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A B S T R AC T

Gamification, the use of game elements in non game contexts, is becoming
widely used in the educational field to enhance learner engagement, motiv-
ation, and performance. Many current approaches propose systems where
learners use the same game elements. However, recent studies show that
learners react differently to different game elements, and that learner motiva-
tion, engagement, and performance can vary greatly depending on individual
characteristics such as personality, game preferences, and motivation for the
learning activity. Results indicate that in some cases game elements that are
not adapted to learners can at best fail to motivate them, and at worst demo-
tivate them. Therefore, adapting game elements to individual learner prefer-
ences is important. This thesis was part of the LudiMoodle project, dedicated
to the gamification of learning resources to enhance learner engagement and
motivation. In this thesis, I propose a new system that adapts relevant game
elements to learners using individual characteristics, as well as learner en-
gagement. This work is based on previous results in the general gamification
field, as well as more specific results from gamification in education. Our
main goal is to propose a generic adaptation engine model, instantiated with
specific adaptation rules for our educational context.

This manuscript presents four major contributions: (1) A general adapta-
tion engine architecture that can be implemented to propose relevant game
elements for learners, using both a static and dynamic adaptation approach;
(2) A design space and design tools that allows the creation of relevant and
meaningful game elements, in collaboration with the various actors of the
gamification process (designers, teachers, learners etc.); (3) A static adapta-
tion approach that uses a compromise between both learners’ player profile
(i.e. preferences for games) and their initial motivation for the learning task;
(4) A dynamic learner model built on a trace-based approach to propose an
adaptation intervention when an abnormal decrease in engagement is detec-
ted.

The adaptation engine was implemented in a prototype for the LudiMoodle
project, that was used by 258 learners in 4 different secondary schools in
France for learning mathematics. To build this prototype we ran a real world
study, where learners used this tool as a part of their normal mathematics
course. From this study, we ran multiple analyses to better understand the
factors that influence the motivational variations of the learners, and how
their interaction traces could predict their engagement with the learning task.
These analyses served to evaluate the impact of the adaptation of game ele-
ments on learner motivation and engagement, and to build the trace based
model used for dynamic adaptation.

This work represents a significant advancement for the adaptive gamifica-
tion field, through a generic model for static and dynamic adaptation, with the
former based on individual learner characteristics, and the latter on observed
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learner engagement. I also provide tools and recommendations for designers,
to help explore different game element designs. Finally, I discuss these find-
ings in terms of research perspectives, notably with regards to further possible
advancements in the dynamic adaptation domain.

Keywords: Gamification, learning, engagement, motivation, tailored gami-
fication, adaptive gamification, meaningful gamification, meaningful design,
behaviour, learner model.
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1
I N T RO D U C T I O N

This first chapter introduces the context and motivations for my re-
search. I first present the general origins of gamification as well as
the first waves of research into this field. From this general overview,
we quickly focus on the topic at hand, adaptive gamification to in-
dividual users. I then present the LudiMoodle research project that
framed my PhD. Finally I present the three research questions that
guided my research, and the structure of this present manuscript.

1.1 general context

1.1.1 Gamification origins

Gamification as a term first appeared in the early 2000s’1, however it was not
until 2011 that a formal definition emerged, proposed by Deterding, Dixon,
Khaled, and Nacke [31]. These authors propose that gamification be defined
as: "the use of game elements in non-game contexts". A recent literature
review of gamification research [83] showed that the most commonly used
game elements included "Points, score XP", "Challenges, quests, missions",
"Badges, achievements", and "Leaderboards, rankings".

Gamification has been used in many domains. From sport [1, 84], to health
[10, 113, 120, 122], and education [33, 73, 89, 90, 105], to help foster user en-
gagement, motivation, and performance. A well-known commercial example
of gamification is the language learning application Duolingo 2. In this online
tool, learners have a wide variety of game elements to keep them motivated
to continue learning. Figure 1 shows an example of the application interface,
where learners can see the proposed game elements. In this example learners
have a daily XP goal, displayed via a progress bar. They also have a leader-
board where they can compare their progress with other learners, and a badges
system, where each language lesson is represented by a level and badge. An-
other interesting example of gamification is the piano stairs presented in fig-
ure 2. In 2009 Volkswagen ran a marketing campaign in Sweden aimed at
promoting how "Fun can obviously change behaviour for the better". A short
video available here 3 shows how these stairs behave like a normal piano,
making sounds when users stepped on the keys. The goal behind these piano
stairs is to entice people to use the stairs more (instead of the escalator next to
them), thus promoting physical activity. The video shows how users in gen-
eral preferred to use this new fun interactive tool than the normal escalator. In

1 it has been said that it was coined as early as 2003 by Nick Pelling http://www.nanodome.
com/conundra.co.uk/

2 https://www.duolingo.com
3 https://www.youtube.com/watch?v=SByymar3bds

1

http://www.nanodome.com/conundra.co.uk/
http://www.nanodome.com/conundra.co.uk/
https://www.duolingo.com
https://www.youtube.com/watch?v=SByymar3bds
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Figure 1: A screenshot from the Duolingo app. Here learners can access a leader-
board where they can compare their progress with other learners. Progress
bars for each individual lesson, an experience system with daily goals that
they can achieve, and finally a weekly schedule where they are encouraged
to do at least one lesson per day.

this example the gamification is applied as a layer over the top of the principal
activity (i.e. the physical activity of taking the stairs). The gamification layer
has one goal: to motivate users to participate in the activity, without modify-
ing it. These two examples show the wide variety of gamification approaches
that exist.

In both of these examples, all users are expected to interact with the same
game elements. The two systems do not adapt for different expectations or
preferences in their users. This could be a problem, as recent research shows
that to be effective, gamification should be adapted to individual users pref-
erences and expectations [41, 61, 108, 122]. This recent research shows that
game elements that are not adapted to users may (at best) fail to motivate, or
worse, demotivate them entirely.

Users are not all motivated by the same game elements, as these game
elements have different motivational affordances. It is generally thought that
gamification works by eliciting the same motivational and psychological ex-
periences and affordances as games do [68]. Therefore the individual game
elements should provide different specific motivational affordances. Other
work posits that gamification helps to fulfil basic needs described in Self
Determination Theory [129] (SDT). SDT supports three basic psychological
needs that must be satisfied to foster well-being and health:

• Autonomy: desire to be in control of ones life.

• Competence: desire to experience mastery, and to control the outcome.

• Relatedness: desire to interact with, and connect to others.
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Figure 2: A set of piano stairs designed to incite and motivate users to exercise and
use the stairs instead of the escalator.

Ryan et al. [130] described how video games can provide satisfaction of
these needs. They found that solitary gameplay generally supported autonomy
and competence satisfaction, and that multiplayer environments support the
satisfaction of all three needs. Gamification therefore attempts to extract and
isolate the elements of games that support each need, and reapply them to
non-game contexts. For example game elements designed to provide person-
alisation such as personalised avatars should provide a sense of autonomy for
users. Game elements designed to provide a challenge, such as quests and
timers, provide a sense of competence to users when they complete said chal-
lenges. Relatedness could be provoked through game elements that involve
other users, such as leaderboards, teams, or guilds.

1.1.2 Research in the gamification field

1.1.2.1 Generalities

The first research in the gamification field was mainly concerned with three
things: (1) defining, identifying and classifying game elements for gamifica-
tion; (2) describing systems, designs, and architectures for gamifying; and (3)
analysing the effects of gamified systems on users. Nacke & Deterding stated
in an editorial on the maturing of gamification research [112], that : "the first
wave of gamification research was held together by fundamental questions of
"what?" and "why?". The first studies in gamification were mainly concerned
with observing and describing effects on users, comparing them to non gami-
fied situations. They generally showed that gamification can work, and can
help motivate and engage users, when compared to non gamified situations,
and provided some ideas as to why it worked. The question of "what" was
tackled by more theoretical and exploratory work into game element design
and classification frameworks, to provide structured classifications of game



4 introduction

elements, and design practices to help create game elements better suited to
users [30, 67, 114, 148].

As stated previously, one of the core problems with earlier gamification ap-
proaches is the fact that all users are presented with the same game elements,
thus ignoring the individual user preferences and expectation. The second
wave of research identified by Nacke & Deterding [112], aimed at under-
standing how gamification works, and when it should be applied (and when
it should not be applied). This recent research generally focused on under-
standing individual differences in users, and how these individual differences
translate to preferences for game elements. This is still an emerging field, and
work has been mostly turned towards identifying different personality traits
[41, 72] or preferences for video games [105, 119] as a basis for adaptation.

1.1.3 Gamification in education

Education is one of the most used domain for applying gamification, as poin-
ted out by multiple literature reviews [61, 83, 96]. As with other general ap-
plications of gamification, gamification in education attempts to leverage the
motivational affordances of games to motivate and encourage learners to en-
gage with the learning content. However it is also important to avoid the pos-
sible demotivating effects of unadapted game elements (I dive more into the
possible adverse effects of unadapted gamification in Chapter 2, section 2.1).
The educational domain does offer some rather interesting challenges towards
gamification, Harviainen [63] presented a review of the "critical challenges"
that gamifing education poses. For example they state that "not everyone at-
tending a classroom is a digital native" and that "not everyone likes games,
[..] an unwilling player may disrupt the game". This shows that the challenges
linked to tailoring gamification are just as important in the educational field,
as in many cases when gamification is applied to classrooms, it is mandat-
ory. Meaning that even the less willing learners still have to participate and
could therefore be subject to the more negative effects of gamification. Harvi-
ainen also raises problems due to the framing of gamification in the classroom.
For example more competitive game elements could induce cheating to get
higher rankings. Finally they state that "To promote its intended learning goal,
a game has to be geared for that task, either through design, pre-play brief-
ing, or both." Meaning that the learning content must be considered strongly
during the design and implementation of the gamification. These challenges
identified here show the slight, albeit important, specifics when gamifying
education.

1.2 research context: ludimoodle project

The work presented in this manuscript was conducted within the LudiMoodle
project financed by the e-FRAN Programme d’investissement d’avenir 4.

4 https://www.gouvernement.fr/e-fran-l-ecole-change-avec-le-numerique

https://www.gouvernement.fr/e-fran-l-ecole-change-avec-le-numerique
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The main goal of this project is the design, testing, and validation of a
tailored gamification approach, applied to digital teaching resources (Moodle
[107]) to increase secondary school learner motivation. More specifically,
we applied our gamification model to secondary school mathematics using
a gamified Moodle platform developed with the project partners. During the
project we worked in collaboration with researchers in educational sciences
from the ECP 5 (Éducation, Cultures, Politiques6) lab in the Lyon 2 Univer-
sity, pedagogical designers from the PAPN (Pole d’Accompagnement à la
Pédagogie Numérique7) from the Lyon 3 University, and Edunao, a company
in digital learning technologies. During this project we ran a study in real
world conditions, where learners used a gamified learning platform during
their mathematics lessons. This experiment was carried out in six secondary
schools in the Auvergne-Rhone-Alpes region of France with the help of the
"Rectorat de l’Académie de Lyon". A total of 5 teachers and 258 students
took part in the project. The teachers involved in this project participated to
the development of both the learning content and the game elements used (see
chapter 4 for how we involved them during the design of the game elements).

1.3 research questions

In this manuscript we will generally be answering the questions identified
in this "second wave" of gamification research [112], specifying them to our
context (education):

• Who are we adapting our gamification to? I.e. How can we categorise
learners, and what preferences are linked to these categorisations?

• What game elements can we adapt to these different learners? How can
we design these game elements with both the learners and the learning
context in mind?

• How can we adapt these game elements to learners? How can we select
appropriate game elements for different learners?

The work presented here is centred around the proposition of an adaptation
engine for the LudiMoodle project. The adaptation engine should serve as a
tool that proposes appropriate game elements for learners. The basis for this
adaptation engine is presented in more detail in section 1.5. Each chapter in
the manuscript serves to present and improve different parts of the adaptation
engine architecture, through the studies and analyses presented.

1.4 research approach

During my thesis we adopted an empirical approach, first using theory to
build adaptation models, and updating them with successive field results. Our

5 https://recherche.univ-lyon2.fr/ecp
6 Education, Cultures, Politics
7 The digital pedagogy support Team

https://recherche.univ-lyon2.fr/ecp
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first adaptation model was based on a study of the related literature. This
first model was updated using general results (i.e. uncontextualised) obtained
from a crowdsourced study. Crowdsourcing is commonly used in HCI re-
search (e.g., [65, 118, 120]), to recruit a large number of participants from
diverse backgrounds. These general findings were then tested in our specific
educational context during the LudiMoodle study. The results from this exper-
iment allowed us to update our generalised model to a more context-specific
version. Finally using a log analysis approach [13] to analyse user behaviour
from the LudiMoodle experiment, we were able to evaluate and finalise our
adaptation model.

1.5 contributions

In this manuscript, I present four major contributions linked by a generalised
adaptation engine architecture. This serves as a framing device for the rest
of this work, as the different modules that compose it are the subject of the
following contributions and studies (see figure 3 for a simplified version of
the architecture).

Figure 3: The general adaptation engine architecture. All the contributions are iden-
tified here.
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First, the work presented in chapter 2 is a study of the related work in
the adaptive gamification in education field, that identifies four research gaps.
These gaps motivate the research in the following chapters. I first present an
overview of the research and applications of gamification in education high-
lighting the need for adaptive gamification in this context. Secondly I present
an in-depth literature review on the subject of adaptive gamification in edu-
cation, with a focus on understanding the current state of the research in this
field. I then present a brief analysis of previous work into the classification
and taxonomy of game elements, as well as different design practices for
game elements. The four research gaps that emerged from this review are

1. a gap in game element nomenclature and design

2. a gap in comprehensive learner models

3. a gap in the evaluation of adaptation methods

4. a gap in dynamic adaptation methods.

My first contribution is a study of the links between learner models and
game elements in a de-contextualised setting. Chapter 3 presents a crowd-
sourced study that investigates links between different user models and game
element preferences, in a de-contextualised setting (i.e. not linked to a specific
context). Our goal was to obtain generalisable results that could be applied
to any context. We compared three different user models, related to game
preferences and general personality traits. We also compared the impact of
different game elements that implement the same motivational strategies, us-
ing a game element abstraction framework designed to fill Gap 1. Finally we
compared our results from this study to those from studies that were carried
out in specific contexts (health, education etc.). Our results highlighted the im-
portance of game element selection and design, and helped inform the choice
of user model that would be used for the Ludimoodle adaptation engine. The
comparison of our findings to those obtained in different contexts, showed
the importance of context on the motivational impact of game elements. The
work in this chapter served a first answer all three questions, by showing how
we can categorise based on user profiles, use these categories to select appro-
priate game elements, and that different game elements issued from the same
motivational strategies have different impacts. This contribution represents a
first step in filling Gaps 1 & 2.

My second contribution is a game element design space and design cards
to explore said space, aimed at facilitating the creation of relevant game ele-
ments in co-design sessions with the various actors of the gamification pro-
cess. Research [115] shows that game elements are more effective when they
"make sense" to learners, and that when game elements make meaningful
connections to the context and content, they motivate and engage learners
better. We therefore decided to involve all the different actors of the gami-
fication process (teachers, learners, designers etc.) in the design of the game
elements. In chapter 4 I present the design space and method as well as a
usage scenario in the LudiMoodle project. These tools helped the actors by
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providing a common language and by prompting questions that some of the
less experienced actors would not have naturally considered. This contribu-
tions serves to fully answer the "What" question, by demonstrating a way to
create meaningful game elements. In the context of the LudiMoodle project
the game elements designed during the design sessions were used in the final
adaptation engine model. This contribution also fills the first research gap by
providing an simplified in-depth game element design method.

My third contribution are domain specific adaptation rules for recommend-
ing appropriate game elements based on a learner model composed of a
contextualised (motivation for learning) and de-contextualised (game prefer-
ences) profile. These rules serve to create a static adaptation approach. My ap-
proach proposes a compromise between the two profile recommendations in
the specific learning context. Chapter 5 presents the LudiMoodle field study.
A total of 258 learners from four different secondary schools in France par-
ticipated in our study, and used our gamified learning platform for about six
weeks. From the results of this study, we created a first set of adaptation rules
based on learner profiles. We then simulated different adaptation approaches
using the different learner profiles, and compared the effectiveness of adapt-
ation vs. randomly assigned game elements. These results allowed us create
learner model, the adaptation rules, and compromise algorithm. This contri-
bution serves to fully answer the "Who" and "How" questions, through the
dual profile learner model for the former, and the compromise algorithm for
the latter. This also serves to fill the second and third gaps.

My fourth and final contribution is a dynamic adaptation approach based
on the study of learner interaction logs to determine when an adaptation inter-
vention is required. Chapter 6 presents how we tracked and analysed learner
behaviour using a trace based approach. From these analyses we show how
we can propose adaptation interventions when necessary to avoid the loss of
learner engagement during the use of the gamified learning platform. These
losses could come from ill-adapted game elements, or shifting learner prefer-
ences and expectations. This contribution serves to fill the fourth research
gap: the gap in dynamic adaptation methods.
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L I T E R AT U R E R E V I E W

Gamification, the use of game elements in non-game settings, is more
and more used in education to foster learner motivation, engagement,
and performance. Recent research in the gamification field suggests
that to be effective, the game elements should be tailored to learners.
In this chapter, I first provide a general overview of the research
into gamification in education which highlights the need for adaptive
gamification. I then present an in-depth literature review on adaptive
gamification specifically in education in order to provide a synthesis
of current trends and developments in this field. This literature review
addresses 4 major concerns: (1) The different current types of con-
tributions to the field (2) The terminology used to discuss the game
elements used (3) What these contributions base their adaptation on,
and the effect on the gamified system? (4) The impact of the adaptive
gamification on learners, and how this impact is measured. From this
literature review, I identify four research gaps that I will be address-
ing in the following chapters of this manuscript.

2.1 gamification in education

Due to its predicted effect on motivation, engagement and performance, it
comes as no surprise that gamification has been widely purported as appro-
priate for use in education. In a literature review performed in 2014, Hamari
et al. [61] reported that of the 24 empirical studies they reviewed, 9 of them
were in the "educational/learning" field (none of the other contexts presented
more than 4 studies). A later literature review by Looyestyn et al. [96] asked
the question "Does gamification increase engagement in online programs?".
The authors analysed 15 studies with 6 of them specifically in the online
learning domain.

For example, Filsecker and Hickey [45] tested the effects of external re-
wards on motivation and engagement in fifth graders. They expected that
the inclusion of external rewards would decrease intrinsic motivation in their
learners. They found that, by including these rewards in a gameful like man-
ner, they could avoid the expected decrease in intrinsic motivation and even
increase learner conceptual understanding of the studied topic. On the other-
hand, whilst the external rewards did not undermine motivation, they did not
foster disciplinary engagement.

Kyewski and Krämer [86] obtained more nuanced results when testing
badges in three different conditions (badges visible to only the learner, to
everyone, or no badges at all). They found that badges had less impact on
learner intrinsic motivation and performance than initially assumed. They

9
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found no effect on intrinsic motivation from either of the gamified condi-
tions, and a general decrease in intrinsic motivation over the three conditions.
However, when asked, learners better evaluated the badges which were only
visible to the themselves, than those that were visible to everyone.

In addition, in a study on how gamification affects online learning dis-
cussion, Ding et al. [32] showed that learners were more interested in the
game elements that were directly linked to their grades. Learners showed
greater controlled motivation (motivated by grades and instructor opinion)
than autonomous motivation (intrinsically motivated for learning). Also, Denny
et al. [29] tested the effect of badges and scores on learner behaviour. They
found that only badges had an effect on how participants behaved in their ex-
periment, increasing the number of self assessments made. They also found
that this directly resulted in better examination performance for those parti-
cipants.

Several studies compare the impact of gamified and non-gamified learning
environments. For instance, Zainuddin et al. [150] tested two versions of a
flipped class setting. One with gamification (points, badges and leaderboards)
and one without. They found that learners provided with the gamified envir-
onment had increased levels of perceived competence, autonomy, and related-
ness, better performance, and were able to achieve better results during the
tests. On the contrary, Monterrat et al. [106] showed that learners who were
free to use a non-gamified learning environment had a higher level of intrinsic
motivation after the experimentation, compared to learners using a gamified
environment. Finally, Jagust et al. [69] tested two adaptive situations. In the
first situation, the time learners had to answer questions changed depending
on how quickly they answered the previous question. In the second situation,
a target score changed depending on group performance. In both situations,
learners completed more tasks than compared to a non-gamified situation,
with the first situation providing a larger effect.

Going back to the literature review performed by Hamari et al. in 2014
[61], they point out that "the learning outcomes of gamification as mostly
positive, for example, in terms of increased motivation and engagement in
the learning tasks as well as enjoyment over them." However they also state
that some of these studies show "negative outcomes which need to be paid
attention to". These mitigated results are shown for example by Hakulien
et al. [56] who presented a study where students activity in an online learn-
ing environment was analysed to determine whether badges had an effect on
their behaviour. Their results showed that whilst badges had a positive effect
on learning behaviours, they did notice an increase of "unwanted" behaviour
from some badges. For example the more competitive badges might have
reduced carefulness in learners. Another example is from Dominguez et al.
[33] who analysed the results from a study on the effects of game elements
on learner motivation and performance in an online university course: "Qual-
ifications for users of ICT". They compared a gamified version of the course
to a non gamified version. Whilst learners who completed the gamified exper-
ience got better scores in practical assignments, they also performed poorly
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on written assignments and participated less on class activities, although their
initial motivation was higher. This shows that whilst the gamified version of
the e learning course did increase performance in some areas, it decreased
it in others. Hanus and Fox [62] tested a gamified environment that used a
leaderboard and badges, comparing it to a non gamified version of the same
university Communication course. They found that learners in the gamified
course showed less motivation and lower final exam scores than those in the
non-gamified class.

These results tend to show that there is no consensus on the effect of gami-
fication on learners and that these effects may vary depending on the type
of game elements used. A more recent literature review of gamification re-
search by Koivisto and Hamari [83] also points out that "while the results
in general lean towards positive findings [..] the amount of mixed results is
remarkable". It is believed that these mixed results are due to individual differ-
ences between learners and contexts (domains, ages etc.). Thus by adapting
gamification to the individual learners can be seen as a way to improve the
learner experience with gamification.

2.2 adaptive gamification in education

Adaptive gamification in education attempts to improve the mitigated results
identified in the previous section, by adapting the gamification experience to
individual learners. Generally this is done by identifying different categor-
ies of learners (see section 2.2.4.1) and proposing different game elements
for these different categories. However other methods of adapting, based on
learner behaviour exist. In the rest of this chapter, I present the results of a
literature review the research on adaptive gamification in education that was
presented at the EC-TEL conference in 2019 [58]. Through this review, I
highlight the current research in the field and the research gaps still to fill.
The following chapters of this manuscript serve to fill these gaps as described
in section 2.5.

This review first identifies three different types of contributions to the field
of adaptive gamification in education: 1) preliminary research on recommend-
ations for game elements adapted to learner profiles, 2) technical contribu-
tions on architectures that have not been tested yet and 3) studies that look
at the impact of adaptive gamification that make use of such architectures,
and that provide valuable results into this research approach. The analysis of
these three contribution types show the maturity of this field. Following this
we then analysed the different terminologies used to describe the different
game elements used. We then looked at the different learner characteristics
that the different papers base their adaptation systems on, and how the adapt-
ation affects the game elements. We identified two categories of adaptation
systems: static adaptation (based on learner profiles) and dynamic adaptation
(based on profiles and behaviour). Finally we analysed the impact of the ad-
aptive gamification systems on learners’ motivation and performance.
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2.2.1 Review process

This structured literature review process was based on the guidelines and pro-
cesses described by Brocke et al. [146], and Webster et al. [147]. First, by
defining the review scope, specifying the research questions and therefore
explicating the search query (explained in more in detail in section 2.2.1.1).
Then, after running the search query through the major scientific digital lib-
raries and filtering the papers that did not fit the review scope (see section
2.2.1.2).

2.2.1.1 Defining the review scope

The following search query was designed to fully enclose the scope of the
three research questions:

(gamif*) AND (learning OR education OR teaching) AND (adapt* OR
tailor* OR personali*)

The first part of the query (i.e. gamif*) was used to capture all terms that
start with “gamif" (i.e. gamification, gamified etc.). Note that “gamif*" and
“gamif" were used depending on the capabilities of the search engines used
as some allowed for wildcard characters and others not. After testing dif-
ferent permutations of “teaching words" the terms “Learning" “Education"
and “Teaching" seem the most relevant (when alternatives such as “learn" or
“learner" were added the result count did not change, so this more focused ap-
proach was favoured). Finally the adaptive part of the query followed a similar
reasoning as with “gamif". The three base words (“adapt", “tailor" and “per-
sonali") allowed us to capture the different keywords used to describe these
works (and also allow for regional variants such as the British “personalised"
versus the American "personalized").

2.2.1.2 Paper search & filter

We ran our search query on the major scientific digital libraries (ACM, IEEE,
Science Direct, Springer) and Google Scholar. Due to the fairly large nature
of our search query, we received a large number of initial hits (370 papers
as of Spring 2019, see table 1), which lead to a rigorous filtration process in
order to remove false hits.

Papers were first reviewed by scanning the keywords and title, then the ab-
stract, and finally the full text if the paper was not excluded from the previous
two steps. Papers were then excluded for the following reasons:

• Format: Results that were either abstracts, preview content, posters or
workshop papers were removed. We made this decision so that we only
studied mature works. Finally, we also removed papers that were not in
English (many of the results from Google Scholar had English abstracts
or titles, but the rest of the paper is in another language).
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Table 1: Number of papers before and after content filtering. The number of papers
excluded is given for each filtration step. The search queries were executed
in spring 2019.

Source

Filtration step A
C

M

IE
E

E

Sc
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nc
e

D
ir

ec
t

Sp
ri

ng
er

G
oo

gl
e

Sc
ho

la
r

Su
m

Keyword query 64 94 17 35 160 370

Removed - format 18 8 1 2 49 78

Removed - scope 41 79 13 26 74 233

Removed - duplicate 2 1 1 1 34 39

Final count 3 6 2 6 3 20

• Scope: Here we analysed the content discussed in the papers. Papers
were excluded due to scope because they did not specifically deal with
adaptive gamification in learning. For example papers that discussed
adaptive gamification for health or sport were removed.

• Duplicates: A few references were found in multiple databases, as some
of the databases contain references to papers that are cited by papers
that they publish. Furthermore some of the papers found were extended
versions of previous papers. The non extended versions were therefore
excluded.

After this filtering, we were left with a final total of twenty papers that were
included in the final analysis.

2.2.2 Types of contributions identified

We examined the degree of maturity of the research field in light of two cri-
teria. First, we identified the contribution type of each reviewed paper (table
2). Second, we reviewed the vocabulary used to describe the adapted content
in each contribution.

Table 2: Type of each contribution. These types are described below.

Contribution
type

Recomm. 8 [7, 11, 19, 25–27, 81, 154]

Architecture 2 [82, 104]

Study 10 [36, 64, 69, 79, 89, 105, 106, 108, 124, 128]

Regarding the first criterion, we classify the papers into three types of con-
tributions that emerged from the review:
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• Recommendations: identification of game elements that would be ad-
apted to different categories or classes of learners, based on literature
review, or general surveys (8 papers). These recommendations corres-
pond to preliminary research and they have not been implemented in a
system yet.

• Architectures: adaptation engines based on existing theoretical works,
that have not yet been tested in real world situations (2 papers).

• Adaptation studies: an adaptation engine, based on recommendations
to adapt game elements to learners, tested with learners through a real
world study (the combination of an adaptation architecture, theoretical
recommendations, and a real world study) (10 papers).

2.2.2.1 Recommendations:

We found two major categories of papers: papers that base their recommenda-
tions on literature surveys, and those that base their recommendations on user
surveys, or feedback. In the first category, Borges et al. [11] review literature
on "player types" (archetypal reasons why users seek out game experiences)
and link these to learner roles and different game elements based on the motiv-
ational aspects they provide. Challco et al. [19] also link motivational aspects
with player types and game elements. Škuta et al. [154] also use player types,
but link them to higher level game principles. They then propose a matrix that
associates game elements to player types based on how well each game ele-
ment implements the linked game principles. In the second category, Denden
et al. present three user studies, two based on a feedback after using a non
adapted gamified tool [26, 27], and one based on a user survey [25] where par-
ticipants rated statements based on game elements in order to determine their
preference. Knutas et al. [81] analysed videos and interviews with learners
in a software engineering project to create clusters of learners based on their
interactions. These clusters were then linked to Bartle player types and rel-
evant game elements. Barata et al. [7] used a similar approach, creating four
types of learners based on their strategies during an online course. They then
propose different goals that could be provided to each of the learner types.
These studies serve to provide valuable information about what game ele-
ments learners might prefer, but still need to be implemented and tested in a
real adaptation system.

2.2.2.2 Architectures:

We found only two papers that describe adaptation engine architectures without
any associated study. They present what the engine takes into account, what
it adapts, and how it adapts it. Kuntas et al. [82] describe their process for
designing an algorithm based personalised gamification system. They detail
learner characteristics on which they base the adaptation of some game ele-
ments and the algorithm used to link the two. Monterrat et al. [104] describe
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an architecture that presents game elements as "epiphytes", completely separ-
ate from the learning content. They can therefore swap out game elements as
needed. They also propose a module that tracks learner interactions in order
to more finely adapt the game elements. They use a learner model that con-
tains data on learner (gender, age, player type), usage data, and environment
data.

2.2.2.3 Studies:

Half of the reviewed papers present studies that rely on an adaptive gami-
fication system in an educational setting [36, 64, 69, 79, 89, 105, 106, 108,
124, 128]. These papers provide valuable results about the impact of adapt-
ive gamification on learner motivation and performance. We present them in
section 2.2.5.

2.2.3 Game element vocabulary

We observed that the papers reviewed have a general consensus about the
vocabulary used to name the type of elements used in the gamification sys-
tems. Twelve of the papers reviewed [7, 11, 19, 25–27, 64, 69, 79, 124, 128,
154] used the term "game element" to describe the low level implementa-
tions they use, such as points, levels, leaderboards, progress. Four papers from
the same authors [89, 104–106] use the term "game features" to present the
same level of implementation. Knutas et al. [81, 82] use the terms "game like
elements". Mora et al. [108] present different gamification "situations" (that
combine different game elements). We can therefore observe that the papers
reviewed generally agree on the term "game element" to designate what is
adapted.

When we actually investigate the different names of game elements used
in each of these studies we see that there is an interesting overlap. Table 3
shows the different names for game elements presented in the different stud-
ies. We attempted to group them based on similar names, or the descriptions
given. Only papers that specifically provided the names and or descriptions
of the game elements used were included. From this we can see that whilst
the general name for the elements is somewhat stable (i.e. "game elements")
the for some elements there is not a generalised naming scheme. For example
the concept of "badges" frequently comes up in the related work using that
name, whereas the concept of progress bars is somewhat less consistent, with
some authors using the terms "experience bars", or "levels". Work still needs
to be done to better understand the similarities and differences between game
elements that use similar or different names.

In summary, we find the field of adaptive gamification in education to be
emergent, as there is a relatively low number of papers, that cover a wide vari-
ety of contribution types. Regarding the kind of contributions, twelve papers
(two architectures and ten studies) take advantage of the ground work that the
eight recommendations papers lay out. Furthermore, we found the vocabulary
used to describe what is adapted to be quite stable, pointing towards a general
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Table 3: Comparison of all the different names of game elements presented or dis-
cussed in the different papers. Some categorisations of similar names or
descriptions are given. Papers that use the same name as the category are
noted with an X.
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consensus among authors. We do however believe that more work needs to be
done in the architectures front, as well as the general design of game elements.
The various actors of the gamification process, such as learners and teachers,
should be brought into the design of game elements to avoid confusing or
alien game elements.

2.2.4 Information used for adaptation and its effect on game elements

In this section we analyse both 1) what information is considered for adapt-
ation (learner profile or activity) and 2) what the effect of the adaptation is
(a change of the game element, or a modification of how the game element
works). Our review analysis also allowed us to identify two major types of
systems: static systems, and dynamic systems (see table 4). In a static sys-
tem, the adaptation occurs once, usually before the learners start using the
learning environment. In a dynamic system, the adaptation happens multiple
times during the learning activity. We first present a short explanation on the
different player types, followed by our the analysis of the papers according to
whether they present a static or dynamic adaptation.

2.2.4.1 Profiles used to adapt to learners

We observed many different manners to categorise learners. These learner pro-
files can be based on preferences for video games (i.e. Player types), on gen-
eral personality traits, learner expertise, even things such as age, or gender.

