even if the additional
steady illumination from the two-photon scanning adapts the retina to a non-scotopic
light level.

Another evidence of rod bipolar cell activity in daylight is present in the work of
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Szikra et al [Szikra et al., 2014]. They recorded the activity of rods in whole mount
retinas, while stimulating photoreceptors with discs of light of different diameters and
intensities. The maximum intensity used is similar to the steady component from the
two photon illumination in the work of [Franke et al., 2017]. Authors demonstrated that
at high light intensities rods become depolarized and transfer this depolarization to rod
bipolar cells, which hyperpolarize in response.

In these two works, authors recorded opposite effects in rod bipolar cells active in
similar light regimes. It is possible that rod bipolar cells have an excitatory center and
inhibitory surround organisation of the receptive field, but the inhibitory surround is very
weak (and generated by cones signal mediated by horizontal cells). Probably, the stimu-
lation used by Franke et al is not large enough to elicit the inhibitory surround response,
which is very weak also in the recordings of Szikra et al. Furthermore, the two works use
different recording methods, which may cause the difference in the recorded responses.
Franke et al recorded glutamate release, which is not released during hyperpolarization.
As a result, it is hard to isolate the hyperpolarizing component of the signal.

Finally, Ke and coworkers [Ke et al., 2014] demonstrated that when the retina is
adapted at background light intensities that should saturate rods, the synapse between
rod bipolar cells and AII amacrine cells is not able to encode for Weber contrast, but it
is still responding to Michelson contrast.

Taken together, these findings suggest that rod bipolar cells may play a broader role
than just conveying rod signals in night vision. In this project, we asked how they are
involved in the circuits generating feature representations in the ganglion cells, which
have mainly been studied in daylight conditions.

Manipulation of intermediate layers

To isolate the role of rod bipolar cells we needed to selectively manipulate their activity
while recording the effect of this manipulation on ganglion cells. We developed two
similar methods: a purely optical method (Part III) and a method combining optics and
electrophysiology (Part V).

Both strategies employ a computer generated holography technique to photoactivate
bipolar cells expressing an optogenetic actuator (CoChR in our experiments). This is
a two-photon high resolution optical technique which enables the shaping of the inten-
sity profile of a laser beam to match the targeted cells. There are several advantages
in using this technique: (i) it is possible to stimulate different cells, while leaving intact
the structure around; (ii) multiple spots can be used at the same time; (iii) the stimula-
tion is well confined to a single (or a few) cells, which express the optogenetic actuator.
Furthermore, since the retina is a transparent, low scattering medium, the spot passing



113

through it maintains its shape. In addition, in the all-optical setup the spot was axially
confined to ∼10 µm and, thanks to the temporal focusing technique, even more resistant
to scattering.

We were thus able to selectively target rod bipolar cells, with a high spatial precision.
Our results could not have easily been obtained with standard physiological recordings.

Previous studies have estimated the projective field of bipolar cells onto ganglion cells
using a combination of intracellular recording for the bipolar cell, and multi-electrode
array for ganglion cells [Asari and Meister, 2014, 2012]. However, the yield of these
experiments is low, and it is not possible to target a single type of bipolar cells. More
importantly, this method does not allow one to stimulate more than one or two bipolar
cells simultaneously, while we stimulated between 3 to 10 bipolar cells.

In Part III, to record the activity of ganglion cells, for the all-optical method we used
functional two-photon calcium imaging. The advantage of this technique is that, together
with the neural activity, it is possible to record the morphology of activated cells. In this
way it is straightforward to attribute recorded activity to a specific cell, which is not the
case when using multi-electrode arrays (see below). Furthermore, there is no bias in the
type of cells recorded, as the indicator is randomly expressed in all the ganglion cell types
and we varied the position of the recording area with respect to the optic nerve. In this
way we randomly sampled the ganglion cell types recorded in each experiment and the
final dataset is complete with a lot of different types of cells and we could identify the G2

OFF DS ganglion cells.
The main disadvantage of using functional imaging is that using the GCaMP6s as

calcium indicator, it was not possible to distinguish the ON vs OFF response to 500 ms
of holographic stimulation. The indicator is too slow to distinguish activity on this time
scale. This is why it was necessary to block all the input coming from photoreceptors.

In Part V to analyse how OFF alpha ganglion cells calculate the ON surround, we
used a multi electrode array to record the ganglion cells activity. The major advantage
of this technique is that the spiking activity of all the cells near the electrodes is recorded
directly. The disadvantage is that multi-electrode arrays are biased to record the activity
of ganglion cells with a larger soma. However, this bias can also be an advantage when
the goal is to sample a specific ganglion cell population, because most of the cells of the
same type touching the electrodes are recorded. This is clearly showed by the good tiling
of the MEA space by the receptive field centers of ganglion cells of the same type (Fig. V.1
C,D).

