
HAL Id: tel-03125448
https://theses.hal.science/tel-03125448

Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local structure and dynamics of dense colloidal systems :
from patchy particles to hard spheres

Susana Marín Aguilar

To cite this version:
Susana Marín Aguilar. Local structure and dynamics of dense colloidal systems : from patchy particles
to hard spheres. Soft Condensed Matter [cond-mat.soft]. Université Paris-Saclay, 2020. English.
�NNT : 2020UPASP052�. �tel-03125448�

https://theses.hal.science/tel-03125448
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
P
0
5
2

Local structure and dynamics of
dense colloidal systems: from

patchy particles to hard spheres

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 564, physique de l’Ile-de-France (PIF)
Spécialité de doctorat: Physique

Unité de recherche: Université Paris-Saclay, CNRS, Laboratoire de
Physique des Solides, 91405, Orsay, France.

Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue en visioconférence totale, le 18
Décembre 2020, par

Susana MARÍN AGUILAR

Composition du jury:

Emmanuel TRIZAC Président du jury
Professeur, Laboratoire de Physique Théorique et Mod-
èles Statistiques, Université Paris-Saclay

Luca CIPELLETTI Rapporteur & examinateur
Professeur, Laboratoire Charles Coulomb, Université
Montpellier

Daniele COSLOVICH Rapporteur & examinateur
Professeur, University of Trieste

Marjolein DIJKSTRA Examinatrice
Professeure, Institute for Nanomaterials Science, Utrecht
University

Kirsten MARTENS Examinatrice
Professeure, Laboratoire Interdisciplinaire de Physique,
Université Grenoble Alpes

Giuseppe FOFFI Directeur
Professeur, Laboratoire de Physique des Solides, Univer-
sité Paris-Saclay
Frank SMALLENBURG Coencadrant
Chargé de recherche CNRS, Laboratoire de Physique des
Solides, Université Paris-Saclay
Rik WENSINK Coencadrant
Chargé de recherche CNRS, Laboratoire de Physique des
Solides, Université Paris-Saclay









Acknowledgments

Pleasure in the job
puts perfection in the work.

Aristotle

First of all, I would like to express my deepest gratitude to my three super-
visors: Giuseppe, Frank and Rik. Each of them, with their own personality, has
guided me with patience and wisdom in this PhD journey. I thank them for the
many interesting discussions and for being always willing to listen to my ideas,
answer my many questions and, to always work as a team. Also, thank you for
encouraging me to attend and present the PhD research at conferences, seminars,
and summer schools where I met a lot of interesting people with whom I had
really nice discussions. Moving to another country and to start working in a new
place is always a big unknown full of uncertainty and I could not be more happy
and grateful for having chosen the Theo Soft Matter group of the LPS. Thanks
to the three of you for making my PhD a very enriching experience that I really
enjoyed and where I learned not only about glasses and soft matter but also that
academia can be such a friendly environment.

I acknowledge the financial support given by the National Council of Sci-
ence and Technology (CONACyT) (scholarship 340015/471710) for the scholar-
ship granted to do the PhD and to the Consejo Mexiquense de Ciencia y Tecnología
(COMECyT) for the economic support to start the PhD and the expenses of mov-
ing to France.

I would also like to thank the other members of the Theo Soft Matter group
who were always willing to discuss the topics I was working on: Claudia, thank
you very much for so many questions that you helped me solve, also for being the
voice of experience always giving me very good advice. Saheli, it has been very
pleasing to have someone to share the experience of the PhD and to discover to-
gether the glassy soft matter universe and for being my partner in all the summer
schools, thank you for your friendship. To Etienne, with your analytically and
critical way of seeing the scientific life, several times you have made me think
out of the box and it has been very enriching to discuss with you. To the other
members of the LPS theory group who were always very kind and with whom I
had really interesting conversations.

But this journey would not have been so enjoyable without a good balance be-
tween life at the laboratory and the personal life. In the end, both of them are part

i



Acknowledgments

of a whole and this is why I would like to thank the people who have share time
and experiences with me in these three years: to Christian and Assya Van Gyssel,
who made me feel at home, make the yoga practice a part of my weekly life and
thank you for teaching me that if my goals, desires, and intentions are all aligned
I can achieve whatever I want. To Claudia and Raúl, my gastronomic guides in
Paris, I enjoyed very much those relaxing weekends exploring the streets of Paris,
thank you for being such good friends. To Markus, who cheers me up and invites
me to explore new places and to go outside my comfort zone.

I must also thank all the people that are in Mexico, who from there give me
their entire support and never let me give up. To Sofi, I have no words to thank
you for everything you do for me: you cheer me up, you listen to me, you make
me laugh and I know that I can always count on you. Thank you for all the times
that I was stressed out and you told me that I could do it. To Claudia (Kngu),
because you are always there for me, for listening to all my scientific traumas and
always telling me the right words so I can see things in a better way, thanks for all
the support when I was writing my thesis. To Dany, Miriam, Jovanna, Pili and,
Ingram, the friendship you give me keeps me on going.

And I wouldn’t be here without the truly and never-ending support of my
family: Ani, Marthita, Ro, Pa, Raque, you have never stopped seeing all the po-
tential I have, thank you for encouraging me to achieve all my dreams.

Thank you very much!

ii







Contents

Acknowledgments i

Résumé ix

List of Figures xix

Symbols xxiii

List of publications xxv

Introduction xxvii

1 Review of glassy systems 1
1.1 What is a glass? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Main characteristics of supercooled liquids . . . . . . . . . . 2
1.1.2 Different length scales, similar glassy features . . . . . . . . 7

1.2 Theoretical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The role of the structure . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Geometrical Frustration (The role of five-fold symmetry) . . 11
1.3.2 Local Favored Structures . . . . . . . . . . . . . . . . . . . . . 13

1.4 Colloidal Glass Models . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Hard-Sphere systems . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Attractive colloids . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Patchy colloids . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Methodology 19
2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Event Driven Molecular Dynamics . . . . . . . . . . . . . . . 20
2.2 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Characterizing LFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Choosing the neighbors . . . . . . . . . . . . . . . . . . . . . 28

3 Patchy Particles: Translational dynamics and structure. 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Kern-Frenkel Model . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3.2 Local Structure . . . . . . . . . . . . . . . . . . . . . 36

v



Contents

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Reentrant behavior . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Fixing the surface coverage . . . . . . . . . . . . . . . . . . . 38
3.3.3 Local Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Patchy Particles: Rotational Dynamics 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2.1 Rotational dynamics . . . . . . . . . . . . . . . . . . 53
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Translational relaxation time . . . . . . . . . . . . . . . . . . . 53
4.3.2 Rotational Dynamics . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2.1 Relaxation time as a function of θ . . . . . . . . . . 57
4.3.2.2 Relaxation time as a function of temperature . . . . 58

4.3.3 Dynamical Monte Carlo . . . . . . . . . . . . . . . . . . . . . 60
4.3.4 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Patchy Particles as monodisperse glasses 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2.1 Structural Analysis . . . . . . . . . . . . . . . . . . . 68
5.2.2.2 Dynamical Behavior . . . . . . . . . . . . . . . . . . 68

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Square Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Patchy particle systems . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Dynamical behavior of the monodisperse 8-patch system . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Tetrahedrality dictates dynamics in hard-sphere mixtures. 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Local Structure and Dynamics of Binary Hard-Sphere mix-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Tetrahedrality of the Local Structure . . . . . . . . . . . . . . 87
6.3.3 TLS and the global dynamics . . . . . . . . . . . . . . . . . . 88
6.3.4 TLS and the α-relaxation . . . . . . . . . . . . . . . . . . . . . 92
6.3.5 TLS and its lifetime . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 TLS and the local dynamics . . . . . . . . . . . . . . . . . . . 94

vi



Contents

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Beyond Tetrahedrality: other models and Machine Learning 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Unsupervised Machine Learning . . . . . . . . . . . . . . . . . . . . 103

7.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Conclusions 109

Appendix A Relation between viscosity and relaxation time 115

Appendix B Dynamical Heterogeneity and Lengthscales of Hard-Sphere
mixtures 117

Bibliography 123

vii





Résumé

Les verres sont des matériaux omniprésents dans notre vie quotidienne. Elles
proviennent de l’arrêt dynamique d’un fluide. Si un fluide est refroidi ou com-
primé suffisamment rapidement, il évite la cristallisation et sa dynamique est
fortement ralentie. De ce fait, le temps de relaxation, qui est le temps nécessaire
à un système pour perdre la mémoire de ses conditions initiales, augmente forte-
ment. Si la température continue à baisser, en dessous d’une température Tg, le
comportement dynamique est si lent que le temps de relaxation est supérieur à la
durée typique d’une expérience : le fluide est devenu un verre. Le système tombe
en déséquilibre, car il n’est pas capable d’explorer tout l’espace des phases dans
le créneau temporel d’une expérience et ce qui est également connu sous le nom
de phase non-ergodique.

En général, avant que le système ne soit complètement hors équilibre, ses car-
actéristiques dynamiques commencent à s’écarter de celles du liquide : le temps
de relaxation augmente de plusieurs ordres de grandeur, il développe une relax-
ation en deux étapes et le système se divise en régions plus rapides et plus lentes.
Ceci s’accompagne de petits changements dans la structure locale. Ce régime est
appelé le régime vitreux [1]. Lorsqu’un liquide est amené vers la transition vit-
reuse en diminuant la température, le système arrive à une phase métastable par
rapport à un cristal, c’est ce qu’on appelle un liquide surfondu [1, 2].

Même si la structure globale d’un verre est désordonnée comme dans un flu-
ide, plusieurs études soulignent que certains changements de la structure locale
apparaissent dans le fluide lorsqu’il se dirige vers la phase vitreuse. Ces struc-
tures sont des structures favorisées localement (LFS) qui minimisent l’énergie li-
bre locales [3,4]. Lorsque les particules interagissent avec le potentiel de Lennard-
Jones, les clusters icosaédriques minimisent l’énergie libre locale et sont donc
un exemple de LFS. L’idée d’une augmentation du nombre des clusters icosaé-
driques lorsque un fluide s’approche du régime vitreux a été proposée pour la
première fois par Sir Charles Frank en 1952 [5]. Plus récemment, il a été démon-
tré que ces structures sont présentes dans une grande variété de substances qui
forment des verres [6–9]. Ces éléments ouvrent la porte à plusieurs questions :
est-il possible de contrôler la dynamique d’un système vitreux en changeant sa
structure locale ? Peut-on prédire le comportement dynamique à partir des seules
informations structurelles ? Cette thèse cherchera à répondre à ces questions par
une étude détaillée de simulation de dynamique moléculaire de certains modèles
de verres colloïdaux.
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Nous divisons cette thèse en deux parties principales : dans la première, nous
utilisons des particules à patchs (patchy particles) comme moyen de contrôler la
structure locale d’un fluide vitreux. Dans la deuxième partie, nous nous concen-
trons sur l’étude de mélanges de sphères dures pour répondre s’il est possible
d’extraire des informations sur la dynamique à partie de la structure locale.

Les particules à patch : un moyen de contrôler la dy-
namique vitreuse.

Une façon de modifier la structure locale d’un fluide est d’utiliser des interac-
tions directionnelles. Pour cela, nous utilisons des particules à patchs. Afin de
modéliser ces interactions, nous utilisons le modèle de Kern-Frenkel [10]. Ces
particules sont des sphères dures avec n régions attractives (patchs) sur leur sur-
face. Deux particules interagissent de manière attractive lorsque le vecteur qui
relie leurs centres passe par un patch de chacune des particules, comme le mon-
tre la figure 1 où la ligne rouge représente ce vecteur. L’interaction attractive est
modélisée comme un potentiel de puits carré directionnel. Les particules inter-
agissent de manière répulsive lorsque la distance entre les particules est égale au
diamètre de la particule.

Figure 1: Représentation des particules à patch.
La ligne rouge correspond au vecteur qui relie le
centre de masse des deux particules. L’angle θ

contrôle la taille du patch.

Le potentiel d’interaction de Kern-
Frenkel est donc le suivant :

Uij(rij) = UHS
ij (rij)+U

SW
ij (rij)f(rij, n̂α, n̂β),

(1)
où rij est la distance de centre à cen-
tre entre les particules i et j, UHS

ij est
le potentiel de la sphère dure, U SW

ij est
le potentiel de puits carré avec une
portée d’interaction donnée par rc et
f(rij précise la direction des interac-
tions.

Les paramètres à contrôler sont les
caractéristiques des patchs : leur nom-
bre n, leur position et leur taille. La
taille du patch est contrôlée par l’angle
θ entre les vecteurs pointant du cen-
tre de la particule au centre du patch
et à son bord, comme le montre la fig-
ure 1. On peut définir le pourcentage de surface couverte par les patchs χ comme
χ= n(1 − cos θ)/2. Il convient de noter que cette expression fonctionne tant que
les patchs ne se superposent pas. Ici, nous utilisons un modèle de Kern-Frenkel
modifié où chaque paire de particules ne peut former qu’une seule liaison. Cette
condition nous permet d’interpoler entre deux cas extrêmes : lorsque la particule
est complètement recouverte par les patchs, c’est-à-dire χ=100%, l’interaction se

x
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Figure 2: a) Coefficient de diffusion en fonction du nombre de patchs, à différentes températures,
pour des particules à patch avec fraction de couverture fixe χ = 40%. Les points manquants

correspondent à des systèmes cristallisés. b) Fraction des particules faisant partie de structures
icosaédriques pour un nombre différent de patchs à température fixe kBT/ε = 0.4.

traduira directement par un puits carré et l’interaction correspondra à un poten-
tiel de sphère dure lorsque χ=0.

Dynamique translationnelle

Afin d’explorer en détail l’effet de la géométrie des patchs, nous explorons des
systèmes de 3 à 20 patchs uniformément répartis sur la surface. Pour ce faire,
nous localisons les patchs de manière à ce que la distance minimale entre deux
patchs quelconques de la surface soit maximisée. Le cas à 12 patchs correspond
à l’icosaèdre qui permet d’obtenir celui à 11 patchs en omettant un sommet.
Afin d’empêcher la cristallisation, nous simulons un mélange binaire de par-
ticules de Kern-Frenkel de deux tailles, avec le rapport des tailles donné par
q = σS/σL = 0.833, où σL(S) désigne la taille des grandes (petites) sphères. Nous
fixons la limite d’interaction rc = 1.031σij , où σij est la distance de contact entre
les particules i et j. Pour simuler les particules à patch, nous utilisons des sim-
ulations de dynamique moléculaire conduite par événements (EDMD) avec des
conditions aux limites périodiques.

On commence notre étude en explorant l’interaction entre la dynamique trans-
lationnelle et la structure. Afin de comparer les différentes géométries, nous com-
parons les systèmes de même fraction de couverture χ= 40%, ce qui correspond
à comparer des systèmes qui ont le même second coefficient du viriel. Afin de
caractériser la dynamique, nous mesurons le coefficient de diffusion Dτ/σ2

L où
τ =

√
mσ2

L/kBT est notre unité de temps. Sur la figure 2 a), nous reportons
la constante de diffusion en fonction de du nombres de patchs pour différentes
températures. De façon surprenante, on constate que le coefficient de diffusion
est largement indépendant de la position des patchs, sauf lorsque celle-ci corre-
spond à l’ordre icosaédrique (c’est-à-dire 10ico, 11 ou 12 patchs). Dans ce dernier
cas, on observe un ralentissement extrême à basse température.
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Les résultats précédents ont montré des preuves irréfutables que l’ordre icosaé-
drique influence la dynamique. Afin de caractériser en détail la structure locale
de ces systèmes, nous utilisons l’algorithme de classification topologique des
clusters (TCC) [11]. Cet algorithme caractérise la structure locale en capturant
différents motifs structurels du clusters de 3 particules à cluster plus complexes
composés de 13 particules. Sur la figure 2 b), nous montrons la fraction de par-
ticules qui font partie d’au moins un cluster icosaédrique pour une température
fixe kBT = 0.4 et pour toutes le nombre de patchs. L’ordre icosaédrique n’est ob-
servé en quantité significative que pour les systèmes à 10ico, 11 et 12 patchs. De
plus, lorsque la température diminue, le nombre de clusters icosaédriques pour
ces géométries augmente fortement, ce qui prouve que la localisation des patchs
renforce l’ordre icosaédrique lié à un ralentissement extrême de la dynamique.

On peut donc conclure que les particules à patch sont un bon moyen de con-
trôler la dynamique en renforçant les clusters icosaédriques. Et, fait remarquable,
les locations de patchs qui ne correspondent pas à l’ordre icosaédrique local n’ont
pas d’impact notable sur la dynamique.

Dynamique rotationnelle

L’ajout d’interactions directionnelles par l’utilisation de particules à patch fait
qu’il est intéressant de suivre la dynamique de rotation. Dans cette section, afin
d’explorer l’effet des patchs sur la dynamique rotationnelle, nous simulons des
mélanges binaires de particules à 6 et 12 patchs. Nous modifions la taille des
patchs en entre les deux cas extrêmes : les sphères dures et les interactions à puits
carré. L’emplacement des patchs est tel que la distance entre eux est maximisée.

Afin de caractériser la dynamique de rotation, nous calculons la fonction de
corrélation de rotation [12]:

Cl(t) =
1

N

N∑

j

Pl (ûj(t) · ûj(0)) (2)

où Pl est le polynôme de Legendre du l-ième degré et u est un vecteur unitaire
fixe qui tourne avec la particule. La façon dontC2 décroît fournit des informations
sur le mécanisme de la relaxation rotationnelle. De plus, nous pouvons extraire le
temps de relaxation rotationnelle de la longue décroissance temporelle de C2 [13].
En particulier, on a constaté que les particules avec des patchs relativement petits
ont tendance à tourner autour du même axe pendant une longue période, ce type
de mouvement est appelé ‘free spinner’ et il se traduit par une augmentation
soudaine du C2 après sa décorrélation, comme le montre la figure 3 a). Cela se
produit lorsque le système forme très peu de liaisons, de sorte que les collisions
sont rares et que les particules continuent à tourner autour du même axe. De plus,
dans le cas des 12 patchs, on constate qu’il y a un plateau dans la décroissance de
C2 (Voir figure 3 b)) qui signale le ralentissement de la dynamique de rotation dû
aux liaisons avec les particules voisines, cela se produit principalement lorsque
la taille des patchs est relativement grande et que les particules forment plus de
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Figure 3: Fonction de corrélation de rotation pour a) le système à 6 patchs et b) le système à 12
patchs.

liaisons. Par conséquent, afin de décorréler complètement à partir de l’orientation
initiale, plusieurs liens doivent se rompre, ce qui entraîne un ralentissement de la
dynamique de rotation.

Pour finir, nous avons comparé les échelles de temps de relaxation rotation-
nelle et translationnelle. La première est considérablement plus petite que la sec-
onde. Cela indique un mécanisme de relaxation plutôt local. Nous confirmons
cette hypothèse en utilisant un modèle simple pour approximer la relaxation ro-
tationnelle de chaque particule dans sa cage locale. Pour ce faire, nous utilisons
des simulations de type "Monte Carlo Dynamique", où on fixe les positions de
toutes les particules sauf une, puis on échantillonne les rotations de cette partic-
ule à l’intérieur de sa cage locale. Nous avons constaté que ce modèle simple est
capable de reproduire le même comportement de relaxation rotationnelle que la
dynamique moléculaire complète. Enfin, on peut conclure que la relaxation ro-
tationnelle dans les systèmes de particules à patch est essentiellement régie par
des réarrangements locaux. La dynamique est une conséquence de l’interaction
entre la géométrie de la structure locale et le nombre de liaisons dans lesquelles
la particule est impliquée.

Particules à patchs monodisperses

Dans le régime vitreux, les systèmes ont évité la cristallisation. Il existe différentes
façons d’éviter la cristallisation, comme l’utilisation de mélanges de différentes
tailles et compositions. Cependant, cela peut enchevêtrer la dynamique des dif-
férentes espèces, et un verre monodisperse pourrait aider à simplifier l’étude
de ses propriétés dynamiques. Nous proposons ici l’utilisation de particules à
patch comme voie vers le développement d’une substance de verre monodis-
perse. Cette idée est basée sur l’observation que les systèmes binaires de par-
ticules à patch se sont montrés être un excellent outil pour explorer et contrôler
l’interaction entre la structure et la dynamique des liquides, et que les change-
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ments qui induits sur la structure locale peuvent suffire à éviter la cristallisation.

Dans cette étude, on a exploré deux systèmes de patchs monodispersés : l’un
avec n = 12 patchs et l’autre avec n = 8 patchs. Le premier renforce les clusters
icosaédriques et le second n’est lié à aucun cluster spécifique. Afin de déter-
miner s’ils sont de bons précurseurs dynamique. Nous avons montré que les
deux géométries sont capables d’éviter la cristallisation. Cependant, le n= 12 fa-
vorise de forts changements structurels, qui s’écartent fortement de la structure
d’un ‘liquide simple’. Au contraire, le système à 8 patchs montre à la fois la ca-
pacité d’éviter la cristallisation à basse température et de préserver la structure
globale du liquide à différentes fractions de remplissage.

Cette section nous permet de conclure que les particules à patch sont d’excellents
outils pour explorer la relation entre la dynamique et la structure. Les particules
à patchs représentent une voie pour contrôler la dynamique de rotation et de
translation en renforçant l’ordre icosaédrique dans le système.

Sphères dures : Prédiction du comportement dynamique
à partir d’informations structurelles

Dans la deuxième partie de la thèse, on se concentre sur la possibilité d’extraire
des informations sur le comportement dynamique à partir des seules informa-
tions structurales. Pour cela, on se tourne vers l’un des modèles les plus simples
de formation du verre : les sphères dures.

Les sphères dures sont sans doute le modèle le plus fondamental de la sci-
ence colloïdale, tant pour la théorie que pour la simulation et les expériences.
Leur interaction n’est infiniment répulsive que lorsque les particules se trouvent
à une distance égale à leur diamètre σij . À haute densité, les mélanges de sphères
dures présentent une dynamique vitreuse. Ici, nous explorons la relation entre la
dynamique et la structure dans une grande variété de mélanges de sphères dures.
Pour cela, on simule des mélanges binaires de sphères dures avec des rapports de
taille q=σS/σL allant de 0.6 à 0.85 par incréments de 0.05. En outre, on fait varier
la composition du système xL=NL/N , où NL est le nombre de grosses particules
et N le nombre de particules, de xL = 0.2 à 0.65 tous les 0.05. La combinaison de
ces deux paramètres nous donne au moins 60 systèmes différents. De plus, nous
simulons des systèmes polydisperses avec une polydispersité comprise entre 1%
et 20%.

Nous commençons par caractériser leur comportement dynamique en calcu-
lant le temps de diffusion comme : τD=σ2

L/Dτ oùD est le coefficient de diffusion.
Nous démontrons que le comportement dynamique des mélanges binaires est
fortement dépendant de la composition des systèmes et, en général, il présente
un comportement complexe et non-monotone en fonction de la composition. De
plus, chaque rapport de taille montre des comportements qualitativement dif-
férents. Sur la figure 4 a) nous reportons le temps de diffusion τD en fonction de
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Figure 4: a) Temps de diffusion τD en fonction de la composition xL pour les mélanges binaires
de sphères dures avec différents rapports de taille q comme indiqué. b) Fraction de particules à

l’intérieur d’un cluster icosaédrique pour les mêmes systèmes.

la composition xL pour chacun des rapports de taille q.

Sur la base de ces informations, nous nous tournons ensuite vers la structure
locale. En premier lieu, nous examinons les changements de l’icosaédralité (nom-
bre de particules impliquées dans des clusters icosaédriques). Afin de savoir
si l’icosaédralité est capable de saisir tous les changements dans la dynamique
nous utilisons l’algorithme TCC [11] pour quantifier le nombre de particules im-
pliquées dans les clusters icosaédriques. Sur la figure 4 b) nous montrons cette
quantité en fonction de la composition pour chaque q. Les résultats montrent
qu’en effet, le nombre de clusters icosaédriques et donc la structure locale dépen-
dent fortement de la composition. De plus, d’autres structures apparaissent égale-
ment avec les clusters icosaédriques. Néanmoins, les changements de l’icosaédralité
et des autres structures ne sont pas capables de capturer tous les changements sur
la dynamique.

La solution à ce problème semble résider dans la prise en compte d’une struc-
ture plus simple : les clusters tétraédriques. En fonction de la morphologie de
la structure locale, chaque particule peut faire partie de plusieurs clusters tétraé-
driques. Nous proposons donc de caractériser la structure locale par un nouveau
paramètre d’ordre appelé Tétraèdre de la Structure Locale (TLS), qui consiste
à compter de le nombre de tétraèdres auxquels chaque particule participe ntet.
Nous avons constaté que ce paramètre d’ordre est capable de saisir les change-
ments de dynamique de la plupart de nos systèmes de sphères dures. De plus, le
TLS fonctionne bien pour différentes fractions volumique, ce qui se reflète dans
toutes nos données par fraction volumique qui convergent sur la même ligne. Cet
effondrement nous permet de prouver que, pour chaque fraction d’emballage,
ntet fournit un excellent prédicteur du temps de diffusion, révélant une relation
approximativement exponentielle entre ntet et τD, comme le montre la figure 4.

Un aspect important de la dynamique vitreuse, est l’apparition d’une hétérogénéité
dynamique,c’est-à-dire qu’il existe des régions qui ont une dynamique plus rapide
que d’autres. Afin de vérifier dans quelle mesure la tétrahédralité réussit à cap-
turer les caractéristiques dynamiques, nous quantifions le déplacement local de
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l’un de nos systèmes les plus lents. Ensuite, nous corrélons le TLS et la dy-
namique locale. On a constaté que ces deux quantités sont bien corrélées et que
le TLS fonctionne bien pour capturer la dynamique locale, car les régions à dy-
namique lente correspondent aux régions à des valeurs plus importantes de la
tétrahédralité.

Pour finir, on a testé le TLS dans deux modèles de précurseur des verres,
les modèles Wahnström et Kob-Andersen. Les deux modèles consistent en un
mélange binaire de particules qui interagissent avec le potentiel de Lennard-
Jones. Mais le premier ne retient que la partie répulsive du potentiel et le deux-
ième a des interactions non-additives. On montre que le TLS est bien corrélé
avec la dynamique locale sur les mélanges Wahnström. Notons que, en tant
que répulsif comme les sphères dures, on s’attend à ce que des structures sim-
ilaires apparaissent en allant plus loin dans le régime vitreux. Contrairement au
mélange Kob-Andersen, le TLS montre une faible corrélation entre le nombre de
tétraèdres et la dynamique locale. Notons par ailleurs que la non-additivité de ce
mélange favorise des structures locales plus complexes qui peuvent être incom-
patibles avec la tétrahédralité.

Pour faire face à ce type de mélanges, nous nous sommes tournés vers une élé-
gante méthode qui n’a comme entrée que des informations structurelles : ‘méthode
d’apprentissage machine non supervisé’ (UML). L’objectif principal de cet UML est
de regrouper des particules ayant des structures locales similaires. Il fournit des
informations sur la structure locale de chaque particule par le biais d’un ensemble
de paramètres d’ordre de liaison. En appliquant l’UML à les mélanges de Kob-
Andersen et Wahnström, nous avons constaté que pour les deux systèmes, l’UML
capture des structures qui sont bien corrélées aux dynamiques locales. En plus,
les corrélations sont plus élevées que celles obtenues avec le TLS. Il est à noter
que l’UML ne dispose pas d’informations a priori sur le type de cluster, ce qui lui
permet de capturer des structures non-triviales qui peuvent être corrélées avec la
dynamique locale. Ces résultats ouvrent la voie à la prédiction de le dynamique
dans divers d’autres systèmes vitreux, avec différents degrés de refroidissement
de manière simple.

Avec les résultats présentés dans cette thèse, nous proposons une voie pour
contrôler la dynamique des systèmes vitreux par l’utilisation de particules à patch.
De plus, nous fournissons un paramètre d’ordre structurel simple et élégant qui
est capable de capturer les changements locaux et globaux de la dynamique d’une
grande variété de mélanges de sphères dures. La simplicité du TLS permet une
comparaison avec les expériences et il fournit une voie pour connaître a priori les
caractéristiques dynamiques générales d’un des verres les plus utilisés.
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Introduction

Natural science,
does not simply describe and explain nature;

it is part of the interplay
between nature and ourselves.

Werner Heisenberg

Glasses are ubiquitous materials present in our daily life. The broad definition
of a glass comprises innumerable types of systems. In short, if a fluid is cooled
down or compressed sufficiently rapidly, it avoids crystallization and its dynam-
ics sharply slow down. If the temperature keeps decreasing, the fluid becomes
a glass, in where its dynamical behavior resembles to a crystal, as it apparently
does not flow but structurally is similar to a liquid, as it does not have order.

In our histoy as a civilization, we have been in constant interaction with glasses.
From the very beginning, we started using natural glasses, such as, the obsidian
which is a glass made from the abruptly cooling of melt rock. With time, we have
learned how to manufacture glasses and empirically make use of their proper-
ties. Our knowledge and control over glasses has evolved enormously from the
first synthetic glasses found in Egypt 50000 years ago [18, 19]. Nowadays we
have developed very precise and controlled ways of creating them and we have
expanded their use to almost everywhere we see [20–23] .

Despite these advances, key knowledge is still missing, as some of the fun-
damental physics in the fluid’s path to become a glass are not fully understood.
One of these unknowns is the role the structure plays in the changes in dynam-
ics. Even though the global structure in a glass is disordered as in a fluid, several
studies point out that some changes in the local structure appear in the fluid as it
heads towards the glass phase [6–8, 24, 25]. This point opens the door to several
questions: what are the structures related to the changes on dynamics? is it pos-
sible to control the dynamics of a glassy system by changing its structure? And,
can we predict dynamical behavior from only structural information?

This thesis will try to answer the previous questions through a detailed study
of molecular simulations of some models for colloidal glasses. We will show
that there is a clear relation between local structural changes and glassy dynam-
ics and, that it is possible to learn something about the dynamical behavior of a
glassy system only from its structure.
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Introduction

The present thesis is organized as follows: in Chapter 1 we revise the state of
art of glasses, we begin with the definition of a glass, the features that characterize
a glassy system, the main theoretical approaches and the advances on identifying
the role of the structure on dynamics. In Chapter 2 we introduce the main tool
used in this thesis: molecular dynamics and in particular Event Driven Molecular
Dynamics.

From there, we turn our attention to the results. In Chapter 3 we explore the
effect of adding directional interactions on the local structure of a glassy system.
To do so, we analyze the translational dynamics and structure of binary mixtures
of patchy particles. In particular, we will show that patchy particles that enhance
icosahedral local structure promote a deep slow-down in translational dynamics.
The directionality of the patchy particles allows us to distinguish between rota-
tional and translational dynamics, Chapter 4 will be devoted to the analysis of
the rotational dynamics of glassy patchy particles. There, we will show that ro-
tational and translational dynamics are essentially decoupled as the first is only
driven by local motion.

In line with the previous chapters, the changes on the local structure pro-
voked by the directionality of patchy particles make them a great candidate as
a monodisperse glass-former. In Chapter 5 we explore the idea of having a glassy
patchy-monodisperse system. In particular, we show that a monodisperse sys-
tem of patchy particles with 8 patches preserves the ‘liquid-like’ structure in the
supercooled liquid regime, making it a perfect candidate.