The most used profile (ten papers) is player types: classifying users based
on their play style or game preferences. The term "player type" was first
coined by Bartle in 1996 [9]. Bartle describes four types of Multi-User Dun-
geon players (MUDs), the Achievers, the Socialisers, the Explorers, and the
Killers, based on what each of these player types prefers to do in the game.
For example: “Achievers are interested in doing things to the game, i.e., ACT-
ING on the WORLD”, whereas “Explorers are interested in having the game
surprise them, i.e., in INTERACTING with the WORLD”. Here we will
mostly be focused on the Brainhex[110], and Hexad [101] player types.

Developed considering neurobiological findings, the Brainhex [110] player
typology proposes seven different player types (Achiever, Conqueror, Dare-
devil, Mastermind, Seeker, Socialiser, and Survivor). However this player ty-
pology was only ever proposed as a general approach to understanding why
people chose to engage with and player games. Therefore its direct usage in
gamification can be somewhat criticised.

Marczewski [101] proposed the player types Hexad specifically with gami-
fication in mind. It describes six user types (Philanthropists, Socialisers, Free
Spirits, Achievers, Players, and Disruptors) that differ in the degree to which
they are more influenced by extrinsic (ex rewards, grades etc.) or intrinsic
(ex: personal growth, fun etc.) factors. Instead of basing these player types on
observed behaviour, they were based on the fundamental universal needs pro-
posed by the Self Determination Theory (SDT) [129]. SDT proposes that hu-
mans strive to fulfil three basic needs, relatedness, competence, and autonomy.
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Table 4: Classification of the papers according to the kind of information used for
adaptation (user profile and/or activity), its effect (game element change or
modification of its functioning) and the kind of adaptation (static or dy-
namic). The learner activity concerns either context based performance, or
general behaviours. Some papers use multiple types of information, and are
present on multiple rows.

Static Dynamic

Change Modification Change Modification

Profile

Player Type 8 [11, 19, 36, 89, 105, 106, 108, 154] 0 2 [81, 104] 0

Personality 4 [26, 27, 64, 128] 0 0 0

Expertise 1 [11] 0 0 0

Other 2 [11, 25] 0 1 [104] 1 [82]

Activity
Performance 0 0 0 2 [69, 79]

Behaviours 0 0 2 [81, 104] 4 [7, 82, 124]

Marczewski also drew inspiration from Dan Pink [127] who proposed that
people are also motivated by purpose. These four intrinsic motivations provided
the basis for four of the Hexad player types (philanthropists, socialisers, free
spirits, and achievers), with the other two linked to change (disruptor) and
rewards (player).

2.2.4.2 Static adaptation

Systems that use static adaptation all work in a similar manner. They base
their adaptation on a learner profile, and adapt by changing game elements.
Learners’ profiles are identified, learners are sorted into different categories
based on these profiles, and different game elements are given to each of the
different categories of learners.

For learner profiles, the static adaptation systems generally use player types
and more rarely learner personality. The papers reviewed used either the
Bartle Player types [9] (used in two papers [19, 154]), the Brainhex player sat-
isfaction model [111] (used in three papers [36, 89, 106]), the Hexad player
types [141] (used in one paper [108]), or the categories of players described
by Ferro et al. [41] (used in one paper [11]). The papers that use these player
types typically use the definitions of the different categories as a basis for their
adaptation rules, for example the Hexad classification suggests using badges
and levels (amongst others) for Achievers. Brainhex and Hexad provide a
questionnaire to determine a player profile, i.e a set of values that define how
well the player fits each type. Generally studies adapt using the dominant
player type, i.e. the type that scores the highest for a given learner. However,
Mora at al. [108] question the precision of only using the dominant type and
propose to consider several dimensions of the profile to tailor gamification.

For the personality traits, two of the five papers [26, 27] used the Big Five
Factors personality traits [49]. Two papers used a user motivation question-
naire: Roosta et al. [128] used the framework presented by Elliot et al. [38];
Hassan et al. [64] used the questionnaire developed by Chen et al. [20]. Only
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a few static systems used other kinds of user characteristics, such as gender
and gaming frequency [25], or learner role (tutor or tutee) [11].

2.2.4.3 Dynamic adaptation

In dynamic adaptation, systems use learner activity to adapt game elements,
either alone or in combination with a learner profile.

Systems that only use learner activity make adaptation by modifying the
functioning of the game element. Two papers adapt the goals presented to
learners. Paiva et al. [124] categorise all learner actions as either collaborat-
ive, gamification, individual or social interactions; the system adapts the kind
of goals the learner receives according to the kind of actions they perform.
Barata et al. [7] propose a system that varies the goals and rewards given to
learners based on their behaviours, by distinguishing four types of learners:
achievers, disheartened, underachievers, and late bloomers (a learner is not
fixed into a specific category, as their behaviour may vary over time). Jagušt et
al. [69] present two dynamic adaptation situations, both of them using learner
activity. In the first situation, learners are timed in a maths quiz. Each time
the learner gets a question right, they are given less time for the next question,
essentially increasing the difficulty based on the learner’s performance. In the
second situation, the learners are shown a target score that changes depend-
ing on how they respond to questions: the more correct answers they give, the
more the target score increases. Kickmeier-rust et al. [79] change the types
of badges presented to, and feedback received by the learner based on the
mistakes they make.

Two systems use both learner activity and profile. Monterrat et al. [104,
105] aim to modify the learners’ profile based on their activity. The system
then uses previously established static adaptation rules. When the learners’
profile changes significantly, a different game element is given to the learner.
The learner profile is based on the Ferro player types in earlier versions of
their work [104], and in more recent work [105] they propose to use the
Brainhex model (in [104] they also use gender and age for adaptation). This
is a straight forward way of implementing dynamic adaptive gamification us-
ing static adaptation rules. The systems proposed by Knutas et al. [81, 82]
use an algorithm that also uses learners’ profile and interactions. In both sys-
tems, they use the Hexad player profile, and in the more recent one [82] they
also use learner skills. In [81] they analysed videos of students during pro-
ject meetings and classified their interactions and propose different game ele-
ments based on a combination of profile and interaction types. They lay the
ground rules for a dynamic adaptation based on learner activity, but do not
offer a method to detect these actions in real time. In [82] they use learner
chat activity and profile to provide personalised goals.

In summary, adaptation of game elements is made using two major cat-
egories of information: static adaptation mainly relies on learners’ profile
(mainly their preferences and motivations), dynamic adaptation is based on
how learners perform with regards to the learning content, or how the learners
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Table 5: Impact of the reviewed studies. The numbers show how many studies are
present in each category.

Duration Static Dynamic

Positive Mitigated Positive Mitigated

Short 0 0 2 [69, 79] 0

Long 4 [64, 106, 108, 128] 2 [89, 105] 0 1 [124]

interact with the system in general. The majority of systems then use this in-
formation to select which game elements would be the most appropriate for
learners. Only a few (five) adapt by modifying how the game elements func-
tion.

2.2.5 Impact of adapted gamification on learners

We examined the impact of adaptive systems reported in the "study" papers
identified in section 2.2.2. We found that the results could be split into two
categories (see Table 5) those that show a general positive impact on learner’s
motivation or performance, and 2) those that show more mitigated results.
We also split the studies based on 1) whether they used a static or dynamic
adaptation, and 2) the duration to investigate whether these factors influence
the impact of adaptive gamification on learners. We identified short studies
as those lasting less than two weeks, and long studies as lasting more than
two weeks (with an experimental process that is closer to real world learning
practices).

2.2.5.1 Short studies

We found two studies that lasted less than two weeks [69, 79], with both
of these studies using a dynamic adaptation. All of these studies reported
positive results on learners. In [79], learners used the adaptive system over
two sessions, for a total possible time of thirty minutes. According to the au-
thors the personalised system reduced the amount of errors that learners made.
Learners with the adaptive situation showed a larger decrease in errors made
in the second session when compared to learners that used the non adaptive
situation. In [69] Jagust et al. test two adaptive situations that learners used for
15 minutes each. In the first situation, the time learners had to answer ques-
tions changed depending on how quickly they answered the previous question.
In the second situation, a target score changed depending on group perform-
ance. In both situations the authors report an increase in learner performance
(learners completed more tasks than compared to a non gamified situation),
although the first situation caused a larger increase than the second one.
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2.2.5.2 Long studies

Seven of the reviewed studies lasted more than three weeks [64, 89, 105, 106,
108, 124, 128]. Four studies showed generally positive results [64, 106, 108,
128]. Roosta et al. [128] presented learners with a different game element
based on their motivation type. Learners used an online tool for one month.
The authors find that learners who had game elements that were suited to
their motivation type showed significant differences in motivation, engage-
ment, and quiz results when compared to learners who had randomly assigned
game elements. They used learner participation rates in the online activities
as a metric to gauge motivation and engagement. Monterrat et al. [106] split
learners into three different groups: one group received game elements adap-
ted to their Brainhex player type, one group received counter-adapted game
elements, and the third group received random game elements. Learners were
then free to use the learning environment as they wanted over a three week
period. The authors found that learners with the adapted game elements spent
more time using the learning tool that those with the counter adapted ele-
ments. Hassan et al. [64] also showed a widely positive result in their study:
learners who used game elements adapted to their learning style showed a
higher course completion rate than those who used random game elements.
This impact was also observed with learners’ self-reported motivation using
a questionnaire. Finally Mora et al. [108] also report a general positive impact
from their adaptation, with an increase in behavioural and emotional engage-
ment in learners, reported using a questionnaire that was given to learners
after using the tool. In this study, university learners were sorted into differ-
ent groups based on their Hexad profile (the groups contained users that had
similar Hexad profiles) and used a learning tool over a period of 14 weeks,
with each of the different Hexad groups receiving different game elements.
However, the authors themselves point out that these results are not signific-
ant due to the small sample size.

The other three studies showed more mitigated results [89, 105, 124]. In
Monterrat et al. [105] learners used the learning environment during 3 struc-
tured learning sessions, each lasting 45 minutes set over a three week period.
The learners were middle school students, and used the learning environment
as normal part of their lessons. The results show that learners with counter-
adapted game elements found their game elements to be more fun and useful
than learners with adapted or random elements. The authors performed a sim-
ilar study reported in [89], with adults who used the learning tool voluntarily.
Learners were free to use the learning tool over three weeks. They found little
to no difference for the majority of learners.They found that adaptation had an
influence only on the more invested learners: learners with adapted game ele-
ments showed less amotivation (calculated using a questionnaire [53]). They
did not find any difference in learner enjoyment for those particular learners.
Paiva et al. [124] analysed the usage data during the month after the introduc-
tion of tailored goals in their learning tool. Learners received personalised
goals to encourage them to increase the number of specific learning actions
they performed (for example learners who performed a low number of indi-
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vidual learning actions were shown goals designed to increase their number
of individual learning actions). The authors found that the social and collab-
orative goals were effective in increasing the number of related actions. How-
ever this effect was not observed with individual learning goals (they do not
observe an increase in the number of individual learning actions).

In summary we can see that shorter studies tend to show positive results
from adaptive gamification, where as the longer ones show more mitigated
results. The two short studies compared the impact of the adaptive gamified
situation to a non adaptive gamified situation, this does not allow us to under-
stand if the impact on learners is due to the adaptive nature of the gamified
system, or due to the introduction of a novel gamified system itself. With the
longer studies, we can assume that the novelty effect wears off, thus leading
to more mitigated results, as the static adaptation tested in the longer studies
may not be precise enough to take learner variations into. This novelty effect
was also identified by Hamari et al. in [61]. Furthermore, we can see that there
is some contradictory results from the different papers. [106] and [64] both re-
port an increase in learner motivation for all learners in their studies, whereas
[89] only show an increase in the more invested learners. This could be due to
the nature of the metrics used to gauge learner motivation. In [64] they use a
questionnaire to establish this, but [89, 106] both use the time learners spent
using the tool.

2.3 classifications of game elements and design practices

Coming from the observations made in section 2.2.3, it is important to note
that there has been some work done on proposing classification frameworks
of game elements, which should provide a common understanding of game
elements. The MDA framework proposed by Hunicke et al. [67] proposes
three levels of game element description:

• Mechanics which describes the particular components of the game, at
the level of data representation and algorithms

• Dynamics which describes the runtime behaviour of the mechanics act-
ing on player inputs and each others’ outputs over time

• Aesthetics which describes the desirable emotional responses evoked
in the player when they interacts with the game)

These three levels link players and designers in how they experience and
interact with them. Players experience Aesthetics when they interact with the
various game Dynamics generated by the implemented game Mechanics. De-
signers design game Mechanics, that interact with each other and players to
form game Dynamics, that in turn generate an emotional response from play-
ers, in the form of Aesthetics. Whilst this is a useful tool for decrypting video
games and understanding how they function, its applications in gamification
are somewhat lacking. For example this framework does not propose how
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these game mechanics might be affected by the context in which they would
be deployed.

Werbach and Hunter [148] take a more concrete approach for describing
game elements using their framework, albeit in a game design centred manner.
The DMC framework proposes three "levels" :

• Dynamics: the big picture aspects of the gamified system that have to
be considered and managed but which are not directly implemented in
the game. Ex: Constraints, Emotions, Narrative, Progression, Relation-
ships. These aspects should be implemented by the next level.

• Mechanics: the basic process that drive the action forward and gener-
ate player engagement. Ex: Challenges, Chance, Cooperation, Compet-
ition, Feedback, Resource acquisition, Rewards, Transactions, Turns,
Win States. These processes should be composed by the elements in
the next level.

• Components: Specific elements that compose various mechanics. Ex:
Points, badges etc.

This framework is mainly focused on game elements from a design perspect-
ive. Werbach and Hunter are concerned with how these game elements are
designed, and not the effects that they have on users.

On the topic of how these game elements were designed (or selected for use
in the different studies). None of the papers in the literature review explicitly
state that presented studies employed game elements that were co-designed
with learners, or teachers. This could be an issue, because game elements
should function better in their role of fostering engagement and motivation
if they make sense, or meaning to learners. This is the basis of the concept
of "Meaningful gamification" defined by Nicholson in 2012 [114]. In this
idea, game elements should make sense to users, creating explicit connections
to the given activity, and supporting feelings of competence, autonomy and
relatedness, identified as essential in Self-Determination Theory [114, 129,
140]. On the contrary, non-meaningful elements may be ignored or worst may
demotivate users [30, 114]. Therefore, whilst designing game elements with
the specific learners and learning activity in mind might be challenging, it
may also provide a better gamified experience [114].

2.4 identified research gaps

Adaptive gamification in education is a novel and cutting edge research field,
that has been gaining in popularity in the past few years. In order to better un-
derstand the current state of research in this field we performed an in-depth
literature review that included twenty papers. Our analysis highlights a strong
theoretical base, with eight papers that present recommendations for game
elements, two that propose architectures that use these recommendations, and
ten papers that test various adaptation engines in real world learning settings.
We observed a variety of information used as a basis for adaptation, with both
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static and dynamic approaches to adaptation. This shows that this is a wide
and diverse research field. From this literature analysis we present four re-
search gaps that should be addressed to help further the adaptive gamification
research field. These research gaps are addressed in the following chapters of
this manuscript, as described in section 2.5.

2.4.1 Gap in game element nomenclature & design

As shown in section 2.2.3 there is a certain confusion in the general nomen-
clature of game elements, and a gap in how they are designed. First the terms
that define each of the game elements needs to be standardised and better
defined. What are the differences between the Missions used by Paiva et al.
[124] and the Quest system presented by Challco et al. [19]? From studying
the descriptions, we can see that there is little difference. A general frame-
work should describe each game element along different abstraction levels
(i.e. Points, Badges and Virtual goods are all forms of rewards and have some-
what similar functionalities. Points are more similar to badges than they are
to Goals for example. And Self set goals are closer to forced goals than they
are to Leaderboards).

Frequently game elements are selected without consideration for the learners
that are going to use them. However as pointed out by Nicholson [114], game
elements are more effective if they make sense to users. Thus came about the
idea of meaningful gamification. We believe that by designing game elements
specifically for the learning context, in collaboration with the different actors
that will either be using or overseeing the use of the gamified tool (i.e. learners
and teachers), we can achieve better and more effective game elements.

2.4.2 Gap in comprehensive learner models

As pointed out in 2.2.4.2, half of the reviewed papers use learner player types
to adapt game elements. Generally they use the dominant player type identi-
fied to classify the learners. Mora et al. [108] question this in their study and
show promising results when adapting to more than the dominant player type
(although as the authors state, their results are not significant). Furthermore
very few systems (only two) take learning characteristics into account, such
as learner expertise [11] or learning styles [64]. We believe that the mitigated
results identified in 2.2.5 could be partly due to the complex nature of learner
preferences that are not represented in these simplified learner classifications.
We therefore firstly advise taking into account more complex learner profiles,
that include more specific learning data, such as learner expertise, learner
skills as well as learner player types. Furthermore, learner activity should
also be better explored as a means for adapting game elements. A similar re-
search gap was identified in a literature of Tailored gamification in 2020 by
Klock et al. [80], where they propose that research should consider "all of the
aspects of a users characteristics".
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2.4.3 Gap in the evaluation of adaptation methods

As identified in section 2.2.5, we advise that future adaptive gamification stud-
ies should aim for longer durations, as the results from short studies may be
affected by the novelty effect of introducing gamification and not the adapt-
ive nature of the gamified system. Furthermore, studies should compare the
effectiveness of the adaptive system to that of a non adaptive system, which
would also help with identifying if the impact on learners is due to gamific-
ation in general or to the adaptive nature. We also observed two ways for
studies to quantify the effectiveness of the tested systems: either as an impact
on learner performance or learner motivation. For learner performance it is
fairly straightforward, using metrics such as course completion rate [64], or
test results [79]. However, for learner motivation, the process was some-what
more complex, as studies used ad-hoc metrics to infer learner motivation (for
example [89] used time spent on the learning tool, [105, 124] used learner
feedback). This makes the comparison of the results from different studies
difficult to make. We therefore advise that more research be performed into
a more structured manner to estimate learner motivation levels. For example
O’Brien et al. [116] propose a the User Engagement Scale (UES) to estimate
user engagement, which has been shown to be somewhat robust and effective.

2.4.4 Gap in dynamic adaptation methods

We identified in section 2.2.4 how adaptation of gamification may affect the
gamified learning environment by changing the game element itself, or by
modifying its functioning. In their current state, most adaptation systems
work in a static way. We highly believe that there is more to be explored
in the domain of dynamic adaptation. For example the question of how and
when a dynamic adaptation presents itself to a learner still has to be addressed.
If the change brought on by the adaptation is not explained or presented to
the learner in a clear and understandable manner this could confuse and could
distract the learner from his/her learning activity. In the field of user interface
adaptation Bouzit et al. [15] show that change needs to be observable, intel-
ligible, predictable and controllable for the user. We believe therefore that
research needs to be done into how these concepts can be applied to educa-
tional settings. Going back to the general literature review by Klock et al.
[80], they also propose to consider dynamic modelling, stating that "users,
systems, and contexts change over time". On the question of "when" only a
few studies show methods for tracing user behaviour. For example Bouvier
et al. [12] present a trace based approach for estimating user engagement and
adapting when engagement is low.

2.5 conclusion

In this chapter we presented an in depth literature review in order to better
understand the field of adaptive gamification in education. We identified that
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the field is emergent, with a theoretical base that several studies in real world
learning settings build upon, and a general consensus on the language used.
There is still room for this field to grow and develop, especially regarding
dynamic adaptation that has been studied only once on a long term. From the
shortcomings identified in the related literature, we identified four research
gaps that should be addressed in adaptive gamification research. The follow-
ing chapters in this manuscript all aim to fulfil these gaps. First, we high-
lighted a research gap in game element nomenclature & design. Second, we
identified a gap in comprehensive learner models that combine both contex-
tual (i.e. related to the education domain) and non-contextual (i.e. unrelated
to the educational domain) information. Third, a research gap into the evalu-
ation of the effects of adapted gamification on learners. Finally a gap in the
research into dynamic adaptation methods

Adding to these research gaps, we can observe a distinct lack of generalised
adaptation architectures. In section 2.2.2.2 we observed that only two papers
presented generalised architectures of systems that can be used to tailor game
elements to learners. However of these two, one [82] only described an al-
gorithm for choosing appropriate game elements. The other does present a
more generalised approach [104], and whilst they do propose a model to take
learner behaviour into account in parallel to a learner profile, the work is still
in a preliminary stage.

The main goal of this manuscript is therefore to expand on these ideas for
an architecture to adapt gamification to learners, and to provide answers to fill
in the identified research gaps. Generally the architecture is structured around
three questions : Who are we adapting to? What are we adapting? and How
are we adapting?. Each of these three questions is represented by a module
in the architecture. In this vein, Chapter 3 presents a first look into associat-
ing user profiles with different game elements, and provides the results of a
study that sought to compare various user models. The results of this chapter
served to answer (in part) the first two research gaps: classification of game
elements & better learner models. Chapter 4 expands on the work provided in
Chapter 3 for the first research gap. A comprehensive game element design
space, with tools to explore and create meaningful game elements linked both
the learners and context serve to fulfil this first research gap. Chapter 5 fills
the second gap by testing the effectiveness of adding user motivation to the
learner model. This Chapter also serves to start to fulfil the third gap by ana-
lysing the effects of gamification on learners in a long form study. The final
research gap, (exploring dynamic adaptation approaches) is covered by the
proposal presented in Chapter 6. I present a trace based model in this chapter
that proposes to quantify and clarify how learner engagement and motiva-
tion evolve over time through the usage of gamified tools, and that allows to
identify when an adaptation is required.

All of the various examples and studies presented in this manuscript are
from the Ludimoodle project, unless specified.
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G A M E E L E M E N T R E C O M M E N DAT I O N S BA S E D O N
U S E R M O D E L S

Based on the study of the related work, we see that it is important to
provide adapted and tailored game elements for learners. A first ap-
proach commonly observed in the related literature is to categorise
learners based on their video game preferences (i.e. player profiles).
However findings are very heterogeneous, and somewhat difficult to
reuse due to different contexts, different profiles used to characterise
users, and different implementations of game elements. This chapter
presents a first study that investigated the links between different pro-
file models and different preferences for game elements, how different
implementations of similar game elements can affect users differently,
and how the context of the gamified application can change the effect
of game elements on users. The goal of this study is to provide insight
into how we can generate recommendations for appropriate game ele-
ments, based on individual user characteristics. For this purpose, we
ran a crowdsourced study with 300 participants to identify the mo-
tivational impact of game elements. Participants were asked to select
which game elements they believed would motivate them more to com-
plete an unspecified task in a pairwise comparison manner. This study
differs from previous work in three ways: first, it is independent from a
specific user activity and domain; second, it considers three user typo-
logies; and third, it clearly distinguishes motivational strategies and
their implementation using multiple different game elements. Our res-
ults reveal that (1) different implementations of a same motivational
strategy have different impacts on motivation, (2) dominant user type
is not sufficient to differentiate users according to their preferences
for game elements, (3) Hexad is the most appropriate user typology
for tailored gamification and (4) the motivational impact of certain
game elements varies with the user activity or the domain of gamified
systems. This study was the subject of a paper that was awarded with
an honourable mention at the CHI Play conference in 2019: Factors
to Consider for Tailored Gamification [59]. This chapter presents a
first step in fulfilling the need for "richer learner models".

3.1 introduction

As shown in Chapter 2 users can be more or less receptive to different game
elements [17, 75, 105, 106, 122]. Personality and preferences have a great
influence on the effect that game elements have on user motivation. Appro-
priate game elements can lead to higher levels of user motivation, whereas

27
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inappropriate game elements can demotivate users. Recent work on tailored
gamification [41, 72, 108, 118] has provided valuable results that identify
links between user types and relevant or motivating game elements. However,
these results are very heterogeneous due to three reasons.

First: the studies are generally carried out in different and particular do-
mains (usually in health [118, 119] or education [72, 108]). Even with
studies that are in similar domains, we can sometimes observe different
results (see Chapter 2, section 2.1).

Second: they rely on specific and different user typologies or personality
models, mainly BrainHex [110], Hexad [141], or Big Five [50].

Third: they do not consider the same game elements or study different
levels of abstraction of motivational strategies. For example the Re-
wards used in [118, 120, 121] are considered Points by [41] and [72].
Furthermore the concept of rewards systems can vary greatly based on
what kind of rewards, and how they are used in the system. Similar is-
sues can be raised for other game elements such as the game elements
called cooperation in [118, 120, 121] which show up as Teamwork in
[71] and Guilds or Team in [101, 141].

Thus, it is difficult to isolate and identify which game elements provoke
which effects on

Thus, the motivational impact of game elements considered in these stud-
ies is difficult to isolate making it is quite difficult to identify which game
elements are appropriate for which user profiles. Furthermore as appropriate
game elements are subject to change when the context or activities change,
re-using in different contexts is somewhat flawed. Finally as pointed out in
chapter 2 studies in tailored gamification generally only use dominant types,
which can prove problematic as we can question how well these dominant
types are at capturing individual differences in learners. This line of question-
ing is also present in Orji et al. [120] where they consider each dimension of
the player profile independently.

The goal of this chapter is to present a study that investigates factors to
consider to support gameful design choices for tailored gamification, and pro-
poses more generalizable findings on the links between game element prefer-
ences and user profiles. The study conducted investigates the motivational im-
pact of game elements according to user types. It differs from existing works
in three major ways: first, it is context-independent meaning that the scenarios
that illustrate the game elements are not related to a specific user activity or
domain; second, it compares two different user typologies (BrainHex [110],
Hexad [101]) and a personality trait model (Big Five [49]); and third, it makes
use of an abstraction level framework to describe the different game elements
tested (see section 3.3).



3.2 research questions 29

Figure 4: Step one of designing our adaptation engine, determining how to link users
to appropriate game elements.

3.2 research questions

This study seeks to identify the factors that will support design choices when
tailoring gamification to user profiles. These choices underline a general ques-
tion which is how we can identify users’ preferences for game elements. Thus,
we address the following research questions:

RQ1: Considering the game elements, Do game elements implementing a
same motivational strategy have different impacts on user motivation?

RQ2: Considering the user typologies

a: Is the dominant user type sufficient to discriminate users’ prefer-
ences?

b: Which typology should be chosen for tailored gamification?
RQ3: Considering the user activity and domain, To which extent does the

context influence the motivational impact of game elements?

Through these questions we will attempt to elucidate the first step of adapt-
ing game elements to users. In short we will create a first simple user model
that we will use to select appropriate game elements (see figure 4).
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3.3 abstraction level game element framework

To help identify which game elements to test in this study, we designed a
simple abstraction level game element framework that categorises game ele-
ments into overarching motivational strategies. This framework represents a
first step in covering the need for better designed game elements (presented in
2.4 by dealing with the general confusion in the naming and implementation
of game elements presented in section 2.2.3).

This framework drew inspiration from similar tools that propose a descrip-
tion of the different abstraction levels of game elements, such as MDA (Mech-
anics Dynamics Aesthetics) [67] and DMC (Dynamics Mechanics Compon-
ents) [148], described in the previous chapter (section 2.2.3).

We expand on previous models by proposing a more structured framework,
linking different game elements to their higher level motivational strategies.
We also propose a more motivation oriented manner to describe game ele-
ments, focusing on how they can affect users rather than how they are de-
signed. Finally our most concrete level also takes the specific domain where
the game elements are deployed into account. We propose three abstraction
levels:

• Motivational Strategies: high-level abstract concepts that motivate and
engage users that are too abstract to be directly implemented. This is
somewhat akin to the Dynamics level described in the MDA frame-
work [67], and the Mechanics level in DMC [148]. However in our
framework, the focus is on how these different strategies can motivate
and engage users.

• Game elements : specifications of the motivational strategies that provide
general rules on how they function. Here we are close to the Mechanics
levels of MDA [67], and Components level of DMC[148].

• Game element instances: specific instances of game elements - created
for a specific domain, users, task etc. (for example the badges system
from Duolingo). This final level takes the context specifics into account
to create the game element. instance.

To better understand how a game element can be described using this
framework, I propose to decompose the Points game element from the Ludim-
oodle project (full descriptions of all the game elements used in the project
are provided in Chapter 5 section 5.3.2). The Points game element in the
Ludimoodle project rewarded learners with a set amount of points for each
correctly answered question. Learners could see how many points they could
gain in each quiz. Points were represented by a little gold coin stack. The
points game element implements the "Reward" motivational strategy. This
tells us that it should provide some kind of reward for completing an action /

activity. In this case, the reward is given when correctly answering a question.
For the Game element level, we use Points which implies that the reward is a
numerical format. Finally the Instance level provides the contextual informa-
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tion, relevant design (visible maximum, coin design), and functionality rules
(how many points awarded per correct answer).

Table 6 presents the full framework, along with the corresponding story-
boards designed for this experiment.

Each of the motivational strategies provokes one of multiple of the motiv-
ations provided in the self determination theory (SDT) [129]. The majority
of these motivational strategies promote competence (rewards, goals, time,
progress), however Self Goals also promotes autonomy. Social interaction
game elements promote relatedness. Each of the game elements are com-
monly found in gamification literature using a wide variety of names. See
table 7 for an overview of the different references of game elements in the
relevant literature.

3.4 study design

To explore these questions we ran a crowdsourced study that asked parti-
cipants to evaluate the motivational impact of the 12 different game elements
present in the abstraction level framework (see section 3.3). The game ele-
ments are illustrated using storyboards that show an implementation inde-
pendently from any specific user activity and domain. The perceived motiv-
ational impact of each element is evaluated using a paired comparison pro-
tocol which has been shown to be more reliable than direct rating [126, 134].
Participants were asked to select which of two storyboards they found to be
more motivating. We compare variations based on users’ profiles according
to the three most commonly used user models: BrainHex [110], Big Five Per-
sonality Factors [49] and Hexad [101]. This study reached 616 participants
that were then filtered down to a set of 300 high-quality and consistent parti-
cipants.

3.4.1 Materials

We designed a storyboard for each game element independent of any activity
and domain (see an example in figure 5). This methodology was inspired by
other studies in this vein [119–121]. Each of the storyboards depicts three
panels where a user completes a generic "task" with the game element chan-
ging accordingly. The full storyboards are provided in the annexes at the end
of this manuscript.

Rewards game elements

In the Points storyboard (figure 38), the user receives points each time they
complete a task, their total score is shown in the game element area. For
Badges (figure 39) the user gains a badge for completing the task, they can
see a list of the badges they have obtained, as well as the badges they can still
obtain in the game element area. For Useful rewards, the user completes a
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Table 6: The Strategy-Element-Instance framework. Each of the game element in-
stances is shown in a different storyboard example used in the following
study.

Strategy Game Element Instance explanation

Rewards
Badges

One time rewards that are given to
users based on specific actions they
perform (medals, trophies etc.) See

figure 39

Points

Numeric rewards that are given to
users based on general actions

(performance, bonuses etc.) See
figure 38

Useful
Rewards that have an effect on the

system (bonuses, power-ups etc.) See
figure 40

Goals
External Goals that are set by the system, or by

some other 3rd party. See figure 41

Self
Goals that are self defined by the user,
either through direct input or selection.

See figure 42

Time
Schedule

Game elements that keep the users
coming back on a regular schedule

(daily rewards / challenges for
example). See figure 43

Timer

Game elements that keep track of the
time the user spends performing an

action (increasing, decreasing timers
etc.) See figure 44

Social Interaction
Trading Being able to exchange goods / tools

with other users. See figure 45

Teams Being able to work with other users to
achieve common goals. See figure 46

Discussion Being able to exchange information
with other users. See figure 47

Progress
Compared

Game elements that compare a users’
progress to that of other users

(leaderboards, ranking systems etc.)
See figure 48

Task

Game elements that display a users’
progress in the task, independently
from other users (progress bars etc.)

See figure 49
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Table 7: The 12 game elements from the abstraction framework as represented in
previous studies.

Strategy Game element Equivalent to

Rewards

Badges Badges [41, 72] Rewards [72] Badges or
Achievements [101, 141]

Points Points [41, 72], Reward [119–121], Points
[101, 141]

Useful Reward [119–121]

Goals
External Goal setting & Goal suggestion [119, 120]

Self Clear goals [72]

Time
Schedule Reward Schedule [41]

Timer Timer [89]

Social
Interaction

Trading Collection & trading [101, 141]

Teams Cooperation [119–121] Teamwork [71]
Guilds or Team [101, 141]

Discussion Social network [101, 141]

Progress

Compared
Leaderboards [41, 72, 89] Competition and
Comparison [121] Comparison [119, 120]

Social Comparison [101, 141]

Task

Bars [41] Progress [72] Self-monitoring and
suggestion [121] Self-monitoring and

feedback [119, 120] Advancement [71]
Levels or progression [101, 141]

task and gains a "Give example" power. The area on the right shows the users
inventory, with items such as "Skip task" and "Help" that suggest their usage.