A recurrent problem encountered when using multi electrode arrays is the spike sort-
ing. This problem arises from the fact that each cell is recorded by more than one electrode
(and conversely, each electrode receives spikes from more than one cell). It is thus not an
easy task to assign each spike to a specific cell. To solve this problem we implemented
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SpyKING CIRCUS (Part IV)(Yger et al. [2018]), a massively parallel code to perform
semi-automatic spike sorting on large extra-cellular recordings. To validate our method,
we produced a new dataset of ground truth data, patching a cell that was simultaneously
recorded by the MEA.

The two methods implemented in this work (presented in Part III and in Part V)
allowed us studying the role of rod bipolar cells in the integration of visual motion in
OFF direction selective ganglion cells and in the computation of the ON surround in
OFF alpha ganglion cells.

Asymmetric input from rod bipolar cells to direction selective
ganglion cells

In Part III we isolated a specific type of direction selective ganglion cells: the G2 OFF
DS. Directly stimulating rod bipolar cells, we showed that these ganglion cells integrate
the rod bipolar cell input in an asymmetric manner, with a bias for the preferred side.

The G2 OFF DS have been recently isolated by [Baden et al., 2016] and little is
known about how they compute direction selectivity. In contrast, other circuits generating
direction selectivity are known for other types of DS ganglion cells [Vaney et al., 2012].
For example, ON-OFF DS ganglion cells, with a symmetric dendritic tree, compute visual
motion thanks to a direction selective inhibitory input from starbust amacrine cells [Vaney
et al., 2012]. On the other side, OFF JAM-B DS ganglion cells [Kim et al., 2008], base their
direction selectivity on a morphology asymmetry in the dendritic field oriented towards
the null side. In these two types of DS ganglion cells, the expected cellular receptive fields
are asymmetric in the preferred side and biased towards the null side respectively.

We found that rod bipolar cells elicited a response in G2 OFF DS ganglion cells mainly
when they were placed in the preferred side. This asymmetry in the cellular receptive field
suggests a possible circuit where an amacrine cell would inhibit G2 OFF DS specifically
from the null side, similar to the symmetric ON-OFF DS cells described above.

Rod bipolar cells and the surround organisation of ganglion cells

In Part V, we isolated, using MEA recordings, two populations of OFF alpha ganglion
cells: transient and sustained. These cells types both have an antagonistic surround,
i.e. they respond to stimuli in their surround when they have an opposite polarity to
the one preferred in the center. It is unclear if this surround is mostly inherited from
the surround of bipolar cells, or if it is generated at the inner plexiform layer through
interactions between amacrine, bipolar and ganglion cells.

Since rod bipolar cells are active over a broad range of luminances, we asked if they are
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involved in the surround generation. We found that rod bipolar cells stimulated far from
the receptive field center of OFF alpha ganglion cells, activate these same ganglion cells.
This provides preliminary evidence that rod bipolar cells may mediate the ON surround
present in OFF alpha ganglion cells.

With our current results, it is not possible to explicitly determine the circuit connecting
distant rod bipolar cells to OFF alpha ganglion cells, although some hypothesis can be
done. A first possibility is that AII amacrine cells spread laterally the signal received
from rod bipolar cells to other AII and cone bipolar cells, which in turn activate the OFF
ganglion cell. An alternative pathway could be a dis-inhibitory loop where AII would
inhibit another type of amacrine cell, that would inhibit either OFF cone bipolar cells or
OFF ganglion cells directly, similar to the one described in Deny et al [Deny et al., 2017].

Another evidence found in Part V is that rod bipolar cells transmit the signal to
ganglion cells in a very redundant way. This stands in contrast with other results, such
as the findings of [Field et al., 2010] and [Gauthier et al., 2009], where each cone only
activates a few ganglion cells of the same type. This redundancy may come from the
divergence of the signal necessary to detect single photon events in the primary rod
pathway.

A possible explanation for this activation of multiple ganglion cells by a single holo-
graphic spot may be that the two photon stimulation is not precise enough to stimulate
only one rod bipolar cell using a single holographic spot. However, the holographic spot
is very precise in the x-y plane. It is less precise in the z-axis, but out of focus light has
less probability of exciting a two photon effect than in focus light. Besides, the out of
focus excitation of neurites expressing opsin should be weaker since they are smaller than
the cell body. The targeted cell should thus be the most activated one, and nearby cells
should only be little excited by the two photon stimulation.

To elucidate if the redundancy is caused by intrinsic properties of signal transmission in
the primary pathway or from a technical issue with two photon holographic stimulation,
additional experiments can be designed. To gain in spatial resolution we could either
implement the temporal focusing technique like in Part III or avoid to pass through the
glass of the MEA. Another possibility is to achieve a sparser expression of the opsin to
stimulate one cell at a time. Finally, it would be interesting to record also the activity
of rod bipolar cells, for example expressing a calcium or a glutamate indicator selectively
in rod bipolar cells. In this way, we could directly measure the effect of the optogenetic
activation and record not only how many cells were activated but also the relative strength
of the response in each rod bipolar cell.
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General discussion and future perspectives

We studied the contribution of rod bipolar cells in the generation of direction selectivity
and ON surround for specific populations of ganglion cells. To test our hypothesis, we
needed to isolate the specific contribution of rod bipolar cells. This could not be done
simply with visual stimulation, because stimulating rods would also activate other circuits
like rod-cone pathways that reach ganglion cells. Besides, rod bipolar cells not only receive
inputs from rods, but also from cones [Behrens et al., 2016, Pang et al., 2010].