After showing the importance of the local structure in glassy patchy parti-
cles, we turn our attention to one of the simplest models of colloidal glasses:
hard spheres. In Chapter 6 we explore the glassy dynamics of mixtures of hard-
spheres, focusing on the effect of size ratio and composition on the local struc-
ture and dynamics. Finally, we show that the global and the local changes in
dynamics can be captured by a simple order parameter called: Tetrahedrality of
the Local Structure. This order parameter captures a universal local structure of
hard spheres and can be used to predict local and global dynamics of hard-sphere
mixtures. In Chapter 7 we extend the idea of tetrahedrality to other glass-former
models. In line with these results, we briefly show how machine learning tech-
niques can be applied to have a more general way of characterizing regions with
similar structure as in the tetrahedrality.

To finish this thesis, in Chapter 8 we provide the general remarks about the
results found in each Chapter. Additionally, we introduce some of the remaining
open questions and perspectives.
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Chapter 1
Review of glassy systems

Glasses are present everywhere we look. They originate from the dynamical ar-
rest of a fluid. In the fluid’s journey to become a glass its dynamics slow down
sharply and its relaxation behavior deviates from that of a fluid without strong
structural changes.

The physics and the origin of this slow-down is still a subject of debate [1, 26]
and at the present time, there is no theoretical approach that can explain all the
changes in dynamical behavior. One approach for understanding the dynami-
cal behavior of glassy systems is to look at the link between local structure and
dynamics. In particular, a number of studies have shown that before the fluid
becomes completely arrested, some mild changes on the local structure appear.

In this Chapter we will give a brief overview of the main points to understand
the glass problematic, starting from a proper definition of a glass. We will discuss
some of the main characteristics that arise in the fluid before it falls out of equilib-
rium and some of the proposed theories to explain them. Then, we examine the
role of the structure in the glassy regime. Finally, to close this Chapter we review
the behavior of some colloidal glass models that are central to this thesis: hard
spheres, short-attractive potentials and patchy particles.

1.1 What is a glass?

We can distinguish the classical states of matter according to their dynamical
and structural characteristics, in particular crystal and liquid phases. Liquids
are characterized by short-range order, they have rotational and translational in-
variance and their particles have free movement controlled by the interaction be-
tween them. Their main dynamical characteristic is their ability to flow, i.e. if any
amount of stress is applied to a fluid, it will change and adapt to this stress over
a relatively short amount of time. On the other hand, crystals have long-range
order as they consist of a unit-cell repeated in all directions. The particles in a
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solid tend to vibrate around their averaged positions, and so, they do not flow.

In general, below a temperature Tf a liquid undergoes to a first order tran-
sition to a solid phase. However, if the system is compressed or cooled down
sufficiently rapidly, it can avoid crystallization and arrive to a glass phase. In
this state, the fluid’s liquid-like structure will be preserved (without long-range
order). We will find a glass either at low temperatures or high densities where
the crystal phase would be. Under these conditions, the dynamics of the system
become slow as the particles cannot freely move as in a diluted fluid. As a re-
sult, the relaxation time, which is the time needed by a system to lose memory of
its initial conditions, sharply increases. We say that a system has become a glass
when below a temperature Tg the relaxation time is larger than the experimental
window of time. Below Tg the system will fall out of equilibrium as it is not ca-
pable of exploring all of phase space in the window of time. For this reason, it is
also known as a non-ergodic phase.

The definition of Tg is rather ambiguous and is dependent on the system, the
preparation protocol and also the probing window of time [27]. For molecu-
lar systems, often Tg is defined as the temperature where the shear viscosity is
1012Pas1 [1, 29] or the temperature where the relaxation time takes more than
100s [30, 31]. However, glasses can be found in other length scales including a
wide variety of materials [1] and so, Tg has to be adapted to each system. Among
them, we find granular systems [32–34], molecular systems [35–37] and colloidal
systems [38, 39]. The fact that there are several ways of defining the glass transi-
tion temperature indicates us that a proper glass transition is unclear.

In general, before the system fully falls out of equilibrium its dynamical fea-
tures start deviating from the liquid ones: the relaxation time increases several or-
ders of magnitude, the system develops a two-step relaxation and the system gets
divided into faster and slower regions. This regime is called the glassy regime [1].
Once more, this is a general definition that can be applied to a wide variety of
materials with intrinsic different characteristics. When a liquid is driven towards
the glass transition by decreasing the temperature, the system typically arrives
to a metastable phase with respect to a crystal. This is known as a supercooled
liquid [1, 2]. Throughout this thesis, we will use the terms glassy regime and
supercooled-liquid regime interchangeably.

1.1.1 Main characteristics of supercooled liquids

Once a fluid enters to the glassy regime it develops characteristic dynamical be-
havior different from the liquids. In this section, we will focus on three of the
glassy fingerprints: two-step relaxation, fragility and dynamical heterogeneity.

1As a reference point, the shear viscosity of water at room temperature is 8.8× 10−4Pas [28]
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Relaxation behavior

In order for a system to relax, the system must decorrelate from its initial con-
figuration, i.e. the particles should move enough such that the system loses any
memory of the fluctuations of its initial configuration. Depending on the con-
ditions of the system, the process of relaxation can vary. One of the common
techniques to characterize the relaxation behavior is the time dependent density-
density correlation F (k, t), also known as intermediate scattering function (ISF).
It measures the correlation between density fluctuations as a function of time and
wavelength k, and is defined as follows [40]:

F (k, t) =
1

N
〈ρ(−k, 0)ρ(k, t)〉 (1.1)

where N is the number of particles and ρ(k, t) is the Fourier transform of the
density:

ρ(k, t) =

∫
ρ(r, t) exp(−ik.r)dr

=

∫ ∑

j

[δ(r− rj)] exp(−ik.r)dr,

=
∑

j

exp(−ik.rj)

(1.2)

where rj is the position of particle j at time t.

At time t= 0 the ISF is equal to the structure factor F (k, 0) =S(k). We define
the normalized dynamic correlation function as Φ(k)=F (k, t)/S(k), which at time
t=0 is 1 corresponding to the full correlated state. And, at t→∞ it goes to 0 when
the system has fully decorrelated from its initial configuration. If the fluctuations
of all length scales are uncorrelated, i.e. Φ(k, t → ∞) = 0 we can consider that
the system has reached equilibrium. Additionally, the decay of the ISF provides
information on the process of relaxation over time. Moreover, a relaxation time
can be extracted from its long-time decay, as we will describe later in this section.

In general, the ISF can be obtained from molecular simulations as the posi-
tion of the particles are known at all time. Alternatively, it can be obtained from
experiments, where the ISF is measured from dynamic light-scattering, inelastic
neutron scattering and x-ray scattering.

In the limit of high temperatures, the ISF decays exponentially as the system
rapidly loses memory of its initial configuration, this can be seen in Fig. 1.1 a),
where we show the ISF for different states. The picture changes in the glassy
regime, the relaxation behavior becomes more complex as it deviates from the
high temperature liquid. In particular, the ISF presents a two-step relaxation be-
havior, as shown in more detail in Fig. 1.1 c).

At short times the particles start diffusing and the system begins to decorre-
late. This is reflected in a first decay in the ISF called β-relaxation. However, since
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Figure 1.1: Two-step relaxation behavior of glassy systems. a) Shows the ISF at different states, in
the liquid regime it decays exponentially. In the glassy regime the relaxation behavior presents a
two-step relaxation. Once the system becomes a glass the ISF do not decay. b) As the system is

cooled down or compress the relaxation time of a glassy system increases several orders of
magnitude. c) Glassy systems have two step relaxation, the first relaxation corresponds to the
β-relaxation. Once the particles encounter their neighbors they get arrested by the cage made by

them. Finally, once the particles escape, the ISF continue relaxing. d) Illustration of the cage
effect.

particles are typically quite close to each other in the glassy regime, a particle can-
not move freely for long before its path is obstructed by a neighbor. Once the par-
ticles encounter their nearest neighbors, they get arrested inside a ‘cage’ formed
by these neighbors. This is known as the ‘cage effect’, see Fig. 1.1 d). The particles
spend time rattling inside the cage before breaking free. As a consequence, the
density fluctuations decorrelate very slowly during that time and the ISF presents
a plateau, which depends on the system conditions, i.e. the temperature or den-
sity. If the conditions of the system are not too tight, collective rearrangements
eventually happen and the particles will escape their cages. Hence, the system
undergoes a second relaxation, known as α-relaxation. After this relaxation, the
system finally fully decorrelates from its initial configuration.

In contrast, if the temperature of the system is T < Tg, the particles will get
trapped permanently in their cages and the plateau will not decay over the entire
window of time covered by the experiment or simulation, as shown in Fig. 1.1a).
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In the glassy regime, the long-time relaxation (α-relaxation) decays differently
from an exponential function and it can be fitted with a Kohlrausch– Williams–Watts
(KWW) relation, better known as stretched-exponential function. This expression
takes the form: A exp(t/τα)γ where A and γ are fitting parameters and τα corre-
sponds to the relaxation time. In particular, τα will depend on the conditions of
the system and it sharply increases as the system gets closer to the glass state,
at larger densities or smaller temperatures. This behavior is shown in Fig. 1.1
b) where we show the relaxation time of a hard-sphere mixture as a function of
its packing fraction. This non-exponential long time relaxation behavior [41, 42]
has been found in a wide variety of glasses with different intrinsec natures: spin
glasses [43], metallic glasses [44], molecular glasses [45] and colloidal glasses [46].

Another measurement that captures this anomalous relaxation behavior is the
mean-squared displacement (MSD) which is a measure of the particle’s displace-
ment in time, calculated as:

〈
∆r2(t)

〉
=

〈
1

N

N∑

j

|rj(t)− rj(0)|2
〉
, (1.3)

At short times, before the particles collide they undergo ballistic motion, hence,
the mean squared-displacement has a quadratic relation with time. As in the ISF,
once the particles encounter their neighbors, the MSD develops a plateau as the
particles cannot diffuse due to the cage effect. Finally, once the particles break
free from the cages the system arrives to a diffusive regime, where the relation of
the MSD with time becomes linear 2.

Fragility

As we have pointed out, there is a fast increase on relaxation time with temper-
ature in the glassy regime. Depending on the nature of the relation between the
relaxation time and the temperature we can distinguish between two types of
glass-formers: fragile and strong. These different behaviors were first explored
in terms of the fluid’s viscosity. However, based on the Maxwell model that cou-
ples elastic and viscous behaviors (see Appendix A), the relaxation time and the
viscosity can be linearly related as τ =ηc/G∞, where ηc is the viscosity and G∞ is
the instantaneous shear modulus which does not vary in the supercooled liquid
regime and thus, this relation is valid in the glassy regime [1].

The behavior of the strong and the fragile glass former can be seen from plot-
ting the logarithm of the viscosity (or the relaxation time) versus Tg/T . This type
of plot is known as an Angell plot [47]. In Fig. 1.2 we show a typical Angell plot
for two of the typical strong and fragile glass formers.

2In real systems, such as colloidal systems, the ballistic motion is found at only extremely
short times. Instead, at short time scales the particles undergo Brownian motion. This leads
to distinguish in the MSD a short-time diffusive regime and a long-time diffusive regime. The
ballistic motion is mainly found as an artifact in molecular simulations.
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A system is considered a strong glass former when the relaxation time follows
an Arrhenius behavior:

τα = τ0 exp(E/kBT ), (1.4)

where τα is the relaxation time, T the temperature, kB the Boltzmann’s constant
and E an activation energy. This relation tells us that the relaxation is controlled
by an energy barrier that activates the process [1]. In the Angell plot of Fig. 1.2 the
strong glass regime can be seen in the upper part of the plot where the relaxation
behavior tends to be a straight line. Some of the strong glass-formers are also
known as networking glasses as they tend to have three-dimensional network
structure with covalent bonds [48]. For example, they can have open tetrahedral
networks [49], as found in e.g. pure silica SiO2 and germanium dioxide GeO2.

0.5 0.6 0.7 0.8 0.9 1.0

Tg/T

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

L
og
η

Strong

Fragile

OTP
SiO2

Figure 1.2: Angell plot of the prototypical strong glass former SiO2 and fragile glass former
OTP . Data reproduced from Ref. [50].

In contrast, the relaxation of fragile glass-formers follows a super Arrhenius
behavior. One way of describing this relation is by fitting the relaxation time with
a Vogel-Fulcher-Tamman (VFT) equation [41, 51]:

τα = τ0 exp

(
DT0
T − T0

)
, (1.5)

where τ0, T0 andD are fitting constants and the value ofD will provide a measure
of how fragile the system is. It is interesting to remark that the relaxation time
diverges at a temperature T0, which in general is lower than the glass transition
temperature Tg. Among the fragile liquids the most used and well studied is the
ortho-terphenyl (OTP). The fragile regime is easy to locate in the Angell plot as it
corresponds to curved lines, as can be seen in Fig. 1.2.

Dynamical Heterogeneity

In a simple fluid all the particles diffuse homogeneously without any particular
restrictions. In contrast, in the glassy regime the particles are arrested by the cages
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made by their neighbors, depending of collective rearrangements the particles
will escape their cages. In this picture, some particles are going to start diffusing
before others and as consequence, the system gets spatially divided by regions
with faster and slower dynamics.

Figure 1.3: Example of dynamical heterogeneity
of a Wahnström system at kBT/ε=0.7. Particles

colored by their dynamical propensity. Red
regions have larger displacement than the blue

regions.

This behavior is known as dynam-
ical heterogeneity (DH). DH has been
found both in experiments [52–56] and
simulations [53, 57, 58]. Different tech-
niques have been applied to charac-
terize DH, in particular in simula-
tions the use of four-point correlation
functions and the calculation of dy-
namical propensity have been of great
use. The latter one allows us to color
the particles depending on the effec-
tive displacement of each particle in
a window of time. In Fig. 1.3 we
show a glassy system of a Wahnström
mixture 3 colored by their propensity
where red regions correspond to fast
dynamics.

It has been shown that as the sys-
tem approaches the glass transition the
correlation between this dynamical regions grows. This is translated in a grow-
ing dynamical correlation length similar to the growing correlation length in spin
systems near to a transition [59]. In Chapter 6 we will talk in more detail about
DH and the way of characterizing it.

1.1.2 Different length scales, similar glassy features

The transition between a fluid state to an arrested one is present in a wide va-
riety of systems with different length scales. Examples of them are: molecular
glasses, colloidal glasses, spin glasses and granular glasses. Most of them have in
common the already mentioned glassy characteristics. However, one of the main
difference between them lies in the different temporal and length scales at where
things happen. Here, we will give a general description of these types of glasses
making some emphasis on colloidal glasses.

One of the most common and studied glassy systems are molecular glasses.
Their building blocks consist of small molecules. Depending on the molecules
nature we can further classify them in: organic glasses, silicate glasses, phos-

3The Wahnström mixture consist of a binary mixture of particles interacting through Lennard-
Jones potential with size ratio q= 0.833 and composition xL= 0.5. The potential is truncated and
shifted to the minimum of the potential, preserving only the repulsive part of the Lennard-Jones
potential.
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phate glasses, metallic glasses, etc. Each of them have their own physical and
chemical particularities. Important to remark is that related to the small size of
the molecules the time scale at where things happen is faster. As a consequence
in experiments at low temperatures it is relatively easy to see the changes in the
structural relaxation over many decades.

In contrast, granular systems are composed of macroscopic grains and thus
the length scales are considerable larger. An example of granular systems is sand.
The interaction between the particles is typically only repulsive and the gravity
and friction both play important roles in their physical behavior. Moreover, the
thermal fluctuations do not have any effect on granular systems [60]. If they are
externally supplied with kinetic energy (e.g. by vibrating the system), granular
systems can flow similarly to a fluid and at high packing fractions their relaxation
time increases rapidly, similar to fluids in the glassy regime [26].

Finally, the length scales of colloidal glasses are in between the molecular and
the granular ones. “A colloidal dispersion is a system in which particles of size roughly
between 1nm and 1µm of any nature (e.g. solid, liquid or gas) are dispersed in a con-
tinuous phase of different composition or state” [61]. Due to the size of the particles,
thermal fluctuations are relevant in colloidal systems. Depending on the nature
of the dispersed and the continuous phase the system takes different names: sus-
pension (solid particles in a liquid) such as paint or milk, emulsion (liquid droplets
in an immiscible liquid) such as salad dressing, foam (gas bubbles in a liquid or
solid) like ice cream and aerosol (liquid droplets in a gas) such as fog [39]. More-
over, the dispersed particles can have different shapes, such as spherical particles,
rods, polyhedral particles, etc. However, in this thesis we will focus on spherical
particles.

In general, colloidal systems present several advantages that make them a
perfect choice to study in detail the changes on structure and dynamics in the
glassy regime. For example, colloidal suspensions present a glass transition sim-
ilar as molecular glasses, their relative large sizes allows them to be followed in
experiments using e.g. confocal microscopy, light scattering, among others [46].
However, a consequence of their large sizes is that their respective microscopic
time scale is larger than the one of molecular glasses. As a result, dynamical slow-
down in colloidal systems can only be observed over a few decades, before time
scales become too long to probe in a reasonable amount of time. Thus, colloidal
glasses can be only compared with molecular glasses at relatively high tempera-
tures [1].

The scope of this thesis concerns mainly model systems inspired by colloidal
glasses, and we will discuss in more detail some colloidal models in Section 1.4.

1.2 Theoretical approaches

Several approaches have been proposed to explain the peculiar dynamical char-
acteristics of supercooled liquids. So far, there is not a full theory capable of
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capturing at the same time all the features and changes towards the glass transi-
tion. However, each approach has their own victories on explaining parts of the
dynamical changes towards the ‘glass transition’.

Following the same trend of ideas as in Ref. [1] we divide the theories in two
main families: the first one is related to mean-field approximations, in particular
the Random-First Order Transition, the Mode Coupling Theory and the Adam-
Gibbs Theory. The second family is related to the theories around Dynamical
Facilitation. Here, we will briefly discuss each of these approaches and we refer
the reader to dedicated reviews of each of them.

Mean-Field Approximations

Adam-Gibbs Theory

In 1965 Adam and Gibbs proposed a way of explaining the temperature depen-
dence of the relaxation in the glassy regime [62]. It is mainly focused on the idea
of cooperative rearranging regions and that the relaxation is controlled by its con-
figurational entropy SC(T ), which is obtained from subtracting the vibrational
entropy from the total entropy SC(T ) = S(T )− SV ib(T ) [63]. The rearrangements
are thermally activated processes, and one of the main ideas of this theory is that
the activation energy is inversely proportional to the configurational entropy:

∆E(T ) ∝ 1

SC(T )
. (1.6)

The increase of relaxation time is attributed to the growth of the cooperative
rearranging regions [64].

Although these ideas are appealing for explaining part of the anomalous re-
laxation behavior, some gaps still remain to be filled, such as the nature of the
rearranging regions [63].

Mode Coupling Theory

In the 1980’s the Mode Coupling Theory (MCT) was proposed as a mean field
approximation [65]. Its main goal is to predict the peculiar relaxation behavior of
a fluid in the glassy regime. In particular, it is focused on predicting the interme-
diate scattering function F (k, t) by solving its equation of motion through some
approximations. The most important part is that the only input is the structure
factor S(k) = F (k, 0) which presumably contains all the structural information.
We refer the reader to Refs. [65–67] for a full derivation of MCT equations.

In general, MCT performs incredibly well. It captures the changes in relax-
ation dynamics in the glassy regime by recovering the two-step relaxation and
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the cage effect. Moreover, it has been applied to a wide variety of systems pre-
dicting interesting behaviors. Among them, it captures a reentrant behavior in
the phase diagram of short-ranged potentials.

MCT seems to work less well deep in the glass regime. One of its predic-
tions is a temperature TMCT where the system stops relaxing, which in general
is larger than the experimental Tg. Nevertheless, in simulations and experiments
the glassy systems keep on relaxing at T < TMCT . This is because, at that regime
the particles present ‘hopping’ motions that allow them to escape the cages and
continuing relaxing [68]. MCT does not take into account this type of motion
and fails on predicting the transition. Additionally, it lacks information on the
dynamical heterogeneity present in the glassy regime and the explanation of the
different fragilities. Some extensions have been done to the MCT to improve this
failures, for example the incorporation of higher order correlations, the incorpo-
ration of external fields to the classical MCT equation, etc [65].

Random First Order Transition

Finally, the ideas of the Random First Order Transition Theory (RFOT) resonate
with the previous ones, and in some limit cases the results of both can be recov-
ered [69].

The RFOT is also based on the configurational entropy SC and in particu-
lar, it postulates that the liquid is divided into metastable regions with different
sizes [64], called ‘mosaic states’. Both the Adam-Gibbs theory and the RFOT pre-
dict a divergent length scale at low temperatures, however their main difference
is the power of the divergence. In particular, RFOT predicts larger length scales
compared to the ones predicted from Adam-Gibbs theory.

As explained in Ref. [1] and Ref. [30], RFOT can be considered in a more gen-
eral sense as the union of the ideas of MCT, Adam-Gibbs theory and spin glass
theory. These mean field theories can be rationalized in terms of the energy land-
scape of the supercooled-liquid. At low temperatures, the supercooled-liquid
landscape presents many minima and saddle points, from here the definition of
the configurational entropy is recovered as SC = 1/N logN (f), where N (f) is the
number of free-energy minima. At temperatures T > TMCT there is just one min-
imum corresponding to the fluid equilibrium energy. At T =TMCT the landscape
becomes fragmented in an exponential number of minima. At T < TMCT the re-
laxation is an activated process and the barriers between local energy-minimum
grow as the temperature is decreased. The original RFOT mosaic idea applies in
this last regime.

Dynamic Facilitation

One of the most recent approaches to the glass problem is the idea of dynamic
facilitation (DF). Differently from the previous approaches which were mainly
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based on thermodynamic concepts, DF focuses on the dynamical aspects of the
glassy regime, such as the dynamical heterogeneity [70]. DF is part of a series of
models called kinetically constrained models, which formulate that the kinetical
arrest is mainly driven by geometrical constraints [1].

The main idea of DF is that the relaxation of some few particle will facilitate
the motion of the particles that surround them, as consequence a mobile region is
created. In particular, the movement of those few particles is known as excitation
lines. Once an immobile region is intersected by one of these excitation lines, the
region will be able to move for a time t until the excitation line leaves it.

In short, DF captures well the physical changes in the dynamical behavior
of glassy systems, however their results can not been derived from microscopic
calculations [1].

1.3 The role of the structure

None of the previous approaches make strong assumptions about the structure
in the glassy regime. However, in principle each approach has room for the con-
sideration of changes in structure of the fluid as it becomes more supercooled.
This is clearer in the MCT approach where the dynamical behavior is character-
ized by only structural input and it is fair to ask what are the structural changes
that lead to those extreme changes in dynamics?. In both RFOT and Adam-Gibbs
theory, structural variations can be present between the inside and outside of co-
operative regions and in between the ‘mosaic’ pieces that form the supercooled
liquid. Finally, in the DF approach, one might think that the excitation lines or
the immobile regions have a preferred structure.

The overall picture of glasses gets complicated near to the glass transition
temperature where the role the structure plays is not clear [6]. In this thesis we
will mainly focus in the changes on the structure and their relation with dynamics
in the glassy regime. In the following section we will discuss in more detail the
role of the structure in the glassy regime.

1.3.1 Geometrical Frustration (The role of five-fold symmetry)

A fluid can access the glassy regime only by avoiding crystallization. There a var-
ious mechanisms to avoid crystallization and we will address them in more detail
in Chapter 5. However, one of the main ones is through geometrical frustration.

A crystal is characterized by long-range order, unit-cells with specific patterns
are replicated in all directions to fill the space. However, some local structures
cannot tile all of the space in a periodic manner as a consequence of the nature
of their rotational symmetry. This symmetry is given by the value of the needed
rotation around an axis that maps a lattice into itself. These rotations can be: 2π,
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2π/2, 2π/3,. . . , 2π/7, better known as one-, two-, three-, . . . , seven-fold symme-
try. Only two-, three-, four- and six-fold symmetry structures can be periodically
replicated in all directions, the rest of them cannot [71]. The idea that some struc-
tures cannot tile periodically and that they would hinder the grow of a crystal
structure is the heart of the geometrical frustration theory.

The importance of this frustration in supercooled liquids was first highlighted
by Sir Charles Frank [5] in 1952. He analyzed the best ways of arranging 12 parti-
cles around a central one: thinking of crystal structures, the first arrangements
that come to mind are a faced-centered cubic (FCC) lattice and an hexagonal
close-packed (HCP)lattice. However, another option is to locate the particles on
the vertices of an icosahedron. This last structure has five-fold symmetry and
thus it cannot regularly fill space [72]. Moreover, if the particles are interacting
through a Lennard-Jones potential the binding energy of the icosahedral order is
lower than its crystal-like counterparts, making it energetically favoured. Hence,
Frank suggested that it is likely that more particles would find themselves in an
icosahedral environment by undercooling a fluid [5].

In Frank’s ideas, icosahedral clusters represent a frustration in the system,
as there is spontaneously formation of icosahedral clusters that do not fit with
the crystal lattice, yet are energetically favored. In general, geometrical frustra-
tion is the incompatibility between the locally preferred structure and the global
tiling [4]. Based on the previous ideas, in 1995 Kivelson et al. proposed a formal
geometrical frustration theory for supercooled liquids [3,73]. The heart of theory
is based on the following propositions:

• A liquid is characterized by locally favored structures (LFS) which are dif-
ferent from the crystal unit cells. This preferred structures minimize the
local free energy.

• The LFS cannot tile the whole space.

• It is possible to build a reference system where the effect of the frustration
can be turned off. This point is particularly interesting, because by changing
the topology of the space some of the LFS can fill the space. This is the case
of the perfect icosahedra, which can form a perfect phase on the surface
of a four-dimensional hypersphere with radius 5/π times the interatomic
geodesic distance [4, 72].

From the ideas of the dynamical frustration theory, depending on the ‘degree’
of frustration, the size of the domains with LFS will grow upon undercooling the
system, at weak frustration the domains will be larger than in strong frustration.
Moreover, the ‘degree’ of frustration can be related to the fragility of a glass, large
fragility is related to small frustrations [4]. If the frustration is removed, the sys-
tem undergoes to a phase transition to an ordered phase [74, 75]. We refer the
reader to Ref. [4] for a more detailed review of geometrical frustration.

The ideas of geometrical frustration have inspired a growing interest on the
role of the structure on glassy dynamics [6–9]. Now the question is, what is the
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Figure 1.4: Defective Icosahedral Cluster and Icosahedral Cluster.

exact geometry of the LFS?

1.3.2 Local Favored Structures

In general, the nature of the LFS depends on the system and the interaction be-
tween the particles [76]. The now well known icosahedral cluster has been found
in systems that interact additively, in particular in repulsive systems such as the
Wahnström mixture. A closely related structure, the defective icosahedron clus-
ter has been found as well in hard-sphere mixtures [8] (see Fig. 1.4 a) and b)).
The number of these clusters increases sharply when cooling or compressing the
fluid.

Conversely, in systems with non-additive interactions (used for modeling metal-
lic glasses such as the Kob-Anderson mixture 4). In this system, the icosahedral
clusters are almost not present, however other types of LFS are found, among
them are trigonal prismatic, capped trigonal prismatic and bicapped square an-
tiprisms structures [7, 74].

In general, the LFS possess long life times compared with other structures [7,
11, 74, 77]. As consequence of their life times, the LFS domains have been related
to regions with slow dynamics, linking them with the concept of dynamical het-
erogeneity [77].

Finally, variations in fragility can be also related to the nature of the LFS and
the degree of frustration. In particular, in additive systems which tend to be more
fragile, there is a sharp increase of LFS at smaller temperatures. In return, the
domains in non-additive mixtures are smaller in size and their increase with tem-
perature is more modest, this translates to stronger frustration which is related to
less fragile systems [4, 7].

In order to characterize the nature of the LFS, different methodologies are pro-
posed depending on the position of the particles. In Section 2.3 we will discuss in
detail two techniques to identify the LFS: Voronoi Face Analysis [25] and Topo-

4The Kob-Andersen mixture consist of a binary mixture of particles with q = 0.8 and xL =
0.2 interacting through a Lennard-Jones potential. This model is non-additive: the interaction
depends on which species is interacting with which one: σAB = 0.88σAA, εBB = 0.5εAA and
εAB=1.5εAA
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logical Cluster Classification [11].

1.4 Colloidal Glass Models

To finish this Chapter we discuss some of the colloidal glass models used in this
thesis. In general, colloidal systems are perfect candidates to explore the interplay
between the structure and the dynamics on the glassy regime. They present nu-
merous advantages: their relative big sizes allow a more detailed structural char-
acterization in experimental realizations and their physical and chemical proper-
ties can be modified and controlled. Moreover, their interactions can be tuned by
modifying the particle surfaces, by adding electrolytes or polymers, by changing
the temperature or by changing the shape of the particles [78](from spherical, cu-
bical and a wide variety of polyhedral shapes [79, 80]). This in turn has a strong
effect on the local structure which can be used to explore the changes on glassy
dynamics. Another important aspect from colloidal systems, is that due to their
size, quantum effects can be neglected, and thus, the interaction between particles
can be modeled in simple ways.

1.4.1 Hard-Sphere systems

The most simple way of modelling the interactions between colloidal particles is
through a purely repulsive potential: the hard-sphere potential (HS). Two par-
ticles interact repulsively only when the distance between them is equal to the
diameter of the particles. The phase behavior of HS is only controlled by the
packing fraction η which is the ratio between the volume occupied by the par-
ticles and the volume of the system. In 1957 Alder and Wainwright, with the
use of molecular simulations, found that monodisperse hard-spheres exhibit a
phase transition between a fluid phase and a crystal at high packing fractions [81].
This transition was later confirmed in experiments [82], where particles of poly-
methylmethacrylate (PMMA) grafted with a layer of a soft polymer were used
as hard-spheres. Beside the crystal phase at high η they found a glassy regime
and a glass state. This glass state arose because their samples had some degree
of polydispersity and one way to suppress crystallization is through mixtures of
particles with different sizes. From more detailed simulations studies, we now
know that for monodisperse systems below η= 0.49 the fluid is the stable phase.
Then, between 0.49 < η < 0.545 a coexistence region between crystal and liquid is
found and finally at η ≥ 0.545 the crystal becomes the stable phase [81,83]. How-
ever, if crystallization is avoided, at high packing fractions η > 0.49 a supercooled
liquid regime appears [39,84]. In this last region, hard-sphere systems present the
glassy features mentioned in Section 1.1.1. Moreover, this is the region where we
explore the interplay between structure and dynamics in Chapter 6. A schematic
picture of the phase diagram as a function of the packing fraction is shown in
Fig. 1.5.
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Figure 1.5: Schematic hard-spheres phase diagram. The top line shows the phases of the
monodisperse phase diagram. Dashed arrows indicate the arise of the supercooled liquid regime

and the glass phase once the system is polydisperse. Bottom images correspond to confocal
micrographs of hard-sphere like colloidal particles with 5% of polydispersity. Image reproduced

from Ref. [39] G. L. Hunter and E. R. Weeks, Reports on progress in physics, vol. 75, no. 6, p.
066501, 2012 ©IOP Publishing. Reproduced with permission. All rights reserved.