Goals game elements

Both of the Goals storyboards have the same general structure: the game ele-
ment area on the right shows a list of goals that the user has to complete, each
one has a checkbox that shows whether a given goal has been completed or
not. For External Goals (figure 41), the storyboard shows the user complet-
ing a task, after which a popup informs them that the system has given them
a new goal. A new goal and checkbox appear in their goal list. For Self Goals
(figure 42) there is a button in the game element area that opens a window
where the user can add a new goal themselves.
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Figure 5: An example of one of the 12 storyboards created to illustrate the game
elements that implement the 5 motivational strategies. This particular one
depicts the Badges game element related to the Rewards strategy.

Time game elements

The Schedule storyboard (figure 43) shows a five day calendar. The user has
to complete at least one task per day. Each day that a user completes a task,
a check mark is placed in the corresponding day. After completing five days,
the user receives a bonus. For the Timer storyboard (figure 44), the user is
timed the see how quickly they can complete a task. In the game element area,
they is shown a table of their previous times. After completing a task the table
updates, and the user is informed if they performed faster than before.

Social Interaction game elements

In the Trading storyboard (figure 45), a user selects a task to complete in the
task area. A popup informs them that they need a "key" to start that particu-
lar task, which they acquire by using the "chat" on the right to trade another
user for it. For the Teams storyboard (figure 46), the user acquires points each
time they completes a task, the user can see their team score. A set of noti-
fications on the right show when another user in their team completes a task
and increases the team score. The Discussion storyboard (figure 47) shows a
user stuck on a task. they use the chat on the right to ask other users for help.
Another user provides a solution to their problem and they can complete the
task.

Progress game elements

Both of the Progress game element storyboards have a similar design. They
both use a progress bar in the game element area that fills up when a user
completes a task. In the Compared Progress storyboard (figure 48), the bar
shows the class average on the side and opens a popup when the user advances
into the top 50% of their class. In the Task Progress storyboard (figure 49) the
class average is replaced by a simple marking to show how much of the task
the user has completed (50%, 60% etc.).

3.4.2 Storyboard validation

To ensure that these context-independent storyboards would be understood
by all participants, we ran a pre-study comparing them to similar storyboards
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for a maths learning activity. We asked participants to describe in their own
words each storyboard. The descriptions were then reviewed by two different
evaluators and graded out of 3.:

• 0: the participant does not understand the panels

• 1: they understand what is happening in the panels but not how the
system works

• 2: they understand the panels but show minor confusion on how the
system works

• 3: they understand the panels and how the system works perfectly

After an initial set of evaluations using 8 participants, we iterated on our
storyboard design, and validated the final design using a further 2 participants.
We found that the descriptions given for the context-free storyboards matched
those given for the task-specific ones. Furthermore, to ensure that the com-
prehension of the storyboards was not influenced by age, or familiarity with
video games (or game mechanics in general), we calculated the correlation
between these factors. We found a very low correlation (0.10) between par-
ticipant age and understanding, and a low correlation (0.28) between video
game familiarity and understanding. We therefore judged that our storyboards
could be understood as well as context-specific storyboards by all participants.

3.4.3 Procedure

As stated previously, we used a paired comparison technique to evaluate
the perceived motivational impact of each game element. Participants were
shown pairs of storyboards, and were asked to choose which one they es-
timate "would motivate them more to use the system" (forced-choice meth-
odology). Such paired comparison protocol offers 3 advantages over Likert-
type rating [126]: (1) the experimental task is less cognitively demanding
[22] (choosing a preference between two items is easier than providing an
ordinal rating); (2) it avoids normalization issues which occur, for instance,
when some users avoid extreme response categories; (3) it has been shown to
provide higher sensitivity and lower measurement error [134].

We opted for a full paired-comparison design, meaning that each parti-
cipant evaluates all possible pairs of storyboards, i.e.

(
n
2

)
=n(n − 1)/2 pairs

with n the total number of storyboards. In our experiment n=12 leading to 66
comparisons. This full design, as opposed to incomplete ones, is more time
consuming for individual participants but allows a complete evaluation of par-
ticipant agreement and consistency. Note that the order of pairs is randomised
for each participant.

3.4.4 Data collection

As commonly used in HCI research (e.g., [65, 118, 120]), we leveraged the
power of crowdsourcing to recruit a large number of participants. Our study
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used the Figure Eight platform 1 and proposed a task divided into two parts:
firstly, participants were asked to complete the paired-comparison experiment
described above; secondly, they were asked to fill questionnaires allowing us
to determine their BrainHex, Hexad and Big Five profile. For the first two,
we used the official questionnaires [141, 153], for the last one, we used a
simplified version of traditional big five questionnaires called TIPI (Ten Item
Personality Measure) [51]. Using the tools provided by the crowdsourcing
platform we ensured that our participants came from a wide variety of differ-
ent countries and that they could respond to our task only once. Participants
were paid a total of US$1.25, and spent between 15 and 25 minutes to com-
plete the surveys.

3.4.5 Data filtering

As with all crowdsourced studies, certain measures are required to ensure that
the responses given by participants are genuine. We employed two mechan-
isms to filter careless participants (we did not filter any of the answers to the
personality or player type questionnaires):
(1) In the pairwise comparison task, we inserted four "test" questions where
participants were expected to answer a certain way. For example, one "test"
question presented a situation where a user would gain 20 points, and an-
other where the user would lose 10 points for performing the same actions.
Participants were therefore expected to chose the first one as the more mo-
tivational. Participants with less than three correct answers to these four test
questions were rejected.
(2) To evaluate the reliability of each participant, we checked their individual
consistency, by calculating the number of cyclic triads occurring in their
choices. A cyclic triad occurs when a pair comparison is intransitive, (e.g., A
is preferred to B, B is preferred to C and C is preferred to A). The coefficient
of consistency [77] is then computed as follows for each observer: ζ=1− 24c

n3−n
where n is the number of stimuli (12 in our experiment) and c the number of
cyclic triads. ζ=1 when there is no circular triads (i.e. perfect consistency)
and will decrease to zero as the number of circular triads, and thus the incon-
sistency, increases. Participants’ results were rejected if their coefficient of
consistency was inferior to 0.75, as in [92]. This limit was decided to allow
for some degree of input error (i.e. clicking on the wrong button) whilst still
removing the most inconsistent participants.

A total of 616 participants performed the whole task; 180 were rejected
according to (1) and 136 were rejected according to (2) giving a final set of
300 valid and consistent participants. This strict filtering insures a high reli-
ability of our results. Participants came from a wide variety of backgrounds,
a summary of the demographic information and distribution of the different
user types is presented in table 8.

1 The website has since undergone a rebranding https://appen.com/

https://appen.com/
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Table 8: Participant demographic information

Total participants (300)

Gender Male (203), Female (97)

Age
<20 (9), 20-30 (124), 30-40 (93), 40-50 (45), 50-60

(24), 60+ (5)

Origin
Europe (131), Africa (17), The Americas (106),

Asia (44), Oceania (2)

Big five dominant
type

Agreeableness (73), Conscienciousness (104),
Emotional Stability (46), Extraversion (17),

Openness to Experiences (60)

Brainhex dominant
type

Achiever (32), Conqueror (48), Daredevil (21),
Mastermind (118), Seeker (35), Socialiser (33),

Survivor (13)

Hexad dominant
type

Achiever (49), Disruptor (5), Free Spirit (71),
Philantropist (61), Player (85), Socialiser (29)

3.4.6 Data Analysis

We describe in this section the different tools used for data analysis. Note that
we used Bonferroni’s correction to compensate for the multiple comparisons
in our statistical tests.

3.4.6.1 Perceived motivation score

As explained in the Procedure, each participant provides a "vote" for a story-
board for each of the 66 possible pairings. Results per participant can be recor-
ded in a 12× 12 preference matrix. These per-participant preference matrices
are then summed into a single one. In this summed matrix P, each element
Pi, j represents the number of times the storyboard i was judged to be more
motivating than storyboard j. An example of such a matrix is given in table
9.
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Table 9: Example preference matrix for one participant and five storyboards. In
this example the participant voted S tory1 more motivating than S tory2
when presented with the pair S tory1− S tory2. However S tory1 and S tory2
scored the same in total. The participant also voted for S tory3 each time
they were shown it, and never voted for S tory5.

S tory1 S tory2 S tory3 S tory4 S tory5 Score Normalised

S tory1 - 1 0 0 1 2 0.4

S tory2 0 - 0 1 1 2 0.4

S tory3 1 1 - 1 1 4 1

S tory4 1 0 0 - 1 2 0.2

S tory5 0 0 0 0 - 0 0

As classically done with pairwise comparison experiments [126], we can
then consider the number of votes received by each storyboard as its score of
perceived motivational impact, which may then be divided by the number of
comparisons per storyboard for normalisation purposes. This score computa-
tion can be done either for each individual participant, or for groups of par-
ticipants (e.g., for calculating the preference scores for each dominant user
type). In the example matrix (table 9) S tory5 had a final score of 0 (it was
voted 0 times out of a possible 5). S tory1 had a normalised score of 2/5 = 0.4

Note that more sophisticated statistical methods exist for inferring scale
values from a preference matrix [16, 137]. However they were not shown to
give a better representation of perceived motivational impact score than the
vote counts. Using the data gathered in this study we observed an average
correlation of 0.999 (SD: 0.0002) between scores obtained by vote counts
and Thurstone’s Law of Comparative Judgements, Case V [137].

3.4.6.2 Participant agreement

Beyond motivational scores, it is also interesting to analyse the agreement of
participants in their choices, i.e. the similarity of their votes. The coefficient
of agreement u was defined by Kendall and Smith [77] as: u= 2Σ(

s
2

)(
n
2

) − 1 where

s is the number of participants and Σ is the sum of the number of agreements
between all

(
s
2

)
possible pairs of participants and

(
n
2

)
possible pairs of stimuli.

It ranges from 1 (perfect agreement) to −1/s − 1, if s is even, and −1/s, if s
is odd.

3.4.6.3 PLS-PM

To calculate how well each user type affects the scores for each implementa-
tion we used a method called partial least squares path modelling (PLS PM)
[55]. PLS PM is a method of structural equation modelling which allows es-
timating complex cause-effect relationship models with latent variables, that
has been previously used in studies on the effects of gamification on user mo-
tivation [119–121, 141]. Essentially we use it to see how the values for each
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user type influence the scores for each game element. The influence values
vary between -1 and 1 depending on how strong the effect is. As this is a stat-
istical evaluation we use the calculated p-value to determine the validity of
the given influences.

3.5 results

3.5.1 RQ1: Perceived motivation for different implementations of motiva-
tional strategies

As presented in table 7, a given motivational strategy can be implemented in
the form of different game elements. To investigate if different implementa-
tions of a same motivational strategy lead to different levels of perceived mo-
tivation, we analysed the motivation scores obtained for the game elements on
the entire set of participants. Scores are computed from the preference matrix
as explained in Section 3.4.6.1. Instead of a single score per game element,
we compute a score distribution using a bootstrap technique [37]: scores are
computed 200 times, each time on a random set of participants of the same
size as the original set, generated by sampling with replacement. The boot-
strap distributions allows for statistical testing and their percentiles provide
the 95% confidence intervals.

Figure 6 illustrates the perceived motivation scores. The corresponding
scores are given in table 10. For each motivational strategy, we performed
pairwise paired t-tests over the score distributions to assess if significant dif-
ferences exist between game elements. The results of these tests are given in
table 11.

The Rewards strategy shows highly significant differences among the mo-
tivational impact of its implementations. Badges is the best perceived, fol-
lowed by Useful Rewards and finally Points (Badges-Points t:137.56, Points-
Useful t:-60.25, Useful-Badges t:-114.23, p<.001). Similar results have been
found by Denny et al. [29] who showed that in educational settings their
badge system was more effective than their points system. They attribute the
differences to the fact that the points setting "lacked clear targets". Several
other studies have also reported the efficacy of badge systems [3, 28, 52].
Studies that show an effectiveness of Points [21, 40] integrate this game ele-
ment with others like leaderboards or badges, thus preventing an isolated im-
pact of this particular game element.

Regarding the Goals strategy, the difference between the two implementa-
tions is also significant (t:70.34, p<.001). Externally set Goals are perceived
as more motivating than Self set Goals. This could be explained by the fact
that users may find it more difficult to set their goals by themselves, especially
without a specific (and meaningful) task to carry out. The studies in [34, 88]
also show that External Goals are effective means for user performance and
motivation.

Regarding the Time strategy, Timers score less than Schedule (t:-84.22,
p<.001). We believe this to be due to the fact that Timers are usually seen as
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Figure 6: Perceived motivational impact scores of all game elements, for the whole
set of participants. The error bars show the 95% confidence intervals. Full
values are provided in table 10

Table 10: Perceived motivational impact scores of all game elements, for the whole
set of participants (contains the values for Figure 6).

Mot. strategy Game Element Avg. 5th %-ile 95th %-ile

Rewards
Badges .67 .64 .70

Points .42 .39 .45

Useful .52 .50 .54

Goals
External .50 .48 .52

Self .41 .38 .43

Time
Schedule .60 .57 .63

Timer .45 .42 .48

Social Interaction
Trading .51 .47 .54

Teams .41 .38 .44

Discussion .37 .34 .40

Progress
Compared .60 .58 .62

Task .56 .54 .58



3.5 results 41

Table 11: Results of the t-test comparisons of average scores between implementa-
tions of a same strategy.

Mot. strategy Comparison t p

Rewards
Badges-Points 137.56 <.001

Points-Useful -60.25 <.001

Useful-Badges -114.23 <.001

Goals External-Self 70.34 <.001

Time Timer-Schedule -84.22 <.001

Social Interaction
Discussion-Teams -24.34 <.001

Teams-Trading -45.33 <.001

Trading-Discussion 75.67 <.001

Progress Compared-Task 46.42 <.001

stressful for most users. In our storyboard, the Schedule game element shows
the tasks accomplished on a week, users have more time to carry out their
tasks and could perceive it as less stressful.

The three implementations of Social Interaction scored differently, with
Trading scoring the highest, and Discussion scoring the lowest (Discussion-
Teams t:-24,34, Teams-Trading t:-45.33, Trading-Discussion t:75.67, p<.001).
Teams and Discussion are in the three least motivating game elements. Young
[149] showed that discussion based interventions can be effective in situations
where the users are intrinsically motivated by the task.

Finally the Progress implementations rank closely but still show a signific-
ant difference in scores (t:46.42, p<.001), with Progress Compared scoring
higher. It is noteworthy that both game elements are ranked in the top four.
Some previous studies also show the effectiveness of social comparison [60]
and of progress bars [39].

As a conclusion, regarding RQ1: our results demonstrate that user motiv-
ation varies significantly with the different implementations of a same
motivational strategy.

3.5.2 RQ2 a: Reliability of dominant user type

Many studies in tailored gamification or adaptive games consider only the
dominant user type [19, 41, 48, 89, 136] defined as the type that scores the
highest for a given user profile.

To evaluate the reliability of the dominant user type for tailored gamifica-
tion, we looked at how they affect the perceived motivational impact of the
game elements. To do so, we clustered participants according to their dom-
inant user type (for both of the player typologies, as Big Five cannot be con-
sidered in this manner) and calculated the Kendall Coefficients of Agreement
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Figure 7: Coefficients of agreement for each dominant type. The error bars show the
95% confidence intervals. Full values are provided in table 12

u within each group and compared to the global value (obtained on the whole
set of participants). The idea is to study if users sharing the same dominant
type perceive the same motivational impact of game elements (and thus show
a higher agreement than whole set). Figure 7 shows the results.
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Table 12: Average agreement scores for each user type.

Typology User Type Avg. Agre. 5th %-ile 95th %-ile n

All 0.06 0.05 0.07 300

Big Five

Agree. 0.06 0.04 0.09 73

Consc. 0.09 0.06 0.11 104

Emot. stab. 0.08 0.04 0.12 46

Extra. 0.10 0.06 0.16 17

Open. 0.08 0.06 0.12 60

Brainhex

Achiever 0.09 0.05 0.13 32

Conqueror 0.09 0.05 0.13 48

Daredevil 0.14 0.08 0.19 21

Mastermind 0.07 0.05 0.10 118

Seeker 0.08 0.05 0.13 35

Socialiser 0.05 0.02 0.09 33

Survivor 0.13 0.06 0.21 13

Hexad

Achiever 0.11 0.08 0.16 49

Disruptor 0.13 -0.07 0.44 5

Free spirit 0.08 0.05 0.10 71

Philanthropist 0.06 0.04 0.08 61

Player 0.09 0.07 0.12 85

Socialiser 0.08 0.03 0.13 29

We find the coefficients of agreement within each dominant user type cluster
to be low (no group scored an agreement greater than 0.15). While most of
these values are nevertheless higher than the global one (0.062), this still
shows that, regarding RQ2 a: dominant user types cannot be considered
sufficient to differentiate users according to their game element prefer-
ences.

3.5.3 RQ2 b: Comparing user models

In this section we investigate more precisely the relationships between the
user models (both player types and personality model) and game elements to
identify which user typology is the most relevant to identify user preferences
for game elements. Table 13 shows the PLS path coefficients that reflect the
influence that each user model dimension has on the motivation score of the
different game elements.
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Table 13: PLS Path coefficients for each user type of each typology. Values in grey
are not significant (p>.05), highlighted in dark grey are significant (p<.05),
and highlighted in black are highly significant (p<.001).

(a) BrainHex

GE Seek Surv Dare Mast Conq Soci Achi

Badges .01 -.01 .13 .11 .07 -.07 .02

Points -.12 .02 .01 -.02 -.08 -.05 -.06

Useful .11 -.04 .13 -.03 -.08 .02 .10

External -.07 .04 -.04 .09 -.16 .02 .02

Self .06 .10 -.09 .01 -.10 .10 .01

Schedule -.02 .03 -.05 .02 .04 -.07 -.00

Timer -.08 .01 .02 -.05 .04 -.07 -.14

Trading .01 .06 .02 -.05 .10 .11 .04

Teams .02 -.09 .01 -.05 .16 .04 .09

Discussion .08 .07 -.10 .01 .01 .18 .06

Compared .01 -.13 .03 .04 -.01 -.08 .01

Task .02 -.09 -.06 -.06 -.09 -.15 -.12

(b) Hexad

Phil Soci Free Achi Disr Play

-.08 .07 .04 .05 -.06 -.07

-.06 -.14 .06 -.16 .00 .10

.03 -.13 .09 -.07 -.02 -.08

.13 -.30 .05 .10 -.05 -.01

.12 -.08 .05 .09 .00 -.08

.07 -.10 -.07 .03 -.08 -.04

-.03 -.04 -.15 .13 .06 .01

-.06 .26 .05 .03 -.01 -.06

-.05 .34 .01 -.10 -.07 .03

.02 .24 .13 -.11 -.07 -.01

.02 -.14 -.14 .08 .16 .08

-.07 -.16 -.11 -.06 .17 .07

(c) BigFive

GE Extr Agre Cons Emot Open

Badges .00 -.01 .04 -.02 .00

Points .05 -.07 .04 .04 -.06

Useful -.02 .01 -.12 .03 -.04

External .00 .03 .07 -.03 -.04

Self .06 .05 .03 -.03 -.02

Schedule -.05 .04 .06 .03 -.07

Timer .03 -.05 .08 -.03 .06

Trading .03 .12 -.15 .10 .04

Teams -.05 -.04 -.06 -.06 .19

Discussion -.03 .14 -.06 -.02 .04

Compared -.02 -.14 .02 .02 -.05

Task -.02 -.12 .07 -.06 -.10
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We present our results grouped by user typology, and we discuss the extent
to which our results are in line with the definition of each user type (the full
definitions are provided at the end of this chapter ??).

3.5.3.1 BrainHex

Daredevil affects positively two game elements of the Rewards motivational
strategy: Badges and Useful Rewards. According to the definition, Dare-
devils appreciate "rushing around at high speed whilst still in control" [110].
Badges may reinforce the feeling of control and knowledge on the system,
and Useful Rewards may help them to speed up progression.
The Socialiser type influences two game elements: Discussion positively, and
Progress Task negatively. Nacke et al. [110] define Socialisers as "liking
hanging around with, and helping people". This definition therefore tends to
confirm that Socialisers are motivated by discussion. However, it does not ex-
plain the influence of this type on Progress Task.
The Conqueror user type has a significant positive influence on Teams, as
well as a significant negative influence on External Goals. These influences
are unrelated to the definition as conquerors are people who "like defeating
impossibly difficult foes, struggling until they eventually achieve victory"
[110]. Although an argument could be made that teaming up with others (in
an alliance strategy) to defeat difficult foes, could appeal to conquerors.
The Achiever user type has two negative influences: Timer and Progress
Task. Achievers "like collecting anything they can collect, and doing any-
thing possible" [110]. The presence of a timer could hinder their abilities to
achieve this. However the definition of Achiever does not provide any explan-
ation for the negative influence on Progress Task.
The Survivor user type shows a significant negative influence on the Pro-
gress Compared game element which is unrelated to the definition stating
that survivors enjoy "escaping from terrifying situations" [110].
Seekers, defined as people who have interest in "finding strange and wonder-
ful things" [110], have no significant influences on any of the game elements
tested.
Finally, Mastermind have also no significant influences. Nacke et al. [110]
define them as people who "like solving puzzles and devising strategies",
meaning that they might be more motivated by the task itself than the game
elements used.

As a conclusion, for BrainHex, five user types have significant influences
on the different game elements. Some of our results can be explained using
the definition of BrainHex typology [110], especially for Daredevil, and par-
tially for Socialiser and Achiever. However most of our results cannot be
backed up by the definitions given in the typology. In addition, Mastermind
and Seeker user types definitions seem not well suited for gamification. This
result is in line with recent empirical investigation on the psychometric prop-
erties of BrainHex that has shown low reliability scores [18, 47]. This typo-
logy was built for games and there is no evidence of the generalizability of
game motivation models to gameful design [138].
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3.5.3.2 Hexad

The Socialiser player type affects positively the three Social Interaction game
elements (Trading, Discussion and strongly Teams) and negatively External
Goals and Progress Task. Regarding social interactions, our results are con-
sistent with the definition that states that Socialisers "like to interact with
others and create social connections" [101].
Disruptor has significant positive influence on both Progress Compared and
Progress Task. This could be explained as disruptors seek to change a system
[101]. Perceiving the boundaries of the system thanks to progress elements
could help them to expand beyond these limits.
The Achiever user type has only a significant negative influence on Points.
Some authors point out that reward systems (specifically points) can be per-
ceived as useless if their implementation is not linked to the context [72]. As
Achievers are motivated by competence [101], we can assume that they do
not appreciate points as illustrated in our scenarios.
Free Spirit has only a significant negative influence on Timer. According to
the definition, Free spirits are motivated by autonomy. They like to explore
within a system and act without external control [101]. In this case, Timer can
be perceived as constraining their freedom by time.
The Philanthropist user type has no effect on the motivation scores given for
the different game elements. According to the definition [101], philanthrop-
ists are motivated by purpose. Thus we can think that this user type does not
influence any preferences for our elements that are not connected to a specific
user activity and domain.
Finally, we did not find any significant influences for the Player user type.
Players are defined as being motivated by extrinsic rewards. They will do
anything to earn a reward within a system, independently of the type of the
activity [101]. Players seem to be able to appreciate anything, and therefore
will react positively to almost any game element used, explaining that we do
not find any particular influence.

As a conclusion regarding Hexad, four user types have significant influ-
ences, among which one is highly significant. Moreover, most of our results
are consistent with the definitions of the Hexad typology [101]. This result
reinforces the fact that this typology was designed especially for gamification
and most of its player types are based on SDT [129], the major theoretical
foundation for gamification research.

Seeing as our results with Hexad are the most consistent with the defini-
tions of its user types, and that its types have more influence on the perceived
user motivation than those from BrainHex and Big Five, we can state that,
regarding RQ2 b: Hexad is the most relevant typology to identify user
preferences for game elements and thus should be used to tailor gamific-
ation.
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3.5.3.3 Big Five

The Openness to experiences trait has a significant positive influence on
Teams. The appreciation for new ideas and curiosity [50] are two character-
istics of this personality trait that can explain this result.
Regarding the Agreeableness trait, we observe a positive influence on Dis-
cussion and a negative influence on Progress Compared. The positive influ-
ence on social interactions is consistent with the definition stating that people
with high agreeableness are generally generous, cooperative and helpful [50].
However the definition of this trait cannot explain why these people are de-
motivated by game elements related to the progression in the task.
Emotional stability shows no significant influences on any of the game ele-
ments. People with high emotional stability have a tendency to resist negative
emotions such as anger or anxiety [50]. We can assume that people with this
personality trait are not responsive to the game elements in terms of motiva-
tion.
The Conscientiousness trait influences significantly only one game element,
Trading negatively. This result is not related to the definition of this trait
since conscientious people are defined as self-disciplined and well organised.
Finally, Extraversion shows no significant influences. Extraversion is defined
as a "pronounced engagement with the external world and enjoyment from in-
teracting with people" [50]. To fit the definition, we would have expected a
positive influence for game elements that implement the Social Interaction
strategy.

As a conclusion regarding Big Five personality model, three traits have
significant influences. As with BrainHex some of our results can be partially
explained by the definition of the personality traits (openness to experiences
and partially agreeableness), but most of them are not directly in line with the
definitions. This result was predictable since Big Five is a general personality
trait model and not specifically developed for games or gamification.

3.5.4 RQ3. Activity and domain influence on the motivational impact of
game elements

We finally compare our results to the findings of previous studies when their
game elements or persuasive strategies are similar to ours (see table 7 for cor-
respondences). Previous studies were conducted in specific contexts (specific
domain and user activity), with possible influence of users’ intrinsic motiv-
ation for the activity and/or domain on the observed user motivation. It is
noteworthy that whilst the study in [121] focuses on a serious game, it uses
game elements in a similar way as a gamified system. In our study, we use
storyboards that show implementations of motivational strategies independ-
ent from any specific context. Our analysis in this section aims to identify the
extent to which the context has an influence on the motivational impact of
game elements according to user types.
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3.5.4.1 BrainHex

Our results are consistent with other studies for the Socialiser type, for which
Orji et al. [121] also found a negative influence on self-monitoring (vs. Pro-
gress Task).
Three of our results on the Achiever and Survivor user types contradict the
previous studies. Regarding Achievers, Orji et al. [121] found a positive in-
fluence on self-monitoring, whereas we find a negative influence on Progress
Task and Lavoué et al. [89] predict a positive link with timer, whereas we find
a negative influence. Concerning Survivors, Orji et al. [121] found a positive
influence on competition & comparison, whereas we find a negative influence
on Progress Compared.
We also find influences for game elements that are not identified in previous
work for the Daredevil type. Finally, other studies also found other influences
for the 7 user types.

We can conclude that our results obtained with the BrainHex user typology
are quite different from the other studies conducted in specific contexts (gami-
fied health system [121] and experts’ recommendations in education [89]).

3.5.4.2 Big Five

Regarding the Big Five personality model, the positive influence we find of
the Agreeableness trait on Discussion is consistent with the results of Orji
et al. [119] on cooperation. Regarding Emotional stability, Orji et al. [119]
studied people with a low emotional stability and also did not find any influ-
ences for those people. They stated that persuasion may not be effective for
people who are emotionally unstable. In the same domain (health) but for a
different activity, Jia et al. [72] found negative influence on points, badges,
progress and rewards and they argued that for people with high emotional
stability gamification may not be an effective approach.
Our results contradict previous studies only for Openness to experiences,
Orji et al. [119] found a negative relation with cooperation, whereas we find
a positive influence on Teams.
We also find a negative influence of Conscientiousness on Trading that is not
identified in previous studies.
The three comparable studies also found other influences for Extraversion,
Agreeableness and Conscientiousness, and the two studies held in the health
domain do not find similar results. For instance for Agreeableness, Orji et al.
[119] found influences on four game elements (self-monitoring & feedback,
comparison, competition and reward) whereas no influences were found for
these in Jia et al. [72].

Regarding the Big Five personality model, the comparisons with other stud-
ies highlight the differences in the results obtained both (1) between our study
and studies conducted in a specific context, and (2) between the studies con-
ducted in different contexts, even in the same domain like health.
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3.5.4.3 Hexad

Our results are consistent with other studies for the Philanthropist user type,
which do not find any influence on the motivational impact of game elements.
Our results are partially consistent both for the Socialiser and Disruptor
user types. Regarding Socialisers and positive influences on social game ele-
ments, [141] also suggest positive influences on Teams, Social Network and
Social Comparison, while Orji et al. [120] also found positive influences for
Cooperation. Regarding Disruptors, all studies including ours observed pos-
itive influences for the Progress Compared element (Competition in [120,
141]). We observe contradictions only with [120] for these two player types
regarding the External Goals and Progress Task elements. Our results are
different from previous studies regarding three player types. We find influ-
ences for game elements that are not identified in previous works and other
studies found other influences for Achiever and Free Spirit (previous work
do not show any influence for elements comparable to the timer). Finally,
regarding Players, we do not find any influences whereas [141] found posit-
ive influences for every game elements and [120] for most of game elements
(except for Self-Monitoring & Feedback and Goal Setting & Suggestion).

As with Big Five, the results with the Hexad types are quite different from
those found in studies conducted in specific different contexts (education
[141] and health [120]), except for three user types (Philanthropist, Social-
iser and Disruptor).

In conclusion, for all user typologies (BrainHex, Hexad) and the personal-
ity model (big five) we can see that, regarding RQ3: the motivational impact
of certain game elements varies according to the activities or the domain
of gamified systems. In fact, our results are quite different (especially for
BrainHex) from those found in contextualised studies. We also observe differ-
ences between the studies conducted in different contexts, even between two
studies conducted in the same general domain (Health) with the Big Five user
typology.

3.6 limitations

3.6.1 About the experimental protocol

Regarding the experimental protocol, one major difference with previous stud-
ies deals with how we collected our data. We used forced-choice paired com-
parison instead of declarative statements to identify the perceived impact of
game elements on user motivation. As stated in Section 3.4, this protocol
has been shown to be less cognitively demanding [22] and to provide higher
accuracy [134] as compared with Likert-type rating. We notice that it also
impacts our results as it forces the users to choose which game elements
they prefer. We therefore obtain a ranking of game elements (meaning that
a user could not vote all game elements as equally motivating). We believe
this has a direct consequence on two profile dimensions (Hexad-Player, and
Big Five-Extraversion) for which people will tend to appreciate most of game
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elements, leading to no specific significant influences when applying the PLS
PM method. In addition, using PLS PM allows us to observe negative influ-
ences on the perceived motivational impact of game elements whereas some
of the other studies only measure positive influences [89, 141]. This could be
a limitation to the comparisons we make in Section 3.5.4.

3.6.2 About the context-independent scenarios

We use context-independent scenarios to evaluate the motivational impact of
game elements independently from a specific context. However certain game
elements may be less motivating for users shown without a concrete task to
carry out. We suppose this to be especially true for External Goals, Self Goals
and Useful Rewards that are not perceived as the most motivating elements in
our study and Progress Task that is negatively influenced for three user types.
Furthermore, for some user types, no significant preferences can be shown
without a specific task to carry out. We think this is especially true for the
philanthropist who is motivated by purpose.

3.6.3 About the implementation of motivational strategies

Finally, the results we obtain may differ from other studies due to the fact
that the implementations of our motivational strategies may be quite different
from those used in other studies. For instance, the Rewards strategy in [120]
is implemented in the form of points that can be used to unlock new custom-
isation options.This implementation can be considered as a combination of
our Points and Useful Rewards (see Table 1). We believe that our approach
allows us to study the isolated motivational impact for each game element
more precisely.

3.7 implications for design: generalised adaptive gamification

According to our findings, we recommend to consider two main factors when
designing tailored gamification: the choice of the user typology and the im-
plementation of the motivational strategies. In this section we discuss both
factors, considering also the influence of the context of the gamified system.

3.7.1 User typology recommendations

First, we recommend using Hexad user types when designing tailored gami-
fication. Our results reinforce the fact that Hexad was created especially to
address gamification (compared to BrainHex which focuses on player types
in games and Big Five which focuses on personality traits).

Second, our results show that considering only the dominant player type
is not sufficient to discriminate users’ preferences. We thus advise design-
ers to consider users’ profiles as a combination of several player types, espe-
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cially the four that identify the most significant influences: Socialiser, Dis-
ruptor, Achiever and Free spirit. The Philanthropist type does not appear
to identify motivating game elements in any of the studies in a discriminant
way. The Player type is similar as it either shows no significant influences
(in our study) or significant influences for all [141] or most game elements
[120].