We designed two complementary methods to isolate the contribution of rod bipolar
cells and to efficiently sample a specific population of ganglion cells. The techniques used
in this work are complementary to current connectomic methods to investigate synaptic
connections [Helmstaedter et al., 2013]. In the case of the rod bipolar cell pathway, the
task of tracing synaptic pathways becomes particularly daunting. To dissect the influence
of rod bipolar cells on the direction selective circuit, one would need to fully reconstruct
the synapses involved in all the different steps: RBCs - AII - Cone BCs - SACs - RGCs.
Since there is convergence and divergence at each of these steps [Tsukamoto and Omi,
2013], this becomes very challenging, not only because of the very large number of synapses
to be reconstructed, but also because each of these synapses will have a different weight,
making the net effect of rod bipolar cell activation on ganglion cell difficult to predict.
The same goes for the generation of the surround, which has a pathway composed of:
RBCs - AII - Cone BCs - RGCs or AII - AII - Cone BCs - RGCs. Using our technique
we could selectively stimulate rod bipolar cells while recording the impact directly in the
ganglion cell layer. Furthermore, our technique can be used to manipulate the activity of
other types of cells if they express an opsin. We can thus selectively investigate the role
of downstream neurons like AII amacrine cells or other types of cone bipolar cells.

However, these techniques also have some limitations.
First, the methods used here isolate only the contribution of rod bipolar cells in a spe-

cific feature generation, without elucidating if these cells play the major role, or if they
shape the response together with other cells involved in other circuits, because we activate
the rod bipolar cell pathway while the rest of the retina is inactive. To really understand
the relative importance of rod bipolar cells activation in, for example, surround generation
we should selectively suppress rod bipolar cells activity while stimulating photoreceptors
in the surround. If during rod bipolar cells inhibition, the surround organisation is abol-
ished, rod bipolar cells must be a major contributor to surround generation.

Another caveat in our experiments is that we had to pharmacologically block the
spurious activation of photoreceptors. For experiments using calcium imaging, because
of the slow changes in fluorescence intensity, we had to use one blocker for the OFF
pathway and one for the ON pathway. When using MEA to record ganglion cells activity,
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we focused only on the ON part of the holographic stimulation, so we needed to use just
LAP4, since the MEA electrodes detected spikes and not calcium changes. LAP4 has the
effect of hyperpolarizing ON bipolar cells, although we used low concentrations, which
should minimize this effect. The adaptation of the retina may thus be changed by the
pharmacology application, which is slightly shifting towards a scotopic light level.

The shift toward a more scotopic condition, could potentially change the coupling
between AII amacrine cells, and therefore the spatial extent of functional connections
between rod bipolar cells and ganglion cells. This should not affect the asymmetry in the
functional connectivity of DS ganglion cells, but it could affect the surround generation
in OFF alpha ganglion cells. However, we have shown that our results were robust to
changes in background light level. In future, we should understand better if there is a
light range in which rod bipolar cells are not active. This means to perform experiments
similar to the ones in Part V, for background light levels in the pure photopic range and
record how the rod bipolar cell stimulation is integrated by ganglion cells.

To further validate our results, we would need in the future to remove the spurious
activation of photoreceptors without using pharmacology. To this end we could for exam-
ple try to saturate them with a stronger background or to express optogenetic proteins
in them to counteract the effect of the artifact while photoactivating rod bipolar cells.

Conclusions

In this work we developed two systems to dissect the retinal circuit: an all optical method
and a system combining optical and electrophysiological techniques. We used these two
systems to study how rod bipolar cells contribute to motion computation in OFF G2

type ganglion cells and how they help generating ON surround in OFF alpha ganglion
cells. Our conclusions could not have been obtained using common electrophysiological
manipulation of intermediate layers. Furthermore, we were able to isolate the contribution
of a specific type of cells in the computation of visual motion and contrast sensitivity.
To our knowledge, rod bipolar cells have never been considered as participating to these
computations.

In the future, the techniques that we developed here could be applied to selectively
target AII, to study the signal transfer of rod bipolar cells downstream, or to better un-
derstand the influence of other cell types, for example other bipolar cells types. Changing
the optogenetic actuator would allow to inhibit the same circuit and study its contribution
by hyperpolarizing the AII cells.

Finally, the tools that we developed here could be applied to study other multi-layered
circuits, beyond the retina. For example, they could be used to study information transfer
from layer 4 to layer 2/3 of the cortex.
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