1.4.2 Attractive colloids

In general, the interaction between colloidal particles can be also attractive due
to e.g. van der Waals attractions or depletion interactions. For understanding
this last interaction, we can imagine a system with N colloidal particles mixed
with n smaller non-absorbing polymers, where the interaction of both is only
repulsive as shown in Fig. 1.6. The configurational entropy of the polymer-chains
will be maximized if the big colloidal particles get closer together, leaving more
space for the small chains to move. This minimizes the free energy of the system,
and it seems that the colloidal particles feel an ‘attraction’ in order to get close
together even the colloidal-colloidal interaction is repulsive [78]. This ‘effective
attraction’ is known as depletion interaction and it will depend on the size of the
small particles, better known as depletants, and the solvent.

In experiments, one way of inducing attractions between colloidal particles
is by attaching polymer chains to the surface of the particles. The range of the
attraction depends on the solvent. A poor solvent will induce short-ranged in-
teractions [78]. We can model this interaction through the addition of relatively
short-ranged attractive interactions to hard-sphere-like particles. Which in turn,
results in a richer phase diagram as now there is a gas-liquid coexistence.

In the glassy regime, an interesting phase behavior is found when the range of
the attraction is smaller than approximately 0.1σ, where σ is the diameter of the
particle. At high temperatures and high packing fractions, the particles behave
like hard-spheres as the particles have enough kinetic energy to break the bonds
between the particles. In that regime, the motion of the particles is hindered by
the ‘cage’ made by their neighbors. Collective rearrangements are needed to free
the particles from their cages. At lower temperatures, the short attractive interac-
tion makes that some particles bond with their neighbors. Due to the really short
interaction the bonded particles will get closer to each other, this as consequence
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will free spaces where other particles can move, and the glass starts melting as the
system regains mobility. Finally, if the temperature keeps decreasing, the bonding
gets stronger and also last longer which result in a dynamical arrest.

Figure 1.6: Depletion
interaction. Reprinted by

permission from: Springer
Nature. Colloids and the
Depletion Interaction by

Henk N. W. Lekkerkerker
and Remco Tuinier [78]

©2011.

This phase behavior is reflected in a reentrance in
the phase diagram, at high temperatures the system is
in a glass where the arrest is driven by the repulsion of
the particles and so, is known as repulsive glass. At in-
termediate temperatures, the system melts and enters
into a fluid phase. Finally at low temperatures, it gets
into an arrested phase driven by the attractions of the
particles, also known as ‘attractive glass’ [84–86].

This behavior was first predicted by MCT [87], later
was confirmed through molecular simulations [84–86]
and finally, it has been widely confirmed in colloidal
experiments [46, 88]. In this thesis, we will focus in
short-ranged attractions, however we are going to add
some directionality to the interaction in order to ex-
plore the changes on the reentrant phase diagram and
its effect on the local structure and dynamics.

1.4.3 Patchy colloids

The versatility of colloidal particles is reflected in the
possibility of modifying and precisely controlling the interaction between the
particles. One way of doing this is to modify the particle surface such that the
interparticle interaction becomes anisotropic, these particles are known as patchy
particles [89]. Although in principle, the shape of the particles can also be modi-
fied, in this thesis we will focus on spherical patchy particles. In short, a patchy
particle can be a spherical particle decorated with n attractive spots in its surface,
such that the particles will only interact if their attractive regions are face to face.
The directionality of the interactions results in particles with controlled valence
and enables to craft materials with specific orientation constrains.

Figure 1.7: Patchy Particle.

In experiments, spherical colloids can be coated
with DNA strands which will bind only with the com-
plementary strand, creating the desired directionality
effect [89]. Other type of patchy particles is through
particles with complementary shapes, called faceted
patchy particles, DNA strands can be also used to de-
form liquid droplets to this end [90]. In simulations,
we can model patchy particles as hard-sphere parti-
cles with n attractive points modeled by square-wells
as can be seen in Fig 1.7. The phase behavior of patchy-particle systems will
depend on the size of the attractive regions, the number of them and their loca-
tion [89, 91, 92]. Remarkably, the ability of controlling the valence of this type of
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particles that allow control over the phase diagram. For example, by decreasing
the valence, the region of the gas-liquid coexistence is decreased [92]. The liquid
phase gets more stable, as at low temperatures there can be patchy-particle sys-
tems that can form a fully-bonded fluid, which is more favorable than the crystal
structure [91]. This in turn allows the system to access to arrested phases at low
temperatures avoiding crystallization, making them perfect candidates to explore
glassy dynamics.

We will discuss in more detail this type of colloidal particles in Chapter 3, 4
and 5 where we study in detail the interplay between structure and the different
types of dynamics in glassy patchy particles.
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Chapter 2
Methodology

In this chapter we will introduce the main tool used in this thesis: molecular
simulations and in particular Event-Driven Molecular Dynamics.

Since the first results obtained from molecular simulations that predicted a
fluid-solid transition in a hard-sphere system [81], the use of molecular simula-
tions has expanded into a wide variety of fields, and has become a vital tool in
soft matter and colloidal science.

In general, we can divide molecular simulations into two different approaches:
Monte Carlo (MC) simulations and Molecular Dynamics (MD). Typically, the goal
of both methods is to obtain macroscopic observables from averages of micro-
scopic quantities of the system, MC is based on ensemble averages and MD on
temporal averages. In the thermodynamic limit these two averages are equiva-
lent, according to the ergodic hypothesis.

2.1 Molecular Dynamics

The main idea of Molecular Dynamics (MD) is to obtain the trajectories of all
particles by solving their equations of motion. The movement of the particles is
controlled by their interaction potential.

Let us consider a system in the canonical ensemble where the number of par-
ticles N , the volume V and the temperature T are conserved. If the interaction
potential is continuous and it is pair-wise i.e. U =

∑N
ij uij , with uij the interaction

potential between particle i and j. The forces between the particles are obtained
from the gradient of the interaction potential F = −∇U . Once the forces are com-
puted, the following step is to integrate Newton’s equations of motion. To this
end, different algorithms can be applied, which are based on Taylor expansions
of the position and velocity of each particle in small time steps ∆t. Examples of
them are: the Verlet algorithm, the Leap-Frog algorithm and the Velocity-Verlet
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algorithm. In order to have a fixed temperature, the system can be coupled to a
thermostat. Repeating this process in time allows us to have access to the posi-
tion and velocity of each particle at any moment in time. Finally, a macroscopic
observable is obtained from the temporal averages derived from the trajectories
of the particles. For more information about MD we refer the reader to Ref. [93]
and Ref. [94].

The picture changes if the derivative of the interaction potential is discontin-
uous, since the forces cannot be obtained in the same way. Typical examples of
such interactions are step potentials such as the hard-sphere and square-well po-
tentials, that will be used in this thesis. For these type of systems, we require a dif-
ferent type of molecular dynamics, typically referred to as Event-Driven Molecu-
lar Dynamics (EDMD).

2.1.1 Event Driven Molecular Dynamics

The approach taken by EDMD is different from the continuous version: here the
main idea is that the trajectories of the particles are obtained by solving collisions
between pairs of particles. As its name suggest, EDMD is focused on resolving
discrete events at specific times. The system is evolved based on the ordered
timing of the events, which can be e.g. collision events, measurement events or
cell events.

In general, the first step in the EDMD algorithm is to calculate all the event
times for each particle. With these times a full time schedule is build, where all
events are ordered by their scheduled time. Subsequently, the event with the
earliest time is identified and the system is evolved to that time. If the event is a
collision, the collision is resolved by updating the positions and velocities of the
particles involved and new events for the two colliding particles are scheduled.
Finally, the next event is identified and the process is repeated.

To better clarify the EDMD algorithm we will discuss in more detail its main
points.

Collision Events

In the case of monodisperse hard spheres, the particles do not interact until the
distance between two particles is equal to their diameter. In that precise mo-
ment they feel an infinite repulsion, resulting in an elastic collision. Outside of
these collision events, the particles move with constant velocity. Thus, in order to
obtain collision times we can consider two particles i and j with their initial posi-
tions at ri(j) and velocities vi(j). These particles collide when the distance between
them is equal to their diameter σ:

|rij − vijτ | = σ, (2.1)
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where rij is the distance between i and j at the original position and vij their rel-
ative velocity. At time τ the particles will collide, this time is obtained by solving
Eq. 2.1:

τ =
−bij −

√
b2ij − v2

ij(r
2
ij − σ2)

v2
ij

, (2.2)

where bij = rij · vij . A collision will take place when bij < 0 and the discriminant
of the root is positive. By imposing conservation of both momentum and energy,
we can show that the velocities after the collision are:

∆vi = −∆vj = −bij.
σ2

rij. (2.3)

Once a collision is resolved, the velocities of the particles i and j are updated.
Any future scheduled collisions of both particles are not longer valid and hence,
must be deleted from the schedule. Additionally, new collision times for each
particle are calculated and scheduled.

The picture gets more complex in the square-well case 1. In this case, in addi-
tion to the repulsive interaction there is an attractive one. In particular, two par-
ticles interact attractively when the distance between the particles is σa = σ + rc,
where rc is the range of the potential. When two particles interact attractively we
can consider this event as an ‘attractive’ collision. In other words, we again pre-
dict the associated collision time using Eq. 2.2, and update the particle velocities
by considering conservation of energy and momentum. Depending on the con-
ditions of bij and the distance between the particles we can distinguish between
attractive and repulsive collisions.

Cell Events

In order to facilitate the search of the collision events, the system is divided into a
grid of cells with an edge length slightly larger than the diameter of the particles.
For each cell, we keep track of the particles that are currently inside it, and for
each particle we keep track of the cell it is currently in. To have a record of the
particles that belong to the same cell, linked lists are used. In these type of struc-
tures each element points to the next, for example if a cell contains the particles 23
and 12, a pointer from particle 23 will point to the particle 12 and vice versa. As
the system evolves the particles can cross the cells, we define this as a cell event.
The time when the particles will change cell is calculated and the cell event is also
schedule. Once a cell event happens, the linked lists of the old and the new cell
are updated and new collisions are schedule with the new neighbors.

1The square-well potential is:

Uij =





∞ rij=σ

−ε σ > rij ≤ σ + rc

0 rij > σ + rc,

(2.4)

where rc is the interaction range and ε the strength of the attraction.
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Scheduling Events

The heart of EDMD resides in the method used for scheduling the events. In par-
ticular, it should be flexible and efficient for adding and deleting possible events,
while ensuring that all events stay in chronological order. To this end, the fu-
ture collisions are stored in a binary tree structure also known as "event tree".
These type of structures are similar to linked lists however the main difference
is that now each node can be connected to up to two nodes as we move down
the tree. Each node contains information about the event: the particles involved,
the type of event (collision, cell crossing or measuring event) and the time. The
central node (parent node) points to a left node which corresponds to an event
scheduled to occur before the parent node, and to a right node which is an event
scheduled to occur after the parent. By adhering to this structure in the entire
tree, the first event can always be found by starting at the top of the tree, and
following the left nodes until encountering a node with no left child. An example
of an event tree is shown in Fig. 2.1.

Once a collision between particle i and j happens or a cell crossing, the tree
has to be modified. The future scheduled collisions involving i and j are not valid
anymore and the nodes containing these collisions have to be deleted. When
deleting these events, any child nodes of these events have to be linked back
into the tree, maintaining the overall ordering. Additionally, the new calculated
collisions must be added to the tree. To make easier to delete all events linked to
a specific particle, each node is linked to two circular lists, one per particle (i and
j) if the event is a collision. The circular list of i correspond to a list connecting
all the nodes containing the events where particle i is involved as the fist particle.
Similarly, the circular list of j links all events where j is the second particle. In
the case of a cell event of particle j, both circular lists are connected to j. Using
this approach, any event involving a particle j can be found by traversing two
circular linked lists: one corresponding to the events where j is the first particle
involved in the collision and the other list where j is the second particle. Both of
these lists will be connected to the node corresponding to the cell event as shown
in the bottom of Fig. 2.1.

Algorithm

In general, EDMD follows the following steps:

1. Initialize the positions and velocities of the particles.
2. Assign to each particle a cell based on their position.
3. Calculate the next event times. As an advantage of the cell list, the possible

collisions are only with the particles in the neighboring cells.
4. Find the next event in time.
5. If the event is a collision evolve the system to that time and calculate the

new velocities after collision. If the event is a measuring event, update the
positions of all particles to that time and perform any necessary calculations
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Figure 2.1: Example of an event tree. Each event contains the information of the event time, the
particles involved and the information of the linked lists. The left child of each event (blue

arrow) corresponds to an event in a previous time from the parent. Contrary, the right child
(purple arrow) corresponds to an event on the future of the parent event. Orange events

correspond to collision events, green events to cell events and purple events to thermostat
events. In the bottom of the figure we show an example of the linked lists of each particle. The
cell event connects the two linked lists, that correspond to the list where the particle is the first

and the second particle involved in the collision respectively.

for the measurement.
6. Delete the nodes in the event tree of the particles involved in the event if it

was a collision or a cell event and relink the remaining nodes.
7. Calculate the new events for the particles involved in the event, and link

them into the event tree.
8. Go to step 4.
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Thermostat

As in continuous MD, in EDMD we can also control the temperature through a
thermostat. Due to the nature of the algorithm, the most direct way of implement-
ing a thermostat is through the Andersen thermostat. This approach corresponds
to reassigning velocities according to the Maxwell-Boltzmann distribution of the
desired temperature to a random selection of particles. This process is done every
fixed amount of time, and thus, it can be scheduled in the event tree as another
type of event.

Initial Configurations

In this thesis we deal with systems at high packing fractions. In order to avoid
overlaps between particles, the initial configuration must be constructed care-
fully.

In order to obtain random high-packing fraction configurations we use a hard-
sphere EDMD in which the particles grow over time. In this type of EDMD, we
start with N small spheres of diameter σo randomly located in a box of volume
V . We then slowly increase the size of the particles until we arrive at the diam-
eter we are interested in. As in the hard-sphere case two particles i and j will
collide repulsively when the distance between them is equal to σij = (σi + σj)/2,
where σi(j) corresponds to the diameter of particle i(j). However for growing the
particles now σi(j) will depend on time as: σ(t)=σo + ∆σt, where σo is the initial
diameter and ∆σ the growing rate. By taking this growing into account the col-
lision equations automatically include the particle growth when calculating the
collision times.

With this method, we can ensure that the initial configurations will not over-
lap and we can achieve sufficiently high packing fractions for the purpose of the
research in this thesis.

Patchy Particles

As we mention in Chapter 1, patchy particles can be modeled as hard-sphere
particles with n attractive points on their surface, where the attractive interaction
is through a square well. In this case, the particles interact attractively depending
on the orientation between two particles. This fact significantly complicates the
calculation, as it is no longer possible to predict collision times analytically.

To address this problem, we make use of numerical root-finding algorithms to
predict collision times between patches. In order to clarify this point, lets revisit
the hard-sphere case. One way of predicting a hard-sphere collision is by consid-
ering that a collision happens when a function fij is 0, where fij corresponds to
fij = |ri − rj| − σ2. Hence, the roots of fij will give us the collision times. In the
patchy case, we have a function fij(rij,Ωi,Ωj, t) that depends of the orientations
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and the positions of each particle. The collision times will be the roots of this
function. To keep the simulation efficient, we numerically search for roots only
when there is a suspected collision. In other words, first we can find analytically
the time where the two particles will be within the interaction range, following
the same procedure as in the hard-sphere and the square-well cases. Then, by
means of root-finding algorithms we find the zeros of fij . More details on the
process of dealing with anisotropic interactions can be found in Ref. [91, 95].

2.2 Monte Carlo

The Monte Carlo (MC) approach takes a different route from MD. Monte Carlo
simulations are based on the notion of statistical ensembles and their goal is to
sample configurations in phase space according to a probability distribution. An
observable A can be calculated as:

〈A〉 =

∫
dpNdrNA(rN ,pN)P(rN ,pN)∫

dpNdrNP(rN ,pN)
, (2.5)

where P(rN ,pN ) is the probability of a state with rN positions and pN velocities.
In the canonical ensemble, the corresponding probability is the Boltzmann fac-
tor P(rN ,pN) = exp [−βU ], where U is the energy of the system and β = 1/kBT
where kB is the Boltzmann constant. If the observable A is independent of the
momentum, we can integrate out the momentum integral and reduce Eq. 2.5 as:

〈A〉 =

∫
drNA(rN) exp(−βU)∫
drN exp (−βU)

, (2.6)

One way to evaluate Eq. 2.6 is through the Metropolis Monte Carlo algorithm.
The main idea is to sample configurations according to the Boltzmann factor. In
its most basic form, the Metropolis algorithm follows the next steps:

1. Start from an initial configuration.
2. Calculate the energy of the system Uo.
3. Choose a random particle i.
4. Move the particle i a small distance ∆r.
5. Calculate the new energy Un after the movement.
6. Accept the movement if a random number Ranf between [0, 1] is Ranf <

exp [−β(Un − Uo)]. If the movement is rejected the particle goes back to its
initial position.

7. Go to step 3.

An important difference between MC and MD is that the former only has
access to variables which depend only on the positions, i.e. static observables.
In contrast, MD follows the trajectories of the particles over time, and hence also
dynamical observables can be calculated, such as the mean squared displacement
and the intermediate scattering function.
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2.3 Characterizing LFS

In this thesis we will focus on the role of the structure in glassy dynamics. As
we discussed in Section 1.3.2 some locally favored structures (LFS) arise once the
system enters into the glassy regime. To finish this Chapter we will briefly discuss
some of the techniques to characterize the nature of the LFS.

There are different ways of characterizing the order and symmetry of the local
favored structures. The core of all the characterizations is to analyze the local
environment of a particle, i.e. to find the geometrical arrangement of the first
shell of neighbors around a particle. We will focus on two of the main techniques
to characterize the LFS. Both of them are based on Voronoi constructions.

Voronoi Face Analysis

One of the first tools introduced to identify the geometry of the LFS is through
the construction of Voronoi polyhedra [25]. Starting from a Euclidean plane with
pn random points on it, we can divide the space into regions that surround each
pn, such that the distance between any q point inside the region and the central pn
is minimized. These will lead to divide the plane into polygons, where the shared
edges of the polygons are all the points that are equidistant to two neighbor pn
points and the vertex the equidistant point of three pn points [96]. In Fig. 2.2 we
show an illustrative example of a Voronoi construction in two dimensions. This
construction can be easily extended to polyhedra in 3 dimensions.

Figure 2.2: Schematic diagram of a Voronoi
construction in 2 dimensions.

Each particle will represent the cen-
tral point pn of a Voronoi polyhe-
dron, and the structure of its local
environment will be captured by the
number of faces of the polyhedron
and its geometry. The information
of the polyhedron can be written as
a vector (n3, n4, n5, n6, · · · , ni) each ni
entry corresponds to the number of
facets with i edges. Icosahedral clus-
ters are then characterized by a vector
(0,0,12,0) which means that is formed
by 12 faces with 5 edges each (12 pen-
tagonal faces), capped trigonal prism
clusters corresponds to (0,3,6,0) and
twisted bicapped square antiprims to
(0,2,8,0), among others [25].

Topological Cluster Classification

The Topological Cluster Classification (TCC) allows us to have a detailed char-
acterization of the exact nature of the LFS. It is based on a modified Voronoi con-
struction. Its main goal is to detect minimum energy clusters, which correspond
to the ones that minimize the potential energy of a certain number of particles,

26



Chapter 2. Methodology 2.3. Characterizing LFS

taking into account different models and interaction potentials [11].

First of all, the algorithm identifies the neighbors of the particles through a
modified Voronoi construction. In the original Voronoi Face Analysis two parti-
cles are considered neighbors if they share a face, however thermal fluctuations
can lead to the inclusion of neighbors that would tipically be considered part of
the second neighbor shell. To fix this problem, two particles are only considered
neighbors if they share a face and if the line that joins the two particles passes
through the shared face. Additionally, a parameter is introduced which controls
the conditions under which four particles, located in a roughly planar geome-
tries, are considered to be connected in a ring of four, rather than two rings of
three. For example, in an unmodified Voronoi construction, if four particles are
located on the vertices of a square, the pairs of particles on opposite corner are
not bonded and they form a 4-member ring. However, if the square gets slightly
distorted to a rhombus two of the opposite corners are considered bonded and
two 3-member rings are created. The modified Voronoi construction used in the
TCC uses a tuning parameter fc to allow a finite distortion of this ring before the
additional bond is made. When fc = 1 the neighbor definition of the unmodified
Voronoi construction is recovered, and fc < 1 allows a larger distortion. In par-
ticular, TCC with fc=0.82 performs well for capturing icosahedral clusters [11].

In general, the TCC algorithm is composed of the following steps:

• Identify the neighbors of each particles based on the modified Voronoi con-
struction.

• Search for the shortest rings from 3 to 5 particles (called sp3, sp4 and sp5).

• Find ‘basic clusters’ which consist of adding one particle on top of one of
the simple ring clusters or two particles, one on top and the other below the
ring.

• Finally, more complex clusters are found as a combination of the basic ones,
consisting of clusters between 5 to 13 particles. In particular, these complex
clusters correspond to the minimum energy structure for one of the models
(Morse potential2, Wahnström model, Kob-Andersen model and Dzugutov
potential3).

The complete list of the clusters identified by TCC can be found in Ref. [11].
In general, TCC performs well for capturing a wide variety of clusters. And in
particular, in hard-sphere systems and the repulsive Wahnström it detects an in-
crease of icosahedral clusters (named as 13A) and defective icosahedral cluster
(named 10A) when these systems are undercooled [98].

2Morse potential is UM (r)=εM expρ0(σ−r)(expρ0(σ−r)−2), where εM is the depth of the poten-
tial, σ the diameter of the particles and ρ0 the range of the potentail.

3The Dzugutov potential of monodisperse particles is: UD = a1(rm−1 − 1) exp[b1/(r − c1)] +
a2 exp[b2/(r − c2), where a1, b1, c1, a2, b2 are fitting parameters so that the repulsive part of the
potential coincides with the Lennard-Jones potential [97]
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Figure 2.3: Typical radial distribution function of a diluted liquid.

2.3.1 Choosing the neighbors

In both of the previous techniques to characterize the LFS, it is of great importance
the way the neighbors of each particle are obtained. Here, we will briefly discuss
three different approaches that are used to define this neighbors.

Cutoff radius

The most straightforward way of obtaining the neighbors of a particle is by defin-
ing a cut-off radius rc. A particle j is then considered neighbor of particle i when
|ri − rj| < rc, where ri(j) is the position of particle i(j). The choice of rc has to
be adapted to the conditions of the system. The most commonly used way of
choosing rc is through the calculation of the radial distribution function (RDF).
In short, the RDF give us the probability of finding a particle at a distance r from
a given particle. A typical RDF of a liquid is shown in Fig. 2.3. Each peak in the
RDF indicates a distance from a central particle where it is more likely to find a
particle. The first peak of the RDF is found near r ' σ, where σ is the diameter of
the particle. In order to take into account only the particles in the first coordina-
tion shell, rc can be taken as the distance corresponding to the first minimum of
the RDF. However, this can lead to an underestimation of neighbors, as the first
peak in the RDF typically has not fully decayed to 0 at this point.

Voronoi Construction

One way of improving the choice of the neighbors is through the Voronoi con-
struction (VC). As we mentioned before, in the VC we build a polyhedron for
each of the particles, all the points inside the polyhedron are closer to the position
of the particle than to the other particles. The faces of the polyhedron correspond
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to the points where the distance between those points and two neighboring parti-
cles is equal (see Fig. 2.2 for a two-dimension example of VC). In the original VC
two particles are considered neighbors when their polyhedra share one of their
faces. The advantage of VC is that it does not need of a cut-off radius, however
it is sensitive to thermal fluctuations that can lead to an overestimation of the
neighbors [99]. Moreover, VC is a computationally expensive method. Modifica-
tion to VC can be made in order to tune when particles are considered neighbors.
For example, the Topological Cluster Classification algorithm [11], which adds
conditions for two particles to be considered neighbors.

Solid-angle based nearest-neighbor analysis

Finally, a method that avoids the need of defining a cutoff and that is computa-
tionally less expensive than VC is called solid-angle based nearest-neighbor anal-
ysis (SANN). In order to obtain the list ofm neighbors of a particle i it determines
a cutoff distance Ri per particle. The heart of SANN lies in the way of obtaining
Ri. It relies on an approximate Voronoi construction which uses solid angles to
estimate the smallestm such that the set of them nearest particles are sufficient to
surround the particle [100]. The main advantage of SANN is that it is parameter-
free and scale-free. Moreover, it is less computationally expensive compared to
VF.
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Chapter 3
Patchy Particles: Translational
dynamics and structure.

This chapter is based on the publication:

S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, "Slowing down
supercooled liquids by manipulating their local structure", Soft Matter, vol. 15, no.
48, pp. 9886-9893, 2019. [14].

3.1 Introduction

One of the points of debate in glasses is the role played by local structure in
the slowing down of the dynamics. As we have discussed in section 1.3.1, from
Frank’s idea of icosahedral clusters [5] as a possible way to arrange 12 particles
around a central one, to the actual quantification of specific clusters in various
supercooled liquids, there is a growing body of evidence that points that glassy
dynamics are accompanied by the emergence of long-lived locally favored struc-
tures [4, 6, 11, 101–106]. However, the exact role of these structures is still not
completely clear, and these locally favored structures are mainly found a posteri-
ori, i.e. there are characterized after the system is equilibrated without any initial
control on them. Science in general must go one step further, and the logical
question in here to answer is: how to control these local structures?. Moreover,
being capable of controlling them, will approach us to a better understanding of
their role in the dynamical arrest and ultimately this gives a way of controlling
dynamics.

With the use of molecular simulations the systems can be biased towards the
formation of specific structures [107]. This is useful to better understand the roles
of specific symmetries. However, this biasing is mainly a mathematical tool that
not necessarily is reproducible in experiments. Hence, the main challenge is to
use a model that by tuning its interactions we can manipulate the local structure.
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Based on the fact that exotic crystal and quasicrystal phases can be templated
by using directional interactions [108], we can extend their use to supercooled
liquids to disrupt and control the local structure. Imposing preferred directions
give us a route to enhance clusters with preferred symmetries.

Directionality can be achieved in different ways, either by changing the shape
of the particles or by changing their interaction. Colloidal particles with anisotropic
shapes are a perfect example of the former case. This type of colloids has been ex-
tensively synthesized in experiments [80,109,110]. The latter case is implemented
by using particles that by definition interact in a directional fashion. This is the
case of patchy particles that have specific attractive regions in their surface (see
Section 1.4.3). Hence, the way the particles interact is driven by the location of
this directional regions. In this chapter and in the followings, we will focus on
the use of patchy particles as building blocks for supercooled liquids.

The experimental availability of patchy colloidal particles has grown notably
in recent years [79, 89, 111–115]. The directionality of these particles provides
a precise control of the their valence, and as consequence they have been used
to facilitate the self-assembly of open crystal structures [108, 116] and (at rela-
tively low densities) as models for strong network-forming glasses [91, 114, 117].
Furthermore their directionality makes them a perfect candidate to control and
manipulate the local structure of supercooled liquids.

Moreover, as the interaction of this model can be tuned to short range inter-
actions, makes it a good candidate to explore the effect of directional interactions
in the crossover between attractive and repulsive glass by changing the tempera-
ture. As it has been explained in Section 1.4.2, this crossover has been extensively
studied in short range isotropic interactions, though directionality in this sense
has not yet been explored.

Here, we make use of patchy particles to control the local structure of super-
cooled liquids and to characterize in detail the effect of changing the character-
istics of the patches on the local environment and on the global dynamics. We
confirm the close relation between the icosahedral clusters and the dynamical
slowdown by reinforcing this type of cluster in our simulations.

In this chapter, we will first cover the general methodology of the patchy-
particle simulations and the chosen model system. Next, we show in detail the
tools we use for analyzing patchy particles. Finally, we show the dynamical and
structural characterization of binary systems of patchy particles with different
number of patches, location and sizes.
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3.2 Model and Methodology

3.2.1 Kern-Frenkel Model

In order to model the patchy interactions we use the Kern-Frenkel model [10].
This model consists of hard-sphere particles decorated with n attractive patches
on their surface. The parameters to control are the characteristics of the patches:
their number n, their location and their size.

In the Kern-Frenkel model, the particles interact attractively when the vector
that joins the center of two particles passes through a patch in each of the particles
as shown in Fig. 3.1 where the red line represents this vector. And repulsively
when the distance between the particles is equal to the diameter of the particle σ.
The attractive interaction is modeled as a directional square-well potential, hence
the Kern-Frenkel interaction potential is as it follows:

Uij(rij) = UHS
ij (rij) + U SW

ij (rij)f(rij, n̂α, n̂β), (3.1)

where rij = |rij| is the center-to-center distance between particles i and j. Here,
UHS
ij is the hard-sphere potential:

UHS
ij =

{
∞ rij =σij

0 rij > σij,
(3.2)

with σij = (σi + σj)/2 the minimum distance between two particles, and σi the
diameter of particle i. Additionally, U SW

ij is a square-well potential, given by

U SW
ij =

{
−ε rij ≤ σij + rc

0 rij > σij + rc,
(3.3)

where rc is the interaction range and ε the strength of the attraction. Finally,
f(r̂ij, n̂α, n̂β) specifies the directionality of the interactions:

f(rij, n̂α, n̂β) =





1

{
n̂α · r̂ij < cos θ and n̂β · r̂ji < cos θ,

for any two patches α and β

0

(3.4)

where n̂α corresponds to a unit vector that points to patch α on particle i, and
r̂ij = rij/rij . The angle θ controls the size of the patches and is defined as the
angle between the vectors pointing from the center of the particle at the center of
the patch and at its edge, as it is shown in Fig. 3.1. Furthermore, we can define
the surface percentage covered χ by the patches as: χ=n(1 − cosθ)/2. Note that
this expression works as long as the patches do not overlap. Above that limit,
numerical integration is required to calculate χ.

Here, we use a modified Kern-Frenkel model where each pair of particles can
form only one bond. This distinction is only important in the regime where the
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patches overlap. In that case, even if two or more patches overlap the particles
can only form strictly one bond. Hence the potential energy between those two
particles will be−ε. This condition lets us interpolate between two extreme cases:
when the particle is completely covered by the patches, i.e. χ=100% the interac-
tion will directly map into a square-well and the interaction will correspond to a
hard-sphere potential when χ=0%.

Figure 3.1: Patchy particles representation, the
red line corresponds to the vector that joins the

center of mass of both particles. The angle θ
controls the size of the patch.

In order to explore the effect of the
patch geometry in detail we explore
systems with 3 to 20 patches. In prin-
ciple, the patches can be located in any
place of the particle’s surface, so there
is an infinite number of possibilities
to arrange the patches in the surface.
An intuitive way of arranging them
is to locate the n patches uniformly
distributed over the surface. This is
achieved by locating them such that
the minimum distance between any
two patches on the surface is maxi-
mized. The solution of this problem is
sometimes referred as spherical codes
[118]. Specific values of n have triv-
ial solutions corresponding to place
the patches in the vertices of platonic
solids (n = 4, n = 6, n = 8, n = 12 and
n=20).