Finally, the comparison of our results with contextualized studies reveals
that the motivational impact of game elements for the Hexad user types is
more or less influenced by the context. For Socialisers, designers should
preferably implement social interactions (recommendation also found in the
other context-independent study [138]). For Disruptors, progress compared
is recommended. The design of these game elements can be made independ-
ently from the context. Achievers and Free-spirits have contradictory prefer-
ences according to the different studies. This can be explained by the fact
that these two user types are highly dependent on the activity or on the en-
vironment of the gamified system, meaning that the design of game elements
should take into account the context of the gamified system for these types of
users.

3.7.2 Game element recommendations

First, care needs to be taken when implementing a motivational strategy. As
shown in Section 3.5, different implementations of a same motivational strategy
have different impacts on user motivation. Rewards is a good illustration
of this: Badges is the highest rated of any of the implementations, whereas
Points is one of the lowest rated ones (the same can be said for Timer and
Schedule).

Whilst we cannot precisely recommend game elements for each user pro-
file, we can make recommendations based how user motivation should vary
with a game element using Hexad types. Badges and Schedules can be used
as motivating game elements for all users. These were two of the highest
scoring game elements and had no negative influences from any user types in
both our study and related studies. Designers can therefore feel confident that
these game elements will have no adverse effects on user motivation.
Progress game elements (Compared and Task) and External Goals are gen-
erally considered as motivating and could be used for various user types. In
particular, Progress compared game element is recommended for users who
have a high score in the Disruptor type. At the contrary, we recommend to
carefully use Progress Task for high Socialiser users, as a negative influence
was observed and also for high Disruptor users since we found contradictory
results with previous studies. All three of the social interaction game elements
(Trading, Teams, and Discussion) are generally perceived as less motivating,
except for the Socialiser type which shows positive influences in all studies.
We thus recommend to attribute these game elements only to high Socialiser
users. Points and Timer show low motivation scores and the only influences
they have from the various profile types are negative ones. We can therefore
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advise against using these game elements to motivate users. Finally, no in-
fluences were found for Self goals and Useful items which means that these
elements are probably highly dependent from the context. They should be de-
signed closely with the activity to be perceived as motivating game elements.

3.8 conclusion

Figure 8: The first step of creating the adaptation engine. Based on the generalised
results from this study, we create a learner profile based on a Hexad player
profile, generating game element recommendations through an affinity vec-
tor, and select the most appropriate game element. From figure 4 we update
the learner model, affinity vector, simple adaptation algorithm and, sorted
game element instance bank. The findings from this chapter are still quite
general, and do not yet take the educational context into account.

In this chapter we showed that three major factors influence how tailored
gamification affects user motivation: the implementation of a given motiva-
tional strategy, the choice of the user typology, and the gamified context. In
short the choice of user typology allows to highlight different preferences,
and therefore propose different game elements, that implement different mo-
tivational strategies. We found valuable insights on how to tailor gamification,
notably by showing that the Hexad user typology seems the most relevant to
identify user preferences for game elements. However, the results found here
also show that the context in which these game elements are used has an
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important effect on their impact. Care should therefore be taken when design-
ing tailored gamification in education as the findings (i.e. links between vari-
ous learner profiles and game elements) found in other domains may not be
directly applicable in this field. For example the appropriate game elements
found by Orji et al [118, 120, 121] in a health setting were found to not be ap-
propriate for the same profile types in this decontextualised setting, and will
probably not be appropriate in an educational setting either. This is why in
chapter 5 we use preliminary results from the LudiMoodle project (i.e. from
a specific learning context) to establish the different adaptation rules that we
implemented in the adaptation engine (which would be used in a very similar
specific learning context) instead of reusing these decontextualised results.
The method of obtaining the links between profile and game elements how-
ever is something that we can reuse. We can also conclude that seeing as
the context has an importance on the effects of game elements, it would be
important to ensure that the context be taken into account in the design of
game elements and choice of game mechanics used. In Chapter 4 we provide
a method to design game elements that takes the context and various actors
into account.

Following these results, a first generalised version of the adaptation engine
used the Hexad profile as a sole basis for adaptation (see figure 8). However
it became rapidly apparent that some kind of domain related information was
required for a better adaptation. This echoes one of the findings of the lit-
erature review presented in 2 where we showed the need for richer learner
models for adaptation. Chapter 5 shows how initial motivation for the learn-
ing domain (i.e. contextualised information about the learner) can serve as a
richer learner model for adaptation.
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D E S I G N I N G D O M A I N A P P RO P R I AT E G A M E
E L E M E N T S

From the results of the previous chapter, we can see that different im-
plementations of game elements affect learners differently. Further-
more the context in which these game elements are deployed has an
important role in motivating and engaging learners. It therefore ap-
pears important that both the context and learners are taken into ac-
count when designing game elements. For this, we it felt important to
be able to unite all actors of the gamification in education process (de-
signers, teachers, researchers, engineers, learners) during the design-
ing of game elements. More specifically the learning actors (i.e. teach-
ers and learners) as they should have better insights into how game
elements would better fit into the learning context. However many is-
sues arised when reuniting these multiple actors in design sessions.
Notably the lack of common language and different levels of design
expertise. To address this, and facilitate co-design sessions, we pro-
posed a design space designed to foster and increase creativity in
our actors. We also created a set of design cards to help explore the
design space as well as a board that guided and structured the design
process. During design sessions we found that both teachers and de-
signers were able to consider multiple different implementations of
common game elements, and were able to rapidly achieve a general
consensus on design decisions.
The work presented in this chapter, along with the general game ele-
ment abstraction level framework presented in the previous chapter,
serves to fulfil the need for "better designed game elements" presen-
ted in Chapter 2.

4.1 introduction

As shown in Chapter 2, to be effective, the motivational affordances of gami-
fied systems (properties that allow users to satisfy their psychological needs[140])
should be designed with a deep understanding of human motivation [30, 140]
and the expectations of the target audience of said gamified system. Recent
studies emphasise the importance of meaningfulness in the design process
[30, 100, 114]. Section 2.2.3 explains how and why game elements should
make sense to users, and how poorly designed, non-meaningful game ele-
ments can have adverse effects on learners.

In practice, even if gameful design methods have emerged recently [30,
140], affording engaging experiences in non-game interactive systems remains
challenging. During design sessions designers, developers and other stake-
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holders, who may not have the same level of expertise regarding gamification,
have to select relevant game elements and decide how to implement them for
a concrete situation. They lack guidance on choosing among a huge number
of elements considering their impact on motivational affordances. As a result,
they are often confined to use only a subset of predefined well-known ele-
ments. Various lists of game mechanics are proposed mainly by professional
game designers 1 2 [98, 133] and more recently in academic research works
such as [138], but the high number of elements in these lists make their usage
difficult, which, as pointed out by Tondello et al. [138] can reduce creativity
in the design process. Furthermore it can be ill advised to use game elements
not specifically designed for the learning context. As shown in the previous
chapter, the context has an important impact on how game elements affect
learners. It is therefore important to somewhat adapt game elements to the
different context.

Finally, different learners have different preferences for game elements (as
shown in the previous chapter), and that these preferences can be linked to
their profiles. Guiding designers to consider a wider variety of game ele-
ments could help them to take into account a wider variety of profiles and
preferences.

Different approaches have emerged from practitioners and researchers, either
from HCI or gamification, to support and structure the gamification design
process. Many state-of-the-art papers present existing gamification design
processes [30, 109, 140]. Global design processes generally offer high-level
guidelines to consider the context and suggest the following steps: define the
main objective, understand the user motivation, identify the game mechan-
ics and analyse the effect of gamification [85, 148]. However, lower-level
design decisions (i.e. interface design and visual aspects) are poorly suppor-
ted although they can also play an important role in improving user experi-
ence [100]. Deterding introduced more operational aspects with the concept
of design lenses and skill atoms [30]. However, these approaches offer poor
guidance regarding customisation and implementation of elements for a given
context.

To guide design sessions, Marache-Francisco and Brangier [100] provide
designers with a toolbox for gamification that support two design steps: the
context analysis and the iterative conception of the gamification experience.
Designers can rely on a conception grid and decision-trees consisting of ques-
tions which guide element selection. Other works provide design cards, tradi-
tionally used in design practice to foster creativity insuring a common vocab-
ulary and shared understanding among participants [97]. These cards often
correspond to design steps (such as [42]) or at fairly high abstract level.

In all, lower-level design decisions (i.e. interface design and visual aspects)
are poorly supported although they also play an important role in improving

1 Manrique (2013): http://www.epicwinblog.net/2013/10/

the-35-gamification-mechanics-toolkit.html
2 Schonfeld (2010): https://techcrunch.com/2010/08/25/scvngr-game-mechanics/

http://www.epicwinblog.net/2013/10/the-35-gamification-mechanics-toolkit.html
http://www.epicwinblog.net/2013/10/the-35-gamification-mechanics-toolkit.html
https://techcrunch.com/2010/08/25/scvngr-game-mechanics/
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Figure 9: Designing appropriate game element instances for adaptive gamification
of learning. On the left the current state of the adaptation engine. On the
right the design process that involves all the actors of the gamification pro-
cess. The designed game element instances are then organised following
the abstraction framework and injected into the adaptation engine.

user experience. Marache-Francisco and Brangier [100] showed the import-
ance of visual aspects in the perception of gamification.

This chapter presents work that aims to overcome these limitations by
providing a design space that can be used to guide stakeholders during col-
laborative design sessions. We propose to extend the emerging concept of
meaningful gamification to operational and visual aspects, bringing together
HCI practices and gamification. This design space, along with a set of design
cards used to explore it, were used in the Ludimoodle project with teachers,
designers, pedagogical engineers, and to a certain extent students in order
to design the game elements used in the final experiment, thus creating the
"game element bank" present in our adaptation engine architecture (see fig-
ure 9). The game elements in this bank are organised following the framework
presented in Chapter 2 section 3.3. The tools presented here serve to create
the actual game element instances that will be stored and recommended to
learners.

4.2 design space for meaningful game elements

Design spaces are traditionally used in HCI for identifying alternatives and
structuring decisions in the design phase [135]. We present a design space that
encapsulates nine dimensions to consider regarding operational and visual
aspects of elements for meaningful structural gamification (see table 14 for
a summary). This design space is centred around 4 questions that designers
have to consider [114]

• Why: Why should the game element be used?
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• What: What part of the learning activity should this game element
gamify?

• How: How should this game element work? and How should this game
element look?

• Who: Who should use this game element? and Who should be able to
see this game element?

Table 14: Overview of the game element design space

Question Dimension Possible values

Why Behaviour Change

Autonomy, Behaviour
Encouragement /

Discouragement,
Performance

What Granularity Activity, Action,
Operation

How (Content) Strategy & Element

Rewards, Goals, Time,
Self Representation,
Social Interaction,
Progress

Who
Actor User, Group, Community

Range User, Group, Community

How (Presentation)

Visibility Before, During, After,
Always

Style Literal, Related

Format Relative, Absolute

Precision Precise, Fuzzy

4.2.1 Behaviour change (Why should this game element be used?)

Gamified systems aim to engage users in changing their behaviour or achiev-
ing their goals. This dimension helps designers reflect upon the design ra-
tionale behind the game element. We identified from the related works four
commonly cited behaviour changes according to designers’ goal: Autonomy
[5], Behaviour Encouragement, Behaviour Discouragement [91], and Per-
formance [148]. By directly mentioning the design rationale of the game
element, it serves as a reminder for analysing the effect it had on learners, al-
lowing us to understand why this game element was created in this way. For
example Kickmeier-Rust et al. [79] implemented a gamified feedback sys-
tem that had the goal of helping learner performance by providing feedback



4.2 design space for meaningful game elements 59

on the errors made. They showed that with this feedback learners could avoid
these errors in future. We can also consider the streak mechanic from the com-
mercially available gamified language learning app: Duolingo 3. This game
element shows learners how many consecutive days they have completed a
lesson on the platform, with the counter resetting to zero as soon they skip a
day. In this example the game element is designed to encourage a repetitive
behaviour in learners (i.e. behaviour encouragement).

4.2.2 Granularity (What part of the learning activity should this game ele-
ment gamify?)

According to the Activity Theory [93], an activity is performed by a subject
in response to a specific need or motive in order to achieve an objective. By
inciting designers to reflect on the granularity level, we lead them to question
if the game element should address the main motive of the users (linked to
the activity; i.e. running), their sub-goals (linked to actions; i.e. a 5km run)
or conditions to realise the actions (linked to operations; i.e. stretching before
running or breathing exercises). When using this design space with teachers
for example, it is important to first identify in a general sense what each of
the granularity levels correspond to in the given context.

4.2.3 Strategy & Element (How should this game element work?)

Here designers have to make a choice of which motivational strategy the
game element should implement, in order to decide which kind of gami-
fied experience they wish to provide. This design dimension makes use of
the Abstraction framework proposed in Chapter 2, section 3.3. Each of these
levels provide some kind of idea as to how the final game element instance
should function. For example, choosing to implement a badges reward sys-
tem indicates that designers should think about what kind of actions should
be rewarded with badges, what those badges would look like. An external
goals system requires to decide what kind of goals, when they are given to
the learner.

4.2.4 Actor and Range (Who should use, and who should be able to see this
game element?)

These two dimensions refer to the actor who uses the element (actor) and
who can see the game element (range): an individual user, a group of users,
or a community. These design choices are crucial as they impact the type of
regulation intended [54]. Individual users can self-regulate their activity indi-
vidually (range as individual), or by comparison with others (range as group
or community) to achieve personal goals. [151]. Game elements shared by
a group of users can help them co-regulate their own activities according to

3 https://www.duolingo.com

https://www.duolingo.com
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their own personal goals but also support shared regulation [145]. In such
regulation, individuals can take turns assisting with separate actions, but the
overall goal is for each member of the group to self-regulate their own activ-
ity. Socially shared game elements can also support shared regulation that re-
quires interdependency and the complete cooperation of participants toward
a common goal. [54]. Furthermore, a group of users who can see socially
shared game elements can compare their progress or performances with all
users (the community). This can provide users with a sense of relatedness, as
described by self determination theory [129].

4.2.5 How should this game element look?

This question provides four separate design dimensions, Visibility, Style, Format,
and Precision.

4.2.5.1 Visibility

Schön [132] assumed that reflection can occur both during the activity being
performed (reflection-in-action) and after the activity, e.g. when mentally re-
considering it (reflection-on-action). The timing in which the game element
is shown to the user can have an impact on the reflection process. We add
a third value "before" since we can also incite users to establish goals and
plan strategies. For example a goal feature that is visible to the actor before
the activity would have a different impact if it were shown during or after the
activity. According to the SRL model of Zimmerman [151], if shown before,
the element could be used to help the actor analyse, establish goals and plan
strategies (forethought phase of SRL). If shown during the activity (perform-
ance phase), it could help them monitor and control their activity. If shown
after, it could help the actor reflect on the outcome of the activity and try to
explain successes or failures.

4.2.5.2 Style

Visual aspects of the gamified system play an important role in the percep-
tion of gamification affording an appealing and immersive experience [99].
The Style dimension helps designers decide whether the game element should
have a simple literal form (e.g. a basic progress bar) or one more related to the
domain (e.g. a heart that fills up when you go to the gym to promote healthy
living). Using domain-dependant metaphors can favour explicit connections
with the given activity as recommended by Nicholson [114]. However, the
choice depends on users’ intrinsic motivation for the domain and an inde-
pendent style can reduce the risk of user’ amotivation. Studies have shown
that more playful designs could be detrimental for users’ who have high in-
trinsic motivation for the domain [62, 89]. However these findings are highly
dependant on the individual users. Generally it can be beneficial to ask the
target learners for their input on the idea.
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(a) The set of cards used to explore, and present the different dimensions of the design space.
Some suggestions of values are given for each dimension.

(b) The design board used to structure the design process. The high-level decisions about users
and context are presented here.

Figure 10: The tools used to explore the design space. These are the original versions
that were used with the teachers and therefore some of the terminology
does not reflect the final version presented in this Chapter.
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4.2.5.3 Format

Barata et al. pointed out [6] that having a clear end state (i.e. a "win point")
can increase performance, as it allows to set goals, and better understand
general progress. However, for some users "learning stops when goals are
achieved" [5], as once the goal is achieved, some users perceive little interest
in continuing. Therefore we suggest to consider presenting the game element
in a relative (e.g. a score that shows four points out of a possible ten) or
absolute format (e.g. a score that only shows four points) depending on the
motivational context (users’ profile or type of activity).

4.2.5.4 Precision

Designers have also to consider the precision of information presented in the
game element. For some users, giving precise feedback on the activity per-
formance can be motivating [4]. However for less competitive users, showing
exact information can be demotivating [119, 138] (say for example a leader-
board situation where the actor is dead last).

Thus we suggest to consider two possible values: precise (e.g. a leader-
board where the actor is shown to be 6th out of 14 users) and fuzzy (e.g.
a leaderboard where actor is shown as in the "Top Half" of users). We re-
commend that precise presentations should be used when there is no risk of
demotivating the user, for example when used for a group of particularly com-
petitive users.

For example in the Ludimoodle context, in France teachers are advised to
not provide precise rankings of learners at the secondary school level, as they
do not wish to demotivate learners who are "the last in class". Therefore when
designing a ranking game element, the participating teachers were somewhat
opposed to the idea. However when presented with the precision dimension,
they realised that they could simply present the game element with a fuzzy
representation, only showing a general idea of where the learner is with re-
gards to the class.

4.3 tools to explore the design space

The design space presented allows for a systematic consideration of possible
choices when designing game element instances. This task may remain com-
plex, especially if the different stakeholders involved in collaborative design
sessions do not have the same expertise in gamification. To support the design
process and to guide designers in the design space exploration, we created a
set of design cards.

Each card represents a particular dimension and contains the possible val-
ues, examples, or explanations of the choices and possible impacts on users’
motivation (see figure 10a for the full set of design cards).

The cards are designed to be used with a board structuring the different
steps to perform during the definition of a game element (see figure 10b). In
addition to the properties defined by the design space, the board supports high-
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level decisions such as users and context considerations of the given activity
(also identified in [42, 100]), and lower-level specifications such as visualisa-
tion (final design mock-ups) and operational rules. We decided to integrate
these aspects only on the board since they are closely linked to the domain
to gamify and would have too many forms or values to be represented by
specific cards. These domain-dependant elements are thus instantiated during
design sessions for each context and game element.

4.4 testing the design tools

To test the design space and its exploration with cards and board, we con-
ducted a design session with the various actors of the Ludimoodle project.
This workshop took place with four secondary school teachers, two teaching
engineers, and a game design expert working on the various game elements
that would then be implemented in the final Ludimoodle project (see figure
11). The teachers knew each other and had previously worked together to
create maths exercises, but not game elements directly. The workshop lasted
four hours. After a quick introduction of the materials, roughly 50 minutes
were dedicated to context specification: determining the users’ profiles and
reviewing the exercises previously created to define actions and operations
within the activity. The rest of the session was dedicated to defining game ele-
ments to be used. Participants discussed and agreed on game elements using
the cards and following the steps on the board. For each game element, parti-
cipants used a different board and set of cards. In total seven game elements
were designed.

We observed that participants rapidly took ownership of the design materi-
als, sharing common ground on the gamification process and favouring com-
munication. As the workshop progressed, participants were able to converge
on design agreements faster. Discussions turned towards both at considering
the impacts on students’ motivation and fulfilling the different stakeholders’
interests. The teachers and game designers succeeded in making decisions
regarding operational and visual aspects of each game element, so that all
of the information required to start the elements’ development was provided.
Regarding creativity, we observed that participants were able to reuse well-
known game element tropes such as points or badges, but also to design
unique game elements. In this usage example we chose to identify an activ-
ity as a complete learning session on the tablet, an action as the completion
of a quiz on the Moodle platform, and an operation as the completion of a
question.

For example one of the game elements designed to encourage learners’
perseverance implemented the task progression game element. However in-
stead of using a simple progress bar, the participants decided to opt for a
more "metaphorical" design. They decided on a tree that grows with each
question answered, with a different branch for each exercise. Teachers stated
that visuals such as progress bars are generally common in their teaching ex-
perience and they wanted to avoid this, and aim for a more playful design,
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Figure 11: Photo of the co design session held with the various actors of the Ludim-
oodle project.

which they thought would better engage their learners. Furthermore, as the
platform presented multiple quizzes for each maths subject, that were not
specifically linked, they felt that the metaphor of the branching tree would
resonate well with the learners (this was a way to include the context in the
game element design). Figure 12a shows the design tools used, and table 15
shows the full description of the game element designed through the lens of
the design space.

Generally participants manipulated the cards with ease, however we ob-
served that the participants had difficulties using the "Behaviour Change" di-
mension as they always selected the same behaviour. A further iteration of
these cards could provide examples of the different behaviour changes pos-
sible. We initially did not want to include too many examples of implementa-
tions, as we were worried about the participants copying pre-existing designs,
and not thinking about how they can articulate with the context. Further work-
shops should certainly be held in order to improve the material, and to think
upon the integration within a larger gamification process. For example incor-
porating questions from Deterding’s design lenses [30] or decision trees from
[100].

4.5 conclusion

In this chapter I presented a design space to enable co-design sessions for
the creation of meaningful game elements. By implicating the various actors
of the gamification process we could achieve the creation of game elements
that are better suited to the specific context in which they are deployed, and



4.5 conclusion 65

(a) An example of one of the boards produced during the workshop. This photo displays a
previous version of the design cards, therefore the design is slightly different to the final
one presented in this Chapter. The design space description is given in table 15

(b) The final design of
the progress game
element designed.

Figure 12: An example of one of the game elements designed. Both the original
design board created during the co-design sessions, and the final imple-
mentation are presented.
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Table 15: The values chosen by the workshop participants for each design dimension

Behaviour Change Encourage a behaviour

Granularity
Activity (Tree)

Action (Branch)

Strategy - Element Task - Progression

Actor User

Range User

Visibility
During (Branch)

Always (Tree)

Style Literal form

Format Absolute

Precision Fuzzy

that make meaningful links to learner needs and profiles. This design method
makes use of the abstraction levels framework, and fulfils the "need for better
designed game elements" presented in Chapter 2.

To better explore this framework and promote creativeness in the design
sessions, I proposed a set of design cards and board that exhibit this design
space. This set of simple tools can facilitate the design task for non expert
designers, and provide a common language for the different actors. When
tested, we found that both the design space and tools provided useful guidance
in creating unique and interesting game elements, and allowed all participants
to reflect on the context and individual learners that would in the future use
these game elements. The designs showed a large level of re contextualisation
rather than simply rehashing old designs.
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A P P RO P R I AT E G A M E E L E M E N T
R E C O M M E N DAT I O N S F O R E D U C AT I O N

How can we generate appropriate adaptation rules? As shown in a
previous chapter (chapter 3), the preferences linked to the different
player types offer a certain idea as to what game elements can be
appropriate for particular learners. From these preferences we could
establish a rudimentary set of adaptation rules. However as shown in
the same chapter, these preferences (and therefore rules) vary greatly
depending on the context. Therefore, it is necessary to look at the spe-
cifics brought by the current education domain (i.e. secondary school
mathematics) to identify relevant adaptation rules. Furthermore, we
also require an effective way to evaluate the recommendations for
appropriate game elements we found in the context of the LudiM-
oodle project. In this chapter, we propose a first set of adaptation
rules based on the results from a real world study with secondary
school learners (as a part of the LudiMoodle project). These results
confirmed our findings from the related work that an untailored gami-
fication approach generally demotivates learners. A more thorough
analysis revealed that the impact of game elements on learners’ mo-
tivation varies greatly depending on their initial motivation for math-
ematics and their Hexad player profile. This highlights the necessity
to adapt our gamification approach based on both learner player pro-
file and initial motivation.
From these results we simulate different adaptation rules based on
three different learner models (initial motivation, player profile, and
dual profile) and analyse the impact of these different adaptations on
engagement, motivation and performance. All tests and simulations
were made using the data from the LudiMoodle experiment that was
carried out in spring 2019. The results of these analyses and sim-
ulations could then later serve as a basis for the adaptation rules
deployed in the prototype of LudiMoodle static adaptation engine
presented at the end of this chapter.

5.1 introduction

In education, Kapp [73, 74] argues that gamification serves several purposes
such as making learning easier from a cognitive and emotional point of view,
enabling automatic feedback, personalising and individualising learning, and
changing behaviours, but above all, encouraging learner’s engagement in the
task, thus making them more active in their learning.
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According to Nacke and Deterding [112], the first studies in gamified edu-
cation were essentially focused on the effect of a set of game elements on
users, which did not enable identification of the impact of each game element
taken separately. Furthermore, these studies did not take into account the in-
dividual characteristics of learners, which can explain the different and some-
times contradictory impacts of gamification observed on learner motivation
and engagement (see chapter 2, section 2.1).

Several studies focus on the relationships between user player type and
game elements or game mechanics [8, 101, 111, 119]. Some studies also con-
sider that motivation can greatly affect the effects of gamification [89]. How-
ever, no study has yet considered a combination of these two aspects when
evaluating the impact of different game elements on learner motivation. In
this chapter, we propose to study the impact of gamification according both
to learners’ initial motivation and player profile. For this, we ran a large scale
field study in 4 secondary schools in France. 258 learners used a gamified
mathematics learning environment in their habitual classroom activities, rep-
resenting 10 lessons and 45 exercises in literal calculation. We integrated six
game elements (points, badges, ranking, timer, progress, and avatar) in the
learning environment, that were designed using the method and design tools
presented in Chapter 4. We analysed the usage data, as well as learners’ re-
sponses to the AMS (academic motivation scale [143]) in order to determine
the impact of the six game elements used. As each learner was randomly as-
signed one of these game elements, we could study the impact of each game
element according to learners’ initial motivation and player profile.

Using these results, we created different adaptation rules based on either
a learners’ Hexad player type, initial motivation, or a combination of both.
We then used these rules to create three different adaptation simulations. By
studying different subsets of learners that used an adapted game element
based on one of these simulations we were able to compare the three ad-
aptation techniques.

The goal of this chapter is to expand on the previously established adapt-
ation engine (see figure 13). From the results of these two analyses we can
enrich the learner model and adaptation rules presented in Chapter 3 (chan-
ging our answers to the "Who" and "How" questions), by providing context
relevant information about the learner, as well as context relevant adaptation
rules created using the LudiMoodle data.

The studies and analyses presented in this chapter are adapted from two
papers, one submitted to the journal Computers in Human Behavior that was
written in collaboration with the PhD student Stéphanie Reyssier, and the Pr.
Stéphane Simonian from the ECP research lab (partners of the Ludimoodle
project), and another one published as a long paper at the International Con-
ference on Artificial Intelligence in Education 2020 (AIED) [57].
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Figure 13: The current state of the new Ludimoodle adaptation engine prototype ar-
chitecture. In this chapter I update the learner model and the adaptation
algorithm (the "Who" and "How" questions) based on the results of the
two studies presented.

5.2 research questions

In this study, we proposed to answer the following three research questions.
The first two by observing and analysing the effects of randomly assigned
game elements, and the final one by simulating different adaptations based
on the results obtained from the first two analyses:

RQ1: How does gamification affect learner motivation? We studied the vari-
ation of learner motivation from the beginning to the end of the course.
We split learners into subgroups based on which game element they
used in order to evaluate how each game element affected their motiv-
ation, as well as the motivated behaviours generated.

RQ2: How do individual learner characteristics influence the impact of each
game element on their motivation? We more particularly studied the
influence of the player profile dimensions and the initial level of mo-
tivation scores on the variation of motivation, as well as the motivated
behaviours they generated.

RQ3: Are the effects of tailored gamification dependent on the user model
chosen for tailoring game elements? Especially when considering mo-
tivation and player types?
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Figure 14: The LudiMoodle platform: example of a gamified quiz. The upper half
shows the learners game element (here timer), while the lower half shows
the the quiz questions. In the title bar, the learner has a set of buttons that
they can use to navigate through the learning content and select a different
quiz.

We will first answer and discuss RQ1 and RQ2 as the results these two
questions are tightly linked. Furthermore the results they provide offer context
and justification for RQ3.

5.3 ludimoodle learning environment

The experiment within the Ludimoodle project ran from March to April 2019.
The goal was to observe and evaluate the effects of a gamified mathematics
learning environment on the motivation and engagement of secondary school
learners in a real world setting. The participants used a gamified version of the
Moodle [107] Learning Management System called "LudiMoodle" (see Fig.
14), that was developed specifically for the project. In total, it proposed six
different game elements that were designed in collaboration with the teachers
involved in the project and that were improved thanks to learners’ feedback,
following the methods described in Chapter 4. The six game elements are
described in section 5.3.2: Avatar, Badges, Progress, Ranking, Score, Timer.

5.3.1 Learning content

We built the learning content using the co-design method presented in Chapter
4 in order to keep as close as possible to teachers’ usual teaching practices.
In total, ten lessons were designed to cover the topic of basic algebra (calcul
littéral in French). Each lesson covered a different concept in this topic, such
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as variables, equation simplification, distributively, or simple demonstrations.
Each lesson was composed of 4 to 10 quizzes. The content proposed in the
LudiMoodle system was not the entirety of the lesson plan as it was only
used for reinforcement exercises (as designed by the teachers during the early
conception phases). Teachers had observed that generally these reinforcement
exercises were not well appreciated by learners, as they found them to be
boring, or too repetitive. Teachers therefore wanted to use this experiment
to try and make these types of exercises more fun by introducing something
new.

Each of the lessons was conducted in the same way: 10-15 minutes of writ-
ten notes (handed out by the teachers to ensure that learners had access to
the same learning content), followed by 25-30 minutes for answering quizzes
related to the lesson topic, using the LudiMoodle tool. To successfully com-
plete a quiz and progress to the next one, learners had to answer at least 70%
of all questions correctly. The learners used an individual tablet to access the
quizzes. During this time teachers answered questions asked by learners indi-
vidually. Half way through the experiment (during the fifth lesson), learners
had a short exam to evaluate their understanding of the topics covered during
this fist half. This lesson did not involve the LudiMoodle platform at all, and
learners were not told their grade until the end of the experiment to avoid
altering their motivation based on their grade. In the second half of the les-
sons, learners had another lesson without the LudiMoodle platform (lesson 7)
where teachers presented some of the more complex concepts that the final
lessons would cover (factorisation and double distribution). In total learners
therefore used the LudiMoodle platform during eight mathematics lessons.

Learners answered both the AMS and Hexad questionnaires at the begin-
ning of the experiment during an introductory session where teachers presen-
ted the platform, and showed learners how to login. At the end of the ex-
periment (post-test), they answered the AMS questionnaire a second time to
measure the variation of motivation in an in class session.

5.3.2 Game elements

All of the game elements that were deployed as a part of the LudiMoodle
system were co-designed with the participating teachers using the methods
described in Chapter 4.

5.3.2.1 Avatar

The avatar game element showed a goblin-like character that explored dif-
ferent universes (a different universe for each lesson, see figure 15). As the
learner progressed in a lesson they would unlock a different piece of clothing,
or item that the character was holding. There was one object to unlock per
quiz (that was unlocked after the learner correctly answered at least 70% of
the questions in the quiz).
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Figure 15: The avatar game element in the LudiMoodle system. Each of the different
lesson categories has a different universe.

5.3.2.2 Badges

The badges game element proposed three levels of badges per quiz (see figure
16). When the learners correctly resolved three different levels of questions
in the quiz (generally 70-85-100 % of each quiz), they would unlock a new
level of badge (bronze-silver-gold). An icon on the left-hand side showed how
many badges the student unlocked for the current lesson.

Figure 16: The badges game element. In this situation, the learner has acquired all
badges for the first quiz, and only the bronze badge for the second quiz.
The icon on the left shows that they have unlocked 5 of the 16 possible
badges for this lesson (there is a 5th quiz not shown here).
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5.3.2.3 Progress

This game element showed different coloured spaceships that travelled from
the earth to the moon (see figure 17). Each lesson launched a new spaceship,
and if the learner could complete at least 70% of the lesson, the spaceship
would land on the moon.

Figure 17: The progress game element. In this example, the learner has fully com-
pleted lesson 3 (the green rocket), and has only partially completed les-
sons 1 and 2 (orange and yellow rockets).

5.3.2.4 Ranking

The learners who were assigned to this game element could compare them-
selves to a fictional class of learners. The ranking game element showed a
"race" where, as the learners answered questions correctly, they would pro-
gress in the race at the same pace as the other fictional learners (see figure
18). If they failed to answer a question correctly they would fall back in the
ranking. We calibrated the ranking system to ensure that a learner who com-
pleted at least 70% of a lesson would finish in the top 50% of the ranking to
ensure they were not demotivated.