In Fig. 3.2 we show some of the cases we studied, we add the name of the
corresponding platonic solid for the pertinent cases, the other ones have a nu-
merical solution. Note that for 11 and 12 patches, this results in patches placed
on the vertices of an icosahedron, where for 11 patches there is one vertex omit-
ted. Although this selection of patch geometries is somehow arbitrary, it ensures
an even coverage of the particle surface with patches, and makes sure patches
only overlap when a very large fraction of the surface is covered. In addition this
type of arrangement is likely easier to achieve in experiments [119,120]. To have a
broader picture of the effect of icosahedral patch placement, we also simulate one
alternative geometry for particles with 10 patches, where we follow the geometry
of the 12-patch case, but omit two opposite vertices. We refer to this geometry as
10ico.

In order to suppress crystallization, a common practice is to simulate mixtures
of particles with different sizes. Here, we simulate a binary mixture of Kern-
Frenkel particles of two sizes, with the size ratio given by q = σS/σL = 0.833,
where σL(S) denotes the size of the large (small) spheres. We fix the interaction
range rc = 1.031σij , where σij is the contact distance between particles i and j.
This interaction range was chosen to be consistent with the square-well interac-
tion in Ref. [86], which provides us with a reference for the behavior of the system
in the limit χ → 100%. At high packing fractions, square-well systems with this
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n =4 n =6 n =7 n =8 n =10n =5 n =9n =3

n =13n =12 n =14 n =18 n =20n =11 n =15 n =16 n =17

n =10ico
tetrahedron octahedron

dodecahedronicosahedron

square 
antiprism

Figure 3.2: Illustration of the simulation model. The patch placements correspond to the
positions that maximize the minimum distance between two patches. For some cases the patch

placement corresponds to the vertices of platonic solids, as indicated. Note that the 10ico, 11, and
12-patch geometries correspond to icosahedra with two, one, and zero vertices missing.

size ratio and range interaction show a clear reentrant behavior in the phase dia-
gram.

3.2.2 Simulation

To simulate the patchy particles, we use event-driven molecular dynamics (EDMD)
simulations (as explained in Chapter 2) [91, 94, 95] with periodic boundary con-
ditions. In each system, we fix the number of particles N = 700, the composition
xL = 0.5, and the packing fraction η = 0.58. At this packing fraction, the square-
well limit of our system displays a clear reentrance in the dynamics as a function
of temperature [86]. The systems were equilibrated at fixed temperature for at
least 104τ , where τ =

√
mσ2

L/kBT is our time unit, T is the temperature, m is the
mass of a particle and kB is Boltzmann’s constant. The constant temperature is
achieved by using a thermostat, which randomizes the velocities of a small per-
centage of particles with velocities corresponding to the Boltzmann distribution
at the specific temperature kBT/ε every ∆t time.

After equilibrating the system at constant temperature, we then analyze the
structure and dynamics of the system in simulations at fixed energy. We simulate
the systems with temperatures ranging from kBT/ε= 0.3 to kBT/ε= 2.0. In order
to have a clear picture of the effect of the directionality we varied the covered
percentage by the patches χ from 0% to 100% as shown in Fig. 3.3.

3.2.3 Analysis

Here, we will give a general description of some of the tools for the analysis of
colloidal systems used in this Chapter and in the followings.
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Figure 3.3: Illustration of the simulation model. The surface covered by the particles increases as
the size of the patches.

3.2.3.1 Dynamics

To explore dynamics, we measure the dimensionless diffusion coefficient Dτ/σ2
L,

which is related to the mean square displacement by Einstein diffusion equation
as:

Dτ/σ2
L = lim

t→∞
1

6Nτ

〈
N∑

j=1

[rj(t)− rj(0)]2
〉
, (3.5)

where N is the number of particles and rj(t) is the position of particle j at time
t. Hence, in order to obtain D, we fit a linear function to the long-time behavior
of the mean square displacement and obtain the diffusion coefficient with the
previous expression.

In order to quantify the structural relaxation of the systems, we measure the
time-dependent intermediate scattering function:

F (k, t) =
〈ρ(−k, t)ρ(k, 0)〉
〈ρ(−k, 0)ρ(k, 0)〉 , (3.6)

where ρ(k, t) is the Fourier transform of the density. From F (k, t), we extract the
relaxation time τ0.3 by fitting its long-time behavior with a stretched exponential:
A exp[−(t/τα)γ], where A, τα and γ are fitting constants. We define the relaxation
time τ0.3 as the time where the correlation decays to 0.3. This last relaxation time
is less sensitive to the fitting and here we used it instead of the most common
α-relaxation. In addition, these two relaxation times can be taken as equivalent.

3.2.3.2 Local Structure

In order to characterize the local structure of the system we use two main tools:
the local bond order parameters and the Topological Cluster Classification algo-
rithm [11].

The local bond order parameters characterize the environment of each par-
ticle, based on its nearest neighbors. We assign to each particle i a bond-order
vector Qlm, which contains the expansion of its local environment in terms of
spherical harmonic functions of order l. The list of neighbors is built based on
a cut-off radius rc = 1.2σL, where all the particles i within a radial distance rc
are counted. We denote the number of neighbors for particle i as Nb(i). For each
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Geometry Q4 Q6 Ŵ4 Ŵ6

FCC 0.19094 0.57451 -0.159317 -0.013161
HCP 0.09722 0.48476 0.134097 -0.012442

Icosahedral 0 0.66332 0 -0.169754

Table 3.1: Values of the local bond order parameters for some of the common lattices.

particle i, Qlm(i) is then given by

Ql,m(i) =
1

Nb(i)

Nb(i)∑

j=1

Ylm(θij, φij), (3.7)

where Ylm(θ, φ) are the spherical harmonics, with m ∈ [−l, l] and θij and φij are
the polar and azimuthal angles of the center-of-mass distance vector rij = rj − ri,
with ri the position vector of particle i.

The invariants used to characterize the local structures are rotationally invari-
ant combinations of Ql,m:

Ql(i) =

[
4π

2l + 1

l∑

m=−l
|Qlm(i)|2

]1/2
, (3.8)

and

Wl(i) =
∑

m1,m2,m3,m1+m2+m3=0

(
l l l
m1 m2 m3

)
Qlm1(i)Qlm2(i)Qlm3(i), (3.9)

where the coefficients in the matrix in Wl corresponds to the Wigner 3j symbols
[121]. The Wl commonly used are the ones normalized as

Ŵl(i) = Wl/

[
m∑

l=−m
|Qlm(i)|2

]3/2
. (3.10)

The FCC (face-centered-cubic), HCP (hexagonal-closed-packing) and icosahe-
dral clusters each correspond to specific values of the bond order parameters that
allow us to distinguish them [122], in Table 3.1 we show this values.

Furthermore, to better characterize the local structure we use the algorithm
Topological Cluster Classification [11] (see Section 2.3).

37



Chapter 3. Patchy Particles: Translations 3.3. Results

3.3 Results

3.3.1 Reentrant behavior

We begin our analysis by investigating the reentrant behavior of the diffusion co-
efficient as a function of temperature in this system with directional interactions.
To this end, we simulate the patchy particles with different coverage going from
purely hard-spheres to square-well at different temperatures (see Fig. 3.3) and
we measure the dimensionless diffusion coefficientDτ/σ2

L. In Fig. 3.4a), we show
this diffusion coefficient for systems with n = 6 patches, as a function of the re-
duced temperature kBT/ε, for a number of different values of the patch coverage
fraction χ. In the limit of high χ, we recover the case of an isotropic square-well
model in the supercooled regime, and find reentrant diffusive behavior [85, 86],
where the system crosses over from an attractive glass to a repulsive one. The
point where a system can be called an attractive glass or a gel is not clear, and it is
point of controversy [123]. Though percolation is a clear sign of a gel at high den-
sities or packing fractions percolation is indistinguishable from the high packed
arrangement of the particles. In here, we use the term attractive glass to name the
arrested state at low temperature. The fact that this phase may be a continua-
tion of the gel phase at low density [123] is not a fundamental distinction for our
results.

Upon decreasing χ, we observe an overall decrease in the diffusion, as shown
in Fig. 3.4a) eventhough it retains its reentrant behavior. This observation has
been seen as well in a recent mean-field solution for a simpler patch geometry
consisting of two patches [124]. The maximum in the diffusion rate shifts to lower
temperatures as χ decreases. This behavior can be understood from the observa-
tion that particles with lower coverage fractions form fewer bonds and lower
temperatures are required before bonding can similarly affect the dynamics.

In the case of 12-patch particles (Fig. 3.4b) we see a similar decrease in diffu-
sivity by decreasing patch size, but the shift in the maximum is less pronounced.
We observe similar trends for the other patch geometries.

3.3.2 Fixing the surface coverage

Once we have explored the effect of the size of the patches on dynamics, we now
focus in the comparison between geometries. Fixing the same size of patches for
different n will lead to a complete different coverage and hence not a clean com-
parison of the geometries. A reasonable way of comparing the patch geometries
is to fix the amount of surface covered by the patches χ. While less surface is cov-
ered it is harder to form bonds. Same surface covered corresponds to compare
the systems with the same second virial coefficient:

B2

BHS
2

= 1− χ2
[
(1 + rc)

3 − 1
]

[exp(1/(kBT/ε))− 1] , (3.11)
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Figure 3.4: Translational diffusion coefficient calculated for a system of 6 patches a) and 12
patches b). Dashed lines correspond to the HS limit and the right triangles to the SW limit.

where B2 corresponds to the second virial coefficient of hard spheres. This ex-
pression is only valid before the patches overlap. Comparing at the same virial
coefficient can be seen as an extension of the law of corresponding states. Indeed
it has been previously shown that B2 is a suitable scaling variable for patchy sys-
tems that can form only one bond [125].

Hence, we compare systems at the same coverage fraction χ = 20% and χ =
40%. Note, that the results shown in here correspond to χ = 40% but similar
results were found in the 20% case. However, the χ = 40% case shows clearer
reentrance at higher temperatures as can be seen in Fig. 3.4, and the changes with
temperature can be better appreciated. The reentrance in χ = 20% is shifted to
lower temperatures which are computationally slower.

In Fig. 3.5a) we plot the diffusion constant as a function of the patch geome-
try for different temperatures. Surprisingly, we see that the diffusion coefficient
is largely independent of the patch geometry, except when the patch geometry
matches icosahedral order (i.e. 10ico, 11 or 12 patches). In the latter case, we
instead see an extreme slowdown of the system at low temperature. Note that
for several patch geometries (13, 14, 18, and 20-patch), we observe crystallization
at the lowest temperatures investigated. These points have been omitted from
Fig. 3.5a). In the inset of Fig. 3.5a) we show the behavior of the two 10-patch
geometries with temperature. The icosahedral placement (n = 10ico) presents
slower dynamics at low temperatures when compared to the 10-patch geometry
obtained from the spherical code (n = 10). This implicates that there is a strong
change in the local structure when the patches match with the icosahedral order.
In the following, we will show only the results of the 10ico geometry, as the other
10-patch geometry essentially follows the trend of all other non-icosahedral patch
placements.

To make a more complete analysis of the dynamics, we measure in each sys-
tem the intermediate scattering function F (k, t), which characterizes the relax-
ation time in the system at different length scales specified by the wave vector
k. In Fig. 3.5b), we plot these correlation functions for temperature kBT/ε= 0.4,
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Figure 3.5: a) Diffusion coefficient as a function of number of patches, at different temperatures,
for patchy particles with a fixed patch coverage fraction χ = 40%. Missing points correspond to
crystallized systems. The inset shows the diffusion coefficient as function of temperature for the

n = 10 and n = 10ico cases. b) Intermediate scattering function of the same systems, for a
wavevector q corresponding to the first peak of the structure factor, at fixed temperature

kBT/ε=0.4. The inset shows the relaxation time τ0.3 as a function of the number of patches.

at the value of k corresponding to the first peak in the structure factor. We ob-
serve an approximate collapse of the correlation functions for most geometries,
while the 10ico, 11, and 12-patch systems are clear outliers which relax much more
slowly. We show this clear slowing down by measuring the relaxation time τ0.3.
We show in the inset of Fig. 3.5b) the behavior of τ0.3 as a function of the number
of patches, where the 10ico, 11, and 12-patch cases clearly show larger relaxation
times, while the other geometries show approximately the same τ0.3.

To confirm that the collapse of correlation functions is independent of the
probing length k, we plot in Fig. 3.6 the relaxation times as a function of k.
Clearly, most systems relax at approximately the same rate, regardless of the
length scale. However, the relaxation dynamics of the 10ico, 11, and 12-patch
particles are much slower, with the 12-patch system being roughly two orders of
magnitude slower. Remarkably, the relaxation time is significantly more affected
by icosahedral patch placement than the diffusion time, which only varies by
about one order of magnitude at the same temperature (red line in Fig. 3.5a). This
suggests a strong breakdown of the Stokes-Einstein relation (SER) [126]. This re-
lation states that translational diffusion coefficient and the viscosity are inversely
proportional: D ∝ 1

ηc
, where ηc is the coefficient of shear viscosity (more infor-

mation about the SER will be given in the next Chapter). At the same time ηc
is proportional to the relaxation time. Most of the glass-formers deep in the su-
percooled liquid experience a break down of the SER. This break down has been
linked to the emergence of structured domains in the supercooled liquid [126].

In addition, the exceptionally slow dynamics of the 12-patch system correlate
with a significantly larger degree of bonding in the system. In Fig. 3.7a), we plot
the number of bonds Nb per particle as a function of temperature for the different
patch geometries, as well as the square-well system. As expected, in the patchy
systems, bond formation is more restrictive than in the square-well system and
hence lower temperatures are required to form an equivalent number of bonds.
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Figure 3.6: Wave vector dependence of the relaxation time τ0.3, at a temperature kBT/ε=0.4.

This is consistent with the overall shift to lower kBT of the dynamical features
seen in Fig. 3.4b) for low coverage fractions. The shapes of the curves are sim-
ilar and it is indeed possible to obtain a master curve, presented in the inset of
Fig. 3.7a), once the temperature is rescaled by the temperature T (Nb = 2) at which
2 bonds per particle are attained. This suggests that the number of bonds scales
trivially with an activation temperature for all geometries. It is now logical to
suspect that the diffusion can be trivially rescaled for all the geometries. Interest-
ingly, the collapse does not occur for the diffusivity, this presented in Fig. 3.7b).
Even so, by comparing the systems with the same number of bonds per particle,
the diffusivity is slowest in the 12-patch case. Hence, the slow down behavior
of the icosahedral geometry does not directly scale as a function of the bonding
pattern indicating non-trivial changes in the local structure.

3.3.3 Local Structure

The previous dynamical results shown compelling proof that icosahedral order
is influencing dynamics. In this section we focus on the exploration of the local
structure. We show a progressive analysis of the structure: from a general per-
spective to quantifying in detail the types and geometries of the clusters in the
systems.

We start our structural analysis by calculating the angular distribution of the
particles with their neighbors. We define the set of neighbors of particle i as the
particles within a distance rij < rc, where rc = 1.03σ , in addition we define the
angle θn=cos (rij · rik) as the angle between two neighbors of particle i. We define
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Figure 3.7: a) Number of bonds per particle as a function of temperature for different patch
geometries, with χ = 40%. SW indicates the square-well system. The inset plot shows the

number of bonds per particle with rescaled temperature T/T (Nb = 2). For each patch geometry,
the temperature is normalized with the temperature at which the system forms an average of

two bonds per particle. b) Diffusion coefficient as a function of rescaled temperature for different
patch geometries.

the angular distribution function as:

f(θ) =
1

N

N∑

i=1

Nb∑

j 6=k
cos(rij · rik), (3.12)

where Nb is the number of neighbors of particle i, and rij(k) the unitary vector
between the central particle i and its neighbor j(k).

In Fig. 3.8 we show the distribution function of some of the geometries studied
at a fixed temperature kBT/ε = 0.4. Once more with the exception of the 12-
patch case, the other geometries present the overall same structural features as
the angular distributions are on top of each other. Note that, the dashed lines in
the figure correspond to the angles found in a perfect icosahedral cluster. The
n = 12-patch case has a sharp increase of neighbors at those specific angles, in
particular at θ=180◦.

In order to have more information about the local structure, we characterize
the value of the BOP for each particle for all our systems. We find that the better
BOP for finding icosahedral clusters are Q6 and Ŵ6 that have non-zero values for
perfect icosahedral, shown in table 3.1, Q6 = 0.663 and Ŵ6 = −0.170. These val-
ues provide a reference point for finding icosahedral structure in the supercooled
liquid. The 12-patch case shows at low temperatures a trend around the corre-
sponding values of the perfect icosahedral cluster. This is not clearly found in the
other cases.

In order to quantify local icosahedrality we define a particle to be embedded
in an icosahedral environment when its Q6 > 0.5 and Ŵ6 < −0.1. Even though
these ‘cut-off limits’ seem to be arbitrary we will show that they globally capture
the number of particles involve in icosahedral clusters. We show in Fig. 3.9 the
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Figure 3.8: Angular distribution function corresponding to different n. Dashed lines correspond
to the angles found in a perfect icosahedra.

number of particles involved in icosahedral environment as a function of temper-
ature for some of the studied geometries. In the inset we show a scatter plot of Q6

and Ŵ6 for the n= 12-patch case, where the red dot correspond to the values of
the perfect icosahedra. At low temperatures the fraction of particles involved in
icosahedral environments sharply increases in the 12-patch case. While the other
geometries behave similarly between them. At high temperatures, the systems
goes towards the repulsive limit reaching icosahedral values corresponding to a
system of hard-spheres.

Both of the previous methodologies are known to be ‘agnostic methods’ for
analyzing the local structure, due to none of them assume any particular local
structure, and they can collect information of any arbitrary order [25]. Neverthe-
less, they are good indicators of the changes on the local structure. To look more
directly for specific local structures, we explored in more detail the changes on
local structure with the Topological Cluster Classification (TCC) algorithm [11].
This algorithm characterizes the local structure in a detailed manner by capturing
different structural motifs or clusters from 3 particles to more complex ones made
from 13 particles.

In this part of the analysis, we look for TCC motifs matching either icosahe-
dral order (13A), defective icosahedral clusters (10B) or crystalline order (face-
centered cubic (FCC), hexagonal close-packing (HCP), or the 9X cluster matching
body-centered cubic (BCC), as they are shown in Fig. 3.10.

As we have shown before, icosahedral clusters occur in great numbers in the
12-patch case. Interestingly, hard-sphere binary systems with size ratio close to
q= 0.833 at high packing fractions stabilize crystal structures belonging to Laves
phases (MgZn2, MgCu2, and MgNi2) [127]. One of the components of these
phases are icosahedral clusters with specific location of small(large) particles. In
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Figure 3.9: Fraction of particles in an icosahedral environment for a fixed temperature of
kBT/ε=0.4. Dashed orange line corresponds to a system of hard-spheres with the same
properties. Inset shows the scatter plot of Q6 and Ŵ6 for the 12-patch case. The red dot

correspond to the values of the perfect icosahedral cluster and the red lines show the limits taken
for defining an icosahedral environment.

Figure 3.10: Illustration of some of the clusters captured by TCC. a) defective icosahedra (10B), b)
icosahedral cluster (13A), c) body-centered cubic (BCC) corresponding to cluster 9X, d)

face-centered cubic cluster (FCC) and e) hexagonal close-packing cluster (HCP).

particular, there are two local environments with an icosahedral topology, both
with a small particle in the center. Hence, it is logical to suspect that in the 12-
patch case crystallization might occur.

In order to ensure that the slowing down on dynamics of the 12− patch is not
related with Laves-phases, we identify local icosahedral environments matching
these crystals. We identify the local “Laves-like” clusters, by counting all icosahe-
dral clusters with a small particle at the center, and an arrangement of large and
small particles in the surrounding shell which matches one of these two environ-
ments.

In Fig. 3.11, we show the fraction of particles that are part of at least one cluster
of each type, for a fixed temperature kBT/ε=0.4 and for all patch geometries. As
expected, for systems where crystallization occurred (14-patch and 18-patch), we
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Figure 3.11: Fraction of particles that are part of local structural motifs with specific symmetries,
as obtained using Topological Cluster Classification [11]. a) Different structural motifs at a fixed
temperature kBT/ε = 0.4. The top panel in a) shows the corresponding relaxation time τ0.3/τ .
Note that the systems with 14 and 18 patches have partially crystallized into an FCC structure.

see large peaks in the populations of “crystal-like” clusters (FCC, BCC, HCP). In
contrast, the other systems show little crystallinity, with the exception of the BCC
motif, which is present in all fluids and does not indicate crystallinity on its own
[11]. Icosahedral order is only observed in significant amounts for the 10ico, 11,
and 12-patch systems (which all match icosahedral symmetry), with the 12-patch
system showing the largest fraction of icosahedral motifs. On top of Fig. 3.11
we show the relaxation time τ0.3, where it follows the same trend as the number
of particles involved in icosahedral clusters. At the same time, these systems
also display a strong drop in BCC ordering. This can be understood from the
observation that the appearance of a structural motif can inhibit the prevalence of
other local structures [128], and hence assist in avoiding crystallization [129,130].
Indeed, in hard-sphere fluids, the five-fold order that is present in icosahedral
clusters strongly anticorrelates with BCC ordering [130]. The fraction of Laves
phase clusters is negligible in all systems (i.e. a few isolated motifs of this type
per configuration), hence the systems are safe of crystallizing in Laves phases at
these conditions.

Now, we show the behavior of the number of icosahedral clusters as a function
of temperature for different patch geometries. In Fig. 3.12a), we show the frac-
tion of particles in icosahedral motifs as a function of temperature. In the limit of
high temperatures (i.e. the hard-sphere limit), we find that a significant fraction
(≈ 12%) of the particles are part of an icosahedral motif. As the temperature de-
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Figure 3.12: a) Fraction of particles in icosahedral clusters as a function of temperature for
different patch numbers. The dashed horizontal line indicates the value in the hard-sphere limit.

b) Corresponding defective icosahedral clusters as a function of temperature.

creases, the number of icosahedral motifs initially decreases in a similar fashion
for all patch geometries. In this regime, the patches essentially act, on average,
as a weaker square well, and aid in the cage-breaking that enforce the reentrant
behavior observed in Fig.3.4. However, at low temperatures, the 10ico, 11, and 12-
patch systems start to display a strong enhancement of local icosahedral order,
reaching values well beyond the hard-sphere level while all other patch geome-
tries continue to further suppress icosahedral motifs. Interestingly, at very low
temperatures, the square-well system also enhances icosahedral order and does
so quite suddenly, possibly hinting at a phase separation [123].

It is important to note that perfect icosahedral cages are not the only structures
enhanced by 10ico, 11, and 12-patch particles. Intuitively, we expect the patchy
interactions to have a positive effect on the concentration of any local structure
which is commensurate with the chosen patch geometry. As such, there are other
local structures with imperfect icosahedral order, such as defective icosahedra,
whose concentration is strongly correlated with the appearance of perfect icosa-
hedral clusters, as it is shown in Fig. 3.12b). As many of these structures incor-
porate the five-fold symmetry associated with the 12-patch geometry, these addi-
tional structures are all likely to contribute to both slowing down the dynamics
suppressing crystallization [24, 107, 131].

3.3.4 Crystallization

For specific patch numbers (n=13, 14, 18, 20), we find crystallization at the lowest
temperatures investigated (kBT/ε . 0.5). Specifically, we find two distinct crystal
structures: a binary CsCl crystal, and a FCC crystal consisting of large particles.
The CsCl structure, which consists of two interspersed simple cubic lattices, only
appears in the system with n = 20 patches. In this structure, each particle has
eight nearest neighbors of the opposite species, arranged on the vertices of a cube.
The emergence of this crystal structure can be understood from the fact that the
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20 patches are arranged on the vertices of a dodecahedron. This arrangement
contains subsets of 8 patches that are arranged perfectly on the vertices of a cube,
and hence this patch arrangement is highly compatible with the CsCl structure.
We only observe the formation of FCC crystals at low temperatures for a few
patch geometries (n=13, 14, 18), all corresponding to a relatively large number of
patches. This structure is stable in the hard-sphere limit, and is evidently further
promoted by the interactions corresponding to these patch geometries.

In order to check whether the other geometries are in their equilibrium phase.
We used an FCC configuration taken from the case n = 18 (which crystallizes
into FCC) as an initial configuration for all the patch geometries. The orientation
of the particles was randomly assigned at the beginning of the simulation. For
the systems where we found crystallization, the simulations with an FCC seed
remain crystalline. In contrast, for the other patch geometries after short time
the systems melt back into a liquid. From this, we conclude that for most patch
geometries, crystallization into the FCC structure is disfavored in the investigated
regime.

3.4 Conclusions

Our results show that, patchy particles display appropriate characteristics to dis-
rupt the local structure. Specifically, we prove that by boosting icosahedral order
the systems go to more arrested states, this reflected in the extreme slowdown
on dynamics at low temperatures. Patchy particles with icosahedral interactions
(n=12, n=11 and n=10ico) enhance this type of ordering.

In both of the arrested regimes, at high and low temperature, icosahedral clus-
ters and its extension the defected icosahedral, both seem to play crucial role in
the arrest. At high temperatures where all the particles behave similarly and their
overall diffusion rate is the same, they all present relatively high values of icosa-
hedral. This backs up the observation dynamical slowdown driven by the rise
of long-lived structures [74, 132]. In the regime of low temperatures, the systems
that show a sharp increase of these structures present a drastic decrease in their
diffusion coefficient. This leads us to assure that icosahedral ordering is one of
the key ingredients for controlling dynamics and moreover they are a tool to go
deeper into the supercooled liquid, either experimentally or in simulations.

Remarkable, the patch geometries that do not match with local icosahedral or-
der do not have a noticeable impact on dynamics. And in those systems, it is not
the location and number of the patches that matter, it is the percentage covered by
the patches that constitutes the leading factor in controlling the dynamics. This
extreme sensitivity of dynamics to local icosahedral structures highlights the im-
portant role these motifs play in the kinetic arrest of disordered systems. More-
over, the inherent incompatibility of icosahedral order with long-ranged crys-
talline order suggests that these systems are also virtually guaranteed to avoid
crystallization.
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Chapter 4
Patchy Particles: Rotational Dynamics

This chapter is based on the publication:

S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, "Rotational and
translational dynamics in dense fluids of patchy particles", The Journal of Chemical
Physics, vol. 152, no. 8, pp. 084501, 2020. [15]

4.1 Introduction

In the previous chapter, we have shown that the addition of directionality to the
interactions can be used to modify the local structure of supercooled liquids and,
as a consequence, their translational dynamics change. Patchy particles have
proven to be a great tool for this purpose. Despite still being spherical in shape,
the patchy particles are inherently anisotropic and impose preferred local particle
arrangements in the system. As the orientation of the particles is now distinguish-
able, they perform both translational and rotational motion and both of these can
be slowed down by the interparticle interactions.

The overall dynamical behavior of glassy systems displays important devia-
tions from the fluid one. These differences are key to understand the physical
mechanism of the dynamical slowdown (see Section 1.1.1). As we have men-
tioned before, one of them is the relaxation time behavior in the glassy regime.
In the fluid regime the relation between this relaxation time and the diffusion
coefficient follows the Stokes-Einstein relation (SER), which states that these two
quantities are inversely proportional D ∝ 1/τT , where D corresponds to the dif-
fusion coefficient and τT to the structural relaxation time. As we have pointed
out before, most of the fluids deep into the supercooled liquid regime present a
break down of the SER [126].

While the SER considers only the translational dynamics, the rotational coun-
terpart is captured by a similar relation called the Stokes-Einstein-Debye (SED)
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relation. Based on the model proposed by Debye [133] concerning the rotational
dynamics of polar molecules, the SED relation states that the rotational diffusion
coefficient is inversely proportional to the viscosity as:

Dr =
kBT

8πηca3
, (4.1)

where Dr corresponds to the rotational diffusion, kB the Boltzmann constant, T
the temperature of the system and a corresponds to the diameter of the particle.

The solution of the Debye rotational diffusion equation for the reorientation of
a molecular dipole give us a relation between the rotational diffusion and the ro-
tational relaxation time [13]. Here, the rotational relaxation time can be extracted
from the long-time decay of a time rotational correlation defined as:

Cl(t) = 〈Pl[u(t) · u(0)]〉 (4.2)

where Pl are the Legendre polynomial of l degree, and u(t) is a unitary vector
which indicates the direction of the dipole moment at time t. Each l will have a
corresponding relaxation time and in general they are related as [40]:

τl
τl+1

=
l + 2

l
. (4.3)

And the relation between the rotational diffusion and the rotational relaxation
time is [13]:

Dr =
1

l(l + 1)τl
, (4.4)

where l is the l-th order of the Legendre polynomial. Therefore, the SED can be
written as:

τlkBT =
8πηca

3

l(l + 1)
. (4.5)

Here we remark that the viscosity is proportional to the structural relaxation
time [126]. Essentially, the SED states that the structural and rotational relaxation
time are proportional τT ∝ τR. As in the case of the SER, for most of the fluids
deep in the supercooled liquid regime and into the glassy regime, the SED re-
lation also tends to break. It is important to note that, in the derivation of both
relations a particle is considered embedded in a viscous fluid and there are no
considerations of the interactions with other particles. In the glassy regime, the
environment of the particles has an enormous effect on its dynamics, such is the
case of the cage effect. Hence, it is not shocking that these relations break down
in the glassy regime.

Eventhough, both relations break, rotations and translations do not necessar-
ily slow down at the same rate and moreover the two relaxations may become ar-
rested at significantly different temperatures or packing fractions [134–136]. The
mechanism of the decoupling between relaxation behaviors is complex and de-
pendent on the interactions and the shape of the particles [137–140]. Moreover,
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the exact method used for probing the rotational dynamics results in different
decoupling [13, 136, 141, 142].

In the case of dense systems of spherical patchy particles, an interesting con-
trast arises. While the translational motion of a particle is hindered both by the
repulsive cores of its neighbors and the attractive bonds it has formed with them,
rotational motion is purely hampered only by the attractive bonds. As a result, it
is natural to expect a decoupling between translational and rotational motion, at
least when the temperature is high enough for the repulsive forces to dominate.
This is in sharp contrast to the glassy behavior of low-valence patchy particles
at low densities, where any dynamical slowdown is essentially dominated by
the time scale at which the bonding network changes, typically leading to strong
glass forming behavior [89, 91, 117, 143, 144].

Here, we examine the interplay between rotational and translational relax-
ation in dense suspensions of patchy particles. We use molecular dynamics sim-
ulations to investigate patchy particles with two distinct patch geometries. The
first favors icosahedral local structures, and hence promotes dynamical slow-
down, while the second promotes an octahedral symmetry, which has little effect
on the dynamics (as it was shown in Chapter 3).

We show that the rotational relaxation behavior is dependent on the geom-
etry of the patches, and hence on the local structure. We also find that for the
systems that enhance icosahedral ordering, the rotational behavior is controlled
by the interplay between the icosahedral formation and the number of bonds.
Additionally, we show that the rotational relaxation decouples from translational
relaxation in nearly all cases. We conclude that while translational dynamics are
controlled by collective effects, the rotational relaxation is purely dependent on
the local structure.

4.2 Model and Methodology

4.2.1 Simulation

To model the patchy particles we use the Kern-Frenkel model [10] (see section 3.2.1).
In order to explore the rotational dynamics with different patch geometries we fo-
cus on systems with two different number of patches: n= 6 and n= 12. For both
cases the location of the patches is such that the minimum distance between any
two patches is maximized, identical to the geometries in Chapter 3. This results
in the patches being located at the vertices of an octahedron and an icosahedron
respectively [118], as shown in Fig. 4.1.

We use Event Driven Molecular Dynamics (EDMD) [91, 94, 95] to simulate
the patchy particles systems (see Chapter 2). As in the previous chapter, all the
systems are binary mixtures of N = 700 particles with size ratio q= σS/σL = 0.83
where σS(L) is the diameter of the large(small) particle and composition xL=0.5.
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n θO θF
6 ' 45◦ ' 54.73◦

12 ' 31.72◦ ' 37.37◦

Table 4.1: Values of the angles where the patches start to overlap θO and the corresponding one
when the total surface is covered θF for the 6-patch and the 12-patch cases.

n =6

n =12

octahedron

icosahedron

Figure 4.1: Patchy particles with n=6 and n=12
patches. Next to each of the cases we show the
polyhedron whose vertices correspond to the

patch locations.

The systems were equilibrated at
constant temperature for at least 104τ ,
where τ is our time unit τ =√
mσ2

L/kBT . After equilibration, we
simulate the dynamics at constant en-
ergy for at least 105τ . We perform our
measurements in this last step.

In this Chapter we will focus on
the effect of the patches in the rota-
tional dynamics in the glassy regime.
For this, we explore in detail different
patch sizes (modulated by the angle θ,
see Fig.3.1). This model, as mentioned
previously, allows us to interpolate be-
tween two limit cases: hard spheres systems when θ=0 and square-well particles
when the total surface is covered by the patches. Here, it is important to note that
the angle where the patches cover the total surface θF and the angle where the
patches start overlapping θO depend on the number of patches n and its location.
In particular, the angle θO has an important effect on the rotational dynamics. In
table 4.1 we show the values of these two angles for both of the geometries used
in this Chapter.

4.2.2 Analysis

In this Chapter, one of the main discussion points is the coupling or decoupling
of the translational and the rotational relaxation times. In order to have a clearer
picture of the translational relaxation behavior of these systems, we measure the
translational relaxation time. To do so, we calculate τ0.3 by fitting a stretched
exponential to the long time behavior of the intermediate scattering function. In
order to clearly distinguish between the rotational relaxation and the translational
relaxation we will denote τ0.3 as τT in this Chapter.
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4.2.2.1 Rotational dynamics

Based on the Debye model, the reorientation of a molecule can be described by
the time dependent correlation function [12]:

Cl(t) =
1

N

N∑

j

Pl (ûj(t) · ûj(0)) (4.6)

where Pl is the Legendre polynomial of l-th degree and û is a fixed unit vector
which rotates along with the particle. In the patchy particle case we define the
unitary vector û as the vector that points to a specific patch in the particle, such
that the dot product û(t) · û(0) is calculated between the initial direction of the
patch and the rotated one after a time t.

Assuming that the reorientation of a particle is due to infinitesimal uncorre-
lated steps, the correlation function for all l degrees decays exponentially and is
directly related with the rotational relaxation time [145, 146]:

Cl(t) = exp [−l(l + 1)t/τl] , (4.7)

where τl is the rotational relaxation corresponding to the l-th degree Legendre
polynomial. Moreover, the correlation can be directly measured from experi-
ments, as C1 can be related to the spectral bandshapes measure in infrarred ab-
sorption and C2 to Raman light scattering [40]. In this Chapter we will denote τR
as the rotational relaxation time corresponding to the second Legendre Polyno-
mial.

It should be noted here that in this study of the rotational correlations, we
deliberately do not account for the symmetry of the particle. The rotational cor-
relation function simply checks whether an average particle has rotated with re-
spect to its original orientation, even if the new orientation has (different) patches
pointing in the same directions as in the original one. This implies we are look-
ing at the ability of the particle to rotate, rather than find a new configuration
that is fully independent of its starting orientation. For example if a particle with
the patches located in the vertex of an octahedron rotates 90◦ around an axis that
passes through any patch it will arrive to a configuration where the patches are
located in the same way of the initial configuration, even if the particle has ro-
tated.

4.3 Results

4.3.1 Translational relaxation time

We begin our study by exploring the translational relaxation behavior for both
geometries and a wide range of temperatures. As was shown in Chapter 3 the
reentrant behavior in the phase diagram of systems with short range interactions
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is retained after the addition of directional interactions (i.e. for patchy particles).
This was reflected in the changes on diffusion coefficient along temperature. Ad-
ditionally, the translational relaxation time is expected to capture as well the reen-
trance. In order to confirm this, we calculate the translational relaxation time
τT (τ0.3) for the two studied geometries and different temperatures.

In Fig. 4.2 we show the structural relaxation time for both geometries. At low
temperatures, the system is in an arrested state driven by the attractions with
their neighbors and thus the relaxation time grows. Upon increasing the temper-
ature, the systems regains fluidity and the value of the relaxation time decreases.
Finally, at higher temperatures the relaxation time increases again due to the ar-
rest of the system driven by repulsions. The dependence of this behavior on the
size of the patch is also captured by the τT : smaller angles which are closer to the
hard-sphere scenario lead to stronger dynamical arrest.
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Figure 4.2: Translational relaxation times τT as a function of kBT/ε for the a) 6-patch and b)
12-patch system.

4.3.2 Rotational Dynamics

We now turn our attention to rotational dynamics. To do so, we calculate the
orientational correlation function (Eq. 4.6). We focus on the second degree cor-
relation C2 which captures the decay of the second Lengendre polynomial. This
correlation is the most commonly used due to the possibility of comparison with
experiments [40, 147]. We show in Fig. 4.3 the decay of C2 found in our patchy
systems. As we mentioned previously, in the Debye approximation these corre-
lations decay exponentially. However, in the patchy-particle case we notice that
the decay is not exponential and it displays different behaviors. One of the main
differences with the Debye approximation is that in there the rotations occur in
small uncorrelated steps and in our systems the rotations get correlated at longer-
scales due to the complexity of the environment of the particles. Moreover, when
a bond is broken large rearrangements in the orientation are expected, which
makes the rotational dynamics strongly dependent on the current orientation of
the particles. This as consequence disrupts the smooth exponential decay. Nev-
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Figure 4.3: Rotational correlation function for the a) 6-patch system and b) 12-patch system.

ertheless, valuable information of the rotational behavior is extracted from this
anomalous decay.

The shape ofC2 shows at least two deviations from the exponential decay. The
first of them is found at small angle θ, the rotational correlation function first de-
cays rapidly, and then after a short time shows a sudden increase. Note that the
same behavior happens on larger θ, but at higher temperatures. We attribute this
behavior to the presence of free spinners: particles which rotate around the same
axis for a long period of time. As the only interactions that affect the rotation of
the particles are attractions by the patches, free spinners occur when the system
forms very few bonds, such that patch-patch collisions are rare, hence the angular
velocity does not change and the particle continues to spin around the same axis.
Once there is a patch interaction, either an attractive or a repulsive collision, the
angular velocity changes and so does the rotation axis. Naturally, this behavior
predominantly happens when either the patches are very small, or the tempera-
ture is high and there are few bonds. On the other hand at lower temperatures or
larger patch size, patch collisions are more common and hence, the particles do
not spin for a long time, loosing rapidly the free-spinners behavior.

In order to ensure that this specific behavior is due to the contribution of free
spinners, we explore in greater detail the time scale of the sudden increase and
the correlation in the ideal gas limit. For the latter, we go back to the definition
of the rotational correlation in the ideal gas limit. Suppose that a patchy particle
rotates around the axis z with an angular velocity ω, in the ideal gas limit there
are no interactions and the value and direction of the angular velocity is con-
stant. The probability of a particle rotating to ωt follows the Maxwell-Boltzmann
distribution. Hence, the rotational correlation at time t will be:

Cl(t) =

(
1

2π

)3/2 ∫
Pl(u(t) · u(0)) exp

[
−|ω|

2

2

]
dΩ (4.8)

By solving this equation for l= 2 and different times we recover the behavior of
the correlation C2 corresponding to free-spinners shown in 4.4 a). At short times
the correlation decays and then it increases to a fixed value.
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Figure 4.4: a) Decay of the rotational correlation according to Eq. 4.8, I and ω are taken as 1. b)
Rotational correlation functions of a system of hard-sphere particles and the 6-patch case with an

opening angle of 10◦ and kBT/ε=0.4. In both cases, the packing fraction is fixed at η = 0.58.

Moreover, we can retrieve a similar result by calculating the rotational corre-
lation in a system with isotropic interactions. To do so, let us define a vector u
pointing a specific direction on each of the particles of a hard-sphere or a square-
well system. We simulate this system at the same conditions as the patchy parti-
cles and we calculate the rotational correlation.

In Fig. 4.4b) we show the decay of C2 of a system of hard spheres. As in the
patchy systems there is a fast decay of the correlation and then a sudden increase
corresponding to the rotation of the free spinners, this is in agreement with the
theoretical approach from Eq. 4.8 shown in Fig. 4.4a). In the same figure we show
one of the patchy systems where the local minimum in the correlation function
is present. The time where the correlation reaches the local minimum indeed
matches with the solution of the free spinners. This confirms our conclusion that
this behavior in the patchy-particle case results from the presence of free spinners
in the system.

The second behavior captured by the decay of the C2 which deviates from
the exponential decay is better appreciated in the 12-patch case (Fig. 4.3b)). For
intermediate values of θ the correlation presents a plateau. This plateau repre-
sents the slowing down of rotational dynamics due to bonds with neighboring
particles. For small angles, bonds are rare, and hence the rotations are unlikely to
be blocked by their neighbors. In contrast, in a regime where the angles are not
overlapping but they are covering a considerable amount of surface, the particles
are likely to have more bonds. Hence, in order to fully decorrelate from the initial
orientation several bonds have to break, leading to a slow down in rotational dy-
namics. Finally this plateau disappears in the regime where the patches overlap.
There, the particles can easily rotate passing from one patch to another with-
out the need of breaking bonds and thus the rotational relaxation time decreases
again. As one might expect, this plateau becomes more pronounced at lower
temperatures, where bonds take longer to break. Additionally, at sufficiently low
temperatures the plateau also arises in the six-patch system, but mostly for large
(non-overlapping) values of θ. As a result of these effects, we observe a reentrant
behavior in the rotational relaxation time as a function of the size of the patch.
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4.3.2.1 Relaxation time as a function of θ

In order to show this reentrance explicitly, we measure the rotational relaxation
time τR. To do so, we fit a stretched exponential, avoiding the regime where
the correlation goes up due to free spinners. We define τR as the time at which
the correlation function decays to a value of 0.3. This definition is taken to be
consistent with the definition of the translational relaxation time and due to the
complex non-exponential decay of the rotational correlation.

In Fig. 4.5 we show the dependence of τR on θ for both systems. The dashed
vertical lines show the overlap angle θO. As mentioned previously, the depen-
dency shows a reentrant behavior, where at intermediate angles the relaxation
time increases due to the formation of a plateau in the correlation function and at
larger angles the rotational relaxation decreases.
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Figure 4.5: Rotational relaxation times τR as a function of the patch opening angle of the system
a) n = 6 and b) n = 12. Dashed lines correspond to the overlap angle of each.

At first glance both geometries seem to have the same reentrant behavior,
though a careful observation shows that the behavior at low temperatures is qual-
itatively different. Even though for both geometries, there is an angle where the
relaxation time is maximized, the place of the maximum in the rotational relax-
ation time depends on the geometry.

For the 6-patch case, the slowest rotational dynamics is found just below the
overlapping angle: τR increases essentially monotonically until the patches over-
lap, and then drops sharply as the particles are now more free to rotate without
breaking any bond. This type of behavior is present in all the temperatures stud-
ied. Furthermore, it is the most intuitive: particles with small angles form fewer
bonds, so in order to decorrelate the particles do not have to cross the energy
barrier imposed by the attractive interactions and particles rotate easily. On the
other hand, larger patches lead to more bonds, and several bonds must break to
rotate, hence rotational dynamics slow down. Once θ > θO, the patches overlap
and the particles are free to rotate without breaking any bonds, resulting in faster
relaxation.
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In contrast, for the 12-patch case the optimal angle is found well below the
overlapping angle θO, around a value of θ ' 20◦-25◦ at low temperatures. While
going to higher temperatures the maximum in the relaxation time shifts to larger
angles below θO. At high temperature both geometries show essentially the same
behavior.

The shift at low temperatures may be once more related with changes in the
local structure. As we show in Chapter 3 locating the patches in an icosahedral
manner modifies the local structure, promoting the appearance of icosahedral
clusters. This effect is particularly strong at low temperatures where we see the
changes in the rotational relaxation in the 12-patch case. If an increase of icosa-
hedral clusters is found around patch sizes θ ' 20− 25, this could cause the shift
of slower rotational dynamics to these angles. We explore this in more detail in
Section 4.3.4 where we will show the changes in the local structure as a function
of the characteristics of the patches.

4.3.2.2 Relaxation time as a function of temperature

In Chapter 3 we showed that the translational dynamics of systems of short range
patchy particles present a clear reentrance in the dynamics as a function of tem-
perature due to the crossover between two arrested phases driven by attractions
and repulsions. A logical question arises in the study of rotations: is the same
type of reentrance present in the rotational dynamics as a function of tempera-
ture? In order to answer this question we explore the rotational relaxation time
at different temperatures.

In Fig. 4.6 we show τR for both patch geometries as a function of temperature.
At low temperatures the rotational relaxation slows down roughly one order of
magnitude in comparison to higher temperatures. This is understandable as at
higher temperatures, the particles tend to rotate easily and thus the relaxation
time drops.
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Figure 4.6: Rotational relaxation times τR as function of kBT/ε for a) the 6-patch system and b)
the 12-patch system.
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Remarkably the time scales of the two types of relaxation (translational and
rotational) are completely different. Comparing the scale of the translational re-
laxation shown in Fig. 4.2 with the rotational relaxation from Fig. 4.6, we notice
that the latter is significantly faster. With the exception of the lowest investigated
temperatures, τR is at least an order of magnitude smaller than τT . Moreover, the
temperature-dependence of τR shows a stark contrast to that of τT : the reentrance
is not present in the rotation relaxation. Together, these observations show that
the two time scales are essentially decoupled unless the temperature is extremely
low.

While the Stokes-Einstein-Debye relation points that the structural relaxation
is proportional to the rotational relaxation in the fluid, in the glassy regime is
well known the relation breaks down. However in the patchy systems the rela-
tion between the two types of relaxation follows a non-trivial functionality highly
dependent of the size and the geometry of the patches. This is shown in Fig. 4.7
where we show the ratio between τR and τT as a function of temperature. The SED
relation is broken as consequence of an interplay of the effects present in these
systems with strong preferred directions and short range interactions. First, the
reentrance behavior in the translational relaxation disrupts strongly the relation
between the two types of dynamics as the rotational one do not present the reen-
trance as a function of temperature. Moreover, the rotational behavior depends
strongly of the size of the patches. This dependency is not seen in the transla-
tional relaxation, where τT decreases monotonically as the patch size increases.
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Figure 4.7: Translational relaxation time as a function of the rotational relaxation time of the
6-patch and the 12-patch case.

Although the breakdown of the SED was expected, it is interesting to ob-
serve that even at extremely low temperatures, where most particles are strongly
bonded, the particles still manage to rotate almost freely on relatively short time
scales. In addition, the big gap between the two time scales provides an indica-
tion of the mechanism of the relaxation. While the translational relaxation needs
collective motion for a particle to break the cage and diffuse in the system, the
rotational relaxation seems to be mainly controlled only by local rearrangements
within its local cage. In the next section, we explore this in more detail.
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4.3.3 Dynamical Monte Carlo

The time scale of the rotational relaxation points at a rather local relaxation mech-
anism. In order to confirm this hypothesis, we use a simple model to approximate
the rotational relaxation of each particle in its local cage. We start from an equi-
librated configuration from the molecular simulations. Next, we fix the positions
of all particles except for a single one. We then sample the rotations in one local
cage by performing a Monte Carlo simulation on only the chosen particle. Dur-
ing each simulation step, the particle is moved with small rotational and trans-
lational displacements, while keeping all other particles fixed. The step size for
both types of moves is chosen to be sufficiently small to ensure a high acceptance
rate (& 90%), such that the dynamics of the particles resemble a Brownian motion
trajectory. Additionally, the small step size avoids the possibility of “jumping”
between two distinct bonded configurations without a change in energy.

Due to the high acceptance rate, this algorithm resembles a dynamical Monte
Carlo (DMC) scheme [148].

After 105 steps, the chosen particle is returned to its initial configuration and
the same procedure is performed on another particle. While doing the rotational
movements we calculate the rotational correlation in the same way as we did in
the molecular dynamics, but as a function of the number of MC steps instead of
as a function of time. With this methodology, we sample the average rotational
relaxation of all particles in their respective cages, under the assumption that this
relaxation is an entirely local process, as we have frozen the positions of all the
other particles.

We normalize the rotational relaxation time τDMC by dividing it by the typical
relaxation time of a free rotor τFR calculated in the same way. In Fig. 4.8 we
show the local dynamical Monte Carlo rotational relaxation time τDMC divided
by the corresponding τFR as function of the angle θ. Comparing the results with
Fig. 4.5 we see that the qualitative behavior of the rotations is reproduced by the
local DMC approach. In the 6-patch case the relaxation time increases with the
size of the patch until it finds its maximum shortly before the overlap angle, and
then decreases rapidly. In contrast, for the 12-patch case the maximum in the
relaxation time shifts to lower angles, ending up around θ ' 25◦ for the lowest
temperatures. Note that in the DMC simulations, the particles behave diffusively
at short time scales, as opposed to the ballistic behavior that occurs in EDMD
for short times. Hence, the DMC simulations have significantly longer rotational
relaxation times at high temperatures, resulting in a more limited variation in
τDMC as compared to the τR measured in EDMD. Nonetheless, these results show
that the local DMC simulations capture the qualitative behavior of the rotational
dynamics in our molecular dynamics simulations. In combination with the large
discrepancy in time scales between the rotational and translational dynamics, this
confirms that the rotational relaxation of the system is largely decoupled from the
translations. Rather than being controlled by global rearrangements, rotational
diffusion is dominated by local rearrangements within the translational cage that
surrounds a particle.
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Figure 4.8: Rotational relaxation time τDMC obtained from local cage dynamical Monte Carlo
simulations. All relaxation times are normalized by the value τFR for a free rotator in a

simulation with the same step size. Data are shown for both a) 6 patches and b) 12 patches.

As the model captures the geometry of the cage and this result can also be seen
as an indicator that the local structure is playing an important role in changing
the rotational motion in particular the n = 12 case. Additionally, it seems that
the local structure is sensitive to the size of the patch as the maximum on the
relaxation time of the 12-patch case shifts to smaller angles. In the next section
we will examine in detail the prevalence of icosahedral clusters in the 12-patch
case as a function of the angle and temperature.

4.3.4 Structural Analysis

For the 12-patch system, both the EDMD and DMC simulations show a local max-
imum in relaxation time for relatively small patch sizes. To examine the origin of
this feature, we focus our attention on the local structure of the 12-patch systems.

As in the previous Chapter, we use the Topological Cluster Classification algo-
rithm [11] to explore the presence of local icosahedral order in our systems. These
same local structures may contribute to the anomalous rotational dynamics. In
Fig. 4.9 we show the fraction of particles which are part of an icosahedral environ-
ment, as a function of θ. We see a strong maximum in the number of icosahedral
structures around a patch angle of θ ' 15◦ at low temperatures. In this regime,
a larger fraction of the particles will be enclosed by an icosahedral cage, offering
the possibility to bond to a large number of neighbors slowing down the rota-
tional relaxation. This significantly slows down both rotational and translational
relaxation, consistent with Figs. 4.2 and 4.5.

It is important to note that cage structure is not the only factor determining
the rate of rotational relaxation, as the number of bonds formed by the particles
also plays an important role. After all, for any given cage structure, particles
bound by a larger number of attractive bonds are expected to rotate more slowly.
In Fig. 4.5b) we show the energy per particle of the 12-patch case. As one might
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Figure 4.9: a) Fraction of particles that are part of icosahedral clusters in the 12-patch system, for
different patch sizes θ and reduced temperatures kBT/ε. b) Energy per particle for 12-patch

systems with different patch sizes θ. Note that for a fully bonded particle U/Nε = −6.

expect, larger patches lead to a larger number of bonds in the system. Hence,
while around θ = 15◦more particles can be found in a (potentially highly bonded)
icosahedral environment, the average particle has more bonds when θ is higher.
The rotational relaxation time thus stems from a combination of factors, including
the fraction of icosahedral cages (which is maximized for relatively small angles),
and the number of bonds (which is maximized for larger angles). Together, these
factors contribute to the peak in τR shown in Fig. 4.5b).

4.4 Conclusions

In general, the overall relationship between translational and rotational dynam-
ics in supercooled liquids is complex and highly dependent of the details of the
interactions and the shape of the particles. Systems of patchy particles are no
exception to this rule. Here, we have explored the interplay between local struc-
ture, rotational relaxation, and translational relaxation in dense fluids of spheri-
cal patchy particles. In particular, we focused on two specific patch locations, one
that is capable of enhancing icosahedral ordering (n=12) and the second one that
do not promote this ordering (n=6).

The tangled dynamics of the patchy particle systems are reflected in the rela-
tion between translational and rotational dynamics. The rotational relaxation is
much faster than the translational relaxation, such that the two relaxations are ef-
fectively uncoupled and the Stokes-Einstein-Debye relation is broken. However,
the decoupling is dependent of both the size of the patches and the temperature.
One reason for this is the fact that the translational dynamics show a reentrance as
a function of temperature that it is not present in the rotational dynamics. At high
temperatures as the system forms few bonds the particles can rotate freely. Our
results show that in contrast to the translational relaxation mechanism, which
needs collective rearrangements to fully decorrelate, the particle orientations can
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relax by simply adjusting their orientation within its local environment. This last
mechanism is corroborated by the results of the local dynamical Monte Carlo sim-
ulations, which qualitatively reproduce the rotational behavior of the full system.
Moreover, it shows the relevance of the local structure.

A second reason for the strong difference between relaxation times is that the
rotational relaxation is as well dependent of the size of the patches and their lo-
cations. Which is in agreement with the role of the local structure on rotational
dynamics as these two characteristics of the patches promote in different degrees
preferred local structures. The slowest dynamics, both in terms of translations
and rotations, are observed when the system forms a large number of icosahe-
dral clusters. An important observation is the existence of an optimal patch size
(θ ' 15◦) which enhances icosahedral order. Indeed, this optimal patch size is
close to the case where we observe the slowest translational relaxation. Hence,
tuning patch sizes provides an additional route to manipulating the dynamics of
glassy fluids by tuning their local structure.

Our results show that rotational relaxation in patchy particle systems is es-
sentially governed by local rearrangements. And its dynamics is a consequence
of the interplay between the geometry of the local structure and the number of
bonds the particle is involved in, which can or can not arrest the rotational mo-
tion. Moreover, patchy particles have proven to be an ideal tool to control dynam-
ics, and not just the translational motion as shown in Chapter 3, the rotational
dynamics can be as well controlled by changing the geometry of the local cage.
The results shown in this Chapter show a clear way of templating the dynamics
of the rotational degrees of freedom. This could be extended to other colloidal
systems capable of changing the local structure such as colloidal particles with
anisotropic shapes.
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Chapter 5
Patchy Particles as monodisperse
glasses

In the previous Chapters we have used binary mixtures of patchy particles to
explore the glassy behavior. In this Chapter, we will exploit the ability of this type
of particles to change the local structure in order to use them as monodisperse
glass formers.

5.1 Introduction

In general, a fluid that is subjected to extreme conditions of low temperatures or
high density enters to the glassy regime if it avoids crystallization. In that regime,
the system is structurally similar to a liquid, in that it lacks long-range order, but
at the same time its dynamical behavior deviates from the liquid one. This is
mainly due to the increasingly strong confinement of the particles by their neigh-
bors which slows down their dynamics with only slight changes in the structure.
In order to avoid crystallization and enter to the glassy regime several methods
have been proposed. We can classify them into three families: kinetic, thermody-
namic and topological mechanisms [149].

The kinetic mechanisms are methods aimed at slowing down the crystaliza-
tion rate. As there is a competition between the arrest and crystallization while
going into the glassy regime, slowing down the crystallization rate allows the
system to get arrested before a crystal can form. This can be achieved in experi-
ments by modifying the chemical potential or by modifying the surface tension.
The thermodynamic route takes a different approach and it is mainly concerned
of mixtures. For example, by adjusting the composition and size ratio of the
components it is possible to get a mixture (eutectic mixture) where its melting
temperature is smaller than the one for the pure components and other composi-
tions [150, 151]. As consequence, the fluid is thermodynamically stable in denser
regions and arrest happens without any crystallization. Finally, the topological
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mechanism relies on reinforcing structures that are incompatible with crystal lat-
tices and can not be replicated in 3-dimensions and lead to geometrical frustra-
tion. Note that, different approaches to avoid crystallization end up being part of
the three families at the same time or a combinations of them.

An ideal glass former would follow the thermodynamic route where its melt-
ing point would be located below the region where the system gets arrested [152].
In other words, at low temperatures and high densities the fluid should still be
thermodynamically stable compared with the crystal phase. In that ideal case, the
system will presumably preserve its ‘liquid-like’ structure. One way of achieving
this is by using particles where the valence is controlled as in network glasses
made of patchy particles [91, 92].

Most simulation studies on supercooled liquids rely on the use of mixtures
with different size ratios and compositions to avoid crystallization. This method-
ology belongs at the same time to the three categories. Although this method
works well, it promotes a more complex behavior as the contributions to dynam-
ics and structure from each of the components are entangled. For example, the
diffusion rates of each of the components are different, and in general we can de-
fine observables per component, which at the end might have different behaviors.
A direct solution to this problem is the use of monodisperse systems. However,
most of the monodisperse fluids tend to rapidly crystallize in the glassy regime
and to avoid this, additional tricks that suppress crystallization must be imple-
mented.

Based on the topological mechanism, it has been found that carefully designed
anisotropic interactions in monodisperse systems can favour local structures in-
compatible with long range order in three dimensions suppressing crystallization
in the fluid [107, 153, 154]. This can be achieved by adding many-body interac-
tions to the potential [153–155] or with oscillatory interactions [106, 156–160]. In
particular, the promoted local structures are typically icosahedral [156, 157, 161]
and tetrahedral ones [153,155,159]. Both of these cannot be used to fill an infinite
three dimensional space, and hence tend to counteract crystallization.

Here, we propose the use of patchy particles as a route towards the design of a
monodisperse glass former. This idea is based on the observation that binary sys-
tems of patchy particles have proven to be a great tool for exploring and control-
ling the interplay between structure and dynamics of supercooled liquids [15,110]
(see Chapters 3 and 4). The directionality embedded in their potential is capa-
ble of modifying the local cage and this could be used to prevent crystallization.
Specifically, in the case where the patches are located in an icosahedral geometry,
they dramatically increase the number of icosahedral local structures in the sys-
tem, and slow down the dynamics. However, it is also interesting to explore a ge-
ometry that is not related to icosahedral order but could preserve the ‘liquid-like’
structure. Therefore, we propose two different geometries to be used as monodis-
perse systems: the well-known 12-patch case that enhances icosahedral clusters
in the system and the 8-patch case, a geometry that is not directly related to any
specific crystal structures and neither to the tetrahedral or icosahedral structures.
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For both of these, we explore in detail the structural and dynamical charac-
teristics. Intriguingly, both systems are capable of avoiding crystallization at low
temperatures. However, the disruption of the 12-patch case changes the over-
all structure causing it to strongly deviate from the structure of a simple liquid.
While the 8-patch case requires lower temperatures to avoid crystallization, the
changes on the local structure are much more subtle, and preserves an overall
liquid-like structure factor.

5.2 Model and Methodology

5.2.1 Simulation

n =12

icosahedron
n =8

square 
antiprism

Figure 5.1: Patchy particles with n=8 and n=12
patches. For each geometry, we show both the

particle, and the polyhedron associated with the
placement of the patches.

As in previous Chapters, we use Event
Driven Molecular Dynamics [91, 94,
95] to simulate monodisperse patchy-
particle systems. The patchy interac-
tions are implemented following the
Kern-Frenkel [10] model. In this Chap-
ter we explore two different monodis-
perse patchy systems: the first com-
posed of particles with n = 8 patches
and the second of particles with n=12.
The patches are located on the vertex
of a square antiprism and an icosahe-
dron respectively. These geometries
are shown in Fig. 5.1.

In the previous Chapters, we found
that the best way of comparing different patch geometries is by fixing the frac-
tion of the particle surface area covered by the patches χ (See Chapter 3). Based
on that, we fix χ = 40% for both systems. We use a short-ranged interaction
rc = 1.031σ, where rc is the range of the potential and σ the diameter of the par-
ticles. Our systems consist of N = 700 particles and we explore the systems in
the high-packing-fraction regime η≥0.56. Additionally we explore a wide range
of temperatures to locate the temperature range where the system is in a fluid
phase. We equilibrate each system at fixed temperature for at least 104τ , where
τ is our time unit τ =

√
mσ2/kBT , where T is the temperature, m is the mass of

a particle and kB is Boltzmann’s constant. Finally, we simulate the systems with
fixed energy for at least 105τ .
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5.2.2 Analysis

5.2.2.1 Structural Analysis

As we are interested in the ability of the systems to avoid crystallization by pro-
moting structures that are incommensurate with crystallization, we explore in
detail the local and global structure of both geometries.

In scattering experiments, the way the light scatters from the interaction with
the particles in a system give us information of its global structure. In simula-
tions, the same information can be extracted from the calculation of the structure
factor S(k), which can be computed as follows:

S(k) = 〈ρ(−k)ρ(k)〉 =
1

N

N∑

j=1

N∑

l=1

exp [ik.rjl] , (5.1)

where ρ(k) corresponds to the Fourier transform of the density, k is a wave vector
and rjl the joining vector between particle j and l. The S(k) in a plane shows a
clear fingerprint of the structure: for an homogeneous liquid we find an arrange-
ment of rings corresponding to the homogeneous scattering of the particles, while
a crystallized system shows well-defined peaks reflecting the anisotropy of the
structure. We characterize the values of the average S(k) in the xy-plane to better
distinguish among the phases.

In addition, we characterize the phase behavior of our systems using bond
orientational parameters [122,162] (see Sec. 3.2.3.2). In particular we focus on the
calculation of the six-fold order parameter Q6. This because the systems under
consideration are most likely to crystallize into close-packed lattices such as a
faced-center-cubic lattice (FCC) or an hexagonal-closed-packing (HCP) lattice. Q6

is a good tool to distinguish between phases as a function of temperature, since
the typical crystal lattices have a non zero Q6 value (FCC lattice, Q6 = 0.57452
and for a perfect HCP latticeQ6 = 0.48476), while the fluid phase yieldsQ6 values
close to 0. Moreover, crystallization is accompanied by a discontinuous jump in
Q6 across the transition.

Finally, we characterize the specific local environment of the systems using
the Topological Cluster Classification algorithm [11](see Section 2.3).