Figure 18: The ranking game element. In this example the learner is part way through
the first quiz of the second lesson. They are currently ranked 10th.
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5.3.2.5 Score

Each correct answer given by the learners awarding them 1000 points. Each
lesson had its own score counter, with a detailed view that showed how many
points they had scored for each quiz, so that the learners could pinpoint where
they were missing points (see figure 19).

Figure 19: The score game element. In this example the learner has completed
quizzes 1, 2 and 3 from the first lesson, earning them a total of 12,000
points.

5.3.2.6 Timer

This game element showed a timer for each quiz (see figure 20). Learners
were asked to try and beat a "reference time" for each question. The refer-
ence times were calculated based on the times for their previous questions
in the same quiz. Each time a learner beat their reference time, an animation
changed, with a character that would run faster and faster.

5.4 study design

5.4.1 Participants

A total of 5 teachers and 258 students (13-14 years old) in twelve classes (an
average of 25 students per class), from 4 different secondary schools, parti-
cipated in the study (for a total duration of 6 weeks). Teachers were involved
in the co-design of the game elements and in the construction of the course
content.
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Figure 20: The timer game element. In this example the learner has completed at
least one question correctly, and has a reference time of 14 seconds that
they must beat in following questions to make their character run faster.

5.4.2 Profile questionnaires

We used the motivation scale proposed by Vallerand et al. [143] (inspired
by SDT [24]). This scale, called the Academic Motivation Scale ("AMS"),
evaluates seven dimensions of motivation (three for intrinsic motivation (IM),
three for extrinsic motivation (EM) and one for amotivation). Each of these
dimensions identifies the reasons why someone would perform an activity
(we provide an example of one of the questions asked for each dimension):

• Intrinsic Motivation for Knowledge (IM Know.), i.e. performing an
activity for the pleasure and satisfaction of doing something new: "I
like learning new things"

• Intrinsic Motivation for Accomplishment (IM Acco.), i.e. perform-
ing an activity for the pleasure of overcoming a challenge: "I like to see
that I am able to solve problems"

• Intrinsic Motivation for Stimulation (IM Stim.), i.e. performing an
activity for fun or excitement: "I really like maths"

• External Regulation (EM Ext. Reg.), i.e. performing an activity to
gain some kind of external rewards: "I want to get a good grade"

• Introjected Regulation (EM Intro. Reg.), i.e. performing an activity
to avoid shame or increase self-esteem: "I want to prove that I can do
well in maths"

• Identified Regulation (EM Id. Reg.) i.e. performing an activity in or-
der to achieve precise objectives: "I will be able to choose my future
studies thanks to maths"

• Amotivation (Amot.), i.e. the absence of intention to perform an activ-
ity: "I don’t know why I go to maths class, I feel like I’m wasting my
time"
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We identified the learner player profile using the original Hexad question-
naire [141] that we translated into french. As a reminder the six player types
are defined in the player types Hexad [101]:

• Socialiser, motivated by social contact: "Interacting with others is im-
portant to me"

• Free Spirit, motivated by creation and exploration: "It is important to
me to follow my own path"

• Achiever, motivated by challenges: "I like overcoming obstacles"

• Philanthropist, whose goal is to help others: "It makes me happy if I
am able to help others"

• Disruptor, motivated by change: "I like to provoke"

• Player, motivated by his/her personal success: "I like competitions where
a prize can be won"

5.5 how gamification affects learner motivation

5.5.1 Analyses

To answer our first research question (RQ1), we compared the score of each
motivation subscale (see section 5.4.2) between the pre-test and the post-test,
using a non-parametric Wilcoxon Signed-Rank Test.

5.5.2 Results

Our first analysis shows a significant decrease in intrinsic motivation to know-
ledge (IM Know.), in external regulation (EM External) and a significant in-
crease in amotivation (Amot.), at the end of the experimentation (see Table
16).

We then investigated the variations of motivation splitting learners into
groups based on the game element they used, using a non parametric Wil-
coxon test. All of the game element presented the same losses of motivation
as the general results, except for the ranking and score game elements. For
those elements, we do not notice a significant decrease in external regulation.
Finally, we observed a decrease in intrinsic motivation for accomplishment
and identified regulation with the badges game element (see Table 16).

We also noted significant differences in motivated behaviours, depending
on the game elements used. Regarding the question ratio, results highlight a
significant difference (p=0.04<.05) between learners who used a Timer and
those who used Badges, with a higher ratio of correct answers with Badges
(see Figure 21a). Concerning the restarted quiz count, we noted that learners
who used a Timer restarted significantly less often than learners who used the
Progress, Ranking, or Score game elements (see Figure 21b).
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Table 16: Motivational variations in total and per game elementValues in grey are not
significant (p>.05), values highlighted in light grey are significant (p<.05),
and values highlighted in dark grey are highly significant (p<.01), and high-
lighted in black are very significant (p<.001).

Game Element

All Avatar Badges Progress Ranking Score Timer

Know. -9.769 -4.627 -4.22 -3.747 -4.629 -3.829 -2.969

Acco. -1.235 -0.121 -2.217 -0.415 -0.703 -0.621 -0.197
Intrinsic
motivations

Stim. -1.261 -0.414 -1.278 -0.019 -1.882 -0.763 -0.33

Id. Reg. -0.128 -0.082 -2.259 -0.197 -0.685 -1.211 -1.322

Intro. Reg. -0.659 -0.54 -1.917 -0.534 -0.354 -0.209 -0.809
Extrinsic
motivations

Ext. Reg. -6.209 -2.976 -3.363 -4.007 -1.448 -0.83 -2.536

Amotivation Amot. 10.78 4.125 5.225 3.683 5.397 4.523 3.561

Table 17: R squared values for each of the motivational variations, and the motivated
behaviours

R²

IM Var 0.343

EM Var 0.120

AMOT Var 0.451

Motivated behaviours 0.026

(a) Average Question Ratio (b) Average Restarted Quiz Count

Figure 21: Distributions for the motivated behaviours metrics per Game Element
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5.5.3 Discussion - a randomised gamification approach that generally de-
motivates

These results allows us to draw meaningful conclusions regarding the impact
of gamification on learner motivation. Notably randomly assigned game ele-
ments generally result in a decrease in motivation. We found that the external
regulation of learners was lower after the experiment. One possible explan-
ation is that learners motivated by their mathematics grades were frustrated
that they did not receive any grades for the quizzes completed during the
experiment (a choice made by the teachers for the experiment).

We also noticed a general decrease in intrinsic motivation for knowledge,
which raises questions about the perceived value of the learning activity. It
seems that learners perceived the exercises more as a game than as a serious
learning activity, which echoes the findings by Barata et al. [8]. This may also
be due to the duration of the study, as teachers testified that some learners
were a little bored after ten quiz sessions.

We then showed that learner amotivation generally increased for all learners
regardless of the game element they used, meaning that they found less reas-
ons to do mathematics with the gamified learning environment. This is a sim-
ilar result to that found in a previous study conducted with a gamified learning
environment dedicated to learning French grammar [89]. Learners provided
with game elements that were not adapted to their player profile showed a
higher level of amotivation.

Regardless of the game element used, we noticed a decrease in intrinsic
motivation for knowledge and external regulation, except for learners who
used the ranking and the score game elements. This may be due to the fact
that these game elements closely emulated the feeling of receiving a grade for
their work (i.e. the score gave a numerical rating of their performance, and
the ranking showed them if they were performing better than others). With
badges, we observed that more types of motivation were negatively impacted
compared to other game elements (intrinsic motivation for accomplishment
and identified regulation). This corroborates the results presented by Hanus
et al. [62] which suggest that badges and other rewards are considered as
controlling rewards, since they encourage action but constrain it to the object-
ives proposed by the badges. This perception could degrade learner intrinsic
motivation.

5.6 how individual characteristics influence the impact of each

game element on learner motivation

5.6.1 Analyses

To answer our second research question (RQ2), we used the Partial Least
Squares Path Modelling (PLS PM) method [55] to calculate the influence
between the learner profile scores and both the variations of motivations and
number of motivated behaviours. As a reminder this is also the method used
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in Chapter 3 to establish links between the various user profile dimensions
tested and the game element ratings.

Learners’ interactions with the learning environment were tracked using
the Moodle data logging system. From these interactions we distinguished
two metrics that were used for answering (RQ2) (these metrics were calcu-
lated for the entire experiment duration):

• Restarted Quiz Count: we identified the number of quizzes they re-
tried after having completed them. Learners were required to correctly
answer at least 70% of each quiz to access the next one. If a learner
successfully completed a quiz, and then retried to achieve more than
70%, it showed that they were particularly motivated to achieve more.

• Question Ratio: we looked at the question ratio of correct and incor-
rect answers given by the learners as a measure of how well they per-
formed during the task.

Our model is illustrated in Figure 22. The intrinsic and extrinsic motivation
subcategories are grouped together in the overarching motivational categories.
For example, the three intrinsic motivation scores : Knowledge (Know.), Ac-
complishment (Acc.) and Stimulation (Stim.) were linked to create a general
Intrinsic Motivation construct. We verified that our intrinsic motivation in-
dicators (Know.-Acc.-Stim.) and our extrinsic motivation indicators (Id.Reg.-
Int.Reg.-Ext.Reg.) actually measured these constructs (indicator reliability>0.70;
internal consistency reliability >0.7 or 0.6 in an exploratory research; mean
>0.5).

5.6.2 Results

5.6.2.1 PLS Model

We performed a PLS Path modelling in order to look at the influence of the
"initial motivation" and "Player profile" factors on the motivational variations
and motivated behaviours during the experiment. Based on the PLS Path ana-
lysis we noted the importance to take into account the initial motivations and
the learners Player profile, as 34.3% of the variation of intrinsic motivation,
12% of the variation of extrinsic motivation and 45.1% of the variation of
amotivation, could be explained by the level of initial motivations and the
learners Player profile (see table 17). Finally we generated T-statistics to test
the significance of both the inner and the outer model (see Table 18), using a
bootstrapping method [37].

5.6.2.2 Effect of initial motivation on the variation of motivation

Results (cf. Table 19a) show a negative influence of the level of amotivation
on the variation of amotivation. Moreover, the initial level of amotivation has
a positive influence on the variation of intrinsic motivation. These two influ-
ences mean that the more amotivated a learner is initially, the less amotivated
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Figure 22: Partial Least Squares Path Modelling Analysis diagram. In blue the Hexad
player profile, in green the intrinsic motivation, in orange the extrinsic
motivation, in red the amotivation, and in yellow the motivated behaviour
markers.

Table 18: Results summary for our reflexive outer models

Latent variables Indicators Loadings Composite reliability AVE Rho A

IM
Knowledge 0.922

0.919 0.791>0.5 0.868>0.7Accomplishment 0.851

Stimulation 0.893

IMVar
Knowledge Var 0.874

0.803 0.580>0.5 0.760>0.7Accomplishment Var 0.639

Stimulation Var 0.752

EM
Identified Regulation 0.770

0.818 0.603>0.5 0.705>0.7Introjected Regulation 0.878

External Regulation 0.688

EMVar
Identified Regulation Var 0.679

0.795 0.566>0.5 0.635<0.7Introjected Regulation Var 0.842

External Regulation Var 0.725
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and the more motivated intrinsically s/he is at the end. We also notice that
the level of initial intrinsic motivation negatively influenced the variation of
intrinsic motivation, and that the level of extrinsic motivation also influenced
negatively the variation of extrinsic motivation. This means that the more a
learner is intrinsically or extrinsically motivated initially, the less motivated
s/he is at the end for this motivation type.

5.6.2.3 Effect of Player profile dimensions on the variation of motivation

Results (cf. table 19a) show contrasting effects depending on the Player pro-
file dimension considered. We noted a significant increase in both intrinsic
and extrinsic motivation for the Achiever, with a significant decrease in amo-
tivation and a positive influence on motivated behaviours. The Player dimen-
sion seems to increase both intrinsic motivation and extrinsic motivation. The
Free Spirit dimension also increases extrinsic motivation.Finally, the Social-
iser, Disruptor and Philanthropist dimensions show no significant influence.

5.6.2.4 Different effects depending on the game element

For each game element used, we ran a PLS path modelling to identify the
influence of both the initial motivation scores, and the learners’ Hexad Player
profile on both the variations of each motivation type and the motivated be-
haviour markers (see Figure 22). These models were calculated using groups
of learners that had the same game element when using the learning envir-
onment. We can thus get a more precise insight on how each of these game
elements impacted the variations in motivation types, and which Player pro-
file dimensions contributed to these variations.

• Avatar

We found four statistically significant influences (see table 19b) for
learners with the avatar game element. Learners’ initial amotivation
score influenced positively the variation of their intrinsic motivation,
and negatively the variation of their amotivation. The Player dimension
also positively influenced the variation of intrinsic motivation, while
the Socialiser one influenced negatively this same motivation variation.

• Badges

We only found two statistically significant influences for learners who
used badges (see Table 19c). Learners initial intrinsic motivation neg-
atively influenced the motivated behaviours, whereas their Disruptor
score positively influenced these behaviours.

• Progress

We observe three significant influences for learners who used the pro-
gress game element (see Table 19d). Each of the initial motivations
negatively influenced the variation of the same motivation type.
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Table 19: Results of the different PLS Path analysis. Each table shows the results for
a different sub group of learners. Values in grey are not significant (p>.05),
values highlighted in light grey are significant (p<.05), values highlighted
in dark grey are highly significant (p<.01), and values highlighted in black
are very significant (p<.001).

(a) Results for the entire learner base

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -0.698 0.098 0.156 0.247 0.193 -0.048 -0.006 -0.022 -0.064

EMVar 0.041 -0.528 0.004 0.230 0.132 -0.025 0.174 -0.119 -0.074

AMOTVar 0.113 -0.040 -0.656 -0.179 0.095 0.047 0.087 0.086 -0.042

Mot. Beha. 0.107 -0.044 -0.014 0.193 -0.015 -0.129 -0.003 0.048 0.104

(b) Results for the Avatar game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.407 -.029 .366 .145 .478 -.372 -.049 .006 .183

EMVar .431 -.390 .100 -.056 .296 -.363 -.018 -.028 -.091

AMOTVar .029 .168 -.426 -.111 .064 .041 .305 -.154 -.059

Mot. Beha. .345 .055 .179 -.041 -.186 -.089 -.008 .139 .316

(c) Results for the Badges game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.337 -.099 .085 -.007 .308 -.056 -.308 -.016 .091

EMVar .292 -.408 -.095 -.160 .095 -.206 -.198 -.181 .149

AMOTVar .497 -.111 -.361 -.419 -.117 .036 .199 -.013 -.036

Mot. Beha. -.544 -.039 -.302 .097 -.053 .014 .136 .505 .322

(d) Results for the Progress game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.680 .229 -.108 -.048 .178 -.015 -.115 .374 -.028

EMVar .092 -.574 -.108 .234 .295 .068 .112 -.014 -.207

AMOTVar .122 -.092 -.853 -.231 .128 -.001 .043 -.071 -.026

Mot. Beha. .018 -.165 -.076 .425 -.018 -.124 .022 -.063 .132

(e) Results for the Ranking game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.466 -.143 .248 .150 .018 -.001 .055 -.039 -.140

EMVar .319 -.609 .108 .122 .116 .120 .323 -.396 -.172

AMOTVar .477 -.052 -.328 -.447 .163 .088 .018 .326 -.091

Mot. Beha. -.016 -.125 .006 .225 -.326 -.199 .114 .263 -.036

(f) Results for the Score game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.909 -.098 -.615 .261 -.202 .208 -.032 .120 -.183

EMVar .304 -1.032 -.302 .250 .040 .465 -.030 -.289 -.202

AMOTVar -.342 .156 -.752 .041 .208 -.005 -.058 .490 .015

Mot. Beha. .786 -.721 -.423 .071 -.127 .131 .168 .204 -.631

(g) Results for the Timer game element

IM EM AMOT Achiever Player Socialiser Free Spirit Disruptor Philanthropist

IMVar -.571 -.101 .325 .639 .104 .180 -.170 -.228 -.366

EMVar -.421 -.111 .288 .689 -.015 .065 .318 -.013 -.407

AMOTVar -.325 -.140 -1.112 .097 .056 .124 .073 .011 -.226

Mot. Beha. .120 .130 .287 .749 .313 .011 -.332 -.222 -.435
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• Ranking Results show many significant influences for the ranking ele-
ment (see Table 19e). The initial intrinsic motivation influenced neg-
atively the variation of intrinsic motivation, and positively the vari-
ation of amotivation. The initial extrinsic motivation negatively influ-
enced the variation of extrinsic motivation. For the Achiever profile,
score negatively influenced the variation of amotivation. The free spirit
dimension positively influenced the variation of extrinsic motivation,
whereas the Disruptor dimension negatively influenced it. The latter
dimension also positively influenced the variation of amotivation.

• Score Score is the game element that showed the most statistically sig-
nificant influences (see table 19f). The initial intrinsic motivation in-
fluenced negatively the variation of intrinsic motivation, and positively
the motivated behaviours performed. The initial extrinsic motivation
negatively influenced both the variation of extrinsic motivation and the
motivated behaviours. The initial amotivation negatively influenced
the variations of intrinsic motivation and of amotivation, as well as the
motivated behaviours performed. For the Player profile, the Socialiser
dimension positively influenced the variation of extrinsic motivation,
the Disruptor the variation of amotivation, whereas the Philanthrop-
ist dimension negatively influenced the motivated behaviours observed.

• Timer We found eight significant influences for this game element (see
table 19g). The initial intrinsic motivation negatively influenced the
variation in intrinsic motivation, and initial amotivation negatively in-
fluenced the variation in amotivation. For the Player profile, the Achiever
dimension positively influenced the variation of intrinsic, and extrinsic
motivation, as well as the motivated behaviours generated. The free
spirit dimension positively influenced the variation of extrinsic motiv-
ation. Finally, the Philanthropist score negatively influenced both the
variations in both intrinsic and extrinsic motivations.

5.6.3 Discussion - contrasting effects depending on individual learner char-
acteristics

As shown in sections 5.6.2.2 and 5.6.2.3 the effects of gamification on learner
motivation vary greatly depending on initial motivation and player profile of
the learners.

5.6.3.1 The influence of initial motivation

The negative influence between each type of motivation on the variation of
this motivation (e.g. initial intrinsic motivation influences negatively the vari-
ation of intrinsic motivation) highlighted that gamification motivated learners
who were less motivated initially, i.e. learners who had low initial motivation
levels gained more motivation than learners with higher motivation levels.
This result has great implications for a gamification approach not adapted to
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learners. Such an approach should be used with extreme caution depending
on learner initial motivation for the discipline.

The analysis performed per game element (see section 5.6.2.4) allowed
us to further investigate these results and to show that game elements affect
learners differently.

Among the positive influences, we noted that the Avatar game element in-
creased the intrinsic motivation and decreased the amotivation of the more
amotivated learners. This result could be explained by an increase in the sat-
isfaction of their need for social relatedness [129], as shown by Sailer et al.
[131]. The Progress game element also decreases the amotivation of the most
amotivated learners. This could be explained by an increase in the feeling of
competence from this game element [125, 129]. The Score game element has
a positive influence on the variation in motivated behaviours of intrinsically
motivated learners, which could also be explained by a desire to do better and
to feel more competent. The fact that the Score game element is, in this study,
a non-controlling reward (learners have the choice of restarting the exercise or
not), contributes to this increase in their intrinsic motivation [23]. Lastly, the
more amotivated learners, who received the Timer game element, saw their
amotivation decrease, suggesting once again that this performance incentive
was perceived more as an affirmation of their need for competence [23, 131].

However, we found that certain game elements degraded the motivation
of some learners, as also observed when considering the learners as an en-
tire group. Learners with a high level of intrinsic motivation who used the
Badges game element, experienced a decrease in their motivated behaviours.
This could be explained by the controlling nature of this game element [62].
The Progress and the Ranking game elements degraded the levels of intrinsic
and extrinsic motivation of learners that had high initial levels of these motiv-
ations. These results suggest that game elements that foster social comparison
[43, 123] could be detrimental to learner motivation. The Score game element
also decreased the motivated behaviours of the most amotivated learners as
well as their intrinsic motivation. Learners may perceived this game element
more as a negative feedback [142], confronting them with their own diffi-
culties in mathematics. Finally, learners initially intrinsically motivated to
do mathematics, who received the Timer, experienced a decrease in their
intrinsic motivation. This game element may have caused stress among the
most motivated learners, something that was also reported by the teachers fol-
lowing the experiment. This result is common with many gamification studies
that show Timers as stressful for learners [59, 70].

In conclusion, all types of initial motivation have an influence on the vari-
ation of motivation whatever the game element, mostly negative. Only amotiv-
ation and motivated behaviours are positively impacted by Progress, Timer
and Score. Based on these findings, we can conclude that game elements do
not have the same potential to increase learners’ motivation according to their
level of initial motivation, and thus that it must be taken into account if we do
not want it to be detrimental to learners.
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5.6.3.2 The influence of the player types

When looking at learners’ player profile, the most impactful game elements
vary considerably. The Timer had the greatest impact, involving an increase
both in the intrinsic and extrinsic motivations for achiever and free spirit
learners. However, for philanthropists, this game element had the opposite
effect, generally demotivating them. These findings nuance the results presen-
ted in Chapter 3 by providing results from a contextualised setting.

Next is the Ranking game element came next and showed four influences.
Learners with high free spirit scores gained in extrinsic motivation and achiev-
ers became less amotivated. As achievers are motivated by competence [101],
it is not surprising that the virtual challenge of the ranking system motivated
them. Free Spirit learners possibly looked for a way to "stand out from the
crowd" [101] and therefore tried to come first. However, learners with high
disruptor scores lost extrinsic motivation and gained in amotivation. This
game element could have made them feel demotivated since such players are
looking to go against the rules and will not be challenged by the ranking
system that mainly highlights learners who follow the rules.

For Score, we observe positive effects only on socialisers with an increase
in extrinsic motivation. Both disruptors and philanthropists had, respectively,
an increase in their amotivation and a decrease in their motivated behaviours.
This is not surprising as scoring systems are generally not recommended for
motivated learners [4, 59]. This finding for socialisers is coherent with the
results obtained in [150] that noted that learners like to compare their scores
with others.

With the Avatar game element, we noted an increase in motivation for
those with a high player score, as well as a decrease for those with a high
socialisers score. Being able to develop their Avatar based on their correct
answers was probably perceived by players as a way to satisfy their personal
success [131]. As there were no possibilities to show their avatars to others,
it is not surprising to observe a negative effect for socialisers.

We also found that Badges game elements encouraged motivated beha-
viours only for learners with a high disruptor score. This is surprising as
Badges are one of the most widely used game elements for gamification [59,
83, 86], and are generally accepted as motivating.

Finally, no influences were observed for the Progress game element de-
pending on the player dimensions. These result is contradictory with other
studies, like the one conducted in [59] that shows influences depending on
the socialisers and disruptor player types. These differences may be due to
the design of the game element itself.

These findings show that five player types have an influence on the impact
of game elements on learner motivation, and that all types of motivation and
motivated behaviours are impacted, but in very different ways depending on
the game elements involved. The achiever and disruptor player types have the
most impact. These results allow us to provide some recommendations for
learners based on either their Hexad profile or initial motivation for mathem-
atics (see table 20 for a summary of the recommendations).
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Table 20: Game elements that can be recommended to some learners, and that should
be avoided by others.

Game Element Recommended for learners with
high

Avoid for learners with high

Avatar Amotivation, Player Socialiser

Badges Disruptor Intrinsic Motivation

Progress Amotivation
Intrinsic Motivation, Extrinsic

Motivation

Ranking Free Spirit
Intrinsic Motivation, Extrinsic

Motivation, Achiever, Disruptor

Score Socialiser
Extrinsic Motivation, Amotivation,

Disruptor, Philanthropist

Timer Amotivation, Achiever, Free
Spirit

Intrinsic Motivation, Philanthropist

5.7 how the choice of user model affects adaptation

The results of the first two research questions showed us that both of the mod-
els used to classify learners (Hexad and initial motivation) can have an im-
pact on learner motivation and behaviour depending on which game element
the learner used. However, when taken individually, these different profiles
can offer different, sometimes contradictory game element recommendations.
When taken together, we cannot ensure that the recommendations from both
profiles are taken into account. Thus, we asked RQ3 and simulated differ-
ent adaptation approaches, based either solely on a learner’s Hexad Profile,
their Initial motivation, and a compromise between both. We then used the
variation of learner motivation, and engagement metrics to evaluate the ef-
fectiveness of these approaches.

5.7.1 Data sets

To answer RQ3 we first needed to create three sets of adaptation rules. One
for each of the single user models (Hexad profile and initial motivation) and
one for the dual profile adaptation (considering the two profiles). The learners
were then split into one of two groups for each adaptation simulation, based
on whether they used an adapted game element or not. Finally we compared
the variations of motivation for each subset, as well as the three engagement
metrics using a Wilcoxon rank sum test. A summary of the three data sets is
presented in figure 23.

5.7.1.1 Single profile adaptation rules

To create the adaptation rules for the two single user models, we ran two PLS-
PM models between the profile values and the variations of motivations for
each subset of learners that used a particular game element (Fig. 24). Sim-
ilar to the ones used for the previous analyses, except that we treated both
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Figure 23: The three adaptation simulations tested. Each of the adaptation simula-
tions were evaluated by comparing learners who used adapted game ele-
ments to those who did not.

the Hexad player profile and the initial motivation profile independently. This
gave us a set of 6 matrices of influences for each profile (one per game ele-
ment, an example for the Avatar game element is given in table 21).

By combining all six of these matrices, we obtained a final affinity mat-
rix, that showed for each game element, how important a given profile metric
is in their influences (the full affinity matrix for the Hexad Profile is given
in table 22). By combining these matrices with learner profiles, we gener-
ated a recommendation of game element based on the Hexad profile and one
based on the initial motivation. For example, a learner with the Hexad pro-
file (Pl:0; Ac:-8; So:2; FS:0; Di:6; Ph:7), would have the following affinity
vector (’Avatar’: .385, ’Badges’: .0364, ’Progress’: -.241, ’Leaderboards’: -
.920, ’Points’: -.577, ’Timer’: .225) and would therefore be recommended
the Avatar game element.

5.7.1.2 Dual profile adaptation rules – compromise algorithm

For the dual profile user model, we developed an algorithm that recommended
a game element based on both Hexad and initial motivation profiles. In our
original dataset, out of the 258 learners, 87 of them used a game element that
was either adapted to their Hexad profile, or adapted to their initial motivation
scores (no learners had a game element adapted to both their Hexad profile
and initial motivation). The algorithm proposes a compromise between both
recommendations: we evaluate if there is a positive overlap between the two
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Figure 24: PLS PM Model for creating the Hexad influence matrices.

Table 21: Influence matrix for the Hexad profile on the Avatar
game element. Only the significant (p<.05) influences
are shown here.

Pl. Ac. So. FS. Di. Ph.

Know.Var. 0.329 -0.356

Acc.Var. 0.541 -0.521

Stim.Var.

Ext.Reg.Var.

Id.Reg.Var.

Int.Reg.Var.

Amot.Var.

Behaviours 0.396

Table 22: Final affinity matrix for the Hexad profile

Pl. Ac. So. FS. Di. Ph.

Avatar 0.870 -0.356 -0.521 0.396

Badges -0.548 -1.233 1.229

Progress -0.011 -0.331 -0.061

Leaderboards -0.459 -0.870

Points 0.490 -0.467 -0.694

Timer 1.772 0.439 0.530 0.398 -1.125
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affinity vectors, and we take the game element that minimises the ranks in the
positive overlap. If there is none, we take the game element that minimises
the ranks from both affinity vectors (or maximises the affinities if tied). The
full algorithm is presented in algorithm 1.

Algorithm 1 : Compromise algorithm
Initialisation – Sort both affinity vectors in decreasing order of affinity

a f f VecHex← sorted Hexad affinity vector
a f f VecMot ← sorted initial Motivation affinity vector
These vectors are structured using the following format: [(gameElement,affinity),

(gameElement,affinity)...]

overlap← positive overlap between a f f VecHex & a f f VecMot
This contains a list of all game elements that have a positive affinity in both

a f f VecHex and a f f VecMot

if overlap is not empty then
if overlap contains exactly one element then

Suggest element in overlap[0]

else
Combine the rankings and affinities for game elements in
overlap from a f f VecHex & a f f VecMot;

if one game element has smallest combined ranking then
Suggest that element

else
Suggest game element that has highest combined affinity

else
Combine the rankings and affinities for all game elements from
a f f VecHex & a f f VecMot;

if one game element has smallest combined ranking then
Suggest that element

else
Suggest game element that has highest combined affinity

5.7.2 Analysis

As with RQ1 and RQ2 we used the variation of learner motivation (calculated
from the differences in their responses to the AMS questionnaires) between
the start and the end of the experiment to estimate the effect of the differ-
ent adaptation simulations on learner motivation. As for engagement metrics
we decided to expand on the previously used metrics (mainly because there
were little differences between learners for the Restarted Quiz count, there-
fore comparing this metric between subsets of learners would not show any
differences):
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• Average Question Time: The average time spent to answer a question
(computed over all questions)

• Quiz Ratio: The number of correctly answered quizzes divided by the
total number of attempted quizzes (this was an evolution of the question
ratio metric used for RQ2).

• Number of quizzes attempted: The total number of quizzes attemp-
ted.

5.7.3 Results

From our set of 258 learners, we built the following data subsets using the
three approaches presented:

• Hexad data subset: 42 learners used game elements adapted to their
Hexad player profile (216 did not).

• Initial motivation data subset: 45 learners used game elements adapted
to their initial motivation (213 did not).

• Dual profile data subset: 42 learners used a game element recommen-
ded by the dual profile algorithm (216 did not).

5.7.3.1 Hexad adaptation results

Comparing metrics for the two subsets, we found that learners using an ad-
apted game element spent significantly less average time per question and
had a significantly lower correct question ratio (i.e. they got more questions
wrong) than learners who had a non adapted game element (see Table 23a).
The adaptation process had no significant impact on learners’ motivation.

5.7.3.2 Initial motivation adaptation results

Adaptation based on the initial motivation profile had significant positive
impacts on the variation of intrinsic motivation (see Table 23b). Learners
with adapted game elements lost significantly less Intrinsic Motivation for
Knowledge (Know.Var.), i.e. their satisfaction to learn new things decreased
less than for learners with non adapted game elements. They also gained
significantly more Intrinsic Motivation for Accomplishment (Acc.Var.), i.e.
their pleasure for overcoming a challenge increased, whereas it decreased for
learners with non adapted game elements. The adaptation process had no sig-
nificant effects on learner engaged behaviours.

5.7.3.3 Dual profile adaptation results

When compared to learners who used a non adapted game element (see table
23c), we found that learners with adapted game elements gained signific-
antly less amotivation (Amot.Var.), meaning that they were less reluctant
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Table 23: Results for different simulations. The values given are the averages for each
group. In light grey: no significant differences, in bold and highlighted in
grey: significant at p<.05, and highlighted in light grey: almost significant
p≈.05

(a) Hexad

Metric p Adapted Non

Know.Var. .233 -1.489 -2.099

Acc.Var. .289 0.422 -0.352

Stim.Var. .458 0.289 -0.263

Id.Reg.Var .447 0.289 -0.117

Int.Reg.Var .492 0.222 -0.282

Ext.Reg.Var .482 -1.089 -1.235

Amot.Var. .619 2.267 2.953

AvgQTime .016 60.73 67.78
QRatio .010 0.608 0.665
NQuiz 0.792 34.56 35.33

(b) Motivation

p Adapted Non

.022 -1.156 -2.169

.008 0.756 -0.423

.335 0.267 -0.258

.383 -0.400 0.0282

.233 0.378 -0.315

.141 -0.667 -1.324

.867 2.956 2.808

.066 71.42 65.51

.224 0.637 0.659

.189 34.18 35.41

(c) Dual profile

Metric p Adapted Non

Know.Var. .052 -1.326 -2.137

Acc.Var. .056 0.739 -0.425

Stim.Var. .045 0.848 -0.387
Id.Reg.Var .691 -0.283 0.005

Int.Reg.Var .445 0.326 -0.307

Ext.Reg.Var .476 -1.043 -1.245

Amot.Var. .012 1.391 3.146
AvgQTime .812 68.07 66.21

QRatio .137 0.630 0.661

NQuiz .923 36.17 34.98

to learn mathematics. They also gained significantly more Intrinsic Motiva-
tion for Stimulation (Stim.Var.), meaning that they had more fun and excite-
ment performing the maths activities. As with the initial motivation adapta-
tion, we also found that these learners lost less intrinsic motivation to know-
ledge (Know.Var.) and gained more intrinsic motivation for accomplishment
(Acc.Var.) (although these differences were only slightly significant p≈.05).
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5.7.4 Discussion - different possible adaptation effects on learners based
on the model used to categorise learners

Tailoring gamification based only on the Hexad profile led learners to be more
engaged in the learning task (answering questions faster) than learners who
used untailored (randomly assigned) game elements, which confirms the res-
ults obtained by [108] in a computer network design course regarding learner
engagement. However, our study highlights that this engagement is associ-
ated with lower performances (lower quiz ratio), which is contradictory with
the study reported in [79], where they found that personalised badges and
feedback had a positive effect on maths performance. We also show that an
adaptation based only on player types has no effect on learner motivation for
the learning task, as also observed in [106] when learning French spelling. We
can conclude that game elements could be beneficial to engage learners in the
learning activity, but only if these elements give direct feedback on their per-
formance. Regarding the results found for RQ1. whilst tailoring to a Hexad
profile does not affect motivation (meaning that learners still lost motivation),
learners will be more engaged with the learning task.