5.2.2.2 Dynamical Behavior

In addition to the phase behavior and fluid structure, we are interested on the dy-
namical aspects of the systems in the fluid phase. Ideally, as glass formers at low
temperatures their dynamical behavior will reflect the typical characteristics of a
glassy material (see Section 1.1.1). To explore this point we perform an exhaustive
exploration of dynamics. We start by calculating the mean square displacement
MSD =

〈
1
N

∑N
i=1 [ri(t)− ri(0)]2

〉
. In addition, we calculate the time-dependent
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intermediate scattering function (ISF) to quantify the relaxation behavior, and fit
it with a double stretch-exponential:

f(t) = α exp [−(t/τa)
γa ] + (1− α) exp [−(t/τb)

γb ], (5.2)

where α, γa(b) and τa(b) are fitting constants. From this fit we then extract the
relaxation time τ0.3 as the time where the correlation has decayed to 0.3 and the
non-ergodicity parameter fq=1− α corresponding to the height of the plateau.

Finally, since the systems have orientational degrees of freedom we charac-
terize the rotational dynamics using the same methodology as in the previous
Chapter. Specifically, we calculate the decay of the rotational correlation C2:

C2(t) =
1

N

N∑

j

P2 (û(t) · û(0)) , (5.3)

where û is a unitary vector pointing to a specific patch and P2 the second Leg-
endre polynomial. From this correlation function, we extract the rotational relax-
ation time τr as the time where the correlation has decayed to 0.3.

5.3 Results

5.3.1 Square Well

We start our study by introducing a simple reference system with liquid-like
structure. The best candidates for this are the square-well systems due to the
fact that they are simple fluids with interactions that are highly similar to the
patchy-particle systems we consider here. Square-well systems are composed of
spherical particles with homogeneous interactions and strong correlations [163],
i.e. its interactions are short-ranged and the physics of the system is well cap-
tured from the first coordination shell, this is reflected in the good predictions
made by the MCT approach which have as input the structure factor (see Sec-
tion 1.2). We explore the behavior of a monodisperse square-well (SW) system
with the same interaction range as the patchy-particle systems and fixed pack-
ing fraction η = 0.56. This will allow us to compare our patchy-particle models
directly to a comparable monodisperse system with isotropic interactions.

First, we characterize the phase behavior as a function of temperature. We
start our simulations from a compressed fluid state, for a range of different tem-
peratures, we let them equilibrate and then we characterize the structure by cal-
culating the Q6 order parameter. The global structural features show a reentrant
phase behavior with temperature. This reentrance is captured by the Q6 order
parameter. In Fig 5.2 we show the values of the bond order parameter Q6 as a
function of temperature for the square-well system. Values close to Q6 = 0 are
characteristic of a fluid phase where there is no long-ranged order. In contrast,
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Figure 5.2: Q6 calculation as a function of temperature for the SW. Yellow regions correspond to
a fluid phase and green regions to a crystallized phase, dashed line is the Q6 value of a perfect

FCC lattice. Below each region we illustrate the phase with a corresponding snapshot. Note that,
at the lowest temperature we see signs of phase separation.

values near Q6 = 0.57 indicate a crystal phase. At low temperatures the square-
well system crystallizes into an FCC structure. Additionally, at the smallest tem-
perature analyzed, we see a drop in Q6. By exploring visually the system we find
signs of a phase separation as shown in the bottom image of Fig. 5.2, in which
part of the system forms empty voids corresponding to a gas phase [123]. At in-
termediate temperatures, between kBT/ε = 0.6 and 0.7 the system remains in a
disordered liquid state. Finally, at temperatures kBT/ε > 0.7 the system crystal-
lizes once more into an FCC crystal.

This reentrant crystallization behavior for spherical particles with short-ranged
attractions has previously been observed in both experiments and simulations
[164, 165]. Moreover, it is reminiscent of the reentrant glass behavior shown by
short-ranged binary systems with similar interactions (see Section 1.4.2).

The different phases in the SW systems are also well captured by the structure
factor. We show in Fig. 5.3 a) the S(k) of the SW system at a low temperature
where we find crystallization and one corresponding to a liquid at intermediate
temperature. The structure factor of the SW liquid is smooth, confirming its ho-
mogeneous nature, and it will be our structural reference point.

In contrast, the crystal phase presents localized peaks at certain wavelengths
corresponding to the translational order in the crystal. Note that the high de-
gree of noise in the S(k) is related to the defects and dislocations (spontaneously
formed) in the crystal. In Fig. 5.3 b) and c) we show the corresponding non-
averaged structure factor in the xy-plane for the crystal and the liquid respec-
tively. Indeed, the anisotropic ordering of the crystal phase is clearly visible in
Fig. 5.3 b). Note that, due to spontaneous crystallization, there can be multiple
domains and the xy-plane is not necessarily associated with a symmetry plane of
the crystal.
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Figure 5.3: a) Structure factor of the square well system with potential range of rc=1.03σ of a
crystallized system at kBT/ε=0.5 and a liquid system at kBT/ε=0.6. b) Structure factor of the
same crystallized system in the xy-plane. c) Structure factor for the corresponding liquid state.

5.3.2 Patchy particle systems

We now turn our attention to our patchy models. First, we analyze the phase
behavior of the monodisperse system with n=12 patches. In Fig. 5.4 a) we show
Q6 as a function of temperature. As expected, at high temperatures the system
crystallizes into an FCC crystal, Q6 takes values close to the FCC limit. In this
regime the attractions from the patches have little effect and the particles behave
approximately as hard spheres. A different picture is found upon cooling be-
low kBT/ε ≤ 0.6, where Q6 is approximately 0 indicating the system is in a fluid
phase. The directionality imposed by the patches plays an important role at low
temperatures where the local structure is modified, this is enough to avoid crys-
tallization. As a consequence the system remains in a fluid phase for all remain-
ing temperatures (kBT/ε ≤ 0.6).

The changes in the local structure are enough to avoid crystallization. How-
ever, they also have a profound effect on the global structure, as indicated by the
S(k). In Fig. 5.5 we show the S(k) for each of the temperatures where the system
is in the fluid phase. It is important to remark that the 12-patch exhibits a split
in the second peak, which is most obvious at the lowest temperatures. This is a a
sharp difference from the isotropic case (Fig. 5.3).The splitting of the second peak
has been related to the appearance of icosahedral and tetrahedral ordering [72] in
binary and monodisperse systems [159].

As our second patchy model, we investigate the case of n= 8 patches. Anal-
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Figure 5.4: Q6 calculation as a function of temperature for the two patchy cases investigated at
fixed packing fraction, a) n=12 patches and b) n=8 patches.

Figure 5.5: Structure factor of the 12-patch system at temperatures where the system has not
crystallized. The inset shows the structure in the xy-plane at temperature kBT/ε = 0.3.

ogous to the previous case, the 8-patch particles also avoid crystallization in the
low-temperature regime, although this is reached only at temperatures below
kBT/ε ≤ 0.4 as shown in Fig. 5.4 b). However, the structure of the system evolves
very differently from the 12-patch case. We show in Fig. 5.6 a) the structure factor
at the temperatures where the system is in a fluid phase. The n= 8 case presents
‘typical’ liquid-like structure factor related to a liquid. In particular, the first peak
is not as sharp as in the 12-patch case and more importantly there is no splitting of
the second peak. We compare the structure of our reference system with the n=8
case. The latter essentially maps on top of our reference system, this is shown
in Fig. 5.6 b). This is a remarkable difference with the proposed monodisperse
glassy systems found in the literature [153, 155–157, 159, 161], that are focused on
facilitating icosahedral ordering. The 8-patch case is capable of avoiding crystal-
lization without changing the global homogeneous structure of a liquid.

We now explore in detail the changes in the local structure, focusing in the for-
mation of icosahedral clusters for all our systems. To do so, we use the Topological
Cluster Classification algorithm [11] to characterize the local structure. In Fig. 5.7
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Figure 5.6: a) Structure factor of non crystalline 8-patch systems. The inset shows the structure
factor in the xy-plane corresponding to kBT/ε = 0.3. b) Comparison between S(q) of the 8-patch

liquid and a SW liquid.

we show the fraction of particles involved in icosahedral clusters as a function
of temperature for the three studied cases. The missing points correspond to the
temperatures where the system crystallizes. As expected, the n = 12 shows an
increase of the number of icosahedral clusters at low temperatures. However, for
the 8-patch case and the SW the number of icosahedral clusters is on average very
close to 0.

Both the 8-patch and 12-patch geometries are able to avoid crystallization
at sufficiently low temperatures. Nevertheless, the two patch geometries have
dramatically different effects on the local structure. While the 12-patch interac-
tions boost the number of icosahedral clusters in the system, leading to profound
changes in the global structure factor, the effect of the n= 8 patches in the local
structure are subtle, and the overall liquid structure remains unchanged. How-
ever, these subtle changes are enough to avoid crystallization at low tempera-
tures.

As this is a new route to avoid crystallization without enhancing icosahedral
ordering, the 8-patch case is an interesting and elegant candidate for a monodis-
perse simple glass former. In the following section we show a detailed character-
ization of the 8-patch dynamical features at different packing fractions.
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Figure 5.7: Fraction of particles in an icosahedral cluster as a function of temperature for the
temperatures where the system is a fluid.

5.3.3 Dynamical behavior of the monodisperse 8-patch system

We start this section by exploring the temperature dependence of the energy and
pressure for three different packing fractions η = 0.56, 0.57 and 0.58. The results
are shown in Fig. 5.8 a) and b) respectively. Note that at higher packing fractions,
the system crystallizes for temperatures above kBT/ε = 0.3. In the fluid phase,
the potential energy U of the system is not strongly dependent on the packing
fraction, and it increases monotonically with temperature. Note that the potential
energy is related to the average number of bonds as: Nb=−U and the maximum
Nb correspond to the number of patches, i.e. 8. The trend of the potential energy
points out that at the smallest temperature the particles are almost fully bonded.

In Fig. 5.8 b), we plot the pressure P for the same systems. At the lower pack-
ing fractions, the pressure comes close to vanishing, indicating that we approach
a gas-liquid binodal, which marks the temperature below which the system will
attempt to phase separate into coexisting gas and liquid phases. However, for
packing fraction η= 0.58, the pressure levels off at low temperatures, suggesting
that we avoid the binodal at that packing fraction. Note that such a transition has
also been noted for glassy binary mixtures of square-well particles [123]. Addi-
tionally, we see the same behavior in our monodisperse SW systems.

Now, we turn our attention to the dynamical behavior of the 8-patch system.
To this end, we compute the MSD. At the lowest packing fraction η = 0.56, the
system displays glassy features, this is shown in Fig. 5.9a) where we show the
MSD for the system at η = 0.56. At short times, the particles undergo ballistic
motion. Later, at intermediate times, the particles are caged by their neighbors
resulting in an approximate plateau in the MSD. Although the plateau is not as
clear as in other glass formers, the particles are still caged by their neighbors.
We will show this in more detail with the ISF. Finally, at larger time scales, the
dynamics crossover into the diffusive regime. At higher packing fractions the
dynamical behavior is qualitatively the same, though dynamics are slower as the
systems are deeper in the glassy regime and the plateau is better appreciated.
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Figure 5.8: a) Average energy per particle as a function of temperature of the 8-patch system. b)
Dimensionless pressure of the same systems.
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Figure 5.9: a) Mean squared displacement of the n = 8 patch at temperatures where the system is
a fluid and a fixed packing fraction η = 0.56. b) Diffusion coefficient of all temperatures and

packing fractions investigated.

To provide an overview of the dynamics of all the 8-patch systems, we mea-
sure the diffusion coefficient for all the different temperatures and packing frac-
tions where the system is in the fluid phase. In Fig. 5.9 b) we show the dimen-
sionless diffusion coefficient Dτ/σ2. At the lowest temperatures all systems have
extremely slow dynamics as reflected in the small values of the diffusion coef-
ficient. When going to slightly higher temperatures the system regains fluidity
and the diffusion increases. This is the expected behavior of a glass-former that
at low temperatures its dynamics slows down in this case in the limit of high tem-
peratures crystallization takes place as it is the favored phase in the hard-sphere
limit.

In order to have a clearer picture of the structural relaxation of this systems we
explore the ISF. In Fig. 5.10 we show the ISF corresponding to the wavelength of
the first peak of the S(k) for η=0.56. When going to lower temperatures the sys-
tem needs more time to fully decorrelate. Note that at even lower temperatures
we can no longer equilibrate our simulations. The decay of the ISF also shows
a small plateau, which is more clearly visible at lower temperatures as shown in
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Figure 5.10: Intermediate scattering function of the 8-patch case at η=0.56, inset corresponding
to a zoom to the region where the first decay in the ISF happens.

the inset of Fig. 5.10. The height of the plateau is extremely close to 1, indicating
that the particles are tightly caged by the attractions with their neighbors at short
times.

To have a clearer picture of the relaxation behavior and the role of the caging,
we calculate the relaxation time τ0.3 as a function of the wavelength k. The results
are shown in Fig. 5.11 a), where we plot τ0.3(k) for the three different packing
fractions and two different temperatures. For all investigated state points, the
relaxation time shows a peak at the wavelength k corresponding to the first peak
of the S(k). This indicates that the slowest density fluctuations that appear in our
systems are on the length scale of the local cages, while fluctuations at all other
length scales relax more quickly

Another feature we can extract from the intermediate structure factor is the
non-ergodicity parameter fk. The fk is dependent of the wavelength and it pro-
vides further information about the cage effect. In an true ideal glass, the system
never decorrelates, the particles are completely arrested by their neighbors and
they cannot escape their cages. In this case, the system is in a non-ergodic state
as it cannot explore the phase space anymore. All of this is reflected in the ISF,
which presents a plateau that do not decay over the time scale of the measure-
ment. The non-ergodicity parameter fk measures the value of the ISF where the
correlation stops decorrelating and present a plateau. Furthermore, the height of
this plateau is a measure for the freedom of the system to exhibit fluctuations at
a chosen wavelength, and hence the rigidity of the system. In a glass the fk will
have values greater than 0 while in a complete fluid phase, the ISF do not have a
plateau and fk=0.

In the supercooled-liquid regime where the system is able to decorrelate from
the initial configuration we take the fk as the value of the correlation where the
plateau is found. Moreover, the non-ergodicity parameter can be used to dis-
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Figure 5.11: a) Relaxation time as a function of k-vector. Continuous lines correspond to
kBT/ε = 0.25 and dashed lines to kBT/ε = 0.3, different colors correspond to different packing

fractions η. b) Corresponding non-ergodicity parameter.

tinguish between different types of arrest: the behavior of fk as a function of k
depends on the ‘type’ of glass (repulsive or attractive). Typically, in an attractive
glass fk is close to 1 and decays slowly with k. Meanwhile, in a repulsive glass,
the non-ergodicity parameter decays quickly with k and reaches lower values
than in the attractive case [166].

Here, we calculate the non ergodicity parameter fk by fitting the ISF with a
double stretched exponential function as in Eq. 5.2. In Fig. 5.11 b) we show the
behavior of fk at the two lowest temperatures for each packing fraction. Remark-
ably, as we see in the decay of the ISF, the plateau is close to 1, this behavior
extends to different k values, indicating that the structure of the system is highly
rigid until bonds start breaking. As one might expect, this is particularly true at
the lowest temperature, where the particles are highly bonded. This behavior is
typical for an attractive glass, where the dynamical arrest of the system is driven
by strong short-ranged attractions [166, 167].

Another feature that is interesting to explore in our monodisperse glass-former
is the relation between dynamics and relaxation behaviors through the Stokes-
Einstein relation (SER) and the Stokes-Einstein-Debye relation (SED). These re-
lations break down in most fluids in the glassy regime as a consequence of the
emergence of complex dynamics and dynamical and structural heterogeneity (see
Section 1.1.1). Here, we explore the two relations for the monodisperse patchy
particle systems.

We start with the SER relation which states that the structural relaxation time
is inversely proportional to the diffusion time in a diluted regime [126]. To ex-
plore this relation we calculate the relaxation time τ0.3. In Fig. 5.12 we show the
structural relaxation time as a function of the diffusion coefficient. Surprisingly,
the SER relation is remarkably well preserved in all systems we consider here,
showing an almost perfect linear relation between τ0.3 and D.

To check for a possible breakdown of the SED relation, we first calculate the
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Figure 5.12: Relaxation time τ0.3 as a function of the diffusion coefficient Dτ/σ.

rotational correlation function C2. In Fig. 5.13 a) we show the behavior of the
rotational correlation. As in the binary mixture case (See Chapter 4) at the lowest
temperatures the correlation shows a plateau at short times. This corresponds to
the regime where the particle can no longer decorrelate from its initial orientation
due to the strong interactions with their closest neighbors. This is expected to
occur when the particles need to break several bonds before they can rotate away
from their initial orientation. This behavior is stronger in the monodisperse case
where we can see that the correlation decays at longer times compared to the
binary mixture.

From the decay of C2 we measure the rotational relaxation time τr. The SED
relation states that the rotational relaxation time is proportional to the structural
relaxation time. In Fig. 5.13 b) we show the relation between these two relaxation
times. We find that the SED relation is still approximately valid in the patchy
monodisperse glass former. However, the rotational relaxation time τR appears
to grow slightly faster than τ0.3, the two time scales remain on the same order
through all packing fractions. The strong slowdown in the rotational dynamics
at low temperatures allows the relation to hold through even at low temperatures.
This is in contrast to the binary mixture case (Chapter 4), where the crossover of
glasses entangles the relation between the two types of motion and hence causes
a breakdown of the SED.

5.4 Conclusions

We have shown that systems of patchy particles can be used as monodisperse
glass formers. In particular we explored two different cases: n= 12 patches and
n= 8. While both of this geometries are capable of avoiding crystallization, the
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Figure 5.13: a) Rotational correlation function C2 of the n=8 patch at η=0.56. b) Structural
relaxation times τ0.3 as a function of the rotational relaxation time τR for all the 8-patch systems

in fluid phase.

n= 12 promotes strong structural changes. In particular, it promotes icosahedral
clusters which change the overall structure leading to a strong deviation from
the structure of a ‘simple liquid’. In contrast, the 8-patch system shows both
the ability to avoid crystallization at low temperatures and preserves the overall
liquid structure.

The 8-patch case at high packing fractions display several of the key features
of a glass former. These are captured by the intermediate scattering function
where a plateau is developed at high packing fractions and low temperatures.
In particular, the 8-patch case behaves as a typical attractive glass: the non-
ergodicity parameter has large values close to 1, and the rotational correlation
shows a clear plateau at short times meaning that the particles get trapped both
translationally and orientationally in the cage made by their neighbors.

Despite its clear glassy features, it is interesting to note that both the Stokes-
Einstein relation and the Stokes-Einstein-Debye relation hold in the glassy regime
of our monodisperse patchy systems. This suggest that mean-field theoretical
approximations could be accurate to predict the behavior of this type of glass-
former as they work better on systems where these relations are only mildly vio-
lated [160, 168].

Our results show that patchy particles can be used to avoid crystallization.
Moreover, they can help to shed some light on glass formers where the SER and
the SED relations are not strongly broken. Our results open the door to the de-
sign of monodisperse glasses, where the interplay between local structure and
dynamics can be studied in detail without having to consider multiple species of
particles.
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Chapter 6
Tetrahedrality dictates dynamics in
hard-sphere mixtures.

This chapter is based on the publication:

S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, "Tetrahedrality
dictates dynamics in hard sphere mixtures", Phys. Rev. Lett., vol. 124, no. 24, pp.
208005, 2020. [16].

6.1 Introduction

In the previous Chapters we have shown the effect of the local structure on dy-
namics of supercooled-liquid patchy particles. We showed that the versatility
of patchy particles allows us to control and modify the local structure, which in
turn changes the translational and rotational dynamics in binary and monodis-
perse systems. Additionally, we have seen that some structures, such as icosa-
hedral cluster, emerge with the slowing down of dynamics. Since it is clear that
the structure is highly correlated to dynamics in the glassy regime, the logical
question to answer is whether it is possible to predict the dynamical behavior of
a system in the glassy regime only by its structural information.

In order to answer this question, we would like to have a simple model that
displays clear structural changes and that at the same time could be easily com-
pared with experiments. In general, patchy particles have proven themselves
to be a good model for exploring the interplay between structure and dynam-
ics. However, despite the growing experimental control over the synthesis of
patchy particles [90, 119, 120], dense non-crystalline patchy particle systems are
still not easily realizable and experimental comparisons are still missing. With
this in mind, we turn our attention to one of the simplest glass formers that can
be compared with experiments: the hard spheres.
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Hard spheres are arguably the most fundamental model system in colloidal
science, for theory, simulation, and experiment alike. Their interaction is only
(and infinitely) repulsive when the particles are at a distance equal to their diam-
eter. Hence, the behavior of hard spheres does not depend on temperature and
only on the packing fraction. These characteristics help to simplify some of the
complex theoretical approaches used to describe physical phenomena. The use
of hard spheres has led to a better understanding of a wide variety of complex
physical behaviors such as entropy-driven phase transitions, crystal nucleation,
and, of course, the glass transition [38, 169–175].

However, monodisperse hard spheres crystallize into simple close-packed crys-
tals at high packing fractions [81]. And hence, mixtures with different size ratios
and compositions are needed to avoid crystallization. The dynamics of hard-
sphere mixtures change significantly upon varying the size and number ratios
of the different species [176–178]. Intuitively, mixing spheres of different sizes
results in different geometrical constraints on the possible local packings of par-
ticles, and hence this will lead to different local structures.

In this Chapter, we examine the link between local structure and dynamics
in simulations of hard-sphere mixtures. In particular, we simulate binary and
polydisperse mixtures over a wide range of packing fractions and compositions
(or polydispersities), and attempt to link variations in the local structure to the
dynamical slowdown. We find that icosahedral clusters are not capable of pre-
dicting the changes in dynamics of systems that are not extremely deep in the
glass regime. Moreover, other complex structures also appear while going to
the glassy regime following the trends of icosahedral clusters, although none of
these structures are capable of capturing all the changes on dynamics of hard-
sphere mixtures by themselves. However all of them can be decomposed into
tetrahedral clusters: the smallest possible three-dimensional local cluster. Previ-
ously, simple order parameters based on the notion of tetrahedra [9,179,180] have
been proposed showing good correlations with dynamics. Here, we propose to
quantify the structure via the tetrahedrality of the local structure (TLS), a simple
idea which consists of counting the number of tetrahedral clusters around each
particle. We show that the TLS captures a universal structure in hard spheres and
performs extremely well as a predictor for both the global and the local dynamics
of dense hard-sphere mixtures.

6.2 Model and Methodology

We use Event-Driven Molecular Dynamics [94] to simulate a wide variety of hard-
sphere mixtures at constant number of particles N , volume V , and energy E. We
explore binary mixtures with size ratios q = σS/σL, where σL = 1 corresponds
to the diameter of the large particles and σS to the small particles, ranging from
0.6 to 0.85 in steps of 0.05. Additionally, we vary the composition of the system
xL = NL/N , where NL is the number of large particles and N the number of
particles, from xL = 0.2 to 0.65 every 0.05. The combination of both parameters
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gives us at least 60 different systems.

To get a wider picture of hard-sphere mixtures, we also explore polydisperse
systems with different polydispersities. These systems are composed of 15 dif-
ferent types of particles, characterized by different sizes, taken from binning a
Gaussian distribution with mean value of 1 and standard deviation chosen be-
tween 0.01 and 0.2. The values of the standard deviation correspond to a polydis-
persity between 1% to 20%. Note that due to the relatively small polydispersities
used here, the smallest particles in the system always have a diameter of at least
0.4σ. For larger polydispersities, it may be necessary to use e.g. a lognormal or
Schultz distribution to avoid negative particle sizes

For each of the mixtures, we explore a wide variety of packing fractions η start-
ing from 0.52 upto 0.59, ranging from a fast moving fluid to deep inside the glassy
regime. Most of our simulations have N =700 particles except for the slowest bi-
nary mixtures where we perform larger simulations upto N=10000 particles and
the polydisperse systems which have N = 2000 particles. We simulate our sys-
tems for at least 105τ where τ is our time unit given by τ =

√
βmσ2, with σ the

diameter of the large spheres (for binary mixtures), or the average sphere size (for
polydisperse mixtures), and β = 1/kBT with kB Boltzmann’s constant and T the
temperature.

6.2.1 Analysis

Global Dynamics

As we are interested in the interplay between dynamics and structure in glassy
hard spheres, we explore both properties. In particular, we characterize the dy-
namical behavior of our systems by calculating the dimensionless diffusion co-
efficient Dτ/σ2 which is related to the mean square displacement through the
Einstein relation:

Dτ/σ2 = lim
t→∞

1

6Nt

〈
N∑

j=1

[rj(t)− rj(0)]2
〉
, (6.1)

where rj(t) is the position of particle j at time t. We define the diffusion time τD
as the time that a particle needs to diffuse approximately 1σL. We can extract it
from the inverse of the diffusion coefficient as:

τD=σ2
L/Dτ (6.2)

In order to explore in more detail the relaxation behavior we also calculate the
Intermediate Scattering Function (ISF). From there, we extract the α-relaxation
time by fitting a stretched exponential to its long time decay: A exp[−(t/τα)γ],
where A, τα and γ are fitting constants and τα corresponds to the α-relaxation
time.
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We characterize the local structure by using the ‘Topological Cluster Classifi-
cation’ algorithm (TCC) [11]. As we will explain in the following sections, we are
now interested in the tetrahedrality of the local structure. The calculation of this
new parameter is based on the same modified Voronoi construction of the TCC
(see Sec. 2.3). However, we will define it in detail in the results section.

Dynamical heterogeneity

Finally, we will explore in detail the emergence of dynamical heterogeneity in
hard-sphere mixtures.

The heterogeneities are time dependent as the system evolves. At short times,
the heterogeneity is weak as the particles are starting to diffuse, and the dynamics
looks more homogeneous. Later, at a time interval t∗ the system presents the
maximal heterogeneities, as some regions will be more arrested by their cages and
the system will be divided into regions with faster dynamics than other. Finally,
at long timescales the particles escape the cages and the heterogeneities are weak
again.

In simulations, one elegant way of distinguishing between different dynami-
cal regions is through the calculation of dynamical propensity [181,182]. The idea
is to quantify the displacement of the particles on an interval ∆t that is not origi-
nated by thermal fluctuations. To do so, thermal fluctuations are averaged out, by
generatingN runs starting from the same equilibrated configuration but with dif-
ferent random velocities according to the Maxwell-Boltzmann distribution. The
dynamical propensity Di is the ‘ensemble’ average of the squared displacement
of each particle. This is a quantity dependent of time, and the maximal differ-
ences between regions will be at time t∗. By choosing that time, each particle
can be colored by their Di value. In the glassy regime, this will lead to a clear
distinction between different dynamical regions.

6.3 Results

6.3.1 Local Structure and Dynamics of Binary Hard-Sphere mix-
tures

We begin our study by exploring the structure and dynamics of dense binary
hard-sphere mixtures at fixed packing fraction η=0.575. For each choice of q and
xL, we characterize the dynamical behavior by calculating the diffusion time τD.
Note that, at extreme size ratios close to 1 or less than 0.5 the systems are prone to
crystallize into an FCC crystal or into a coexistence between FCC of large spheres
and a fluid consisting mostly of the small ones. As we are interested only in the
glassy dynamics we avoid those crystallizing regions.
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Figure 6.1: a) Diffusion time τD as a function of composition xL for binary hard-sphere mixtures
with various size ratios q as indicated. b) Fraction of particles inside an icosahedral cluster for

the same systems. The inset shows a typical icosahedral cluster.

The dynamics of binary hard-sphere mixtures are known to vary significantly
upon changing the composition xL and size ratio q [176, 177]. We confirm those
dynamical changes with the calculation of τD. In Fig. 6.1 a) we plot the diffu-
sion time τD as a function of the composition xL for each of the size ratios q. The
dynamical behavior of the binary mixtures is highly dependent of the composi-
tion of the systems and in general it presents a complex, non-monotonic behavior
between the diffusion time and composition. Moreover, each size ratio shows
qualitatively different behaviors. For mixtures with a small size ratio q . 0.75,
the diffusion time is a convex function of xL, showing a clear single minimum.
In contrast, for higher size ratios, a maximum in the diffusion times appears at
smallest compositions xL, those systems correspond to the ones with the slowest
dynamics. Note that, even though the packing fraction is fixed for all the sys-
tems, the dynamics varies more than one order of magnitude depending on the
size ratio.

In previous Chapters, we have shown that icosahedral clusters play an im-
portant role on controlling the dynamical slowdown of supercooled liquids. In
particular, for the patchy-particle case in the high temperature limit we found that
a considerable number of particles were involved in icosahedral clusters ' 20%
(see Chapter 3). With this information, we can hypothesize that the strong vari-
ation in diffusivity can be related with changes on the local structure. We can
expect different stable local structures as the combination of different size ratios
and compositions impact the geometry of the local packings. In particular, we
will first focus on the changes on icosahedrality (number of particles involved in
icosahedral clusters). Ideally, the icosahedrality of a system can be used to predict
dynamical behavior if it varies accordingly to the changes on dynamics.

To explore this conjecture, we use the Topological Cluster Classification algo-
rithm [11] to quantify the number of particles involved in icosahedral clusters. In
Fig. 6.1 b) we show this quantity as a function of the composition for each size
ratio at the same packing fraction η=0.575. The results show that effectively, the
number of icosahedral clusters and so the local structure are highly dependent
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on composition. However, to explore whether icosahedrality can be used as a
dynamical predictor, we will describe in detail the relation of icosahedrality with
the fastest and the slowest systems.

First, we start with the slowest systems. The mixture with the highest num-
ber of icosahedral clusters, q = 0.8 and xL = 0.3, corresponds to the one with the
largest value of diffusion time τD, i.e. the slowest system. This is on agreement
with our previous results that relate the slowdown on dynamics with an increase
of icosahedral clusters (Chapter 3). However, this specific mixture (q = 0.8 and
xL = 0.3) is close to the region where crystallization into Laves phases are sta-
ble [127]. These phases have in their unit cell an icosahedral cluster, hence as
we approach to the region where icosahedral order is part of the preferred struc-
ture, the system slows down and the number of icosahedral clusters increase. We
simulate larger systems with N ≥ 2000 particles to explore the possibility of crys-
tallization into Laves phases. Indeed, in some of our large simulations we find
crystallization [127, 183]. These crystals are detected using a machine-learning
based order parameter [184]. Note that in the system used to measure the quan-
tities shown in Fig. 6.1, we do not find any signs of crystallization.

In the regime of slow dynamics, icosahedrality is highly sensitive to the changes
on dynamics. Contrary to the fast dynamics regime, where we can see that de-
spite the different dynamics, the number of icosahedral clusters is 0 for almost
all the compositions of our fastest systems (size ratios q = 0.6 and q = 0.7). Note
that these two size ratios are presumably not deep in the glassy regime as their
dynamics are fast compared to the ones of larger size ratios.

The increase on the number of icosahedral clusters is dependent of how deep
the system is in the glassy regime. Hence, icosahedrality is not a good predictor
of the overall dynamical behavior of hard spheres outside the region deep in the
glass.