Providing learners with game elements adapted to their initial motivation
led to a positive effect on two kinds of intrinsic motivation to learn Math-
ematics compared to no tailoring. This finding is consistent with other stud-
ies on the impact of a tailored gamification based on learner motivation in
a technical English course [128], and a database management course [64].
More precisely, this adaptation reduced the decrease in intrinsic motivation
for knowledge that was generally observed (as compared to the untailored
approach studied in to answer RQ1.) and made learners more intrinsically
motivated to overcome maths challenges. The increase of intrinsic motivation
to Accomplishment is the opposite of what was observed for RQ1., meaning
that this tailoring approach actually had a positive effect, reversing the general
loss in motivation observed.

It therefore seems promising to use learner motivation for the learning sub-
ject as a basis to tailor gamification in education, although it was rarely con-
sidered in previous studies. This echoes the findings discussed in Chapter 2
where we showed that, especially in the education field, profiles composed
of more specific learner data are somewhat rare. The findings in this chapter
also show the importance of taking the context into account (through the us-
age of a context specific profile: motivation for the learning task). This idea
is introduced in Chapter 3, and confirmed here. Combining both profiles with
the dual adaptation reinforced the observed results with initial motivation, but
also led learners to be more motivated to learn Mathematics for fun or excite-
ment. This finding is in line with previous studies on the impact of tailored
gamification that show an increase in perceived fun [106] or flow induced
by some game elements depending on the player types [36]. Dual adaptation
also reduced learner amotivation to learn Mathematics.
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5.8 study limitations

We identified some limitations to our study related to the context-dependency
and generalisability of our results. We employed 6 game elements designed
especially for young learners (around 13 years old), for a specific learning en-
vironment (secondary school mathematics). First, the influences measured for
each game element could be different for other learners. Younger learners may
be more receptive to the playfulness induced by our game elements whereas
older, or less technology fluent learners, might have been less receptive. In
short the final results obtained here are highly contextual, and re-applying
them directly in another context may not work as intended. However our
methodology (comparing different gamification approaches, combining both
contextual and uncontextual user information) is a lot more generalisable, and
could be adapted to a different context. Second, we may obtain different res-
ults when considering other game elements implementing other game mech-
anics (such as collaboration or competition). Then, as pointed out by Lessel
et al. [94], the effect of gamification widely varies for willing participants
(i.e. participants performed better when they had a choice in using the game
elements). As the learners in our study did not choose their gamification, this
could have affected their motivation, or behaviour.

5.9 conclusion

This chapter presents the results from the first large-scale study in the LudiM-
oodle project, on how gamification affects learner motivation, and behaviour.
This study ran for about six weeks in four different secondary schools in
France involved 258 students from twelve different classes. Learners interac-
ted with 10 specifically designed mathematics lessons, gamified using six dif-
ferent game elements. The results show that, in general, gamification through
randomly assigned game elements works better for less motivated or amo-
tivated learners (i.e. those who do not perceive mathematics as interesting),
with other learners being generally demotivated. A more thorough analysis re-
vealed that the impact of game elements on learners’ motivation varies greatly
depending on their initial motivation for mathematics and their Hexad player
profile. These results highlight the necessity to adapt gamification not only
based on a learners’ player profile as commonly acknowledged in the literat-
ure, but also based on their initial motivation (for mathematics in our case).
Both of these factors are important for determining how a game element will
affect learners’ motivation, behaviour and engagement. Furthermore, the res-
ults obtained considering each game element separately highlight that they
affect learners’ motivation differently. Care must be taken when proposing
game elements to learners, as these may have contradictory effects depending
on their profile, as observed through our second analysis.

Using these results we took a step further and created adaptation rules using
three different profile sources (Hexad, initial motivation for mathematics or
both). We then simulated three different adaptation techniques based on these
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Figure 25: The updated version of the adaptation engine architecture containing the
new learner model (composed of both the Hexad Player profile, and the
initial motivation for mathematics) as well as the updated static adaptation
algorithm which finds a compromise between both affinity vectors.

rules. Finally compared the effects of our gamified platform on learners based
on whether they had used an adapted game element following these simula-
tions, to compare the three different adaptation techniques. This second ana-
lysis showed three important findings. First, the user model chosen to tailor
game elements has different significant effects on learners. Second, when
choosing only a single profile for tailoring game elements, initial motivation
performed better than the Hexad profile, meaning that the learners motiva-
tions for learning mathematics trumped their motivations for playing games.
Finally, when combining both player profile and initial motivation, adapted
learners not only retained the positive effects of the initial motivation adapt-
ation, but also reflected other different positive effects. The combination of
both adaptations results in something that is greater than the sum of its parts.

From these results we can recommend to take greater care when choos-
ing the tool to model learners. It seems that uncontextualised profiles (such
as Hexad) may be useful for engaging learners, whereas more contextual
ones (such as motivation for the learning task) could be useful for motivat-
ing learners. Finally combining both types can also help motivate learners,
whilst also making sure they are not as bored by the learning task.
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In any case, for the purposes of the LudiMoodle project, using both the
Hexad, and the initial motivation profiles appeared to be sufficient for tail-
oring game elements to learners, especially when used with the proposed
compromise algorithm. By using the real world data generated from previous
versions of the main experiment we were able to create domain and context
appropriate adaptation rules. Going back to the proposed adaptation engine
architecture, we can update figure 13 by adding the initial motivation profile
to the learner model, and the new compromise algorithm (see figure 25).





6
T OWA R D S DY NA M I C A DA P TAT I O N

Up until now, the proposed adaptation model uses a "static" adapt-
ation, where the gamified system is adapted to learners once, before
using the learning environment. Following the definition provided in
chapter 2, I propose to extend the current model to allow for a dy-
namic adaptation based on learner behaviour, using the trace data
gathered from the LudiMoodle experiment presented in the previous
chapter (see chapter 5) to create dynamic adaptation rules. As a re-
minder dynamic adaptation can occur at multiple times during the
usage of a gamified system if required. In the LudiMoodle context the
dynamic adaptation system should be able to monitor learner engage-
ment and motivation, and when detecting an abnormal drop, propose
a different game element to re-motivate and/or reengage the learner.
For this we needed a way to evaluate how log traces represent mo-
tivation and or engagement. We first derived a set of metrics to rep-
resent learner engagement with the learning platform from these log
traces. Then using a factor analysis approach, we grouped these met-
rics into overarching engagement factors, thus creating a learner en-
gagement model based on learner interaction with the platform. This
engagement model was implemented in a new version of the Adapt-
ation engine, which would have been tested in the final LudiMoodle
experiment, that due to the current COVID19 pandemic could not take
place.

6.1 introduction

As presented in Chapter 2 we define dynamic adaptation as an adaptation that
can occur multiple times during the usage of a gamified system if needed, and
that is based on dynamically observed learner characteristics (i.e. behaviour
or performance). This is opposed to the static adaptation approach we have
used up until now that always occurs, only once, before using the gamified
system, and is based on static learner profiles (i.e. the profiles are gathered
once before using the gamified system). In the context of the LudiMoodle
project we needed our dynamic adaptation system to be able to propose a
game element recommendation for each learner after each lesson if required.
In short we needed a method for estimating learner motivation or engagement
based on their behaviour during a lesson. Existing tools such as the User En-
gagement Scale proposed by O’Brien et al. [116] are not well suited for this
task, as they state that "in general participants should be able to complete the
UES in less than 15 minutes". It would therefore not be feasible to require
learners to fill our surveys after each lesson in the LudiMoodle project con-

97



98 towards dynamic adaptation

Figure 26: How the dynamic adaptation module will fit into the general adaptation
engine architecture. The full specifications of this module are presented
in this chapter.

straints (even the short form of the UES requires between 5-10 minutes would
still be too long).

To understand how we designed and implemented our dynamic adaptation
system, I propose to explain these ideas in the following sections of this
chapter: 1. How our dynamic adaptation system works 2. How we determ-
ined learner engagement through log traces 3. When our dynamic adaptation
system intervenes 4. Who controls the dynamic adaptation

Regarding the general adaptation engine architecture, the dynamic adapta-
tion takes on the form of a module that provides dynamic adaptation without
modifying the previously presented static adaptation (see figure 26).

6.2 dynamic adaptation approach

To better explain how our dynamic adaptation system functions I will use
the PDA-LPA design space proposed by Bouzit et al. [15] for describing and
understanding interface adaptation. The design space is split over two usage
loops (one for the end user, and one for the system) that follow two success-
ive cycles: PDA (Perception Decision Action) and LPA (Learning Prediction,
Adaptation). In short users perceive an adaptation change, make a decision
about this change, and perform an action (PDA). They then learn from this
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Figure 27: The PDA-LPA cycles as described by Bouzit el al. [14]

cycle, use this new knowledge to predict how the system will react, and ad-
apt their behaviour (LPA). This new adapted behaviour flows back into their
perceptions and the cycle starts anew. On the system side, the system per-
ceives learner actions, makes a decision based on these perceptions, and per-
forms an adaptation action (PDA). The system then learns from this adapta-
tion, predicts how this will impact the user, and adapts its adaptation system
(LPA) (see figure 27). Not all of the steps in the LPA-PDA cycles have to be
fulfilled to create a dynamically adaptive system, but they serve as guidelines
as to how it can be designed.

The dynamic adaptation system used in the LudiMoodle prototype gener-
ally functioned in the following manner: Learners interact with the gamified
platform as usual during a lesson. After finishing a lesson, the system analyses
their interaction logs, generates an estimation of their engagement during this
lesson, and computes the variation of engagement from the last lesson. These
variations are then compared to the other learners in the same class, and if a
learner is in the lower third of their class, the system signals to the teacher
that this learner might need an adaptation (i.e. game element change) is sig-
nalled to the teacher. The teacher can then use this information, along with
their knowledge of the learner, and their behaviour to decide whether the pro-
posed change is appropriate or not. In the LudiMoodle context, teachers were
involved in the design of the game elements, and understood the design ra-
tionale behind them, we therefore judged that they were capable to estimate
if the proposed changes would be appropriate. In any case, when an adapta-
tion is proposed, the system uses the learners affinity vector (see chapter 5)
and selects the next highest game element that isn’t blacklisted (a learners
blacklist contains all game elements they have already used, and those that
the system proposes). The blacklist was put into to place to avoid the system
constantly proposing the same game element for a learner. The full algorithm
is presented at the end of this chapter in Algorithm 2. Through the lens of the
PDA-LPA design space: (see figure 28). We added the teacher’s role between
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Figure 28: The LudiMoodle dynamic adaptation engine as described in the PDA
LPA design space. In the LudiMoodle context, the teacher is an essential
actor in the dynamic adaptation process, as they have the final decision on
whether an game element change is operated for a learner. They make this
decision after the system signals that a change might be needed. Teachers
use their knowledge of both the learner, and their behaviour to inform
their acceptation or refusal of the game element change.

the action state of the system and the perception state of the learner so that
the teacher could have the final say on the proposed adaptation, based on their
observation and understanding of learner behaviour changes (see section 6.4).

• Learner (user)

– Action: Interacting with the learning environment, answering ques-
tions, completing quizzes etc.

– Adaptation: Changing behaviour / re-engaging with the learning
content influenced by the game element assigned.

– Perception: Noticing a game element change

– Decision, Prediction, Learning – Not used

• System

– Perception: Learner log trace analysis

– Decision: Engagement comparison with other learners

– Action: Game element proposal

– Learning: Blacklist updating

– Prediction, Adaptation – Not used
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6.2.1 Determining learner engagement through learner behaviour

The first step of understanding how the dynamic adaptation engine functions
is understanding how we determine learner engagement from log data. En-
gagement is a complex process. O’Brien & Toms [117] define it as "a quality
of user experience characterised by attributes of challenge, positive affect, en-
durability, aesthetic and sensory appeal, attention, feedback, variety/novelty,
interactivity, and perceived user control". Generally user engagement is eval-
uated using one of two kinds of methods : subjective, or objective methods.

As stated previously, subjective methods using questionnaires & scales
are not suited for our situation, we therefore decided to estimate engage-
ment via learner behaviour following the method proposed by Bouvier et al.
[13]. They present a study on the engaged behaviours of players in a online
sport game. They present a trace model that categorises user trace actions
into four different categories of engagement that are then linked back to the
different SDT (Self Determination Theory [129]) categories. The four cat-
egories of engagement identified in this context are: Environmental (linked
to Autonomy towards the environment), Social (linked to Relatedness), Self
(Autonomy towards the character or role), and Action (linked to Competence
and Autonomy towards the actions). This method was also used for measur-
ing engagement in serious games (i.e. education) in [87].

We therefore followed a procedure inspired by Bouvier et al. [13] for our
log trace analysis (i.e. creating a trace based model for analysing and ag-
gregating the log trace data), and Fincham et al. [46] for identifying learner
engagement factors. Fincham et al. present a study where they analysed met-
rics from three university MOOCs (online learning), using Exploratory Factor
Analysis (EFA) to identify and Confirmatory Factor Analysis (CFA) to valid-
ate a latent variable data model to estimate learner engagement.

Our analysis proceeded in three steps, first we reviewed and collated the
data available from the previous Ludimoodle study using a log trace approach
(following Bouvier et al. [13]). Second we ran two factor analyses to create
and verify an overarching engagement model, that identified the three en-
gagement factors (following Fincham et al. [46]). We then used these factors
to track the variation of learner motivation and engagement, and propose an
adaptation when necessary.

6.2.2 Determining engagement metrics

By studying the data that was available to us from the LudiMoodle experi-
ment, we extracted a set of engagement metrics and traces that we believed
would allow us to follow the evolution of learner engagement and motiva-
tion throughout the usage of the system. These metrics were all calculated
through aggregation and transformation of the log traces automatically collec-
ted by the LudiMoodle system. We applied a similar process for aggregating
our low level log traces into higher level operations as described by Bouvier
et al. [13]. These metrics were designed to be calculated for each lesson (as
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opposed to those used in the previous chapter, that were calculated for the
whole experiment). The evolution of these metrics over the course of the les-
sons allow us to track learner engagement. The final engagement metrics that
emerged from the log trace analysis are as follows:

• AvgQuestionTime : The average time taken for a learner to answer a
question (computed for all correctly answered questions).

• NPassedQuiz: The number of quizzes successfully completed. A quiz
was counted as successfully completed is at least 70% of all questions
in the quiz were answered correctly.

• QuestionRatio : The average correct question ratio for all quizzes. This
ratio was calculated only for the first quiz attempt, as learners could
see their answers on subsequent attempts, and therefore change their
answers based on this information. (bonus quizzes included).

• StreakRatio : The streak ratio for the lesson. A streak ratio is the num-
ber of successively completed quizzes in a lesson, without restarting
any of the completed quizzes divided by the number of quizzes at-
tempted during this lesson. For example Learner001 completed Quiz1-
Quiz2-Quiz3 in succession before restarting Quiz2. They then com-
pleted Quiz4 and attempted (but did not complete) Quiz5. Their Streak-
Ratio for this lesson would therefore be 3/5=0.6 (they completed 3
quizzes before restarting a completed quiz, and attempted 5 total quizzes).

• LessonRatio: The ratio of completed quizzes for the lesson. If a learner
attempted ten quizzes in a lesson, and completed seven of them, they
would have a lesson ratio of 70%.

• NQuizDistinct: The number of distinct passed quizzes. Here each com-
pleted quiz is counted only once.

• NbBonusQuiz : The number of bonus quizzes completed. Teachers had
previously designated a set of bonus quizzes that were harder and only
available at the end of lessons (learners were not expected to complete
these bonus quizzes). Each bonus quiz was only counted once (compet-
ing a bonus quiz multiple times would not increase this number).

• NLoop: The number of times a passed quiz (i.e. completed at least at
70%) was restarted.

• NPassedFirstQuiz : The number of quizzes successfully completed for
during the first attempt (bonus quizzes included).

Figure 29 presents an overview of how the different log levels are struc-
tured, as well as which operations are used to calculate the different engage-
ment metrics.
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Figure 29: The three levels of log data in our model. The lowest level is the log trace
data extracted from the LudiMoodle platform. Above this is the opera-
tion level that aggregates and contextualises the log traces. Each of the
identified engagement metrics uses one of multiple of the operations.

6.2.3 Log trace transformation

Each log trace was represented by a single line in a csv file that was ex-
tracted from the MySQL database. Each log trace used the following format
timestamp,learnerID,GameElementUsed,Log,Info. A few examples of raw
log traces are given with the other examples of log traces at the end of this
chapter, in table 27. These log traces were then agregated into higher level
operations. For example, the quiz_attempt_finished log did not provide
the results for each of the questions in said quiz attempt. However these
results were given in each of the question_gradedX logs that were present
between the quiz_attempt_started and quiz_attempt_finished (see table
28). We therefore transformed these logs into one operation CompleteQuiz.
For the analyses in this chapter we mainly used three higher level operations:
CompleteQuiz, QuestionComplete, and RestartQuiz.

6.2.3.1 CompleteQuiz

As shown previously the CompleteQuiz operation was created after a quiz
attempt. For the example presented in table 28, the final operation was :
CompleteQuiz,elevekf10,progress,2019-03-14 16:39:30,2019-03-14 16:40:45,

QuizId:quiz : Exercice 1.1 : QCM,Attempt: attempt : 3 ,Interruption

:False,Success:True,Ratio:0.8

6.2.3.2 QuestionComplete

Other than QuizComplete, we also used the QuestionComplete operation.
This was created using the following pattern quiz_pageview, question_
gradedX, quiz_pageview. For example the log trace presented table 29 would
be transformed into the QuestionComplete operation with success = True.
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Table 24: The computation rules for each of the different engagement metrics

Metric Operations used

AvgQuestionTime Average of duration of all correct
QuestionComplete

NPassedQuiz Count of successful QuizComplete

QuestionRatio Average of QuizComplete ratio

StreakRatio Count of QuizComplete before RestartQuiz

LessonRatio Count of successful QuizComplete divided by total
number of quizzes in lesson

NDistinctQuizzes Count of different QuizComplete

NbBonusQuiz Count of QuizComplete with bonus ID

NLoop Count of RestartQuiz after a successful
CompleteQuiz

NPassedFirstQuiz Count of successful CompleteQuiz with attempt
number at 1

6.2.3.3 RestartQuiz

Finally we also used the RestartQuiz operation. This was created when a
learner restarted a quiz that they had previously attempted. The log trace
presented in table 30 shows an example of a log trace that would lead to
the creation of this operation. The RestartQuiz operation also used the pre-
vious CompleteQuiz operation’s success variable to create the afterSuccess
variable stored in RestartQuiz.

6.2.4 Computing engagement metrics from log trace transformations

These higher level operations were then used to calculate the different engage-
ment metrics. Table 24 shows how each metric was calculated.

6.2.4.1 Creating and validating an engagement factor model

To better understand how these metrics were linked we ran an exploratory
factor analysis (EFA), inspired by the approach presented by Fincham et al.
[46]. EFA is a statistical technique whose overarching goal is to identify the
underlying relationships between measured variables. After we performed a
further analysis, a Confirmatory Factor Analysis (CFA) through which we
validated the model proposed by the first analysis. In order to increase the
models reliability, we ran the first analysis (EFA) on half of the previous
data, and the second analysis (CFA) on the other half. For the EFA model
the number of factors was chosen using a parallel analysis, as it has been
shown to be the most effective way to determine the number of factors to
retain in a factor analysis [152]. A parallel analysis involves the generation of
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Figure 30: Scree plot for the EFA analysis. In blue, the actual data, in red, the simu-
lated data. The point in which they start to somewhat overlap (highlighted
in green) indicates the suggested number of factors (three in this case).

a random data set of the same dimensions as the data being analysed. Factor
analysis is then performed on the random data to extract eigenvalues. These
random eigenvalues are then compared with the eigenvalues of the real data,
and factors in the real data are only retained if their eigenvalues are greater
than the eigenvalues from the random data[2]. It is important to note that it is
generally recommended to test values either side of the value recommended
by the parallel analysis. In this case we used a scree plot [95] to visualise the
correct number of factors.

Our scree plot analysis 30 revealed that three factors should best represent
our model. As previously stated we also tried creating data models with both
four and five factors, but as these provided less satisfactory results than the
three factor model, we ended up keeping this suggestion.

After establishing the appropriate number of factors, we ran the EFA. The
results are presented in table 25. The loadings were filtered using a cutoff of
0.65 to keep only those metrics that adequately contributed to the correspond-
ing factor. From this analysis we noted that one metric (NbBonusQuizzes)
did not load into any of the three factors, and were therefore discarded for
the following model construction. Using this model with the CFA yielded the
final loadings presented in table 26.

As both of these analysis yielded significant factors we then proceeded
to the final step, interpreting and making sense of these factors. Using the
loadings calculated with the EFA method, we had three factors composed
thus:

• F1 = 0.991*NQuizDistinct + 0.855*NPassedQuiz + 0.744*NPassed-
First - 0.595*AvgQuestionTime - This relates to a how quickly a learner
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progressed through the various learning content for a lesson. The more
quizzes they passed, the more distinct quizzes they could attempt. Fur-
thermore the faster they completed each question, the more time they
had to attempt other quizzes. Therefore we chose to call this factor
Wide learning engagement.

• F2 = 0.883*QuestionRatio + 0.718*LessonRatio - This directly links
to a learners performance, how well they answered each question and
completed each quiz. Therefore we named this factor Performance
engagement.

• F3 = 0.973*NLoop - 0.704*StreakRatio - This relates to how much a
learner tried to achieve a complete (100%) score for each quiz, or how
much they strived to improve a quiz score. Therefore we chose to call
this factor Deep learning engagement.

Table 25: EFA results. The loadings for each factor are presented with a lower bound
cutoff of 0.5. The metric BonusQuizzes did not load with any of the factors,
and therefore was not included in the subsequent analyses.

Factor1 Factor2 Factor3

AvgQuestionTime -0.595

NPassedQuiz 0.855

QuestionRatio 0.883

StreakRatio -0.704

LessonRatio 0.718

NQuizDistinct 0.991

NLoop 0.973

NPassedFirst 0.744

BonusQuizzes

6.3 dynamic adaptation trigger

As presented in the general Dynamic adaptation algorithm (see Alg. 2), briefly
explained in section 6.2, we propose to adapt when we detect an abnormal de-
crease in learner engagement. For each lesson completed, we calculate the
three engagement factors (Wide learning, Performance, and Deep Learn-
ing) for each learner, and the variation of these engagements with the pre-
vious lesson. As there is no baseline, or "standard values" for each of these
engagement metrics, we decided to compare them to the rest of the learners
class. The idea is that if a learner displays a decrease in any of the engage-
ment it is difficult to tell if it is "normal" or "expected". For example, in the
Ludimoodle experiment the later quizzes were harder and more complicated
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Table 26: CFA results. The loadings indicated are all significant a p<.05; except for
StreakRatio that had a p>0.05. However it was ≈0.1 so we decided to keep
it in our final engagement metric model.

Factor Metric Estimate Std.Err z-value

1

NQuizDistinct 0.744 0.067 11.129

NPassedQuiz 0.906 0.043 21.017

NPassedFirst 0.764 0.072 10.666

AvgQuestionTim -0.067 0.014 -4.927

2
QuestionRatio 0.661 0.063 10.542

LessonRatio 1.125 0.066 17.098

3
NLoop 1.216 0.351 3.466

StreakRatio -0.112 0.081 -1.386

than the earlier ones. This means that it we could expect a slight decrease in
performance from all learners, resulting in a decrease in Performance En-
gagement. Therefore this decrease should not be taken as exceptional, and
therefore should not trigger a change. This is why we decided to compare a
learners’ variations to those of their classmates.

It is important to note that when a game element is changed, we impose a
three lesson cool-off period, where a learner will not be subjected to another
adaptation. This is put in place to allow learners to experience their new game
element, and get used to it, before a new change could occur. Changing the
game element too often could result in confusion in learners. The teachers in
the LudiMoodle experiment planned to use the platform during ten lessons,
we decided to use three lesson cool-off period between adaptations as this
would results with a maximum of 2-3 game element changes for the least en-
gaged learners. Too short a cool-off period could result in an unstable learning
environment (frequent changes) and cause learners to be too distracted, and
too few changes might reduce the systems capacity to react to learner beha-
viour.

An example of this timing is presented in figure 31. During the first three
learning sessions the learner uses the same game element (blue). At this
time no adaptation is possible, and their blacklist contains one element: blue.
Between the third and fourth learning sessions the system can generate a
new game element recommendation: this is the first possible adaptation for
this learner. The system computes the variations of the learner’s engagement
between session one and two (noted Var12x) between session two and three
(noted Var23x). These variations are then compared with those of the other
learners in their class. In this example an adaptation is proposed, and the sys-
tem recommends that the learner use the green game element. Their blacklist
is therefore updated to contain blue and green meaning that these game ele-
ments will not be proposed in the future. In the first timeline, the teacher ac-
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cepts the adaptation, and the learner is assigned the new game element. They
are therefore protected from a further adaptation for the next three sessions. In
the second timeline, the teacher refuses, and the learner uses the same game
element for session four. Between session four and five the system uses ana-
lyses Var23x and Var34x to determine whether an adaptation is required. In
this example the system also detects a decrease in engagement, and proposes
the red game element. The teacher accepts this new proposal, and the learner
is assigned a new game element for the next session.

Figure 31: An example of a learners’ progression through the learning sessions. Two
possible timelines are displayed based on whether the teacher accepts or
refuses the proposed game element (each game element is represented by
a different colour). The learner’s affinity vector, as well as the blacklisted
game elements are shown for the different steps.

6.4 dynamic adaptation control

Finally when the system has detected and proposed a new game element, the
change is not automatic, it falls to the teacher to decide whether to adapt or
not. As there are many events that happen outside of the observation of the
learning platform, the teachers can provide insights that our log traces can
miss. They can observe learner behaviour and when a change is proposed
by the system, they can judge whether this change is appropriate or not. This
also provides a way for further taking the context into account. Teachers were
provided with a simple dashboard (figure 32) that showed them the game
elements used for each learner during each lesson, as well as any suggestions,
and decisions made by the teacher.

6.5 conclusion and future directions

In this chapter I have presented this first approach into dynamic adaptation, by
integrating questions of when the adaptation can occur, and tracking learner
engagement through their behaviour into the adaptation engine. The original
plan for this approach was to be tested in a second experiment of the Ludim-
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Figure 32: The proposed decision teacher interface. Here a class with two learners
is shown. The first learner was assigned the Timer game element based
on their profile. After using it for three lessons, the system proposed they
change to the Ranking game element. The teacher accepted this change
providing the reason "The learner seems to lack challenge from the timer".
For the second learner, they were initially assigned the Avatar game ele-
ment. After three lessons, the system recommended they change to the
Badges game element. However the teacher refused this change citing
that the learner "really liked the avatar game element".
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Figure 33: The final step of the adaptation engine architecture

oodle environment that was to be tested during the spring of 2020. Unfor-
tunately due to the COVID19 crisis, and the closing of French schools this
experiment was cancelled. The proposed dynamic adaptation could therefore
be evaluated using a few different metrics, such as: the number of game ele-
ment changes proposed, number of refusals/acceptations decided by teachers,
general learner and teacher satisfaction with changes (obtained via question-
naire).

First of all, we can update the proposed adaptation engine architecture. Fig-
ure 33 shows the new version of the adaptation architecture. On the left is
when the learner initially uses the system, in this case, only the static adapt-
ation module is active. On the right, is after the learner has used the system
for a while, their traces are collected, split into the three identified engage-
ment factors, and the dynamic adaptation algorithm can run and check if an
adaptation intervention is required.

6.5.1 Including different forms of engagement, and data

As observed in the literature on engagement, this model only relies on what
can be called Behavioural engagement as we are currently limited to deriv-
ing engagement through observable behaviours. Other forms of engagement,
such as cognitive and emotional engagement would be highly interesting to
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add to this dynamic adaptation approach. However we would need to build a
more complex model for estimating these types of engagement.

It is also important to note that in our proposition for dynamic adaptation
we focus mainly on engagement metrics, and that a dynamic adaptation is
triggered when we detect a decrease in engagement. However we could argue
that a decrease in engagement is not necessarily an increase in disengagement.
We could therefore think about implementing different metrics more related
to disengagement (for example frequent long pauses, not re-attempting failed
quizzes) however the log traces we had access to did not allow for this. For
example in their current state we cannot tell the difference between a learner
that is working on an exercise using a pen and paper, and one that is daydream-
ing (both would appear as a gap in log traces). We could envisage a system
that couples a video analysis with the log analysis to provide context, how-
ever such as system would be expensive (if automatic) or time consuming (if
manual). Another possibility would be to provide teachers with real-time in-
formation about possible confusing log traces, and ask them directly to help
clarify. This would however would increase the number of things teachers
have to control in the classroom.

6.5.2 Improving the dynamic adaptation system

Going back to the PDA-LPA design space proposed by Bouzit et al. [15] we
could improve on our dynamic adaptation system by exploring the other PDA-
LPA system cycle steps. Currently our dynamic adaptation does not make use
of the Prediction or Adaptation steps. One way we could improve our system
is by making it adapt to learners. The system could take note of which of the
engagement factors decreases the most for each learner (if any) and weight
these higher. For example if a learner loses more Wide Learning engagement
than the other two, the dynamic adaptation could weight it higher, providing
the learner with a more personalised adaptation.
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appendix to chapter 6 - algorithms and log trace examples

Algorithm 2 : General dynamic adaptation algorithm
Initialisation – Static adaptation
for Learner in allLearners do

Learner fills out profile questionnaires;
Learner.generateAffinityVector(questionnaireResponses);

This gives us a list of game elements for each learner, sorted by
decreasing order of predicted affinity.

while Main usage loop do
allLearners use platform for one lesson;
allLearners.lastChange + 1;
lessonCount + 1;
System generates engagement factors based on traces;
if previous lesson factors exist then

for Learner in allLearners do
Learner.calculateVariationWithPrevious(factors);

if lessonCount < 3 then
restart Loop;

for Learner in allLearners do
for factors variation in range(currentLesson, currentLesson-2)
do

if Learner.variation in lowestThird(allLearners) then
Learner.lowCount + 1;

if Learner.lowCount >= 4 & Learner.lastChange > 3 then
proposal = generateProposal(Learner);
Teacher.proposeChange(Learner, proposal);
if Teacher.acceptChange(Learner) then

Learner.changeGameElement(proposal);
Learner.lastChange = 0;

Learner.blacklist.add(proposal);
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Algorithm 3 : generateProposal method. This method uses the affin-
ity vector generated from the static adaptation module sorted from
highest to lowest affinity.
input :A Learner that needs a new game element proposal
output :The proposed game element for the learner

for Game Element in Learner.affinityVector do
if Game Element not in Learner.blacklist then

return Game Element;

Algorithm 4 : Streak counting algorithm
input :A Learner, a lesson number
output :The streak ratio for the given lesson

count = 0;
total = 0;
keepCounting = True;

for operation in Learner[lesson].operations do
if operation is AttemptQuiz then

if keepCounting then
count + 1;

total + 1;
else

if operation is RestartQuiz then
if operation.afterSuccess then

keepCounting = False;

if total == 0 then
Learner.lessonRatio[lesson]=0

else
Learner.lessonRatio[lesson] = count/total ;
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Table 27: Three examples of log traces before transformation

Timestamp LearnerID GEUsed Log Info

1554478862 elevelg04 progress progression_update
course : calcul-litteral-2019;
property : progress; section :
8; value : 46

1554478915 elevelf03 timer question_gradedright

attempt : 2; course :
calcul-litteral-2019; question
: 2; quiz : Exercice 10.3;
section : 12; sequence : 1;
state : gradedright

1554478932 elevelf10 progress quiz_attempt_finished
attempt : 1; course :
calcul-litteral-2019; quiz :
Exercice 10.3; section : 12
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Table 28: A quiz attempt example made by Learner "elevekf10". In this example, the
learner answered four questions correctly out of a possible five. The "info"
columns have been omitted for simplicity.

Timestamp LearnerID GameElementUsed Log

1552581570 elevekf10 progress quiz_attempt_started

1552581571 elevekf10 progress quiz_pageview

1552581574 elevekf10 progress quiz_pageview

1552581574 elevekf10 progress question_gradedwrong

1552581590 elevekf10 progress quiz_pageview

1552581600 elevekf10 progress quiz_pageview

1552581600 elevekf10 progress question_gradedright

1552581604 elevekf10 progress quiz_pageview

1552581608 elevekf10 progress quiz_pageview

1552581608 elevekf10 progress question_gradedright

1552581613 elevekf10 progress quiz_pageview

1552581617 elevekf10 progress quiz_pageview

1552581617 elevekf10 progress question_gradedright

1552581624 elevekf10 progress quiz_pageview

1552581631 elevekf10 progress quiz_pageview

1552581631 elevekf10 progress progression_update

1552581631 elevekf10 progress question_gradedright

1552581637 elevekf10 progress quiz_summaryview

1552581645 elevekf10 progress quiz_review

1552581645 elevekf10 progress quiz_submit

1552581645 elevekf10 progress quiz_attempt_finished

Table 29: A question attempt made by Learner "elevekf10". In this example they
failed to answer the question correctly. This log trace would be transformed
into the QuestionComplete operation with success = True.

Timestamp LearnerID GameElementUsed Log

1552581486 elevekf10 progress quiz_pageview

1552581486 elevekf10 progress question_gradedwrong

1552581491 elevekf10 progress quiz_pageview
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Table 30: An example of a log trace that would lead to the creation of a
RestartQuiz operation.

Timestamp LearnerID GEUsed Log Info

1552581528 elevekf10 progress quiz_attempt_finished

attempt : 2; course :
calcul-litteral-2019; quiz :
Exercice 1.1 : QCM; section
: 2

1552581540 elevekf10 progress quiz_moduleview course : calcul-litteral-2019;
quiz : 138

1552581546 elevekf10 progress quiz_review

course : calcul-litteral-2019;
quiz : Exercice 1.1 : QCM ;
quiz_attempts : 204 ; section
: 2

1552581562 elevekf10 progress quiz_moduleview course : calcul-litteral-2019;
quiz : 138 ; ;

1552581570 elevekf10 progress quiz_start course : calcul-litteral-2019;
quiz_attempts : 247 ; ;

1552581570 elevekf10 progress quiz_attempt_started

attempt : 3 ; course :
calcul-litteral-2019; quiz :
Exercice 1.1 : QCM ; section
: 2
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D I S C U S S I O N O F T H E M A N U S C R I P T A N D
C O N C L U S I O N

This chapter summarises the contributions presented in this manu-
script, and offers future research directions that can be followed to
deepen the work presented here.

7.1 thesis overview

Gamification is used more and more in educational settings to foster learner
engagement and motivation in otherwise tedious or repetitive tasks. As learners
have different expectations and preferences towards game elements, it is im-
portant to be able to provide them with appropriate game elements. This is
essential for making sure that gamification works for every learner.

The work presented in this manuscript was all aimed at proposing new
methods of tailoring and adapting game elements to learner profiles, as well
as methods for evaluating the efficacy of different adaptation approaches. Fur-
thermore, as learner expectations and preferences can vary overtime, we also
investigated how adaptive systems can monitor learner engagement through
behaviour and how we can leverage this to propose better adaptations when re-
quired. The manuscript presented here shows that by adapting game elements
statically to learner profiles, and dynamically to learner behaviour we can bet-
ter foster engagement and motivation in learners. Through such systems, we
consider each learner as an individual, crafting a meaningful gameful exper-
ience for each of them. In chapter 1 (section 1.3) I proposed three research
questions grounded in the "second wave" of gamification research that mo-
tivated the rest of the work. Most notably it served as an initial structure for
the adaptation engine architecture, the final version of which is presented in
figure 34. Whilst this final version is context specific in its nature, the differ-
ent modules and the research that severed to build them can be extended and
adapted to different contexts.

7.2 summary and discussion of the contributions

This thesis serves to deepen the knowledge in the adaptive gamification for
education field.

In this manuscript I have presented four major contributions summarised
here. All of my contributions plug into a generalised adaption engine archi-
tecture that serves as a general framing device.

Chapter 2 presents a study of the related work in the adaptive gamification
in education field that identifies four research gaps. These gaps are somewhat
filled by the other contributions. As a reminder the four research gaps are:

117
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Figure 34: The full adaptation engine architecture. My contributions are highlighted
and numbered here.

1. a gap in game element nomenclature and design

2. a gap in comprehensive learner models

3. a gap in the evaluation of adaptation methods

4. a gap in dynamic adaptation methods.

7.2.1 Contribution 1: A study on the importance of context and implement-
ation of game elements.

The work presented in chapter 3 shows the importance of the gamified con-
text and the implementation of the different game elements. We showed that
three major factors influence user motivation in tailored gamification: the im-
plementation of a given motivational strategy, the choice of the user typology,
and the gamified context. We provided some general game element recom-
mendations for different Hexad profiles (considering the entirety of the user
profile, and not just the dominant type) independently from the context of
the gamified system. However, it is important to note that the context plays
an important role in the effect of game elements on user motivation and en-
gagement. Using these recommendations directly is therefore ill-advised, and
should be seen as a fall-back when no other context relevant recommenda-
tions are available (some game elements such as Badges seem to work no
matter the context, and therefore could be used). The approach we used to
generate these recommendations (the partial least squares analysis) however
can directly be reused to generate recommendations for other specific con-
texts. This inspired our approach for creating domain appropriate rules in
chapter 5.
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The work presented in this chapter is a first step in filling gap 1 (by provid-
ing insights in creating user profiles using non-contextual information) and
gap 2 (by providing a structured game element classification based on ab-
straction levels, and motivational strategies).

7.2.2 Contribution 2: A game element design space and design tools to ex-
plore it

Chapter 4 addresses the gap in "game element design and nomenclature". We
demonstrated that by integrating all the actors of the gamification process via
a comprehensive design process, and design tools, we could design game ele-
ments that were suited to learners needs and expectations. The design space
and tools were designed to be as simple to use as possible and to guide design-
ers to consider many different possibilities for game element design. Through
the use of these tools, we found that designers were able to consider many
different ways to implement the various motivational strategies and game ele-
ments used in the LudiMoodle project. The design space also allows us to
consider the context and gamified activity when designing game elements,
which was shown to be important by the previous contribution. Although we
did not extensively test our design space, we believe that it could be an ex-
tremely useful tool for creating meaningful game elements that consider both
the users and the usage context.

7.2.3 Contribution 3: Domain specific static adaptation rules - A contextu-
alisation of contribution 1

Following the recommendations made by contribution 2, we used the results
from the LudiMoodle study presented in Chapter 5 to create domain appro-
priate adaptation rules. Comparing the effects on learners based on adapta-
tion from contextual (initial motivation for learning) and de-contextualised
(Hexad player profile) information, we created a learner model based that
combined both, as the combination of both provided better effects on learner
motivation and engagement than either of the single profile approaches. Using
a compromise algorithm to combine the recommendations from both learner
profiles we able to generate an appropriate game element recommendation
based on this dual learner model. This learner model is therefore a combin-
ation of both context dependant and context independent information about
the learner and serves to fill the gap in comprehensive learner models. This
contribution also provides an insight into the gap in the evaluation of adapta-
tion methods by proposing an approach that evaluates and compares different
adaptation methods.

7.2.4 Contribution 4: A dynamic adaptation based on learner behaviour

In chapter 6 we explored a new adaptation method: a dynamic adaptation ap-
proach. This adaptation is based on observed learner engagement through an
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analysis of their behaviour using a trace based approach. The evolution of
learner engagement is tracked during the usage of the gamified tool and com-
pared to those of the other learners in the same class. If the system detects an
abnormal decrease in engagement (when compared to other learners), it pro-
poses a new game element for this learner. The teacher then has the final say
on whether the adaptation takes place or not, allowing them to provide their
expertise, and avoid unnecessary changes to the learner’s environment. This
contribution serves as a first step in exploring the gap in dynamic adaptation
methods, by proposing a method for analysing learner behaviour using a trace
based approach, and by showing how this behaviour can be linked to learner
engagement.

7.3 limitations

7.3.1 Specificity of our approach

A first major limitation is the specificity of the the approach presented in this
manuscript. Even though I have tried throughout this manuscript to present
the most generalisable results possible, I cannot ignore the highly specific
nature of these findings. As stated first in chapter 3 and throughout the rest of
this current work, game element recommendations to users are highly context
dependant. The work presented here cannot be taken as is and reused in a
different context. Even if we stay in an educational context, changing even
the learners (age, cultural background etc.) may have a significant impact on
the effects of gamification on their motivation and engagement. The future
research perspective presented in 7.4.1 attempts to provide an idea of how
the general adaptation engine approach can be adapted to different contexts.
In summary, the final adaptation engine is highly context dependant, but the
approach, and ideas that were used to create it are not.

7.3.2 Game element design limitations

Currently the design space presented in chapter 4 was only tested with teach-
ers, designers, and engineers. Due to constraints in the LudiMoodle project
we were unable to directly include the learners in the design process. Al-
though their feedback was obtained during interviews held after they used an
initial prototype of the LudiMoodle platform, and taken into account during
the design process, we were unable to have them participate in design ses-
sions directly. Participatory design has been shown to be quite effective in the
field of game design [76, 78], however can designing with young children can
present some interesting challenges [144].

7.3.3 Shortsightedness of the dynamic adaptation log trace analysis

The goal of the dynamic adaptation approach is to track and analyse learner
behaviour and propose an adaptation when learner behaviour shows a loss
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of engagement with the learning platform. However many of the learner be-
haviours happen outside of the learning platform. For example, during the
experiment ran in the context of the LudiMoodle project, teachers noted out
of platform behaviours generally related to interactions with other learners.
One of the factors that motivated us to give teachers the final say on game
element adaptations is that they would be able to observe these out of plat-
form behaviours and make informed decisions about game element recom-
mendations provided by the system. However the fact that our system cannot
directly observe out of platform behaviours is a limitation. Furthermore as
specified in chapter 6 the current model does not estimate learner disengage-
ment which could be different than a loss engagement. Therefore we could
expand by investigating more measures of disengagement, for example: long
pauses (whilst being careful to take out of platform behaviours) and repeated
mistakes (especially when the same mistakes) could be considered.

7.4 future research perspectives

The contributions presented in this manuscript offer a substantial advance-
ment in the field of adaptive gamification. I believe that they could be exten-
ded following these lines.

7.4.1 Re-purposing the adaptation engine for other contexts

Our adaptation engine is tailored for use in a specific context: secondary
school level mathematics. However we believe that it can be easily extended
to other contexts. For the educational context, re-using the academic motiva-
tion scale, albeit transposed for the different subject (i.e. the initial question
"Why do you go to maths class?" becomes "Why do you go to french class?"
for example). However as stated many times throughout this manuscript, the
context is extremely important in determining the impact of game elements
on learners. We cannot be sure that appropriate static adaptation rules for
secondary school learners in mathematics class will also be appropriate for
learning French for example. We therefore recommend to generate new ad-
aptation rules by running a pre-study where learners will be able to interact
with the game elements over a short period of time and evaluating their motiv-
ational variations and behaviours. From this trial period, new affinity matrices
for each of the profile models and individual learner affinity vectors should be
generated. Once these have been recreated the rest of the adaptation engine
functions in a similar manner as in our current context. For the static adapta-
tion approach we could simply re-use the compromise algorithm to select the
appropriate game elements for learners. However we cannot ensure that in a
different context the dual profile approach would result in the best game ele-
ment recommendation for learners. We would therefore need to re-compare
the three profile models (both single and dual) to be sure. Furthermore for our
dynamic adaptation approach, a new set of metrics and engagement factors
would need to be created based on behaviour observations in the new context.
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In short, for re-use in other contexts (different learning subject / other gami-
fied context) our general adaptation engine approach can be re-used, even if
the individual modules need to be recreated with context specific information.
This makes our approach somewhat robust to re-use in other contexts, even
if the actual prototype is rather context specific. Changing contexts does not
have to be limited to educational contexts neither, we could easily adapt this
adaptation engine to other contexts such as sport or healthy living using a
similar approach.

7.4.2 Different approaches to game elements

7.4.2.1 Finer grained adaptation

In this manuscript, the different adaptation approaches presented are oper-
ated only by changing the game element proposed to learners (for example
by swapping points for badges, or timer). However, as shown in chapter 2
for instance, we could adapt by modifying the rules of the game element. For
example, we could increase the number of points provided by a score game
element, or hide badge conditions meaning that learners have to explore the
platform more. An interesting idea could be to use the dimensions presented
in the game element design space (presented in Chapter 4) as possible modi-
fications to the game elements. This would essentially create a new set of
game element instances, with only slight modifications to their functionalit-
ies or presentations. This would, however, still run into the problem of having
to manually design all of the instances from which the adaptation engine se-
lects relevant game elements. Furthermore new adaptation rules would need
to be established to propose links between the learner model and the design
dimensions or game element properties. In their current state, the rules asso-
ciate game elements (points, badges, timers etc.) with the learner model, but
do not offer insight into how the different game element properties can affect
these preferences. An experiment similar to the one presented in chapter 3
could be ran, with storyboards presenting different game element instances
derived from the same game element, which would provide us with gener-
alised findings. Figure 35 shows an example of different storyboards for the
points game element.

The results and links observed from such a study could help improve the
design space and design tools by indicating which of the different design
choices actually have an impact on learner motivation or behaviour. If this
study was ran in a de-contextualised setting (like in chapter 3) we would only
gain information about whether these lower level decision affect the effect
of game elements. These findings would also need to be contextualised for
the specific context. As it stands we have a general idea (based on related
literature) of how each design dimension can affect learners, but we still lack
validation of how the lower-level choices affect learners. A recent study by
Hicks et al. [66] shows a first investigation into this idea. They explored the
concept of "Juiciness" in gamification design (i.e. adding animations, particle
effects, dynamic soundtrack and sound effects). They compared four versions
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(a) A standard points instance, only
displaying the current point total
in an absolute form

(b) A points instance that uses a re-
lative format to display the cur-
rent point total as well as the max-
imum number of points available
for this task.

(c) A points instance using a more ab-
stract gameful display to show the
current points total.

Figure 35: An example of three different points instances that could be compared
in a study to investigate the links between learner profiles and the game
element design dimension choices.

of their game (basic, gamified, juicy, and combined juicy gamified) and found
that only the juicy conditions improved the three self determination theory
needs. This points to the effect of game elements being a result of their design
rather than their functionality, and warrants further investigation into what
exactly affects learners in each game element.

7.4.2.2 Combining game elements

At the moment, our results and analysis are based on the central idea of one
learner, using one game element. In fact, all of our analyses are based on
the observations of the effects of single game elements on individual learners.
However, in most commercial gamification approaches game elements are
used in combination with each other. Points based systems serve to fuel lead-
erboards, timers are used to judge how many points, or what kinds of badges
are given out, etc. Currently little is known about how multiple game elements
interacting with each other can affect learners (or users in a general gamifica-
tion context). A study to investigate this could be somewhat long and complex
as even by restricting the scope to pairs of game elements would result in a
large number of experimental conditions.
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7.4.3 Understanding learners better

7.4.3.1 Expanding the learner profile

Another perspective could be to further expand the learner profile taking
more context related information into account. As shown in Chapter 2 sec-
tion 2.2.4.1, only one of the reviewed papers uses learner domain expertise to
adapt [11] (they used learner roles, tutor or tutee, i.e. expert or non expert to
adapt). I believe that we could expand further on this by looking into ways to
include learner domain knowledge as a profile for adapting gamification. For
example learners with a higher level of domain expertise could be expected to
respond positively to more challenging game elements than those with lower
expertise (it is possible however that there is an overlap between intrinsically
motivated and expert learners, meaning that this distinction might be redund-
ant). During the feedback session held with the learners who participated in
the LudiMoodle experiment, many learners stated that they found the Timer
game element was too difficult and stressing. However a few stated that they
found it challenging and fun. I believe that this difference in perception could
be linked to learner expertise. It is worth noting that Monterrat et al. [105]
showed a difference in how learners perceived game elements and how they
were affected by them, so we should be wary about basing adaptation rules
solely on subjective measures.

7.4.3.2 Automatically detecting learner profiles

In our current adaptation model, learner profiles are established using ques-
tionnaires, the academic motivation scale for initial motivation [143], and the
Hexad survey for the player profile [141]. This can be a problem as these ques-
tionnaires are somewhat long and use sometimes confusing language, mean-
ing that some learners may not fully understand the statements or responses,
which can lead to imprecise profiles. It is important to note that we did try
to ensure that the questionnaires were adapted to learners during the LudiM-
oodle project, by simplifying the statements and instructions, however some
learners still stated that they were confused by some of the more complex
statements. Furthermore, these questionnaires are filled out before learners
can start using the platform, requiring a long startup period where learners
have to complete this unrelated (to the learning) task before they can interact
with the gamified experience.

Investigating automatic ways to assign profiles could be interesting as a
way to skip a lengthy questionnaire phase when starting to use a gamified
platform. Learners would be able to jump right into the system, using a more
generic version, or experimenting with the different game elements. We could
use their behaviours towards the different game elements and the gamified
system in general to establish a profile and recommend game elements. For
example by categorising users based on their behaviours, then checking if
these behaviour based categories present similar Hexad or initial motivation
profiles. The literature review by Klock et al. [80] also identifies the auto-
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mation of gamification tailoring as a future research agenda, however they
talk mainly about the attribution of game elements to learners rather than the
creation of profiles. Monkaresi et al. [102] proposed an automatic method
to estimate learner engagement during a structured writing activity using fa-
cial expressions and heart rate. Their results showed detecting of engagement
with "moderate" accuracy, and an improvement over current facial detection
methods.

7.4.3.3 Learner controlled adaptation

As it stands, it is the teacher who has final say on any adaptation recommend-
ations. This was mainly decided due to the age of learners in the LudiM-
oodle project. However, recent research by Tondello & Nacke shows that
when given the choice to select which game elements they wished to activ-
ate in a gamified image tagging app [139], user choice partly corresponded to
their Hexad player types. We could therefore investigate if learners would be
able to appropriately respond to game element recommendations by the sys-
tem (i.e. select game elements that will motivate them, and avoid those that
will demotivate them). For example instead of providing the teacher with the
game element recommendations, we could show them directly to the learners.
To test whether they would be able to select the most appropriate game ele-
ments, we could offer two choices when recommending a game element: the
one recommended by the system, and the one that our system would detect as
"counter-adapted" (i.e. scoring the lowest affinity). Such an experiment could
provide useful insights into how well learners understand the different pro-
positions made by the system, and if they are capable of understanding how
the different game elements affect them.

7.4.4 Testing the final version of the adaptation engine - comparing the ef-
fectiveness of a static versus dynamic adaptation approach

This final version of the adaptation engine (combining both static and dy-
namic adaptation) is still to be tested in real world learning conditions (due to
the COVID19 crisis). To evaluate the different adaptation (static and dynamic)
approaches, we could follow a similar experimental procedure as presented in
chapter 5, but with three different gamified conditions, and one non gamified
control condition :

1. Learners would be randomly assigned game element (gamified control
condition)

2. Learners would be assigned game elements based on their Hexad and
Motivation profile (static adaptation condition)

3. Learners would initially be assigned game elements based on their
Hexad and Motivation profile. Their behaviour would then be tracked,
and they would be proposed different game elements during the exper-
iment based on this (dynamic adaptation condition).
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4. Learners receive no game elements. They use a version of the learning
platform without any gamification (non gamified control condition).

This study would therefore allow us to compare the effectiveness of adapt-
ation versus no adaptation (conditions 2 & 3 vs 1) and the effectiveness of
static versus dynamic adaptation (condition 2 vs 3). We could also compare
each of the gamified conditions to the non gamified control to understand on
whole if these gamified conditions are more or less effective than no gami-
fication at all. The results of this would help to assess one of the research
gaps identified in my first contribution: the gap in the evaluation of different
adaptation methods.



A
A P P E N D I X T O C H A P T E R 3 - A D D I T I O NA L
I N F O R M AT I O N F O R T H E C ROW D S O U R C E D S T U DY

a.1 participant instructions

Participants were presented with the instructions shown in figure 36. The link
provided redirected participants to the profile questionnaire which was hos-
ted on the google forms platform. The participants were shown pairs of story-
boards and asked Which situation would motivate you more to use the
system? (as shown in figure 37).

Figure 36: Participant instructions
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Figure 37: An example of one of the pairs shown to participants, in this case the
Timer and Points game elements were compared.

a.2 storyboards used to present each game element.

The following figures show the storyboards used to represent our game ele-
ments. Each storyboard illustrates a user completing various generic tasks.

a.2.1 Rewards

These storyboards represent the three game elements that implement the Re-
wards motivational strategy. In the Points storyboard (fig. 38), the user re-
ceives points each time he/she completes a task. The panel on the right shows
how many points the user has accumulated. In the Badges storyboard (fig.
39), the user gains a badge for completing the task. The panel on the right
shows the user which badges he/she has unlocked (in black) and which badges
he/she has not unlocked yet (in grey). The Useful Rewards storyboard (fig. 40)
shows the user completing a task and receiving a "Give example" item. This
can be used to show the user an example to help him/her complete tasks.

Figure 38: The Points storyboard.
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Figure 39: The Badges storyboard.

Figure 40: The Useful Rewards storyboard.

a.2.2 Goals

These storyboards show the two game elements corresponding to the Goals
motivational strategy. In the External Goals storyboard (fig. 41) the user com-
pletes a task, and is given a new goal by the system. On the right the user can
see what goals he/she currently has, and can track which are completed. For
the Self Goals storyboard (fig. 42), the user can click on a button in the right
panel to open an interface that lets them add a new goal. The panel on the
right shows completed goals.

Figure 41: The External Goals storyboard.

Figure 42: The Self Goals storyboard.
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a.2.3 Time

For the Time motivational strategy we used two game elements. The Schedule
storyboard (fig. 43) shows a user over the course of five days. The user needs
to complete a task everyday. The user successfully completes a task each day
and on the final day unlocks a bonus. The Time storyboard (fig. 44) shows a
stopwatch that shows the user how long it took to complete the task. On the
bottom right, the user can see a table of previous times.

Figure 43: The Schedule storyboard.

Figure 44: The Timer storyboard.

a.2.4 Social Interaction

These storyboards represent the 3 game elements that implement the Social
Interaction strategy. The Trading storyboard (fig. 45) shows a user that cannot
advance without a "key" item. The user then uses the chat on the right to ask
if someone can trade a key. Another user (Fred) accepts and proposes to trade
a key for three "gems".

The Teams storyboard (fig. 46) shows a user completing a task. On the right
the user can see the other members of his/her team as well as an overview of
his/her teammates progress. Each time a user in the team completes a task,
the team receives points.

In the Discussion storyboard (fig. 47) a user is stuck on a task. He/she
uses the chat on the right to ask other users for advice. Another user offers an
answer, that the user tries and is able to complete the task. The user also leaves
a "like" on the other users’ message to let them know that he/she helped.
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Figure 45: The Trading storyboard.

Figure 46: The Teams storyboard.

Figure 47: The Discussion storyboard.

a.2.5 Progress

These storyboards show the two Progress game elements. In the Progress
Compared storyboard (fig. 48) the user can see a progress bar on the right.
To the left of this progress bar, the user can see how the 25% 50% and 75%
of their class is doing. When the user completes more tasks than 50% of the
class, he/she is shown a popup that notifies him/her of this. The Progress Task
storyboard (fig. 49) shows a simple progress bar on the right. When the user
completes a task the bar fills up.

Figure 48: The Progress Compared storyboard.
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Figure 49: The Progress Task storyboard.

a.2.6 Test storyboards

As described in section 3.4.5, these are the storyboards used for the "test"
questions. Each of these storyboards was presented in a pair with their non
test counterpart. Participants that selected more than one wrong answer in
these test questions were rejected from our study. The principle is the same
for each storyboard, the user receives a penalty for completing the task. For
example in the Test situation for Task Progress (fig. 50) the participant had to
decide between a storyboard where the gain progression for a task completed,
and one where they lose progression for the same task. For the Test situation
Badges, the user loses badges (fig. 51), and for both Test situations for Points
(fig. 52 & fig. 53) the user loses points.

The order of the test situations was randomised and they were not presented
together.

Figure 50: Test situation for Task Progress.
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Figure 51: Test situation for Badges.

Figure 52: One of the Test situations for Points.

Figure 53: One of the Test situations for Points.





B
A P P E N D I X T O C H A P T E R 4 - E X A M P L E S O F D E S I G N
B OA R D S

Presented here are some of the design boards completed during the co-design
sessions presented in Chapter 4.
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Figure 54: This design board shows the "Badges" game element designed during
the co-design sessions. This game element was designed to "encourage
learner perseverance", and concerned the whole gamified activity (a les-
son). It was designed to be used by and be visible by single learners.
Teachers did not use all the visual design dimensions, only specifying
that the badges be visible after a quiz (learners would be informed after
a quiz if they obtained any badges). They would also be able to access a
badge page to check objectives. Teachers designed a few of the different
types of badges that would be available as well as the general look of the
badge page.
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Figure 55: This design board shows the external goals game element designed during
the co-design sessions. Teachers chose to implement a straight-forward
design for this game element, with a simple list of objectives, and check
boxes to help learner track which objectives they have already completed.
Teachers also used the space on the left to specify the different objectives
that would be provided to learners. This game element was ultimately not
used in the LudiMoodle experiment, as it was decided that the proposed
goals would be too repetitive and would not offer a diversity of interest to
learners.
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Figure 56: This design board shows the score game element designed during the co-
design sessions. Teachers designed this game element to aid learner con-
centration, with a simple independent design. An important point is that
they wanted to make it clear to learners that this score was in no way
related to possible grades, so they decided that it should be displayed in
an absolute format (i.e. without a maximum). Teachers mainly focused
on the different point values that would be given for each of the different
quizzes.



C
U S E R P RO F I L E D E F I N I T I O N S A N D
Q U E S T I O N NA I R E S U S E D

c.1 brainhex player typology

This player typology was used in the crowdsourced study presented in Chapter
3.

c.1.1 Types

The Brainhex[110] player typology describes 7 types of players:

• Seeker: people who like finding strange and wonderful things, or find-
ing familiar things.

• Survivor: people who like escaping from hideous and scary threats,
pulse-pounding risks.

• Daredevil: people who like negotiating dizzying platforms or rushing
around at high speed while you are still in control.

• Mastermind: who like solving puzzles and devising strategies.

• Conqueror: people who like defeating impossibly difficult foes, strug-
gling until you eventually achieve victory, and beating other players.

• Socialiser: people who like hanging around with people you trust, and
helping people.

• Achiever: who like collecting anything you can collect, and doing everything
you possibly can.

c.1.2 Questionnaire

Participants were first asked to rate each of the following statements from 1
(I hate it) to 5 (I love it):

• Exploring to see what you can find.

• Frantically escaping from a terrifying foe.

• Working out how to crack a challenging puzzle.

• The struggle to defeat a difficult boss.

• Responding quickly to an exciting situation
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• Picking up every single collectable in an area

• Looking around just to enjoy the scenery.

• Being in control at high speed.

• Devising a promising strategy when deciding what to try next.

• Feeling relief when you escape to a safe area.

• Taking on a strong opponent when playing against a human player in a
versus match

• Talking with other players, online or in the same room.

• Finding what you need to complete a collection.

• Hanging from a high ledge.

• Wondering what’s behind a locked door.

• Feeling scared, terrified or disturbed.

• Working out what to do on your own.

• Completing a punishing challenge after failing many times.

• Co-operating with strangers.

• Getting 100% (completing everything in a game)

• Playing in a group, online or in the same room

Participants were finally asked to order the following game related experi-
ences into a sequence from 0 (worst) to 6 (best):

• A moment of jaw-dropping wonder or beauty.

• An experience of primeval terror that blows your mind.

• A moment of breathtaking speed or vertigo.

• The moment when the solution to a difficult puzzle clicks in your mind.

• A moment of hard-fought victory.

• A moment when you feel an intense sense of unity with another player.

• A moment of completeness that you have strived for

c.2 big five traits

This personality model was used in the crowdsourced study presented in
Chapter 3.
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c.2.1 Traits

The Big Five[49] personality trait system describes five types of personality
traits.

• Agreeableness: people who are generally considerate, kind, generous,
trusting and trustworthy, helpful, and willing to compromise their in-
terests with others.

• Conscientiousness: a tendency to display self-discipline, and strive for
achievement.

• Emotional Stability: the tendency to not experience negative emotions,
such as anger, anxiety, or depression.

• Extraversion: a pronounced engagement with the external world and
enjoyment from interacting with people.

• Openness to experiences: a general appreciation for art, new ideas, ima-
gination, curiosity, and variety of experience

c.2.2 Questionnaire

Participants were asked to score between 1 (Disagree Strongly) and 7 (Agree
Strongly) for each of the following statements. They were also told that they
should rate the extent to which the pair of traits applies to them, even if one
characteristic applies more strongly than the other.

• I see myself as: Extraverted, enthusiastic.

• I see myself as: Critical, quarrelsome.

• I see myself as: Dependable, self-disciplined.

• I see myself as: Anxious, easily upset.

• I see myself as: Open to new experiences, complex.

• I see myself as: Reserved, quiet.

• I see myself as: Sympathetic, warm.

• I see myself as: Disorganized, careless.

• I see myself as: Calm, emotionally stable.

• I see myself as: Conventional, uncreative.

c.3 hexad typology

This player type model was used both in the crowdsourced study presented
in Chapter 3 (the original version), and in the LudiMoodle study presented in
Chapter 5 (the translated version).



142 user profile definitions and questionnaires used

c.3.1 Types

The player types Hexad [101] describes six types of players:

• Philanthropist: people who are motivated by purpose. They are altru-
istic and willing to give without expecting a reward.

• Socialiser: people who are motivated by relatedness. They want to in-
teract with others and create social connections.

• Free Spirit: people who are motivated by autonomy, meaning freedom
to express themselves and act without external control. They like to
create and explore within a system.

• Achiever: people who are motivated by competence. They seek to pro-
gress within a system by completing tasks, or prove themselves by tack-
ling difficult challenges.

• Disruptor: people who are motivated by the triggering of change. They
tend to disrupt the system either directly or through others to force
negative or positive changes. They like to test the system’s boundaries
and try to push further.

• Player: people who are motivated by extrinsic rewards. They will do
whatever to earn a reward within a system,independently of the type of
the activity.

c.3.2 Questionnaire

For the study presented in Chapter 3 (the crowdsourced study) participants
were asked to rate each of the following statements from -3 (strongly dis-
agree) to 3 (strongly agree):

• If the reward is enough I will put in the effort.

• I like mastering difficult tasks.

• I like to provoke.

• It is important to me to always carry out my tasks completely.

• Interacting with others is important to me.

• It makes me happy if I am able to help others.

• Rewards are a great way to moitvate me.

• The wellbeing of others is important to me.

• I like to question the status quo.

• It is important to me to follow my own path.
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• Return of investement is important to me.

• It is important to me to feel like I am a part of a community.

• I like being part of a team.

• I dislike following rules.

• I see myself as a rebel.

• I like helping others to orient themselves in new situations.

• I like overcoming obstacles.

• I enjoy group activites.

• I like competitions where a prize can be won.

• I like sharing my knowledge

• It is difficult for me to let go of a problem before I have found a solution

• I often let my curiosity guide me.

• Being independent is important.

• I like to try new things.