Additional complex structures

As we have previously shown, icosahedral clusters have become important in the
study of glasses [5, 6, 14, 185] because of their five-fold symmetry, their long life
times in arrested systems and most importantly their increasing prevalence while
going deeper in the glassy regime. However, as we have shown in Fig. 6.1 b) the
slowest systems of hard spheres at η = 0.575 have at most 30% of the particles
involved in icosahedral clusters, Additionally, the fastest ones, although they are
in the glassy regime, do not have icosahedral clusters. Hence, a logical question
to ask is: are there any other clusters related to the changes in dynamics?. Indeed,
recent work has shown that a variety of complex clusters in hard-sphere mixtures
can also have long lifetimes [74] and they could be also related to the changes in
dynamics. Based on that, we explore in greater detail the local structure of hard
spheres. To do so, we characterize all the clusters detected by the TCC [11, 24].
We pay special attention to the clusters with long life times [74].

From the analysis of all these clusters we find that there is a whole family
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Figure 6.2: Clusters correlated with the appearance of icosahedral cluster in hard spheres for a)
q=0.7 and b) q=0.8. Inset corresponds to the 12B cluster, the five-member ring is shown in

different color.

of structures that commonly appear together with perfect icosahedral clusters.
This family follows the same trends as the icosahedral ones and some of them
are related with the long-lived structures in hard spheres. Moreover, almost all
of them have in their structure rings of 5 particles, characteristic of the icosahe-
dral clusters as shown in Fig. 6.2 b) where we show the five-member ring of the
cluster 12B. In Fig. 6.2 a) and b) we show some of these clusters for size ratio
q=0.7 and q=0.8. Intuitively, it is therefore likely that each of these clusters con-
tributes, to some degree, to the slowdown of the system. However, it is hard to
assign a particular contribution for each of them. And, in terms of experimental
realization the distinction between all of these clusters can be difficult. A more
simple structure or parameter is missing to quantify and capture all the changes
on hard-sphere mixtures.

6.3.2 Tetrahedrality of the Local Structure

Based on the previous information we can disentangle the complex structure of
the systems by turning our attention to the smallest cluster in 3 dimensions: the
tetrahedron. Some of the clusters in the family, we have found in the previous
section, are formed by several tetrahedral clusters assembled together. We de-
fine a tetrahedral cluster as a group of four particles where each pair of particles
are considered nearest neighbors, an schematic picture of a tetrahedral cluster is
shown in Fig. 6.3. We use the same modified Voronoi contruction of the TCC
algorithm [11](see Section 2.3) to define the nearest neighbors. In general, the
modifications attain the avoidance of counting second-shell neighbors and allow
distorted rings of four particles. Some structures can be decomposed in more
tetrahedral clusters than others. One example of this is the icosahedral cluster
where the central particle belongs to 20 different tetrahedrons as it forms a tetra-
hedron with each of the faces of the icosahedral.

Considering the different morphologies of the structures we define a new or-
der parameter: the Tetrahedrality of the Local Structure (TLS). As essentially all
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particles are involved in multiple tetrahedral clusters, we quantify their tetra-
hedrality by measuring the average number 〈ntet〉 of tetrahedra a particle is in-
volved in. Well packed and symmetric clusters as the icosahedral one will present
higher tetrahedrality values. Depending on its environment each particle will
have a different value of tetrahedrality represented by ntet(i).

Figure 6.3: Schematic image of a tetrahedral
cluster, dashed lines indicate that each particle
is nearest neighbors to the other three particles.

Hence, natural questions to ask
are: how the tetrahedrality of the local
structure (TLS) is related to the over-
all dynamical behavior?, and more im-
portantly, can TLS predict local and
global dynamical behavior?. In the fol-
lowing sections we will discuss in de-
tail all the aspects of the TLS.

6.3.3 TLS and the global dy-
namics

In order to answer how the tetrahe-
drality correlates with the global dy-
namics, we calculate the average num-
ber of tetrahedra per particle:

〈ntet〉 =
1

N

N∑

i=1

ntet(i), (6.3)

where ntet(i) corresponds to the number of tetrahedra the particle i is involved
in.

In Fig. 6.4 we show 〈ntet〉 for each binary mixture for η = 0.575. Remarkably,
this simple structural order parameter captures the behavior of the diffusion time
almost perfectly, reproducing both the convexity of τD for low q and its maximum
at high q shown in Fig. 6.1 a).

In order to test the tetrahedrality and the diffusion time at higher and lower
packing fractions, we calculate 〈ntet〉 for all the studied binary mixtures at dif-
ferent packing fractions η = 0.52, 0.54, 0.56, 0.57 and 0.58. In Fig. 6.5 we show
the 〈ntet〉 and τD as a function of composition for a packing fraction of η = 0.56
and 0.58, for both packing fractions the overall tetrahedrality captures well the
changes on dynamics. Similar results are found for the other packing fractions.

There is a clear correlation between the tetrahedrality and dynamics for all the
packing fractions investigated. This can be better seen by calculating the diffusion
time as a function of 〈ntet〉. In Fig. 6.6 we show all the diffusion times as a function
of 〈ntet〉 for all mixtures per packing fraction. We find that the well behaved
correlation we see in Fig. 6.1 and Fig. 6.5 is reflected in all our data per packing
fraction collapsing onto the same line. From this remarkable collapse we can
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Figure 6.4: Average number of tetrahedral per particle of binary hard-sphere mixtures with
packing fraction η=0.575.
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Figure 6.5: a) Diffusion time τD as a function of composition xL for binary mixtures at η=0.56.
b) Average number of tetrahedra per particle for the same systems. c) and d) show the

corresponding results of binary mixtures at η=0.58.
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prove that for each packing fraction, 〈ntet〉 provides an excellent predictor of the
diffusion time, revealing an approximately exponential relationship between τD
and 〈ntet〉 (dashed lines). Note that for each packing fractions there are at least 60
different systems.

Moreover, we calculate the number of tetrahedra and the diffusion time for
all our polydisperse systems at different packing fractions with polydispersities
ranging from 1% to 20%. Surprisingly, the data from the polydisperse systems
follow exactly the same relation as the binary mixtures, shown in Fig. 6.6 as closed
symbols. The tetrahedrality is capable of predicting the dynamical behavior of a
wide diversity of hard-sphere mixtures, from binary mixtures to polydisperse
systems.

Another interesting point is that the collapse is well-behaved at relatively low
packing fractions where the dynamics are fast and the systems are just entering
the glassy regime. The tetrahedrality allows us to have a clear picture of the
changes in dynamics way far from the glassy regime. This was not the case for
the icosahedrality as the system needed to be deep in the glassy regime to have a
significant number of icosahedral clusters.

All the previous results strongly suggest that the dynamical behavior of hard-
sphere mixtures of roughly similar sizes is universal and that tetrahedrality cap-
tures well the slight changes in the local structure that can be related to the
changes on dynamics. Note, however, that this likely does not apply to all pos-
sible size ratios. For example, for more extreme size ratios than the ones studied
here, demixing could occur due to stronger depletion effects [186].

The relation between τD and 〈ntet〉 for all the packing fractions follow an ex-
ponential relation which resembles to a Vogel-Fulcher-Tamman equation (VFT).
The VFT equation proposes a relation between the relaxation time and the tem-
perature in an Arrhenius form [51]:

τ(T ) = τ0exp

(
α

T − T0

)
, (6.4)

Interestingly, we can approximately collapse the data for all packing fractions
in Fig. 6.6 by assuming the diffusion time follows a VFT relation. In our case we
do not have a temperature dependency but instead we have the packing fraction
one. We can write the diffusion time as a VFT equation:

τD = τ0(η)exp

(
α〈ntet〉
η−1 − η−1g

)
, (6.5)

where τ0(η), α ' 0.03, and ηg ' 0.598 are fit parameters, with only τ0 dependent
on the packing fraction. The value of ηg would correspond to the critical pack-
ing fraction where the relaxation time diverges and the system becomes fully
arrested.

As the inset of Fig. 6.6 shows, re-scaling the data according to this fit indeed
results in an approximate data collapse. However, the assumption of one uni-
versal value for ηg for all combinations of size ratio and composition is likely not
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Figure 6.6: Diffusion time for all investigated hard-sphere mixtures as a function of
tetrahedrality. Different colors indicate different packing fractions. Within each packing fraction,
open symbols correspond to binary mixtures with different size ratios and compositions. Closed

symbols are polydisperse systems with different packing fractions. The dashed lines are
exponential fits to the binary data for each packing fraction. The inset shows the approximate

data collapse obtained by re-scaling the data according to Eq. 6.5.
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physical. Moreover, it is unlikely that the diffusion time diverges at the same
packing fraction ηg for all mixtures as the dynamics are highly dependent of the
composition and size ratios and some systems at the same packing fraction are
at least one order of magnitude faster than others. Indeed, we perform simula-
tions of some of our (less tetrahedral) systems at packing fractions close to and
even beyond ηg where we were able to still equilibrate them, and hence Eq. 6.5
must break down for sufficiently high η. Note that, at those extreme high packing
fractions the systems that we can equilibrate correspond to the ones with smaller
size ratios and their dynamics per specie starts to be extremely different, hence
the data stops collapsing as nicely as in lower packing fractions. Nonetheless, the
overall data collapse indicates that Eq. 6.5 approximately captures the increased
sensitivity of the dynamics to tetrahedrality as the packing fraction increases.

6.3.4 TLS and the α-relaxation

All the previous results were obtained from characterizing the dynamics with
the diffusion time. However, another commonly time scale used in the study of
glassy systems is the α-relaxation time as it is also dependent on the caging ef-
fect. In Fig. 6.7 a) we show the τα as a function of 〈ntet〉. At smaller values of
〈ntet〉 the exponential relation of the dynamical behavior and the structure seems
to hold, however at higher 〈ntet〉 corresponding to the slower systems the rela-
tion shows clear deviations. Those systems where the dynamics gets extremely
slow are deeper in the glassy regime and we can expect that the Stokes-Einstein
relation (SER) breaks down [1, 134, 187, 188].

As we can recall the SER establishes that τα is inversely proportional to the
diffusion. Since the diffusion time is the inverse of the diffusion coefficient, the
two time scales are proportional: τα ∝ τD.

In order to determine whether the relation holds in our systems we compare
the ratio between τα and τD. In Fig. 6.7 b) we show this ratio for the binary mix-
tures for a fixed composition xL = 0.3 and all the size ratios studied. At high
packing fractions there is a clear break down of the relation for the largest size
ratios corresponding to the slowest systems. As these two time scales stop in-
creasing proportionally, the relation between τα and 〈ntet〉 cannot follow the same
relation as τD and 〈ntet〉.

We can also conclude that in general the TLS captures the ability of the par-
ticles to diffuse in a dense environment. Furthermore, the relation between τD
and 〈ntet〉 is simple, while the breakdown of the SER promotes a more complex
relation between τα and 〈ntet〉.
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Figure 6.7: a) α-relaxation as a function of the average number of tetrahedra per particle for all
the binary mixture systems. Different colors indicate different packing fractions. b) τα/τD for

binary systems with composition fixed to xL = 0.3, at high packing fractions the Stokes-Einstein
relation breaks for the slowest systems.

6.3.5 TLS and its lifetime

In order to better understand the role of tetrahedrality, we now turn our attention
to the lifetime of the tetrahedral clusters, i.e. the time where the local environment
decorrelates. To do so we characterize the decorrelation time of the tetrahedra per
particle by calculating the time-dependent autocorrelation function Ctet(t):

Ctet(t) =
〈ntet(0)ntet(t)〉 − 〈ntet(0)〉 〈ntet(t)〉

〈n2
tet〉 − 〈ntet〉2

, (6.6)

averaged with all the N particles.

The autocorrelation function give us an estimate of the time where the struc-
ture changes. In Fig. 6.8 a) we show the autocorrelation for one of the non-
crystalline slowest systems: q=0.850 and xL = 0.300 and all the packing fractions
investigated. At short times there is quick decrease on the correlation which after
stabilize into a plateau that fully decay at long times.

We extract a decorrelation tetrahedral time by fitting a stretched exponential
to the autocorrelation: A exp[−(t/τtet)

γ], where A, τtet and γ are fitting constants
and τtet corresponds to the tetrahedral decorrelation time. In Fig. 6.8 b) we show
the different time scales: α-relaxation time, diffusion time and the decorrelation
tetrahedral time of the same size ratio and composition. In Fig. 6.8 b) we can see
the breakdown of the SER: at lower packing fractions τα and τD grow at the same
rate, at higher packing fractions the relation is broken and τα grows faster than
τD.

It is interesting to note that τtet is significantly shorter than τD for all investi-
gated packing fractions. This can be understood from the fact that τD is a measure
of the time a particle needs to diffuse a distance on the order of its own diameter.
Clearly, by the time this has happened, the particle will have completely broken
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Figure 6.8: a) Time dependent tetrahedral correlation of a binary mixture with size ratio
q = 0.850 and composition xL = 0.300, different colors denote different packing fractions. b)

Comparison between time scales for the same system. Circle markers correspond to the
tetrahedral decorrelation time, triangles to diffusion time of all particles and diamonds to

alpha-relaxation calculated from the q-vector corresponding to the peak of the structure factor.

free of its initial cage, and the memory of the tetrahedra it was part of, will be
lost. Hence, it is understandable that we find values of τtet that are smaller than
τD. In contrast, the decorrelation time τtet is on the order of τα. The α-relaxation
time captures the time needed for a particle to escape the cage, just when this
happens the system starts loosing memory of the original cage structures. Hence,
the decorrelation tetrahedral time coincides with the α-relaxation time.

6.3.6 TLS and the local dynamics

Thus far we have examined the relationship between globally averaged TLS and
diffusivity. Now we turn our attention to the effect of tetrahedrality in the local
regime and how this is related to the typical dynamical local changes of the su-
percooled hard spheres. As we have shown in previous chapters, one of the key
features of glassy behavior is the appearance of dynamical heterogeneity, this
means that there are regions with faster dynamics than others. It is interesting to
explore if the changes in the local dynamics can be associated with variations on
the tetrahedrality of the local structure. To this end, we explore the relationship
between the number of tetrahedra ntet(i) a given particle i is involved in, and the
absolute distance δri = |ri(t)− ri(0)| over which it moves in a given time interval
δt.

This correlation can be quantified explicitly by calculating the Spearman’s
rank-order correlation ρ [189] as a function of time. This correlation takes values
between -1 and 1 and quantifies the monotonic relation between two variables by
ranking their values. When ρ is 1 the two variables have a perfectly monotonic
growing relation and if it takes a value of -1 the variables decrease monotonically.

We follow the dynamics of one our slowest systems corresponding to q=0.85
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and xL = 0.3, we calculate the ntet(i) and δri at logarithmic spaced time inter-
vals. Then we calculate the Spearman’s correlation between the two variables.
In Fig. 6.9a) we show this correlation for each of the species. The correlation be-
tween them is negative, meaning that higher values of tetrahedrality are related
with smaller values of displacement and viceversa. As we can see from Fig. 6.9a)
the correlation grows with time until it reaches a maximal value and after the
variables start decorrelating. In Fig. 6.9b) and c) we show a typical snapshot of
that system, with particles colored by either their tetrahedrality b) or their dis-
placement c) after a time interval δt= 200τ corresponding roughly to the time of
strongest correlation of the small particles. We can see that effectively the regions
with lower values of tetrahedrality (red particles in Fig. 6.9b)) are linked to larger
displacements (red particles in Fig. 6.9c)).

Figure 6.9: a)Spearman’s rank correlation between the number of tetrahedral clusters a particle is
involved in ntet and its displacement δri b,c) Snapshot of a glassy system at packing fraction
η=0.58, size ratio q=0.85 and composition xL=0.3, with particles colored according to a) the

number of tetrahedra ntet(i) a particle is involved in, with red particles involved in fewer
tetrahedra, and blue particles in more. b) According to the absolute displacement δri after a time

interval δt=200τ in one trajectory, with red indicating fast particles and blue indicating slow
ones.

However, the correlation is noisy. This is because examining the displacement
in a specific trajectory provides only a limited view of particle mobility. After all,
in a given trajectory, the ability of a particle to move depends not only on its envi-
ronment, but also on the initial velocities of all particles. To average out this ther-
mal noise, we measure the dynamic propensity Di of a particle: its average abso-
lute displacement, taken over an ensemble of simulations starting from the same
initial configuration [99, 185, 190]. We perform ∼ 200 simulations starting from
the same equilibrated configuration, each of the simulations start with different
velocities to average the thermal noise. In Fig. 6.10 we show the improvements to
the correlation by calculating the dynamical propensity. In Fig. 6.10 b) we color
the particles once more accordingly to ntet(i) to better compare and in Fig. 6.10
c) we color each particle according to Di (again taken at δt = 200τ ), and indeed
reveal a striking correlation between ntet(i) and Di. To better quantify the corre-
lation, we now calculate the Spearman’s correlation between Di and ntet(i). In
Fig. 6.10a) we show this correlation for the same system. At very short timescales
(δt . 0.1τ ), before any particles escape their cages, there is little correlation be-
tween local TLS and dynamic propensity. Once the thermal noise is averaged the
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correlation is smooth and increases its value. At intermediate timescales, we find
a strong negative correlation between ntet(i) and Di, confirming that particles in-
volved in fewer tetrahedra are more mobile. Finally, for timescales approaching
the diffusion time τD ≈ 104τ , the memory of the initial configuration is lost, the
initial tetrahedral clusters are broken up, and the correlations start decaying back
to zero.

Figure 6.10: a)Spearman’s rank correlation between ntet and its dynamic propensity Di b,c)
Snapshot of a glassy system at packing fraction η=0.58, size ratio q=0.85 and composition
xL=0.3, with particles colored according to a) the number of tetrahedra ntet(i) a particle is
involved in, with red particles involved in fewer tetrahedra, and blue particles in more. b)

According to the dynamic propensity Di after a time interval δt=200τ in one trajectory, with red
indicating fast particles and blue indicating slow ones.

The level of correlation between TLS and dynamic propensity demonstrated
outperforms most of the purely local observables previously investigated [25].
Moreover,the predictive power of TLS can be enhanced by performing a local av-
eraging of ntet(i), this is a common practice that has been applied to other local
order parameters [25, 185]. To this end, we define ntet(i, rc) as the mean value
of ntet(j) for all particles j found within a sphere of radius rc around particle i
(including i itself). We calculate the Spearman’s correlation with three different
cutoff radii rc, we show this results in Fig. 6.11b). We see that the correlation is
optimized for rc = 2σ, at a value of ≈ 0.63. In Fig. 6.11a), we color the particles
by their value of ntet(i, rc = 2σ). As one might expect, this results in smoother
domains of high tetrahedrality, which correlate yet more strongly with the dy-
namical propensity shown in Fig. 6.10c).

This correlation works particularly well in the slowest systems, though these
correlations in other hard-sphere mixtures provides similar results, with weaker
correlations for systems with higher diffusivity. In faster systems, dynamics are
less heterogeneous, and hence less predictable based on local structure.

In general, local tetrahedrality is an excellent predictor for the dynamics of a
particle in the near future in the glassy regime where there is dynamical hetero-
geneity.

From the results of dynamical propensity we can see that there is a clear arise
of dynamical heterogeneity accompanied by the separation of regions with high
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Figure 6.11: a) Snapshot of a glassy system at packing fraction η=0.58, size ratio q=0.85 and
composition xL=0.3, with particles colored according to the average tetrahedrality over a

spherical region of radius rc=2σ around each particle. b)Spearman’s rank correlation between
between locally averaged tetrahedrality and Di for different radii rc of the averaging region.

and low values of tetrahedrality. The dynamical correlation length grows as the
system increases the packing fraction, however a static correlation length shows
a modest increase. We refer the reader to Appendix B where we show a more
detailed discussion about the dynamical and static correlation length of one of
the slowest systems.

6.4 Conclusions

Our results shed some light on the relation between local structure and dynamics
in hard spheres. We found that even if icosahedral and other complex structures
are present and increase in numbers while going deeper into the glassy regime,
they are not capable of capturing all the changes in the dynamics of hard-sphere
mixtures. However, the solution for this problem seems to lie in considering a
simpler structure: tetrahedral clusters. Depending on the morphology of the local
structure, each particle can be part of several tetrahedral clusters. We proposed to
characterize this with the tetrahedrality of the local structure which refers to the
number of tetrahedra each particle is involved in. We showed that the tetrahe-
drality of the local structure is a good structural parameter that captures well the
slight changes in dynamics of hard spheres over a wide range of packing frac-
tions and size ratios. Globally, the tetrahedrality directly predicts diffusivity at
each investigated packing fraction, resulting in a data collapse of a vast variety
of hard-sphere mixtures onto one exponential curve using only two global fit pa-
rameters. It performs well even with systems that have fast dynamics and are
just entering to the glassy regime. All this demonstrates that within this fam-
ily of hard-sphere mixtures, tetrahedra play a predictable and universal role in
determining dynamics.

At the local level the tetrahedrality is closely related to the changes in local
dynamics showing large correlations between the local tetrahedrality and the lo-
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cal displacement. Local regions with slow dynamics correspond to regions with
larger values of tetrahedrality. Additionally, the tetrahedrality presents decorre-
lation time scales on the order of the alpha-relaxation and in the time scale of the
time of the largest heterogeneities, providing more evidence of its relation to the
ongoing arrest of the system.

The prediction of the TLS can be directly tested in experimental realizations
of colloidal hard-sphere mixtures, using e.g. confocal microscopy [191–196]. Our
results may impact attempts to realize the self-assembly of binary Laves phases
[183, 197], for which the stability region is in the regime where dynamics are
extremely slow. On the theoretical side, the exponential dependence of global
dynamics on tetrahedrality is strongly reminiscent of theoretical descriptions of
glasses in terms of activation energies for collective rearrangement [62], and ran-
dom first-order transition theory [1,69,198]. Most importantly, our results demon-
strate that the dynamics of hard-sphere mixtures can be predicted purely by look-
ing for the most fundamental three-dimensional building block for the fluid: the
simple tetrahedron.
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Chapter 7
Beyond Tetrahedrality: other models
and Machine Learning

7.1 Introduction

In the previous Chapter we proposed a new order parameter to quantify the
changes on the local structure of supercooled hard-spheres mixtures: the tetra-
hedrality of the local structure (TLS). This parameter consists of counting the
number of tetrahedra a particle is involved in. The TLS works extremely well for
predicting the global and local dynamics of a wide variety of hard-sphere mix-
tures in the supercooled liquid regime. In the local picture the tetrahedrality is
highly correlated with the local mobility of the particles outperforming previous
parameters used to predict dynamics in hard-spheres. However, in general the
smallest structure related to changes in dynamics will presumably depend on the
characteristics of the system [185, 199]. For example in Ref. [185], similar strong
correlations as ours between dynamical propensity and (larger) locally preferred
structures were found for the Wahnström glass former [200], but not for several
other model glass formers, such as the Kob-Andersen (KA) mixture [201].

In particular, the Kob-Andersen mixture presents a great challenge for the
search for the preferred local structure that correlates with dynamics [185]. This
mixture is one of the most used glass-former models for metallic glasses [201].
The peculiarity of this model is that it consists of Lennard-Jones particles with
non-additive interactions, which can be expected to impact the local structure.
There have been different approaches to find a good structural estimator capable
of capturing the dynamical changes of the Kob-Andersen mixture. In particular,
machine learning techniques seem to gain importance on predicting the struc-
ture [202, 203].

Nowadays with the increase of computational power and the need of han-
dling and learning from huge amounts of data, new computational techniques
are needed. One of these is machine learning (ML) that allows to extract and ‘learn’
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information from an input in an ‘automatic way’. ML infers from the input infor-
mation and hence it is based on statistics [204].

In general ML techniques can be divided into two methodologies: supervised
and unsupervised machine learning. In the former, "the aim is to learn a mapping
from the input to an output whose correct values are given" [204, 205]. In contrast,
in the latter there is no information about the correct output and only the input
is given. In this last method, the goal is to find common characteristics in the
input information in order to classify it. The applications of ML vary widely,
from data mining to pattern recognition for security, marketing, social media, etc.
However, the ideas of ML classification have been applied to supercooled liquids
as well. In particular, supervised ML techniques have proven to be useful to
recognize regions in glassy systems that are prone to rearrange [206, 207], where
information of the rearrangement of a number of particles is given for training.

Reamrkably, unsupervised ML has proven to be a useful tool to classify parti-
cles accordingly to information only from their local structure. In particular, it has
been used to classify different crystal structures in colloidal systems [208]. And
recently, an unsupervised ML methodology based on structural mutual informa-
tion has been able to distinguish regions correlated with their dynamic propen-
sity [202].

In this chapter, we will first discuss an extension of our proposed parameter
TLS, to other glass-former models. In particular, we will show the performance
of the TLS in a Wahnström and a Kob-Andersen mixture at different supercooled
states. As the Wahnström mixture is an additive binary mixture of repulsive par-
ticles, the tetrahedrality shows as good correlations as in the hard-sphere mix-
tures. However, in the Kob-Andersen mixture the correlations are poorer as the
local structure is perturbed presumably by the non-additiviness of the potential.

Finally, we will briefly discuss the use of a simple unsupervised machine
learning technique used to distinguish between particles in slow and fast struc-
tures. We will show that we obtain similar correlation values for the Wahnström
mixture and that for the Kob-Andersen mixture the unsupervised ML outper-
forms the correlations of the tetrahedrality as the ML is not based in a particular
structure and it is capable of distinguishing non-trivial orders.

7.2 Methodology

We use the Kob-Andersen [201] and Wahnström [200] models to simulate parti-
cles in the glassy regime. Both of them are binary mixtures of Lennard-Jones (LJ)
particles. The LJ interaction potential is as follows:

Uij(r) =





4ε

[(
σij
rij

)12
−
(
σij
rij

)6]
rij < rc,

0 rij ≥ rc

(7.1)
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where ε is the strength of the interaction, rij the distance between the particle
i and j, rc a cut-off radius and σij the effective diameter of the particle, if the
interaction is between particles of the same specie σij corresponds to the particle
diameter of that specific specie and if the interaction is between different species
mixing rules are applied.

The Wahnström model [200] is a binary mixture with composition xL = 0.5
(equimolar composition) with a size ratio of q=σBB/σAA= 1.2: σAA = 1.0, σBB =
1.2σAA and σAB = 1.1. The LJ interaction strength between all pairs of particles
is identical: εAA = εAB = εBB. The LJ potential is truncated and shifted at the
minimum in the potential, such that the interactions are purely repulsive.

The Kob-Andersen model [201] is a non-additive mixture with composition
xL = 0.8. The interaction parameters are σBB = 0.88σAA, σAB = 0.8σAA, εBB =
0.5εAA, and εAB = 1.5εAA. The LJ potential is truncated and shifted at a cut-off
distance rc,ij = 2.5σij (where i, j ∈ {A,B}), such that the attractive part of the
potential is retained.

For both Wahnström and Kob-Andersen, we define the reduced number den-
sity ρ∗ = ρσ3

AA and reduced temperature T ∗ = kBT/εAA, with kB Boltzmann’s
constant.

We use molecular dynamics with the LAMMPS [209] package to simulate
Kob-Andersen and Wahnström mixtures. For both systems, we use N = 64000
particles. The number density ρ∗=1.2 for the Kob-Andersen mixture and ρ∗=0.81
for Wahnström. In order to explore different supercooled states, we explore a
wide range of temperatures for both mixtures. In particular for the Wahnström
systems we explore temperatures ranging from T ∗ = 0.7 to T ∗ = 1.5 and for the
Kob-Andersen mixture temperature from T ∗=0.55 to T ∗=1.0.

7.2.1 Analysis

First, we characterize the typical relaxation time of both systems by extracting
the α-relaxation time τα from the long-time decay of the Intermediate Scattering
Function (ISF).

In order to characterize the local dynamics of both systems we calculate the
dynamic propensity Di (See Chapter 6). We start at least 32 different simulations
with randomize velocities from a Boltzmann distribution accordingly to the spe-
cific temperature, all of them starting from the same equilibrated configuration.

We characterize the local structure through the TLS, by counting the number
of tetrahedron each particles is involved in following the same methodology from
Chapter 6. From the same Voronoi construction of the Topological Cluster Clas-
sification algorithm [11] we find the neighbors of the particles and then we count
the number of tetrahedra. We define a tetrahedral cluster as four particles such
that each of them is considered as nearest neighbors of the others.
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Figure 7.1: Rank correlation between the number of tetrahedra for a particle ntet and the
dynamic propensity Di for small particles of a) Wahnström model and b) Kob-Andersen model.

Different colors represent different temperatures. The large particles show similar behavior.

7.3 Results

We start by testing the correlation between local tetrahedrality and local mobility
in the Wahnström and Kob-Andersen mixtures. We characterize both systems by
calculating the dynamic propensityDi(δt) and the number of tetrahedral per par-
ticle. Then, we correlate these quantities with a Spearman’s rank correlation. The
correlation takes values between 1 and −1 and quantifies the monotonic relation
between two variables by ranking their values. In Fig. 7.1 a) we show the rank
correlation for the Wahnström model corresponding to the small particles and all
the temperatures investigated. Interestingly, the correlation shows similar trends
as the ones from the hard-sphere mixtures. Note that the Wahnström model is a
mainly repulsive model and hence we can expect that the preferred local struc-
tures will be similar to the ones from the hard-spheres (See Chapter 1). Similar
to what we saw in the hard-sphere case the correlations improve as the system
goes deeper in the glassy regime. In this case this happens when the temperature
is lower. This is consistent with the fact that at lower temperatures the system
becomes slower as the arrest plays a bigger role. Furthermore, the tetrahedrality
of the local structure can also be used to predict the local and global dynamics of
Wahnström mixtures.

In contrast, in Fig. 7.1 b) we show the Spearman’s correlation of the Kob-
Andersen system. We see a different scenario for this model. The first point to
remark is that the correlation reaches a maximum value of ' −0.2 which tells us
that the two quantities are not strongly correlated. While going to lower temper-
atures the correlation decreases in value. This indicates in general that the tetra-
hedral cluster is not the fundamental structure leading the slowdown on dynam-
ics. As we have pointed out before, the Kob-Andersen model has non-additive
interactions and we expect that this disrupts the preferred local structures. In
principle, however, different simple structures can be responsible of the changes
in dynamics.

With this in mind and with the fact that the locally preferred structures in
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the Kob-Andersen mixture are composed of subunits made of bipyramids [7,11],
we turn our attention to count the number of pyramids a particle is involved
in. However the correlation does not improve and it has lower values than the
one found for tetrahedrality. The next step would be trying different local struc-
tures to find a good candidate as a predictor of the local dynamics, however the
non-additiveness of the interaction affects the local structure in a non-trivial way
and none of the clusters identified by the TCC seem to correlate strongly with
dynamics.

We turn out attention to an elegant methodology which can be able to cap-
ture non-trivial structures from structural information: Unsupervised Machine
Learning.

7.4 Unsupervised Machine Learning

In this section, we will apply the same unsupervised machine learning techniques
(UML) from Ref. [208] to the last two glass-former models we have worked with:
Kob-Andersen mixture and Wahnström mixture.

The heart of this UML method consists of classifying particles accordingly to
their local structure. The first step is to find a proper input that describes the local
structure of each particle. As shown in Ref. [208] a good candidate for this are the
bond order parameters, similar to the ones used in Chapter 3. Here, we will focus
on Qlm(i) as in Eq. 3.7:

Ql,m(i) =
1

Nb(i)

Nb(i)∑

j=1

Ylm(θij, φij), (7.2)

where Ylm(θij, φij) are the spherical harmonics, with m ∈ [−l, l] and θij and φij are
the polar and azimuthal angles of the center-of-mass distance vector rij = rj − ri,
with ri the position vector of particle i.