For the LudiMoodle study presented in Chapter 5, participants were presen-
ted with this translation of the Hexad statements:

• Je suis content.e quand les autres le sont

• J’aime aider les gens dans des nouvelles situations

• J’aime partager mon savoir avec les autres

• J’aime aider les autres

• J’aime faire partie d’une équipe

• J’aime les activités de groupe

• J’aime interagir avec les autres

• J’ai besoin d’appartenir à un groupe

• Je laisse souvent ma curiosité me guider

• J’aime être indépendant

• J’aime faire mes propres choix

• J’aime essayer de nouvelles choses

• J’aime surmonter des obstacles
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• J’ai du mal à abandonner un problème sans avoir trouvé la solution

• J’aime les tâches difficiles

• J’ai besoin de finir ce que j’ai commencé

• Je n’aime pas suivre les règles

• Je me perçois comme étant rebelle

• J’aime remettre en question les consignes

• J’aime provoquer

• J’aime être récompensé pour mes efforts

• Je suis prêt à faire des efforts pour une récompense

• Je suis motivé par les récompenses

• J’aime les compétitions où je peux gagner des prix

c.4 academic motivational scale

This scale was used in the LudiMoodle study presented in Chapter 5. Parti-
cipants were presented with translation of the Academic motivational scale
[143] (the English version here is presented as reference, participants were
only shown the French version). Participants were asked "Pourquoi vas-tu en
cours de mathématiques ? (Indique entre Pas du tout d’accord, pas d’accord,
Neutre, Un peu d’accord, Totalement d’accord)" "Why do you go to maths
class? (For each answer select how well it relates to you, between, Strong
disagree, Disagree, Neutral, Agree, Strong Agree)":

• J’adore apprendre de nouvelles choses – I like to learn new things

• J’aime me sentir capable – I like feeling capable

• J’aime vraiment faire des mathématiques – I really like maths

• Je pourrai avoir le choix pour mes études futures grâce aux mathématiques.
– I will be able to chose my future course thanks to maths.

• Je veux me prouver que je suis capable de réussir en mathématiques. –
I want to prove that I am capable to succeed in maths

• Je veux avoir de bonnes notes et une bonne moyenne générale – I want
to get good grades.

• Je ne sais pas pourquoi j’y vais, j’ai l’impression de perdre mon temps
– I don’t know why I go, I think it is a waste of my time.

• J’aime découvrir de nouvelles choses – I like discovering new things.

• J’aime maîtriser les leçons abordées – I like mastering the lessons.
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• Je ne vois pas le temps passer en cours de mathématiques – The time
flies when I’m in maths class.

• Je vais pouvoir travailler dans un domaine que j’aime grâce aux math-
ématiques. – I will be able to get a good job with maths.

• Pour me prouver que je suis capable. – I want to prove that I am capable

• Pour pouvoir passer en 3é – To pass on to the next year

• J’avais de bonnes raisons d’y aller, mais aujourd’hui je n’en ai plus – I
had good reasons to go, but I don’t anymore

• J’aime en savoir toujours un peu plus en mathématiques – I like learn-
ing new things in maths

• Je suis content.e quand je réussis des activités mathématiques difficiles
– I am happy when I solve difficult maths activites.

• Ça m’amuse de résoudre des problèmes en mathématiques – I find it
fun to solve maths problems.

• Les mathématiques sont importantes dans la vie de tous les jours –
Maths are important in everyday life.

• Pour me prouver que je suis intelligent.e – To prove that I am intelligent

• Parce que j’y suis obligé.e – Because I have to

• Je ne vois pas l’intérêt d’être bon.ne en mathématiques – I don’t see the
point to being good in maths.

• J’aime tout ce qui se rapporte aux mathématiques. – I like everything
about maths.

• J’aime relever des défis – I like taking challenges

• J’adore faire des exercices difficiles – I like doing hard problems

• Je vais pouvoir trouver un travail plus tard grâce aux mathématiques. –
I will be able to find a job later on thanks to maths.

• Si je ne vais pas en cours de mathématiques j’aurais des remords – If I
don’t go to maths class, I will feel remorse

• Si je ne vais pas en cours de mathématiques je serai sanctionné.e – If I
don’t go to maths class, I will get in trouble

• Je ne sais pas pourquoi je vais en cours de mathématiques – I don’t
know why I go to maths class.





D
L U D I M O O D L E P L AT F O R M A D D I T I O NA L
I N F O R M AT I O N

Presented here are a few screenshots from the LudiMoodle platform described
in Chapter 5. The platform is avaible for test here: https://ludimoodle2020.
edunao.com/ using the following test accounts (each account provides ac-
cess for a different game element) - all of the test accounts use the same case
sensitive password: "Ludi2020!".

• avatar.demo

• badges.demo

• progression.demo

• classement.demo

• score.demo

• timer.demo

147

https://ludimoodle2020.edunao.com/
https://ludimoodle2020.edunao.com/


148 ludimoodle platform additional information

Figure 57: The course page for the Avatar game element. From this page learners
could access the different quizzes in each of the lessons by clicking on
the corresponding lesson. Each lesson showed the goblin character in a
different universe.



ludimoodle platform additional information 149

Figure 58: The course page for the Badges game element. From this page learners
could access the different quizzes in each of the lessons by clicking on
the corresponding lesson. The number of badges obtained, and the max
number of badges that they could obtain for each lesson is shown
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Figure 59: The lesson view for the Badges game element. Learners were shown the
number of badges unlocked for the current lesson, as well as the type of
badges for each quiz. In this example the learner has obtained all four
badges for the first quiz, and only the bronze badge for the second quiz.
They have not unlocked the other quizzes (greyed out).
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Figure 60: The course view for the Progress game element. Learners could access the
different quizzes in each of the lessons by clicking on the corresponding
lesson. Each lesson launched a different coloured rocket.
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Figure 61: The course view for the Ranking game element. Learners could access
the different quizzes in each of the lessons by clicking the corresponding
lesson. The learner is shown the highest rank they have achieved for each
of the lessons, as well as the number of times they have achieved this
ranking. In this example, they have achieved first in two different quizzes
in the first lesson, tenth in one of the quizzes in lesson two, and first in
one of the quizzes in lesson three.
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Figure 62: The course view for the score game element. Learners could access the
different quizzes in each of the lessons by clicking the corresponding les-
son. Learners where shown the number of points scored for each lesson,
as well as the total number of points scored.
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Figure 63: The lesson view for the score game element. Learners were shown the
number of points scored for each quiz in the lesson when they clicked on
one of the lessons. In this example the learner has scored 5,000 points in
the first and third quizzes, and 2,000 points in the second one. They are
also shown their score total for the lesson.
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Figure 64: The course view for the Timer game element. The learners are shown the
fastest they made their character go in any of the quizzes in the lesson (as
with the ranking game element, a multiplier is shown if they achieved this
speed in multiple quizzes).
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Figure 65: The quiz view for the Timer game element. Learners were shown the cur-
rent speed of their character in the quiz, their current time for the question,
as well as a "reference time" that was calculated based off of their previ-
ous question times. Every time they would beat this reference time, their
character would run faster, eventually driving a car or flying a plane as
they moved faster.



E
R É S U M É É T E N D U E N F R A N Ç A I S

e.1 résumé général

La ludification, l’utilisation des éléments de jeux dans des contextes non-jeux,
devient de plus en plus utilisé dans le domaine de l’éducation pour sout-
enir l’engagement, la motivation, et la performance des apprenants. Beauc-
oup d’approches actuelles proposent des systèmes où les apprenants utilisent
les mêmes éléments de jeux. Cependant, d’études récentes montrent que les
apprenants réagissent différemment aux éléments de jeux, et que leur mo-
tivation, engagement et performance peuvent varier grandement en fonction
des caractéristiques individuelles tel que la personnalité, les préférences pour
les jeux vidéo et la motivation pour l’activité d’apprentissage. Les résultats
indiquent que dans certains cas les éléments non adaptés aux apprenants
peuvent au mieux échouer dans leur tâche motivationnelle, et au pire dé-
motiver les apprenants. Il est donc important d’adapter les éléments ludiques
aux apprenants. Cette thèse s’est déroulé dans le cadre du projet LudiMoodle,
qui a pour but la ludification de ressources pédagogiques afin d’améliorer
l’engagement et la motivation apprenante. Dans cette thèse je propose un nou-
veau système qui adapte des éléments ludiques en utilisant des caractéristiques
individuelles des apprenants, ainsi que leur engagement. Nos travaux se basent
sur des résultats généraux du domaine de la ludification, ainsi que des ré-
sultats plus spécifiques dans le domaine de l’éducation. Notre but principal
était de proposer un moteur d’adaptation générique, instancié avec des règles
d’adaptation spécifiques à notre contexte. Ce manuscrit présente quatre con-
tributions majeures: (1) Un moteur d’adaptation général qui peut être implé-
menté pour proposer des éléments de jeux appropriés aux apprenants, utilis-
ant à la fois une approche d’adaptation statique et dynamique; (2) Un espace
et des outils de conception qui permettent la création d’éléments de jeux per-
tinents, en collaboration avec les divers acteurs de la ludification (concepteurs,
enseignants, apprenants etc.); (3) Une approche d’adaptation statique qui ét-
ablit un compromis entre un le profil de joueur d’un apprenant et leur mo-
tivation initiale pour la tâche d’apprentissage; (4) Un modèle d’apprenant
dynamique construit utilisant une approche basée sur les traces pour proposer
des interventions d’adaptation quand des baisses d’engagement sont détectés.
Ce moteur d’adaptation a été implémenté dans un prototype utilisé dans le
contexte du projet LudiMoodle, qui a été utilisé par 258 apprenants dans
4 collèges Français différents pour l’apprentissage des mathématiques. Pour
mettre en place ce prototype nous avons mené une étude dans des conditions
réelles, où les apprenants l’ont utilisé pendant leur cours de mathématiques.
Avec les résultats de cette étude nous avons fait plusieurs analyses pour mieux
comprendre les facteurs qui ont influencé les variations motivationnelles des
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apprenants, et comment leurs traces d’interaction peuvent prédire leur engage-
ment avec la tâche d’apprentissage. Ces analyses ont servi à évaluer l’impact
de l’adaptation des éléments de jeux sur la motivation et engagement des ap-
prenants, et construire notre modèle de traces pour l’adaptation dynamique.
Ce travail représente une avancée significative dans le domaine de la ludific-
ation adaptative, à travers un modèle générique pour l’adaptation statique et
dynamique, le premier étant basé sur les caractéristiques individuelles des ap-
prenants, et le second sur l’engagement observé des apprenants. Je fournis
aussi des outils et recommandations pour les concepteurs, pour aider dans la
conception d’éléments de jeux. Enfin, je discute ces résultats dans des per-
spectives de recherche futures, notamment au regard d’avancées possibles
dans le domaine de l’adaptation dynamique.

e.2 résumé chapitre 1

Ce premier chapitre introduit le contexte et les motivations pour ma recher-
che. Je présente d’abord les origines générales de la ludification, ainsi que
les premières vagues de recherche dans ce domaine. A partir de cette vision
générale, on se focalise rapidement sur le sujet principal, l’adaptation de la
ludification aux utilisateurs individuels. Je présente ensuite le projet LudiM-
oodle qui a donné le cadre de mes travaux de thèse. Enfin je présente les trois
questions qui ont guidé ma recherche, et la structure du manuscrit.

e.2.1 Origines de la ludification

Le terme de "Ludification" (gamification en anglais) est apparu pour la première
fois au début des années 2000 1, mais ce n’est pas avant 2011 qu’une défini-
tion formelle est apparue, proposée par Deterding, Dixon, Khaled et Nacke [31].
Ces auteurs proposent que la ludification soit définie comme "l’utilisation des
éléments de jeux dans des contextes non jeux". Une revue de la littérature sur
la recherche en ludification récente [83] montre que les éléments de jeux les
plus utilisés sont "Points, score XP", "Challenges, quêtes, missions", "Badges,
réussites", et "Leaderboards, classements".

La ludification est déployée dans de nombreux domaines, du sport[1, 84]
à la santé [10, 113, 120, 122] en passant par l’éducation[33, 73, 89, 90, 105],
pour faciliter l’engagement, la motivation, et la performance des utilisateurs.
Un exemple commercical bien connu de ludification est le programme d’apprentissage
des langues Duolingo 2. Cet outil en ligne propose un large pannel d’éléments
de jeux pour les encourager. Figure 66 montre une capture d’écran de l’application,
on y voit quelques éléments de jeux proposés par l’application. Dans cet ex-
emple on voit que les apprenants ont un objectif quotidien d’XP, montré sur
une barre de progression. Ils ont aussi un classement ou ils peuvent se com-

1 on dit souvent que c’est Nick Pelling qui a inventé le terme en 2003http://www.nanodome.
com/conundra.co.uk/

2 https://www.duolingo.com

http://www.nanodome.com/conundra.co.uk/
http://www.nanodome.com/conundra.co.uk/
https://www.duolingo.com
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Figure 66: Une capture d’écran de l’application Duolingo. Ici les apprenants peuvent
accéder a un leaderboard où ils peuvent comparer leur progrès avec celle
des autres apprenants. On y voit aussi des barres de progression pour
chaque leçon, un système de XP avec des objectifs quotidiens, et un plan-
ning hebdomadaire où ils sont encouragés a faire au moins une leçon
chaque jour.

parer aux autres apprenants, et un système de badges ou chaque leçon est
représenté par un niveau et un badge différent.

Un autre exemple de ludification intéressante est celle des "Piano Stairs"
présenté figure 67. En 2009 la compagnie Volkswagen a lancé une campagne
de publicité en Suède qui visait a promouvoir comment le "Fun" pouvait
changer le comportement pour le mieux. Une vidéo courte 3 montre com-
ment ces escaliers se comportent tel un piano, faisant des bruits quand on
marchait dessus. L’objectif de ces escaliers piano était d’inciter les passants a
prendre les escaliers au lieu de l’escalateur à côté, promouvant ainsi l’activité
physique. La vidéo montre comment les passants ont privilégié les escali-
ers plus amusants. Dans cet exemple la ludification est appliqué comme une
couche qui vient se poser par dessus de l’activité principale (ici prendre les
escaliers). Cette couche de ludification n’a qu’un seul but: motiver les util-
isateurs a réaliser l’activité sans la modifier.

Ces deux exemples montrent la diversité des approches de ludification
qui existent. Tous les utilisateurs utilisent les mêmes éléments ludiques. Ces
systèmes ne s’adaptent pas aux différents utilisateurs. Cela peut poser un
problème puisque la recherche montre que pour être efficace, la ludification
doit être adaptée aux préférences et attentes individuelles des apprenants[41,
61, 108, 122]. Cette recherche récente montre que les éléments de jeux qui
ne sont pas adaptés peuvent au mieux échouer dans leur rôle motivationnel,
et au pire peuvent carrément démotiver les utilisateurs.

3 https://www.youtube.com/watch?v=SByymar3bds

https://www.youtube.com/watch?v=SByymar3bds
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Figure 67: Un escalier en piano conçu pour encourager les utilisateurs a prendre les
escaliers au lieu de l’escalateur, et ainsi avoir une activité physique.

Les utilisateurs ne sont pas tous motivés par les mêmes éléments de jeux,
puisqu’ils ne proposent pas tous les même affordances motivationnelles. Il est
généralement accepté que la ludification fonctionne en élicitant les mêmes ex-
périences motivationnelles et psychologiques des jeux vidéos [68]. Du coup,
les éléments de jeux individuels devraient donc fournir des affordances mo-
tivationnelles spécifiques. D’autre travaux estiment que la ludification permet
de combler les besoins de base décrit par la SDT (Self Determination Theory)
[129] (SDT). La SDT propose trois besoins de base qui doivent être satisfait
pour encourager le bien-être humain: l’autonomie, la compétence, et le besoin
de liens sociaux.

Ryan et al. [130] ont décrit comment les jeux peuvent satisfaire ces besoins.
Le jeu solitaire a tendance a satisfaire l’autonomie et le besoin de compétence,
et les jeux mutlijoueurs le besoin de liens sociaux en plus. La ludification
pourrait donc satisfaire ces trois besoins via les éléments atomiques des jeux.

e.2.2 Contexte de recherche le projet LudiMoodle

Le travail présenté dans ce manuscrit à été mené dans le cadre du projet
LudiMoodle financé par le projet e-FRAN Programme d’investissement d’avenir4.

Le but principal de ce projet est la conception, évaluation et la validation
d’un approche personnalisée de la ludification appliquée à l’enseignement
numérique des mathématiques du collège, pour l’amélioration de la motiva-
tion des apprenants. Plus spécifiquement nous avons appliqué notre approche
de ludification a une plateforme Moodle [107] pour l’apprentissage des math-
ématiques de 4ème. Cette plateforme a été développée en collaboration dir-
ecte avec les partenaires du projet. Durant ce projet nous avons travaillé avec
des chercheurs en sciences pédagogiques du laboratoire ECP5 (Éducation,

4 https://www.gouvernement.fr/e-fran-l-ecole-change-avec-le-numerique
5 https://recherche.univ-lyon2.fr/ecp

https://www.gouvernement.fr/e-fran-l-ecole-change-avec-le-numerique
https://recherche.univ-lyon2.fr/ecp
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Cultures, Politiques) à l’université Lumière Lyon 2, des ingénieurs pédago-
giques du PAPN (Pole d’Accompagnement à la Pédagogie Numérique) de
l’université Jean Moulin Lyon 3, et Edunao, une entreprise spécialisée dans
la conception et le déploiement des plateformes d’apprentissage numériques
(tel Moodle). Dans le cadre du projet nous avons mené une expérimentation
en conditions réelles, où des apprenants ont utilisé une plateforme ludifié
pendant leurs cours de mathématiques normaux. Cette expérimentation s’est
déroulé dans quatre collèges dans la région Auvergne-Rhone-Alpes. Un totale
de cinq enseignants et 258 élèves ont participé à cette expérimentation. Les
enseignants ont aussi contribué à la création des contenus pédagogiques et
ludiques utilisés lors de cette expérimentation (voir chapitre 4 pour la de-
scription des séances de co-conception d’éléments ludiques).

e.2.3 Questions de recherche

Dans ce manuscrit je propose de répondre aux questions identifiées dans la
seconde vague de recherche en ludification [112], en les adaptant à notre con-
texte éducatif:

• Qui sont les cibles de notre adaptation? Comment peut-on catégoriser
les apprenants, et quelles sont les préférences liées à ces catégories?

• Quels éléments de jeux pouvons nous proposer à ces catégories d’apprenants?
Comment pouvons-nous concevoir des éléments de jeux qui prennent
en compte à la fois le contexte ludifié et les apprenants?

• Comment pouvons-nous adapter les éléments de jeux? Comment déter-
miner si les sélections d’élément de jeux sont bel et bien appropriés?

Le travail présenté ici est centré autour d’une proposition d’un moteur
d’adaptation des éléments ludiques utilisé dans le cadre du projet LudiM-
oodle. Ce moteur d’adaptation devrait servir comme outil qui propose des
éléments de jeux appropriés pour les apprenants. L’architecture de ce moteur
est présenté plus en détail dans la section suivante, et chaque chapitre de ce
manuscrit permet d’analyser et approfondir chaque partie du moteur.

e.2.4 Contributions de la thèse

Dans ce manuscrit, je présente quatre contributions majeurs liées par l’architecture
de moteur d’adaptation. Cette architecture sert comme cadre au reste du trav-
ail, puisque les autres modules qui le composent font l’objet des quatre con-
tributions présentés ici. La figure 68 montre un schéma global de cette archi-
tecture.

Tout d’abord le travail présenté dans le chapitre 2 est une étude de la lit-
térature sur la ludification adaptative en éducation, qui identifie quatre lacunes
de recherche. Ces lacunes font l’objet du travail présenté dans les chapitres
suivants de la thèse. Ces quatre lacunes, qui émergent d’une analyse appro-
fondie de l’état de l’art, sont:
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Figure 68: L’architecture du moteur d’adaptation, les contributions sont numérotées
ici.

1. une lacune dans la nomenclature et conception des éléments de jeux

2. une lacune dans les modèles d’apprenants

3. une lacune dans l’évaluation des méthodes d’adaptation

4. une lacune dans les méthodes d’adaptation dynamique

Ma première contribution est une étude des liens entre modèles d’apprenants
et éléments de jeux dans un contexte décontextualisé. Chapitre 3 présente une
étude menée en recrutement participatif qui étudie les liens entre différents
modèles utilisateurs et l’impact perçu des éléments de jeux sur la motiva-
tion. Notre objectif était d’obtenir des résultats applicables à n’importe quel
domaine. Nous avons comparé trois modèles utilisateurs différents, liés aux
préférences pour les jeux vidéos, ou au traits de personnalité. Nous avons
aussi comparé l’impact de différents éléments de jeux implémentant les mêmes
stratégies motivationnelles, utilisant une classification d’éléments de jeux conçu
pour combler la lacune 1. Nos résultats montrent l’importance du choix d’éléments
de jeux et de leur conception, et a aidé dans la sélection du modèle util-
isateur à utiliser par la suite des travaux, et le moteur d’adaptation. Le travail
présenté dans ce chapitre a permis une première réponse aux trois questions,
en montrant comment on peut catégoriser les utilisateurs selon leur profil,
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comment ces profils mettent en évidence des préférences et effets motiva-
tionnelles différentes, et comment l’instanciation des éléments de jeux influe
ces effets. Cette contribution présente une première étape pour combler les
lacunes 1 & 2.

Ma deuxième contribution est un espace de conception des éléments de
jeux, ainsi qu’un ensemble d’outils (plateau & cartes) pour explorer cet es-
pace. Ces outils visent la facilitation de la création des éléments de jeux appro-
priés aux contexte et aux apprenants lors des séances de co-conception unifi-
ant les acteurs du processus de ludification de l’éducation. La recherche [115]
montre que les éléments de jeux fonctionnent mieux si ils ont un sens pour
les apprenants, si ils font des connections importantes et thématiques avec le
contenu pédagogique. Chapitre 4 présente l’espace et outils de conception, et
un scénario d’usage dans le cadre du projet LudiMoodle. Ces outils ont aidé
les acteurs des séances de co-conception en fournissant un langage commun,
et en les guidant vers des questions de conception aux quels ils n’avaient pas
forcement pensé. Cette contribution sert a répondre entièrement à la deuxième
question de recherche, en montrant une méthode pour créer des éléments de
jeux appropriés au contexte et aux apprenants. Par ailleurs ces séances de
co-conception ont servis de base pour créer la banque d’éléments ludiques
utilisée dans le projet LudiMoodle. Cette contribution comble la première la-
cune en fournissant une approche simplifiée approfondie pour la conception
des éléments ludiques.

Ma troisième contribution est l’ensemble des règles d’adaptation spéci-
fique au domaine de l’éducation, basées sur un modèle de l’apprenant com-
posé d’un profil contextualisé (motivation pour l’apprentissage) et d’un profil
décontextualisé (préférences pour les jeux). Ces règles servent a créer une
approche statique de l’adaptation. On propose un compromis par les recom-
mandations d’éléments ludiques identifiés par les deux profils. Chapitre 5
présente l’étude menée dans le cadre du projet LudiMoodle. Au total 258 ap-
prenants dans quatre collèges ont participé à l’étude, et ont utilisé notre plate-
forme ludifié durant environ six semaines. De cette étude nous avons généré
les premières règles d’adaptation basé sur les profils des apprenants, pour en-
suite simuler trois approches d’adaptation différentes. Ces approches ont été
évalués, et les résultats ont fait émerger les règles finales pour l’adaptation
statique. Cette contribution répond entièrement aux questions de "Qui" et
"Comment" présenté au dessus. Elle sert aussi à combler la deuxième et
troisième lacune.

Ma quatrième et finale contribution est une approche d’adaptation dynamique
basée sur une étude des interactions apprenantes avec le système ludifié. Via
cette étude nous avons pu identifier des facteurs d’engagement qui permettent
de tracer l’engagement des apprenants au fil du temps, et proposer une inter-
vention d’adaptation quand une baisse anormale est détectée. Le Chapitre 6
décrit notre approche pour construire et interpréter cette analyse des traces,
ainsi qu’une possible implémentation d’un moteur d’adaptation dynamique
et comment il serait utilisé en classe. Cette contribution sert a combler la
quatrième lacune.
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Les sections suivantes présentent la traduction en Français des résumés de
chaque chapitre.

e.3 résumé chapitre 2

La ludification, l’utilisation des éléments de jeux dans des situations non jeux,
est utilisée de plus en plus dans l’éducation pour encourager la motivation,
l’engagement et la performance des apprenants. Des travaux de recherche ré-
cents dans le domaine de la ludification suggèrent que pour être efficace, les
éléments de jeux doivent être adaptés aux apprenants. Dans ce chapitre, je
fournis une vision générale de la recherche menée dans la ludification en édu-
cation pour mettre en évidence le besoin de ludification adaptative. Ensuite,
je présente une étude approfondie de la littérature de la ludification adaptat-
ive spécifiquement en éducation, afin de fournir une synthèse des approches
actuelles. Cette étude soulève 4 préoccupations de recherche principales: (1)
Les diffèrent types de contributions existantes, (2) la terminologie utilisée
pour décrire les éléments de jeux utilisés, (3) Ce sur quoi les différentes ad-
aptations se basent, et leur effet sur le système ludifié, (4) l’impact de la ludi-
fication adaptative sur les apprenants et comment cet impact est mesuré.

De cette étude de la littérature, j’identifie quatre lacunes, que je comble
dans les chapitres suivants.

e.4 résumé chapitre 3

Suite à l’étude de l’état de l’art, nous voyons qu’il est important de fournir des
éléments de jeux adaptés et personnalisés aux apprenants. Une première ap-
proche, souvent observée dans la littérature est de catégoriser les apprenants
selon leurs préférences pour les jeux vidéos (profils de joueurs). Cependant
les résultats sont souvent très hétérogènes, et quelque peu difficiles à réutiliser
à cause des contextes différents, des profils différents utilisés pour catégoriser
les apprenants, et différents implémentations d’éléments de jeux. Ce chapitre
présente une première étude qui nous a permis d’investiguer les liens entre des
différents modèles de profil, et différentes préférences pour éléments de jeux,
comment des implémentations d’éléments de jeux similaires peuvent affecter
les utilisateurs différemment, et comment le contexte de l’environnement ludi-
fié peut affecter l’effet des éléments de jeux.

L’objectif de cette étude est de fournir des aperçus de comment on peut
générer des recommandations pour des éléments de jeux appropriés, en se
basant sur des caractéristiques utilisateurs individuels. Dans cet objectif nous
avons mené une étude en recrutement participatif avec 300 participants pour
identifier l’impact motivation d’éléments de jeux. Les participants devaient
sélectionner quels éléments de jeux les aurait le plus motiver à réaliser une
tâche non spécifiée. Ces choix on été présenté en paire, afin de réduire la com-
plexité de la décision. Cette étude est différente de travaux précédents de trois
façons: d’abord, elle est indépendante de tout contexte, et activité utilisateur;
ensuite, nous considérons trois typologies d’utilisateurs; et finalement on dis-
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tingue clairement entre les stratégies motivationelles et leurs implémentations
à travers plusieurs éléments de jeux.

Nos résultats montrent que (1) les implémentations différentes d’une même
stratégie motivationnelle ont des impacts différents sur la motivation, (2) le
type d’utilisateur dominant n’est pas suffisant pour différencier entre les préférences
des éléments de jeux, (3) la typologie Hexad semble plus appropriée pour la
ludification personnalisée, et (4) l’impact motivationnel de certains éléments
de jeux varie avec l’activité utilisateur, ou le domaine ludifié.

Cette étude a fait l’objet d’un article de recherche présenté à la conférence
CHI Play en 2019, et à été récompensé d’une "Mention Honorable" [59]. Ce
chapitre présente une première étape pour combler la lacune des modèles
riches d’apprenants.

e.5 résumé chapitre 4

D’après les résultats du chapitre précédent, nous constatons que les différentes
implémentations des éléments jeux affectent les apprenants différemment. De
plus, le contexte ludifié joue un rôle important sur l’effet motivationnel et en-
gageant des éléments ludiques. Il est donc important que le contexte et les
apprenants soient pris en compte lors de la conception des éléments de jeux.
Pour cela, nous avons décidé d’unir tous les acteurs du processus de la ludific-
ation de l’éducation (concepteurs/ingénieurs pédagogiques, enseignants, ap-
prenants) pour la création des éléments ludiques. Notamment les acteurs édu-
catifs (enseignants, et apprenants) puisqu’ils ont une meilleure compréhen-
sion de comment les éléments de jeux peuvent s’insérer dans les contenus
pédagogiques. Cependant nous avons rencontré de nombreux soucis suite
à l’unification de ces multiples acteurs. Principalement à cause du manque
de langage commun, et des différents niveaux de connaissances de concep-
tion. Pour faire face à ce problématique, et pour faciliter les sessions de co-
conception, nous avons proposé un espace de conception pour encourager la
créativité des acteurs. Pour explorer cet espace de conception et guider le pro-
cessus, nous avons proposé un jeu de cartes et plateau de conception. Avec
ces outils, nous avons pu observer que les enseignants et ingénieurs peuvent
considérer de multiples différentes implémentations d’éléments de jeux com-
muns, et ont étés capable d’atteindre un consensus général sur les décisions
de conception rapidement.

Le travail présenté dans ce chapitre, ainsi que la classification d’éléments
de jeux présenté dans le chapitre précédent, servent à combler le besoin pour
des éléments de jeux appropriés aux contexte présenté dans le chapitre 2.

e.6 résumé chapitre 5

Comment pouvons nous générer des règles d’adaptation appropriées ? Comme
montré dans le chapitre 3, les préférences liées aux diffèrent types de joueur
offrent une certaine idée de quels éléments pourraient être appropriées. De ces
préférences nous pouvons donc établir une première base de règles d’adaptation.
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Cependant comme montré dans le chapitre 3, ces préférences (et donc base
de règles d’adaptation) varient fortement avec le contexte ludifié. Il est donc
nécessaire d’investiguer les spécificités amené par notre contexte éducatif
(les mathématiques en collège) pour identifier des règles d’adaptation appro-
priés. De plus, il est important d’avoir un moyen pour évaluer les suggestions
d’adaptation proposées dans le cadre du projet LudiMoodle.

Dans ce chapitre nous proposons une base de règles d’adaptation issues
des résultats d’une étude en conditions réelles (mené dans le cadre du pro-
jet LudiMoodle). Ces nouveaux résultats ont confirmé ceux observés dans la
littérature qui montre qu’une ludification non adapté à tendance à démotiver
les apprenants sur la durée. Une analyse plus poussée a montré que l’impact
des éléments de jeux sur la motivation des apprenants varie énormément en
fonction de leur motivation initiale à faire des mathématiques, et leur profil
de joueur Hexad. Ceci soulève la nécessité d’adapter en fonction d’à la fois
le profil de joueur et la motivation initiale.

Suivant ces résultats nous avons simulé différentes approches d’adaptation
basé sur trois modèles d’apprenants différents (motivation initiale, profil de
joueur, et une combinaison des deux), et nous avons analysé l’impact de ces
trois adaptations sur l’engagement, la motivation et la performance des ap-
prenants. Ces tests et simulations ont été effectués sur les données de l’expéri-
mentation LudiMoodle qui s’est déroulé au printemps 2019. Les résultats de
ces simulations nous ont permis de mettre en place les règles d’adaptation,
déployés dans le prototype du moteur d’adaptation statique, qui a servi dans
le projet LudiMoodle.

e.7 résumé chapitre 6

Jusqu’à présent le modèle d’adaptation proposé utilise une approche "statique",
où le système est adapté aux apprenants une fois, avant qu’ils utilisent l’en-
vironnement d’apprentissage. Suivant la définition posé au chapitre 2, je pro-
pose d’étendre le modèle actuel pour permettre une adaptation dynamique qui
se base sur le comportement des apprenants, utilisant les traces d’interaction
récoltées suite à l’expérimentation LudiMoodle (voir chapitre 5) pour créer
des règles d’adaptation dynamique. Comme défini, l’adaptation dynamique
peut se dé-clencher à plusieurs reprises durant l’utilisation du système ludifié
si c’est nécessaire. Dans le cadre du projet LudiMoodle, le système d’adaptation
dynamique doit pouvoir tracer l’engagement et la motivation des apprenants,
et proposer une adaptation quand une baisse anormale est détectée. Cette ad-
aptation prendra donc la forme d’un changement d’élément ludique, censée
motiver, ou engager l’apprenant à nouveau.

Nous avons donc d’abord besoin d’un moyen d’évaluer comment les traces
d’interactions témoignent de la motivation ou engagement des apprenants.
Nous avons dans un premier temps déterminé un ensemble de métriques pour
représenter l’engagement des apprenants avec la plateforme d’appren-tissage.
Ensuite, grâce à une approche d’analyse factorielle nous avons mis en évid-
ence trois facteurs d’engagement, formant ainsi un modèle de l’engagement
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basé sur les traces d’interaction. Nous avons mis en place ce modèle d’engagement
dans une nouvelle version du moteur d’adaptation qui comporte donc une
module d’adaptation dynamique. Cette nouvelle version du moteur d’adaptation
aurait été testé dans une finale vague d’expérimentations LudiMoodle, mais
a cause de la crise COVID19 celle ci n’a pas pu être mise en place.

e.8 résumé chapitre 7

Ce chapitre résume les contributions présentés dans ce manuscrit, et propose
des nouvelles futures directions de recherche qui peuvent explorées pour pour-
suivre ce travail.
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