The rotational invariant, which are combinations of Qlm are:

Ql(i) =

[
4π

2l + 1

l∑

m=−l
|Qlm(i)|2

]1/2
, (7.3)

Finally in order to take into account the information of the local structure of the
neighboring particles we define the average Q̄l(i) as:

Q̄l(i) =
1

Nb(i) + 1


Ql(i) +

Nb(i)∑

j=1

Ql(j)


 . (7.4)

Note that this second average has information about the local structure of the
second shell.
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In order to have a complete structural input we calculate a set of 8 Q̄(i)l pa-
rameters, with l from 1 to 8. Hence, the local structure of each particle will be
characterized by a vector Q̄(i)l.

One common technique in ML to classify families with similar characteris-
tics is first to do a dimensionality reduction [204]. To do this we use an autoen-
coder, which is a neural network trained to reproduce its input as its output. In
Fig. 7.2 we show a schematic diagram of the autoencoder. First, the autoencoder
reduces the dimensionality of the input in the ’hidden layer’ (known as ’bottle-
neck’) through a non-linear projection. Then, a subsequent hidden layer is used
as a decoder. The input of this final layer is the lower-dimensionality output and
its goal is to recover the initial input. For more information about this process
we refer the reader to Ref. [204] and Ref. [208], The parameters of the bottleneck
and the training are fixed such that at least 75% of the variance of original input
is retained by the output of the autoencoder.

Figure 7.2: Schematic diagram of the
autoencoder.

In order to classify the particles
according to their structure, only the
trained bottleneck is retained. Hence,
the data with the lower dimensionality
will be used to classify. Finally, a clus-
tering technique is applied for classi-
fying the particles, here we used the
Gaussian mixture model (GMM). GMM
assumes that the input comes from a
mixture of k Gaussians with unknown
parameters, for more information we
refer the reader to Ref. [204]. We use
the assumption that the data is a mixture of two Gaussians. The output of the
GMM is a list of probabilities Pj(i), that correspond to the probability of i com-
ing from the j gaussian. Finally, with this we classify the particles as Pred and
Pwhite = 1 − Pred. Note that, we assign a posteriori the label red to the family
correlated with more mobile particles.

7.4.1 Results

We apply the previous methodology to the Kob-Andersen and Wahnström mix-
ture systems previously explained. We calculate the input vector Q̄(i)l for each
particle and then, from the UML we obtain the probability of each particle to be-
long to the red cluster Pred. In order to assess the ability of the ML to capture the
particles associated with slow and fast regions, we calculate the Spearman’s cor-
relation between the propensity and the probability Pred for each of the systems.
However, in order to follow a similar procedure as in Chapter 6 and improve the
correlation we obtain a locally averaged order parameter P̄red by averaging the
value of Pred over a spherical region with a cut-off radius of rc = 2σL.

In Fig 7.3 we show the Spearman’s correlation of the small and the big parti-
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cles of the Wahnström mixture at the lowest temperature investigated T ∗ = 0.7.
By comparing Fig. 7.1 a) we can observe that the correlation of the averaged P̄red
outperforms the correlation with tetrahedrality. This shows that the structural
variations captured by the UML method are inherently linked to different dy-
namical behavior.

Figure 7.3: a) Spearman’s correlation between the averaged probability P̄red and dynamic
propensity Di for the Wahnström mixture at T ∗ =0.7 with particles colored accordingly to b) its

propensity and c) its P̄red.

In the case of the Kob-Andersen mixture the picture is more complicated. In
Fig. 7.4 we show the same correlation for the Kob-Andersen mixture at the low-
est temperature. In this case, the correlation also outperforms the correlation
with tetrahedrality, however it is still lower than the correlation found for the
Wahnström mixture. This in one side might be related to the fact that this Kob-
Andersen mixture is near to the gas-liquid phase coexistence [210, 211] that can
induce heterogeneities at larger length scales and this information is lost as our
input is highly local.

Figure 7.4: a) Spearman’s correlation between the averaged probability P̄red and dynamic
propensity Di for the Kob-Andersen mixture at T ∗ =0.5 with particles colored accordingly to b)

its propensity and c) its P̄red.

Now we turn our attention to different degrees of undercooling. When pre-
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Figure 7.5: Spearman’s correlation between the averaged probability P̄red and dynamic
propensity Di for a) Wahnström and b) Kob-Andersen mixtures. Different colors represent

different temperatures. The large particles show similar behavior.

dicting dynamics using TLS in the Wahnström mixture, the correlation gets stronger
as the system gets deeper in the glassy regime. To check whether this is also cap-
tured by the UML, we train the autoencoder for each studied temperature for
both mixtures, and we calculate the P̄red for each temperature. Once more, we
correlate this quantity with the propensity. In Fig. 7.5 we show the correlation
between P̄red and dynamic propensity Di for both systems at all temperatures.
As we can note, in the Wahnström mixture the correlation grows in a similar
way as in the correlation between the TLS and propensity (Fig. 7.1 a)) having its
maximum value at the lowest temperature. Interestingly, in the Kob-Andersen
mixture a similar trend is shown differently from the TLS and propensity shown
in Fig. 7.1 b). This is a good indicator that the UML is capturing the structural
information that changes as the system is supercooled.

7.5 Conclusions

The results of this Chapter provide strong indications that in glassy systems
the regions with different dynamics, slow or fast, are related with regions with
slightly different local environments. Here, we began by applying the ideas of
the tetrahedrality of the local structure (TLS) studied in Chapter 6 to other mod-
els. We found that the TLS correlates strongly with the different local dynamics.
In particular, as in the case of hard-sphere mixtures, regions with slower dynam-
ics are correlated with regions of high values of tetrahedrality. In this model the
temperature is one of the parameters that controls the glassiness of the system,
and by going deeper into the glassy regime the correlations between the TLS and
the local dynamics get stronger. Note that the local favored structure of hard-
sphere mixtures and Wahnström mixture are similar, as in both the icosahedral
and the defective icosahedral cluster are highly present. These structures can be
easily deconstructed in tetrahedral clusters.

In the case of Kob-Andersen mixture, the TLS do not perform as well as in the
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Wahnström mixture. Note that, in this mixture the local favored structures are
more complex and they are related with bicapped square antiprisms and capped
trigonal prismatic structures [7,74]. Moreover the TLS is not capable of capturing
better correlations as the system was undercooled.

In order to deal with this type of mixtures, we turned our attention to an ele-
gant method that allows us to distinguish between particles with different struc-
tural environments: unsupervised machine learning (UML).

From applying the UML to Kob-Andersen and Wahnström we found that for
both systems, the UML captures structures that are well correlated to local dy-
namics. Moreover, the correlations outperform the ones obtained from the TLS.
Note that, UML does not have any a priori information of the type of cluster, and
so it is able to capture non-trivial structures that can be correlated with the local
dynamics.

The main advantage of the UML, is that it is capable of predicting dynamical
information from only structural information of one snapshot. Moreover, it is
a simple and computationally non-expensive technique that can be applied to
any glass-former. These results open the door to predict the dynamics in various
other glassy systems, with different degrees of undercooling in a simple way.
Moreover, the flexibility of UML allows to improve the correlations by adding to
the input other structural descriptors depending on the general characteristics of
the systems.
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Chapter 8
Conclusions

Life is an unfoldment, and the further we travel
the more truth we can comprehend.

To understand the things that are at our door
is the best preparation

for understanding those that lie beyond.
Hypatia of Alexandria

Finally, we close this thesis by summarizing the main conclusions of each
Chapter.

In recent years there have been studies that give compelling evidence that the
changes in dynamics in the glassy regime are accompanied by slight changes in
the local structure [6–8, 77]. In this thesis we perform an in-depth study of the
interplay between structure and dynamics of glassy colloidal systems. To do so,
we used computational techniques, from molecular dynamics to machine learn-
ing techniques. In general, we draw on the relation between structure and dy-
namics to explore the idea of controlling dynamics by controlling the structure.
Additionally, one of the big unknowns is whether we can extract information of
the dynamical behavior from only structural information. In this sense, we ex-
plored the ability of predicting dynamical behavior from counting specific types
of clusters in hard-sphere systems. Finally, we used machine learning techniques
to distinguish between regions which are prone to have faster dynamics by only
structural information.

We will divide the conclusions into two sections, one related to controlling dy-
namics by using patchy particles and one focusing on how to extract dynamical
information from the structure.
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Controlling dynamics of glassy colloidal systems: Patchy Parti-
cles

We show that the use of patchy particles as glass formers allows us to control the
dynamics. Here, we summarize the main conclusions of Chapters 3, 4 and 5.

• Reentrance and patchy particles. One of the advantages of the use of patchy
particles is that we can interpolate between two extreme interactions: hard
spheres and square wells. This allows us to explore the reentrant behav-
ior of the glassy dynamics found in systems with short-ranged isotropic
interactions. In Chapter 3 we explored binary systems of patchy particles
with two geometries: 12-patches and 6-patches and we varied the size of
the patches. In both cases the reentrance is conserved. However, the maxi-
mum in diffusivity is shifted to lower temperatures as the size of the patches
was reduced. This can be understood from the fact that lower temperatures
are needed for the systems with smaller patches form the same number of
bonds as the systems with larger patches. Moreover, in general the values
of the diffusivity increase with the size of the patches.

• The importance of the location of the patches. In order to characterize
the importance of the location of the patches on dynamics, we compared
patchy particle systems from 3 to 20 patches with the same amount of sur-
face covered by them (40%). We located the patches such that the minimum
distance between them is maximized. We found that essentially the dynam-
ical behavior of the systems is independent of the number of patches when
they are compared with the same coverage, i.e. the diffusivity was the same.
The exception to this rule are the geometries with icosahedral ordering, i.e.
10ico, 11 and 12-patch cases. In those cases, at high temperatures the behav-
ior is the same as in the other geometries as the systems behave essentially
as hard spheres. However, as the temperature is decreased the dynamical
behavior of these cases stands out as the diffusivity becomes dramatically
smaller than for the other geometries. In particular, for the 12-patch case the
diffusion decreases almost two orders of magnitude compared to the others
at the lowest equilibrated temperature.

• Controlling dynamics through icosahedrality. Since Frank’s ideas [5] about
the high probability of finding icosahedral clusters in the glassy regime, it
has been found that the locally favored structures for certain glass formers
are icosahedral clusters [7,8,104]. While going deeper into the glassy regime
the number of these structures increases. In our patchy particle systems, we
found that for the 10ico, 11 and 12 patch cases the number of icosahedral
clusters increases sharply as the temperature decreases. This increase is ac-
companied by an extreme dynamical slowdown. We conclude that patchy
particles are able to disrupt the local structure and that one route for con-
trolling the arrest and dynamical slowdown of glassy colloidal systems is
through the use of patchy particles that reinforce icosahedral clusters.

• Rotational dynamics of glassy patchy particles. The use of patchy parti-
cles as glass formers also allows us to explore the rotational dynamics of
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the system as the interaction potential between the particles is inherently
directional and anisotropic. We dedicated Chapter 4 to explore the rota-
tional dynamics of two cases of patchy particle systems, one with 12 patches
and the second with 6 patches. For both systems, we varied the size of the
patches to explore its effect on rotational dynamics. We found that the ro-
tational relaxation time is faster than the translational one. Additionally,
rotational dynamics are highly dependent on the size and location of the
patches, in particular when the size of the patches is small or the tempera-
ture is high, many of the particles can spin freely in their cages. In contrast,
predominantly in the 12-patch case, when the patches are relatively large,
the rotations get arrested as a consequence of the high number of bonds
each particle has.

• Rotational dynamics in patchy particles is driven by local rearrangements.
In the glassy regime, translational relaxation needs collective rearrange-
ments to decorrelate from the initial configuration. Contrary in the rota-
tional relaxation in glassy patchy particles where we found that the particles
orientation can relax by adjusting their orientation within its local environ-
ment without the need of larger rearrangements. This was corroborated
through the results of local dynamical Monte Carlo where we rotate a par-
ticle within a fixed cage made by their neighbours and we recovered the
rotational behaviour of both patchy particles obtained from the full molec-
ular dynamics. Moreover, we found that for the 12-patch case the number
of icosahedral clusters is reinforced with an optimal patch size (θ ' 15◦)
related with slower rotational dynamics. Hence, the local structure has also
a direct impact on the way rotational dynamics decorrelate.

• Monodisperse patchy particles. Finally, based on the ability of patchy par-
ticles to disrupt the local structure, in Chapter 5 we proposed the use of
patchy particles as monodisperse glass formers. In particular we explored
two cases: 12 and 8 patches. We found that both of them are capable of
avoid crystallization at low temperatures, making them good candidates
to explore glassy dynamics in a monodisperse system. However, as the 12
patches induce a high concentration of icosahedral clusters, both the local
and the global dynamics deviate from the one expected for a ‘simple liq-
uid’. In contrast, the 8-patch case preserves the ‘liquid’-like structure, but
still avoids crystallization and displays the typical features of glassy sys-
tems: two-step relaxation and slower dynamics with the decrease of tem-
perature. This makes it an interesting candidate for a monodisperse glass
former. Interestingly, neither the Stokes-Einstein relation nor the Stokes-
Einstein-Debye relation seem to break down in the monodisperse patchy
glass former.

How does the structure help us in predicting dynamics?

Despite the growing control over experimental patchy particles [90, 119, 120],
glassy systems formed by spherical patchy particles have not been yet reported.
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Hence, we turned our attention to a system where there is the possibility of com-
paring with experimental data: hard spheres. Moreover, we would like to know
if we can infer dynamical features through only structural information. Here, we
will summarize the main conclusions of Chapters 6 and 7.

• The structure and dynamics of hard-sphere mixtures is highly dependent
on the size ratio and composition. As simple as hard-sphere systems ap-
pear, in the glassy regime we demonstrated that the dynamical behavior
(through the calculation of diffusion time) drastically changes with the size
ratio and composition of the binary mixture. These variations do not fol-
low any trivial relation with composition. Moreover, the structure of the
mixture is also highly dependent on the properties of it. In particular, we
quantified the fraction of particles involved in icosahedral clusters (icosa-
hedrality). This last property is not capable of satisfactorily capture all the
changes on dynamics.

• Tetrahedrality of the local structure can predict global dynamics of hard-
sphere mixtures. Together with the icosahedra, there are several other clus-
ters that appear while the systems goes deeper into the glassy regime. How-
ever, none of them by themselves are capable of capturing all the changes
on dynamics. Instead, we proposed a new order parameter, the Tetrahe-
drality of the Local Structure (TLS) which consist on counting the number
of tetrahedra each particle is involved in. We showed that the TLS captures
well all the changes on dynamics through different size ratios and compo-
sitions. Moreover, it performs well at a wide variety of packing fractions.
In general, the TLS is capable of predicting the global dynamics as all the
data from different mixtures (binary and polydisperse) per packing fraction
collapse onto an exponential curve. Moreover, all the data can be collapsed
onto a single exponential curve with only two fitting parameters, provid-
ing a simple expression to infer dynamical behaviour by only counting the
number of tetrahedra per particle.

• TLS correlates well with the changes on local dynamics. Regarding the
local dynamics, the TLS shows strong correlations between local tetrahe-
drality and propensity. In particular, the regions with slower dynamics are
related with higher values of tetrahedrality and vice versa. The TLS works
well on predicting both the global and the local dynamics, and it is in line
with other order parameters previously proposed [25, 185].

• TLS performs well with Wahnström mixture. In Chapter 7 we explored
the idea of extending the TLS to other glass formers: Wahnström and Kob-
Andersen mixtures. In particular, we found that the TLS presents strong
correlations with the local propensity in the Wahnström mixture. Moreover,
as the system is cooled down the correlations are stronger. Note that, the
Wahnström mixture is essentially repulsive and the locally favored struc-
tures are similar to the ones of hard-sphere mixtures. This is in contrast
to the Kob-Andersen mixture, where we found poor correlations between
tetrahedrality and propensity. Note that Kob-Andersen mixture has non-
additive interactions that can disrupt the local structure in a non-trivial
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way [7, 185].

• Unsupervised machine leaning techniques distinguish between regions
correlated with local dynamics. Finally, we turned our attention to an
alternative technique that can help on capturing the non-trivial structural
changes related with dynamics. We showed that by using a simple unsu-
pervised machine learning with only structural input taken from the bond
order parameters, we can classify the particle into two families with similar
structural characteristics. One of these families correlates well with the local
propensity. We applied this methodology to Wahnström and Kob-Andersen
mixtures. And, for both the correlations outperform the ones from the TLS
as now there is no biasing on picking any particular structure. These re-
sults provide evidence that UML techniques are a powerful and direct new
approaches to detect structural variations in glassy systems.

As in all research, once an answer is given more questions appear. Moreover there
are always places to improve or extend our work. Here, interesting questions and
possible future work arose from the TLS and its extensions. First of all, the study
of the TLS in hard-sphere mixtures can now be compared with experimental data
through the use of colloidal particles with hard-sphere like interactions and with
the help of confocal microscopy. This will open the door to understand better the
role of the tetrahedrality in dynamical arrest and to corroborate that the TLS is
capable of predicting both local and global dynamics.

Moreover, interesting behaviors happen when glassy systems are subjected to
deformations. In particular, depending on the shear amplitude the dynamical be-
havior of deeply supercooled glasses shows a yielding transition [212]. It would
be interesting to explore the relation of this changes on dynamics with TLS on
deformed hard-sphere or Wahnström mixtures. One of the relevant dynamical
behaviors above yielding is the appearance of a shear band (a region with faster
dynamics). Examining the role of tetrahedrality in the formation and structure of
the shear band would be an interesting avenue for future research.

Finally, regarding the machine learning techniques, there is a vast amount of
room for new research. First, it would be interesting to see if the correlations can
get stronger if other structural parameters are used as input, in particular in the
case of Kob-Andersen mixture. The UML can be also applied to other glass for-
mers to assess its performance. Moreover, it would be interesting to explore how
well unsupervised machine learning techniques are capable of predicting regions
that are prone to rearrange when the systems are subjected to deformations.
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Appendix A
Relation between viscosity and
relaxation time

One of the fingerprints of the glassy regime is the anomalous relaxation behav-
ior reflected in the two step relaxation and moreover the behavior of the relax-
ation time with temperature which leads to distinguish between strong and frag-
ile glass formers. The latter distinction was made first through the behavior of
the viscosity with time (reflected in the Angell plot as shown in Fig. 1.2), how-
ever it is common to assume that the viscosity is proportional to the relaxation
time. Here, we show the derivation of this assumption starting from the Maxwell
model.

In the Maxwell model in order to analyze coupled elastic and viscous be-
haviours, a stress is applied to a coupled spring and dashpot as shown in Fig. A.1.

Figure A.1: Scheme of Maxwell model.

The elastic contribution from the
spring can be described as: σ = Gε1,
where σ is the shear-stress, ε1 the strain
and G the shear modulus. The vis-
cous contribution of the dashpot is σ=
ηε̇2, where η is the viscosity and ε̇2 the
strain rate. If the total strain is con-
served: ε = ε1 + ε2, the viscoelastic re-
sponse can be written as [2, 213–215]:

ε̇ =
σ

η
+
σ̇

G
(A.1)

The fact that this equation combines
the viscous and elastic contributions makes it relevant to a wide variety of flu-
ids [216], specifically, for liquids with steady-state flow with σ̇ = 0 and solids
where the viscosity goes to infinite [213].

If a sudden shear displacement of the form ε̇=ε0δ(t) is imposed to the system,
the shear-stress goes like σ=Gε0 at time t= 0. In particular, in solid-like systems
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the shear modulus approaches to a limiting value G∞ [217], thus σ = ε0G∞. For
larger times, ε̇ = 0 and the shear-stress decays exponentially:

σ(t) = exp

(
−G∞

η
t

)
, (A.2)

where we identify the relaxation time τ=η/G∞. In the supercooled liquid regime
G∞ does not vary considerably and the validity of this relation holds.
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Appendix B
Dynamical Heterogeneity and
Lengthscales of Hard-Sphere mixtures

As we have mentioned in Chapter 1 one of the fingerprints of the glassy regime is
the arise of dynamical heterogeneity. The hard-sphere mixtures studied in Chap-
ter 6 present as well dynamical heterogeneity as it was shown through the cal-
culation of dynamical propensity. However, from the calculation of dynamical
propensity it is not possible to extract a dynamical correlation length.

As the system goes deeper into the glassy regime the dynamical correlation
length grows. Whether it is accompanied by a growing structural correlation
length is still subject of debate [98, 101, 218–220].

In this Appendix, we will show how to calculate and characterize dynamical
heterogeneity and some results about correlation lengths from the hard-sphere
mixtures from Chapter 6.

Dynamical heterogeneity: Methods

The heterogeneities are time dependent, and in particular there is a time interval
t∗ where the system presents the maximal heterogeneities. One way of obtaining
the time interval t∗ is by defining a time-dependent order parameterQ that quan-
tifies the similarities of the overall structure with time. This is done by calculating
an overlapping function which counts the number of particles that stay in a local
vicinity after a time interval. The order parameter Q is as follows [221]:

Q(t) =

∫
dr′1dr

′
2ρ(r′1, 0)ρ(r′2, t)w(|r′1 − r′2|)) (B.1)

=
N∑

i=1

N∑

j=1

w(|ri(0)− rj(t)|), (B.2)
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where ρ(r, t) =
∑N

i=1 δ(r − ri) is the local density at position r and time t, and
w(|ri(0)− rj(t)|) is the overlapping function which takes values of 1 or 0 depend-
ing on the distance between the particle i and j. The overlapping function is:

w(|ri(0)− rj(t)|) =

{
1 |ri(0)− rj(t)| < a

0 otherwise,
(B.3)

where a is a fraction of the diameter of the particle σ. In particular, we take
a = 0.3σL, which has been proven to give the most accurate results [221]. The
overlapping function measures the number of particles that follow any of these
two cases in a time interval: in the first case a particle has not moved more than
a from its initial position and in the second case, the particle moves more than a
but it is replaced by another particle that moves to the initial position of the first
particle. The former are known as localized particles and the latter as delocalized.

At long times, Q decays to ρ4
3
πa3 that corresponds to the fraction of the vol-

ume occupied by the particles [221].

At time t∗ the system presents the largest heterogeneities which correspond to
large fluctuations of Q. In order to obtain t∗ we characterize the fluctuations of
Q [221–223]:

χ4 =
V

kBTN2

[〈
Q2(t)

〉
− 〈Q(t)〉2

]
. (B.4)

As we pointed out in Chapter 1, there is evidence that as the system gets closer
to the glass transition a dynamical correlation length grows. Unlike two-point
correlation functions that do not capture this grow [219, 224], four-point correla-
tion functions have been successful on capturing the changes on dynamical het-
erogeneity [218, 221, 222]. They can be measured from the real space as an anal-
ogy of the radial distribution function or in the reciprocal space analogue to the
structure factor. Here we focus on a four point correlation function in real-space
defined as [221]:

g4(r, t) =

〈
1

Nρ

∑

ijkl

δ(r− rk(0) + ri(0))w(|ri(0)− rj(t)|)w(|rk(0)− rl(t)|)
〉

−
〈
Q(t)

N

〉2

,

(B.5)

where w is the overlap function. From Eq. B.5 we can define a general corre-
lation function g∗4(r, t) that decays to 0 at long distances by factorizing the contri-

bution of
〈
Q(t)
N

〉2
[222]:

g4(r, t) =

〈
Q(t)

N

〉2

g∗4(r, t). (B.6)

Finally, we can extract a dynamical correlation length from the four point cor-
relation g∗4 evaluated at time t∗. To do so, the decay of the maximum values of

118



Appendix B. Dynamical Heterogeneity

10−1 101 103

t/τ

0.0

0.2

0.4

0.6

0.8

1.0

Q
(t

)/
N

a)

10−1 101 103

t/τ

0

5

10

15

χ
4k
B
T
/σ

3

b)

η = 0.52
η = 0.54
η = 0.56
η = 0.57
η = 0.575

Figure B.1: a) Order parameter Q(t) of a hard-sphere system with size ratio q = 0.85 and
composition xL = 0.300, each line corresponds to a different packing fraction η. b) Dynamical

susceptibility χ4 of the same system.

g∗4 are fitted with an exponential function: A exp−r/ξ4, where A and ξ4 are fitting
parameters, and ξ4 corresponds to the dynamic correlation length. This type of
fitting is called ‘envelope fitting’.

Results

We begin this section by calculating the dynamical correlation length of one of
the slowest binary systems from Chapter 6. To better characterize it we perform
bigger simulations with N = 10000 particles of the binary mixture with size ratio
q= 0.85 and composition xL = 0.300 for all the studied packing fraction (η= 0.52
to 0.58).

First, we calculate the order parameter Q that quantifies the number of parti-
cles that in a time t stay within a vicinity characterized by the parameter a from
their original position. We take the parameter a = 0.3σL as it captures well the
changes in heterogeneity [225]. In Fig. B.1 a) we show Q(t) for all the packing
fractions investigated. At low packing fractions, the system is just entering into
the glassy regime and there is no large heterogeneity as the particles have suffi-
cient space to move and break the cage, leading to a fast decay of Q(t). Contrary
to the largest packing fractions, where the particles need longer times to move far
from their original positions. Note that the decay of Q(t)/N at infinite times goes
to a value corresponding to 4/3πρa3.

Once we have the order parameterQ(t) we calculate its fluctuations χ4 and we
calculate the time where the heterogeneities are the largest. In Fig. B.1 b) we show
χ4 for all the packing fractions investigated. Note that, in all our η we find a max-
imum in χ4 which suggests that all the systems present heterogeneities though at
higher packing fractions the fluctuations are larger as the system becomes more
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Figure B.2: Four point correlation function g4 of a hard-sphere system with size ratio q = 0.85
and composition xL = 0.300, each dashed-line corresponds to a different packing fraction η. The

continuous lines correspond to the exponential envelope fitting.

arrested and as consequence more heterogeneous. From χ4, we extract the time
t∗ corresponding to the the time where we find the maximal fluctuations. Inter-
estingly, the time t∗ is always on the order of the α-relaxation time.

Finally, to extract the dynamic correlation length we calculate the four-point
correlation g∗4 at time t∗ and we do an ‘envelope fitting’ with an exponential func-
tion A exp−x/ξ4, where A and ξ4 are fitting parameters and ξ4 corresponds to the
dynamic correlation length.

We show in Fig. B.2 the four point correlation g∗4 with their corresponding fit-
ting. Clearly, we see that at high packing fractions the correlation is longer than
at lower packing fractions indicating an increase in the correlation length. Note
that, the dynamic correlation length can be also extracted from the limit of small
wave vectors k of a reciprocal 4-point-structure factor S4(k, t) [225], however in
order to have sufficiently data at small k the size of the system has to be consid-
erable larger. However, the calculation from g∗4 give us a good estimate of the
dynamical correlation length and more important the increasing behavior of ξ4 to
larger packing fractions is well captured.

Before showing the results of the dynamic correlation length, we calculate a
rough estimation of the static correlation length to compare the two length scales.

Following a similar approach as for the dynamical one, we calculate the decay
of a two point correlation function. We define a spatial tetrahedral two-point
correlation function as:

gtet(r) =

∑
i 6=j qiqjδ(r + ri(0)− rj(0))∑
i 6=j δ(r + ri(0)− rj(0))

, (B.7)
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Figure B.3: a)Two point tetrahedra correlation function of a binary mixture with q = 0.85 and
composition xL = 0.3. b) Dynamic and static correlation lengths of the same system.

where qi is:

qi =
ntet(i)− 〈ntet〉√
〈n2

tet〉 − 〈ntet〉2
. (B.8)

In Fig. B.3 a) we show the decay of gtet for the same systems as above. Dif-
ferently from the decay of g4, gtet presents almost identical behaviors for all the
packing fractions studied. This static correlation do not capture large changes on
the structural heterogeneity. Still, we can extract a correlation length using the
same methodology as in g4 to compare between those two length scales. We do
an exponential envelope fit to the decay of gtet. In Fig. B.3 b) we show the com-
parison between the two length scales. Although the decay of gtet looks almost
identical for all η, the correlation length shows a modest increase with packing
fraction.
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Titre: Structure locale et dynamique des systèmes colloïdaux à densité élevée

Mots clés: Dynamique vitreuse, Particules à patchs, Simulations moléculaires, Colloïdes.

Résumé: Le rôle de la structure dans la dy-
namique colloïdale vitreuse est encore un su-
jet de débat. Cependant, il existe des preuves
d’un lien direct entre les changements de la dy-
namique et les propriétés structurelles du sys-
tème. Nous explorons l’interaction de la struc-
ture et de la dynamique locales en utilisant des
particules à patchs. Pour ce faire, nous util-
isons des simulations de dynamique moléculaire.
Nous montrons qu’en renforçant la géométrie
icosaédrique, le dynamique du système présente
un ralentissement extrême. Grâce à ces résul-
tats, nous fournissons une voie pour contrôler la
dynamique vitreuse par l’utilisation de partic-
ules à patchs.

De plus, il est intéressant de savoir si nous
pouvons extraire des informations sur la dy-
namique en utilisant uniquement des informa-

tions structurelles. Afin d’explorer ce point,
nous simulons une grande variété de mélanges
de sphères dures. Nous montrons que la dy-
namique globale de ces systèmes peut être
prédite avec précision en introduisant un nou-
veau paramètre d’ordre appelé tétraédralité de
la structure locale qui compte le nombre de
tétraèdres auxquels chaque particule participe.
Les prédictions de ce paramètre d’ordre restent
valables pour dans une grande variété de den-
sités, ce qui prouve son universalité dans cette
famille de précurseurs de verre. De plus, il est
également capable de saisir les changements sur
la dynamique locale, car les régions à forte té-
traédralité sont fortement corrélées avec les ré-
gions à dynamique lente. Enfin, nous explorons
l’utilisation de techniques d’apprentissage ma-
chine non supervisé pour classer les particules
ayant des environnements structurels différents.

Title: Local structure and dynamics of dense colloidal systems: from patchy particles to
hard spheres

Keywords: Glassy dynamics, Patchy particles, Molecular simulations, Colloids.

Abstract: The role played by the structure
in determining the dynamics of glassy colloidal
systems is still a subject of debate. However,
there is compelling evidence of a direct link be-
tween changes in the local structure and the
dynamical slowdown in glassy systems. Here,
we explore the interplay between local structure
and dynamics by using patchy particles as glass
formers. This is done by making use of molec-
ular dynamics simulations. We show that rein-
forcing icosahedral geometry causes, the system
to exhibit an extreme slowdown in its dynam-
ics. With these results, we provide a route for
controlling glassy dynamics through the use of
patchy particles.

Additionally, an interesting point is whether
we can extract information about dynamics
from only structural information. In order to

explore this point, we simulate a wide variety
of hard-sphere mixtures. We show that global
dynamics of these systems can be precisely pre-
dicted by quantifying the tetrahedrality of the
local structure: an order parameter that consists
of counting the number of tetrahedra each parti-
cle participates in. The predictions of this order
parameter maintain their accuracy over a wide
variety of densities proving its universality in
this family of glass formers. Moreover, it is also
capable of capturing the changes in the local dy-
namics, as regions with high tetrahedrality are
strongly correlated with regions with slow dy-
namics. Finally, we demonstrate that unsuper-
vised machine learning techniques can be used
to classify particles with different structural en-
vironments, which are strongly correlated to lo-
cal dynamics.
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